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Abstract 

In this work, a measurement of the strong coupling constant cyI in e+e- annihilation 
at a center-of-mass energy of 91.6 GeV is presented. The measurement was performed 
with the SLD at the Stanford Linear Collider facility located at the Stanford Linear 
Accelerator Center in California. 

The procedure used consisted of measuring the rate of hard gluon radiation from 
the primary quarks in a sample of 9,878 hadronic events. After defining the asymp- 
totic manifestation of partons as ‘jets’, various phenomenological models were used 
to correct for the hadronization process. A value for the QCD scale parameter 
Am defined in the MS renormalization convention with 5 active quark flavors, 
was then obtained by a direct fit to O(ot) calculations. The value of cyI obtained was 
Q&wP) = 0.122 f 0.004 + ~$$ where the uncertainties are experimental (combined 
statistical and sytematic) and theoretical (systematic) respectively. Equivalently, 
AjG?s. = 0.28 2 i*ig GeV where the experimental and theoretical uncertainties have 
been combined. * 
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Chapter 1 

Introduction 

1.1 Mot ivat ion 

The testing of Quantum Chromodynamics, the theory of strong interactions, at the 
perturbative scale is by no means a closed book. The nature of the strong force is 
such that perturbative calculations are only reliable in the high energy limit. This 
limit, however, does not include hadronization, the QCD mechanism for particle 
production. One then resorts to phenomenological models in order to complete the 
picture. This fact, and the fact that the large coupling makes any calculation very 
sensitive to a truncation in the perturbative series, introduces sizeable uncertainties 
in any measurement. The understanding of these uncertainties then becomes the 
central issue in any perturbative QCD (PQCD) measurement. 

With these issues in mind, we proceeded to determine the QCD strong coupling 
constant in e+e- annihilation. In this chapter we present the motivation for this 
measurement, a short description of the Standard Model of Electroweak Interactions, 
and a brief outline of the rest of the thesis. 

Theoretical Motivation 

There is no doubt that the most important QCD measurement in the perturbative 
regime (Q’ >> A&,) is the measurement of the strong coupling a,(Q2). Paradox- 
ically this measurement, on its own, does not tell us much about QCD or anything 
else. The importance of this measurement, as far as QCD is concerned, lies solely 
in a demonstration of the expected running of o,(Q2) with the interaction scale Q”. 
Even the Q2-dependence is not that surprising; after all it is in general expected for 
any quantum field theory (e.g., QED) w h ere virtual quanta renormalize the strength 
of the probe. What is interesting about QCD is the role that gluon self-interactions 
play in the behavior of the running coupling. With the boundary conditions of bound 
states on one side (hadrons, Q2 x A$,,) and of observable constituents on the other 
side (quarks, Q* + w), the stage is set for an asymptotically free non-Abelian gauge 
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CHAPTER 1. INTRODUCTION 

field theory. 

The fact that the value of the strong coupling constant depends on the size of 
the probe used to measure it has many interesting implications and complications. 
Among these is the applicability of the perturbative calculations used to measure 
cyS. Care must be exercised in insuring that the calculations used are valid in the 
regime of interest. Another complication is the fact that, due to the QCD ansatz 
of color-singlet states, the inherently strong hadronization process takes place. This 
process is a long-distance process, and thus, non-calculable in perturbative &CD. A 
qualitative understanding exists nevertheless, and allows us to model these low-Q2 
regimes. An optimist would say that this ‘fuzzy’ picture that QCD presents to the 
experimenter is just a symptom of the richness of the theory. This is to be contrasted 
with measurements in the Electroweak theory, where the precise determination of the 
coupling constants yields experimentally achievable sensitivities to new physics ‘. 

In this investigation, we measured the value of cy, by determining the amount of 
high energy gluon radiation emitted by the primary quarks (anti-quarks) created in 
the decay of the 2 O. These primary quarks and gluons, in their race to ‘dress-up’ 
their color degrees of freedom, form cones or ‘jets’ of particles which eventually decay 
and interact with a detector. We studied these interactions to reconstruct the initial 
parton configurations, and together with perturbative calculations of jet-fractions, 
measured the value of Q,. In this context, then, the study of jets provided an ideal 
place to investigate the quasi-free regime of parton de-confinement (high-Q2 limit). 

Experimental Motivation 

Although the strong coupling constant has been measured extensively in e+e- anni- 
hilation in the energy range fi = 14 - 92 GeV, most of these measurements have 
been performed by using charged particles only. We performed a complementary 
measurement by using a calorimeter only; thus, both charged and neutral particles 
were used. 

Why, then, another measurement of as ? 

We will see that, even though the SLD calorimeter was not fully understood during 
the 1992 run, calorimeters provide very robust measurements of global event observ- 
ables. In our case we used jet-fractions. In addition, the way in which calorimeters 
work mimic the requirements for an observable to be perturbatively calculable. One 
can think of calorimeters as being both infrared and collinear safe 2. 

‘This is more a comment on the calculational techniques than on the theory itself. 
21n the next chapter we will discuss these issues for &CD. In a calorimeter, the infrared cutoff 

is naturally provided by the finite number of cells while the collinear ‘safety’ is a direct result of 
linearity. 
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1.2. Thesis Outline 

1.2 Thesis Outline 

This thesis presents a measurement of the strong coupling constant o, in e+e- anni- 
hilation at J?#?,, = 91.55 GeV. The thesis is divided into the following sections: 

l Chapter 1 In the rest of this chapter, we will summarize the Standard Model. 

l Chapter 2 We will briefly review &CD, especially in e+e- annihilation. We 
will also discuss the theory and the phenomenology behind the measurement. 

l Chapter 3 The experimental apparatus used in this measurement will be de- 
scribed with special emphasis on the calorimeter system. 

l Chapter 4 A review of the performance and the calibration of the calorimeter 
system will be presented. 

l Chapter 5 The triggering and the selection of hadronic events will be discussed. 
A discussion of backgrounds and efficiencies will also be presented. 

l Chapter 6 Having gathered the necessary tools from chapters 2 to 6, we present 
the actual measurement in this chapter. A discussion of the results and the 
systematic errors is also included. 

1.3 Electroweak Interactions 

In e+e- colliders with energies 5 100 GeV, the main @ j production mechanism is 
through electroweak interactions 3. We therefore present a brief summary of the 
features of the Electroweak theory which are relevant to our measurement. 

The theory of Electroweak Interactions[l, 2,3] is a field theoretic description of the 
unification of Quantum Electrodynamics (QED) and an extension of Fermi’s theory 
of weak decays. The prediction and discovery by direct production [4] of the charged 
and neutral carriers of the weak force in 1983 has so far been one of its greatest 
achievements. 

In the Electroweak theory the charged carriers, the W* bosons, are maximally 
parity violating with a vertex factor proportional to ~~(1 - 7s). The 2’ boson is the 
neutral carrier of the weak force. It has the same quantum numbers of the photon 
(and hence interferes with it) but has a hybrid chirality and a vertex term proportional 
to y,,(Ci - y5Ci), where the Ci and Ci are predicted by the Standard Model for 
each fermion type f. The theory is based on the SU(2)~xU(l)y symmetry of an 
isotriplet of vector fields that couple to a weak isospin current (left-handed) and an 
additional vector field that couples to a weak hypercharge current. In the symmetry 

31n hadron colliders, for example, the dominant production mechanism is &CD itself. 
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CHAPTER 1. INTRODUCTION 

fermion &j T T,’ Y CV CA 
0; i-1 1 , w 0 

ii 
l- -1 + -i -1 -i -: +2gin2& 

U 2 1 1 1 1 3 2 2 3 2 i-3 1 4 sin’ 6~ 
d -- 1 1 1 1 i 3 2 -2 3 -f -4 t f sin’& -1 

Table 1.1: Electroweak quantum numbers and couplings to the Zc. 

breaking mechanism for mass generation these bosons mix into physical states with 
the parameter sin 8,. The couplings to the Z” are given by: 

C; = Tr” - 2 sin2 OwQ, 

c!, = T/3 

where the T; is the third component of weak isospin and Qf is the fermion charge in 
units of e. Table 1.1 summarizes these quantities. 

Figure l-l: Tree level Feynman diagrams for quark (q) and antiquark (ij) production. 

In e+e- annihilation, and in the vicinity of & M Mzo, the production cross section 
for fermion pairs (ff) is enhanced due to 2’ resonance production. As Figure l-2 
shows, the total cross section is just the overlap of a continuum term (QED) and 
a Breit-Wigner shaped resonance (2” production). The Feynman diagrams for this 
process are shown in Figure l-l. Interference effects are also included. The production 
mechanism for qTj in e+e- annihilation is then the same mechanism as that for leptons 
but with a modified couplings to the 2’. 
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1.3. Electroweak Interactions 

The cross section for hadronic production at the 2’ is given (to O(af)) by [5, 61: 

h - utot - bq 1 + l.05’y”(Mz) 
lr t(o.9*o.l,(~~(~~)2-13(~~(‘Ma))3t...], 

(1.1) 
where erg is the tree level hadronic cross section, 

Qq 4dn _ 
3s 0.2) 

and where REW is the ratio of hadronic to leptonic widths calculated with Q, = 0 at 
a center-of-mass energy of fi = Mz. 

E, in GeV 

Figure l-2: Cross section for e+e--* j.4 + -, showing both the continuum contribution p 
(bottom line) and the resonance contribution. 
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Chapter 2 

Quantum Chromodynamics 

2.1 Development of QCD 

The basic building blocks of the modern interpretation of strong interaction phe- 
nomena were established in 1964 when Gell-Mann and Zweig [7, 81 independently 
developed the quark model of hadrons. This model, based on a SU(3) flavor sym- 
metry of spin-i and fractionally charged particles, postulated that hadrons had a 
sub-structure. The quark model was an attempt to order the “table of hadrons” of 
the time. At their inception, the quarks were just a mathematical tool to keep track 
of the various hadron species - a sort of “bookkeeper of symmetries”. This model, 
however, was not without problems. 

The totally symmetric same-quark states (A++, A-, W baryons) were forbidden 
by the Pauli exclusion principle in the context of the quark model alone. This problem 
was solved [9] by postulating yet another degree of freedom for the quarks (in addition 
to spin and flavor) which was called color. As it turned out, the idea of color was 
later to become, from a field theoretic point of view, the central idea of “full-blown” 
&CD. 

The discovery of the scaling of structure functions in 1968 in the SLAC-MIT 
experiments [lo] of deep inelastic electron-nucleon scattering provided the first in- 
dication of point-like structure inside the proton. In these experiments, a high-Q2 
(i.e., high spatial resolution) electron probe was used to examine the proton. It was 
found that as the resolution of the probe increased, the structure functions associ- 
ated with the proton changed from being those of a disc of finite extent to those of a 
composite structure of point-particles. This property of Bjorlcen scaling immediately 
led to the development of Feynman’s parton model of hadrons. This model was what 
today we would consider as zeroth-order QCD even though, initially, the connection 
to Gell-Mann’s quarks had not been made. 

Later studies of the spin and charge content of the proton led to identifying these 
partons as the quarks. The observation that quarks behaved more and more like 
point-particles as the Q” of the probe increased was crucial to the later development 

21 



CHAPTER 2. QUANTUM CHROMODYNAMICS 

of asymptotic freedom in &CD. The quark-parton model was then extended to consist 
of 3 quark constituents and a “sea” of quark-antiquark pairs bound together by neutral 
‘gluons”. The observation that one-half of the nucleon momentum was carried by 
the quarks and the (later) observation of scaling violations (higher-order deviations 
of the parton model) confirmed this view. 

During the 60’s and early 70’s many models [ll, 121 of the nucleon were put forth 
to explain Bjorken scaling. One by one, with exception of the modified version of 
Feynman’s quark-parton model, they were all discarded by experiment. The one last 
hurdle to the parton picture was then the fact that quarks had never been observed 
in a free state. In addition, Feynman’s model provided no explanation for the strong 
interaction phenomena which led to the production of hadrons. 

The breakthrough came when Gross, Wilczek, and Politzer [13, 141 re-examined 
the non-Abelian gauge field theories originally proposed in the 50’s by Yang and 
Mills [l5]. Using renormalization group methods to calculate charge renormalization 
to one loop, they showed that the Yang-Mills formulation had the desired property 
of asymptotic freedom. In one stroke they solved the puzzle by explaining a strong 
interaction at large distance with quasi-free behavior at small distances. At that time 
the renormalizability of non-Abelian gauge field theories had already been proven and 
their quantization achieved [16]. A coherent picture for the dynamics of the theory 
was finally achieved when the symmetries of the noncommutative gauge groups was 
identified with an exact color symmetry. 

Quantum Chromodynamics was thus born. It was a great achievement that the 
constituent and dynamical aspects of the quark picture had been reconciled. The color 
degrees of freedom had a dual role: it solved the counting problem in the constituent 
picture of quarks and, in the context of a gauge theory, its invariance provided the 
dynamical mechanism for the strong force. In the 60’s, many people argued that 
the strong interaction would never be described by the methods of perturbative field 
theory. For the most part, that argument still holds. Perturbative QCD (PQCD) is 
inapplicable in the Q2 regimes of large coupling strengths. However, as new, higher 
energy accelerators were built to probe deeper into the nucleon, the asymptotically 
free regime of QCD was unleashed. Once the quasi-free approximation for quarks 
could be reached, then PQCD became applicable and physical observables calculable. 
This limit is essential for our measurement. 

2.2 The Theory 

QCD is rich, both theoretically and experimentally. The complicated structure of its 
vacuum, the nature and scale of the strong coupling gS, and the fact that it is a young 
theory only underscore the importance of testing it experimentally. The program of 
calculations and experiments to test QCD is vast and vigorous; they include tests of 
collective phenomena and the vacuum at heavy ion colliders, axion searches (strong- 
CP problem), lattice-gauge calculations, studies of hadron production, and studies of 
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the asymptotic limit (measurement of perturbatively calculable observables). 

In the following we will concentrate on the aspects of QCD applicable to our 
measurement. These include perturbative QCD in e+e- annihilation and the related 
low-Q2 phenomenology. 

The Lagrangian 

Quantum Chromodynamics [17] is the local non-Abelian gauge field theory of colored 
quarks and gluons. The quarks are point-like spin-: particles, which in addition to the 
Electroweak quantum numbers of Table 1.1, carry the color charge. The strong color 
charge arises from the exact and local SU(3) gauge symmetry and is thus conserved. 
Just like in QED, where the requirement of local gauge invariance gives rise to the 
photon field, in QCD the gluon field arises of such invariance to mediate the strong 
force. Unlike QED however, where the symmetry group is the Abelian group U(l), 
the non-commutative properties of SU(3) c imply that the gluon force mediators are 
themselves carriers of the color charge. Gluon-gluon couplings are thus allowed. 

Following the notation of (161, the classical ’ QCD Lagrangian is given by: 

where, 
F;v = &A; - &A; t gJabCA;A; 

is the field strength tensor from the gluon field A; and where, 
(2.2) 

D, = 8, - ig,T”A; (2.3) 

is the generalized covariant derivative. In equations 2.1, 2.2, and 2.3, ‘u’ is the color 
index a = 1,2, . . . . 8, fcbc are the SU(3), group structure constants, T” are the SU(3), 
generators, and the q&J are the quark (anti-quark) spinor fields of flavor k. 

We can see from Equations 2.1-2.3 that the only free parameters in QCD are the 
dimensionless coupling gs and the quark masses mk. However, to a good approxima- 
tion [18], QCD displays a chiral symmetry SU(3) x SU(3) in the limit that the quark 
masses 772, = md = ma = 0. So, at sufficiently high energies, we see that there is no 
explicit parameter setting a mass scale (gs is dimensionless). It is the renormalization 
scale parameter p that sets a mass scale for the theory by specifying at which point 
gs is renormalized. 

‘In order to quantize QCD (or any gauge theory) the gauge freedom must be fixed. This can be 
done by explicitly including gauge-fixing terms in Equation 2.1. In addition, unphysical degrees of 
freedom are removed by including a Faddeev-Popov “ghost” term. 
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Figure 2-l: Some QCD interactions. The labels ‘i’ and ‘j’ are the quark color indices 
(i,j = 1,2,3), w i e h 1 a,b,c, and d are the gluon color labels (= 1,2, . . . . 8). 

Interactions in QCD 

We can almost read-off the vertex factors from Equations 2.1-2.3. One thing to 
note, when comparing QCD with QED, is that the non-trivial Lie algebra of SU(3), 
introduces an extra term proportional to fabc in Equation 2.2. This term is the one 
that gives rise to the gluon-gluon interactions and is a direct result of the non-Abelian 
nature of &CD. In terms of the fundamental constant gs, we have for the physical 
(excluding the ghost terms) vertex factors: 

where the V and W are functions of the leg momenta and can be found in refer- 
ence [19]. Th ese interactions are diagramed in Figure 2-l. In our study we will 
encounter the first two of these interactions; the gggg coupling is out of our reach 
since it is of higher order than the present 0(cr2) calculations because at tree level, 

O(e+e- --f 5-jets) = (g,gi)2 = O(c~3). 

In the above the 5 jets originate from the gggg coupling with one of the legs attached 
to the qij pair. More on that later. 

2.2.1 Renormalization 

In a Quantum Field Theory (QFT) like QCD, loop integrals are in general divergent. 
These divergencies are rooted in the ‘locality’ assumption of QFT: that interactions 
between two objects occur at the same space-time point (point-like interactions). 
However, a renormalizable theory is one that allows the divergencies to be absorbed 
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into the physical parameters of the Lagrangian via a finite renormalization program. 
As mentioned previously, C&D has been shown to be renormalizable. 

In order to visualize the above, it is useful to consider the case of mass renormal- 
ization in QED [20]. If we divide the QED equivalent of Equation 2.1 into a free and 
interacting part, 

L=&tC;nt, (2.4 
and consider that electrons are stable and observable, then we would expect that 
S,+, (the matrix element for electron -+ electron transition) should be 1. In fact, 
since electrons undergo self-interactions (emission and absorption of virtual photons), 
Se+ # 1. But we know from experience that if we “watch” an electron at the 
characteristic distance d = Ifi 1 p e.g, Thompson scattering with p2 + 0) we can 
measure a physical mass m,. So in order to recover Sede = 1 for the free Lagrangian, 
we have to modify the decomposition in Equation 2.4 by adding a 6m term to the 
bare electron mass and subtract it from I=int. Since we have “observed” the electron 
at a particular distance, this counter-term subtraction has been explicitly performed2 
at the scale Q2 = p2. 

This re-shuffling of terms, the renormalization procedure, is just a response to the 
fact that the quantities postulated in the “bare” (unrenormalized) Lagrangian do not 
correspond to physical observables when interactions are present. This procedure is 
not unique. 

Dimensional Regularization 

Before carrying out the renormalization procedure, the infinities of the theory must be 
identified and regularized. This is usually accomplished by re-writing the Lagrangian 
(or any quantity being calculated) with an explicit cut-off; in the limit that this cut- 
off vanishes the original expression is then recovered. Of the various regularization 
schemes, the most convenient one for QCD is dimensional regularizution [21]. This 
scheme is especially suited for &CD as it respects gauge invariance and makes it 
unnecessary to introduce additional invariance-restoring counter terms. In this pro- 
cedure, the infinities are regulated by continuing the dimensionful expressions in the 
Lagrangian (and subsequent integrals) to n = 4 - 2r. In order to keep the coupling 
gS dimensionless, the replacement gj + p’g3 is made throughout. The arbitrary pa- 
rameter ~1 is not specified with the exception that it has the units of mass; thus an 
explicit dependence on p is introduced into the resealed g,: gs = g,(p). The infinities 
are then explicitly re-expressed as poles in (l/~)~. Of course, at this stage nothing 
has changed: the original divergent expression is still obtained in the limit E + 0. 

2This is one difference between QED and &CD: since electrons are observable, an unambiguous 
renormalization scale can be chosen whereas &CD offers no such free states. 
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Renormalization Schemes and Conventions 

In this section, we follow the treatment and conventions of Duke and Roberts 
and Muta [16]. 

One can always write any QCD perturbatively calculated observable as, 

P21 

R(s) = ro t r1 (g) tr2 (g)'+-q-, (2.5) 

where g is the strong coupling CY# = g2/4a, and where the ri are calculable i-th order 
coefficients. These coefficients (as we will see in the specific example of jet rates later) 
are in general ultraviolet divergent and are controlled by a specific regularization and 
renormalization program. We have said that renormalization amounts to a reshuffling 
of terms in the Lagrangian; this reshuffling can be done in a infinite number of ways. 
If we attach the label ‘u’ to both the ri and g in Equation 2.5 denoting one of the 
particular renormalization conventions, we write, 

(2.6) 

where we have explicitly truncated the series expansion at the n-th order. But we 
know that in real life observables yield definite results that do not depend on any 
renormalization convention. We would then expect that for a different renormaliza- 
tion convention R”(g,) x Rb(gb)-at least to the maximum order of the calculation. 
We can rephrase this by saying that assuming we have an n-th order calculation of 
Equation 2.5 available, this last requirement can be written3 as [22], 

[R(g2/Wl: - [R(g2/44t = Q([g2/4dn) (2.7) 

where n denotes the order at which the series 2.5 is truncated and a and b denote 
different renormalization schemes. We see then that as n -+ 00, the results of the 
perturbative expansions in two different renormalization conventions given by Equa- 
tions 2.5 and 2.6 agree. We will encounter the effects of the truncation in Equation 2.6 
in our measurement in the form of renormalization scale uncertainties. 

Examples of various renormalization conventions are given in reference [22]. In our 
work we choose to use the modified minimal subtraction scheme, which together with 
the dimensional regularization procedure, completes the renormalization program. In 
this scheme the l/t. poles in the perturbative expansion are subtracted via Lagrangian 
counter terms. The additional terms ‘ln4a - 7~’ (7~ is Euler’s constant), relics of 
the dimensional regularization, are also subtracted. 

We should mention that some authors (e.g., Stevenson [23], Brodsky et al. [24], 

3We also use the result [16] that the two couplings can be related through a finite renormalization 
transformation. This in turn implies that TO and ~1 are scheme independent and that the higher 
order t-i can be converted from one scheme to another. 
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among others) advocate specific schemes to reduce the renormalization scheme am- 
biguity that arises due to the uncalculated terms in Equation 2.7. The use of these 
schemes is generally called ‘optimized perturbation theory’. The PMS scheme, for ex- 
ample, advocates evaluating an observable at the scale &* such that aR(g, &*)/aQ = 
0. Such a scale would presumably minimize the effects of missing higher orders by 
artificially reducing the sensitivity to them. Other people [14], however, have argued 
strongly against some of these schemes. 

The P-function and the Running of cy, 

In this section we will investigate the consequences of renormalizing the strong cou- 
pling g8. We will denote the bare (unrenormalized) coupling by gb and the renormal- 
ized coupling by gs. Good references for this section are Gross and Wilczeck [25] and 
Field [19]. 

The leading order corrections to the @g vertex are shown in Figure 2-2. The 
rightmost column in the figure shows the amplitude for the sum of amplitudes in each 
row. The ‘Zi’ factors are the renormalization factors [19] absorbing the ultraviolet 
divergencies of the corresponding amplitudes 4. In order to extract the renormalized 
strong coupling, the corrections in Figure 2-2 are added to yield [19], 

1 - kw,J’a = - 
z2l/tg l-l- 1 ( &-’ 

- 1) - 2(2,-i - 1) t (23 - I,] (-@?b7&) 

(2.8) 

where we can now read off the the renormalized coupling in terms of the bare coupling, 

(2.9) 

The Zi are written in terms of the coupling gs, the dimensional regularization mass 
,v, the explicit divergent parts l/e, and some QCD factors. Combining these into 
Equation 2.9 to order gi gives [26], 

gs = + w47d - 7 
)I 

P37b, (2.10) 

where the above is given in the MS scheme and where, 

In the above, N, = 3 is the number of colors and nf is the number of quark flavors. 

4B~ convention, i = 1 corresponds to the vertex correction, i = 2 corresponds to fermion self- 
energy corrections, and i = 3 corresponds to the gluon propagator corrections. 
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We now impose the requirement that, since ~1 is an arbitrary parameter, gb must be 
independent of p, or, 

1 gb = 0. 

Applying this last result to Equation 2.10 and performing the renormalization sub- 
traction gives, 

&7* PO 
PF = -ig& (2.11) 

and the renormalization group (RGE) result [27] is obtained. In this last equation, 
the renormalization procedure has been carried out using the MS prescription. A 
very important result is already evident from Equation 2.11. Notice that for PO > 0 
(equivalently, nf 5 IS), Equation 2.11 implies that the coupling gs decreases with an 
increase in the energy scale. This very important property is called asymptotic freedom 
and allows us to use perturbation theory at high energies in &CD. It is important to 
note that this behavior (‘negative P-function’) is solely due to the non-Abelian nature 
of QCD (cf., QED has a ‘positive P-function’). 

Writing Equation 2.11 to higher orders [28] and using cy, = gi/4n, we quote, 

(2.12) 

where pi = 102- !fnr and where the right side of the above equation is generally called 
the /3-f&&on. The coefficients PO and PI are renormalization scheme independent; in 
general, however, higher order coefficients do depend on the renormalization scheme 
used. 

Perturbative QCD does not tell us the ‘absolute value’ of cr,, it just tells us how 
it behaves through Equation 2.12. In fact, what is missing from the differential 
equation, and is not given by the theory, is a boundary condition to completely 
specify the behavior of Q,. In QED the Thompson limit (Q2 + 0) provides a natural 
boundary condition defined in terms of an observable object-an electron. In QCD 
the convention [6] is to introduce a renormalization scheme dependent mass parameter 
A, 

Q2 as(Q) da: 
Ins= - 

L P(x) ’ 
(2.13) 

where /3 is the function defined by Equation 2.12. In the following, and for sim- 
plicity, the one-loop approximation (Equation 2.11) will be used. One can see from 
Equation 2.13 that the chosen boundary condition is a,(A) = 00. 

We can proceed with Equation 2.13 to obtain a closed form for Q~, 

as(Q) = ,Bo in( &“/A”) * 
(2.14) 

Now asymptotic freedom is fully evident in Equation 2.14: as Q2 --t 00, Q,(Q) + 0. 
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Figure 2-2: Leading order corrections. Top to bottom: the bare vertex, vertex 
correction, quark self-energy correction, and gluon propagator corrections. Lines are quarks, 
wavy lines are gluons, and dashed lines are ghosts. gb stands for the bare coupling and T, 
is the SU(3) generator. 

We now see the role of the QCD parameter A: it acts as a vague limit at which CX~ 
becomes strong, and it sets the scale at which oI ‘runs’ (i.e., ‘how fast’ it runs). It is 
this parameter which we will determine in this analysis. 

It is instructive to paint a physical picture of asymptotic freedom. In QED, the 
vacuum polarization (virtual e+e- pairs) shields the bare charge eb into a renormalized 
charge e(Q2 = 0), defined at large distances. As one probes this polarization cloud 
(Q” --t oo), this screening effect becomes less pronounced and we see a larger effective 
charge. In QCD the reverse is true. We still have color charge screening due to qij 
vacuum polarization, however, now the gluons also carry charge. This means that 
our test particle (the ‘source’ of color charge) can now radiate its charge away. As 
we get closer to it, this radiation becomes more prominent and we have less of a 
chance of localizing the original test charge. Thus, the effective color charge in QCD 
become weaker as Q” + co. We may be tempted to extend this picture to the 
confinement limit but in that limit our picture of single gluons and charges breaks 
down (non-perturbative regime). 
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Some Results We’ll Need 

Before leaving this section, we will quote some results which will be used later in the 
analysis. The second order solution (next-to-leading order) to the ,&function is [28], 

cys(Q) = (33 - 2n;;;(Q’lA2) ’ - 
6( 153 - 19nf) ln[ln(Q2/A2)] 

(33 - 2nf)2 ln(Q2/A2) 1 (2.15) 

where, again, we will use A = Am An alternative solution to Equation 2.12 with 
the P-function truncated at second order is [28], 

(2.16) 

which enables us to easily present the results in terms of Am. Equations 2.15 and 2.16 
are equivalent to O(cri) and may thus be used interchangeably; however, one must 
be careful in being consistent in their usage. The conversion between Am from 
Equations 2.15 (labelled ‘A’) and 2.16 (labelled ‘B’) is, 

AA = l.O76A~, (2.17) 

where A = Am is for five active flavors. 

One may freely convert the A parameters between different renormalization schemes 
and different number of flavors. Two renormalization schemes are related by a l-loop 
calculation [S]. By imposing continuity at the boundary conditions of the flavor 
thresholds in Equation 2.15, the Am for different nj can also be calculated [29]. 

It is important to note that in order to have a meaningful determination of A, 
at least a next-to-leading order calculation must be used [30]. The reason is that 
to leading order (Equation 2.14) a scale change in A of 0( 1) implies a change in Q, 
of U(oi). Thus to leading order, a determination of A yields an effective A,ff not 
related to the parameter of the theory AZ. 

2.3 Perturbative QCD in e+e- Annihilation 

2.3.1 Experimental Developments 

The annihilation of efe- provides a very clean environment for QCD studies. A 
nice feature of such colliders is that the center of mass system, except for initial 
state radiation, coincides with the laboratory reference system, making the job of 
untangling final states much easier. 

