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1. Introduction 

1.1 WHY SUPERS~MMETRY? 

Many of the original motivations for supersymmetry have long since vanished. 

It was recognized immediately that such a symmetry must be severely broken in 

the low energy world. In its early days supersymmetry was looked on principally 

as a hopeful solution to the gauge hierarchy problem (the question of why there 

should exist such a discrepancy between the two energy scales Mwe& at 100 GeV, 

and MGUT at 10 l5 GeV or more). In order to be useful in this respect the scale 

at which supersymmetry breaks cannot exceed the weak scale by more than an 

order of magnitude if the breaking mechanism is to be relatively simple. Thus we 

have replaced one symmetry-breaking hierarchy problem by another. Admittedly 

the radiative hierarchy problem is resolved but this was but a chimera1 problem 

to begin with (presumably if we possessed the mathematical techniques, and the 

stamina, to solve the theory to all orders, including non-perturbative effects, we 

would only have to adjust the overall scales once). Early aspirations of uniting 

known particles into supermultiplets failed utterly with the result of an instanta- 

neous doubling of the number of states conjectured to exist. None of these new 

states has yet been seen. 

Despite this the supersymmetric principle has become increasingly popular. 

The true reason for this is the most compelling of motivations, that same aestetic 

belief in unification which spawned the Grand Unified Theories, and therefore the 

gauge hierarchy problem. Supersymmetric theories are believed to be the only 

theories capable of unifying fundamental bosonic and fermionic fields. This is 

undoubtedly due to our imperfect understanding of what spin is at a fundamental, 

topological, level. Surely uniting these two disparate sectors of the material world 

is at least as profound as considering ever-greater gauge groups to fragment. 

When supersymmetry is raised to a local symmetry the Lorentz group mani- 

fests itself as a subgroup. Thus gravitation becomes incorporated into the theory 
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in a natural way. In addition, the currently popular string models find the inclu- 

sion of supersymmetry highly desirable, if not irrecusable. 

1.2 THE FAMILY PUZZLE 

One of the outstanding puzzles in elementary particle physics is that of par- 

ticle generations. The material constituents of the world, as opposed to the 

mediators of the fundamental forces, appear to be replicated in families or gen- 

erations. Each seems to be a simulacrum of the previous family, but of greater 

mass. At this time three such generations are known. Why this should occur is 

a complete mystery. 

This mystery is particularly profound in the leptonic, or weakly interacting, 

sector where each family would seem to possess an absolutely conserved quantum 

number, generally referred to as electron, muon and tau number or, collectively, 

as family number. In all reactions which have been thus far observed the amount 

of “electron-ness” has neither increased nor decreased. This is in stark contract 

to the quark (strongly-interacting) sector where mixing between the states is 

known to occur at a fundamental level. In the light of the “standard model” it is 

understood why this should be the case. In extensions beyond this it is frequently 

difficult to retain this symmetry in an appealing fashion. 

A symmetry may be realized locally or globally. If local such a “horizontal” 

symmetry would have profound implications, requiring a new family-changing 

gauge sector. A global symmetry, if not the consequent of some local symme- 

try, but if imposed or maintained artificially (for instance by constraining some 

parameter to be small) is to be viewed as, at best, unnatural and probably un- 

tenable. Considered in this light it is interesting to ponder whether lepton family 

number might not be broken to some small degree. We will discuss a mechanism 

which might accomplish this. 



1.3 SCALAR LEPTON MIXING 

The most egregious aspect of (N=l) supersymmetric theories is that each 

particle state is accompanied by a ‘super-partner’, a state with identical quantum 

numbers save that it differs in spin by one half unit. For the leptons these are 

scalars and are called Weptons”, or scalar leptons. These consist of the charged 

sleptons (selectron, smuon, stau) and the scalar neutrinos (‘sneutrinos’). 

We examine a model of supersymmetry with soft breaking terms in the elec- 

troweak sector. Explicit mixing among the scalar leptons results in a number of 

effects, principally non-conservation of lepton family number. Comparison with 

experiment permits us to place constraints upon the model. 

Each supersymmetric family has charged sleptons associated with both the 

left and right-handed helicity states of the corresponding lepton. These, too, may 

combine (within a single generation). The effect of this will be discussed in chap- 

ter two in the context of the anomalous magnetic moment of the muon and the 

electron. These were selected due to the extremely precise knowledge of their ex- 

perimental values. In chapter three we will examine the result of intergenerational 

slepton-mixing for the process e+e- -+ 2’ -+ rf@. Since several Z”-factories, 

in particular the SLC, are expected to produce these particles copiously, this pro- 

cess, should it occur at a reasonable rate, could prove experimentally interesting. 

These matters will be discussed. In chapter four we consider the classic family 

number violating process, radiative muon decay: p + ey. These three chapters 

are followed by a string of appendices, most of which are associated with a par- 

ticular chapter. These are referred to within the chapters and contain details 

and derivations not necessary to the cursory understanding of a given chapter. 



2. Contribution to Anomalous Magnetic 
Moment from Slepton Mixing 

c 2.1 INTRODUCTION 

In Chapter 1 we saw that the sleptons might mix among themselves in a 

supersymmetric theory. In this chapter we illustrate the manner in which the 

anomalous magnetic moments of the electron (a,) and muon (up) are altered 

when the theory is made supersymmetric in a minimal way. We then permit the 

sleptons to mix together which will lead to new effects. We will discover, despite 

the fact that a, has been determined experimentally to much greater accuracy 

than uP, that the results of the uP calculation tend to place the more stringent 

restrictions on supersymmetry parameters when compared with experiment. 

We will confine ourselves to pure QED and SQED (supersymmetric QED) 

in this chapter. The extension to the full electroweak theory is straightforward 

but tedious. Exactly how this should be done will be made obvious in the later 

chapters and their corresponding appendices. ’ 

The calculation will be performed in a somewhat pedagogical fashion. As 

two-component notation is natural for supersymmetric calculations some basic 

notation has been introduced in Appendix A. In Appendix B we examine QED 

in its two and four component forms and consider the interpretation of two- 

component propagators. Thus armed, in Appendix C we calculate a, in four- 

component form and in Appendix D we repeat the calculation in two-component 

form so that they may be carefully compared. In Appendix E we next compute 

Au,, the additional contribution from supersymmetrizing the theory (standard 

SQED), before the sleptons have been allowed to mix. The most important con- 

tribution from the mixing of the sleptons comes from ZL - ZR mixing as detailed 

in Appendix F. If we permit intergenerational mixing then the contribution to 

a, will be spread over a greater number of terms. For this reason we restrict 

ourselves to a single generation here. This has the added benefit of reducing 25 
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angles and phases to three angles (one per generation assuming three genera- 

tions). The reverse of this argument will be used in the next chapter when the 

left-right mixing will be ignored in favor of the intergenerational mixing. The 
I( 

penultimate appendix (Appendix G) related to chapter two will show plots of 

the various results. In Appendix H we derive a few useful formulae. In the first 

section certain Feynman integrals, which appear frequently in these pages, are 

presented. In the second section we discuss generalized versions of the Gordon 

Decomposition, a generally useful result. 

As can be readily seen most of the actual work will be presented in the 

appendices. This chapter is primarily a summary of the results, comparison with 

experiment, consequences and commentary. In Section 2.2 we review the concept 

of anomalous magnetic moments. In 2.3 the results of the appendix calculations 

are summarized and compared with experiment in 2.4. 

2.2 THE MAGNETIC MOMENT 

From a Hamiltonian viewpoint the only interaction between the $J (electron) 

and A (electromagnetic) fields is via the term Hint = jtmAp where J?~ = egy,$. 

The Gordon Decomposition (Appendix H) can be used in conjunction with the 

Dirac equation in the presence of an A-field (p+m)+ = 0 where pc( = d,+ieA,, to 

divide the current into two pieces. I” In the non-relativistic limit the first reduces 

to the electric charge current density of non-relativistic quantum mechanics. It 

is the other term which interests us. This yields an interaction piece 

N yag = jpAp N ef4m $ F~“~p,t,b + total derivative. tnt 

Non-relativistically 
- 
t,b FC”%,& N 2$+0 l B$ 

N N 

and therefore XsrFg + e/2m $&r+$. But we know that classically NszfB = P-B 

where p is the magnetic momenrofWthe electron. Thus we can identify P =f!/Z$ 
N N Iv 
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or, in greater generality, P = ge/2m S where g is the gyromagnetic ratio which 

here is two.* ClassicallyWg is deterr&ed by the charge current distribution of 

an infinitesimal current loop (magnetic dipole). g = 2 corresponds to a point 

dipole. Deviations from g = 2 are given by g = 2( 1 + a) where a is called the 

anomalous magnetic moment. 

From the two-component composition of the qe73be and &+‘p!~ vertices (see 

Appendix B) we may observe their helicity structure. Ignoring the mass of the 

electron we see that the Ap3e7pt,be term connects eL to eL (equivalently ei to 

e;) while F,,&J~c+‘~~ connects eL to eR (or ei to ei). Thus photonic emission 

via the electric charge current leaves the helicity of the state unchanged while 

the magnetic dipole interaction flips the helicity. 

( as 

Such observations have been made in conjunction with the lowest-order vertex 

illustrated in Fig. 2.la). The one-loop QED vertex correction is as in the 

classic infundibular (triangle) diagram of Fig. 2.lb. This will contribute the 

interactions 

z(P)r/L(P’,P)u(P) = C(P) 7,3-l (q2) + & a,uqyJ-i(q2) 1 u(p’) . 

Fl (q2) contributes to the (infinite) wavefunction renormalization while, on shell 

( cl2 = o), F2(q2) contributes to the magnetic moment and thus to a, = (ge - 2)/2. 

Indeed, comparing the definition of a, we see that ae = F2 (q2 + 0). Since QED 

is a renormalizable theory, and no &-type term appears in the QED Lagrangian, 

we know that the F2 term resulting from first order contributions must be fi- 

nite (since there is no bare parameter to absorb an infinity). The anomalous 

moment can be thought of as measuring an effective radius of the charge cur- 

rent distribution engendered by radiative corrections to the simple bare “point” 

vertex. 

* Here p1= c = 1 so that g is in units of Bohr Magnetons. Otherwise P = geh/2mc. N 
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It is often the case than when we consider interactions at large energies, 

or have particles in internal loops whose masses are large with respect to the 

external lepton masses, we will find that the magnetic (c+‘) contribution to 

the cross section will be reduced relative to that of the electric (7p) term (by 

o CmFeptonlQ2 3 mi.eauy )) and can thus often be ignored. If for some reason, such 

as gauge invariance, the 7p term cannot appear then the interaction must go 

through the convective (c+‘) term. We will see this happen when we examine 

p + ey on shell (q2 = 0) but not for 2’ + r$- (q2 # 0). 

2.3 RESULTS 

In this section the results of computing the various contributions to al, = 

(gp - Q/2 and a, = (ge - 2)/2, as algebraically detailed in the first few appen- 

dices, are ingeminated. We work to one-loop (a) order. The one-loop vertex 

correction from pure QED (Appendices 2 and 3) yields 

CY 
tZe = ap = - . 

27r (2 1) . 

When supersymmetric QED (SQED) contributions (assuming no mixing 

amongst the sleptonic states) are appended, as in Appendix D, we discover the 

additional contribution 

Aae = g {IL + IR} 

where 
1 1 

IL,R = 
s s 

ds dz 

0 2 

z(1 - 2) 

- z2 + 
m~-m~LR+m~ 

3 mi 
n2e 

z--T 
me 

(2 4 . 

(2 3) . 

me is the mass of the electron. 

rnA = my is the mass of the photino. 

m- c, R are the masses of the left and right selectron. 9 
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For AaP, me is replaced by m, and m;, R by rn;& R . (2 4 . 9 9 

c We remark on some of the limiting cases which are presented in the appendix. 

A likely limit is rnzL R >> rnA >> m (equation E.24). Then 9 

(2 5) . 

This is precisely Fayet’s 1974 result. “I If we relax the condition that rnA < rngL R 9 
we find (eqn E.32) that, to the next order in mA/rnEL R, 9 

Aa, = Aa{mx=o) 1 - 2 
. (2.6) 

In limits where supersymmetry remains unbroken rngL = rngR = me and mA = 0. 

In this limit we find that Aae = -(r/27r so that, for (24, 

C&e = a, QED+Aae=O. (2 7) . 

This is gratifying as we might have anticipated that there would be no anoma- 

lous magnetic moment to any order in an exactly supersymmetric theory (for 

the same reason that loop divergences cancel). This was first demonstrated by 

Ferrara and Remidi. “I 

We now consider the effect of permitting the left and right sleptons to mix. 

Indeed, in realistic models with Higgs fields, it is often difficult to prevent them 

from doing so. I” Since these states differ in hypercharge and weak isospin we 

see that SU(2) x U(l)y is broken, although U(1) em is not. (This may be induced 

both radiatively”’ and at the tree level!’ ) Most treatments only consider the 

case where the photino is massless or nearly so. We shall leave rnA as a free 
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parameter.* This introduces a number of important new effects which would 

appear in a complete electroweak treatment”’ and thus represents a suitable 

decoction but with fewer complications. 

Let us first consider muons. The mass eigenstates may be taken to be 

El = Cos #FL + sin (bpR 

E2 = - sin @L + cos $pR . 

It is found (in Appendix F) that, to lowest order in rnE/ (mi2 - 

a =- 
‘a’ 257 

mArnCL sin 4 cos c$ 

( m2 
; k4i2 

P2 - m:j3 i 

We can write (2.9) as 

AaP = C(f(X2) - - f (Xl)) = Aa; - Aa: 

where we have let 

Aa; = Cf (Xi) 

and 

2 
&YEi 

m2x 

f( ) x= 
f (x2 - 1) - xhx 

(5 - 1)3 
f(l) 

1 =- 
6 

c 
asinqhoscj m,, 1 

= 
27r F& 

f ‘(1) =--* 
12 

(2 8) . 

(2LlO) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

* There are astrophysical bounds on rnx but these are model dependent. 
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Note that Aat is perfectIy regular at rng,. = rnA and is given by 

. Pay =- 2 =a !%3int$cos+ [mji2=mx>>mP]. 
127r rnA 

(2.15) 

The important point is to note that Aa, - rnP/rnSUSy here whereas, prior to 

slepton mixing, we find that AaP - (mP/mSUSy)2. The salience of this becomes 

apparent when we make contact with experimental limits in the next section. 

When the anomalous moment is linearly dependent upon the Zepton mass we have 

substantially greater sensitivity to new effects. Concomitant with this statement 

is the assertion that we can place more stringent limits on the supersymmetry 

parameters of the theory. It may be noted, however, that the Feynman diagrams 

which are responsible for the rni terms are still present (Diagrams I, II, III, IV in 

Fig. F.2 of Appendix F) and there are terms of 0 (m:) which have been dropped 

in (2.9) (see equation F.15) The O(mz) term is (for ml, < mb,,,, mx) 

[1+ F(h)] + m2 mz [1+ F(R2)] 

ii2 

F(x) =2(6x2 - 9x + 2) + x2(1 - x)” In (2.16) 

R1,2 = 
m2x 

n: - m51,2 

which can become dominant if 101 or 17~ - 81 2 0 (mJrnsvsy). In the limit that 

rnpl 2 9 >> rnA (2.16) becomes 

A+=-% {3+$} (2.17) 

which is essentially (2.5) and would give similar Iimits for slepton masses. For 

the remainder of this section we will restrict our attention to the terms which 

are linear in mP. 
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Appendix G contains various plots related to Au,. In Fig. G.l & Aat is 

plotted against Xi (as define in (2.12)). We see that & Aa; decreases mono- 

tonically from $ at Xi = 0 to about 0.1 at Xi = 2 and thence asymptoti- 

tally to zero. Since Au, = Aa; - Aa: we have plotted $ AaP versus Xr for 

*iin = 1.01 rngl and mp, = 2mp, in figures G.2 and G.3 respectively. We note 

the general feature of a maximum for IAa,l, call it IAaplmax, which occurs at 

some Xr = Xr max. As y E ~$/ng~ increases Xl max and (AaCclmax change. 

Thus IAaPlmax = IAalLlmax(Y) and XI max = Xl mm(y). In particular for y = 0 

( mp1 = 00) we find that Aah max = g and Xr mu = 00. Since Au, = Aa; - Aa: 

we see that Xr ma(y) = (l/y) Xl max(l/Y) and Aap mu(Y) = -Aa, max(l/Y)* 

Thus X1 mu = 0 for y = 00. 

The value of JAaplma is important in that it will place the most stringent 

limits on the supersymmetric parameters. The maxima occur at solutions to the 

dimensionless transcendental equation (here xi = Xi) 

lnxr = 

y[(xly + 5)(51y - 1) - 2(221y + 1) lny] (xl - Q4 - (xl + 5)(x1 - l)(w - II4 

2 [Y(2XlY + l)(Zl - q4 - (2x1 + l)(ZlY - I>“] 
(2.18) 

(where y # 1 when x1 = 1) 

m31 m22 x2 
Xl =- 

mz 
x2 = - y= - -= mi2 

mi x1 rnil l 

(2.19) 

In Fig. G.4 we have plotted Xr ma as a function of y whereas $ Aap ma versus 

y appears in Fig. G.5-6. It must always be remembered that C - l/mA. Unsur- 

prisingly the maximal value achievable by IAaPI is $ C at y = 0 and y = oo (at 

which points Xr mu = 00, 0). Thus 6 IAa,l achieves its greatest value when rnpl 

(or m;;a) + 0 while rn~~ (or mix + 00. Since C N m,/mx we expect that .iAa,l 

is maximized when the supersymmetric masses are as small as possible and the 

mass-splitting in the sleptonic sector is maximal (m;rj >> m;;i#j). Indeed this is 
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a generic feature which we will find common to all processes examined in this 

paper. (Since we have assumed that mA,m;l >> mp in the above expressions, it 

would be improper to take both m;r; and rnA to zero). This is, however, partially 

an artifact from dividing (2.9) through by rnt to get (2.13). This new contri- 

bution depends fundamentally upon the photino flipping helicity, contributing a 

factor of rnA which replaces one factor of mcl, and so vanishes as rnA + 0. As 

long as the photino possesses any finite non-zero value (mA # 0) we maximize 

IAaPI by taking either rnzi or rnF2 to be as light as is consistently possible with 

experiment and the other to be much heavier. Since experimentally m- 2 25 Pi 
GeV we might consider the case rnA < rnFl < rnT2. In this limit (2.9) becomes 

A% 
o! mXmp =--- 

47r rn$ 
sin&os4. (2.20) 

Although such “large mass-splitting” cases are not ruled out one generally 

finds, if explicit supersymmetry-breaking terms have their ultimate origin via 

spontaneous supersymmetry-breaking at some larger mass scale, that states tend 

to have meager mass-splitting (in this case 6m; = rnc2 - rnFl < m;2; ,). Indeed 

one is led in some models@’ to the conclusion that, should the spontaneous break- 

ing arise in the gauge (‘9”) terms of the superpotential, then the mass-splitting 

is expected to be very small. In such models PL and CR possess equal masses 

and are unmixed at the tree level but develop a small mixing term at one loop 

via diagrams such as that in Fig.2.2. 

