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INTRODUCTION 

The SU(3), x sum x U(l),, standard model of strong, weak and electro- 

magnetic interactions has been very successful; among the recent demonstrations 

of its validity have been the discoveries of the W* and 2’ gauge bosons. It would 

be premature at this point to claim the t quark as discovered; however we are 

confident of its existence, for example from the absence of flavor-changing neutral 

currents in B decay. If the mass of the Z” is near twice that of the top quark, 

the toponium bound state will be partially degenerate with the Z”. Part I of this 

thesis describes the phenomenology of this situation. 

The Higgs sector remains one of the most elusive (and perhaps unsatisfac- 

tory) feature of the standard model. It has often been suggested that it should be 

enlarged, or perhaps replaced altogether by bound states, dynamically generated 

by a new strong interaction. Even if we stay within “conventional” Higgs struc- 

tures, there is no reason not to consider multiple Higgs doublets; many currently 

interesting theories, such as SUSY, left-right symmetric models, and superstring 

theories, require more than one doublet. Moreover, extra doublets can decouple 

the CP violation parameters E and E’, which could prove useful if, with future 

measurements, the standard model is unable to account simultaneously for both 

values. We conclude Part I of this thesis by discussing some limits on such models 

with extra doublets, and their possible effects on the toponium-Z0 mixing. 

Although experimentally successful, the standard model is not a fundamental , 

theory; it has too many parameters and does not unify the gauge symmetries of 

nature. A recurring feature of attempted improvements involves embedding it in 

a larger symmetry group that is exact at higher energies. Many such theories, 
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in particular grand unified theories and superstring theories, introduce new U(1) 

gauge symmetries that might remain unbroken to rather “low” energies. These 

extensions therefore have extra flavor diagonal 2 bosons, possibly with masses 

as low as 120 GeV. In the second part of this thesis we discuss some constraints 

on these models from low energy phenomenology at e+e- colliders. 
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PART I 

TOPONIUM-2’ INTERFERENCE* 

1. Introduction 

The possibility of toponium-Z0 interference has already been discussed in a 

number of papers. ‘l--4’ Much of this work, guided by theoretical speculation on 

the top quark mass, mt, was concerned with the situation where the Z mass 

was much higher than 2mt. However the discovery of the Z” at CERN,‘“’ and 

the more recent evidence”’ for a top quark with a mass between 30 GeV and 50 

GeV suggests that the scenario where there is a near degeneracy in mass between 

toponium states and the 2 merits a closer and more careful look.[” 

In the next chapter we first present a qualitative discussion of the mixing. 

We study the mixing of one vector (Jpc = l--) toponium state, V, with the 2, 

solving the problem analytically and studying various limiting cases. There is an 

exact zero in the amplitude for e+e- -+ ff at the bare (unmixed) mass of the 

V when the couplings of the bare V state to both e+e- and jf are zero. We set 

out the formulas for the couplings, cross sections, asymmetries, etc., and then 

consider the corrections of allowing non-zero couplings and of including e+e- + 

7 --) ff. For a(e+e- ---) ff? these have a small effect on the overall shape, which 

still has a strong minimum, whose position is slightly shifted. For the polarization 

and front-back asymmetries the effects are much more dramatic. The section ’ 

concludes with the formalism needed for mixing the 2 with an arbitrary number 

* This work has previously been discussed in P. J. Franzini and F. J. Gilman, Phys. Rev. 
D32,237 (1985) and G. G. Athanasiu, Franzini and Gilman, Phys. Rev. DS2, 3010 (1985). 
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of vector toponium states, both below and above the open top threshold, where 

the off-diagonal mass mixing element becomes complex. 

In chapter 3 we briefly discuss heavy quark potentials and the spectrum of 

toponium states which results. We use Richardson’s[‘] potential and find roughly 

13 states below the open top threshold. Chapter 4 then contains the results 

following from applying the mixing formalism in Chapter 2 to the 2 and the 

set of toponium states described in Chapter 3. We consider a(e+e- + ff2 

in situations where 2mt is less than, roughly equal to, and greater than Mz. 

There are striking interference patterns observed in a(e+e- + if] as well as in 

the longitudinal and front-back asymmetries. We conclude this chapter with a 

sobering look at what the experimentally unavoidable spread in beam energies 

does to these interference patterns. In Chapter 5 we discuss the phenomenology 

of two-Higgs models, and the bounds imposed on them by their effects on neutral 

B meson mixing. We then explore what effects an extra Higgs doublet may have 

on toponium-Z0 interference. 
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2. Formalism of mixing 

We shall first consider the simplified case of only two states, the 2 and 

one vector (J pc = l--) toponium resonance, V. We begin with a qualitative 

argument to show that the interference is indeed destructive. To be specific 

we consider the process e+e- --+ p+p”-. This process occurs predominantly as 

e+e- + 20 ---) /..L+P-, while another contribution is e+e- --) 20 + Vi -+ 20 + 

,!A+P- (for now, we neglect the small contributions due to 7 couplings). The first 

term has an amplitude proportional to the propagator 

(2-l) 

on the peak of the 20 resonance. If, for simplicity, we choose the 20 and Vo reso- 

nances to be degenerate, the amplitude from the second contribution is similarly 

proportional to 

Thus we have a relative minus sign between these two amplitudes, i.e., destructive 

interference. 

We can extend this argument by replacing the 20 propagator by the iterated 

series 

-+- +-;- - + *.. 

where the solid line denotes the 20 and the double line the Vo. Using a phe- 

5 



nomenological 20 - Vi coupling a, we get the amplitude to be proportional to 

I (2.3) 
1 1 1 1 

+ . 
s-Mio S-Mio 

a. 
S-M;o 

-a- 
S-M& 

1 
+ 

s-M& 

2 
l . . . = 

S-M;o 

s-M& > 
+ 

(s-M~o)(s-M~o) -a2 ’ 

(Here, and often in what follows, we will use Mio to represent the full expression 

Mio - iI’z, Mzo .) For energies a few GeV away from a Vi resonance, (s - Mio) (s - 

M;o) is large compared to a2 ; as expected, we recover the 20 propagator. On the 

Vi resonance we get zero for the amplitude-thus we have complete destructive 

interference. 

The amplitude exactly vanishes only if we make some simplifying assump- 

tions: 

(1) We have ignored the virtual photon contribution to the process e+e- --+ 

P+/A-. This is a good approximation, since the photon, by definition, contributes 

an R-value of about* one, while the R-value on the 20 peak is 200. (Note that 

on the 20 peak, the 2 amplitude is imaginary while that of the photon is real, so 

that there is no 7 - 2 interference. However, in general we must compute Z7V 

mixing. The effect of the photon is small enough to be negligible, except in the 

determination of the asymmetry parameters.) 

(2) We have also implicitly assumed that the width of the VO is zero. The 

expression s-M;~ really represents s-MS,, +iM;oI’vo which can only be zero (for ’ 

a physically allowed value of s) if I’ve = 0. This is also a good approximation, 

* The contribution is not exactly one, because R-value is given by the actual photon cross- 
section divided by the QED point cross-section with Q! defined at the electron mass scale. 
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since the expected width of a tC 1s state (using the Richardson potential) is 

about 100 keV, compared to I’z=2.7 GeV. 

(3) Finally, we have ignored the “direct” couplings of the VO, that is, the 

Vi coupling to fermions through the photon instead of through the 20. This 

approximation is analogous to, and comparable in magnitude with, the second 

one. 

Now let us take a more formal approach. As we are considering mixing 

between states in a limited energy range far from threshold we may safely use 

the mass-mixing formalism. [O~lol The 2 x 2 mass matrix has the form: 

M; = 
M’. - ih&fvo 6m2 

6m2 Mgo - iI’zoMzo (24 

and the matrix propagator, 

D(s) = l M;-sl' (2.5) 

Here Mi is the (undiagonalized) mass matrix with elements expressed in terms 

of “bare” masses (Mz, and Mv,) and widths (I’zo and I’ve). Within the spirit 

of the mass-mixing formalism we take the initial widths to be constants, with no 

explicit functional dependence on mass. “I Inclusion of such a mass dependence, 

or working with the mass rather than mass-squared matrix, results in amplitude 

changes of a few percent in the limited mass range within which we are working. 

(In the case of mixing between the 2 and a new 2’ boson, which we consider 

in the second part of this thesis, the mass dependence of widths will become 

important, as the 2’ may be far away from the 2.) 

7 



The off diagonal term 6m2, which induces the mixing, originates in the (vec- 

tor) coupling of the 2 to the t quark contained in the toponium bound state (see 

Fig. 1). Its value is 

6m2 = 2fi 1$(O) 1 j/G&$ 

1 e(1 - Q sin2 6~) 
= 2dI+(o)IdK 4sin8wcos~w ’ 1 P-6) 

where $(O) is the wavefunction of the tf bound state at the origin and 8~ is 

the weak mixing angle (so that “” sin2 6~ z 0.22). The factor of & arises from 

color. For the P states 6m2 is proportional to the derivative of the wave function 

at the origin, with concomitant much smaller mixing (by roughly an order of 

magnitude for toponium). This is examined in detail in Ref. 7. 

1-85 ci 5019Al 

Figure 1. Feynman diagram of the process causing Zo-VO mixing. 

For purposes of calculation one can work with the mass matrix in this non- 

diagonal basis, sandwiching the propagator in Eq. (2.5) between initial and final 

spinors which express the coupling strength of the “bare” VO and 20 to the initial 
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and final states respectively. If we set gv, = 0, I’ve = 0, and s = M;o, we have 

the amplitude 

iv; - iMzrz 0 
-1 

A=(sz SV)I 
0 M; - iMvl?v 

P-7) 
0 -Sm2 

= gzo o>, ( 
gzo 

-6m2 M;. - M2 zo >( > 

= 0 
’ F 

So in this formalism also, it is easy to see the complete destructive interference. 

