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NONPARAMETRIC CONDITIONAL ESTIMATION 

Abstract 

Many nonparametric regression techniques (such as kernels, nearest neighbors, and smoothing splines) 

estimate the conditional mean of Y given X = z by a weighted sum of observed Y values, where observations 

with X values near z tend to have larger weights. In this report the weights are taken to represent a finite 

signed measure on the space of Y values. This measure is studied as an estimate of the conditional distribution 

of Y given X = z. Prom estimates of the conditional distribution, estimates of conditional means, standard 

deviations, quantiles and other statistical functionals may be computed. 

Chapter 1 illustrates the computation of conditional quantiles and conditional survival probabilities on 

the Stanford Heart Transplant data. Chapter 2 contains a survey of nonparametric regression methods and 

introduces statistical metrics and von Mises’ method for later use. 

Chapter 3 proves some consistency results. The estimated conditional distribution of Y is shown to 

be consistent in the following sense: the Prohorov distance between the estimated and true conditional 

distributions converges in probability to zero. The required conditions are: that the distribution of Y 

given X = z vary continuously with z, that the weights regarded as a measure on the X space converge 

in probability to a point mass at z, and that a measure of the effective local sample size tend to infinity 

in probability. A slight strengthening of the conditions allows one to establish almost sure consistency. . 

Consistency of Prohorov-continuous (i.e. robust) functionals follows immediately. IA the above, the X and 

Y spaces are complete separable metric spaces. In case Y is the real line, weak and strong consjstency results 

are established for the Kolmogorov-Smirnov and the Vasserstein metrics under stronger conditions. 

Chapter 4 provides conditions under which the suitably normalized errors in estimating the conditional 

distribution of Y have a Brownian limit. Using von Mises’ method, asymptotic normality is obtained for 

nonparametric conditional estimates of compactly differentiable statistical functionals. 

This research supported by Office of Naval Research Contract N00014-83-K-0472; supported National Science 
Foundation Grant DMS86-00235 and issued as Department of Statistics Report No. 265; supported by the 
Department of Energy Contract DE-AC03-76SF00515 and issued as Stanford Linear Accelerator Center 
Report No. 309; and by a Natural Sciences and Engineering Research Council of Canada Postgraduate 
Scholarship. 
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1 Introduction 

This report is concerned with estimation of aspects of the conditional distribution of a 

random variable Y given another random variable X. 

The most familiar example is the estimation of the conditional expectation of Y given 

X = 2. When this is carried out for a large number of z’s the results can be presented aS 

a curve. The curve is usually plotted together with the data used to estimate it. It then 

may be used in informal data analysis, or its shape may be used to select or confirm a 

parametric model, or finally it may be used for the prediction of Y values corresponding 

to future X values. 

No serious analysis of a single sample of data would stop at reporting the sample 

mean. Similarly in the bivariate case there is a need to go beyond the examination of 

the estimated conditional mean. EMmating conditional standard deviations ia a natural 

first step in this direction. For the data axmly&, a plot with a running mean and with 

curve8 equal to the running mean plus or minus two running standard deviatioxm would 

be useful in assessing whether the data are heteroscedastic. If they are, such a plot would 

show where and by how much the the variation fluctuates. Much has been written about 

how hard it is to perceive a conditional mean in a scatteiplot without the presence of an 

estimating curve. Surely the same is true about the perception of conditional variance 

or skewness. Where conditional variances are equal, they can seem to be larger where 

the marginal distribution of X is greater, because visual impressions are dominated by 

extreme observations. For prediction, an estimate of the conditional scale of Y would 

seem essential in order to provide an interval about the prediction. 

Often in one sample situations the mean and standard deviation are not the most 
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convenient way to study the data. For example in survival analysis the mean of. the 

failure times is difficult to assess in the presence of censoring but the median and other 

qua&leg are readily obtained. Where outliers are suspected the mean is often replaced 

by a trimmed mean or some other robust estimator. Low quantiles are the natural choice 

when one studies breaking strengths of materials. In bivariate situations where the Y 

values are subject to censoring or outliers, or in which extreme Y quantiles are of interest 

it is natural to compute running quantiles or robust estimators instead of a regression 

curve. 

We suppose that the estimation is performed in two stages. First at each point z in 

a grid, the conditional distribution of Y given 2 is estimated. Then at each grid point 

a function that takes distributions and returns means, variances, quantiles or whatever 

is applied. The results are plotted against the grid points and joined up to provide the 

estimate of the curve. The distribution estimators considered are all nonparametric and 

discrete. They are reweightings of the Y sample adapted from weights used in nonpara- 

metric regression techniques. 

Figure 1 (page 7) presents the Stanford Heart Transplant data. The horizontal axis 

is the age at entry to the transplant program of a patient. The vertical uia is the base 10 

logarithm of the number of days the patient was observed to survive after the operation. 

There are 157 data points. Points marked “X” represent times of death and points marked 

u+n represent censoring times. All that is known about the time of death for a censored 

patient is that it exceeds the time recorded. 

Other variables were recorded, but the survival time is of primary interest and the 

age at entry is the most useful predictor of it. The most notable feature of this data is 

the drop-off in survival at entry ages over 50 years. This feature is hard to see in the raw 

data, especially because of the censoring. 

The observed ages were used to form a grid and at each such age a reweighting of the 

ordered pairs (survival time, censoring indicator) was obtained. (The weights were based 
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on symmetric triangular nearest neighbors. See Sec. 2.2. The k = 23 nearest neighbors 

on each side of the target point were used.) Because interest centers on the distribution 

of survival times, the censoring is a nuisance. It is usually handled by calculating the 

product-limit estimator of the survival function. A convenient way to do this for weighted 

distributions is via the Oredistribute to the right” algorithm of Efron (1967). 

In Figure 5 (page 8) thkre are 5 estimated conditional survival quantiles corresponding 

to levels (.1,.3,.5,.7,.9). The quantile curve labelled .7 represents an estimate of the (log) 

time at which 70% of patients will still be alive given their respective ages at entry. Some 

of the survival quantiles are the&elves cetired. For example, the time at which only 

10% of 25 year olds will remain is censored. This is because there was more than 10% - 

censoring in the data used to estimate the survival time given an age of 25 years at entry. 

The sharp drop in the median survival time is also evident in the 70% survival curve 

and to a lesser extent in the other survival deciles. 

Another way to look at the ensemble of estimated survival probabilities is to estimate 

_ for each z, the conditional probability of survival past a certain time. Figure 3 (page 9) 

contains a plot of such curves for the probability of survival past 10, 100, and 1000 days. 

Also plotted are the probabilities of surviving aomejnterpolated times, roughly 3,32 and 

316 days. (The estimated 3 day survival probability is 1 for older patients, so that curve 

disappears at the right of the figure.) The probability of survival past 100 days drops 

sharply at the age of 50. So does the probability of survival past 1000 days and the curves 

are roughly parallel. The probability of survival past 16 days differs markedly from the 

curves for longer survival times-it is almost flat. 

The sort of calculations illustrated on this data are similar to those that a data 

analyst might make on a univariate sample. The next natural step might be to compute 

conditional hazard functions and plot a hazard surface, using age at time of entry and 

days since the operation as cobrdinates. One might also apply Greenwood’s formula 

conditionally to estimate conditional standard deviations of the probabilities in Figure 
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3. Approximate confidence intervals for conditional probabilities could be used to obtain 

confidence intervals for conditional quantiles. Any functional that a statistician applies to 

a sample, might in the bivariate case be applied conditionally on X. 

Methods like these will be analyzed by considering separately the properties of the 

functional and the distribution estimator. This approach has certain economies: for exam- 

ple, if the distribution estimator is suitably consistent then so are running versions of any 

functional that is robust at the underlying distributions of Y given z. There is no need 

for specific investigation of the functional beyond that needed to establish its robustness. 

The probability model to be used is defined in Chapter 2. It incorporates i.i.d. sam- 

pling of (X,Y) pairs and designed sequences of X’s. The notation is introduced along 

with the exposition of the model. Chapter 2 continues with examples of nonparametric 

regression techniques that can be made into estimates of the conditional distribution of 

Y. Some background material concerning statistical functions& metrics on spaces of dis- 

tributiona, bivariate probability models and compact differentiability is given in Chapter 

2. Some lemmas are presented in Chapter 2, for later use. Nonparametric regression 

techniques are predicated on an assumption that when X is near z, the conditional mean 

of Y is close to its value at z. Usually one can assume more: when X is near z, the 

distribution of Y is near to the distribution it takes at z. In Chapter 2 this idea is made 

precise by placing a metric on the distributions of Y and assuming that the conditional 

distributions under this metric are continuous in z. 

Chapter 3 studies consistency. Sufkient conditions for pointwise weak and strong 

consistency of the estimated conditional distribution of Y are given. Consistency in three 

of the statistical metrics (Prohorov, Kolmogorov-Smirnov and Vasserstein) from Chapter 

2 is obtained. Consistency of running functionals then follows for continuous functionals. 

Chapter 4 studies asymptotic normality. First, asymptotic normality of the regression 

function is developed. This extends to the finite dimensional distributions of the condi- 

tional empirical process. A functional central limit theorem is then proved. Asymptotic 



Chapter 1: Introduction 5 

normality conditions for the regression may be translated into conditions for running ver- 

sions of some functionala. The class of compact differentiable functionala is considered. 

Using von Mises’ method the running functional is decomposed into the sum of a regres- 

sion function and a remainder term. Sufficient conditions for the remainder term to be 

asymptotically negligible are provided. 

The scope is limited as follows: pointwise (not uniform in 

problems of bandwidth selection are not considered, and rates 

4 
of 

results are obtained, 

convergence are not 

computed. These represent three worthwhile directions for extension; perhaps a good 

starting point for each might be based on the way these extensions are made for regres- 

sions. Pointwise results (that hold a.e.) are stronger than global results but not as strong 

as uniform results. The pointwise approach handles designed as well EM sampled predictors 

whereas global results usually assume i.i.d. sampling of predictor-response pairs. (These 

distinctions are discussed in Chapter 3.) Bandwidth selection might be tuned to some 

loss function on distributions or to a particular functional such as the mean. It should 

be rksonable to select a bandwidth for regression estimation and use it in the associated 

distribution estimator. Whether one might do better by a direct method is an interest- 

ing issue but depends on the loss function imposed on estimatea of the distribution. In 

nonparametric regression the attainable rate of convergence depends on the number of 

continuous derivatives that the regression function admits. Similar results might be ex- 

pected to hold for estimators of conditional distribution functions. The models considered 

here do not go beyond continuity (or Lipschits continuity) of the Y distributions as a 

function of z. With extensions to differentiability, it would be profitable to consider rates. 

In developing theorems and notation, emphasis was placed on getting theorems that c 

applied broadly, with conditions and conclusions that are easy to interpret. Theorems 3.2.2 

and 3.3.1 are the most successful in this regard. While minimal assumptions are placed on 

the estimators of the conditional distribution, there is more structure than usual placed 

on the conditional distributions of Y given z. In particular, some form of continuity is 
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always assumed. The opposite approach is to place (almost) no conditions on the data and 

impose whatever conditions on the method yield optimal results. This is appropriate when 

one knows very little about the data because the statistician haa complete control over 

the method. It is especially reasonable when there is a bone fide loss function to which 

the optimal asympotic result applies. However, when one is reasonably sure that some 

structure is present, and has reasons unrelated to asymptotics for choosing one estimator 

over another, then broadly applicable results that exploit some structure are of value. 

Also, broad conditions can expose similarities between apparently different methods. 

The approach taken herdiscrete estimation of the conditional distribution followed 

by the application of a functional is taken from Stone (1977), who uses it to obtain global 

Lp consistency for nearest neighbor regressions, quantile estimates and conditional Bayes 

rules. In his discussion of Stone’s paper, Brillinger (197’7) suggests the application of like- 

lihood functionals to the nonparametrically estimated conditional distributions. Brillinger 

also suggested extensions to conditional M-estimates which would have advantages of rc+ 

bustness. In his rejoinder Stone proves global weak consistency of the conditional estimate 

by exploiting its continuity with respect to the Prohorov metric. 

Cleveland (1979) uses running versions of conditional M-estimators. Tibahirani (1984) 

considers local estimation of likelihood-based models. H&dle and Gasser (1984) establish 

consistency and asymptotic normality of some conditional M-estimators. Stute (1986) 

obtains a functional central limit theorem for a nearest neighbor esfisnator. Some other 

references to results in the literature are made in Chapters 2, 3 and 4. 

Conditional medians were considered for the heart transplant data by Doksum and 

Yandell (1983). Tibshirani (1984) computes local proportional hazards models for this 

data. Segal (1986) d evelops a rank-based version of the regression trees methodology of _ 

Brieman et. al. (1984) that can be applied to censored data. In particular he applies it 

to the heart transplant data and finds that the first split is made on the. age variable at 

an age of 50. 
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Figure 1 Stanford Heart ‘lbamplant Data. 
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The horizontal ti b the age of a patient on the date of entry to the transplant , 

program. The vertical axis is the logarithm (base 10) of the number of days the patient 

was observed to survive after the operation. There are 157 data points. Points marked 

“X” represent times of death and points marked ‘+” represent censoring times. 



Chaiter 1: Introduction 8 

Figure 3 Odd Survival De&s. 
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The axea are aa in Figure 1. The curve labelled '.5" ia an estimate of the conditional 

median log survival time of a heart transplant patient, given the patient’s age at entry. 

The other curves correspond to the estimated log times to which lo%, 30%, 70% and 90% 

of patients will survive given their age at entry. Portions of the 10% and 30% curves are 

censored. For example, the time at which only 10% of 25 year olds will remain ia censored 

because there wzw more than 10% censoring in the data used to estimate the survival time 

given an age of 25 years at entry. 
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Figure 3 Survival Probabilities 
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The horizontal axis gives the age at entry of a patient to the Stanford Heart ‘Ikansplant 

program. The vertical axis gives the estimated conditional probability of survival past 10, 

100, and 1000 days, given the age at entry. Also plotted are the probabilities of surviving 

some interpolated times, roughly 3, 32 and 316 days. (The estimated 3 day surviv’al 

probability is 1 for older patients, so that curve disappear at the right of the figure.) 



2 Preliminaries 

This chapter introduces the notation used throughout, and provides some examples of 

estimators for conditional distributions. It also includes a discussion of statistical func- 

tionals, of metrics on distributions, of models for conditional distributions and of von 

Mises’ method and compact differentiabihty of statistical functionals. - 

2.1 Notation 

The data consist of pairs (Xi, Y;) where i = 1, . . . , n. The Xi take values in a set X and 

are thought of as predictors. The response variable Yi is a member of the set y . Unless 

otherwise specified X c IR and y = lR and both are endowed with the usual Euclidean 

distance and topology. X and Y are used as typical data values that do not necessarily 

correspond to any speci.f% observation. 

Interest centera on the conditional behavior of Y given X. To this end it is convenient 

to consider 

F,(y)=P(YIyIX=x) (1) 

which for fixed z E 1 is a distribution function on y and for fixed y E y is a function on 

X. Given that Xi = zi, Yi has distribution function Fzi. The random distribution Fxi is 

equal to F,; when Xi = z+ 

F. represents the mapping z + Fz from Y to the space of distributions on y . Regular- 

ity conditions about the behavior of the distribution of Y for varying X will be expressed 

in terms of F.. This will generally mean that F. is continuous or Lipschitz continuous 

when the distributions on lJ are given an appropriate metric. 
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The probability model for the data is as follows: the X’s are drawn according to a 

design measure (that does not depend on the Y values), and the Y’s are drawn from the 

corresponding conditional distributions and are conditionally independent given the X’s. 

The design measure for the X’s could be a prescribed design sequence (design case) 

or it could be i.i.d. sampling from some distribution on 1 (sampling case) or it could 

be more complicated involving, say, a randomized choice among designs or dependent 

sampling that tends to fill in gaps left in X by the previous observations. The stipulation 

that the design measure not depend on the Y rules out some sequential methods that - 

might be of value. 

A convenient construction to describe the conditional independence of the Y; given 

the Xi is obtained ~3 follows: introduce i.i.d. standard uniform random variables Ui, i = 

1 >***I n that are independent of the X’s, then put 

yi = F;‘(Q). 
i 

We define inverses of distribution functions as follows: G-l(u) = inf{ y : G(y) 2 u} and 

G-‘(u) = {y: G(y) = u}. 

For some fixed point z E X let 

Yi’ = Fz-‘(U’). (2) 

Then Y.“, i = l,..., n are i.i.d. random variables with distribution F=. Intuitively, Yiz 

is what Yi would have been if Xi had been 2. This construction will be handy in bias- 

varianc4ike decompositions. 

The focus of interest will often be one or more functionals 

T (L(YIX = z)) = T(F,); 

commonly considered functionals are the mean, mode, median, other quantiles, M-esti- 

mates, m.l.e.‘s and variance estimates of the aforementioned. T(F,) can be thought of as 

a function on X as z varies. The regression function arises for T(a) = m(e), where 

m(&) = s YdFz(Y) (3) 
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is the mean. It should cause no confusion to use m(z) for m( F,). 

To analyze T(e), consider it as a mapping. Its domain & must naturally contain Fz 

for all z E 1. It will also have to contain estimates of Fs obtained from the data. These 

will be distributions with support in a finite set. Unless otherwise stated the range of 

T is R. The domain & also comes equipped with a topology. Most of the topologies 

considered are metrizable. The basic open sets in a metrized topological space can be 

taken to be the open balls 

B,(F) = {G E PT 1 P(F, G) < E) 

where c > 0 and F E &, and p(*,*) is a metric on &. The one non-metrizable topology 

considered is the topology of weak convergence for finite signed measures used in Sec. 3.2. 

The emphasis will be on the Kolmogorov-Smirnov metric, the Prohorov metric, and 

the Vasserstein metrics. See Sec. 2.4 for a discussion of statistical metrics. 

The running functional T( F,) is estimated by T( &) where & is an estimate of Fz 

based on the data. & will depend on n and (Xi, Y;.), i = 1,. . .., n although this dependence 

is suppressed for notational convenience. & is not in gene&l a statistical functional by 

virtue of its dependence upon n, but may be thought of as a sequence of such functiotials. 

& need not be a probability measure on y in which case it may be necessary to extend 

the definition of T(m). _ 

Following Stone (1977) consider estimators & of the form 

n 

i=l 

where 6yi = lyilv is a point-mass at Yi and Wni( z is a weight attached to the i’th ) 

observation out of the first n observations. W&(z) depends on Xl,. . . , Xn and on n but 

not on the Y values. To keep the notation uncluttered, denote the weight on the 9th 

, 

observation by Wi with n and the target point z understood. That is 
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in terse notation. It is natural to denote m(&) by h(z). 

The weights form a discrete signed measure on X with atoms of size Wi at Xi. This 

measure is denoted W,, so that 

(5) 

Many conditions on the weights can be expressed in terms of Wz. For large n, Wz should be 

close to &, the point-mass at 2. That notion is made precise by putting a metric p on the 

distributions on X and requiring p(Wz, &) + 0 in some mode of stochastic convergence. 

For the regression function rn(PZ) = C WiYi and (4) incorporates many of the com- 

monly used nonparametric regression techniques including smoothing splines, kernel esti- 

mators, nearest neighbour estimators, and running linear regressions. Sec. 2.2 discusses 

the choice of the Wi in more detail. These weights are distinguished from adaptive weights I 

which depend on the Y ‘s. For example, if the smoothing parameter in spline regression 

or running linear regression is determined by cross-validation the resulting regression es- 

timate is adaptive and hence not covered by (4). 