The result is a smuon mass matrix of the form 

where 

m2 N O(v”) 

v - 0 (100 GeV) 
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and Irn& - rnis 1 = 26m2 < m&a. The mixing angle is near maximal.* 

Should the supersymmetry-breaking terms arise in the Yukawa (“F”) sector 

certain scenarios Is1 suggest that the FL - CR mixing angle, 4, would be small 

although the mass splitting could be larger. 

When the mass-splitting is small we find (for rnA < m;r) 

6m2 a &a, = -- -sin+cos4 
rnArnprni 

m$ 47r ( m$ - mi)4 

~{I+43 [I-ln 21-3 [,,2ln !$I} 

where 

or 
6m2 ct Aa,=--- 
rni 47r 

where 

p(x) = (x _" 1)4 ((5 + 5)(x - 1) - 2(2x + w 4 

p(x 3 0) + -4xhx 

(2.21) 

(2.22) 

1 
p(x + 00) -+ - . 

X 

(Note that this formulation is equivalent to that of reference 8 provided that one 

allows for the difference in the definition of a used there.) 

* Since this is actually a two-loop process there are a number of other diagrammatic config- 
urations of comparable magnitude which were not included in the original treatment. This 
must be done if a more precise model is required. 
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2.4 COMPARISON WITH EXPERIMENT 

Sooner or later it behooves us to make contact with reality. Here we use the 

experimental limits on measurements of a, and a, to place restrictions on the 

contributions considered in the previous subsection. It should be noted that ge 

has been so well measured that a significant fraction of the uncertainty which is 

engendered when the empirical and theoretical values are compared may be as- 

cribed to the error inherent in high-order calculations within the standard model, 

particularly from the hadronic contributions. 

Current limits on the deviation of Aap,e from predicted standard model values 
are. Pm1 . 

IAaPl s 2 x 10e8 (2.23) 

1 Aa,l 2 3 x 10-l’ . (2.24) 

First let us consider the implications in the case of unmixed sleptons. When 

rnbL,+ >> rnA >> mp we obtained the result of (2.5) which, using (2.23), translates 

to 

This would exclude a circle of the radius (10 GeV)-1 centered at the origin in 

the rnN1 - m- 
PL 

;i plane or, equivalently, the region indicated in Fig. 2.3. 

This implies an absolute limit on the smuon masses of 

m; 2 10 GeV (2 25) . 

From (2.5) and (2.24) in the m,- >> rnA >> me limit we would find a corresponding 
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constraint on the selectron mass from Aa, of only 

m; 2 0.4 GeV . (2.26) 

In passing, we note that should the photino be substantially more massive 

than the smuon (rnx >> rn; >> mp) then (2.25) would become rnA 2 5 GeV. 

Turning now to the i& - GR mixed case we will first consider the implications 

of substantial mass-splitting of the eigenstates j& and p2 and then will return to 

the slightly split scenario. From (2.20) and (2.25) we see that when 

that 

IAa& = 2 y sin+cos# =5 2 X low8 
ih 

or, assuming maximal mixing (4 = r/4), 

rn;rl 2 39 GeV dmx(in GeV) . (2.27) 

We obtain a similar limit on rn; under such conditions. In light of the assumption 

rnFl >> rnA this provides a constraint on m;rl 2 for light photinos (rnx < 1 TeV). 

Note that if we let rnA = mp in (2.27) then the inequality reduces roughly to 

that of (2.25) in accordance with our observation in the previous section that 

one power of photino mass has replaced a factor of lepton mass in AaP. This has 

its most profound effect, of course, when we consider selectrons, as in (2.26), and 

when the photino mass is comparable or greater than the mass of the slepton (if 

rn; ,N rnA then both must exceed 0.5 TeV). 
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If the mass-splitting is small we might consider the case corresponding to 

(2.27), i.e. 

Then from (2.22), 

Aal, 
6m2 a m,w N-- 
m$ 47r 

sin4cos4 - 
rni 

and from (2.23)and (2.24) we obtain 

(2.28) 

or S 10M6 in the Z&se. 

This is not a terribly useful limit. If, for instance, we were to take rnA - 10 

GeV, m;S - 100 GeV we would find 

We note that the above treatment differs only in detail from a full supersymmetric 

electroweak treatment and the results are similar. The principal difference in the 

latter is that there are a plethora of contributions from additional gauginos and 

higgsinos (which may m’ix amongst themselves). While we could have rnz < m; 

for a gaugino & we might equally well have rnc, > m’;; for a second gaugino. The 

complication in placing bounds is evident when we point out that if m;l m rnA 

then (2.28) will become (using (2.15)) 

$24 x IOe3mx(in GeV) 

b 

(2.29) 

which is, potentially, significantly more restrictive. We include such complications 

when we consider mixing among sleptons of different generations. 
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FIGURE CAPTIONS 

c 

1. (a) Tree-level vertex for a massless electron. 

(b) One Loop QED correction. 

2. Mass-Mixing in the Model of Ref. 8. 

3. Excluded region of the rng, - mFR p lane if mPL,R >> mA > ?nP for Case of 

no left-right mixing. 
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3.1 INTRODUCTION 

In this chapter we examine the possibility of real Z” decay in a way which 

violates lepton family number. We permit the admixture of the scalar partners 

of the leptons (sleptons) from different generations. This chapter duplicates, to a 

large extent, the work contained in a previous paper.‘“] We will work in the more 

familiar four-component Dirac notation. 11” Our notation is based upon that of 

Refs. 12 and 13. Useful sample calculations using this notation may be found in 

several places. I12441 

Our principal consideration will be the process e+e- + Z” + r*pY Should 

such an interaction occur with a moderate cross-section it should be observable 

at the emerging generation of colliders. The choice of the final states is somewhat 

arbitrary. It is partially based on the possibility that the sleptonic masses might 

progress in the same order as their leptonic counterparts and that more massive 

states might have a greater tendency to mix. Neither of these assumptions is, 

of course, necessary, however it is highly desirable to consider that most of the 

mixing occurs between two generations in order to reduce the number of angular 

parameters present. There is also the observation that there are additional box 

diagrams present if one of the final states is an electron. When dealing with 

on-shell Z”‘s such contributions are negligible and the results would be equally 

applicable to mixing in the e - p or e - r sectors. It must be noted that such 

computations may be, as will be seen in Chapter 4, readily extended off-shell. 

As in the previous chapter the bulwark of detail will be presented in related 

appendices (Appendices I-N). Appendix I provides a brief overview of supersym- 

metry, motivates the construction of supersymmetric Lagrangia in general, es- 

tablishes the notation and presents the “standard supersymmetric Lagrangian”. 

Appendix J considers the diagonalization of the various mass matrices in different 

bases. In Appendix K the Feynman rules are derived and detailed examples of 
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their use given. The computation of the matrix element is done in Appendix L, 

notation established and various integral functions defined. These are analyzed 

in detail, both analytically and numerically, in Appendix M. Finally in Appendix 

N the various background calculations are presented. 

3.2 THE MODEL 

We consider a minimal supersymmetric extension of the standard model and 

restrict our attention to the leptonic sector. We admit the inclusion of explicit 

soft supersymmetry-breaking terms, that is those which do not introduce new 

quadratic divergences. Thus this “supersymmetric standard model” will develop 

arbitrary scalar lepton masses. Presumably all such terms arise at some higher 

energy scale in a more fundamental way (such as supersymmetry-breaking in a 

manner which is not family-independent). We shall not concern ourselves here 

with the ultimate origin of these terms but consider the effective low-energy La- 

grangian as given. In this way we may proceed in a reasonably model-independent 

fashion (subject to the not insubstantial restrictions of using minimal supersym- 

metry). 

Given scalar leptons of arbitrary mass it is only lepton family number, an em- 

pirically observed global (presumably) symmetry, which would prevent them from 

mixing. There is some feeling that exact global symmetries are very unnatural’151 

(perhaps representing the approximate remnants of some more fundamental lo- 

cal symmetry at larger energy scales). Thus we allow the sleptons to have ar- 

bitrary mass and mix with arbitrary angle. Family-number violation might also 

come about through any number of other effects in conjunction with this or 

independently. “” We shall not consider this point further other than to note 

that specific experimental observations will generally be able to distinguish one 

model from another (given sufficient statistics). The same sort of analysis may 

be applied to the hadronic decay of the 2’ leading to possible enhancements of 

flavour symmetry violation in that sector.‘1s’171 
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We have seen that the left and right sleptons may readily mix in each of the Z, 

p and 7 sectors. We therefore anticipate mixing among six charged sleptons. In 

general, mixing among N states may be described by $ N (N - 1) real angles and 

;(N-l)(N-2) complex phases. The latter will typically result in CP violation. 

In the above example (three generations) we would need 15 real angles and 10 

phases. In addition there are three neutral sneutrino states (six if we permit 

right-handed sneutrinos in the spectrum) resulting in three more angles and 

one additional phase. In order to reduce the burgeoning number of parameters 

somewhat we will consider the case where only the two ‘heaviest’ generations mix 

significantly with little left-right mixing. Thus the only mixings are between: 

j2~ and FL with angle 0~ 

fiR and FR with angle 6~ 

CP and fir with angle 8, 

(3 1) . 

So that 

with &R~, &R, and fir,2 the physical mass eigenstates. 

The particle spectrum of the supersymmetric “standard” model is illustrated 

in Table I-1 in Appendix I. The superpotential of the chiral superfields must be 

homogeneous (no terms involving both chiral and antichiral fields as one finds 

in the field strength)[1’181 with the result that a minimum of two Higgs doublets 

are required to give the u and d quarks (and thus charged leptons) masses. IIll h 

this minimal model we will ignore the possible inclusion of a Higgs singlet, G. 
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These points are discussed in Appendix I. The fields which will be needed in this 

chapter are presented in Table 3-l. 

A major complication arises in the gaugino sector of the theory. Let us sup- 

pose that supersymmetry breaks at an energy scale above that at which SU(2) x 

U( 1) does. At large energies we will have exact supersymmetric SU(2) x U( 1). 

Thus we have massless W”,W* SU(2) gauge bosons and a massless B” U(1) 

gauge boson with corresponding supersymmetric partners, all massless fermions, 

Go@* and go. Similarly there are two Higgs doublets Hr and H2 with their 

superpartners & and &. Note that the above are Weyl spinors (this notation 

differs slightly from that of Ref. 12). It is frequently convenient to write these 

as four-component objects. For the gauginos we shall use the same symbol. 

E+= ($+) Fo= (;g) go= (-;;‘) ‘(3.2) 

whereas we will distinguish the Higgs four component object as fi, 

(3 3) . 

The neutral states are Majorana. Note that E-t is built from both higgsinos. 

When supersymmetry breaks, effective low energy terms of the form 

develop. These are the most general bilinear soft supersymmetry -breaking terms 

which may develop. [lo1 Note that explicit diagonal Higgsino mass terms are not 

soft. 
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At the weak scale Ho and Hz0 develop vacuum expectation values vl = (Hro> 

and 212 = (Hi). The standard electroweak VEV is replaced by 

v = (vf + v,2)‘J2 l 

The terms f”.@(&)@R)f (i = e,p,T), WOHj’H; and W*HtTHj of the standard 

theory (with two Higgses) have their supersymmetric counterparts f’H,O(&)#&, 

F”fif Hf and v*@ Hf (the general rule is to replace every pair of fields by their 

supersymmetric partners if R parity is conserved as is here assumed). Now when 

the neutral Higgs develop VEVs we develop more quadratic terms in &ffe,--ive. 

The first terms gives mass to the slepton (this would be equal to the lepton mass 

if it weren’t for the additional term in (3.4)). The others yield 

- ~[v~~+~~~ + v2h&] + h.c. 
(3 5) . 

It is convenient to define 

tan& Z !!L 
212 

(3 6) . 

(this is called cot ,O in Ref. 13). 

The final term in (3.5) will induce the charged gaugino and higgsino states 

of (3.4) to mix. The first term in (3.5) will cause 5 and F to mix with both fi: 

and @. Since fip and @ are mixed by (3.5) (by virtue of possessing opposite 

hypercharges) all four neutral states mix. We refer to the two charged mass 

eigenstates as “charginos” and represent them by xi . -+ The four neutral mass 

eigenstates are “neutralinos” represented by xi. “O If there are Higgs singlets then 

the number of neutralinos will be increased accordingly. It is also possible to 

assign a VEV to the sneutrinos: (&) # 0. This interesting possibility leads 

to further mixing due to terms in l such as go% and have been examined 

elsewhere. ‘a’1 Such theories explicitly violate R-parity, lepton and family number 

and are therefore of a somewhat more radical nature than will be considered here. 
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Since higgsinos and gauginos couple quite differently, the rate of the inter- 

action e+e- 4 r+u- and similar processes will depend upon the details of the 

mass spectrum of the physical eigenstates. These effects may be more profound 

away from the Z” resonance since there will be contributions from charginos and 

neutralinos in the t-channel. “‘I 

3.3 MASS EIGENSTATES 

The Lagrangian may be concisely written in terms of chargino and neutralino 

mass matrices. The unitary matrices which diagonalize the Lagrangian are called 

N (4 x 4) for the neutralino sector and U and V (2 x 2) for the charginos. 

The details are given in Appendix J. These matrices will perforce appear in 

the Feynman rules as derived in appendix K. The most involved combinations 

will occur in the non-Abelian vertices which contain more than one gaugino or 

higgsino. Following Haber and Kane’12’ we represent the chargino combination 

by matrices 0’ and neutralinos by 0 ” . Since the parameters in the gaugino mass 

matrices may vary over a wide range of parameters one might be wary of finding 

that one or more mass eigenvalues have become negative. This does indeed 

appear to occur but this does not imply the existence of a tachyon. It asserts 

an inappropriate set of basis states were selected for parameters in this regime. 

These may be redefined or, equivalently, an altered diagonalization procedure 

used (which accomplishes the same end). Indeed in the simple 2 x 2 chargino 

system the latter approach has been adopted leading to slight modifications in 

the Feynman rules as this threshold is broached. It is also possible, and often 

desirable, to retain the negative states for computational purposes. 

The chargino masses are given by the explicit expressions 
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mz$ =i{M++M_) 

mz$ = i{M+ - M-} sign[D] 

Mrt = \/ (M + p)2 + 2m&(l F sin20,)2 

D=Mp-mbsin28, 

where M, p, 6, are the breaking parameters described in (3.4) and (3.6). 

The neutralino masses are given by Ref. 12 as the eigenvalues of the matrix 

Y= 
i -mZ rnz cos sin M’ 0 8, 8, sin sin 6, 8, -mZ rnz sin cos M 0 6, 8, cos cos 8, 8, -mZ rnz sin sin -P 0, 0 9, cos sin 0, 8, -mZ rnz cos cos -P 0 8, 8, sin cos 8, 8, 

(3 . 8) 

The general solutions are the roots of a quartic equation. This can be solved 

exactly but proves to be unilluminating.‘221 Furthermore, if a Higgs singlet is 

added Y becomes a 5 x 5 matrix and the corresponding quintic root equation 

will have no closed form solution in general?’ Note that in specific cases, such 

as those discussed in appendix J, simplified forms are frequently possible. 

Mass matrices for the sIeptons may be similarIy constructed. There are on- 

diagonal contributions from the lepton mass and the explicit breaking terms. The 

off-diagonal entries derive solely from the soft terms. Since lepton masses are 

expected to be much smaller than the supersymmetry-breaking terms they may 

effectively be ignored except in special circumstances (such as lifting a degeneracy 

or preventing the matrix from becoming singular). Since all of the entries are 

then “arbitrary”, it is sufficient to merely consider the physical eigenstates and 

characterize them by given mixing angles and masses without reference to the 

unmixed precursor states. 
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3.4 MATRIX ELEMENTS 

The diagrams contributing to 2 + ~17 are found in Fig. 1. Details may be 

found in Appendix N using the Feynman rules derived in the previous appendix. 

The explicit expression for the leading order terms in the matrix element, MU, 

is given by 
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tW~,~ = a’“(Pl ‘)7r7w7dP2’) 7& = ;(lf75) . 