For some purposes, however, it is more useful to go to the diagonal basis, ob- 

taining along the way the physical states and eigenvalues. For this purpose we 

rewrite Eq, (2.4) as 

M; = %(M;o - iMvoI’vo + Mgo - iMzorzo)l + A26. a’ (2-8) 

where 

A2 = &AI, - iMv,bo - Mio + iMzoI’zo)2/4 + (6m2)2, (2.9a) 

2 = cosfG+ sin&? 

and the complex angle 8 is given by 

(2.9b) 

sini? = 6m2/A2. (2.9c) 

It is then easy to see that R .MiR-l, where R = ez”y, is diagonal, with eigenvalues 

M; - iMvI’v = 2 1 (M;. - ilYvo Mv, + Mio - iI’zoMzo) + A2 (2.10a) 
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M; - iMzrz = ;(M;o - iI’voMvo + Mio - iI’zoMzo) - A2 (2.10b) 

and that the physical eigenstates are 

IV) = eeigalJ i 
0 = cos t IX-J) - sin i 120) 

12) = emiGulJ y 
0 = sin 5 IVo) + cos 5 lZo) . (2.11) 

Since 0 is generally complex, R is symmetric but not unitary. 

When the narrow state V is far from the 2, these results simplify, and the 

mixing is characterized by 

1 6 
-2sin6 M -2 B 

6m2 
MS0 - Mio + iMzo rzo ’ 

(2.12) - 

As the magnitude of the right hand side turns out to be (see below) SO.1 even 

when Mv, = Mz,, this is even a good approximation when the V and 2 are close. 

The small admixture of the VO in the 2 has a totally negligible effect, while the 

corresponding small 20 admixture to the V has relatively large effects because of 

the much larger 20 couplings to fermion-antifermion pairs. Alternatively, when 

the mixing is small, the problem of V decays involving the 2 can be treated 

directly by explicitly calculating diagrams involving an intermediate 2, with 

identical results[21 to those obtained using Eq. (2.12). 

Now let us consider the situation of interest to us when the state VO is near 

the 20 and most of the width of the V comes, as we shall see, from mixing with 

the 2. It is useful to consider then the idealized case where the unmixed state Vo 
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has no coupling to particular initial and final states, e.g., e+e- and p+p-. From 

Eq. (2.11) we see that in this case the couplings of the physical V and 2 to the 

initial and final states are 

. 6 gv = -sin-gzo 
2 

8 
sz = cos 29”“. 

Consequently the scattering amplitude 

Afi(s) = Svf svi + SzfSzi 
M~--~M&P-s Mi - iMzl?z - s 

simplifies to 

(2.13) 

(2.14) 

sin2 s cos2 i 
Afi (s) = gzofgzoi 

2 + 2 
M$ - iMvI’v - s M; - iMzI’z - s 1 (2.15) - 

At the point s = M;. - iMvoI’vo, the (complex) mass squared of the unmixed 

toponium state, 

A&%0 - iWo ho> = gzofgzoi 
sin2 e 

A~(COS 02- 1) 
cos2 g 

+ A2( cose2+ 1) = 1 0 (2.16) 

when we use the relationship in Eqs. (2.6a,b) between the “dressed” masses and 

“bare” masses together with the definition of 8 in Eq. (2.5~). Therefore there 

is an exact zero of the amplitude Afi(s) at the position of the unmixed Vo mass 

when the unmixed state does not couple to either the initial or final state. > 

How close is the actual situation to this idealized one? Let us put in some nu- 

merical values and insert couplings from the standard model. From the Richard- 

son potential discussed in the next section we take I$(O)I” ti 65 GeV3 for the 1s 

11 



vector meson ground state of toponium when the top quark mass is such that 

its mass Mv, x Mz (which we take as[11’121 93 GeV). According to Eq.(2.6), we 

then have 

Sm2 = 20 GeV2 (2.17) 

for mixing of the 1s state with the 20. 

Preservation of the trace of the mass matrix under diagonalization implies 

that M; -M;. = -(M; - Mio), so the squared masses are shifted equally and 

oppositely, and similarly for widths. We solve Eqs. (2.10) for the “dressed” 

masses and widths as a function of Mv,, taking Mz,,=93 GeV and I’z,,=2.7 GeV 

(as we mentioned, I’v,, = 0 (100 KeV) ‘13’ and can be neglected at this stage of the 

calculation), with the results shown in Figs. 2 and 3. Figure 2 shows the shift in 

the 2 mass due to mixing as a function of the mass difference of the bare states 

(Mz, is held fixed at 93 GeV, while Mvo is varied). Fig. 3 shows the shift in the 

toponium width. The mass shift, at most about 4 MeV (i.e. AM/M 2 5 x 10W5), 

is negligible. On the other hand V does acquire a sizable width which is maximal 

when the Vi and 20 coincide, at which point 

rv ~ PJ212 
M&bl 

w 18 MeV, (2.18) 

Le., more than two orders of magnitude greater than the bare width. 

The calculation of the cross section, as well as the polarization and front-back , 

asymmetries, is expedited by considering Feynman amplitudes Afi for initial and 

final fermions of definite handedness, which are in principle separately measur- 

able and hence do not interfere (since the interactions are mixtures of V and A 

12 



0.004 

Y 0.002 c? - 
0 0 

r” 
I 

r” -0.002 

-0.004 

1-85 Mvo- MZ, (GeV) 
5019A2 

Figure 2. Change in the physical MZ due to mixing. 

the corresponding antifermions are forced to have opposite handedness). The 

couplings of the gauge bosons to fermions of charge Qe and third component of 

weak isospin T~L are given in the standard model as 

T~L - Q sin2 8~ 
szo,L = e sin ew cos 9~ 

-Q sin2 Bw 
i&R = e sin 6~ cos ew 

(2.19) 

Sr,L = gy,R = eQ, 
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0.020 

P 0.0 I 0 

0.00 5 

-5 

1-85 

Figure 3. Change in the width of toponium. 

0 5 
(GeV) 

5o19A3 

while that induced by an intermediate virtual photon for the V, is 

Svo,L = Svo,R = ;e2 Q@%,)-gl+(0)/. (2.20) 

The angular dependence of the various amplitudes is given by standard argu- 

ments, so that the unpolarized cross section is 

14 



ws, 8) 
dcos0 = &[IAL,L(~I~ (1+~ose)2+[A~,n(~)j2 (1eyse)2 

(2.21) 

+ iAR,ds) I2 (1-2COS8)2+~~R,R~s~~2 (1+~os”)2]. 

Recalling opt(s) = 47rra2/3s, 

R(s) = a(S) ~ = 64:22,2 [IAJLL(~)I’ + IAL,RMI~ + IAR,L(s)I' + \AR,R(s)~~] . w (4 
(2.22) 

The value of R for e+e- -+ ,u+P- in the situation where A4v0 is 1 GeV below 

Mz, which we arbitrarily choose for the purposes of illustration, is shown in Fig. 

4. The dotted curve is with the 2 alone, while the dashed line shows the case 

in which the couplings of the Vi to initial and final fermions are set to zero. We 

find in this latter case that 

R = (bZo,L12 + bZo,Ri2)i(bZo,Lj2 + I%,R12)fx= 
64n2 a2 

. 1365~2(Mz)x 

a2(me) 
(2.23) 

in the case of e+e- t p1-~-, where 

+ - M& + iI’lr,Mv,,) 
2 

x = (S - M;. + irvoM~o)(S - M& + il?zoMzo) - (6m2)2 
(2.24) 

(doing the calculation in the unmixed basis).* While not visible in Fig. 4, the 

dashed curve does not precisely go through zero, but to R fi: 5 x 10w3, since we 

have made I’~~=100 KeV and the zero of the amplitude is slightly off the real 

energy axis. The realistic case, including the photon intermediate state and bare 

* The ratio of CY~‘s in Eq. (2.23) is about 1.15, and comes about because of the way the 
R-value is defined; see footnote 1. 
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Vi couplings as per Eq. (2.20), is shown by the solid line. There still is a deep dip 

near Mvo. A similar dip occurs for all the 3Sr states below open top threshold, 

except that the effect occurs over a narrower energy region for the higher states 

since their widths (acquired mostly from mixing) are smaller. When Mv,, > Mz, 

the dip occurs before the peak, rather than after it as in Fig. 4. For the very 

fortuitous case where A&,, = MzO, there is no peak at all; only a near zero right 

in the middle of the 2. Similar behavior is exhibited for e+e- + uti and 

200 

5 150 
+* 
t 
+“) 100 
al 

E 

1-85 
GeV) 

5019A9 

Figure 4. Effect of mixing in R(e+e-+p+p-). 
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Since we have the cross section in terms of amplitudes for fermions of definite 

handedness it is easy to find the expression for the longitudinal polarization (of 

the initial e-) asymmetry: 

Apol(% 0) = 
Al(s) + &ph(s) 

1 + 
-AFB (s) lJrcos2 e 

(2.25) 

where 

Al = 

A2 = 

IA&RI2 + [AL,R(~ - [A&2- jAL,Ll2 

IAd + I&,~12 + IA& + (AL,L12 
(2.26) 

IA&RI2 + ]AR,L]~ - ]AL,Rj2 _ j&Lj2 

IA&RI2 + ]AL,I$ + I/&l2 + 14eL12 

and the front-back asymmetry 

A IA42 + lAwI - (AL,R\~ - IAR,L~~ 
FB = IAR,RI~ + I&,R\~ + (AR,L\~ + JA~,~I~' 

(2.27) 

(The quantity AFB used here has a maximum magnitude of unity. The more usual 

front-back asymmetry obtained by integrating over the forward and backward 

hemispheres, is a factor of S/4 smaller.) 

If we pay no attention to the angular distribution of the final state fermions 

and integrate over the center-of-mass scattering angle 8, then we are only sensitive 

to Al(s), which is sometimes referred to as “the” polarization asymmetry. For 

e+e- + p+p-, A1 (s) = A2( s ) and there is no distinction between them anyway. 

