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ABSTRACT 

The thesis has four parts, dealing with four field theory models: 

Periodic Quantum Electrodynamics (PQED) in (2+1) dimensions, free scalar 

field theory in (l+l) dimensions, the Quantum XY model in (l+l) dimen- 

sions, and the (l+l) dimensional Ising model in a transverse magnetic 

field. The last three parts deal exclusively with variational methods; 

the PQED part involves mainly the path-integral approach. 

The PQED calculation results in a better understanding of the con- 

nection between electric confinement through monopole screening, and 

confinement through tunneling between degenerate vacua* This includes 

a better quantitative agreement for the string tensions in the two 

approaches. 

In the second part, we use free field theory as a laboratory for 

a new variational blocking-truncation approximation, in which the high- 

frequency modes in a block are truncated to wave functions that depend 

on the slower background modes (Born-Oppenheimer approximation). This 

"adiabatic truncation" method gives very accurate results for ground- 

state energy density and correlation functions. Without the adiabatic 

method, a much larger number of states per block must be kept to get / 

comparable results. Various adiabatic schemes, with one variable kept 

per site and then two variables per site, are used. 

For the XY model, several trial wave functions for the ground state 1 

are explored, with an emphasis on the periodic Gaussian. A connection 

is established with the vortex Coulomb gas of the Euclidean path integ- 

ral approach. The approximations used are taken from the realms of 
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statistical mechanics (mean field approximation, transfer-matrix 

methods) and of quantum mechanics (iterative blocking schemes). 

In developing blocking schemes based on continuous variables, 

problems due to the periodicity of the model were solved. Our results 

exhibit an order-disorder phase transition. This transition is a rudi- 

mentary version of the actual transition known to pccur in the XY model, 

and is systematically improvable. 

In the fourth and final part of the thesis, the transfer-matrix 

method is used to find a good (non-blocking) trial ground state for the 

Ising model in a transverse magnetic field in (l+l) dimensions, 

thereby improving upon results by Pearson. 
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General Introduction -. 

This work is concerned with trial wave functions of the ground 

state for lattice models. Using variational methods, simple trial 

states incorporating little beyond the main symmetries of a model can 

give remarkably good results, for correlation functions as well as 

energies. This success is measured in comparison with Euclidean path- 

integral results, or the exact solution where that is known. 

In the first model, periodic QED in (2+1) dimensions (PQED), the 

trial vacuum is chosen as a periodic Gaussian in the magnetic fields 

with long-range correlations; this incorporates all the symmetries of 

the model, reduces to the free-field vacuum in the zero-coupling limit, 

and succeeds in reproducing the Polyakov confinement mechanism for a 

pair of static (external) charges at low couplings. This mechanism was 

originally discovered in the path-integral formulation. The correspond- 

ence between quantum interference among degenerate vacua and semiclass- 

ical monopole configurations is made more exact. Our main results here 

are that 

A) The quantitative differences, e.g., in the string tension, 

between the real-space and Euclidean results are due to the different 

treatments of the time direction, and 

B) It is the compactness of the U(1) group, rather than the mere 

existence of semiclassical monopole solutions, that causes confinement. 

In the second model we introduce some new techniques that drastic- 

ally improve the agreement of both ground-state energy and, more signif- 

icantly, correlation functions computed in the trial ground state, with 

their exact counterparts. The test case studied is scalar free field 
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theory in (l+l) dimensions. The trial state is obtained by a blocking- 

truncation scheme, and the methods we develop are of interest for non- 

soluble interaction models, as well. In this case we go beyond the 

symmetries of the model to incorporate an adiabatic (Born-Oppenheimer) 

approximation for the effect of lower-frequency modes upon the fast-mode 

wave function. A class of such adiabatic renormalization-group schemes 

is compared with standard blocking schemes, and it is found that better 

results are obtained while keeping fewer states per site and sites 

per block. 

The third model treated is the planar quantum XY model, where an 

infinite-order phase transition is known to occur. This transition is 

named after Kosterlitz and Thouless, who discovered it. Apart from 

perturbative calculations augmented by Pad6 approximants, most of the 

body of knowledge about this phenomenon is derived from the Euclidean 

path integral approach. The transition is known to be caused by the 

unbinding of pairs of semiclassical configurations (vortices). Our aim 

was to develop variational trial wave-functions allowing us to find real- 

space approximations to this physics. Our starting point was the 

periodic Gaussian wave function, employed successfully for PQED (part I, 

ref. 3). Physical quantities are then expressed as averages in a class- 

ical statistical-mechanics ensemble. Two methods are used to evaluate 

these averages: a transfer-matrix method, that works only for finite- 

range propagators, and a self-consistent dielectric-medium approximation 

applicable for arbitrary ranges. The latter is an adaptation of the 

original Kosterlitz-Thouless calculation to the real-space 
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variational approach. In the real-space computation, the statistical 

mechanics problem is that of a one-, rather than two-dimensional, 

Coulomb gas. 

Briefly, the results of the statistical-mechanics approach are as 

follows. The dialectric-medium approximation yields a transition, which 

differs in some subtle respects from the Euclidean one; this will be 

discussed. The transfer-matrix method gives an abrupt change of behav- 

ior, that becomes a phase transition in the infinite-range limit. 

Next, we examine real-space renormalization-group approaches to the 

problem, based on continuous variables. It was found that naive trunca- 

tion schemes lead either to spurious (first-order) phase transitions or 

to a trivial evolution of the Hamiltonian. The problem is caused by the 

need for any realistic truncation scheme to obey the periodicity of the 

model. A formalism is developed to solve this problem. The main result 

here is, again, a periodic Gaussian wave function; its propagator is 

naively blocked. The resulting truncation scheme, which we call NBPG 

(naively blocked periodic Gaussian), is shown to be a special case of 

the formalism. It is studied analytically in the two extreme regions 

h << 1, h >> 1 and numerically for the entire coupling-constant range. 

The NBPG wave-function gives a realistic model of an infinite- 

order transition. It is an order-disorder transition, but beyond that 

it does not correspond to the Kosterlitz-Thouless transition. This is 

due to the incorrect long-range correlation functions. However, our 

results are only an example of what can be done using-the formalism that 

we developed. Several avenues will lead to better results; these are 

discussed. 
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The last model we consider is the (l+l) dimensional Ising chain in 

a transverse magnetic field. We apply the transfer-matrix approach to 

this model, again in the context of a simple trial ground-state. The 

results show improvement in both ground-state energy and magnetization 

as the propagator range is increased. 

The work reported in Part I was published in Phys. Rev. Dg, 1923 

(1979) ¶ and that reported in Part II was published in Phys. Rev. D26, 

455 (1982). The computation in Part IV is connected with a collaborative 

work at SLAC. 

Finally, a word about organization. Each of the four parts is self- 

contained, despite some cross-references, and has its own introduction, 

references, figures and tables. 



PART I 

CONFINEMENT 111 PERIODIC QUANTUM ELECTRODYNAMICS 

FOR LOW COUPLIZJGS 
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1. Introduction 

There have been several approaches to the problem of confinement 

in (2+1)-dimensional compact QED, for small coupling constant. All 

approaches yield a static potential energy E(D) = yD between a qi pair 

a distance D apart, where y vanishes nonanalytically with the coupling. 

This means there is confinement (but there are differences in the 

results). Since the approaches and the models themselves differ widely, 

we think it is worthwhile to try answering the following questions: 

How are the confinement mechanisms related? How much of the difference 

between the various results is caused by making different approximations 

in each case? There is also the question of periodicity. In one 

approach,3 heavy use is made of the periodicity of the Hamiltonian as a 

function of magnetic field, whereas in the path integral approach of 

Ref. 1, the apparent cause of confinement is the presence of multipseudo- 

particle solutions, and these exist for nonperiodic field potentials as 

well (those possesing degenerate minima). One would like to know 

whether periodicity is really necessary for confinement. 

I What follows is an investigation of these points. We will begin by 

describing the main features of the approaches-we will be referring to, 

but first a word about notation: our convention for electric and magne- 

tic fields varies in different parts of the paper. To prevent confusion 

we will give their definitions in terms of the vector potentials Ai, 

whenever necessary. Ai are always normalized to satisfy canonical 

commutation relations with Ai. We will always be working in the 

temporal A0 = 0 gauge. Other conventions used are 
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(1) The latin indices i,j run over 1,2. 

(2) Greek indices p, v, etc., run over 1,2,3. 

(3) The 3 direction is the time direction (real or imaginary). 

(4) Summation over like indices is sometimes implicitly used. 

(5) np, Ai are lattice difference operators. 

(6) ii, 2 are unit vectors in the directions 1-1, i, respectively. 

1.a. The path-integral method - 

This approach was implemented in two different ways which converge 

at a certain p0int.l" Polyakov used a Georgi-Glashow QED, which we 

call model I. The Euclidean action is 

2 + $ h(t2 - n2 ' )I , 

(l.a.1) 

s -ax 2-t 
I-lV lJv VP 

+eAVX x v ' 

where $ is the isovector Riggs field, and % 
IJV 

are the non-Abelian gauge 

fields for the SU(2) gauge group. F;lav are derived from vector poten- 

tials A;, where a is the isospin index. n,X are constants; e is the 

gauge coupling, and has dimension (length)-'; Dv are covariant 

derivatives. 