- For a given set of weights put 

n, = [CWj]-‘. (6) 

If each Fzi has variance Q~, then conditionally on the observed X’s, C WiYi h8s variance 

u2/no. In this sense n, is an effective sample size at z. The Xi that contribute to & are 

thought of as a sample of size n, from Wt and the locally reweighted Yi are thought of as 

a biased sample of size n, from Fs. In asymptotic considerations, it will be necessary for 

n, + 00 to control the variance. Typically n,/n + 0 as n + 00 and this allows Wz to . 

converge to & to control the bias. For a fixed sample, n, regarded as a function of z can 

be used to compare precision over the range of X. It can also be used in heuristic degree. 

of freedom calculations for pointwise t-tests and intervals. 

Most consistency proofs for nonparametric regressions start with a decomposition 

h(X) - m(z) = z Wi(Yi - m(Z)) + CWi(m(Xi) - m(z)) - m(z)(l - >:wi). 
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Conditionally on the X’s, the first term is a sum of mean zero random vairables, and differs 

from zero because of sampling variability in the Yi and the second term is conditionally 

constant and differs from zero because the Xi’s are not exactly at z. It is natural to call 

the first term a variance term and the second term a bias term, though strictly speaking 

these labels refer to the second moment of the first term and the first moment of the 

second term respectively. The decomposition considered here is of the form 

h(z) - m(z) = C Wj(Yt - m(x)) + C Wi(Yi - Yi”) - m(z)(l - C Wi). (7) 

In this decomposition the first and secotid terms will still be refered to as variance and 

bias terms, but the variance term in (7) is conditionally a weighted sum of i.i.d. mean 

zero terms and moreover, the terms Yi’ - m(z) are independent of the Xi’s and hence 

also of the Wi’s- This makes the variance term easier to handle, at the expense of some 

complication in the bias term. However the bias term in (7) is tractable, and may be 

conveniently analyzed via Vasserstein metrics. A similar decomposition of .& will be used 

in Chapter 3. 

2.2 Examples of Weights 

This section presents some examples of weights that fit into the framework of the Sec. 

2.1. Most of the weight schemes discussed here were developed for estimating regression 

functions. Similar ideas have been used in density estimation and in the estimation of 

spectral densities. The discussion covers in turn the following methods: kernels, nearest 

neighbors, symmetric nearest neighbors, local linear regressions, and smoothing splines. 

A final subsection discusses some other related ideas. For a comprehensive bibliography 

of nonparametric regression techniques see Collomb (1985). 

2.2.1 Kernel Smoothers 

Kernel estimates of the regression function were introduced by Nadaraya (1964) and 
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Watson (1964). For the kernel estimate: 

Wi = (1) 

where K(v) is a function called the kernel and bn > 0 is a constant called the bandwidth. 

We assume that 

and 

/ 
IK(v)idv < 00 

. I 
K(v)dv = 1. 

The latter is a convenient normalization-multiplying K by a (nonzero) constant would 

not change Wi and might make computation easier. Consistency of the kernel regression 

estimate generally requires that b, 3 0 at an appropriate rate. 

Kernel regression estimators were preceded by kernel density estimators. Nadaraya 

(1964) cites Parzen (1962) and Watson (1964) cites Rosenblatt (1956). Kernel methods 

were previously used in spectral density estimation. This connection is discussed in Subset. 

2.2.3. 

We give some examples of kernel functions for X C R taken from Benedetti (1977). 

There are obvious extensions to I!@. 

Examples: 

1 Uniform 

2 Triangular 

3 Quadratic 

4 Exponential 

5 Gaussian 

6 Cauchy 

7 Fejer 

K(v) = &I 

K(v) = (1 - lvl)+ 

K(v) = i(l - lvi2)+ 

K(v) = ++‘I 

K(v) = &cuaf2 

K(v) = ;&z 

K(v) = k-1 

The quadratic kernel is often referred to as the Epanechnikov kernel,. Epanechnikov 

(1969) argues that it is the optimal shape for estimating densities in any dimension so 
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long as the true density is sufficiently smooth. (It is optimal within the class of bounded 

symmetric probabilty densities for which all moments are finite. An integrated squared 

error criterion is used.) 

Kernels with negative sidelobes (for instance the Fejer kernel) are used to reduce bias. 

See Watson (1964) for an example. 

2.2.2 Nearest Neighbor Smoothers 

Nearest neighbor methods originated with Fix and Hodges (1951) in the context of 

nonparametric discrimination. They were first used in density estimation by Loftsgaarden 

and Quesenberry (1965). The first general discussion in the regression context seems to 

be Royal1 (1966), though Watson (1964) mentions uniform nearest neighbors. 

L&i Cint 1 5 i < n < 00 be a triangular array of real numbers. If there are no ties 

among the first n X’s then the nearest neighbor weights are 

wi = win = G(i)n (2) 
where f(;> is the rank of 1)X; - z]] among the first n observations. If there are ties in the 

X’s break them arbitrarily, for example by tiing the index i, and assign weights from (2). 

Then for each set I of indices corresponding to tied 2% let 

1 
WI= - 

PI c wi (3) 
iEI 

andsetFV~=FVI, V&I. 

Nearest neighbor weights are called k nearest neighbor weights (k-NN) when for some 

k = k(n) = o(n) i > k implies ci,, = 0. The following are examples of k-NN weights. 

Examples: 

1 Uniform Gin = ll X lit0 

2 Triangular tin = 2(k - i + l)+/ (k(k - 1)) 

3 Quadratic Gin = 6 ((k - a’ + I)+)’ / (k(k - 1)(2k - 1)) 

Nearest neighbor weights analogous to kernel functions with unbounded support may 

also be of interest. 
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2.2.3 Symmetric and One-Sided Nearest Neighbors 

When X = JR, a family of symmetric nearest neighbor methods are available that 

generalize the familiar running average. At first assume there are no ties in the X’s, and 

only consider target points that correspond to observations: z = zi for j s n. Also assume 

without loss of generality that the first n observations are ordered ~1 < 22 < . . . < z,, to 

avoid complicating the subscripts. 

Let %a, 0 5 n < 00 be a triangular array of weights. Then a symmetric nearest 

neighbor scheme at the target point zi hss 

wi a Cli-jln. (4 

The constant of proportionality in (4) is usually chosen so that the weights sum to 1. 

Uniform, triangular,‘quadratic, etc. versions of symmetric nearest neighbor weights are 

easily defined. 

If z is not an observation, but zi < z < zj+l, some convenient convention can be used 

for the weights. Natural examples are Wz = Wzj ad Wz = XWzj + (1 - X)Wsj+l where 

x = (zj+l-z)/(zj+l- Zj). In practice it is likely to be even more convenient to simply 

compute T (&) for i = 1, . . . , n and linearly interpolate values of T. 

Ties can be broken as outlined above for nearest neighbor weights, although ties at the 

target point are more troublesome. The following prescription for tie breaking generalizes 

the one for nearest neighbors while preserving some symmettry between the right and left 

sides. If there are an odd number 2j + 1 of observations at z, then an arbitrary choice 

can be made to assign them weights proportional to 

{ Cjn, l .*,Cln,COn,Cln,*** 9 cjn) ,\ 

and to assign weight proportional to q, for i 2 j to the i’th observations on each side of 

the target. If there are an even number 2j of observations tied at z then Zj- 1 of them can 

be assigned as above and one of them can get weight proportional to cjn. The i’th point 
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to each side of the tied points then gets weight proportional to (C(i+i-l)n + c(j+i),)/2. 

After such an assignment, the weights are equalized over sets of tied zi’s as before. 

A technique of Yang (1981) can be used to express the most commonly considered 

symmetric nearest neighbor weights in terms of a symmetric kernel function K( 0) and Fn, 

the empirical distribution function of X: 

w a K 

i (5) 

The function Fn is also defined when the Xi are obtained from a design. The constant of _ 

proportionality is chosen to make the weights sum to 1. (The.exact form of (5) is from 

Stute (1984).) For-z E ( Zj, Zj+l) this formula implicitly s&s Wz = Wtj. 

One advantange of symmetric nearest neighbor weights over kernel weights is that the 

set of values Wi is f&d in the former and random in the latter. The kernel method must 

be modified to handle the case where the kernel function is zero for all the observations, 

but this never happens with symmetric nearest neighbors. Such an event can have positive 

probability for kernels with bounded support. The probability is generally small enough 

to ignore in practice, but may pose difficulty in theoretical calculations. Ari advantage 

of symmetric nearest neighbor weights over nearest neighbor weights is that they are 

balanced with respect to the target point--except at the ends there is the same amount 

of weight on the left as on the right of the target. With nearest neighbors the amount of 

weight on a given side of z is random and could be zero, even when z is not at the ends of 

the data. An advantage of symmetric nearest neighbor weights over both kernel weights 

and nearest neighbor weights is that computation can be much faster. In the case of the 

uniform weights, the weight function at Zj+l differs from that at zj in at most two weights 

W* a+l+k and Wj-k. The regression function can be computed quickly by updating a sum 

of Y’s counter and a number of points counter. To compute the regression at all data 

points requires only 2n additions, 2n subtractions and n divisions. Triangular, quadratic 

and higher order symmetric nearest neighbor regressions can be obtained by repeated 

application of uniform symmetric nearest neighbors. 
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Now consider (5) with an asymmetric function K( l ). An extreme departure from 

symmetry involves taking in (5) kernels 

R(v) = 2K(v)l,3~ 

and 

L(v) = flK(v)L<o 

which define right and left sided nearest neighbor weights. If F. is piecewise continuous 

with a discontinuity near z, then the one-sided weights from the side opposite the discon- 

tinuity may provide a better estimate than a symmetric weights. A comparison of left and 

right sided estimates of Ft or T( F,) might provide a means of detecting discontinuities. 

One sided neighborhoods are used to estimate regressions in McDonald and Owen (1986). 

Note that left sided weights are not available for the leftmost observation and are based 

on few points for observations near the left end (and the same comments apply to right 

sided weights at the right of the data). 

The symmetric versions of uniform, triangular, and quadratic nearest neighbor weights 

are related to the truncated, the modified Bartlett and one of the Parzen estimators of 

spectral density respectively (Anderson 1971, Chapter 9). The relationship is aa follows: 

the estimate of the spectral density at frequency w is a weighted sum of c,cos(wr) for 

1~1 5 k, where cI is the sample autocovariance at lag r and the weights are proportional to 

lr:r, (1 - Iqk)l r<k ad (1 - (lfl/k)2)1 rl) respectively. Anderson also discusses several 

other spectral density estimators, which could also be turned into k-NN weight functions. 

In forecasting, one-sided exponential nearest neighbor weights are used in what is 

called exponential smoothing (Chatfield 1980). In that application a time series is observed 

at equally spaced points (so ranks correspond naturally to actual time elapsed) and the 

weights are placed on the present and past to forecast the future. These weights have the 

advantage of providing easily updatable regression functions. In the on*sided case, after 

some startup, the regression estimate at zi is almost exactly m(zi) = pYi+ (1 -p)m(z+1). 
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In the twcAded case the regression estimate is obtained by taking a weighted average of 

the left and right sided exponential smooths. 

2.2.4 Local Linear Regression Weights 

An important class of weighting schemes are the linear regression weights. When IJ 

is one dimensional the regression function at z may be estimated by a linear regression on 

the points in the neighbor set of z. The estimate of the regression is a linear combination 

of the Y values in the neighborhood, and the weights of the linear combination may be 

thought of as generating an estimate &, of Fz. When Wi are probability weights and X 

is IR, the weights obtained from a Wi-weighted regression of Y on X are 

(6) 

where z = CWiXi and 8* = CWi(Xi - 2)*. (If 8 = 0 take Vi = Wi.) When the Wi are 

uniform (l/k for k points, 0 for the others) the ri resemble a kernel with a trapezoidal 

shape, the height and slope of which depend on 2, 8 and k. The Vi sum to 1 but can 

include some negative weights when z is not near the mean of Wt as must happen for z 

near the ends of the data. For other shapes the linear regression #kernel’@ is the product 

of the original weight ‘function and a trapezoidal function that depends on the X’s and 

the original weights through Z and 8. 

The motivation for linear regression weights is that they preserve linear structure in - 

the data. This is especially valuable at the ends of the observed sample where simple 

weighted averages flatten out any trend. Friedman and Stuetzle (1983) use regressions 

over symmetric uniform nearest neighbors for several different k to arrive at an estimate 

of the regression. See also Friedman (1984). McDonald and Owen (1986) use uniform 

nearest neighbor linear regressions from several different k values for left, right and sym- 

metric windows. Linear regression .weights with uniform symmetric nearest neighbors are 

updatable and hence can be computed in 0(n) operations assuming the data are sorted 

on z. 
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Stone (1977) states that the local linear weights are not necessarily consistent and 

shows how to “trim” them to achieve consistency. The trimming tends to remove their 

utility at the ends of the data and in the middle of the data there is usually not much 

difference between linear regression weights Fi and the weights Wi on which they are 

based (at least in the symmetric uniform case). Marhoul and Owen (1985) study some of 

the asymptotics of regression estimates based on linear regression weights on symmetric 

and one-sided neighborhoods. The balance implicit in symmetric nearest neighbor sets is 

exploited in their proof of the mean square consistency of running linear fits over such 

sets; the proof would not go through for linear fits over ordinary nearest neighbor sets. 

The mean square consistency holds for one-sided windows that contain k - 1 points from 

one side of the target and 1 point that is either at the target or on the other side. 

Stone (1977) gives the generalization of (6) for linear regression weights when x = IRd. 

Linear regressions from symmetric and one-sided uniform nearest neighbor weights 

are updatable and linear regression versions of exponential smoothing are also updatable. 

2.2.5 Smoothing Splines 

When X = y = DZ, th e smoothing spline estimator of the regression of Y on X is 

that function g(m) that minim&s 

f 2 (yi - g(2))’ + A / !f(z)‘~ 
i=l x 

where X > 0 is given. The solution g(z) is a cubic spline with knots at the observations 

by a variational argument of Reinsch (1967) and moreover 

combination (Wahba 1975) of Y’s 

n 
g(z) = c G(z, i)yi 

i=l 

where for each i, G provides a function on K and for each z, G 

can be written as a linear 

(8) ,5 

provides a vector of weights. 

The smoothing sphne fits into the framework of equation 2.1.4 by setting Wi = G(z, i). In 

principle this gives spline estimates of Fz, although the G(z, i) are difficult to compute. 
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Silverman (1984) d evelopes an asymptotic approximation to G in terms of a variable 

where 

h( zi) = pf (zi)-l/4 

n(v) = 3 exp ( - 

(9) 

and f is the (well-behaved) density of X. 

For a summary of spline smoothing see Silverman (1985) and Wegman and Wright 

(1983). 

2.2.6 Other Weights 

A variation on kernel weights due to Priestley and Chao (1972) uses weights propor- 

tional to 

zi -zi-lK(z-J 

bn 
(10) 

where the observations are arranged so that the sequence (a) is nondecreasing. The 

Prieatley-Chao weights modify the Nadaraya-Watson weights so that closely spaced points 

get relatively less weight and more widely separated points get relatively more weight. 

Gasser and Muller (1977) h a ow that the weights in (10) have a smaller asymptotic mean 

square error than do ordinary kernel weights in the case of equidistant and nearly equidis- 

tant designs. 

The kriging technique, popular in geostatistics, estimates a regression function (usu- 

ally over two or three dimensions) by a weighted combination of observations, the weights 

depending on proximity to the target point and upon an assumed covariance structure for 

the observations. Therefore at least superficially it can be expressed via equation 2.1.4 

and the weights used to estimate conditional distribution functions. For a discussion of 

. 
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kriging see Ripley (1981) or Yakowitz and Szidarovszky (1985) who compare .it to kernel 

nonparametric regression. Watson (1984) shows that apline regression estimation can be 

obtained as a special case of kriging. 

The regression trees of Brieman et. al. (1984) could be used to estimate & by putting 

equal weight on all the observations in each node. That estimate would be used for all the 

predictor values that lead to the node. Since the splits made by the recursive partitioning 

algorithm depend in a complicated way on the Y values, so do the resulting weights. For 

this reason they do not fit into the framework considered here. 

Another smoothing technique that does not fit into the present context is the iterative 

application of running medians in T’ukey (1977). A single running median may be inter- 

preted as the conditional median function when uniform symmetric k-NN weights are used, 

but iterative application of such an algorithm would be quite unnatural if not impossible 

to interpret as a functional applied to an estimate of the conditional distribution. 

Wandering schematic plots (Tukey, 1977) are in the spirit of this work, however. They 

are formed by partitioning the X-axis into bins and computing sample statistics for the 

Y values that appear in each bin. The resulting values are plotted above the bin medians. 

2.2.7 Bandwidth Selection 

In all of the above weighting schemes there is a parameter k or b, or X that governs 

the rate at which the weight drops off as the distance from Xi to z increases. In each case 

larger values of the parameter result in more spread out weights and the corresponding 

regression estimates are smoother looking. We use the term bandwidth to refer to any of 

these quantities. Smaller bandwidths give rise to regression curves that pass closer to the 

data. In general a regression estimated with a small bandwidth is subject to less bias and 

more variance than when a large bandwidth is used. The bandwidth to be used can be 

selected by plotting the results for a few choices and selecting the one that seems best. 

For reasons expressed well in Silverman (1985 Sec. 4) it is desirable to have available 
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an automatic technique for bandwidth selection. The cross-validation method of Stone 

(1974) is commonly used for this. The idea is to choose the bandwidth that minimizes 

cross-validated squared error. See Friedman and Stuetzle (1983) who use crossvalidation 

to select k for a linear regression over a uniform symmetric k-NN neighborhood, Hall 

(1984) who studies asymptotics for the cross-validated kernel regression, and Wahba and 

Wold (1975) for cross-validation in smoothing splines. Craven and Wahba (1979) provide 

a faster alternative to cross-validation, known as generalized cross-validation. Friedman 

and Stuetzle perform a local cross-validation so that the bias-variance tradeoff implicit in 

a choice of k can be made for each 2. . 

Titterington (1985) surveys smoothing techniques in statistics including image pro- 

cessing and mentions some alternatives to cross-validation including minimum risk and 

Bayesian methods. In minimum risk strategies, the mimimizing bandwidth for a risk 

function is obtained or approximated by a closed form expression. Typically such an ex- 

pression would involve the underlying curve and an approximation to that curve would be 

substituted. 

Bandwidth selection techniques do not usually-fit into equation 2.1.4 since the Y 

values are used to select the bandwidth. When the dependence is very simple however as 

in the case of a choice of bandwidth from a finite set of consistent bandwidths the results 

of Chapters 3 and 4 are easy to apply. 

