
SLAC - 314

UC-32

(W

SLAC COURIER AND REMOTE
LOGIN FACILITY

Michael E. Huffer

Stanford Linear Accelerator Center

Stanford University

Stanford, California 94305

April 1987

Prepared for the Department of Energy

under contract number DE-AC03-76SF00515

Printed in the United States of America. Available from the National Techni-
cal Information Service, U.S. Department of Commerce, 5285 Port Royal Road,
Springfield, Virginia 22161. Price: Printed Copy A04, Microfiche AOl.

Contents

1 Introduction 4
1.1 Purpose and Capabilities 4
1.2 User/Server Communication 4
1.3 Programs and Environment 5
1.4 Courier Data Types 6
1.5 Call and Response Frames 6

2 Functions-Courier User Interface Library 8
2.1 Overview 8
2.2 ccstart-Start a Remote Program 11
2.3 cCall-Issue a Remote Procedure CaII 12
2.4 cWait-Wait for RPC Response 13
2.5 cconnct-Complete the Courier Connection 14
2.6 cRspnd-Respond to a Remote Procedure Call 15
2.7 cReady-Wait for an RPC 16
2.8 cBuild-Reserve Frame Buffer 17
2.9 cPush-Build Call or Response Arguments 18
2.10 cPop-Get Call/Response Arguments 19
2.11 cClose-Dissolve Courier Connection 20

3 Writing User and Server Programs 21
3.1 Overview 21
3.2 The User Program-spyconsume 22

3.2.1 Notes on User Program 23
3.3 The Server Program-spyProduce 25

3.3.1 Notes on Server Program 26

4 Courier Management 28
4.1 Overview 28
4.2 VM/CMS 28
4.3 VAX/VMS 28

4.3.1 CMP Commands 29

1

4.3.2 CMP Examples . 44

5 Utility Routines 48
5.1 overview 48
5.2 cQuery-Query a Listener 48
5.3 ntGet-Get a Host Specification 50
5.4 Courier Program Number Routines 51

5.4.1 pnAlloc- Initiate Access to Program Routines 52
5.4.2 pnAdd-Add or Modify a Program Number 53
5.4.3 pnGet-Get a Program Entry 54
5.4.4 pnF’ree-Quit Program Number Routines 55

A Status Returns 56
A.1 Overview 56
A.2 Courier Status Returns 56
A.3 Network Services Status Returns 60

2

List of Tables

2.1 Data Type Conventions . 9

5.1 Node Specification 50
5.2 Program Record 51

Chapter 1

Introduction

1.1 Purpose and Capabilities

The Courier and Remote Login Facility (CRLF) serves two functions. First,
it provides for application programmers a presentation layer protocol called
Courier l. Courier enforces a remote procedure call discipline and allows the
programmer to pass data between systems in a system independent form. Sec-
ond, it implements a Remote Login Facility. This facility verifies a client’s
access rights, constructs an environment based on these rights, and starts up a
program to process client requested services.

Courier allows communication between two system elements (or hosts) by
causing the creation of two programs: a user program on the initiating host and
a server program on the remote host. Communication then takes place between
the cooperating system elements by making appropriate calls to the Courier
Interface Library. This communication is described in more detail below.

1.2 User/Server Communication

User/Server communication takes place via Remote Procedure Calls (RPCs).
The user program initiates the process by issuing the Courier function c&tart.
This call attempts to start a server program on the remote system element. If
this call is successful a connection (datastream) is established between the two
programs. The server program then constructs arguments for the appropriate
RPC by issuing calls to cBuild and cPush. These constructed procedures are
invoked by issuing cCalls. &all, using the established connection, transmits
these arguments to the remote server program. The user program then waits
(issues a cWait) for a response from the server program. The response from
the server program indicates the return status of the RPC by returning one of

1 The reader is expected to be familiar with the concepts in [4]

4

three well-defined values; C-RETURN, for success, C-ABORT or C-REJECT
for failure. In addition, returned data from the RPC can be recovered from the
datastream by calling cPop. cPop provides a rich suite of data types following
standard Courier data typing conventions.

The server program begins by issuing a cConnct to complete the Courier
connect ion. It follows by waiting for a remote procedure (cReady). When
the server program receives a RPC it may remove its associated arguments
by issuing successive calls to cPop. After removing the arguments, the server
Program initiates the service represented by the RPC. When the service is
complete, it transmits back to the user program return status for the RPC by
building a response (cBuild or cPush), and issuing a cRspnd.

The user or server program terminates a session by issuing a cClose. cClose
sends a termination request to the cooperating program, which in turn responds
by issuing a cClose, dissolving its side of the connection.

1.3 Programs and Environment

The user program specifies the cooperating server program. A server specifica-
tion includes where the server runs, which server is run, and what environment
the server runs under. This specification is controlled by three arguments in the
c&tart function; the Program Handle, the Program Version and the Access-
Control-String.

The Program Handle contains, in a compact form, a system element address
and a program number. The system element address specifies the remote host
upon which the server program will run, and the program number names the
service to be run. Together the address and program number identify a server
program. Before a server program can run, it must be made known to the CRLF
on the appropriate host. This is done by registering the program number in the
CRLF database. The tools available for registration are discussed in Chapter 4.

Although the Program Handle identifies the server program, it is possible
that many instances of the server program may exist. To identify which instance
of the server program to run, the user program specifies a version number.
The meaning of a program instance is not stipulated by the Courier Protocol,
and consequently is system dependent. For example, on VAX/VMS program
instances are equated to image version numbers [l]. To help relieve this system
dependency a SLAG extension to the protocol has been added. Specifically,
version number zero (0) has special meaning. It is a Udon’t-care” value, and
allows Courier to assign a default version.

In addition to specifying the remote program, the client may wish to define
the environment under which the server program will run. The Access-Control-
String (ACS) is an identifier which allows the CRLF to Ulogin” the remote
program, setting up the privileges and context the program should have. The
ACS has two components: a Client Name and a Client Password. The name

5

identifies to the Login Facility the owner of the server program, and the password
validates the right of the user program to use a particular client name.

Again, how the ACS is interpreted by the remote host is system dependent.
On VAX/VMS systems the ACS determines the process under which the server
program runs. On VM/CMS the ACS controls Disk Link Access. Default access-
control may be specified by providing a null ACS. The rights this ACS provides
may be found by consulting the system administrator for the appropriate host.

1.4 Courier Data Types

RPC arguments are specified by two attributes: the argument value, and the
argument type. By specifying an argument type, the application programmer
is relieved of the responsibility of converting arguments to a particular host
representation.

The CRLF types arguments according to standard Courier data typing con-
ventions described in [4]. The following subset of the data types described in
that document is currently supported by the cPush and cPop functions:

boolean string
cardinal unspecified
long car&m&eration
integer procedure
long error

arrays of: sequence of:
cardinal cardinal
long cardirkhg cardinal
integer integer
long integdong integer
unspecifiedrnspecified

Chapter 2 contains more information on
ifies data type to these two functions.

how the application programmer spec-

1.5 Call and Response Frames

After successfully starting up a Courier Session, a data stream is established
between the cooperating programs. The data stream passes information in
units of Call or Response Frames. A frame is a structure that contains, in a
system independent fashion, the arguments for a RPC. A frame is transmitted
to its complementary program by issuing cCalls and cRspnds.

6

Multiple frames may exist in one program. Frames are distinguished from
one another by their Frame Handle. When applied in a user program a frame
handle corresponds to the Remote Procedure Number. Remote procedure num-
bers form a 32 bit address space that is known only to a particular incarnation
of a user/server pair. Program numbers are assigned at the application pro-
grammer’s discretion, their meaning is completely arbitrary.

When used within a server program a frame handle has a different connota-
tion. In server programs the frame handle corresponds to the RPC response. As
Courier protocol limits the number of legal RPC responses, only the following
are legal frame handles within a server program:

l C-RETURN-The Remote Procedure completed successfully.

l C-ABORT-The Remote Procedure completed with errors.

l C-REJECT-The Remote Procedure is not supported on service program.

Frames are contained in Frame Buglers. Frame Buffers come in two varieties,
static and dynamic. One program may have many static buffers, but only one
dynamic buffer. A static buffer is built once and its contents may be reused
by specifying its handle to cCal1 or cRspnd. The programmer reserves a fixed
buffer by calling cBuild. Any subsequent calls to cPush will push arguments
into the reserved buffer. The frame buffer is considered to be complete when
another cBuild is issued, or the frame is transmitted by a call to cCal1 or
cRspnd. Note that the mechanism of fixed buffers allows the programmer to
use RPCs with fixed arguments and not pay the overhead of constructing the
arguments each time the RPC is called.