Model I contains a pseudoparticle solution, the 't Kooft-Polyakov 

monopole. By a suitable gauge transformation, A1'2 are gauged away far 
IJ 

from a monopole, and one is left with the vector potential A = A'. 
1-I 1J 

Only a U(1) subgroup of the original SU(2) symmetry remains. Polyakov 

computes the correlation function 
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for small e. C is the Wilson loop. He considers only the multimonopole 

contributions to the path integral. F(C) is thus expressed as a correla- 

tion function in a magnetic monopole gas, in the dilute-gas approximation. 

The monopoles have a long-range Coulomb interaction, but a screening 

occurs that makes the Green's function of the gas short range. In fact, 

the k2 = 0 pole in the correlation function 

J 
e ik x <T(B(O) B(X))> d3x , 

where B is the magnetic field, disappears when an infinite set of 

Feynman graphs is summed. Instead of the massless vector boson AP, one 

gets a pole corresponding to a massive scalar field @. F(C) is expressed 

as a path-integral over this field: 

F(C) = 1 [d$] exp (- $- re2 ~d3x@4- n)12 

where 

/ 

-f + 
d; l 

S 
“-,‘3 ’ -+ 

I X-Y I 

2M2 cos$ , 

(l.a.2) 

S is the area bounded by the contour C. It is unambiguous if one 

chooses a planar C. 

This path integral is computed using a stationary point in function 
i 

space. The result is an area-law decrease, 

F(C) a e -YA 
9 

where A is the area of S and y is a constant. 1 

(l.a.3) 

The second model in which the path integral approach was used is 

compact QED on a spacetime lattice.2 The Euclidean action is 
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B c 
WJ-I,~ [ 

l- co&Jr) 
I 

(l.a.4) 

where 0 
IJV 

is a dimensionless multiple of the electromagnetic field tensor. 

We call this model II. The 8 -t 00 limit is considered. Using a Villain 

approximation, a monopole partition sum is derived, and the results are 

a lattice version of those in Ref. 1. The discreteness of spacetime in 

this model eliminates short distance problems; in particular, the self- 

action of a monopole is computable. But the long distance behavior is 

not affected by discreteness, so (l.a.3.) is still true. 6 corresponds 

to l/e2a, where e is the coupling in Ref. 1 and a is the lattice spacing. 

In both models I and II the static energy of a quark-antiquark pair at 

large separation Da is read off (l.a.3) and is 

where y vanishes nonanalytically with the coupling. The treatments in 

Refs. 1 and 2 are valid for small couplings e; we further know compact 

QED confines for large e.4 Hence these models cannot have a phase 

transition (at least not a single transition). 

1.b. The variational approach 

This approach to the problem is a Hamiltonian formulation on the 

two-dimensional lattice of compact QED. Here one examines the energy of 

- a string connecting a static quark-antiquark pair.3 As is well known, 

this approach is equivalent to the Wilson loop criterion. The compact 

QED Hamiltonian is 
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c 
-f 
PJ 

E2 
3 J- 

+ 
2 

2 =( l- cosB 

s 
3 

(l.b.1) 

* 
where E 

$3 
is the electric field on a link 5: + G + i, B is the magnetic 

3 
field on a plaquette, and we have set the lattice spacing a to be 1 for 

convenience. g corresponds to e in Ref. 1. In terms of the vector 

potentials we define (in the temporal gauge) 

E* 
PJ 

=$ a,A+ 
P,i 

(l.b.1)' 

B 
3 

= g cij Ai A . 
3 

. 
,J 

We name this model III. 

The separation energy E(D) is computed variationally in a special 

sector of Hilbert space. Let I{B 
3 

)> be a state with a well-defined 

magnetic field configuration, B-t at site p. Working in this basis, 
P 

the wave function is 

x({B$l> = (lB#> (l.bJ) 

where I$> is that part of the q';i state belonging to the photon sector. 

The Hamiltonian is periodic in each B, with a period HIT. An operator , 
P 

L conjugate to B is defined as follows: 
3 3 

II 
E+ =sijAjL++Et . 

P,i P PJ- 

E" is the Coulomb static field and we choose it to be that generated 
3 ,i 

by a static qz pair a distance D apart. Aj are lattice difference 

operators. The above-mentioned periodicity then means that 
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Therefore G 
if 

= exp {2mi L+ ) are good quantum numbers, and so are L up 
P 'if 

to integral fluctuations. By choosing a sector in which 

G 
if 

= exp 2ni E , L+ = s + integer , 
I 1 i: P 3 

(l.b.3) 

we can label the trial wave function as 

This is a Bloch-type wave function, with "wave numbers" E,. The 
P 

natural choice for E+ is that which will screen the Coulomb field and 
P 

squeeze the electric flux links into a string which runs in a straight 

line between the quark and antiquark. Then the question of confinement 

translates itself into the question: Will the string be stable? 

Having made this choice of E , 
3 

one must now determine the shape of 

x inside a single potential well. x is chosen to he a sum of Gaussians3 

'trial(lBb;Ecj) = a ( 

03 \ 

c) n Z-00 
3 

(l.b.4) 

1 1 X exp - - 
=( 

B +-2nn 
2g2 -+-+? p 

PP ;: )"z, (B$,-2rn;J} f 9 B;) 

and A* is a Green's function, determined variationally to be 
PP' 



-14- 

A 1 
++I =v c 

ew;t -3 _ 2cosk - 2cosk -l/2 
‘X 

PP iI+0 
(l.b.5) 

up to corrections of orders g2 andde-const/g 2 
. k is the discrete 

lattice momentum. The variational computation then gives for E(D) an 

expression, derived from a partition sum 

(l.b.6) 

This is a partition sum of a 2-dimensional Coulomb gas on the lattice, 

interacting with an imaginary external field. The charges of the gas 

have the interpretation of being tunnelings between the different B-vacua, 

i.e., zhey appear in the sum as a result of overlap integrals between 

different terms in (l.b.4). If one wants to push the tunneling interpre- 

tation further, one can say that the magnetic charges are electric vorti- 

ces; a tunneling means a change of B with time, which causes an electric 

field circulation by virtue of Faraday's law. In Sections 2 and 3, we 

will examine the relation between these tunnelings and the monopoles of 

the other'approach. 

l.c. Plan for this part of thesis 

In what follows, we will compare the various aspects of the differ- 

ent procedures -the "variational" (or "tunneling") approach and the 

"path integral" (or "monopole") approach. Our plan is as follows. In 

Section 2 we discuss classical monopoles in a certain continuum model, 

in order to gain a better understanding of the relation between model I 

and the other two models- in which no exact monopole solutions are known. 
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In Section 3 the mechanisms for screening and confinement are explained 

and compared in the two approaches. In Section 4 we explore the impor- 

tance of compactness for screening and confinement. In Section 5, a num- 

erical comparison is made between the results of Refs. 2 and 3, and an 

attempt is made to explain the different long-distance behavior of the 

Green's functions. In Section 6, the treatment of Ref. 2 (namely a 

space-time discretization) is applied to model III, and comparisons are 

made with both Refs.' 2 and 3. In Section 7 we present concluding remarks. 

2. Monopoles in Self-Interacting QED 

To better understand the connection between the approaches, and also 

between models I and II, we will demonstrate how classical monopole solu- 

tions arise in certain self-interacting QED models. Models II and III 

are such models. Consider a generalization of model III with Euclidean 

time: 

Action = (2.1) 

Again we have set a = 1 for convenience, so the problem is now devoid of 

dimensional quantities. The convention for the fields is now as follows: 

B + 
P,i 

= g Eij a3 A-t 
P,j 

(2.1)' 
B+ = B+ 

P P,3 
= g cij Ai A+ 

PA l 

Note that we have passed from a (2+1)-dimensional notation, in which 

there are two electric-field components and one magnetic component, to a' 

three-dimensional notation where there are three magnetic field compo- 

nents. We choose a field potential V having two degenerate minima: 
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V(B) = $ B2 - ~IT(B-71) 0(B- IT) GQ> 

(see Fig. 1). This is a piecewise quadratic function. To find a 

classical solution of the equations of motion, we should solve a set of 

difference-differential equations. However, in order to make our point 

as simply as possible, we will replace the spatial lattice by a continuum 

for the remainder of this section. The action is now 

Action = -$ jd3x c [-Bi(x)12 + $ fi3x V(B) 3 
i 

(2.3) 

where 

The last follows from (2.1)'. The equations of motion obtained from 

this action are 

a;B + 
c 

3; V’(B) = 0 

c c ij a. B.=O , a B =0 1 J 1-1 1-I 
ij 

We seek a monopole solution. From (2.2) and (2.4) 

a:B + c a$ - 27re(B -r)J = 0 

$2B = 27rc; + a;) 8(B - n) . 