ML= Kv ~{I~~,~[AG(T~,R:)+~osZB,AG(T+,O)] 
sin’ 8, sin 29~ i=1 

+~5737,-1 [&O$‘A~pl(T,+,s&Rf) 
j=l 

KL 

- 2 sin2 8, sin 20, 
ltan&,,Nil + Ni212c0s 28wAC'(TLOi, Rf) 

4 k(tan 8, Ni; + Nii) (tan edjl -I- Njz) 
j=l 

- RfOL;; A~~z2-z21(T~oi,S& Rf) 

+ oL;; Ae(TLoi, S$ Rio 
)I> 

htR= 
4KR 

sin’ 0, sin 20, 
ltan OwNi; I2 sin’ O,AG(TRO~, Rf) 

+ C(tan 8, Nil) (tan flwNj;> 
j=l 

(3.9a) 

(3.9c) 



K, i = -e3 sin 0, cos 8, 
167r2 

KL = 
i 

-e3 sin 6~ cos 0~ 
16~~ 

KR = i -e3 sin OR cos 6)~ 
16~~ 

R, S, and T are ratios of masses: 

2 

T+ = mci 

i m2+2 a 

2 
s’-$ = “xi’ 

ma+2 
i 

RF=42 
4mz02 

i 

(3.9d) 

(3.10) 

where m- and m- LR are the masses of the charged slepton of the first generation 

mixture ;“:ee (3.1)) Hnd m- l v1 1s the mass of the first sneutrino (Cl = PI cos 6, + 

& sin 0,). The neutralino masses are rn2? (i = 1,2,3,4) and chargino masses 

are mp (i = 1,2). The energy of the Z” is 4’ = rnz since we are working 

on-shell. The integral functions (AjlN1, AG, Ae, A6) are defined in Appendix 

N and analyzed, analytically and numerically, in the subsequent appendix. The 

matrix element MW cannot be examined in all of its complexity (there are, after 

all, 120 terms in Eq. (3.9)) but there are a number of special cases which prove 

instructive. These principally involve taking the breaking parameters to extreme 

values (zero or infinity) and a number of examples have been examined. We find, 

in accordance with the decoupling theorem, ‘231 that as the physical mass of a 

matrix becomes large its contributions to the cross-section become progressively 
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less important, finally vanishing. The matrix element remains finite for all values 

of the parameters involved.* 

3.5 PRODUCTION THRESHHOLD 

If any of the supersymmetric particles is sufficiently light (m < f mz) then 

real production occurs. If such states are unstable (generally only the least mas- 

sive supersymmetric state will be stable, and only if R is conserved) then final 

state processes with four or more particle will dominate. If the lightest super- 

symmetric particle is a neutral then all such decays are characterized by “missing 

mass” in the final state. Such signals are notoriously amenable to alternate in- 

terpretations yet remain the hallmark of experimental supersymmetric searches. 

Below threshold there are still contributions to closed loop processes, such as the 

one under consideration, however the matrix elements become complex. 

Let us assume that a nearly massless sneutrino were the lightest supersym- 

metric particle and, furthermore, was stable. The reaction e+e- ---) Z” + % 

would appear as e+e- + nothing. The real particle production analogues of the 

processes in Fig. 3.1 would be 

e+e- -b Z” + F-z+ 

and 

Since V,V, F and c escape the detector their reactions appear as e+e- -+ ~*TF+ 

* In the infrared limit if we take the superparticle mass to be small we must be careful to 
reinsert lepton mass terms which have been ignored. This is demonstrated for the off-shell 
per vertex in the appendices associated with Chapter 4. 
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missing energy. This six-particle final state would be difficult to distinguish from 

far more quotidian occurrences such as e+e- + r+r- + ~+~-~Pv~~~vP. 

r 3.6 SMALL MASS SPLITTINGS 

The largest cross-sections occur when the mass-splitting between &&I) 

and &R,(&) is large. In many models we may restrict ourselves to the case 

where the relative mass-splitting is small, i.e. 

where 

6i; E f-G2 - rl”“22 

mfi, 
(3.11) 

These models I”’ assume (quite reasonably) that supersymmetry breaks sponta- 

neously in a flavour-independent manner. If the breaking scale in not too large 

then small mass splitting follows naturally. This has not been assumed in this 

paper. In such scenarios the matrix elements are generally at Zeast an order of 

magnitude smaller. In this limit we can write 

AF(Ti”, S,$, R;) = 6;F’(Ti+,S,$ RT) (3.12) 

(3.13) 

AF G F(il) - F(i2) G 6iF’(il) (3.14) 

aF(T, s, R) F’(T,S,R) ET dT = WT, s, R) 
dlnT 

(3.15) 

In this case we may replace each AI and AG term in (3.9) by 6icI’ and 6ipG’. 9 9 
(See Appendix N for these functional forms). 
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3.7 CROSS-SECTION AND SPECIAL CASES 

Given the matrix element, MU , in (3.9) we may derive 

oe+e--b+p- = [IML12 + IMR12] 
ae+e-+p+p- 8ra(cot2 28, + tan2 6,) 

(3.16) 

Note that if any of the supersymmetric particles has a mass of less than i A& 

that real production can occur and that ML and MR are complex. It is the 

modulus which is important in (3.16). 

In order to get a feeling for the range of Qe+e-47+P- we examine (3.9) in 
oe+e-+p+p- 

two extreme gaugino limits. The first is the “supersymmetry” limit in which we 

eliminate the gaugino supersymmetry-breaking terms by letting M’,M,p --) 0 

and let vr = 212. Thus the only supersymmetry-breaking terms are the explicit 

slepton mass terms. Then (3.9) reduces to 

MWsus~ = 
MWL 

sin2 8, sin 20, 
AG(Tc, R,+) + cos Z&,,AG(T,+,O) 

- COS~~~A$~(T~, R;t) 

+2 cos’ 6, 
[ 
R:A++l ’ (T,+, R;) - Ac(T,+, R:,] } 

-2KLEWL cot 28, A~(TL’~, R;) + cot2 ~~,AG(TL'~, R;) 

+2&cWR tan 8, AG(TRO~, Ry) + tan2 &A@TR’,, Ri) 
> 

with 

A+v(z,2)] (T, R) = AfiN(z,i)l(T, s = LR) C(T, R) = Ae(T, S = 1,R) 

(3J7) 

where the physical masses are now 

m2+ = (MwlMw) 
i 

rn%o = (O,MZ,MZ,O) 
i 
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and the relevant mass ratios are 

TL,R’l =OO TL,Ro2 = 
Mz2 

R1+= ’ 
4 ~082 8, 

R0 1 =oo R0 2 = l/4 

(3.19) 

ae+e-+T+p- is plotted in this limit in Fig. 2. Since experiments rule out charged 
ge+e--bp+p- 
supersymmetry partners of mass less than about 24 GeV,“” and in some instances 

much stronger limits have been placed. ASP’26J has placed limits on the selectron 

mass and the wino mass of approximately 60 GeV When combined with the 

results of other groups they find that rng 2 84 GeV. While such strong limits 

do not, as yet, exist for rnb or m?, and hence for ml1 2, it would be somewhat , 
surprising to find rnb < mg. We see that for light slepton masses with large mass- 

splitting that 
oe+e--tr+p- 

could be as large as 3 x 10 -? The significance of this 
ae+e-+p+p- 

will be discussed shortly. In order to achieve such a value parameters conducive 

to a large cross-section have been selected. We have allowed the sleptons to mix 

maximally so that 8, = 61~ = 0~ = 2. We have further assumed maximal mass- 

splitting between the two slepton sectors, i.e. mF,,rniL and rniR are relatively 
1 1 

light but mi;,, ml& and rniR are large and decouple. 
2 2 

Another extreme limit is the “unmixed” limit in which the Higgsino and 

Gaugino sectors have been disentangled from one another. There are several 

ways of achieving this. Here we consider the limitmg case M -+ oo,M’ + 0 and 

P ---) 0 (0, arbitrary). The physical mass states become 

MR+ = 
i 

(M + 00) Mgo = 
i 

(M + oo,O,O,O). (3.20) 

Note that j$ = I?: , 2: = go and thus are purely gaugino whereas gg,4 are 
z 

m& R 
2 

purely Higgsino. Thus T’L,R, 5 3 + oo and Rt E ~-& 3 00. The 
2; 2; 
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matrix element is given by 

~WUnmized = 
2KRtWR 
cos2 e tan b&TRo2, R,O) - KLEWL 

2 ~05~ 8, 
cot 28,Ae(T~‘~, R;) 

w 
(3.21) 

Note that this result is independent of &. The corresponding cross-section 

is plotted in Fig. 3. Again the sleptons are assumed to have maximal mixing 

and mass-splitting. Note, however, that in this limiting case we have a massless 

chargino (a charged Higgsino). Since experimentally the mass limit for new 

charged particles is - 24 GeV, we conclude that this case is merely illustrative. 

3.8 EXPERIMENTAL CONSIDERATIONS 

The question arises as to whether such a process would be observable at SLC 

or LEP. These machines will operate as Z-factories and so are ideally suited for 

such a search. We see from Fig. 2 that, at best, the cross-section for e+e- --) 

2’ + r$- will be - 3 x 10e6 that of e+e- + 2’ + p+p-. Thus we expect 

BR(Z’ + T+/.J-) 75 0(10-7) (3.22) 

where we have used the relevant standard branching ratios la71 

(3.23) 

We also note that 

BR(r + pm) N BR(r + efiv) = 17.5yo (3.24) 

The experimental signature for such a decay would be ~1 and r back-to-back with 
M the ~1 having E = -# and no missing energy. The principal background will be 

from e+e- --) Z” + r+r- followed by rf + /A*PY, with the p having nearly all 

of the r momentum. The r will travel approximately 2.5 mm before decaying in 
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this case and, since the r and JJ are nearly collinear, the kink in the track will 

be unobservable. Clearly the number of p, N(AE), produced in the energy range 

from y - AE to ,y is of paramount importance. We find that (see Appendix 

NJ 

(3.25) 

where cz measures the degree of polarization (a = 0 for the unpolarized case; 

a = 1 for complete polarization). At SLAC we expect a = 1 and thus 

N*,,l(A&) A yq. From this and (19b) we see that we need AE s 0.1%(y) 
Mz 

to achieve a background of 10B7 or less which would compare with (3.22). Thus 

for muons with E k: @$ we need 9 = 0.1%. 

At the SLC the MARK II detector will have an energy resolution for e’s and 

p’s of -O.Q%/GeV without a vertex detector and, perhaps, as low as O.l%/GeV 
M with the planned vertex detector.‘281 For --$ N 50 GeV this means that p - Ap 5% 

and from (3.25)the background will swamp the signal by at least a factor of 

200. It appears unlikely that detector momentum resolutions will be improved 

by the required two orders of magnitude in the near future (there remains the 

formidable problem of increased multiple scatterings as detector mass is added). 

Thus the process e+e- + Z” + r$- will not be experimentally observable 

at the emerging generation of machines. Furthermore, because of (3.22), when 

SLC achieves its eventual target luminosity of lo6 ZO/year, the Z” ---) r*pF 

production rate will be at best -0.2 event/year. 

Should the mixing be primarily between Z and fi there will be an important 

additional restriction to consider. Under the same conditions described above 

(maximal mixing; large mass-splitting; 2’ on shell) the production rate would 

appear to be the same. It is found, however, that the experimental limits on 

the process p + ey place severe constraints on Z - F mixing in the neutralino 

sector. If we assume maximal mixing and large mass splitting then (chapter 4) 

we find that the lightest slepton has m 2 1 TeV and so decouples. Thus the 
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charginos provide the sole contribution to 2 + p+e- (other than in exceptional 

circumstances). The matrix element is then proportional to the sneutrino mass 

splitting. Assuming that this is also large we find, for cases of interest, that the 

chargino sector contribution is generally much larger than that of the neutralino 

sector even before the above constraint has been imposed. Thus the removal of 

the neutralino contribution, while considerably simplifying calculations, would 

not greatly affect the final cross-section. 

For the situation illustrated in Fig. 3(b), when applied to 2 + p+e-, we find 

that imposing the above constraints on ml affects the results by, at most, 15%. 

Furthermore, in the region of interest, this change results in an increase in the 

cross-section (because the real parts of the neutralino and chargino contributions 

enter with opposite signs). Note that the preceding argument (except the quoted 

percentage) also follows in the cases of small mass-splitting and non-maximal 

mixing. 

When considering the process 2’ + r+p-current limits from 7 + j.q’271 

do not impose serious constraints on the neutralino sector. In the case of large 

mass-splitting and maximal mixing we find only that ml 2 13 GeV. In particular 

substantial effects persist in this case (arising from the neutralino sector) even 

when mpl = mt2. 

We can do somewhat better on background if we assume that the principal 

slepton mixing occurs in the E - fi sector. The principal background will still 

be due to Z” + r+r-with r& + @i;iv and rjc + e&t/v. The decay Z” + /ip 

will not be a problem since, at these energies, muons will not decay in the de- 

tector. Now misidentification of a r+r- pair as a back-to-back p*eF requires 
M that both the p and e emerge with energies near ,-#-. Assuming complete po- 

larization we find that N(Ap), the number of back-to-back e - p pairs emerging 

with E = M -#, to within the experimental momentum resolution Ap, is given by 

N(Ap) A 1.4 y 4. 
( > 

Thus with % - 5% we find N(Ap) M 9 x 10D6, which 

corresponds to roughly 0.02 misidentified events per year, assuming a sample of 
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lo6 2’. It would appear that, under the most opportune of conditions, the signal 

might stand well above the background. It must be cautioned, however, that such 

propitious circumstances are singularly unlikely. The actual e+e- + p*erf Pro- 

duction rate is almost assuredly much less than the near-maximal value which 

we have been considering and this idealized background calculation has omit- 

ted a number of important experimental effects. This result is, none the less, 

encouraging particularly in light of the observation that statistics and detector 

sensitivities will only improve with time. 

3.9 CONCLUSION 

In conclusion, even in the most favourable scenarios, it appears unlikely that 

e+e- + r$- will be observed at SLC within the first few years of operation if 

the sole contribution is from slepton family mixing. The production rate is sim- 

ply insufficient and the background rate overly severe. The decay e+e- 3 @e- 

is equally rare but the background problems may prove more tractable. The full 

parameter space of the gaugino-higgsino sector has yet to be explored. Since the 

cross-sections predicted in the limiting cases presented come within an order of 

magnitude of being experimentally interesting at the SLC, realistic symmetry- 

breaking parameters might exist which would increase the cross-section to ob- 

servable levels. In any instance the projected luminosity available at LEP might 

render such searches feasible. 

38 



Table 3.1 Fields in This Chapter 

Ordinary Matter Superpartners Weak Isospin y 

Vector (Gauge) Multiplets 

w’,O +,o Triplet 0 

B0 B” Singlet 0 

Scalar Multiplets 

vi, ‘Lie fii, &; Doublet -1 

(q)L = (e,)* (e 1 I;;; * Singlet 2 

HI’, HI- @&, &$ Doublet -1 

H2+, H2’ 4g29 4g2 Doublet 1 
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FIGURE CAPTIONS 

1. Diagrams contributing to Z” + r$-. 
I a) Chargino Diagrams. 

b) Neutralino Diagrams. 

2. Ratio of cross-sections, 
ae+e-+T+p- , in ‘supersymmetry n limit. 
ge+e--+p+p- 

M = M’ = p = 0. 0, = n/4. 

(a) Varying all slepton masses equally. [Ignoring ml2 and mp,]. 

(b) Varying rniL while holding all other mass parameters equal to the 
1 

indicated values. 

3. Ratio of cross-sections, 
oe+e-+T+p- , in the “unmixed” limit. 
oe+e-+p+p- 

M = M’ = /L = 0. 8, = 7r/4. 

Vary rni& = rniR assuming miL2 = miR2 = 00. 
1 1 
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4.1 INTRODUCTION 

This is the classic lepton family number violating process. Of such processes 

it is the best-studied, both theoretically and experimentally, and that which has 

provided the keenest limits on model-building. In terms of the present model such 

a decay would occur due to mixing in the selectronic and smuonic sectors. We 

could motivate the form of the matrix elements by first considering the related 

decay r + ~7 in which the mixing is principally between jZ and ;i: (and the 

corresponding scalar neutrinos). We would then utilize the wisdom gleaned in 

the previous chapter by developing crossing relations to go from Z” --+ ~+I,L- to 

r + ~7 directly. This would give us the leading order “vectorial” (7p) interaction 

term which can be shown to vanish due to the reasons discussed in section 4.2. 

The lowest-order non-trivial matrix elements will be presented (Appendix 0) 

and discussed (in section 4.3). We will consider off-shell behaviour and observe 

that the “vectorial” terms may indeed prove important in this case. We will not 

ignore the masses of the fermions in this case since, unlike the previous chapter, 

the lepton masses are comparable to the decay energy. Finally, comparison with 

experiment will be examined in section 4.4 and special cases of interest presented. 

4.2 THE FORM OF THE MATRIX ELEMENT 

The first observation which we make is that, in the approximation of massless 

leptons (particularly muons and electrons), p ---) e7 must be principally mediated 

by a convective c?’ interaction. The reason is that the photon is massless’and 

therefore transverse. Thus it has spin quantum numbers (on shell) 

(w3) = (l,fl) 

but no s3 = 0 longitudinal part. Hence, denoting the ‘z-component’ of the spin of 

the (anti)muon by So, let us consider the related process of 7 ---) @e depicted 
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in Fig. 4.1. Since ~(7) = s3 (p) + 233 (e) and the leptons emerge back-to-back they 

must have spins aligned in the same direction and so have opposite chiralities. 

In the weak basis IV**O only couple to left-handed particles (and likewise for 

their supersymmetric partners) and so only 5’ would contribute in the indicated 

fashion. This conclusion is true if Fig. 4.1 were rotated to illustrate p + ey. Of 

course, since both z” and 7 contain a piece of B -0 they would both contribute 

to such a process. Higgsinos couple with a strength which is proportional to the 

mass of the Zepton and so they also do not contribute. In an arbitrary neutralino 

basis, of the forms described in the previous chapter, the go portion of each j$ 

would contribute. 

When electron and muon masses are included then helicity flipping becomes 

possible along the lepton lines and F**‘, g*l” diagrams will contribute (sup- 

pressed by rnp/MSUSy, of course). Both terms’2D1 of the form (a + b75)cF’, 

which flip helicity, and (c + d7~)7~, which do not, are possible. As the helicity- 

preserving terms are downs by rnt/Mi,R most papers simply ignore them and 

assume an interaction of the form &‘“gV. Since 

we can rotate $!I ( i is a generation index) and $@ independently when there are 

no mass terms present. Then +!J~ (P)*aW~~) may always be rotated to $~~)*a~&). 

This informs us that the coefficients of the crw terms must always be proportional 

to some power of the lepton masses. 