Frame buffers are a limited resource. The number and size of these buffers
is a compile-time constant and may be changed if found insufficient. The error
status C-INSMEM is returned if these limits are reached. A typical installation
provides for eight buffers (seven fixed). Each buffer is roughly 8 kbytes long.

7

Chapter 2

Functions- Courier User
Interface Library

2.1 Overview

The Courier User Interface (GUI) Library provides a variety of C callable func-
tions which the application programmer may use to construct user/server pro-
grams. A list of the available functions:

0 Unique to User Program

- ccStart Invoke a remote program
- cCal1 Invoke a remote procedure

- cWait Wait for a response from a remote procedure

0 Unique to Server Program

- cconnct Complete session initiated by user program
- cRspnd Respond to Remote Procedure Call
- cReady Wait for Remote Procedure Call

l Used by either User or Server Programs

- cBuild Reserve a call or response frame buffer
- cPush Construct call or response frame arguments
- cPop Remove call or a response frame arguments
- cClose Dissolve one end of a Courier connection

8

All function calls return a status value. If a routine is successful it will return
the value C-SUCCESS. 1 All status values may be translated by the Message
Conversion Facility to a character string [3]. The header file “cMsg.h” defines
the status return values and should be included in any user or server program.

All supported data type definitions are defined in the header file “cTypes.h”.
The allowed data types and their corresponding Courier data type are shown in
Table 2.1.

Argument Type 1 Courier Specification
Mannina for Values - -

BOOLEAN
CARDINAL

boolean
cardinal

LONGCARD long cardinal
INTEGER integer
LONGINT lone integer
STRING string

UNSPECIF unspecified
ENUMERATE enumeration

Mapping for Sequences
SEQCARD sequence of cardinals
SECXLCRD seauence of long cardinals

I
1 , A

_ _ I

I SECLINT 1 seauence of integers 1
SEQILINT

* ,
sequence of long integers

SEQUNSP sequence of unspecified
SEQ-ENUM sequence of enumerations

Mapping for Arrays
ARR-CARD array of cardinals
ARRLCRD array of long cardinals

ARRlNT
ARRLINT

array of integers
arrav of long integers

Table 2.1: Data Type Conventions

Each function is described below. The description contains a C language
synopsis which defines the function, followed by a short description of the func-
tion and its arguments. The description completes with a list of the function’s
Courier status returns, but they can also return error codes from other layers

1 The cWait, and cReady routines are exceptions to this rule, see below.

9

which Courier
Appendix A.

calls. A discussion of each status return is given in

10

2.2 ccStart -Start a Remote Program

SYNOPSIS:

unsign32
ccStart(PrgmHndl,VrsNm,Acs,Tmout)

unsign32 PrgmHndl;
unsignl6 VrsNm;
char *Acs ;
unsign16 Tmout;

DESCRIPTION:
c&tart marks the beginning of a session, that is, a sequence of calls and
responses. The end of a session is marked by a &lose.

ccstart must be the first function issued by the user program. It invokes
the remote program specified by the PrgHndl and VrsNm arguments (see
Chapter 1). PrgmHndl must have a non zero value. See Chapter 3 for
an example of how to form this argument. The VrsNm argument specifies
the particular instance of the server program. A value of zero assigns a
default version number.

The Acs is used by the Courier Access Listener to “login” the remote server
program. This argument may be null. If null the function interface uses
default information stored on the remote host to determine the program
environment. This argument may have a maximum length of 128 char-
acters (including null termination). The argument has the form of ‘User
Password”. See chapter 1 for more information on program environment.

The Tmout argument is used by this and all subsequent function calls to
determine how long to wait for unsolicited packets. The value is inter-
preted as the number of 10 millisecond tics to wait before a timeout. For
example, a value of 1000 signifies 10 seconds. A value of zero assigns the
longest timeout available. 2 A value of minus one (FFFF hex) assigns the
SLACnet default of 10 seconds.

RETURNS:

C-SUCCESS ClLLPWD
C-NOPRIV CNOAFILE
C-ILLPRGM C-NOSTART
CJNSMEM CJLLVERSN
CNOENVM CJLLDS
CATTN C-EOM
C-SHUT

2 Longest value = 2**16 tics M 10 minutes

11

2.3 cCall-Issue a Remote Procedure Call

SYNOPSIS:

unsign32
cCal1 (Handle)

unsign32 Handle ;

DESCRIPTION:
ccall causes a procedure to be invoked within the service program. The
call frame associated with this function is identified by the Handle ar-
gument. This argument must be non zero. The frame specified by this
argument was built by calls to the cPush function.

cCal1 will transmit the frame associated with the handle to the remote
service program. To determine the result of the RPC, the client should
follow the cCal1 with a call to cWait. Note that Courier protocol stip-
ulates that only one RPC may be outstanding at any time. Therefore,
before issuing another cCal1, the client must call cWait to determine that
the RPC has completed.

RETURNS:

C-SUCCESS CLNOENVM
C-INSMEM C-SHUT

12

2.4 cWait-Wait for RPC Response

SYNOPSIS:

unsign32
cWait (modifier)

unsign32 modifier [] ;

DESCRIPTION:
cWait should be called by the user program after it has issued a remote
procedure call (&all). cWait completes as soon as a response is received
from the remote service program or errors are detected. If no errors are
detected the user program may issue cPop calls to remove possible argu-
ments from the response frame.

If a status of C-SHUT is returned, the other side of the Courier Connection
has been dissolved. The proper response to this status is to issue a cClose.

Note that unlike the other function calls, C-SUCCESS does not indicate
successful function completion. If the function completes successfully, one
of three status values will be returned:

l C-RETURN - Remote Procedure Call completed with no errors.

l C-ABORT - Remote Procedure Call returned with error.

l C-REJECT - Remote Procedure Number not supported on service
program.

If any one of these status values is returned, the user program may suc-
cessfully remove possible arguments from the response frame by making
calls to cPop.

If modifier is not NIL and if the routine returns CREJECT or C-ABORT
then modifier [O] contains more detail. Again, if modifier is not NIL
and if the routine returns C-ILLTYPE then the illegal type number is
returned in modifier [0] .

RETURNS:

C-RETURN C-ABORT
C-REJECT CJLLDS
C-NOENVMC-ILLTYP
C-SHUT C-ATTN

13

2.5 cConnct -Complete the Courier Connec-‘
tion

SYNOPSIS:

unsign32
cConnct (Tmout)

unsignl6 Tmout;

DESCRIPTION:
cconnct must be the first CUI function called by the service program.
This function completes the Courier connection requested by the invoca-
tion of c&tart in the user program.

The Tmout argument specifies how long to wait for unsolicited packets,
See the c&tart function for more information on this argument.

It is recommended that cConnct be issued immediately within the server
program. Failure to do so could conceivably cause the c&tart call to
time out.

RETURNS:

CSUCCESS CJNSMEM
C-NOENVM

14

2.6 cRspnd-Respond to a Remote Procedure
Call

SYNOPSIS:

unsign32
cRspnd(Handle)

unsign32 Handle ;

DESCRIPTION:
This function returns to the user program a response to a previously issued
Remote Procedure Call. The response may have arguments associated
with it. If so, the service program builds these arguments by successive
calls to the cPush function.

The response frame associated with this call is identified by the Handle
argument. This argument may have only one of the following values:

l C-RETURN - Tell user program RPC completed with no errors.

l C-ABORT - Tell user program RPC returned with errors.

l CREJECT - Tell user program RPC number not supported on ser-
vice program.

RETURNS:

C-SUCCESS C,NOENVM
C-SHUT C-INSMEM
C-ILLPRGM C-NOSTART
C-INSMEM CJLLVERSN
C-NOENVM CJLLDS
C-ATTN C-EOM
C-SHUT

15

2.7 cReady-Wait for an RPC

SYNOPSIS:

unsign32
cReady (ProcID)

unsign32 *ProcID;

DESCRIPTION: cReady completes as soon as a RPC is received from the
remote user program or errors are detected. If no errors are detected
(C-SUCCESS) the addr ess pointed to by ProcID is filled with the RPC
number. This number corresponds to the Handle argument passed to
cCal1 in the user program. If no errors are detected the arguments con-
tained within the response frame may be obtained by calls to cPop.