(2.4) 

(2.5) 

(2.6) ' 

Imagine a configuration B (0) in which B = HIT in an infinitely long tube, 

B = IT on some surface K+T enveloping the tube, and B = 0 everywhere 

outside this tube (Fig. 2). Obviously, the R.H.S. in (2.6) is nonzero 

only on K and T, and singular there. It is equivalent to an infinite 
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current-solenoid terminating near the point P, which will generate another 

configuration, B (1) , similar to the first. It will have the same T but a 

different K. Thus we can find an approximate monopole solution to (2.6) 

by iteration, which presumably will converge. From the first iteration 

B(O) onward, B behaves like a monopole field far from the tube, and from 

(23, all three components will behave like T/r5. We have used a singu- 

lar field potential; for a potential V(B) that varies smoothly near B=IT, 

like a cosine potential, the current-solenoid may develop a thickness. 

Note that the equation (2.6) has no length scale, so the width of 

the monopole tube is arbitrary. The monopole point P is also arbitrary, 

but the tube must be along the 5 direction. 

One can presumably find such monopole solutions for any potential 

V(B) possessing degenerate minima. This condition is satisfied in par- 

titular for periodic potentials, but periodicity is not required. This 

leads to the question raised in Section 1, of whether periodicity* is 

necessary for confinement. We will investigate this point in Section 4. 

3. Screening and confinement mechanisms 

In both approaches confinement is achieved by screening. The 

monopole picture in (2+1) dimensions is as follows: 

The Wilson quark loop is an (imaginary) current loop C, producing 

a magnetic field. This field is the same as that of a narrow magnetic 

dipole sheet on the area S bounded by C, except on S itself. On the 

lattice, this sheet is one spacing thick. The energy of the loop 

increases only as the loop perimeter. However, the loop is immersed 

* 
That is, compactness of the underlying group manifold. 
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in a magnetic monopole gas, which interacts directly with the dipole 

sheet, thus adding to the action a term proportional to the area of S. 

The gas becomes polarized, and monopoles of opposite polarity accumulate 

on the two sides of the sheet, screening both the magnetic field away 

from the sheet and the monopole-monopole interaction (Fig. 3). This 

gives the correlation function a finite range, whose inverse is interpre- 

ted as a mass of a scalar field. The mass vanishes nonanalytically with 

This effect causes the action to increase by an amount proportional 

to s. Thus 

decreases according to an area law. 

This picture can be projected into a static one in the two space 

dimensions. Here the current loop becomes a quark-antiquark pair a 

distance D apart, creating a Coulomb electric field. The electric field 

in this picture is simply related to the loop magnetic field by 

Ei= e.. B. , 
1J J 

(34 

where B 3 = B remains magnetic. Unlike in Section 2, E now includes a 

longitudinal part. The Coulomb field is purely-longitudinal; a monopole 

adds an electric vortex in this picture. Vortices of opposite circula- 

tions accumulate on both sides of the qq line, focusing the electric 

flux to a narrow tube, which causes confinement (Fig. 4). This same 

spatial picture of confinement in the monopole approach can be seen in 

the mechanism of Ref. 3. There one has vacuum tunnelings rather than 

monopoles, but these are known to be related. Specifically, we saw such 
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a relation in Section 2. The sense in which electric vortices are pres- 

ent in Ref. 3 is the following one: if we isolate a single-gas-particle 

term in the partition sum (l.b.6), i.e., a configuration N+ = B 
35' 

its 
9 

contribution to <L > is 
3 

i(.rr/g2)A 
35' 

This shows that in the Hamiltonian 

approach, too, the "gas particles" are associated with electrical vorti- 

ces. The i results from the fact that in the Hamiltonian formalism one 

has real, rather than imaginary time. In both approaches, screening 

makes the correlation function of the gas well behave at large spatial 

separations. But in the monopole approach the screened propagator de- 

creases exponentially with distance (it developes a mass), whereas in 

Ref. 3 the decrease is a power law. In Section 5 we will discuss this 

discrepancy, and show how it might be an artifact of certain unjustified 

approximations made in Ref. 3. 

4. Compactness 

4.a. The case of a nonperiodic potential 

In all three models, I, II and III, the action is compact in some 

way. In model I it is compact through the non-Abelian group in which 

U(1) is embedded; in model II, it is periodic in all three nonvanishing 

components of 8 
W' 

In model III, the action is periodic only in B. If 

the action were not compact, the theory would not necessarily confine 

for large g. What happens to the small-g arguments for confinement in 

such a case? If V(B) is nonperiodic, {E+) are no longer well defined 
P 

quantum numbers, since G 
it 

(defined in 1.b) no longer commute with the 

Hamiltonian. To put it another way, the fluctuations of LS around C, 
P 

are no longer discrete. Therefore, even if V(B) has a (finite) number 
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of degenerate minima, (l.b.4) is no longer a reasonable trial wave 

function. Since no set (E+} is favored now, one should take the one 
P 

leading to lowest energy, i.e., the vacuum assignment, and confinement 

is lost. Formulating this in the Wilson loop language, where the loop 

of C is the rectangle shown in Fig. 5, one has for Euclidean time 

duration T, 

F(C) = I> 0 

and as T + 00, F(C) +- 1 unless <Olexp(ig L+ 
p=o 

A$))IO> = 0. The 

latter is true for any quark positions only if the vacuum function is 

periodic, which in turn means V(B) must be periodic. Thus there is no 

area-law and no confinement for nonperiodic V(B). But consider a 

potential with a finite number > 1 of degenerate minima. There are 

still tunneling and monopoles in the theory, and one can argue that in 

a path integral calculation of F(C) these will cause screening and con- 

finement, for g << 1, as described in Section 3. We will now demonstrate, 

for a particular double-well potential, how the screening mechanism 

breaks down, thus affirming that for small g, too, periodicity is needed 

for confinement as can be deduced from the general argument above. 

4.b. An example 

Let us choose a particular nonperiodic potential, and demonstrate 

how screening breaks down, even though V(B) has two degenerate minima 

and therefore tunneling and monopoles. 
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The breakdown will appear in a different way than in 4.a. Working 

on a space-time lattice, one cannot have two tunnelings of the same 

signature at the same spatial point and two consecutive times. This is 

because the potential we have chosen has only two minima. One does 

obtain a monopole gas as in Ref. 2, but the monopole charges m(r) do not 

vary independently, and we show how that ruins confinement. 

We employ here the following convention for the fields: 

E i = a3 Ai 

(4.b.l) 

B = & ij AiA. . 
J 

The potential we choose is (Fig, 6) 

V(B) = -aB3 ,bp{- 3 a',,) + exp(- 3 a3(B- Bo]2\), a = lattice Spacing 

(4.b.2) 

for large Bo. It has two minima, and is nonperiodic. It corresponds to 

a free photon in two limits: B 0 +O and B 0 --+a. For small B, V(B) can be 

expanded around l/2 B 
2 and gives, for example, a 3-photon coupling 

proportional to 

B3 0 exp . 

Thus this potential has no strong coupling limit. But we choose it 

because a monopole gas can be derived exactly from the path-integral. 

In that monopole gas, B. corresponds to l/g in Ref. 2. 

Setting a = 1 for convenience, the correlation function is 
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F(C) = (a~[ie 5 A@ J$r) 1> 
9 (4.b.3) 

-/CdAl exp{ie c AP(r) JP(r) - ix E:(r) - x V(B(r))), 

ru r,i r 

where r is the lattice site, and J is2 
IJ 

1 if the link r -t r + c is on C 

J$r) = -1 ifthelinkr+c-+risonC 

0 otherwise . 

For the potential (4.b.2), 

Therefore the integrand in (4.b.3) is Gaussian, 

can be performed exactly. The result is, up to 

and the path integration 

perimeter-law factors, 

- i(eBo) c Nr 3 [6y,() ’ n ‘N nr+;-n l 

r r r' r 

(4.b.4) 

If we choose the curve C as in Fig. 5. BS(x,t) is 1 on S and 0 outside. 

The interpretation of (4.b.4) is a (dilute) monopole gas, where Nr are 

the monopole charges. They arise from tunnelings between vacua which 

have B(r) = Bonr, nr = 0 or 1. This implies a constraint on the 
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monopole charges, which is the Kronecker delta. It is this constraint 

that ruins the screening, as we will show. The external source coupled 

to Nr in (4.b.4) is the same as in Refs. 2 and 3. Defining 

nr Y,O 
e,(x,t> eBo 1 9 

We get by the usual resummation techniques, 

F(C) a 

co 

c 
n r 

c 
N 

r 

s -co f6 Nr9nr+i-nr 

(4.b.5) 

(4.b.6) 

Without the constraint, this would give (cos+,) factors, whose normal 

ordering in a diagram expansion give the Green's function a mass, 

similar to the mechanism in Ref. 3. However, due to the constraint, 

F C C 
Nr 

n *Nr,nr+;-n r r 
i x ('r-or 

n r r 

=nC exp 
r i 

i c (LBr- nr) (nr+5 - nr 
)I n r r 

I7 
r 

c 
n r 

exp -i c ,nr(or - 
I \ r 

(P h+Q r-3 r-; - 'r' d 

= n 1 + exp 
[ 1 

i Or i - Or + Qr - nr ; ( - - ,13 . r 
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This introduces a derivative coupling of the 0, field, and the self- 

energy will vanish as momentum -+ 0. Thus, screening breaks down. 