The most direct manifestation of quarks or gluons in a quasi-free state is jets. In 
1970, while considering various models for hadron distributions in e+e- annihilation, 
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Bjorken and Brodsky [31] suggested the idea of “jets” as a possible manifestation 
of the parton structure of a heavy virtual photon. It was five years later, at the 
Mark II detector at SPEAR [32], that the first evidence for jets was obtained by 
observing an excess of low sphericity events at 4 = 7 GeV. 5 In addition, from the 
1 + cos2 0 distribution of the sphericity axis of the hadronic events, it was inferred 
that the produced quarks were spin-: objects. This was a great triumph for &CD; 
in a completely different environment from the DIS experiments, it had been shown 
that spin-$ quarks were observable in the asymptotic limit. 

The observation of gluon emission came later in 1979 [33]. Three jet events were 
observed in the experiments at the PETRA ring in DESY at an energy fi M 30 
GeV. This time, the separation of three-jet events from phase-space distributed events 
proved more difficult than with two-jet events. The problem was that it was no longer 
sufficient to separate the events into hemispheres - there was an ambiguity in defining 
the third jet. The fragmentation process was smearing the initial parton direction 
and thus made it impossible, on an event by event basis, to differentiate a true gluon 
jet from a fluctuation in the hadronization. This could only be shown statistically. 

We still suffer from these hadronization effects. The smearing introduced by such 
effects and our lack of knowledge of these low-Q2 phenomena will introduce a sys- 
tematic uncertainty in our measurement of jet-rates. These effects will be discussed 
in more detail later. 

2.3.2 QCD Perturbative Predictions 

In this section we will briefly motivate and review the O(CY~) matrix element calcu- 
lations with the purpose of setting the stage for the actual measurement. Very good 
references for perturbative QCD are Kramer [26] (PQCD in e+e-) and Muta [16] 
(PQCD in general). We will closely follow Kramer’s treatment. 

Some e+e- QCD Quantities 

In e+e- annihilation one can vaguely classify, in an experimental sense, ‘as-dependent 
quantities as either being inclusive or kinematically distributed quantities. Example 
of inclusive observables are [5]: 

0 I&+,-: hadronic fraction of the total cross section 

l I’h/I’,: the hadronic/leptonic fraction 

l R,: hadronic fraction for r leptons 

By being inclusive, the measurement of the above quantities is fairly insensitive to the 
final state. For example, hadronization effects are especially suppressed. In addition, 

5Sphericity, S, is defined in Appendix A. 
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the available calculational techniques allow calculations of up to U( CY~), making the 
above attractive candidates for the determination6 of cr,. However, the dependence 
on cy, (in the above variables) enters as a QCD correction, and although known to 
third order, tends to be dominated by statistical errors. 

Some examples of kinematically distributed quantities [34] are: 

l Event shapes: thrust, oblateness, heavy jet mass 

l Particle-inclusive quantities: energy-energy correlations (EEC), asymmetry of 
the EEC (AEEC), single particle spectra 

l Jet quantities: jet rates, differential jet rates 

The above observables are defined either in terms of single particles or in terms of 
clusters of particles. This implies, of course, that fragmentation uncertainties dilute 
the measurement. In addition, none of these quantities have been fully calculated to 
higher than @of) so far and thus the maximum achievable accuracy is less than for 
the inclusive quantities. Therefore, in general, inclusive quantities have smaller theo- 
retical uncertainties than kinematically distributed quantities. There is one important 
advantage over the inclusive variables, though; the above quantities can in general 
be written as direct proportionalities with cy,. Thus the experimental sensitivity is 
much higher. 

From now on we will concentrate on the jet related quantities. We will briefly 
review the calculation of gluon radiation in e+e- annihilation and use it to predict 
jet rates. The fact that this prediction is a function of cyI will enable us to use it later 
on to extract a value of Am from the data. 

The Parton Final States to O(CY,) 

It is instructive to outline the issues involved in the calculation of qqg final states in 
e+e- annihilation to O(ob). These issues are representative of the ones encountered 
in the higher order calculations but are less encumbered by the algebra. 

Up to O(CY,), we can have at most three partons in the final state. The complete 
set of Feynman diagrams that contribute to this order are shown in Figures l-l and 2- 
3a (qij tree level and l-loop) and in Figure 2-3b (qQg tree level). Each diagram in 2-3a 
carries an ultraviolet (Ic + co) divergence that cancels when the three diagrams are 
added. An additional divergence, this time infrared (Ic + 0), appears due to the 
masslessness of the gluons. However, the diagrams of Figure 2-3b display the same 
divergence with the opposite sign and thus cancel it in their sum. There is still one 
more related divergence to discuss but we first turn our attention to the nature of the 
cross section. 

‘jA summary of a, determinations is presented in Chapter 6; see Table 6.9 
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Figure 2-3: Diagrams contributing to U(a,) parton production. a) shows the 2-parton 
final state virtual corrections and b) shows the 3-parton final state at tree level. 

An essential reference for the following is Appendix A, where the kinematic 
conventions are established. We define zi as the scaled energy of each parton, 
Xi = 2E;/E,, with x1 2 xp 2 x3 and x1 + 52 + 2s = 2. Since we only have 
three partons in the final state, the kinematics leaves us with only two independent 
variables which we take to be 21 and 52. 

Figure 2-4: The phase space region for 
3 parton final states, including the infrared 
and collinear regions. 

Figure 2-5: Average number of partons 
as a function of the parton shower virtuality 
cutoff Q(). 

The cross section for gluon brehmsstrahlung (Figure 2-3b) is given by the well 
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known result [35], 
80 = oqc$ x: + x; 

dxldx2 2n (1 - x1)(1 - x2)’ 

where crq is the lowest order qij cross section at the Z”, given by Equation 1.2, and 
CF = 4/3 is the appropriate color factor for this color configuration. Notice that the 
above exhibits the explicit gluon mass singularity (for xi and 32 ---) 1) since it does 
not have the virtual corrections added. 

Eventually we will see that what allows us to make inferences about the rate 
of hard gluon radiation is the good (asymptotic-free justified) approximation that 
hadron jets correlate to the initial ‘color-full’ partons. With this in mind, we now 
shift our focus and treat Equation 2.18 as the 3-jet cross section formula (again, 
just to O(CY~)). But we immediately notice that for very soft gluons (say, 2s + 0), 
we go into the 2-jet limit (xi = 52 = 1) and Equation 2.18 diverges. This is no 
surprise; we already noticed this gluon infrared divergence and remarked that it was 
cancelled with the virtual corrections of Figure 2-3a. However there is still a collinear 
divergence associated with the assumption of massless quarks7. Also, since we are 
not just interested in 0 tot, we ought to have a consistent procedure to separate and 
define the 3-jet events. 

This last task is accomplished by dimensionally regularizing the virtual and real 
parts of the cross section and by partitioning the phase space of the qijg events into 
‘distinguishable 3-jets’ and S-jets ‘indistinguishable from 2-jets’. This last category 
is then absorbed into the 2-jets for a particular cut-ofl of the S-jet phase space. 
Following the convention of Appendix A, we define in terms of the invariant yij the 3- 
to-2 jet boundaries in Figure 2-4. We label the boundary ‘yC’ or ‘ycut’. Remembering 
that ~23 = 1 - xi, we see that the shaded rectangular regions correspond to the 
collinear divergent parts of Equation 2.18 and that the heavily shaded square region 
corresponds to the infrared divergent part. 

The shaded areas of the qqg phase space in Figure 2-4 correspond to the areas 
where two of the partons are unresolvable. In this region the 3-jet events are indis- 
tinguishable from the 2-jet events. Rewriting Equation 2.18 in terms of the invariant 
measure y, dimensionally regularizing it, and integrating over the 2-jet bands [26], 
one obtains: 

CT;-yy 5 yc) = a4 y c 5dgcFr’:y;J) ( 1 
X 

( 
-$+~+21n2y,+4y,lny,-$+7 . 

1 
(2.19) 

In the above, g9 is given by Equation 1.2 and p is the arbitrary mass scale introduced 
to keep the coupling constant dimensionless in generalized n = 4 - 2~ dimensions. 

7This comes about through cos Oq9 + 1 in rn$ = 2E, E,( 1-cos Oy9) terms in the quark propagator 
of the gluon loop 
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The subscript and superscript on the left-hand side denote that Equation 2.19 is the 
cross section for resolving a-jets from a 3-parton configuration. 

Doing the virtual and real integration for the 2-parton final state to O(cr,) using 
the diagrams of Figure 2-3a and l-l yields, 

l-jet 
Q2 

where the subscript ‘2’ in the left hand side stresses the fact that the cross section 
derives from the two parton final states. Notice that Equation 2.20 has no ye depen- 
dence since initial two-parton states will always be resolved as 2-jets. Now it is also 
clear what we meant by saying that the divergencies would cancel when all diagrams 
were taken into account: when adding Equations 2.19 and 2.20 to obtain the total 
‘L-jet cross section, the infrared and collinear pole terms (l/c2 and l/c respectively) 
cancel in the sum. After this summation, we take the c + 0 limit to recover four 
dimensions, and we write for the total 2-jet cross section, 

&p(y L yc) = u,~+(Y 5 yc) + &jet (2.21) 

= 09 1+7 
1 

as(p2) CF 
( 

-2 In2 y 
C -3lny,+4y,Iny,-I+$ , )I 

where now the a-jet cross section depends on the resolution parameter yC that deter- 
mines when 3-jet events are distinguishable from 2-jet events. We should mention that 
the accuracy of these calculations in the low-y region has been extended recently [36] 
by partially resvmming the next to leading logarithm terms (o: In” y terms above) 
in the jet rate calculations. These methods increase the measurement accuracy some- 
what by reducing the renormalization scale dependence (e.g., See Table 6.9). 

The above cancellation of infrared and collinear divergencies when integrating the 
cross section over regions of phase space where the final states are unresolvable is a 
specific example of the Kinoshita-Lee-Nauenberg (KLN) theorem [37]. The theorem 
is a general result for degenerate states8: infrared and collinear divergencies cancel in 
a theory with massless fields when a summation is performed over degenerate states. 
This theorem holds to all order8 in perturbation theory. 

As a final comment, it should be pointed out that Equation 2.18 can be generalized 
to calculate some of the QCD observables discussed previously. However, in order to 
satisfy the KLN theorem and obtain sensible cross sections, these observables must 
respect the degeneracy of the soft and collinear partons. This means that in general 
good observables are linear in parton momenta (see Appendix A). Observables that 
satisfy these requirements are said to be infrared and collinear safe [38]. 

‘Two massless collinear partons are degenerate because they can be treated as a single parton. 
The same applies to infrared degeneracy-when a parton accompanied by a very soft gluon can be 
combined into one parton. 
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The U(aS) Result: the ERT Calculation 

Now that we have presented an outline of the O(oys) calculation, we turn our attention 
to the O(oi) results. The O(c$) calculation has been performed by various groups 
(e.g., W, 401) 1 n our measurement we will use the calculation by Ellis, Ross, and 
Terrano (ERT) [39]. The ERT calculation has been done for different jet algorithms 
with different recombination schemes. This last issue is a technical point that we will 
address in Chapter 6. 

In the previous section we saw that we were able to calculate the 3-jet cross section 
without recurring to any renormalization technique. The reason was that we did 
not encounter any persistent ultraviolet divergence; all the divergencies conveniently 
cancelled when the appropriate accounting of diagrams was performed. In the O(Q~) 
case however, we encounter diagrams with persistent divergencies (the loop diagrams 
to O(oi)) that require a renormalization procedure. In the following, and for the rest 
of this work, the modified minimal subtraction renormalization scheme (MS) will be 
used. The QCD parameter A will be, 

AQCD = A$=5, 

where the superscript denotes five active flavors. 

The ERT result can be conveniently expressed [34, 361 as, 

dY) 
R2(Y#CL) = ---&- = l- /qy)F - WYJ) + C(Y)> (F)’ 

03(Y) 4cL) 
&(Y,P) = z = A(Y)F + B(YJ) 

04(Y) 
R4(Y,P) = ----&-- = C(Y) 

(2.22) 

(2.23) 

where y = yc and where, for example, uz(y) has the same meaning as in Equation 2.21 
except that it is one order higher in cr,. The total cross section in Equation 2.23, 
utot, is the one given by Equation 1.1 to at least O(c$), The leading order terms A 
and C depend on y only while the next-to-leading term B depends on y and on the 
renormalization scale f = fi2/Q2, 

NY, 1.4 = &(Y, Q") + A(~P~PdU. (2.24) 

In the above, ,& = 11 - 2nf/3 and nf is the number of active quark flavors. 

Experimentally, the &(y,) b a ove are calculated by classifying and counting events 
as i-jet events at y = yc and then normalizing this number to the total number of 
events. In practice the functions A(y), B(y,f), and C(y) are tabulated from Monte 
Carlo integrations of the cross sections [34] and then parameterized as a sum of simple 
polynomials [41]. 
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2.4 Non-Perturbative QCD 

Up to now we have exclusively dealt with the creation of ‘hard’ primary partons. 
So far we have been able to make prediction8 based on perturbation theory alone 
because, with typical values o2 >> A2, we safely fall in the asymptotically free realm. 
However, these partons still carry the color charge. As such, two observations can 
be immediately made. First, since QCD does not allow colored final states, somehow 
the partons must arrange themselves, or their color charge, so that they end up in 
a colorless final state. Secondly, since partons carry color they radiate gluons. Each 
subsequent parton branching then has a higher value of cr, and therefore there will 
be copious soft gluon radiation. These two observations lead to the hadronization, 
or fragmentation, process. By hadronization we mean the process that turns colored 
partons into colorless QCD bound states. These bound states are the final state 
hadrons. 

An exact treatment of the hadronization process requires (if at all possible) tech- 
niques that are yet unavailable. Only phenomenological and experiment-driven mod- 
els attempt to simulate this complicated process. These models rely on simple dy- 
namical pictures to reproduce a wide range of phenomena and data. Notwithstanding 
the unpleasantly large number of arbitrary parameters that these models have, one 
can say that they reproduce the data over a wide range of energy extremely well. 

In the following we will briefly describe how the ‘post-perturbative’ part of an 
e+e- event is modelled. We distinguish two phases: (1) the pre-fragmentation stage, 
where partons develop, and (2) the hadronization stage where partons coalesce into 
stable hadrons. It is important to remember that the following is just a tool that 
allows us to make a measurement in the perturbative regime. In this analysis we are 
not interested in the details of the fragmentation mechanism; we will in fact try to 
unfold these effects. 

An excellent review of many of the currently available QCD generators and their 
methodology can be found in [42]. Detailed experimental studies and comparisons at 
the 2’ energy of some of these generators can be found in [43, 441. 

2.4.1 Pre-fragmentation 

Parton production is generally carried out by one of two ways: by an exact matrix 
element method or by an iterative leading logarithm approximation method. 

Matrix Element 

The ‘matrix element’ (ME) method is an exact implementation of the O(Q~) calcu- 
lation discussed in the previous section. In this method, the cross section is sampled 
by the Monte Carlo method and, at most, four partons are produced. The partons 
are then hadronized. 
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The main parameters for this procedure are yc (see previous section) and Am. 
A parton invariant mass cut of yc > 0.01 insures that the cross sections are physical 
(positive). The parameter A,, controls the value of CY, through the second order 
expression 2.15 with Q2 = M.$. An alternative scheme uses Q2 < iVi with a lower 
value of Am in order to get a better prediction of the 4-jet rate at low-y. We will 
discuss these optimized scales in Chapter 6. 

In this analysis we will use the matrix element implementation of the JETSET [45] 
Monte Carlo, version 6.3. 

Parton Showers 

Parton showers (PS) [42] are a very different approach to parton generation. In this 
method, partons are generated in an iterative fashion by the leading logarithm ap- 
proximation (LLA). In the LLA, only the leading terms in the perturbative expansion 
are kept, limiting the parton splittings to 1 + 2 partons. This method is an attempt 
to approximate the ‘real picture’ by generating more and softer partons than in the 
ME approach. Thus, effectively, higher order terms are implicitly approximated and 
observables calculated only to leading order in the ME approach (like the 4-jet rate) 
are better reproduced (we will discuss this point in Chapter 6). The implementation 
of this approximation is via a set of Altarelli-Parisi [46] parton splitting functions that 
incorporate the allowed splittings to leading order: g + gg, g + @ , and q + qg. 

A short description of the procedure follows. Using t E lnQ2/A2, the Altarelli- 
Parisi equations for parton splittings are given by, 

(2.25) 

where pa+c is the probability that a branching will occur in the Q2 interval dt = 
dQ2/Q2, and where z = (E + p,)b/(E + p,),. The P splitting functions are given 
by [42]: 

The probability that a parton starting with the virtuality t will reach tmin without 
undergoing any splittings is then given by, 

S,(t) = exp 

(2.27) 

38 



2.4. Non-Perturbative QCD 

where t,,+ E &i/A2, &s is called the shower virtuality cut-off, and the above factor 
S, is termed the Sudakov factor. The number of partons left over after this evolu- 
tion depends critically in this &O cut-off. Figure 2-5 shows this dependence for the 
JETSET 6.3 Parton Shower (PS) Monte Carlo. Note that the A used in the LLA ap- 
proximation is not the Am from the previous sections; we now deal with an effective 
A,jj = ALLA that just characterizes the splittings. 

This whole procedure is straightforward to implement in a Monte Carlo environ- 
ment. Notice that there are two parameters intrinsic to parton showers: &s and A,jj. 
A schematic representation contrasting matrix element and parton shower approaches 
is presented in Figure 2-6. 

Matrix Element Models Parton Shower Models 

(a) 

I W) 
I Pert. 
I QCD 

I 
I Color 

t 
i Resonance 

1 string 1 decays 

lo-81 
6eeeA3 

(W 
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QOl (Mg) 

I 
Phenomknological 

parametrization 

or 

Figure 2-6: Schematic of Shower and Matrix Element Models [47]. 

2.4.2 Hadronization 

Once the colored partons stop evolving (at least in the PS picture), they decay into 
hadronic final states. Whereas the prefragmentation part can be treated in the per- 
turbative approximation, the hadronization mechanism is purely non-perturbative. 

If we assign a characteristic transverse momentum pt (with respect to parent 
quark, i.e., jet direction) to the final state particles in an e+e- event then we can 
see how hadronization effects depend on energy, at least for jet quantities. Consider 
events at the energy E, with average multiplicity n x a + bln E. The average particle 
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momenta are p x E/n and the mean half angle of a cone about the primary quark 
direction is then l261: 

(2.28) 

From the above we can see that the jet cone size goes like M In E/E. Therefore, at 
higher center of mass energies, our lack of knowledge about hadronization becomes 
less of an issue since there is less overlap between the jet cones. 

In our analysis, we will use two of the most successful hadronization models avail- 
able: the Lund string model [48, 491. and the HERWIG [50] cluster fragmentation 
model. These models, along with others, have been amply tested (e.g., [43,44,51, 521) 
and tuned at various energies in e+e- annihilation. We take advantage of this and 
use the parameters obtained at LEP by the L3 experiment (for the Lund model) and 
presented in Table 2.1 as our default parameters. The HERWIG Monte Carlo was 
used as a cross check to JETSET; the HERWIG parameters used are the default 
values provided by the program (version 5.4). 

We now provide a brief description of each model used. 

Lund String Model 

The Lund string fragmentation model can be coupled to either a matrix element or 
a parton shower treatment of the primary partons. The basic dynamical picture in 
this model is the following [48]: when two colored quarks separate, a color flux tube 
is stretched between them. This flux tube is modelled by a relativistic massless (one 
dimensional) string with a string constant of IC x 1 GeV/fm. A linear confinement 
force is thus included by construction. In the string picture, the ends of the string 
correspond to a quark and an anti-quark, while gluons are represented by excitations 
or “kinks” in the string. 

While the string evolves, it can break up into two color qij singlets; this rate of 
break-up is calculated from a semiclassical model of fermion pair tunnelling from the 
vacuum. The energy carried off by the daughter singlets at each break-up is well 
determined by the ‘left-right’ symmetry principle. This principle states that the final 
particle distributions should be blind to the order in which causally disconnected 
break-ups happen. Using z as in the previous section, this symmetry restricts the 
fragmentation function to the form, 

f(2) = r(l - z)“exp-?, (2.29) 

where mt is the transverse mass (mi = m2 t pf) of the final state and a and b 
are arbitrary constants to be determined from experiment. This iterative break-up 
of the string into hadrons stops when the mass of the string fragments reach the 
hadronic scale. An additional parameter, CT~, establishes the transverse momentum 
distributions for partons. Table 2.1 summarizes the parameters used in the Lund 
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LUND Parameters 
AQCD a b 09 

TASS0 [52,53] 0.260 0.18 0.34 0.39 
L3 [44] 0.300 410.03 0.5 0.76 f 0.08 0.39 f 0.03 

Table 2.1: LUND fragmentation parameters used in this analysis. The L3 tuned 
parameters were used and the TASS0 parameters (tuned at 35 GeV) were used as a cross- 
check. The TASS0 numbers are known to R 10% [53]. 

Monte Carlo. 

The Lund implementation of the string model (JETSET) includes many effects 
not described here (baryon production, Bose-Einstein effects, etc); for more details 
refer to [45] and references therein. 

HERWIG Model 

The HERWIG Monte Carlo [50], as applied to e+e’ annihilation, is a general QCD 
generator that uses parton showers and a cluster hadronization model. In HER- 
WIG’s implementation of parton showers, the parton-parton correlations due to spin 
and coherent emission of soft gluons are taken into account. The treatment of soft 
gluons is improved (when compared to Lund’s PS) via an extension of the leading 
logarithm approximation in which infrared logarithms are included. The shower evo- 
lution (probability-wise) in HERWIG ‘s scheme is very similar to Lund’s; the same 
Sudakov factors (Equation 2.27) determine the branching probabilities. 

The hadronization mechanism in HERWIG is based on a color cluster model. In 
the leading log approximation in HERWIG, a parton of color j that finds itself close 
in phase space to a parton of color 3 is combined into a cluster. ‘Close’ in this context 
means that the quark and associated anti-quark have an invariant mass x 1 - 2 GeV. 
Gluons are produced and decay into quarks. Thus, at the end of the chain, and 
before clustering, only partons with a single color index remain. The final clusters 
are characterized only by their four momenta and by their flavor composition. In 
the final step, the clusters decay (respecting flavor conservation) into hadrons via a 
one or two body mechanism, depending on the cluster mass and availability of final 
states. 

The HERWIG Monte Carlo is described in much more detail in [42] and [50]. 
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Chapter 3 

Experimental Apparatus 

3.1 Introduction 

The data used in this analysis were collected at the SLC/SLD facility at the Stanford 
Linear Accelerator Center (SLAC) located in Stanford, California. The Stanford 
Linear Collider [54] (SLC) was a unique e+e’ linear accelerator that took advantage 
of SLAC’s existing 50 GeV electron accelerator. The SLD was a state-of-the-art full 
coverage multi-purpose particle detector placed at the SLC’s only interaction region. 
In the following sections we will describe in some detail the hardware that made our 
measurement possible. 

3.2 The Stanford Linear Collider 

The SLC was a single-pass electron-positron collider located at one end of SLAC’s 
Linear Accelerator (LINAC). A s a single-pass machine, the SLC did not enjoy the 
inherent stability that is a requirement for maintaining beam current in a storage 
ring. We will see in Chapter 5 that the machine performance, in terms of luminosity, 
was not at the expected design levels during the 1992 run. In addition, the run condi- 
tions were considerably noisy. Nevertheless, the SLC had some important advantages 
over comparable machines: it was able to deliver beams of longitudinally polarized 
electrons and it provided a spatially precise interaction point (from here on, ‘IP’). 

3.2.1 The Polarized SLC 

The SLC [55] consisted of two main sections: a 2-mile long linear accelerator and 
a set of arches that met at one interaction point. The accelerator was housed in 
an underground tunnel below the ‘klystron gallery’, a 2-mile building full of power 
supplies, LINAC control equipment, and RF equipment. Each arch was roughly a 
half mile long and contained beam steering optics, muon spoiler magnets, and the 
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Figure 3-l: The Polarized SLC. The double arrows denote the relative orientation of 
the spin vector. The energy at the end of the LINAC was 46.7 GeV; the IP beam energy 
was 45.8 GeV. 
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3.2. The Stanford Linear Collider 

final focus system. 

Using Figure 3-l as a reference we will briefly follow the path, from acceleration 
to annihilation, of a typical electron in the SLC. During the 1992 run, longitudi- 
nally polarized electrons were produced by photo-emission from a gallium arsenide 
photocatode at the very beginning of the LINAC structure (bottom of the picture). 
The polarized electron emissions from the cathode were induced by an incident cir- 
cularly polarized laser beam (X = 715 nm). A d ua source was actually available - a 1 
thermionic source was available to run in parallel with the photocathode in case the 
latter failed. The polarization at the source was m 28% [56]. 

The SLC operated with a machine cycle of 120 Hz. Two electron pulses were 
produced during each cycle; each had a temporal width of 2 ns and was separated 
from the other by 61 ns. Each pulse contained M 6(10)l” electrons when leaving the 
source. After the damping ring, combined transmission losses reduced this number 
by 50%. After they left the source, both pulses were accelerated to 1.16 GeV before 
entering the North damping ring (left damping ring in Figure 3-1). The pulses were 
then extracted from the damping rings and the leading pulse accelerated to 46.7 
GeV before entering the SLC north arc. The trailing pulse was accelerated to 30 
GeV, extracted from the LINAC, and guided to hit a target in order to produce the 
positrons. The positrons were then transported to the beginning of the accelerating 
cycle where they underwent the same acceleration as the electrons from the leading 
pulse except that they then went into the South damping ring. 

Since there were no accelerating structures in the SLC arches, the pulses had to 
be accelerated to 46.7 GeV (instead of Mzo/2) in the LINAC in order to compensate 
the synchrotron energy losses due to bending. In order to achieve the 90” turn in the 
particle path necessary for a collision, each arch contained a series of 23 achromats (a 
set of multifunction magnets) that guided the particle bunches through the beampipe. 
Things were further complicated by the fact that the SLC tunnel did not lie on a plane; 
instead it followed the terrain. 

Before entering the SLD the beams went through the Final Focus system at the 
end of the arches. The Final Focus were a set of superconducting magnets that 
squeezed the beam size down to bZty M 2 - 3pm in preparation for the final collision. 
The beams then collided at the interaction point. In a linear collider, the luminosity 
can be expressed as [57], 

nln2L Lc------ 
4?rUZbY (34 

where n1 and n2 are the number of particles per bunch, fc is the collision rate, and 
4rc,uY is the effective beam-beam crossing area in a Gaussian beam. Typical SLC 
luminosities during the 1992 run [58] were L x 2.5(10)2s cm-2s-1 with a machine 
uptime x 60-70%. W e will discuss the direct measurement of L in Section 5.1 .l. 

After the electron bunch passed the interaction point, the beam polarization was 
measured using a Compton polarimeter [59] in the South arch. The nominal electron 
polarization measured at the Compton polarimeter was 22.4f0.7% [59]. Before pro- 
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ceeding to the beam dumps, the energy of each beam was measured in a spectrometer. 

In order to reduce the beam-induced backgrounds (which will be discussed in 
Section 5.1.2) at the SLD, toroidal magnets were installed in both the North and 
South arches. These magnets (“muon-spoilers”) were designed to alternatively focus 
and defocus the background muons that travelled parallel to the beam pipe so that 
they would either be absorbed in the tunnel walls or be deflected away from the 
detector. 

3.2.2 Beam Energy Measurement 

The beam energies in the SLC were measured by a Wire Imaging Synchrotron Radi- 
ation Detector (WISRD) [60] p resent in each arch. These detectors were essentially 
deflection spectrometers placed at the end of the beam transport system. They were 
located after the interaction point and before the beam dump so that there were no 
noticeable bending losses. Before reaching the WISRD, each beam went through a 
series of three dipole magnets in a split-beam configuration. The first magnet (re- 
fer to Fig. 3-2) in d uced a horizontal spray of synchrotron radiation that provided a 
reference pedestal for the bending downstream. The second magnet was a precisely 
calibrated analyzing dipole which bent the beam 15 meters upstream of the WISRD. 
The third magnet provided another horizontal stripe of synchrotron radiation. The 
position of this last stripe was compared to the position of the first one to measure a 
deflection. The beam energy was then calculated as, 

E (3.2) 

where 6 is the measured beam deflection, 3 is the magnetic field in the analysis 
magnet, and 2 is the path length along the beam. The synchrotron radiation was 
detected by Compton scattering of the electrons in two screens of copper wires. The 
measured mean center-of-mass energy for the 1992 run was 91.55 f 0.04 GeV [61]. 