If a status of C-SHUT is returned, the other side of the Courier connection
has been dissolved. The proper response to this status is to issue a cClose
call.

RETURNS:

C.-SUCCESS CNOENVM
CJLLTYP C-SHUT

16

2.8 cBuild-Reserve Frame Buffer

SYNOPSIS:

unsign32
cBuild(Handle)

unsigned Handle ;

DESCRIPTION:
cBuild 3 reserves a frame buffer into which the caller may build a call or
response frame. This frame may be reused by successive calls to cCal1 or
cRspnd, its contents will not change.

To reserve a static buffer, first call this function. This marks the begin-
ning of a succession of cPushs. Each pushed argument will be stored in
the buffer identified by the Handle argument. Filling of the buffer is ter-
minated by calling cCal1 or cRspnd, or reserving another buffer by calling
cBuild.

The Handle argument must be non zero and its value not have been used in
any previous cBuild calls, More information on frame buffers is provided
in Chapter 1.

RETURNS:

C-SUCCESS CNOENVM

3 This routine is not currently implemented.

17

2.9 cPush-Build Call or Response Arguments

SYNOPSIS: mbox

unsign32
cPush(Handle, Type, Value, Count)

unsign32 Handle;
unsign32 Type;
char *Value;
unsign32 Count;

DESCRIPTION:
cPush takes an RPC argument described by the Type, Value and Count
arguments and loads it into the call or response frame identified by the
Handle argument. The values that the Type argument may have are de-
fined in the header file “cTypes.h” . The possible argument typings follow
the convention presented in (41 with the mapping shown in Table 2.1. In
all cases the Value argument points to where the data to be pushed is
stored. The pointer may be typed other than char if desired. A NIL (0)
value for this pointer is not permitted.

The count argument specifies the number of bytes to be pushed. It may
always be derived by the C language %izeof()” operator. If the data type
is a value, this argument is ignored and the siee is derived from the Type
argument. If the data being pushed is a string, Count should encompass
one byte for the null termination.

If the byte ordering conventions used by the host differ from those specified
by Xerox in [4] cPush will handle byte swapping as appropriate, except
for the case of UNSPECIF, SEQ-UNSP and ARRUNSP.

RETURNS:

CSUCCESS CNOENVM
C-ILLTYP C-INSMEM

18

2.10 cPop-Get Call/Response Arguments

SYNOPSIS:

unsigu32
cPop(Type, Value, Count, RcvCnt)

unsign32 Type ;
char *Value;
unsign32 Count;
unsign32 *RcvCnt;

DESCRIPTION:
cPop removes RPC arguments from either a call or response frame. As
was the case for cPush, the RPC argument is described by the Type,
Value, and Count arguments. In all cases Value is a pointer to where the
recovered argument is to be put. This pointer may be retyped if necessary.
Value may be NIL (0). A NIL value signifies that the argument is to be
popped from the frame but then discarded.

Count must be at least equal to the anticipated number of bytes in the
RPC argument. If the RPC argument is a string or sequence, then Count
may be greater than the actual number of bytes in the argument. If the
argument is a string, Count should include space for termination. In all
cases the location pointed to by RcvCnt will contain the actual number of
bytes popped. Note that RcvCnt is defined as a pointer.

If the byte ordering conventions used by the host differ from those specified
by Xerox in [4], cPop will handle byte swapping as appropriate, except for
the case of UNSPECIF, SEQ-UNSP, and ARR-UNSP.

When the last argument has been removed from the frame, a status of
C-EOM is returned. Any subsequent calls to cPop will continue to return
the status C-EOM.

If a status of C-SHUT is returned, the other side of the Courier connection
has been dissolved. The proper response to this status is to issue a cClose
call.

RETURNS:

CSUCCESS C-NOENVM
CmILLCNT CJLLTYP
C-ILLDS C-ATTN
C-EOM CSHUT

19

2.11 cClose- Dissolve Courier Connection

SYNOPSIS:

unsign32
cClose(userbuf,usercnt)

char *userbuf;
unsign32 usercnt ;

DESCRIPTION:
This call is issued whenever the user or server program is prepared to exit.
It performs the following functions:

l Informs the other side of the connection that the connection is being
terminated. This is done using the END-ENDREPLY termination
protocol described in [5].

l Composes a statistics record and sends it to the statistics server.

l Dissolves own end of the network connection.

userbuf is a pointer to a user supplied set of statistics, this buffer will be
appended to the courier statistics and sent to the listener to be logged.
usercnt is the sise, in bytes, of userbuf.

If a status of C-SHUT is received by cWait, cReady, or cPop, it means
that the other side of the connection has dissolved their connection. The
proper response to this status is to call cClose. Doing so ensures a timely
and clean exit from the network services.

RETURNS:

C-SUCCESS CSHUT
CNOENVM

20

Chapter 3

Writing User and Server
Programs

3.1 Overview

This chapter will present two Courier Programs, spyConsume and spyProduce.
These programs will demonstrate how to use the Courier User Interface routines
which were documented in a previous chapter. Before actually running these
programs they must be registered on the appropriate host. Chapter 4 will show
how this might be done.

The function of these two programs is to obtain and display to Standard
Output information about VAX/VMS users whose host is currently on the net-
work. These two programs work in concert, one user program on the initiating
host (spyconsume), and one server program on the remote host (spyProduce).
The program names are derived from the fact that (at least conceptually) the
user program is requesting the server program to Qproduce” data which the user
program ‘consumes” by formatting and displaying.

Because one of these programs (spyProduce) runs on a VAX/VMS system, a
single system dependent routine, getpRec, is needed. The routine implementa-
tion is not important to understanding this example. Simply keep in mind that
getpRec returns process information in a system independent structure called
pRec. Note that although spyProduce must reside on a VAX, spyConsume has
no such restraints. That is, VAX/VMS user information may be acquired and
displayed on any host that is operating the CRLF software.

The listings below contain only stubs of the complete programs. Declara-
tions, format and output code are omitted in the interests of clarity.

Each listing contains references to notes that follow each example. These
notes provide additional explanations for each example.

21

3.2 The User Program-spyconsume

#include "cMsg.h" /*
(1) #include "cTypes.h" /*

#include lnntMsg.hlt /*
#include lqNodeSpec.defl@ /*

(2) #define TSTPRGM 250 /*
#define VRRSN 0 /*

(3)
struct pRec /*
<
unsigned dio; /*
unsigned CPU; /*
unsigned flts; /*
unsigned login; /*
char proc[l6]; /*
char user[l6]; /*
char prgm[l28]; /*
char term[8]; /*
3;

Error and status return defs. */
Data type definitions */
Network Table Message defs. */
Node specification definition */
Courier Program Number */
Courier Program Version Number */

Typical Process Record */

of direct I/O operations */
CPU usage (10 msec tics) */
Number of page faults */
Login time(UNIX seconds) */
Process name */
User name */
Program name */
Login Terminal name */

main(argc, argv)
int argc;
char *argv[];

(
(4) status = ntGet('n', argv[l], &node)

if(status != NT-SUCCESS)
exit(C,NONODE);

(5) PrgmHndl = TSTPRGM + (node->id << 16);
(6) status=ccStart(PrgmHndl,VERSN,l~clouds restll,TMOUT)

if(status != C-SUCCESS)
exit(status);

(7) /* Ask for a record, print it. Loop until no more records. */

for (A
<

03) if((status = cCall(GETREC)) != C-SUCCESS)
break;

(9) if((status = cWait(NIL)) != C-RETURN)
break;

(10) if((status = MakeRec(&pRec)) != C,EOM)

22

break;
(11) if (strlen(pRec.term))

PrntRec(&pRec);
3

/* Get final status, close down session, and exit. */

(12) if (status == C-ABORT)
CPOP (LONGCARD, &status, 4, NIL) ;

(13) cClose (NIL, NIL) ;
exit (status) ;
3

unsigned
MakeRec(pRec)

struct pRec *pRec;
t
(14)

CPOP (LONGCARD, &(pRec->dio) , 4, NIL) ;
cPop(LONGCARD, &(pRec->cpu) , 4, NIL) ;
cPop(LONGCARD, &(pRec->flts) , 4, NIL) ;
cPop (LONGCARD, & (pRec->login) , 4, NIL) ;
cPop(STRING, pRec->proc, sizeof(pRec->proc), NIL);
cPop(STRING, pRec->user, sizeof (pRec->user) , NIL) ;
cPop (STRING, pRec->prgm, sizeof (pRec->prgm) , NIL) ;
status = cPop(STRING, pRec-Xerm, sizeof(pRec-Xerm), NIL);
return(status);
3

3.2.1 Notes on User Program

1. These four include files will invariably be required in any Courier Pro-
grams. “cMsg.h” defines the value of all Courier errors and status values.
“cTypes.h” defines all possible data types used by the cPush and cPop
routines. “ntMsg.h” defines the value of all Network Table errors and
status values. “NodeSpec.def” describes a structure which contains host
address information. This structure is described in detail in Chapter 5.