5. A Detailed Comparison: Models II and III 

Models II and III differ in two respects: time is continuous in 

III while discrete in II, and the action in III is periodic only in B, 

'not in the electric fields. In addition, the approximations used in 

Refs. 2 and 3 are different, although similar in nature. The strength 

y of the linear confining potential comes out different in the two 

papers; in Section 6 we will show this is mainly an artifact of the 

differnt treatments of time. In 5.a we will compute the numerical 

coefficients in y, based on Refs. 2 and 3. 

A major qualitative difference in the results concerns the nature 

of screening: in Refs. 1 and 2, the screened Green's function of the 

monopole gas drops exponentially at large distance, whereas in Ref. 3 

it drops as a power. In 5.b we will demonstrate how the approximations 

made in Ref. 3 may be responsible for this. 

5.a. Numerical comparison for the linear potential 

In both approaches, the separation energy for a qi pair a distance 

Da apart (a is the spatial lattice spacing) is 

E(D) N yD (5.a.l) 

y behaves for small g as 

Y (5.a.2) 

where c, d,6 are numbers. We will compare them for the two approaches. 
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From Ref. 2 we found* 

2 

Y 
= 2g2M = Adz _ 71 

n2 7ra3'2 exp 1 2 ga 1 

where M is the screening mass, and v 0 is quoted as being 

vO cv 0.253 . 

Thus, 

1 =- 
c2 2 

d2 = 2.50 

62 = 1.80 

where the subscript refers to Ref. 2. In Ref. 3, 

where 

J lim 
L-ta 

1 

4L2 

(5.a.3) 

L 

c 
nl=-L 

L 

c( 
4- 

n2=-L 

7rn 1 2 cos y-- - 
i 

- l/2 
7rn 2 2 cos y- 

IT IT 
1 =- 

41T2 
dkl dk2 4- 2 coskl - 2 cosk2 

> 
-l/2 

= 0.64 

Thus, 

* 
There are some wrong factors of IT and 2 in Ref. 2. In Ref. 1, the 
formula (V,24) for y is unclear; we have obtained there y = 8re2M. 
Banks et a1.,2 rely on Polyakov for y. -- 
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c3 = 0 

d3 = r*J = 6.33 

83 = 1.87 . 

5.b. The long-distance behavior of the Green's function 

The Green's function of the gas has different long-distance 

behavior in Refs. 2 and 3. In Ref. 3, A 
33 1 is that given by (l.b.5) and 

normal-ordering the diagram expansion modifies it to 

-1 
2 

AU 
1 

= v c e 
iZ~(~T-$j 4-Zcosk 

*r X 
- 2cosky 

) 
m +” 

PP 
i-i 

g 1 (5.b.l) 

2 2 2 
where 1-\ = e --71‘ A& . The latter is actually an equation for u*, - 

AP 
2 +3 

iw 
behaves as l/l;f'- pI at large distances, which is enough to 

eliminate volume divergences. However, this behavior differs from an . . 

exponential falloff. One would expect such a falloff when the 

3-dimensional monopole gas of Ref. 2 is projected onto the two spatial 

dimensions, as described in Section 3. 

The trial wave function x is chosen to have a Gaussian form in 

Ref. 3. Actually, forta smooth field potential V(B), a Gaussian would 

only be accurate near the bottom of the potential wells; But it would 

be difficult to compute the integrals with a non-Gaussian wave' function. 

However, an approximation is made in Ref. 3 even in deriving the A, 
PP1 

that extremizes <xiH(x>. 

We have found that changing this approximation can make A- well 
PP' 

behaved to begin with at large distances. We suggest that such effects 
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may combine to make the photon propagator drop exponentially, as in 

Ref. 2, but cannot prove it. 

Defining as in Ref. 3 

A tf, = 1 
v c 

eik*(s'-s) 
PP 

z 
% 

We start by assuming that y. is finite, and seek to show that this leads 

to self-consistent results. Thus, there is no need to freeze out the 

degree of freedom z+ B+ as done in (l.b.4), so we remove the 6-function 
P P 

from xtrial. Also, since A 
-t 

is well behaved at large distance, we can 
PP 

use the cluster expansion. This consists of expanding the exponential 

factor in (l.b.6) around exp -(v2/g2) A0 c, N+ 
i 

2l , where A0 = A-. 
P P I 

For no external sources E+ = 0; one must minimize <xiH(x> = E({~p~) as 
P i.I 

a function of the y+- s. In the first approximation to the cluster 
k 

expansion, this gives the equation 

4r2 
+ y;* + - 1 ITA 

2 0 
exp - - = g* 2 1 0 

g 

at k* = 0, which has no solution. In the second approximation the 

equation becomes 

which admits the solution 

2 
2 

VA 
y. = .g 8r2 exp r -2 2 1 + o(1) . 

g 
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Had we neglected all e -const/g* -2 terms in (5.b,2) we would obtain y. = 0 

as in Ref. 3; it is this approximation that we have changed. Further- 

-+2 -1 more, for k small compared to y. we can expand 

2 
Y+ = -y 

k HIT 

and at finite k, we obtain as in Ref. 3 

4 - 2coskx - 2cosky -l/2 

Inclusion of higher-order terms in the cluster expansion will change 

(5.b.2), but to all orders we still have, at least formally, 

6. A Modified Comparison 

We will now refine the comparison between the path-integral and 

variational approaches by making the models, used as inputs for the two 

procedures, identical. That is, we will apply a path-integral method to 

model III. As a first step, we will put this model on a lattice in time 

as well as space, but with lattice spacing b-in time and a in space. 

For b finite, we obtain results similar to those of Ref. 2; for b=a they 

coincide. This is done by employing approximations similar to those 

used in Ref. 2. We then take the continuum limit b + 0. There our 

results are less accurate, since the approximation that all monopole 

charges are +l breaks down. However, we are able to argue that the 
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crucial numerical coefficient d, governing the nonanalytic behavior 

of confinement near g = 0, is the same as obtained in the variational 

treatment of Ref. 3. 

Model III for continuous time has the following action: 

$dt a* & ( 3 5 [Ei(~,t)]’ + ~ (l- c=[ga2B&#‘) 3 (6*1) 

P i=l . 

where g is the coupling constant, a is the spatial lattice spacing, 

and if denotes a lattice site. g has dimension (length) 
-l/2 

. 

We now make time discrete, with spacing b, and make space-time 

Euclidean. The action becomes 

S = ba* c ( $- c [Ei(r)]* + -& 11 - cos[ga*B(r)])) P (6.2) 
r i 

where r now denotes a three-dimensional lattice site. In terms of the 

vector potentials, the electric and magnetic fields are 

B = + (ALAR - 91 9 > 
(6*3) 

Ei 
1 = - A.A 1 
a ~3 

--AA . 
b 3j 

All are the difference operators in the three directions. We will 

rescale the A u' 

'i = ga Ai 9 

e3 = gb A3 2 

and define 
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so that 

s =- - cosB12(r) 1 + &i C [e3i(r)]2 
r,i 

and our aim is to compute 

z = y S[dep] exp[ -S - i C jJr) e$r> ) 

r,v 

where j is the external source associated with the Wilson 
u 

To find j for a given contour C, we note that 

(6.4) 

9 (6.5) 

3 (6*6) 

loop. 

c 
jp(r) 

rd 

ep W =gc aAi(r) ji(r) + g x bA3(r) j,(r) 

r r,i 

We therefore choose, 

1 if the link r -+ r + j is on C 

jp(r> = -1 if the link r + j +- r is on C (6.7) 

0 otherwise , 

and this current is conserved: Au jV(r) = 0. 

What is the range of integration over 9u(r) in (6.1)? The action 

is periodical neither in B3 nor in Bi, so we-let ell(r) vary over the 

entire real axis. 

Separating 0 i into longitudinal and transverse parts, 

ei(r) = AiX(r) - E:.. A. 
1 

1J J 2 Al -I- A; 
e(r) ; 

e12 Cd = 0(r) r 
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We get the following exponent in (6.6): 

S+i c juep = + 
c[ 

1 - case(r) 
ga r 

1 r9l-l 
+- 1 2g2b =( 

2 
hA3AiX 22 + 0 - A3 0 2 2 - A2 ejAie3 - 2 A3e3 Aix 

r i 

+ i C j3(e3 - A,x) - i C ji sij $ Aje 3 (6.8) 
r r k 

2 
with Ai = A.A. = A; + A;. 11 This expression is quadratic in e3 and X, 

so integration over these variables can be easily performed, leaving 

only a path integral over the magnetic field e(r). The result is 

co 

Za n 
s 

de(r) exp 
r -co ( 

- & C E-1 - CosNr)] 

r 
69) 

+ & c (n3e) $ tA39 + i c (Alj2 - A2jl) -$ e l 

r i r i 

The proportionality is up to a factor resulting from the self- 

interaction of the current loop j. Such factors contribute only a 

perimeter law and will be subsequently ignored. To compute Z we replace 

the cosine potential by its Villain version, 
* 

co 
exp [-B(i-case)] -f c iRB 1 e - -a*/28 

e 

R S-03 iz$ 
(6.10) 

* 
This step is comparable to the approximation of choosing the 
trial wave function used in Ref. 3. 
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and perform the 0 integration, which is now Gaussian: 

- g*b c R(r) 

r 

1 
2 

3 
( a,j* - A2jl 

4 

(6.11) 

Substituting R(r) = A3L(r) and using the Poisson resumation technique 

gives 

+ 27ri 
2 c m(r) 

a 
r 

(6.12) 

where a3 = (l/b)A3. This is, once again, the partition sum for a mono- 

pole gas interacting with a current loop. We now consider two cases. 