3.3 The Stanford Large Detector 

The Stanford Large Detector (SLD) was conceived [62] as a high precision general 
purpose detector. The aim in the design was to provide a 47r coverage detector suit- 
able for the center-of-mass energies of z 100 GeV of the SLAC linear collider (SLC). 
The main physics motivation at that time (in 1984) was to study the then [4] newly 
discovered 2’ particle region. To this end the SLD was designed with the capabili- 
ties to perform new particle searches and precision electroweak measurements. The 
detector was divided in 6 distinct detector subsytems with complementary functions 
and had a generalized Barrel-Endcap geometry. To provide for precision tracking of 
charged particles, the SLD had a CCD-based vertex detector and a barrel-endcap drift 
chamber system. A lead-liquid argon barrel-endcap calorimeter provided the energy 
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Figure 3-2: Schematic of the SLC energy spectrometer. There was one spectrometer 
in each arch just before the beam dump. The energy at the end of the LINAC was 46.7 
GeV; the beam energy at the IP was 45.8 GeV. 

measurement for both neutral and charged particles. The Warm Iron Calorimeter, 
based on Iarocci tube technology, served as a tail-catcher for the LAC and provided 
good muon identification; the WIC also functioned as a magnetic flux return. A coil 
between the WIC and the LAC provided a 0.6 Tesla solenoidal magnetic field for mo- 
mentum measurement. The luminosity at the SLD interaction point was measured 
by a silicon-based calorimeter close to the beam-pipe. Finally, a Cherenkov Ring 
Imaging system provided particle identification information. Figure 3-3 provides a 
quadrant view of SLD showing the relative configuration of each detector subsystem. 

A brief description of each of the subsystems follows. A more detailed description 
of the calorimeter system will be provided since it was the relevant subsystem for this 
analysis. 

3.3.1 The Vertex Detector 

The SLD vertex detector (VXD) was a high-precision tracking device very close to the 
SLC beam-pipe. Such devices are very helpful in separating tracks from secondary 
vertices (decay points from heavy flavor decays) from tracks originating in the primary 
vertex (interaction point). In addition, by combining the precision tracking in the 
VXD with the drift chamber measurement, the overall momentum measurement was 
improved. 

The VXD was the first detector [63] t o implement the large-scale use of charge 
coupled devices (CCDs). It consisted of 480 CCDs each with a matrix arrangement 
of 400 x 600 pixels. Each pixel was 22 x 22 pm2 in size, yielding an effective position 
resolution of uzty x 5pm . The CCDs were arranged in an overlapping fashion into four 
layers of concentric 8-CCD ladder elements. There were a total of 60 such ladders for 
a grand total of 120 Megapixels. A track exiting the VXD would traverse, on average, 
a total of 5.8 % of a radiation length (c.f., Figure 3-11). The SLD beampipe had a 
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Figure 3-3: A quadrant view of SLD. The lower left corner corresponds to the SLD 
interaction point (IP). Notice the projective tower geometry of the calorimeter system. 
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Figure 3-4: The SLD vertex detector. 

radius of 2.55 cm; the first VXD layer was at a radius of 2.95 cm and the last layer was 
at 4.15 cm. The detector itself was mounted inside the central drift chamber on the 
R20 module. The R20 module refers to the assembly where the detector components 
at a radius of R 2 20 cm and 1~1 5 100 cm were mounted. The R20 module included 
2 meters of beryllium beampipe, various synchrotron radiation masks, the medium 
angle silicon calorimeter (MASiC), and the VXD with its associated electronics. The 
VXD acceptance roughly corresponded to the acceptance of the central drift chamber 
(CDC). 

3.3.2 The Luminosity Monitor 

The luminosity monitor [64, 651 in SLD consisted of a luminosity monitor and small 
angle tagger (LMSAT) an d a medium angle silicon calorimeter (MASiC). This system 
was essentially a very low angle and high precision electromagnetic calorimeter. The 
LMSAT/MASiC system was a silicon sampling calorimeter with a tungsten radiator 
and a 1.44% sampling fraction. By tagging forward’ (i.e. small angle with respect to 
beam-pipe) e+e- final states a precise measurement of the luminosity was made. In 
Section 5.1.1 we will discuss this in more detail. 

Figure 3-5 shows a side view of the LMSAT/MASiC assembly. The LMSAT 
provided an angular coverage of 23 to 68 milliradians from the SLD beampipe at a 
distance of 100 cm from the interaction point. The total depth of the calorimeter 
was 21x0 providing a shower containment of 2 99.5% . The LMSAT consisted of 
23 radiator plates, each approximately one radiation length deep, instrumented with 
silicon detectors between the plate gaps. The MASiC covered the area of 68 to 190 
milliradians and sat 31 cm away from the IP. Each layer was transversely segmented 
in a projective tower geometry. The polar segmentation was 9 milliradians and the 

‘The t-channel part of e+e- + e+e- is essentially QED dominated and it peaks in the forward 
region. 
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segmentation in 4 was 11.25 degrees. This fine segmentation was important since 
no tracking was available at these low angles to determine electron positions. The 
LMSAT was mounted on the superconducting final focus triplet magnet and the 
MASiC was mounted on the R20 module discussed in the previous section. The 
expected energy resolution for a 50 GeV electron was Q/E a 3.0%. 
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Figure 3-5: Side view of LMSAT/MASiC Assembly. 

3.3.3 The Drift Chamber System 

The SLD drift chamber system [62] provided momentum and position measurements 
of charged particles. It consisted of five drift chamber subsystems: the central bar- 
rel region (CDC) and four endcap regions (EDC). The central drift chamber was a 
cylindrical chamber with an inner radius of 20 cm and an outer radius of 100 cm. It 
was 2 meters long and rested inside of the CRID. The chamber was made of a large 
set of wires under tension supported by the chamber endplates. Wires were arranged 
in 10 superlayers. Each superlayer was made up of cells with 8 sense wires, 24 guard 
wires, and 27 field wires each. Each superlayer orientation alternated between axial 
and stereo in the configuration: AUVAUVAUVA, where ‘A’ stands for axial layer and 
‘UV’ are stereo layers. The wires establish electrostatic fields that cause electrons 
from track induced ionization to drift and undergo amplification in the gas through 
the avalanche mechanism. Charge division was also used for pattern recognition. 

The endcap drift chambers complemented the CDC measurement in the forward 
region (0 > 45’). There were two sets of endcap detectors, inner and outer, per end- 
cap. The endcaps were placed at z = f1.2m and z = f2.0m. Each of the four endcap 
chambers had three superlayers with a relative rotation of 60”. The approximate mea- 
sured momentum resolution [66] for the CDC was (t)” = (0.01)2/p2 + (0.007)2 with 
a local spatial resolution of 120 microns. 
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The Magnet and Flux-return 

The SLD magnet was a normal water-cooled aluminum magnet that generated a 
solenoidal magnetic field of 0.60 Tesla for the momentum measurement. The coil 
itself was 0.6& deep and rested inside of the WIC barrel. The WIC barrel and 
endcap steel housing functioned as a flux return for the magnet. 

3.3.4 The Cherenkov Ring Imaging Device 

The purpose of the Cherenkov Ring Imaging Device [62] (CRID) was to provide 
good particle identification over a wide range of momenta. In order to achieve good 
n/K/p separation over the required momentum range, the CRID was designed as a 
hybrid gas-liquid Cherenkov system. Coverage of the barrel and endcap regions were 
provided by separate systems. 

A charged particle that entered the CRID encountered a liquid radiator (CsJ’r.J 
with an index of refraction of n = 1.277. Cherenkov photons from the liquid radiator 
were proximity-focused in a photon detector between the liquid and the gas radiator. 
The gas radiator (CsFi2, n = 1.002) had a series of mirrors at the end that would 
precisely back-focus the photons into the photon detector. The photon detector 
consisted of a series of drift boxes filled with a photo-ionizing gas (TMAE) and a set 
of wires in an electric field for the detection of the photo-electrons. 

3.3.5 The Calorimeter System 

The SLD calorimeter system was a hybrid lead-liquid argon and iron-gas sampling 
calorimeter [62]. Both calorimeter components had a barrel-endcap geometry and 
coverage that extended very close to the beampipe. All of the calorimeter subsystems 
followed the same projective tower segmentation. The projective geometry simplified 
both electromagnetic and hadronic shower reconstruction by following the particle 
paths from the interaction point. The calorimeter data acquisition system read out 
all of the calorimeter subsystems simultaneously and in a transparent fashion. The 
LUM/MASiC was formally part of the calorimeter system; it has already been de- 
scribed in Section 3.3.2. The Liquid Argon Calorimeter (LAC) also provided an 
energy-based trigger to be described in detail in Section 5.3. 

In the following we will briefly describe the calorimeter hardware. In the next 
chapter we will study the performance and the calibration of the calorimeter sys- 
tem in more detail. For reference, Figure 3-3 shows the relative placement of the 
various calorimeter subsystems. Table 3.1 summarizes the material specifications of 
the calorimeter and Figure 3-11 gives a more detailed accounting of the amount of 
material throughout the detector as a function of the polar angle. 

51 



CHAPTER 3. EXPERIMENTAL APPARATUS 

Calorimetry 

Here we will briefly summarize the terms and ideas central to calorimetry. “Calorime- 
try”, in our context, refers to the destructive measurement of a particle’s (or group 
of particles’) energy. Typically, a particle enters a calorimeter and interacts. The in- 
teraction can be either electromagnetic (generally initiated by photons or electrons) 
or hadronic (initiated by inelastic scattering of hadrons). These interactions, if suffi- 
ciently high in energy, develop into showers - literally a stream of either produced or 
‘knocked-out’ particles. Electromagnetic showers are a function of Xs and hadronic 
showers depend on Xint. Since the only participants in electromagnetic showers are 
photons and electrons, electromagnetic showers are easily parameterized. Hadronic 
showers are more complicated because they suffer a myriad of different interactions 
and energy loss mechanisms. In the simplest of models, when one considers hadronic 
shower development involving pions, then a purely electromagnetic component to 
the hadronic shower creeps in (the no). This component causes large fluctuations, 
especially if it appears early in the shower. 

Figure 3-6: Exploded view of the LAC barrel. 

A calorimeter generally works by detecting the remnants of interactions by mea- 
suring ionization signatures. Sampling calorimeters are most commonly used in high 
energy experiments to minimize the size, instrumentation, and cost of the detector 
system. They consist of a ‘sandwich’ of active material (where ionization is detected) 
and passive material (high-Z absorber material to catalyze shower development) in 
carefully chosen ratios. The fraction of energy lost by a mip particle (we will define 
mip in Chapter 4) in the active part of the calorimeter is called the sampling fraction: 

(3.3) 
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Figure 3-7: A LAC barrel module. 
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Figure 3-8: Exploded view of the LAC endcap. 
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Figure 3-Q: A LAC endcap module. 

&., i , ,Lead Tile 

7 Lead 
Plates 

Tower signal wire, 
insulated over plates, 
soldered to tiles. 

I Load bearing spacer columns, 
location of stainless steel bands. 

Figure 3-10: Detail of the LAC cell geometry. 

Hadronic showers also have an invisible energy component [67] due to neutrinos, 
muons, nuclear binding energy losses, and other such processes that accounts for 
roughly 40% of the total incident energy. The ratio of electromagnetic to hadronic 
response is therefore generally not 1.0 . A calorimeter with equalized response is said 
to be compensating. A non-compensating calorimeter will suffer from energy non- 
linearities and resolution degradation due to the fluctuations in the electromagnetic 
component of the hadronic shower. 
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The Liquid Argon Calorimeter 

The idea of using liquid argon sampling calorimeters was first introduced in 1974 [68] 
and has, since then, been extensively studied [69, 70, 71, 72, 73, 62, 741. The main 
advantage of liquid argon calorimetry is that the medium, having unity gain a , offers 
a very uniform and stable [75] energy response. Its radiation hardness also makes 
it suitable for high luminosity and high energy environments or for placement close 
to the interaction point. Another advantage of such a calorimeter is the ability to 
perform a fast detector readout - this ability is crucial for triggering. We will discuss 
the calorimeter-based trigger in Section 5.3. 

Detailed descriptions of the LAC design, construction, and operation are found 
elsewhere [62, 75, 761. 

The LAC was composed of a central cylindrical barrel region (Figure 3-6) and two 
endcap plug-like regions (Figure 3-8). Each of the three regions was an independent 
mechanical and cryogenic subsystem. The LAC was placed inside the magnet coil in 
order to avoid placing = 0.7& of material in front of the calorimeter. The relative 
dimensions of the LAC are presented in Figure 3-3 and some general engineering 
features are shown in Figures 3-6 and 3-8. The LAC provided full coverage in azimuth 
and a polar coverage of 1 cos 01 < 0.98. The barrel LAC covered 0 > 33’ while the 
endcap covered 8O < 0 < 35’. This coverage translated into a nominal acceptance of 
98% of the full solid angle. 

The LAC barrel was supported on the detector arches by a set of four slings. The 
barrel was 6 meters long, had an inner radius of 1.77 m and an outer radius of 2.91 m. 
The LAC endcaps were supported on the flux return steel doors and they wrapped 
around the beamline. 

In order to facilitate fabrication, the LAC was segmented into a ‘module’ struc- 
ture. The barrel section of the calorimeter was divided into a total of 288 modules. 
The azimuth segmentation corresponded to 48 modules while the axial segmentation 
corresponded to 3 modules. In the axial direction, the three modules were separated 
by two sets of “washers” which were part of the cryostat structure. In addition, 
modules were radially segmented into electromagnetic and hadronic sections. A cut- 
away view of a barrel electromagnetic (EM) and hadronic (HAD) module is shown 
in Figure 3-7. Each endcap LAC was composed of 16 wedge-shaped modules (see 
Figure 3-9); endcap modules were essentially functionally equivalent to their barrel 
counterparts, except that they incorporated both EM and HAD type modules. 

The modules themselves were constructed of interleaved plates of lead and liquid 
argon filled gaps. The lead plates, or absorber structure, were actually alternating 
planes of lead sheets and segmented lead tiles. The sheets and the tiles were separated 
by spacers (See Figure 3-10) with the tiles arranged and properly sized into a projec- 

’ Unity gain means that there is no multiplication of the signal in the active medium (in our case 
the liquid argon). The only electrons detected are those from the primary ionization; therefore there 
are no additional fluctuations from the amplification process. 
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LAC Cell Cell Section Cell Section Fsomp 
Section count Xo x0 knt kit 
em-l 8 0.75 6.0 0.030 0.24 18.5% 
em-2 20 0.75 15.0 0.030 0.60 18.5% 
hd-1 13 0.03 28.4 0.077 1.00 7.0% 
hd-2 13 0.03 28.4 0.077 1.00 7.0% 
total 54 - 77.8 - 2.84 - 

Table 3.1: Summary of LAC Longitudinal Segmentation. 

tive tower geometry. The tiles in radially successive planes were connected together 
to form a tower. The EM and the HAD section were longitudinally segmented into 
two such towers. The lead plates were grounded and the lead tiles held at -2kVolts 
and served as the charge collecting electrodes. Since signals were read from the tiles 
at high voltage, a blocking capacitor was used to read out the AC component of the 
signal. Details of a hadronic module cell can be seen in Figure 3-10. 

The EM module lead cells were 2 mm thick with 2.75 mm liquid argon gaps. The 
HAD cells were 6 mm thick with a 2.75 mm argon gap. This translated into a 18.5% 
sampling fraction for EM modules and a 7% sampling fraction for HAD modules. 
The EM section was segmented into 192 towers in azimuth with a polar segmentation 
of 96. Towers had an equal-area projective geometry. The total number of towers in 
the LAC was 41,088; of these, 8640 were in the endcaps. 

The amount of material in front of the calorimeter is sketched, in terms of X0 and 
A. snt Y in Figure 3-11. Notice the difference between endcap and barrel. 

The Warm Iron Calorimeter 

The WIC was both a muon identifier and a gas-iron sampling calorimeter. It was 
composed of both an endcap and barrel system and its massive iron structure served 
both as an absorber and provided a path for the magnet flux-return. The Warm 
Iron Calorimeter was conceived as a hadronic shower tail-catcher for the LAC. In 
terms of physical size it was the largest of the detector subsystems and served as a 
support structure for most of the detector (see Figure 3-3). The WIC barrel formed 
an octagonal steel outer shell for the central detector with a similar structure in the 
endcaps. Each octagonal structure was made up of two ‘coffins’, each a single steel 
structure with 7 alternating steel-air gap layers. The steel planes were 5.0 cm thick 
and the air gaps were 3.2 cm thick for a total depth of 4.2&t. The air gaps were 
instrumented with large arrays, ‘chambers’ of Iarocci tubes, which were employed in 
limited streamer mode with a dual tracking-calorimeter readout. Iarocci tubes were 
plastic ionization tubes with eight wires each running at 4.75 kV with respect to a 
graphite covered sheath. The tubes were mounted on chambers where they were read- 
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Figure 3-11: X0 and Xint as a Function of 6. a) before em-l , b) before hd-1 ,c) before 
wi-1 , and d) total for detector. 
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out, by capacitive coupling, by a set of copper strips and pads mounted on opposite 
sides of the chamber. Streamers-in the tube (produced by single particle ionization) 
induced signals in the strips and the pads. The ‘strips’ were 0.9 mm copper strips 
which ran the length of the tube (1 strip per wire) and provided tracking information 
for muon identification. The pads followed the projective LAC tower geometry and 
collected charge which is proportional to the number of streamers in the tubes. This 
charge provided a coarse measurement of shower energy. 

The amount of material in front of the WIC, in terms of Xc and Xi,t is presented 
in Figure 3-11. We will study the LAC and WIC energy response in the next chapter. 

3.4 The SLD Monte Carlo 

In order to be able to extract a measurement, the ‘response function’ of the detector 
must be understood. This was accomplished by simulating both, the expected physics 
processes (i.e. e+e- + l+l-,q?j,~~, etc.) and the detector response. 

Event Generators 

Event generators are used to generate particular physics processes. They are typically 
Monte Carlo programs that utilize analytic cross section calculations to obtain the 
desired final states. In our studies we were mainly concerned with the @ j final state. 
We used HERWIG [50] and Lund [45] to generate hadronic events. In order to 
simulate the backgrounds we used KORALZ [77] (r+r-), BHLUMI [78] (e+e-), and 
MCTWOG [79] (27). 

Detector Simulation 

The SLD detector response was simulated using the program GEANT [80], version 
3.14. GEANT carries a volume-based description of the detector and is able to de- 
scribe a particle’s traversal through the detector. The simulation includes effects like 
particle decays (when appropriate), magnetic bending, energy loss, nuclear and elec- 
tromagnetic interactions, and the response of the data acquisition electronics. This 
scheme is essential when dealing with a complicated detector system and is completely 
equivalent to folding-in a detector resolution function. The detector simulation, then, 
‘smears’ the generated event (in terms of particle species and four-momenta) into an 
observable event (in terms of ADC counts). 

Since this analysis involves only the calorimeter system, the other detector subsys- 
tems were not included in the simulation except as passive material 3. This was done 
in order to reduce the computer time needed for Monte Carlo event generation. In 

3This means that the digitization stage was turned off for these subsystems. 
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addition, electromagnetic and hadronic showers were simulated using GFLASH [81]. 
GFLASH is a fast shower parameterization which generates shower shapes as a func- 
tion of energy. It parameterizes showers using overlapping Gamma functions and 
includes correlations between all of the shower shape parameters. Its input is the in- 
teraction point of a particle in the detector (determined by GEANT) and its output is 
the charge (and the charge distribution) deposited by the particle in the calorimeter. 

3.5 The SLD Event Reconstruction 

The reconstruction of the data (and Monte Carlo events) for this analysis was done, 
for the most part, using the standard SLD reconstruction package. The calorimeter 
raw data, both for real data and Monte Carlo events, consisted of a list of ‘tags’ 
(tower locations) and associated ADC counts. One can divide the reconstruction into 
two stages: pre-processing and clustering. 

Pre-processing 

During this stage hit tags were validated and their ADC values converted to working 
energies. A brief outline follows: 

l Hot channels were removed: single calorimeter hits with an occupancy of greater 
that 2.5% during the run were removed. 

l Hits in the &bin 47 and 48 towers were removed to avoid the ‘wall of fire’ region 
(see section 5.1.2). 

l Gain and capacitance corrections were applied (to correct for charge collection 
inefficiency introduced by the blocking capacitor). 

l In order to minimize noise, a threshold energy cut was applied on a hit by hit 
basis. All hits below threshold (em-l to zoi-2 : 7, 7, 9, 9, 12, 12 ADC counts) 
were discarded. 

l Energies were corrected for sampling fractions. See Table 3.1. 

Clustering 

Since most particles shower in the calorimeter, they usually deposit energy in more 
than one tower. In order to be be able to assign an energy to a particle, we must 
then identify and add up all of the energy corresponding to the showering particle. 
This was accomplished by linking neighboring hits into pre-clusters. ‘Neighboring’ 
refers to hits in contiguous towers in radial and transverse segmentation. This first 
step generally went too far in the clustering since real showers could overlap and thus 
be merged in the pre-clustering. In order to avoid this, a second pass was made in 
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the clustering. At that time each cluster was analyzed to search for energy valleys - 
regions of energy peaks with dips between them - and to split clusters that looked 
like merged showers. After this step, energy weighted centroids (in 8 and 4) were 
calculated and subsequently used as the cluster coordinates. 

During the pre-clustering stage, clusters consistent with beam-induced muons (see 
Chapter 5) were tagged as such to be later discarded. After this initial stage we were 
left with a collection of clusters in an acceptance region of approximately 97.9% of 
47r. We will call E; the energy contained in layer i in a particular cluster and Ed,, 
we define as, 

E c~ur = Ln(Eem~ + Ema) + hd(&dl + &,a) (3.4) 
We will discuss the X; of Eq. 3.4 later on in Section 4.5. Good clusters were then 
selected by two different methods, 

Method 1: Required that, 

l Em1 > 0 or Eems > 0 
l Eclus > 150 MeV 

l Number of hits in a cluster: N,$8 > 1 

Method 2: Required, in addition to the requirements for Method 1 above, that the 
scale-independent energy correlation function, 

Gc(Eeml,Eem2) = 4Eem1Eem2 
(&,I + Eemd2 w 

satisfied G, > 0.25 . See Figure 3-12 

The main difference between methods 1 and 2 above is that method 2 took advantage 
of the energy correlation between the two electromagnetic layers. It was a fairly 
restrictive requirement - with G, > 0.25, pions that interacted at the boundary 
of em-1 and em-2 would be discarded unless E em2 ,?, 1.5 GeV. On the other hand 
the correlation requirement served as a veto on albedo-like clusters in em-l and on 
shower remnant clusters. These are precisely the type of clusters that contribute to 
an MC/Data disagreement when there is an improper description of detector material 
in the simulation. For illustration, Fig. 3-13 shows some global quantities for these 
two selection methods. 

60 



3.5. The SLD Event Reconstruction 

10 

10 

_ 

l MonteCarlo 

TO’ ’ ’ ’ ’ ’ ’ n ’ n ’ ’ ’ n c ’ ’ ’ ’ ” 
0 0.2 0.4 0.6 0.8 1 

Correlation Function G&e1 ,e2) 

Figure 3-12: Plot of the em-l and em-2 correlation function, G,, for the Barrel region 
(I codl < 0.7). Th e cut (arrow) was designed to minimize DATA/MC disagreement. 
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Figure 3-13: Some global observables for both cluster selection methods. The visible 
energy is given in GeV/c2 and normalized to the total number of events. The skewness of 
the visible energy plots is mainly due to the known lower response in the endcap. 
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Chapter 4 

Calibration of the SLD 
Calorimeter 

4.1 Introduction 

The art of calorimetry has always been a very empirical discipline. Whereas other 
detector technologies have very predictable design specification to performance paths, 
calorimeter systems have always relied on test-beams for the experimental determina- 
tion of the response function. The naturally stochastic nature of a calorimeter mea- 
surement, the complexity of the interplay between detector parameters and shower 
development, and the variety of interactions involved imposes the empirical approach. 

The SLD test beam data was taken with a detector configuration that did not 
correspond to the SLD calorimeter. The SLD calorimeter system was therefore, for 
all practical purposes, a detector with no test beam. In order to understand the 
detector response to the various types of interactions, we then had to make use of 
the available data itself. One of the nice things about e+e- annihilation is the fact 
that, from a calorimetric point of view, we know the total energy of the initial state. 
We then used this fact and simple kinematic constraints to set the scale for the SLD 
calorimeter. 

The data set used for the calibration consisted of roughly 10,500 hadronic and 
di-electron events and roughly 24,000 cosmic ray events collected during the 1992 
run. The central drift chamber was used in the track-cluster studies and as a cluster 
veto in the r” study. The rest of this analysis used the SLD calorimeter only. 

By ‘SLD calorimeter’ we refer to both the LAC and the WIC systems. Due to the 
way that signals propagate along the wires in a Iarocci tube, it turned out that in the 
SLD barrel SLC-induced muons would mimic true hadronic depositions in the WIC. 
Beam-related backgrounds in the WIC then became the dominant effect in event-to- 
event fluctuations. This condition, combined with the fact that the WIC was many 
Xint away from the interaction point, made the WIC calibration very difficult. 
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A word of caution. In doing a calibration of this nature, namely ‘using data to 
calibrate the same data’, there is always the danger of introducing biases. Fortunately 
the nature of the measurement (jet fractions) is very insensitive to relative energy 
scales. We are then safe ‘to first order’. Later, we will estimate the systematic 
effects of energy scales on event topologies by varying the calibration factors that we 
find in this chapter. This self-calibrating approach to doing physics is obviously not 
desirable; in our case, however, it is necessary. 

4.2 Scales 

We will use the word ‘calibration’ in this chapter to refer exclusively to a reconciliation 
between the observed and the expected energy for a particular process. There are 
many corrections in between (capacitance correction, online calibration, sampling 
fraction, etc) described elsewhere [82] which we will not discuss here. We are thus 
only interested in the intrinsic energy response of the detector. 

We use the term ‘scale’ to refer to a conversion factor that translates a measure- 
ment of charge in the detector into a corresponding energy; in general each different 
type of interaction (i.e. electromagnetic, hadronic, etc.) has a different scale. If we 
‘know’ the scale, we are then able to assign the right units of energy to an other- 
wise arbitrary measurement of charge. We use a related term, response or response 
function, to refer to the read-out energy of the detector as a function of incident 
momentum and angle. 

We will discuss the three energy scales of interest: the single minimum ioniza- 
tion process (mip or p-scale), the electromagnetic process (‘f’), and the hadronic 
process (‘ z’). We choose the simplest of these processes, mip , as the reference 
scale for the other two. The p-response can be easily calculated given the sampling 
fraction and various active detector parameters. As the mip factor then includes 
all of the charge+ADC counts conversion factors, we can then talk of the scales 
relative to the mip scale. We will use the words ‘mip ’ and p-response interchange- 
ably. Strictly speaking this is not correct since mip refers to the single-ionization 
response given by the minimum of the Bethe-Bloch equation, whereas p-response 
refers to the momentum-convoluted version with other effects like S-ray production, 
and bremsstrahlung (i.e., all the things that give rise to Landau tails). 

A word on nomenclature: we will use the symbol ‘mip ’ to refer to the absolute 
p-scale, the t erm t to refer to the relative electromagnetic scale, and the term z 
to refer to the relative hadronic energy dependent scale. The denominator in these 
symbols is a reminder that we have chosen mip as our reference scale. We will also 
use ; for the ratio of electromagnetic to hadronic scales. We will denote by E)intr the 
intrinsic energy independent hadronic scale. Finally, the term fern will refer to the 
fraction of energy in a hadronic shower which is electromagnetic in nature. 
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4.3 P-Response 

Except for e+e- + ptp- events, the minimum ionizing deposition in a physics event 
is a very small fraction, roughly 5%, of the visible energy Eu,-#. As already mentioned, 
the importance of the p-scale is that it establishes the intrinsic response of the detector 
to a single (on average) ionization and a natural reference scale for the electromagnetic 
and the hadronic responses. In addition, the very local character of mip depositions 
makes their use attractive for studying detector acceptance effects. One can ‘X-ray’ 
cracks in the detector and study dE/dX penetration as a function of energy. 

In this section the p-scale will be determined using two different methods; we will 
look at cosmic rays and at minimum-ionizing single clusters in hadronic events. 

4.3.1 Cosmic Rays 

The cosmic rays used in this study were triggered by a coincidence of the WIC octants 
2 and 6 (top and bottom octants in the barrel). After requiring the presence of two 
back-to-back tracks in the CDC in each event and that each track have at least one 
cluster in the calorimeter (selected with method 1) associated with it’, there were 
approximately 25,000 good single tracks left. Since these cosmic rays entered at 
various angles of incidence and since we are interested in the intrinsic response, we 
must then correct for the liquid argon path length. The correction used is, 

E 
E row 

corrected = 
1 + (cot 6 - Z/&AC)2 

(44 

where 19 is the projective cluster angle, z is CDC z-coordinate of the muon, and &AC 
is the LAC radius. After requiring the cosmic pair in the CDC to be well-contained, 
one can study the penetration depth of muons as a function of incident momentum. 
One requires, 

0 z2 + y2 < 400 cm2 

l 1~1 < 60 cm 

l 27r > ‘hack > = 

the last requirement is necessary to ensure a lower octant track (top -+ bottom track). 
From Fig. 4-l one can read-off the energy loss for the various layers. As can be seen 
from the figure, the Monte Carlo prediction agrees with the data. 

The next step is then to look at individual layer depositions. To ensure that every 
layer is hit, from Fig. 4-l we require pmin > 2 GeV. Figure 4-2 summarizes the results 

‘In this case the association is done by requiring that (6&k - fle,uster)2 + (&aek - $eluster)2 5 
(.08)2. 
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dE/dx penetration of cosmic muons with layer occupancy/track 
! ! 