If a bandwidth choice is made and used to obtain Wz and then all functionals of 

interest are computed with the estimate .& then many natural relationships between 

different functional8 will hold for the estimates. For example 

2 (g(Y) + h(Y) 1 X = z) = 2 (g(Y) 1 X = z) + 2 (h(Y) I X = z) 

and 

var(&) = 
/ (Y - m(k))*k(dy> 

and 

VW(&) = T (Y2 1 x = 2) - z (Y 1 x = z)* 
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will hold. For probability weights Wz the estimated quantiles are properly ordered (in 

particular quantile regression8 will not ‘cross”) 

& { ]Y - m(&)I > k&G$$} 5 l/k*, 

so that a pointwise Chebychev’s inequality will hold and so on. Such self consistency 

properties of the estimate8 are desirable though they may entail some cost: the best 

bandwidths, in squared error terms say, may differ from functional to functional. For 

example one might do better with larger bandwidths for variances and extreme quantiles 

than for means and moderate quantiles respectively. In practice it should often be rea- 

sonable to pick the bandwidth to estimate a particular functional such as the mean and 

then use those weights for all other functionala. 

2.3 Statistical Functionals 

A statistical functional is a mapping defined on a space of distribution functions. Usually 

the image space is IU but it could also be a set of categories or a higher dimensional 

Euclidean space. The domain usually include8 all empirical distribution function8 and the 

hypothetical true distribution. Statistical functionals are a convenient abstraction; they 

apply in most statistical situations and allow the use of concepts and techniques from 

analysi8. 

Many quantities of interest to statistician8 can be expressed as statistical functionals 

T(F) where F is the distribution of the data. The natural estimate of T(F) is often T( F,,) 

where Fn is the sample distribution function. For example, the sample mean is m(F,). 

Most calculations that statisticians perform on a set of data can be expressed as 

statistical functionals on F,,. Any function of n i.i.d. observations is a function of a list 

of the observed values (sorted for example) and a permutation that labels them. Most 

statistical computations make no use of the 1abelIing of the observations (except perhaps 

to check independence or identity of distribution) and hence depend only on the list of 

observations. The list of observations is determined by Fn and n. The sample size n 
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cannot be determined from F,,. Statistical computations tend to depend more on F,, than 

on n. Many statistics do not depend on n at all. For example the variance is 

V(F) = I (Y -+n(F))2 OF, 

the median is 

0.5(F) = inf{q : ; WY) 2 95) 
--oo 

and an M-estimate M(F) may be obtained as a solution iU of 

0 = I t(r (Y - w WY). 

The most commonly cited statistic that depends on 12 is the unbiased sample variance: 

= eV(F). 

In this and similar cases an auxiliary parameter may be introduced for the sample size. 

The functional is then defined on U x (0,001 where U is a space of distributions. The 

sample value is T( Fn, n) and the population value is T( F, co): The analytic properties of 

such sequences of functionals can be considered on this augmented space. For more on 

auxiliary parameters see Reeds (1976, Sec. 1.6). In particular Reeds considers bivariate 

Taylor series expansions of function& whose Crst argument is a distribution and whose 

second argument is an auxiliary parameter. 

Many important properties of statistics may be expressed in terms of analytic prop 

erties of statistical functionals. A statistical functional T (F,,) is robust at F according to 

Hampel (1971) if t(T(Fn)) as a function of the distribution F of a single observation is a 

continuous function at F when the Prohorov metric is used in the spaces for both F and 

t(T). The augmented statistical functional T( F,,, n) is robust if the continuity is uniform 

in the auxiliary parameter. Hampel shows that if T(e) itself is continuous at F then it is 

robust at F. His definition of continuity of an augmented functional is essentially that of 

bivariate continuity at (F, co) although to avoid assuming the existence of T (F, 00) he uses 

’ 
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a version of the Cauchy criterion. It is important to note that robustness, like continuity, 

depends on both the functional and the point in the domain under consideration. The 

mean is not continuous at any F. The median is not continuous at F if F-l{ l/2} is an 

interval of positive length, and hence is not robust at that F either. 

The influence curve is a form of derivative of a functional. The use of Taylor expansions 

of statistical functionals to prove asymptotic normality is known as Von Mises’ method. 

See Sec. 2.6 for a discussion. 

If one can obtain results based only on analytic properties of the functionals used then 

they may apply easily to as yet unknown statistical methods. For example, in Chapter 3 

some consistency results for running function& require only Prohorov-continuity of the 

functional. They therefore apply to any robust functional. 

Another advantage of functionals is that there is often a natural extension to spaces 

that contain more that just distribution functions. The space of all finite signed measures 

is such an extension as are C[O, 11, D[O, 11 and Lp [0, 11. Such spaces are vector spaces and 

hence-are easier to work with, in the same way that it is easier to work in Euclidean space 

than in a simplex. The functionals for the mean, median, variance and the M-estimators 

can be extended meaningfully to larger spaces. Estimators of F= that put a small amount 

of negative weight on some observations, perhaps to reduce bias, can be handled naturally 

by extending the domain of the functionals. 

2.4 Statistical Metrics 

This section presents some of the more useful statistical metrics and discusses their prop 

erties. A familiarity with metrics, norms, the topologies they induce and the associated 

definitions of continuity and convergence is assumed. These concepts are readily found in - 

introductory books on topology, such as Willard (1970). 

Throughout this section, U is a space of distributions. They are defined as probability 

measures on a measure space (n, M), with the important special case (R, B), where B is 
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the Borel o-field. Sometimes it is convenient to extend U to include finite signed measures 

or to restrict to measures satisfying a moment condition. F, G, H, F,, and G, are elements 

of U. F will be a bone fide probability and F,, will denote the empirical probability from 

a sample of size n from F. G and H are general members of U and G, is a sequence in U. 

On lR the letter used to denote the measure will also be used for the distribution function 

so that for example F(z) = F((-OO,~]). 

If a statistical functional T is continuous at G when a metric p is used on U and 

if p(C,,G) ---) 0 then T(Gn) + T(G). The same is true if both -41 are replaced by 

almost sure convergence or by weak convergence. (This is proved in Lemma 3.1.1. It is 

not true for P-convergence.) Therefore consistency of G, for G implies consistency for a 

potentially large class of statistical functional& 

Recall that a metric p1 on U is stronger than p2 (also on U) if every open p2-bd 

around a point in U contains an open PI-ball. around the same point. A sequence that 

converges in the p1 metric converges in the p2 metric. Any continuous function on the 

metric space (U, ~2) is continuous on (U, pl). Any continuous function with range (U, ~1) 

is continuous with range (U, ~2). 

2.4.1 Prohoruv Metric 

Let C2 be a complete separable metric space with Bore1 sigma field M and metric d. 

The most important case is n = IJ=lR,M=Bandd(z,y)=lz-yl. Forc>Oand 

Acydefine 

where d(y,A) = inf,cA d(y, t). Let G and H be finite measures on (n, M) and define the 

distance from G to H: 

x(G, H) = inf{c > 0 : G(A) < H(A’) + 6, VA E M}. (2) 

Now define 

Proh(G, H) = max{x(G, H),x(H,G)}. (3) 
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This definition is the one given by Prohorov (1956) except that in (2) Prohorov uses only 

closed sets A. The definitions are equivalent because for each Bore1 set A and q > 0 there 

is a closed set B c A with G(B\A) < q. Prohorov (1956) shows that the space of finite 

measures on (a, M) with the distance function Proh is itself a complete separable metric 

space and that Proh(G,,G) ---) 0 iff G, + G in the sense of weak convergence. That is 

Proh(G,,G) --) 0 

iff for every bounded continuous function ~0 from n to IR 

/* 
P(YWn(Y) --)- P(Y)WY)- / 

The Prohorov metric is prominent in the robustness literature. It is usually defined 

there on probability measures. For measures of equal total rn= x is a metric and metrizes 

weak convergence. In particular x is symmetric so Proh = r on probability measures. 

See Huber (1981). 

When two measures have almost the same mass z is almost symmetric as the following 

lemma shows. 

Lemma 2.4.1. Let G and H be measures on (Q M) with G(n) 1 H(n). Then 

x(H, G) 5 r(G, a) L x(H, G) + G(n) - H(n)- 

PROOF. Argue as Huber (1981, p.27) does in the special case of probability measures. 

Let x(H,G) = c and let C > c. Consider A = ff” in the definition of x(H,G), where a 

superscript c denotes complementation. One obtains 

H(n)- H(B") < G(n)- G(BC’c’c)+ c 

so that 

G(BC’CCC)< H(F')+c+G(iJ)- H(Q). 

Because B c F’ccc, 

G(B) < H(E’) + E + G(n) - H(0). 
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G(B) 5 H(P) + c + G(n) - H(R). (4 

From (4) r(G, H) 5 x(H, G) + G(n) - F(n). Equation (4) was derived without using 

G(n) 2 F(n) so it still holds when the roles of G and H are reversed. From this x(H, G) 5 

x(G, H) and the lemma is proved. I 

Corollary. If G,(n) + G(n) then the following are equivalent: 

(i) r&G) + 0 

(ii) x(F,G,) + 0 

(iii) Proh(G,G,) + 0 

PROOF. Immediate from the lemma and (3). I 

For probability measures G, and G Billingsley (1971) gives these equivalent charac- 

terizations of weak convergence of G, to G: 

a> limsupG,(A) 5 G(A) V closed A 

b) liminfG,((A) 2 G(A) V open A 

4 limG,(A) = G(A) V A with G(aA) = 0 

For finite measures the above are all equivalent to Proh(G,, G) + 0 (Prohorov 1956, Sec. 

1.3) if the condition limG,(n) = G(n) is adjoined to a) and’b). 

Hampel(l971) uses the Prohorov metric to define robustness of a statistical functional. 

His definition is that the map from the distribution of the data to the distribution of 

the functional is continuous (uniformly in n) when the Prohorov metric is used on both 

spaces. Hampel’s theorem for a statistical functional is that it is robust if and only if it is 

a continuous mapping from the space of distributions to ZR where the Prohorov metric is 

used on the space of distributions. 

Any quantile is a Prohorov continuous functional at any distribution that has positive 

mass in all open intervals about the quantile. An M-estimate with a bounded and strictly 
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monotone 1c) function is Prohorov continuous at every distribution. The functional 

T,(F) = F(Y) 

for fixed y is Prohorov continous at every F for which y is a continuity point. The CT- 

trimmed mean with 0 < a < l/2 is Prohorov continuous at every distribution. More 

generally an L-estimate 

F-‘(u)M(du) 

where A4 is a finite signed measure with support in [CY, 1 - Q] is Prohorov continuous at 

any F for which no discontinuity point of F-’ is a point of mass of AL 

Many important functionals are not Prohorov continuous. That is to say they are 

not robust. In particular the mean is not continuous at any distribution function. Higher 

moments and related quantities such as the standard deviation, correlation and coefficient 

of variation are not continuous anywhere. Similarly F(y) - F(y-), the jump of F at g is 

not Prohorov continuous for any F with an atom at y. 

The mean can be made continuous by considering a smaller space U. For example, 

on a apace of distributions with uniformly bounded support, all moments are Prohorov 

continuous. If for 15 p < q the distributions in U have a uniformly bounded q’th moment, 

then the p’th moment is Prohorov continuous. (Chung, 1974, Theorem 4.5.2.) 

In Chapter 3, one of the conditions used is that F. aa a map from 1 to U is Prohorov 

continuous. In other words as z’ + z the distribution of Y given X = z’ converges weakly 

to the distribution of Y given X = z. This sort of continuity assumption would seem to 

be very mild in practice. 

In order to study weight sequences with some negative weights it would be useful to 

have a metric for weak convergence of finite signed measures. Unfortunately no metrization 

of weak convergence exists for signed measures, except in trivial cases. See Choquet (1969, 

Vol. I, Sec. 12 and Theorem 16.9). (It is possible to metrize weak convergence of signed 

measures on some spaces without compact sets of infinite cardinality. ) 
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Recall that a finite signed measure G can be written G = G+ -G’ where G+ aqd G- 

are mutually singular measures called, respectively, the positive and negative parts of G. 

The measure ICI = G+ +G- is the total variation of G (This is the Jordan decomposition, 

and it is unique.) 

The quantity Ptoh defined by (3) is p eculiar, on finite signed measures. It is almost 

a metric, but sometimes Proh(G, G) > 0. Furthermore the triangle inequality might not 

hold if the space n is ill-behaved. (The triangle inequality holds if (B”)b = Ba;+* for all 

B E M and u, b > 0.) Convergence of (3) need not imply weak convergence: 

Example 1. Let G = 0 and G, = n Q,, - *26$,. Then ‘1 

max{x(G,,G),z(G,G,,)} = 2/n + 0 

but G, does not converge weakly to G. Consider p(z) = 1 A (z+ l)+. $ p(z)dG,(z) = n 

and j’cp(z)dG(z) = 0. 

Convergence of (3) combined with 

limsuplGnl < B i 00 

can be shown to imply weak convergence-tit establish convergence for the signed mea- 

sures of closed sets and then extend to bounded continuous functions as in Pollard (1984, 

Exercise N-12). 

We can define a metric that is stronger than weak convergence. For finite signed 

measures G and H on (a, M) define 

Proh(G, H) = Ptoh(G+, H+) + Proh(G-, H-). (5) 

Proh as defined by (5) is still a metric and Proh(G,, G) + 0 implies weak convergence of ., 

G, to G. 

It is possible for G, to converge weakly to G without Proh(G,, G) (as defined in (5)) 

converging to zero. 
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Example 2. LetG=&andG,=2&,-61/n. Then G, converges weakly to G but 

Proh(G,,G) = 2. 

2.4.2 Kolmogorov-Smimov Metric 

The Kolmogorov-Smirnov metric for distributions on LR is 

KSG H) = sup P(Y) - H(Y)I, 
Y (6) 

the sup norm of G - H. It takes its name’ from the Kolmogorov-Smirnov statistic 

KS(F,, F). Th e s p ace U can be any set of functions on 82. This makes it a conve- 

nient metric to use when considering distribution functions corresponding to finite signed 

measures. 

The Glivenko-Cantelli theorem states that KS(F, F,,) + 0 8.9. as n + 00. In Chapter 

3 sufficient conditions are given for KS(F,, &) + 0 a.s. 

The metric KS is stronger than .Ptoh. That is 

KS(G,,,G) + 0 * P;oh(G,,G) ---) 0, 

and there are sequences for which Proh(G,,G) 4 0 but KS(G,,G) does not converge 

to 0. If KS(G,,G) + 0 the distribution functions G, are converging uniformly to G 

whereas if Proh(G,, G) + 0 the convergence is pointwise at continuity points of G. If G, 

is a point-mass at l/n and G is a point-mass at 0, Prohorcv but not Kolmogorov-Smirnov 

convergence takes place. 

All the functional3 that are continuous under the Prohorov metric are continuous 

under the Kolmogorov-Smirnov metric. Under this stronger metric, the jump functional i 

J,(F) = F(Y) - F(Y-) 

is continuous everywhere. The mean is nowhere continuous. 
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Suppose that the map F. from X to U is KS continuous. Then the function in the 

zy-plane given by F=(y) is continuous (uniformly in y) when traversed parallel to the z 

axis, but need not be continuous at all when traversed parallel to the y axis. 

Example 1. If X(z) > 0 is a continuous function and Ft is the Poisson distribution with 

parameter X(z) then F. is KS continuous. If Y/A(z) has the Poisson distribution with 

parameter 1 then F. is not KS continuous unless X is constant. 

A KS continuous F. can have atoms of fixed location in y whose size varies continu- 

ously with z but cannot have atoms of fixed size whose locations vary continuously. 

The weight function W, will not usually converge in the KS metric to &. For a 

symmetric kernel and i.i.d. Xi from a distribution without an atom at z, KS(W,, 6,) k .5 

except for end effects. 

2.4.3 Vasserstein Metrics 

These metrics are described in Bickel and Freedman (1981, Section 8). This section 

is based on their account. Let B be a separable Banach space with norm ll*II. (This is the 

space y which the reader might assume .is RZ.) For 1 5 p < 00 let U = U,, be the space of 

probability measures F on the Bore1 o-field of B for which 6 lIyllp F(dy) < 00. Then the 

Vasserstein metric is the i&mum of t ( 11X - Y IIp )l/’ over zill pairs of random variables 

X and Y with X N F and Y N G. Bickel and Freedman’s Lemma 8.1 establishes that VP 

is a metric and that the intimum is attained. 

The Vasserstein metric provides a way of metrizing I;p convergence. Bickel and Freed- 

man’s Lemma 8.3 states that Vp(G,,G) + 0 if and only if 

G, ---) G weakly, and / llYllP G&Y) ---) / llYllP G(dY)* 

Clearly VP convergence implies Prohorov convergence. In fact Proh( F, G) 5 dV=, a 

result due to Dobrushin (1970). Also for distributions in Up where p > p’ 1 1, V,,( F, G) 5 
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For B = R with norm ] l ] there is a convenient formula for VP due to Major (1978): 3 

yu(FIG) = ’ IF-‘(u) - G-l(u)JPd~ 
> 

’ 

so that VP is a “sideways Lpn metric. In particular Vl(F, G) is the area between the d.f.s 

F and G and hence may also be written: 

VI(W) = 
/ 00 IF(Y) - G(Y)PY* 

-00 

The metric V2 is also known ZUI the Mallows metric. Mallows (1972) used the form (7) 

and established that convergence ‘in the Mallows metric is equivalent to combined weak 

and L2 convergence. 

It is natural to adjoin a V, metric based on essential suprema. Define 

esssupF =sup{B > 0 : F(llYll > B} > 0) 

and let Uoc> be the set of probability measures with finite essential suprema. Then define 

for F,.G E Urn 

V,(F;G) = infesssup ]]X - Y]] 

wheretheix&xnumistakenoverpairsX~FandY~G. InthecaseofB=R, 

I&,(F,G) = sup IF-‘(u) - G-l(u)I. 
O<u<l 

(8) 

It is clearly a metric since it is the sup norm of F-’ - G-l. Also V, convergence implies 

VP convergence for all finite p 2 1. The form (8) will be used to define a V, metric on 

the set of all probability distribution functions, not just those with bounded support. The 

resulting metric may take infinite values. 

Convergence of V,(G,, G) to 0 implies that Ptoh(G,, G) --) 0 and esssupG, + I 

esssup G. The converse does not hold as the next example illustrates. 

Example 1. Let G, be uniform on the set [0, 1+ l/n] U [2 + l/n, 31 and G be uniform on 

[O,l]U[2,3]. Then G n + G weakly and the essential suprema converge but Vm(G,, G) = 1. 
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KS convergence and VP convergence (for B = lR) are not comparable. (One is tempted 

to say they are orthogonal.) KS convergence does not imply V’ convergence and V’ 

convergence does not imply KS convergence. 

Example 2. Take B = LR, G = &J and G, = (1 - l/n)& + l/d,,. Then 

KS(G,,G) = l/n + 0 

but &(G,,,G) = 1. 

Example 3. Take B = lR, G = & and G, = 611~. Then 

V&,(G&G) = l/n ---) 0 

but KS(G,,G) = 1. 

Vasserstein metrics are useful in describing the distance of Wz from &, when Wi 

are probability weights. For example V’(Ws, &) = C Wi II& - zll, the weighted average 

distance of the observations Gom the target point. Similarly Vcp(Wz, &) is the greatest 

distance from z of any point used in &. When a nonnegative kernel has bounded support 

and the bandwidth tends to zero, the resulting vector of weights converges in V, to x. 

The same ia generally true of nearest neighbor schemes in which all but a vanishingly 

small proportion of the observations a.re given 0 weight. 

