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Abstract 

Interfaces are one of the most important elements determining the characteristics of 
electronic devices. Composite semiconductors, specifically the III-V family, are 
technologically attractive because of their mobility and optical properties, and also because 
they offer the possibility of engineering such properties as the size of the band gap. 
Nevertheless, Si has remained the most utilized semiconductor material, primarily because 
the fabrication of practical MOSFETs with III-V semiconductors remains elusive. 
Additionally, even though metal/III-V semiconductor junctions are extensively used in 
devices, the difficulties of understanding these Schottky barriers is evident from the present 
chaos in the literature concerning barrier formation. 

A large research effort is directed to the study of simple systems for which detailed and 
unambiguous experimental results can be obtained concerning their electronic and 
geometric structure. Structural techniques, such as X-Ray Standing Wave (XSW) and Low 
Energy Electron Diffraction (LEED), have successfully been applied to determine the 
geometric structure of ideal monolayers of adsorbates on semiconductor surfaces. On the 
other hand, XSW offers the possibility of extending these structural studies to more 
realistic (less ideal) systems. 

Examples of such complex interfaces are the structures formed by one monolayer of Bi on 
the (110) surface of GaAs and GaP. While better matched Column V elements form 
epitaxial continuous monolayers on III-V semiconductor (110) surfaces (as Sb/GaAs, 
Sb/InP, and Bi/InP), Bi is too large to accommodate on GaAs and GaP surfaces with long 
range order, and vacancies appear to allow relaxation. For the ideal systems, symmetry 
imposes the presence of only two nonequivalent adatom sites (one bonded to the substrate 
anion and the other to the substrate cation). However, for Bi/GaAs and Bi/GaP, more than 
two different sites are present because the position of Bi atoms next to a vacancy is not 
necessarily equivalent to that between other Bi atoms. 

The geometry of the Bi/GaAs and Bi/GaP systems was determined here by triangulating 
XSW results from three Bragg planes. A methodology was developed that provides an 
intrinsic check of the validity of assuming two sites for the overlayer structures. An 

experimental method was developed that allows the three reflections to be measured on the 
same sample, thus reducing the number of experimental variables, such as the degree of 
disorder. The traditional method of analysis was not accurate enough for this data, so a 
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more reliable and faster method of data fitting was developed. A configuration used in the 
present work, which previously has been widely used, presents an intrinsic multireflection 
problem. This issue is discussed in depth, and the appropriate method is determined for 
analyzing the data obtained with this configuration. 

The results indicate that the two-site approximation for the Bi structure is suitable to the 
Bi/GaAs interface, and that Bi grows on GaAs in sites close to the bulk continuation of the 
crystal. For the case of Bi/GaP, the two-site model proved to be too simplistic to 
completely describe the structure. Nevertheless, it can be concluded that the Bi adatoms 
grow on GaP also assuming positions close to the bulk continuation of the crystal. 

The position of P, both at the clean GaP and Bi/GaP interface, was also studied. Results 
indicate that, for the clean GaP surface, P relaxes with a small outwards rotation, with the 
axis of the rotation located at the second-layer Ga site. Whereas, for the Bi-covered case, 
relaxation consists of a contraction towards the second-layer Ga site. 
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Chapter 1. Introduction 

1.1 Fundamental studies of simple interfaces 

Interfaces are one of the most important aspects determining the characteristics of electronic 
devices. The great interest in interfaces is explained by the enormous and still growing 
economic impact of the semiconductor industry, which is now considered the largest in the 
world [ 11. A deeper understanding of interfaces increases our ability to predict and control 
their properties. This allows for the design and fabrication of new devices. 

Composite semiconductors, specifically the III-V family, are technologically attractive 
because of their mobility and optical properties, and also because they offer the possibility 
of engineering such properties as the size of the band gap. Nevertheless, Si has remained 
as the most utilized semiconductor material, primarily because the fabrication of practical 
MOSFETs with III-V semiconductors remains elusive. Additionally, even though 
metal/III-V semiconductor junctions are extensively used in devices, the difficulties of 
understanding these Schottky barriers is evident from the present chaos in the literature 
concerning barrier formation. Still, a consensus exists about the need of a better and deeper 
understanding of interfaces to III-V semiconductors. 

A large research effort is directed to the study of simple systems for which detailed and 
unambiguous experimental results can be obtained concerning their electronic and 
geometric structure. Structural techniques, such as X-Ray Standing Wave (XSW) [2] and 
Low-Energy Electron Diffraction (LEED) [3,4], have successfully been applied to 
determine the geometric structure of ideal monolayers of absorbates on III-V semiconductor 
surfaces. Scanning Tunneling Microscopy (STM) is an extremely useful technique that can 
be used in conjunction with XSW and LEED, although its generally poor resolution does 
not provide coordinates of the structure with enough detail. 

XSW has many advantages over LEED, such as chemically selectivity. In contrast to 
LEED, the presence of a thin overlayer does not fundamentally affect the ability of XSW to 
measure the reconstruction of the substrate outermost layer. 

With XSW, it is possible to determine the atomic location of adsorbates scattered across the 
substrate surface for coverage of a fraction of a monolayer [2]. This is because XSW does 
not depend on the correlation between the position of the adsorbates. The XSW technique 
is suitable to study systems where vacancies are present (such as the systems discussed in 
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this thesis) because vacancies do not contribute to the signal. For this reason, XSW offers 
the possibility of extending structural studies beyond ideal systems. 

Such complex interfaces are the structures formed by one monolayer of Bi on the (110) 

surfaces of GaAs and GaP. This thesis presents an XSW study of the structure of these 
systems. 

1.2 Properties of the systems formed by one monolayer of Bi on the 
(110) surface of GaAs and GaP 

Many of the properties of the Bi/GaAs and Bi/GaP systems can be better understood by 
contrasting them with those of ideal V/III-V interfaces. This section describes in a 
comparative way background information on the systems subject to this dissertation. 

1.2.1 Morphology of the Bi/GaAs and Bi/GaP interfaces 

The (110) surface of III-V semiconductors is very characteristic because the substrate 
atoms form zigzag chains, which run along the (170) direction (see Fig. 1.1 or 1.2). The 

structure of the overlayers formed by Bi and Sb on those surfaces has very special 
properties. These adatoms do not disrupt the substrate surface with strong reactions, 
neither do they present strong clustering. The first monolayer tends to grow in an orderly 
fashion (Stranski-Krastanov type growth), and imitates the substrate surface by forming 
zigzag chains along the (110) direction, with a one-to-one correspondence with the 

substrate atoms. Ideal monolayers, with long-term order and low density of surface 
defects, are the cases of Sb on GaAs [3,5], Sb on InP [4,6], and of Bi on InP [4], with 
the zigzag chains running indefinitely. 

The systems subject to this thesis depart, one slightly (Bi/GaAs [7]) and the other largely 
(Bi/GaP [S]), from the ideal behavior. The Bi adatoms are too large [9] (see Table 1.1) to 
accommodate in long ordered chains on GaAs and on GaP. Table 1.2 displays some of the 
properties of the Bi/GaAs and Bi/GaP interfaces (obtained by previous studies), and how 
they compare with the ideal V/III-V systems mentioned above. 

As for the Sb/GaAs [lo], Sb/InP [ 111, and Bi/InP [ 121 cases, photoemission spectroscopy 
(PES) studies of Bi/GaAs [7] and Bi/GaP [ 131 show two main chemical species, one 
bonded to the anion and the other to the cation. This is not surprising because the (110) 

substrate surface unit cell of III-V semiconductors has one anion and one cation, and PES 
is “directly” sensitive to the different chemical environments of the surface atoms. 
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The tetrahedral covalent radii can provide a sense of the degree of mismatch between the 
overlayer and the substrate because, although the bonding of the adatoms to the substrate is 
not tetrahedral, the sum of the tetrahedral covalent radii describe very closely the actual 
bond length, at least for the ideal cases [3,4]. The numbers presented in Table 1.2 as 
“mismatch” are the differences between the average of the substrate tetrahedral covalent 
radii and the adatom tetrahedral covalent radio [9]. Notice that the mismatch for the ideal 
cases is rather large. 

With a even larger mismatch, the zigzag chains formed by Bi on GaAs and GaP are 
interrupted by vacancies to allow relaxation by expansion of the chains along the chain 
direction. In the case of Bi/GaP, the relaxation of the Bi atoms along the chain is noticeable 
from the STM results, which shows an expansion of approximately 7% in that direction 
[8]. Figures 1.1 and 1.2 show simplified schematics of previous STh4 results on the 
Bi/GaAs [7] and Bi/GaP [8] systems. The vacancies form rows running along the (001) 
direction, perpendicular to the adatoms zigzag chains. The length of the Bi zigzag chains 
are shorter and the vacancy rows are wider for the Bi/GaP interface, which has the largest 
mismatch. 

For both Bi/GaAs [7] and Bi/GaP [8] interfaces, the (1x1) LEED symmetry has an 
underlying (6x1) pattern. This is because, in both cases, the length of the overlayer surface 

unit cell adds to 6 substrate surface unit cells (see Figs. 1.1 and 1.2, and Table 1.2). The 
intensity of the (6x1) spots is very dependent on the details of the preparation of the surface 

[3], which is not surprising because LEED results are dependent on the vacancy 
population. 

Gap states originating in the vacancy region may account for the inability to obtain flat 
bands on the Bi/GaAs [7] and Bi/GaP [ 131 systems, in contrast to the ideal interfaces [ 14, 
15, 161, for which flat band conditions can be achieved for both p and n types. 

1.2.2 Generalities of the geometric structure of column V monolayers 
on III-V semiconductor (110) surfaces 

For the case of the ideal monolayers, the long-range order of the adatom chains, the 
one-to-one correspondence of the adatoms to the substrate atoms, and the (1 xl) LEED 

symmetry impose the presence of only two nonequivalent adatom sites-one bonding to 
the cation and the other to the anion of the substrate surface unit cell. This is, of course, 
consistent with the PES results, which finds only two main chemical species. For the case 
of Bi on GaAs and GaP, the presence of these vacancies breaks the symmetry because the 
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adatom sites at the edge of the chains are not equivalent to those near the center of the 
chains, so their positions are not necessarily the same. Nevertheless, we will use a two-site 
model to describe the Bi sites of the Bi/GaAs and Bi/GaP interfaces. Due to the intrinsic 
complications of introducing too many variables, all structural studies on these types of 
systems to date (including those presented in this thesis) utilize a (1x1) model. 

Using two sites in Tight Binding Total Energy (TBTE) calculations, LaFemina et al. [ 171 
found basically two geometric structures that locally minimize the total energy of ideal 
column V monolayers on III-V semiconductors. These structural candidates are displayed 
in Fig. 1.3. The Epitaxially Continued Layer Structure (ECLS) is called so because the 
adatoms take positions near the bulk continuation of the substrate. In the Epitaxial On Top 
Structure (EOTS), the adatoms are on top of the outermost substrate atoms. The 
calculations indicate that for lower mismatch, ECLS is favored, and for larger mismatch, 
EOTS is favored. Let’s remark that these calculations consider two sites; in principle, then, 
their conclusions are only valid for the ideal cases, where the zigzag chains are continuous. 
All the ideal cases mentioned are in the lower mismatch side, so ECLS is favored over 
EOTS in all of them (see Table 1.2). 

1.2.3 Experimental structural techniques 

Scanning Tunneling Microscopy is an very useful technique because it provides an overall 
view of the interface. However, STM does not provide the structure in enough detail. Other 
techniques with greater resolution have to be used to determine the geometry. It is 
important that the resolution is precise enough to at least discriminate between the structural 
candidates proposed by the theoretical calculations. 

X-Ray Standing Wave is a very powerful technique, and is becoming a clear choice for 
surface structure determination. Although XSW was established during the sixties, the 
technique was reborn in the eighties due to the availability of synchrotron radiation. 
Table 1.3 makes a comparison among four structural techniques: STM, Extended X-Ray 
Absorption Fine Structure (EXAFS), dynamical LEED, and XSW. 

Dynamical LEED is the main competitor of XSW, although XSW has many clear 
advantages. First of all, XSW results are very simply related to the horizontal and vertical 

atomic coordinates, and the resolution on these parameters are better than for LEED. The 
XSW technique is chemically selective, while LEED is not; XSW is not affected by the lack 
of correlation between the adatoms, so it can be used to study the sitting point for 
submonolayers of adatoms, while LEED cannot. The presence of vacancies does not affect 
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XSW data because vacancies contribute with no XSW signal, while they influence LEED 
patterns. In contrast to LEED, the presence of a thin overlayer does not fundamentally 
affect the ability of XSW to measure substrate relaxation. Although the interpretation of 
both XSW and LEED results needs some initial assumptions (such as the number of 

nonequivalent sites), XSW provides the specific answer under those assumptions, and not 
just support for a possible best candidate, as in the LEED case. Finally, the analysis of the 
results is much simpler for XS W. 

1.2.4 Previous structural results 

Coincidentally, LEED [3,4] and/or XSW [5,6] studies have been carried out on the ideal 
systems, where the calculations favor ECLS (see Table 1.2). These studies find, at the 
least, a qualitative agreement with the theoretical method [ 171. 

For the Bi/GaAs system, TBTE calculations favor ECLS over EOTS by 0.06 eV [ 181. This 
difference is much smaller than 0.43 eV, which is the difference in the Sb/GaAs case [17]. 
LEED studies [3] compare fits to the experimental data using the ECLS and EOTS models. 
ECLS is also favored by this technique. 

Unpublished TBTE calculations [ 191 on the Bi/GaP system have been carried out using a 
(1 x 1) model. For this case, the difference between the energy formation of a ECLS and of 
a EOTS type chain is, if any, favoring EOTS. No published LEED structural studies on 
this system is known to the author. 

1.3 Background and overview of the XSW technique 

A more detailed treatment is provided in Chapters 4 and 5 and Appendix 1. There are many 
excellent treatments of the Dynamical Diffraction of X-Rays applied to XSW [20]. 

1.3.1 Generalities 

The XSW technique relies on the fact that when an X-ray impinges on a crystalline 
substrate near a Bragg condition, the incident beam is strongly reflected, and the 
superposition of the incident and reflected beam forms an X-ray standing wave that has the 
periodicity of the reflecting Bragg planes of the crystal lattice (see Fig. 1.4). Meanwhile, 
the atoms in the substrate and on the surface are photoexcited by the electric field of the 
standing wave. From the Electric Dipole approximation, the excitation rate varies as the 
square of the total electric field amplitude (see Section 5.1.1). The key element that makes 

this technique sensitive to the atomic positions is the spatial modulation of the electric field 
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amplitude of the standing wave over an interplanar distance, so the field strength seen by a 
particular atom depends on its position with respect to the planes. 

It is possible to experimentally measure the strength of the electric field seen by a particular 
atom by monitoring the yield (Y) from any product of its excitation. For example, we can 
select a particular atomic specie by counting the total number of electrons photoemitted 
from one of its distinct core levels. In this work, the excitation rate of the Bi atoms was 
measured by monitoring the photoelectron yield from the Bi 4d core levels, using a 
Cylindrical Mirror Analyzer (CMA). 

The XSW experiments can be performed by either sweeping the photon energy or the 
sample angle relative to the incident X-ray beam. Controlling the angle of incidence in 
surface experiments is very demanding because of the need for vacuum-compatible high- 
resolution goniometers. On the other hand, XSW experiments which sweep the photon 
energy can be performed in the already existing EXAFS beam lines at synchrotron sources. 
For this reason, the experiments reported in this thesis were performed by sweeping the 
photon energy. 

1.3.2 Reflectivity and the dynamical Bragg condition 

The Bragg reflection of an X-ray beam by a crystal can be intuitively understood in terms 
of the constructive interference of the beams reflected by the crystal planes. This condition 
can be written in the following way [21]: 

kH = kO+H , 

ikHi = lkOl 3 

(1.1) 

(1.2) 

where kg and kH are the wave vector of the incident and reflected beams, and H is the 

corresponding Bragg crystal vector. Equations 1.1 and 1.2 are the so-called “kinematical” 
Bragg condition, and are equivalent to the Bragg law a = 2dH sin 6,. To calculate the 

actual strength of the reflected beam, or reflectivity, it is necessary to take into account that 
the beam is reflected and transmitted up and down by each one of the atomic planes [20], as 
shown in the insert of Fig. 1.5. The treatment that takes the multiple reflections into 
account, including phase shifts upon scattering, is the so called “dynamical” approach. 

Equivalent to this approach, although much more concise and elegant, is directly solving 
Maxwell’s equations for a system with a periodic dielectric function (see Chapter 4 and 
Appendix 1). 
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A consequence of the dynamical back-and-forth reflection of the X-ray beam is that the 
reflectivity is finite, not only at the exact Bragg condition, but in a finite area around it. The 
Du Mond diagram of Fig. 1.5 shows the (&a) region (shadowed area) around the exact 

Bragg condition (central curve) in which the reflectivity is finite. The thick arrow in 

Fig. 1.5 indicates that the mode in which the experiments were performed was by keeping 
the angle fixed and sweeping the photon energy. Figure 1.6 shows the theoretical 
reflectivity as a function of energy for the (220) Bragg reflection of GaP for a fixed 

incident angle of 900. The intersection of the thick arrow of Fig. 1.5 with the outer (inner) 
curve corresponds to the low-energy (high-energy) side El (E2) of Fig. 1.6. Notice the 
finite range of energy in which the beam is reflected. This behavior is beyond what the 
kinetical approach (Eqs. 1.1 and 1.2) can explain because it predicts that, for a fixed angle, 
constructive interference (and finite reflectivity) is possible only for a single wavelength. 
The XSW technique makes heavy use of the details of the dynamical properties of the 
diffraction of X-rays by crystals. A dynamical discussion of the Bragg condition is 
provided in depth in Section 4.2.2. 

1.3.3 The standing wave excitation spectrum 

The standing wave is present in the range of strong reflectivity of Fig. 1.6. Also basic to 
the XSW technique is the experimental ability to control the position of the nodes of the 
electric field of the standing wave. This can be done by changing either the photon energy 
or the angle of incidence around the Bragg condition. A discussion of the change of the 
phase of the standing wave as we move around the Bragg condition is provided by 
Batter-man et al. [20]. 

We call El and E2, defined in Fig. 1.6, the low- and high-energy sides of the reflectivity. 

At the low-energy side, the phase difference between the incident and reflected beams is 
such that the nodes of the electric field of the standing wave are situated at the planes of the 
atoms, as illustrated in the right side of Fig. 1.7. As we sweep the photon energy to the 
high-energy side, the phase difference changes in such a way that the nodes of the electric 
field of the standing wave move to the planes between the atoms (see the left side of 
Fig. 1.7). So, by sweeping the photon energy from El to E2, we can move the maximum 
of the electric field amplitude from between the atomic planes to the atomic planes, making 

a “search” for the atoms between the planes. 

The behavior of the yield for the case of subtitutional impurities (marked with “S”) is 
shown in Fig. 1.7. Because the standing wave extends into the vacuum, the following 



discussion also applies to adatoms at the surface. When the photon energy is at the low- 
energy side, these impurities see a node or minimum on the electric field amplitude, so the 
photoemission yield, Y(E), is minimum. As we move the photon energy to the high-energy 
side, the electric field amplitude seen by these atom increases, to finally reach a maximum 
when the photon energy is equal to E2 (see the right side of Fig. 1.7). There, the 
photoemission yield reaches its maximum. The shape of the photoemission yield as the 
photon energy is swept is shown in Fig. 1.8. This shape would be the same had we chosen 
any other product of the excitation that is proportional to the number of core holes created, 
such as Auger electron yield or fluorescence yield. For the case of interstitial impurities, 
such as the one marked with “I” in Fig. 1.7, the corresponding yield, Y(E), is also shown 
in Fig. 1.8. The shape of Y(E) is very dependent on the position of the atom in question. 

The excitation rate in the standing wave field of a monochromatic beam of energy E is as 
follows [22] (see Eq. 5.17): 

Y(E) = l+s(E)+2f,,/E) cos v(E) -2~2 1 3 (1.3) 

where v is the phase difference between the incident and reflected beam, and determines 
the position of the maximum and minimum of the electric field of the standing wave; 32 is 
the intensity of the reflected beam with respect to the incident beam; dH = l/IHI is the 
interplanar distance; and H is the crystal vector defining the Bragg planes. The coherent 
distance (D,) and the coherent fraction ( f,) depend on the atomic positions. In the 
simplest case, where every atom assumes equivalent positions in the crystal, DC can be 

interpreted as the distance to the atomic planes. Equation 1.3 is fitted to the experimental 
data to find the best values for DF and fcH (see Chapter 5). 

Figure 1.9 displays XSW spectra for different values of the coherent distance. As can be 
seen, differences of 10% of the interplanar distance can be resolved just by eye inspection. 

1.3.4 The distribution function 

For more complicated situations, the general dependence of DC and f, on position is given 

in terms of a distribution function fH (0) , with D the dimension perpendicular to the 
planes (parallel to H). The fH (0) dD is the fraction of the atoms with a distance between 

D and D + dD to its local crystal plane. Its integral over a Bragg inter-planar distance is 
normalized to one. For example, if all the atoms are at a distance 4 from the atomic 
planes, then OH is equal to a Dirac delta function around 01. where DC and fc are 
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the phase and amplitude of the Fourier integral of fH(D) over a interplanar distance, 
with wave vector equal to the Bragg plane vector (see Section 5.1.2): 

‘h 
I dD OH exp { -2~1 
0 

*z} = fp exp{ -2aig} . (1.4) 

In principle, it is possible to reconstruct the distribution function in real space from a large 
enough number of reflections, allowing us to transform Eq. 1.4 to its inverse. In practice, 
the systems of interest are simple enough to express the distribution function in terms of a 
finite and small number of parameters, such as the unknown coordinates of the adatoms. 
This allows Eq. 1.4 to relate the experimental values for DF and fcH to the atomic 

coordinates of the adatoms. A detailed discussion of the distribution function is provided 
in Section 5.1.2. 

1.4 Outline of the dissertation 

The focus of this thesis is the geometric characterization of the structure formed by one 
monolayer of Bi on the (110) GaAs and GaP surfaces using the XSW technique. The 
experimental and analysis method employed for the two systems are identical, so much of 
the discussion will be done in parallel. 

The information about the systems provided by previous STM and PES studies 
(Section 1.2), together with the two-site approximation (Section 2. l), is used to represent 
the systems with a simple distribution function (Section 2.3), so the problem is reduced to 
finding the free parameters of the distribution (Section 2.4). The problem is then attacked 
via XSW triangulation (Section 2.2) using three reflections: (220)) (11 l), and (11 i). 

With these three reflections, there is enough information to determine the structure of the 
overlayer (Section 2.4) and to check the self-consistency of the two-site approximation 
(Section 2.6). 

A experimental configuration for the (111) and (11 i) reflections is developed 

(Section 3.3) that allows the performance of all three reflection on a single sample, 
reducing the number of experimental variables, such as the degree of order. By using a 
back-reflection configuration for the (220) reflection (Section 3.3.1), and asymmetric 

configurations for the other two (Section 3.3.2), it is possible to perform the experiments 
with the same set of crystals in the monochromator, and without changing the orientation of 



the sample. There is an intrinsic problem with the (220) back-reflection (Section 3.4) 
because, in this configuration, the (200) and (020) Bragg conditions are also satisfied. 

A method is developed to deal with the multireflection problem (Section 4.3). To this end, 
a new form of the wave equation for X-rays in crystals is derived (Section 4.2) that is 
simple enough to be applied to the problem. A computer program was developed to carry 
out the multireflection calculations (Appendix 2). 

A method for fitting XSW data is developed (Section 5.2) that is more dependable, 
theoretically better justified, and faster than other methods traditionally used. It greatly 
improves the quality of the fits and self-consistency of the results (Section 6.4). A 
computer fitting program is constructed based on this method (Appendix 3). To develop 
this method, it was necessary to formalize the theoretical framework of the XSW theory 
(Section 5.1). 

The experiments performed and data about the Bi/GaAs interface are presented (Section 6.1 
and 6.4). The criteria used to average the data is based on the maximization of the 
correlation of the reflectivity (Section 6.3). The program that was developed and used to 
average the data is presented (Appendix 4). The results are shown to have remarkable 
reproducibility and self-consistency (Section 6.4). They determine that the structure is 
described by ECLS, confirming the suggestions from LEED experiments and TBTE 
calculations. 

The experiments performed and data about the Bi/GaP interface are presented (Sections 7.1 
and 7.2). A self-consistency test of the results shows that the two-site approximation is too 
simplistic for this system (Section 7.3). Nevertheless, the results discard every structure 
except ECLS (Sections 7.4 and 7.5). 

The relaxation of P, with and without the Bi overlayer, is also studied with the XSW 
technique (Chapter 8), using a new experimental methodology that was developed so that 
the effect of the overlayer can be easily discriminated (Sections 8.5,8.6). For the clean 
surface, the P atoms undergo a small rotation with center at the second layer Ga site. The 
effect of the Bi overlayer on P is a contraction of a larger magnitude in the direction of the 
bond to the second layer Ga site. 

A summary is presented, together with the contributions of the thesis and future work 
(Chapter 9). 
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Table 1.1. The systems studied in this thesis are a monolayer of Bi on GaAs 
and on Gap. The elements are presented in Periodic Table order with the 
corresponding tetrahedral covalent radii. 
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Bi/GaAs Bi/GaP Ideal (Sb/GaAs, 
Sb/InP, B&P) 

Main chemical 
components (PES) 

2 2 2 

Mismatch 20% 24% < 15% 
(11,7 and 15%) 

Zigzag chains 
(SW 

Length of adatom 
chains (substrate 
surface unit cells) 
Width of vacancy 

rows (substrate 
surface unit cells) 

5 3 and 4 indefinitely long 

1 3 and 2 no vacancy rows 

LEED symmetry (1x1) with an (1x1) with an 
underlying (6x 1) underlying (6x 1) (1x1) 

Flat band condition 

(Pw 
X X d 

XSW structural 
determination this study this study ECLS for all the 

cases 

LEED structural ECLS by a small ECLS for all the 
determination margin cases 

TBTE structural ECLS by a small 
determination margin 

not clear between 
EOTS and ECLS 

(unpublished) 
ECLS for all the 

cases 

Table 1.2. Comparison of the properties of the Bi/GaAs and Bi/GaP 
interfaces with the ideal cases. 
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STM EXAFS LEED 

vertical resolution 4 x = none 2 l=best 

Horizontal resolution 3 X 2 1 

Distance resolution 4 1 2 3 

Chemically selective 3 1 X 1 

Model independence 1 2 4 2 

Adatom correlation 
independence 1 3 X 1 

Not affected by vacancies 1 1 4 1 

Analysis simplicity 1 3 4 2 

Crystallinity independence 1 1 X X 

Table 1.3. Comparison between structural techniques. 
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Figure 1.2. Schematics of the Bi/GaP interface suggested by STM results [II]. Bismuth forms chains along the 
(110) direction of a length of three and four surface unit cells, interrupted by rows of vacancies of a width of 
two and three surface unit cells, and running along the (001) direction. 



Figure 1.3. As shown by TBTE calculations [ 171, these structures minimize locally 
the energy of Column V overlayers (Sb or Bi) on III-V semiconductors. 
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Figure 1.4. The interference of a Bragg reflected beam with the incident beam 
forms an X-ray standing wave with exactly the same periodic&y as the Bragg 
planes. 
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a 

Figure 1.5. Du Mond diagram. The center curve corresponds exactly to the Bragg 
condition h=2d sine. The reflectivity is close to unity in a finite region (shadowed) 
around the Bragg condition. The back and forth reflection of the incoming beam by 
every Bragg plane (see insert) is precisely that responsible for the finiteness of the 
region in which the incident beam is coupled to the reflected beam. The downward 
arrow indicates that the experiments are performed by sweeping the photon energy, 
keeping the angle fixed. 
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Figure 1.6. Theoretical reflectivity for the (220) reflection of GaP. The finite 
width is not due to temperature effects, but is inherent to Bragg reflections. 
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Figure 1.7. Phase of the electric field standing wave for the three energies around 
the Bragg condition shown in Fig. 1.6. 
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Figure 1.8. X-Ray Standing Wave spectra for atoms located at different distances 
from the Bragg planes. The excitation rate can be measured by monitoring 
photoelectrons, fluorescence yield, etc. 
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Figure 1.9. Calculated XSW spectrum for the (220) reflection of GaAs at 90°. The 
curves correspond to different values of the coherent distance; the coherent fraction was 
set to one. The files were broadened with a Gaussian of 0.8 eV FWHM The bottom 
curve is the reflectivity. This figure shows that differences of 0.1 in the coherent distance 
can be resolved just by eye inspection. 
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Chapter 2. Methodology to Measure the Geometric structure of 
the Bi Overlayers 

The lack of real periodicity of the Bi/GaAs and Bi/GaP systems (see Section 1.2.1) makes 
impossible their complete structural determination, so a level of simplification has to be 
chosen. On the other hand, ideal monolayers of the kind discussed in Section 1.2.1 are 
very simple because there are some restrictions imposed by symmetry. Some of these 
conditions are expected to be fulfilled only approximately on the more complex systems, 
in which the symmetry is broken by the presence of the vacancies (see Figs. 1.1 and 1.2). 
This is precisely the kind of approximations that are considered in Section 2.1 . 

Once the problem, or level of simplification, is clearly defined, the next step is to 
recognize the experiments needed to obtain enough information to solve that problem. 
This is done in Section 2.2. The formalism used to connect the experimental results to the 
overlayer structure is discussed in the rest of the chapter. 