2. These two constants define the Courier Program and Version number of
the server program. The choice for the program number is completely
arbitrary. The following hints may help in selecting a program number:

l Must have a value between 1 and 255 (decimal).

l Must not have been previously used on the target host.

23

l SLACnet convention dictates that “experimental” programs range
from 240 to 255 and “well-known” programs begin from number 1.

3. This structure contains information returned from the system dependent
routine getpRec. If this program were to be ported to a system other then
VMS, only this routine would need to be implemented.

4. The utility routine &Get allows the caller to retrieve host address in-
formation by any of the fields defined within the host structure. In this
example a pointer to a host specification is returned that corresponds to
the host name passed in the command line argument. See the next note
for more information.

5. A Program Handle is a 32 bit value that is composed of a program number
and a host ID. The host ID is obtained from the host specification. The
Program Handle will be used to uniquely identify the server program that
should be started. Note that defining the Program Handle in this fashion
ensures system independence.

6. This routine must precede any other Courier routine in the user program.
Its function is to ‘login” the remote user using the context information
“clouds rest”, and start up the server program defined by the Program
Handle and Version number.

7. At this point the remote server program has been started successfully.
The program now goes into a loop asking for a user info record from the
remote host. After receiving the record, it will format and display it to
Standard Output. The program will exit from the loop if it encounters
any errors or if the last record has been retrieved.

8. This step invokes the Remote Procedure Call GETREC. This procedure
gets information on one process, composes it, and transmits it back to the
user program. Note that since this RPC has no parameters, no arguments
were pushed by calls to cPush. Examine the server program to see the
implementation of this remote procedure.

9. At this point the program is waiting for the return status from the RPC.
A value of anything other than C-RETURN indicates an error or no more
records to process.

10. This routine recovers the record returned by the Remote Procedure Call.

11. By convention only those VMS processes with a non zero terminal field
are interactive (i.e. a user process). This program will format and display
only user records.

24

12. RPC errors have two sources: either an error was encountered in invoking
the RPC, or the service represented by the RPC failed. In any case,
recover the status return value for use as a final status.

13. At this point the program is prepared to exit, therefore the cleanup routine
&lose is called. It is always advisable to call this routine before program
exiting, as this ensures a clean disconnection from the network and allows
all CRLF storage to be deallocated.

14. This routine recovers all the return arguments from the RPC and composes
them as a process record. Note fhat the finalcPop should return a value
of C-EOM to indicate that all the data that makes up the record has been
transmitted.

3.3 The Server Program-spyProduce

(1) #define TIMOUT 1000
(2) #define GETREC 1

main ()

/* Timeout Value */
/* Remote Procedure Number */

/* Startup this side of the courier connection. */

(3) if((status = cConnct(TIMOUT)) != C-SUCCESS)
i
cClose(NIL,NIL);
exit (status) ;

(4) /* Field all remote procedure calls. */

fort; ;I
i

(5) if((status = cReady(&callNum)) != C-SUCCESS)
break;

(6) response = Call (callNum) ;
(7) if((status = cRspnd(response)) != C-SUCCESS)

break;

/* Finished... shut down and exit. */

cClose(NIL,NIL) ;

25

exit(status) ;
3

unsigned
Call (Number)

unsigned Number;
<

03) if (Number != GETREC)

(9) t cPush(C,REJECT, LONGCARD, &Number, 4) ;
return(CREJECT) ;
.
J

10) if ((status = getpRec (&pRec)) != C-SUCCESS)

11)
i
cPush (C-ABORT, LONGCARD, &status, 4) ;
return(C,ABORT) ;
. f

12)
cPush(C,RETURN , LONGCARD, & (pRec . dio) , 4) ;
cPush (C,RETURN , LONGCARD, & (pRec . CPU) , 4) ;
cPush(C,RETURN, LONGCARD, &(pRec . f Its) , 4) ;
cPush (C-RETURN, LONGCARD, & (pRec . login) , 4) ;
cPush(C,RETURN, STRING, pRec.proc, sizeof(pRec.proc));
cPush(C,RETURN, STRING, pRec .user, sizeof (pRec .user)) ;
cPush(C,RETURN, STRING, pRec.prgm, sizeof (pRec.prgm)) ;
cPush(C,RETURN, STRING, pRec.term, sizeof(pRec.term));
return(C,RR~u~~) ;
3

3.3.1 Notes on Server Program

1. This constant specifies the timeout value to be used in this Courier session.
The units are 10 millisecond tics, therefore this value corresponds to 10
seconds. Given a reasonable response from each host this value is normally
more than sufficient. If a timeout occurs the function will return the error
XN-TIMOUT.

2. This constant defines an RPC number. Note that the assignment of this
particular number was completely arbitrary.

3. This routine must be the first CUI routine called within the server pro-
gram. It sets up appropriate Courier structures and completes the con-
nection to the remote user program.

4. The program will loop waiting for the remote user program to invoke a

26

procedure. Any error will cause the program to break the loop and exit.

5. The server program waits here for the user program to invoke a RPC. The
remote procedure number will be written to the location callNum.

6. The routine Call is a general purpose remote procedure handler. It is
passed the RPC number, validates this number and invokes the remote
procedure if the validation is successful.

7. After invoking the remote procedure, its
program by invoking the routine cRspnd.

status is returned to the user

8. The first thing the call handler must do is determine whether the remote
procedure requested is part of its repertoire...

9. If not, Courier Protocol specifies that a response of CREJECT be re-
turned to the user program. In addition the requested procedure number
is also returned to allow the user program an additional diagnostic.

10. A legitimate procedure has been requested, in this case a request to get .
one VMS process record. The next record is obtained by a call to the
VMS specific routine getpRec.

11. If the routine fails or retrieves the last record, the status returned will not
be C-SUCCESS. Courier Protocol specifies that an error in the procedure
itself is signalled back to the user program by responding with a status
of C-ABORT. Note that the erroring status is also returned as a pushed
argument.

12. At this point a legitimate VMS process record has been returned. All
the elements of the structure are then returned to the user program by
pushing them as arguments. Note that the user and server program must
cooperate in the enlisting (cPush) and delisting (cPop) of arguments. As
a final step, the remote procedure responds with a status of CRETURN
to indicate to the user program that it successfully completed.

27

Chapter 4

Courier Management .

4.1 Overview

The CRLF package contains a utility to help manage itself. This utility provides
the means to examine log files, register Courier Programs, and start, stop and
query the Courier Access Listener (SNCAL). Each different system element
provides a different user-interface for this utility. The remaining sections will
describe this interface for all appropriate systems.

4.2 VM/CMS
Not written.

4.3 VAX/VMS

On VAX/VMS systems the management utility is implemented as a standard
VMS utility. The name of this Utility is the Courier Management Program
or CMP. To activate the CMP utility, log onto an appropriate account on a
cooperating system and at the DCL prompt, type the following:

$RUlV SNET$DIR:CMP

If the command is successful, you will receive the CMP Prompt. (Courier>).
Following the prompt you may now type in any of the commands defined below.

28

4.3.1 CMP Commands

ACKNOWLEDGE
Requests the Courier Access Listener to respond with its current software
incarnation. A positive response to this command indicates that the Lis-
tener is operating and functional on the indicated host.

FORMAT
ACKNOWLEDGE HostName

COMMAND QUALIFIERS DEFAULTS
None.

RESTRICTIONS
None.

COMMAND PARAMETERS HostName
Specifies the name of the system element to which the query will be
directed. HostName may have a maximum of eight characters. Con-
sult your Network Administrator for a list of active system elements.
If the parameter is not specified the command defaults to the local
(initiating) system element.

DESCRIPTION
This command is one of the easiest ways to determine whether a Listener is
up and running in a functional state. A positive response to this command
returns the current version number in the status message. Normally after
issuing the START command this command would be issued to verify the
listener is actually running.