Fig. 5 displays the polarization asymmetry for the reaction e+e- --+ p+p- when _ 

M-v, is 1 GeV less than MzO. Again the dashed line gives the result when the 

bare Vi has no coupling to the initial or final fermions. Since in this case the 

coupling of the V to the initial and final fermions comes entirely through mixing 

17 
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Figure 5. Effect of mixing on APOL for e+e-+ptpL-. 
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with the 20, the ratios of its helicity couplings are identical to those of the 2 

and the value of APO1 is identical to that for the 2 alone. However, when the 

amplitudes involving virtual photons are included (solid line in Fig. 5), the 

effects are dramatic. Although the amplitudes involving virtual photons are 

small, those coming from V + 2 also are small near MvO and one sees a large 

effect characteristic of the interference of the real part of the Breit-Wigner of the 

V with the rest of the amplitude. 

Similarly, Fig. 6 shows the polarization asymmetries A1 and A2 in the vicinity 

of MvO for production of charge 9 and -$ quarks, u and d. Again one observes 

characteristic interference patterns due to the real part (e.g., in A1 for uti) and/or 

imaginary part (e.g., in A2 for dq of the Breit-Wigner resonance amplitude of 

the V interfering with the rest of the amplitude due to 7 + 2. The quark produc- 

tion amplitudes used in this computation do not include the contributions from 

strong interactions, i.e., V + intermediate gluons + qij, which could in principle 

contribute further coherently interfering amplitudes, modifying the interference 

patterns. Similar comments hold for the forward-backward asymmetry shown in 

Fig. 7 for fi in the neighborhood of Mv,,. As the asymmetries for 7 + 2 alone 

do not vary strongly over the width of the 2, the general form of the asymmetry 

after the state V is introduced does not depend strongly on whether it is a few 

GeV below or above the 2 mass. 

The extension of the formalism to encompass mixing of the 2 with an arbi- 

trary number of toponium states is straightforward. For n states the mass matrix 

is (n+l) x (n+1): 
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Figure 6. Effect of mixing on Apa for e+e-+ufi, hi. 
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I (2.28) 
where 6m2, 6mf2, . . . parametrize the mixing between the 2 and the spectrum 

of toponium states V, V', . . . . Mixing directly (e.g, through an intermediate 

photon) between toponium states is very small and has been neglected. 
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If one works only to second order in r5m2, 6mr2, . . . then it is possible to 

write a simple expression for the rotation that diagonalizes A.402 and hence its 

eigenvalues and eigenvectors. We have found numerically that this gives a fair 

approximation to the masses and widths of the dressed states V, V’, . . ., and a 

good approximation to the cross sections. In our subsequent work we calculate 

in the unmixed basis, as the matrix can be inverted exactly. While this can be 

done analytically, it is easier to carry out the matrix manipulations numerically 

at each value of s. 

Finally, above open top threshold two interesting effects occur. The bare 

width of the toponium states will no longer be negligible, changing the near 

zeroes in cross sections to minima where the cross section drops by less than an 

order of magnitude. Further, the mixing term 6m2 picks up an imaginary part 

as physical intermediate states are allowed (Vi --) Tifi?i --) Zc), giving 

(2.29) 

where the sum extends over all physical intermediate states (here T indicates 

a meson composed of the t quark and some lighter quark). In principle the 

imaginary part of Sm2 can be comparable to the real part, causing sizable changes 

in the interference. 
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3. Toponium Potentials 

We shall be utilizing the spectrum of toponium states and their wave func- 

tions determined using the heavy quark potential of Richardson.“] It has the 

advantages of correct long and short range behavior together with a minimal 

number of parameters. In addition it provides a very good set of predictions for 

the 3S1 states of the upsilon system.‘“’ This potential is specified in momentum 

space by: 

4 127r 1 
‘(q2) = -3 33 - 2nf q2 ln(1 + q2/A2). (3.1) 

We use nf = 3 (number of fermion species), since the relevant energy scale is 

the momentum of the bound quarks, which is less than, or around, the mass of 

the charm 

to use the 

space as: 

quark; furthermore, as this is a phenomenological potential, we wish 

same parameters as did Richardson. It can be rewritten in position 

V(r) = 33 y2nf h (3.4 

f(t) = 1 - (3.3) where 

We evaluate this potential numerically using [” A = .398GeV, and then solve the 

radial Schrcdinger equation, 

u/l + 2(1+ 1) u/ + 3-J 
r 

--# [E - V(r)] u = 0, 

where 2 is the angular momentum and U(T) . r1 = R(r), the radial wavefunction. 
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The first several energy levels, as a function of the top quark mass, mt, 

are shown in Fig. 8, IlSl where Ea = mtc- 2mt. The corresponding values of 

$~(o)=R(O)/fi, th e wavefunction at the origin for the S states, are shown in 

Fig. 9. These wavefunctions are normalized with the condition 

4n 
I 

l?,b(r))2r2dr = 1. (3.5) 

With this normalization the leptonic width (through an intermediate photon) 
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(3.6) 

and corresponds to a leptonic width of about 9 KeV for the ground state. 

To calculate where the threshold for bare top production occurs, we basically 

follow Eichten and Gottfried.“” If we use the charm quark as a baseline we have 

mT - mt = mD - m, + !(I 
4 - m&m)&, 
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where the last term corrects for the hyperfine splitting between the D* and D and 

between the T* and 2” (the quantity 6, = ?nD* - ?nD=.141 GeV). Inserting the 

mass of the charm quark appropriate to the Richardson potential (1.491 GeV), 

and the experimental D mass, yields mT - mt = 0.477 GeV. Alternately, we may 

use the bottom system as a baseline: 

mT - mt = mg - mb + I(1 - mb/mt)&,, (3.8) 

where now “” 6, = mg* - mgc.052 GeV. Again, inserting the quark mass appro- 

priate to the Richardson potential (ma = 4.883 GeV), we find mT - mt = 0.425 

GeV. 

The threshold is found at 2mT, i.e., .95 GeV+2mt or .85 GeV +2mt from 

Eq. (3.7) or Eq. (3.8), respectively. In Fig. 8 we have taken it to be at .95 

GeV+2mt (indicated by the dotted line), with the result that there are 13 3Sr 

states below open top threshold for rnt B 45 GeV. Since the level spacing is about 

one 3Sr state per hundred MeV near threshold, we would lose one such state to 

the continuum if we moved the threshold down to 2mt + 0.85 GeV. 
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4. Cross Sections and Asymmetries for Toponium Near the 2 
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Figure 10. R(e + ---rp+p-), including mixing with several tf states; mt=45 GeV. e 

We are now in a position to put together the mixing formalism in Section 2 

with the toponium spectrum and functions of Section 3. Indeed, for the ground 

state of toponium we have already done this in that we explored the consequences 

of the mixing formalism by using it as an example in Section 2 for mass shifts, 

cross sections, and asymmetries in the two state system consisting of the 1s 

state, Vi, and the 20. Figures 10, 11, and 12 show the cross section in the 

neighborhood of the 2, for ese- + psp-, normalized to a,t = 47ra2/3s, for 
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situations where mt=45, 47, and 49 GeV respectively. In each case the distinct 

interference pattern of each of the thirteen 3Sr states assumed to be below open 

top threshold is visible. As we move over the peak of the 2 the peak-dip order 

in the interference changes to dip-peak. 
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Figure 11. R(e+e--+p+p-), including mixing with several tE etates; mt=47 GeV. 

The width (acquired by mixing) of the toponium states decreases as we go to ’ 

higher energy levels because the wave function at the origin (see Fig. 9) decreases, 

and so proportionally does the amplitude for mixing with the 2. However, the 

height of the peak (in R) remains approximately the same. In fact, the peaks of 

28 



200 - 

150 - 

R 

IO0 - 

so - 

[L 0 
96 97 98 

I 

I-85 2/; (GeV) 5019A8 

Figure 12. R(e+e-+p+p-) including mixing with several tf states; mt=49 GeV. 

the Vo resonances, as well as that of the 20, fall on a very slowly varying curve. 

This behavior is exactly correct for a resonance, V, which acquires all its width 

from mixing with the 2, for from Eq. (2.23) we have 

. (4.1) 

This is a maximum for a value of s (very close to M$o) for which the real part of 

the quantity (S - Mio + iI’zoMzo) - $$$ vanishes. At that point, 
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(4.2) 

Once we are above open top threshold, the situation changes considerably. 

The width of an unmixed toponium state presumably becomes tens of MeV, as is 

the case for the XV’ and T”‘. The peak and dip structure from interference with 

the 2 is much less dramatic in e+e- + p+p-, as is shown in Fig. 13. 

70 

94.96 95.00 
Js (GeV) 

Figure 13. R(e+e-+~+~-) for a 14s state of toponium. 

95.04 

5019A14 

Here we have illustrated the situation by taking the 143Sl state to be 2 GeV above 
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the 2 and to have a width of 20 MeV for decay into pairs of open top states. 

The dashed line shows the case of real 6m2 while the solid line indicates what 

happens when there is an imaginary part of the same magnitude (but opposite 

sign), which is a plausible possibility from Eq. (2.29). Again, the dotted line is 

the 2 alone for comparison. The imaginary part of 6m2 makes the interference 

pattern somewhat more impressive but when we note the suppressed zero for the 

vertical axis in Fig. 13 it is clear that in any case for e+e- --) pcL+p- we have a 

much less impressive effect than that for a resonance below threshold, Of course, 

if we look at e+e- + tf, we will see a much greater effect, for tI? is the major 

decay of such a resonance while p+p- is a very minor one. However, once we 

are above open top threshold the situation becomes quite complicated in that 

different states will mix with each other as well as the 2 and the approximation 

inherent in producing zeroes in the mass matrix in Eq. (2.28) breaks down. At 

the same time all the mixing matrix elements become complex. While interesting, 

a detailed investigation is beyond the scope of this thesis. 

The situation with respect to the polarization or front-back asymmetries 

when we include the whole spectrum of 3Sr toponium states is very much an 

iteration of what is found in Figs. 5, 6, and 7 for the 1s state. Of course, 

there are small variations as the t quark mass is changed and the “background” 

asymmetries due to the 7 and 2 change, but the general form of the interference 

pattern remains the same as we move over the peak of the 2. Again as we go to 

higher radial excitations, the width of the mixed toponium states decreases (to 

5 1 MeV just below threshold) making the measurement of these large swings in 

the asymmetries very difficult. 