I, b = a. In this case (6.12) coincides precisely with (A.2) of Ref.2. 

This is interesting, since model III is not symmetric in space and time, 

and yet yields a symmetrical monopole gas. 

II. b << a. Let us characterize a configuration of {m(r)) as 

m(r) = c ¶ 
k * 

(6.13) 

where r = (x,y,t) and {M) are restricted to be integers # 0. Now a 

configuration is characterized by a set (Mxy(k)] of monopole strengths, 

and a set {txy(k)} giving their times for every spatial site. 
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In the continuous time limit, b << a, a3 becomes a true derivative, 
2 and 1/ [a, + (l/a 2 ) AZ 1 b ecomes a mixed matrix-integral operator. The 

external source 

Oxy(t) = f (A$, - A2j1) (6.14) 
3 

is a finite, discontinuous function of t for a given x,y. Finally, 

we can replace 

' 

and all of the above gives: 

’ Oi {t&;)] exp[% ’ Mxy(k) B M xyk,x'y'k' x'y' (k') 

XY XY 
xyk,x'y'k' 

+ 27ri 1 - 
2 

a c 
Mxy (J-4 

3; + -!- A2 
nxy(t> 

XYk a2 ' 

(6.15) 

B 1 
xyk,x;y;k' 

= 2 1A 2 t 
at+a2 i ,&'I 3 xoyo 

6x x, 6 Y,Y;, . 3 0 
t=t (k) 

XY 

The summation over (t 
XY 

(k)} includes summation over the number of mono- 

poles at the point xy.. The numbers B 
xyk,x'y'k' are finite, and propor- 

tional to a. According to the procedure employed in Refs. 1, 2 and 3, 

one should at this point neglect all monopoles with charges not +l, 

since a monopole with a higher charge gets extra powers of exp &l/g 
2 

a). 
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But since b << a, these configurations are no longer suppressed, since 

two big and opposite charges can come close to within a few b on the 

time axis and have a small action. We do not know how to compute Z in 

the limit b + 0, but we now make the following assumption: along the 

time axis, monopoles will cluster into segments. These segments are of 

length -a, since this is the scale of the Green's function B. For two 

such segments, separated by a time interval 2 a, the interaction B 

between them is less important than their self-action, so we can apply 

the approximation M XY (k) = +l to the total charge of a segment. Accord- 

ing to this mechanism, (6.15) effectively becomes the gas of Ref. 2, 

where "segments" replace monopoles. The main difference is in 

Do = Bxyk, XYk 
, which is derived from a continuous-time, rather than 

a discrete-time, Green's function. The d coefficient, defined in 

Section 5, is therefore 

d = 21T2 
- DO a 

= 21T2 I 1 
a 2 1 A2 

at+a2 i 
m> 6 

x,0 *y,o 

1 

. (6.16) 

t=x=y=o 

The less important coefficients, c and 8, presumably depend on the 

details of the clustering phenomenon. Going to momentum base, (6.16) 

gives 

d = $ J dti i'"la dkldk2 (w2 -i- $[4: 2cos(kla) - 2cos(k2aj]) -' 
-co -r/a -r/a 

= & f do-~ j f dkldk2 [a2 + 4 - 2coskl - 2cosk2]-' 
-co -IT -IT 

= t j- / (4 - 2coskl - 2cosk2)- 1'2 dkldk2 , (6.17) 

-?T -IT 
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which is exactly d3, the result in Ref. 3, as written in Section 5. 

7. Conclusions 

We have compared the monopole and variational approaches to the 

problem of confinement in compact QED in 2+1 dimensions. We saw that 

the mechanisms for screening and confinement are qualitatively the same, 

and that the crucial coefficient d comes out the same if one takes care 

to treat time in the same way in the two approaches. The main remaining 

discrepancy is the nature of screening, which is only a power-law in 

Ref. 3 but is exponential in Refs. 1 and 2. However, we have seen that 

this might be an artifact of certain approximations made in Ref. 3. 

We have also demonstrated that the confinement mechanism breaks down 

for nonperiodic potentials. 



-36- 

REFERENCES 

1. A. M. Polyakov, Nucl. Phys. B120, 429 (1977). 

2. T. Banks et al., Nucl. Phys. B129, 493 (1977). 

3. S. D. Drellsg., Phys. Rev. Dg, 619 (1979). 

4. K. Wilson, Phys. Rev. DlO, 2445 (1974). 



-37- 

FIGURE CAPTIONS 

Fig. 1. A piecewise-quadratic field potential. 

Fig. 2. A monopole. B becomes IT on surfaces T, K. 

Fig. 3. The Wilson current loop, immersed in a monopole gas. 

Fig. 4. A quark-antiquark pair. The lines are Coulomb field lines, 

the circles denote electric vortices. 

Fig. 5. The Wilson Contour. 

Fig. 6. A double-well field potential which does not confine. 
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PART II 

ADIABATIC TRUNCATION: A FREE FIELD EXERCISE 
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1. Introduction 

The method of lattice Hamiltonian blocking, or the real space renor- 

malization group, has been successful in a variety of models, yielding 

results for ground-state energies, mass gaps, and correlation functions. 

When applied to soluble 1+1 dimensional models, where it can be compared 

with exact solutions, it succeeds in giving fairly accurate results. 

Improving upon these results, however, usually necessitates complicated 

refinements of the procedure, and even so the spatial structure of 

correlation functions computed in such schemes is never very accurate. 

Stated simply, a blocking scheme is a systematic way to compute 

scale transformations in a lattice model, from one ultraviolet cutoff Al 

to a smaller one, h2. This is done by solving approximately for those 

modes that have frequencies h2<u< Al, and removing them from the theory. 

In Part II, we report a new method of treating these higher- 

frequency modes using an adiabatic (Born-Oppenheimer) approximation. 

The usefulness of the method is explained in general, and demonstrated 

in the framework of a very simple model: a free Bose scalar field 

theory in one space dimension. We examine in detail several schemes 

employing the method. For the most part, we concentrate on the massless 

case, which is the hardest to attack by blocking techniques due to its 

long-range correlations. The results of the adiabatic approach are 

compared with those of conventional blocking schemes. 

For each scheme we treat, the ground-state energy and various 

equal-time Green's functions are computed for the trial ground-state.' 

We find excellent agreement with the exact results; using previous 
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methods, one must keep many more states per site and sites per block to 

attain accuracies that we can get using our adiabatic approach. 

Our adiabatic method is closely related to, and grew out of, the 

recently developed Shadow Hamiltonian technique by Quinn and Weinstein' 

(QW) l It is, however, more suited for treating Bose field theories. 

The QW technique was developed for .a spin model, where one cannot define 

classically meaningful "fast" and "slow" modes. The distinction between 

these modes is, however, the cornerstone of our method. Both techniques 

can be applied to more complicated models than those they were tested for. 

The plan of Part II is as follows: in Section 2 the adiabatic 

method is explained. In Section 3 our model is introduced and solved, 

and its relevant symmetries pointed out. In Section 4 we apply the new 

method to the model, keeping one "slow" variable per two-site block. 

In Section 5 we apply it keeping two variables, again with two-site 

blocks. In Section 6 we summarize our conclusions. We find it useful 

to work in the momentum basis, due to long-range effects. 

2. Iterative Blocking-Truncation Methods 

In a blocking scheme, one begins from a theory defined on a spatial 

lattice, and groups the lattice into blocks of two or more sites each. 

One then truncates away some block states or degrees of freedom. The 

choice of these states is based on energy: one would like to reject the 

(in some sense) "higher" excited states. The assumption underlying the 

truncation procedure is that the higher excitations will not affect the I 

ground state by much. 

Let us consider a Bose field theory. One can talk of field 

variables rather than states, and the problems of choosing low-lying 
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block states becomes that of identifying "slow" and "fast" (low- and 

high-frequency) variables. 

In the "simple-blocking" schemes,3 the Hamiltonian is split into 

terms involving a single block and terms coupling the blocks. This 

decomposition is obviously not unique, creating a certain ambiguity in 

the procedure. This ambiguity will disappear when we introduce our 

improved blocking method; but let us proceed with the description of the 

conventional method. The single-block Hamiltonian is solved, exactly or 

approximately, and the block modes are identified. One defines "slow" 

and "fast" modes; the latter are frozen in their approximate ground 

state. All operators are next truncated by computing their expectation 

values with respect to these fast modes. These modes thus drop out of 

the theory, leaving an effective Hamiltonian in the remaining variables. 

This Hamiltonian is defined on a new lattice, with the blocks serving as 

the new sites. The new theory has a larger lattice spacing, and corres- 

pondingly a smaller ultraviolet cutoff, than the old one. Hence the 

theory undergoes a scale transformation. This is called a 

renormalization-group transformation.4 

By truncating operators, we may express their trial ground-state 

expectation values, or Green's functions, in terms of their counterparts 

in the resealed theory. We refer to these relations as "mappings," or 

renormalization-group equations. The ground-state energy, for example, 

is computed by repeated mappings of the Hamiltonian. One repeats the 

mapping until the physics of Heffective becomes either trivial, or so 

soft it does not affect the results any more.5 
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The difference in our new method is in its truncation prescription. 