-Q\L 9 \L + 
0 Fraction do not reach EM-2 
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0 Fraction do not reach HD-1 

b. Fraction do not reach HD-2 

0 Fraction do not reach WI-l 

* Fraction do not reach WI-2 

P, into Barrel ( GeV/c ) 

Figure 4-l: Fraction of muons with no energy deposition beyond a particular layer 
as a function of incident momentum pt. Notice that the five sets of points contain two 
plateau regions; the transition region in between defines the dE/dX loss between the two 
corresponding calorimeter layers. The arrows represent inter-layer boundary predicted by 
Monte Carlo 
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of the corrected energy depositions (Ecosrected from Eq. 4.1). As expected, the plots 
show fairly sharp peaks accompanied by a Landau-type tail. Each peak was fitted 
to a Gaussian and a Moyal function [83] independently. Results are tabulated in 
Table 4.1. 
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Figure 4-2: Layer-by-layer corrected energy deposition, &Otr&ed, for cosmic rays. The 
most-probable-value fits to a Moyal function are shown; results are summarized in Table 4.1. 

4.3.2 P-Response from single clusters 

With a total interaction length of Xint = 0.84 before the hadron calorimeter, roughly 
half of all hadrons with enough energy to penetrate to the hadronic section of the 
calorimeter look like muons in the electromagnetic calorimeter. Of those that survive 
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Layer Barrel COSMICS Barrel Z” DATA EndCap Z” DATA 

em-l 42.4 f1.4 44.6 Ad.5 42.6 f1.5 
em-2 115.2 f3.7 114.0 f3.8 109.2 f4.0 
hd-1 193.1 f6.2 186.9 f7.0 187.3 f7.0 
hd-2’ 188.7 f6.3 176.4 f10.4 188.2 f3.2 
wi-1 347 f12 - - 
wi-2 396 f14 - - 

Table 4.1: Summary of all minimum ionizing fits, in MeV. Errors shown are a com- 
bination of statistical and systematic errors. Systematic errors of ~3% were estimated by 
performing a fit to the most probable value,mpv, with both a Gaussian and with the Moyal 
(see text) function. The variation due to the fit ranges and cluster selection was included 
in the systematic errors. 

the EM calorimeter, roughly 13% leave the hadronic calorimeter intact (at normal 
incidence). We therefore have in the 2’ data sample a good source of muon-like 
interactions in the LAC. We select mip clusters by requiring, 

l at least one layer energy consistent with mip (as determined by cosmics). 

l for the barrel clusters, 1 cos ecluaterl < 0.65 while for the endcap clusters, 
1~0s buster 1 > 0.84 

0.05 0.1 0. 15 0.2 0.1 0.2 0.3 0.4 

Mid tn EM-1 Bsrml (f DATA. GeV in &scale) Mid in PM-2 Band f,L? DATA, OeV in pale) 

~~1 I~~ 

0.2 0.4 0.6 0.2 0.4 0.6 

Mid in HD1 Bum1 (9 DATA. GcV h ~salc) Mid fn HD2 Barrel (z” DATA. OSV in )r-scab) 

Figure 4-3: Layer-by-layer corrected energy deposition, &,rr&ed, for barrel single mip 
clusters in hadronic events. The peak fit to a gaussian is shown; results are summarized in 
Table 4.1. 
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Figure 4-4: Layer-by-layer corrected energy deposition, Ecotrected, for endcap single 
min-i clusters in hadronic events. These endcap clusters include SLC-induced muons. The 
peak fit to a gaussian is shown; results are summarized in Table 4.1. 

As with the energy from the cosmic ray clusters, the cluster energy is corrected to 
account path length differences due to incidence angle. In the case of single clusters, 
where they mostly originate from the IP, the correction is, 

E 
I 

ETo,,, sin 6 barrel clusters 
corrected = E,,, cos 8 endcap clusters 

where 13 is the SLD coordinate angle from the beam-pipe. Figures 4-3 and 4-4 sum- 
marize the results for the barrel and the endcap respectively. Since hadrons traverse 
x int x 3.0 before reaching the WIC, and with just 10,000 hadronic Z’s, the sample of 
minimum ionizing hadrons which survive in the WIC is very small. In addition, the 
number of di-muon events and of events with hard prompt muons is also very small. 
For these reasons the single-cluster p-scale calibration excludes the two WIC layers. 

There are a few differences in the results presented in Figs. 4-3 and 4-4 and Fig. 4-2 
worth noting. The minimum ionizing clusters in a 2’ event are overlayed on unrelated 
energy depositions; this inevitable overlap is seen in the tails of the distributions, As 
expected, the yields for single layer depositions from 2’ clusters goes down as one 
looks deeper into the calorimeter. What is more interesting is that the endcap and 
barrel distributions are, at the -5% level, essentially the same. 

One should also keep in mind that these distributions have not been corrected 
for the acceptance effects shown in figures 4-5 and 4-6. Fig. 4-5 shows the effect of 
the LAC support washers on the muon energy while Fig. 4-6 shows the effect of the 
inter-module gap. 
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Figure 4-5: Muon energy deposition 
in em-2 as a function of cos 8. The arrows 
indicate the position of the LAC washers. 
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Figure 4-6: Muon energy deposition 
in em-8 as a function of 4 projected into 
a LAC module. The arrows indicate the 
boundaries of the module after a 5 millira- 
dian CDC-LAC shift is taken into account. 

4.4 Electromagnetic Response 

The electromagnetic response was obtained by looking at e+e-(7) events and by 
identifying inclusive A’S in the hadronic event sample. These two methods provide 
measurements of the scale in an energy range of approximately 0.2 GeV to 45 GeV. 
One can also use the method of identifying photon pair production of e+e- (7 + 
efe-) in the CDC and studying the track-cluster association. The yields for this last 
method, however, are low (when compared to the no yields) and the 7 spectrum too 
soft to be useful. 

4.4.1 e+e- + e+e- 

A detailed description of WAB events in SLD can be found elsewhere [84]. For our 
purpose all we are concerned about is to have a clean enough sample to be able to 
study the bulk electromagnetic response in the p-scale. 

Di-electron (“WA,“) events, once identified, provide a very clean and energetic 
test-beam for electromagnetic deposition. These events are characterized by having 
a high thrust, low cluster multiplicity, low energy imbalance, and a visible energy 
(E,“;“- ) c ( z);ntr ( Evh;asddronic ). They are then selected by requiring, 
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l fro2 s z;“~~+z~“” +zyaz > 0.95 where ~7’” are the normalized (zi 3 E;/J&) 
three highest energy clusters in the event, 

l less than 10 clusters with Eclus > 100 MeV and more than 1 cluster with 
Eclus > 4.0 GeV (p-scale) 

In this case, we have used ‘method 2’ to select good clusters. Figure 4-7 shows 
the visible energy distribution for the barrel (cos 9 < 0.7) WAB events. Using 
(E$Fbha ) =~(E,$“-), we can read off from the figure E = 0.69 f 0.02 at 45 GeV. 
The error is a combination of the statistical error and a systematic uncertainty esti- 
mated by varying event selection cuts and fit ranges. The endcap region, being highly 
degraded due to pre-radiation, was not calibrated. 

‘30 35 40 45 50 55 60 65 70 75 

E VLSBm for Bhabha Events ( GeV/c’ pscale ) 

Figure 4-7: Visible energy for di-electron events in the barrel. The peak is fitted to 
a gaussian; units are GeV in the p-scale. The mean fitted value is (Ez:obh4) = 63.4 f 0.2 
GeV in p-scale. 

4.4.2 e+e- + ese-y 

If one looks at radiative WAB events (e+e- + e+e-y) a simple kinematic trick [85] can 
be used to calibrate on the photon energy. The idea is to apply the four constraints: 

P,- + Pet + Pr = (EC,, 6) (4.3) 

where in Eq. 4.3 the Pi are four-vectors. Defining the angles as in Fig. 4-9 one can 
write: 

ET = EC, sin e12 
sin& t sin& t sin&s (4.4) 

where, as in Eq. 4.3, E,, refers to the center-of-mass energy &. One immediately 
notices in Eq. 4.4 that the photon energy is given in terms of measured angles and the 
lcnovln energy. The advantage of this method is that it gives an energy measurement 
in terms of the well-known E cm provided one understands the position measurement 
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given by the clustering algorithm. It also gives an energy range from 0 to 45 GeV. 
Radiative bhabha events are selected by requiring: 

l in addition to the requirements from Sec. 4.4.1, the third highest energy clus- 
ter must be consistent with an electromagnetic deposition. (We use the same 
requirements as those used to find photons from n’s; see Section 4.4.3). 

l the photon from above must lie in the plane of the two-highest energy clusters 
in the event. Thus 5, . ii,+ x n’,+ 2 .04 insures the planarity of the event. 

Fig. 4-8 shows the expected energy versus the observed energy for the photon in e+e-r 
events. The number of events in our initial sample is very small but one can see that 
t is consistent with that estimated in the previous section. 

..,d . 
0 ~.~~i~~.~‘....‘.~.~‘..~~‘~~~~‘.~r.’....’~” 

0 25 5 7.5 10 125 15 17.5 20 

ET fmm e+c’+e+e-y 
h c OS,.? to* b 

e’e- + e’e-y 

Figure 4-8: Expected vs observed en- 
ergy for the photon in e+e’y events. The 
line (for illustration only) shows s =.67. 

Figure 4-9: Angle Definition for Radia- 
tive Bhabhas. For radiative bhabhas, kine- 
matics alone yields a simple relationship in- 
dependent of energies. 

4.4.3 7r” --) yy 

One more way of calibrating the electromagnetic response is to identify r’s and 
compare their measured mass with the known mass m,o. The main advantages of 
using 71’s in the calibration are that only the LAG is used in the measurement and 
that r’s are abundant in hadronic events. The CDC was only used to veto clusters 
with associated tracks. 

Before proceeding to identify K’S we need to, on an event to event basis, identify 
neutral electromagnetic clusters. We required, 
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l ] cos Oc,uster] < 0.7 to avoid the degraded endcap region. 

o E.f;;, d 
LAC. a 

< 0.93 to require containment in the electromagnetic section of the 

l Eclurtes > 0.065 GeV (p-scale) 

l fs 2 0.8, where fs =fraction of energy carried by the 3 highest-energy hits in 
the cluster. 

l the cluster must not be associated to a CDC track. 

The last requirement, at the time of this analysis, was not very effective in reducing 
backgrounds. The reason was that the track cluster association efficiency was very 
low - typically only 3 - 4 good clusters per event had a track associated with it. 

After the photon candidates were identified, events with more than 10 photon 
candidates were discarded in order to reduce the combinatoric background. We then 
proceeded to form the invariant mass hypothesis, 

only combining photons that were within a 60” cone of each other (cos 612 >0.5). The 
results are presented in Fig. 4-10 for different ranges of photon energies. Each set 
of points was fit to a gaussian plus a third order polynomial. The combined result 
of the fit is iU~~sca’e = 0.091 & 0.002 where the uncertainty includes statistical and 
systematic (mainly background) errors. We thus obtain s = 0.67 f 0.015 consistent 
with the previous two results. 

4.5 Hadronic Response 

The hadronic response in SLD should be, in principle, easy to obtain since most of the 
energy in a 2’ event is hadronic in nature. In practice, however, the energy overlap 
in an event and the neutral energy component make this task very difficult. 

Hadronic showers are very similar in their development to electromagnetic show- 
ers [67]; the crucial differences between them are the type of interactions governing 
the energy depositions and the shower multiplication. In addition, hadron showers 
have an electromagnetic component (due to r’s and q’s) with generally large fluctu- 
ations. Models predict and measurements show that this electromagnetic component 
has a logarithmic energy dependence, fern M log Ei,,. If f # z (non-compensating 
calorimeter), then the combination of the difference in response and the large fluctu- 
ations in the electromagnetic component induce non-gaussian fluctuations in all the 
associated energy deposition quantities. As a result, the calorimeter resolution will 
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Figure 4-10: Plot of the two-photon invariant mass. The five sets of points are for 
the different candidate photon energies. A fit was made to a Gaussian plus a third order 
polynomial. Details in the text. 
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deviate from the purely statistical (a/E = a/a + b ; b > 0) behavior and the re- 
sponse will have energy non-linearities2 that are approximately logarithmic (x log E) 
in nature. 

There are a few well-defined initial states that we can use to study the hadronic 
response (analogous to n’s and gamma conversions). The most common ones, K" -+ 
?T+?T- and A -+ r-p, can be easily identified using a vertex finding algorithm in 
the CDC. However, due to the a-track resolution and to the cluster merging in the 
calorimeter, the usable momentum range for tracks in these two reactions is too low 
(w 0.2 to 1.5 GeV) t o b e useful (ionization regime dominated). We will then take two 
different approaches in doing this calibration: we will look at global event quantities 
for which any non-linearities are necessarily folded-in, and we will look at inclusive 
single clusters in an attempt to observe the energy-dependent behavior of these energy 
depositions. 

Details on hadronic event selection are found in Chapter 5. For this section, 
it suffices to say that judicious cuts on energy imbalance, cluster multiplicity, and 
visible energy select a sample of about 10,000 hadronic events with an estimated total 
background contamination of less than 0.3%. We will use clusters selected according 
to method 1 outlined in section 3.5. 

The SLD calorimeter can be divided in three distinct segments according to sam- 
pling fraction and detector technology. We will thus group em1 and em-i!, hd-1 and 
hd-2 , and wi-1 and wi-2 in three distinct sub-calorimeters. 

4.5.1 Energy Flow 

By “energy flow” we refer to the relative event by event energy deposition in each 
calorimeter segment. Due to our limited sample of events the segments will consist of 
the endcap region and a crude subdivision in cos 0 of the barrel region. Each segment 
will then be treated on a layer by layer basis. We have already encountered the Evis 
distribution in Fig. 3-13. As the figure shows cluster selection methods 1 and 2 yield 
mildly different distributions and, in addition, both methods yield distributions that 
are not centered around the expected E,, = 91.5 GeV. The first of these effects, to 
the extent that it affects the calibration itself, will help us in determining detector 
systematics in any calorimeter-based measurement. The second effect is harmless. 
It amounts to one overall number that can be arbitrarily chosen to center the Evia 
distribution: (Evi,) = fEcm. 

Typically, a cluster in the SLD spans more that one layer in depth. When we 
form clusters we must then use a recipe for summing the individual layer energies. 
Following the argument of the previous section we write, 

(4.6) 

‘This means that, for example, the energy and resolution of a 45 GeV jet will not be the same 
as that of a 45 GeV pion 
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Figure 4-11: Quadrant view of the energy flow calibration regions. The regions are 
symmetric in 0. See Table 4.2 for more details. 

where the X’s are dimensionless factors to be determined from the data and/or Monte 
Carlo and i is the cluster index. Using Evis = CyLp E$usrer and Eq. 4.6 we write, 

If we now combine Eq. 4.7 with the requirement (to set the scale) (Evis) = E,, we 
obtain, 

E cm = LnEeT, + XttadE,T,d + LicEzic (4.8) 

What we then have in Eq. 4.8 is a constraint equation that will help us determine the 
X factors. We proceed first by ignoring the WIC. Since the WIC is just a ‘tail-catcher’ 
for the LAC, this turns out to be a good approximation. In order to minimize the 
effects of tails in the energy distribution, we re-write Eq. 4.8 as, 

EhTod - = km + aced----- 
en 

(4.9) 

where we have removed the WIC. Armed with Eq. 4.9, and recognizing that it is just 
the equation of a line3 with intercept X,, and slope Ahad, we then proceed to find the 
global calibration factors. 

A schematic of the four detector regions that were calibrated is shown in Fig. 4-11. 
The quantities E,, and Ehad were found by summing all of the individual layer-by- 
layer cluster energies. Events were classified to belong to one of the regions (See Ta- 

31f we include the WIC in Eq 4.9 then we obtain the equation of a plane and we could then have 
a simultaneous determination of the three X’s . However, the limited event sample makes this very 
difficult. 
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Figure 4- 12: Energy flow calibration of 
the electromagnetic and hadronic sections 
of the LAC in the barrel region. 
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Figure 4-13: Energy flow calibration 
of the LAC and the WIC barrel region. 

ble 4.2) when the thrust axis of the event was contained within the region boundaries. 
In order to minimize spillage of cluster energies into adjoining regions, a minimum 
cut in the value of thrust was placed at Tmin = 0.92; this effectively collimates the 
event by selecting clusters which lie within a 22” cone of the thrust axis. This cut, 
however, reduces the data sample by a factor of 3. 

Figure 4-12 shows the result of plotting the quantities defined by Eq. 4.9. A 
deviation from a straight line would indicate non-linearities in the energy sharing of 
the electromagnetic and hadronic layers of the calorimeter. No evidence is found for 
such non-linearities. The figure also shows the same quantities for the Monte Carlo. 
Any difference between the data and the Monte Carlo in the ratio e would be an 
indication of a poor simulation of the longitudinal energy deposition. ?.he data and 
the Monte Carlo agree within the statistics of the sample. 

The same analysis was repeated for the WIC. In this case we take Eq. 4.9 and 
re-write it as, 

z= 
GLC 

hAC + hVIC- 
ELTAC 

(4.10) 

where EL,JC is now the total energy in the LAC. We use the ELAC calculated with the 
X’s from Eq. 4.9 and with both X’s set to 1.0 in order to estimate systematic errors 
in XWIC. Table 4.2 and Fig. 4-13 summarize these results. 

Armed with the energy flow factors from Equations 4.9 and 4.10 one can then 
estimate the total energy fraction seen in each layer of the calorimeter. These results 
are presented in table 4.3. 

It is important to remember that these energy flow constants will in general be 

77 



CHAPTER 4. CALIBRATION OF THE SLD CALORIMETER 

Detector Region x 

0.00 c codIt < 0.25 2.25 rO.04 
Ahod ALAC XWIC 

3.33 f0.14 2.38 f0.03 3.40 f0.60 
2.46 f0.07 2.83 f0.15 2.33 f0.02 4.14 f0.60 

0.25 < cost+ 5 0.50 2.44 f0.04 3.23 fO.10 2.48 f0.02 2.98 f0.65 
2.57 f0.04 2.85 fO.10 2.44 f0.02 4.00 ho.90 

0.50 < codt 5 0.70 2.64 f0.04 3.12 f0.13 2.69 f0.02 2.02 f0.50 
2.74 f0.04 3.02 f0.13 2.67 f0.02 3.08 f0.44 

0.00 < cost+ 5 0.70 2.48 f0.02 3.16 f0.07 2.54 f0.02 2.34 f0.35 
2.64 f0.03 2.81 fO.10 2.52 f0.02 3.20 f0.47 

0.89 < cos& 5 0.97 3.53 f0.07 3.66 f0.24 3.47 f0.04 2.84 ho.76 
3.74 f0.07 3.34 f0.20 3.49 f0.03 2.91 f0.62 

Table 4.2: Results of the energy flow fits in various detector regions. Notice the slight 
8 dependence. For each detector segment, the upper row corresponds to the data and the 
lower row to the Monte Carlo. The first two columns are the calibration factors for the 
LAC only. Columns 3 and 4 show the factors for the LAC (with Aem = &d = 1.0) and 
the WIC. The errors quoted are a combination of statistical errors and systematic errors 
estimated by varying cuts and the event sample. 

Detector Region F FWIC 

0.00 < cost& 5 0.25 58 ;ml% 8.8 f1.5% 
62 f2% 10 f1.5% 

0.25 < cos& 5 0.50 64 f2% 7.1 f1.5% 
65 kl% 9.1 f2.1% 

0.50 < cos& 5 0.70 71 &2% 3.6 &0.9% 
71 Al% 5.1 kl.O% 

0.00 < coset 2 0.70 66 *1% 5.5 f0.8% 
68 kl% 7.1 *1.0% 

0.89 < codt 5 0.97 69 f3% 4.1 kl.l% 
72 f2% 4.1 &0.9% 

Table 4.3: This table presents the mean per event energy fraction (in %) for each 
calorimeter section. For each detector segment, the upper row corresponds to the data and 
the lower row to the Monte Carlo. Note that Fha,j = 1.0 - Fe, - FWIC. The errors quoted 
are a combination of statistical errors and systematic errors estimated by varying cuts and 
the event sample. 
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different when determined by different cluster selection methods. We were able to 
obtain the proper weighting factors for the calorimeter layers by exploiting the corre- 
lations inherent in the longitudinal energy-sharing of the 3 layers. These X’s are not 
fundamental properties of the detector; they can be understood aa just tools to turn 
a raw energy into a working energy. 

4.5.2 Single Clusters 

The closest we can get to a real test-beam using 2’ data is to study the association 
of tracks and clusters. SLD has such an algorithm for CDC tracks and calorimeter 
clusters4 The advantage of this method is that, assuming the association is correct, we 
know the real incoming energy of the particle that formed the cluster. We will make 
no distinction between electrons and hadrons - the number of inclusive electrons (in 
the kinematically interesting regime) is negligible when compared to the number of 
charged pions. 

In the course of this analysis we may be tempted to extract the global X’s from 
Sect. 4.5.1 by comparing the incident momentum pi,, to the deposited energy ,?3jeP = 
A,, Et,,, + XhdEj,d + X,;E;;. This, in fact, is wrong [86]. The reason is that the 
fluctuations of individual showers (having to do with the longitudinal development 
and the intrinsic 2 ) will make the calibration factors energy-dependent. We will 
then use the globally optimized factors of the previous section to study the overall 
cluster behavior in this section. Here we will study the response and the resolution 
of single clusters. We will then make a direct measurement of 5 and its momentum 
dependence. 

Since we are dealing with quantities that have large fluctuations, we will study 
the ratio E,/p;,, where Ep is the cluster energy in the p-scale of an incident particle 
with momentum pi,,. We then have, 

where t depends on energy. If we then define, 

E 
a,rS 2 ( 1 Pint 

(4.11) 

(4.12) 

where 6 refers to either the RMS width or the covariance of a distribution of Eq. 4.11, 
then we obtain g,, = 6E,/pinc assuming Gp;,,/p;,, M 0. Using Equations 4.11 and 

4The algorithm works as follows: drift chamber tracks and associated error matrices are extrap- 
olated outside of the CDC volume until the first layer (em-l ) of the calorimeter is reached. If the 
track error ellipse has a sufficiently high overlap with the error circle of a cluster, then the cluster 
and the track are associated. 
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Figure 4- 14: Plot of the hadronic single-particle response as a function of momentum. 
The energy units are GeV in the p-scale. The ionization-dominated regime is evident at = 
2 GeV and below, while the onset of non-linearity due to lack of compensation is evident 
at higher p. 

4.12 we then write, 

(4.13) 

The advantage of using Eq. 4.13 is that we can get both the resolution and the 
response 3 by a single fit to a distribution of E,/p;,,. All we have to do is to divide 
our track-cluster sample in bins of momentum to obtain the appropriate “test-beam 
scan” and to fit the resultant distributions. We select clusters using method 1 and 
require tracks to be well contained in the CDC barrel (track length > 10 cm). In order 
to minimize the background from charged particle overlap, we require that there be 
no charged tracks in a 130 milliradian cone around the extrapolated track. We also 
require no energy deposition inside a 130 milliradian cone around the cluster in order 
to reduce the neutral energy overlap. 

Results are presented in Figures 4-14, 4-15, and 4-16. An energy response non- 
linearity is evident in Fig. 4-14 indicative of f # 1.0 . Figure 4-15 shows the distribu- 
tion of f. The distribution is not peaked at 1.0 since, in determining the calibration 
factors, we required the total event energy to normalize to EC, = Mzo. A marginal 
improvement in energy response and resolution is evident in Figures 4-14 and 4-15 
when the WIC energy is included in a cluster. Figure 4-16 shows the optimum 
hadronic energy resolution as a function of incident momentum. The resolution is 
optimized since it was obtained by a simvltaneous fit to both crfi and t. A realistic 
resolution will be given by convoluting Figure 4-15 with this plot before the fit. 

At the time of this analysis there was no Monte Carlo sample available that 
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Figure 4-15: Ratio of hadronic re- 
sponse to incident momentum, for all mo- 
menta. The line histogram corresponds to 
a cluster formed with the LAC deposition 
only. 
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Figure 4-16: Results of the resolution 
fits to Eq. 4.13. The improved resolution 
within the ionization regime is evident be- 
low 2 GeV. 

incorporated a correct implementation of f # 1.0 with a simulation of the tracking; 
for this reason, no Monte Carlo results are presented for these figures. Instead, we 
can look at the inclusive spectrum of clusters. The cluster energy spectrum is very 
sensitive to quantities like i and z; one can in principle use the Monte Carlo to 
determine these quantities. A comparison between the data and the Monte Carlo is 
presented in Figure 4-17. 

All we are left to do now is to determine the factor f. It is clear from Figure 4-14, 
however, that this is not an easy task since ; is energy-dependent. In order to extract 
a meaningful value of f (more precisely, 5)jntr) we must then deconvolute the contri- 
bution of the electromagnetic component from Figure 4-14 with a parameterization 
as in Ref. [72]. W e d o not have the number of events to do such a measurement but 
we can certainly place limits on F in two other ways. If we redo Figure 4-15 in the 
p-scale we obt ain for an overall 5, z = 0.43 f 0.02 .The quoted error includes sys- 
tematic errors of a gaussian fit to the peak, estimated by varying cuts and fit ranges. 
This is, of course, an overestimate of $)intr since both the high momentum and the 
ionization regimes will increase the effective response. 

One may take a different approach and, assuming a good Monte Carlo simulation, 
ask what S)intr is necessary to reproduce the data. We will address this issue in the 
next section. 
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Figure 4- 17: Energy distribution of inclusive clusters for both barrel and endcap. The 
units are GeV in the p-scale. This plot contains all selected clusters in 900 events for both 
data and Monte Carlo. The shape of this distribution is sensitive to I. 

4.6 Tuning of the SLD Monte Carlo 

The most important element in successfully tuning a Monte Carlo to reproduce data is 
to be able to find a set of tuning variables that are ‘blind’ to the underlying physics. 
This requirement is essential since tuning only involves ’ trying to reproduce the 
instrumental effects - things like energy response of the detector, acceptance effects, 
and detector resolution effects. In an ideal situation, as we have stated, we would 
rely exclusively on a test beam to give us a set of well understood response functions 
for our calorimeter. We must instead rely on the knowledge of the initial state energy 
and on the ‘visible particles’ generated by the Monte Carlo generators. 

The SLD fast shower parameterization Monte Carlo was tuned to reproduce the 
data. The tuning was performed in three stages. In the first stage, the electromagnetic 
response f and the mip response in the Monte Carlo were fixed to reproduce the 
data. The trickier z response was left for the second stage. In the second stage of 
the tuning , sets of x1200 Monte Carlo events 6 were generated with ‘intelligently’ 
chosen parameter sets. A ‘parameter set’ consisted of a set of Monte Carlo control 
variables of the shower parameterization and of the detector response. The parameter 

5There is another type of tuning which involves optimizing the physics parameters of a phe- 
nomenological model (Monte Carlo). It is essential, in order for this ‘second order’ tuning to be 
valid, that instrumental effects are well reproduced by the Monte Carlo 

‘The Monte Carlo sets were overlayed with luminosity weighted minimum bias events to simulate 
background conditions. The ‘minimum-bias’ event sample used spanned the whole 1992 run. 
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Figure 4-18: Comparison of a few observables in Monte Carlo and data. The data is 
represented by the solid circles and the the Monte Carlo by the line histogram. a) shows 
fTX as defined in Section 4.4.1, b) the event sphericity (see Appendix A), c) cos 0 distri- 
bution of all clusters with respect to the thrust axis, and d) transverse energy component 
of clusters with respect to their parent jet for events classified as 3-jet events by the JADE 
algorithm (see Chapter 6). Energy units are in the nip scale. 
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set included: 

l transverse shower size 

l inter-channel cross talk 

l intrinsic t response and the t ratio 

l number of energy spots per shower or shower ‘foaminess’ 

l acceptance ‘fudge’ in the EndCap region 

In addition the required minimum hit energies (thresholds) in the reconstruction 
were optimized to a value that minimized Monte Carlo-data disagreement without 
discarding too much information. After the events were reconstructed, histograms 
were made of fairly uncorrelated quantities like hit spectra, cluster spectra, cluster 
multiplicity, trigger quantities, visible energy, etc. The histograms corresponding 
to a particular parameter set were then compared to those corresponding to the 
1992 data set. The Kolmogorov test was then used (most of the time) to compare 
sets of histograms. The Kolmogorov [87] test is a robust histogram comparison test 
that returns the probability that two experimental distributions (i.e. histograms) are 
drawn from the same parent distribution. It is sensitive to both the normalization and 
the shape of a histogram. Based on the results of this test and on ‘visual inspection’ 
of the distributions, an optimum parameter set was chosen. 

The third stage of the tuning involved generating larger samples of Monte Carlo 
events to optimize the most sensitive parameters. The ultimate limitation at this 
stage was the CPU time available. At the point at which the distributions ‘were not 
getting any better’ and the statistical limitation of the data sample was evident, the 
procedure was stopped. Figure 4-18 shows a comparison between the tuned Monte 
Carlo and the data sample for a few observables. The upper two plots are global 
observables (1 entry per event), whereas the lower two are single cluster quantities. 
Fairly good agreement is evident for both observable types. 

It should be remembered that the tuning was performed on the 10,000 events 
available at the time. Therefore, even assuming a ‘perfect’ tuning, the detector simu- 
lation will have systematic effects that are comparable to the statistical fluctuations 
inherent in such a sample. We have tried to avoid biases in our tuning procedures 
by using various uncorrelated and physics-blind variables. The possibility remains, 
however, that the chosen variables are well reproduced in the Monte Carlo but that 
some of the internal correlations are not. 