31 



This brings us to the question of how much of this is in fact measurable 

under actual experimental conditions where the spread in beam energy is not 

negligible. To see how this affects the results we have taken the curve in Fig. 

11 (corresponding to mt=47 GeV), which would be the measured cross section 

with no beam energy spread, and smeared it with a Gaussian corresponding to 

OEb- = 40 MeV (i.e., CTE/E N 0.8x 10W3) and to ~~~~~~ = 100 MeV (ke.,aE/E B 

2 x 10N3). The result is shown by the solid and dashed line respectively, in Fig. 

14; the dotted line is the 2 alone. 
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Figure 14. R(e+e-+p+pc-) smeared, for cbearn = 40, 100 MeV. 
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The latter case is presently the specification for the SLC, although the for- 

mer case, which is roughly nominal LEP performance without wigglers, is also 

achievable”” at SLC. In the latter case the structure due to the higher 3Sr states 

is washed out and we can only see a mild undulation due to the 1s state, instead 

of the deep dip in Fig. 4. In the former case, with a narrower beam spread, the 

ground state is quite clear and a few higher states can be picked off from their 

interference pattern with the 2. 
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Figure 15. R(e+e-+p+p-) smeared (gbean, = 40 MeV) and not, for Ikfvo = 76, 84 and 92 GeV. 

We remark that even for a V relatively far away from the 2, the enhancement 

due to mixing should be quite noticeable (see Fig. 15). The height of the peak 

does not decrease, though its width does. The smeared height is therefore greatly 
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reduced, but should be compared to the also much reduced background due to 

the 2. Note that to get comparable statistics to those obtained on the 2, one 

must run for far longer. 
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Figure 16. A~OL smeared, for various Mvo . 

The effects of smearing with a~~,,, =40 MeV on APO1 and AFB are shown 

for the ground state of toponium in Figs. 16 and 17, respectively. Part of the 

reason these asymmetries have such a small variation when A&, is near A42 (e.g. ’ 

A4vo =92 GeV in the figures), is that the unpolarized cross section due to the 2 

(which occurs in the denominator of the expression for the asymmetries) is large 

there. Even with the smearing one has fairly sizable effects in the asymmetries 
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Figure 17. APB smeared, for various A+,. 

well below ‘21’22’ or well above the 2. 

Thus with a~~,,, B 40 MeV one should be able to see quite distinctive in- 

dications for the first few levels of toponium both in the cross section and the 

polarization and front-back asymmetries. Even with a~,=.~ M 100 MeV, if Na- 

ture is kind enough to put toponium near the 2, the effects due to interference 

of the ground state with the 2 are visible, and they are capable at least of giving _, 

us information on the properties of the t quark and in particular, fairly precise 

knowledge of mt and hence of where to look for open top threshold. 
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5. Toponium and two-Higgs models 

In this chapter we would like to move away from toponium temporarily, 

and discuss some of the phenomenology of a model with an extended Higgs 

sector, specifically models with two Higgs doublets, although much of what we 

will discuss can be generalized to include more doublets. The new particles are 

two charged and two neutral bosons; an additional parameter is the vacuum 

expectation value (VEV) of th e new doublet-or, equivalently, the ratio of the 

VEV’s of the two doublets, if we fix an appropriate combination to be that 

of the standard model. Changing this VEV ratio changes the strength of the 

physical Higgs couplings and hence the size of the effects of the additional bosons; 

current physics, through the experimental absence of these effects, places limits 

on allowable values of the VEV ratio. 

One first requires that flavor-changing neutral currents (FCNC) be absent at 

tree level. This can be done by imposing a discrete symmetry that forbids certain 

Higgs couplings. One schemeLa4’ requires one Higgs doublet to couple only to up- 

type quarks (i.e., U, c, and t) and the other only to down-type quarks. Thus, 

for each set of quarks, a single Higgs doublet is responsible for both mass matrix 

and neutral Higgs couplings, so, as in the standard model, the two matrices 

diagonalize simultaneously and FCNC are absent at tree level. Another scheme[251 

allows only one Higgs doublet to couple to quarks at all, so that again the mass 

and coupling matrices diagonalize simultaneously. 

We begin by discussing bounds on masses and couplings (VEV ratios) of 

charged Higgs bosons that follow from their effects on neutral B meson mixing. 
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We compare these bounds to those derived from the K$ - Ki difference,“” and 

to those derived, with additional assumptions, from CP-violating effects in the 

K system. [271 We then consider what effects neutral-Higgs boson exchange might 

have on toponium physics. The Higgs exchange adds an attractive term to the 

interquark potential, which, for allowed values of the relevant parameters, can 

have dramatic effects on the spectrum and wave functions of toponium. How- 

ever, distinguishing these effects from the variations of different, but theoretically 

acceptable, potentials, can present a problem. 

5.1 LIMITS FROM B” - B” MIXING 

The three box diagrams contributing in lowest order to B” - B” mixing are 

shown in Figure 18. The first is the standard model contribution. The other 

two can only occur in a model with more than one Higgs doublet, as H is the 

physical, charged Higgs. The t quark contribution dominates the expression 

for the mass difference, since it is weighted by Kobayashi-Maskawa (KM) angle 

factors whose magnitudes are similar to those for the charm quark, while rnt >> 

rnz. Thus we expect much tighter bounds than those found in the K-meson 

system; additionally, the freedom in choosing matrix-elements, and in KM angle 

related factors is considerably smaller than in the K-meson system. 

CLEO, at the e+e- storage ring CESR, observes 23: and $d mesons pair , 

produced near threshold, i.e., without other particles. Their decay amplitudes 

are therefore coherent, and the like sign to opposite sign dilepton ratio is equal to 

the “wrong’‘-sign lepton to “right’‘-sign lepton ratio for a single B meson. This 
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Figure 18. Box diagrams contributing in lowest order to B”-Do mixing . 

can be written as follows (neglecting effects of possible CP violation) 

N(Z-tZ’) + N(Z-z-) r(B’ -+ I- + - - -) _  (AM/I’)2 
’ = N(i+l-) + N(I-l+) = r(B” + 1’ + - - .) - 2 + (AM/r)2 (54 

where AA4 = MS - ML  and I’ = (I’L + I’s)/2. CLEO’s publ ished upper lim it on 

the m ixing corresponds to 

r < 0.30 (5.2) 

which translates to the bound 

(AM/I’( < .93. (5.3) 

This bound uses the assumption TBO = rgf. Recently reported data could be 

interpreted as improving the bound, or as loosening the lifetime constraint. 

Neglecting the H - W  diagram, and approximating the loop integrals, we 

find 

where E/q is the VEV of the Higgs doublet coupl ing to the up-type quarks 
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divided by that of the doublet coupling to down-type quarks. Here Y?2g is the B 

meson mass, s1 is the sine of the first KM angle, and mt is the t quark mass; 

fB is defined analogously to the pion and kaon decay constants, fir and f+-; BB 

is the bag factor for the B meson, and ~2 is the sine of the second KM angle. 

The first four parameters are fairly well-determined; we take ??Zg = 5.3 GeV, 

sr = .23, fB = Jo = .16 GeV and mt = 45 GeV (mt could be larger, but this 

would only make our bound better, and it cannot be much smaller; we absorb 

any uncertainty in fB into BB). 
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Figure 19. Limits on (t/q)’ versus charged-Higge-boeon mass. 
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Fig. 19 shows our limit for various values of the bag factor and ~2. As 

“reasonable” parameters we pick BB = 1 and s2 = 0.06. The dashed line is the 

above, approximate calculation, while the solid line is the limit resulting if we 

evaluate the loop integrals exactly, and include the Higgs-W cross term. I also 

show our limits for the conservative values BB = l/3 and s2 = 0.04, and for 

the “optimistic” values BB = 3/2 and s2 = 0.08-or equivalently, for improved 

experimental limits on B” - B” mixing. For comparison, we show two previously 

calculated limits: the first, labeled ASW,[261 is the limit from Kl? mixing in 

the four quark model, and the second, labeled AG,[271 is the limit determined 

by considering CP violation in the neutral K system. While this second bound 

is comparable to ours, it requires the additional assumption that the primary 

contribution to the CP violation parameter E be from the W - W diagram, 

rather than from those involving the Higgs, which may not be true. 

With the unitarity constraint that the Higgs mass be less than of order 1 

TeV, we have an Higgs-mass-independent bound of 

f rs 10 - 15. (5.5) 

5.2 EFFECTS OF ALLOWED TWO-HIGGS MODELS ON TOPONIUM PHYSICS 

The neutral-Higgs (Ho) exchange contributes to the toponium potential, with 

the HO coupling enhanced by the ratio t/q ( we ignore possible mixing effects 

between the different neutral Higgs). 
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Figure 30. Higgs contribution to toponium potential. 

The new term is an attractive Yukawa, in momentum space 

--- (5.6) 

in coordinate space. This has the effect of increasing the wavefunction at the 

origin, since it pulls in the wavefunctions, and of lowering energy levels (increasing 

binding energies). It also increases the level spacings, since it affects the lowest 

lying states the most. The number of states below threshold could change, but 

not significantly, since states above the 3S are almost unaffected (this will be an 

unobservable effect, since with the expected resolution of SLC or LEP, we only 

hope to see the first 2 to 5 states out of the 11 to 13 states below threshold). 

Other quarkonia are, in principle, affected, though negligibly, due to their light 

mass. 

Let us now consider the 2S/lP splitting. A theorem due to Martin”” states 

that if AV(r) > 0 (t rue for all proposed quarkonia potentials), the nS state lies 

above the (n-l)P state, while if AV(r) < 0 for all 7 such that dV/dr > 0 (true for 

the Higgs potential), the nS state lies below the corresponding P state. Here we 
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Figure 21. Minimum value of (/?j f or which level inversion occurs. 

have a qualitative signature of the presence of the Higgs. However, the theorem 

requires a given condition on AV(r) to hold for all r. (The condition dV/dr > 0 

holds for all r, for both potentials.) What happens when the Higgs dominates 

only near the origin ? We might guess that relevant energy levels will be inverted 

if the Higgs term dominates below some relevant radius, perhaps that of the 2S 

or 1P. As MH increases, the range of the Higgs potential decreases and we need a 

larger value of c/q to keep AV < 0. This does give a qualitative picture of what 

happens. We find, numerically, the value of t/q at which E2s = Erp, shown 
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in Fig. 21 for two different potential models.[301 The dashed line indicates the 

charged-Higgs-mass independent bound of the previous section. Level inversion 

occurs for points in parameter space above the curves shown. 