We will use the somewhat non-standard notation for the pure SQED case: 

(4 2) . 
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where K is a constant which can be shown to be equal to 

K=- 
a3i2 sin 6 cos 8 

144fi 

and 

(4 3) . 

I 
Qw = Pw - p, 

in this instance. 

The e”-F mixing angle is 6 (here we are tacitly taking 0~ = 6~ G 6). Weinberg 

and Feinberg IzQ1 refer to these form factors as fE0 (g2), f’o (q2), for (q2), and 

fEr(q2) respectively (up to factors of q2 etc.). The ,@WYq,, term is actually a 

rw-type term written in this way to more closely resemble the form of owuq,,. 

This follows from 

$~wu9Y = [d!?" Y2rw] l (4 4 
. 

We see that the &‘I, $‘f terms (fE0, j&o) will not contribute for real, free, massless 

photons since the cross-section, ct, goes like (T oc 1 MU l ew I2 and Q l c = 0 as well 

as q2 = 0. For most off-shell processes, such as p --+ eee via an off-shell photon, 

the qw term will vanish in any case. With this in mind it is not surprising that 

the leading-order coefficients of Fr (q2) and Ff (q2) are found to vanish. 

4.3 DECAY RATE 

SQED Result 

From Appendix 0 we find that 

+ [W2) + F,5(q2)75] ~pu91J > V(p,s) 

with 

K=- a3i2 sin 8 cos 8 I 
144+ 

Qw = Pw - Pw 

and that, when the muon decays radiatively on-shell to a photon and electron, 
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that the Fl and Ft terms are unimportant but that 

F2(g2 = 0) A - gm’[Af2(TR) + AfiL( 
mi 

( 5) 4. 
F,5(g2 = 0) G - ‘z{ [Ah (TR) - Af2 (57L)] 

where rnA is the photino mass, which is not necessarily small, and we are con- 

sidering a purely SQED result. We have abbreviated the mass ratios (Chapter 3 

and Appendix 0) to: 

From the appendix 

Af&%) f f2 ($)sf2(52) 

Af#-‘L) = f2 (qMf2(q 

(4 6) . 

f2(z) (1-z)(s2-5~-2) -6a;lnz 1 = 
(1- s)4 f (1) 2 = -_ 

(4 8) 6’ l 

This has been plotted in Fig. 4.2a. We find that the decay width is 

I? wr = r0 sin2 6 ~0s’ 6 bf#d I2 + IAf$-R) I”) 

where 

ro f 
a3 mpc2 

1024~~ ti 

(4 9) . 

(4.10) 

N 6 17 x 1012 set-’ . . 
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Small Mass-SDlitting 

In the case of small slepton mass-splittings, when 

Af2 (TL) = QLf#L) Af2 (TR) = 6Rf;(TR) 

we have 

r p-y L r. sin2 6 cos2 0 

Note that 

f2v) = 0 

f (1) 2' 
1 

=- 
10 

f2w = 0 

The peak of f’ is found at 

f;(TL) = TL 
df2(TL) 

dT 
L (4.11) 

6iR < 1 

6iL Ifi I2 + biR Ifz!(Td 
1 

x)(x2 - 8x - 17) - 6(6x + 1) Ins} 

(4.12) 

(4.13) 

f2Q ---) 0) 
1 - -ix(17 + 61nx) 

(4.15) 

fl(O.273) N 0.12407 (4.16) 

This has been plotted in Fig. 4.2b. The physical meaning of this is that such a 
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contribution will be maximal when 

Note that &!(TL) = -21~~(1-z)~(T~, 0) which is given in Table L.l. 

Electroweak Calculation 

As discussed in the first section, in a full supersymmetric electroweak (SGWS) 

calculation, within this model, the only gaugino which would contribute would 

be a pure E”, should it be a mass eigenstate. 

Thus the calculation would be identical with that of the purely SQED case 

except that the photino X (7) would be supplanted by a Bino. Higgsino contri- 

butions would enter into .MFde7 with a factor of m$ down even from the rnt 

coefficients which allowed us to ignore the Fl and Ff terms. In using a photino 

we have been, in effect, using only a piece of the full go contribution (i.e. if the 

7 - go were the correct mass eigenbasis we would have been neglecting the Zino 

terms). The Bino and photino couplings are similar except that we must make 

the following substitutions: 

ie sin 8; ie cos 6 

ie sin 8; ie cos 8 

. . 
4 -+/sine; -+oso for $L 

(4.17) 
+ ig’sinO;ig’cosO for iR 

where g ’ = ----&- is the U(l)y hypercharge coupling constant (YcL = -1; 

yeR = 2). Using t:s (4.9) becomes 

r IAf2 (TL) I2 
P7 = r0 16 

(4.18) 

This is exactly correct if go is indeed an eigenstate. If the photino and Zino are 

closer to the true eigenbases then we would use the SQED result and add in a 
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similar z” contribution obtainable by the following substitutions from the SQED 

result: 

ie sin 8; ie cos 8 + -ie cot 28, sin 8; -&e cot 28, cos 0 for & 

ie sin B; ie cos 0 4 ie tan 8, sin 8; ie tan 6, cos 8 for iR 
(4.19) 

which follows from the general fermion-fermion-Z* vertex 

--& [T3 - Qsin2 ew] 
W 

(4.20) 

where g = e/sin8, is the SU(2) coupling constant. Once again we have set the 

left and right mixing angles equal (to ‘0’). 

Pursuing this line of reasoning further the integral function terms may also 

be readily extended to include both photinos and Zinos: 

Af2P-i) Af2(Ti) + cot2 20, 
Afi(@‘) 

mi n; m2i, 

Afi(TR) --) AfdT;) + tan2 8 Afi(@‘) 

mi m; 
W 

m&l 

where 

(4.21) 

(4.22) 



The width then becomes 

r w7 = I?0 sin2 8 (306~ em: Af2(Ti) + Cot2 28,Af2(TL”“, a n 

AfdTi) + tan2 ewAf2(Tjo) 

mi m;o 

2 

(4.23) 
2 1 

It is clear how we would extend this to the instance of general neutralino mixing 

in the fashion used in chapter three and its associated appendices. 

4.4 COMPARISON WITH EXPERIMENT 

The radiative decay of the muon has been intensively searched for. Thus far 

no positive evidence has surfaced but improved limits are being reported on a 

regular basis. We will use the limit’So1 

and 

therefore 

and so 

q/J + er) 
I$ + euD) 

< 4.9 x 10-l’ 

r;2,, 5 2.2 x IO-~ s--l 

(4.24) 

(4.25) 

(4.26) 

ryIe7/I’0 s 3.6 x--l8 . (4.27) 

It must be commented that (4.24) represents a remarkably accurate limit and is 

the culmination of much dedicated work by many people. 
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From (4.9) and (4.18) we may immediately obtain 

sin’ 6 cos2 0 iAfdTL) I2 + 1 Ah(%) I”) < 3.6 x 10--~* (4.28) 

for SQED and 

lAf2 (TL) I2 
16 < 3.6 x 10--l* (4.29) 

for SGWS if the Bino were a mass eigenstate. Note that if 

that (SQED) 

lAfdTL,R) 1 < 2.4 x 10w7GeT2 
rni - 

Small Mass-Splitting Limit 

(4.30) 

If the differences in the mass of m; and m;- is small (and the same for the 

“right” sleptons), i.e. 
CL1 

1 

as in (4.11) then we have 

4 
r -L r. sin2 ecos2 0 5 Per - ( >[ 

6: 
mA lL 

F2 

6iR < 

IfzxTL) I 2+62 
lR 

[f8Td 
2 ‘I . 

Since fi’(O) = f;(m) = 0 we know that 

I? /J-e7 =oas (i) rnA -+ 00 

( > ii rnpoo 

. . . 
( > 222 m- + m- & la 
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From (4.16) f/ 5 &. Should it be that 

then, for SQED, 

6-2 r 5 Cro sin2 ecos2 8 
I.le7 32 

and since sin2 8 cos2 8 < $ 

be7 2 (4.32) 

When we compare with experiment using (4.27) we obtain a limit on how large 

the relative splitting may be. 

6i =S 1.9 x lO-‘m~ (4.33) 

where rnA is given in GeV. This should be compared with (4.30). Thus for 

9 - 1OOGeV the slepton splitting would be less than 2% while for rnA - 1GeV 

the slepton splitting would be less than 2 x 10D4%. These would occur near the 

maximal cross-section, when rnA M 2mp 

The condition that rnA M 2rni is a rather unnatural one. A popular scenario 

among designers of specific models is that the neutralino state which is principally 

photino-like tends to be on the light side. Indeed some authors tend to assume 

that rnA < ml almost axiomatically. Although we will not take this view it is, 

however, interesting to examine the results in this limit. If 

then 

TL,R --+ 00 
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and 

f;(TL,d 
3TL,R l 

(4.34) 

In this case (4.13) becomes 

r Per G r. sin2 8 ~05~ e (z)4(&+$) 

and so if, in addition, 6- eL N $ 
R 

then (SQED) 

and if 8 = n/4 (maximal mixing) 

6- 
3 5 7.2 x low7 GeVD2 . 

e” 

(4.35) 

(4.36) 

If the Bino is an eigenstate and rnB, << ml this would become (cos2 8, = 0.77) 

6- 
$2 7.6 x 10D7 GeVD2 . 

e” 
(4.37) 

In their classic papeP4’ Ellis and Nanopoulos made the first rough estimates 

for such processes. Working exclusively in the small mass-splitting regime (as 

discussed in chapter three) they found 

“e$rni < 0 ( 10m7) GeVv2 

assuming maximal mixing and that go is an eigenstate. At the time which that 

paper was written the best experimental limit was I’Fe7/I&T < 1.9 x 10-l'. 
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Using this value (4.37) would alter to 

6- 
--$ g 3 x low6 GeVa2 . 

e” 

which is a factor of thirty off of their naive estimate. Thus a careful computation 

reveals that we are only able to place somewhat weaker limits than one might 

have initially hoped. 

Large Mass-Splitting Limit 

In this limit rniL a 
>> rniL and rniR 

1 2 
>> rniR . Therefore 

1 

Af2(TL,R) + f#L,R) . 

Where f2(z) was given in (4.8). Note that 

1 
f2(5+ oo>+ -- . 3x 

(4.38) 

If we further consider the case where ml > rnp then (for ji* = go) from (4.18) 

r pe7 

For 8 = 61L = OR = 7r/4 and using cos2 0, = 0.77 and (4.27) we find 

(4.40) 



Further specializing to 

would result in 

my 2 1.1 TeV (4.41) 

since mp = 0.105659 GeV. 

This result is not “viable” since it was obtained by considering the limit 

miLP, miRz 2% ml = 1 TeV and we would like the supersymmetry-breaking scale 

to be s 0 (1 TeV) if it is to alleviate the gauge hierarchy problem in a ‘natural’ 

way. If the mass eigenstates are photinos and Zinos we should anticipate a similar 

result in this limit. If mg,, - mZ then rni w mA 2 0 , and since Tk = Ti and 

Tf” = Tjf” we would have from (4.18) 

1 ITper -+ r. sin2 0 cos2 6 . - “P ( 1 
4 

- 
g mzL 

{ (1 + cot2 2ew)2 + (1 + tan2 ew)2} . 
1 

The term in the curly brackets is about 3.7. If only the photino part were included 

it would have been 2.0 while the corresponding term for the Bino was about 1.8. 

In the photino-Zino case the limit in (4.41) would become 

rni 2 1.4 TeV . (4.42) 

Such a constraint would, of course, be weakened if the angular mixing were not 

maximal. 

Implication of ASP Results 

The ASP single photon search at SLAC has placed”” limits on m,- of about 

60 GeV. When combined with the results of MAC and other collaborations they 
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find”“’ (under a set of parameter assumptions) that 

rng 2 84 GeV . (4.43) 

The limit comes from considerations of the process 

whose leading contribution arises from the diagram in Fig. 4.3. Under the as- 

sumptions that rngL = m+ the photino is a mass eigenstate and is the only 

light neutral gaugino, and that rn? < rncL R, they quote 9 

< 0.06 pb . (4.44) 

The specific search is for e+e- + r+energy where the standard model calculation 

of e+e- ---) 7v~, for three light neutrino generations, has been accounted for. 

Thus the search for new light species of neutrinos (as well as Higgsinos, sneutrinos 

and so forth) compliments the photino search, since the existence of such states 

would only improve the limit in (4.43). 

The above analysis assumes that there is no intergenerational mixing. Per- 

mitting F- jZ mixing, with angle 8, changes (4.44) to (rnz, = rni,) 

a(e+e- + 773 wa3+$f-$$)2<0.06pb (4.45) 

so instead of 
1 1 

$ < (84 GeV)2 

which follows from (4.43) we have 

cos2 6 sin2 8 1 

T - rni2 < (84 GeV)2 l 

(4.46) 

Since a(~ + e7) goes as sin2 8 cos2 8, whereas a(ee + 777) has 6 dependence as 
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in (4.46), we see that, when these processes are compared, that the mixing angle 

(e = &- = 6~) enters non-trivially. 

First let us consider the case of large mass-splitting, where ml2 > mc;. 

Then (4.46) reduces to 

cos2 8 1 

m2- 
h 

< (84 GeV)2 

i.e. 

ml, > 84 GeV cos 8 (4.47) 

which is weaker that (4.43). For 8 = 7r/4 (maximal mixing) this limit becomes 

ml1 > 59 GeV . (4.48) 

We have found that q+e-+ZO-+P+e- and a,,,, go as 

sin2 8cos2 B(A.Fl(T’) + AF-J(T+)} 

rn2 2 
where To = A and T+ = ,%. 

m: mP 
A.&2 are some functions which decrease 

with large, increasing arguments. For ~1 + e7 the F2 term is absent. Thus as the 

limit from (4.47) b ecomes stronger (increasing cos 0) then mas[AFr] decreases. 

However sin2 6 cos2 8 peaks at 6 = 7r/4. Thus as 8 increases from 8 < 7r/4 to 

8 = 7r/4, max[AFr] d ecreases while sin2 0 cos2 8 increases. As 8 increases beyond 

8 = 7r/4 maz[AF] 1 increases while sin2 8 cos2 8 decreases. Thus there is always 

competition between these two effects (as far as obtaining experimental limits 

from e+e- + p+e- and p + ey are concerned). Note that at cos 8 = 0,l that 

both processes vanish. 
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Let us now consider the small mass-splitting case: 

2 2 m- -mm- 
& Ll 

zz m2, .6- << m2- 
e Ll.2 

. 

Then 

1 . 1 - 6i 
-=- 
rng mf, 

and therefore 

cos2 0 sin2 e cos2 8 - sin2 8 sin2 66- 

mf,-ml* 
e 

m3, + m2- l 

L1 

If we are near “maximal mixing” then 8 G 7r/4 and 

cos2 6 sin2 e 6- 
+ e 

mt,- x x 2mi, 

and (4.46) becomes 

9 1 

2m2, ' (84 GeV)2 

i.e. 

6- 
e 5 3 x 10B4 GeVD2 
m3, 

which is much weaker than the p + ey limit 

be” 
m2, 

27 x1o-7 GeVB2 

(4.49) 

(4.50) 

which we found in (4.36). 
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The weakness of the limit lies in the supposition that 8 = 7r/4. This is due to 

the particular form of (4.49). If we took 8 = 7r/3 then the limit in (4.36) would 

change to 

(4.51) 

from p+ ey while rnil > 42 GeV from e+e- --) 777. When 0 is not near 7r/4 

(4.46) and (4.49) imply that 

ml1 > 84 GeV cos 26 (4.52) 

as opposed to (4.47). Note that limits that ASP places on rn* from the analogous 

process e+e- + 7E are both weaker and subject to a greater number of model- 

dependent assumptions. 
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FIGURE CAPTIONS 

1. The vertex 7 + Fe. 

2. (a) The function f2(x) vs. x 

(b) The function j;(x) vs. x. 

3. Principle contribution to the process 

used by ASP to place limits on the selectron mass. 
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Summary 

We have seen that intergenerational mixing of sleptons may occur at exper- 

imentally acceptable rates. When compared with experiment we may begin to 

eliminate certain regions from an otherwise unconstrained parameter space. It is 

not anticipated that lepton family number violation, arising from this mechanism, 

will be seen at the SLC due to insufficient production rates. 

The low-energy processes of chapters two and four provide more substantial 

constraints. If the mass-splitting between the two sectors (left-right or species 

one-species two) is small then reasonably strong limits on the splitting may be 

obtained, depending upon the specifics involved. If a large mass-splitting is 

assumed then some quite respectable limits of supersymmetric masses become 

possible, but this is again highly dependent upon specifics. 

In conclusion we feel that the search for both family number non-conservation 

and evidence for the existence of supersymmetry is of great importance. Then 

interplay between these two areas can provide endless entertainment for both 

experimentalists and theorists alike. 
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APPENDIX A 

Two-Component Weyl Notation 

The two-component Weyl spinor formalism is a more fundamental representa- 

tion of spinorial states and algebra than that of Dirac. In most theories the Dirac 

notation is a convenient shorthand for summarizing the actions of the different 

chiral states and this explains its immense utility and popularity. In supersym- 

metric theories the states of different chirality are dealt with independently and 

two-component notation is the natural language to use. Greater familiarity with 

the manipulation of Dirac objects will prompt us to use them in the more in- 

volved computations but the irrecusable consequence will be the proliferation of 

conjugation and helicity projection operators. 

There are many excellent references 1’12’18 whose appendices summarize def- 

initions (which vary from one author to the next) and properties of the Weyl 

algebra. We will use notation similar to that of reference 12. The most appropri- 

ate representation of the gamma matrices to use when we work in four-component 

notation is not the Dirac representation but the chiral representation. Note that 

the chiral representation used here differs from that of Itzykson and Zuber.50 

A. 1 SPINORS 

We write the electron as: 

(A 1) . 