2.1 Definition of the problem and the two-site approximation 

As mentioned earlier, ideal overlayers contain two adatoms per substrate unit cell, one 
bonded to the cation (type 1) and the other to the anion (type 2). For this analysis, it is 
convenient to describe the position of the adatoms in terms of a new reference frame 
defined as follows: the X-axis runs along the (i 10) direction, the Y-axis along the (001)) 
and the Z-axis along the (110) direction (see Figs. 2.1 and 1.1). In the ideal systems, a 

complete determination of the geometrical structure of the overlayer requires the 
knowledge of six parameters, which are the coordinates of each one of the two adatoms. 
On the other hand, the (1x1) LEED symmetry and the crystal symmetry constrain the 

displacement along the X direction to be bulk-like; that is, the Bi adatoms have to lie on 
the (7 10) atomic planes (see the right side of Fig. 1.3). The problem is thus reduced to 

finding the Y-Z coordinates of the two adatoms, resulting in four unknowns. 

In contrast, the periodicity of the (nonideal) Bi/GaAs and Bi/GaP is much larger, and so 
is the number of parameters needed to completely determine the geometry of the 
overlayer. The objective of this work is to obtain information about the coordinates of the 
Bi adatoms in the Y-Z plane. The X direction, where the periodic@ of the interfaces is 
longer, was not studied. The complexity of the problem would not allow the 
determination of the Y-Z coordinates for every adatom in the (6x1) unit cell, so an 

approximation was made in the modeling of the system by assuming that all the Bi atoms 
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for each type have the same coordinates along the (001) and (110) (or Y and 2) 
directions. This is equivalent to saying that all the Bi atoms on the upper side of the 
chains-bonded to the anions (dark circles, Figs. 1 .l and 1.2)--have the same (yt,zt ) 
coordinates, and all the Bi atoms on the lower side-bonded to the cations (white 
circles)-have the same (yz,zz) coordinates. Because the Bi atoms type 1 (or 2) close to 
the edge of the chain are not equivalent to those near the center, they do not necessarily 
have the same coordinates (as they would for ideal overlayers), so the result about the Y 
and 2 coordinates for each kind of Bi should be understood as average values. 

In these terms, the objective is to find the (yt,zr) and (~2.~2) coordinates of the Bi 

adatoms of type 1 and type 2. Due to the intrinsic and experimental difficulties of the 
problem, no attempt was made to obtain information about the relaxation in the X 
direction. 

2.2 Reflections needed under the two-site model 

Information about the Y-Z plane can be obtained by performing XSW experiments for 
reflections such that the corresponding crystal vector (H) lies in that plane. This is 
because the coherent distance and coherent fraction depend only on the atomic 
coordinates parallel to H (see Eq. 5.13 and following discussion). The experimental 
results from such reflections are not affected by the dependence of the adatom 
distribution on the X direction. 

We performed XSW experiments for three different Bragg planes defined by the crystal 
vectors (220)) (111) , and (117) (see Fig. 2.1). Those planes terminated with Ga are 
called (111)) and those terminated with P are called (11 i) . All these crystal vectors lie 
on the Y-Z plane, so the experimental data is completely independent of the adatom 
distribution on the X direction. 

Under the two-site model described in the last section, these three reflections provide 
enough information to determine the Y-Z coordinates of the two Bi adatoms (see 
Section 2.4), and provide a means to check self-consistency (see Eq. 2.8). 

2.3 The model for the distribution function 

Before providing the model for the distribution function for the systems presented in this 
thesis, the simple but important case of an incoherent distribution will be discussed. For 
this case, the distribution function [ f~ (D)] is uniform. (It is equal to I/& to ensure its 
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normalization to 1, as required by the definition of Eq. 5.13.) An example of adatoms 
distributed randomly is a cluster, since the position of the adatoms forming a cluster 
keeps little or no coherence with the crystal (some degree of clustering is observed in 
similar systems [I]). Another possible source of disorder is the edge of substrate terraces, 
where the adatoms may be bonded in many different sites. 

Some degree of disorder will be assumed for both the Bi/GaAs and Bi/GaP systems. 
Because all three reflections were performed using the same surface (see Chapter 3), the 
disorder will be assumed the same for every reflection. We are, then, considering two 
distinctive positions in the Y-Z plane, plus some degree of disorder. Besides thermal 
vibrations, the distribution function for reflections with crystal vector lying in this plane 
can be written: 

f (D) = 0-d 4J 
H F + 2 [S(D-DI”)+cY(D-DF)] , (2.1) 

where 4 is the order parameter (so 1 - 4~ is the fraction of the adatoms with random 
positions), and IIT2 are the coordinates of the two Bi adatoms along the direction of H. 
This form of the distribution guaranties its normalization to one, an equal population in 
sites 1 and 2, and a random part with density (1 - @)/&r . The formalism of Eq. 2.1 is 
very convenient because it clearly defines the model that is being used. The 472 
distances are not independent of each other because they have to triangulate properly 
(see Fig. 2.1). 

The model of Eq. 2.1 has a large degree of generality; all the structures considered in 
tight-binding total-energy calculations (TBTE) on similar systems [2] correspond to the 
class represented by Eq. 2.1. 

2.4 Structure determination under the two-site approximation 

Now that the distribution function has been written in terms of the coordinates of the 
adatoms (Eq. 2. l), we can use Eq. 1.4 to relate the experimental values of the coherent 
distance and coherent fraction to the overlayer structure. When thermal vibrations are 
taken into account, the relations are as follows [3]: 

DF = Dp+DF 
2 ' 
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(2.3) 

where e-M is the Debye-Waller factor [4], which accounts for the thermal vibrations. 
This factor appears because the evaluation of the coherent fraction involves exactly the 
same sum of phases that is used to calculate the scattering strength of X-rays [4]. 

When the origin is set between the ideal projected bulk positions, as illustrated in 
Fig. 2.1, Eqs. 2.2 and 2.3 read as follows: 

and 

D[“‘l = c z1+z2) + & (Yl+A) ’ 

D[iiii 
C - & (Yl+Y2) ’ 

f[2201 = ewM 0 ~0s x c $( z1-‘2) 7 

f[ll’l = emM 4) cos n c ($ h-22) + i (Yl -Y,)) ’ 

(2.4.a) 

(2.4.b) 

(2.4.~) 

(2.5.a) 

p iii = emM e cos ;n 
c 
1/-z 

C a (q-“2) - d (Y1-Y2) 
1 

’ (2.5.c) 

where ( y1,2, 21.2) are the coordinates of Bi of type 1 and 2 in the Y-Z plane. Solving for 
z1 + z2 and yr + y2 is very direct from Eqs. 2.4. On the other hand, @, zr - 22, and 
yr - y2 have to be found numerically from Eqs. 2.5. 

Equations. 2.4 and 2.5 form a complete system from which the geometrical structure of 
the overlayer can be extracted. 

2.5 Experimental estimation of the Debye-Waller factor 

There is not much information in the literature about the value of this factor for surface 
atoms or overlayers, but, in any case, the bulk value should provide a good estimate for 
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temperatures well below the melting and sublimation point. The bulk Debye-Waller 
factor can be experimentally determined from the standing wave signal from bulk crystal 

atoms. 

One possible method of estimating e-M is to use the total yield, which is the integrated 
photoemission yield, including secondary electrons and the low energy tail, and is 
overwhelmingly of bulk nature. The most direct way is to use the (220) reflection. The 
(220) planes are nonpolar, so the position of the bulk cation and anion atoms is the same 
relative to those planes. The distribution function of bulk atoms is, then, a delta function 
around its equilibrium position modified by thermal vibrations. The analog of Eq. 2.3 for 
this case is simply 

fp = emM , (bulk sensitive data) . 

Then the Debye-Waller factor for the (220) reflection is directly obtained from the 
coherent fraction of total yield (220) XSW data. By the use of this method, the values for 
emM are found to be indistinguishable from one. Because M goes as the square of H, the 
Debye-Waller factor for the (111) (and (117)) reflections is related to that of the (220) 
reflection as follows: 

e-Ml(111) = (e-“lc220)r8 * (2.7) 

Then, if emM is indistinguishable from one for the (220) reflection, it also is for the (111) 
and (11 i) reflections. The estimation of e -M by other methods also produced a value of 
1 within the experimental error. 

Furthermore, the structural results would have been independent of the Debye-Waller 
factor, had the relation of Eq. 2.7 been linear ( ewM would be incorporated into 4 in 
Eqs. 2.5). 

2.6 Consistency checks for the two-site model 

The method employed to obtain the structure has an intrinsic way to check the validity of 
approximating the Y-Z structure to two sites. The number of parameters to determine 

under the two-site model is five: the Y and Z coordinates of both site and the order 
parameter. On the other hand, the number of parameters determined experimentally was 

six (the coherent distance and the coherent fraction of each of the (220)) (11 l), and 
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(11 i) reflections), resulting in six equations (Eqs. 2.4 and 2.5). The over-determination 
of the system imposes the following relation: 

(2.8) 

which is obtained by adding Eqs. 2.4.b and 2.4.c, and comparing with Eq. 2.4.a. Because 
po1, D[llll, and D[’ 1 iI 

C C c 
are obtained experimentally, Eq. 2.8 constitutes a consistency 

check for the two-site approximation. 

Equation 2.8 can be seen as a simple triangulation of distances from different planes. This 
is because, under the two-site model, the coherent distances Dy are simple arithmetic 
averages of the actual distances DIH and @  (see Eq. 2.2), so simple triangulation 
relation also hold for the coherent distances DL2201, Dil “I, and DL1’ ‘I. 

Extrinsic checks of the validity of the model is provided by, for example, the results for 
the Bi-Bi bond length, which is expected to be close to the sum of covalent radii, which 
has been proven valid for Sb on Gal? [3], Sb on Ge [5], and Sb on Si [5]. 
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Figure 2.1. All (220), (11 l), and (1 li) reflections lie on the Y-Z plane defined in 
this figure. The origin is local to each unit cell. 



Chapter 3. Experimental Configurations Used to Study the 
Bi Overlayer Structures 

One underlying assumption of the last chapter, specifically of Eq. 2.1, is that the order 
parameter is the same for the different reflections. As mentioned, it was possible to make 
this simplification because the set of the three reflections was done, one at a time, on the 
same sample and for each one of the two systems (Bi/GaAs and Bi/GaP). This section 
describes the experimental configuration developed to allow performing all the reflections 
on the same sample. 

3.1 Elements in the XSW experiments 

As mentioned in the introduction, the XSW data were obtained by recording the 
photoemission yield from a core level of the element of interest with a energy discriminator 
CMA detector. Recorded simultaneously, but independently, were the reflectivity (which 
was recorded with a grid) and the total photoemission yield (which was recorded by 
measuring the total current leaving the sample). This is illustrated in Fig. 3.1. The 
reflectivity and total yield provide fiducial information on the energy calibration, energy 
resolution, and properties of the incident X-ray beam. As described in Chapter 5, this 
information is used heavily for the analysis of the XSW data. 

3.2 Experiment Details 

The experiments were performed on the X-24A beam line at the National Synchrotron 
Light Source (NSLS). Tuning of the beam photon energy was done by a double-crystal Si 
(111) monochromator. The Bi XSW data were recorded by monitoring the photoemission 
yield from the Bi 4d5n core level as the beam energy was swept around the corresponding 
Bragg condition. We also simultaneously, and independently, recorded the reflectivity (R) 
and total photoemission yield (TY). The TY is recorded by monitoring the current leaving 
the sample, which is connected to an electrical feedthrough. 

The ultrahigh vacuum (UHV) system had base pressures in the low lo-10 Torr range. 
The chamber manipulator had three lineal and one angular degrees of freedom. The XSW 
spectra from Bi were obtained by recording photoemission yield with an angle integrated 

Cylindrical Mirror Analyzer (CMA). Since the Bi photoemission peak rides on the top of 
a background of inelastic electrons, the spectra from the background were also recorded, 
and subtracted from the elastic signal (see Section 6.2). The surface was prepared by 
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cleaving an outgassed GaAs (GaP) crystal along the (110) face, followed by evaporation 
of approximately one monolayer of Bi, as measured by a quartz crystal oscillator. All the 
cleaves were mirror-like. The samples were next annealed at 325oC for 10 minutes to 
desorb any Bi in excess of one monolayer [l] and to enhance the interfacial order. 
Note that in the STM [2] experiments, the samples were not annealed, so we can expect 
much less clustering in our samples than that shown by the STM images; this is because 
annealing removes column V adatoms in excess of a monolayer [ 11. 

3.3 Experimental configurations 

The orientation of the sample with respect to the incoming beam and CMA was the same 
for every reflection. The experimental setup, including important elements of the 
monochromator and the position of the CMA detector, is depicted in Fig. 3.2. Figure 3.3 
shows the configuration used for each reflection; that is, it shows the orientation of the 
sample, Bragg planes, and incident and reflected beams. 

Performing the experiments in a nondispersive configuration as described in Chapter 8, 
which is very convenient for resolution [3], was out of the question because of the 
presence of the focusing mirror after the monochromator (see Fig. 3.2). Besides, it is not 
possible to perform all three reflections nondispersively using the same set of 
monochromator crystals, and changing monochromator crystals would prevent the use of 
the same surface for all three reflections due to the large changeover time and the sample 
finite life in vacuum. This section describes the configuration used for the different 
reflections. 

3.3.1 The back-reflection configuration for the (220) experiment 

The (220) reflection XSW experiment was performed in the back-reflection mode [4]. In 

this mode, the Bragg planes under study are perpendicular to the incoming X-ray beam, so 
the beam is back-reflected, and the reflectivity is recorded by the IO monitor (see Fig. 3.2), 

and appears on the top of the signal from the incident flux. 

Figure 3.4 shows a Du Mond diagram corresponding to the back-reflection mode. The 

phase of the standing wave is constant along the lines within the broad stripe. The shaded 
rectangle corresponds to the (0,n) -zone illuminated by the incoming beam. In the ideal 

case, where the collimating mirror sends a perfectly parallel white X-ray to the 
monochromator, the height of the rectangle is equal to the width of the square of the 

reflectivity of the Si crystals. The focusing mirror sets the angular spread of the beam; 
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that is, it sets the width of the illuminated zone. This results in a illuminated zone of 
approximately rectangular shape. The arrows indicate that the experiments are performed 
by sweeping vertically; that is, by sweeping the nominal photon energy at a constant 
nominal angle. 

It can be seen in Fig. 3.4 that the large angular dispersion introduced by the focusing 
mirror has only a small effect on the phase resolution. The phase resolution is ultimately 
what sets the experimental resolution. This is the property that makes advantageous the use 
of the back-reflection configuration. 

3.3.2 The asymmetric-reflection configuration for the (111) and (11 i) 
experiments 

Performing the (111) and (11 i) experiments in the back-reflection mode has many 

disadvantages, the most important being that it requires a change of crystals in the 
monochromator (for example, to InSb crystals) because the energy of the (111) and (117) 

back reflection is too low for the Si crystals-and, as mentioned, changing monochromator 
crystals would not allow the use of the same surface for the set of the three reflections. In 
fact, there would also not be an increase in resolution in the back-reflection configuration 
because the reflectivity from InSb crystals have a larger intrinsic width than the reflectivity 
from Si. 

By performing the (111) and (11 i) XSW experiments in an asymmetric configuration 
(see Fig. 3.3), it was possible to use the same sample orientation as in the (220) reflection 

(see Fig. 3.2), and it was possible to use the same crystals in the monochromator. This 
configuration is called “asymmetric” because of the different angles made by the incoming 
and reflected beams with respect to the substrate surface (see Fig. 3.3). 

Figure 3.5 shows a Du Mond diagram corresponding to the asymmetric reflection. The 
shaded rectangle corresponds to the (8, a) -zone illuminated by the incoming beam. 

The angular dispersion of the beam was reduced because the beam was intentionally 
unfocused. A comparison can be made with Fig. 8.2, which shows a Du Mond diagram 
for the case where there is no focusing mirror between the monochromator crystals and the 
sample, resembling a nondispersive configuration. 

A general XSW expression, applicable to this nonsymmetric configuration, is derived in 
Appendix 1. An equivalent expression was later found in the literature. 
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3.4 The multireflection problem of the (220) back reflection 
configuration 

When the (220) experiment is performed in the back-reflection configuration, the (200) 
and (020) reflections also satisfy the Bragg condition ;1 = 2d~ sin OH, where & is the 
inter-planar distance and 0, is the angle made by the beam to the Bragg planes. Even 

though the (200) and (020) interplanar distance is & times larger than that for the (220) 
reflection, the product dH sin 0, stays constant because 0, is 45O for the (200) and (020) 
reflections and 90“ for the (220) reflection. The simultaneous fulfillment of the (220), 
(200)) and (020) Bragg conditions is also illustrated by the Ewald construction of 
Fig. 3.6. A complete discussion of the multireflection problem is presented in Chapter 4, 
which shows the method in which the (220) back-reflection data should be analyzed. 

This multireflection problem is important for wafers because the relative intensity of the 
(220)) (200)) and (020) reflections is a strong function of the cut angle of the wafer [5]. 

On the other hand, this experimental configuration has been widely used on cleaved 
surfaces [6], where no clear experimental observation of multireflections has been made. 

In fact, in our case the (200) and (020) reflections can be neglected right away for the 
following reasons (see Chapter 4): The polarization of synchrotron radiation is in the 
plane of the synchrotron; then, for the orientation used for our experiments (see Fig. 3.3), 
the incident beam has a z polarization with respect to the (200) and (020) planes. On the 
other hand, as shown in Section 4.3.2, the (200) and (020) reflections are not coupled to 
the incident beam for z polarization. Furthermore, for the GaAs case, the (200) and (020) 

reflections are weak. 
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Figure 3.1. Three signals were recorded simultaneously, but independently, in 
the XSW experiments reported in this work: the Photoelectron Yield, with an 
energy discriminating CMA detector; the Reflectivity, with a grid; and the Total 
Photoemission Yield, by measuring the total current leaving the sample. 

39 



J reflected beam 
reflected be-m 

by the(ll1) 
by the (220) 

Bragg planes 
Bragg planes 

I / 

% or GaP \ detector 
crystal 

\ 
Double Crystal 
Monochromator 

reflected beam 
by the (111) 

(Si (111) crystals) 

Bragg planes 

27 
Reflectivity 

detector 

L 

(11°) (110) 
X0 

Z 

” y (001) 
sample orientation 

Figure 3.2. Experimental setup for the three reflections 
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Figure 3.3. The three reflections can be performed without moving the sample, just 
by moving the monochromator to the corresponding energy of each reflection. The 
(111) and ( 111) reflections do not occur at exactly the same energy because of a 
small angular tilt. The photon energies correspond to the GaAs experiments. 
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Figure 3.4. Du Mond diagram corresponding to the back-reflection 
configuration. 
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Figure 3.5. Du Mond Diagram corresponding to the asymmetric 
configuration. 
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Figure 3.6. Ewald construction showing that the (200) and (020) Bragg 
conditions are simultaneously satisfied to the (220) Bragg condition in the 
back-reflection configuration. 
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Chapter 4. Study of the Multireflection Problem of the 
(220) Back-Reflection Configuration 

4.1 The coupling of four beams 

It was mentioned in Section 3.4 that performing the (220) experiment in the back-reflection 
mode has an intrinsic complication: the (200) and (020) reflections are excited 
simultaneously to the (220) reflection. The simultaneous fulfillment of the (220)) (200)) 
and (020) Bragg conditions is illustrated by the Ewald construction of Fig. 3.6. Illustrated 

in Fig. 4.1 are the four beams associated with each of the four wave vectors of Fig. 3.6. 
These four beams are coupled to each other because the beams bounce back and forth from 
each direction to the other three. 

This problem is an important issue for experiments performed in wafers because the 
relative intensity of the (220)) (200)) and (020) reflections is a strong function of the cut 
angle of the wafer [ 11. On the other hand, this experimental configuration has been widely 
used on cleaved surfaces [2], where no clear experimental observation of multireflection 
has been made. 

Presented in this chapter are detailed calculations of the multireflection problem carried out 
in order to establish the way the (220) experimental data should be analyzed. To this end, 

it was necessary to develop a form of the wave equation of X-rays in crystals suitable for 
multireflection calculations. This new form (Eq. 4.12) is basically a simplification of the 
one existing in the literature [3]. Without the level of simplicity of Eq. 4.12, the 
multireflection discussion of this chapter would be practically impossible. 

The great detail of these calculations may interrupt the flow of reading this thesis. 
Fortunately, the conclusions of this chapter are very simple, so the reader not interested in 
equations can skip Sections 4.2 and 4.3 and go directly to the summary in Section 4.4. 

4.2 The wave equation of X-rays in crystals 

This derivation is an extension and generalization of that presented by Batterman and Cole 
(B&C) in their 1964 classic paper [3]. The extension consists in showing that the 
longitudinal term of B&C’s Eq. Al2 cannot be neglected (as erroneously done by B&C), 
but has to be retained to correctly account for the polarization. In fact, that term can be 
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nicely combined, leading to a simpler final expression (Eq. 4.12). This expression is the 
one needed to correctly carry out the multireflection calculations. 

Up to Eq. 4.9, this derivation copies many elements from B&C, although it is done in a 
more general framework consistent with the discussion of Chapter 5. A purely formal 

advantage of the more general treatment is that the electromagnetic fields are not restrained 
to have, besides an overall exponential decay, the crystal periodicity (compare B&C’s 
Eq. Al to Eq. 4.4). 

4.2.1 Derivation of the wave equation 

The propagation of X-rays in crystals is governed by Maxwell’s equations (as mentioned in 
Section 51.1, the calculation of the electric field is carried out classically). We start with 
the basic Maxwell’s equations and a nonlocal in time relationship between the electric 
displacement and the electric field: 

VxE(r,t) = -fro & H(w) , 

VxH(r,t) = & D(w) , (4.2) 

D(r,t) = jdf’ t$r,t’) E(r,t-t’) . (4.3) 

From these three equations, we can solve for the electric field. It will be done in Fourier 
space, so all the fields are expanded as follows: 

A(r,t) = jdKdvA(K,v) exp(-2ni (K-r- vt)} . (4.4) 

The dielectric function has the periodicity of the crystal, and is naturally expanded in terms 
of the structure factors: 

E(r, v) = EO 1 -r c FH(v) exp{-2tiH.r) . 
H 1 

(4.5) 

Here, H is a crystal vector and FH is the unit cell structure factor on the direction of H 

and evaluated at the X-ray frequency. r is defined as follows: 
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where il I I/k is the wave length in vacuum, m and e are the electron mass and charge, 
~0 is the vacuum dielectric constant, and V is the volume of the unit cell. 

With these expansions, Eq. 4.1 reads as follows: 

-27ri dKdv K x E(K, v) exp{-2zi (KS r - v t)} 

dKdvH(K,v) exp(-2xi (K-r- vt)} . 

From the lineal independence of the expansion we have: 

K x E(K, v) = vpo H(K, v) . 

In the same way, Eq. 4.2 results in: 

KxH(K,v) = -vD(K,v) . 

(4.6) 

(4.7) 

From the convolution of Eq. 4.3, we get: 

D(r,v) = dw) E(r, v) . 

Expanding D(r, v) and E(r, v) in space, and using expansion 4.5, we get: 

dK D(K, v) exp{-2z i K. r} 

. =&O 1-r cFH( v) exp{--2niH*r dK E(K, v) exp{-2ni Ksr} 
H 

This equation can be conveniently simplified by performing the following changes of 
variable in this order: 

(1) H -+-H, (2) K-H + K’, (3) K’ + K . 

This leads to: 

D(KJ’) = QE(K, v)- E$ c FH(v) E(K+H,v) . (4.8) 
H 
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Equations 4.6,4.7, and 4.8 are the Fourier transform version of Eqs. 4.1,4.2, and 4.3. 
To solve for E(K, v), we substitute equations 4.6 and 4.8 into 4.7 as follows: 

Kx ’ - KxE(K,v) = E(K,v)-r c Fn(v)E(K+H,v) , 
POV H 

but 

v2q)p() = v2 k2 
7’ ’ 

where k2 P k - k , and k is the wave vector in vacuum. After very little algebra, we get: 

[k2(1-mo)-K2] E(K)-k2r c FfiE(K+H)+K.E(K) K=O 9 (4.9) 
H#O 

where K2 = K - K . For the sake of shortness, we have dropped the explicit dependence of 
the electric fields and structure factors on v. This equation, which is equivalent to B&C’s 
Eq. A. 12, tells us that the radiation mode (Ko, v) is coupled to the radiation mode (Kl, v) 

only if K1 - Ko is a crystal vector. 

Up to Eq. 4.9, this derivation has been very similar to the one followed by B&C to get his 
equation A12. We extend the analysis by noticing that Eq. 4.9 can be nicely simplified. By 
dot multiplying Eq. 4.8 by K we get: 

K-D(K) = E~K.E(K)-E~Z-’ c FnK.E(K+H) , 
H 

but from Eq. 4.7, the first member is equal to zero, so we can write: 

K.E(K) = 1 ‘F c Frr K.E(K+H) . 
’ H 

Substituting into Eq. 4.9 we get: 

[k2(1-ITo)- K2] E(K) 

-k2r c FH E(K+H) - 
1 

K.E(K+H)K =0 . (4.10) 
Hz0 k2(1- ITo) 1 
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The expression in the braket of the second term can be written: 

E(K+H) - K2 
k2(1- PO) 

~E(K+H) iz; (4.11) 

where K is the unitary vector in the direction of K. 

The ratio K2/k2(1 - ITo) is very close to one for the following reason: We are interested 

oi those KS for which E(K) is appreciable. From Eq. 4.10, E(K) can be large only if 
[k2(1-IT,)-K2] is of the order of k21’FH (which is precisely the Bragg condition 

discussed in Section 4.2.2); but ITE is of the order of 10m5. 

Expression 4.11 can then be approximated to E( K + H) - KS E( K + H) K , which can be 

recognized as the component of E(K + H) perpendicular to K, and will be denominated 
EN (K + H) . In this way, Eq. 4.10 reduces to: 

[k2(1-no)-K2]E(K) -k2r c FtiEIK(K+H)=O . 
H#O 

(4.12) 

This form of the wave equation of X-rays in crystals is simpler and more general than in 
the literature [3,4], and allows for multireflection calculations. 

4.2.2 Propagation of X-rays impinging a crystal and the dynamical 
Bragg condition 

Consider the case where the radiation mode (ko, v) is present in vacuum and impinging a 

crystal. The question to answer is which radiation modes inside the crystal will be excited. 

From the boundary conditions, a radiation mode (Ko, v) is immediately excited with 

KO = ko + qn, where n is a unit vector normal to the crystal surface; the constant 4 is 

small because the dielectric function of the crystal is very close to the vacuum dielectric 
function. Because the E(K0, V) is coupled to E(Ko + H, v) for every H, all the modes 

’ (Ko + H, v) for which 

[k;(l-IYo) - (K. +H)(Ko +H)] N k21TR (4.13) 

will also be excited (see Eq. 4.12). 
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It is very important to notice that the condition for excitation of Eq. 4.13 is precisely the 
dynamical version of the Bragg condition. Say for example that, besides holding for 
K = Ko, the excitation condition (Eq. 4.13) holds for K = Ko + H1 = K,. We then have: 

[ka2(1-~7-~)-1~~4~~] -k2mH , 

[k;(l-ZFo)-KIX~] -k2mi . 

(4.14a) 

(4.14b) 

Again, because l7J~ is of the order of 10w5, conditions 4.13 tell us that Ko and Kt have 

the same magnitude within a deviation of 10s5 . This means that for the mode (Kt , v) to he 
excited, K1 needs to satisfy the Bragg condition (see Eq. 1.2)-although not exactly, it 

must be within a deviation of 10W5. 

4.2.3 Propagation in the case of no Bragg condition met 

Even though this case is very simple, it illustrates the methodology to solve more complex 
cases, such as the one treated in Appendix 1. Consider the case for which 

[k&mo) - (KO +H)-(Ko +H)] 

is not small for any H different from zero (in other words, no Bragg condition is met). 
Then, Eq. 4.12 reads as follows: 

[k$(l-Z-Q) -K;] I&)=0 . 

This equation has a nontrivial solution if 

[ki(l-IFo) -K;] =0 , 

from which we obtain the familiar relation 

Ko=nkg 

(4.15) 

(4.16) 

where n = dm is the index of refraction. 
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4.3 Solution to the wave equation in the multireflection case of the (220) 
back reflection configuration 

4.3.1 The start-up equation 

We apply Eq. 4.12 to the case in which the wave vector k0 of an incident X-ray is near the 

back-reflection condition of the (220) reflection. As mentioned in Section 4.1, the (200) 
and (020) reflections have also to be considered. The crystal vectors corresponding to 
those three reflections are the following: 

Hl = J-4 fi -L (l,l,O) = J8 -I- (110) 
aL1/2” ’ 

H2 = Hz(l,O,O) = 

H3 = H3(0,1,0) = 

where at is the lattice constant. Equation 4.12 couples an infinite number of modes; 

however, as described in Section 4.2.2, only those modes satisfying a dynamical Bragg 
condition are not neglected. These modes, which are shown in Figs. 3.6 and 4.1, are: Kg, 
Kl=Ko+H,, K2=Ko+H2,and K,sKo+H3. 