Instead of using only the single-block terms in H to determine the fast- 

variable wave function, we allow the block-block terms to influence it. 

This is done by letting the fast variables in a block oscillate about 

mean values that change adiabatically with the slow modes in the 

surrounding blocks. 

It is easy to understand how this can economize on the number of 

states we need to keep, since the adiabatic state of the fast modes is 

a superposition of many nonadiabatic (isolated-block) states. 

The adiabatic state is a "wave packet" in the fast variables. 

We determine its center and shape variationally by combining the 

blocking with a mean-field approach. Namely, at each step we "look 

ahead" a certain number n R of iterations, after which some parametrized 

mean field trial state, 

IT I'P>j 
sites j 

9 

is used. ICP> is the same state for all j. Then the parameters of Iq> , 

and of all previous n R wave packets, are varied to minimize the trial 

energy <tlHlt>. It> is now a completely specified trial state, in the 

modes of the last H effective and in all higher-frequency modes previously 

frozen. But having thus determined the variational parameters, we dis- 

card the mean field state and the last (n R - 1) look-ahead iterations, 

and use only the wave-packet parameters needed for a single mapping. - 

The mapping thus proceeds one step at a time. 

The intermediate trial states, It>, are never used to compute the 

final physical quantities; these are computed in the final trial state, 
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which we denote Itrial>. It is obtained in the limit of an infinite 

number of blockings (for an infinite-volume lattice). 

3. The Model 

The model we treat has a scalar field xr defined on each site r 

of the one-dimensional lattice, together with its canonically-conjugate 

variable p,. The Hamiltonian is (for a system of volume L sites) 

L-l L-l 
H= c 

12 
-Z 'r + c d(r - s) x x rs 9 (3.1) 

r=O r,s=O 

where d(r - s) is some form of the lattice Laplacian. We work in units 

in which the lattice spacing is unity, and use periodic boundary- 

conditions. 

Since we shall be working in the momentum basis, we rewrite Ii in 

that basis:6 

H= + p(k) p";(k) + d(k) x(k) (3.2) 

d(k) can be made a symmetric function of k. In particular, for a field 

of mass 1-1 and a nearest-neighbor definition of the gradient, we have 

d(k) = $ p2 + (1 - cask) . 

H has the following three symmetries which will concern us: 

a> Parity invariance 

( 
x(k) + x(-k) 

P: 

p(k) + p&k) 

(3.3) 

(3*4) 
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b) Field-translation invariance: this is the continuous symmetry 

x(k) -t x(k) + -cgk o 
2 

G(T) : (3.5) 

p(k) + p(k) 

for arbitrary real r. This symmetry is equivalent to the statement 

that the field is massless, and is valid only if d(0) = 0. 7 

4 Site-translation invariance: this is the invariance under the 

lattice symmetry of relabeling the j-th site as the j + m-th, or in 

momentum basis 

(3.6) 

for any integer m. This symmetry can, in fact, be generalized to 

translations by a noninteger number of lattice spacings. 

Throughout our blocking treatment of the model, we will demand 

that P and G(r) be conserved by the truncation. The breaking of Tm is 

inherent 

forms. 

The 

is 

in the blocking approach, and we will encounter in in various 

solution of (3.2) is trivial: the ground-state wave function 

<Ix3lg.s.> = exp {- F /F x(k) x*(k)} , (3.7) 

and the ground-state energy density is 

1 
pg.s. 

= 
s 

dkm 
2lTfi () 

W8) 



-51- 

in the large-volume limit. The equal-time, two-point Green's functions 

we shall study are 

G(k) = <x(k) x*(k)> 
1 

g.s. = - 242d(k) 

R(k) = <p(k) p*(k)>g s = . . 

(3*9 

. 

4. A One-Variable Adiabatic Scheme 

Let us group the lattice sites into blocks, so that the j-th block 

contains the sites 2j and 2j+l. We define sum and difference block 

variables, 

1 
x+(j) = 7 ( x2j + x2j+l) 

1 x-(j) = --- xzj 
fi ( - x2j+l) 

p+(j) = p2j + '2j+l 

1 
P-(j) = z (P2j - Pzj+l) 

(4.0 

. 

To get an effective Hamiltonian with one variable persite, one of the 

two block modes must be frozen; in the simple blocking schemes that 

mode is x-(j) (essentially because it has a higher wave-number).8 

In the momentum basis, Eqs. (4.1) assume the form CEq. (A.3)1 

.-ik/2 x(k) = d- cos(k/2) x+(2k) - i sin(k/2) x-(2k) , 

(A.31 
,-ik/2 

p(k) = 2 cos(k/2) p+(2k) - i sin(k/2) I- . 
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The fast modes (x-1 will be frozen to a product of Gaussians over the 

blocks, with a Gaussian "wave-packet" at each block having as its 

center a function of the slow modes: 

<(x)/trial> = n j exp I- $ (u_)j[ x_(j) - Fj(‘X+‘) I2 \$res 3 (4.2) 

where Q,,, depends on the residual (slow) modes. As explained in 

Section 1, renormalization-group calculations are concerned with unravel- 

ing step-by-step, the physics of the various length-scales in the prob- 

lem; the physics that is of concern right now is that which is interior 

to a block, i.e., that of the fast variables. Therefore, $,,, need not 

be specified at this point. Nevertheless, some crude guess-form of $,,, 

will have to be used for the purpose of variationally determining the 

wave-packet parameters- this is the essence of the look-ahead method 

(see Section 2). We shall come back to the look-ahead aspects of $,,, 

at the end of this section. 

Let us now further specify the fast-variable wave-function appearing 

in (4.2). Fj may, in general, be a nonlinear function, and (r,)j; Fj 

may depend explicitly on j, but we will use a linear form without such 

dependence: 
Fj(fx+)> = C i p(j - jr) x+(j’) (4.3) 

l I J 

and a j-independent9 (y ) = y, . 
-j 

p is an n-dependent function, and 

when we wish to emphasize this dependence we will write on0 We may 

then rewrite Eq. (4.2) in the momentum basis 

<O/trial> = n y- g-(k) ;;"(k) 

k 

(4441 
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where we have gone over to shifted variables via the canonical 

transformation 

x- (k) = G-(k) + i p(k) G+(k) 

x+(k) = x+(k) Y 

P, 04 = 6-h) Y 

P+(k) = i+(k) + i p 04 c-(k) 

From parity and hermiticity, p(k) must obey 

p*(k) = -d-k) = p(k) . 

(4.5) 

. 

For later convenience, we choose to rescale the slow modes, 

G+(k) = 2 -1'4 g(k) 

i+(k) = 2114 ;(k) 

The shift, resealing and truncation together define the mapping of 

operators. We will only be interested here in mapping bilinear 

operators: xx* and pp*. Hence we only need the following rules: 

[I;_(k)] tru = [p_(k)] tru = 0 

G-(k) $(k'),,, = 6kk' i 
I 2Y- 

3 

Y- 

&k’) tru = ‘kk, 2 

2 

(4.6) 

(4.7) 

(4.8) 

where the subscript denotes "truncated." The following mapping results: 
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x*(k) tru = k 1 fi cos(k/2) + p(2k) sin(k/2) I 2 

x ;(Zk) ;*(Zk) + $- (1 - cask) 9 

(4.9) 

c p 04 p7\ (k) 1 1 
= - tru 

(1 + cask) ;(2k) ;*(2k) 
2ti 

1 cos(k/2) p(2k) - sin(k/2) 1 2 . 

Note that a pair of momenta k, k+r, correspond to the same wave number 

2k of the new lattice; this is an umklap phenomenon, related to the 

artificially imposed block boundaries. We introduce a notation for 

sums of contributions from such an umklap pair: for any function f(k) 

denote 

Cf(k/2) 1 = f(k/2) + f(k/2 + r) . (4.10) 
U 

Then from Eqs. (3.2) and (4.9) we obtain the mapping of the Hamiltonian 

(H) = L 1 ---ii 
tru 2- c-+ fi 

(4.11) 

Here c- is the zero-point energy per block of the frozen fast modes, 

L is the volume,1° and g is the mapped Hamiltonian: 

27r 2lT 
Cd 2 1 k 

8lTc- = y, 
3 

+ - ' 
- 

0 y(n) 
1 cos 7 

U 

g= $ ;(k) ;;*(k) + ;i(k) z(k) z*(k) (4.12) 

x(k) = cos(k/4) + p(k) sin(k/4) 2 d(k/Z) 1 
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We have mapped the Hamiltonian, and we now want to determine the wave- 

packet parameters characterizing the renormalization group transforma- 

tion. These parameters, y b> and p(k), will be determined variationally 

via the look-ahead prescription. 