L.H. e+ R.H. e+ 
(A 2) . 

where the position of the indices in conventional. Barred spinors (6) and dotted 
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c 

indices denote 

barred spinors 

tions. 

right-handed (0, i) representations of the Lorentz Group. Un- 

($) and undotted l d’ in Ices denote left-handed (i ,0) representa- 

A .2 SIGMA AND GAMMA MATRICES 

10 0 0 

The metric used is” gp” = 

0 0 0 -1 

The gamma matrices, 75 have the structure 

0 
rp 

( > @ a& = 
( > g/L &a 0 

p = 0,1,2,3 r5 = (A 3) . 

where 

Definition: 

(Jw = z 2 [7p, rv] (4-component) 

fil Note that Wess and Bagger’ use 

(A 4 . 

(A 5) . 

py = 0100 
and a0 = - 
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. 
f$lLv = t 

2 I &JV - @“CT+] (2-component) 

@V = 1 
2 [ (+y - ~~“8~1 (20component) . 

oPV[4-component] = (Or q = ((*yy (@p:)&b) 

(A 9) . 

A special case is 

A. 3 INDEX GYMNASTICS 

Raise and lower indices with E as follows 

(Am) 

cap= (T1 i) c~P=(~ :) (inmatrixform) (A.12) 

In actuality BP = & (iip)“” is just the raised index version of (UP),& and no 

more. Once we have chosen the convention that (QP) has index structure (c+)~& 
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then (@) always refers to the operator of complementary index ordering. 

(A.14) 

( > 

&a 
= CT2 [c+qT a2 

since cap = ;(a2)@. However 

{cr2, (a’)T} = -2Ji2 [02, (o’)~] = 0 i = 1,2,3 

therefore cr2(&3)T = -01j3a2, o~(~Y~)~ = -1 and ~~(0~)~ = CTOO~ so we find 

that 

( 1 @Ll cb = [(aq&y p = 0 ( 1 oP ha p=O = 
- [c+%T~~~]~~ p = 1,2,3 - *P ha ( 1 p = 1,2,3 

where I = = co is the unit matrix. Since (#),b = (~,cT~)~~ and 

( > acl ha = (1,-&)&a from (A.15) then gPu = diag(l,-1,-l, -1) lowers the 

Lorentz index to give 

Note that when we raise one index and lower another 

(A.17) 



Notation: 

x*4 a f X4 (A.18) 

but 

= ~~(-~paQyy)~7 = -3bb6’7X7 (A.19) 

=- +X PP 

a 
lcIX a a =- *X a = Xa$a since x, II, are fermions = p,6. Thus (A.20) 

+x = x* l (A.21) 

A .4 CONJUGATION 

(&)+ = ($+)h = & (2 component spinors) 

(charge conjugation operator) 

111 LC$T in general 

Xa = eafl(X)+’ 

also note 

(x$)+ = qx = xi) . 
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A. 5 USEFUL RELATIONSHIPS. 

e 
A plethora of useful relationships may be found in Wess and Bagger “Super- 

symmetry and Supergravity” ’ . Some of these and others of interest are (here 

m,n=0,1,2,3): 

(OmBn + QnDm)aP = (am)ar$(an)” + (~“)a+(~“)” = 2gm6aP (A.22) 

(aman + &m)$ = 2gmn$ (A.23) 

tr ornan = (~~)~b(@~)fi~ = 2gmn (A.24) 

(A.25) 

(A.26) 

(A.27) 

iimOn@m = (@,)""(q,#p = -2(@p3 

OmanUrn = (*m)a&(p)qJ")p~ = 4(““)“” 

(TmZjnOn = -2(O”) ' aP 

DrnOnam = -2(C > -n &j3 

(A.28) 

(A.29) 

(A.30) 

(A.31) 

(A.32) 
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Xf F is anything which has no “,u” dependence and “P” means replace all C?‘S in 

F by Y’s, c$s by a/s, W’s by H’s, etc. then 

(A.39) 

FlapF2 = F3apF4 + &i?& = &ilp& 

(A.40) 
F&-T’2 = F3apF2 =+ &YF2 = &t?& . 

Using (A.39) and (A.40) we can generate many more identities like (A.28)- (A.38). 
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In addition there are identities in reference 1 such as 

aadw + ac@boa = 2{gUbaC + gbcoa - gUCcTb} . 

Fierz Rearrangement Formula: 

as required. 

(A.41) 

(A.42) 



/ 

APPENDIX B I I 

Two-Component QED 

c We use the two-component Weyl notation, as presented in Appendix A, to 

express the QED Lagrangian and Feynman rules. 

B. 1 DIRAC EQUATION 

w&A - m)ti(p, s) = 0 = F(P’ , s’)(rPyL + m’) [&component form] (B.l) 

Letting Qv = P1: - Pv 

K~%f5P~l?:(P,S) = wLY(P,s) 

Ik%Y~P:l~~(P,s) = TL(P, 4 + [(4Y&q&$(P, 6) 

[(~p)~aP&b-& s) = +$(p, s) 

I(~“)~~P#kY(P, s) = miq(p,s) + [(~yq&hY(p,s) 

P 2) . 

L(p’,S’)[(~V)hop~] = -m’$I;(p’,s’) 

3;-&(p’,s’)[(iFv)~apv] = -m’@(p’,s’) - &&(p’,s’)[(Bv)““qv] 

@(P’,s’)[(a”),~p:l = -m’&b(p’,s’) 

WP’, 4wLiPv] = -f+4uP’,s’) - $$(P’,s’)[(o”)*&qy] 



B.2 QED LAGRANGIAN 

In four-component form 

fQED= FPvFPu - m&b . (B 3) . 

Consider the two-component version of SKIN = i$ $$I first. 

Now it is s d4s1 which will be of interest in a path integral so we may 

integrate the second term by parts. We also anticommute the spinors in the first 

term to obtain (ignoring surface terms) 

Now we lower the spinor indices with cap and raise them on (O’)ba with cap to 

obtain 

which is the form often found in the literature.’ Similarly the remainder of the 

Lagrangian is 

The field operators of (B.5) should be thought of as annihilating the cor- 

responding fields. Therefore, since rl) --Q is a left-handed electron and $$ is a 

left-handed positron, -m$-a$$ destroys an (e-)L and an (e+)L, which is the 

same as destroying an (e-)L and creating an (e-)R, with strength “m”. 



B .3 CHIRALITY~HANGING OPERATORS 

The operators which change one chiral state to another are 

Particks: 

(@)fiaPp T$(P,S) = IUP s, 
m RHe- LHe- 

(w”laPp +-CAP,4 = $$(P,S) 
m LHe- RHe- 

Antiparticles: 

iLi(P,S) (vbaPv = llr!gP,S) 
RHe+ m LHe+ 

$$(P,S) (Qv)a&PV = $E(Pvs) 
LHe+ m RHe+ 

These relations follow directly from the Dirac equation. 

B .4 PROPAGATORS 

We can decompose the electron Dirac propagator into 

(0 IT$Ja(z)3p(Y)) O) = 

(I 
O T 

or 

i(++m)a8 = A(p) 

P2 - m2 

P 6) . 

(B 7) . 

(B 8) . 

with NP~=p2~m2 

77 



which we can interpret as 

ei ---) ei : \ Y 
?- 87 
57 73A66 

P 9) . 

To get et ---) ei we apply the helicity-changing operator (V)hP/m to get 

Ab) Cap)atiPp 
(zf “)hPpv 

m l 

But since (a l p)ab(E l p)‘p = ~‘6: = m2@ (on shell) then 

ei -+ ei : = mA(p)6aP \cI -a, k>. JIP + 
/ IQ / 

7-87 
5773A67 (B.lO) 

which we could have read off of (B.8) d irectly (8 indicates helicity flip). Similarly 

/ 
7-07 
5773A68 (B.11) 

7-87 
5773A69 (B.12) 

We may apply E’S to these which will raise and lower indices as desired using 

the rules of Appendix A.3. For example, applying Cap to (B.10) results in 

(0 ILb+plO) = -mNPkap l 

In general the helicity-preserving operators are proportional to c+pP while the 

helicity-changing operators are proportional to m. We do not consider multiple 
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flips since 

i’ L L 
‘“=~A(P) m pv= m 

( ) 
SW tip WpjPp 

= mA(p) f 6&b = mA(p)$ 
7- 8’: 
5773A70 L 

=\ 
?- 87 5773A71 

In some sense b can be thought of as the appropriately normalized 

sum of 

- + ,- + ,yYyY* + .a’ 

7-87 5773A73 

and -+g+ as the sum of 

7-87 5773A75 

(normalized so that “mn is the physical mass). 

Note that when external massive fermions are present in a process (i.e. the 

diagrams or Green’s functions have not been truncated) such fields may change 

helicity in the legs of the diagram. 

B .5 PROJECTION OPERATORS 

The analogue of the Dirac projection operators for positive and negative 
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energy states 

(B.13) 

c 4P, s)q(p, s) = 
f8 

are: 

In the case where spin is not summed over we project out both helicity and 

energy states. In Dirac notation we have 

where sp = (0,s) in the rest frame. Let us consider the instance of a particle 

moving along the +2(3)-&s very slowly (7 + 0) with spin in the +2 direction 

for right-handed particles. Then 

SE = (o,o,o, 1) sg = (o,o, 0, -1) . 
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For SE = (O,O,O, 1) we find 

++b(p,~)&p,s) = & [(@)@p, + m(a3)‘P] 

L(P, +g (P, s) = & Im6,p - (4a&Pp(~3)“Ip] 

(B.14) 

remembering that a3 = --cr3. 

For photons 

c cp(W) G&X) = -gpu . 
A 

B .6 SIMPLE VERTICES 

(B.15) 

Photon emission does not flip helicity (since the current is transverse). Thus 

the simple (truncated) vertices appear as 
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\ \ / / 

Or ec ei 

6-87 5773A19 

or 
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APPENDIX C 

Calculation of Anomalous Magnetic Moment I: 

Four-Component Spinors. 

The standard calculation of the anomalous magnetic moment of the electron 

in four-component spinor notation is presented here in detail. The rationale being 

that this is the prototype for all processes considered in this paper. It provides a 

direct comparison with the two-component version which follows. We follow the 

approach of Ref. 2 but use the metric and spinor representations of Appendix A. 

We examine the vertex correction 

-iey$ -+ -iel?$(p,p’) = -ie[7p + Ap(P, P’)l~p (c 1) . 

as illustrated in figure 1 and whose lowest order contribution is given by the 

diagram in figure 2. Since we will only be interested in the Ap piece we will not 

distinguish between P and Ap but simply refer to the first order correction as 

I’p(p, p’). To guard against, a priori, infrared divergence problems we will let the 

mass of the photon be p, which we shall let go to zero at the end. We see that 

-ieI+$(p,p’) = (-ie)3 / & 
U 

-gp~~~~g~ ifrms) (7”)aT 

F 2) . 

x $I- 1 i 
i 

-m+ic (7T + p _ m + ic (7p)tlp 
1 

l 

We will do away with the gauge terms in the photon by recognizing that such 
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terms vanish in Feynman gauge when p + 0. Hence 

ryP> P’)ap = (-ieY J & { (k2--p:+J 

cc 3) . 

%‘($I- I+ m) i(lB- k+m> 

(#I- k12 -m2+ic ” (p - k)2 - m2 + ic ‘Cl 

We will evaluate this on-shell where $ =f’ = m and then let q2 -+ 0, i.e. p’ + p. 

We ignore the other graphs which occur at this order as they only contribute 

to the self-energy renormalizations. In order to regulate the integral we employ 

the traditional Pauli-Villars So subtraction scheme. This introduces a “massive 

photon” of mass A --) 00 which utilizes an incorrect metric. The “incorrect 

metric” in this case is the negative of the one given in section A.2. The result is 

that the heavy photon propagator always appears with sign opposite to that of the 

light (II --) 0) propagator. Thus the leading divergences cancel. Although such a 

propagator is not physically meaningful, as we take A ---) oo such contributions 

vanish. Such a scheme is not overtly gauge invariant during the intermediate steps 

of the calculations but, of course, gauge invariance must be restored once the limit 

is taken. Consequently we may represent the combined photon propagators by 

k2 _ p2 - k2 _ A2 = - (k2 - t)2 
Pa 

1 1 

/ 

dt 
F 4 . 

resulting in 
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Np = 7W$'- P + m)]7'[i(+ jt + m)]yv 
cc 5) . 

D = (k2 - t2)2([p’ - k12 - m2)([p - k12 - m2] . 

Now using the standard gamma matrix contraction identities of the form 7"[* l l ]ry 

which can be found in the appendices of Bjorken and Dre1134 we find that 

N’L = i"{ - 2(#- ic)rp($'- P) - 2m2yp + 2m[(35'- Ic)rP + rC"($'+ P) 

+ (+- Ic)rP + 7'l(#- Ic)l) 

= 2{($- b97"(#- Ic) + m271c - m[ylc(tb'+ $- 2 K) + (f'+ I - 2 Ic)rP]} 

where we have used {75rv} = 2gp” and therefore 

P2 = m2 on-shell we have (p + k)2 - m2 = k2 - 2~. k 

(C.6) 
2PP =fic" + 7p $ Since 

and so 

Using Feynman’s trick 

1 1-Z 
1 

- = 6 dx dy 
s / 

l-x-y 
a2bc [a + (b - a)x + (c - a)y]4 

0 0 

from (H.5) to give 

cc 8) . 
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Now use (H.7) to evaluate this realizing that 

P + PX + P’Y9 S = -t + tx + ty = -t(1- 2 - y) 

to yield 

s $i- $=6jdx izdy rdt Q6n2~-t(l-~~~)-px+p’y]2 (‘=l”) 
0 0 P2 

with 

AJp = 2 pI^IP If’ - 2[$7P($x+ 4d’Y) + (l+x+ J’Y)7P $‘I 

- 2m2+ + [-t(1 - x - Y) - ($x+ jlY)217v7P7v 
(c.11) 

- m[+(pl’+ $ - 2 $x - 2 $‘y) + (j’+ ~4 - 2 $x - 2 $‘~)7~] 

+ 2($x+ 4l’Y)rc”($x+ #Y> 

and using 7”7p7v = -27p we may factor out a “2”. Since we are really examining 

fqPYYP,P’)U(P) we may use the Dirac equation 

a(p’)(>’ - m) = (7 - m)u(p) = 0 with p’ = p + q 
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on MY Further, from (H.17 b) (px + p’~)~ = m2(x + Y)~ - q2xy so that 

Mp=2 (m- 
{ 4rpm++ 4 + (b- & + mY)7+Jx + [m+ fly> 

- ([(m- f/)x + my]7p(m+ 4) + (m- 47+x + (m+ 4Yl) 

- m[+([m+ jfj + m - 2mx - 2[m+ dy) 

+ (m + [m - q] - 2[m- f& - 2my)Y] 

+ [t(1- 2 - y) + (m2[x + y12 - Q2sY)]7’ - m27’ 
> 

(c.13) 

= 2 +qt(1 - x 
{ 

- Y) + m2(x + Y)~ - q2xy + m2 - 2m2(X + Y> 

- 4m2(1 - x - y) + m2(x + Y)~ - m2] 

+rp d[m--m(x+y)-my-m++my+m(x+y)y] 

+[-m+mx+m(x+y)+m-2mx-m(x+y)x] d 

+ 47p d[-l-x-y-xy] 0 > 

We have exercised our gauge freedom when we chose to calculate in the Feynman 

gauge. This is one of the Rt (or Lorentz) gauges which are couariant, i.e. satisfy 

Q”Au(q2) = 0 (in this case c = 1). In a physical process we have terms like I’PA, 

and so all terms proportional to qp in Mp will vanish. We explicitly impose this 

gauge condition: qpA,(q) = 0. Now 

{rP,7”) = W” 

thus 

(75 f/} = {7p,7uqu} = wT7u = 28 
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which vanishes in MY Therefore 

rv=- d7p 

and the anti-commutation term does not contribute. Also 

$7’I ff= -rp g g = -7Q2. 

Letting 

A = 2(t(l- x - y) + 2m2([x + y12 - 2[1 - x - y] - [x + y]) 
\ 

- q2xy - q2(1 -WY)) 

(C.13) becomes 

Mp = rp{A} 

= rCL{A} + 2m{ d7p[-x2 - xy + y] - 

but 

+2m 
{ [ 

X2 
$7p -2- 

-73 -; 
[ 

xy+y y2 +; 

(C.14) 

--myp d[(x+y) -Y(XfY) -Y]} 

x2 / x2 
--+I-- 

Y 
-xy+;+y 

2 ‘\ 2 

X2 
!$ -; 

( 

- 

2 2 

d7 P ( X2 X2 -m-- 
2 

;, ", +; -7C"$ -$-f+y+f 
> ( > 

=o 
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by (C.14) thus 

Mp = 7L”{A} + “’ 2” ’ [2m(x + y - x2 - y2 - 22y)] 

= rCC{A} + [7u9~p1qu [2m(x + y)(l - x - y)] 

with 

1 1-Z 

I”(P, P’) = 6 dx 
J / 
0 0 

Now 

*PV = f 2 [7p,7u] 

and 
. 

ryp, P’) = 7% (!12) + k ~puquFz(q2) (C.15) 

with the anomalous magnetic moment 

P-2 a,=F2(q2+0) a-- 
2 l 

Therefore 

(C.16) 



where CY E e2/4n. Performing the t-integration 

ia, = 
. am2 

-22 
(5 + y)(l - x - y)2 

7r (1 --X-Y) 
0 0 

1 1 1 
’ A2(l-~-y)+rn~(x-y)~ -j~~(l-x-y)+m~(x--y)~ > 

and taking A --$ oo 

1 1-X 

ia, = i E dx 
J s 

dy (x+Y)(1-x-Y) 
7r (p2/m2)(1 - x - y) + (5 - Y)~ l 

0 0 

Let z=x+y 
1 1 

of z(1 - 
a, 

2) 
= - dx dz 

7r 
J / 

(p2/m2)(1 - 2) + z2 
0 x 

and we see that this remains finite where p2 = mass of photon + 0. Doing this 

1 1 

a ae =- 
7T / J 

dx dz+ 

0 2 

1 
CY 

=- 
J 

dx 
7r 

0 

nz- [e 4 

1 

a! dx[-has-1+x] =- 
7r J 

0 

a! [ e x2 l =- -x?2x~-x+- 7r II 2 0 
a =- 

27r 
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Thus we have found 

a 
ae =- 

27r 

which is the Schwinger result. 