COMMAND QUALIFIERS
None.

29

ADD .
This command registers a Program within the indicated Program Table.
By registering a Program you make known to the Courier Access Listener
information about the Program.

FORMAT
ADD PrgmNum Low Vers High Vers TranString

COMMAND QUALIFIERS DEFAULTS
/TAHLE=fIle-spec SNET$DIR:PROGRAM.THL

RESTRICTIONS None.

COMMAND PARAMETERS PrgmlVum
Specifies what number the service program will have. Prgmi’Vum is
an integer whose value may range from 1 to 255 (decimal). There is
no default value for this parameter.

LowVers
Specifies the lowest program version number supported on this host.
Version numbers must be positive, and may range from 0 to 32767
(decimal). If a remote user program requests a program version which
does not fall within the range specified here, the error C-ILLPVER
will be returned. On VMS systems program version numbers equate
to RMS file versions numbers. A value of zero (0) specifies a &don’t-
care” value, which on VMS systems translates to utake the highest
available version number”. No default value for this parameter is
allowed.

High Vers
Specifies the highest program version number supported on this host.
Version numbers must be positive, and may range from 0 to 32767
(decimal). If a remote user program requests a program version which
does not fall within the range specified here, the error C-ILLPVER
will be returned. On VMS systems program version numbers equate
to RMS file versions numbers. A value of zero (0) specifies a “don’t-
care” value, which on VMS systems translates to “take the highest
available version number”. No default value for this parameter is
allowed.

30

TranString
Specifies the string which will be mapped to the Program Number.
On VMS systems this string will correspond to either a VMS im-
age or a command procedure name. The file type must be included
in the translation string. The translation string may have a maxi-
mum length of 255 characters. No default value for this parameter is
permitted.

DESCRIPTION
This command registers a Courier Program on a particular host. Reg-
istration makes certain program attributes known to the Courier Access
Listener. These attributes allow the listener to validate requests for server
program startup, and map an image file to the program.

COMMAND QUALIFIERS /TABLE=file-spec
Specifies the name of a file which contains the Program Table data.
If a value to this qualifier is not specified the default table is used.
The default table is SNET$DIR:PROGRAM.TBLl.

1 This is the table used by the current Courier Access Listener.

31

ANALYZE
Examine the contents of the Courier Access Listener’s Event Log. This
log file contains a snapshot of every significant event the Listener has
undergone since it was started or since a new file has been created.

FORMAT
ANALYZE LogFile

COMMAND QUALIFIERS DEFAULTS
None.

RESTRICTIONS
None.

COMMAND PARAMETERS LogFile
Specifies the name of file in which the Listener Events are stored.
This name may be any legal VMS filespec [l]. If this qualifier is not
specified the file defaults to SNET$DIR:CEVENTS.LOG. This file
contains the current event log.

DESCRIPTION
Each time the SNCAL undergoes a significant event it will write a statis-
tics record to its current event file. Events might include client initiated
queries, network transport errors or invalid login attempts. This com-
mand will format and display (to SYS$OUTPUT) each record in the file.
To start a new file the current file should be renamed. The next time the
SNCAL has an event to log, it will not be able to open the current file,
and will then create a new one.

COMMAND QUALIFIERS
None.

32

EXIT
Returns the CMP client to DCL command level. This command performs
exactly the same function as the QUIT command.

FORMAT
EXIT

COMMAND QUALIFIERS DEFAULTS
None.

RESTRICTIONS
None.

COMMAND PARAMETERS
None.

DESCRIPTION
None.

COMMAND QUALIFIERS
None.

33

HALT
The indicated Courier Access Listener is shut to new requests and stopped.
Any service programs currently running are aborted.

FORMAT
HALT HostName

COMMAND QUALIFIERS DEFAULTS
/A CCESS=access-con trol-s king None.

RESTRICTIONS
See description. 2

COMMAND PARAMETERS HostName
Specifies the name of the system element on which the Listener to be
halted is located. HostName may have a maximum of eight charac-
ters. Consult your Network Administrator for a list of active system
elements. If the parameter is not specified, the command defaults to
the local (initiating) system element.

DESCRIPTION
This command will force the SNCAL detached process to voluntarily
delete itself. In addition, any service programs that were started by this
SNCAL will be aborted.

Before halting itself, the Listener will write a record to its Event file to
mark the event. A time-stamp plus the name of the client who halted
SNCAL is stored in this record. This record may be recovered by invoking
the ANALYZE command described earlier.

The name of the client that halted SNCAL is derived from the %lient-
name” portion of the access-control-string (ACS). Before halting, SNCAL
verifies that the client has the right to make the request. This is done
by comparing the “password” portion of the ACS with a value stored in
the SNCAL database. An invalid match will return an error status, and
SNCAL will not be halted.

2 This command is not currently implemented. It will perform the same function as the
SHUT command

34

COMMAND QUALIFIERS /ACCESS=access-control-string
Access to SNCAL is determined by the value of this qualifier. This
qualifier has the form: “clientname password”. The clientname is
used by SNCAL to log (in its Event file) the identification of the re-
quester. The password is used to validate the right of the requester
to make a particular request of SNCAL. The access-control-string
(ACS) may have a maximum length of 128 characters. The client-
name is provided by the client and the correct password may be found
by consulting your Network Administrator. There is no default value
for this string.

35

HELP
Invoke the online help documentation.

FORMAT
HELP

COMMAND QUALIFIERS DEFAULTS
None.

RESTRICTIONS
None.

COMMAND PARAMETERS
None.

DESCRIPTION
After entering this command the client may obtain online help for this
utility. This includes command syntax and examples.

COMMAND QUALIFIERS
None.

36

LIST
This command formats and displays the contents of a specified Program
Table database.

FORMAT
LIST PrgmNum

COMMAND QUALIFIERS DEFAULTS
/TABLE=file-spec SlVET$DIR:PROGRAM. TBL

RESTRICTIONS
None.

COMMAND PARAMETERS PrgmNum
A program number that corresponds to a program record within the
program table. This number specifies which record within the pro-
gram table will be displayed. This parameter is an integer whose
value may range from 1 to 255 (decimal). If the parameter is not
specified, all valid records within the given table will be displayed.

DESCRIPTION
A program table contains Program Records, each record describing a pro-
gram number, low and high program versions and a translation string.
The exact format of a record is described in Chapter 5. A program record
defines to the listener the characteristics of a service program. To allow
a remote service program to run on the local system element it must be
registered. Registering a program creates a record within the Program
Table.

COMMAND QUALIFIERS /TABLE=fle-spec
Specifies the name of a file which contains the Program Table data.
If a value to this qualifier is not specified the default table is used.
The default table is SNET$DIR:PROGRAM.TBL3.

3 This is the table used by the current Courier Access Listener.

37

QUIT
Returns the CMP client to DCL command level. This command performs
exactly the same function as the EXIT command.

FORMAT
QUIT

COMMAND QUALIFIERS DEFAULTS
None.

RESTRICTIONS
None.

COMMAND PARAMETERS
None.

DESCRIPTION
None.

COMMAND QUALIFIERS
None.

38

REMOVE
This command deletes a Program Record from a specified Program Table.

FORMAT
REMOVE PrgmNum

COMMAND QUALIFIERS DEFAULTS
/TABLE=file-spec SNET$DIR:PROGRAM.TBL

RESTRICTIONS
None.

COMMAND PARAMETERS PrgmNum
The program record to be deleted. This number specifies which
record within the program table will be deleted. This parameter
is an integer whose value may range from 1 to 255 (decimal). No
default value for this parameter is permitted.

DESCRIPTION
The program record which corresponds to the program number is removed
from the program table. If the specified table is the current table, this
command prohibits the service program associated with program number
from running on the host.

COMMAND QUALIFIERS /TABLE=iEle-spec
Specifies the name of a file which contains the Program Table data.
If a value to this qualifier is not specified the default table is used.
The default table is SNET$DIR:PROGRAM.TBL4.

4 This is the table used by the current Courier Access Listener.

39

SHUT
The indicated Courier Access Listener is shut to new requests. Any service
programs currently operational are allowed to run to completion before the
listener actually stops.

FORMAT
SHUT HostName

COMMAND QUALIFIERS DEFAULTS
/A CCESS=access-con trol-string None.

RESTRICTIONS
None.