4.7 A Brief Comment on % 

The same arguments about g)init that we used in the previous section apply in this 
section to 5. In fact, once z is known, a determination of one of these factors implies 
the determination of the other one. 
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4.8. Summary 

Table 4.4: Summary of energy scale measurements. Statistical and systematic errors 
are included where noted. 

By tuning on quantities sensitive to E)int+ and f it was determined that E)intr M 
0.41 and t = ;/;);,,,, M 1.7. Once a Monte Carlo sample with the correct z simula- 
tion and tracking is available, it will be possible to determine these factors with more 
precision and to realistically assign errors to them. 

For now, we can say that t)i,+ = 0.415 f 0.001 f 0.015 (where the uncertainties 
are statistical and systematic, respectively) and J = 1.65 f 0.04 f 0.08 (where the 
uncertainties are statistical and systematic, respectively). 

4.8 Summary 

We have seen that by looking at processes with well understood initial states we were 
able to set the scale in the SLD calorimeter. We then proceeded to study the energy 
response as a function of incident momentum and into different detector regions. 
This study yielded an estimate for the ratio E)intr. We also determined that the 
tuned Monte Carlo reproduces the detector response fairly well, considering that we 
only had 10,000 events to utilize. We also established the p-scale in Table 4.1 and 
determined i and t. These results are summarized in Table 4.4. 
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Chapter 5 

Triggering and Event Selection 

In this chapter we discuss the procedure by which we validate our data sample. We 
define the term ‘event’ as any observation recorded with the detector. Most of these 
observations were irrelevant for this analysis since we only used hadronic events. 
We refer to these uninteresting events as our b&ground. We also will see that the 
background can be classified according to its source; it can either be physics-related 
(non-hadronic final state of the 2”) or beam-related. At times we will use the term 
‘minimum bias event’. A minimum bias event can be thought of as a snapshot of the 
detector in full operation taken at a random time during the run. 

In the process of identifying good events (our hadronic sample) we can distinguish 
three stages: triggering, filtering, and selection. The trigger stage (described in Ch. 3) 
is hardware-based and its aim is to maximize the event throughput while minimizing 
biases in the data sample. We will see that in practice these requirements imply a 
low signal to noise ratio (S/N). The second stage, filtering, is a software attempt to 
improve the S/N ratio so that we can have a more manageable data sample. We 
will go from x l,OOO,OOO triggers to !Z 20,000 filtered triggers during this stage. The 
filtering will leave us with a sample small enough that we can fully reconstruct to 
perform a final selection or validation of our hadronic event sample. 

By using only scalar quantities (energy sum, number of hits) the trigger and filter 
stage keep final event sample biases to a minimum. We will then purposely bias 
our sample by using more topologically-oriented quantities (e.g. energy imbalance, 
number of clusters) in order to select hadronic events. Before going into more detail 
on the above procedure, we will briefly review the properties of the 1992 run. 
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5.1 Properties of the 1992 Run 

5.1.1 Luminosity in the SLD 

The luminosity in a e+e- collider is generally measured using Bhabha scattering 
in the forward region; this process is shown in Figure 5-3 as one of our hadronic 
backgrounds. The SLD device that measured the Bhabha process, the luminosity 
monitor-small angle tagger (LMSAT), was described in Chapter 3. Here we’ll just 
briefly describe how the luminosity was obtained [65] even though for this analysis an 
absolute luminosity determination is not essential. What is more important is that 
we understand (i.e. be able to reproduce with a Monte Carlo simulation) any biases 
in the data sample. 

The tight and highly dense energy signatures of the Bhabha-induced electromag- 
netic showers were easily recognized in the LMSAT. Since the detector was so close 
to the beam-pipe where it was susceptible to beam-backgrounds and missalignments, 
care had to be taken in counting the effective number of Bhabha events. The LMSAT 
was then divided into two fiducial regions: a ‘gross’ region and a ‘precise’ region. Us- 
ing N&$& and N&$~~, an effective number of events, Ni$$fr, was constructed. 
The Monte Carlo was then used to calculate a corresponding effective cross section, 
beff, taking care to simulate the background processes. Finally, an integrated lumi- 
nosity was calculated: 

/ 
N ef feclive 

Ldt = ‘;;ia . 
e 

The measurement of the luminosity for the 1992 polarized run yielded JLdt = 
385.37 f 2.47 f 3.89 nb-’ where the first error is statistical and the second error 
is systematic. Later we use this number to estimate the triggering and selection 
efficiency. 

Luminosity events were well contained in the LMSAT. The LAC was therefore 
devoid of any physics content during these very forward events. This fact allowed 
us to treat the luminosity events as monitors of the run conditions in the LAC and 
the WIC. We treated such events as luminosity-weighted minimum bias events. Since 
these events were properly weighted, we were justified in overlaying the luminosity 
events on the Monte Carlo events in order to obtain a realistic simulation of the run 
conditions and the physics events. The details of the Monte Carlo generation and the 
reconstruction are given in Section 3.4. 

5.1.2 Beam-Related Backgrounds 

The SLC (described in Ch. 3), b em ’ g a single-pass machine, did not enjoy the intrinsic 
stability of a storage ring facility. In the SLC one could have a catastrophic loss of one 
bunch (or a fraction thereof-with z 10” particles per bunch one can have a fairly 
good beam with a background-producing tail), while either the next or the previous 
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bunch was fine. As the run progressed, various trigger vetoes were implemented to 
minimize this problem and reduce the data acquisition dead-time. 

A more common mode of background production was stray electrons or positrons 
from the phase-space tail of a bunch striking a collimator upstream from the inter- 
action point. In this case a jet of muons was produced, mainly by the Bethe-Heitler 
mechanism, and travelled down the arc in the direction of the SLD. Most of these 
muons did not reach the detector; they were either absorbed in the ground or de- 
flected off the tunnel by the muon-spoiler magnets (See Ch. 3). Some of these muons, 
however, were trapped in the beam optics, travelled down the SLC arcs, and struck 
the SLD detector downstream. A successful model for this process was developed for 
the Mark II [88] detector at SLC and later implemented for the SLD [89]. Simula- 
tions of this model predicted mean muon energies (at the entrance of the WIC) of x 
5 GeV. This aspect is unique to the SLC and years of running have demonstrated the 
difficulties in ridding the collider of such backgrounds. 

Another type of SLC-related background had its source inside the detector. The 
strong field of the final focus triplet magnets induced synchrotron emission in the 
beam. One would then see a halo of electromagnetic-like background in the detector 
elements closest to the beampipe. This “wall of fire” is evident in Fig. 5-1 as a ring- 
like series of hits in the innermost (in 0) layer of the LAC. The figure also shows the 
presence of upstream muons in the calorimeter. 

Fortunately, the two types of beam backgrounds that we have described had dis- 
tinct signatures. When muons entered the detector they first hit the WIC endcaps. 
The typical muon that would hit the WIC had enough energy to traverse SLD from 
endcap to endcap. The geometry of the active layers in the endcap (for both the LAC 
and the WIC) ensured that the background signatures in the endcap region were nom- 
inally minimum ionizing-like. In the barrel region, however, the active layers for the 
WIC and the LAC were shell-like volumes parallel to the beam axis and thus parallel 
to the background trajectories. A muon could then be trapped in an active layer 
gap of the LAC (liquid argon), for example, and leave an ionization trail from one 
edge of the barrel to the other. Since the magnetic field is solenoidal, bending effects 
for these muons were minimal. Typically though, the muons would enter at a slight 
angle to the beamline and then deposit m$-like energies in a few adjacent towers. 
Such trails can be seen in Figure 5-l. Not shown in the figure are the signatures in 
the WIC calorimeter. 

The WIC calorimeter had the highest effective area of all the detector subsystems. 
The WIC endcaps were the first detector elements to be hit by the SLC muons. By 
virtue of their area, they effectively served as a shielding to the other subsystems for 
both low energy muons and the soft electromagnetic component. The WIC barrel in 
general received a somewhat higher background dosage than the LAC barrel. The 
higher WIC noise was due to the fact that many times the SLC operators were able 
to reduce the LAC backgrounds by tuning the SLC orbits such that the muons would 
be deflected into the WIC. 
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Figure 5-l: A typical background event triggered by upstream muons. In this display, 
the LAC towers with hits are displayed for the north and south endcaps and for a “rolled- 
out” barrel. Note the distinctive signatures of the muons in the barrel and the “wall of fire” 
hits in the inner ring of the endcaps. 
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Figure 5-2: Time history of background muons in SLD. a) shows the the total energy 
carried by SLC-muon identified clusters in filtered events, and b) shows the number of 
selected hadronic events (see Section 5.5). 

Since the wall-of-fire background was fairly localized and covered very little solid 
angle, the affected section of the detector could be simply ignored. In the rest of this 
analysis we will then zero the ADC counts for the two innermost towers in the LAC 
and the WIC both in the Monte Carlo and in the data. The net effect on the detector 
acceptance is minimal: the acceptance is reduced from 99.2% of 47r to 98.8% of 47r 
steradians. 

The muons in the LAC barrel were easily pattern-recognized. An algorithm com- 
pared the 6 and the 4 spread of a cluster and tags clusters with many adjacent hits 
in 8. Figure 5-2 shows the energy sum of the background-tagged clusters on an event 
by event basis. It is interesting to note the mild anticorrelation between luminosity 
and noise level - a phenomenon also observed online by the SLC operators. 

91 



CHAPTER 5. TRIGGERING AND EVENT SELECTION 

5.2 Physics Backgrounds 

The Feynman diagrams for the physics processes which may fake a hadronic event in 
our data sample are illustrated in Figures 5-3a to 5-3d. At each stage of the event 
selection, we use a Monte Carlo simulation of these processes, together with the 
integrated luminosity determination of Section 5.1.1, to calculate the contamination 
to our hadronic sample. The references for the Monte Carlo generators used can be 
found in Section 3.4. 

Of the processes in Figure 5-3, the r + - r decay mode is the one that contributes 
the most background for three reasons: r’s tend to decay hadronically (X 50% of the 
time [28]), they have a short lifetime (CT = 91.4pm), and they have the same angular 
distribution as q?j events. The 27 (Figure 5-3) process also has a hadronic mode, but 
as we will see, it is very ‘soft’. The other processes in the figure have electromagnetic 
final states and are therefore easy to identify. We have seen in Chapter 3 that elec- 
tromagnetic clusters are very ‘tight’ and do not deposit much energy in the hadronic 
calorimeter . 

We will perform the same calculation for each of these backgrounds. As an il- 
lustration we will briefly go through the calculation for the r+r- channel here and 
will later quote the results for the other ones. We calculate the ezpected number of 
observed r+r- events for a given luminosity using, 

where I’zo is the full width of the Z”, r7t7- is the width for 2’ + r+r-, and azo is 
the total cross section, PE is a cross section dilution factor due to the beam energy 
spread. In addition, 

trigger filter selection $t,- = e7t7- q7-e7ty (5.2) 
is the total acceptance for r+r- pairs in terms of the efficiency for each of the selection 
stages and L is the integrated run luminosity. Since the E from above are derived from 
Monte Carlo simulations, they have systematic errors that depend on how well the 
Monte Carlo reproduces the data. In the case of this analysis, in which the overall 
cross section normalization is irrelevant, we may take the pragmatic approach and 
quote an eflective cT (i.e. combined triggering, filtering, and selection) by direct 
comparison of the event yield with the integrated luminosity. We will take both 
approaches. 

The above c are calculated by generating Monte Carlo events of the particular 
process and calculating the fractional yield (i.e. Nsurvive /Nthrown) after simulating 
the trigger, the filter, and the selection. 
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Figure 5-3: Backgrounds in the event selection: (a) the 27 process, (b) the pure 
QED 7-y process, (c) the Bhabha process which can contaminate the hadronic sample in 
the forward region where there is limited acceptance, and (d) T lepton final state whose 
hadronic decay mode can fake a qij state. 
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5.3 The Hadronic Event Trigger 

In Chapter 3 we have already reviewed all of the triggers used in the 1992 run. Here 
we describe the rationale for the calorimetry trigger since it is the relevant one for this 
analysis. The SLD calorimetry trigger is very simple. Hit energies (in ADC) above 
a certain energy threshold value are added into a single event energy sum. If the 
event energy sum is above the event energy threshold, the event is triggered by the 
acquisition system. We will now discuss the motivation for choosing these thresholds 
and energy sums. 

1 
0 20 40 60 80 100 120 140 

ADC counts EM Sections 
AJX 

low threshold 

1 b I I I L I I I I I, I1 I1 I I I I 81 I I I I I I 
0 20 40 60 80 100 120 140 

ADC counts HAD Sections 
ADC 

Figure 5-4: Hit spectra of muon backgrounds. Using luminosity events (Bhabha 
events in the luminosity monitor) to look at backgrounds provides a convenient luminosity- 
weighted sample of minimum bias triggers in the central calorimeter. The spectra of the 
clusters identified as backgrounds is shown in a) for the electromagnetic section and in b) 
for the hadronic section. The arrows point to the dual trigger thresholds. 

After reading the previous section it should be no surprise that one of the main 
aims in triggering was to reduce the SLC-induced backgrounds. After the 1991 En- 
gineering Run, an SLD Trigger Task Force was formed to study all issues related to 
triggering, backgrounds, efficiency, and the dead-time introduced into the trigger by 
the trigger rates. One of the contributions of this Task Force was to implement a 
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7 
Law- (I) Cl 

E;;n*l 
. . 

Ez;l’ 1 

em-l and em-2 524 MeV/128 ADC 60 ADC 8 ADC 
M-1 and hd-2 1384 MeV/128 ADC 120 ADC 12 ADC 

Table S.1: Trigger quantities and their conversion factors. 

trigger that was insensitive to the muon backgrounds and could simultaneously gen- 
erate a noise signal to be relayed to the SLC operators. This signal was then to be 
used during the run to tune the machine orbits in order to reduce the backgrounds. 

As can be seen from Figure 5-1, the SLC-induced muons leave very distinct pat- 
terns in the detector. The key to constructing a trigger which is insensitive to the 
background is then to exploit these patterns and energy depositions at the trigger 
level. The energy signatures of the SLC-related backgrounds are studied by looking 
at all clusters in the LAC in minimum bias events. Figure 5-4 shows the single-hit 
energy distribution of clusters present in the LAC in luminosity Bhabha events. The 
miplike signature of the clusters is evident (compare with Figures 4-2 and 4-3). We 
will exploit this feature to reduce the trigger noise. 

Typically there are l-2 beam-related muons per beam crossing, each depositing 
R 1 GeV of energy in the LAC. If we take a conservative mean of < n, >R 2, the 
probability for a Poisson fluctuation in the total energy to reach the trigger energy 
is % lo- 3. With a beam crossing rate of 120 Hz, this implies a muon induced trigger 
rate of at least 0.1 Hz . This problem was minimized by [90] taking advantage of the 
mip spectrum shape. A hit threshold was chosen such that the SLC muon energy 
contribution to an event was minimal - essentially an ADC value well above the 
‘mip -bump’. This ‘high-threshold’ is shown with an arrow in Figure 5-4. 

The SLD LAC hadronic event trigger consists then on a single energy sum over 
most of the detector region. The sum is formed with hits that have an energy higher 
than the high-threshold from Figure 5-4, Egp; we can write this as: 

(5.3) 

where ef is the individual hit energy in the ith tower (in ADC counts), I is the 
calorimeter layer index, and ncell is the total number of active towers in the detector. 
The cl are the sampling fraction’ correction factors. The correction factors cl and the 
chosen thresholds are given in Table 5.1. The chosen values minimize both beam- 
related and instrumental noise. 

An event triggers the acquisition system if EHI > 8GeV. 

‘See Chapter 3. These factors correct for the difference in ratio of active to passive area in the 
different calorimeter layers. 
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We have seen in Chapter 4 that energy fluctuations in the WIC are background 
dominated. In addition, we saw in Table 4.3 that on average the WIC receives less 
than 10% of the total event energy. It is then reasonable to exclude the WIC from the 
trigger calculation since the impact of the WIC on the trigger efficiency is minimal. 
In addition to ignoring the WIC, the ‘wall-of-fire’ towers, 8 = 47 and 0 = 48 are also 
excluded from the trigger sum. 

The FASTBUS module that calculates the trigger at each beam crossing keeps a 
dual trigger sum. An analogue of EHZ, ELO, is calculated with the lower thresholds 
presented in Table 5.1: 

The quantity defined by Equation 5.4, by virtue of being on the low end of the ‘mip 
-bump’ is very sensitive to background muons. This quantity was delivered to the 
SLC operators as a real-time noise signal. We will also use it in the next section to 
help in the filtering stage. 

The trigger module calculates another related quantity which we will also use 
in the next section: N&T. N$ is defined as the number of hits in the LAC elec- 
tromagnetic section (em-l and em-2 ) above the ADC threshold Egj”. Since the 
electromagnetic section of the calorimeter ‘sees’ most of the event energy (See Ta- 
ble 4.3) and since the hadronic section is more sensitive to muon backgrounds (larger 
area), N&T is a good discriminant against noise events. 

5.4 Event Filtering 

After the triggering stage, we are left with well over l,lOO,OOO hadronic event candi- 
dates. Most of these events are background. Instead of proceeding to reconstruct all 
of the triggered data, and in order to reduce the total CPU time needed for process- 
ing, we filter out the background from the triggered sample. We take advantage of the 
available trigger quantities described in Section 5.3; by ‘tightening’ these quantities 
we are able to purify the data sample in favor of hadronic events. 

The most powerful quantities in the filtering are EHI and ELO. Since ELO is 
very sensitive to events with many low energy hits, it is a good discriminant against 
the SLC-muon events that conspire to pass the trigger. The power of this quantity is 
evident when the correlation of EHI and ELO is plotted for all events. Figure 5-5 shows 
this correlation with the filtering cuts represented by lines. There are 18,393 surviving 
events in the figure; originally (before filtering) there were well over 1 million events. 
Some features of this plot are worth noting. Monte Carlo simulations (discussed in 
more detail in the next section) show that the oval shaped cluster in the center of 
the figure consists mostly of hadronic events and some 7+~- events. The diagonal 
stripe at high energy contains mostly Bhabha-like events. The horizontal stripe in 
the low end of EHI is due to SLC-muon events and a few 7+~- events. The apparent 
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diagonal cut is an artifact of EHZ 2 Em. 

Figure 5-6 shows the cut applied to Nj?jT. N2-r correlates very well with the total 
number of particles that strike the calorimeter. The cut A$? 2 10 shown in the plot 
ensures that filtered events have hadronic-like multiplicities. The cuts used [84] to 
define the filtered sample (and shown in Figures 5-5 and 5-6) are: 

l EHZ > 15 GeV 

l EHZ > F~ELo - 105 GeV 

l ELO < 140 GeV 

The energy units are GeV in the trigger scale presented in Table 5.1. 

Following the recipe of Section 5.2 we can calculate the expected yields of different 
types of events for our filter. By using the Monte Carlo and a simulation of the 
filter we obtain the filter efficiencies summarized in Table 5.2. Figures 5-7 and 5-8 
show the two key trigger quantities for both the data and the Monte Carlo. Using 
Figure 5-5 as a reference we can identify the regions of Monte Carlo-data discrepancy 
as the regions dominated by the SLC backgrounds. We also notice that EHI is only 
sensitive to these backgrounds in the low region as expected, while ELO is sensitive 
throughout. It should be noted that the E HZ distribution for the data has entries 
below the minimum 15 GeV; the reason is that a small fraction of the events had the 
‘wall of fire’ region included in the trigger - this produced an offset in the trigger 
distributions. These events will eventually be eliminated at the selection stage. 

5.5 Hadronic Event Selection 

Now that we have reduced the number of events to consider by a factor of 50, we 
can fully reconstruct the remaining events. The SLD reconstruction has already been 
described in Section 3.5. From now on we will stop working with raw quantities and 
start using reconstructed clusters. Clusters are selected with the following require- 
ments: 

l a cluster energy of EClus > 150 MeV 

l the electromagnetic correlation G, 20.10 (G, is defined in Section 3.5.) 

l 1 cm &hLsterl L 0.97 

l number of hits in a cluster 2 2 
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Figure 5-5: Plot of the trigger quan- Figure 5-6: Plot of N&F for the fil- 
tities EHZ and ELO for the filtered events. tered events. The rise due to background is 
The lines outline the cuts. evident at low N. 
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Figure 5-7: EHZ for filtered data and Monte Carlo with backgrounds. The yield for 
Monte Carlo hadrons and backgrounds was calculated using the 1992 integrated luminosity. 

These cuts reduce spurious noise and select those clusters with energy deposition in 
the electromagnetic section of the calorimeter. We will treat these selected clusters 
as pseudo-particles. This approach will enable us to exploit the characteristics of 
the different physics processes (i.e. qij events + background) in order to be able to 
differentiate between them. 
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Figure 5-8: ELO for filtered data and Monte Carlo with backgrounds. The excess at 
low energies is due to the un-modelled SLC induced backgrounds. 

We will now discuss the global event quantities used in the event selection. Unless 
otherwise noted, the quoted errors in the efficiencies will be both statistical and 
systematic. Systematic errors are estimated by varying the energy scale. In the case 
of qij events, systematic errors also include contributions from the difference of the 
two Monte Carlo generators used, JETSET [45] and HERWIG [50]. 

Energy Imbalance 

We define the energy imbalance, Eirnb as, 

Eimb = (5.5) 

where ni is a unit vector pointing from the IP to the centroid of the ;th cluster (See 
section 3.5) and Evis is the event visible energy defined below. The energy imbalance 
measures the magnitude of the missing energy vector. By vectorizing the energy 
clusters we take advantage of the fact that, barring resolution, invisible particles’, and 
acceptance effects, the vectored-energy sum should be zero for a physics event. This 
cut therefore is most effective in reducing beam-related backgrounds. Figure 5-9 shows 
the energy imbalance for the filtered sample and for the various physics processes 
(Monte Carlo). Th e c h osen cut of Einb 5 0.65 has an efficiency of 98.4 f 0.1 f 0.5 %. 

2‘Invisible particles’ are those that deposit little or no energy in the calorimeter. Neutrinos 
almost never interact and muons deposit very little energy (remember mip scale from Chapter 4) 
independent of their momentum. 
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Number of Clusters 

Hadronic events at the Z” are characterized by multiplicities of M 20 charged parti- 
cles [91]. Neutral particles contribute 3 an additional = 20 clusters per event, mostly 
from the decay no + 77 ((n,o ) = 10 [92]). 0 ur main sources of physics backgrounds, 
e+e- and r+r- events, have very low multiplicities. Figure 5-10 shows the Nclua dis- 
tribution for the filtered data and the Monte Carlo with backgrounds. The cut shown 
in the plot (arrow), Nd,, > 9, has an efficiency of 97.4 f 0.2 f 1.0 % . 

Lb 

Figure 5-9: Plot of the normalized en- Figure 5-10: Plot of Nclus for the fil- 
ergy imbalance, &,,b, for the filtered events. tered events. The rise due to background is 
The arrow points to the chosen cut. evident at low N. 
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Visible Energy 

The total energy in an event provides a distinctive signature for hadronic events. In 
Chapter 4 we saw that most of the energy deposited in the calorimeter in a qij event 
is hadronic in nature (i.e, the ionization is due to hadronic inelastic scattering). We 
also saw that since the intrinsic t of the calorimeter was x 1.7, the detector response 
to electrons was markedly higher than to hadrons. This makes e+e- events easy to 
eliminate by visible energy alone (high &is). The r+r- events also have a distinctive 
E,,is signature. They tend to have low total energies since a large fraction of their 
final state [28] is composed of invisible particles (neutrinos and muons). Figure 5-11 
shows the E,,iJ distribution for both data and Monte Carlo. Backgrounds are also 

3The charged/neutral multiplicities that a calorimeter ‘sees’ depends in great part in the clus- 
ter minimum energy cutoff used. For instance, charged particles with a transverse momentum of 
p,$.200MeV will not reach the barrel calorimeter because of the magnetic field bending and dE/dX 
energy loss while neutral particles have no such limitations. 
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included. The excess in the data (see figure) is due to the unmodelled beam-related 
backgrounds. A cut in the visible energy, &is, of: 

0.50 5 Eui,/Em 5 IL.5 ICOSdl 5 0.8 
0.35 5 Evia/Em 5 1.1 Icos81 > 0.8 

has an efficiency of 97.7 f 0.1 f 0.4%. The same distribution (normalized to Em) but 
separated into endcap and barrel regions is shown in Figure 5-12. 

EVL 

Figure 5-l 1: Visible Energy for filtered 
events. 
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Figure 5-12: Evia for pre-selected 
events: a) EndCap and b) Barrel. 

Figure 5-13 presents the visible energy as a function of the angle of the event thrust 
axis 4 with the beamline for filtered events. Thus 1 cos &htust( = 1 corresponds to an 
event oriented perpendicular to the endcaps. The energy imbalance cut of Eimb 5 0.65 
has been applied to eliminate most of the non-physics backgrounds. Two features 
stand out about the figure. The first feature is the two distinct energy bands across 
the detector. The upper band is due to e+e- events and the lower band is due to the 
bulk of the qij events - demonstrating again the unevenness of the electromagnetic 
and the hadronic response. The second feature is the degradation in response in 
the endcap region. One sees that the response, both for electrons and hadrons, is 
uniform in the barrel region ( cos 0150.65 . The region 0.65,$,,( cos 0lLO.S is the overlap 
region (refer to Figure 3-3) and a lower response is expected due to acceptance effects. 
The endcap region, ( cos fl(LO.8, has a markedly degraded response in terms of visible 

4For a definition of thrust, see Appendix A. 
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energy and resolution. This initially unexpected behavior was hypothesized 5 to be a 
result of extra material in the endcap region; by adding material in the Monte Carlo 
and correcting the accounting of the geometry, this interpretation was later shown [93] 
to be correct. 

5.6 Results 

The efficiencies for selecting hadronic events, and their backgrounds, are presented 
in Table 5.2. After triggering, filtering, and applying the selection cuts described 
above to the 1992 run data sample, we are left with 9,878 events. If we contain our 
event sample to the fiducial volume of I cos &hr I s 0.92 in order to minimize leakage 
into the beampipe, then our sample is reduced to 9,143 events. The results of these 
two selections are shown in Tables 5.2 and 5.3. Table 5.3 contains the estimates 
of background present in our selected hadronic sample. Since the 77 process looks 
like the Bhabha process in the calorimeter (except for the angular distribution), we 
quote a conservative estimate of 77 contamination by multiplying the e+e’ selection 
efficiency with a Monte Carlo calculated [94] yield of 0.7 events for the entire run. No 
background is above the level of a fraction of a percent. 

Luminosity Predicted Yields 

We can use equations 5.1 and 5.2 to calculate the expected number of hadronic events 
given the cross section, the measured luminosity, and the calculated efficiencies: 

N4P 
etpected 

Using PE = 0.97 f 0.01 for the cross se_ction dilution factor due to beam spread [95] 
and using aqq=29.5nb, we obtain NeQIqgected = 10,080f150 events. The error is a 
combination of both statistical and systematic errors for the efficiency (calculated 
from the Monte Carlo) and the error on PE. The expected number of events is in 
agreement with our yield. The agreement holds for both fiducial regions. 

An Event 

Three views of a selected hadronic event are shown in Figure 5-14. In this particular 
display, the energy hits are represented by squares whose area is proportional to the 
measured energy. The long tower-like cones are the clustered hits. It is events like 

5Since electromagnetic showers scale like XO and hadronic showers like Ain*, electrons are more 
affected by the pre-showering induced by ‘unknown’ material. The fact that the resolution was much 
more degraded for electrons than for hadrons in the endcap was a strong hint of the origin of the 
problem. In addition the nip response was identical for the endcap and the barrel; this implies that 
the intrinsic ionization response for both subsystems is the same. 
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these that provide striking evidence for hard gluon radiation. We will investigate 
these issues in the next Chapter. 

E VISIBLE ” cos(e) 

Figure 5-13: Evis vs cos t&& for filtered events with an imbalance cut of &,a 5 0.65. 
Energy is in GeV. Notice the narrow e+e- energy band above the wider qij energy band. 
The degraded endcap (I cos 0120.8) response is also evident. 

Process %igger Cfilter 4election Lction 
!?q 99.4 fO.l f 0.3 97.6 f0.2 f 0.8 94.3 f0.2 f 0.2 86.8 f0.3 f 0.2 
r+7- 86.4f0.8 f 1.6 75.5f1.3 f 2.0 6.3 f 0.8 f 0.8 5.7 f 0.7 f 0.7 
e+e- 99.9fO.l f 0.1 99.5f0.2 f 0.5 0.7f0.2fO.l 0.7f0.2fO.l 
27 1.9f0.2 f 0.3 16.2f4.3 f 4.0 0.2fO.l f 0.1 <0.2 @ 90% C.L. _ 

Table 5.2: Yields for the different stages of event selection in percentage. The errors 
quoted are statistical and systematic respectively. The systematic errors were calculated 
from a 7% variation in the energy scale and the number of clusters. 
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n Process ) Contamination 

r+r- 
Ceff 1 co9 etht ( 5 0.92 1 cos 6$htl 5 1.0 

1.4 nb 0.18f0.05 0.20 f 0.05 
e+e‘ 4.3 nb 0.10f0.05 0.10 f 0.05 
27 5.2 nb 5 0.02 090% C.L. SO.04 Q 90% C.L. 