We can make a semi-quantitative analysis of the wavefunction change by 

examining the singular part of the potentials. This goes from -c/r, where c is 

some potential-model-dependent constant, to 

-.(c+(;;~)2+ (5.7) 

But IW)I” ( oc c mt)3 for a Coulomb potential, so we expect the dependence 

(54 

where the constant a is deduced from Eq. (5.7). Numerically, we find this 

behavior for small E/q (5 to lo), although a is smaller than calculated from Eq. 

(5.7), because of the screening effect of the factor evMHr. 

Table 1 shows the effect of the Higgs term for various potentia1s,‘301 Higgs 

masses, and VEV ratios, where we have taken mt = 50 GeV. The Higgs can have 

striking effects; note, however, the similarity of the Cornell potential without a 

Higgs term to the Richardson potential with such a term. We have illustrated 

this problem by picking potentials that are not as physically well motivated as 

the Richardson potential. We would get similar, though less striking, effects by 

considering a QCD-inspired potential where one is free to vary Am I 

Figure 22 shows R(e+e- -+ pL+p- ), for toponium interfering with the 2, 

smeared with a beam width of 40 MeV, and mt = 47.5 GeV. Note the qualitative 

similarity between the second and third figures. 
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I Potential 
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Richardson 

b 
E Cornell 

I Martin 0 .419 I .455 ( .127 1 2.72 ) .75 I 
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10 4 .133 2.51 I -.005 1 26.4 1 .354 I 

0 
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8.2 

0 

(4 1s 
.24 

.18 

.133 

.18 

.224 

.144 2.226 1 .015 1 23.3 1 .372 1 

Table 1. Calculated parameters of toponium (all units GeV to appropriate powers). 
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Figure 22. Effects of varying quarkonium potential. 
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PART II 

PHENOMENOLOGY OF AN EXTRA 2’ IN e+e- COLLISIONS* 

I. Introduction 

Many extensions of the standard model, such as grand unified theories and 

left-right symmetric models, propose a gauge sector of greater symmetry than the 

SU(3) x SU(2) x U(1) of the standard model. The recent advent of superstring 

theoriesll’ has given a further boost to interest in this possibility, since the com- 

bined low energy gauge group will generally be larger than SU(3)c x sum x 

U(l)y in these theories. ‘a’s’ More particularly, superstrings have revived interest 

in grand unified theories based on the exceptional groups, especially Ee. From 

the experimental side, the prospect of having electron-positron colliders operating 

near 100 GeV center-of-mass energies in the near future has made it imperative 

to explore what “new physics” we might look for. The presence of additional 

neutral gauge bosons may well be one of the “easier” varieties of physics beyond 

the standard model to detect. 

Most attention has been concentrated on the phenomenological implications 

of one additional abelian factor in the low energy electroweak gauge group. This 

not only is the simplest sort of generic extension of the standard model, but 

was an early favorite arising from superstrings. It is by no means the only J 

possibility’3’41 even within the framework of early scenarios for the derivation of 

* This work has previously been discussed in P. J. Franzini and F. J. Gilman, to be published 
in Phys. Rev. D (1986). 
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the effective low energy theory from the theory at the Planck scale. We shall 

concentrate on this case here, mainly for simplicity and definiteness. 

The new extra neutral gauge boson, Z’, will generally mix with the 2 of the 

standard model. The resulting physical states then will be linear combinations 

of the initial 2 and 2’. In particular, the physical 2 will have an altered mass 

and couplings compared to expectations based upon the standard model. 

The constraints that the measured versus expected 2 mass, the neutral cur- 

rent data, and the Higgs structure (and therefore structure of the 2 - 2’ mass 

matrix) of superstring inspired models impose on the 2 mass and its mixing 

with the 2 have been examined in a number of previous works.“-” In various 

combinations in different papers, these constraints have been used to limit the 

allowed domain of 2’ parameters in specific models. There has also been (both 

previous to and concurrent with superstrings) much study of the effects of a 2’ 

upon electron-positron annihilation cross sections and asymmetries. [Q--l71 Some 

of the work on electron-positron annihilation has been done without considering 

the constraints16-8’ already pre-existing from other experimental information. In 

this part of the thesis we first review these constraints as they presently limit 

the range of phenomenological possibilities. We also show the further restric- 

tions on the 2’ parameters which may be possible in the future from accurate 

determinations of A42 and Mw. 

We then examine what can be learned from the magnitude of the cross section i 

for annihilation into lepton and quark pairs at the 2 peak. With the concentra- 

tion on sophisticated experiments, it has been overlooked by many authors that 

this simple information, available at a relatively early stage of experimentation 
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at the 2 peak, will already further limit the range of allowed 2’ masses and mix- 

ing angles in a significant way. With this as background, we then consider what 

can be learned with polarized beams at and above the 2 peak. Here we make 

no claim to uniqueness, as in one theory or another much of this work has also 

been done by others.[Q-‘3’15-171 However, we put the knowledge to be gained with 

polarized beams into the same format of 2’ mass and mixing angle, and so put 

this in the proper perspective of what is already known from other experiments. 

Chapter 2 of this part deals with the models under consideration: the re- 

spective electroweak couplings of the 2 and Z’, their mass matrix, and corre- 

sponding mixing. Chapter 3 treats the existing limits on such models. Chapter 

4 begins with a treatment of what can be learned by electron-positron annihila- 

tion measurements at the 2 peak without having polarized beams. The further 

restrictions that can be made using polarized beams follow at the end of that 

chapter. Finally, in Chapter 5 we examine the possibilities of learning additional 

information, particularly in the case where there is little or no mixing between 

the 2 and Z’, by doing experiments in the energy region above the 2. The com- 

bination of all these measurements is found to provide a very sensitive indication 

of new gauge bosons up to energies of several hundred GeV. 
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2. Preliminaries 

Superstring theories favor (but do not require) a high energy gauge group 

E8 x EL, in ten-dimensional spacetime.118’ The second Es describes the so-called 

“shadow world,” which may trigger supersymmetry breaking, but interacts with 

ordinary matter only gravitationally, and shall be ignored here. Six of the ten 

spacetime dimensions must be compactified, with a radius smaller than 10-30cm, 

characteristic of the Planck (or unification) scale. The interest in preserving N = 

1 supersymmetry in the low-energy limit of the theory has focussed attention on 

six-dimensional manifolds with SU(3) t s ructure (manifolds with SO(6) structure 

might also be relevant). 12’ The “low”-energy gauge group will therefore consist 

of those transformations of Es commuting with SU(3) (or SO(6)). Hence we 

need to find the maximal subalgebras of Es with SU(3) (or SO(6)) factors. Es 

can be described in terms of the following diagram. 

Figure 35. Dynkin diagram for ES. 

Each dot of this diagram represents a simple root vector of Es. A root vector 

is defined as follows: let {Hi} (i = 1, . . . , r) be a maximal set of simultaneously 

diagonalizable generators of the Lie algebra (this set is known as the Curtan 

sddgebru; r equals the rank of the algebra). If we write the remaining generators 
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as E,-, we have the commutation relations 

[&,E,-] = cqE,- (2.1) 

where & is an r-component vector called a root vector, and the generators are 

labeled by their root vectors. A positive root vector is one with first nonzero 

component (in some given basis and ordering scheme) positive. And a simple 

root is one that cannot be expressed as a sum of two positive roots. All roots 

can be generated from the simple roots. The number of simple roots equals the 

rank of the group (the simple roots form a basis for ‘the root vectors). The dots 

representing roots are connected by a single line if the angle between the roots 

is 2n/3; they are unconnected if the roots are orthogonal (there are two other 

possibilities, which we shall not go into). Thus, for example, consider SU(3). 

If we work in terms of the X matrices of Gell-Mann* we can take the diagonal 

matrices X3 and x&j as forming the Cartan subalgebra. It is more convenient to 

work with the combinations 

Tk = 
Xl f ix2 xq f ix5 k3 f ix7 

2 
, T,=;X3, V*= 2 , U& = 2 , Y=fi -IX,. (2.2) 

We find then that 

* See, for exampIe, Ref. 19 for the explicit form of these matrices, and an excellent introduc- 
tion to Lie algebras; see also Ref. 20 for discussions and many useful tables. 
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[T+,Tz] = -T+, [T+,Y] = 0 giving ~r’~ = (-1,~)) 

ET-,%] = T-, [T-,Y] = 0 giving 62 = (1,o) 

P+,T,] = iU+, [U+,Y] = -U+ giving & = (.5,-l) 

iv-, Tz] = -fu-, [U-,Y] = u- giving & = (-.5,1) 

[V+,T,] = -iv+, [V+,Y] = -V+ giving 6s = (-.5, -1) 

P-9 T.] = fv-, [V-, Y] = V- giving &j = (.5,1) 

P-3) 

So the positive roots, in this basis, are &, cS3 and ir’s, and the simple roots are 

& and &, giving the Dynkin diagram in Figure 24. 

Figure 24. Dynkin diagram for SU(3). 

The linear independence and other requirements on simple roots can be ex- 

pressed in terms of a simple set of rules on the diagrams that allow us to determine 

the set of all allowed Lie algebras. These consist of the four sequences of classical ’ 

Lie algebras: SU(N + l), S0(2N), Sp(2N) and SO(2N + l), also known as AN, 

DN, CN, and BN, and the five additional exceptional Lie algebras: G2, F4, E6, 

E7, and Es. In Fig. 25, we show the Dynkin diagrams for some of these algebras. 
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o-.-@.......-o 

SUtNl 

(N-l bubbles) 

o-o-.... 

SOC2Nl 

(N bubbled 

Figure 25. Dynkin diagrams for SU(N), SO(ZN), and Ea. 