Equation 4.12 applied for K equal to Ko, K1, K2, and K3 results as follows: 

[kiw-Fo)-G] VO) 
Fri,EIKo(K1)+F172EIKo(K2)+FTi3EIK~(K3)]=o 

(4.17a) 
3 

[k&=-‘&K?] E(b) 
-ko2rIFH,ElKl(Ko)+FH2ElKl(K3)+FHgElKl(K2)]=o 3 (4.17b) 

[ko2(1- rFo)-d] E(K2) 

FHqEIK2(K3)+FH~EIK2(KO)+Ffi3EIK~(K1)]=o' (4.17c) 
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- k;ZjFn4Em3 (I$)+ F;iT2Efi3 (Kl) + FH3Em3 (Ko)] = 0 + ’ (4.17d) 

The terms included in the series are those for which H is such that K + H is either Ko, 
Kt, K2, or K3. The crystal vectors that play a role are ItHI, *HZ, fH3, and +HJ, 
where H4 = H2 - Hg. The presence of the crystal vector Ha is due to the reflection from 
K2 to K3 by the (220) Bragg planes. 

The polarization of the incident beam is either cr or X, and each case is considered 
separately. The simplest case is for the n polarization because the incident beam is not 
reflected by the (200) and (020) planes. 

4.3.2 The x polarization 

This is the simplest case because many of the terms can be neglected. For example, 
Em, (K2) = 0 because E(K2) is almost parallel to Ku For this reason, the K2 and K3 

modes are not coupled to the incident radiation Ku. The system is reduced to the following 

two equations: 

[&I- mo) - ~i$] E(K~) - ~~Q$QK&K~) = o , (4.18a) 

[k&-mo) -K?] EWi) -~~~~H,FLK~(K~)=O . (4.18b) 

This system is identical to the one solved in Appendix 1. The back-reflection configuration 
is just a particular case of the general solution presented in Appendix 1. 

4.3.3 The 0 polarization 

4.3.3.1 The calculation method 

For the CT polarization, Emi (Kj) = E(Kj), so none of the terms of Eqs. 4.17 vanish. 

Equations. 4.17 can be slightly simplified because only three of the structure factors are 
different: 

FH~=F~~=FQ=F~~ (EF2) . 
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It is convenient to express Eqs. 4.17 in matrix notation: 

where Yi &(l-rF,)-Kf. 

To ensure continuity of phase fronts across the surface, the difference between the wave 
vector of the incident beam in vacuum (ko), with the wave vector of the beam propagating 
inside the crystal (Ko), is a vector perpendicular to the surface 

Ko=ko-qn, (4.20) 

where n is a unitary vector normal to the surface. The parameter 4 is small (relative to 
Ikol) because the dielectric function of crystals in the X-ray frequency range differs only 

slightly fi-om 1; 4 is found by solving Eq. 4.19. 

To be able to consider deviations from the exact back-reflection, the incident vector kg is 
allowed to make an angle (00, $0) with the surface normal. Here, kg can be expressed as 

follows: 

k. =-~(COS~O n+s) , (4.21) 

where 

s=aa -!- (1,-1,0)+p(0,0,1> , (4.22) 

with a = sin f30 cos 90 and p = sin 00 sin @O This representation allows us to easily write 
every Yi in terms of the parameter q and the angle of the incident beam, as follows: 

ulo=K&k~(l-IT’o) , (4.23a) 

!Q=Hf+K; - 2koH1 cos 0, - 24HI - ki(l - ZYJJo) , (4.23b) 

Y2 = H~+K&2koH2cos82-24H2/&-k&1-TFg) , (4.23~) 

Y2=H32+K&2koH2cos83-24H3/~-k$(1-17’~) , (4.23d) 
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where 

6 = k;+q2+2koq cOseo , 

e1 = e2 , 

cos e2 +H2’kg 
H2b 

= & (cOseo +a) , 

and 

c0se3 E - H3-ko = 1 
H3ko 7+ 

cOseo-a) . 

From Eqs. 4.19, it is possible to express the intensities of the reflected beams in terms of 
the set Of Yi ‘S: 

Wl) = Y. -# l--F, 

Vo) Y, -k;l-Fl ’ 

+2) = 
ECKO > 

YoFl -b21’F,2 + k@F; - k;lT; E(KI) 
Y2F2 - k#FlF2 Y2F3 - k:lTf E(Ko) ’ 

EW3) = y2 -&bi E(K2) 

ECKO > y3 -&-q EKO) * 

A nontrivial solution of Eq. 4.19 requires the determinant of the 4x4 matrix to be zero. 

(4.24) 

This constitutes an eighth-order equation for 4. Here we make a point that the order of the 

equation is two times the number of waves. This is in contrast with the normal XSW case, 
which considers two waves but the equation to solve is quadratic (see Eq. A1.23). The 
reason for that is that the orientation of the back-reflection configuration does not allow 
some of the approximations used in Appendix 1. For example, parameter a of Eq. Al.24 
would be zero for the (200) and (020) reflections. 

The physical solution for 4 has to hold for each of the following conditions: 
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(1) It must ensure that the beam becomes extinct as it penetrates the crystal; the imaginary 
part of 4 has to be negative. 

(2) The sum of the intensities of the reflected beams does not exceed the intensity of the 
incoming beam. 

(3) The parameter 4 should be small, in the sense that the magnitude of the wave vector of 

the incoming beam in vacuum does not change too much as it enters the crystal; that is, 
Ko//Q should be of the order of 1. 

These conditions allow us to discriminate the solution among the eight roots of Eq. 4.24. 

The calculations were performed numerically. The computer program, which was written 
using MATHEMATICA, is provided in Appendix 2. 

4.3.3.2 Results for the CT polarization case 

Calculations were carried out for a range of angles around the exact back-reflection 
configuration, and for many atomic positions, and were compared to calculations where the 
(200) and (020) reflections are ignored. In all cases, the shape and intensity of the exactly 
calculated XSW spectrum were indistinguishable from those where the (200) and (020) 

reflections were ignored. The reason for this is that the intensity of the beams reflected by 
the (200) and (020) planes is relatively very small. 

4.4 Conclusions of the multireflection study 

The XSW theory is built under the assumption that only one Bragg condition is satisfied. A 
problem arises when the (220) reflection is performed in a back-reflection configuration 
because, for this particular orientation, the (200) and (020) Bragg conditions are also 
satisfied. Because the incident beam is reflected back and forth by the three sets of Bragg 
planes, the four waves of Fig. 4.1 are intrinsically coupled. 

This problem is treated using Maxwell’s equations. The results indicate that the intensity of 
the beam associated with the wave vectors K2 and K3 of Fig. 4.1 is zero for the 7t 

polarization, and neglectable for the CT polarization. Analysis of the XSW data obtained 
under this configuration can be performed as if only the (220) Bragg condition were 
satisfied. 
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Figure 4.1. In the (220) back-reflection configuration, an incident wave is 
reflected back and forth by the (220), (200), and (020) crystal Bragg planes. 
This has as aresult the coupling among the intensities of the four waves. 
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Chapter 5. The General XSW Expression and the Method of 
Extraction of DC and fC from the Experimental Data 

As mentioned in Section 1.3.4, XSW spectra depend on the position of the atoms through 
the coherent distance (0,) and coherent fraction ( f,). On the other hand, a real 
“monochromatized” X-ray beam has some degree of angular and frequency dispersion, 
which depend on the details of the experimental setup, such as the slit size, the shape of the 
mirrors, and the orbit of the electrons in the synchrotron ring. To fit XSW data, it is 
essential to account for the dispersion of the beam. 

Under ideal experimental conditions, it is possible to obtain incident beams of enough 
uniformity to use the expected theoretical shape. On the other hand, as shown in previous 
studies, XSW experiments can very well be performed in nonspecialized XSW beamlines, 
as in those already existing for EXAFS studies, for which the incident beam is not perfectly 
characterized. This potentiality made possible the realization of the experiments presented in 
this thesis, and has prompted the proliferation of the use of the XSW technique in structural 
studies [ 1 J. 

For the most common nonideal cases, a widespread method is to model the effects of the 
energy and angle dispersion of the incident beam with a single Gaussian broadening of the 
data; the parameters of the Gaussian are extracted from the reflectivity (or the total yield) 
and used to fit the XSW data [l]. For the data presented in this thesis, the Gaussian 
approximation was not good enough. 

As shown in this chapter, a better approximation is to extract the characteristics of the 
incident beam from the reflectivity (or total yield) by deconvolution. To develop and 
present the ideas and approximations behind the deconvolution method, it was necessary to 
state formally some aspects of the framework of the XSW theory, a task that is done in 
Section 5.1. None of the ideas presented in Section 5.1 are new, but rather they were 
materialized from the general wisdom in the literature. 

The advantages of the deconvolution method are that: 

(1) It provides fits of much better quality. 

(2) The results of the fits are more dependable. This is shown experimentally by fitting 
data for which the f, and DC are known. 
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(3) Theoretically, it is better justified. 

(4) The fitting is a one step procedure, reducing the computer time by at least half. 

5.1 The XSW expression for a dispersive incident beam 

The purpose of this section is to provide a complete expression for the XSW signal 
(Elq. 5.16) and reflectivity (Eq. 5.19X taking into account the nonmonochromatic nature 
and angular divergence of the incident X-ray beam These expressions shows that the 
XSW signal and reflectivity depend on the beam characteristics in the same way. The 
method of analysis presented in Section 5.2 makes heavy use of this fact. 

The formalism employed produces additional benefits, such as a clear definition of the 
distribution function. This definition (Eq. 5.13) is used in Chapters 2,6,7, and 8 to 
properly interpret the experimental results. The equations are written in terms of the 
reflectance, for which an expression is derived in Appendix 1. 

5.1.1 The excitation rate of electrons by Bragg-coupled X-ray beams 

This section presents a formal expression for the electronic excitation rate by a real (non- 
monochromatic) incident X-ray beam. The XSW technique uses the coherent interference 
of X-rays to obtain structural information. It is emphasized that, although a spectrum of 
modes of radiation is present in the crystal, only those modes coupled by a Bragg condition 
are coherently added. The clear presentation of these concepts, which are not at all new, 
permits a more systematic discussion of the data analysis method employed in this 
dissertation. 

The rate of electronic excitation of atoms in a crystal by an X-ray near a Bragg condition 
involves the destruction of a photon. To the knowledge of this author, a quantum 
electrodynamics solution to the problem of radiation diffracted by a crystal has not been 
presented in the literature (and it is not at all the objective of this work to resolve this 
problem). Nevertheless, the way that the problem has been treated in the literature implicitly 
combines quantum arguments with semiclassical and classical calculations. In this section, 
a formal XSW expression for a real beam is provided. As an aside, the quantum arguments 
behind the XSW theory are explicitly presented. 

Incident X-ray radiation of wave vector ko in vacuum propagates inside the crystal with a 
wave vector Ko = Kg (kg) slightly different from kg. It is well known that when Ko 
nearly satisfies a Bragg condition, the presence of the crystal induces the excitation of a 
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mode of radiation with wave vector Kt = Kc + H, with H the crystal vector 
corresponding to the reflecting Bragg planes. This means that the photons of the system are 
not simply planes waves, but have two parts corresponding to the incoming and reflected 
beams. The excitation of an electron by the destruction of a photon involves those two 
parts. The coherent interference of those parts is precisely what makes the XSW technique 
sensible to the atomic position. 

Berman and Bedzyk (B&B) [2] presented an expression for the cross section (do/dQ) of 
the photoelectric excitation with the electromagnetic field treated classically. Using our 
nomenclature, we basically reproduce B&B’s Eq. 2 as follows: 

2ni Ko - r) EO .V + E(K1) exp(-2d KI. c) &I .V} 1 if (5.1) 

where (fl is the ejected electron defined by the solid angle Q, 1 i) is the initial state of the 
electron, r is the vector position operator, EO and ~1 are the polarization vectors of the 
electric field, and E(K) is the electric field intensity. 

The dipole approximation is needed for the simplification of Eq. 5.1. Usually, the dipole 
approximation is stated as follows: 

exp(-2n i Km r) + 1 (%rong” dipole approximation) (5.2) 

It is important to stress that we cannot use the dipole approximation in its version given by 
Eq. 5.2 (as erroneously used by B&B), because we would be neglecting the dependence of 
the excitation rate on the atomic position. In fact, the approximation that has to be used to 
recover the XSW equations is the following: 

exp(-2n i K. r) Ii) = exp(-2x i K. r’) Ii) (“weak” dipole approximation) (5.3) 

where r’(no longer an operator) is an averaged position of the electron in its initial state 
and will be taken as the atomic position. The approximation of Eq. 5.3 can be thought of as 
a weaker version of the dipole approximation. In most cases, when no interference is 
present, this approximation is equivalent to the strong dipole approximation because the 
phase disappears when the absolute value of the matrix element is calculated. When 
interference is important, as in the XSW case, the strong version cannot be used. The 
justification of Eq. 5.3, which is more difficult than in the optical case because the 
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wavelength is of the order of the inter-atomic distance, is beyond the scope of this work. 
Expanding Eq. 5.1, and using the weaker approximation, we get: 

s = 1 E(Ko) f Iexp(-2niKg.r) 1 I(fI&o.V]i) 1 

+ 1 E(Q) ]” Iexp(-2niKl.r) 1 1 (.flwVli) 1 
+ 2Re exp(-2tiH.r) E(Kl) E*(Ko) (i] eo.Vlf) (fl q-Vii)} , { (5.4) 

where we have dropped the prime on r’ . As nicely shown by B&B, the angular 
distribution of the photoelectron yield is described by Eq. 5.4. We are interested in the 
integrated yield, which is usually what is measured in the laboratory (a CMA detector, such 
as the one used in our experiments, measures angular integrated yield). The integrated 
excitation rate w(r) of an electron of an atom positioned at r , is obtained by adding over 
all solid angles, and results in [2]: 

w(r) = llZ(Ko)f I exp(-2ltl’ Ko ,r) I + IE(K~)~ I exp(-2xi K1. r) I 

+2q.qRe { exp(-2niH.r) E(K1) E*(Ko) } . (5.3 

Adding over all the incoming radiation, and ignoring changes in the matrix elements of 
Eq. 5.4 as Ko changes, we get: 

w(r) - JLIIQ(~E(K~)~ I exp(-2d ~~ . r) I + IIZ(K,)~ I exp(-2ni K~. r) I 

+ 2~0.~1 Re [exp(-2d Her) E(Kl) E*(Ko)]}, (5.6) 

where E(K) = E E(K). In general, if many Bragg conditions are met simultaneously, 

2 

49 - J dko E(Ko) exp(-2a i Ko. r) + xE(Ko + H) exp(-2x i (Ko + H)- r) . (5.7) 
H 

Equation 5.6 (or its generalization, Eq. 5.7) is basic to the XSW theory. 

The most important conclusion is that w(r) is not proportional to the square of the total 
electric field. Notice that some components of the electric field have been selectively 
grouped and added coherently, to then be added incoherently to the rest of the terms of the 
electric field. The integration on ko is not over the whole wave vector space, but only over 
the incident part of the radiation (as stated earlier, the Ko is a function of ko) . 
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The spatial modulation of the excitation rate is the result of the coherent interference of the 
incoming and Bragg reflected beams. The scale of interference is the interplanar distance, 
so, within an interplanar distance, there are fringes with large and fringes with small 
electric field. The rate of excitation of an electron depends on its average position r . 

In the literature (and of course in this thesis) the calculations of the electric field are carried 
out classically (see Chapter 4 and Appendix 1). 

5.1.2 The general XSW expression and the definition of the distribution 
function 

For the one-reflection case, the excitation rate of a core electron with average position r 
(due to all the incoming beam) is given by Eq. 
as: 

5.6 and, with little algebra, can be written 

+ 2 jPjRe[p(kg)e-2ni H’r]} (5.8) 

where p is the reflectance defined: 

(5.9) 

An expression for the reflectance is derived in Appendix 1. The extinction factor CKO is 
defined as: 

c,&) = 1 exp(-2x i Ko. r) 1 . 

The equality 

1 exp(-2x i Ko. r) I = I exp(-2a i Kl* r) I 9 

which can be shown by using Eq. A1.2, has been used in the derivation of Eq. 5.8. 

The so-called extinction factor C&, is not equal to 1 because Ku has an imaginary part. 
This is precisely the factor that does not allow the incident beam to propagate too far inside 
the crystal, making possible the existence of the reflected beam. The extinction effect can be 
calculated through this factor. For both the overlayer and substrate relaxation studies 
included in this thesis, the extinction factor will not play any role because the signal comes 
from near the surface, and the extinction factor has no modulation along directions parallel 
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to the surface--the direction of the imaginary part of Ku is normal to the surface (see 
Section A1.2), so the extinction fronts are parallel to the surface. 

The first factor )E(KO)I 2 of Eq. 5.8 is proportional to the intensity (I) of the incident 
beam with wave vector kg. This intensity depends on the nominal frequency and angle set 
by the monochromator: 

IE(KO)I Oc Z(kOO~kO) 7 (5.10) 

where the wave vector ko correspond to the nominal energy (E ) and angles (Q) of the 
incident beam. 

The last factor is the most interesting one because it is modulated between adjacent Bragg 
planes, and has exactly the spatial periodicity of the Bragg planes. 

Experimentally, the signal comes from all the atoms of a given species in the sample, which 
means that it is necessary to multiply Eq. 5.8 by the density ( f) and integrate over the 
sampled volume. It is also necessary to multiply by the probability of being detected ( PE), 
because it is less likely to detect an excitation deep in the crystal than near the surface. This 
probability plays no role for the overlayer case, because all the atoms are at the surface and 
have the same probability of being detected. On the other hand, it is important for the 
substrate relaxation studies presented in Chapter 8, because it is precisely what makes this 
type of studies possible. We then have: 

Y(E) oc j/drf(r)P&r) dko I(E,ko) (1+b(lq))/2 +21PIRe[P(ko) exP(-2~Hmr)]}~ 

(5.11) 

where E is the nominal energy. The Z(k 00, ko) has been replaced by Z(E, ko) because in 
our experiments the nominal direction of incidence is kept constant, so the nominal angles 
R are obviated, characterizing the beam only through its nominal energy E . 
Equation 5.11 can be rearranged as follows: 
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It is natural to define a function, which is called Distribution Function, as: 

where dH = 1/1HI is the interplanar distance and the orientation of the reference frame was 
chosen in such a way that the third coordinate is parallel to H . The distribution function 
fH(D) can be viewed as the result of moving all the atoms within an inter-planar Bragg 
distance dH. It has the following properties: 

drf(r) PE(r) exp(-2niH.r) 

Wlr) PEW ’ 

and 

J fHdDfH(o)= 1 . 

Then, Eq. 5.12 can be written: 

Y(E) = I ~OWO ) 

x l+b(ko,l’+21PlRe p(kg)%dDfH(o) exp 
(5.14) 

, 

where the constant first factor of Eq. 5.12 was dropped. 

The coherent fraction ( f,) and the coherent distance (DC) are defined in terms of the 
distribution function: 

J dH 

0 
dDfH(D) exp ( -2ni 2) = f, exp(-2d 2). 

Substituting Eq. 5.15 in Eq. 5.14, we obtain: 

Y(E) 0~ Im(o $30) [+~(ko)f +21PI fc Re [p(ko) ev(-2zi 2)] 

(5.15) 

. (5.16) 
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This, after important simplifications (see Section 5.2), is the expression that is used for the 
analysis. It usually is presented as [ 11: 

Y(E) = 
YO 

l+S(E)+2f, IPI ,/?i@jcos v(E) - 2~ z 1 , (5.17) 

which corresponds to Eq. 5.16 for the monochromatic beam. Here % and v are the square 
of the absolute value and the phase of the reflectance. 

It is useful to write the expressions in the opposite direction: 

fc = 

and 

J dH 

D, = ?!IK arctan O 
dD fH(D) sin 2x $ 

2n J dH 
o dDfH(D)cos 2x z ’ 

5.1.3 The reflectivity 

(5.18a) 

(5.18b) 

The reflected beam is detected outside the crystal. We first discuss the case in which the 
reflected beam does not overlap with the incident beam at the site of the detection. The 
detection is made by measuring the total photoemission yield produced by the reflected 
beam on a grid or metal sheet. Applying the discussion of Section 5.1.1 to the case where 
only one beam is present, this yield (R) can be written: 

R = J&o l~(~df lexp(-2n i K1. r)l Irwsurface . 

The evaluation is done as the beam leaves the crystal sample (at r = surface) because no 
intensity is expected to be lost in vacuum; that is, the intensity of the reflected beam at the 
detector position is the same as when it leaves the crystal. Using Eqs. 5.9 and 5.10, this 
equation can be rewritten as follows: 

R(E) = J&o @ho) ] P@O) 1 2. (5.19) 
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For the special case of exact back-reflection, in which the reflected beam overlaps with the 
incoming beam even at the detection point, the total photoemission yield of the grid detector 
(R) is as follows (see Eq. 5.16): 

NE) = I &co Z(E,kg) 1 +b(ko,l’ + 2 IPIfctid Re P&o) e“P [ (,ti $p)]}, 

where the coherent fraction and coherent distance refers to the atomic distribution in the 
grid. Because the atoms in the grid do not have the periodicity of the standing wave, the 
coherent fraction of the grid is zero, so that this equation reduces to: 

R(E) = j&&,ko) {l+~(kow’} . 

The intensity of the incoming beam J do Z(E, ko) can be subtracted, so that the expression 
is reduced to Eq. 5.19. 

This shows that the reflectivity (Eq. 5.19) and the XSW signal (Eq. 5.16) are convoluted 
with the same function Z(E, kg). This conclusion is heavily used in Section 5.2 in the 
development of the fitting method. 

5.2 The method of extraction of DC and fc from the experimental data 

The objective is to extract the values of f C and DC by fitting Eq. 5.16 to the experimental 
data. In principle, this implies knowledge of the shape Z( E, ko) of the incident beam, 
which depends on the details of the experimental setup, such as the slit size, the shape of 
the mirrors, and the orbit of the electrons in the synchrotron ring. In practice, it is possible 
to make some (commonly used) approximations about I( E, ko), which allows analysis 
even without an exact characterization of the incident beam. 

In this section, a deconvolution method is presented that subtracts the effects of the 
characteristics of the X-ray beam on the shape of the XSW signal. In addition, the 
approximations about Z(E,kg) that are made by this and other traditional methods of XSW 
data fitting are clearly described using the formalism of Eq. 5.16. 

The first approximation about Z(E, kg) is that the changes of its shape can be neglected 
when the nominal photon energy is scanned. In terms of Eq. 5.16, this approximation can 
be states as follows: 
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z(ko@o) + z&o--km) - (5.20) 

In terms of the Du Mond diagram of Fig. 3.4 or 3.5, this means that the illuminated 
rectangle does not change shape as it moves up and down. This approximation is well 
justified because no appreciably change is expected over the range of energies of a XSW 
spectrum, which is less than 10 eV compared with typical absolute energies of the order 
of KeV. 

Another important simplification can be made by noticing that small offsets in angle can be 
treated as an effective offset in energy. For small angular divergence, the only important 
dependence of the reflectance on the angles comes through the kinematical Bragg energy 
EB (see Eqs. Al.28 and Al.29): 

I I Hl EB E - 
2cosx * 

The change in EB caused by the deviation of the angles from its nominal value can 
effectively be incorporated as part of the energy dispersion, so we have only to consider the 
energy dispersion of the beam. This can be seen as: 

Z(k, -km) + Z(E’-E) , (5.2 1) 

where E’ has incorporated not only the difference of energy between kg and km, but also 
the difference of EB due to their difference angle. 

By inspecting Eq. A1.28, it can be seen that angular effects other than the change in Bragg 
energy can be incorporated to some extent in Eq. 5.21. 

These two approximations allow us to write Eq. 5.16 as a simple, one-dimensional 
convolution: 

Y(E) = J cfE’Z(E’-E) l+/p(E’)(2+21P\fc Re p(E’) p 2ni [ ex ( %)I} , (5.22) 

where we have made the change p(ko) + p(E’). I n a similar way, the reflectivity can be 
written (see Eq. 5.19): 

WE) = J dE’Z(E’- E) b(E’>I” . 
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The reflectance p is known because it only depends on the parameters of the crystal (see 
Eq. A1.30). 

Sometimes, although not always, Z(E’ - E) can be approximated to a Gaussian. A widely 
used method of analysis is to extract the width of the Gaussian and the peak center from 
Eq. 5.23, and to then substitute into Eq. 5.22. 

In our analysis, we extract the function Z(E’ - E) by deconvolution (using Fourier analysis) 
of Eq. 5.23, and then substitute it in Eq. 5.22. 

The total yield is also a XSW spectrum: 

ZY(E) = J~E’I(E~-E) l+lp(~t)l~ +2lPlfT’Re[p(E’) exp(-Zni s]]} , (5.24) 

If the coherent fraction and coherent distance of the total yield are known, it could also 
provide the function Z(E’ - E); then the function Z(E’ - E) can be resolved from both the 
reflectivity and the total yield spectra. 

The FORTRAN program made to perform the analysis, which is called “SWDECONV”, is 
presented in Appendix 3. 
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Chapter 6. Results of the Bi/GaAs Experiments 

The experimental and theoretical methodology developed in the former chapters was 
applied to determine the geometrical structure of the system formed by one monolayer of Bi 
on the (110) GaAs cleaved surface. A preliminary study was published elsewhere [ 11. 

6.1 Experiments performed 

Two sets of (220), (11 l), and (11 i) XSW experiments were performed on two different 
samples, so two complete sets of data were obtained. The experimental setup and 
configurations were as described in Chapter 3. 

Two (11 i) reflections were performed using configurations different from that described 
in Chapter 3. One (11 i) reflection was performed in the back-reflection mode using InSb 
(111) crystals in the monochromator. The other (111) reflection used the nondispersive 
configuration described in Chapter 8, with Si (111) monochromator crystals. In these two 
cases, the Bi signal was also obtained by monitoring the Bi 4d photoemission yield. 

Some XSW spectra were acquired as well for bulk As. The purpose of this measurement 
was to discriminate between the (111) and (117) reflections. Because the position of bulk 
As relative to the planes is known, this also provides a check for experimental accuracy. 
The spectra were taken using either the As LMM Auger or As 3p photoemission lines. 

6.2 The data collection procedure 

As mentioned in Section 1.3.3, the excitation rate, and so the photoemission yield, is 
modulated as the photon energy is swept through the Bragg condition. Figure 6.1 displays 
the experimental reflectivity of the (111) reflection of GaAs (the data correspond to the 
(111) experiment performed using the nondispersive configuration of Chapter 8). The 
Bi 4d photoemission spectra were acquired for the photon energies indicated by the 
dashed lines of Fig. 6.1, and are displayed in Fig. 6.2. The modulation of the total Bi 4d 
photoemission signal with photon energy is very evident from the figure. The Bi 4d 
photopeak rides on the top of a background of secondary electrons. Also evident is the 
modulation of the height of the background with photon energy. 

The data was obtained by using the fact that the height of the Bi peak (7” in Fig. 6.2) 
measured from the extrapolation of the background (dashed lines) is proportional to the 
total Bi signal (shadowed area). As the photon energy was swept through the Bragg 

70 



condition, data was recorded with the CMA electron detector tuned to the Bi 4d peak (see 
Fig. 6.2), and with the CMA tuned to a higher electron energy corresponding to the 
background. The signal from the background files was then extrapolated to the energy 
corresponding to the Bi 4d peak, and subtracted from the peak files. 

This extrapolation is done by multiplying the background signal by the appropriate factor. 
For this approach to be valid, a linear background with no structure is required, such as 
those in Fig. 8.2. Figure 8.3 displays Y-the difference between the Bi 4d peak signal 
and the extrapolated background signal (see Fig. 6.2)---as a function of photon energy, so 
the modulation corresponds solely to the Bi 4d photoemission signal. The dots on Fig. 6.3 
correspond to the heights (Y) measured in the photoemission spectra of Fig. 6.2. 

6.3 The averaging procedure 

Many peak and background files were recorded in order to achieve good statistics. The files 
were then added or subtracted depending on whether they correspond to the peak or to the 
background. A problem arises because the energy of the incoming beam shifts gradually 
with time as the monochromator crystals change temperature due to the reduction of stored 
current in the synchrotron over time. When the shifting is not too strong to affect the 
energy scale, the problem can be solved by shifting the files by the “right” amount before 
adding. The right amount was found by maximizing the correlation between the reflectivity 
of the files. The shifts and interpolation needed were done with a computer program called 
“AVERAGE,” which is presented in Appendix 4. 

6.4 Data and fits 

Figures 6.4 to 6.14 show the experimental data together with their theoretical fit. The 
fitting was done with the deconvolution method presented in Section 5.2. The reflectivity 
or the total yield is also plotted with the data depending on which one was used in the 
fitting calculations (not both the reflectivity and the total yield were recorded in all the 
reflections). The extracted values for the coherent distance and coherent fraction for all the 
reflections performed are displayed in Table 6.1. The coherent distances are in units of the 
corresponding inter-planar distance dH. The origin used is shown in Fig. 2.1. The 
uncertainties are chosen as the changes that produce twice the value of the minimum x’. 

As it can be seen in Table 6.1, the reproducibility of the coherent distance is within 2%. 
When the coherent distances are expressed in units of the corresponding interplanar 
distance dH , the consistency check of Eq. 2.8 reads as follows: 

71 



D1220~ = DIIIu +DIIITi 
C C C 

(interplanar units) . (6.1) 

Both sets satisfy Eq. 6.1 within 7%, which is smaller than the combined uncertainties. 

The reproducibility of the coherent fractions is also within a few percent, although some 
variation is expected from surface to surface because the order parameter (which directly 
affects their value, see Eq. 2.3) may vary even if the method of the surface preparation is 
the same. This is because the final degree of clustering may depend on the amount of Bi 
initially deposited, even if the sample is annealed to desorb excess Bi (see Section 3.2). 