COMMAND PARAMETERS HostName
Specifies the name of the system element on which the Listener to be
halted is located. HostName may have a maximum of eight charac-
ters. Consult your Network Administrator for a list of active system
elements. If the parameter is not specified, the command defaults to
the local (initiating) system element.

DESCRIPTION
This command will force the SNCAL detached process to voluntarily
delete itself. Before shutting down, the Listener will write a record to
its Event file to mark the event. A time-stamp plus the name of the
client who shutdown SNCAL is stored in this record. This record may be
recovered by invoking the ANALYZE command described earlier.

The name of the client that shut SNCAL is derived from the ‘clientname”
portion of the access-control-string (ACS). Before shutting, SNCAL ver-
ifies that the client has the right to make the request. This is done by
comparing the ‘password” portion of the ACS with a value stored in
the SNCAL database. An invalid match will return an error status, and
SNCAL will not shutdown.

Any service programs that are currently running will not be affected. See
the HALT command if this functionality is required.

40

COMMAND QUALIFIERS /ACCESS=access-control-string
Access to SNCAL is determined by the value of this qualifier. The
access-control-string has the form: Qlientname password”. SNCAL
uses this clientname to log (in its Event file) the identification of
the requester. The password is used to validate the right of the
requester to make a particular request of SNCAL. The access-control-
string (ACS) may have a maximum length of 128 characters. The
clientname is provided by the client and the correct password may
be found by consulting your Network Administrator. There is no
default value for this string.

41

START
The Courier Access Listener on the local system element is started.

FORMAT
START

COMMAND QUALIFIERS DEFAULTS
/DEBUG=stat& None.

RESTRICTIONS
To start the Listener the client requires SETPRV.

COMMAND PARAMETERS
None.

DESCRIPTION
This command will start the detached process that comprises the Courier
Access Listener (SNCAL). This process has the name SNCAL to allow
compatibility with the corresponding VM/CMS listener. The SNCAL
will field any requests for remote program service. See above sections in
this manual for a discussion of service programs.

COMMAND QUALIFIERS /DEBUG=status
SNCAL can be made to run in debug mode. The status is either ON
or OFF. The default is OFF. If ON is specified then all output, error
and informational, will be logged to SNET$DIR:SNCALERR.LOG
and SNET$DIR:SNCALOUT.LOG.

42

VERSION
Requests the Courier Access Listener to respond with SNCAL version
number. A positive response to this command indicates that the Listener
is operating and functional on the indicated host.

FORMAT
VERSION HostName

COMMAND QUALIFIERS DEFAULTS
None.

RESTRICTIONS
None.

COMMAND PARAMETERS Ho&Name
Specifies the name of the system element to which the query will be
directed. HostName may have a maximum of eight characters. Con-
sult your Network Administrator for a list of active system elements.
If the parameter is not specified the command defaults to the local
(initiating) system element.

DESCRIPTION
This command is the one of the easiest ways to determine whether a
Listener is up and running in a functional state. A positive response to
this command returns the current SNCAL version number.

COMMAND QUALIFIERS
None.

43

4.3.2 CMP Examples

Three examples are given. In all examples the client has first invoked CMP util-
ity. The command information that the client inputs follows the CMP prompt.
Any response or prompt from the utility is shown in normal typewriter text
and client input is shown in slanted text.

The first example shows how to start and stop the local Courier Access Lis-
tener (SNCAL). The client first tries to start a SNCAL that is already running.
After noting the error message from the START command, the client halts
the running SNCAL and starts up a new incarnation. After starting the new
SNCAL, the client probes the SNCAL with an ACKNOWLEDGE command to
determine that indeed the SNCAL was started up properly. The Access Control
String used in this example is “CLOUDS REST”, where CLOUDS is the client’s
account name, and REST is the network password.

Courier>START
%SYSTEM-F-DUPLNAM, duplicate name
Courier>HALT/ACCESS=“CLOUDS REST”
XCR-I-HALT, c ourier Access Listener unconditionally halted
Courier>START
%CR-I-START, Start processing
Courier>ACK
%CR-I-ACK,Courier Listener up and running Version 20001
Courier>EXIT

44

The second example shows how the client would examine the contents of the
current SNCAL Event log. SNCAL writes Events to the log file SNET$DIR:
CEVENTS.LOG. To initiate a fresh copy of this log file the client should rename
the current log file. This will end logging on the present file and start up
a new one. In this example the client renames (with a DCL command) the
current log file to MYFILE.DAT and then examines it with the CMP utility
command ANALYZE. Any subsequent events will be logged to a new copy of
SNET$DIR:CEVENTS.LOG. Following the example, notes are shown which
explain each field in the output display.

$RENAME SNET$DIR:CEVENTS.LOG MYFILE.DAT
$ R UN SNET$DIR:CMP
Courier>ANALYZE MYFILE.DAT
Event Record # 1 Recorded on: Wed Sep 4 17:47:11 1985
Event Source is the acknowledge Task
First status :
%CR-I-ACK,Courier Listener up and running Version 20001
Second status:
%CR-I-ACK,Courier Listener up and running Version 20001
Qualifier value (hex) = 20001
Event Message: CLOUDS
Quit (Y/N) ? Y
%CR-I-ANAL, Analyzed events from file: DISKO:[MYDIR]MYFILE.DAT;I
Courier>EXIT

45

Notes on the formatted display

1. Indicates the Event number and the time and date the event was recorded.

2. Indicates within the Listener which NCX task was responsible for gener-
ating the Event. This field may be used as traceback tool in discovering
errors within the Listener. In this case the Acknowledge task was servicing
an external query for its software incarnation.

3. Each event generates two status values. While the exact meaning of the
status depends on the particular event, in general the first status is the
error or event and the second is the Listener’s response to it. This example
indicates that an external query was requested.

4. The response of the Listener to the request for acknowledgment. In this
case the Listener echoed the query, which indicates a positive response to
the query.

5. This field is completely event dependent. It may be used in debugging
any unusual Courier events. In this example it contains the software in-
carnation of the Listener.

6. Each event generates an event dependent text “message”. The message
in this case is the account name of the client who made the ACK request.

7. After formatting and displaying one event, the utility prompts whether
the client wishes to see more Events. Typing a <CR> will get the next
event, a ‘Yes” will exit the client from the display. In this example the
client has elected to examine only this one display.

8. After exiting the event display, the status return will indicate the name of
the log file that was analyzed.

The final example will demonstrate how a client registers a service program.
Registering a program makes the program known to the Listener. If the program
is known to the Listener it may be remotely ‘run” from another system element.
Note that registering a program implies no special privileges for the program.
Privileges are provided by the program’s environment (see Chapter 1) or by
installing the program image with the VMS install utility. For instance, the
program used in this example requires WORLD privilege. Therefore, the remote
client must either provide an environment with WORLD privilege (using the
appropriate Access-Control-String) or use the VMS install utility and give the
image WORLD privilege [2].

This example registers the service program that was discussed in the chapter
on writing user/server programs. By convention program numbers 240 through
255 (decimal) are used as experimental programs, therefore any unused number
within this range could be used. The example will use program number 250. The

46

VMS image that will be run when program 250 is stipulated on the remote end
is: SNET$DIR:SPYSERVER. Therefore the translation String specified must
be SNET$DIR:SPYSERVER.EXE. Note that the file type is required.

The example specifies that only program versions in the range of 0 to 100 will
be supported. Since the VMS listener maps program versions to file versions, the
user program would have to specify a version of SNET$DIR:SPYSERVER.EXE
in the range of 1 to 100, for example SNET$DIR:SPYSERVER.EXE;55. Note
that specifying a version number in no way guarantees that version actually
exists on the host. Specifying a program number outside this range would
result in the error CJLLPVER being returned by the ccStart function.

By specifying that version number zero (0) is supported, the program regis-
trar has indicated that if the user program does not specify a version number,
then the listener will default a number, in this case the highest version available.

The commands below will show how to register the program with the above
parameters, and then how to list the program table, verifying that the program
is correctly registered.

$RUNSNET$DIR:CMP
Courier>ADD250
-Enter Low Version:0
-Enter High Version:100
Inter Translation String:SNET$DIR:SPYSERVER.EXE
%CR-I-MODTBL, Modified Table: SNET$DIR:PROGRAM.TBL
Courier>LIST 250

Prgm Versions Translation
Numbr Low/High String
-mm-- --------- ---------------------------------------

250 o/100 "SNET$DIR:SPYSERVER.EXE"

%CR-I-LIST, Entry(s) displayed from file: SNET$DIR:PROGRAM.TBL
Courier>EXIT

47

Chapter 5

Utility Routines

5.1 Overview

The routines described below are common to all systems elements running the
SLACnet software. The client may call these routines in Courier programs or
use them to implement client designed utilities. For examples on how to use
some of these routines see Chapter 3.