Subalgebras can be found diagrammatically in the following ways. The regu- 

lar subalgebras (there are a few other, non-regular ones, which we will not worry 

about) fall into two classes: nonsemisimple (i.e., containing a U(1) factor) and 

semisimple (i.e., a product of one or more simple, or non-abelian, factors). Each 

maximal nonsemisimple subalgebra is just a U(1) factor times a semisimple fac- 

tor given by the Dynkin diagram for the original algebra minus any one dot. 

The maximal semisimple subalgebras are obtained by removing one dot from 

the “extended” Dynkin diagram. This diagram is found by constructing a set 

of roots that satisfies all the requirements of a simple root system, except linear 

independence. It turns out that only one root can be added, and it is unique. 

The extended diagram for Es is shown in Figure 26. 

a b 

Figure !d6. EMended diagram for Es. 

We see then, removing the dot labeled b, that for compactification on a six 
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dimensional manifold with SU(3) h o onomy, the remaining symmetry is Es; for 1 

SO(6) (removing the dot labeled a), we get SO(l0). We shall only consider the 

former case. Removing two more dots from the & diagram, we find the breaking 

pattern 

& -+ so(lo) x u(l)+ (2.4 

and then, 

SO(10) + SU(5) x U(l),, (2.5) 

where we have labelled the U(l)‘s in a now standard manner.“” If the SU(5) 

contains the standard SU(3)c x sum x U(l)y, then any extra U(1) from the 

breaking of &, must be a combination of U(l)+ and U(l),. The corresponding 

2 ’ will be a combination of ZJ, and 2, which is defined by 

2’(/3~,) = 2~ cos 6~~ + 2, sin 6Es. P-6) 

In the particular case of superstring theories broken by Wilson loops to a 

rank 5 group, a special Z’(0,) is specified: 

z, = -j/i@ z* + @ii zp (2.7) 

It is this ZV that we shall be considering primarily in this part of the thesis, but 

we shall at various places consider what would happen to the quantity under 

discussion if the Z’ were Zg or Z,, as well as other intermediate possibilities. 
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The Lagrangian describing the interaction of the neutral gauge bosons of 

an electroweak theory containing a Z’ with the corresponding currents can be 

written as: 

LNC = eApJfm + gzZpJg + g’Z:Jg, 

where the couplings are given by 

(2.8) 

(2.9) 

Here Jtm is the electromagnetic current, and Jg = J& - XWQ~ is the standard 

Z-boson current; we define* Jg, = f~rpQ~f~ + fkrfiG&~ (the charge Q is a 

number dictated by the group structure), and xw = sin2 6~. 

The couplings of Z++, Z,, and therefore Z, follow from pure group theory 

and are given I221 in Table 2. We specify not only the couplings to the known 

fermions which comprise the 10 plus 5 representations of SU(S), but to the 

“exotic” fermions which make up the full 27 dimensional representation of &j. 

The D is a charge -e/3 quark; the N an sum singlet, neutral lepton; and the 

I&, E- an sum doublet of leptons. The coupling is related to the charge by 

a factor of m( e cos 0,). Note that because of the breaking pattern in Eqs. / 

(2.4) and (2.5), any Z’(I~,) has the same coupling to each member of a given 

SU(5) multiplet. The Z has different couplings generally to different members ’ 

of an SU(5) multiplet, but since it couples like a generator (or more exactly, 

* We would like to thank W. J. Marciano for pointing out a factor of two error in the expression 
for this current. 
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SO(10) SW 2d=Qx ~QJ, 2fiQ, 
16 lO(u,d,fi,e+) -1 1 -2 

5(J, v, e-) 3 1 1 

l(N) -5 1 -5 

10 5(D,l?“,E+) 2 -2 4 

qD,E”,E-) -2 -2 1 

1 w"> 0 4 -5 

Table a. Charges of the fermions in the 27 dimensional representation of ES (from Ref. 7). 

l?(Z’ -b all) BR(e+e-) BR(ua) BR(dd) 

1c, 4.9 (23.) 4.4% (.93%) 13% (2.8%) 13% (2.8%) 

x 11 (23.) 6.1% (2.8%) 3.6% (1.7%) 18% (8.3%) 

rl 5.8 (23.) 3.7% (.93%) 18% (4.4%) 11% (2.8%) 

Table 3. Total widths and branching ratios of the Z,, Z+, and Z, to fermion pairs. 

a linear combination of generators), the sum over an SU(5) multiplet of the Z 

charges vanishes. Therefore, 

c QzQzqoE,) = 0. (2.10) 
SU(5) multiplet 

The width of the Z’ is now determined. In Table 3 we give the total widths 

in units of 10m3Mzt and the branching ratios for decays into u%i, d& and e+e-, 

for each case considering the possibility that none or all (in parentheses) of the 

“exotic” fermions are light enough to be decay products of the Z’. 

The physical Z and Z’ bosons will not be the states which we have been 
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discussing till now, but a linear combination, since an extra neutral gauge boson 

will generally mix with the Z of the standard model. The two channel mass 

matrix has the form 

and for 6M2 small will be diagonalized by a rotation through an angle 

(2.11) 

(2.12) 

The amplitude for e+e- annihilating to a ff final state is then 

We diagonalize the mass matrix to find the physical Z mass, which will be shifted 

downward from its “bare”, standard model value, just as the Z’ will be shifted 

upward (by an equal and opposite amount in the square of the mass): 

AMz M 
M;-M;, 

2Mz 
&IX* (2.14) 

In a given theory, the Higgs content gives restrictions on the elements of the 

mass matrix in Eq. (2.11). Th ese restrictions have been formulated in the general , 

case by Cvetic and Lynn. ‘lsl In the particular case of Z,, the Z and Z’ masses are 

generated by two Higgs doublets- H and H’, and one Higgs singlet-N. These 

particles have vacuum expectation values (VEV) ~1, ~12 and x, respectively. The 
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charges of these particles are H-(1, $), H/-(-l, $), and N-(0, -g) where we 

have given the Z charge, then the Z ‘. Recalling that g’/gz = &, we have 

1 e 
4vf -v; 

M2 = M;,, 
3(vf + v;> 

3 (2.15) 

d= 
4vf - vi xw 1611; +v; +25x2 

3(vf + v,“, 9(v? + vi) 

2 2 using M2 = C Qi vi. The off diagonal element of this matrix can range from 

- ffi to $+, while Mz 8 is essentially free to vary independently. Thus we 

have the following bound on the mixing angle: 

(2.16) 

The charges of the physical Z are therefore changed from those of the stan- 

dard model through the rotation that diagonalizes the mass matrix in Eq.(2.11): 

gzphynical = gZ COS bfIX - SZ I(&~) sin OMIX. (2.17) 

The partial widths of the Z, given by I’z CC g;Mz, are correspondingly altered, 

with changes which are linear in flMIX for small mixing. 

We can also find the physical widths in a manner analogous to that used to 

obtain the masses, by diagonalizing the mass matrix and extracting the width 

by looking at its imaginary part. Diagonalizing the mass matrix in Eq. (2.11), 

we find 

M$ - iMzl?z - 
M’& - iMzorz,, - e2(M;; - iMz$‘z;) 

1 - 92 
(2.18) 
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giving 

Mzrz - MZJZO M (MzJz,, - Mz;I’z;)8~ - 2(M&, - M;;)BRBI 

where 

From this expression for 8 we see that 

d;(Mz,I’z,, - Mz;r,) - e~b(@,, - M,$;, 

(2.19) 

(2.20) 

(2.21) 

and therefore that the shift in l?z is 0 (I’O;). 

The error in this approach lies in two omissions. First, we must include an 

imaginary off-diagonal term proportional to igz,gz; Mz,, Mz; , analogous to the 

terms iMz,I’z,, oc ig&M& and iMz;I’z; o( ig&M$;. Moreover, since the masses 

Mzo and Mz; are far apart, we cannot neglect the energy-dependence of the 

widths. Since we are working in the vicinity of the Ze, we replace Mz; by Mz,, 

in the expressions igi.M& and igzogz;MzoMz;. The corrected mass matrix is 
0 

Mgo - iMz,rzo 6M2 - iMzo -rzorzA% 
J 

6M2 - iMzo,,/q Ad;; - iMzo$$‘z; * (2’22) 

We now have an equation similar to Eq. (2.19): 

Mzrz - Mzorzo = (Mzorzo -MzA rzA)e& - 2(Mio - hf;;)df& (2.23) 
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but (3 is given by 

6M2 - iMzo 
e= 

rzorzA% 

Mio - M;; - iMzoI’zo + iMz;rzA 
(2.24) 

so that 

(Mz:,rzA - Mzorzo)~M2 + (Mio - ~;pf~, 
eI = 

rzorzA$$ 

@Go - %;I” 
. (2.25) 

Because of this new second term in Eq. (2.25), 01 is O(I’/M); therefore the 

second term in Eq. (2.23) gives a contribution to AI’ of 0 (r&). This method 

can be shown to give the same answer as the rotated coupling method. 

In part I of this thesis, we did not encounter this subtlety, since the equivalent 

of gz;, namely, gtfo, is very close to zero; moreover, the t& mass is near that of the 

Zo; hence we need not consider the energy-dependence of the widths. The more 

naive diagonalization approach is then a valid approximation, and the rotated 

coupling method gives the same 0 (e2) result, since the 0 dependence now comes 

in only in gzo cos 0. 

Although present in the partial widths, the term linear in eMIX in the total 

width of the Z vanishes, since it involves a sum over QzQZ,(~~~) and (see Eq. 

(2.10)) this sum is zero when taken over all members of an SU(5) multiplet. The 

known quarks and leptons in each generation completely fill two such multiplets, I 

and the other “exotic” fermions of the 27 of & fill other SU(5) multiplets. So, 

with or without the full set of exotic decays, the change in the total width of the 

Z is quadratic rather than linear in eM1x for small mixing. Therefore, AI’/I’ is 
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of the same order as AM/M. However, experimentally, we expect the absolute 

errors on I’z and Mz to be comparable, so the measurement of total Z width 

does not promise to be useful to us. 
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3. Current Limits 

The constraints which the measured as compared to expected (in the standard 

model) 2 mass, the neutral current data, and the Higgs content of superstring 

models impose have been examined separately or in combination in a number of 

papers. is4 They serve to limit the values of the 2’ mass and mixing angle and 

it is useful to briefly review them, if only to see what remains for e+e- colliders 

to do. 