It is very reassuring that the As (117) coherent distance was within 2% of the expected 
value of 0.125. This accuracy is surprising because it was difficult to properly extrapolate 
the background corresponding to the As LMM data due to structure in the background 
produced by Bi core level peaks above the As LMM energy. 

This remarkable quality of the fits, and the reproducibility and consistency of the whole 
data, were not at all apparent when the analysis was done assuming a Gaussian beam width 
as the monochromator response-the initial quality of the fits, self-consistency check, and 
coherent distance values for bulk As, formed a somewhat ugly panorama. 

6.5 Structural results 

It was mentioned in Chapter 2 that our XSW data provided information in the Y-Z plane 
(see Fig. 2.1). Equations 2.4 and 2.5 relate the coherent distances and coherent fractions 
to the atomic coordinates (yI,2, 2~). Solving for ZI + 22 and yI + y;! is very direct from 
Eqs. 2.4. On the other hand, $, ZI - 22, and yI - y2 have to be found numerically from 
Eqs. 2.5. Equations 2.5 can be rearranged as follows: 

( p11 +pl 2 
sin2 7t t( YI--Y2) = l- c 1 

24 (@+fE2201) ’ 

( p4 -pii 2 

sin2 n i (YrY2) = c 
1 

2+ (m-f;22°1) ’ 

cos% $ (q-z2) = 1 LE!i+l , 
t 1 2 G 

(6.2a) 

(6.2b) 

(6.2~) 
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where the Debye-Waller factor has been ignored (see Sections 2.5 and 6.7). Figure 6.15 
shows a graphical solution of Eqs. 6.2 for the first set. Equation 6.2a corresponds to 

curve A of Fig. 6.15, Eq. 6.2b to curve B, and Eq. 6.2~ to curve C. Because the left 
sides of Eqs. 6.2a and 6.2b are identical, the intersection of curves A and B (the large dot 
in the figure) provides the solution for # and for (yI - ~2). The corresponding value of 

( zI - 22) is obtained by evaluating Eq. 6.2~ at the solution value of $ (small dot). The 
parallel curves at each side of the main curves correspond to Eq. 6.2 for the most extreme 

combinations of the uncertainties on the coherent fractions. The shadow region 
corresponds to all allowed solutions. The uncertainties for $, (zI - z2), and (yI - ~2) 
were estimated using the extremes of the shadowed region. 

The same method was used to solve for the second set of data, and both solutions are 
displayed in Table 6.2. The position of the Bi sites shown in Fig. 6.16 are scaled according 
to the solution of the first set (to the scale of the drawing of Fig. 6.16, the results of the 
two sets are indistinguishable). If no relaxation of the substrate atoms is considered, 
the results for the Ga-Bi and As-Bi bond length are 2.79 8, and 2.61 A. These numbers 
are very close to 2.72 A and 2.64 A, which are the sum of covalent radii (see Table 1.1). 
On the other hand, results for the Bi-Bi distance (- 2.68 A, see Table 6.2) is short from 
twice the Bi covalent radii (2.92 A). 

6.6 Comparison to prior LEED and TBTE results 

As it can be seen in Fig. 6.16, the XSW results locate the Bi adatoms close to those of the 
next layer of bulk GaAs, so our results determine that the structure of the Bi/GaAs interface 
is better described by ECLS (see the discussion of Section 7.4). Table 6.2 displays the 
results for the coordinates from each of the two sets of XSW data, and from prior LEED 
[2] experiments and TBTE [3] calculations. From these numbers, EOTS can be rejected 
right away. As mentioned in Section 1.2, both LEED and TBTE favor ECLS. Our results 
confii that their assertions were correct. The comparison is, therefore, made with the 
ECLS version of the structures provided by the LEED and TBTE studies. Due to an 
inconsistency on the reported TBTE results, two values for the TBTE results on 
(XI + x2)/2 are displayed. Uncertainties in the LEED results are not provided. It should be 
kept in mind that the XSW results are measured relative to the ideal bulk-lattice positions, 
and that the LEED and TBTE are measured relative to the positions of the last GaAs layer. 
This discrepancy should not introduce large differences between the XSW and LEED (or 
TBTE) results, because the position of the substrate atoms are very close to the ideal bulk 
[2,3]. No experiment was performed that would provide information about the relaxation 
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of the outermost Ga and As substrate atoms. The reason is that, although the relaxation of 
the substrate surface can be obtain from XSW using surface-sensitive Auger or 
photoemission peaks, there are no As or Ga surface sensitive peaks available for the range 
of photon energies used in the reflections. 

The larger discrepancy between the XSW and LEED results is in the displacement parallel 
to the surface, where the sensitivity of LEED is smaller. For displacements perpendicular 
to the surface, the agreement is excellent. The overall comparison with the theoretical 
approach (TBTE) is poorer. 

6.7 Discussion of the order parameter 

The value for the order parameter @  (see Table 6.2) indicates that, for the surface used for 
the first (second) set of experiments, 35% (30%) of the Bi atoms were at incoherent 
positions. This value of disorder is larger than that obtained for Sb/GaAs, which is only 
-10%. This is as expected because there is a larger mismatch between the Bi chains and the 
GaAs substrate (see Section 1.2.1). An even larger disorder of 42% is found for the 
Sb/Ga.P system [4]. If the disorder comes from clustering, the reproducibility in the amount 
of disorder may be an indication that annealing creates an equilibrium between the 
population in clusters and in a single monolayer. If the disorder comes from Bi on the 
substrate terrace edges, where Bi may reside at many positions, the reproducibility of the 
disorder may indicate that there is an equilibrium value of the density of terrace edges for 
cleaved surfaces. 

On the other hand, it is possible that the low values for $ are not real, but result from using 
the two-site model. As mentioned in Section 1.2.1, STM images [5] show a missing Bi 
row approximately every six unit cells in the (1 TO) direction, along with misfit 
dislocations. Our large value of disorder may thus come from the breakdown of our initial 
assumption, which considered only two distinct coherent positions. One of the effects of 
assuming that the adatoms have only two distinctive positions in the Y-Z plane, is to 
artificially lower the value of the order parameter. From Eqs. 2.1 and Eq. 5.15, we can 
write: 
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The result for q!~ would be larger if more positions were considered. 

As mentioned in Section 2.5, the Debye-Wailer factor for the overlayer atoms are assumed 
to have the same value as that for the bulk atoms. If this is not the case, our results would 
have to be modified: the main effect would be an increase of the values for $J and 
(~1 - ~2). To get a quantitative idea of the extent of those changes, consider a value for the 
Bi Debye-Waller factor for the (220) reflection of 0.92 instead of 1. The new value for the 
order parameter would be 0.70 (in contrast to 0.65), and for (yI - ~2) would be 1.88 A (in 
contrast to 1.84 A). The result for the Bi-Bi distance would be 2.75 8, (in contrast to 2.72 
A). The small dependence of the structure results on the Debye-Wailer factor is because it is 
partially absorbed by @  in Eqs. 2.5. The factor eeM is not completely incorporated in @  
because of the nonlinearity of Eq. 2.7. 
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Bismuth 
(44 

Bulk 

Arsenic 

WO) 

(111) 

( > iii 

( ) iii 

DC 

fc 
Peak (eV) 

DC 
fc 

Peak (eV) 

Q- 
fc 

Peak (eV) 

DC 
fc 

Peak (eV) 

I Configuration 
Cha 

Surface #l 

0.24ztzO.02 
0.64f0.07 

3104 

0. HO.03 

0.37zbO.06 
2346 

0.06f0.03 
0.31+0.05 

2290 

0.123+0.03 

0.841bO.16 

2290 

ter 3 Back-Reflection Nondispersive 

Surface #2 Surface #3 Surface #4 

0.27ti.02 
0.65zbO.08 

3104 

0.1 MI.03 0.09f0.03 

0.5 1+0.08 0.331to.04 
2335 2364 

0.07*0.04 0.06f0.03 

0.29f0.06 0.30f0.0 

2288 1900 

0.142+0.02 0.141+0.02 

0.89&O. 12 0.85kO.09 

2288 1900 

Table 6.1. Bismuth XSW experiments performed on the Bi/GaAs interface, and results 
from the fits. 
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4J 

Yl -Y2 (A) 

Bi-Bi (A) 

xsw xsw 
(First Set) (Second Set) 

0.65f0.08 0.70&o. 14 

0.47f0.04 0.53f0.04 

0.12f0.17 0.1 lf0.20 

-0.09zko.2 -0.24kO.2 

1.84f0.3 1.7OkO.3 

2.72f0.2 2.63kO.3 

0.52 

-0.16 

1.98 

2.87 

0.56f0.2 

-0.05+0.2 * 
1.41 ** 

3.2 

* Using reported bond length and angles. 

** Using reported value of 4+ The discrepancy goes away if the 
definition of ~IQ, is changed by a/4 in Fig. l(a) of reference [3]. 

TBTE 
(EOTS) 

0.82f0.2 

-3.04-10.2 

3.2 

Table 6.2 Bismuth coordinates determined by the XSW data. Results from other 
studies are also shown. 
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Figure 6.1. Experimental reflectivity of the (111) reflection of GaAs. Photoemission Bi 4d data were obtained 
for the energies corresponding to the points. The height of the points corresponds to the strength of the 
reflectivity, which was also recorded as the photoemission spectra were collected. 
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Figure 6.2. Bismuth 4d photoemission curves for one monolayer of Bi on GaAs. The photon energies are around the (111) GaAs 
Bragg condition, and correspond to the dots of Fig. 6.1. The difference (I’) between the photoemission yield from the peak (see 
spectrum #l) and the background on which it rides is proportional to the total Bi 4d signal. As can be seen, the background yield 
also has a modulation. 
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Figure 6.3. Bismuth 4d signal (Y) as the photon energy is scanned through the Bragg condition. As 
described in Fig. 6.2, Y is obtained by subtracting the photoemission yield of the background from the main 
peak. The dots correspond to the photon energies and heights (Y) of the photoemission spectra of Fig. 6.2. 
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Figure 6.4. Bismuth 4d XSW data and theoretical fit for the (220) reflection of 
GaAs in the back-reflection configuration. The bottom curve is the reflectivity. 
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Figure 6.5. Bismuth 4d XSW data and theoretical fit for the (111) reflection of 
GaAs in the nonsymmetric configuration. The bottom curve is the total yield. 
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Figure 6.7. Bismuth 4d XSW data and theoretical fit for the (220) reflection of 
GaAs in the back-reflection configuration. The data correspond to surface #2 
of Table 6.1. The bottom curve is the reflectivity. 
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Figure 6.9. Bismuth 4d XSW data and theoretical fit for the (111) reflection of 
GaAs in the nonsymmetric configuration. The data correspond to surface #2 of 
Table 6.1. The bottom curw is the total yield. 
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Figure 6.10. Bismuth 4d XSW data and theoretical fit for the (111) reflection 
of GaAs in the back-reflection configuration. The data correspond to surface 
#3 of Table 6.1. The bottom curve is the total yield. 
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Figure 6.11. Bismuth 4d XSW data and theoretical f& for the (111) reflection 
of GaAs in the nondispersive configuration described in Chapter 8. The data 
correspond to surface #4 of Table 6.1. The bottom curve is the reflectivity. 
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Figure 6.12. Arsenic LMM XSW data and theoretical fit for the ( 111) 
reflection of GaAs in the nonsymmetric configuration. The data correspond 
to surface #l of Table 6.1. The bottom curve is the total yield. 

89 



12 I I 1 I I I I I I I I I I I 

aAs (11 
As LMM 
(surface #2) 

I I I I I I I I I I I I I I I 

2286 2287 2288 2289 2290 2291 2292 2293 

Photon Energy (eV) 

Figure 6.13. Arsenic LMM XSW data and theoretical fit for the (1 l’i) 
reflection of GaAs in the nonsymmetric configuration. The data correspond 
to surface #2 of Table 6.1. The bottom curve is the total yield. 
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Figure 6.14. Arsenic LMM XSW data and theoretical fit for the (111) 
reflection of GaAs in the back-reflection configuration. The data correspond 
to surface #3 of Table 6.1. The bottom curve is the total yield. 
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Figure 6.15. Graphical solution of Eqs. 6.2. 
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Figure 6.16. Position of the Bi atoms on the GaAs surface scaled to our results. 
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Chapter 8. Phosphorus Relaxation for the Clean and 
Bi-Covered (110) GaP Surface 

8.1 Introduction 

A complete study of the interface requires the determination of the deformation of the 
substrate induced by the overlayer. To study relaxation of substrate atoms, it is necessary 
to use surface-sensitive photoemitted electrons. By performing XSW experiments for the 
(200) reflection in a back-reflection configuration-and for the (111) and (117) 
reflections with an asymmetrical configuration similar to that used in the Bi experiments---it 
was possible to study the relaxation of P for the clean and Bi covered GaP (110) surface. 

The reproducibility and dependability of the results were enhanced by comparing surface- 
sensitive data, which contain information of the surface reconstruction, with bulk-sensitive 
data, for which the structure is known. In this way, most systematic errors could be 
eliminated. 

XSW relaxation studies in the (110) direction of the clean InP (110) surface, have been 
published elsewhere [l] using a different methodology. 

8.2 Definition of the problem 

The position of bulk atoms in a perfect crystal are periodic, only perturbed by temperature 
vibrations. The termination of a crystal induces deformation, which is larger close to the 
surface. To completely determine experimentally the deformation of a crystal, and how it 
changes due to the presence of an overlayer, is an extremely difficult problem because it 
implies the isolation of the signal coming from a given depth; so, again, a level of 
simplification has to be chosen. This study will consider that only the last substrate layer 
deviates from the ideal lattice positions, and also that the deformation is the same for all the 
surface P atoms. 

Studies of the relaxation of the last layer using the XSW technique are possible due to the 
availability of surface-sensitivity photoemission signals. Electrons that have been 
photoexcited inside a solid to energies between 50 and 200 eV have very little chance to 
escape without suffering any collision with valence or core electrons [2]. Electrons that 
have participated in electron-electron scattering events may escape and contribute to the 
secondary tail signal, with a different energy from the unscattered electrons. Most of the 
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electrons contributing to the photoemission peak signal come from near the surface. For 
electrons exited to energies between 50 and 200 eV, the contribution to the photoemission 
peak signal from the atoms located in the surface layer is appreciable (around 40-509&-see 
Section 8.6.3), which is why they are called surface-sensitive photopeaks. The rest of the 
signal (50-60%) comes from atoms located beyond the surface layer. The surface-sensitive 
photopeak used to measure the relaxation of P was P 1s. No surface-sensitive photopeaks 
was available for Ga for the photon energies used in the experiments. 

Because the P 1s signal recorded has contributions from P at the surface layer (40-50%) 
and from the rest of the P in the crystal (50-&I%), two positions--the relaxed surface and 
the bulk-have to be considered in the distribution function. 

8.3 Experimental methodology 

8.3.1 Experiments details 

The experiments were performed on the 3-3 beam line at the Stanford Synchrotron 
Radiation Laboratory (SSRL). Tuning of the beam photon energy was done by a double 
crystal Si (111) monochromator. The P XSW data were recorded by monitoring the 
photoemission yield from the P 1s core level, and the KLL Auger line as the beam energy 
was swept around the corresponding Bragg condition. We also, simultaneously and 
independently, recorded the reflectivity ( R) and the total photoemission yield (TY). 
The TY is recorded by monitoring the current leaving the sample, which was connected to 
an electrical feedthrough. 

The UHV systems had base pressures in the low lo-10 Torr range. The chamber 
manipulator had three linear and one angular degrees of freedom. The XSW spectra from P 
were obtained by recording photoemission yield with an angle integrated Cylindrical Mirror 
Analyzer (CMA). Since the P photoemission peak rides on the top of a background of 
inelastic electrons, the spectra from the background were also recorded and subtracted from 
the elastic signal (see Section 6.2). Clean surfaces were prepared by cleaving an outgassed 
GaP crystal along the (110) face. The Bi-covered surfaces were prepared by evaporation 
of approximately one monolayer of Bi as measured by a quartz crystal oscillator. All the 
cleaves were mirror-like. The Bi-covered samples were next annealed at 325OC for 
10 minutes to desorb any Bi in excess of one monolayer [3], and to enhance the interfacial 
order. 
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8.3.2 Experimental configurations 

The experimental setup for every reflection, including important elements of the 
monochromator, is depicted in Fig. 8.1. 

8.3.2.1 Configuration for the (111) and (lli) reflections 

Figure 8.1 shows the configuration used for the (111) and (117) reflections; that is, 
it shows the orientation of the sample (see the top-left of Fig. 8.1), the direction of the 
reflected beam, and the position of the CMA detector. Notice that this configuration has 
many similarities to the one used for Bi, described in Section 3.3.2. There are, however, 
some major differences. The 3-3 SSRL beamline (where the P experiments were 
performed) does not have a collimating mirror (compare Fig. 8.1 with Fig. 3.2), and the 
focusing mirror is placed before the monochromator, so that there is no mirror between the 
monochromator and the sample. 

This asymmetric configuration is close to being nondispersive because the Si (111) 
diffracting planes of the monochromator are close to parallel to the GaP (111) [or (11 i)] 
Bragg planes; they are not exactly parallel because of the difference in lattice constant 
between Si and GaP. Nondispersive reflections have the property that the angular 
divergence of the beam combines with the energy dispersion in such a way that the phase 
resolution is maximized. This can be seen in the Du Mond diagram of Fig. 8.2. The 
resolution of the experiments performed with this configuration was excellent. 

Even though this is not a completely nondispersive configuration, we will call it 
“nondispersive” to distinguish it from the other nonsymmetric configuration described 
in Chapter 3. 

8.3.2.2 Configuration for the (200) reflection 

Figure 8.3 shows the configuration used for the (200) reflection. Figure 8.4 shows the 
shape of the incoming beam in a Du Mond diagram. As for the nondispersive 
conftguration, the (13, ;1) region illuminated by the beam is inclined because the crystals in 
the monochromator are Si (111). The resolution of the (200) experiments was also 
excellent, although not as good as for the (111) and (117) reflections. This is despite the 
fact that the photon energy for the (200) reflection is smaller. The reason for this can be 
seen by comparing the number of phase lines crossed by the illuminated region of Figs. 8.2 
and 8.4. 
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8.4 Experiments performed 

The experiments performed are shown in Table 8.1. The averaging of the data was done 
with the method described in Section 6.3. Table 8.1 also shows the final kinetic energy of 
the photoelectrons. The P 1 s experiments are surface sensitive because the energy of the 
P 1s photoemitted electrons lies in the 50-200 eV range, where the escape depth is the 
smallest. Bulk-sensitive data for P were also obtained using the P KLL Auger emission. 
The P KLL and P 1s data were taken one after the other, without changing any detail of 
the experimental setup. This makes very meaningful the comparison between both results, 
and enhances the dependability of the analysis. 

Figures 8.5 to 8.19 show the experimental data together with the best fits. The analysis 
was done with the method described in Section 5.2. The reflectivity is also plotted with the 
data, and was used in all cases in the fitting calculations. Once again, the quality of the fits 
is excellent. 

8.5 Data analysis results and “corrected” coherent distances for the 
P 1s data 

Also shown in Table 8.1 are the extracted values for the coherent distance and coherent 
fraction. The origin was chosen at the ideal P site, so that the nominal value for the 
coherent distance of the bulk experiments is zero. The reproducibility of the P KLL results 
for the coherent distance is remarkable. The values are within 2% of the nominal value of 
zero and, in most cases, are within 0.7%. 

The coherent distances for the P 1s experiments are very close to zero, which alone implies 
small relaxation. Nevertheless, the P 1s coherent distances are consistently larger than the 
coherent distance of P KLL for the clean surface. The opposite is observed for the P 1s 
coherent distances in the presence of the Bi overlayer, which are consistently smaller than 
those corresponding to P KLL. This implies expansion in the clean surface case, and 
contraction in the Bi covered case. 

Errors on the values used for the structure factors may introduce errors comparable to the 
values of the P 1s coherent distance. Notice that the photon energy is within 200 eV of the 
P 1s edge. The atomic structure factors vary strongly around an absorption edge and also 
are affected by EXAFS effects, so the closer they are to an absorption edge, the less 
reliable their theoretical values. 
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Those, and other systematic errors, are canceled by comparison with the results for the 
bulk data. The difference between the coherent distance of the P 1s experiments and the 
coherent distance of the P KLL experiments is shown as “corr DC” in Table 8.1. This 
difference is believed to better represent the coherent distance of the surface sensitive 
experiments. Table 8.2 summarizes the average of the corrected values of the P 1s 
coherent distance that were used in the calculations of the relaxation. 

The values of the P 1s coherent fraction are consistently smaller than those for P KLL, as 
expected. It will become apparent that the coherent fractions are not really needed, and so 
they will not be used for the relaxation calculations. 

8.6 Structural determination 

8.6.1 The distribution function 

As discussed in Section 8.2, we are considering two positions, although with different 
populations. Ignoring thermal vibrations, the distribution function can be written: 

(8.1) 

where < is the fraction of the signal coming from the outermost P atoms, and DF and D# 
are the distances of the surface and bulk atoms to the local Bragg planes. 

It is possible to obtain information about DF because for the surface sensitive experiments 
a significant fraction (40-50%) of the signal comes from the outermost P atoms, so [ is 
not zero. 

Because the bulk P position DF is known, the problem has been reduced to finding #. 
This can be done independently for each reflection performed. To find the three 
dimensional components of the relaxation, three noncoplanar reflections are needed. The 
experiments performed involve noncoplanar Bragg vectors [the (200)) (111)) and (11 i) 
vectors are not in the same plane]. 

8.6.2 Connection of the experimental results with the structure 
parameters 

The parameters of the distribution function (Eq. 8.1) are related to the coherent distance and 
coherent fraction results by Eqs. 5.18. By performing the integrals, we obtain: 
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fcH = (1-r) exp(- 2xi$-) + c exp(- Zri$) , (8.2) 

and 

Dp = h arctan 
(l-&J sin(2Irz) + [ sin(27rs) 

2n 
(1-C) ,,,(2A) + *cos(2&) * (8.3) 

Equations 8.2 and 8.3 form a complete set for each reflection H, and can be inverted to 
obtain the values of [ and IIF from the experimental values of the coherent fraction ( f,“) 
and coherent distance (0,"). However, the uncertainty for 6 and DT evaluated using 
Eqs. 8.2 and 8.3 is very large because of the large uncertainties on the coherent fraction. 

An alternative method is to estimate c using tabulated values of the escape depth (there is 
extensive literature about the escape depth of electrons as a function of kinetic energy 141). 
The value for c can be used in Eq. 8.3 to estimate Df . Equation 8.3 only involves the 
coherent distance, for which the uncertainty is much smaller than for the coherent fraction. 
Figures 8.21, 8.22, and 8.23 will show that a generous range for c does not introduce too 
much uncertainty on DF . 

Equation 8.3 can be rearranged as follows: 

(8.4) 

The origin has been chosen such that Df 3 0 .This form is more convenient for plotting 
purposes. 

8.6.3 Evaluation of the fraction of the photoemission signal coming 
from the outermost P atoms 

As mentioned in Section 5.1.2, substrate relaxation studies are possible if the escape 
probability of the electrons collected is such that a nonneglectable fraction comes from 
the surface layer. As shown by Lindau et al. [4], for most materials (GaP included), the 
escape length of electrons with energy between 50 and 200 eV is only 5 to 10 A, so that a 
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large enough fraction of the signal comes from the outermost layer. For the energy 
corresponding to the reflections described below, the energy of electrons coming from the 
P 1s core level is inside the 50-200 eV range, so it was possible to perform experiments to 
measure the P relaxation. 

The photodetector is set to collect electrons that have not, or almost not, lost any energy (no 
electron-electron collision). It was shown by Spicer et al. [5] that an excellent 
approximation to the probability of escaping without any electron-electron collision is the 
following: 

PEE = exp - 
( 

r.n 
1 a(E) cos 8 ’ 

where 8 is the detection angle with respect to the normal of the crystal, and A is the escape 
depth. The origin is set at the surface to make r * n the distance from the generation of the 
photoelectron to the surface. The total signal is proportional to the following series: 

00 
total signal = 

= ( 
exp -j dwo) = 

j=O 
n(E) case 1 1- exp(- l/$FLse) ’ 

where d(220) = q/a is the (220) interplanar distance. This distance plays a role because 
it is the separation of the different layers of P atoms parallel to the surface. For the surface 
signal, only the term with j = 0 is kept, so that we have: 

surface signal = 1 , 

and the fraction of surface signal is given by: 

surface signal 
total signal 

= 1- exp( a($Tise) . (8.6) 

This expression have been integrated for the angle of acceptance of the CMA (42.3f6’) for 
the sample orientations used in the nondispersive configuration-where the sample faces 
the beam (see Fig 8. l)-and for the orientation used for the (200) reflection-where the 
sample makes a 45” angle with the incoming beam (see Fig. 8.3). The integration is 
calculated as follows: 
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. (8.7) 

An important point is  that Eq. 8.7 is  valid regardless of whether the substrate surface is  
covered. 

It can be seen in F ig. 8.20 that the surface sensitiv ites  c  for the sample orientations  
corresponding to the three reflec tions  (which are calculated using Eq. 8.7) are very  c lose to 
each other for all values  of the escape depth il. The escape depth for the range of 
photoelec tron energies  of the surface-sensitive experiments  is  between 5 and 10 A [4]. 
From the curves of F ig. 8.20, the corresponding ranges for c  are 0.39 c  c  c  0.6 for the 
(111) and (117) reflec tions , and 0.36 < c  < 0.55 for the (200) reflec tion. These 
estimations  are used in conjunc tion with Eq. 8.4 to calculate the surface displacements Df 
(see F igs . 8.21, 8.22, and 8.23). 

8.7 Structure results  

8.7.1 Determination of the coordinates  of the relaxation 

Figures  8.21, 8.22, and 8.23 show Eq. 8.4 plotted for the values  of the coherent dis tances 
of Table 8.2. Us ing the range of values  of the fraction of the s ignal coming from the 
outermost P atoms found in the previous  section, a range for the reconstruction DF is  
found. These values  are displayed in Table 8.3. 

The coordinates  of the relaxation can be obtained by triangulating the results  of Table 8.3. 
If the values  of Df are expressed in inter-planar units , the Y coordinate of the relaxation is  
as follows : 

Y = 
Dy) -Dp 

2 a1 ’ 

where al is  the lattice constant. 

03.8) 

The (1x1) symmetry shown by the LEED pattern [6] symmetry implies  that the P relaxation 
in the X direc tion is  zero. This  results  in an overdetermination of the s y s tem, so the Z  
coordinate can be found in two ways. The firs t is : 
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Z= a1 ’ (8.9) 

and the second is using the (200) result: 

z= a1 * (8.10) 

The Z coordinate of the P relaxation for the clean surface was calculated using both 
Eqs. 8.9 and 8.10. It is surprising that the two independent methods coincide within 
0.1%. Using Eq. 8.9, the result is Z=O.O65 A. Using Eq. 8.10, the result is Z=O.O66 A. It 
was not possible to do this consistency check for the covered surface experiments because 
no P 1s XSW data for the (117) reflection for the Bi covered surface were recorded. 

Table 8.4 displays the relaxation coordinates calculated from Eqs. 8.8,8.9, and 8.10. 
Figure 8.24 shows the P relaxation scaled to our results. For the clean surface the 
relaxation is a small counterclockwise rotation, and for the covered surface, it is a 
contraction in the direction of the bond to the second layer. 

8.7.2 Comparison to other techniques 

Also displayed in Table 8.4 are the results from LEED [6] experiments and first principles 
pseudopotential (FPP) [7] calculations for the relaxation of P for the clean GaP (110) 
surface. No comparison could be made for the covered surface because, to the knowledge 
of the author, no study of the relaxation of the Gal? surface in the presence of a Bi 
overlayer has been published. 

The XSW results compare to the LEED results for the displacement perpendicular to the 
surface (Z), although the agreement is not as good for the displacement parallel to the 
surface (Y), which is where the LEED resolution is poorer. 
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Clean Surface 
P KLL P 1s 

DC 0.02 0.022 
Corr DC - +0.002 

With a Bi Monolayer 
P KLL P 1s 

mw 

I Surface 
I 0.96kO.l 0.95io. 1 
I 1850 125 

I #I fc 
E W) 

4 
Corr DC 

fc 
E W) 

DP 
Con- D, 

fc 
E W> 

0.015 0.025 
- +O.OlO 

1.07&O. 14 0.92kO.08 
1850 125 

Surface 
#2 

-0.005 -0.02 
-0.0 15 

0.84kO.14 

0.007 
- 

0.019 
+0.012 

0.84kO.08 
Surface 

#3 
- 

0.87+0.06 0.86-tO.07 
1850 125 1850 125 

D, 0.001 
-0.008 Surface 

#l 
Con- DC 

fc 

E W> 
4 

COIT DC 

fc 

E W) 

4 
Corr DC 

1 .OOf0.04 
1850 

(111) 0.001 
- 

0.998IkO.03 
1850 

Surface 
#2 

-0.004 0.008 
+0.012 ( 1 iii - Surface 

#4 “ft. I 0.94+_0.1 0.934kO.08 1 I 

1850 165 I E W> 

Table 8.1. Fitting results of the experimental data. 
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Clean Surface 1 WithBi 

cw +0.008 -0.015 

(111) +0.004 -0.008 
(iii) +0.012 

Table 8.2. Averaged values of the corrected coherent distance (0,") for the 
P 1 s XSW data in interplanar units. 