When W. is not a probability, it is still convenient to use the Vasserstein distance as 

a shorthand notation for the distance between Wt and St. Therefore for 1 5 p < oo define 

( VP 

y!@L St) = 2 lwil IIZ - zllP 
i=l ) 

and 

The Vasserstein metrics are also useful in manipulating the quantity iyi - VI, the 

difference between Yi and ‘the value it would have taken had Xi been 2’. To whit: 

E ( Ix - l$=Ip 1 Xi = zi ) = 1’ lFz;l(u) - F;‘(u)lPdu = Vp(Fz, iJp. 
0 
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Therefore if, as is rea’sonable, a close to z implies Vp( Fz, F,,.) is small, the bias due to 

using an observation from X = zi instead of z should be small. 

The following lemrpa from Bickel and Freedman is of interest: 

Lemma 2.4.2. Let Yi be independent; likewise for Zi; assume their distributions are in 

Up, 1 5 p < 00. Then 

PROOF. Bickel and Freedman (1981,Lemrna 8.6). 

When B is a Hilbert space, Bickel and Freedman (1981) obtain some sharper results 

for the Mallows metric Vs. 

2.4.4 Other Metrics 

The three metrics considered above are the ones that will be used in Chapters 3 and 

4. This section rounds out the discussion of statistical metrics with some other metrics in 

common usage. 

The Levy metric for distributions on the red line is 

Levy(F,G) = inf{e > 0 : F(z - c) - c < G(z) 5 F(z + c) + Q Vz). 

This metric also met&es weak convergence. It has a geometric interpretation as l/d 

times the maximum distance between the distribution functions taken in the northwest to 

southeast direction. On the space of subprobability measures G, converges to G in the 

Levy metric if and only if G, converges weakly to G and the total mass G&R) converges 

to G(R) (Chung, 1974, p.94). 

The bounded Lipschitz metric (Huber, 1980) also metrizes weak convergence on com- 

plete separable metric spaces. Assume the metric is bounded by 1. If necessary replace 

the metric d(-, 0) by the topologically equivalent d (*, l )/( 1 + d(a, l )). Then the bounded 

Lips&t2 metric is 

BLip(F, G) = sup I I +(Y)@(Y) - I YOGI 



2.4 Statistical Metrics 38 

where the supremum is taken over functions 4 that satisfy I4(yl) - #(yo)l 5 d(yl, ye). 

Huber (1980, Ch.2) shows that 

Ptoh(F,G)2 < BLip(F,G) < 2Pmh(F,G). 

The KS metric can be generalized. &writing it as 

KS(F, G) = sup IF+% Yl - q-c% YII 
It 

suggests generalizations in which the supremum is taken over different classes of sets. 

Taking the supremum over all measureable sets yields the total variation metric: 

TV(F,G) = sup IF(A) - G(A)1 
AEB 

\ 

a very strong metric. This metric is so strong that F,, does not converge to F in total 

variation when F has a continuous part. On the other hand it is not strong enough 

to force VI convergence (see Example 2.4.2). There are many ways to extend the KS 

metric to higher dimensional spaces. In finite dimensional Euclidean spaces the most 

straightforward is to take suprema over lower left orthants. Suprema over half spaces or 

closed balls may also be considered. For convergence of F,, to F to hold for all F in one of 

these metrics requires that the class of sets over which the supremum is taken not be too 

rich. A further generalization is to extend suprema over probabilities of sets to suprema 

over expectations of functions. For a discussion see Pollard (1984, Ch. 2). 

Bickel and Freedman (1981) show that Vp( F, G) = e if and only if there exist random 

variables X N F and Y N G such such that 

E ( 11x - YllP )l’F = tz. 

Similar coupling results hold for some other metrics: Proh(P, G) 5 c iff some such X and 

Y satisfy 

P(d(X,Y) se) 11-c 
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where d is the metric on Cl, BLip(F, G) 5 c iE some such X and Y satisfy 

where d is the bounded metric used to define BLip and finally TV( F, G) s (E iff some such 

X and Y satisfy 

P(X # Y) 5 c. 

The first and third of these follow from Strassen’s theorem (Huber, 1980) and the second 

from Huber’s (1980) generalization of a theorem of Kantorovic and Rubinstein. 

2.5 Models for F. 

As indicated in Sec. 2.1 the X’s are obtained either by sampling or by design, and then the 

Y’s are conditionally independent with the corresponding distributions. Given Xi = zi the 

distribution of Yi is F,;. All the results in Chapters 3 and 4 are obtained after imposing 

some structure (or model) on the set of F,‘s. 

A very weak model is that F. is Prohorov continuous. That is 

q + z =+ Proh(F,,, F=) 4 0, 

SO Yi H Fzi converges to Y - Ft in distribution. This is a very reasonable assumption for 

many applications. It says that values of q close to z tend to have Y distributions close to 

the one at z. Absent such an assumption, one would hardly use smoothing techniques. Not 

much is changed by Muming piecewise Prohorov contirnrity. For pointwise considerations 

all that is needed is that F. is Prohorov continuous at z. 

A stronger model is that F. is a location-scale family with location p(z) and scale 

o(z) 2 0. That is > 

F,-l(u) = p(z) + +)G-‘(u) (1) 

for some distribution function G(u). G may be normalized td have location 0 and scale 

1, for some location and scale functionals. The model (1) is still fairly general and will 
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be used below to give conditions on F. a more concrete appearance.’ When Q(Z) > 0 the 

location-scale model may also be written 

It is interesting to note that explicit continuity assumptions need not be made when 

estimating conditional moments. Stone (1977) assumes that (X, Y) has a distribution for 

which & ( IY’l ) < 00 for some r > 1 and obtains global L’ consistency for the regres- 

sion function. Stone (1977, p.641) explains that continuity assumptions are not needed 

because the regression function, as a function in L’ can be approximated in L’ norm by 

a continuous function with bounded support to within any c > 0. Devroye (1981) obtains 

pointwise strong and weak consistency using the moment condition on Y. 

Neither Prohorov continuity of F. nor the existence of a moment of Y is empirically 

verifiable. Both seem to be mild assumptions. 

The main benefit of the continuity sssumption on the conditional distributions is that 

it becomes easier to h&dle non-random X’s. The same theorems will cover the random 

and the design case. A second minor benefit, is that it is possible to consistently estimate a 

conditional expectation in some c88es where E ( IYI ) d oes not exist. An a trivial example 

suppose that the Xi are independent standard Cauchy random variables and that Yi = Xi. 

Then a uniform nearest neighbor- scheme with k = fi provides pointwise consistent 

estimates of the regression. (We could even have added some well-behaved noise.) 

Continuity of F. wili also be considered in other metrics, such as the KS metric 

and the VP metrics. Some long rknge conditions are also imposed on F.. Examples are 

p(F,, F,;) < B for all zi and p(F,, Fzi) < Ad& - xi I, where p is a statistical metric. The 

latter is a local (M depends on x) Lipschitz condition and also imposes a short range 

constraint on F.. 

Lemma 2.5.1. Suppose the location-scale model (1) holds and ~1 and Q are continuous 

at 20. Then F. is Prohorov continuous at x0. If y = R, @(x0) > 0 and G is continuous 
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then F. is KS continuous at ZO. If y = R and G has a finite p’th moment, p > 1 then F. .- 

is VP continuous at 20. If y = R and G is bounded then F. is ICoo continuous at x0. 

PROOF. Let Z be a random variable with distribution G and characteristic function 

9. Let xn 4 xo and denote p(xi) by h, @(xi) by ui. Then 

by continuity of g. This establishes the point-wise convergence of the characteristic func- 

tion of F,, to that of FzO which implies Prohorov convergence of F,, to Fzo and hence 

Prohorov continuity of F. at x0. 

Suppose G is continuous, 00 > 0 and let y E LR. Then 

since G is continuous and r/a() is continuous at 20. This establishes pointwise conver- 

gence of I$,, to FzO. Monotonicity and boundedness of Fz, and Fz, combine to strengthen 

the result to uniform convergence by a lemma of Chung (1974, p. 133) which is restated 

- 

in Set 3.2. (That lemma also requires convergence of all the jumps, but G ha& rione.) 

Therefore F. is KS continuous at x0. 

Suppose G has a finite p’th absolute moment. By the Minkowski inequality 

1 

y&L, FzfJ = (/ Ip,, + u,,G-l(u) - J& - uoG-‘(u)IPdu 
0 ) 

UP 

5 
(/ 
. o1 ,p,, - polpdu)“’ + (1’ ,u,, - uo,‘lG-‘,Vu)llP 

= l/h - PO1 + 1% - uol(E lZl’)‘/‘* (4) 

Therefore F. is V’ continuous at x0. 

If G is bounded 

sup lpn+ u,G”(u) - cro +uoG”(u)l 5 lh - MI+ 1~~ - uo\esssupZ 
O<u<l 

so F. is Voo continuous at x0. m 
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In view of (4) b a ove, a long range condition on VP is achieved by imposing similar 

conditions on p and u in the location scale family. Some authors implicitly control long 

range behavior by working in [0, l] and imposing continuity on the regression. This implies 

uniform continuity and also boundedness. Similarly, in the location scale family a Lipshitz 

condition on p and u implies one on VP. 

The Lipschitz condition is a fairly weak short range condition. Most results in the 

literature assume one or two continuous derivatives of p exist. Sharper short range con- 

ditions such as the existence of derivatives of F. at x will not be considered here. 

2.6 Compact -Differentiabiity and von Mises’ Method 

This section provides a brief outline of compact or Hadamard differentiability and of von 

Mises’ method for proving asymptotic normality of statistical functionals. It will be used 

in Chapter 4 to prove asymptotic normality for a class of running statistical functionals. 

The material in this section is adapted from Fernholz (1983). 

Suppose T is a statistical functional defined on a convex set of distribution functions 

that contains all empirical’distributions and a distribution F, from which a sample will 

be obtained. Let G be a member of the convex set. The von Mises derivative Tfi of T at 

-F is defined by 

Tlp(~-F)= $T (F + t(G - F)) Ita 

so long as there exists a real function 4=(x) (not depending on G) such that 

G(G - F) = / 4~(x)d(G - F)(x)- 

This defines 4 up to an additive constant. The derivative is normalized by taking 

o= 
/ 

4F ww- 

The function 4~ (x) is better known to statisticians as the influence function: 

#F(2) = Ic(Z; , F, T) = $ (F + t(& - F)) It=00 
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The quantity Tf,(% - F) is a linear approximation to T(F) - T(G). When G = F,, 

T(Fn) - T(F) t T;(F,, - F) 

= Ih (W%(z) 

= ixIc(%F,~). (1) 

Since (1) is an average of n i.i.d. random variables it (times fi will have a normal limit 

provided the variance of IC(&; F, T) is finite. Von Mises’ method consists of establish- 

ing the normality of the linear term and the convergence to zero in probability of the 

remainder: 

fiRem(F,, - F) = fi (T(F,) - T(F) - T~F, - F)) . 

Strictly, Rem should be Remp. 

Now we define the compact or Hadamard derivative. For von Mises’ method, the set 

V below b the space of distributions, and Fv is usually LR. 

Definition. Let V and W be topological vector spaces. A function T from V to W is 

cornpa& differentiable if there is a continuous linear transformation Tk from V to W 

such that for any compact set K c V 

limT(F+tH)-T(F)-T;(tH) o = 
t-0 t 

uniformly for H f K. -The linear transformation Th is the compact derivative of T at F. 

When the limit is required to hold uniformly on any bounded set the stronger notion 

of Frechet differentiability results. When the limit is only required to hold pointwise, 

the weaker concept of Gateaux differentiability emerges. The Gateaux derivative is very 

similar to von Mises’ derivative. Whenever the compact derivative exists it coincides 

with the Gateaux. Frechet differentiability is strong enough that the remainder term 

fiRem(F,, - F) * 0 in pr., if T has a Frechet derivative at F. Unfortunately, Frechet 

differentiability is too strong to be applicable to most statistical functionals. For example 

the median is not Frechet differentiable at the uniform distribution on (0,l). The Gateaux 
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derivative is weak enough that most statistical functional8 of interest are differentiable, 

Gateaux differentiability is not enough to gaurantee that the remainder term converges 

to 0. The compact derivative was shown by Reeds (1976) to be strong enough, that 

its existence forces the remainder term to 0 in probability. It is also weak enough that 

it applies to many statistical functionals. For examples see Fkeds (1976) and Fernholz 

(1983). 

In Chapter 4 von Mises’ method is used for conditionally estimated statistical func- 

tionals T(F,). It is shown there that existence of the compact derivative together with a 

Brownian limit for the empirical process &(pz - F,) and a further mild condition on the 

weights is sufficient for the remainder term Jn’ERem(pz - F,) to converge in probability 

to zero. 



3 c onsistency 

This chapter considers consistency of p. for F. and of T(p.) for T( F.). We will consider 

pointwise consistency, i.e. the convergence of pZ to Fz for fixed z E I. Pointwise consis- 

tency of T@‘.) for T(F.) f o 11 ows for continuous 2’. Prohorov (weak), Kolmogorov-Smirnov 

and Vasserstein consistency of & are treated. 

3.1 Introduction and Definitions 

Consistency of kZ for Fz has two aspects to it: how the distance between Fz and & is 

to be measured and the nature of the convergence of the (random) distance so measured, 

to zero. Possibility for confusion arises because common ways of expressing the distance 

between two distributions have probabilistic interpretations in terms of variables with 

those distributions. For example convergence of t(Z,,) to f!(Z) in the Prohorov metric is 

equivalent to weak convergence of Zn to 2. When the distance itself is studied as a random 

variable it may be converging weakly, or strongly or in Lp. If the metric converges weakly 

then its probability law is converging in the Prohorov metric to that of a point-mass at 

zero. For clarity, the metric interpretation will be used for the distance between & and 

Fz and the usual probabilistic concepts will be used for the distance between the metric 

and 0. 

, 

Let U be a metric space containing G and the sequence G,, and let p be its metric. ) 

Definition G, is strongly U-consistent for G if p(G,,,G) + 0 a.s. as n + 00. 

Definition G, is weakly U-consistent for G if p(G,, G) + 0 in pr. as n + oo. 

Definition G, ia U-consistent in Lp, p 1 1 for G if E ( p(G,, G)P ) + 0 as n ---) 00. 
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Either strong or Lp U-consistency implies weak U-consistency. Neither strong nor 

IP U-consistency implies the other without added conditions such as boundedness of the. 

metric. 

When the set of distributions in U is understood U-consistency may be referred to 

aa p-consistency where p is the metric. Write G, + G p in pr., G, + G p a.s., and 

G, ---) Gp Lp for weak strong and P consistency of the sequence G, for G. 

We will obtain strong and weak p consistency of & for Fz where z E X is fixed. Such 

consistency is called pointwise consistency. 

Two alternatives to pointwise con&tency are global consistency and uniform consis- 

tency. Global consistency is the convergence of p(&, Fx) to zero where X is a random 

variable independent of the data and X, X1, X2, . . . are i.i.d. Global IP consistency was 

considered by Stone (1977) for several functionals with & obtained by nearest neighbor 

methods. In his discussion of Stone’s paper, Bickel (1977) remarks that the pointwise 

notions of convergence would seem to be mote important from a practical point of view. 

Weak’ or strong pointwise consistency established at almost all z E -1 implies global 

consistency of the corresponding type. The implication does not hold for pointwise Lp 

consistency without some other condition such as a bound for the pointwise Lp errors that 

can be integrated with respect to l(X). Global consistency does not apply to the design 

Uniform cons&tency is said to hold when for any compact K c X 

aup P(&, F,) 
SEK 

converges to 0. Weak or strong uniform consistency is of course stronger than the corre- 

sponding pointwise concept. 

Several pointwise consistency results are proved below for &. Weak and strong point- 

wise consistency is inherited by continuous functionals. 

Lemma 3.1.1 Let T be a function from the metric space U to the metric space V 
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that is continuous at Ft E U. If & is strongly (weakly) U- consistent for Fz then 

T(&) 4 T(F,) 8.9. (in pr.). 

PROOF. For strong consistency the proof follows by using the continuity of T on the 

set of probability 1 for which & converges to Fz. Let e > 0. For weak consistency the 

probability that T (.&) is within an e-ball of T (F,) is no less than the probability that & 

is within some &ball of Fz by the continuity of T and the latter probability converges to 

1 by the consistency of pz. I 

For weak consistency, Lemma 3.1.1 is a special case of the continuous mapping the- 

orem (see Billingsley (1968) or Pollard (1984)). The general result has convergence in 

distribution where the above has convergence in probability to a constant. The general 

version of continuity at the limit is continuity with probability 1 at the (random) limit; 

tp consistency of & and continuity of T at Fz does not imply Lp consistency of T. 

A further condition, such as Lipschitz continuity of T, is needed. 

Lemma 3.1 .l asserts the pointwise consistency of T (&) for T (F,) . Its two conditions 

are consistency of & and continuity of T. Continuity of statistical functional3 with respect 

to statistical metrics is discussed in Sec. 2.4. The next three sections give sufficient 

conditions for the cotitency of $s in the Prohorov, Kolmogorov-Smimov, and Vasserstein 

metrics, in that order. The conditions are expressed in terms of the nature of the continuity 

of F., the convergene of the weight measure WI to & in an appropriate metric and the 

rate at which the effective local sample size n, becomes infinite. 

3.2 Prohorov Consistency of 8% 

In this section Prohorov continuity of F. and some regularity conditions on the set of. 

weights are used to establish pointwise weak and strong Prohorov consistency of kZ. 

The Prohorov metric for finite measures ia given in Sec. 2.4. Convergence of this 

metric ti equivalent to weak convergence of the measures. Weak convergence of finite 

signed measures is, except for trivial exceptions, not metrizable. Sec. 2.4 defines a metric . 
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Proh that is stronger than weak convergence, on finite signed measures. In this section 

the weights regarded as a finite signed measure on 1 are required to converge in the metric 

Proh to a pointmass at a target point 2. This is a shorthand way of saying that the sum 

of the negative weights converges to zero and that for any open set in X the sum of the 

positive weights attached to that set converges to 1 or 0 according to whether z is or is 

not in the set. At the end of this section, more general conditions are given that imply 

weak convergence of & to F,, in pr. and 8.3. Under these more general conditions, the 

weight functions can have a nonzero limiting sum of negative weights. 

Throughout this section 1 and y are complete separable metric spaces. The next 

theorem does most‘of the work for Prohorov consistency of &. 

Theorem 3.2.1 Let p be a bounded measureable function that is continuous.on a set of 

Ft probability 1. Then under conditions i) and ii) below 

and under conditions i) and iii) below 

I !P(Y)dk(Y) ---) I cp(YwL(Y) a-8* 

;) F. is Prohorov continuous at z 

ii) Wz 3 & Proh in pr. and n, 3 00 in pr. 

iii) Wt + 6% Proh a.8. and n, / log n + 00 a.%. 

PROOF. Define 

cp= 
/ 

p(y)d&(y) and Vi = 
I 

c~(Y)~%(Y), 

let B = supy Icp(y)l and e > 0. Then 

$ yl(y)d#‘,(y) - J p(y)dFz(y) = 2&(9(K) - V) - V(l- 2 W.,. 
i=l i=l 
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The second term in (1) converges to 0 weakly under ii) and strongly under iii). 

By the continuous mapping theorem (Billingsley 1968, Sec. 1.5) there is an open set 

A C 1, with z E A such that q E A implies /vi - PI < c. The first term from (1) may 

now be written 

Cwi((P(X)-F)= C wi((p(yi)-Cp)+ C Wi($Q(x)-p). (2) 
=&A ZigA 

The second term in (2) converges to 0 weakly under ii) and strongly under iii) because . 