-77 - 50.02 090% C.L. ~0.02 Q 90% C.L. 

Table 5.3: Summary of backgrounds in percent of hadronic sample. The quoted cross 
section is the effective cross section into the calorimeter fiducial volume. 

121 

Figure 5-14: Three views of a S-jet event at yC = 0.17 in the JADE recombination 
scheme. The top figure is looking into the beampipe, the bottom-left is east to west, and 
the bottom-right is top to bottom. 
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Chapter 6 

The Measurement 

6.1 Introduction 

In this chapter we proceed to measure the value of a# near the 2’ sector by measuring 
the rate of gluon radiation from the primary quark/anti-quark pair. We will start 
by describing the experimental observable (jet-rates) and the detector effects on its 
measurement. We will study the resolution of the experimental quantities and develop 
methods to correct for the detector effects. At that point we will draw heavily on our 
knowledge of the SLD calorimeter system described in Chapters 3 and 4. 

After correcting the jet rates for detector effects we will apply further corrections 
that will enable us to perform a direct fit for the &CD parameter Am. These 
corrections introduce significant theoretical systematic uncertainties; we will discuss 
those. This discussion will be based on the framework presented in Chapter 2 on 
perturbative and non-perturbative &CD. 

6.2 Jets in the SLD Calorimeter 

We have seen in Chapter 2 that jets are a rich manifestation of QCD in the energy 
scale range A&&,Q2&?ZZ,, where E,, is the center of mass energy of the process 
in question. In the limit of high-Q2 we expect the observed jets to correlate with 
the initially produced partons. In addition, in this limit, perturbative calculations 
to second order in cy, are available which enable us to test QCD at the perturbative 
scale. However, as we also discussed in Chapter 2, these partons cannot be observed 
directly. What we do observe are the hadrons left over by the fragmentation process. 

In order to understand the methodology of measuring jets it is instructive to 
consider PQCD to O(cr,). In this case, we have the tree level graphs contributing 
to e+e- + qij, q?jg and the associated vertex and loop corrections (See Figure 2- 
3) to U(cr,). However, even if we were able to measure the partons’ direction and 
energy directly, we would still encounter (when comparing to the cross section in 
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Figure 6- 1: Comparison of the total energy distribution for tracking and calorimetry 
in the SLD data. Only events with ] cos6thsust] 5 0.65 are included. The solid line is 
the calorimeter distribution and the dashed line is the tracking distribution. The tracking 
distribution was obtained from reference [66]. 

Equation 2.18) the infrared and collinear singularities associated with zg --) 0. This 
situation is to be expected since as zg + 0 we start to probe the point-like nature of 
QCD and the associated singularities discussed in Chapter 2. 

Fortunately, though, we have a natural experimental cut-off. The finite resolution 
of the calorimeter and the imposed energy thresholds explicitly impose a cut-off on the 
soft radiation that we can distinguish experimentally. We thus need not be concerned 
with the soft and collinear region of phase space when using the PQCD calculations; 
we simply average over such final states since they are indistinguishable. 

We mentioned in Chapter 1 that a calorimeter exhibits the good-PQCD property 
of collinear and infrared safety when measuring clusters of energy. This fact, and 
the natural jet definition which we will adopt, will allow us to treat calorimeter 
clusters as pseudo-particles. These clusters are the result of energy-hit merging (by 
the finite calorimeter granularity) or splitting (by acceptance or efficiency effects) of 
the impinging particles in the detector. Thus, we need not worry whether cluster i is 
really composed of particles j and k or just of a particle i. As long as we understand 
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6.2. Jets in the SLD Calorimeter 

how the detector does this merging and splitting we can correct for it with Monte 
Carlo simulations. We will discuss this aspect in the next section. 

Due to various factors, including cost, tolerance to background, and instrumen- 
tation limitations, calorimeters in e+e- colliders are, in general, more hermetic than 
tracking devices. This, of course, implies the good acceptance which we have also 
discussed. This good hermiticity and the charge-blindness that calorimeters enjoy 
translate into a better overall resolution than a tracking device. This result is shown 
in Figure 6-l for the SLD detector with the 1992 data. From the figure, it is clear 
that for a global quantity like E,,is the calorimeter resolution is at least one-half of 
the drift chamber resolution. A calorimeter is therefore a natural place to measure 
the rate of gluon radiation. 

0 0.2 0.4 0.6 0.6 7 
Spheric&y 

0.2 0.3 0.4 0.5 
Aplanarity 

Figure 6-2: Four QCD observables in the data (dots) and in the JETSET 6.3 PS Monte 
Carlo (line). These quantities are defined in Appendix A: a) ~4, b) ~5, c) Sphericity, and 
d) Aplanarity. This good agreement between the data and the Monte Carlo is crucial to 
demonstrate the validity of the correction procedure. 
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Figure 6-3: The thrust distribution for 
observed data. The errors shown are statis- 
tical only. The Monte Carlo distributions 
shown include a simulation of the detector 
and of initial state radiation. 

. DATA . DATA 
__ LUND 6.3 PS __ LUND 6.3 PS 
. . _______. HERWffi . . _______. HERWffi 5.7 5.7 

Figure 6-4: The distribution of ~3 
(see text) for the observed data. The er- 
rors shown are statistical only. The Monte 
Carlo distributions included in the figure in- 
clude a simulation of initial state radiation 
and detector effects. 

Comment on Data-Monte Carlo Agreement 

Throughout this work we have stressed the importance of the ability of the detector 
simulation to reproduce the data. We will soon see that this condition is essential for 
our analysis since the Monte Carlo is the only tool we have to unfold the detector 
effects from the measurement. 

After the Monte Carlo tuning and detector calibration of Chapter 4, the only way 
to check the veracity of the detector simulation is to compare physics distributions for 
the data and the Monte Carlo. Figure 6-2 shows such a comparison between the data 
and the JETSET 6.3 PS Monte Carlo. Figures 6-3 and 6-4 show the thrust and 93 
distributions respectively for the data and the JETSET and HERWIG Monte Carlos. 
These two observables are particularly sensitive to the QCD physics; the data-Monte 
Carlo agreement is again very good. 

At this point one may be tempted to argue that any measurement that makes 
heavy use of the Monte Carlo (as is our case) is inherently suspect and biased to the 
Monte Carlo input parameters. This very important issue is addressed in Appendix B, 
where we show, using a “toy model”, that this is not the case. 
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6.2. Jets in the SLD Calorimeter 

6.2.1 Definition of Jets and Jet Algorithms 

One of the most important issues when choosing how to define a jet is the applica- 
bility of the chosen jet algorithm at all levels of the parton + hadron decay chain. 
This requirement ensures a quantitatively consistent definition of a jet at both the 
theoretical and the experimental levels. Another desirable characteristic is that the 
jet definition, in order to be calculable in O(cri) PQCD, must be both infrared and 
collinear safe. This requirement was discussed in Chapter 2. 

Previously, we discussed the fact that the fragmentation process generates a trans- 
verse momentum component with respect to the jet axis (or, equivalently, an invariant 
mass). This ‘jet-broadening’ effect is not predicted by the PQCD calculations’ as it 
is the result of the non-perturbative hadronization process. At this point we make 
the assumption [34], supported by the asymptotic freedom of &CD, that the short 
distance behavior in which we are interested can be inferred by averaging over the 
remnant components of a jet. But so far we have introduced two not-so-subtle proce- 
dures to be carried out: an averaging (or combining of particles) over a jet’s contents 
and a partitioning of an event into jets. 

Collinear and Infrared Safety and Jets 

One of the first theoretically sound approaches to defining jets was given by Sterman 
and Weinberg [38] in 1977. In their scheme, originally applied to the 3 to 2 jet 
transition only, the jet cross sections are written as functions of energy and angular 
resolution cut-offs (c and 6 respectively). Thus a parton falling within a &cone around 
another parton is defined to be indistinguishable from the first one within the cone. 
The same applies to c. 

Another approach, the historically preferred one in e+e- annihilations [40], is 
based on an invariant mass cut-off. In this method, the cross sections are written 
in terms of the invariant masses of the various parton-parton combinations. Two 
partons i and j are then said to be indistinguishable if their invariant mass, 

Mi; = (Pi + Pj),(P' t Pj)" 

falls below a predetermined and arbitrary normalized threshold, 

yij E M$lE2 cm < MZ,,IEZ, = Ycut . 

This criterion of indistinguishability for collinear or soft partons is essential for the 
KLN theorem to be applicable (See Chapter 2) so that the infrared divergencies in the 
cross sections cancel order-by-order. We have satisfied the criterion when we define 
jets in such a way that the cross sections are insensitive to parton splittings - hence 
they are both collinear and infrared safe. 

‘Except that due to the soft gluons. 
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In practice, Equation 6.1 is generalized in order to deal with massless partons. 
This generalization can be done in various ways to be discussed in the next section. 

The Algorithms for e+e- 

One of the reasons the invariant mass approach is preferred experimentally is its 
natural invariance (thus suitable for application at different Em) and the fact that 
it has only one arbitrary parameter. For these reasons we will use this jet-finding 
method in the present analysis. 

Our ultimate objective in jet-finding is to compare the measured jet rates with 
the O(c$ jet rate cross sections in order to extract a value for Am . The fact that 
these calculations deal only with up to four massless partons not only limits the ac- 
curacy of the measurement but it also introduces a recombination-scheme ambiguity. 
This ambiguity arises because two massless partons that fall below the threshold of 
Equation 6.2 acquire a mass when recombined by virtue of Equation 6.1. This extra 
mass must be accounted for. 

The algorithms that we will use are all based on the original JADE [51] recipe 
and differ only in their jet measures and in their recombination schemes. An event is 
classified as being ‘n-jet’ by the following recursive procedure: 

1. An invariant mass-like jet measure yij (depending on the algorithm) is calculated 
for every distinct pair of particles (in our case clusters) in an event. 

2. Both members of a pair that falls below the resolution cut yij < ycut are com- 
bined into clusters using an algorithm-specific recombination scheme. 

3. The process is repeated until no more clusters fall below the cut. The number 
of surviving clusters is then defined to be the number of jets at y = ycut. 

It is important to emphasize that the definition of a jet is in general meaningless 
without an accompanying resolution cut-off. The reason is simply that the range of 
jet multiplicity for the same event can go from 2 (high ycut limit) to the total number 
of particles in the event (low ycut limit). It is then only meaningful to speak of ‘jet- 
rate as a function of y’ or similarly ‘an n-jet event at y = ycut’. We have already 
encountered the resolution cut y = ycut in Chapter 6 in the context of the O(crt) 
jet-rate calculations. 

The question of how good each algorithm is will be discussed in Section 6.2.2. 
What follows is a description of each of the four methods used in this analysis. 

l JADE Algorithm 

This algorithm has been the most widely used since the inception of invariant 
mass based jet definitions. It uses the jet measure: 

Yij = 
2EiEj(l - cos0ij) 

G?i, 
, 
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Figure 6-5: Raw jet cross section for the four algorithms considered. The dots are 
the Monte Carlo (Lund 6.3 PS) results with detector, triggering, and selection simulation. 
The two lines for each jet multiplicity correspond to l-a contours on the data’s statistical 
uncertainty. 
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where Euis is the sum of all the cluster energies in an event, the Ei are the 
individual particle energies and cos&j is the angle between particles i and j. 
Particles i and j are then recombined into particle k by adding their 4-momenta: 

Pk=PitPj. 

This scheme conserves both energy and momentum but ignores particle masses 
in yij. 

l P-scheme 

This variant of the JADE scheme [34] uses the jet measure, 

y.’ = 
(Pi t Pj)2 

v 
Ek ' 

and the recombination recipe, 

This scheme conserves momentum but violates energy conservation in order to 
keep pseudo-particles massless. 

l E-scheme 

The E-scheme [34] is fully Lorentz invariant. It uses the measure, 

Yij = 
(Pi t Pj)2 

Ek3 ' 

and recombines particles according to: 

Pk = Pi $ Pj 

Both energy and momentum are conserved in the E-scheme. However, since re- 
combined particles acquire mass, the comparison with the massless calculations 
is intrinsically inconsistent. 

l Durham Algorithm 

The Durham algorithm [96] is the newest of the four presented here. It uses a 
transverse momentum-based measure, 

Yij = 
2 min( Ef, Ej2)( 1 - cos O;j) 

J%, 
7 

and the recombination recipe, 

pk = Pi + Pj. 
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This algorithm is especially interesting for the low-y region, where the large 
distance behavior starts to dominate. Specifically, the problem of back-to-back 
soft gluon correlations [41] in the JADE algorithm is addressed. 

The measured raw jet rates determined with the four algorithms just described are 
shown in Figure 6-5. The rates are shown as a function of the resolution parameter 
y = ycut and are defined to be (see Chapter 6) the jet multiplicities normalized to the 
total number of events. 

The reason we have freedom in choosing a recombination scheme is that the present 
O(ot) QCD calculations do not handle mass. In addition, and as already mentioned, 
the hadronization process introduces another source of transverse momentum. We 
will then take the approach of assigning a systematic error on the absolute Am 
measurement due to the recombination scheme ambiguity. 

The &(y) Distribution 

The jet rates defined in the previous section are per se integral distributions. As 
such, the contents in each bin are highly correlated with the contents of every other 
bin in the distribution. When fitting this distribution to a theoretical prediction, 
the matrix of errors becomes very complicated due to all the inter-bin correlations. 
For this reason, when dealing with jet rates, it is desirable to deal instead with the 
differential jet rate distribution D2. The D2 distribution was originally introduced by 
the OPAL experiment [97] and is defined as: 

D2(y) 3 R2(Y + AY> - MY) 

AY 
9 (6.3) 

where y is the jet resolution parameter for a particular algorithm. In this distribution 
each event contributes only once; this fact makes the statistical error calculation very 
simple since the statistical errors are then just histogram errors (M a). 

6.2.2 A Question of Resolution and Bias 

In order to ensure the stability of our unfolding procedure, we must minimize any bin- 
to-bin migrations in the histograms to be corrected. In order to do so, we must first 
understand the intrinsic resolution of the 02 distribution, i.e., the correspondence of 
the detector level jet-rate to the parton level jet-rate. After the resolutions have been 
established, then the histogram bin-widths are chosen [98] to reflect these resolutions. 
This procedure obviously does not eliminate the bin-to-bin event migrations but it 
does regularize the relative rate of migration between adjacent bins. This in turn, 
minimizes any biases that might be introduced by the unfolding and correction pro- 
cedure due to uneven ‘bin-jumps’. One can summarize by saying that the correction 
procedure should only correct for the efficiencies of populating the various regions of 
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phase-space of the variable in question; it should not deform that phase space. Doing 
so would introduce model-dependencies. 

Figure 6-6: The point in y at which 
an event turns from being 3-jet to being 2- 
jet (ys defined in text) at the detector and 
hadron level. 

a48°.~.,...,...,...,...,...,...~... 0.02 004 0.05 0.0.9 0.1 0.12 0.14 0.16 o,oo5 

0 RESOLlJTlON 0.0025 

Figure 6-7: Plot of the detector-hadron 
resolution (full circles, vertical axis on the 
left) for the JADE algorithm. The bias 
(open circles, right vertical axis) is also in- 
cluded. 

A detector-induced distortion also accompanies any measurement. These offsets 
are in general less harmful than the resolution effects. They can be treated as ac- 
ceptance effects or efficiencies that can be easily corrected. We will deal with these 
corrections in detail in the next section. In the meantime, we can study the resolution 
and bias of the Ds distribution by introducing a resolution [41] function r, 

det had 
rdet ~ y3,i - y3,i 

i 
yg + y$zd’ 

(6.4) 

in terms of ys. The variable ys is defined to be the point in y where an event classified 
as 3-jet is reclassified as a 2-jet event. This definition can be generalized to y4, the 
point in y where a $-jet event is re-classified as a 3-jet event2. 02 is the distribution of 
y3. The subscript i denotes the particular jet algorithm. Even though the underlying 
physics is the same, and since each algorithm has a different treatment of the invariant 
mass, the resolution/bias for each jet definition is in general different. 

In Equation 6.4 we defined the relative resolution for the ha&on to detector 
transformation - we can equivalently define a resolution for the parton to ha&on 

‘More details on these definitions can be found in Appendix A. 
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Figure 6-8: Parton-hadron resolution for 313 (solid line) and y.4 (dashed line) for various 
algorithms. The vertical scale is arbitrary. 

process: 
rhad _ yZd 

part 
- Y3,i ; = y,h,:d + y;y - (6.5) 

Figure 6-6 shows the correlation between ykd and yp for the JADE algorithm (de- 
fined previously). An offset from the diagonal to this plot reflects a bias in the 
algorithm response while the RMS spread from the diagonal determines the resolu- 
tion. The bias and resolution are then shown in Figure 6-7 as a function of ycut. From 
the figure it is evident that the relative resolution Sya/ys improves with increasing 
ycut. This comes as no surprise since a high-y, event tends to be very spread-out (non 
2-jet like) and thus more information can be extracted from the invariant mass. The 
small bias for the JADE algorithm is also shown in Figure 6-7. 

We will apply corrections to the measured quantities in order to fix the bias 
problem in the next section. Figure 6-7 (and corresponding ones to the different 
algorithms) has been used to determine the bin widths used in the Dz distribution 
measurement presented later. The chosen bin widths for the four different algorithms 
are included in the first row of Table 6.5, where the final measurements of D2 are sum- 
marized. The detector resolutions were similar enough for three of the four algorithms 

115 



CHAPTER 6. THE MEASUREMENT 

I- JADE 

Figure 6-9: Jet resolution parameter FJADE for different calorimeter layers obtained 
from Monte Carlo. The combination of the electromagnetic and hadronic calorimeter gives 
the best resolution. See the text for more details. 

that identical bin widths were chosen; two sets of bin-widths are then used. 

In addition, as a purely experimental exercise, we can investigate the effects 
(resolution-wise) of the different calorimeter subsystems on ys. Using the Monte 
Carlo simulation, we can turn on and off each calorimeter subsystem at will and 
study the I’? distribution. In principle, the more energy (i.e., more information) 
we measure, the better the resolution should be. Figure 6-9 is a plot of I’? for a 
sample of JADE-reconstructed Monte Carlo events. The sample was reconstructed 
three times; each time one more longitudinal segmentation of the calorimeter was 
included in the reconstruction of jets. As Figure 6-9 shows, the optimum (by about 
M 5%) detector resolution is obtained when using the electromagnetic and hadronic 
sections of the SLD calorimeter only. This should come as no surprise as we have 
already determined that the dominant energy fluctuations in the WIC are due to the 
beam-related backgrounds (see Chapter 4); this type of fluctuation actually degrades 
a global quantity like ~3. Lacking a reliable method to clean-up beam backgrounds 
in the WIC, we will ignore the energy deposited in this third layer of the calorimeter 
for the rest of this analysis 3. 

Figure 6-8 presents the r; had distributions for the four algorithms considered here. 
The analogous distribution for y4 is also shown. The offset from zero corresponds 
to the overall bias and the width of the distribution is the overall resolution. It is 
clear from the figure that the JADE scheme suffers the least from the hadronization 
effects. The E-scheme is by far the worst. 

31t is safe to ignore the energy deposition in the WIC since over 90% of the event energy (see 
Table 4.3) is absorbed in the first two layers of the calorimeter (the LAC). 
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6.3 Corrections to the Jet-Fractions 

We have already established what we mean by a jet, both experimentally and theoret- 
ically. We have seen that the algorithms based on invariant-mass resolution criteria 
lend themselves to analytic calculations. In addition, in Chapter 2 we also established 
that these calculations are limited to O(LY~) in perturbation theory and thus describe 
at most 4 partons and do not describe the hadronization process at all. It is clear 
then, that in order to compare theory with experiment, we must somehow propagate 
our theoretical expectations (parton level) to our experimental arena (detector level), 
or vice versa - the point being that, in order to compare effectively the partons 
producing the jets with the detected jets, there must be a complete accounting of all 
of the distortions created between the two ends. 

The Smearing of the Partons 

In order to classify all of the possible distortions, it is useful to outline the process 
that gives us hadronic events in the calorimeter. We can divide this process into five 
stages: 

(I: e* + e*y) rL) (II: e+e- + qq) * (III: qij+ hadrons) ‘L) 
(IV: badrons + ~adrons+decayed particles) w 

(V: hadrons+decayed particles + detector) 

The Roman numerals label each stage and the squiggly arrows represent the se- 
quential ordering. In the next subsections we will describe each of the above stages 
in more detail and will discuss their relevance in comparing with theory. 

Stage 1, initial state radiation, is well understood, calculable, and effectively just 
an asymmetric smearing of the center-of-mass energy. Stage II above corresponds to 
the PQCD e+e- jet calculations. There is no ambiguity (except for the recombination 
scheme) at this stage; four well defined partons and their relative production rates 
are given by analytic formulae. Stages IV and V are also well defined; given a particle 
that impinges on the detector we ought to be able to know the probability that it 
will decay and what the detector will see. 

Stage 111, the hadronization process, is not yet calculable in QCD. We discussed 
this aspect in Chapter 2. Here, in order to be able to make the measurement, we will 
have to rely on hadronization models. We will use the JETSET and HERWIG models 
discussed in Chapter 2 as black boxes that link stage I with stage Vabove. The price 
we pay in using such a black box approach is in the introduction of a systematic error 
due to hadronization - a statement of our ignorance about such a process. More on 
that later. 
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Correction Procedure 

In the above diagram (recalling the terminology from the previous two sections), the 
smearing and distortions increase from left to right. This implies that, in order to 
translate the data to parton level, we must unfold it for stages I-IV. Equivalently, in 
order to translate the calculations to detector level, we must fold them for stages I, 
111, IV and V. At this point we choose our correction procedure on two principles: 
that it allows us to compare our measurement with other measurements and that it 
minimizes any model dependencies. We thus choose to perform our measurement at 
the hadron level by folding the PQCD calculations for fragmentation effects and by 
unfolding the raw measurement for detector effects. 

We define a corrected Dz distribution as that derived from the corrected jet- 
rates. During each stage of the correction, the jet rates are renormalized to satisfy 
C,, & = 1. We will now describe each of these procedures in more detail. Appendix B 
covers the details of Section 6.3.4. 

6.3.1 Initial State Radiation 

Initial state radiation (ISR) is the emission of photons by the initial e+e-. It has the 
effect of shifting the effective center-of-mass energy of an event. &CD calculations 
generally do not include this effect; it is usually included in the Electroweak-QED 
effects that are simulated, together with the decay of the qij pair, by the Monte Carlo 
generators. In order to compare any such calculation with the data we must then 
correct the data for this effect. The net result of ISR is a small distortion on the S-jet 
rate of x l-3%. A small ISR correction is thus applied to the measured jet-rates. Since 
ISR is a pure QED effect independent of any QCD model, we correct the measured 
distributions using the factor method. Following the notation of Appendix B, we 
write: 

RrozSR( y) 
C,‘(Y) = R’Syy) 7 (64 

n 
where n is the jet index and the R, are the jet rates obtained with two parton level 
Monte Carlo samples: one with ISR and one without ISR. Each of the four algorithms 
has a different set of correction factors. 

6.3.2 Hadronization Effects 

Since we have no way of knowing on a particle by particle basis which hadrons come 
from which jet (or in which order), the fragmentation process smears the measurement 
of a parton’s direction. This distortion is evident in Figure 6-11, where both the 
hadron and the parton-level jet rates are shown for the JETSET PS Monte Carlo 
with string fragmentation. Since the fragmentation process is inherently low-Q2, 
this distortion has more of an effect at low invariant masses (low y). 

118 



6.3. Corrections to the Jet-Fractions 

0.5 
0.25 

0 

0.5 
0.25 

0 

i-4 7 
;o. 75 

0.5 
0.25 

0 

Fl 7 
* 0.75 

0.5 
0.25 

0 

2 7 
* 0.75 

0.5 
0.25 

0 

.................. . ............ .................. .................. i.. . ........ :!I +. ... ir ....... .............. .............. , 
0 0.2 Y 

.................. . ............... 

.............. .............. 

m 

................ A........ ..... 

.................. . ......... .++ ... 

0 0.2 Y 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . ..i............... 

IIZI 

. . . . . . . . . . . . . . . . ..i............... 

. . . . . . . . . . . . . . . . j . . . . . . . . . . . ..-. 

0 0.2 y 

m 7 
so.75 

0.5 
0.25 

0 

2 1 
m 0.75 

0.5 
0.25 

0 

2 7 
* 0.75 

0.5 
0.25 

0 

.................. . ............... ................. .1...._ .......... m .................. . ............... .:................i ............... 
0 0.2 Y .................. . ............... ....... ........ . ............... iil!El ... ........ . ............... ................ ..; ............... 
0 0.2 Y 

..-.............~....-...... 

. . . . . . . . i . . . . . . . . 

m 

. . . . . . . . . . . i . . . . . . . . . . . . . . 

. . . . . . . . . . . . . ..i............... 

0 0.2 Y 

Figure 6-10: The hadronization smearing matrix S(y) for the JETSET 6.3 PS model, 
JADE scheme; the definition of Sij is given in Equation 6.9. The error bars are statistical 
only. 

The hadronization effects are parameterized by a smearing matrix that distorts 
the parton level jet rates. In our case this distortion will be applied to the O(cra) 
calculation. This smearing is different for each of the fragmentation models, being 
dependent on the jet resolution parameter y, and is different for each of the jet 
algorithms. Following the notation of Appendix B, we write: 

where R2 denotes the 2 jet rate, R3 the 3 jet rate, and R>d the four and higher jet 
rate. The superscripts p and h label the jet rates as being calculated at either the 
parton or at the hadron level. The folding procedure consists in finding the matrix 
S(Y)7 

i(Y) = S(YP(Y), (6.8) 

that parameterizes, in 3 x 3 form, the y-dependence of the hadronization effects. 
There is a different S(y) for each model. In practice each matrix was obtained by 
generating 100,000 Monte Carlo events with no initial state radiation and tabulating 
the jet multiplicity correlations between the parton and the hadron level. This matrix 
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Figure 6-11: Parton (line) and hadron (dashed) level jet cross section for the four 
algorithms considered as a function of the y; shown are results for the JETSET Monte 
Carlo. The R>s jet rate is the unlabelled pair of curves at the bottom left corner of each 
plot. 

of transition probabilities is defined as, 

S,, = number of i-jet events (parton) that look like j-jet (hadron) 
13 total number of i-jet events (parton) (6.9) 

An example of a matrix S(y) is presented in Figure 6-10. Using different models, 
i.e. different matrices, to fold the parton distributions will give us an estimate of the 
systematic uncertainties due to hadronization and modelling parameters. Figure 6-11 
shows the jet rates at the parton and hadron levels. We can see from the figure that 
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6.3. Corrections to the Jet-Fractions 

both the JADE and Durham algorithms do a good job in correlating the parton and 
hadron level jet rates. This good correlation translates into relatively small correction 
factors and reduced systematic uncertainties (to be discussed later). 

It is also evident from the figure that the E-scheme algorithm has very large 
correction factors. For this reason we will not include the results obtained by this 
algorithm in the final measurement although its analysis will be carried through to 
the end. 

6.3.3 Particle Decays 

The correction for particle decays (stage N) is implicitly included in the correction 
for hadronization effects. In the latter, particles with a lifetime of T 2 lo-” seconds 
are treated as stable particles. They are then allowed to decay at the detector level 
only. This is to ensure that we do not have to include any magnetic field bending 
effects in the pure hadronization corrections (these effects are taken care of by the 
detector simulation). It also guarantees a consistent definition of a hadron (in terms 
of decays) in the hadronization and detector correction stages. 

6.3.4 Detector Effects 

Any measurement performed with a particle detector will inevitably be distorted due 
to the finite resolution and acceptance of the device. If one understands the detector 
apparatus, and provided the detector is linear enough, then this distortion can be 
corrected by using simple methods that effectively divide-out these distortions. The 
two methods considered for this analysis, the inversion and the factor method, are 
described in detail in Appendix B. 

The factor method is essentially the same as the ISR correction factor described in 
Section 6.3.1. In this case the jet rates used are calculated at the detector and hadron 
level; we denote the n-jet correction factor at y = ycut as C,(y). The inversion method 
takes care of the correlations between different jet multiplicities. The definition of 
the correction matrix is very similar to the one for the hadronization smearing matrix 
(see Section 6.3.2), except that this time the inverse of the matrix is used to unfold 
the data. We denote the inversion correction factor by (T-l),,. Details of these 
procedures are presented in Appendix B. 

In Appendix B we show that the factor method has an advantage over the matrix 
method when dealing with a limited Monte Carlo sample. We also show that the 
factor correction method is linear over a wide range of input parameters. The error 
calculations are also simpler. For these reasons we choose to use the factor method 
for the final measurement; however, we will carry parallel measurements with the 
inversion method as a cross-check on the preferred method. Figure 6-12 shows the 
correction factor for the factor method; Figure B-l, in Appendix B, shows the cor- 
rection matrix used in the inversion method. 
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Figure 6-12: This plot presents the jet rate correction factors used in this analysis 
with the JADE algorithm. These factors were calculated by comparing the jet-rates at the 
hadron and detector levels using the recipe presented in Appendix B. 