I Clean Surface I With Bi I 
1 (200) 1 +0.017fo.o03 1 -0.032kO.007 1 
I (111) I +0.009zk0.002 I -0.017+0.003 I 
1 (1 li) 1 +0.025&0.005 1 1 

Table 8.3. Results for the P surface reconstruction (DF) from Figs. 8.21, 
8.22, and 8.23 in inter-planar units. 

y (4 

VA) 

Clean Surface With B 

xsw 

- 

FPP xsw 

-0.045 -0.225 -0.126 

0.065 0.09 0 

F -0.185 

-0.121 

Table 8.4 Relaxation of P (from the ideal position) determined by our data. 
Results m other studies are also shown. 
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sample orientation used for the 

I:“““““““““““““““““““1 reflected beam 

(110) / (111) or (1ll)Teflections 

acceptance 
of the CMA \ 

Double Crystal 
Monochromator 

reflected beam 
by the (lfl) or (Si (111) crystals) 

(111) Bragg 
planes 

Reflectivity 
detector 

white 
+ x-ray synchrotron ring 

focussing 
mirror 

Figure 8.1. Experimental setup. The orientation of the sample for the nondispersive reflections 
is also shown. 



Figure 8.2. Du Mond diagram for the asymmetric configuration performed 
on beamline 3-3 of SSRL, which is close to being nondispersive. 
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(200) 
Bragg 
planes 

CMA angular 
acc,eptance 

Figure 8.3. Configuration for the (200) reflection. 
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Figure 8.4. Du Mond diagram for the (200) reflection. 
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Figure 8.6. Phosphorus KLL XSW dataand theoretical fit for the (200) reflection 
for a clean surface (#l). The bottom curve is the reflectivity. 
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Figure 8.8. Phosphorus IUL XSW data and theoretical fit for the (200) reflection 
for a clean surface (#2). The bottom curve is the reflectivity. 
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Figure 8.12. Phosphorus 1s XSW data and theoretical fit for the (200) reflection 
for a Bi-covered surface (#3). The bottom curve is the reflectivity. 

129 



l l l 

I clean surface 

(111) 

! I I I 

2319 2320 2321 
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Figure 8.13. Phosphorus 1 s XS W  data and theoretical fit for the ( 111) reflection 
for a clean surface (#l). The bottom curve is the reflectivity. 
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Figure 8.14. Phosphorus KLL XSW data and theoretical fit for the (111) 
reflection for a clean surface (#l). ‘Ihe bottom curve is the reflectivity. 
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Figure 8.15. Phosphorus 1s XSW data and theoretical fit for the (111) reflection 
for a Bi-covered surface (#l). The bottom curve is the reflectivity. 
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Figure 8.16. Phosphorus 1 s XSW data and theoretical fit for the (111) reflection 
for a clean surface (#2). The bottom curve is the reflectivity. 
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Figure 8.17. Phosphorus KU XSW data and theoretical fit for the (200) 
reflection for a clean surface (#2). The bottom curve is the reflectivity. 
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Figure 8.18. Phosphorus 1 s XSW data and theoretical fit for the ( 111) reflection 
for a clean surface (# 4). The bottom curve is the reflectivity. 
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Figure 8.19. Phosphorus KLL XSW data and theoretical fit for the ( 1 l’l) 
reflection for a clean surface (# 4). The bottom curve is the reflectivity. 
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The calculation have been done by integration of Eq. 8.7 for the angle acceptance of 
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Figure 8.21. Graphical solution of Eq. 8.4 using the (200) coherent distance of 
Table 2. The phosphorus displacement is in interplanar units. The fraction of 
the signal coming from the outermost P atoms is calculated from Fig. 8.20. 
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Figure 8.22. Graphical solution of Eq. 8.4 using the (111) coherent distance of 
Table 2. The phosphorus displacement is in interplanar units. The fraction of 
the signal coming from the outermost P atoms is calculated from Fig. 8.20. 
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Figure 8.23. Graphical solution of Eq. 8.4 using the (1 li) coherent distance of 
Table 2. The phosphorus displacement is in interplanar units. The fraction of 
the signal coming from the outermost P atoms is calculated from Fig. 8.20. 
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Figure 8.24. Relaxation of the outermost P atoms for the clean 
and Bi-covered (110) GaP surface scaled to our results. 
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Chapter 9. Conclusions 

9.1 Summary 

The central point of this thesis was the determination of the Bi geometric structure in the 
systems formed by one monolayer of Bi on the (110) cleaved surfaces of GaAs and GaP. 
The relaxation of P in the clean and covered GaP (110) surface was also studied. 

The experimental and analytical method employed to study the Bi structure is identical for 
the Bi/GaAs and Bi/GaP systems, so much of the discussion about those systems was 
done in parallel. First of all, the level of simplification in which the problem of the 
overlayer structure were to be treated was clearly defined. Based on previous STh4 and 
PES studies, and comparing with other V/III-V interfaces, the two-site approximation in 
the Y-Z plane was used for both systems. The X direction, which is where the periodicity 
of the interfaces is more complex, was not studied. Three reflections [ (220)) (111)) and 
(11 i)] are required to triangulate two positions in the Y-Z plane, and to provided an 
intrinsic self-consistency check of the two-site approximation. 

A new experimental configuration for the (111) and (1 li) reflections was developed that 
allowed performance of all three reflections on the same sample. Using the same surface 
was imperative to reduce the number of experimental variables, so that three reflections 
would indeed be enough to solve for the two positions in the Y-Z plane. 

The back-reflection configuration used for the (220) reflection has an intrinsic 
multireflection problem because the (200) and (020) reflections are simultaneously satisfied 
to the (220) reflection. It was shown that the way to perform the analysis is to simply 
ignore the (200) and (020) reflections. This is in contrast to wafers, where there is a finite 
angle between the surface and the (220) planes, so that these two reflections cannot be 
ignored. To attack the multireflection problem, it was necessary to derive a simple enough 
wave equation for X-rays in crystals, to develop a method to deal with multireflections, and 
to create a program that could numerically solve the equations involved. 

To analyze the experimental data, it was necessary to develop a more general fitting 
method, because the traditional Gaussian method was not accurate enough for our data. 
The new method is more dependable, theoretically better justified, and faster than other 
methods traditionally used. It greatly improves the quality of the fits and self-consistency 
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of the results. Also needed was the creation of a computer-fitting program based on this 
method. 

Changes of the temperature of the monochromator crystals creates a continuous shifting of 
the beam energy, so that consecutive experiments are shifted from one another. A criteria 
had to be developed to estimate the corrections to be done to the files before averaging. 
A computer averaging program was developed to perform these shifts based on the 
maximization of the correlation of the reflectivity. 

The results for Bi on GaAs have remarkable reproducibility and self-consistency. They 
determine that the structure is described by ECLS, confting the suggestions from LEED 
experiments and TBTE calculations that the structure is ECLS type. The self-consistency of 
the results about the Bi/GaP interface shows that the two-site approximation is an 
oversimplification. Nevertheless, the results indicate that the structure also resembles 
ECLS. 

The method developed to measure the position of P surface atoms for GaP can be 
indistinguishably applied to the clean and Bi-covered GaP surface, so the effect of the Bi 
overlayer on the substrate relaxation can be clearly discriminated. For the clean surface, the 
P relaxation is in the form of a small outwards rotation with axis centered at the position of 
the second-layer Ga atom. The effect of the Bi overlayer on the P relaxation is a contraction 
towards the position of the second-layer Ga atom. 

9.2 Contributions of this Dissertation 

l This unique XSW study determined the position of two adatom sites in two 
dimensions, and the relaxation of the substrate surface -clean and covered-in three 
dimensions. The structure of the Bi overlayer on the (110) GaAs and GaP surfaces was 
determined under the two-site approximation in the Y-Z plane (Chapters 6 and 7). The 
relaxation of P for the clean GaP surface, as well as with the presence of a Bi 
overlayer, was determined in three dimensions (Chapter 8). 

l The reflections required to triangulate two positions in the Y-Z plane were recognized. 
This also provided an intrinsic self-consistency check of the results (Chapter 2). 

l An experimental method was developed that would allow the experiments for each of 
the three reflection to be performed onto a single surface (Chapter 3). 
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l A fundamental problem of the widely used (220) back-reflection configuration (also 
used in this work) consisting of multiple reflections was discussed in depth. The 
method to analyze the data that is taken in this configuration was established 
(Chapter 4). 

l A simpler form of the wave equation for X-rays in crystals was derived that is suitable 
for the multireflection calculations (Chapter 4). 

l A method was developed to deal with the multireflection problem suitable for numerical 
calculations (Chapter 4). A computer program was developed to carry out the 
calculations (Appendix 2). 

l An analysis method was developed that greatly improves the quality and reliability of 
the fits (Chapter 5). A computer program that uses the new method was developed to 
carry out the fitting calculations (Appendix 3). A formalism was developed that 
included the dispersion of the X-ray beam and allowed a systematic discussion of the 
analysis method. As a side result, a formal definition of the distribution function was 
introduced (Chapter 5). 

l The averaging of the data was done by first shifting the data to maximize the correlation 
of the reflectivity (Chapter 6). A computer program was developed to calculate this 
shift and to average the data (Appendix 4). 

9.3 Future Work 

9.3.1 Determination of other V/III-V structures 

The methodology presented in this dissertation is ready to be applied to similar systems of 

interest. 

9.3.2 Substrate relaxation 

As mentioned in Chapters 6 and 8, the relaxation of Ga and As could not be measured in 
any of the GaAs and GaP cases because the photon energies used did not produce surface- 
sensitive Ga or As photopeaks. Those experiments can be done, however, if the angle is 
such that the Bragg energy of the reflections is above the K edge of Ga (As). At these 
energies (- 11 KeV), it is necessary to use a nondispersive configuration in order to have 
satisfactory resolution. 
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Appendix 1. The Reflectance as a Function of Energy 

Batterman and Cole (B&C), in their classical 1964 paper [ 11, provided a detailed derivation 
of the XSW expression for the case in which the incident photon energy is kept fixed and 
the angle is scanned through the Bragg condition. However, in the experiments presented 
in this dissertation, the angle of incidence of the X-ray beam is kept constant and the 
photon energy is scanned through the Bragg condition. The appropriate expression for the 
reflectance (defined in Chapter 5) that is used in the analysis of data obtained with this 
experimental mode are derived in Section A 1.2. 

The method of derivation has many elements that are used in Chapter 4 to solve the (220) 
back-reflection multireflection problem. It is very systematic, so it paves the way for 
further generalizations, and it also fits into the general framework of this thesis. Equivalent 
equations were later found in the literature [2]. The formulas derived in Section Al.2 are 
extensively used in the analysis of the experimental data (see Chapter 5). Section Al. 1 
provides the basic formulas for the discussion of Section A1.2. 

Al.1 The dispersion relation and its simplification 

The discussion of this section-the derivation of the dispersion equation of X-rays in 
crystals near a Bragg condition- takes many elements from the B&C paper. An equivalent 
dispersion equation was already derived by B&C. The present derivation is more correct 
and general, because it does not neglect the longitudinal term of B&C’s Eq. Al2 (as 
erroneously done by B&C). This B&C error is happily annulled by a second one, so that 
their final result is correct. Both derivations merge in Eq. A1.5, and are identical from there 
to the end of Section Al.1 (this section). 

In the Bragg case, there is a crystal vector H1 for which 

[k,2(1-r&)-(Ko +I-&)@ , +H,)] 

is small (see Section 4.2.2). Then, in addition to (Kg, v), the radiation mode (Ko + HI, v) 
is also excited; all the other terms in the series of Eq. 4.12 can be neglected. Equation 4.12 
for K = Ko reads: 

[k,z(l-rF,)-K,z] E(K,)--@ Z-F~,EIKO(K1) = 0 , (Al.l) 

where we have written 
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K = K,+H, . (A1.2) 

When Eq. 4.12 is applied to K = K,, the term that survives in the series is for H = RI, 
so we get: 

[@(l-r+K:] E(K)-& TFHIEU<,(KO) = 0 . (A1.3) 

Besides Eqs. Al.1 and A1.3, there is no other K for which Eq. 4.12 involves any of 
the (Ko, v) and (Kl, v) modes. 

To consider the system formed by Eqs. A 1.1 and A 1.3 as complete, we need to get the 
relations between Em, (Kl) and E(KI), and between Eul (Ko) and E(Ko). This is 
done very conveniently by discussing each polarization separately. The fact that 

ElKJKl) and Wo) are along the same direction (see Eq. Al.l), as well as ElKt (Kg) 
and E(KI) (see Eq. A1.3), is used to obtain the following scalar relations: 

&Ko(KJ = ml) 
\ 

and 
I 

0 polarization , (A1.4a) 

E-1 61) = E(G)/ 
QKO W I) = E(K,)I sin 2x1 

\ 
and x polarization , (A1.4b) 

&K, (Ko) = E(G) 1 sin 2~ ] / 

where x is the angle between kg and RI. It is important to stress that Eqs. Al .4 cannot 
be obtained from Eq. 4.9 (which is equivalent to B&C Eq. A12) by neglecting the last 
term, but that the complete derivation provided by Eq. 4.12 is essential. 

As in B&C’s paper, we define P as 1 for the cr polarization, and sin2X for the n 
polarization, so that we can rewrite Eqs. Al.1 and Al.3 as: 

[k,2(l-TP,,)-K,2] E(K,)-k,+ T&,PE(K,) = 0 , (AlSa) 

[k;(l-I-Q-K;] E(K,)-ko” T&PE(K,,) = 0 . (AlSb) 
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reflection. Similarly, the dispersion relation is obtained by noticing that the system has 
a nontrivial solution if the determinant is zero: 

ti(l--r&J-K,z P k,” rFH1 
= 0. (A1.6) 

P k,” rF,, k,2(1-TF,)-Kf 

Equation Al.6 is the analog to Eq. 4.16, although solving Al.6 is far more complicated 
than solving Eq. 4.16. After some simplifications are done, the solution of Eq. A 1.6 
is presented in the following section (Section A1.2). This forth-order equation can be 
reduced to quadratic by the following approximations (see B&C’s Eq. 18): 

k;(l--Z-T’,)-K,2 = [k,,dm -Ko] [k,,dm +Ko] 

= [k,,,/m -Ko] 2 k,, 

= [k,(l-1/2TF,,) -K,,] 2 k,, 

and 

=[kJm-K*] 2 k. 

(A1.7) 

(A1.8) 

=[k,(l-1/2TF,)-K,] 2 k,, 

Approximating [b,/m + Kg] (and [ko,/m + Kl] > to 2 ko is very well 
justified because its ratio differs from one in 10m5. It is also convenient to introduce 

the following abbreviations: 

50 = K&,(1-; rF,)) , 

51 E K,-ko(l-+ rFo) . 
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Using the approximations of Eqs. Al.7 and Al.& and the definitions of Eqs. A1.9, 
Eqs. Al.5 read: 

2k,&,E(K,)+k,2 lTE,PE(K,) = 0 , (Al.lOa) 

24,5,E(K,)+k,2 ZT,,P E(K,) = 0 , (Al.lOb) 

and Eq. A 1.6 reduces to: 

(Al.ll) 

which is equivalent to B&C’s Eq. 21. 

Al.2 Derivation of the expression of the reflectance 

This discussion consists of basically solving the dispersion relation, Eq. Al. 11. The 
geometry is defined in terms of the angles between the incident beam, the crystal surface, 
and the Bragg planes (shown in Fig. Al. 1) and can be written: 

A 

cosa = n-H,, (A1.12a) 

cosy = i+-l , (A1.12b) 

cosx = ii, - (-‘II) , (A1.12~) 

where fil is the unitary vector in the direction of HI, n is the unitary vector normal to the 
surface, and ku is the unitary vector in the direction of kg. 

We now express IQ and K1 in terms of the angles and kg. As discussed in Section 4.3.1, 
from the boundary conditions, Ko differs from kg in a vector perpendicular to the surface: 

Ko = k,+qn ; (A1.13) 

then 
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Here, 4 is small because, for X-rays, the dielectric function of the crystal is nearly equal to 
the dielectric function of vacuum. Expanding the square root and ignoring square terms in 
q, we get: 

K, = k,-qcosy . (A1.14) 

From Eq. A 1.9a we get 

50 = k,-qcosy-k, 1 ( -+ r&J = -qcosy++ rF,k, 

To obtain Kl, it is useful to divide ko into two parts: 

k, = (k,’ + Ak) ii, , 

where 

k; E .&- 
2cosx 

(Al. 15) 

(A1.16) 

(A1.17) 

and Ak is defined by Ak = ko - k& Notice that AIc is very small because, as stated in 
Section 4.2.2, kg very nearly satisfies the kinematical Bragg condition (within a deviation 
of lOa), and ki is defined to exactly satisfy the Bragg condition. With these definitions, 
we can write: 

K, = K,+H, = (kL+Ak)&,+qn+H, , 

with ki) = k&o, 

K, = (kk +H,)+Akc, +qn (A1.18a) 

or 

K* = ki+Ak& +qn (A1.18b) 

where ki I ki) + HI. Notice that the magnitude of ki is equal to G; that is, the vectors ki) 
and ki exactly satisfy the Bragg condition: 

k; = k, . (A1.19) 
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From Kl= $-- K1 KI , expanding the square root and ignoring the quadratic terms in Ak 
and q, we get: 

Kl = k;+l 
K 

k;-Akii, ++ (k; +H,).Aki;,, +’ 
1 

kl-qn = k,‘+i 
1 

4, (kk +H,).qn . 

Performing the dot products, we get: 

4 = k;++, (k,‘-H,cos$k+$ (-k,‘cosy+H,cosa)q . 
1 

Using Eqs. Al.17 and A1.19, we get: 

Kl = k;+(l-2cos’X)Ak+(-cos y+2cosx cosa)q , 

but ki+Ak=kg;then 

4 = k,, -2cos2xAk+-qcosy+2qcosx cosa . (A1.20) 

Substituting into Eq. A1.9b, we get: 

51 = -2cos’XAk-qcosy+2qcosX cosa + + rF,k,, . (A1.21) 

Using Eq. Al. 15 to express q in terms of 40 , and substituting into Eq. A1.21, gives us: 

t1 = l-2 cosXcosa &, -2cos2xAk + c’s’ “‘a I-F,,k,, . (A1.22) 
cos y cos y 

Substituting Eq. Al .22 into Eq. Al. 11, we get a quadratic equation for 50 : 

2 cosx cosa -1 2cos2X&- ‘OS’ ‘OSa 
cos y cos y 

rF,k,, +a P’ko” T2 F,, FR, = 0 . 

(A1.23) 

The following definitions simplify the notation: 

a=2 cosx cosa -1 
cos y 

(A1.24) 

and 
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b E zcos2 x & - cosfosc; a Z-F&, . (A1.25) 

The solution of Eq. Al .23 can be written in terms of these abbreviations: 

2 - aP2k,f r2 FH1 Fi7, .(A1.26) 

The reflectance, defined in Eq. 5.9, can be obtained from Eq. A 1. 1Oa and definition Al .9a: 

ECKl ) dko) = E(K = - 240 
k, l-FTilP ’ 

(A1.27) 
0 

A more convenient abbreviation, very similar to that of Eq. Al.25 is the following: 

where 

I I Hl E, 3 - 
2cosx - 

(Al .29) 

EB can be recognized as the kinematical Bragg energy. 

Finally, we obtain for the reflectance: 

p(k,) = $ (tj+dfi) . (A1.30) 

The angles for each configuration are used to calculate a (see Fig. Al.l). This is the 
expression for the reflectance that is used in Chapter 5 for the analysis of the data. 
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Appendix 2. Program “MULTIREFL” 

This MATHEMATICA program was used for the multireflection calculations of Chapter 4. 

GetRoot[ener-,teta-,f := 
Block[ (m,j,gamma,kl,sol, 

. . . 
1,117 
SW, 
dl&L 
rl ,d,ref 1 ,ref2,ref3,ref, 
xxsiO,xxsil ,xxsi2,xxsi3,xsiO,xsil ,xsi2,xsi3, 
kkOsq,kOsq,hl,h2,h3,h4,fO,fl,f2,f3,f4, 

costeM&costeta3,tetal,alfa, 

wn 
ret), 

xxsiO=Array[ell,( S}]; 
xxsil=Array[el2,( 811; 
xxsi2=Array[el3,( 8}]; 
xxsi3=Array[el3,{ S)]; 
kkOsq=Array[el4,{ 811; 

qq=A~ayW,W; 
refl=Array[el6,( 8)]; 
refZ=Array[el7,{ S)]; 
retT=Array[elS,( 8)]; 
ref=Array[el9, (5,8)]; 
m=Array[ell0,{4,4)]; 
sw=Array[elll,( lo}]; 
ret=Array[el12,13]; 

j =O; 
gamma=27.276/enerA2; 
k = ener/1974; 
fO= (56.54+17.01) gamma; 

fl= (39.19+17.01) gamma; 
f2= (23.03+12.09) gamma; 

f3= f2; 
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f4= fl; 
hl=2 N[Pi,S] /(5.8686/Sqrt[S]); 

h2=2 N[Pi,S] /(5.8686/2); 
h3=h2; 
alfa = Sin[teta] Cos[fi]; 
tetal = teta; 
costeta = l/Sqrt[2] (Cos[teta] + alfa) ; 
costeta = l/Sqrt[2] (Cos[teta] - alfa) ; 
kl = hl/( 2 Cos[tetal] ); 

kOsq := kA2 + 2 k q Cos[teta] + qA2; 
xsi0 := kOsq - kA2 (1-f0); 
xsil := hlA2 + kOsq -2 k hl Cos[tetal] 

- 2 hl q - kA2 (1X0); 
xsi2 := h2”2 + kOsq -2 k h2 costeta 

- 2 h2 q/Sqrt[2] - kA2 (1-m); 
xsi3 := h3A2 + kOsq -2 k h3 costeta 

- 2 h3 q/Sqrt[2] - kA2 (1-m); 
m:={ 

( xsi0 , kA2 fl , kA2 f2 , kA2 f3 ), 
{ k”2 fl , xsil ,kA2f3 ,kA2f2 ), 
{ kA2f2 ,kA2f3 , xsi2 ,kA2f4 }, 
( kA2f3 , kA2 f2 , kA2 f4 , xsi3 ) 

sol = N[Solve[Det[m]==O,q]]; 
For[i= 1 ,i<=8,i++, 

qqKil1 = sol[Ci,Ul[[2l1; 
kkOsq[[i]] = kA2 + 2 k qq[[i]] Cos[teta] + qq[[i]]A2; 

xxsiO[[i]] = kkOsq[[i]] - kA2 (1-f0); 
xxsil[[i]] = hlA2 + kkOsq[[i]] - 2 k hl Cos[tetal] - 2 hl qq[[i]J 

- k”2 (1-f0) ; 
xxsi2[[i]] = h2A2 + kkOsq[[i]] - 2 k h2 costeta 

- 2 h2 qq[[i]]/Sqrt[2] - kA2 (l-fO) ; 
xxsi3[[i]] = h3”2 + kkOsq[[i]] - 2 k h3 costeta 

- 2 h3 qq[[i]]/Sqrt[2] - kA2 (1-Q ; 
refl[[i]] = (kA2 fl - xxsiO[[i]])/( kA2 fl - xxsil[[i]] ); 
ref2[[i]] = (kA2 f2 f3 - xxsiO[[i]] f4) / ( kA2 f2 f4 - xxsi2[[i]] f3) 
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+ refl[[i]] (kA2 f3 f3 - kA2 fl f4)/(kA2 f2 f4 - xxsi2[[i]] f3) ; 
ref3[[i]] = (kA2 f4 - xxsi2[[i]])/( kA2 f4 - xxsi3[[i]] ) ref2[[i]]; 

IfI N[ ( Abs[refl[[i]]] )*2+( Abs[ref2[[i]]] )A2+ 
( Abs[reD[[i]]] )A2 ] <= 1.01 

&& Wm~qq~[illll <=O 
&& N[Abs[Re[Sqrt[kkOsq[[i]]]]M-1]] c.2 , 

(rl=Abs[ refl[[i]] ]A2; 
For[ii=l ,ii<=lO,ii++, 

dl=Exp[ I 2 N[Pi,S] (ii-l)/10 1; 
sw[[ii]]=Abs [ (refl[[i]] + ref2[[i]] 

+ ref3[[i]]) dl + 1 ]A2 1; 
d=Abs[ ref2[[i]] ]A2; 

>, 
j++ I; 

I; 
ret = ~r~,r~~~~~~~lI,~~~~~l1,~~~~~ll,s~~~4ll,s~~~~ll, 

s~~~~ll~s~~~~ll,s~~~~ll,~~~~9ll,~~~~1o13,j~; 
Return[ret]; 

1 

Wresults[iimax-,ijmax-,ikmax-]:= 
Block[ (ii,ij,ik, 

ffil,file, 

YZ, 
eninit}, 

yz=Array[el,l3]; 
ffil=Array[el2,13]; 
For[i=l, i<=13, i++, 
file=StringJoin[“file”,ToString[i]]; 
ffil[[i]] = OpenWrite[file] 1; 

enrange = 12; 
eninit = 2984; 
tetarange = N[Pi,5]/90; 
firange = N[Pi,5]/2; 

For[ii= 1 ,ii<=iimax+l ,ii++, 
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For[i= 1, ic= 13,i++, 
WriteString[ffil[[i]], N[eninit+(ii- l)/iimax enrange],‘V ] 1; 

For[ij=l ,ij<=ijmax,ij++, 
For[ik=l ,ik&kmax,ik++, 

yz = N[GetRoot[eninit+(ii- l)/iimax enrange, 
tetarange (ij- l)/ijmax, firange (ik- l)/ikmax] 1; 
For[i=l, ic=13,i++, 
WriteString[ffil[[i]], InputForm[yz[[i]]],‘V’ ] 1; 

I; 
I; 

For[i=l, i<=13,i++, WriteString[ffil[[i]], ‘In” J 1; 

I; 
For[i=l, ic=13,i++, Close[ ffil[[i]] ] 1; 

Return[ii,ij,ik]; 

1 
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Appendix 3 Program “SWDECONV” 

This FORTRAN program was used to fit the XSW data, and is based on the theory developed in 
Chapter 5. 