(c.17) 
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FIGURE CAPTIONS 

1. Vertex correction 

-ie7$ + -ier$(p,p’) = --ie[ycc + Acc(P, P’Nap 

2. Lowest order contribution to the vertex correction 
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P 

6-87 

ie 

Fig. C.1 

t P=P’-P 

P 
I 

5773A21 

Fig. C.2 
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APPENDIX D 

Calculation of Anomalous Magnetic Moment II: 

Two-Component Spinors. 

We repeat the calculation performed in Appendix C but employ two-compon- 

ent Weyl spinors in order to illustrate their use. We will specifically examine the 

vertex correction to 

e&)(P+) +7(Q = P’ -4 --+ eicL,(p’,s’) . P 1) . 

Certain comments should be made. The processes ei +7 + eE and ei + 7 + ei 

are expected to provide equivalently to the anomalous moment a. The processes 

eL + eL and eR + i?R contribute solely to the vertex (wavefunction) renormal- 

ization. The process 7 + e- L(RJeL+(R) is equivalent to 7 + e- 
L(R) + G(L)- Consider 

ei (P, 4 + 7(Q) + ei(p’,s’) as illustrated in Fig. D.1. 

We would naively consider these to be the sole contributions. To see that this 

does not lead to the correct result we proceed to evaluate them. Remembering 

from Eqn. (C.1) that the vertex is given by JV = -ie$+I%,L we find: 

Diagram I: 

%q (P’, s’)qP, Pl)+iL(P~ 4 

= ie2 
/ 

d4k 1 
7 mA(p- ~)A(P’ - k) 2 
(2 > 
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where we have introduced the notation 

A(p) = i/p2 - m2 + ie 

we find that 

= mK#7pA(p’ - k)~b~“]L 

= 4m(p’ - k)bJ$$-a 

from (A.32) (D-3) 

Diagram II: 

Tq (P’, S’)J$(P, P’)+tLx(P, 6) 

= ie2 d4k 1 
---p mfqp- k)fqP’ - k) p 
(2 1 

x ~~(i7P),~6tB(~P)BP(gX)p6(p - k)A(z?‘)‘a&ag~u 
(D*4) 

= 4m(p - k)%,@La 

and, as in Eqn. (CJ), 

D = k2(k2 - 2~. k)(k2 - 2p’ 9 k) . (D-6) 
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The total is given by 

with 

Np = N/ + N: = 4m$$(p’,s’)[(p’- k)IL + (p - k)P]&a(p,s). 

As in Appendix C (C.4) we could use a Pauli-Villars regulator (A + 00) atid let 

the photon acquire a small mass (p -+ 0) so that 

1 
s 

dt 
p+- dt (k2 - t2)2 

P2 

and 

Then using (C.8) 

(Jw 

J d4k 1 ; k, ; k,k” 
. 

(27r)4 (k2 - 2k ‘p + s - i+ = 96n2(:- p2)2 
[l ; Pp ; PpP” + $ (s - P2VpUl 

(D.10) 

from (H.7) with s = -t(l - x - y) and p = px + p’y. We have seen in Appendix 

C that this was unnecessary since, as we had argued from general principles, the 

helicity-changing part is finite. Thus we use instead 

1 l-2 
1 1 -=2 dx 

abc s s dy [a + (6 - a)x + (c - a)y13 
0 0 

and 

/ 

d4k 1 ; k, i[l ; P/J] 
(27r)4 (k2 -2k.p+s-ie)3 = 32n2(s-p2) 

(D.11) 

(D.12) 
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from (H.6). Using (D.11) and (D.6) yields 

1 1-Z 
1 

-=2 dx 
J s 

1 

D dy [Cc2 - 2p l kx - 2p’ l ky13 l 

0 0 

(D.13) 

Note, however, that we can equally well interchange “b” and “cn in (D.11) 

(as outlined in (H.20)) in which case (D.13) would have become 

1 l-2 
1 

/ J 
dx 

1 
-=2 
D dy [k2 - 2p’ l kx - 2p l kyl3 ’ 

(D.14) 

0 0 

We see that the net result is to interchange x and y in the integrand. Using 

the notation of (D.12) we see, in the case of (D.l3), that p + px + p’y while for 

(D.14) p + py + p’x. In both cases s = 0. 

Using (D.12) and (D.7) [with (D.13) being used for l/D] yields 

1 l-2 

$+qP,P’)h = 2ie2 dx 
/ J 
0 0 

(D.15) 

and, again, from (H.17 b) (px + p’~)~ = m2(x + y)2 - g2xy where Q = P’ - P- 

Mp = 4m$+(p’) [pp(l - 2x) + P”(l- 2Y)lh(P) (D.16) 

thus 

lDzdy 4m$+[pP(l - 2x) + p'P(l - 2Y)]+-- 
m2(x+y)2 -q2xy . 

. 

0 0 
(D.17) 

Now if we had used (D.14) instead of (D.13) (i.e. let “6 e, c”) then we must 

97 



interchange x and y in the integrand to get 

I 1-Z 
.2 

++rp(P,P’)+- ---) 1671’2 dx 
/ / 

dy 477&+[#(1- 2Y) + py1 - zz)]lL 
m2(x+y)2-q2xy l 

0 0 

(D.18) 

Note that the denominator is the same. We may now average these two expres- 

sions to obtain 

1 l-x 
++rqP,P’)llr- = !-J$ / dx / do 

++(P + P’yql - 5 - YM- 
m2(x+y)2 -q2xy l 

(D.19) 

0 0 

This procedure of switching “6” and “8 in expressions like (D.11) and aver- 

aging the results after integrating out the s d4k we shall refer to (see (H.20)) as 

the “6 * c trick”. It is quite general and can be also used in the regulated version 

presented in Appendix C. The result is generally a simple function of z + y and 

x - y (subtleties arise off-shell). 

The expression in (D .19) represents one half of the anomaly (the eL + eR 

part). We may similarly compute the other (eR 3 eL) part. We find that it is 

the same as (D.19) except that 

$q(P’)ti-a(P) -+ iLi(P’>G$(P> l 
(D.20) 

This sum can be represented by 
. 

1 1-Z 
Mb78 

m2(x + y)2 - q2xy 
0 0 

(D.21) 

where 

M&,=(1-x- Y)[$J+(P’)b-(P) + ;I;-(P’)l+(P)l(P + P’)c1 l 
(D.22) 

Now we may employ the generalized Gordon identity of Appendix H (Eqn. H.43) 
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which states 

[++(P’)+-(P) +iuP’~~+b)lb+P’)p = 
, 

- q++ (P’WU wb- (P) + F - (P’)B pvqu++ (P)l l 
(D.23) 

+ 2m[?C1-(P’)@v+(P) + $+(P’)a’lv-(P)] 

Using this in (D.22) we may ignore the final term as it contributes solely to the 

vertex renormalization. Thus (D.22) may be written as 

TLc(P, P’) = qgf [~+(p’)~p”qu~I(P) + T-(P’)~p”qv~-(P)] I (D.24) 

where 
1 l-2 

/ / 

(1 -X--Y) 
I(q2) = dx dy m2(x+y)2 - q2xy l 

0 0 

From (AA) we see that this can be written in four-component Dirac form as 

G (PWP, P’)*(P) = -imaI(q2) 5 (p’)aP”q,$(p) , 
7r 

(D.25) 

where we have used cy: = e2/47r, or simply 

ryP3 P’) = 
--imaI(q2) 

Yqy . (D.26) ~ 

From (C.15) this implies 

Fz(q2) = - 
2m2d(q2) 

n 

and from (C.16) 

2m2aI(0) 
a, = - 

7r l 
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From (D.24) 

1 1-X 

I(0) = dx dy 
J / 

(1 -X--Y) 
m2(x + Y)~ 

0 0 

using (H.10 c) 

jdz i;y = f ldzjdi 

0 0 0 -2 

therefore 
1 2 1 

I(0) = -$ 
/ J 

dz dZ q = -$ / dz 1-z . 
z 

(D.29) 

(D.30) 
0 0 0 

Hence 

a.=-$]dz(l-i) 

0 

(D.31) 

which is divergent! 

The reason that the naive contributions do not reproduce the Schwinger 

result is that the Fl and F2 parts of I’ll are intimately tied together for massive 

spinors. This is manifestIy evident in the Gordon decomposition (Appendix H). 

In (D.23) we say that we generated a U yp n type term which is indicative of 

a helicity-preserving vertex. This is in spite of the fact that our diagrammatic 

representations in Fig. D.l contained explicit helicity flips (indicated by 8). 

Similarly U ap” n type terms may be generated from the diagrams connecting 

eL to eL and eR to eR. Carefully following the derivation in Appendix C we see 

that this is indeed the case. There we start and end with II) and tl] which contain 

both left and right-handed parts. To take this over to the two-component case 

we would have to add the four amplitudes for eL or R + 7 + eL or R together. 
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This is somehow distasteful. We would like to be able to start with a specified 

state, say eL, and end with eR without references to additional processes. One 

, can obscure this disagreeable situation by permitting the external legs to be 

chirality-changing. This is not an option for truncated diagrams but we really 

are dealing with $IY$, not P, since we use the Dirac equation and Gordon 

identities. 

Adopting this approach we have six additional diagrams which should be 

added to diagrams I and II in Fig. D.l. These are found in Fig. D.2. 

Following the same procedure as before but regulating the integral as in 

Appendix C (see (C.4)) we find 

A= 
ML" = &$+rp(p,p')$- = -ie3 

/,z""f / 
NP 

7 dt 5 
9 

(D.32) 

with ‘9” as in (D.6) and 

NC” = tit-(P) 
a*p’ 5 ‘p 
m ~‘rnd% . (p - k)a, m 

+ 
amp’ 
m ~?a- (p’ - k)m?a, m + m 27”P 0-P’ bum2api7r 

U 

+ 
0*p’ 
m s”a l (p’ - k)Bcla . (p - k)S, + a’~ l (p’ - k)maQ,, 

‘i? l p 
+ 0~5 . (p’ - k)d% l (p - k)a,, m + o”m27jpa, m 

(D.33) 
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We make use of the relations of Section (A.5) to obtain 

+ (ZF’la l (p’ - k) + 8 l (p’ + k)#)]s . p - 2m[a l p’~9‘ + a% l p] 

2 -- 
m [a n p’v 9 (p - k)a’% l (p’ - k) + CT l (p - k)Va l (p’ - k)7j’ l ‘p] 

+ 2m[a l (p’ - k)ap - C&F 9 (p’ - k) 

+ o l (p - k)@ + 0%~ l (p’ - k)] }+-(PI) 
(D.34) 

Performing the integrals as in (C.9) (but ignoring the &term as it contributes 

solely to renormalization) and using (C.8) 

where 

s-p& -[t(1 - x - Y) + (PX + P’Y)12 

(D.35) 

(~.36) 

and IW is an abreviation for the expression 

102 



I IMP = $+(p’) p’ [vc7 ’ (p + p’ - 2px - 2p’y) 

+ 5 l (p + p’ - 2px - 2p’y)c+ l p 

2 - 2m[a l pw + a% l p] - ; [a*p’zvpa% l p’+a=piva*p’Ti l p] 

- 2?7+ l p’s l (px + p’y)& . (px + p’y) + a% l (px + p’y) 

+ CT l (px + p’Y)eg l (PX + P’Y)V l P] . 

+2m[a-(p+p’-2ps - 2py)z+ + 0% l (p + p’ - 2px - 2p’y)] &(p) 

(D.37) 

Now use Eqn. (B.2): 

and 

6(P’) = dJ+(p’)(a l P’lf-4 

along with q = p’ - p to find 
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i’ ILIp=& 2m[@b(p+p’-22p~-22p’~) 

+z ‘(p+p’-2px-2p’y)oP] 
1 

g+(p) 

- ~-(p’)[2m2~p]+-(P) - Icl+(P’>[~p2m21T+(p) 

- 2 
{ 

T-(P’)T l Pap [Ti l CPfqP) + ml+(P)] 

+ [m?- (P’) - 0 l d(P’)] z+k l PV+(P’)} 

+ 2{C(P’)iz ’ (PX + P’Y)g+ l d-(P) + m$+(p)] 

+ G-($)5 l (p - px - P’Y)OP [YS l d(P) + m(x + YM+(P)] } 

+ { [m(x + Y)&(P) - d+(P)0 l qpa l (P’ - PX - P’Y)$+(P) 

+ [m?-(p) - @+(Pb l c7] z+k l (PX + P’Y)rl+(P)} 

+ 2m{2(1- =I: - y)m&-(p’)5p$-(p) - (1 - 2x)qb+(p)a. q@+-(p)} 

+ 2m$+(p’)o~{2m(l- 2 - Y)?+(P) + iJ l 41 - 2YW0) 

(D.38) 

Collecting terms as using Eqn. (B.2) again, i.e. $- (p) = (0 . p/m) q+(p) and 

G+(P’) = iqP’) (a l Plf-49 we obtain (after doing some algebra): 
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Mp = 2m&(p’){ [-y2 - xy + x]zPo l q - [-x2 + xy + y]a . qaP 
> 

;i;+(p) 

+ 2m2&(p’)(aP[-(1 - x - Y)~ + (1 -2x - 2y)]}$(p) 

+ 2m2++(P’) { 441 - =I: - Y>2 + (1 - 2x - 2Y)l}T+(P) 

+ 2mti+(P’) { (-XY - y2+x)oP~~q+(x2+xy-y)~*qa” $-(p) 
> 

(D.39) 

We now once again use the “b e+ c” trick of Eqn. (D.19). By switching what we 

call “b” and “c” we, in essence, switch x t+ y in the integrand of (C.8) Doing this 

we obtain (D.39) but with x ts y. Averaging (D.39) with this new equation we 

find that 

MP = 2m&(p’) { f [(x + y) - (x + Y)~] [a% l q - 8 l qoP]}$+(p) 

+ 2m2[(1 - x - y) - (1 - 2 - Y)~ - (X + y)] 

x @-(P’)llr-(P) + Icl+(Pbp~+(P)~ 

+ 2mgb+(p’){ + [(x + y)2 + (5 + Y)]}{ -d% l Q + 0 l @‘}?bCP) 

=m(x+y)(l-x - Y){$-(P’)[~p~ l Q -- w+qiJ+(P) 

+ $+(p’>[aPif l Q - 0 l c?~Qli-(PI} 

- 2m2(x + Y)2{1-(P’)~pd-(P) + @+(P’)~V+(P)} 

(D.40) 

and the final term is proportional to the rp term (i.e. vertex renormalization). 
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Thus considering only the first term and noting that 

‘3;a~“qY1C) (Dirac) = ++qycrPU$- + iJ-q@“g+ 

(from (A.8)) 

(D.41) 

i 
=- 

2 
q5+[d% l q - 0. qa’“]$J- + &(p’)[Pa l q - 7f l q@]$J-} (D.42) 

From (D.42) the first term in (D.40) is 

= m(x + y)(l - X - Y> (i/2) IL &elv1cI 

(using Dirac spinor notation for short). From (D.32) 

(D.43) 

Since 

r’t(p,p’) = yPFl(q2) + & aP”qvFz(q2) (D.44) 

with 
-2 

ha e E F2(q2 40) = + (D.45) 
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we have 

and so 

1 2 
m2a =- (1 - z)z 

7r t(1- 2) + m2z2 
0 1 

1 2 

= -* 
7r 

0 1 

a! =-- 
7-r 

dx[kx-x+1] 

CY 
=- 

27r l 

h2+x3 

p2-+0 

(D-46) 

(D-47) 

Thus we obtain the correct result again using this more involved method. 
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FIGURE CAPTIONS 

1. Naive contributions to eL + 7 + eR. 

c Here A(p) E i/p2 - m2 + ic. 

2. Additional Diagrams Contributing to eL + 7 + eR. 
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Fig. D.1 
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Fig. D.2 

110 



APPENDIX E 

Supersymmetric QED Contribution to Anomalous Moment 

We wish to consider Aae, the additional contribution to the anomalous mag- 

netic moment of the electron, arising from a minimal supersymmetric extension 

of QED. 

E. 1 LAGRANGIAN FOR SUPERSYMMETRIC QED (SQED) 

We use the following notation” for the superfields and their components: 

Superfield Ordinary Matter 

-eT 7 

iJi ‘Lie 

iti (e,‘), = (q&j* 

Superpartners 

x 

‘Li 

(4 1 y * 

(E 1) . 

Note that when we consider a full electroweak theory that L; will will be pro- 

moted to a weak doublet which will include neutrinos and their supersymmetric 

counterparts. The generation index “i” will now be dropped as we proceed to 

specialize to a single generation. 

The superfield strengths are 

-- 
wa = -a D DDac 

(E 2) . 
W& = -i DD&p 
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and 

-- 
\, &QED = $ (WWS(e”) + W W6(02)) 

(E 3) . 
+ zeweVL + xeevR + me((RL6(B2) +Zzs(e2)) 

I 

where 6(e) = 8 and 6(8) = 8 due to the rules of Grassman integration (see 

Appendix I for details of this construction). Expanding this out in component 

fields and eliminating the auxiliary fields F* and D via their equations of motion 

yields (for electrons only) 

- f e2A,Ap[FRi?R* + Z’L*ZL] - f e2[&*ZR - ZL*ZL]~ 

(E 4 . 

In unbroken SQED rngL = rnzR = me and rnA f my = 0. Here explicit breaking 

terms have been added to give FL, FR and 7 arbitrary masses. Presumably such 
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terms would arise in a realistic model as effective residues of some unspecified 

higher-energy theory. Note that ?L and & are independent fields. 

E.2 FEYNMAN RULES 

;) There are four types of vertices in this theory. Since QED is left-right blind 

&, ZL and Z’R are subject to standard QED and scalar electrodynamics pho- 

tonic coupling vertices. There are also Yukawa vertices e&y and eRZ$y 

of coupling strength fie. 

G) ?,l+ and y have standard (Weyl) 

particle) and ZL,R have standard 

fermionic propagators (7 is a Majorana 

scalar propagators. 