5.2 cQuery-Query a Listener

SYNOPSIS:

unsign32
cQuery(HostName, Acs, Answer)

char *HostName;
char *Acs ;
unsigned Answer Cl ;

DESCRIPTION:
cQuery allows the client to issue a query to a Courier Access Listener.
After issuing the request, an answer to the query will be returned within
a caller supplied buffer.

The Listener to which the query is directed is determined by the HostName
argument. This argument is a pointer to a character string whose contents
contain the name of the host to which the query will be directed. A
host name may have a maximum of nine characters (including NULL
termination). The list of legal host names may be obtained from the
Network Administrator. If the pointer is NIL (0) it is assumed that the
request will be directed to the Listener on the local host.

48

The Acs argument is a pointer to a character string which will contain
the Access Control Information for the query. This string may have at
most 128 characters including NULL termination. This string has the
form: “Account Password”. Where Account is the client’s account name,
and Password is the network password. The value for this password may
be obtained from the Network Administrator. The Access-Control-String
will be used to validate the client’s right to make the indicated query.

The Answer argument is a pointer to a vector of three longwords. This
vector will contain the answer to the client’s query. The first longword
must be supplied by the client and will contain the query the client desires
to make. The following are the permitted queries:

. C-RESET

. C-ACK

. C-HALT

. C-SHUT

The meaning of each query may be found in Appendix A.

RETURNS:
If the routine was able to query the Listener successfully, it will return a
value of C-SUCCESS. If not, a value of CJOANS will be returned. Upon
return from the routine, the second and third longword of Answer will
contain the Listener’s answer to the query. If the second longword is equal
to the first, the query was executed successfully. The third longword will
contain a qualifier value for the second longword. Its value is completely
query dependent. For example, in a CACK query, if the second longword
comes back with a value of C-ACK, the third longword will contain the
Listener’s version number.

49

5.3 ntGet-Get a Host Specification

SYNOPSIS:

unsign32
ntGet(KeyType, Key, nodeptrptr)

char KeyType;
char *Key;
struct nodespec **nodeptrptr;

DESCRIPTION:
This routine retrieves a host specification from the host database, using
as a key a field within the host specifier. A host specification provides
address information for a specific system element. This specification is a
structure with a format as shown in Table 5.1. A header file that defines

Node ID (2 bytes)
Node Name (9 bytes)

Ethernet Address (12 bytes)

Table 5.1: Node Specification

this and the Ethernet address structure have the names “NodeSpec.def”
and “NetAddr.def”.

The KeyType argument determines the type of key for the search. The
Key argument determines the value of the key.

If KeyType has the value ‘I’ then Key contains a host ID. If Keytype has
the value ‘N’, then Key contains an host name. If KeyType has the value
‘A’, then Key contains an Ethernet Address. The value of Keytype is
insensitive to case, that is, values of ‘I’ or ‘i’ are equivalent.

Note that if KeyType specifies search by host ID (‘i’) then Key contains
. the ID value. If KeyType specifies an Ethernet Address or a host name,

then Key is considered to be a pointer to either a structure or a character
string.

RETURNS:
If the routine succeeds, NT-SUCCESS is returned and NodePtrPtr points
to the value requested. If the routine fails, the error status is returned
and NodePtrPtr is NIL (0).

50

5.4 Courier Program Number Routines

The Courier Program Number routines 1 allow the client to access and modify
the Courier Program Database. This database is a file that contains Program
Records. A Program Record is a 512 byte structure with a format as shown in
Table 5.2.

Translation
String

Table 5.2: Program Record

With the exception of the translation string, each field in the structure is
4 bytes long. The translation string Field is 492 characters long, with the
actual string length determined by the location of the NULL termination. The
structure is described by ‘pnStruct.h”.

The Program Number is a 32 bit value which is derived by adding a SLAC
defined offset to a client assigned value. This client value may range from 1
to 255. In the discussion below, this SLAC defined offset is given the symbolic
name OFFSET. Its actual value may be found in the header file “pnUser.h”.

In the interest of reentrancy, all Program Number routines should begin
with a call to pnAlloc and end with a call to pnFree. This will ensure that all
necessary storage is allocated and deallocated correctly.

1 Dave Wiser designed and implemented all Program Number routines and the ntGet
routine.

51

5.4.1 pnAlloc -Initiate Access to Program Routines

SYNOPSIS:

unsign32
pnAlloc (PrgmTbl, CacheSiz)

char *PrgmTbl;
unsign32 CacheSiz;

DESCRIPTION:
This routine should be called before using any other Program Number
routine. Its function is to allocate and initialize any resources the Program
Number routines will require.

The PrgmTbl argument is a pointer to a string which names the file that
cant ains the Program Records.

CacheSiz determines the size (in units of program structures) of the cache
that the pnGet routine will use when retrieving program records. By
caching Program entries a significant performance advantage is realized.
By specifying a large value for this, the caller would pay a memory penalty.
Typically a value of four (4) is used for this argument. This would indicate
that the last four Program Records accessed would be cached.

RETURNS:
If the routine is successful a Qhandle” is returned. This handle is used in
all subsequent calls to the Program Number routines. If the routine fails,
a zero (0) value is returned.

52

5.4.2 pnAdd-Add or Modify a Program Number

SYNOPSIS:

sign32
pnAdd(Handle, PrgmEntry)

unsign32 Handle ;
struct pnStruct *PrgmEntry;

DESCRIPTION:
This routine will either modify an existing program record or add a new
record. The Record is defined by the PrgmEntry argument. As a minimum
the program number field in this structure must be filled.

The Handle argument is the value returned by the pnAlloc routine.

The PrgmEntry argument is a pointer to program record structure. Using
the value within the program number field, a program record is accessed
from the program table and its contents replaced with the record pointed
to by PrgmEntry. If it is necessary to delete a record, this routine should
be called with an appropriate number in the program number field and
all other fields should be filled with NIL (zero) values.

RETURNS:
If successful, the value (Program Number - OFFSET) is returned. This
will always be an integer between 1 and 255. If the routine fails, a value
of minus one (-1) will be returned.

53

5.4.3 pnGet-Get a Program Entry

SYNOPSIS:

struct pnStruct
*pnGet (Handle, PrgmNum)

unsign32 Handle ;
unsign32 PrgmNum;

DESCRIPTION:
This routine is called to retrieve (by program number) a program record
from the program database.

The Handle argument is the value returned by the pnAlloc routine.

The PrgmNum specifies the program record to be returned. A program
number must include the SLAC assigned offset (see above). For example,
to specify Program Number 255 to this routine, PrgmNum would be equal
to 255 + OFFSET.

RETURNS:
If the routine succeeds a pointer to the Program Record is returned. If
the routine fails, a NIL (0) pointer is returned.

54

5.4.4 pnFree-Quit Program Number Routines

SYNOPSIS:

unsign32
pnFree (Handle)

unsign32 Handle ;

DESCRIPTION:
This routine frees all resources allocated by a call to pnAlloc. A call to
pnAlloc should always be paired with a corresponding call to pnFree.

The Handle argument is the value returned by the pnAlloc routine.

RETURNS:
If the routine succeeds, a value of one (1) is returned. If the routine fails,
a value of zero (0) is returned.

55

Appendix A

Status Returns

A.1 Overview
Courier functions return two levels of status returns: Courier Generated Status
Values and Network Service Status values. Both levels generate values that may
be converted to text strings by using the Message Conversion Facility described
in [3]. All possible status values are listed below, along with their meanings and
suggested user action.

A.2 Courier Status Returns

CABORT Explanation: Remote procedure completed, but a failure status
was noted.

User Action: None. Informational only, see cRspnd routine.

C-ACK Explanation: If received as a result of a query operation to the Courier
Access Listener (SNCAL), indicates that the SNCAL is in an opera-
tional state. If used in a query operation the listener is being asked
to respond with its software version number.

User Action: None. Informational only.

CATTN Explanation: The Network Service Layers have reported an Atten-
tion Packet.