C THIS PROGRAM GENERATES THE STANDING WAVE AROUND THE BRAGG 
CONDITION 

PROGRAM GENERATOR 
IMPLICIT NONE 

C 
REAL ENERO,EXTRA 
REAL GAMMA,A,PLANE,DEPTH,COSRATIO 
COMPLEX FH,FMINH,FO 
COMPLEX FGA(2049) 
INTEGER*4 NUMP,ITER 
LOGICAL SYMMETRIC 
COMMON ENERO,EXTRA 
COMMON GAMMA,A,PLANE,DEPTH,COSRATIO 
COMMON FH,FMINH,FO 
COMMON FGA(2049) 
COMMON NUMP,ITER 
COMMON SYMMETRIC 

C 
REAL GAR(5) 
INTEGER*4 J 

C 
REAL DELZ,CFRAC 
REAL ENERGY(260), IOEXP(260) 
REAL SWEXP(260), SWCAL(260) 
REAL CHI 
REAL DELDELZ, DELCFRAC 

CHARACTER*255 INFO 
CHARACTER*255 DATA, PARAMFlLE 
INTEGER*4 I 
CHARACTER*255 OUTFILE 
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REAL 10INTERP(2049), EINTERF(2049) 
REALIMAX 

CHARACTER OSCKILL 
CHARACTER BKCORRECT 
INTEGER CHANNEL, TYCHANNEL, REFCHANNEL, LARGERCHANNEL 
REAL TYEXP(260) 
REALDCTY,FCTY 
CHARACTER*2 TYORRJZF 
INTEGER*4 FILENUMBER 
CHARACTER CH 

C 
FILENUMBER = 0 
OPEN (UNIT=5,STATUS=‘OLD’,FILE=‘AUTOMATIC’ ) 
READ(S,*) CH 

C 
10 WRITE(9,“) ‘PARAMETERS FILE? INP[220] ,DATAFILE? (I PUT .TXT)’ 

READ(S,*,END=900,ERR=900) PARAMFILE,DATA, 
& TYORREF,CHANNEL,TYCHANNEL,REFCHANNEL 

IF( TYORREF NE. ‘RE’ .AND. TYORREF NE. ‘TY’ ) THEN 
PAUSE 7-Y OR RE?’ 
GOT0 900 

ENDIF 
DATA = TRIM@ATA)/~.TXT 
WRITE(9,“) ‘DATA FILE ‘,DATA 

C 
OPEN (UNIT=lO,STATUS=‘OLD’,FILE=TRIM(DATA) ) 
OPEN (UNIT=2,STA~S=‘OLD’,FILE=‘RESULTS’,POSITION=’APPEND’) 

C 
WRITE(2,15) TRIM(PARAMFILE),TRIM(DATA) 

15 FORMAT(/,‘PARAMFILE,DATAFILE ‘,2(A20)) 
C 

WRITE(9,“) ‘CHANNEL ‘, CHANNEL 
LARGERCHANNEL = MAXO( CHANNEL, TYCHANNEL, REFCHANNEL ) 

C 
IF( TYORREF .EQ. ‘RE’ ) THEN 
IMAX = 0. 
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DO 20,1=1,260 
READ( lO,*,END = 21) (GAR(J), J=l,LARGERCHANNEL ) 
ENERGY(I) = GAR( 1) 
IOEXP(1) = GAR(REFCHANNEL) 
SWEXP(1) = GAR(CHANNEL) 
IF(IOEXP(1) .GT. IMAX) THEN 

IMAX = IOEXP(1) 
ENERO = ENERGY(I) !FIRST GUESS FOR ENERO 

ENDIF 
20 CONTINUE 
21 NUMP=I- 1 

ELSE IF( TYORREF .EQ. ‘TY’ ) THEN 
IMAX = 0. 
DO 30,1=1,260 
READ( lO,*,END = 3 1) (GAR(J), J=l ,LARGERCHANNEL ) 
ENERGY(I) = GAR( 1) 
IOEXP(1) = GAR(REFCHANNEL) 
SWEXP(1) = GAR(CHANNEL) 
TYEXP(1) = GAR(TYCHANNEL) 
IF(TYEXP(1) .GT. IMAX) THEN 

IMAX = TYEXP(1) 
ENERO = ENERGY(I) !FIRST GUESS FOR ENERO 

ENDIF 
30 CONTINUE 
31 NUMP=I- 1 

END IF 
CLOSE( 10) 

C 
CALL GETPARAM(PARAMFILE,DELZ,CFRAC,OSCKILL,BKCORRECT,DCTY,FCTY) 

!PARAMETERS AND THE FIRST GUESS FOR DELZ 
C 
cx CALL AXESFOR(IOEXP,ENERGY,NUMP) 
CX CALL DIBUJA(IOEXP,ENERGY,NUMP) 
CX WRITE(9,*) ‘JUST READ DATA 
CX PAUSE ‘JUST READ DATA’ 

C 
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IF( TYORREF .EQ. ‘RE’ ) THEN 
IF((BKCORRECT .EQ. ‘N’) .OR. (BKCORRECT .EQ. ‘n’)) THEN 

CONTINUE 
ELSE IF( BKCORRECT .EQ. ‘1’ ) THEN 

CALL CORRECTJO(ENERGY,IOEXP,NUMP) 
ELSE IF( BKCORRECT .EQ. ‘2’ ) THEN 
CALL TWOCORRECTIO(ENERGY,IOEXP,NUMP) 

ELSE 
WRITE(9,“) ‘CORRECT BK OR NOT? PLEASE ABORT ’ 
PAUSE ‘CORRECT BK OR NOT? PLEASE ABORT ’ 

ENDIF 
ENDIF 

C 
CALL GETFGA(ENERGY,IOEXP,TYEXP,DCTY,FCTY,TYORREF) 

C 
C NOW DO THE JOB 

CALL GETCFRAC@ELZ,CFRAC,ENERGY,SWEXP,CHI,SWCAL,DATA,OSCKILL) 
FILENUMBER = FILENUMBER + 1 

C 

400 
& 

410 
8z 

C 

420 

C 

WRJTE(2,400) DCTY, FCTY, DELZ, CFRAC, ENERO, CHI 
FORMAT ( ‘SwExtDeconOsc.FOR’,’ DCTY ‘,G12.6,’ FCTY ‘, 
G12.6,/,‘DELZ, CFRAC, ENERO, CHI ‘,5(G12.6) ) 
WRJTE(2,410) BKCORRECT, OSCKILL, CHANNEL, TYORREF, TYCHANNEL 
FORMAT (‘BG CORRECTION: ‘,A1 ,’ KILL OSC? ‘,Al,’ SWCHANNEL ‘,Il, 

’ TYORREF ‘,A2,’ TYCHANNEL ‘,Il) 

WRITE(OUTFILE,420) FILENUMBER 
FORMAT( I2 ) 
OUTFILE = ‘sw’//TRIM(OUTFILE)//‘.TXT 
CALL PUTINFILE(SWCAL,ENERGY,OUTFlLE,NUMP) 

IF( TYORREF .EQ. ‘RE’ ) THEN 

WRITE(OUTFILE,420) FILENUMBER 
OUTFILE = ‘REF’//TRIM(OUTFILE)/~.TXT 
CALL PUTINFILE(IOEXP,ENERGY ,OUTFJLE,NUMP) 

END IF 
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C 
CALL UNCDELZ@ELZ,CFRAC,ENERGY,SWEXP,CHI,DELDELZ) 

CALL UNCCFRAC(DELZ,CFRAC,ENERGY ,SWEXP,CHI,DELCFRAC) 
WRITE(2,500) DELDELZ, DELCFRAC 

500 FORMAT ( ‘DELDELZ,DELCFRAC ‘,2(G 12.6) ) 
C 

CLOSE(2) 
GOT0 10 

900 CONTINUE 
CLOSE(S) 
PAUSE ‘DONE 
STOP 
END 

C-- _________________--_------------------------------------------------------ 

SUBROUTINE TWOCORRECTIO(ENERGY,IOEXP,NUMP) 
IMPLICIT NONE 
REAL ENERGY(260), IOEXP(260) 
INTEGER*4 NUMP 

C 

C 

C 

10 
C 

15 

INTEGER*4 I 
INTEGER*4 FIRSTS, LASTS 
REAL M, BO 
REAL X(260), Y(260) 

FIRSTS = 5 
LASTS = 5 

DO lO,I=l, FIRSTS 
X(1) = ENERGY(I) 
Y(1) = IOEXP(1) 

CONTINUE 

DO 15, I = 1, LASTS 
X(FIRSTS + I) = ENERGY(NUMP - LASTS + I) 
Y(FIRSTS + I) = IOEXP(NUMP - LASTS + I) 

CONTINUE 
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C 
CALL GETSLOPE(X,Y,M,BO,FIRSTS+LASTS) 
DO20,1= l,NUMP 

IOEXP(I)= IOEXP(1) / ( M*( ENERGY(I)-X( 1) ) + BO ) - 1. 
20 CONTINUE 
C 

RETURN 
END 

C ____________________-------------------------------------------------- -_------ 

C 

C 

5 
C 

10 
C 

C 

SUBROUTINE GETSLOPE(X,Y,M,BO,NUMP) 
REAL X(260), Y(260) 
REAL M,BO 
INTEGER*4 NUMP 

IMPLICIT NONE 

REAL AW), B(2), C(2) 

INTEGER*4 I 

DO 5,1=1,2 
AN(I) = 0. 
B(1) = 0. 
C(1) = 0. 

DO 10, 1=1, NUMF’ 
AN( 1) = AN( 1) + ( X(1)-X( 1) )**2 
AN(2) = AN(2) + X(1)-X(l) 
B(1) = B(1) +X(1)-X(l) 
B(2) = B(2) + 1. 
C( 1) = C( 1) + Y(I)*( X(1)-X( 1) ) 

C(2) = C(2) + Y(1) 
coNTINuE 

M = ( C( l)*B(2) - C(2)*B( 1) ) / ( AN( l)*B(2) - AN(2)*B( 1) ) 
BO = ( AN( l)*C(2) - AN(2)*C(l) ) / ( AN(l)*B(2) - AN(2)*B(l) ) 

RETURN 
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END 
C- --- - -- - -- - -- --- --- --- - -- - -- - -- - -- - -- - ---- -- -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - - 

SUBROUTINE CORRECTIO(ENERGY,IOEXP,NUMP) 
IMPLICIT NONE 
REAL ENERGY(260), IOEXF’(260) 
INTEGER*4 NUMP 

C 
INTEGER*4 I 
INTEGER*4 INIT, FINAL 
REAL M, BO 

C 
INIT=NUMP-8 
FINAL = NUMP 
CALL GETLINE(ENERGY,IOEXP,INIT,FINAL,M,BO,NUMP) 
DO20,1= l,NUMP 

IOEXP(I)= IOEXP(1) / ( M*( ENERGY(I)-ENERGY(INIT) ) + BO ) 
& - 1. 

20 CONTINUE 
C 

RETURN 
END 

C- _ _- - -- --- -__ _ __ _ _- - -- - -- _ __ _ __ _ __ - -- - -- - ----- - -- - -_ - -- ---- -- - -- - -- - -- - -- --- - - 

SUBROUTINE GETFGA(ENERGY,IOEXP,TYEXP,DCI’Y,FCTY,TYORREF) 
IMPLICIT NONE 
REAL ENERGY(260),IOEXP(260),TYEXP(260) 
REALDCTY,FCTY 
CHARACTER*2 TYORREF 

C 
REAL ENERO,EXTRA 
REAL GAMMA,A,PLANE,DEPTH,COSRATIO 
COMPLEX FH,FMINH,FO 
COMPLEX FGA(2049) 
INTEGER*4 NUMPJTER 
LOGICAL SYMMETRIC 
COMMON ENERO,EXTRA 
COMMON GAMMA,A,PLANE,DEPTH,COSRATIO 
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C 

C 

C 

C 

C 

6 

C 

COMMON FH,FMINH,FO 
COMMON FGA(2049) 
COMMON NUMP,ITER 
COMMON SYMMETRIC 

INTEGER*4 1,J 
REAL REFLFUNCTION, SWFUNCTION 
REALSTEP 
CHAWKTER”255 OUTFILE 

COMPLEX FIOCAL(2049), FIOINTE(2049) 
REALENER 
REALDELTA 
REAL IOINTERP(2049),EINTERP(2049) 

STEP = (ENERGY (NUMP)-ENERGY( 1)+2.*EXTRA)/(ITER- 1.) 

IF( TYORREF .EQ. ‘TY’ ) THEN 
CALL GETINTERP(ENERGY,TYEXP,IOINTERP) 

ELSE 
CALL GETINTERP(ENERGY,IOEXP,IOINTERP) 

ENDIF 

ENER = ENERGY( 1) - EXTRA 
DO 6, I=l,ITER 
IF( TYORREF .EQ. ‘TY’ ) THEN 
FIOCAL(1) = CMPLX(SWFUNCTION@CTY,FCTY,ENER),O.) 

ELSE 
FIOCAL(1) = CMPLX(REFLFUNCTION(ENER),O.) 

END IF 
FIOINTE(1) = CMPLX(IOINTERP(I),O.) 
ENER = ENER + STEP 

CONTINUE 

CALL FOUR1 (FIOINTE,ITER, 1) 
CALL FOURl(FIOCAL,ITER,l) 
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C 

& 
15 

20 
C 

C ----mm 

DO 15, J=2,ITER - 1 

IF( CABS( FIOCAL(J) ) .LT. l.E-10 ) FIOCAL(J) = 
( FIOCAL(J-1) + FIOCAL(J+l) ) / 2. 

CONTINUE 
DO 20, I=l,ITER 
FGA(1) = FIOINTE(1) / FIOCAL(1) / ITER 
CONTINUE 

RETURN 

__--------______-------------------------------------------------------- 

SUBROUTINE GETINTERP(ENERGY,IOEXP,IOINTERP) 
IMPLICIT NONE 
REAL ENERGY(260), IOEXP(260) 
REAL IOINTERP(2049) 

C 
REAL ENERO,EXTRA 
REAL GAMMA,A,PLANE,DEPTH,COSRATIO 
COMPLEX FH,FMINH,FO 
COMPLEX FGA(2049) 
INTEGER*4 NUMP,ITER 
LOGICAL SYMMETRIC 
COMMON ENERO,EXTRA 
COMMON GAMMA,A,PLANE,DEPTH,COSRATIO 
COMMON FH,FMJNH,FO 
COMMON FGA(2049) 
COMMON NUMF’,ITER 
COMMON SYMMETRIC 

C 
INTEGER*4 1,K 
REALSTEP 
REAL STEX, DELTA 

REAL M,B 
INTEGER*4 INIT, FINAL 

C 
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STEP = (ENERGY(NUMP)-ENERGY( 1)+2.*EXTRA)/(ITER- 1.) 
STEX = ( ENERGY (NUMP)-ENERGY( 1) )/(NUMF’- 1.) 

C 
INIT=l 
FINAL = 3 
CALL GETLINE(ENERGY,IOEXP,INIT,FINAL,M,B,NUMP) 
WRITE(9,*) ‘FIRST M,B ‘,M,B 
INIT= 1 
FINAL = INT(EXTRA/STEP) 
DO 10, I=INIT,FINAL 

IOINTERP(1) = M * ( - EXTRA + (I-1)“STEP ) + B 
10 CONTINUE 
C 

INIT = INT(EXTRA/STEP)+l 
FINAL = INT((EXTRA+ENERGY(NUMP)-ENERGY( l))/STEP) 

cx 
cx 

20 
C 

C 
cx 
cx 
cx 
C 

cx 

DO 20, I=INIT,FINAL 
K = INT( ( (I-l)*STEP-EXTRA )/STEX ) + 1 
DELTA = ( (I-l)*STEP-EXTRA )/STEX + 1 - K 
IOINTERP(1) = 0. 
WRITE(9,“) ‘K,DELTA ‘,K,DELTA 
IOINTERP(1) = IOEXP(K) * (1. - DELTA) + IOEXP(K+l) * DELTA 

CONTINUE 

INIT=NUMP-2 
FINAL = NUMP 

WRITE(9,*) ‘STEP,STEX,EXTRA ‘,STEP,STEX,EXTRA 
WRITE(9,*) ‘INIT,FINAL,NUMP ‘,INIT,FINAL,NUMP 
PAUSE 

CALL GETLINE(ENERGY,IOEXP,INIT,FINAL,M,B,NUMP) 
WRITE(9,*) ‘M,B ‘,M,B 

INIT = INT((EXTRA+ENERGY(NUMP)-ENERGY( l))/STEP)+l 
FINAL = ITER 

DO 30, I=INIT,FINAL 
IOINTERP(1) = M * ( 2.*STEX + (I-INIT)*STEP ) + B 
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C 

C 

5 
C 

10 
C 

C 

SUBROUTINE GETLINE(ENERGY,EXPDAT,INIT,FINAL,M,BO,NUMP) 
REAL ENERGY(260), EXPDAT(260) 
REAL M,BO 
INTEGER*4 INIT,FINAL 

IMPLICIT NONE 
REAL AN(2), B(2), C(2) 
INTEGER*4 I 

DO 5,1=1,2 
AN(I) = 0. 
B(1) = 0. 
C(1) = 0. 

DO 10, I=INIT, FINAL 
AN(l) = AN(l) + ( ENERGY(I)-ENERGY(INIT) )**2 
AN(2) = AN(2) + ENERGY(I)-ENERGY(INIT) 
B(1) = B(1) + ENERGY(I)-ENERGY(INIT) 
B(2) = B(2) + 1. 
C( 1) = C( 1) + EXPDAT(I)*( ENERGY(I)-ENERGY(INIT) ) 

C(2) = C(2) + EXPDAT(1) 
CONTINUE 

M = ( C(l)*B(2) - C(2)*B(l) ) / ( AN(l)*B(2) - AN(2)*B(l) ) 
BO = ( AN(l)*C(2) - AN(2)*C(l) ) / ( AN(l)*B(2) - AN(2)*B(l) ) 

RETURN 
END 

SUBROUTINE UNCDELZ(DELZ,CFRAC,ENERGY,SWEXP,CHI,DELDELZ) 
IMPLICIT NONE 
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REAL ENERGY(260), SWEXP(260) 
REAL CHI, DELDELZ, DELZ, CFRAC 

C 
REAL ENERO,EXTRA 
REAL GAMMA,A,PLANE,DEPTH,COSRATIO 
COMPLEX FH,FMINH,FO 
COMPLEX FGA(2049) 
INTEGER*4 NUMPJTER 
LOGICAL SYMMETRIC 
COMMON ENERO,EXTRA 
COMMON GAMMA,A,PLANE,DEPTH,COSRATIO 
COMMON FH,FMINH,FO 
COMMON FGA(2049) 
COMMON NUMPJTER 
COMMON SYMMETRIC 

C 
REAL DELZl, DELZ2, CHIl, CH12 
CHARACTER*255 INFO 
REAL SWCAL(260), SWCONV(260) 
INTEGER*4 I 
DELZ2 = DELZ 
DELZl = DELZ 
I=0 

C 
10 DELZl = DELZl - 0.01 

1=1+ 1 
IF(1 .GT. 100) THEN 
DELDELZ = 1. 
RETURN 

END IF 
CALL CONVOLVE(ENERGY,DELZl,CFRAC,SWCONV) 
CALL PUTBACKG(ENERGY,SWEXP,SWCONV,NUMP) 
CALL GETCHI(S WCONV,SWEXP,CHI 1 ,NUMF’) 

WRITE(INFO,lS) I,DELZ,DELZl 
15 FORMAT( ‘I,DELZ,DELZl ‘,14,2(G12.6),’ ’ ) 

CALL LETRERO(INFO,l5) 
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WRITE(INFO,l6) CHI,CHI 1 
16 FORMAT( ‘CHI,CHIl ‘,2(G12.6),’ ’ ) 

CALL LETRERO(INFO,l6) 
IF ( CHIl .LT. (2.*CHI) ) GOT0 10 
CALL DIBUJA(SWCONV,ENERGY,NUMP) 

C 
I=0 

20 DELZ2 = DELZ2 + 0.01 
1=1+ 1 
IF(1 .GT. 100) THEN 
DELDELZ = 1. 
RETURN 

END IF 
CALL CONVOLVE(ENERGY,DELZ2,CFRAC,SWCONV) 
CALL PUTBACKG(ENERGY,SWEXP,SWCONV,NUMP) 
CALL GETCHI(SWCONV,SWEXP,CHI2,NUMP) 

WRITE(INFO,25) I,DELZ,DELZ2 
25 FORMAT( ‘I,DELZ,DELZ2 ‘,14,2(G 12.6),’ ’ ) 

CALL LETRERO(INFO,l 8) 
WRITE(INF0,26) CHI,CHI2 

26 FORMAT( ‘CHI,CHI2 ‘,2(G12.6),’ ’ ) 
CALL LETRERO(INFO,l9) 
IF ( CHI2 .LT. (2.*CHI) ) GOT0 20 

C 
DELDELZ = AMAXl@ELZ-DELZl, DELZ2-DELZ) 
WRITE(INF0,“) ‘DELZl, DELZ, DELZ2 ‘,DELZl, DELZ, DELZ 
CALL LETRERO(INF0,20) 

WRITE(INF0,“) ‘DELl,DEL2,DELDELZ ‘,DELZ-DELZl, 
& DELZ2-DELZ,DELDELZ 

CALL LETRERO(INF0,2 1) 
C 

RETURN 

END 
C ----------_------------------------------------------------------------------- 

SUBROUTINE UNCCFRAC@ELZ,CFRAC,ENERGY,SWEXP,CHI,DELCFRAC) 
IMPLICIT NONE 

169 



REAL ENERGY(260), SWEXP(260) 
REAL CHI, DELCFRAC, DELZ, CFRAC 

C 
REAL ENERO,EXTRA 
REAL GAMMA,A,PLANE,DEPTH,COSRATIO 
COMPLEX FH,FMINH,FO 
COMPLEX FGA(2049) 
INTEGER*4 NUMPJTER 
LOGICAL SYMMETRIC 
COMMON ENERO,EXTRA 
COMMON GAMMA,A,PLANE,DEPTH,COSRATIO 
COMMON FH,FMINH,FO 
COMMON FGA(2049) 
COMMON NUMPJTER 
COMMON SYMMETRIC 

C 
REAL CFRACl, CFRAC2, CHIl, CH12 
CHARACTER*255 INFO 
REAL SWCAL(260), SWCONV(260) 
INTEGER*4 I 
CFRAC2 = CFRAC 
CFRACl = CFRAC 
I=0 

C 
10 CFRACl = CFRACl / 1.01 

I=I+l 
IF(1 .GT. 100) THEN 
DELCFRAC = 1. 
RETURN 

END IF 
CALL CONVOLVE(ENERGY,DELZ,CFRACl,SWCONV) 
CALL PUTBACKG(ENERGY,SWEXP,SWCONV,NUMP) 

CALL GETCHI( S WCONV,SWEXP,CHI 1 JUMP) 
WRITE(INFO,lS) I,CFRAC,CFRACl 

15 FORMAT( ‘I,CFRAC,CFRACl ‘,14,2(G12.6),’ ’ ) 
CALL LETRERO(INFO,S) 
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WRITE(INFO,l6) CHI,CHI 1 
16 FORMAT( ‘CHI,CHIl ‘,2(G12.6),’ ’ ) 

CALL LETRERO(INF0,6) 
IF ( CHIl .LT. (2.*CHI) ) GOT0 10 

CALL DIBUJA(SWCONV,ENERGY,NUMP) 
C 

I=0 
20 CFRAC2 = CFRAC2 * 1.01 

1=1+ 1 
IF(1 .GT. 100) THEN 
DELCFRAC = 1. 
RETURN 

ENDIF 
CALL CONVOLVE(ENERGYDELZCFRAC2,SWCONV) 
CALL PUTBACKG(ENERGY,SWEXP,SWCONV,NUMP) 
CALL GETCHI(SWCONV,SWEXP,CHIZ,,NUMP) 

WRITE(INFO,25) I,CFRAC,CFRAC2 
25 FORMAT( ‘I,CFRAC,CFRACZ, ‘,14,2(G12.6),’ ’ ) 

CALL LETRERO(INF0,8) 
WRITE(INFO,26) CHI,CH12 

26 FORMAT( ‘CHI,CHI2 ‘,2(G12.6),’ ’ ) 
CALL LETRERO(INFO,9) 
IF ( CHJ2 .LT. (2.*CHI) ) GOT0 20 

C 
DELCFRAC = AMAXl(CFRAC-CFRACl, CFRAC2-CFRAC) 

WRITE(INFO,*) ‘CFRACl, CFRAC, CFRAC2 ‘,CFRACl, CFRAC, CFRAC 
CALL LETRERO(INF0, 10) 

WRJTE(INF0,“) ‘DEL1 ,DEL2,DELCFRAC ‘,CFRAC-CFRACl , 

& CFRAC2-CFRACPELCFRAC 
CALL LETRERO(INFO,l 1) 

C 
RETURN 
END 

C ----- -- - -- - ------ --- -- - -- - -- - -- - -- --- --- - -- - -- - -_ - -- - --- -- - -- - -- - -- - -- -__ - -- -- 

SUBROUTINE GETPARAM(PARAMFILE,DELZ,CFRAC, 
& OSCKILL,BKCORRECT,DCTY,FCTY) 
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IMPLICIT NONE 
REAL DELZ,CFRAC 
CHARACTER*255 PARAMFILE 
CHARACTER OSCIULL 
CHARACTER BKCORRECT 
REALDCTY,FCTY 

C 
REAL ENERO,EXTRA 
REAL GAMMA,A,PLANE,DEPTH,COSRATtO 
COMPLEX FH,FMINH,FO 
COMPLEX FGA(2049) 
INTEGER*4 NUMPJTER 
LOGICAL SYMMETRIC 
COMMON ENEROJXTRA 
COMMON GAMMA,A,PLANE,DEPTH,COSRATIO 
COMMON FH,FMINH,FO 
COMMON FGA(2049) 
COMMON NUMPJTER 
COMMON SYMMETRIC 

C 
REAL REFOIN,IMFOIN,REFHIN,IMFHIN 
REAL REFOP,IMFOP,REFHP,IMFHP 

CHARACTER*8 REFLE 
C 

REALIMAx 
CHARACTER*255 INFO 
COMPLEX FACTORl, FACTOR2 
REALRITER 
REAL COSTETA,DISTANCE 
CHARACTER CHARSYMM 

C 
WRITE(INFO,*) ‘NOW GETTING THE PARAMETERS ’ 

CALL LETRERO(INFO,O) 
C 

OPEN (UNIT=l,STATUS=‘OLD’,FILE=TRIM(PARAMFILE)) 
C 
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READ (1,lO) REFOIN,IMFOIN,REFHIN,IMFHIN 
READ (1,lO) REFOP,IMFOP,REFHP,IMFHP 
READ (1,20) REFLE 
READ (1,lO) A 
READ (1,lO) CFRAC,DELZ !INITIAL VALUE 
READ (1,lO) RITER 
READ (1,20) OSCKILL 
READ (1,lO) DEPTH 
READ (1,20) CHARSYMM 
READ (1,lO) COSRATIO !COSGAMA TO COSTETA RATIO 
READ (1,20) BKCORRECT 
READ (1,lO) DCl-Y,FCIY !TOTAL YIELD 

10 FORMAT (F12.0) 
20 FORMAT (A) 
C CALCULATE THE PARAMETERS 

ITER = INT(RITER+. 1) 
C 

IF( (CHARSYMM .EQ. ‘Y’) .OR. (CHARSYMM .EQ. ‘y’) ) THEN 
SYMMETRIC = .TRUE. 

ELSE IF( (CHARSYMM .EQ. ‘N’) .OR. (CHARSYMM .EQ. ‘n’) ) THEN 
SYMMETRIC = .FALSE. 

ELSE 
WRITE(9,*) ‘SYMMETRIC OR NOT? PLEASE ABORT ’ 
PAUSE ‘SYMMETRIC OR NOT? PLEASE ABORT ’ 

ENDIF 
C 

IF(REFLE .EQ. ‘[200]‘) THEN 
FACTOR1 = -1. 
FACTOR2 = -1. 
PLANE = 2. 
WRITE(9,*) ‘REFLECTION ‘,REFLE 

ELSE IF(REFLE .EQ. ‘[ 1111’) THEN 

FACTOR1 = -CMPLX(O., 1.) 
FACTOR2 = CMPLX(O.,l.) 
PLANE = SQRT(3.) 

ELSE IF(REFLE .EQ. ‘[-l-l-l]‘) THEN 
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FACTOR1 = CMPLX(O.,l.) 
FACTOR2 = -CMPLX(O., 1.) 
PLANE = SQRT(3.) 
WRITE(9,*) ‘REFLECTION ‘,REFLE 

ELSE IF(REFLE .EQ. ‘[220]’ .OR. REFLE .EQ. ‘[400]‘) THEN 
FACTOR1 = 1. 
FACTOR2 = 1. 
PLANE = SQRT(8.) 
IF (REFLE .EQ. ‘[400]‘) PLANE = 4. 

ELSE 
WRITE(9,*) ‘ERROR IN READING REFLECTION ’ 
WRITE(9,“) ‘ERROR IN READING REFLECTION ’ 
PAUSE ‘PLEASE ABORT ’ 

END IF 
FH = CMPLX(REFHIN,IMFHIN) + FACTOR1 *CMPLX(REFHP,IMFHP) 
FMINH = CMPLX(REFHIN,IMFHIN) + FACTOR2*CMPLX(REFHF,IMFHP) 
FO = CMPLX(REFOIN,IMFOIN) + CMPLX(REFOP,IMFOP) 
GAMMA = 55 12,97/(A*A*A*ENERO*ENERO) 

C CORRECTION FOR ENERO 
ENERO = ENERO - GAMMA*FO*A*A*ENERO**3/(2.*(6201.5*PLANE)**2) 

C 
COSTETA = 6201 .S*PLANE/A/ENERO 

DISTANCE = REAL(F0) * GAMMA*ENERO/COSTETA**2/2. 
EXTRA = 2.*DISTANCE 

C 
CLOSE( 1) 
RETURN 
END 

C ___________________----------------------------------------------------------- 

SUBROUTINE GETCFRAC(DELZ,CFRAC,ENERGY,SWEXP,CHI,SWCAL, 
& DATA,OSCKILL) 

IMPLICIT NONE 
REAL DELZ,CFRAC 

REAL ENERGY(260), SWEXP(26O),SWCAL(260) 
REAL CHI 

CHARACTER”255 DATA 
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CHARACTER OSCKILL 
C 

REAL ENERO,EXTRA 
REAL GAMMA,A,PLANE,DEPTH,COSRATIO 
COMPLEX FH,FMINH,FO 
COMPLEX FGA(2049) 
INTEGER*4 NUMP,ITER 
LOGICAL SYMMETRIC 
COMMON ENERO,EXTRA 
COMMON GAMMA,A,PLANE,DEPTH,COSRATIO 
COMMON FH,FMINH,FO 
COMMON FGA(2049) 
COMMON NUMP,ITER 
COMMON SYMMETRIC 

C 
REAL SWCAL1(260), SWCAL2(260) 

REAL FACTOR 
REAL CFRACl, CFRAC2, CHIl, CH12 
REAL DELZl, DELZ2 
INTEGER*4 I 
CHARACTER*255 INFO 
CHARACTER CHAR 

C 
FACTOR = 1.1 !INITIAL VALUE 
DELZl = DELZ 
DELZ2 = DELZ 

cx CALL CONVOLVE(ENERGY,DELZ,CFRAC,SWCAL) 
cx CALL PUTBACKG(ENERGY,SWEXP,SWCAL,NUMP) 
cx CALL DIBUJA(SWCAL,ENERGY,NUMP) 
C 

IF( (OSCKILL .EQ. ‘Y’) .OR. (OSCKILL .EQ. ‘y’) ) 
& CALL KILLOSCIL(ENERGY,DELZ,CFRAC) ! CHANGES FGA 

C 
CALL AXESFOR(SWEXP,ENERGY,NUMP) 
CALL DIBUJA(SWEXP,ENERGY,NUMP) 

CALL CONVOLVE(ENERGY,DELZ,CFRAC,SWCAL) 
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CALL PUTBACKG(ENERGY,SWEXP,SWCAL,NUMP) 
CALL DIBUJA(SWCAL,ENERGY,NUMP) 

C 
CALL GETDELZ@ELZ,CFRAC,ENERGY,SWEXP,SWCAL,CHI) 

C 
10 CFRACl = CFRAC * FACTOR 

CALL GETDELZ@ELZl,CFRACl,ENERGY,SWEXP,SWCALl,CHIl) 
C 
C 

WRITE(INFO,140) FACT.OR,DATA 
140 FORMAT(‘GETCFRAC1 FACTOR ‘,G12.5,’ FILENAME ‘,A20) 

CALL LETRERO(INFO,S) 
WRITE(INFO,44) CHI,CHIl 

144 FORMAT(‘CHI,CHIl= ‘,2(G12.5),’ 7 
CALL LETRERO(INF0,6) 

147 

C 
C 

200 

C 

C 
20 

WRlTE(INF0,47) CFRAC,CFRACl 
FORMAT(‘CFRAC,CFRACl ‘,2(G12.5),’ ‘) 

CALL LETRERO(INF0,7) 
WRITE(INFO,*) ‘DELZ,DELZl ‘,DELZ,DELZl 

CALL LETRERO(INFO& 

IF (CHIl .LT. CHI) THEN 
CHI = CHIl 
CFRAC = CFRACl 
DELZ = DELZl 
DO 200, I = 1, NUMP 
SWCAL(1) = SWCALl(1) 

CALL DIBUJA(SWCAL,ENERGY,NUMP) 
GOT0 10 

END IF 

CFRAC2 = CFRAC / FACTOR 
CALL GETDELZ@ELZ2,CFRAC2,ENERGY,SWEXP,SWCAL2,CHI2) 

C 
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C 
WRITE(INFO,40) FACTOR,DATA 

40 FORMAT(‘GETCFRAC2 FACTOR ‘,G 12.5,’ FILENAME ‘,A20) 
CALL LETRERO(INFO,S) 

WRITE(INF0,44) CHI,CHI 1 ,CHI2 
44 FORMAT(‘CHI,CHIl,CHI2= ‘,3(G12.5),’ ‘) 

CALL LETRERO(INF0,6) 

47 

C 

300 

C 

C 

C 

WRITE(INFO,47) CFRAC,CFRACl ,CFRAC2 
FORMAT(‘CFRAC,CFRACl,CFRAC2 ‘,3(G12.5),’ ‘) 
CALL LETRERO(INFO,7) 

WRITE(INFO,*) ‘DELZ,DELZl ,DELZ2 ‘,DELZ,DELZl ,DELZ2 
CALL LETRERO(INFO,8) 

IF (CH12 .LT. CHI) THEN 
CHI = CH12 
CFRAC = CFRAc2 
DELZ = DELZ2 
DO3OO,I=l,NUMP 
SWCAL(1) = SWCAL2(1) 

CALL DIBUJA(SWCAL,ENERGY,NUMP) 
GOT0 20 

ENDIF 

IF (FACTOR > 1.001) THEN 
FACTOR = SQRT(FACTOR) 

CALL DIBUJA(SWCAL,ENERGY,NUMP) 
GOT0 10 

END IF 

INFO = ‘END OF GETCFRAC, RETURN TO CONTINUE ’ 
CALL LETRERO(INF0,20) 
CALL AXESFOR(SWEXP,ENERGY,NUMP) 

CALL DIBUJA(SWEXP,ENERGY ,NUMP) 
CALL DJBUJA(SWCAL,ENERGY,NUMP) 

RETURN 
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END 
C- - -- - ------ -_ - -- - -- - --- ----- --- --- - -- - -- - -- - ----- - -- - -- - -- - -- - _---_ - -- ---- --- _ 

C 

C 

C 

C 

C 

SUBROUTINE KILLOSCIL(ENERGY,DELZ,CFRAC) 
IMPLICIT NONE 
REAL ENERGY (260) 
REAL DELZ,CFRAC 

REAL ENEROEXTRA 
REAL GAMMA,A,PLANE,DEPTH,COSRATIO 
COMPLEX FH,FMINH,FO 
COMPLEX FGA(2049) 
INTEGER*4 NUMPJTER 
LOGICAL SYMMETRIC 
COMMON ENERO,EXTRA 
COMMON GAMMA,A,PLANE,DEPTH,COSRATIO 
COMMON FH,FMINH,FO 
COMMON FGA(2049) 
COMMON NUMPJTER 
COMMON SYMMETRIC 

COMPLEX FSW(1025) 
COMPLEX Fl-3 1025) 
REAL EINTERP( 1025) 

INTEGER*4 I 
REAL Y(1025) 
REAL X( 1025) 
CHARACTER*255 INFO 
INTEGER*4 INIT, FINAL 
REAL ENER,STEP 
REAL SWFUNCTION 

STEP = (ENERGY (NUMP)-ENERGY (1)+2.*EXTRA)/(ITER- 1.) 