6.3.5 Putting It All Together 

Now that we have defined the correction steps to follow, we can proceed with trans- 
forming the raw jet rates of Figure 6-5 into corrected jet rates. We do so by, 

Rixy) = 
C,‘(YNxY)WY> factor method 
C,‘(Y) c,(~-‘)nm~d,(Y) inversion method (6.10) 

where the superscript h refers to hadron level and d to detector level jet rates. R:(y) 
is then the hadron-level n-jet rate at the jet resolution point y. Once the raw jet 
rates are corrected, the measured Dz distribution is derived using Equation 6.3. The 
result of the factor method corrected jet rate cross section measurement is presented 
in Tables 6.1 to 6.4 for the four algorithms considered. The resultant Dz distribution 
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is presented in Table 6.5 for the two correction procedures. The measurement shows 
that there are no significant differences between the two procedures. 

Uncertainties 

The errors in the jet rate cross section presented in Tables 6.1 to 6.4 are a combination 
of statistical and systematic uncertainties. The statistical uncertainties include the 
errors associated with a limited data and Monte Carlo sample size. These errors are 
the result of propagating the statistical uncertainties in Equation 6.10. 

In Chapter 4 we discussed the effect of a limited data sample on the tuning of the 
detector’s simulation Monte Carlo. Based on that discussion, we assign a conservative 
systematic uncertainty which is equal to the statistical error due to the data sample 
size alone. The reasoning is that the best one can do in tuning a detector is to tune it 
to the level of the data sample used; therefore the statistical uncertainties of the data 
sample itself is the best one can achieve. The statistical and systematic uncertainties 
are then combined in quadrature. 

The systematic errors on the Dz distribution are derived from the systematic 
errors on the jet rates. The bin-to-bin correlations introduced by the Monte Carlo 
statistical and systematic errors are taken into account. The statistical uncertainties 
are derived from the Dz distribution itself by using the multinomial uncertainties of 
the histogram 4. Once again, the statistical and systematic uncertainties are combined 
in quadrature. 

6.4 Fit for Am 

Now that the data have been corrected for detector effects we can proceed to 
fit for A=. We fit to the ERT calculations discussed in Chapter 2 by using the 
minimization program MINUIT [99] and by minimizing the x2 function: 

x2kh737 f) = c 
(@(Yji A=, f) - QP""(Yj))2 

,f7y,2 + (cq)2 ' 
(6.11) 

je{binsl 

where 0:” is the hadronization-smeared distribution derived 
calculations (See Chapter 2), 

from the ERT O(oi) 

D;h(yi) = Cf=l S2i+lR2(yi+l; A-7 f) - S2iR2(yi; Am3.f) 
AYi 

7 (6.12) 

Dpta is the experimental distribution from Table 6.5, and f = p’/&” is the renor- 

4Due to the small number of bins (11) and the large differences in bin occupancies, we can no 
longer use the Gaussian approximation. 
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JADE 

Yi Ri R3h Rh >4 

0.005 15.07 f 0.61 44.77 f 0.86 40.16 f 0.84 
0.015 37.06 f 0.82 50.99 f 0.87 11.96 f 0.57 
0.030 56.41 f 0.84 39.76 f 0.85 3.84 f 0.35 
0.045 67.41 f 0.79 31.26 f 0.82 1.34 f 0.21 
0.065 77.09 f 0.71 22.47 f 0.74 0.43 f 0.13 
0.080 81.45 f 0.66 18.42 f 0.70 0.14 f 0.07 
0.090 84.32 f 0.62 15.64 f 0.65 0.04 f 0.04 
0.115 88.74 f 0.53 11.26 f 0.57 - 
0.145 92.40 f 0.44 7.60 f 0.48 - 
0.180 95.91 f 0.33 4.09 f 0.36 - 
0.225 98.36 f 0.22 1.64 f 0.23 - 
0.275 99.55 fO.11 0.45 f0.13 - 

Table 6.1: The measured jet cross section using the JADE algorithm in % of atot 
as a function of the jet resolution parameter yi. The jet-fractions have been corrected for 
detector effects and initial state radiation as described in the text. 

l- !!zx Yi 

0.005 
0.015 
0.030 
0.045 
0.065 
0.080 
0.090 
0.115 
0.145 
0.180 
0.225 
0.275 

P-scheme 
Rk Rh >A m  

19.59 f 0.68 
45.35 f 0.85 
62.54 f 0.82 
72.75 f 0.76 
80.44 f 0.67 
84.37 f 0.62 
86.35 f 0.58 
90.12 f 0.50 
93.77 f 0.41 
96.44 f 0.31 
98.38 f 0.21 
99.68 f 0.10 

47.09 f 0.87 
45.40 f 0.86 
34.64 f 0.83 
26.21 f 0.77 
19.22 f 0.70 
15.52 f 0.64 
13.61 f 0.62 

9.88 f 0.54 
6.23 f 0.44 
3.56 f 0.34 
1.62 f 0.23 
0.32 f 0.10 

ii 

_ _ 

33.32 f 0.81 
9.25 f 0.51 
2.83 f 0.30 
1.04 f 0.18 
0.34 f 0.11 
0.11 f 0.07 
0.04 f 0.04 

- 
- 
- 
- 
- 

Table 6.2: The measured jet-fractions using the P-scheme variant of the JADE algo- 
rithm (in % of gtot) as a function of the jet resolution parameter yCUt. The jet-fractions 
have been corrected for detector effects and initial state radiation as described in the text. 
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Yi 
E-scheme 

Rt Rh >4 P 
0.015 4.55 f 0.35 
0.030 22.27 f 0.69 
0.045 39.28 f 0.81 
0.065 56.37 f 0.83 
0.080 65.31 f 0.80 
0.090 70.22 f 0.77 
0.115 78.80 f 0.68 
0.145 86.19 f 0.57 
0.180 91.30 f 0.47 
0.225 95.61 f 0.33 
0.275 1 98.39 f 0.20 1 1.61 f 0.23 

52.53 f 0.85 
62.65 f 0.87 
54.46 f 0.90 
41.19 f 0.88 
33.60 f 0.85 
29.31 f 0.82 
21.05 f 0.74 
13.81 f 0.63 

8.70 f 0.52 
4.39 f 0.39 

I 

0.005 1 0.09 f 0.04 1 8.55 f 0.44 
- _ 

91.36 f 0.57 
42.80 f 0.91 
15.04 f 0.66 

6.24 f 0.45 
2.43 f 0.32 
1.09 f 0.22 
0.47 f 0.14 
0.15 f 0.08 

- 
- 
- 
- 

Table 0.3: The measured jet cross section using the E-scheme variant of the JADE 
algorithm (in % of otot) as a function of the jet resolution parameter y,t. The jet-fractions 
have been corrected for detector effects and initial state radiation as described in the text. 

Yi I , 
0.005 1 50.41 f 0.85 
0.010 63.82 f 0.82 
0.015 70.81 f 0.77 
0.020 75.46 f 0.73 
0.030 81.50 f 0.66 
0.045 86.41 f 0.58 
0.065 90.37 f 0.50 
0.080 92.64 f 0.44 
0.095 94.31 f 0.39 
0.135 96.68 f 0.30 
0.185 98.28 f 0.21 
0.245 99.71 -f 0.09 

Durham 

37.85 f 0.84 
31.27 

Ri 

f 0.81 
26.51 f 0.77 
22.92 f 0.74 
17.69 f 0.67 
13.39 f 0.61 
9.60 f 0.53 
7.35 f 0.47 
5.69 f 0.41 
3.32 f 0.33 
1.72 f 0.25 
0.29 f 0.10 

$4 
11.74 f 0.57 

4.91 f 0.39 
2.67 f 0.30 
1.61 f 0.23 
0.81 f 0.17 
0.20 f 0.10 
0.03 f 0.03 
0.01 f 0.02 

Table 6.4: The measured jet cross section using the Durham algorithm (in % of gtot) 
as a function of the jet resolution parameter ylcut. The jet-fractions have been corrected for 
detector effects and initial state radiation as described in the text. 
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- 
E 

- 

Measured D2 ( yi) 
Yi - Yi+l JADE E-scheme p-scheme (Durham) 

0.005 - 0.015 22.00 f0.81 1 4.45 f 0.45 1 25.76 f 0.80 1 26.83 f 1.09 
(0.005 - 0.010) 21.96 f 1.45 2.87 f 1.95 26.56 f 1.35 25.74 f 1.31 
0.015 - 0.030 12.89 f 0.43 11.81 f 0.41 11.46 f 0.39 13.99 f 0.90 

(0.010 - 0.015) 13.50 f 0.78 11.74 f 0.90 11.77 f 0.66 13.40 f 1.03 
0.030 - 0.045 7.33 f 0.33 11.34 f 0.43 6.81 f 0.29 9.30 f 0.78 

(0.015 - 0.020) 
0.045 - 0.065 

(0.020 - 0.030) 
0.065 - 0.090 

(0.030 - 0.045) 
0.090 - 0.115 

(0.045 - 0.065) 
0.115 - 0.145 

(0.065 - 0.095) 

7.11 f 0.63 11.52 f 0.95 7.00 f 0.54 
4.84 f 0.21 8.54 f 0.32 3.84 f 0.20 
5.04 f 0.43 9.01 f 0.75 3.92 f 0.36 
2.89 f 0.15 5.54 f 0.24 2.36 f 0.15 
2.86 f 0.31 5.03 f 0.59 2.38 f 0.26 
1.77 f 0.13 3.43 f 0.20 1.51 f 0.13 
1.85 f 0.29 3.44 f 0.56 1.56 f 0.23 
1.22 f 0.10 2.46 f 0.15 1.22 f 0.11 
1.23 f 0.22 2.47 f 0.45 1.30 f 0.18 

9.76 f 0.92 
6.03 f 0.41 
6.42 f 0.48 
3.28 f 0.25 
3.37 f 0.30 
1.98 f 0.17 
1.80 f 0.20 
1.31 f 0.11 
1.47 f 0.14 

0.145 - 0.180 1.00 f 0.09 1.46 f 0.11 0.76 f 0.08 0.59 f 0.07 
(0.095 - 0.135) 1.11 f 0.18 1.46 f 0.35 0.81 f 0.15 0.53 f 0.09 
0.180 - 0.225 0.54 f 0.06 0.96 f 0.07 0.43 f 0.06 0.32 f 0.05 

(0.135 - 0.185) 0.60 f 0.13 0.99 f 0.26 0.44 f 0.11 0.35 f 0.07 
0.225 - 0.275 0.24 f 0.05 0.56 f 0.05 0.26 f 0.05 0.24 f 0.04 

(0.185 - 0.250) 0.22 f 0.11 0.61 f 0.22 0.38 f 0.09 0.26 f 0.06 
0.275 - 0.330 0.08 f 0.04 0.28 f 0.03 0.06 f 0.03 0.03 f 0.02 

(0.250 - 0.330) 0.12 f 0.09 0.51 f 0.19 0.07 f 0.08 0.05 f 0.03 

Table 6.5: The measured Dz distribution corrected for detector effects and initial 
state radiation. For each bin, two entries are given. The top row corresponds to the data 
corrected by the factor method (as derived from Tables 6.1, 6.2, 6.3, and 6.4). The bottom 
row has been corrected by the matrix inversion method. Note the difference in binning for 
the Durham algorithm (denoted by parentheses). 
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Scheme 

JADE 

Durham 

t 

P 

E 
- 

1512 ‘4; (48 + ;;) x lo-* 
436 + ;; 1.0 (fixed scale) 
236 + ;; (47 + if) x 1O-3 
357+g 1.0 (fixed scale) 
250 + $j (64 +_;?j) x 1O-3 

572 + ii’: 1.0 (fixed scale) 
165 !: ;z (48 f 4.5) x lo-’ 

fit range X21NdF 
0.045 - 0.25 (35) 7.1/6 
0.015 - 0.25 (62) 8.517 
0.030 - 0.20 (18) 4.816 
0.005 - 0.20 (51) 7.318 
0.045 - 0.25 (27) 9.916 
0.015 - 0.25 (55) 11.817 

I 

0.090 - 0.25 (29) 1 6.614 
0.045 - 0.25 (60) 1 2.315 

Table 6.6: Results of the fits to A= . Units are in MeV. The numbers in parenthesis 
in the ‘fit range’ column are the fraction, in %, of the 9,878 total events contained in the 
fit range. For each algorithm the upper row corresponds to the fit with f = 1.0 and the 
lower row corresponds to the fit with f as a free parameter. The errors quoted are those 
returned by MINUIT on the x2 defined in Equation 6.11. 

malization scale. The R2 in Equation 6.11 is taken from Equation 2.23; the matrix 
Sij is the fragmentation smearing matrix defined in Equation 6.9. The denominator 
of 6.11 contains the statistical error derived from the theoretical distribution and the 
systematic error derived from the experimental distribution. Thus, g,T” is the sys- 
tematic uncertainty for bin j from Table 6.5. The theoretical uncertainty, cjh, is just 
the statistical error calculated from the theoretical expectation for a data sample the 
same size as our experimental sample (9,878 events)5. 

The fit range for the D2 distribution was determined using both experimental 
and theoretical criteria. First of all, to avoid problems in the corrected distributions, 
we imposed the requirement that the selected events fall in a region of phase space 
where the detector correction factors (for R2 and R3) were within f30% of 1.0. In 
addition, we excluded fit regions with large fluctuations in the correction factors. 
This requirement set the upper fit limit for the four algorithms partly because of the 
reduced number of multi-jet events at high y. 

We now proceed with the fit. The rest of the discussion centers on the results of 
Table 6.6 which are graphically presented in Figure 6-13. 

The most important issue when performing this fit is the choosing of a proper 
renormalization scale. We know from Chapter 2 that the scale dependence of the NLO 
terms in Equation 2.23 is just a relic of the finite truncation of the perturbative series 
(e.g., Equation 2.5). In addition, the renormalization group equation tells us that 

‘In practice, if we had used the statistical errors from the data, the effect on our final measurement 
of CY$ would be Acr, = +0.0006. This approach, although amply used in the literature, generally 
introduces a bias since the derivation of the x2 distribution uses the uncertainties in the candidate 
distribution. 
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any O(CI~) perturbatively calculated observable is insensitive to the renormalization 
subtraction scale up to O(C$). This implies that any residual dependence of a, on 
the renormalization scale ~1 is due solely to the missing terms of U(cr:“). Since ~1 is 
just an arbitrary artifact of dimensional regularization, perturbation theory does not 
tell us what scale to choose, except for very tenuous hints. 

The only thing that the theory tells us about /.A is that the renormalization scale 
should be of the order of the Q2 of the process. This choice is not based on any 
physical criterion but on the fact that it guarantees the smallness of terms of the 
order O((CY~~~(~~/&~))~) to all or d ers in the perturbative expansion [34]. 

In order to fit for Am, and hence cr,, we must choose a scale ~1. The freedom 
we have in choosing this scale we will call renormalization scale ambiguity and will 
be a source of systematic uncertainties in our measurement. We will estimate this 
uncertainty by fitting the data with two different conditions for p: we treat p both 
as a fixed (p = Mzo) parameter and as a free parameter that optimizes the fit 
quality. From now on we will adopt the widely used definition j E p2/M& for the 
renormalization scale used in the fit. 

I I 
IO9 ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ‘. 

0 0.7 0.2 0.3 

Figure 6-13: Results of the fits to A= . The points are the data, the solid line 
corresponds to the j = 1.0 fit, and the dotted line corresponds to the fit with j as a free 
parameter. Both the data and the fit are shown at the hadron level. 
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Fit with p2 = M& 

The characteristic energy scale in our experiment is undoubtedly Mp. However, the 
radiation of gluons (with a factor of Jzya at its vertex) occurs at a lower Q2$iV&. 
For the purpose of investigating the scale dependence we used, as an upper bound, 
f =l.O. 

The fit with f=l.O is performed in the region where R/d 5 1%. This condition is 
based on the observation [51, 521 at lower energies that the 4-jet rate is not described 
properly by the O(oi) calculations. This is a somewhat circular argument but we 
will see in Section 6.7 that the same is true in our case. We then select the lower fit 
range using this requirement and reading off the proper bin ranges from Tables 6.1 
to 6.4. The chosen bin ranges are included Table 6.6 along with the result of the one 
parameter fit to Am. The fraction of events (in % of 9878) included in the fit are 
presented in the ‘fit range’ column in parenthesis. The errors and the x2 returned by 
MINUIT are also included in the table. The fit (at the hadron level) using the four 
jet algorithms is also presented in Figure 6-13 as a solid line. 

Fit with p2 as a Free Parameter 

Since the renormalization scale is arbitrary but sensitive to the uncalculated higher 
order terms, a fit to the data with p as a free parameter is an attempt to let this 
sensitivity determine the best fit. In this case, the fit range was chosen so that 
R>s < 1% and that the perturbative calculations give sensible results (positive jet 
rates given for y Cu&O.O1). We exclude the five and higher jet regions since we deal 
with at most four partons. Since we did not tabulate Rzs, we determine this lower 
fit range from Figure 6-5. The results for this fit are also presented in the lower rows 
of Table 6.6 and in Figure 6-13 as the dashed line. 

As in the fixed f fit, the errors on Am and f, and the x2 are the ones given by 
MINUIT. It is interesting to note the rather large variations in relative error for f. 
This is simply due to the sensitivity of the x2 to the renormalization scale (as shown 
for the JADE algorithm in Figure 6-17). 

The values of cy, are then calculated by using the fit values from Table 6.6 for 
f fixed and free in Equation 2.15. The errors are propagated in the equation and, 
in the case of the two-parameter fit, the inter-parameter correlation term taken into 
account. 

6.5 Systematic Effects 

By “systematic effects” we mean all the biases introduced in the course of measure- 
ment that effectively shift the measurement values in an unknown way. Here we can 
classify them as either experimental (having to do with the mechanics of extracting 
the measurement) or theoretical (having to do with the validity of the ideas behind the 
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measurement). What follows is a discussion of both type of effects. We will express 
the magnitude of each contribution in terms of Q, and give a detailed accounting of 
the breakdown of the contributions for the JADE algorithm. All of the contributions 
for the different algorithms are combined separately and presented in Table 6.7. 

The estimation of systematic uncertainties is almost arbitrary. It is important to 
remember that most systematic contributions are not statistical in nature and reflect 
a true lack of knowledge about a particular process. In the following we will vary 
models, parameters, constants, and cuts within reasonable ranges in order to estimate 
their contributions to the systematic errors. 

For each possible systematic effect considered in the next two sections, the full 
cr, analysis was carried out. The variation in the numerical value of (Y# (beyond 
purely statistical effects) was taken to be the systematic contribution. Variations 
were studied to every entry tabulated in Table 6.6; the fixed f=l.O fit and the free f 
fit were considered separately and combined later. 

6.5.1 Experimental Systematics 

We investigate the experimental uncertainties by studying the effects of the detector 
and measurement procedure on the value of os. From now on, we will call these errors 
instrumental uncertainties reserving the term experimental for the combination of 
statistical errors and instrumental errors. Since many of the distributions varied are 
on the edges of phase space (e.g., iVclUs) the following errors are in general quoted as 
asymmetric errors. At the end, each contribution is added in quadrature and quoted 
in Table 6.7 as a single instrumental error. 

l Longitudinal Energy Deposition 

As pointed out in Section 6.2.2, the optimum jet resolution is obtained when 
we use the first two longitudinal layers of the calorimeter. Omitting any of the 
calorimeter layers in the analysis may cause (or aggravate) a bias by cutting 
short the jet development. In addition, a “sick” layer may unnecessarily merge 
or split jets. To investigate these effects the complete analysis was carried out 
(including correction factors) for the electromagnetic (EM) layer alone, for the 
EM and hadronic (HAD) layers alone and for the EM + HAD + WIC layers. 
The observed contribution to the systematic uncertainty was Acr, = + ~:~~~~. 

l Relative Energy Calibration 

We discussed the longitudinal energy calibration of the calorimeter in Chap- 
ter 2. In order to study the effects of energy calibration errors the analysis 
was performed with two different sets of calibration factors. The X factors from 
Table 4.2 were varied by &5% and the combinations 0.95X,, + 1.05&d and 
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1.05X,, + 0.95Xh,d used 6 to reanalyze the data. A 5% variation in the energy 
scale is consistent with the measurement errors included in Table 4.2. The effect 
on cyI of this variation is very small: Acu, = f0.0002. 

l Event Selection 
In order to investigate the effects of event selection the analysis was repeated 
with a “loose” and a “tight” set of selection cuts. The three event selection 
variables ( ~?&i~, &,a, and Nclua) are varied by f5%. This 5% variation in the 
selection cuts translates into an event yield uncertainty of about 200 events, 
consistent with the calculated yield uncertainty of 150 events (See Section 5.6). 
The systematic uncertainty due to this source is Aa, = +$$$j$ 

l Time-dependent Effects 
In order to investigate any possible time dependent effects (e.g. time-dependent 
online calibration), the data-set was divided in thirty time intervals. For each 
interval the average differential jet-rate was calculated and plotted in Figure 6- 
14. Each observable, &, v~, and vs was then fit to a straight line. The results 
of the fit are consistent with a line of zero slope (x2/NdF below 1.5 for the 
three observables); we thus assign no systematic uncertainty contribution due 
to time-dependent effects. 

10 ‘* ““‘I”“‘. ‘I”. ’ j 
0 2000 4ca 6mo Bwo 'cm, 

Event time (set) x 10 

Figure 6-14: The average differential 
jet rates (I&, g4, and g5) as a function of 
the event time. The zero-point corresponds 
to the start of the run. The lines shown are 
fits to a straight line. 

0 0.05 0 1 0.15 0.2 0.25 

Figure 6-15: The differential jet rates 
using EndCap (1 cosOc~usterI > 0.55) or Bar- 
rel (I cos eclustet 1 < 0.55) clusters only. The 
line (dots) correspond to the data (Monte 
Carlo). 

‘The combinations 1.05X,, + 1.05&,,,3 and 0.95X,, + 0.95&d are effectively just overall scale 
factors and do not affect the event topology. 
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l EndCap/Barrel Effects 
Since the energy response of the barrel and the endcap are quite different, in 
order to investigate possible biases, the analysis was carried out using barrel- 
only and endcap-only clusters. Figure 6-15 shows the result of the analysis for 
the differential jet-rate observables. A very good agreement between the data 
and the Monte Carlo is evident. This agreement assures us that any possible 
bias will be accounted for in the correction factors. Nevertheless, the variation 
in cys due to the analysis of barrel-only clusters is ACY, = tO.0002. The endcap- 
only events were not analyzed because the phase space for 3-jet events in the 
endcap-to-endcap region is very small and we have a relatively small event 
sample. 

0 Cluster Selection 
The actual selection of clusters was varied in order to investigate any possible 
cluster energy threshold effects. To this end, the minimum cluster energy re- 
quirement was loosened to Eclus 2 0.100 GeV and tightened to EC,,,* 2 0.250 
GeV (see Section 3.5 for more details). The complete analysis chain was again 
carried out and shifts of ACY, = + g:$$$ were observed for the JADE algorithm. 
This large effect is not unexpected since low energy clusters are very sensitive 
to hit energy threshold and clustering effects. We have already remarked in 
Chapter 4 that this region is difficult to simulate and tune for a calorimeter. 

l Fit Range 
Another possible source of systematic error arises from choosing a fit range. The 
theoretical and experimental issues that motivated our choice for a fit range in 
the previous section may bias the determination of A= at the edges of the 
chosen phase space. For example, we know that the O(c~f) calculations do 
not predict more than four partons and yet the data contains five-jet events 
in the low-y region. In order to deal with that issue, we excluded events with 
R>s 2 1% in the two-parameter fits for A=. The uncertainty associated with 
this choice enters into the ‘fit range’ uncertainty. 

In order to estimate this uncertainty, both the fixed and free renormalization 
scale fits were repeated with the rightmost and leftmost data bins excluded. 
If by deleting or adding such a bin the x2 per degree of freedom increased by 
more than one unit, then the systematic error was enlarged to accommodate 
this change. The uncertainties in crS for the JADE algorithm were Acr, f0.0011. 

6.5.2 Theoretical Systematics 

The theoretical systematic uncertainties serve as a survey of the aspects of the the- 
ory which are either not included in the O(CX~) calculations or not well understood. 
For example, the fragmentation process is well understood only in terms of purely 
phenomenological models (and thus our need for Monte Carlo simulations). These 
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models, as discussed in Section 2.4.2, are fairly sophisticated and reproduce the data 
quite well over a wide range of Q”. However, many such models can in principle 
be constructed to give a reasonable description of the observations, in an almost 
“black-box” approach. Not being able to confirm precisely these predictions in detail 
means that we have to assign a systematic error due to hadronization when using a 
hadronization model. 

The theoretical systematic uncertainties are also quoted it9 asymmetric errors. 
Since each contribution is relatively large, the individual contributions below have 
been listed separately in table 6.7. An essential reference to this section is Chapter 2, 
where the physics of the following systematic effects is covered in more detail. 

0.6 

0.4 

Figure 6-16: Result of test experiment Figure 6-17: Sensitivity of the JADE 
(See Appendix B) for the four different al- algorithm to the scale f: a) the reduced x2 
gorithms. The dashed line corresponds to and b) Am 

l Renormalization Scale 

Since the theory does not tell us at what scale to perform the renormalization 
subtraction, other than “about the Q2 of the process in question” we have 
almost complete freedom in choosing the renormalization scale. As seen in 
Equation 2.5 the truncation of the perturbative series introduces a p-dependence 
in the calculated quantities. In a sense, then, this dependence is a measure of 
the higher order missing terms. 

In estimating the renormalization scale uncertainty we take the conservative 
approach of taking the difference in the a, values at the scale Q” = Mi and at 
the fitted scale Q2 = fM i. This is the largest of the systematic uncertainties 
as can be seen from the large differences in A,, in Table 6.6. The quoted value 
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of crb in Table 6.7 is calculated as, 

Q6 = a,(f = 1) + 4f = P2/@) 
2 1 

with the scale uncertainty, 

aa Mf = 1) a= - 4f = P21M;)I 
2 1 

where the cr., values are calculated from Equation 2.15 using the Am values 
from Table 6.6. The scale uncertainties are also summarized in Table 6.7. 

Figure 6-17b shows the dependence of the fitted Am on the renormalization 
scale f for the two fit ranges used. The x2 per degree of freedom is shown in 
Figure 6-17a for the same f range. It is clear that when the low-y regions are 
included in the fit, a preference for small renormalization scales emerges. 

l Recombination Scheme 

Table 6.7 includes the results of the fits for the four jet algorithms used. We 
argued in Section 6.3.2 that the E-scheme algorithm would not be used as part 
of the measurement due to the large hadronization corrections. In addition, as 
is evident from the table, this algorithm also suffers from great sensitivity to 
the renormalization scale - yet another unattractive feature. 

In order to test how well the different algorithms reconstruct Q, , a similar test 
experiment to the one presented in Appendix B is performed. In this case the 
“test variables” are the four algorithms. The results of Athrown versus A,,,,,,,d 
are shown in Figure 6-16. It is evident7 that the worst algorithm is the E-scheme, 
while the JADE scheme appears to have the least bias in reconstructing Am. 

The approach we employ in combining the three algorithm results is the same 
we took for the renormalization scale. Since the measurements are dominated 
by systematic errors, which are not derived from a normal distribution, it is ap- 
propriate to combine them in an unweighted fashion. We quote as as our final 
result the arithmetic average of the three numbers and quote the recombination 
scheme uncertainty as one-half of the maximum deviation from the three num- 
bers. Using the values from Table 6.7, we find that the recombination scheme 
uncertainty then contributes ACY, = ho.003 to the systematic error and yields 
a central value of o, = 0.122. 

0 Prefragmentation 

By prefragmentation we mean the stage between primary q?j production and 
hadronization, represented by the first stage (for both parton shower and matrix 

‘One should take Figure 6-16 as a qualitative guide to the relative merits of the algorithms and 
not as a real measure of the systematic error. The reason is that the event generator used in the 
test experiment was limited to a matrix element calculation with f = 1. 
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element models) in Figure 2-6. In estimating the systematic contributions from 
this stage of the Monte Carlo, we investigated both the parton shower and the 
matrix element approach in the JETSET implementation. 

For the JETSET ME study, 100,000 events were generated with a parton in- 
variant mass cut-off of ycut = 0.01 and the JETSET default parameter set (See 
Chapter 2 for more details) for the O(CX~) matrix element option. The average 
number of partons was (Npcrzfon ) = 2.9. As usual, after the partons were gener- 
ated they were further fragmented into final state hadrons via the Lund string 
model (as implemented in JETSET) and the corresponding matrix S(y) was 
applied to the data. This procedure provides a very conservative estimate of 
the prefragmentation uncertainty in the low-y region where the missing higher 
order terms (i.e., more partons) are more important. This manifested itself gen- 
erally in worse x2 for the (Ye fits with free f and larger errors due to a reduced 
fit sensitivity to f. 
As previously mentioned, the parton shower approach connects hadrons and 
primary partons by compensating missing higher orders with LLA Altarelli- 
Parisi parton branchings. The main parameter in this approach, apart from 
A eff, is the parton virtuality cut-off Qs. We saw in Figure 2-5 the dependence 
of (&M~,J on Qo. Most of the LEP experiments (e.g., [44, 100, 431) have 
tuned the parton showers with Qc M 1.0 GeV. We also use Qo = 1.0 GeV. In 
order to investigate the systematic effects of this cut-off, we vary Qo from 0.5 
to 9.0 GeV corresponding to (Nparton ) = 2.3 to 9.0 respectively. We choose the 
upper limit to correspond with the same number of partons as in the matrix 
element approach above. It was found that above Qs R 6.0 the reduced x2 
deteriorate significantly for both the fixed and free scale fits. For this reason 
the systematic contribution was estimated by: (1) assigning an error due to the 
largest variation in cy, from Qc =0.5 - 5.0 GeV and (2) assigning an independent 
error due to the difference of the matrix element method and the parton shower 
method at Qo = 9.0 GeV. This last error is an attempt to quantify the intrinsic 
differences of the parton shower/matrix element approaches in a ‘level playing 
field’ and is probably a very conservative method. 