We concentrate on 2,. For the constraint provided by the measured mass 

of the 2, we have taken a combination of the present statistical and systematic 

errors as indicating agreement with theory to within 3 GeV and plotted it as 

the dash-dot curve in Figure 27.* We compare these limits with those found by 

Durkin and Langacker I71 from neutral current data; their boundary of the allowed 

region is plotted as the dashed curve.[a41 The solid curve represents the bound 

obtained from the Higgs structure of the mass matrix. As shown in Figure 27, the 

mixing angles allowed for a 2’ which has unmixed gauge couplings corresponding 

to 2, obey 16~1~1 2 0.1 and the region of allowed masses starts at about 130 

GeV. These constraints cover the same general area; for 2’ masses up to several 

t imes the 2 mass, it is the neutral current data and/or the limit on the shift 

* We compare the measured value of i%fz with its value as calculated from the measured 
value of Mw, using A& = 38.65/ sin0w (at the one-loop level) to fix sin 0~. The UAl 
experiment measures Mz to be 1 GeV smaller than this ‘theoretical” value determined 
from A&. Thus, taking the statistical errors of Mz(th) and Mz(ezp) in quadrature, and 
ignoring the systematic errors (which come from an energy scale uncertainty which should 
affect both numbers approximately equally) we find that a 3 GeV decrease in Mz from 
Mz(th) is about a 1.1~ effect. UA2, however, measures MW to be smaller; Mz(th) is 
slightly smaller than Mz(ezp), and a 3 GeV decrease from Mz(th) is a 2a effect. We use 
numbers from Ref. 23. (It is amusing to note that using previous (1984) data these numbers 
would become 30 for UAl and 1~ for UA2). 
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of the 2 mass which provide more stringent constraints than the Higgs content. 

The surprisingly low mass value allowed for the 2’ is due to the small (compared 

to the 2) couplings to ordinary fermions of the 2,. 

400 

-N 

= 200 

IO0 

6-66 

-0.2 -0.1 

eMIX 

0 0.1 

545783 
Figure 27. Current constraints on the maaa and mixing angle of a possible 2,. 

In the following we take the inner (allowed) region from Figure 27 and use it 

as a reference curve for the bounds obtainable from future experiments (plotted 

as a dotted line). For example, in Figure 28 we show the bounds from measuring 

the 2 mass (relative to the W) with an error of 500 MeV (curve 1) and of 64 
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200 

100 

6-86 

-0.2 -0.1 

8MlX 

0.1 

545784 

Figure 28. Constraints on Z”s from future meaeuremente of Mz and Mw. 

MeV (curve 2). We regard the former as probably attainable early in the next 

generation of hadron collider experiments and the latter as a possible ultimate 

accuracy. + Particularly in the latter case the region of parameter space allowed 

t The value of 64 MeV is obtained by combining in quadrature an error on the “theoretical” 
value of Mz of 61 MeV (f rom an optimistic future error on the measured value of Mw of 
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for the 2’ is diminished considerably. Note that these limits are relevant to the 

case where there are only additional 2”s. If there are additional WI’s as well, 

they generally mix with the W, adding additional parameters, and removing the 

connection between the observed W mass and the unmixed 2 mass. 

75 MeV) with an optimistic error on the experimental value of Mz measured at LEP of 20 
MeV. 
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4. Limits from Measurements at the 2 Peak 

With the results of the last chapter as background, we now direct our atten- 

tion to electron-positron annihilation at the peak of the 2. We begin with the 

most straightforward measurements: the shift in the mass and width of the 2 

and the cross section for production of fermion-antifermion pairs at the peak. 

Using the equations given in Chapter 2, we calculate the results shown in 

Figure 29 for the change in the mass and total width of the 2, and the cross 

sections for various final-state fermion pairs in electron-positron annihilation at 

the (mixed) 2 peak as a function of 8~1~ (when we are considering a &). The 

mass shift was treated in Chapters 2 and 3; it depends on both the mass of the 

2’ and the mixing angle (we have taken MZI = 200 GeV ). The other changes 

occur because of the altered couplings of the physical 2 due to mixing with the 

2’. Therefore they depend essentially only on the mixing angle with the 2 as 

long as the 2’ is many widths away from the 2. 

The shift in the total width is very small, and is within anticipated mea- 

surement systematic errors. This is expected on the basis of Eq. (2.10) through 

cancellations of the first order terms in 8~1~ when the sum over modes includes 

all members of an SU(5) multiplet. 

This is not true for the cross section for individual fermion-antifermion final 

states which is proportional to the partial width of the 2 into these particular i 

channels and to I’e+e-. There are changes of roughly 10% for variations of 8~1~ 

by f0.1. Such a change should be significant, particularly for e+e- + 2 + e’e- 

(or equivalently, e+e- * 2 ---f p+p-), where a 3% measurement of the cross 
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Figure 29. Change in Mz, I’z and R for e+e-+p+p-,uii and ddfrom mixing with Z,,. 

section seems possible.[251 This corresponds to a la limit on BMxX of f0.08. 

Quark-antiquark cross sections can be determined to poorer accuracy than 

that for mu pairs; 10% is probably a fair estimate[231 for bi; (isolatable through 

semileptonic decays), which is the same as dd or SS. The cross sections for ua 

and CE can then be obtained by subtraction from the total of all hadronic decays. 

Because of this decreased accuracy of measurement, the hadronic cross sections 

provide less of a constraint than the more accurately measured muon pair cross 

section, even though the change in the latter due to mixing with ZV is smaller. I 

Note also that mixing with 2, produces a characteristic pattern where the 

cross section for j~+p- and dd increases when that for ue decreases and vice 
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uetsa. The couplings of each 2&, are different and produce recognizably different 

patterns. 

200 

180 

160 

80 

6-66 

(Xl / 
d2 

(44 5457A6 

Figure SO. R, veraus 0~1~ and 8,~. The dotted line givea R,, when no 2’ is present. 

This is illustrated in a different way in Figure 30, where the cross section at 

the 2 peak for annihilation into muon pairs is shown versus both 0~1~ and 8~~. ’ 

Depending on which 2’ is chosen, one gets an increased or decreased cross section 

from the value one would have with no 2’ (shown by the dotted line). Note that 

the particular case of a ZV gives a nearly minimal effect for this particular cross 
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section. Choosing instead Z+ or ZX for our 2’ would have produced much greater 

effects in the muon pair cross section and correspondingly better limits on 8~1~. 

For example, we would have obtained ~~JMIx/ 2 0.04 if the 2’ was taken as 2~. 

There is a small front-back asymmetry at the 2 in the standard model. Mix- 

ing with a 2’ alters its magnitude as has been calculated in detail elsewhere. (II-l?] 

In Figure 31 we show the limits placed on Mzl and 19~lx by future measure- 

ments at the 2 peak of the front-back asymmetry in e+e- -+ h+,u- (and their 

agreement within one sigma with the value expected in the standard model) with 

lo4 (curve l), 10’ (curve 2), and and lo6 (curve 3) measured 2’s. The limits 

are almost independent of MZI; the slight bending of the curves bounding the 

allowed region for the lowest 2’ masses is due to finite width effects of the 2’ 

(calculated with decays into non-exotic fermions only). 

This measurement is unlikely to add very much to the limits which will be 

available from other measurements in a similar time period. Measurements with 

quarks in the final state are difficult because of the small samples of potential 

events remaining after cuts to isolate a quark rather than an antiquark, and are 

complicated by B - B mixing. “‘I 

Finally we turn to the information that may be obtained when a longitudi- 

nally polarized electron beam is available. We can write the asymmetry 

A 0, - 0, _ 2 Ve ae 
POL = (4.1) ’ 

where aR and ot are the cross sections for right- and left-handed incident elec- 

trons, respectively (integrated over final angles for any particular final state or 
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sum of final states), and ve and a, are the vector and axial-vector couplings of 

the 2 to electrons. The second equality in Eq. (4.1) is valid only at the peak of ’ 

the 2. With sin2 6~ = 0.22, the polarization asymmetry has a value of about 

-0.24. More importantly, since 21, happens to be close to zero because of the 

particular value of sin2 6~ that exists, A pot is very sensitive to deviations from 
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the standard model; in particular it is sensitive to changes in couplings from 

small admixtures of a 2’ in the 2.“” Again, these measurements are sensitive to 

the value of fiMIX and not to that of Mzr. 

It is possible to consider looking at decays of the 2 into particular quark- 

antiquark channels with a polarized beam. However, it will be very difficult to 

get the necessary accuracy because of difficulties in identifying a particular quark 

and the great loss of statistics involved in making the very restrictive cuts on the 

data necessary to isolate a particular channel. 

APOL 

5457A ,7 

Figure X2. A~OL versus 0~1~ and eEs. 
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Figure 32 shows Apo~ at the peak of the 2 as a function of both 8~1~ and 

tiE6. The dotted line is the value of the asymmetry in the standard model with 

sin2 Bw = 0.22 and no 2’ present. The effects of mixing are large, particularly for 

2,. They are almost non-existent for Z+, for it has purely axial-vector couplings 

to electrons and its admixture does not change in lowest order the vector coupling 

of the 2 to electrons (to which Apo~ is most sensitive). 

The corresponding limitations on Mz, and 0~1~ are shown in Figure 33. The 

boundaries are one sigma limits on the deviation of 31~01; from the “prediction” 

of the standard model with no 2’. The dotted curve is the allowed region from 

Figure 27 for comparison. Even with lo4 Z’s and a 5% systematic uncertainty 

(solid curve) in the polarization of the beam, the allowed region is as small as can 

be bounded by the other measurements we have discussed. The dashed curve 

represents 10’ Z’s and a 3% systematic error. With lo6 Z’s and a 1% systematic 

uncertainty (dash dot), one will be able to bound IeMIxI 5 O.Ol! 
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5. Limits from Measurements Above the 2 

We have just seen that fairly tight restrictions can be placed on 8~1~ from 

various measurements at the 2 peak. However, there is still the possibility that 

8~1~ is very close to or identically zero. Then the 2 is just that of the standard 

model, and there is no effect worth speaking about at Js = Mz. 