Let IWl = CIWil. Condit ionally on the X’s the first term in (2) has expectation 

bounded in absolute value by 2BJWIc and variance bounded by 4B2/n,. If IWl < 2 and 

n, > 4B2/P then by Chebychev’s inequality the conditional probability that 

is less than 
4B’/(4B2f8) 

(3c - 2e)2 = c* 

It follows that the unconditional probability 

P(l C wi((P(yi)-Co11 > 3r ) < P(n, 5 4B2/cS) + P(lWl 2 2) + i + c 

by ii). This establishes the first result of the theorem. 

Turning to strong convergence, condition on a sequence of X values satisfying 

n,/ log n + 00 and Proh(W,, &) --) 0. (3) 

Such sequences have probability 1 under iii). Conditionally on the X’s the quantities 
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are independent, have expectation 0 and are bounded in absolute value by I Wil B. Using 

Hoeffding’s inequality (see for example Pollard (1984, Appendix B)), 

IP(x IK(d(K) -Fill 
tifA 

5P( C IW,(P(yi) - Fill 

ZiEA 

5 exp(-2c2/4B2 >: Wf) 

= exp(-nzr2Be2/2) 

<n-cSB ‘%a,/2 log n 

<raw2 

for large enough n by (3). 

> (1+ IWl)4 

+ C Iwi(lpi -VII > Cl+ Iwl)c> 
ZiEA 

’ 4 

(4 

Because (4) sums we conclude that the conditional probability 

P( C IWi((p(yi) - v)l > (l+ IWl)c i*O* 1 X) = 0 (5) 
z<EA’ 

by the Borel-CantelK lemma. Since (3) implies I W I ---) 1 8.5. by iii), we may replace 

(1+ IWlk bY 3 E in (5). Since (5) holds for a set of sequences X with probability 1, by 

F‘ubini’s theorem 

P( C IWi(p(Yi) - p)l > 3C i-0.) = 0. 1 
ZiEA 

Theorem 3.2.1 holds for any complete separable metric spaces X and y . The main 

applications are to Euclidean spaces, but also covered are the. unit circle and sphere (for 

periodic or directional data) the space of continuous functions on a compact interval with 

metric induced by the sup norm, and the space of infinite real sequences with metric 

induced by the sup norm. 

The condition n,f log n ---) oo 8.8. can be replaced by the slightly sharper, but less 

evocative 

Cexp(-n,c) + 0 a.3. VE > 0. 
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Theorem 3.2.1 is enough to prove conaistencjt for many functionala that can be an- 

alyzed in terms of a finite number of (p(a) ‘s. For example, an M estimate of location 

generated by a bounded continuous monotone J) function, with a unique value at Ft must 

be consistent because the root based on the positive part of pz is consistent and the neg- 

ative part becomes too small to change the root by much. Note that for signed measures 

pZ the M estimate will not necessarily have a unique value, but the smallest and largest 

values will be consistent. 

Theorem 3.2.2 Under conditions i) and ii) of Theorem 3.2.1 

Ptoh(&, F,) + 0 in pr. 

and under conditions i) and iii) of Theorem 3.2.1 

Proh(&, F,) + 0 a.s. 

PROOF. Let 0 represent the zero measure. Since Fz is a probability measure 

Proh(&, Fz) = j’roh($z, F’,) + Proh(&-, 0) 

= Proh(&, F,) + p;(y) 

= Ptoh(&, F*) + W,- (1) 

-+ Proh( @;, F,) 

weakly under i) and ii) and strongly under i) and iii). 

P:(y) = W,+(X) + 1 

weakly under i) and ii) and strongly under i) and iii) so by Lemma 2.4.1 it suffices to 

prove convergence for z(.@, F,). 

Let 6 > 0. Because y is a complete separable metric space, and Ft is a probability 

measure there are disjoint sets Be, B1, . . . , Br with Fz( 3 Bj) = 0, F,( B(J) < c/4 and for 

j 2 1 Bj has diameter less than E, that is Bj C {y}’ whenever y E Bj. Note that 
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the indicators of the seta Bj are F,-a.e. continuous bounded measureable functions so 

Theorem 3.2.1 applies to them. 

Suppose that s(kz, F,) > e. Then there is a set A c y such that 

@+(A) > F,(A’) + c (6) 

where A’ is defined by equation 2.4.2. Let Aj = An Bj be a partition of A. The inequality 

(6) only happens when either 

oi for some j >, 1 

Fz(Aj) - Fz(A;) > ~/2t. (8) 

But &-(&) 5 &(Bo) + F,( Bo) < c/4 with weak convergence under i) and ii) and 

strong convergence under i) and iii). Therefore the probability of the event (7) converges 

to 0 under i) and ii) and the probability that (7) happens infinitely often is 0 under i) and 

iii). Aa for (8) 
iitZ+(Aj) - Fs(A:) 5 @(Bj) - Fz(Az)- 

L ir;+(Bj) - F,(Bj), 

so (8) can occur only if 

@(Bj) - Fz(Bj) > ~12~ 

and a~ before this event has probability tending to 0 under i) and ii), and zero probability 

of in&&e occurrence under i) and iii). I 

For Y = lR the strong result above can be obtained from strong convergence of the 

& probabilities for an appropriate countable set of intervals to the corresponding Fz 

probabilities. 

Corollary If T is a statistical functional that is robust at I’= and the Wi are probability 

weights, then under i) and ii) of Theorem 3.2.1 

T(&) + T(F,) in pr. 
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and under i) and iii) of Theorem 3.2.1 

T(&) ---) T(F,) a.s. 

PROOF. Because T is robust at Fz, it is continuous at Fz on the space of probability 

distributions on y under the Prohorov metric, by Hampel’s theorem. The result then 

follows from Theorem 3.2.2 and Lemma 3.1.1. 

To obtain consistency of running robust functionals when negative weights are used 

it suffices to show that the functionals are still continuous when extended to finite signed 

measures. 

The mean is not a Prohorov continuous functional, so the Prohorov consistency the- 

orem does not yield a consistency proof for the regression. The mean is Prohorov con- 

tinuous on the space of distribution functions that satisfy I IY 1%ZF(Y) < B for some 

6 > 0, B < 00. This follows for example from Theorem 4.5.2 of Chung (1974). Assuming 

that sup, I \Y1’%iFz(Y) < B is not quite enough, since a bound has to hold on the 

sequence &. 

- 

Under the assumption that JYJ 5 B < 00, consistency of the regression function is 

now easy to obtain. 

Theorem 3.2.3 Let m(F) = I gdF(y) an d assume IY 1 5 B < CO. If conditions i) and ii) 

of Theorem 3.2.1 hold then 

m(&) ---) m(Fz) in pr.. 

and under conditions i) and iii) 

m(&) 3 m(F,) a.s. 

PROOF. Use p(x) = yi. Be cause IYI 5 B Theorem 3.2.1 applies. I 

Devroye (1981) obtains strong pointwise consistency for the regression function as- 

suming bounded Y. His conditions on the weights are slightly stronger than those above, 
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(he uses probability weights and imposes a stronger condition on the largest of them) but 

he does not place the Prohorov continuity condition on the conditional distribution of 

Y. He obtains weak pointwise convergence without using bounded Y, for nearest neigbor 

weights (that are exactly 0 for all but a vanishingly small fraction of the observations) and 

for a restricted class of kernel estimates. Devroye (1982) extends the regression consistency 

results and obtains some sufficient conditions under the bounded Y assumption. 

The theorems above need slight modification to apply to weight schemes, includ- 

ing many kernel methods, that have asymptotically non-negligible negative weights. For 

Proh(W,, 6,) to vanish, the sum of the. negative weights has to go to 0. More typically I - 

there is a constant b E (0,oo) such that 

and 

Proh (W;, b&) ---) o (9 1 a 

Proh (w,+, (I+ b)&) -+ o. (W 

Then Proh(W,, 6%) + 2b > 0. The conclusions of Theorem 3.2.1 still hold when in pr. 

and a.s. versions of (gab) are used. Theorem 3.2.2 won’t hold because k;(y) + b. The 

essence of Theorem 3.2.2 ia that & + Fc in the sense of weak convergence, and that result 

can be generalized. 

Let 0 be the set of open sets in the topology of weak convergence. 

Defiition kz -*F,weakly inpr.ifF,fOfOimpliee 

Definition 3% ---) Fz weakly 8.9. if Fz E 0 E 0 implies 

P 
( 
JlmpzEO) =l. 

The following theorem employs a sequence of nonnegative random variables 

b, = b&G, l l .A>- 
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Useful po&bi&& are b, = IW: ] and b, = b = J K’(u)& for a kernel function K. 

Theorem 3.2.4 Let (p be a bounded measureable function that is continuous on a set of 

Fz probability 1. Then under conditions i) and ii) below 

J p(y)d&(y) * Jp(y)dF,(y) in pr. and & - Fs weakly in pr. 

Under conditions i) and iii) below 

I p(y)d&(y) 4 J (p(y)dF,(y) a-8. ami k ---* FZ Weakly a~S- 

i) r’; is Prohorov continuous at z 

G) There exist nonnegative r.v.s b,(Xl, . . . , Xn) such that: 

Pmh (W$, (1 + b&) + 0 in pr. 

Ptoh (W;, b,&) + 0 in pr. 

Vr > 0 3B, < 00 with limsupP(b, 2 B,) < c 

n, --+ 00 in pr. 

G) There exist nonnegative r .x8 b&VI, . . . , X,,) such that: 

Proh (W?, (1+ b,,)&) + 0 aa. 

Ptoh (W;, b,,&) 4 0 as. 

3B<oo with P(limsupb,>B)=O 

PROOF. For cp bounded, messureable and continuous a.e. [&I write 

The proof of Theorem 3.2.1 can be adapted to show that both terms in (10) converge to 

0, in pr. under i) and ii) and a-s. under i) and iii). The bounding conditions on b, are 

used in the Chebychev and Hoeffding arguments applied to the first term in (2). 
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Let 0 E 0 contain Ft. Then there is a bmic open set U such that Fz f N c 0. The 

neighborhood base at Fz in the topology of weak convergence consists of sets of the form 

for nonnegative integers k, positive e and bounded continuous functions pi. It follows 

from the convergence of (10) to 0 for any finite set of bounded continuous functions pj 

that & + Fz weakly in pr. under i) and ii) and weakly 8.8. under i) and iii). g 

Perhaps the conditions above can be further weakened to weak convergence of Wz 

to 62, in pr. and a.s. Such generality is not needed in most smoothing applications. 

Consider the following example: Let ri be an enumeration of a countable dense subset of- 

x. Let 

W,+ = & + c 2-$; and W; = c a-$,= 
i i 

where d(ri, tin) < l/n. Then Wz + & weakly, but does not satisfy the conditions of The- 

orem 3.2.4. For applications, it is reasonable to assume that lWzl + 0 on the complement 

of any open set containing z. This was used to handle the second term in (2). 

3.3 KS Consistency of Pz 

This section provides su&ient conditions for KS(&, F,) to vanish. The result is similar 

to that for the Prohorov metric except that the Prohorov continuity condition on F. is 

strengthened to KS continuity. Fortunately it is not necessary to strengthen the Prohorov 

convergence of Wt to KS convergence, since the latter only holds together with n, + cm 

when the number of zi equal to z grows without bound. The Kolmogorov-Smirnov metric 

is stronger than the Prohorov metric so that convergence in the former implies convergence 

in the latter. 

Any functional T that is continuous when the Prohorov metric is used on its domain 

is also continuous when the KS metric is used. Functionals such as Jv (F) = F(y) - F (y-) 

are continuous when the KS metric is used on the distributions, but may not be when the 
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Prohorov metric is used, Therefore the KS consistency results of this section are useful in 

situations where there are atoms in the distribution of Y. 

First we note for later use: 

Lemma 3.3.1 Let F be a distribution function on lR. Let J be the set of points of jump 

of F and let Q be the set of rational numbers. If 

and 

Fn(Y) + F(Y) VY E Q 

F&d -.F~Y-) + J’(y) - F(y-) Vy E .I 

ihen XS(F,, F) + 0. - 

PROOF. This is proved in Chung (1974, p.133). 

Lemma 3.3.2 Let yo E 9 = B. Under conditions i) and ii) below 

&(Yo) + F,(Yo) h pr. 

and under conditions i) and iii) below 

a ---) F&O) a-8. 

9 F. KS continuous at z 

ii) W,+&Prohinpr. and n,+ooinpr. 

iii) Wz + 6% Proh a.s. and n,/ log n ---) oo in pr. 

Definition A sequence will be said to converge appropriately if it converges weakly under 

conditions i) and ii) and strongly under conditions i) and iii). 

PROOF. Let p(x) = 1~~~~~. If yo is a continuity point of Fz then y3 satisfies the 

conditions of Theorem 3.2.1 and so @=(yo) converges appropriately to F=(m). If 90 is not a 

continuity point of Ft then ~(0) though bounded and measureable, fails to be continuous 

a.e. [F,]. 
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In the proof of Theorem 3.2.1 the a.s. continuity of ~(0) W(LS only used to establish the 

existence of an open set A 3 z such that q f A implies 1 I p(y)dF,,(y) -I cp(y)dF,(y)l < 

C. But KS continuity of F. at z gaurantees the existence of such a set and so with 

this modification we can establish the appropriate convergence of &(yo) to Fz(yo) aa in 

Theorem 3.2.1. i 

Lemma 3.3.3 Let yo E 9 = JR. Under conditions i) and ii) of Lemma 3.3.2 

fiz(Yo> - P~(Yo-) + F,(Yo) - F,(yo-) in pr. 

and under conditions i) and iii) of Lemma 3.3.2 

‘~(?Jo) - @z(Yo-) + Fz(yo) - Ft(yo-) 8-s. 

PROOF. Proceed as in the proof of Lemma 3.3.2. Let p(Yi) = l~~=~, . If ~0 is not an 

atom of Fz then the proof follows from Theorem 3.2.1. If yo is an atom, KS continuity of 

F. implies that the open set A required in Theorem 3.2.1 for (o(e) exists. In either case 

&(yo) - &&JO-) converges appropriately to F,(m) - R&O-). 

Theorem 3.3.1 Let y =IR. Under conditions i) and ii) of Lemma 3.3.2 

& + Ft KS in pr. 

and under conditions i) and iii) of Lemma 3.3.2 

& + Fz KS 8.8. 

PROOF. Define 

E(Y) = 
MYI k(Y) 

suP,mY) = Wz'(X) 

Now 

KS&, F=) 5 KS@:, F,) + KS(&,O) 

s KS(?$, Fz) + KS(fi;,F=) + KS&-,O). 
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The third term in (1) is bounded by IWi (I)\ and the second term is bounded by 

both of which converge appropriately to 0. 

Write 

where fi = Wi’!ciWi+. The weights ri satisfy condition ii) when the W; do and _ . 

similarly for condition iii). . 

For strong convergence, apply Lemma 3.3.2 with weights ri at points in the set Q of 

rational numbers and Lemma 3.3.3 to all the points in J, the set of points of jump of Fz. 

(The set Q U J is countable.) Then except on the union of a countable number of null sets 

(which is again a null set) 

and 

z(y) - z(y-) -+ F=(Y) - F,(Y-) VY E J. 

Therefore with probability 1 

KS(?$ F,) --) 0 

by Lemma 3.3.1. 

For weak convergence, let 6 > 0. Select a finite grid 

-m= YO<Yl< . . .y+r < y, = co 

such that the Fz probability of each open interval (yj, yj+l), 0 5 j < t is less than E. * 

(The grid contains any atoms of Fz that are greater than E.) By Lemmas 3.3.2 and 3.3.3 

Z$(yj) + Fs(yj) in pr. and z(yj) -Fs(yj-) + Fs(yj) - F=(yj-) in pr. at each yj. There- 

fore KS(z, F,) + 0 in pr. by a standard multi-t argument that uses the monotonicity of 

EandF,. I 
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Although Theorem 3.3.1 assumes the *KS continuity of F. at z, it was only used 

to get the continuity of the running probabilities F,(m) and jumps F,(yo) - F,(yO-) at 

z. Nowhere was the uniform continuity of these quantities that KS contirmity imposes 

explicitly used. Yet it follows from Lemma 3.3.1 that the continuity of the jumps and 

probabilities at z implies the KS continuity of F. at z. 

The results of this section were obtained under the assumption that Proh(W,, S,) + 0. 

This can be weakened to accomodate weights that have asymptotically nonnegligible neg- 

ative components. The conditions of Theorem 3.2.4 are adequate. The proof of Theorem 

3.3.1 must be modified slightly: consider KS(fiz, (1+ bn)Fz) and KS(pg, b,F,.). 

It should be possible to extend the results of this section to Glivenko-Cantelli classes 

of sets in lRd. 

3,4 Vasserstein Consistency of P, 

Recall that fis + Fz in the Vasserstein metric VP iff & + Fz in the Prohorov metric and 

j’ IYl’d& + I IYlpdF,. Th e main reason to consider these metrics ia to study the cor- 

responding moments, particularly the regression function. The main advantages to using 

the Vasserstein metric instead of a direct method, is that with the bias-variance decompo- 

sition based on the Yi=, the bias term is conveniently handled. The triangle inequality for 

metrics can be used to split the problem into bias and variance parts and some conditions 

on the weights can be expressed naturally in terms of Vasserstein distances. 

The results for strong convergence are not as sharp as those obtainable by direct 

arguments based on the regression function. The sharpest available results appear to be 

those of Zhao and Fang (1985) and Zhao and Bai (1984). The paper by Zhao and Fang 

considers what are essentially uniform kernels and obtains strong global consistency. The 

paper by Zhao and Bai considers a very general family of nearest neighbor methods and 

obtains strong pointwise consistency. They exploit an asymptotic equitability constraint 
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that in the language of Chapter 2 is 

sup max n=Wi < 00 
n i 

for their probability weights. If n, is the effective sample size, then no observation should 

get too great a multiple of the “fair sharen l/n,. (Of course most observations get 

an infinitesimal fraction of l/n,.) Both papers consider the sampling case and assume 

E IYIp < 00 for some p > 1. Most other published works use at least a finite second 

moment for Y. The indirect results given here use “off the shelf” laws of large numbers 

for triangular arrays. For strong convergence one can do better by exploiting relationships 

between the rows of the arrays. - 

It follows from straightforward analysis that Vp( bz, F,) + 0 in pr. iff 

Proh(&, FJ ---) 0 in pr. and J (YIP& 3 J lYlpdFz ~JI pr. 

By considering the fixed points in the sample space, Vp(kz, F,) 3 0 a.s. iff 

Proh(&, F,) and J IY lpdPz - J IY I’aF, + 0 a.s. 

For Vasserstein consistency, the conditions for Prohorov consistency are strengthened. 

Assuming Prohorov consistency, the weak or strong consistency of VP is equivalent to the 

weak or strong consistency of the p’th absolute moment. 

The bias-variance split is 

v,(k Fz) 5 VP@& i+,“> + VP@‘:, Fz) 

where 

The bias term will be handled by direct consideration of Vp( kz, pg). For the variance term’ 

it is easier to work with 1 IY IPdPz - ,/ IY IpdF,. 