User Action: Retry Program. If problem persists contact Network Ad-
ministrator. Attention packets should not be directed to the listener,
therefore a serious protocol problem exists.

56

CBOM Explanation: No more arguments available from a Call or Response
Frame.

User Action: None. Informational only, see cPop routine.

CJLLCNT Explanation: The number of bytes anticipated in an argument is
less than the actual number of bytes in the argument.

User Action: This is a fatal user protocol error. Program must be re-
tried with a corrected byte Count. Any further cPop’s will probably
corrupt the Courier datastream.

ClLLDS Explanation: Invalid Data Stream Type.

User Action
serious

* Consult Network .
protocol error.

Administrator, as this status indicates a

C-ILLHNDL Explanation: Handle argument specified was invalid, or insuffi-
cient memory to allocate a Call or Response Frame.

User Action: Check that handle argument is non zero. Make sure that
buffer allocation and size are sufficient.

ClLLPAC Explanation: Courier Access Listener (SNCAL) received a packet
with a type field that it cannot recognize.

User Action: Could appear in SNCAL’s Event Log. Report to Network
Administrator, as this indicates a serious protocol error.

CZILLPRGM Explanation: The program number specified in the c&tart
function call is invalid or is not registered on remote host.

User Action: Check that the number has been constructed correctly (See
Chapter 1). Contact Network Administrator or System Manager, to
make sure the program is registered on the remote host.

C-ILLPVER Explanation: Courier Program with this Version Number is not
registered in Program database, or the user program has specified a
version out of the range specified in the program record.

User Action: Contact Network Administrator, and make sure this version
number is registered. Check to make sure that the VrsNum has been
correctly specified in the ccStart routine.

CILLPWD Explanation: The Password contained as part of an Access Con-
trol String was not valid.

User Action: It was attempted to start a service program which contained
an invalid ACS. This error will generate a significant event logged by
the listener. Persistent occurrences of this message could indicate an
attempt to compromise system security. If returned by ccStart the
Acs argument was invalid or could not be read.

57

CJLLTYP Explanation: The Courier Call or Response Frame is corrupted.

User Action: Retry Program. If problem persists report to Network Ad-
ministrator, as this error indicates a serious protocol error.

ClLLVERSN Explanation: Courier Version Number invoked is either invalid
or not supported.

User Action: Using incompatible versions of Courier User Interface Li-
brary. Consult Network Administrator to make sure correct version
of the CRLF are installed on the offending hosts.

ClNSMEM Explanation: Unable to find enough memory to allocate storage
for Courier Context Block. Frame buffers full or all allocated buffers
in use.

User Action: Memory resources for program must be expanded. Contact
System Manager. Increase the default size and allocation number of
frame buffers.

C_NOAFILE Explanation: On a call to ccStart a user authorization file on
the service host could not be found.

User Action: Consult System Manager on the service host.

C-NOENVM Explanation: Cannot locate the Courier Context Block.

User Action: User program could
sult Network Administrator.

be corrupting Courier Structures. Con-

ClvOLOGS Explanation: When a client started up the Courier Access Lis-
tener (SNCAL), its log files could not be opened.

User Action: Consult System Manager.

C-NONODE Explanation: Host specified is invalid or does not exist.

User Action: Check that program number is constructed correctly. In a
query operation make sure that a legal host name was specified.

CNOPCKT Explanation: The Courier Access Listener (SNCAL) cannot find
enough resources to contain an Ethernet Packet.

User Action: This message could appear in the SNCAL event log file. If so
the listener will have crashed itself, as this status constitutes a fatal
error. Restart SNCAL. If this message persists consult the Network
Administrator or System Manager.

C-NOPRIV E I t’ xp ana ion: With given Access Control String remote program
cannot perform its indicated function.

User Action: See Network Administrator.

58

CiNOSTART Explanation: The remote Courier Access Listener could not
start up your service program.

User Action: Could indicate a resource problem on the remote host. Retry
program. Consult System manager, or Network Administrator if
problem persists.

CREJECT Explanation: Remote procedure was not registered within service
program.

User Action: None. Informational only, see cRspnd routine.

CRESET Explanation: If received as a response to a query to the Courier
Access Listener (SNCAL) 11 a current log files have been closed and a
new set has been opened. If used as a query, SNCAL is requested to
reset all log files.

User Action: After receiving this status the user may examine the latest
log files.

CRETURN Explanation: Will be returned only by the cWait routine. Indi-
cates that the remote procedure invoked by a previous cCal1 com-
pleted with no errors.

User Action: None. Informational only.

CSHUT Explanation: If received as a result of a Courier query operation,
indicates that the Courier Access Listener (SNCAL) has been shut
to any new service requests. Current service requests are allowed to
go to completion. If used as a query, it is a request for SNCAL to
shut itself. If returned by a CUI routine, it indicates that the other
end of a Courier Session has been dissolved.

User Action: If received as a result of a listener query operation, infor-
mational only. If received from a CUI routine, then the user should
issue a cClose.

C-STOP Explanation: If received as a result of a Courier query operation,
indicates that the Courier Access Listener (SNCAL) has stopped. If
used as a query, it is a request for SNCAL to stop itself.

User Action: None. Informational only.

C-SUCCESS Explanation: Courier Function call returned with no errors.

User Action: None. Informational only.

59

A.3 Network Services Status Returns

XNABORT Explanation: Signaled to abort.

XNBADAID Explanation: Access-Id not in use or bad.

XNEADHST Explanation: Something wrong with host number.

XNEADNET Explanation: Something wrong with network number.

XNBADSOK Explanation: Something wrong with socket.

XNEUFF Explanation: Resource limitation at destination.

XN-CONNS Explanation: No more ccbs available.

XN-CONOPE Explanation: Connection already open.

XN-CSUM Explanation: Checksum or pck fmt error at destination.

XNDIFFER Explanation: Echoed packet is different.

XNJZRR Explanation: Unknown error packet returned.

XNlETNADR Explanation: Ethernet addresses conflict at init.

XNHIMDED Explanation: Breath-of-life failure.

XNHOPS Explanation: Packet routed too many times (router loop).

XN-KILL Explanation: Signalled to die.

XNJVETBRO Explanation: Destination network does not support broad-
cast.

XN-NETHW Explanation: Interface Error - Hardware related.

XNJYIETNUM Explanation: Network number already defined.

XN_NETOS Explanation: Interface Error - OS related.

XN-NOAID Explanation: No ACBs for external client access.

XNiNOISMI Explanation: Not an Interlan controller.

XNiNOMEM Explanation: Out of dynamic memory.

XN-NONCB Explanation: No more ncb available.

XNiNONET Explanation: Unknown network number.

XN_NONUM Explanation: Unknown locally connected network number.

60

XNNOPEPR Explanation: PEP response not allowed without request.

XN-NORTE Explanation: Out of rte’s on initialization.

XN_NOSOK Explanation: Local socket does not exist.

XNLNOSTAT Explanation: No statistics available.

XNNOTOPE Explanation: Connection not open.

XNJ?ATH Explanation: No path to network from router.

XNRSUM Explanation: Checksum or packet error at router.

XNRXXX Explanation: Unspecified error at router.

XN-SIZE E pl x anation: Packet too large for router.

XN-SOCK Explanation: No such socket at destination.

XNSOKEXI Explanation: Local socket already in.

XNSOKFUL Explanation: No more local sockets available.

XN,TIMOUT Explanation: Network timeout occurred.

XN-TOOBIG Explanation: Data (packet) too large.

XN-UXXXX Explanation: Error number reserved for future use.

XN-WINDOW Explanation: Client’s receive window too large.

XNXXX Explanation: Unspecified error at destination.

61

Bibliography

[I] VAX/VMS DCL Dictionary Digital Equipment Corporation, Maynard
Massachusetts, VAX/VMS Version 4.2 edition, July 1985.

[2] VAX/VMS Install Utility Reference Manual. Digital Equipment Corpora-
tion, Maynard Massachusetts, VAX/VMS Version 4.2 edition, September
1984.

[3] David Wiser The Message Conversion Facility for VM and VAX/VMS.
April 1986. Paper in Progress.

(41 Courier: The Remote Procedure Call Mechanism. Xerox Corporation,
Stamford, Connecticut, 06904, XSIS 038112 edition, January 1981.

[5] Internet Transport Protocols. Xerox Corporation, Stamford, Connecticut,
06904, XSIS 028112 edition, January 1981.

62

	slac-r-314a.pdf
	slac-r-314b.pdf