But there still are effects off the 2 peak, particularly at somewhat higher 

energies. Even when 8~1~ is non-zero it is interesting to look at electron-positron 

collision energies other than at the 2 peak to see the relative sensitivity to a 2’. 

Figure 34 shows the front-back and polarization asymmetries as a function 

of fi for several 2’ masses and values of 0~1~ and 6~~. For a 2, at 150 

GeV and 8~1~ = -0.2 (solid curve), near the boundary of what is allowed by 

current experiments (see Figure 27), Figures 34a and 34d show that there are 

large deviations from what one would expect without a 2’ both above and below 

the 2. Even if 0~1~ = 0 (dashed curve) the polarization asymmetry starts to 

deviate significantly from the standard model at @  - 110 GeV. 

Figures 34b and 34e show that if there is appreciable mixing, there are notice- 

able deviations in the longitudinal polarization asymmetry starting at fi - 110 

GeV, even if the mass of a 2, is as high as 300 GeV. The solid curve shows Mz, 

= 200 GeV and f?MIX = -0.15 and the dashed curve shows Mz, = 295 GeV and 

I~MIX = -0.05. If 6~1~ = 0, there are still lo?” o c h anges in Apo~ 15 GeV above 

and below the 2. However, the absolute value of Apo~ and the cross section be- 

low the 2 are so small that a measurement there will be statistically insignificant. 

The deviations for the front-back asymmetry are much smaller (less than about 
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Figure 34. Variations in off-peak aeymmetriee due to Z’. 

77 



1% in this case). Because one must identify a final fermion and distinguish it 

from the corresponding antifermion, adequate statistical power for a significant 

measurement of the front-back asymmetry appears to be an insuperable problem 

away from the 2 peak. Figures 34c and 34f show effects in the x model: Mz,= 

200 GeV, 6&fIX = -0.1 (solid curve), and 8~1~ = 0 (dashed curve). The dotted 

curve is in all the cases the expectation without a 2’. 

There are two problems with off-peak effects-the cross section is lower- 

and hence it will be hard to get running time there. We will quantify the former 

effect by considering the following expression for the number of TV of the effect 

off-peak, where the statistical error is scaled according to the produced cross 

section off-peak. 

We have 

# of a(&) = APOL(&)with Z' - A~~L(fi)s.m. 

AAPOL 
(5.1) 

where 

AP 2 
AA PoL= -A 

5 187 
P PO.iJ$ S 

+ NR(fi)’ P-2) 

The first term comes from the uncertainty AP in the polarization of the beam, 

P. The second term is the statistical error in the actual polarization asymmetry, 

given by the inverse of the square root of the number of events (the error in 

the experimentally measured polarization asymmetry), divided by P (taken to 

be .45). N is the equivalent number of events on the 2 peak. Since the total 

error is statistics dominated, the comparison of off-peak effects to on-peak effects 

is most favorable when AP/P is large and N is large (and 181 is small). The 
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e miz Mz, fi AA,,1 
-.Ol 200 2 .009 (.014) 

100 .004 (.046) 

130 -.04 (.133) 

o(l%, 106) a(5%, 106) 

2.9 (4.4) .8 (1.2) 

.36 (4.4) .2 (3.0) 

-1.4 (6.2) -1.3 (6.2) 

0 200 z 

100 

130 

0 400 z 

130 

180 

- .OOOl (.OOOl) 

-.008 (.036) 

-.05 (.168) 

-.00003 (.00003) 

-.008 (.024) 

~ -.019 (.06) 

-.04 (.03) 

-.7 (2.7) 

-1.7 (5.5) 

-.Ol (.008) 

-.27 (.77) 

-.48 (1.5) 

-.Ol (.008) 

-.4 (1.8) 

-1.6 (5.5) 

-.003 (.002 

-.25 (.74) 

-.5 (1.5) 

Table 4. Effects of a Z’ on and off the Z peak. 

same integrated luminosity that produces lo6 Z’s at the peak will give a - 3 

u deviation in the polarization asymmetry (from the standard model value), for 

fi -110 GeV, due to the presence of a 2, at 200 GeV with 8~1~ = 0. Changing 

the mixing angle to -0.03 yields a - 60 effect and it remains near 3 cr for the 

same mixing angle if, in this favorable case, the mass is raised to 400 or 600 

GeV. In Table 4 we show some representative numbers (those in O’s are effects 

in the x model; the others are in the q model) for AP/P = 1% and 5%, with a 

luminosity that would produce lo6 Z’s on peak. - 

In summary, using the extra neutral gauge bosons accompanying the breaking 

of the grand unification group E6 down to the standard model as examples, 

we have seen in this part of the thesis how a 2’ could affect electron-positron 

annihilation experiments. In general the massive physical neutral gauge bosons 

will be mixtures of the 2 of the standard model and the other neutral gauge 
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bosons. This mixing changes the couplings of the 2 from those of the standard 

model. Accurate measurements of the cross section at the 2 peak will provide 

new constraints on the properties of a 2 ‘. Even more sensitive to these changed 

couplings is the longitudinal polarization asymmetry; it can be used to limit 

6~1~ 2 0.01, given anticipated systematic and statistical errors. But even if 

0~1~ = 0, measurements off the 2 peak involving the polarization asymmetry 

can give decisive evidence for a 2 ‘. 

The combination of measurements at the 2 and above it is a very powerful 

indicator of the presence of extra neutral gauge bosons. It should be possible, 

using these experiments in combination, to rule out (or find evidence for!) the 

presence of a 2’ up to masses several times that of the 2. 



REFERENCES 

1. M. B. Green and J. H. Schwarz, Phys. Lett. 149B, 117 (1984) and 151B, 

21 (1985). 

2. P. Candelas, G. Horowitz, A. Strominger, and E. Witten, Nucl. Phys. 

B258, 46 (1985); E. Witten, Nucl. Phys. B258, 75 (1985). 

3. M. Dine, V. Kaplunovsky, M. Mangano, C. Nappi, and N. Seiberg, Nucl. 

Phys. B259, 549 (1985). 

4. E. Witten, Nucl. Phys. B268, 79 (1986). See also, H. W. Braden, et al., 

Phys. Rev. Lett. 56, 2668 (1986). 

5. S. M. Barr, Phys. Rev. Lett. 55, 2778 (1985). 

6. J. Ellis et al, CERN preprints TH.4323/85 and TH.4350/86, 1986 (unpub- 

lished); E. Cohen et al., Phys. Lett. 165B, 76 (1985). 

7. L. S. Durkin and P. Langacker, Phys. Lett. 166B, 436 (1986). 

8. V. Barger, N. G. Deshpande, and K. Whisnant, Phys. Rev. Lett. 56, 30 

(1986). 

9. W. Hollik, Z. Phys. C8, 149 (1981). 

10. P. Wang, Virginia Polytechnic Institute preprint VPI-HEP-85/2, 1985 (un- 

published). 

11. G. BClanger and S. Godfrey, TRIUMF preprint TRI-PP-86-12, 1986 (un- 

published). 

12. V. D. Angelopoulos et al., CERN preprint CERN-TH.4408/86, 1986 (un- 

published). 

81 



13. M. CvetiC and B. W. Lynn, SLAC preprint SLAC-PUB-3900, 1986, to be 

published in Phys. Rev. D. M. CvetiE, talk at the Mark II workshop at 

Asilomar, March, 1986. We thank CvetiC and Lynn for discussions on their 

work. 

14. P. J. Franzini, talk at the XXIth Rencontre de Moriond, March, 1986 and 

SLAC preprint SLAC-PUB-3920, 1986 (unpublished) gave a preliminary 

version of this work. See also, F. J. Gilman, invited talk at the 7th Van- 

derbilt Conference on High Energy Physics, May, 1986 and SLAC preprint 

SLAC-PUB-4002, 1986 (unpublished). 

15. D. Blockus et al., Proposal for Polarization at the SLC, 1986 (unpublished). 

16. T. G. Rizzo, Iowa State preprint IS-J-2167, 1986 (unpublished). 

17. J. P. Ader, S.Narison, and J. C. Wallet, Montpellier preprint PM : 86-9, 

1986 , to be published in Physics Letters. 

18. D. Gross, J. Harvey, E. Martinet, and R. Rohm, Phys. Rev. D54, 502 

(1985). 

19. R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, (Ben- 

jamin/Cummings, Menlo Park, California, 1984). 

20. R. Slansky, Phys. Rept. 79, 1 (1981). 

21. P. Langacker, R. W. Robinett, and J. L. Rosner, Phys. Rev. D30, 1470 

‘ (1984). See also R. W. Robinett and J. L. Rosner, Phys. Rev. D25, 3036 

(1984) and D26, 2396 (1984) and Durkin and Langacker, Ref. 7. 

22. See, for example, J. L. Rosner, Comm. Nucl. Part. Phys. 15, 195 (1986); 

82 



P. Bindtruy et al, Nucl. Phys. B273, 501 (1986); D. London and J. L. 

Rosner, University of Chicago preprint EFI 86-22, 1986 (unpublished). 

23. L. DiLella, Proceedings of the 1985 International Symposium on Lepton and 

Photon Interactions at High Energies, Kyoto, Japan, August 19-24, 1985, 

Eds. M. Konuma and K. Takahashi, p. 280. 

24. A similar region was found by V. Barger et al, Ref. 8. 

25. G. Feldman, private communication. 

26. I. Bigi and M. CvetiZ, SLAC preprint SLAC-PUB-3966, 1986 (unpub- 

lished). 

27. The sensitivity of the polarization asymmetry has been noted and analyzed 

by BClanger and Godfrey, Ref. 11, Angelopoulos et al., Ref. 12, CvetiC and 

Lynn, Ref. 13, and Ader et uZ., Ref. 17. 

83 