We consider first the variance term. For strong convergence of the variance term, 

we need strong convergence for certain row sums of random variables in a triangular 
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array. This is more difficult to obtain than strong convergence of sample means and more 

moments are assumed. The source for most of the results on strong convergence including 

parts (i) through (iv) of the next lemma is Stout (1969). That reference has very sharp 

laws of large numbers for triangular arrays, under conditions that are much more general 

than required here. 

Lemma 3.4.1 Let Wnh be fixed real numbers for 1 5 k 2 IL < 00 and let Dk be i.i.d. 

random variables with E ( Dk ) = 0. Set n;l = ctzl w& and T,, = ~~z1 W,,kDk. Then 

T,, + 0 8.9. if any of the following sets of conditions holds: 

(i) lwnkl 5 BnwQ, and n,/logn+ 00, and EI&121Q c 00 

(ii) lwnkl 5 BIL-~, and n,/logn ----) 00, and El&l’+‘/” < co 

(iii) Iwnkl 5 &a-Q,’ and n, 2 BnlwQA, and lIDkl’+’ < 00 

(iv) lwnkl 5 Bk”12, and n, 2 BnQ, and f I&I’ < oo 9 

where B > 0, t > 0, X > 0 and a E (0,l) are constants. 

PROOF. Note that e 3 00 implies c exp(-tn,) < 00, V’t > 0. Stout (1969) uses 

the latter condition. 

Part (i) follows from Stout’s Corollary 1, which is derived from his Theorem l(i) with 

p = 1 - Q. Part (ii) follows fkom Stout’s Theorem l(i) with /9 = QI. Part (iii) follows from 

Stout’s Theorem l(i) with @ = a(1 + A) - 1. Part (iv) follows from Stout’s Theorem 2. I 

Conditions (i) and-@) place the mildest restrictions on the growth of n,. For a > l/2 

(i) is preferred to (ii) and th e reverse holds for a < l/2. When stronger conditions are 

placed on the growth of n, a better tradeoff between the bound on IWil and the number of 

moments required of Dk can be obtained via (iii). Part (iv) is unusual in that the bound 

is not on the maximum weight in a row, but in the maximum weight ever placed on a 

given Dk. It allows a milder moment condition. 

Definition A sequence 2. converges completely to 0 if Ve > 0 

2 P(l&l > e) < 00. 
i=l 
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Complete convergence implies a.s. convergence by the BoreI-Cantelli lemma and is in 

fact strictly stronger that a.s. convergence. Under conditions (i) through (iii) complete 

convergence to 0 is obtained. 

If the moment conditions in Lemma 3.4.1 are suitably strengthened, the Dk do not 

need to be identically distributed. 

Lemma 3.4.1’ Let wmk be fixed red numbers for 1 5 k 5 n < 00 and let Dk be indepen- 

dent random variables with E ( Dk ) = 0. Set n;’ = ~~z1 w& and T,, = ~~zl W,,kDk. 

Then T,, ---) 0 a.s. if any of the following sets of conditions holds: 

(i) lwakI 5 BneQ, and n,/logn + cm, and & ( (Dkl”=(log+ I&l)‘+v ) < B 

(ii) lwmkl 5 Bra-=, and n,/logn + cm, and E IDk12+1/Q(log+ IDkl)‘+q < B 
> 

(iii) lw&l 5 BnBQ, and n, 1 BdwaA, and E ( l&12+x(log+ lD#+” ) < B 

where B > 0, X > 0, q > 0, and a ~(0, 1) are constants. 

PROOF. Items i-iii follow from Stout’s Theorem 4 in the same way that the corre- 

sponding parts of Lemma 3.4.1 do from Stout’s Theorem 3. I 

Stout does not provide a version of his Theorem 2 for the non identically distributed 

c-e, so there is no Lemma 3.4.l’(iv). 

The following technical lemma from Chung (1974) is used for weak convergence of the 

- variance term. 

Lemmn 3.4.2 Let {l&j, 1 5 j 5 kn} be a double array of complex numbers such that as 

n--,00: 

lq!xk leni ---) O -- 

21 I e,i < iw < 00 
l=l 

(2 1 a 

(2b) 

kn 
II e nj + e (2 > C 

l=l 
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where 6 is a finite compIex number. Then 

n(l+ e,j) --) ee. 
i=l 

PROOF. Chung (1974, p. 199) 

Corollary Let { 8,+ 1 <, j 5 k,) be a double array of complex random variables such 

that aa n 4 cm: 

max IS,J 3 0 in pr. 
lSil& 

(3 > a 

& I&j1 L M) --) 1 WI 
l=l 

c 8 nj 3 8 ill pr. (3 1 C 

1=1 

where 9 is a finite complex number and M < 00 is a constant. Then 

kn 
no + %I + 2 in pr. 
i=l 

Jy Lemma 3.4.2 there exists 6 > 0 SU& that maxlljlk l#mjl < 6 PROOF. Let c > 0. F 

and Cz, lkjl 5 AJ and I Ckl8ni - Sl < 6 together imply 

Therefore 

fi(1+ B*j) - ee < e. 
i=l 

P 
(I 

fi(l+ 0,) -ec) > C + 0. 
id I ) 

The next two lemmas establish weak and strong convergence of the variance term in 

(1)’ assuming the weak and strong (respectively) convergence of Ptoh(.8’,$ Fz). 

Lemma 3.4.3 For p 2 1 suppose that 

PP(4 = / lYIPdFSY> < O" 
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and let Wi be weights satisfying 

n, -+ 00 in pr. 
n 

c Wi -b 1 in pr. 
i=l 

n 

for some fixed B c 00. Then 

2 W (KzIp + /Lp(X) in pr. 
i"1 

zi = Iyi21p - )&p(X). 

Then 

2 Wi Iyi”l’ - pp(X) = 2 WiZi - pp(Z) (1 - kWi> l 

i=l i=l i=l 

The second term in (5) converges to 0 in pr. by (4b). 

Let g be the characteristic function of the 2;. Then . 

it EG C j WjZj = l n9(twi) 
i 

(4 1 a 

W) 

(4 1 c 

(5) 

(6) 

and it sufficea to show that (6) converges to 1. In fact, because the integrand in (6) is 

bounded, it suffices to show 

n 9Pwj) ---) 1 in pr.- (7) 
i 

For t = 0, (7) is trivial; suppose t # 0. Because & (Zi) = 0, and all the Zi have the 

same characteristic function g, 

g(tWi) = 1+ 8nj 

where for any l > 0, there is a 6 > 0 such that 

l6njl < c ItWjI whenever 1’=j”<“n IWjl < 6. 
-- 

(8) 
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Also n, + oo in pr. implies that maxi lFVi\ + 0 in pr. and hence 

+ 0 in pr. 

From (8) and (9),‘with M > B/ ItI 

_-. 
P(zlefijI I M) --+ 1 

; 

(9) 

(10) 

and finally (10) and (9) and (8) imply 

c 8 nj + 0 ill pr. (11) 
i 

By the Corollary to Lemma 3.4.2, with: 8 = 0, (7) follows from (9), (10) and (11). I 

Lemma 3.4.4 For p > 1 and i.i.d. Yiz - F,, suppose that IYizlP satisfies one of the 

moment conditions in Lemma 3.4.l(i-iv) and that FVi satisfy the corresponding condition 

a.s. Suppose also that the Wi are independent of the lYi”lP and satisfy the further condition 

c W; + 1 a.3. 

Then 

PROOF. Let Di = Iyi’lp - I IylpdF,(y). Then 

(12) 

(13) 

The second term in (13) converges to 0 a.s. by (12). Whichever moment condition 

from Lemma 3.4.1 k satisfied by IYtlP, it is also satisfied by Die The Di are i.i.d. with 

mean zero. This also holds conditionally on the Wi, by independence. 

Condition on Wi = ‘wi that satisfy the requirements of Lemma 3.4.1. Then c wi D; + 

0 as. By Fubini’s theorem, we can remove the conditioning and so c W& + 0 a.s. 1 

The bias term is Vp(Pz, &) = (C Wilyi - yi z P l/P. Conditionally on X, the mean of I ) 

v,p is 

>: wiVp(Fz;, Fz)’ 
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and the variance is bounded by 

c WfvZp(Fli 9 Ft)*‘* 

To control the bias term, conditions governing the behavior of Vp( Ft;, F,) as a function of 

2; can be traded off against conditions governing how the weight measure Wz converges 

to &. If X is compact and Vp( F,;, F,) is a continuous function of zi then it is bounded. 

The boundedness of Vp( Fzi, F,) a 11 ows relatively weak conditions to be imposed on Wz. 

At the other end of the spectrum, Voo convergence of Wz allows weak conditions to be 

placed on Vp( Fz;, F,). 

Mack and Silverman (1982) assume a uniform (in z) bound on I lyl*dF= (y) , which 

they describe as a mild condition. (They establish uniform convergence of the regression 

over suitable bounded intervals.) This is weaker than the boundedness of Y that Devroye 

(1981) uses which as they point out does not even allow the usual normal linear model. 

Their condition does not allow (X, Y) to be bivariate normal with nonzero correlation. A 

uniform bound on J lyl*dF,(y) im pl ies a uniform bound on V2 (F,;, F,). 

Lxnma 3.4.6 places conditions on Vp( Ft;, F,), such as 

for u 2 1. The first term dominates for 1~; near z, -where most of the observations are 

asymptotically, and the second regulates the long range behavior of the model F.. Recall 

(Sec. 2.5) that for a location-scale family 

F,-‘(u) = p(z) + a(z)F-l(u), u E (&I) 

the following bound holds: 

Vp(Fzi>F,) I IP(ti) - p(z)1 + IQ(%) - c(z)1 (J lF-l(U)lPdU)l’P* 

It follows that in a location-scale family conditions on the conditional location and 

scale imply similar conditions on VP. A range of conditions relating Vp(Fzt, F,) to llz’ - zll 
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is considered, and the weaker the Vp(Ftt, Fz) condition is, the stronger the condition 

imposed on Wt must be. 

The next lemma is used in the proof of Lemma 3,4.6(ii) and is used several times in 

Chapter 4. 

Lemma 3.4.5 Let X and Y be random variables with l( IYI I X ) < 00 a.s. and let 

c > 0. Then 

_ PROOF. 

P(lyl>~)=&(~(lyl>~lx)) 

L E ( G(lYl>eIX)<c + b(IYl>rlX)>r ) 
=c+P(P(IYI>cIX)>c) 

jr+P($lYlIX)>c) 

Sc+P(E( lYlIx)=*) I 

Lemma 3.4.6 Let Wz be probability weights. Assume that F. is VP continuous at z and 

that W, + 6% Proh in pr. Then 

if any (rf the conditions below hold: 

(i) Vp(Fli, Fz) < B 

(5) Vp(Fti, F,) 5 W m={llz - fill I 112 - zill”) and Wz + & Vop in pr. 

(iii) Vp(F=i, Fs) L +(zi - Z) and CWi+(z+ - z)’ 4 0 in pr. 

(iv) V,(Wz, 5%) + 0 in pr. 

where B > 0, p 1 1, a: 2 I, A& and CY E (0,l) are constants. 

PROOF. For any c > 0 there is a radius S > 0 such that 

II Zi - zll < 6 =s V,(F,,, F,) < E. 
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Let 276 = {u f x : llu - zll < 6). Denote by W#J) th e sum of the weights corresponding 

t0 Xi E Ss- l ( Ws(Sa) ) + 1 since Wz (Sa) is uniformly bounded by 1 and converges to 1 

in probability. 

For case (i) 

E ( vp(pt, pZ)p ) = E ( C WiIq’ - Y;.l’ ) 

= ’ ( CmV,(Fxi, J’z)’ ) 

I e (w,(ss)p + W.(S,e)BP) 

Therefore VP (.@ ,- pz) --) 0 in Lp and hence also in pr. 

For case (ii) 

P (VP@& Qp > c) s E + P (E ( VP&, Qp I X ) > ci) 

=r+P(CWiE( lY~‘-YilpIX)>2) 

= c + P (C WiVp(Fxi, F,)P > c’> 

5 E + P (C Wi~(llxi - zllp + llxi - zIIap) > c”> 

= c + P ( iug‘(vp(w~, QP + Vop(Wz, Qap) > E2 1 

The proof of (iii) is essentially the same zm the one for (ii). 

For c8se (iv) _ 

p (vp(~~~~*)p > c) 5 P( C Wilyi’ - 51’ > c/2) + P( C Wilyi” -yilp > C/2) 
t&S6 zi$SS 

5 P( C Wilyi" - Y;.lp > c/2) + P(Vi(W,,6,) > 6) 
ZiESJ 

< ;& ( c wipy - yilp) + P(V,(W,J,) > 6) 
ZifS6 

Therefore Vp( .@, .&) + 0 in pr. 1 
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For strong convergence of the bias term there is the possibility of combining any of 

the strong laws for non-identically distributed random variables with any of the tradeoffs 

between regularity of F. and convergence of IV,. Instead of producing a lemma with some 

twelve parts, we select part (iii) of Lemma 3.4.2’, and strong versions of parts (i) and (iv) 

of Lemma 3.4.6. 

Lemma 3.4.7 Let Wz be probability weights. Assume that F. is VP continuous, that 

Wz + S, Ptoh a.s., n, 2 BdwQA a.s. and max IWil < Bn’* 8.9.. 

Then 

Vp( F$, P=) ---) 0 a.8. 

if either of the following hold: 

(i) V,(F,i, J’s) L B 

(ii) F. is VP7 continuous at z and V,(W,, 8%) ---) 0 8.5. 

where B > 0, p 1 1, X > 0, 7 > 2 + X and a E (0,l) are constants. 

Remark The variable 7 is introduced to simplify the exposition, A uniform bound on 

& ( IDsIp ) implies a uniform bound on & ( (lD~lP)2+xlog+()D~lP)1+~ ) for any q > 0. 

The latter condition is the one used in Lemma 3.4.1’. 

PROOF. For any c > 0 there is a radius 6 > 0 such that 

II zi - 211 < 6 =) Vp(Fti, F=) < f. (14 

When F. is VP7 continuous at z there is a radius S such that - 

Let Sa = {v E X : Ilv - z[ I s 6). Denote by W&) the sum of the weights corresponding 

t0 Xi E Sa. W=(SJ) --) 1 8.9. 

In either case condition on X values that satisfy the as. conditions on the Wi. Strong 

conditional convergence is sufficient by Fubini’s theorem. 
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For case (i), pick 6 > 0 to satisfy (14). Then 

VP(3Z, I+=) = c wj15= - yiy P 

F ~Wj(lyi+ - yiI* - VpP(Fz;, Fz)) 

+ c W”‘(F,,,F,) 
z;fSs 

the first term of which coverges to zero a-s. by Lemma 3.4.l’(iii). The second term is 

bounded by @ and the third by B*Wz(Si) + 0. 

3.n (ii) pick S to satisfy (15). Then 

-V;(& &) = ): Wi(Iyiz - yilp - V,p(Fzi, F,)) 
ZiESS 

+ c W”(Fd’z) 
ZiESS 

the last term of which is eventually zero with probability 1. The second term is bounded 

by @,-and the first term satisfies the conditions of Lemma 3.4.l’(iii). I 

The results for weak convergence may be summarized as follows: 

Theorem 3.4.1 Suppose for some tite p 2 1, that F. is VP continuous at I: ad that Wz 

is obtained Corn probability weights with 

W, + G,Ptoh in pr. and IL= + oo in br. 

Then 

& + Fz VP in pr. 

under any of the conditions below: 

(i) VP&, F,) < B 

(ii) VP&, F,) 5 M,max{Uz - zJ, llz - z#‘} and Wz + & Vap in pr. 

(iii) Vp(Fzi, F,) 5 +(z; - z) and cW&(zi - z)* -+ 0 in pr. 

(iv) V,(Wz, 6,) ---) 0 in pt. 
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where B > 0, M. > 0 and a 1 1 are constants and # is a nonnegative real function. 

PROOF. By the triangle inequality 

(16) 

where I’: is defined by (1). By Lemma 3.4.6, Vp( fit, Pz) w 0 in pr. ad from n, + 00 

follows Ptoh( iit,z, Fz) ---) 0 in pr. (Apply Theorem 3.2.2 with every zi = z.) Also by 

Lemma 3.4.3, C Wilyi”l” + ~(~(2) in pr. Therefore VP@& F,) ---) 0 in pr. i 

The results for strong convergence may be summarized as follows: 

- Theorem 3.4.2 Suppose for some finite p 2 1, that F. is VP continuous at z, that Fz has 

a finite 2 + X’th absolute moment for some X > 0 and that Wz is obtained from probability 

weights with 

Wz + & Proh a.s. and n, 2 BdBaA a.s.lWi 1 5 Bra-O a.s. 

for at E (0,l). Then 

& + Fz VP 8.9. 

under either of the conditions below: 

(i) vpI(F&%) I B 

(ii) F. ia VP7 continuous at z and Voo (Wz, if=) + 0 a.s. 

where 7 > 2 + X. 

PROOF. Decompose V,(&, F,) into bias and variance components as in Theorem 

3.4.1. The bias term VP&, &) + 0 a.s. by Lemma 3.4.7. By Lemma 3.4.4 C Wilyi*lP 4 

p*(z) 8.5. using condition (iii) of Lemma 3.4.1 and the independence of the Y;i’ and the Wi. 

Also Pro@;, F,) + 0 a.s. by Theorem 3.2.2, so that the variance term V,(&g, Fz) + 

0 8.9. I 

, 



4 A symptotic Normality 

4.1 Introduction 

In Chapter 3, weak and strong consistency of running functionals was obtained. In this 

chapter, many running functionals turn out to be asymptotically normal. As for the 

estimate &, it converged to Fz weakly or strongly (depending on the strength of the 

conditions) in several metrics, in Chapter 3. In this chapter conditions are given under 

which the normalized difference ,/Fi#‘Z - F,) converges weakly to a Brownian bridge. 

Unifying features of the two chapters are that the same bias-variance split is used and the 

effective sample size n, plays a role analogous to that played by n in the i.i.d. setup. The 

result is to refine the notion that estimation at z is like that based on a biased sample of 

size n, from Ft. 

The development is as follows: The e&nated regression function is split into bias 

and variance terms. Sec. 4.2 develops necessary and sufficient conditions for the variance 

term to have a normal limit. A multivariate central limit theorem follows immediately by 

the Cramer-Wold device. Sec. 4.3 provides conditions under which the bias term goes to 

zero fast enough that the regression itself is asymptotically normal. The variance term of 

& converges weakly to a Brownian bridge under conditions given in Sec. 4.4, and under 

further conditions the bias term converges to zero. Von Mises method and the theory of 

compact differentiability prove asymptotic normality for a class of running functionals in 

Sec. 4.5. 

The bias variance split for i$ is 

(1) 
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where 8+: is obtained by substituting Yjz for Yi in kS and the split for a functional T(e) is 

T(&) - T(F,) = (T&) - T(F,)) + (T(k) - T&)) 

which for the conditional expectation becomes 

(2) 

h(X) - m(z) = >: Wi(Yi” - m(x)) +x Wj(Yi - Yi”). (3) 

The second term is named after the bias because it is nonzero due to the discrepancy 

between Fz and Fxi and the first term is named after the variance because it is nonzero 

due to sampling variation from Fz. 