ENER = ENERGY( 1) - EXTRA 
DO 6, I=l,ITER 
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6 
C 

C 
200 
C 

50 

C 

C 

FSW(1) = CMPLX(SWFUNCTION(DELZ,CFRAC,ENER),O.) 
EINTERP(1) = ENER 

ENER = ENER + STEP 

CONTINUE 

CALL FOURl(FSW,ITER,l) 

CONTINUE 

DO 50,1=1,30 
X(1) = I - 30. 
X(1+30) = I 
Y(1) = REAL( FGA(ITER - 30 + I) ) 
Y(I+30) = REAL( FGA(1) ) 

CONTINUE 
CALL AXESFOR(Y,X,60) 
CALL DIBUJA(Y,X,60) 
PAUSE 

WRITE(9,*) ‘WHICH ONES? INIT, FINAL (X ESCALE -30 30) ’ 
READ(9,*) INIT, FINAL 
IF(INIT .LT. 0) THEN 
INIT = ITER + INIT 
FINAL = ITER + FINAL 

ENDIF 

DO 60, I=INIT, FINAL 
FGA(1) = FGA(INIT) + (FGA(FINAL)-FGA(INIT))/(FINAL - INIT)* 

& (I - INIT) 
60 CONTINUE 
C 

DO 222, I=l,ITER 

FI’2(1) = FGA(1) * FSW(1) 
222 CONTINUE 

C 
CALL FOUR1 (FI’2,ITER,- 1) 
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231 
C 

C 
C 

C 

DO 231,1=1, ITER 
Y(1) = REAL(FI’2(1)) 

CONTINUE 

CALL AXESFOR(Y,EINTERP,ITER) 
CALL DIBUJA(Y,EINTERP,ITER) 

WRITE(9,“) ‘AGAIN? (1 FOR YES) ’ 
WRITE(9,*) ‘AGAIN? (1 FOR YES) ’ 
READ(9,“) I 
IF (I .EQ. 1) GOT0 200 

RETURN 
END 

C- - -- - -------- - -- - -- - -- - -- - -- - -- - -- - -- - -- --- ---- -- - -- - ----------- - -- - -- - -- ----- 

SUBROUTINE GETDELZ(DELZ,CFRAC,ENERGY,SWEXP,SWCONV,CHI) 
IMPLICIT NONE 
REAL DELZ,CFRAC,CHI 
REAL ENERGY(260), SWEXP(260), SWCONV(260) 

C 
REAL ENERO,EXTRA 
REAL GAMMA,A,PLANE,DEPTH,COSRATIO 
COMPLEX FH,FMINH,FO 
COMPLEX FGA(2049) 
INTEGER*4 NUMP,ITER 
LOGICAL SYMMETRIC 
COMMON ENERO,EXTRA 
COMMON GAMMA,A,PLANE,DEPTH,COSRATIO 
COMMON FH,FMINH,FO 
COMMON FGA(2049) 
COMMON NUMP,ITER 
COMMON SYMMETRIC 

C 
REAL FACTOR 
REAL DELZl, DELZ2, CHIl , CH12 
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INTEGER*4 I 
CHARACTER*255 INFO 

C 

C 

10 

FACTOR = 1.1 !INITIAL VALUE 
CALL CONVOLVE(ENERGY,DELZ,CFR4C,SWCONV) 
CALL PUTBACKG(ENERGY,SWEXP,SWCONV,NUMP) 
CALL GETCHI(SWCONV,SWEXP,CHI,NUMP) 

DELZl = DELZ * FACTOR 
CALL CONVOLVE(ENERGY,DELZl,CFRAC,SWCONV) 
CALL PUTBACKG(ENERGY,SWEXP,SWCONV,NUMP) 
CALL GETCHI(SWCONV,SWEXP,CHIl ,NUMP) 

C 
IF (CHIl < CHI) THEN 

CHI = CHIl 
DELZ = DELZl 
GOT0 10 

END IF 
C 
20 DELZ2 = DELZ / FACTOR 

CALL CONVOLVE(ENERGY,DELZ2,CFRAC,SWCONV) 
CALL PUTBACKG(ENERGY,SWEXP,SWCONV,NUMP) 
CALL GETCHI(SWCONV,SWEXP,CHI2,NUMP) 

C 
IF (CH12 < CHI) THEN 

CHI = CH12 
DELZ = DELZ2 
GOT0 20 

ENDIF 
C 

C 

40 

IF (FACTOR > 1.001) THEN 
FACTOR = SQRT(FACTOR) 

WRITE(INFO,40) 
FORMAT(‘SUBROUTINE GETDELZ’) 

CALL LETRERO(INFO,O) 
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44 

47 

49 

C 

C 

WRITE(INF0,44) CHI,CHIl,CHI2 
FORMAT(‘CHI,CHI 1 ,CHI2= ‘,3 (G 12.5); ‘) 

CALL LETRERO(INF0, 1) 
WRITE(INFO,47) DELZ,DELZl,DELZ2 

FORMAT(‘DELZ,DELZl ,DELZ2 ‘,3(G 12.5),’ ‘) 
CALL LETRERO(INF0,2) 

WRITE(INFO,49) ENERO,FACTOR 
FORMAT(‘ENERO,FACTOR ‘,3(G 12.5),’ ‘) 
CALL LETRERO(INF0,3) 

GOT0 10 
ENDIF 

RETURN 
END 

C- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

SUBROUTINE CONVOLVE(ENERGY,DELZ,CFRAC,SWCONV) 
IMPLICIT NONE 
REAL ENERGY(260), SWCONV(260) 
REAL DELZ,CFRAC 

C 
REAL ENERO,EXTRA 
REAL GAMMA,A,PLANE,DEPTH,COSRATIO 
COMPLEX FH,FMINH,FO 
COMPLEX FGA(2049) 
INTEGER*4 NUMP,ITER 
LOGICAL SYMMETRIC 
COMMON ENERO,EXTRA 
COMMON GAMMA,A,PLANE,DEPTH,COSRATIO 
COMMON FH,FMINH,FO 
COMMON FGA(2049) 
COMMON NUMP,ITER 

COMMON SYMMETRIC 
C 

INTEGER*4 1,J 
REAL swoFFNoRMAL 
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C 

C 

C 

6 
C 

20 

C 

30 
C 

REAL SWFUNCTION 
CHARACTER OFFNOR 
REAL STEP 

COMPLEX FSWCAL(2049), FT(2049) 
REALENER 
REALDELTA 

STEP = (ENERGY(NUMP)-ENERGY( 1)+2.*EXTRA)/(ITER- 1.) 

ENER = ENERGY( 1) - EXTRA 
DO 6, I=l,ITER 
FSWCAL(1) = CMPLX(SWFUNCTION@ELZ,CFRAC,ENER),O.) 
ENER = ENER + STEP 

CONTINUE 

CALL FOURl(FSWCAL,ITER,l) 
DO 20, I=l,ITER 
FT(1) = FSWCAL(1) * FGA(1) / ITER 
CONTINUE 
CALL FOUR1 (FT,ITER,- 1) 

DO 30,1=1, NUMP 
J = INT( (ENERGY (I)-ENERGY (1) + EXTRA)/STEP ) 
DELTA = (ENERGY (I)-ENERGY (1) + EXTRA)/STEP - J 

SWCONV(I) = (1 .-DELTA)*REAL(FT(J+l)) + DELTA*REAL(FT(J+2)) 
CONTINUE 

RETURN 
END 

C ------_--_-------------------------------------------------------------------- 

FUNCTION REFLFUNCTION(ENER) 
IMPLICIT NONE 
REALENER 
REALREFLFUNCTION 

C 
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C 

C 

C 

C 

REAL ENERO,EXTRA 
REAL GAMMA,A,PLANE,DEPTH,COSRATIO 
COMPLEX FH,FMINH,FO 
COMPLEX FGA(2049) 
INTEGER*4 NUMPJTER 
LOGICAL SYMMETRIC 
COMMON ENERO,EXTRA 
COMMON GAMMA,A,PLANE,DEPTH,COSRATIO 
COMMON FH,FMINH,FO 
COMMON FGA(2049) 
COMMON NUMP,ITER 
COMMON SYMMETRIC 

COMPLEX ETA 
COMPLEX AI001 ,A1002 
REAL AIOl,AI02 
REAL REFLNONSYMM 

REAL COSTETA 

IF(.NOT. SYMMETRIC) THEN 
REFLFUNCTION = REFLNONSYMM(ENER) 
RETURN 

END IF 

COSTETA = 6201.5 * PLANE /A / ENERO 
GAMMA = 5512.97/(A*A*A*ENER*ENER) 

ETA = (-2.*(ENER-ENERO)/ENER*COSTETA**2+GAMMA*FO) 
& /GAMMA/CSQRT(FH*FMINH) 

C 
AI001 = - CSQRT(FH/FMINH) * (ETA - CSQRT( ETA*ETA - 1. ) ) 
AI01 = CABS( AI001 ) **2 

C 
AI002 = - CSQRT(FH/FhJINH) * ( ETA + CSQRT( ETA*ETA - 1. ) ) 

AI02 = CABS( AI002 ) * CABS( AI002 ) 
C 
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IF (AI02 .LE. 1.) THEN 
REFLFUNCTION = AI02 

ELSE 
REFLFUNCTION = AI01 

ENDIF 
C 

RETURN 
END 

C --------------_--------------------------------------------------------------- 

FUNCTION REFLNONSYMM(ENER) 
IMPLICIT NONE 
REALENER 
REAL REFLNONSYMM 

C 
REAL ENERO,EXTRA 
REAL GAMMA,A,PLANE,DEPTH,COSRATIO 
COMPLEX FH,FMINH,FO 
COMPLEX FGA(2049) 
INTEGER*4 NUMPJTER 
LOGICAL SYMMETRIC 
COMMON ENERO,EXTRA 
COMMON GAMMA,A,PLANE,DEPTH,COSRATIO 
COMMON FH,FMINH,FO 
COMMON FGA(2049) 
COMMON NUMPJTER 
COMMON SYMMETRIC 

C 
COMPLEX ETA, AI00 
COMPLEX AI001 ,A1002 
REAL AI0 1 ,A102 
INTEGER*4 I 

C 
REAL ANGLE 
REAL AGEO,COSTETA 

C 
ANGLE = - ACOS(6201.5 * SQRT(3.) /A / ENERO ) + 
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82 ACOS(SQRT(2./3.)) 
AGE0 = 0.33333 + SQRT(8.)/3. * TAN(ANGLE) 

COSTETA = SQRT(2./3.) * COS(ANGLE) + l./SQRT(3.) * SIN(ANGLE) 

GAMMA = 5512.97/(A*A*A*ENER*ENER) 
ETA = ( -2.*(ENER-ENERO)/ENER*(COSTETA)**2 + 

& GAMMA*FO*(0.66666 + SQRT(2.)/3. * TAN(ANGLE) ) ) 
8z / ( GAMMA*CSQRT(FH*FMINH)*SQRT(AGEO) ) 

C 
AI001 = - CSQRT(FH/FMINH) / SQRT(AGE0) * 

& ( ETA - CSQRT( ETA*ETA - 1. ) ) 
AI01 = CABS( AI001 ) **2 

C 
AI002 = - CSQRT(FH/FMINH) / SQRT(AGE0) * 

& ( ETA + CSQRT( ETA*ETA - 1. ) ) 
AI02 = CABS( A1002 ) * CABS( AI002 ) 

C 
IF (AI02 .LE. AIOl) THEN 

REFLNONSYMM = AI02 
ELSE 

REFLNONSYMM = AI01 
END IF 

C 
RETURN 
END 

C ----------_------------------------------------------------------------------- 

FUNCTION SWFUNCTION@ELZ,CFRAC,ENER) 
IMPLICIT NONE 
REAL DELZ,CFRAC 
REAL ENER, SWFUNCTION 

C 
REAL ENERO,EXllU 
REAL GAMMA,A,PLANE,DEPTH,COSRATIO 
COMPLEX FH,FMINH,FO 
COMPLEX FGA(2049) 

INTEGER*4 NUMPJTER 
LOGICAL SYMMETRIC 
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COMMON ENEROJXTRA 
COMMON GAMMA,A,PLANE,DEPTH,COSRATIO 

COMMON FH,FMINH,FO 
COMMON FGA(2049) 
COMMON NUMPJTER 
COMMON SYMMETRIC 

C 
COMPLEX ETA, AI00 
COMPLEX AI00 1 ,A1002 
REAL AIOl,AI02 
REAL SWOl, SW02 
INTEGER*4 I 
REAL COSTETA,ALFAl,ALFA2 
REAL COSGAMA 
REAL SWNONSYMM 

C 
IF(.NOT. SYMMETRIC) THEN 
SWFUNCTION = SWNONSYMM@ELZ,CFRAC,ENER) 
RETURN 

END IF 
C 

COSTETA = 6201.5 * PLANE /A / ENERO 
cx COSGAMA = COSTETA / SQRT(3,) ! FOR THE 111 REFLECTION WITH 
100 WAFERS 
cx COSGAMA = COSTETA ! FOR THE 400 REFLECTION 
cx COSGAMA = COSTETA/SQRT(2.) ! FOR THE 220 REFLECTION 
cx COSGAMA = COSTETA ! FOR BACK REFLECTION 

COSGAMA = COSTETA/COSRATIO 
GAMMA = 55 12.97/(A*A*A*ENER*ENER) 

ETA = (-2.*(ENER-ENERO)/ENER*COSTETA**2+GAMMA*FO) 
& /GAMMA/CSQRT(FH*FMINH) 

C 
AI001 = - CSQRT(FH/FMINH) * ( ETA - CSQRT( ETA*ETA - 1. ) ) 

AI01 = CABS( AI001 ) **2 
SW01 = 2. * CFRAC * REAL( AIOOl” 

az CMPLX( COS(6.2832*DELZ),- SIN(6.2832*DELZ) ) ) 
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& + l.+AIOl 
ALFAl = ENER*GAMMA/COSGAMA/197.32 * AIMAG( FMINH*AIOOl+FO ) 

C hc = 197.32 eV nm. nm BECAUSE THE PROFILE DEPTH IS IN nm 
C 

A1002 = - CSQRT(FH/FMINH) * ( ETA + CSQRT( ETA*ETA - 1. ) ) 
AI02 = CABS( AI002 ) * CABS( AI002 ) 

SW02 = 2. * CFRAC * REAL( AI002* 
8z CMPLX( COS(6.2832*DELZ),- SIN(6.2832”DELZ) ) ) 
& + l.+AI02 

ALFA2 = ENER*GAMMA/COSGAMA/197.32 * AIMAG( FMINH*AI002+FO ) 
C 

IF (AI02 .LE. 1.) THEN 
SWFUNCTION = SW02 / ALFA2 * (1. - EXP(-DEPTH”ALFA2)) 

ELSE 
SWFUNCTION = SW01 / ALFAl * (1. - EXP(-DEPTH*ALFAl)) 
ENDIF 

C 
RETURN 
END 

C -----_-------_----_----------------------------------------------------------- 

FUNCTION SWNONSYMM@ELZ,CFRAC,ENER) 
IMPLICIT NONE 
REAL DELZ,CFRAC 
REAL ENER, SWNONSYMM 

C 
REAL ENERO,EXTRA 
REAL GAMMA,A,PLANE,DEPTH,COSRATIO 
COMPLEX FH,FMINH,FO 
COMPLEX FGA(2049) 
INTEGER*4 NUMPJTER 
LOGICAL SYMMETRIC 
COMMON ENERO,EX’IRA 
COMMON GAMMA,A,PLANE,DEPTH,COSRATIO 

COMMON FH,FMINH,FO 
COMMON FGA(2049) 
COMMON NUMPJTER 
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COMMON SYMMETRIC 
C 

COMPLEX ETA, AI00 
COMPLEX AI001 ,A1002 
REAL AIOl,AIO2 
REAL SWOl, SW02 
INTEGER*4 I 

C 
REAL ANGLE 
REAL AGEO,COSTETA 

C 
ANGLE = - ACOS(6201.5 * SQRT(3.) / A / ENERO ) + 

82 ACOS(SQRT(2./3.)) 
AGE0 = 0.33333 + SQRT(8.)/3. * TAN(ANGLE) 

COSTETA = SQRT(2./3.) * COS(ANGLE) + lJSQRT(3.) * SIN(ANGLE) 
C 

GAMMA = 5512.97/(A*A*A*ENER*ENER) 
ETA = ( -2.*(ENER-ENERO)/ENER*(COSTETA)**2 + 

& GAMMA*FO*(0.66666 + SQRT(2.)/3. * TAN(ANGLE) ) ) 
8z / ( GAMMA*CSQRT(FH*FMINH)*SQRT(AGEO) ) 

C 
AI001 = - CSQRT(FH/FMINH) / SQRT(AGE0) * 

& ( ETA - CSQRT( ETA*ETA - 1. ) ) 
AI01 = CABS( AI001 ) **2 

SW01 = 2. * CFRAC * REAL( AIOOl” 
& CMPLX( COS(6.2832*DELZ),- SIN(6.2832*DELZ) ) ) 
& + l.+AIOl 

C 
AI002 = - CSQRT(FH/FMINH) / SQRT(AGE0) * 

& ( ETA + CSQRT( ETA*ETA - 1. ) ) 
AI02 = CABS( AI002 ) * CABS( AI002 ) 

SW02 = 2. * CFRAC * REAL( AI002* 
& CMPLX( COS(6.2832*DELZ),- SIN(6.2832*DELZ) ) ) 

& + l.+AI02 
C 

IF (AI02 .LE. AIOl) THEN 
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SWNONSYMM = SW02 
ELSE 

SWNONSYMM = SW01 
END IF 

C 
RETURN 
END 

C- - -- --------- - -- - -- - -- --- ---- -- - -- - -- - __ --- - -- --- - -- - -- - -- - -- ------_ __ _______ _ 

SUBROUTINE PUTBACKG(ENERGY,EXPDAT,CALDAT,NUMF’) 
C MINIMIZES SUM [ ( ALFA+BETA(E-E(0)) )*CAL - EXP ]**2 
C THE ARGUMENT IS THAT I=I(O)+ALFA(E-E(0)) 

IMPLICIT NONE 
REAL ENERGY(260), EXPDAT(260), CALDAT(260) 
REAL AN(2), B(2), C(2) 
REAL ALFA,BETA 
INTEGER*4 I 

C 
DO 5,1=1,2 
AN(I) = 0. 
B(1) = 0. 

5 C(1) = 0. 
C 

DO 10, 1=1, NUMP 
AN( 1) = AN(l) + CALDAT(I)**2 
AN(2) = AN(2) + ( ENERGY(I) - ENERGY(l) ) * CALDAT(I)**2 
B(1) = B(1) + ( ENERGY(I) - ENERGY(l) ) * CALDAT(I)**2 
B(2) = B(2) + ( ENERGY(I) - ENERGY(l) )**2 * CALDAT(I)**2 
C( 1) = C( 1) + EXPDAT(I)*CALDAT(I) 

C(2) = C(2) + EXPDAT(I)*CALDAT(I)*(ENERGY(I) - ENERGY(l)) 
10 CONTINUE 
C 

ALFA = ( C( l)*B(2) - C(2)*B( 1) ) / ( AN( l)*B(2) - AN(2)*B( 1) ) 

BETA = ( AN( l)*C(2) - AN(2)*C( 1) ) / ( AN( l)*B(2) - AN(2)*B( 1) ) 
C 

DO 20, I = 1, NUMP 
20 CALDAT(I)=( ALFA+BETA*(ENERGY(I) - ENERGY(l)) ) * CALDAT(1) 
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C 

RETURN 

END 
C ------------------------------------------------------------------------------ 

C 

C 

C 

20 
10 
C 

SUBROUTINE PUTINFILE(SWCAL,ENERGY,OUTFILE,POINTS) 
IMPLICIT NONE 
REAL SWCAL( 1025), ENERGY( 1025) 
CHARACTER*255 OUTFILE 
INTEGER*4 POINTS 

INTEGER*4 I 

CLOSE(4) 
OPEN ( UNIT=4,STATUS=‘NEW’,FILE=TRIM(OUTFILE) ) 

DO 20,1=1, POINTS 
WRITE(4,lO) ENERGY(I),CHAR(9),SWCAL(I) 

CONTINUE 
FORMAT( 4(G13.7,A) ) 

CLOSE(4) 
RETURN 
END 

C- - ----_--- - -_ - -- ---_--- ----- ---__- - -- - _- - -- ------ - __ - -- --_ - _---_ - -- --- - -- - _-__ 

SUBROUTINE DIBUJA(IO,ENERGY,POINTS) 
IMPLICIT NONE 
REAL 10(1025), ENERGY(1025) 
INTEGER*4 POINTS 

C 
INTEGER*4 I 

C 
CALL MOVEA (ENERGY( l),IO( 1)) 

DO 10, 1=1, POINTS 
CALL DRAWA (ENERGY(I),IO(I)) 

10 CONTINUE 
C 
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RETURN 
END 

C ------------------------------------------------------------------------------ 

C 

C 

SUBROUTINE AXESFOR(Y,ENERGY,POINTS) 
IMPLICIT NONE 
REAL Y(lO25), ENERGY(1025) 
INTEGER*4 POINTS 

REALMINYJ4AxY 
REAL XMIN,XMAX,YMIN,YMAX 

XMIN = ENERGY( 1) 
XMAX = ENERGY(POINTS) 
CALL MINMAX(Y ,MINY ,MAXY,POINTS) 

YMIN=MINY 
YMAX=MAXY 

C Draw the axes 
CALL GRAPH(XMIN, XMAX, YMIN, YMAX) 

C 
RETURN 
END 

C- - ----- --- - -- - -- - -- --- --------- - --- -- - -- - -- - -- ------ - -- - -- - -- --- - __--_ -------- 

SUBROUTINE MINMAX(Y ,MINY,MAXY ,POINTS) 
IMPLICIT NONE 
REAL MINY,MAXY 
REAL Y(1025) 
INTEGER*4 I 

C 
INTEGER*4 POINTS 

C 
MINY = Y(1) 
MAXY = Y(1) 

DO 10, I=l,POINTS 
IF (MINY > Y(1) ) MINY = Y(1) 
IF (MAXY < Y(1) ) MAXY = Y(1) 

10 CONTINUE 
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C 
RETURN 
END 

c- - -- - -- ------- -- - -- - -- - -- - -- - -- - -- - -- - -- - -- ---- -- - -- - -- - -- - -- - -- - __ ___________ 

SUBROUTINE LETRERO(INFO,NUM) 
IMPLICIT NONE 
CHARACTER*255 INFO 
INTEGER*4 NUM 

C 
INTEGER*4 H, V 
INTEGER*2 PENLOC(2) 
INTEGER GETPEN, MOVETO 

parameter (GETPEN=Z’89A3000O’,MOVETO=Z’8930900O’) 
C 
C 
C ANDTOWRITEOUTTHEINFO 

CALL TOOLBX(GETPEN, PENLOC) 
CALL TOOLBX (MOVETO, 10,30+NUM* 10) 

C 
WRlTE(9,44) INFO 

44 FORMAT(A) 
C 
C AND PUT THE PEN BACK WHERE IT WAS 

H = PENLOC(2) 
V = PENLOC(l) 
CALL TOOLBX (MOVETO, H, V) 

C 
RETURN 
END 

C ----_-----_-----_------------------------------------------------------------- 

SUBROUTINE RCHAR(CHAR,NUM) 
IMPLICIT NONE 
CHARACTER CHAR 
INTEGER*4 NUM 

C 
INTEGER*4 H, V 
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INTEGER*2 PENLOC(2) 
INTEGER GETPEN, MOVBTO 

parameter (GETPEN=Z’89A3000O’,MOVETO=Z’89309OOO’) 
C 
C 
C ANDTOWRITEOUTTHEINFO 

CALL TOOLBX(GETPEN, PENLOC) 
CALL TOOLBX (MOVETO, 10,30+NUM* 10) 

C 
READ(9,“) CHAR 

C 
C AND PUT THE PEN BACK WHERE IT WAS 

H = PENLOC(2) 
V = PENLOC(l) 
CALL TOOLBX (MOVETO, H, V) 

C 
RETURN 
END 

C ------------------------------------------------------------------------------ 

SUBROUTINE RINT(INUM,NUM) 
IMPLICIT NONE 
INTEGER*4 INUM 
INTEGER*4 NUM 

C 
INTEGER*4 H, V 
INTEGER*2 PENLOC(2) 
INTEGER GETPEN, MOVETO 

parameter (GETPEN=Z’89A3000O’,MOVETO=Z’8930900O’) 
C 
C 
C ANDTOWRITEOUTTHEINFO 

CALL TOOLBX(GETPEN, PENLOC) 
CALL TOOLBX (MOVETO, 10,30+NUM* 10) 

C 
READ(9,“) INUM 

C 
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C AND PUT THE PEN BACK WHERE IT WAS 
H = PENLOC(2) 
V = PENLOC(l) 
CALL TOOLBX (MOVETO, H, V) 

C 
RETURN 
END 

C- - -- - -- - -- ---- -- - -- - -- - -- - -- - -- - -- - -- - -__ -- - -- - -- - -- -_____- -_ - -- - -_ - -- - -- - -- - - 

SUBROUTINE RREAL(RNUM,NUM) 
IMPLICIT NONE 
REALRNUM 
INTEGER*4 NUM 

C 
INTEGER*4 H, V 
INTEGER*2 PENLOC(2) 
INTEGER GETPEN, MOVETO 

parameter (GETPEN=Z’89A3000O’,MOVETO=Z’893090OO’) 
C 
C 
C ANDTOWRITEOUTTHEINFO 

CALL TOOLBX(GETPEN, PENLOC) 
CALL TOOLBX (MOVETO, 10,3O+NUM* 10) 

C 
READ(9,“) RNUM 

C 
C AND PUT THB PEN BACK WHERE IT WAS 

H = PENLOC(2) 
V = PENLOC( 1) 
CALL TOOLBX (MOVETO, H, V) 

C 
RETURN 
END 

C- _ ___ __ _ __ _ __ _ _- _ __ _--- ___ -- - -- - --- -- - -- - -- - __ - -- - --_ -- - -- - -- - -- - -- - -- - -- - -- - - 

SUBROUTINE GETCHI(CAL,EXPE,CHI,POINTS) 
IMPLICIT NONE 
REAL CAL(260), EXPE(260) 
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REALCHI 
INTEGER*4 POINTS 

C 
INTEGER*4 I 

C 
cHI=o. 
DO 90, I=l,POINTS 
CHI = CHI + ( EXPE(1) - CAL(I) ) **2 

90 CONTINUE 
C 

RETURN 
END 

C -___-____-_-_-_---_----------------------------------------------------------- 

SUBROUTINE DUM 
COMMON /K/ ARY(8000) 
RETURN 
END 

C 
INCLUDE GRAPH.INC 

196 



Appendix 4 Program “AVERAGE” 

This program was used to average the experimental data (see Section 6.3). The criteria to 
obtain the apropiate shift and interpolation is by maximizing the correlation of the 
reflectivity or of the total yield. 