First, we realize that due to the simplicity of the model under 

consideration, the task is easier than it could in general be. Namely, 

G-d because H" does not depend on y- but only on the shift ps we may ignore 

z for the purpose of solving for y-, no matter what the look-ahead 

method used. (This is a feature unique to the free-field case). The 

point is, of course, that y depends on p(k), which does appear in G, _ 

and thus the fast and slow modes interact through p and the results are 

sensitive to the look-ahead scheme employed. We may, however, eliminate 

y from our equations, and we proceed to do that. Minimizing c- with 

Cd respect to y, gives from (4.12) 

47ic- = l- cos(k/2) ] d(k/2) lu dk)1'2 ][b+$ p(k)2]dk\1'2 . 

I 
(4.14) 

For a single look-ahead (na =l in the notation introduced in Section 2), 

we use the Gaussian mean-field guess for I/J,,, 

JI res Ix”> = n exp 
j 

) = f exp{- -$ -y;;(k) z*(k) ). (4.15) 
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The intermediate trial state It> for this scheme is obtained by substi- 

tuting (4.15) in (4.2) or (4.4). The residual energy expectation value 

<fi> in the state $ is res 

<$reslfil$res> = (4.16) 

Combining with (4,ll) and (4.14) we find the total trial energy for this 

eme); it is step (in the no = 1 sch x, 

<tlHlt> = <$ I( ) H res tru jJlres> 
(4.17) 

= +-A1'2 f[l++ p(k)'jl'2dk +[$+ 2fi;;2n [z(k) dkj 

where the dependence of z on p is given in (4.12), and A is a constant 

in this variational problem: 

A= (4.18) 

Minimizing <tlHlt> with respect to y; is trivial; the remaining minimi- 

zation with respect to p(k) depends on how long-range we wish to make 
- 

the shift. Finally, if a number n R 
> 1 of look-ahead steps is desired, 

the mapping should simply be carried out n R times before a mean-field 

b-4 Gaussian is used in the residual variables. All intermediate y, 

values are given by (4.13), and one minimizes <tlHlt> with respect to 

all intermediate p,(k)- s. 
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From here on the variational problem is essentially numerical. 

We have solved it for various look-ahead schemes and various forms for 

the initial lattice-Laplacian, d (O)(k). Before reporting the results, 

we assume that the mapping parameters have been determined, and turn to 

the mapping of Green's functions. 

The recursion relations for Green's functions follow from Eq. (4.9) 

by taking expectation values in the state Itrial>. Defining for the 

n-th iteration 

G(")(k) = (x?k) x(n)*(k))trial , 

(4.19) 

R(n)(k) = (p(")(k) p(")*(k)) trial ' 

we get 

G(n)(k) = -!- cos(k/Z) + p(n)(2k) sin(k/Z) ' 
Jz 1 

x G(n+1)(2k) + ' (1 cask) 
4y(d - 

' t 

(4.20) 

Rcn) (k) = -i-- (l+cosk) R (n+1'(2k) 
2fi ,b> 2 

+= 1 . 
2 - cos(k/2) p (n)(2k) - sin(k/Z) 

hi- I 
If these recursion relations are iterated ad infinitum, we get for G 

(0) 

and R(O) pathological functions of k that are nowhere smooth; this is 

just a reflection of the block umklap problem mentioned earlier.ll What 

is happening is that an uncareful application of (4.20) causes the scal- 

ing behavior of G and R to be masked by these artificial umklap singular- 

ities; the way out of this problem is to consider G (n)(k), R(n)(k) only 
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at the discrete momenta values k = ?T* 2 -r . The recursion relations r 

(4.20) are then solved on this subset of the real axis. This is possible 

because they relate G W and R(n) at kr to G(n+l) and R(n+l) at krwl , 

and moreover this trick causes the recursion to terminate when r reaches 

0, k. = r. A demonstration of how we have solved recursion relations 

of this type is furnished in Appendix C. 

Once the power laws for the Green's functions have been found at 

the discrete momentum values kr, we can interpolate to all k values; 

this is a convenient way to smooth the nonanalytic benavior of G and R. 

Note that the discrete sequence (k,) has an accumulation point at k= 0, 

which is the -region of interest (long-range). Physically, {k,) are the 

elementary harmonics quantized in the blocks of sizesI 2 
r o 

We next present the results of this one-variable adiabatic method 

for various forms of p(k), d(k) and look-ahead procedure. 

The Results for One-Variable Schemes 

The results of several one-variable schemes, of the type described 

above, are summarized in Tables I and II. In these tables, nshift is 

the range of the shift in number of blocks; for a given range, the most 

general shift function compatible with parity is [see Eq. (4.6)1, 

n shift 

p(k) = c rj sin(jk) . (4.21) 

j=l 

For schemes with nearest-neighbor shifts, nshift = 1, we recorded the 

limit 
r = lim ri"' 9 (4.22) co 
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of the shift parameter as the number of iterations tends to infinity; 

it is a measure of the amount of adiabatic shifting in the large-scale 

limit. pg.s. is the ground-state energy density,. while yG and yR are 

the asymptotic large-distance exponents as computed at the points 

kr = r* Zmr from (4.20): 
YG 

G(k,) - ($1 9 

as r >> 1, Since yR = -yG for all the schemes we considered, we 

recorded only yG' 

Both tables refer to a model with the nearest neighbor lattice 

derivative given in Eq. (3.3). Setting the shifts p(k) to zero gives 

the simple-blocking scheme with mean field, i.e., with a one-step look- 

ahead; the no-mean-field scheme results when we determine the Gaussian 

Cd parameters y- by diagonalizing the block Hamiltonian. Both these 

schemes giveI yG = -l/Z, but the energy density is better with mean 

field than without it. 

We see that allowing nearest-neighbor shifts improves both main 

physical quantities (energy and asymptotic exponent). Taking more 

look-ahead steps further improves them (except for n = Z), until 
R 

beyond nR = 4 the results change very little. Increasing the range of 

the shift improves them even more, but only when n R 
is at least 2.14 

The best scheme we have tried was that with a range-two shift and three 

look-ahead steps, giving yC =-.998. 
* 

Table II shows ratios of the trial energy density and Green's 

functions to their exact values, for various masses and momenta. 
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The nearest-neighbor gradient CEq. (3.3)] was again used. For large 

masses, where simple blocking works well because the field is localized, 

the shift does not change the results much, but as the mass decreases 

the new method becomes superior both for p and Green's functions. 15 
g.s. 

Finally, we have checked the sensitivity of the above results to 

changes in the form of lattice gradient used (including the so-called 

"SLAC" derivative that is infinite-range and is designed to give a rela- 

tivistic spectrum). Both the exact and trial energy densities changes, 

and the shift again improves the agreement, even though on the whole 

blocking is slightly less successful for longer-ranged derivatives. 

The asymptotic shifts and yG do not depend on the form of d(k). The 

fixed form of the gradient is given in Eq. (A.7); why this form is of 

range 4 lattice sites is also explained there. 

5. Two-Variable Schemes 

A. A two-variable formulation of the model 

In the last section we saw how a nearest-neighbor adiabatic shift 

much improves on the simple Gaussian-truncation blocking scheme. The 

scheme can be made even more accurate by keeping more variables per 

site in the effective Hamiltonian, thus truncating away less of the 

dynamics. We will demonstrate this for a particular class of schemes 

in which two variables are kept per site. First we will cast the model 

in its two-variable form, by blocking once without truncation. 

We start from Eq. (3.2), and decompose x(k), p(k) in terms of block 

variables according to Eq. (A.3). We redefine for convenience 
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y(k) = x+(k) 3 

Py(k) = p+(k) 9 

H then assumes the form 

z(k) = x-(k)/fi , 

Pz(k) = fi p (k) . 

d 
YY 

idyz/2 

H = c t pyp; + + P,PE + (Y z) 

k id /2 dZz 
YZ 

(5*1) 

; (5.2) 

here d 
YY 

(k) 9 dyz(k) and dZz (k) are functions given in Eq. (A.4). 

We now take Eq. (5.2) as our starting point. It is an effective 

Hamiltonian, but is equivalent to the original one. It is defined on a 

new lattice of volume L/2 and with a two-component scalar field at each 

site- a parity-even component y and a parity-odd component z. Under 

the symmetry G(z) CEq. (3.5)1, we have 

y(k) + y(k) + T6k o , 
9 

G(T) : 

. 

(5.3) 

( P 9 P, unchanged 
Y ) 

Since z does not transform, it is allowed to have an effective mass term 

without violating any symmetry, and indeed there is such a term from 

the outset [Eq. (A.5)1. 

B. A two-variable adiabatic scheme 

We group the sites in pairs to form blocks (which are 4-site “super- 

blocks" in the original sites), and define four block variables: 
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the sum and difference variables for y and z, denoted as y, and z+ [see 

Eq. (A.6) for their exact definition]. y-, z+ and z are the three fast 

block modes, and y+ is the slow mode (intuitively; since it corresponds 

teak= 0 mode inside the superblock). 

Within one block there can occur a mixing between the four modes. 

Parity invariance implies that the two even variables, y+ and z S may 

only mix with each other, and so can the odd variables y- and z +' 

We will keep one even mode, and one odd mode which is a mixture of y, 

and z +' The other two modes will be truncated to adiabatic wave packets, 

with centers that are shifted to track the retained modes. Note that 

y+ and z- cannot actually mix (at least not orthogonally), because that 

would give a mass to y+ and break the G(T) invariance; hence we take the 

retained slow mode as simply y+. 