G) In considering Au,, there are no diagrams with a chirality change in the 

photino propagator since that would require ZL - & mixing in L. Thus we 

find, when looking for eL + 7 --) eR, that only the two diagrams of Fig. 1 

contribute. 

E.3 COMPUTATION OF DIAGRAM I 

= (-ie)32(i3) / & 

x ~~(P’)[(~“)pdrP:/~](~~)~~~~*-~(P)(P + P’ - 2qp 

(k 2 - mi)[(p - k)2 - miL] [(p’ - k)2 - m;,] 

(E 5) . 

We shall work on shell so that p2 = pf2 = rng G m2. 
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Define 

from Eqn. (B.6) 

-2 mL Gm2-m?. eL+m2, 
-2 
“R 

E m2 - m2 
& -4 

(E 6) . 

$)P(p’,s’) (aWb~p: = $ *(pI,sl) + m -cY 

then (E.5) becomes 

q!~+l?$L = 2ie2 
/ 

d4k Np 
p+iT 

N” = ~-~(p’)(~“)““kylc’-cx(p)(p + p’ - 2k)fi 

D = (k2 - mx)2(k2 - 2~. k + m2 - mi,)(k2 - 2~’ l k + m2 - miL) 

(E 7) . 

We now use Eqn. (D.11) to find 

1 1-Z 
1 

-=2 dx 
D / / 

dY [“” - 2k l (px + p’y) A- E&X + y) - rn:Iw3 . 

0 0 

We next use Eqn. (D.12) or (H.6) to find 

1 1-Z 

$J+I’~$L = Se2 l 2 dx 
J J 

dy 

0 0 

X 
iiL($")""[px + p'y]**-a(p t p' - qpa: t p’Y]y 

32~~(Fi$ + y] - m: - [px +p’~]~) 

where we have ignored the k,k, term which contributes solely to the helicity- 

preserving piece of the amplitude (Le. V). Since (p~+p’y)~ = m2(x+ Y)~ - q2xy 
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as before 

x ~-&(2yqp + P’Y].L[P(l - 25) + P’(1 - 2Y)]c” 
F$(x + y) - mi(x + Y)~ - q2xy 

. 

We now perform the “b +-+ C” averaging trick as in (D.19) The result being 

that x * y in the integrand of (E.8), and therefore (E.9), and then we average 

the two expressions. Before we do this it is prudent to apply the Dirac equations 

of (B.2). 

L(P’)(~Y)ha[Px + P’YlIAdP) 

(E.lO) 

when we now perform the x w y average we find 

e2 l ++r;plr_ = -g-p dx 
J s 

l-1, 
MP 

-m2(x + y)2 +Rii;(x + y) - rni - q2xy 
(E.ll) 

0 0 

MP = m(x + y)(l - x - y)(p +p’>“&&$ 

+ Y{P(l--x)+P’(l--2y)) [ 

+ x (PC1 - 2y) + p’(1 - 2x)}];L-&(~V)~%&CI 

We are interested in the helicity-changing part of this (the F-h?: term) as 
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q2 + 0 (on shell). This is 

(E.12) 

where 
1 l-x 

IL E dx dy 
J s 

(x+Y)(l-X-Y) 

0 0 -(x+y)2+3 (x+y)-3 

(E.13) 
1 1 

= J / dx dx 
z(1 - 2) 

0 X -22 + 
& mi 
m2 -&icz 

where we have let x = x + y. 

Now in (E.lO) we applied the Dirac operator to the right. We could equally 

well have had it operator to the left. Using Eqn. (B.2) again we would have 

obtained 

iuP’) vp[PX + P’YlvYLY(P) 

(E.14) 

(We use +m since we are considering electrons and not positrons.) Note that in 

(E.lO) we have related the eL -+ eR term to the corresponding eR -+ eL terms 

whereas (E.14) expresses eL + eR in terms of eL --) eR. Using (E.14) instead of 

(E.lO) would change (E.12) to 

Averaging (E.12) and (E.15) and using cy = e2/4x 

(E.15) 

(E.16) 
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From Appendix H or Eqn. (D.23) we employ the Gordon decomposition produc- 

ing 

++rrLR’b- = --FL- IL 
47rm 

- ~[~+~puqY~- + 3 -ivqy++] 

+ 2m[$ -iTq+ + rL+o’lcI-1) 
(E.17) 

We are only interested in the c+” and bpV terms. Using (A.8) these terms can 

be combined to yield the Dirac spinor formulation: 

From (C.15) and (C.16) 

AaiL) cY IL =- 
27T 

which is the Z’L contribution to a,. 

E .4 COMPUTATION OF DIAGRAM II AND TOTAL CONTRIBUTION 

We ingeminate the steps of each in Section E.3 beginning with 

-ie*+qp, P’)G- = (-ie)22(i3) J $ 

x ~~(~“)~~k~[(~w)“IPpw/m]~-~(p + pf - 2k)p 

[k 2 - mi] [(P - k)2 - m$J [(p’ - k)2 - rnZJ 

and conclude with 

AtZtR) a IR =- 
27r 

where 
1 1 

IR = 
z(1 - 2) 

0 z -z2 + 
EC?& m? 
m2 2-z 

(E.19) 

(E.20) 

(E.21) 

(E.22) 

and mR is given by (E.6). The total contribution to Aae, the incremental super- 



symmetric contribution to the anomalous moment of the electron a,, is 

Au, = AaiL) + AatR) 

= ; (IL + IR) 
(E.23) 

1 1 

IL,R = J / dx dz 
z(1 - 2) 

0 2 -2 + 
m2+mi-m% 

eL,R mf 
0 z-7 

E .5 SPECIFIC CASES 

a) mi, rni < m2. This case is excluded experimentally. In this limit 

IL,R 
1 =-- 
2 

Aa,= -g . 

This is of the same magnitude as the QED contribution but of the opposite 

sign. 

b) rni x rni >> m. Rather unlikely in most models but not excluded. 

1 1 

IL,R = 
s s 

m2 
dx dz-Zz(z-l)=-Az 

0 mA 2 
12 rn: 

m2 Aa, = --E- - 
24x mf 

c) rnt >> rni 222 m 2. The standardly presumed scenario. 

1 1 

IL,R = 

Aa, = -% {-!$-+$} =Aakrn’=‘) 

(E.24) 
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This is precisely the 1974 result of Fayet.3 

d) rnzL = mgR = m; rnA = 0. Case of exact supersymmetry 

1 1 - - 
IL,R = J s dx dz 

z(1 - 2) 1 =-- 
22 2 

0 z (E.25) 

Aa~susy) a =--=-a WD) 
e e . 

27r 

In the exact supersymmetric limit we expect that there will be no anoma- 

lous magnetic moment to any order. Therefore we should have anticipated 

that Aa$SusY) (QED) 4 would precisely cancel ae . 

e) rnA = 0 

1 1 

s / 

1-Z rn% 
IL,R = dx dz p-(1-z) 

eL,R 
P= m2 

0 z 

1 
= p(l- ppnp - en(p - l)] -p+ 5 

f) mA,m,- >> m. This is the most interesting case. 

Defining 

m2x 
RL,R = -2 = 

m2x 
mL,R rni - mi,,, + m2 

(E.26) 

m2 ’ 
IL,R = 7 

J / 
dx ’ dz ‘(’ ;;; 

mL,R 0 z 
z- 9 

noting that 

jdx jdz= jdzjdZ 

0 z 0 0 
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where Z= 2x-z 

IL,R 

Now we note that 

m2 m2 -= -- 
5i2 m?. ” 

e ( 

if m << rnA so 

- 

R2+R2(1-R)en v . 
( )I 

[1+=JR)=-$1-R) 

I= -$ [l- R]Iz(R) 
i! 

(E.27) 

(E.28) 

(E.29) 

where 

h(R)=i+kR-R2+R2(1-R)tn y . 
( > 

The “l/6” term is what we found in part (c) when rnA + 0. This is hardly 

shocking since as rnA + 0 we have R + 0 and (1 - R)h(R) + l/6. Factoring 

this term out we can write 

IL,R = - ,,“2’ [l + f (%d] 
e”L,R 

f(R) = 2R - gR2 + 6R3 + 6R2(1 - Rj2h 

and from (E.23) and (E.24) 

Aa, = Aa!mA=o) f(Rd + fh) 
-z--- -x- eL eR 

(E.30) 

(E.31) 
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where 

RL,R G 
mi 

ni - m&R 

since rnA >> m. 

Notes: 

(i) when rn; > rnA R + 0 and f(R) -+ 0. Then Aae + Aa$m”o) to lowest 

order. 

(ii) The first order correction in the above [to O(mi/rng] comes from noting 

that f(R) = 2R as R + 0 where R h -mi/m$ Thus (E.31) becomes 

1 2rniRrni 

miL + rnz -m!i + 
2rniLrni 

rn% 
eR eL eL II 

& Aalm*=O) 1 _ 2 
m2, 

(E.32) 

(iii) When rnA >> rn; >> m R ---) 1 + rni/rn: and f(R) ---) -1. Using (E.29) 

we see that I -+ [l- R] [--l/3] = -i % just as in case (g) which follows. mu 

s> rnA >> me >> m. This case is also unlikely in most models but is not 

excluded. 

1 z 

IL,R = 
m2z(l - 2) 

0 0 
-m2z2 + (rni - rn% + m2> - tni 

1 

= f ’ dz z dz z(l - 2) 

I / 

1 m2 = -- - 

“:o 0 
Z-1 3 rni 
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FIGURE CAPTIONS 

1. Contributions to Aae when ZL and & are unmixed. 

Here A(p) z i/p2 - m2 + k. 
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APPENDIX F 

Contribution to Anomalous Moment from Smuon Mixing 

F. 1 LAGRANGIAN 

We permit the two smuons FL and @R to mix resulting in the mass eigenstates 

El = cos tj$L + sin tjbpR 

(F 1) . 
E2 = - sin @L + cos & 

or equivalently 

FL = Cos &ii - sin 4jZ2 

(F 2) . 

FR = sin 4jZl + cos 44X2 . 

We will confine ourselves to the muon here while recognizing that the same 

analysis goes through for the electron and tau. It is the muon which provides 

the most stringent bounds from experiment. We assume that X = (7) is purely 

Majorana, although it may be massive (R-parity is always to be considered an 

inviolable symmetry). 

The terms in the Lagrangian of Appendix E (E.4) are altered thusly 

. 

- sin 4jXr $+ X - cos 4$2$+X 

- cos c#&G -I+ sin 4&J -X 

+ cos #&*$LX - sin ~j&**.--~] . 
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Where $ represents the muon field. 

&Ass + 
2 - *- 

-mfi,Cc1 Cl1 
2 - *- 

- 9,@2 c12 

. 
L * IeA, Scalar-Photon 2 sin2 @#j&* - ~l*wl) + cos2 gqp2avp2* - p2*q2) 

+ sin2 4(plWj&* - El*a”Pl) + COS2 4(jZ2tYc2* - p2*dVp2) 

- sin4cos 4(jZlYp2* + ~2av~l* - c,*aV& - p1*dvp2) 
I 

. 

= ~eAv[~lavj&* - ?;l*avih + p2avp2* - p2*852] 

F .2 FEYNMAN RULES AND DIAGRAMS I-IV 

The Feynman Rules are similar to those of Section E.2 except for the changes 

illustrated in Fig. F.l. Note that there is no jZljS~7 vertex (Fig. F.la) but the 

helicity-flipped photino propagator is now utilized. 

In Fig. F.2 the lowest level contributions to p~+7 + PR are illustrated. Dia- 

grams I-IV are reminiscent of the contributions of Fig. E.l. Indeed, if mp, = mp2, 

it is evident that these would sum to the unmixed result (we could rotate the 

mixing away all together and make diagrams V-VIII vanish recovering the pre- 

vious configuration). The new features appear in diagrams V to VIII. Here the 

helicity flip takes place in the photino line instead of the muon. 
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We may evaluate the first four diagrams by direct comparison with those of 

the previous appendix. Comparing I and II of Fig. F.2 with I of Fig. E.1 

A a@) P = & I1 cos2 qb AaJf) = 5 12 sin2 q5 

1 1 
J dx / - 42 = dz x(1 2) 

-2 
0 ml 2 z ml ++*-+-Z-~ 

mP mP 

-2 
ml,2 =mz-m$12 , +mt 

(F 3) . 

(F 4 . 

(F 5) . 

and, as before, we note that we can write this using 

jdx jdz=]dzjdi=jdzz 

0 2 0 0 0 
P 6) . 

since there is no x dependence and Z = 2x - z. Similarly diagrams III and IV give 

A aLm) = g I1 sin2 4 AakNJ ’ = g 12cos24 

and so the sum of the first four diagrams gives 

Aa a c1 =-- 
27r 

This in itself would place no sterner limits than did (E.23): 

(I1 + 12) l 

Aa(unmized) 
I-J = g (IL + IR) . 

In the limit mb,,, >> rnA >> mp (F.8) becomes 

(F 7) . 

(F 8) . 

AaP=-(r2n {-!!$-+-!$-} 
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which is essentially the same as the unmixed version 

presented in (E.24). 

F.3 EVALUATION OF DIAGRAMS V-VIII 

Diagram V: 

= (-ie)3(fi)2(i3) J f$ 
(F 9) . 

X 
$@f&rn~(p + p’ - 2k)p sin 4 cos C$ 

(k 2 - m:>[(p - k)2 - mill [(p’ - k)2 - mill ’ 

Following the steps detailed in Section E.3 we find (T$ = rn: - rnil + rni) 

1 1-Z 
ie2 

ti+rc*-- = s w 
/ s 

da: dY 
$~&-a(p + p’ - 2[px - p’y])P sin qb cos 4 . 

0 0 
7iif(x + y) - rni - mt(x + Y)~ - q2xy 

(F.lO) 

Performing the “b f-) c” trick as when we went from (E.6) to (E.ll) 

1 l-2 

tit-q%- = T sin 4 cos &+!J+I,L 
s J 

dx dy 

0 0 

(P + lv(l - 5 - Y) 
’ -[m~(x+y)2+~~(x+y)-m~-qQ2xy] ’ 

(F.ll) 

From Appendix H or Eqn. (D.23), or simply following the step from (E.17) to 
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(E.19) ,we use the Gordon decomposition to find on shell (q2 = 0) 

Aap) Q! mpw =-- 
2~ rni Xr 

with 

rnE1 ’ =- 
-2 
"1 J J 

dz dZ 
1-Z 

m2 
0 0 - -3 

ml 
Z2$-Z---R1 

(F.12) 

(F.13) 

2 =x+y 2=x-y R1=rn2,/7iif 

where we have used notation similar to that of (E.26). 

Diagram V only provides the t,b+a~vq,$w part of this term. The &?P’q,,$+ 

piece comes from Diagram VII. 

In the most interesting limit, when mA, rnpl >> mP (and assuming ~1 >> mp) 

-2 we may expand this in powers of mi/ml. The leading order term is easy to find: 

rng ’ 
II m2 =- 

/ 
dz 

~(1 - 2) mi 
l-R1 

dc 
--c2 + (1 - 2Rl)S + R1(1- Rl) =- 

? z- Rr 7iif J s 
0 -R1 (F.14) 

m; =- 
-2 
ml 

; (1 - 2Rr) + R1(1- Rl)h 
(%?)> 

which may be written, including the next order term in rns, 

m2- 
m4,) + m&m:432 I-tl 

11 = 
mi m:G(mpl 7 w) 

( rnEl - mi)3 
+ 

( ma1 - mi)2 
+O (m6,> (F-15) 
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where 

G(mfi, 3 mx) = 

.’ ( mil i- 2mi)(5m& + rni) + 6rnirn: - 
6(mi - mi)2 ( 

(F.16) 

Eqn. (F.14) agrees with Griffols and Mendez3’ and, with some algebra, Ellis, 

Hagelin and Nanopoulos’ . 

The contributions of diagrams VI and VII are the same as the above except 

that br + b2 and the overall additional factor of -1 coming from - sin8 at one 

of the Yukawa vertices. 

Thus the term of Asp which is linear in mp is 

2 
A.linear a =- 

c 
rnpmA sin 4 cos 4 

P 27r 
j=l ( rn2 - mi)3 

$(m4- Pi 1 . (F.17) 
Pi 

When mg,. w rnA the above formulation would appear to be invalid since Irnfi-rnAI 

might be comparable to 

then (F.17) is still valid 

mcL terms which were discarded. If rncj >> m,, however, 

and yields 

Aap(m+ = rnx) --+ -or -sirqkosqS. 
27r rnA 

Equation (F.17) can also be written as 

Aa, = C(f P-2) - f (Xl)) 

c a 23in+os4 =- 
27r rnA 

f( > X = 
i (x2 - 1) - xhx 1 

(5 - 1)” f(l) =- 
6 

(F.18) 

(F.19) 
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F .4 A NOTE ON AXIAL COUPLINGS 

Griffols and Mendez35 originally considered the possibility of a more general 

vertex coupling of the form 

This is more in keeping with the full electroweak theory. Since 

we see that this really implies that $ t-5; and $2 may couple with unequal 

coefficients. The relative Yukawa strengths of the vertices and a few of the 

salient diagrams are illustrated in Fig. F.3. 

We note that gv - gA comes from the j2~ part of fi1 while gv + gA stems 

from the CL part of fir. Thus diagrammatic contributions where the helicity flips 

in the photino propagator go as (FL part of Fr) (fiR part of br) or g$ - gh, 

which is like sin+cos C$ in the notation which we have adopted. The other two 

contributions are like (gv - gA)2 + (gv + gA)2 cc g$ + gi. Thus in this case we 

would find 

Aa, = - 

[ 

m2- 
X i (m+ - m4,) Pi - mimf i 432 ~+m~(m~i~ 

mi 

(9; + &J2 2 mi - 
67r2 c -. 

m2 
j=l Gi 
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F .5 SMALL MASS-SPLITTING 

When rnFr e mp, we may simplify the expression in (F.19). 