4.2 Asymptotic Normality of the Regression Variance 

The variance term in 4.1.3 is a weighted sum of centered Yi’s. The quantities Yiz -m(x) are 

i.i.d. with mean 0, and we will assume, a finite variance. There is no essential difference in 

the treatment of Yi” and h(Yi’) p rovided h(Yi2) satisfies the moment conditions. Therefore 

it will make the notation clearer to replace Yi” or h(Yi*) by Vi where the Vi are i.i.d. and 

have first and second moments. By construction (Sec. -2.1) the Yi=‘s are independent of 

the Xi’s and hence of the Wi’s. 

Lemma 4.2.1 Let Wd, 15 a’ 5 n < oo be a triangular array of real constants with 

n 

c Wti=l, 
i=l 

and set 

n, = 
n -1 

n,(n) = 
( ) 

c WL . 
i=l 

Let Vi be i.i.d. from a distribution F with mean p and positive variance g2 < 00. Then i 

for any such F iff 



. 
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and 

max l/qKiI -+ 0. 
l,<iln (2) 

PROOF. Necessity of ‘( 1) and of (2) is trivial. For sufficiency there is no loss of 

generality in taking ~1 = 0 and g2 = 1. To conform with our usual notation, abbreviate 

W& to wj. 

The proof begins by applying the Lindeberg theorem (Billingsley 1979, Theorem 27.2) 

to the double array with n, i element ,/fiJWiV;. We need only establish Lindeberg’s 

condition which here amounts to showing 

nZWi2Vi2hF ---) 0 (3) 

for any q > 0. 

Put W = maxlWil in each row of the table. Then the sum in (3) does not exceed 

where [zJ denotes the largest integer less than or equal to t. 

The sequence in (4) tends to zero in pr. if 

I V,2dF +O. - 
IVll-?fi 

(4 

(5) 

Note that (5) is the Lindeberg condition for fi times the sample average of n i.i.d. Vi m 
which has a normal limit. Since W ,& ---* 0 

$TT ll!IliS&P(l~K~l > E) = O 
-- 

for any t: > d. Then (6) and Feller’s theorem (Billingsley, 1979, Theorem 27.4) together 

imply (5). I 
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Lemma 4.2.1 can also be proved using characteristic functions. Because the Vi are 

i.i.d. the “little on terms all come from the same Taylor approximation and so their sum 

is easy to manage. 

Corollary The condition xrzr Wd = 1 may be replaced by 

~(l-&v&)-ro (7) 
i=l 

in Lemma 4.2.1. 

PROOF. Immediate. 

Since Wz is random, it is essential to extend the conditions of Lemm 4.2.1. 

Lemma 42.2 Let Wni, 1 5 i < n < 00 be a triangular array of real random variables, 

and set 
n 

( > 

-1 

na =n&a)= cw; . 

i=l 

Let Vi be i.i.d. from a distribution F with mean p and positive variance a2 < co. Also 

assume that the -Vi are independent of the WG. Then 

if all of the following hold: 

n, + 00 in pr. 

A(1 - ~WG) + 0 in pr. 
i=l 

Remark For probability weights (8a) implies (8bc). 

PROOF. As before abbreviate Wh by Wi. Make the split 

(8 1 a 

w 

(8 1 C 
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The second term in (9) tends to zero in pr. by (8~). We may assume that C-Wi > 0 by 

(8ac) and so dividing each Wi by c Wi yields weights that sum to 1 without changing the 

first term in (9). Therefore we may wume that c Wi = 1. 

Let z E lR and c > 0. If the Wi were fixed, then by Lemma 4.2.1 there would exist 

S > 0 such that IL, > l/S and &max IVVil < 6 imply that IP(& < z) - @(%)I < c where 

Q is the standard normal distribution function. But by independence of the W’i and Vi, 

the conditional distribution of Z,, given values of the Wi’s is exactly what it would be for 

fixed Wi’s taking those values. Therefore 

L C + P(n, L 116) + P(&max lwil 16) 

Therefore P( Z,, < z) + Q(z). I 

Lemma 4.2.2 extends to a multivariate central limit theorem as follows: 

Lemma 4.2.3 Let Vi be i.i.d. random vectors of length p with mean p and variance- 

covariance matrix X3. Let WG satisfy (8abc). Assume that the Vi are independent of the 

Wi. Then 

PROOF. Let I be any fixed pvector. The asymptotic distribution of 2 l Zn is normal 

with limiting East two momenta 0 and ICI’ by Lemma 4.4.2. Since this holds for any 1 the 

asymptotic distribution of Z,, is multivariate normal with mean 0 and variance-covariance 

C. (See Rae 1973, 2c.5iv). I 

4.3 Asymptotic Negligibility of the Regression Bias 

In this section we provide conditions under which 

With the factor 6, the variance term converges to a normal distribution with mean 0 

and variance & (y - rn(~))~. To make the bias converge, we require Wz to converge to & 
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in some sense. For Wt + 6% to imply that the bias disappears it is necessary to suppose 

that when Zi is close to x, that Fzi is suitably close to Ft. Typically one assumes, that the 

regression curve admits so many continuous derivatives and applies a Taylor expansion. 

Here, that condition is replaced by an assumption that 

at least for xi close enough to z. In the presence of Prohorov continuity of F. the condition 

above is weaker than the existence of a derivative of m(z). To make the normalized bias 

converge, it will be necessary to have Wz converge to 6= fgster in some sense than n, 

is going to infinity. In practice, one usually tolerates some asymptotic bias, in order to 

obtain a lower mean square error. 

Lemma 4.3.1 If F. satisfies 

and 

then 

PROOF. 

fix Wi(yi - I$‘) + 0 L’. 

(1) 

(2) 

t ( I&xWi(x - q”)l ) L E ( JCC Iwill - VI ) 

= E ( &Clwil%(FZi*FZ) ) 

I f ( fix IwilS lIzi - 41) 

= l (Jii;lw..(Wz, 6,)) 

Condition (2) says that the weighted average absolute distance of the observations 

used to estimate the regression from the target point must go to zero faster than the 
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reciprocal of the square root of the effective sample size. For k-NN, the k’th neighbor 

should be at distance o( l/k) f rom z. In the sampling case the k’th neighbor is usually at 

distance O,(k/n) f rom the target point. Because condition (2) involves the expectation 

of Vl(W=, 6,) it may be awkward when the Xi are sampled from a long-tailed distribu- 

tion. For the next lemma (2) is weakened to convergence in pr., and the conclusion is 

correspondingly weaker, but is enough to give the regression an asymptotically normal 

distribution. 

Lemma 4.3.2 If F. satisfies 

and if 

then 

&xWi(yi - yi”) -+ 0 in pr. 

PROOF. Let c > 0, and put 

B = l,&~wi(~ - yi”)l. 

Then, using X ,to denote the sequence of Xi’s, and recalling Lemma 3.4.5: 

P(B>c)<c+P(E(BIX)>P) -m 

=C+P(E(&CIWiljYi-Y~l IX) > c2) 

= C + P (fix IWilE(lYi - Yi”] I X) > c2> 

= c + P (GE IwilVl(Fxi> F=) > c’> 

5 ~+P(j/G~IWilM,llXi-zll >c2) 

= e+ p (jm4zvl(wz,~z) > 2) 
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Condition (2) is that the area between the distribution curves is locally Lipschitz. 

This is a mild short range condition, but it does have long range consequences. Most 

authors handle the long range problem by either working in a compact set, or by using 

a Wz that has Voo convergence to &. (Examples are kernels with bounded support, 

and k-NN schemes.) With Voo convergence of Ws it is only necessary to assume that 

h(F,i> F,) L 1M+ llzi - 211 for sufficiently small 112; - 211. With compact X and Prohorov 

continuous F., continuity of m(a) implies condition (2). 

Lemma 4.3.3 For some positive D < 00, suppose F. satisfies 

Vl(F,,, Fz) <‘A& 112; - zll whenever llzi -zll 5 D. 

Assume that P(n, 2 1) + 1 and 

and for some positive E < 00 

Then 

&E Wi(yi - I$‘)‘% 0. 

PROOF. Let c > 0 and defme 

H = {n, L 1) n {x lwil< E} n {L(W,, Sz) < D> 

and 

Then 

B = I&xWi(Yi - Yi”)l. 

(3) 

(4 

P(B > c) 5 P(Bla > c) + P(H’) 

Sc+P(t(Bl~IX)>c2)+P(Hc) 
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~z+P(~M=EV,(W,,G,)>~‘)+P(H’) - . 

-+ c + P(H’) 

5 e + P(C IWil 2 E) + p( n, < 1 or V,(W&) > D) 

+ f + P(n, < 1 or V,(W&) > D) 

5 c -t P(n, < 1) + P(&(& &) > D & n, 2 1) 

* 6 + P(v,O(W,, &) > D dt n, 2 1) 

5 E + p(~~(Wdz) > D 8~ n, 1 1) 

5 c + P(~iio(Wz, sZ)- 0) 

--,rz I 

Condition (4) is introduced because of the way V’, (W,, &) is extended to finite signed 

measures Wz in Subset. 2.4.3. For biers elimination, very light conditions are placed on ) 

the sequence nz. For example l-NN schemes, in which the closest neighbor to z gets unit 

weight and all other observations get 0 weight satisfy the lemmas above. The condition 

_ governing C lWi[ is important in the bias considerations, but was not needed to handle 

the variance term in Sec. 4.2. 

Now, combining the results of this section and Sec. 4.2: 

Theorem 4.3.1 If for some positive B < 00 Wt satisfies: 

n, ---) 00 in pr. 

&(1 - CWi, ---) 0 in pr. 
i=l 

and for some positive Mz < 00 F. satisfies: 

(5 1 u 

(5b) 

(5 ) C 

(54 

(5 1 e- 

(6 > CL 

w 
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then 

&(m(k) - m(h)) f! N(O,uZ)* 

If (6b) only holds for llzi - 211 5 D < 00 and (Sd) is strengthened to 

(7) 

(8) 

then (7) holds. 

PROOF. Write 

6zbm - m(F,)) = 6 (Cwiyi - m(F.)) 

= 6 (c W&” - m(h)) + &wi(y;- - Y:"). (9) 

The first term in (9) tends in distribution to N(0, ~2) by Lemma 4.2.2, because the Yiz are 

independent of the Wi, and because of (Sabc). Under (Sde) and (6ab) the second term in 

(9) converges to 0 in pr. by Lemma 4.3.2. If (6b) only holds locally, but (8) holds, then 

the second term in (9) converges to 0 in pr. by Lemma 4.3.3. (Note that (Sa) implies 

P(n, L 1) - 1.) I 

Schuster (1972) obtains asymptotic joint normality of the regression function at a 

finite number of points, for kernel regressions. The regression values at distinct points 

are asymptotically independent. Royall (1966) obtAina asymptotic normality for near- 

est neighbor methoda. Stute (1984) obtti asymptotic normality for symmetric nearest 

neighbor methods with a bounded kernel. Where Schuster ELssumea a finite third moment 

for Y, Stute needs only a finite second moment. 

4.4 Asymptotic Distribution of &(i;; - F,) 

This section shows that the conditional empirical process pz - Fz has a Brownian limit 

when normalized by ,& under very general conditions on the weights. 

Start by making the split 
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where & is obtained by replacing each Yi in & by Yi’. Recall that Y.’ are i.i.d. from Fz. 

The first term above is the variance term and the second is the bias. 

The goal is to make the variance term normalized by - converge to a Gaussian 

process and to make the normalized bias term converge weakly to zero. The Gaussian 

process is supposed to be the Brownian bridge when Fz is absolutely continuous. In the 

absolutely continuous case it is sufficient to consider Fz = U[O, 11. That is assume 

3-2 (4 ?sf P(Y 5 qx = 2) = t. 

- The value of the variance process at-t is then 

where Ui are i.i.d. U[O, 11. T o accomodate conflicting conventions the sign of the variance 

term has been reversed. 

Let 0 < t1 c . . . < tk 5 1 for some finite k. The vector Vn = (Z&), . . . , Z&k))’ 

has mean zero and for i < j the ;, j element of its variance covariance matrix is ti (1 - ti). 

Thus it has the same East two momenta aa the Brownian bridge process. 

Lemma 4.3.1 If Fz is uniform[O,l] and p2 is obtained by weights satisfying (4.2.8abc) then 

the finite dimensional distributions of -(fit - Fz) converge to those of the Brownian 

bridge. 

PROOF. Apply Lemma 4.2.3. 

In addition to the convergence of the finite dimensional distributions to those of the 

Brownian bridge, it is also necessary to govern the behavior of the process over small j 

intervals. This is usually done by proving uniform tightness of the sequence of processes. 

We will instead use a similar approach from Pollard (1984, Chapter V). Consider Zn as a 

member of DIO, 11, the space of real valued functions defined on [0, 11 that are continuous 

from the right and have limits from the left. Such functions are sometimes called cadlag 



4.4 Asymptotic Distribution of &(& - Fz) 84 

functions, from the French: continue a droit, bites a gauche. Equip the space DIO, 11 

with the uniform metric d(Z, W) = ~up~<~<~ ]Z(z) - W(z)1 and the projection o-field. -- 

The projection a-field differs from the usual Bore1 a-field in that empirical distribution 

functions are measureable. The former is generated by all closed balls, the latter by all 

closed subsets. The trace of the projection c-field on C[O, I], the space of continuous 

functions on [0, 11, coincides with the Bore1 a-field of CIO, 11. For a detailed discussion of 

this approach see Pollard (1984). His Theorem V.3 is the main result. It is: 

Theorem 4.4.1 Let 2, 21, 22, . . . be random elements of D[O, 11 under the uniform metric 

and the projection u-field. Suppose P{Z. E C} = 1 for some separable subset C of D [0, 11. 

The necessary and sufficient conditions for (zn} to converge in distribution to 2 are: 

(i) the finite dimensional distributions of Zn converge to those of 2 

(ii) to each c > 0 and S > 0 there corresponds a grid 0 = to < tl < . . . < t,,, = 1 such 

that 

lim sup P{ EL: sup 
i=” tE[ti,ti+l) 

I&(t) - Z&)1 > S} < E. 0) 

PROOF. Pollard (1984, pp. 92-3). 

When 2 is the Brownian bridge C can be taken to be C[O, l]. 

Defhition A sequence Zn of random elements in .a[O, l] under the uniform metric and 

projection a-field is nearly tight if condition (ii) of Theorem 4.4.1 holds. The property of 

being nearly tight will be called near tightness. 

A uniformly tight sequence is nearly tight. A nearly tight sequence need not be 

uniformly tight. For example Pollard (1984) h s ows that F,, is nearly tight, but Fn is not 

uniformly tight. See Fernholz (1983, p. 28) for a characterization of the bounded sets of 

D[O, l] that have compact closure. 

. 

To establish weak convergence of the variance%erm to the Brownian bridge it only 

remains to prove near tightness of ,/E#‘z - F,). 
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In certain special cases the convergence to the Brownian bridge is very easy to show. 

We can borrow from the i.i.d. case in which the Brownian limit is well known, in the 

same way that Lemma 4.2.1 borrows from the i.i.d. central limit theorem via Feller’s the- 

orem. Perhaps the simplest is the following, which includes k nearest neighbor smoothers, 

symmetric k nearest neighbor smoothers and one sided nearest neighbor smoothers. 

Theorem 4.4.2 If Fz is uniform[O,l] and & is obtained by weights of which 

k = k(n) + 00 in pr. 

are l/k and the rest are 0, then 

where B is the Brownian bridge. 

PROOF. We have CR+ = 1, nz = k and ,&‘rnaxlWii = l/G so by Lemma 4.4;1 - 

the finite dimensional distributions of Zn converge to those of the Brownian bridge. 

Let c > 0 and 6 5 0. It is well known that the desired weak convergence holds when 

k = n. Let g,, be the sequence of processes obtained by taking Wi = l/n in the .expression 

for Zn and by taking fi for 6. By the necessity part of Theorem 4.4.1 there is a grid 

0 = t(J < t1 < . . . < tn, = 1 such that (1) holds for &. 

=limsupP{Gc sup l%J) - %&i)l > 6) 
n-*oo i=l tE[ti,ti+l) 

5 lim sup P{G sup g$) - k(h)l > 6) 
n--+00 i=l tE(ti,ti+l) 

The equality above is due to Zn having the same distribution as &,,, the first inequality 

follows because the limit supremum of a sequence is no less than that of any subsequence, 

and the last inequality is by construction. I 
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The approach above generalizes to some schemes in which a finite number of weight 

levels are used. For example, suppose weight 2/(3k) is put on each of the k nearest 

neighbors and weight 1/(3k) is put on each of the next k closest neighbors. The process 

Zn is then a sum of two processes, one for the nearest neighbors and another for the second 

group. Each term in the sum, converges to a constant times a Brownian bridge. For each 

n the terms are independent. It follows that their sum converges to a constant times a 

Brownian bridge and the normalization 6 is such that the standard Brownian bridge 

would be the result. Proceding from 2 to L levels is straightforward and many interesting 

weight schemes can be approximated this way for large L. 

A large class of weighting schemes might be shown to have variance terms which con- 

verge to the Brownian bridge by arguments based on approximating this way and showing 

that the differences between the approximate and actual processes are asymptotically neg- 

ligible. Instead, an argument that parallels the development of the functional central limit 

theorem in Pollard (1984, Chapter V) is given below. 

The key step in the derivation is to bound the probability that the supremum of IZ,&)l 

over a short interval exceeds a constant 6 by a probability based only on the difference 

between the endpoints of the interval. This is accomplished by the following lemma, which 

Pollard gives as Lemma V.7: 

Lemma 4.4.2 Let {Z(t) : 0 < t < 1) be a process with cadlag sample paths taking the 

value zero at t = 0. Suppose Z(t) ’ E 1s t-measureable, for some increasing family of a-fields 

{& : 0 5 t 5 b}. If at each point of {IZ(t)I > 6}, 

p ( IW) - Z(t)1 h ;lwIl/ 4) 1 A 

where B is a positive number depending only on 6, then 

p 
(Wlb ) 

sup p(t)1 > 6 L t+p (IW>I > 812) - 

PROOF. Pollard (1984, pp. 94-5). 
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Theorem 4.4.3 If F= is uniform[O,l] and & is obtained from Wi satisfying (4.2.8abc) 

then 

where BO is the Brownian bridge process. 

PROOF. By Lemma 4.4.1 the finite dimensional distributions of Z,&) converge to 

those of Bo, and so by Theorem 4.4.1 it only remains to establish (1). 

It suffices to show near tightness of Zn for fixed Wi satisfying 

nt --) 00, c wi = 1 and firnaxlWil+ 0 

because then (1) follows for random Wi satisfying (4.2.8abc) by the technique of Lemma 

4.2.2. 

Let c > 0 and 6 > 0. With the Wi fixed, 

is a nondecreasing process with cadlag sample paths. W(0) = 0 and W (1) = 1 and W (0) 

jumps by the fixed amount Wi at the random place Ui. Since the Ui are independent 

uniform[O,l] the process W(t + -8) - W( 8 on 0 5 t 5 b 5 1 - 8 h= the same distribution ) 

as W(t) on 0 5 t 5 b. Nqte that Z,,(t) = &(W(t) - t) so it also has this stationarity 

property. 