For the JADE algorithm, the uncertainty due to (1) is Ao, = i: ~:$j~ and the one 
due to (2) is Acu, = +O.OOl. These uncertainties are combined in quadrature 
and summarized in Table 6.7. 

l HERWIG hadronization 

Even though the JETSET string fragmentation model with parton showers has 
been very successful in reproducing the QCD observables, other models provide 
reasonable predictions. HERWIG, discussed in Chapter 2, is an alternative 
QCD Monte Carlo based on a cluster model of hadronization. In HERWIG, the 
underlying scheme of producing partons is very similar to JETSET’s parton 
shower approach (See Chapter 2). For this reason, the comparison of HERWIG 
with JETSET is mostly a comparison of their hadronization models. 
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Table 6.7: Summary of the final results for the four algorithms with the correspond- 

- 
1 - 
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0.125 
0.123 
0.125 

sta- scale hadroni- HER- prefrag. 
tistical zation WIG 
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ing systematic uncertainties. The value of (Ye presented corresponds to the average value 
between the free and fixed scale fit; the scale error is one-half of the absolute difference 
between the two. 

In order to compare the effects of a different hadronization model, the parton to 
hadron folding of Section 6.3.2 was repeated using the HERWIG Monte Carlo, 
version 5.7. The hadronization folding matrix S(y) was obtained by generating 
100,000 HERWIG events with the default parameters. Since the statistical 
effects of the folding matrix are negligible, we assign the net change in Q, as a 
systematic error due to hadronization model. We take the conservative approach 
and assign symmetric errors. The results are shown in Table 6.7. 

l Hadronization Parameters 

In order to investigate the sensitivity of the value of cy, to the hadronization 
parameters, the main JETSET fragmentation parameters were varied within the 
errors given in Table 2.1. A total of 5 different data sets were generated with 
the L3-tuned (See Chapter 2) parameters varied within their errors. Each set 
consisted of 100,000 events. The corresponding hadronization folding matrices 
were then obtained, applied in the fit to the data, and the variation in the 
resultant cyI recorded as a systematic effect. In addition, a completely different 
JETSET parameter set from TASS0 ( a so in Table 2.1) was used in the folding 1 
as a further check. The TASSO-tuned parameter set [52] was obtained at 4 = 
35 GeV. The results are summarized in Table 6.7. 

6.6 Results 

In the previous section we identified the sources of systematic errors and defined 
the strategy to follow in combining the measurements of Table 6.7 into a single final 
number. 

As a central value of CY, at Q2 = iUi we quote the arithmetic average of the values 
for the JADE, Durham, P-scheme algorithms, namely, 



8.7. Discussion 

and assign a recombination scheme uncertainty of f0.003. It is the nature of most 
systematic uncertainties (at least the ones encountered in this analysis) that they 
don’t derive from a normal distribution and it is thus meaningless, perhaps even 
dangerous, to do a weighted average. In this case, this observation is especially 
important since the systematic errors are much larger than the statistical errors. 

Following the previous discussion one may argue that there is no justification 
in combining the uncertainties in Table 6.7 into a single number. We will take a 
compromise approach by combining the theoretical and experimental uncertainties 
separately. In addition, we have the further complication of somehow “averaging” 
the errors of the three different algorithms. 

This last complication is resolved in the following way. The statistical error of the 
resultant value is quoted as Aa, =0.003 (the same as each individual algorithm) since 
the three algorithms deal with the same data sample. For the case of the theoretical 
errors, we first combine them in quadrature for each separate algorithm. We take 
the moderate approach of then choosing as a final theoretical uncertainty the average 
of the three uncertainty values. This corresponds to the reasonable assumption that 
combining the three algorithms will give us a somewhat improved measurement but 
not necessarily the best measurement. We apply the same procedure to the instru- 
mental error. The result is thus, 

cY&l!f~O) = 0.122 f 0.004 + $$$8’f 0.003, 

where the quoted uncertainties are the experimental, theoretical, and recombination 
scheme uncertainties respectively. Further combining the last two into a single theo- 
retical error then yields, 

c&&-o) = 0.122 f 0.004 + ;I=;, (6.13) 

which we quote as our final result. One may further combine the experimental and 
theoretical uncertainties into a single error: 

6.7 Discussion 

So far we have measured cr, at &=91.6 GeV and investigated the different sources of 
systematic uncertainties. We have seen that even with just under 10,000 events, the 
measurement errors are dominated by theoretical uncertainties. These uncertainties 
are in turn dominated by the truncation of the perturbative series, which introduces 
an unphysical dependence on the renormalization scale. 

In Chapter 2 we briefly mentioned various theoretical prescriptions to resolve the 
scale ambiguity. These schemes offer recipes to quote measurements in a way that 
either minimizes or standardizes the effects of the missing higher order terms. On 
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Figure 6-18: Detail of the corrected JADE jet cross section with the fixed and optimized 
scale fits. Notice that the f =l.O fit does a poor job for y,$O.O5. 

the surface these techniques have reasonable requirements. However, the inescapable 
truth is that there is no substitute for the missing terms; these prescriptions are 
thus conventions rooted on an analysis of the calculational mechanics of perturbative 
&CD, with generally very little physical motivation. There are always unpredictable 
higher order terms that “. . . cannot be anticipated by any magical procedure” [loll. 
We thus steer clear of these methods. 

Kinematics and the Renormalization Scale 

The previous discussion does not imply that there is no judicious choice of scale. In 
fact, the choice p R Q, where Q is the characteristic energy of the process, is the 
appropriate one in order to avoid large ln(p/Q) t erms in the perturbative expansion. 
With this in mind we can then ask, what is a sensible Q2 for our jet analysis? Clearly 
f = 1.0 is not the appropriate scale since radiated gluons have a bremsstrahlung-like 
spectrum with Q2&(45GeV)2. 0 ne can argue that the scale of interest in such a case 
ought to be the momentum transfer at the quark-gluon splitting. In fact, we have 
indirect evidence for this in Figures 6-18 and 6-17a. 

Figure 6-18 shows the result of the one and the two parameter fit to the data. We 
recall that the fixed scale fit was performed for y > 0.045 and the free scale fit was 
carried out for y 2 0.015. We further recall that a low-y 3-jet event imph,i a soft 
gluon jet. From this, we can make three inferences: 

1. The x2 preference for a small renormalization scale when the low-y region is 
included in the fit is due to the fact that the calculations do not reproduce the 4- 
jet rate (cf, Figure S-18). The missing higher orders terms are then compensated 
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Scheme AI51 
MS fit range X2/NdF 

JADE 206 + ;; 0.045 - 0.25 (35) 9.6/6 
167 + ;; 0.015 - 0.25 (62) 17.417 
249 f j: 0.030 - Durham 0.20 (18) 6.0/6 
260 + ;; 0.005 - 0.20 (51) 8.818 

- P 236 t ;; 0.045 0.25 (27) lo./6 
268 +$ij 0.015 - 0.25 (55) 12.217 

- E 248 + ;; 0.090 0.25 (29) 13.14 
212 + ;fj 0.045 - 0.25 (60) 19.15 

Table 6.8: Results of the fits with p2 = ysE&. Units are in MeV. The numbers 
in parentheses in the ‘fit range’ column are the fraction, in %, of the 9,878 total events 
contained in the fit range. Each algorithm has two results for two different fit ranges (third 
column). 

by a small scale f. 

2. Events with hard gluons (~20.05) h s ow no such preference (cf., Figure 6-17a) 
and are well described by the O(cri) calculations. 

3. The free-f fit fails to describe the y,$,O.O15 region where & is not negligible (as 
determined for Figure 6-5). 

In light of the above, we can try to postulate a renormalization scale based on 
kinematics alone [40]. One possible scheme is to use the energy transfer to the gluon 
jet. If we think of a three parton configuration with the gluon being one of the two 
lowest energy partons, then the Q2 of the process is, 

where y3 (our usual definition) is the minimum scaled invariant mass for the system. 
If we use the above scale in our fits, by setting CL* = y3E&, we obtain the results 
presented in Table 6.8. For these fits, the same bin ranges of Table 6.6 were used. 

We can see that these results produce consistent values of Am for both the low 
and the high-y region (cf., Table 6.6). H owever the fit x2 values are consistently 
worse for the low-y fit; not an unexpected result since we are no long optimizing the 
scale. 

Using the same procedure that we used above to obtain a final result, we obtain 
a central value of 

a, = 0.119, 

with a recombination scheme uncertainty of ACY, = 0.003. By construction, we no 
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longer have a renormalization scale uncertainty, however, an additional uncertainty of 
ACY s = 0.002 would have to be included in the result to make the x2 values compatible 
with those of Table 6.7. We see that by using a kinematics-based renormalization scale 
we get a result consistent with the final result in Equation 6.14. 

The Result in Terms of Am 

We have said all along that the fundamental constant in QCD8 is Am and yet we 
have avoided so far quoting a number for it. We can convert our final (single error) 
result into a measurement of Am by using the alternate solution to the /?-function 
in Equation 2.16. This yields, including experimental and theoretical uncertainties, 

Am = 0.28 2 g*:g GeV. (6.15) 

6.7.1 Running of a, 

The measurement of the three-jet rate Rs at a fixed y = ycut as a function of the 
center-of-mass energy is a direct measure of the energy dependence of hard gluon 
radiation. Since the rate of gluon radiation, to leading order, is proportional to cy, 
(see Equation 2.23), then the measurement of Rs(fi) is the natural place to study 
the energy-dependence of cr,. 

We proceed by collecting various measurements spanning PETRA, PEP, TRIS- 
TAN, LEP [102, 103, 52, 104, 105, 106, 1071, and in our case, SLC. These mea- 
surements represent energies &=22-92 GeV in e+e- machines. Before comparing 
experiments at different energies it is essential to agree on the same jet definition. 
Since the JADE algorithm was the first widely used algorithm, the results presented 
in Figure 6-19 are calculated with the JADE algorithm. In addition, the same jet 
resolution cut yc = 0.08 was used throughout. This ensures that hadronization effects 
are kept to a minimum, or equivalently, that one is only probing the “hard” part of 
an event. All the measurements, when necessary, have been corrected for detector 
effects to the hadron level by each experiment. 

It is evident from the figure that the strong coupling runs as predicted (or con- 
structed) by the non-Abelian nature of &CD. Our result from Table 6.6 for p = M,o 

is presented, corrected for hadronization, as a solid line in the figure. For compari- 
son, the same result is presented without hadronization corrections with the dotted 
line. The hadronization corrections were calculated with the JETSET parton shower 
Monte Carlo for the span of energy included in the figure. These corrections amount 
to 5-8% of the total S-jet rate. 

In order to check for consistency with a single Am, we proceed to fit the data in 
Figure 6-19 to the ERT calculation for Rs (with hadronization corrections) for the 

‘In the approximation of massless quarks. 
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Figure 6-19: The energy dependence of the 3-jet fraction (1s) using the JADE 
algorithm at ycut = 0.08. The data presented (see text for references) are corrected for 
detector effects only. The prediction of the ERT O(c$) calculations are also presented for 
the measured value of Am from Table 6.6. 

Am parameter. The result of this one parameter fit is Am = 0.340 f 0.010 with a 
x2 of 19 for 13 degrees of freedom. This confirms that, in the energy range covered 
in the figure, the strong coupling decreases with energy as predicted by &CD. 

We should point out that in this case the renormalization scale ambiguity plays 
very little role because we are just interested in the evolution of Rs. Also, a two 
parameter fit was not carried out because at yc = 0.08 the x2 shows no sensible 
minimum (cf., Figure 6-17a). 

6.7.2 Other Measurements of a/* and Final Thoughts 

In order to test QCD thoroughly it is necessary to study different processes at different 
Q*. The last five years have been especially fruitful in this sense; inherent difficulties 
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notwithstanding, &CD appears to be in solid ground, at least in the perturbative 
regime. 

Clearly, one of the most unique aspects of QCD is the behavior of its P-function 
and the associated running of the strong coupling. The first evidence for this, and 
perhaps the most convincing [108] so far, came in with the observation of the scaling 
violations in deep inelastic scattering (DIS). Cl assical QCD does not predict such 
behavior. It is the quantized theory, with the coupling specified at a reference scale, 
that gives rise to the scaling violations. In more general terms, it is important to 
show that all QCD perturbatively calculable processes can be described by a single 
scale parameter Am 

Experiment 
& 

l?(ZO + had.) 
pjj + W+jets 

DE (P, 4 
Event Shapes 

OPAL 
OPAL 

Jet Rates 
MARK II 

SLD Tracking 
OPAL 

This Analysis 

;$ 
PI 

[1101 
PI 

PW 
[lOOI 

WI 
WI 
NW 
- 

Q (GeV) 
1.78 
91.2 
80.6 

various 

d&J 
0.330 f 0.046 
0.132 f 0.012 
0.123 f 0.027 

91.2 0 124 + ;.g; . 
91.2 0 122 + ;:g . 

29.0 0.149 f 0.007 
91.6 0.118 f 0.011 
91.2 0 122 + ;.g; . 

91.6 0 122 + ;*;;; . 

0.118 f 0.005 
0.132 f 0.012 
0.121 f 0.026 
0.112 f 0.007 

0.122 f 0.005 
0.118 f 0.011 

0.122 + Oaoo7 - 0.006 

Table 0.9: Summary of some of the other a, measurements. When the reference did 
not quote a single error, multiple errors were combined in quadrature. The Mark II results 
were translated to ~1 = MZO. This table is just a short sampling; extensive reviews are 
found in [113, 51 and references therein. 

Table 6.9 presents a short summary of selected measurements of o, for different 
processes and at different energy scales. The agreement between such different pro- 
cesses (including the result of this analysis) confirms our present belief that QCD is the 
theory of strong interactions. Other interesting measurements [114] have extracted, 
via likelihood fits to independent terms in the cross sections, the group constants for 
QCD. 

The totally inclusive (and thus hadronization insensitive) DIS and R, (hadronic 
decay fraction of the r lepton) measurements are especially suited [108] for deter- 
minations of 0,. However, the clean center-of-mass environment of an e+e- collider 
is experimentally ideal for the study of multiparton final states (via jet rates, event 
shapes, etc). The inevitable hadronization model dependencies, although reduced at 
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the higher energies, still plague these measurements. However, it is evident that in 
this case the major limitation in our measurements is due to the renormalization scale 
uncertainty, which in turn is due to an incomplete perturbative series (uncalculated 
higher-order terms). The proposed prescriptions to solve this last problem amount 
to conventions in quoting a result-there is very little physical basis. Only the cal- 
culation of higher orders in the perturbative series has the potential of reducing this 
problem. 

When such techniques become available, the detector-corrected data in Table 6.5 
can be fit directly to the improved cross sections. 
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Appendix A 

Observables 

A.1 Introduction 

In this appendix we will discuss the definitions and properties of some of the observ- 
ables that have been used in this analysis. 

A.2 Thrust and Sphericity 

Sphericity 

Sphericity was originally proposed in 1970 [3l] as an observable sensitive to jet struc- 
ture. It was later [32] used to demonstrate the existence of jets. Sphericity is defined 
from the quadrupole moment of the event momentum distribution using the eigen- 
values of the momentum tensor, 

where i runs over all particles in an event and the brackets denote averaging over 
all events. The eigenvalues of the tensor Tap are ordered, X1 > X2 2 Xs, and the 
sphericity is defined as: n 

s = $2 + A,). (A-2) 
From a perturbative-QCD approach, sphericity is not a good observable because it 
is not collinear safe or infrared safe. Since the observable is quadratic in momentum, 
any splitting of a particle into two collinear particles yields a different result (e.g., 
i = i/2 t i/2, then Ic2 + 2(/~~/2)~). 

Another observable defined in terms of the momentum tensor is the apZanarity. It 
is defined as the maximum of the three tensor eigenvalues, i.e., 
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The aplanarity observable suffers from the same collinear and infrared problems as 
the sphericity. 

Thrust 

Thrust was proposed [115] as an infrared and collinear-safe alternative for a jet ob- 
servable. Like sphericity, it uses the particle momentum (or energy) vectors averaged 
over the event sample, 

where n’ lies on the axis that maximizes the sum 2’. The variable 2’ is called thrust 
and n’ is called the thrust a&s. The value of thrust measures how ‘a-jetty’ an event 
is; 2’ = 1 corresponds to two completely back-to-back jets, while T = 0.5 corresponds 
to an isotropic event. 

A.3 Kinematics of three jets 

Irrespective of how we group a set of particles into jets with a jet algorithm, we can 
always think of jets as vectors. Each jet-vector is, of course, a ‘sum’ of its individual 
constituent clusters or charged tracks. This ‘sum’ depends on the particular jet 
algorithm employed. 

Here we concentrate on the kinematics of 3 jets since it is the qqg final state 
that we use for determining cy,. We label our jets in decreasing order of energy: 
El > E2 2 Es. If we normalize these energies to the beam energy ;E,, then, 

Xl t x2 t 53 = 2 (A-5) 

where xi = 2E;/E,, and xi 2 22 1 2s. Equation A.5 is only valid for a three parton 
system where there is no “smearing” due to resolution effects, hadronization effects, 
and missing energy. If we apply the definition in Equation A.4 to Equation A.5 we 
obtain: 

T = xl. (A4 
In a real event the above equation is only a correlation due to the pseudo-cluster 
recombination effects in forming the jets (see Chapter 6). 

It is convenient (for the purposes of the analysis) to rewrite the above in terms of 
normalized invariant masses. Denoting the partons’ 4vectors as Pi we write, 
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where Pf = 0 since we deal with massless partons. If we define, 

then, 

Yij E 2Pi * Pj 
E,$,, ’ 

Y12 + Y13 + Yl2 = 1. 

It is also useful to consider the identity, 

(A-7) 

(A*8) 

and rewrite it, squaring both sides, 

2Pl.P2 =E&-2E3Em. 

Normalizing by E&, and using the above definitions, we obtain, 

y12 = 1 - x3. (A-9) 

The above equation can be easily generalized for the three partons by cycling the 
indices. It is interesting to note that if we combine Equations A.9 and A.6, we 
obtain, 

Y23 = 1 - T, (A.lO) 

which is just what we call ‘ys’ in Chapter 6. 

- 

A.4 Differential Jet Rates 

The jet rates have been defined in Chapter 6. In Equation 6.3 we also defined the 02 
distribution as a convenient alternative to the jet rates free of inter-bin correlations. 
We can also consider D2 as the distribution of ys, the point in y at which a 3-jet event 
turns into a 2-jet event in a particular algorithm. 

Calculating the Jet Rates 

All of the jet algorithms used in this analysis are based in an invariant mass resolution 
parameter y. The differences between them have already been described in Chapter 6 
and have to do with the ways clusters are recombined and the invariant mass defined. 
The most important feature of all of these algorithms is in the way they proceed: all 
invariant mass combinations yij = Mz~/E,2, between all clusters are calculated, then 
ordered, and subsequently recombined until a resolution cutoff yij > ycut is reached. 

It is helpful to consider the parton level situation where there is no smearing due 
to hadronization. To second order in perturbative QCD we can have at most four 
partons. If we apply our algorithm to this 4-parton system, we have to calculate 
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4 * (4 - 1)/2 = 6 invariant mass combinations. If we define y4 as: 

Y4 = min{Y127 Y13, Y14, Y23, Y24, Y34) (AX) 

where we have labelled each parton as 1,2,3, and 4, we see that y4 is the point in 
‘y-space’ when a 4-jet event turns into a S-jet event. We can also define the analogue 
for a three parton system; ys is defined as being the minimum of the 3 invariant mass 
combinations in a 3 parton system. This scheme is ideal for calculating jet rates as 
it allows an exact calculation in terms of the parameter y; it is also the scheme used 
in the cross section calculations of ERT [39]. 
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Appendix B 

Detector Correction Procedure 

B.1 Introduction 

In this appendix we will describe the unfolding procedure used to correct the jet 
fractions for detector effects. 

We call “detector effects” all the effects that smear the physical observables in our 
experiment. This smearing is caused mainly by the finite detector resolution (for both 
energy and position measurements) and by the limited detector acceptance. In this 
Appendix we discuss the two correction methods used, the inversion and the factor 
method, and compare their merits and drawbacks. 

_ 

- 

B.2 The Inversion Method 

In the inversion method, the approach we take in correcting our measured quantities 
(jet-rates) for detector effects is to unfold the data. In practice we parameterize 
the smearing by a matrix of transition probabilities using the detector Monte Carlo 
description ‘. We then correct the data by applying the inverse of this transition 
matrix to the observed (i.e. “detector level”) distributions so that we are left with 
the corrected (i.e. “hadron level”) distributions. 

In general, this inversion method [98] results in unstable solutions when applied 
to measurements characterized by large resolutions. The long range bin-to-bin mi- 
grations induce large fluctuations in the inverted matrix which in turn affect the 
unfolded distributions. Confronted with this situation, many experimenters choose 
to use a bin-by-bin correction method (to be discussed in the next section) which 
is stable but generally input model-dependent. The correct approach in using the 
inversion method is to choose the binning of the measured distribution to properly 

lThis is equivalent to determining the resolution and acceptance functions. 
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reflect the intrinsic resolution. This approach minimizes the bin-to-bin migration, 
insures a stable unfolding, and greatly reduces any model dependent biases. 

Method Outline 

In our measurement 
as vectors: 

we are concerned with jet fractions. We define the jet fraction 

where 82 denotes the 2 jet rate, Rs the 3 jet rate, and R>4 denotes the 4 and higher 
jet rate. The superscripts d and h denote that the rates have been calculated at the 
detector and the hadron level, respectively. These vectors are a function of the jet 
parameter y (we will drop y from our notation) and are constrained by: 

Dl+Dz-t 03 = HI+ Hz+ H3 = 1 (B.2) ; 

We assume we can relate 3 and g by a linear transformation, 

fi=TI!i (B.3) - 

where T is in general a y-dependent 3x3 matrix. In our case we are interested 
in extracting the physics contained in d; to do so we first determine T from the 
detector simulation of acceptance and resolution. We do so by generating hadronic 
Monte Carlo events and simulating the detector response using GEANTS. For each 
event the jet algorithm is applied for all y, and at each y the migration of events 
between different jet classifications is tabulated in the matrix T. The matrix T is 
then defined as, 

Tij = number of i-jet events at the hadron level that look like j-jet 
total number of i-jet events at the hadron level (B-4) 

Once this matrix is obtained and properly normalized, we invert it in order to unfold 
the data for detector effects. We apply the inverse to both sides of equation B.3: 

jj = l-5 03.5) 

and we are left with the hadron level jet-rates. 

Unfolding Errors 

Since we obtain the matrix T from a finite Monte Carlo sample, the elements of T 
have statistical errors associated with them. These errors are especially noticeable 
in the less populated regions of phase space (e.g. in the 4-jet rate at high y) and 
they induce large fluctuations in the inverse matrix. For this reason it is crucial to 
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propagate the errors on ‘I’-’ correctly. 

Figure B-l: The nine figures show the elements of the detector unfolding matrix Z’-‘(y) 
described here. This matrix was calculated using JETSET 6.3 Parton Shower Monte Carlo 
with the JADE algorithm  and a simulation of the SLD. 

The error on the unfolded vector I? due only to the inversion procedure may be 
written as [116] : 

srl = (sT-‘)z. (B-6) 

Using the above, we can immediately write the covariance matrix on 2: 

where repeated indices imply summation. Using the identity 6T-’ = -T-‘(6T)T-1 
we can rewrite equation B-5 as, 

The constraint 
c Tlk = 1 VW 

1 

151 



APPENDIX B. DETECTOR CORRECTION PROCEDURE 

follows from equation B.4 and the unitarity condition (no events are created or de- 
stroyed by our correction procedure). We use this constraint, and the fact that there 
are no inter-column correlations in the matrix T, to write down the correlation term 
of equation B.8: 

(B.lO) 

where the 6 are the Kronecker delta and N is the total number of events in the 
Monte Carlo sample. Putting equation B.10 into equation B.8, collecting terms and 
simplifying, we obtain: 

where, again, summation is implied over the repeated indices and where we have 
used the definition D; = TijHj. Notice that equation B.ll has the expected l/N 
dependence. Armed with equations B.5 and B.11 we can then calculate the unfolded 
jet fractions and their associated errors. 

B.3 The Factor Method 

As the name implies, the factor method relies in multiplying the observed distribu- 
tions with pre-determined factors in order to ‘divide-out’ the detector effects. The 
underlying assumption for the applicability of this scheme is that [98] the detector 
effects are, to a good approximation, not dominated by resolution effects. In addition, 
there are acceptance effects that affect the ‘efficiency’ of binning the distribution in 
question. This degradation in efficiency could be due to, for instance, clusters lost in 
the beampipe or discarded by an analysis cut. It also includes selection acceptance 
effects (good events that failed the selection cuts). 

In the case of finite resolution effects (as with every real measurement) care must 
be taken in ensuring that the distributions to be corrected have been binned appro- 
priately. This usually corresponds to choosing bins that are at least the same size 
as the resolution for the variable in question. This procedure then minimizes the 
bin-to-bin migration of events in a histogram. 

Met hod Outline 

Here we use the same notation as in Section B.2. Since we are now assuming that 
on average resolution effects can be corrected with single factors, we again use Equa- 
tion B.3 but this time the matrix T is a diagonal matrix. The lack of off-diagonal 
elements is just a reflection of the lack of correlations. We can then write the analogue 
of B.5: 

I?=cz (B.12) 

152 



+ .-. 
-a 

B.4. Validating the Factor Method 

where now C is a diagonal matrix which depends on y. Since there are no correlations 
in the matrix C4 we can then determine its elements by looking at independent 
distributions of D and I? from the Monte Carlo. Thus, 

(B.13) 

where now the fi and b distributions are independent and thus have different nor- 
malizations. In the above equation, 6 includes distortions due to event selection 
inefficiencies and resolution. 

This method is also referred to as the bin-by-bin correction method. In this case, 
we generally don’t need to worry about additional statistical errors introduced into 
our measurement by the use of Equation B.13. Since the Monte Carlo sample is not 
statistically diluted to determine a full matrix, the statistical uncertainties due to the 
unfolding can generally be ignored provided the sample is adequately large. 

B.4 Validating the Factor Method 

Due to the limited Monte Carlo sample and the fact that the inversion method suffers 
an additional statistical dilution, we choose to use the factor method in the final 
analysis. We will still carry out the analysis in parallel as a cross check for possible 
systematic effects. 

Before going on to use the factor method we still need to show that the method 
is ‘linear enough’ to allow an unbiased measurement. 

A Test Experiment 

In order to test the factor method, a “test experiment” was created with a fictitious 
detector. The idea was to use a sample of Monte Carlo events to unfold a detector- 
smeared “measurement” using an analogue of the method used in the analysis. The 
test measurement used was the same used in this thesis: the measurement of Am 
using jet-rates. 

The “physics” data were generated using the LUND Monte Carlo (see Chapter 2) 
using the matrix element O(cri) option. The value of oJ was changed by changing the 
generator-level (i.e. the value used in the analytic calculations) value of AZ. The 
“detector” was simulated by using both the LUND and HERWIG Monte Carlos with 
the parton shower option. The parton shower AQ~D was varied (only for LUND) to 
investigate possible systematic effects. The generated particles were then smeared into 
a fictitious detector. This detector simulation consisted of subjecting each particle 
to: 

l A calorimeter-like energy smearing of a/E = 0.6/a + 0.05 
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Figure B-2: Am (thrown) vs Am ( measured) for the Test Experiment. The star 
corresponds to HERWIG 5.3 correction factors, while the three other symbols correspond 
to h,jj variations of the parton showers in the LUND 6.3 Monte Carlo. The dashed line 
represents Athrown = Ameasured. 

l An acceptance cut of ] cos 81 5 0.95 

l A minimum energy cut of E 10.100 GeV 

l Neutrinos and muons were ignored. 

Finally, the factor method was applied to five different “physics” data samples gen- 
erated with different values of Am The resulting & distributions were fit (as in 
Chapter 6) to the O(c$) analytic expression (with /J = Mzo) and the ‘measured’ Am 
were obtained. The results are shown in Figure B-2. 

Discussion 

It should be clear from Figure B-2 that the factor method provides a good correlation 
between the generated Am and the reconstructed A=, This correlation holds for 
the investigated range of CY, values (Y, x 0.09 - 0.15. It is also clear that the method is 
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somewhat sensitive to at least one of the physics parameters in the Lund generator (as 
expected, a small source of systematic uncertainties), In addition, systematic effects 
in the procedure due to different hadronization models are practically non-existent, 
as evidenced by the small Lund-HERWIG differences. This is consistent with our 
ansatz that the unfolding procedures should only ‘divide-out’ the detector effects. 

It is then evident that the factor correction procedure provides us with an unbiased 
tool to correct our data sample for detector effects. 

- 
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