C 
PROGRAM AVERAGE 
IMPLICIT NONE 
REAL ENERGY (260) 
REAL 10(260),SW(260),TY(260) 
REAL IOTOT(26O),SWTOT(260),TYTOT(26O) 
REAL IOS(260),SWS(260),TYS(260) 
REAL IOB(260), SWB(260) 
CHARACTER*64 INFO 
CHARACTER CH 
INTEGER*4 I 
CHARACTER*255 OUTFILE, DATA, REPSTR 
REALFRACI’ION 
INTEGER*4 SHIFT 
REAL MULBKG 
INTEGER*4 NUMFILES 
INTEGER*4 JOFMAX, JOFMAXTOT, MAXSHIFI’ 
REAL STEP, El 
CHARACTER AORS 
CHARACTER AUGERBKG 
REAL ENERGY 1 ,ENERGY2,BKGl ,BKG2,BKG2REAL 

C 
INTEGER*4 

ENERCHANNEL,REFCHANNEL,SWCHANNEL,TYCHANNEL,NORMCHANNEL 
INTEGER*4 SKIPLINES 

CHARACTER NORMALIZE 

C 
INTEGER*4 NUMP 

COMMON NUMP 
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C 
OPEN@, FILE=‘AVERFILES’, STATUS=‘OLD’) 

READ(S,*) ENERCHANNEL 
READ@,*) REFCHANNEL 
READ(S,*) SWCHANNEL 
READ@,*) TYCHANNEL 
READ(5,“) NORMCHANNEL 
READ(5,“) NORMALIZE 
READ(S,*) SKIPLINES 
READ(5,“) AUGERBKG 
READ(S,*) ENERGY 1, ENERGY2 
READ(S,*) BKGl, BKG2 
READ(S,*) BKG2REAL 
READ(S,*) MULBKG 

C 
WRITE(9,*) ’ repeated sting? ’ 
READ(5,‘) REPSTR 
WRITE(9,*) ’ MAIN FILE? (I PUT ‘,TRIM(REPSTR) 
READ(5,“) DATA 
DATA = TRIM(DATA) 
DATA = TRIM(TRIM@ATA>(REPSTR)) 
WRITE(9,*) DATA 

C 
CALL GETENERGY@ATA,ENERGY,ENERCHANNEL,SKIPLINES) 

C 
CALL 

GETEXPDATA@ATA,IOTOT,SWTOT,TYTOT,REFCHANNEL,SWCHANNEL, 
& TYCHANNEL,NORMCHANNEL,SKIPLINES,NORMALIZE) 

NUMFILES = 1 
CALL GETJOFMAX(IOTOT,JOFMAXTOT) 

MAXSHIFT = 0 
C 

20 CONTINUE 
WRITE(9,“) ’ NEXT FILE? (I PUT ‘,TRIM(REPSTR) 

WRITE(9,*) ’ NEXT FILE? (I PUT ‘,TRIM(REPSTR) 
READ(S,*,ERR=850,END=850) DATA,AORS 
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C 

C 

C 

C 

C 

DATA = TRIM(DATA) 
DATA = TRIM(TRIM(DATA)//lRlM(REPSTR)) 

CALL GETEXPDATA@ATA,IO,SW,TY,REFCHANNEL,SWCHANNEL, 
& TYCHANNEL,NORMCHANNEL,SKIPLINES,NORMALIZE) 

CALL AXESFOR(IOTOT,ENERGY) 
CALL DIBUJA(IOTOT,ENERGY) 
CALL PUTBACKG(ENERGY ,IOTOT,IO,IOB) 
CALL DIBUJA(IOB,ENERGY) 
WRITE(INFO,*) ’ LIKE IT? (Y/N) ’ 

CALL LETRERO(INFO,l9) 
CALL RECHAR(CH,20) 
IF(CH .EQ. ‘N’) GOT0 800 

CALL AXESFOR(SW,ENERGY) 
CALL DIBUJA(SW,ENERGY) 
WRITE(INFO,*) ’ STILL LIKE IT? (Y/N) ’ 
CALL LETRERO(INFO,19) 
CALL RECHAR(CH,20) 
IF(CH .EQ. ‘N’) GOT0 800 

CALL GETJOFMAX(IO,JOFMAX) 
SHIFT = - JOFMAX + JOFMAXTOT 

CALL MAKESHJFT(SHIFT,IO,IOS) 
CALL MAKESHIFT(SHIFT,SW,SWS) 
CALL MAKESHIFT(SHIFT,TY,TYS) 
IF( ABS(SHIFT) .GT. ABS(MAXSHIFT) ) MAXSHIFT = SHIFT 

CALL GETSHIFT(ENERGY,IOTOT,IOS,SHIFT,FRACTION) 
CALL MAKESHIFT(SHIFT,IOS,IO) 
CALL MAKESHIFT(SHIFT,SWS,SW) 
CALL MAKESHIFT(SHIFT,TYS,TY) 
CALL INTERPOLATE(FRACTION,IO,IOS) 
CALL INTERPOLATE(FRACTION,SW,SWS) 
CALL INTERPOLA’IE(FRACI’ION,TY,TYS) 
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C 

WRITE(INF0,“) TRIM(DATA) 
CALL LETRERO(INFO,l8) 

C 
CALL GETTOTAL(MULBKG,IOS,SWS,TYS,IOTOT,SWTOT,TYTOT, 

& 
NUMFILES,AORS,AUGERBKG,ENERGY 1 ,ENERGY2,BKG 1 ,BKG2,BKG2REAL) 
800 CONTINUE 

WRITE(INFO,*) ‘ANOTHER FILE? (Y/N) ’ 
CALL LETRERO(INF0,2 1) 
CALL RECHAR(CH,22) 
IF(CH NE. ‘N’) GOT0 20 

C 
850 CONTINUE 

WRITE(9,“) ‘CORRECT ENERGY SCALE? ’ 
WRITE(9,*) ‘CORRECT ENERGY SCALE? ’ 
READ(9,*) CH 
IF(CH .EQ. ‘Y’) THEN 
WRITE(9,*) ‘ENERGY SCALE CORRECTED ’ 

C IF THE PEAK COMES EARLIER, WE HAVE TO EXPAND THE SCALE 
STEP = STEP * (1. + MAXSHlFT/NUMFILES/NUMP) 

C 

6 
C 

C 

C 

ENERGY(l) = El 
DO 6,1=2,NUMP 

ENERGY (I) = ENERGY (I- 1) + STEP 
CONTINUE 

CALL GETENERGY@ATA,ENERGY,STEP,El) 
ELSE 
WRITE(9,*) ‘ENERGY SCALE NOT NOT NOT CORRECTED ’ 

ENDIF 

CALL LESSSMALLER(IOTOT) 

OUTFILE = ‘SUM.TXT’ 
CALL PUTINFILE( OUTFILE,ENERGY ,IOTOT,S WTOT,TYTOT) 
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900 CONTINUE 
PAUSE ‘DONE’ 
STOP 
END 

c -----_-------__-----____________I_______------”------------------------------- 

SUBROUTINE GETJOFMAX(IO,JOFMAX) 
IMPLICIT NONE 
REAL IO(260) 
INTEGER*4 JOFMAX 

C 
INTEGER*4 NUMP 
COMMON NUMP 

C 
REALIMAX 
INTEGER*4 I 

C 
IMAX=IO(l) 
JOFMAX = 1 
DO 810,1=1, NUMP 
IF(IO(1) .GT. IMAX) THEN 
IMAX = IO(I) 
JOFMAX = I 

ENDIF 
810 CONTINUE 
c 

RETURN 
END 

C-- _---_c_------_------------------------------------------------------------ 

SUBROUTINE LESSSMALLER(I0) 
IMPLICIT NONE 
REAL IO(260) 

C 

INTEGER*4 NUMP 
COMMON NUMP 

C 
REALIMIN 
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INTEGER*4 I 
C 

IMIN = IO( 1) 
DO 810,1=1, NUMP 
IF(IO(1) .LT. IMIN) IMIN = IO(I) 

810 CONTINUE 
C 

DO 820,1=1, NUMP 
IO(I) = IO(I) - IMIN 

820 CONTINUE 
C 

RETURN 

C _------___-----____----------------------------------------------------------- 

SUBROUTINE 
GETEXPDATA@ATA,IO,SW,TY,REFCHANNEL,SWCHANNEL, 

& TYCHANNEL,NORMCHANNEL,SKIPLINES,NORMALIZE) 

C 

C 

C 

C 

IMPLICIT NONE 
CHARACTER”255 DATA 
REAL 10(260), SW(260), TY(260) 

INTEGER*4 REFCHANNEL,SWCHANNEL,TYCHANNEL,NORMCHANNEL 
INTEGER*4 SKIPLINES 

CHARACTER NORMALIZE 

INTEGER*4 I, J, K 
REAL GAR( 10) 
CHARACTER CH 

INTEGER*4 NUMP 
COMMON NUMP 

WRITE(9,“) ‘NOW GETTING THE DATA ’ 
OPEN (UNIT=lO,STATUS=‘OLD’,FILE=TRIM(DATA) ) 

DO 34, I=l,SKIPLINES 
READ( 10.35) CH 
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34 CONTINUE 
35 FORMAT(A) 

C 
K = MAXO(REFCHANNEL,SWCHANNEL,TYCHANNEL,NORMCHANNEL) 
DO 6, I=l,NUMP 

READ( lO,*,END=lO,ERR=lO) ( GAR(J), J=l, K ) 
IF( NORMALIZE .EQ. ‘Y’ ) THEN 

IO(I) = GAR(REFCHANNEL)/GAR(NORMCHANNEL) 
SW(I) = GAR(SWCHANNEL)/GAR(NORMCHANNEL) 
TY(1) = GAR(TYCHANNEL)/GAR(NORMCHANNEL) 

ELSE 
IO(I) = GAR(REFCHANNEL) 
SW(I) = GAR(SWCHANNEL) 
TY(1) = GAR(TYCHANNEL) 

END IF 
6 CONTINUE 
C 

CLOSE( 10) 
RETURN 

10 WRITE(9,*) ‘ERROR READING THIS FILE ’ 
PAUSE ‘ERROR READING THIS FJLE ’ 
PAUSE ’ PLEASE ABORT ’ 
RETURN 
END 

C ------------------------------------------------------------------------------ 

SUBROUTINE 
GETENERGY(DATA,ENERGY,ENERCHANNEL,SKIPLINES) 

IMPLICIT NONE 
CHARACTER*255 DATA 
REAL ENERGY(260) 
INTEGER*4 ENERCHANNEL, SKIPLINES 

C 
REAL STEP,El 

C 
INTEGER*4 I, J 
CHARACTER CH 
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C 

C 

C 

34 
35 
C 

6 
C 
10 

C 

REAL GAR 
REALENER 

INTEGER*4 NUMP 
COMMON NUMP 

WRITE(9,“) ‘NOW GETTING THE ENERGY ’ 
OPEN (UNIT=lO,STATUS=‘OLD’,FILE=TRIM(DATA) ) 

DO 34, I=l,SKIPLINES 
READ( 10,35) CH 

CONTINUE 
FORMAT(A) 

ENER=El 
DO 6,1=1,260 

READ(lO,*,END = 10, ERR=lO) ( ENERGY(I), J=l,ENERCHANNEL ) 
CONTINUE 

CONTINUE 
NUMP=I-1 

CLOSE( 10) 
RETURN 
END 

C -----------_---_-------------------------------------------------------------- 

SUBROUTINE GETSHIFT(ENERGY ,IOTOT,IO,SHIFT,FRACTION) 
IMPLICIT NONE 
REAL ENERGY(260),IOTOT(260),I0(260) 
INTEGER*4 SHIFT 
REALFRACTION 

C 
INTEGER*4 NUMP 
COMMON N-LIMP 

C 
REAL IOB(260),IOS(260),IOF(260) 
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REAL CHI,CHJl 
INTEGER*4 I 

CHARACTER*64 INFO 
C 

CALL AXESFOR(IOTOT,ENERGY) 
CALL DIBUJA(IOTOT,ENERGY) 
CALL PUTBACKG(ENERGY ,IOTOT,IO,IOB) 
CALL GETCHI(IOTOT,IOB,CHI) 
SHIFT=1 
CALL MAKESHIFT(SHIFT,IO,IOS) 
CALL PUTBACKG(ENERGY,IOTOT,IOS,IOB) 
CALL GETCHI(IOTOT,IOB,CHI 1) 
IF(CHI1 .LT. CHI) THEN 

CALL DIBUJA(IOB,ENERGY) 
15 CONTINUE 

CHI = CHIl 
CALL MAKESHIFT(SHIFT+ 1 ,IO,IOS) 
CALL PUTBACKG(ENERGY ,IOTOT,IOS,IOB) 
CALL GETCHI(IOTOT,IOB,CHI 1) 
IF(CHI1 .LT. CHI) THEN 

SHIFT = SHIFT + 1 
CALL DIBUJA(IOB,ENERGY) 
GOT0 15 

ENDIF 
ELSE 

SHIFT=0 

16 CONTINUE 
CALL MAKESHIFT(SHIFT- 1 ,IO,IOS) 
CALL PUTBACKG(ENERGY,IOTOT,IOS,IOB) 
CALL GETCHI(IOTOT,IOB,CHI 1) 
IF(CHI1 .LT. CHI) THEN 

SHIFT=SHIFI’-1 

CHI = CHIl 
CALL DIBUJA(IOB,ENERGY) 
GOT0 16 

END IF 
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C 

17 

18 

C 

ENDIF 

CALL MAKESHIFT(SHIFT,IO,IOS) 
FRACTION = 0.1 
CALL INTERPOLATE(FRACTION,IOS,IOF) 
CALL PUTBACKG(ENERGY ,IOTOT,IOF,IOB) 
CALL GETCHI(IOTOT,IOB,CHI 1) 
IF(CHI1 .LT. CHI) THEN 

CALL DJBUJA(IOB,ENERGY) 
CONTINUE 
CHI=CHJl 
CALL INTERPOLATE(FRACTION+O. l,IOS,IOF) 
CALL PUTBACKG(ENERGY ,IOTOT,IOF,IOB) 
CALL GETCHI(IOTOT,IOB,CHI 1) 
lF(CHI1 .LT. CHI) THEN 
FRACTION = FRACTION + 0.1 
CALL DIBUJA(IOB,ENERGY) 
GOT0 17 

END IF 
ELSE 

FRACTION = 0 
CONTINUE 
CALL INTERPOLATE(FRACI’ION - 0.1 ,IOS,IOF) 
CALL PUTBACKG(ENERGY,IOTOT,IOF,IOB) 
CALL GETCHI(IOTOT,IOB,CHI 1) 
IF(CHI1 .LT. CHI) THEN 
FRACTION = FRACTION - 0.1 
CHI = CHIl 
CALL DIBUJA(IOB,ENERGY) 
GOT0 18 

ENDIF 
END IF 

RETURN 
END 

C ______-______-_____----------------------------------------------------------- 
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C 

C 

C 

10 

20 

30 

40 

50 

C 

SUBROUTINE MAKESHIFT(SHIFT,IO,IOS) 
IMPLICIT NONE 

INTEGER*4 SHIFT 
REAL 10(260), IOS(260) 

INTEGER*4 NUMP 
COMMON NUMP 

INTEGER*4 SHIFT2 
INTEGER*4 I 

IF(SHIFT .EQ. 0) THEN 
DO 10, 1=1, NUMP 
IOS(1) = IO(I) 

ELSE IF(SHIFT .GT. 0) THEN 
DO 20, I=l,SHIFT 
IOS(1) = IO( 1) 

DO 30, I=SHIFT+ 1 ,NUMP 
IOS(1) = IO(I-SHIFT) 

ELSE 
SHIFT2 = - SHIFT 
DO 40,1=1, NUMP-SHIFT2 
IOS(1) = IO(I+SHIFT2) 

DO 50, I=NUMP-SHIFT2+1, NUMP 
IOS(1) = IO(NUMP) 

ENDIF 

RETURN 
END 

C ------------------------------------------------------------------------------ 
SUBROUTINE INTERPOLATE(FRACTION,IOS,IOF) 
IMPLICIT NONE 
REALFRACTION 
REAL IOS(260), IOF(260) 

C 
INTEGER*4 NUMP 
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COMMON NUMP 
C 

REAL FRACTION2 
INTEGER*4 I 

C 
IF(FRACTION .GE. 0.0) THEN 

DO 10, I=l,NUMP-1 
10 IOF(1) = (1.~FRACTION)*IOS(I) + FRACTION*IOS(I+l) 

IOF(NUMP) = IOS(NUMP) 
ELSE 

FRACTION2 = 1 + FRACTION 
DO 20,1=2, NUMP 

20 IOF(1) = (1.~FRACTION2)*IOS(I- 1) + FRACTION2*IOS(I) 
IOF( 1) = IOS( 1) 

ENDIF 
C 

RETURN 
END 

C- - -- - -__ _--__ - -- - -- - -_ - -- - -- - -- - -- - -- - -- - -_ - -- - -- - -- - -- - -- - -- ______ - -- - ------- 

SUBROUTINE GE’ITOTAL(MULBKG,IO,SW,TY,IOTOT,SWTOT,TYTOT, 
82 

NUMFILES,AORS,AUGERBKG,ENERGYl,ENERGY2,BKGl,BKG2,BKG2REAL) 
IMPLICIT NONE 
REAL MULBKG 
REAL 10(260),SW(260),TY(260) 
REAL IOTOT(26O),SWTOT(260),TYTOT(26O) 
INTEGER*4 NUMFILES 
CHARACTER AORS 
CHARACTER AUGERBKG 
REAL ENERGYl,ENERGY2,BKGl,BKG2,BKG2REAL 

C 
CHARACTER*64 INFO 
REAL CONSTl 
REAL DELTA, CONST2 
INTEGER*4 I 

C 
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INTEGER*4 NUMP 
COMMON NUMP 

C 
IF(AORS .EQ. ‘A’) THEN 

CONSTl = 1. 
CONST2 = 0. 

ELSE IF(AORS .EQ. ‘S’) THEN 

IF( AUGERBKG .EQ. ‘Y’ .OR. AUGERBKG .EQ. ‘y’ ) THEN 
DELTA = ( BKG2 * ENERGY 1 - BKGl * ENERGY2 ) / 

& (ENERGY2 - ENERGY 1) * BKG2REAL / BKG2 

C 

5 

C 

10 

C 

CONSTl = - ENERGY l/ENERGY2 
CONST2 = - ( ENERGYl/ENERGY2 - 1. ) * DELTA 
ELSE 

CONSTl = - MULBKG 
CONST2 = 0. 

ENDIF 
ELSE 

WRITE(9,*) ’ ADD OR SUBSTRACT? ’ 
PAUSE ’ ADD OR SUBSTRACT? ’ 

END IF 

WRITE(INFO,S) CONSTl, CONST2, DELTA 
FORMAT( ‘CONSTl ‘, G12.5, ’ CONST2 ‘, G12.5, ’ DELTA ‘,G12.5) 
CALL LETRERO(INFO,S) 

DO 10, I=l,NUMP 
IOTOT(1) = IOTOT(1) + IO(I) 
SWTOT(1) = SWTOT(1) + ( CONSTl * SW(I) + CONST2 ) 
TYTOT(I) = TYTOT(1) + TY(1) 
CONTINUE 
NUMFILES = NUMFILES + 1 

RETURN 

END 
C ------------------------------------------------------------------------------ 

SUBROUTINE GETCHI(CAL,EXPE,CHI) 
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C 

C 

90 
C 

IMPLICIT NONE 
REAL CAL(260), EXPE(260) 

REALCHI 
INTEGER*4 I 

INTEGER*4 NUMP 
COMMON NUMP 

CHI = 0. 
DO 90, I=l,NUMP 
CHI = CHI + ( EXPE(1) - CAL(I) ) ““2 

CONTINUE 

RETURN 
END 

C- -----___-_____-----_-------- ----___________-____--------------------------- 

SUBROUTINE DIBUJA(IO,ENERGY) 
IMPLICIT NONE 
REAL 10(260), ENERGY(260) 
INTEGER*4 I 

C 
INTEGER*4 NUMP 
COMMON NUMP 

C 
CALL MOVEA (ENERGY( l),IO( 1)) 
DO 10, I = 1, NUMP 

CALL DRAWA (ENERGY(I),IO(I)) 
10 CONTINUE 
C 

RETURN 
END 

C- - __ - -____ --- - __ - -- - ___ ----- - -- --- - -- - -- - -- - -- - --- -- - -- - -- - -- - -- - -- - -- - -- - -- - - 

SUBROUTINE PUTBACKG(ENERGY,IOTOT,IO,IOB) 

C MINIMIZES SUM[ ( ALFA+BETA(E-E(0)) )*CAL(I) + DELTA - EXP(1) ]**2 
C THE ARGUMENT IS THAT I=I(O)+ALFA(E-E(0)) 

IMPLICIT NONE 
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C 

C 

3 
C 

5 
C 

10 
C 

REAL ENERGY(260), IOTOT(260), 10(260), IOB(260) 
REAL AW), B(3), C(3), D(3) 
REAL ALFA,BETA,DELTA 
REALDETER 
INTEGER*4 I 

INTEGER*4 NUMP 
COMMON NUMP 

DO 3, I=l,NUMP 
IO(I) = IO(I) + 1. 

CONTINUE 

DO 5,1=1,3 
AN(I) = 0. 
B(1) = 0. 
C(1) = 0. 
D(1) = 0. 

DO lO,I=l, NUMP 
AN( 1) = AN( 1) + IO(I)**2 
AN(2) = AN(2) + ( ENERGY(I) - ENERGY(l) ) * IO(I)**2 
AN(3) = AN(3) + IO(I) 
B(1) = B(1) + ( ENERGY(I) - ENERGY(l) ) * IO(I)**2 
B(2) = B(2) + ( ENERGY(I) - ENERGY(l) )**2 * IO(I)**2 
B(3) = B(3) + ( ENERGY(I) - ENERGY(l) ) * IO(I) 
C( 1) = C( 1) + IO(I) 
C(2) = C(2) + IO(I) * ( ENERGY(I) - ENERGY(l) ) 
C(3) = C(3) + 1. 
D( 1) = D( 1) + IOTOT(I)*IO(I) 

D(2) = D(2) + IOTOT(I)*IO(I)*(ENERGY(I) - ENERGY(l)) 
D(3) = D(3) + IOTOT(1) 

CONTINUE 

ALFA = DETER(D,B,C) / DETER(AN,B,C) 
BETA = DETER(AN,D,C) / DETER(AN,B,C) 

211 



DELTA = DETER(AN,B,D) / DETER(AN,B,C) 
C 

DO20,1= 1,NUM.P 
IOB(I)=( ALFA+BETA*(ENERGY(I) - ENERGY(l)) ) * 

& IO(I) + DELTA 
20 CONTINUE 
C 
C 

RETURN 

C ------------------------------------------------------------------------------ 
FUNCTION DETER(A2,B,C) 
IMPLICIT NONE 
REAL A2(3), B(3), C(3) 
REALDETER 

C 
DETER = A2(1) * ( B(2)*C(3) - B(3)*C(2) ) 

& - A2(2) * ( B(l)*C(3) - B(3)*C(l) ) 
8z + A2(3) * ( B(l)*C(2) - B(2)*C(l) ) 

C 
RETURN 
END 

C --__---____--___--__---------------------------------------------------------- 

SUBROUTINE AXESFOR(Y ,ENERGY) 
IMPLICIT NONE 
REAL Y(260), ENERGY(260) 
REALMINY,MAxY 
REAL XMIN,XMAX,YMIN,YMAX 

C 
INTEGER*4 NUMP 
COMMON NUMP 

C 

XMIN = ENERGY( 1) 
XMAX = ENERGY(NUMP) 

CALL MINMAX(Y,MINY,MAXY) 
YMIN=MINY 
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C YMIN = AMINl(MINY,O.) 
YMAX=MAXY 

C Draw the axes 
CALL GRAPH(XMIN, XMAX, YMIN, YMAX) 

C 
RETURN 
END 

C ---------------------------------------------------------------- 

C 

C 

10 
C 

SUBROUTINE MINMAX(Y,MINY,MAXY) 
IMPLICIT NONE 
REALMINY,MAXY 
REAL Y(260) 
INTEGER*4 I 

INTEGER*4 NUMP 
COMMON NUMP 

MINY = Y(1) 
MAXY=Y(l) 
DO 10, I=l,NUMP 
IF (MINY > Y(1) ) MINY = Y(1) 
IF (MAXY <Y(I) ) MAXY = Y(1) 

CONTINUE 

RETURN 
END 

C ------------------------------------------------------------------------------ 

SUBROUTINE PUTINFILE( OUTFILE,ENERGY ,IOTOT,SWTOT,TYTOT) 
IMPLICIT NONE 
REAL SWTOT(260), TYTOT(260), ENERGY(260), IOTOT(260) 
CHARACTER*255 OUTFILE 

C 

INTEGER*4 I 
C 

INTEGER*4 NUMP 
COMMON NUMP 
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C 

C 

& 
20 
10 
C 

CLOSE(4) 

OPEN ( UNIT=4,STATUS=‘NEW’,FILE=TRIM(OUTFILE) ) 

DO 20, I=l,NUMP 
WRITE(4,lO) ENERGY(I),CHAR(O),IOTOT(I),CHAR(9), 

SWTOT(I),CHAR(9),TYTOT(I) 
CONTINUE 
FORMAT( F10.3,A,4(G12.5,A) ) 

CLOSE(4) 
RETURN 
END 

C ---_---------_-_--------------------------------------------------- 

SUBROUTINE LETRERO(INFO,NUM) 
IMPLICIT NONE 
CHARACTER*64 INFO 
INTEGER*4 NUM 

C 
INCLUDE QUICKDRAW.INC 
INTEGER*4 H, V 
INTEGER*2 PENLOC(2) 

C 
C ANDTOWRITEOUTTHEINFO 

CALL TOOLBX(GETPEN, PENLOC) 
cx CALL TOOLBX (MOVETO, 10,30) 

CALL TOOLBX (MOVETO, 10,3O+NUM* 10) 
C 

WRITE(9,44) INFO 
44 FORMAT(A) 
C 
C AND PUT THE PEN BACK WHERE IT WAS 

H = PENLOC(2) 
V = PENLOC( 1) 
CALL TOOLBX (MOVETO, H, V) 

C 
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RETURN 
END 

C -----_-----_-----__----------------------------------------------------------- 

SUBROUTINE PAULETRERO(INFO,NUM) 
IMPLICIT NONE 
CHARACTER”64 INFO 
INTEGER*4 NUM 

C 
INCLUDE QUICKDRAW.INC 
INTEGER*4 H, V 
INTEGER*2 PENLOC(2) 

C 
C ANDTOWRITEOUTTHEINFO 

CALL TOOLBX(GETPEN, PENLOC) 
CALL TOOLBX (MOVETO, 10,3O+NUM* 10) 

C 
WRITE(9,44) INFO 

44 FORMAT(A) 
PAUSE ‘RETURN TO CONTINUE ’ 

C 
C AND PUT THE PEN BACK WHERE IT WAS 

H = PENLOC(2) 
V = PENLOC(l) 
CALL TOOLBX (MOVETO, H, V) 

C 
RETURN 
END 

C- - -- - ----- - -- - -- - -- - -- - -- - -- _ -- - -- - -- - -- - -- -- - - -- - -- - -- - -- - -- - ---- - - -- - -- - -- - - 

SUBROUTINE RECHAR(CH,NUM) 
IMPLICIT NONE 
INTEGER*4 NUM 
CHARACTER CH 

C 
INCLUDE QUICKDRAWJNC 
INTEGER*4 H, V 

INTEGER*2 PENLOC(2) 
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C 
C ANDTOWRITBOUTTHEINFO 

CALL TOOLBX(GETPEN, PENLOC) 
CALL TOOLBX (MOVETO, 10,3O+NUM* 10) 

C 
READ(9,*) CH 

C 
C AND PUT THE PEN BACK WHERE IT WAS 

H = PENLOC(2) 
V = PENLOC( 1) 
CALL TOOLBX (MOVETO, H, V) 

C 
RETURN 
END 

C --_--------------------------------------------------------------------------- 

SUBROUTINE DUM 
COMMON/K/ ARY(8000) 
RETURN 
END 

C 
INCLUDE GRAPHJNC 
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