When ti = i/m, (1) reduce3 to 

lim sup*P{ ES sup 
i=” t@/m,(i+l)/m) 

I&(t) - &&)I > 6) 

5 lim sup mg P{ sup I&(t) - Zn(k)l > 6) 
tE[i/m,(i+l)/m] 

=limsupZ$ sup IZn(t) -Z&)1 > 6) 
wwm) 

usingthe stationarity in the last step. The last probability will be replaced by one involving 

only Zn(l/m). F or notational convenience put b = l/m. 
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Let & be the u-field generated by Zn( 8 on 0 5 8 5 t. It is determined by those Ui ) 

which fall in the same interval. Conditionally on &t, 

D ‘%f W,,(b) - W,,(t) 

is a sum of a random number of Wi which are themselves randomly selected without 

replacement from the Wi corresponding to Ui > t. Given ft, the number of such Wi has a 

binomial distribution with parameters nt and Pt = (b - t)/(l - t), where nt is the number 

Of Ui > t. 

Lemma 4.4.3 below establishes the bound 

f ( (D - (b - t))* 1 ft ) I ptn,’ + P: (1 - W(t))” 

under the assumption that nt > 2. To assume that rat > 2 is no loss of generality since 

nt > nb and rib/n ---b b 8.9. On the set where I Zn(t)I > 6, 

P(IZ,(b) - z*(t)1 > 1/2lZn(t)l I ft) 

= P(ID - (b - t)l > l/BIpy,(t) - tl 1 Et) 

5 4f ( (D - (a - t))* 1 ft ) /(wn(t) - t)* 

5 4 (p&l + pf (W&) - t)*)/ (W&) ‘-t)* 

=4 (ptn,‘) / (F&(t) - t)* + 4Pf 

5 4 (ptn,‘) / @*nil) + 4Pf 

L 4Ptl6* + 4P: 

L 112 

for small enough b, that is for large enough m. (It is easy to see that pt < b(l - b)-l.) 
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Using Lemma 4.4.2 with /9 = l/2, and the convergence of &(b) to N(0, b(l- b)) 

limsupmP{ sup I&(t)1 > S} <limsup2mP{IZ,(b)l > S/2} 
tE(W] 

=2mP{IN(O, b - b*)I > S/2) ’ 

I2mP{IN(O, b)l > S/2} 

=2mP{IN(O, 1)l > 6/2&j 

=2mP{ N(0, 1)’ > 6’/16b*) 

<32mb*f ( N(0, 1)4 ) 6-’ 

532m-‘f ( N(O,1)’ ) F4 

for large enough m. I 

Lemma 4.4.3 Let D = z& Wi where R has a binomial distribution with parameters 

nt > 2 and pt = (b - t)/(l - t) !Ef 1 - qt and given R = r, the Wi are sampled without 

replacement from nt real numbers that sum to 1 - W(t) and whose squares sum to less 

than n;‘. Then 

f ( (D - (b - t))* ) I ptn,” +p:(l - w(t))*. 

PROOF. Suppose WI and W2 are selected by sampling without replacement from 

the nt numbers. Then f ( WI ) = (1- W(t))/nt and f ( Wf ) 5 n;l/nt and 

f ( W1W2 ) < (1 - W(t))*/(nt - l)nt. 

Using the above and f ( Q ) = f ( f ( (21 R ) ) for various Q, 

f ( CD - (b-m* ) 
=f ( D2 ) - 2(b - t)f ( D ) + (b - t)* 

=f(R)f(w;)+f(R* -R)f(wlw2)-2(b--t)f(R)f(wl)+(b--t)* 

SPtfq + 
ntptqt + (ntpt)* - Wt 

nt - nt 
(1 - w(t))* - 2(b - t)pt (1 - w(t)) + (b - t)* 

=p&’ +p: (1 - w(t))” - 2(b - t)pt (I- w(t)) + (b - t)* 
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=p&’ + (pt (1 - W(t)) - (b - t))’ 

=ptn,’ + (b - t)* ((1 - W(t)) /(I - t) - l)* 

=ptn,‘l + (b - t)* ((t - W(t))/@ - t))* 

=p&’ + P: (t - W(t))* 

The bias term is 

To make it converge to zero, it is necessary to have each Yi close to Yiz, or to have .the 

corresponding Wi close to zero. The worst case arises when Fz is a stochastic relative 

extremum of F.. Then all of the ly,.St - ly;St are of the same sign. Picture a sum of 

boxcar functions with height &Wi and endpoints Yi and Yi”. The wide ones tend to be 

short and the tall ones thin. This will allow pointwise convergence of the sum to zero. For 

uniform convergence there is a further subtlety. The Yi” endpoints are i.i.d. uniform[O,l], 

and so they are spread out over the interval. But the Yi endpoints are not uniform and 

they can pile up in arbitrarily small intervals. Since the boxcar functions with the largest 

weights have zi close to z they also have Yi close to Yi” and so their Yi are well spread 

out. The onei that might pile up have smaller weight. 

So that Q close to z implies YF close to yi, we impose a condition on I&, ( Fsi, F,). 

SufEcient conditions for that condition will be given later in Lemmas 4.4.4 and 4.4.5. 

We also will need a condition to cause the bias term to win the race to zero. The 

proof of the next theorem employs a truncation of observations for which I I zi - z] I > A,,. 

The sequence An has to be small enough to impose good behavior on the truncated term. 

Then Wz has to approach & fast enough that the truncation has a negligible impact. If 

one takes A,, = l/(,&log n) th en it will be necessary for n, log nV1 (W,, 6%) + 0 in pr. 

For L-NN this means that the average distance from z must be somewhat smaller than 

Ilk. 
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Theorem 4.4.4 Suppose that Fz is uniform[O, 11, that for some D > 0 

V&,(F,;, F,) 5 M.. llzi - ~11 whenever llzi - ~11 < D, (2) 

that the probability weights Wi satisfy (4.2.8ab) and that there exists a sequence 

A=A*(Xl,...,X,,) 

such that 

&A -+ 0 in pr. and &A-lVl (W,, &) + 0 in pr. 

Then 

where Be is the Brownian bridge. 

PROOF. Let 

&a(t) = &~Wi(lY~~t - t) 

be the variance process and 

&(t) = JFi;cwi(lYi<t - lYt<t) 

be the bias term. Under the conditions above the variance term converges to the Brownian 

bridge. It remains to show that the-supremum of the absolute value of the bias process 

converges in probability to 0. This is done by constructing a bounding process that has 

the desired convergence. 

To construct the bounding process, recall that 

VW (F,i> F,) = sup ]F,;l’(u) - F;‘(u)1 1 IYi” - Yil 
O<u<l 

from which 
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Then I&&)( I &pQ ’ t-v,(F,i~F,)<Y~<t+V,(F,i~F,) 
Ifi c w-1 ’ t-v,(F=i~*)<Y~<_t+V,(F~i~=) 

Iti-ZlsA 

+A C W 
I%- zJ>A 

L 6 C Wlt-AA4s<Y~~t+A.iUs 

lzi- 49 

+ @x(K, &)/A 

SO long as A 5 D. Since P(A > D) - 0 and &ABIV’(W,, 6%) - 0 in pr., it suffices to 

show that . - 

Gn(t) = 6 >: Wilt-AM.<Y~~t+AMs 

converges uniformly to 0 in probability. At a fixed value of t 

P(JGn(t)I > e) I r + P (f (IG$)I I X) > 2) 

5 c+ P 
( 

fixWi2AMz > C’ ) 

Le+P(,&AMd?) 

-+ e. 

Therefore the finite dimensional limiting distributions of the bounding process G, are all 

degenerate at 0. It remains to show that G, is nearly tight, and that is accomplished by 

using the near tightness of the variance process. , 

Notice that the range of Yi might be larger than that of Y? However, in this case 

the bias process outside the range assumes its maximum at 0 or 1. It follows that near 

tightness need only be shown in the interval [0, 11. 

Pick c > 0 and S > 0. Pick m so that 

limsup P{ max SUP 
Wl*-1 tE[i/m,(i+l)/m) 

I&(t) - G(k)1 > 6) < c* 

Such an m was constructed in proof of Theorem 4.4.3. By symmetry it follows that 

lim sup P{ max sup 
ISiS* tE((i-1)/*$/m] 

I&(t) - &t(ti)l > 6) < e* 
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NOW for ti = i/m, 

G,,(t) = &(t + AM,) - Z,,(t - AM.) + 2fiAM, 

so that 

Gn(t) - G*(k) = &(t + AM=) - &(t - A&) 

- Z,(ti + AM=) + Zn(ti - hM,) 

= Zn(t + AM%) - Zn(t;+l) 

* + Zn(ti+l) F zn(ti + AM,) 

_ + Zn(ti) - Zn(t - AM=) 

+ &(ti - AM,) - &(ti) 

Since P(AM, 2 I/ m + 0, it may be assumed that AM, < l/m SO that t E [ti, ti+l) ) 

implies that either t + AM= E [tit ti+l) oi t + AM, E [t i+l, ti+z). Similarly there are two - 

intervals that might possibly contain t - AM,. Using elementary bounds 

limsup P{ max sup 
lSiSrn tE(i/m,(i+l)/m\ 

IGn(t) - Gn(ti)l > 66) < 6~. 

This completes the proof. 1 

Theorem 4.4.4 shows that very general weighting schemes are capable of providing 

asymptotically Brownian estimates of the uniform distribution. The conclusion is appli- 

cable so long as the distributions of the random variables Fz(Yi) satisfy the I&, condition 

above. This does not follow from a similar V&, condition applied to F.. Sufficient condi- 

tions are provided by the next lemma: 

Lemma 4.4.4 Suppose that Fz admits a density that is bounded above by B < 00, and 

that F. satisfies V,(Fzi, F,) 5 Azllzi - zll. Then for some M,, 

Km (C@(Y) 1 X = zi), l(F,(Y) 1 X= 2)) I Mzllzi - zII* 
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PROOF. 

Voo (2(&(Y) 1 X = xi), t(i”s(Y) 1 X = 2)) = sup IF, (F;‘(u)) - ul 
O<u<l 

5 B sup IF;‘(u) - F,(u)1 
O<u<l 

5 BL (1p,i> F,) 

<= BA=llzi - ~11 

so we may take Mz = BA,. 1 

A restriction to distributions with bounded density is unpalatable, since it rules out 

such distributions as the exponential. Large densities allow F,(y) to be very different from 

F,,(yi) even when y is close to yi. It i&often reasonable to suppose that when Fz has a 

large density that Fzi does too, when xi is close to 2. This motivates the next lemma. 

Lemma 4.4.5 Suppose that F. satisfies 

Then 

Km (t&(Y) 1 X = xi), c(F,(Y) 1 X = 2)) 5 Mzllxi - ~11. 

PROOF. Let U be a uniform [O,l] random variable. 

Ko (W%(Y) 1 X = zi), l(F,(Y) 1 X = 2)) = sup IJ’s(F&‘(u)) - ul 
O<u<l 

= ‘UP IF,(F,l.‘(u)) - Fzi(F&‘(U))I 
O<u<l 

5 KS(F,, Fzi) 

5 Mzllz - zill - 1 

Theorem 4.4.5 Suppose that Fz is absolutely continuous, and that Wi are probability 

weights satisfying (4.2.8ab) and that there exists a sequence 

A=A,(X1,...,X,) 

such that 

&A 3 0 in pr. and &A-‘V~(W,,&) - 0 in pr. 
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and that for llzi - zll 5 D E (0, oo), F. satiafiea either 

KS(FZi, F*) 5 MZ 11% - ‘11 

where B is a continuous Gaussian process with mean 0 and for 8 < t 

Co+(s), B(t)) = k&)(1 - F,(t)). - 

PROOF. Apply Lemmas Lemmors 4.4.4 and 4.4.5 and Theorem 4.4.4. i 

Stute (1986) obtains a Brownian limit for symmetric nearest neighbor estimates with 

a bounded kernel function. (See Sec. 2.2 for a kernel based definition of symmetric nearest 

neighbor methods.) His results are obtained for multivariate Y and univariate X. For the 

variance term, Stute assumes that 

sup IF,,(t) - F&l = o ((log6-‘)-‘) 
p-rig 

as 6 + 0 unformly for z’ in a neighborhood of z. Stute remarks that this implies equicon- 

tinuity of F&(g), which ia refed to aa KS continuity here. 

4.5 Asymptotic Normality of Running Functionals 

In this section we apply the results of the earlier sections and the theory of compact 

differentiability to consider asymptotic normality for a class of statistical functionals. For 

a brief summary of compact differentiability and von Mises’ method see Sec. 2.5. For a 

complete exposition see Fernholtz (1983) or Reeds (1976). . 

Suppose that the statistical functional T has a compact derivative Ths at FZ. Then 

&(2’(h) - T(G)) = &l$$% - F,) + &Rem(k - &) 

= fix WiIC(yi; Fz, T) + &Rem& - F,) 
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so if the random variables Vi = IC(Yi; F%, T) and the weights W;i satisfy the conditions of 

Theorem 4.3.1 then the lead term is asymptotically normal. If also the remainder term 

converges to 0 in probability, then fi(T( PZ) - T( F,)) is asymptotically normal. For 

each functional, good behavior of the lead term implies a regularity condition on F.. We 

establish asymptotic negligibility of the remainder term. 

Following Fernholz (1983 ,Ch 4)) we assume that Fz is U[O, l] and that the statistical 

functional is defined on D[O, 11. This is only a slight loss of generality. A statistical 

functional T induces a functional 7 on D[O, l] by r(G) = T(G o F,). So long as Fz 

is increasing, any distribution function a can be expressed as G 0 Fz for some G. The 

asymptotic negligibility of the remainder term will be established by an argument that 

parallels Fernholz’s (1983, Sets. 4.1-4.3) which is in turn based on a method of Reeds’ 

(1976, Sec.6.5). There are two important differences. Since & is measureable in this 

treatment, there is no need to appeal to inner or outer measures. More seriously, the 

unequal weighting of observations in & adds complication. It will be necessary to assume 

that the weighting is not too unequal. 

We use the following lemma from Fernholz (1983). The distance between H E D[O, 11 

and K c D[O, l] will be taken to be dr’at(H,K) = k&K ]]I? - Gil. 

Lemxna 4.5.1 Let Q : DIO, l] x lR --* IR and suppose for any compact set K c DIO, 11 

limQ(H,t) =o 
t-+0 

uniformly in H E K. Let c > 0 and let & 10 be a sequence of numbers. Then for any 

compact K c D[O, 11, there exists VQ such that for n > no, and dist( H, K) 5 &, 

PROOF. See Fernholz (1983, Lemma 4.3.1) 

To apply Lemma 4.5.1 to a sequence with Sn + 0 in pr., the following version is of 

more direct use. 
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Corollary Let Q be as in Lemma 4.5.1 and let c > 0. Then for any compact K c DIO, 11 

there exists q > 0 such that S < q and dist( H, K) 5 6 implies 

IW, a < c- 

PROOF. Suppose not. Then there is a compact set K and infinite sequences qi J 0 

and Hi such that diSt(Hi, K) < qi and Q(Hi, vi) > C. But this contradicts Lemma 4.5.2. I 

The next lemma is used in the proof of the convergence of the remainder term. It is of 

some interest in its own right since it has weaker conditions on the weights than Theorem 

4.5.1. Introduce the process z for which 

ZQY;:) = R&q, E(o) = 0, E(l) = 1 

and z is piecewise linear over the n + 1 intervals between those points. Assume that the 

F,,. are continuous distributions so that there are no ties. Then by construction 

IZ(Y) - p=(Y)1 < l-,vn lwil _ 
-- 

for all y E [0, 11. For the rest of this section 

W = max IWil. 
l<i<n -- 

Lemma 4.5.2 Suppose that T has compact derivative Tb at U =‘ F=, all the Fzi axe 

continuous and that 

where BO is the Brownian bridge. Then 

&‘Rem(x - Fz) ---) 0 in pr. (2) 

Remarks Sufficient conditions for (1) are given in Theorem 4.4.4. See also Theorem 4.4.5. 

Note that (1) implies n, + co in pr. and ,/!QV * 0 in pr. 
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PROOF. Let c > 0. The process ,&(z- F,) irr within ,/fQV of ,&(&- F,) 5 By. 

Since &W ---9 0 in pr. it follows that A( Fz - F,) % Bo. Moreover since A( x - F,) E 

CIO, 11, a separable metric space, there is by Prohorov’s theorem a compact set K E C[O, 1] 

isuch that 

P@(&F+K)>h. 

K is also compact in D[O, l]. 

Because T is compactly differentiable, for H E K and n, sufficiently large (greater 

than n* say) 

Therefore 

P (I&Rem(x - Fz)I > c) < c+P(n, 5 n,) + q 

and so ,&Rem(z - F=) + 0 in pr. m 

We see also that if T has a F&et derivative then ,&Rem(p% - F,) + 0 in pr. under 

the conditions of Lemma 4.5.2. This ia because the set {H : dist(H, K) ‘< c} is bounded 

for compact K and the remainder term converges to zero uniformly over bounded sets 

under F’rechet differentiability. 

Theorem 4.5.1 Suppose that T has compact derivative T& at U = F,, all the Fzi are 

continuous, that (2) holds and that n,W = O,(l). Then ,&Rem& - F,) + 0 in pr.. 

Remark The condition that n, W = O,( 1) is not too restrictive. A “fair share” for a point 

would be l/n, and the condition bounds the multiple of that amount that any point can 

receive. Also note that by consideration of the finite dimensional distribution functions 

that (2) implies (4.2.8abc), and in particular that n, ---) 00 in pr. 

PROOF. Let E > 0. Choose B c 00 so that limsupP(n,W > B) < c:. By the 

argument of Lemma 4.5.2 there is a compact set K c DIO, 11 such that 
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and since 

’ by construction, 

P (dist(Jii;(& - F,), K) > @V) < e. 

By the compact differentiability of T at U, the function 

QtH, ‘1 = 
Rem(B-‘Ht) 

B-It 

satisfies the conditions of Lemma 4.5.1. By the Corollary to Lemma 4.5.1 there exists 

q > 0 such that 6 < q and dist(H, K) 5 6 imply IQ(H, t)l < E. 

Therefore 

P I,&Rern@ ( - &)I > c) 

=P (IQ(J;rr(k - F,),B/,/G)l > c> 

9 (B/A > q) + P (dist(,/K(k - F&K) > B/,/E) 

-+P d;at(,&(& 
( - F&K)-> B/,/ii;> 

=c+ P(n,W > B) 

so that 

limsupP(I&Rem(& - F,)I > e) < 2~. a 

Which statistical functionals induce functionals on D[O, 11 that are compactly differ- 

entiable at U? Fernholtz (1983) establishes such compact differentiability for M estimates 

with continuous piecewise differentiable $, such that $’ is bounded and vanishes off a 

bounded interval, when F has a piecewise continuous positive density. She also estab- 

lishes compact differentiability for some L estimates: 

; h(F;‘(u))M(u)du 
0 
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provided h is continuous and piecewise differentiable with bounded derivative (uaualIy one 

takes h(y) = u) and M E L’[cr, 1 - Q] for some a E (0,1/2], and F has a positive density. 

Similar regularity conditions on R estimators k&e them compactly differentiable. Quan- 

tiles get special treatment. She shows that they induce compactly differentiable functionals 

on C[O, l] when F is well behaved near the quantile in question. The asymptotic negligi- 

bility of the remainder term for quantiles then follows by considering continuous versions 

of the empirical distribution function that are constructed to agree with the empirical at 

the quantile. 
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