Letting 

t5m2 = rn& - ml, mz 
cm- 

PlJ 

we find (for rnA < mr;) 

6m2 a Aa,=-- -sinqbcosg5 
rnxrn,rni 

rni 47r ( rn$ - mi)* 
(F.20) 

x{l+4$ [I-In $1-2 [,,,,, !$I} 

or 

6m2 a Aap = -- - 
m$ 4T 

sin C#J cos cj 

with 

p(x) = (x _” 1)4 {(x + 5)(x - 1) - 2(2x + l>en x) 

1 
p(x + 00) + - l 

X 

When we further have rnA < rnb (i.e. x > 1) then 

Aa, G -%sinqkos4 
mprnA 6m2 
-0 - 

. rn$ rn$ l 

(F.21) 

(F.22) 
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F .6 EXTREMA OF THE LINEAR TERM 

In Chapter 2 we saw that it is the term linear in mp which places the most 

rigorous limits when compared with the “real world”. We may divide Aa, into 

Aa, = Aai - Aa; Aal = cf (Xi) (F.23) 

using the notation of (F.19). Th e f unction f(x) has been plotted in Fig. G.l 

for A apear. All of the plots related to the linear terms have been collected into 

Appendix G. We immediately see from the form of f(x) that there will be an 

extremum in Aa:% = C(f(X2) - f(Xl)) when Xr # X2. Differentiating to find 

the maximum Aafi’” we find that it occurs when 

lnxr = 

y[(xly+ 5)(~ly--1) -2(2xly+ l)lny](xl- l)4 - (xl +5)(x1 - WlY- 114 

2 [y(2x1y + 1)(x1 - q4 - (2x1 + l)(XlY - q4] 

(F.24) 

(where y # 1 when x1 # 1. Here ~1 = Xl.) 

ngl Xl = - 
m;2 x2 m;2 

mi 
x2 = - 

m: 
Y =-=- 

Xl mkl 
. (F.25) 

This extremum, a maximum for IAaz’$ we shall call AaPmax. For a given 

value of y it occurs at Xl = X1 max and SO Aapma = ha,,,,(y) and Xl ma = 

Xrm,(y) while AaPma = Aa,(Xl ma). In he next appendix we have plotted 

f(x), Aa, for y = 1.01 and y = 2, Aapmu(y) and Xrma(y) for a range of 

parameters. Discussion takes place in Chapter 2. 

132 



FIGURE CAPTIONS 

1. Vertices and Propagators 

(a) Photon-Scalar Muon (smuon) Vertices. 

(b) Photino Yukawa Vertices. 

(c) Photino Propagator illustrating flipping and non-flippling propagation. 

2. Lowest order contributions to Aup. 

3. Sample Diagrams from $(gv + g,qy&fi Vertex. 
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APPENDIX G 

Plots Related to Anomalous Moment 

In this appendix we plot some of the results derived in the previous appendix. 

In each instance this is for the case of smuon mixing. The states j& and FR mix 

with angle C$ to produce the eigenstates cr and j&. Letting 

xi = m21/m2, i = 1,2 y = m%2/m21 

c Q mP =- -sin4cos4 
27r rnA 

we found that Au,, the additional contribution to al, from supersymmetric smuon 

mixing, was given by 

Aa, = C[f(z2) - f(d] 

where f(z) is given in Eq. (F19). 
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FIGURE CAPTIONS 

Fig. G.l 

f( > x versus x. 

Fig. G.2 

lo4 x & Au,, versus X1 for y = 1.01. 

Fig. G.3 

& Aap versus Xl for y = 2. 

Fig. G.4 

Xl max(y) versus y where Xl max is the value of Xl where & ~Au:~ 1 achieves 

its extremal value for a given y. 

Fig. G.5 

& (AaEn)max versus y for y ranging from 0 to 10 where & (AaFn),, is the 

extremal value of 6 (Aa;“) for a given y. 

Fig. G.6 

& (Au:“) max in vicinity of y = 1. 
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APPENDIX H 

Useful Relationships 

In this appendix we gather certain algebraic formulae which are frequently 

referred to in this paper. 

H .l FEYNMAN INTEGRALS 

A number of “tricks”, due to Feynman, permit us to re-parameterize the 

momentum integrals which frequently arise in the computation of Feynman dia- 

grams. A general expression is 36 

1 
DlPl D2P2 . . . D$N = 

r (PI + P2 + ’ l ’ + PN) 
dxN XI 

P1--152P2-l . 
l ” sNPN-%(Xl + l l l + ZN) 

rb1)r(P2) l l l r(pN) 
(Dlzl + l l l + DN~N)PI+**.+PN 

0 0 

We will use a slightly different form of this identity.2 The particular cases of 

interest are 

1 . r 1 1 
-= 
ab J 

0 
dx [ax + b(l - s)12 

1 

IL 2 -= 3.1 
r T 

a-o I 
0 

ds [ax + b(l - s)13 

1 1-X 
1 

- = 
abc 

2 J da: s dy 
1 

[a + (b - a)z + (c - 
0 0 

a)y13 

1 1-Z 
1 l-s-y 

a2bc [a + - 
0 0 

(b - a)z + (c a)y14 

(H=2) 

(H-3) 

(H-4 

(H 5) . 
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These are particularly useful in conjunction with 

s 
d4k 1 i 

= (2~)~ (k2 - 2p l k + s - i~)~ 32r2(s - p2) 
(H.6 a) 

J 

d4k kc” ipp 

= (27r)4 (k2 - 2p l k + s - i~)~ 32r2(s - p2) 
(H.6 b) 

/ 

d4k 1 i 
= (27r)4 (k2 - 2p l k + s - i~)~ 96?r2(s - p2)2 

(H.7 a) 

/ 
d4k kp ipp 

= (27r)4 (k2 - 2p l k + s - i~)~ 96r2(s - p2)2 
(H.7 b) 

J 

d4k k,k” 
= i[P,PU + ; (s - P2)s,v] 

(27r)4 (k2 - 2p l k + s - i~)~ 96x2(s - p2)2 
(H.7 c) 

In order to improve convergence we frequently change an integral of the form 

(H.2) to (H.3) or (H.4) to (H.5) by introducing an additional parametric integral 

co 
1 

J 

dt 
---b- 
a (a- t)2 l 

0 

(H.9 a) 

In paricular if a = k2 - m2 we introduce the33 Pauli-Villars regulator, A + 00: 

A2 
1 1 1 

I 

dt 
k2 - m2 ---) k2 _ m2 - k2 - A2 = - (k2 - t)2 ’ 

(H.9 b) 

m2 

Instead of z and y in eqn. (H.7) we frequently find it useful to introduce 

x rx+y 
y- 
z x-y = (H.10 a) 

X = f (x + i) 

whence it becomes easy to show that 

Y =- ; (2 - 2) 

jdz ]‘dy = f jdzjdi 

0 0 0 -2 
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and, if the integrand is even in Z, 

1 l-2 1 2 

(H.10 d) 

Consider a triangle loop diagram whose legs have momenta pl, p2 (fermions) 

and q = pr + p2 with masses ml, m2, mg and internal particles whose masses are 

Ml, A& and Ms. A typical Feynman integral for such a triangle diagram would 

have a piece which looks like 

MC” - 
s 

d4k M- Ic)rW2+ k) 

[k2 - M;][(PI - k)2 - $][(p2 + k)2 -AI;] 
(H.11) 

and from (H.9), with A + 00, 

A2 
Jp N - J J dt 

(A- Icww2+ k) 
d4k[k2 -t12[(pl - k)2 - Mf][(p2 + k)2 - @] l 

(H.12) 

M? 

The denominator is of the form --& so we may use (H.5) to obtain 

M’---jldt/d4k6/dzljldy 

M32 0 0 

X (1 - x - Y)(?+- b)7’(#2+ k) 
K k2 - t) + (t - 2~1 l k + pf - M;)x + (t + 2p2 l k + p; - @)y]4 ’ 

(H.13) 

Now, if the fermions with momenta pl and p2 are on shell, then 

Pi = rnf P22 = rni 
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and (H.13) becomes 

X (1 - x - YM- Ic)7”(h+ Ic) 

[(k’ - t> + (t - 2~1 l k + m; - Mf)x + (t + 2p2 l k + m2 - ~2)~]~ 2 2 

= - jldtld’ic Gjdr l=dy 

MS2 0 0 

’ [k” - ( 
(1 - x - db+l- h%‘(h+ 1) 

PIX - PRY) l k + t(x + Y - 1) + (mf - Mf)x + (m2, - @)y14 
A2 1 1-X 

where 

p = PlX - p2y 

=m~x+m~y-(Mfx+M~y)-t(l-xzy) 
(H.14) 

S 

We could equally we have writted (H.ll) with the final two terms of the denom- 

inator in reverse order. Then, when we applied (HA) with b w c, instead of 

getting (H.12) we would have obtain the same expression but with x c+ y. Thus 

we may always interchange x and y in the integrand. Keeping this in mind we 

apply (H.7) to obtain 

(1 - X - y)[$l - ($I=- #2Y)]7’[$2 + (#lx- $2y)1 

( 
s- 22 

PI> 

+ a &” term. 

(H.15) 
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Forgetting the &term for now we see that 

P2 = p:x2 + p;y2 - 2p1 . paxy 

q2 = (Pl + P2J2 = P: + p; + 3% l p2 

so 2Pl . P2 = !I2 - Pi - Pi 

= q2 - rnf - mf (H.16) 

and P2 = mix2 + miy2 - (q2 - rni - mi)xy (H.17 a) 

= m2(x + Y)~ - q2xy when ml = m2 E m (H.17 b) 

s-p& (mix + m&)(1 - x - y) - (Mfx + Miy) 

- t(1- x - Y) + Q2XY (H.18) 

Specializing to the case ml = m2 E m and Ml = M2 = M, for the purposes of 

this demonstration, we then have 

S- P2=m2(x+y)(l-x-y)-M2(x+y)-t(l-x-y)+q2xy (HJ9a) 

which is symmetric in x and y. Using (H.lOa) we may write this as 

2 
S- P2 = m2z(l - z) - M2z - t(l - z) + $-(z’ - H2) (H.19 b) 

Since we are able to interchange x w y in the integrand and obtain and identical 

expression, we are similarly able to let E t-) 4. We may then average these two 

expressions. In either case 

X*Y 
(H.20) 

We will refer to this as the “b * c trick”. Since the denominator, s - P2, is 

even in of 2, when we perform this averaging we will eliminate all terms in the 
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numerator which are odd in 2. Inserting (HA0 b) into (H.15) yields 

jq’--jldf6jdx]‘dy &(1-z) 

M32 0 0 

&(JJJ2- $1) - i($lf $2) + 2 Id,17p[414- $2) + w1+ $2) - 2 $21 

( s - Py2 
(H.21) 

Expanding this and keeping only even powers of Z gives a numerator term 

-a [z” $7’” a-- z2 grp $+ 2(14rcL d- d7p #2) + 4 F4rp $21 

where here 

(H.22) 

The above expression will be sandwiched between pi and v(p2) so that any $r 

to the left of 7p will generate a factor of ml via the Dirac equation and any ti2 to 

the right of 7p will generate an m2. If ml = m2 = m < M or q2 (which appears 

in terms not shown) then we can ignore these terms and (HA9 b) becomes 

P2 $8 - t(1- 1 2 -2 s- z) + M2z + -p (z - z2) 
I 

which, when used in (H.21), gives us 

.p--i’dt6]dx]‘dy ---& 

MS” 0 0 

(H.23) 

(H.24) 

a(1 - 4 [z” i17p c- g2 Brp a] - 

( > 

2 l 

t(1 - z) + M2z + tQ2(Z2 - z2) 
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In point of fact, since we are ignoring the external fermion mass terms, 

and (H.24) may be written as 

MY--TdtGjdzIj=dy -& 

MS2 0 0 

$1 - 4 [ F2 - z2) $7p a] - 

( 

2 . 
t(1- z) + M2z + $q2(Z2 - z2) 

> 

(H.25) 

1511 



H. 2 THE GORDON DECOMPOSITION 

The Gordon Decomposition is a useful identity37 relating currents of even 

and odd numbers of sigma (or gamma) matrices. In this sense it is merely a 

restatement of the Dirac equation recast into a form which includes a opLv term. 

Since the statement and proof of this identity may be found in any number of 

standard references, it may seem strange to devote a major portion of an appendix 

to it. Applications of this result are to be found throughout this paper, often in 

generalized or atypical forms which we will proceed to derive. 

Four-Component Formulations 

Working with Dirac spinors the Gordon Decomposition of the Dirac vector 

current is generally expressed as 

iJ (P’, 47V(Pt 4 = & {iQP’,S’) [(p’+ P>l” + +yP’ 

or 

P>y] @(P, s,> (H-26) 

{iJ (P’, s’)[P + ~~pY9v]~(P, s)} 

where, for symmetry, we have let 

qP cp’ll -pP r = p”l+ PP. 

We use the basic identities 

{7’l,rV) = WY 

[757y = -2iapv 

152, 

(H.27) 

(H.28) 

(H.29) 

(H.30) 



fd I= a,b” (+ {75rv} + $ [7p,7y]) = +zpbu[gpu - 2&Y] 

= a l b - ia~bYallu . 

(H.31) 

The standard identity in (H.27) considers only the instance of a vector current 

(7l”> where the initial and final spinorial states are of the same type. We wish 

to extend this to admit the possibility of admixtures of vector and pseudo vector 

currents connecting states of different species. We will refer to these as I/J’ and 

?,bi and consider the vertex [A + B75]7t 

We will require a few identities involving 75 in addition to (H.29)-(H.31). 

{75,7/d =o [75,~pu] = 0 r5 -75 (H.32) 

r5 6 F/ = r5[a l b - iaPbuoPu] pl f75 = [a l b - ia~b”a,,,]y5 

First consider the case where A = 1 and B = 0. Let up be any four-vector. 

F(P’Ys’)(7 - mi) pl+j(PyS) +@(P’,S’) &(J - mj)+j(P,S) = 0 

by the Dirac equation. The arrows atop the momentum operators indicate in 

which direction we intend to operate. This is true for arbitrary a. Using (H.31) 

we find that this is equal to 

- (mi + mj)P(P',S') $*'(P, s> 

+ p(p’,s’)[f’up + i~‘payopu + uq+p - i~“Tii’“QJ]*j(Pls) 

thus 
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since apV = -o? As this is true for any aP we may write 

;i;i(p’+‘)7W(~,s) = m 
i i 

{@(p',d)[p + io~~qu~~~(p,s)) . (H.33) 

When i = j we obtain (H.27), of course. We now consider the case where A = 0 

and B = 1 and repeat the above analysis 

$(p’,s’)(y - mi)y5 #*j(p,s) 31 $‘(p’,s’)75 $(j? - mi)@(p,s) = 0 

= -(mi zt Yt2j)@(p',S')75 &!J(p, s) 

+@(p',s')(p',s')[-fpapy5 + i~‘pauopu75 

A y5ap& F iapf~50pu]$J(p, s) 

V a 

The two different signs give rise to the equivalent identities: 

inP’, s’)Y57w(P, s) = -m $‘(p’, s’)r5[q’l + io’““&]@(p, s) (H.34) 
j i 

lcli(P’, 4ys7Wj(p, s) = l SrnJ . _ m. T’(P’,s’)r5[tT + ia~“q,]~j(p,s) 
a 

(mi # mj) l 
(H.35) 

These can now be combined with (H.33) to obtain the more general results 

@(P’, s’) [A + Br5]v-(p, 4 

= m : m q’(p’, s’){ (A? - Bq’lr5) + i(Aqu - Bq”,75)a’Lu}+i(~, 4 
i i 

(H.36) 
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@(P’, s’)[A + B75]@(p, 8) 

= V(P’,S’) 
i 

+ m,“-‘“m,l w + i@%u) @(P,S) (mi # mj) l 

(H.37) 

In either version we recover (H.27) when A = 1, B = 0 and rni = mj. Writing 

and using (H.36) we find that 

Crni + mj)Fi(P’)7*7’$j(P) = 

iJ’(P’){7rP’l” + 7*PcL + iq7~Ptu - 7*PU]}$j(P) l 

Two-Component Formulation 

(H.38) 

(H.39) 

As always, the Weyl spinor formulation of an identity derived for Dirac 

spinors is more involved. We now have a pair of spinors and their conjugates 

which are related via the Dirac equation. One possibility is to take the results of 

the previous section and expand them out in two-component form. By choosing 

A+By5 to be 3 (l&75) we will project out the left- and right-pieces of the vector 

current. 

Expanding some Dirac spinorial currents into their two-component subdivi- 
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sion (see Appendix A) 

(H.40) 

Using these with (H.39) results in 

m : m [YfJfJP’)(P’p + ia~“p:)+L(p) + $5(P’)(P’L - iapuPup$(P)l 
i i 

(H.41) 

~5(p’)iP*t(p) = 

wJ:(P’)(Pp - ~allUpu)g. (p) + q’- (p’) (p”” + iFc”“p;)~$(p)] l 

i 
(H.42) 

These could equally well have been obtained by working with the Weyl spinors 

directly. For instance, starting with 

~~(P’)(~“)a&~u(~p~QP aIL$+(p’) + 3 similar terms = 0 

and repeating the steps leading to (H.33) would lead us to (H.42) directly. It 

is often convenient to use the sum and difference of (H.41) and (H.42) which 

correspond to decomposing the full 7p and r57p currents. 
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,I+< + qi-[4” + w” u -$ ql+ } 
(H.43) = m 

i i 
{$$[sy + i~puqu 

which is, of course, merely the expansio In of (H.33). We can use the Dirac equation 

(section B.l) to put this entirely in terms of $- and $L, 

-* a I 
ti (P)[ 

F =p’ 
- -+ 

mi 
2 $JL(p)iy . 1 

= +yp’) 

[ 

c l p’ 
---.~P~ + iy 

mi 

y 9ulclC(P) 

-3 

+(mi+mj)$L(p’) ~P+iT~~ELE 
[ 1 & (P> . 

mi “i 

(H.44) 

A similar expression exists for $+ and 3 +. (On-shell we may cancel the spinors 

from these expressions.) 
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