Let c be the mixing angle between the odd modes, defined such that 

the fast and slow mixed modes are, respectively, 

M 
z+ E cz - SY + - 

YF 5 sz+ + cy . 

Here c and s are shorthand for cos< and sine, respectively. We now 

invoke the most general linear adiabatic shifts among tzhe four modes 

M M 
Y+Y Y-l Z+P z- that are consistent with the symmetries of the model. 

M The fast modes z+, z each shift by a linear combination of the two 

slow modes y+, y:; as in the one-variable calculation, we work in 

momentum basis and the shift coefficients are k dependent. We thus 

define 
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A 

Y+ = y+ 

M 
F- = y- 

h M M 
Z+ = Z+ - iPly+ - PzY- 

z^ =z M 
- P3Y+ - iP4Y, 

unshifted slow modes 

shifted fast modes 

Y 

. 

Disentangeling the original variables in terms of i,, i+ we find, 

y- = ,c- w2 $- - iq G+ ( ) - si, Y 
(5.4) 

z+ = cS+ + ipl c$+ + (s+ P2C) G- Y 

Z = i- + p3G+ + iP,$- ¶ 

where the shift coefficients pi are functions of k. 2 + and 2 _ are the 

fast modes that we truncate away. 

If we assume that the shifts are all nearest-neighbor, then parity 

and G(r) symmetries restrict them to the following forms, p arametrized 

by five real numbers: 

PI(k) = rl sink - , 

p2(k) = r2 + r3 cask , 

p3(k) = r4(l- cask) , 

p4(k) = r5 sink l 

(5.5) 

The six mix-shift parameters c, IriI, will be determined variationally. 
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The truncation is done with a product-Gaussian state: 

-+ yllG+(k) 1’ -+ y21:-(k) 1’ 
e e $ - res(I~+31, (5.6) 

where Q,,, is the wave function in the remaining variables, and y,,y,-, are 

two more variational parameters. The guess-form we 

look-ahead is a product over single-site Gaussians, 

I L 

use for a one-step 

flk exp &$y31f+(k)1' -%y41$-(k)1230 To complete the definition of 

the mapping we rescale, 

l/4 * 
?=2 Y+ Y 

ly 

Z = 2-l/4 A 
Y- Y 

py = 2 -l/4 A+ 
pY 

Y 

P, = 
21/4 h- 

pY 
. 

We have studied three equal-time Green's functions, 

G1 (k) = ‘y(k) Y”(k)‘trial , 

G2 04 = i<y(k) Z*(k)'trial 3 

(507) 

(5.8) 

G3 0-d = <z(k) z*(k) >trial , 

which are arranged as a vector of rank 3, and their canonically conjugate 

counterparts, the vector s(k) . The mapping of bilinear operators gives 

a tensor version of the renormalization group equations encountered in 

the one-variable case; cog., 

zcn) (k) = +i?(")(k) . $n+1)(2k) + +)(k) , (5.9 
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+-+(n) where the matrix I' -+(n> and the vector o depend on the mix-shift 

parameters. This equation is easily obtained from Eqs. (5..8), (A.6), 

(5.4) and (5.6) upon integrating out the fast "shift-mixed" variables, 

l,. We iterated these equations for the momenta k = kr, using parameter 

values obtained variationally through a look-ahead procedure. The 

mapping of the Hamiltonian 

Hamiltonian being again of 

functions d d d of yyy yzy zz 

is of the form Eq. (4.11), with the new 

the form Eq. (5.2). The fixed form of H has 

range four lattice spacings, for the same 

reason the range of d W was 4 in Section 4 [see Eq. (A.7)1. As in the 

one-variable calculations, this fixed form is independent of the exact 

form of the lattice gradient we start from, and so are the values of the 

Green's function exponents, defined as follows: 

(5.10) 

where 1 s i s 3 and r >> 1. 

Table III summarizes the results and compares them with the simple- 

blocking scheme: without mean field (Ref. 16) and with mean field. 

12 1 
The adiabatic scheme is for nL = 2, and we see that yG, yG and yR agree 

with the exact values up to-1 part in 10 4 - . The other exponents are 

incorrect, as in the conventional schemes. We expect them to, because 

they involve the z mode, which is "faster" than y and so the truncation 

affects it more. This is again traceable to the lack of translational 

(T,) invariance in blocking schemes; for in any trial state that obeys 

that invariance, one can prove that 
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3 -2 = 2 1 
YG YG - 1 = YG ¶ 

(5.11) 
3 

yR 
-2=yp=y; . 

For the case of only one look-ahead step, an anomalous phenomenon 

occurs: the ;+ mode, that in the no-shift schemes lies above F_, crosses 

below it. Therefore, choosing G- repeatedly as a "slow mode" has a 

disastrous effect-it causes the z Cd oscillator to keep increasing its 

effective mass with n, and it eventually decouples from y 6-d . Thus, 

the n R = 1 scheme reproduces, in effect, the results of the one-variable 

scheme. This could be avoided by allowing j- to lower its frequency 

too, by shifting with the 

ordering 

E < 
Y+ 

remains intact throughout the iterations. 

slowest mode j+. But for nR 2 2 the level 

E <E <E 
y- z- Z+ 

(5012) 

We also applied the scheme in which the three fast modes in a block 

are adiabatically 

better p than g.s. . 
and yi. 

shifted by the y+ mode; that did not give a much 
. 

the one-variable schemes, and did not improve vi 

c. Possible improvements 

After having demonstrated that the results of the one-variable adia- 

batic scheme can be improved impressively by keeping two variables per 

site, we briefly discuss the generality of the procedure used in B. 

The two even modes in a block, y+ and z-, are not allowed to mix ortho- 

gonally if one of them (i.e., _ z ) is then truncated by a Gaussian, 
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since that would give y+ a fictitious mass. But y+ could still shift by 

an amount proportional to z (i.e., a nonorthogonal mixing is allowed). 

One may also choose a different resealing than Eq. (5.7).17 A no-shift, 

several-look-ahead calculation we did indicates that in such an approach 

the z^ _ mode crosses below $-, suggesting that perhaps the two even modes 

should be kept per block. To avoid such breakdowns in a blocking scheme 

as this or what happens for nR = 1, one should not predetermine at all 

which of the four modes are to be truncated. Their energies should be 

allowed to determine that anew at each step of the iteration. One should 

also allow for more general shifts, as discussed in Section B. But the 

calculations presented here suffice to make the point that systematic 

improvement wihin our approach is possible. 

6. Conclusions 

We have seen how the adiabatic truncation method can be used to 

improve the accuracy of real-space renormalization group techniques on 

the lattice for the case of a free scalar field. The improvement is 

especially noteworthy for large-distance behavior of trial Green's 

functions. The same method can be generalized to interacting field 

theories, and to any number of dimensions. We expect it to yield 

better results for phase transition locations, critical exponents, 

etc., than was possible with conventional methods. 
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APPENDIX A 

In going from position to momentum basis we used the following 

relations: 

1 
d(r) = r, c e ikr d(k) 

k 

1 x(r) = - c 
-ikr e x 04 

&k 

1 
P(r) = - c e -ikr p(k) 

%c 

(A.1) 

where L is the volume of the system in the current iteration, and k 

ranges over the values 27~ mk/L, 0 ,< mk I L - 1. The canonical commuta- 

tion relations are 

[x(k), p”(k)] = i $ k’ 3 (A. 2) Y 

and since x is a real field, x*(k) = x(-k), and likewise for p. 

To get the blocking relations in momentum basis, start from 

Eq. (4.1)0 Multiply both sides of each equation by e 
+2ijk and sum over 

0 5 j 5 L/2-1. Using for the block variables x+, p+ Fourier transforma- 

tions similar to Eq. (A.l), but with L replaced by the decimated volume 

L/2, we find the relations 

,-ik/2 
x(k) = fi cos(k/2) x+(2k) - i sin(k/2) x-W) , 

.-ik/2 
p(k) = ei- cos(k/2) p+(2k) 

fi 
- i sin(k/2) p-(2k) . 
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For the two-variable schemes, the "Laplacian matrix" appearing in 

Eq. (5.2) has the components 

dyy(k) = 

dyz(k) = 

dzz(Jd = y 

(A.4) 

where we have used the definition (4.10) for the umklap sum. For the 

zero-mass nearest-neighbor gradient, d(k) = l-cask and 

dyy (k) = l-cask 9 

dyz (k) = 2 sink 9 (A.5) 

dZz 0-4 = 3+cosk . 

The definitions of the four block variables and their canonical momenta 

are 

.-ik/2 
y(k) = fi cos(k/2) y+(2k) - i sin(k/2) y-(2k) 9 

-ik/2 e z (k) = cos(k/2) z+(2k) - i sin(k/2) zJ2k) 3 

.-ik/2 (A. 6) 
py(k) = ; cos(k/2) p;Wd - i sin(k/2) p;(Zk) , 

.-ik/2 
P,(k) = cos(k/2) pz(2k) - i sin(k/2) pi(2k) . 

Fixed forms: In the one-variable scheme with nshift = nQ = 1, any model 

with a gradient of range four lattice spacings or less has the fixed- 

form gradient 
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d(*)(k) - Co (1-cask) - .24 
[ 
l- cos(2k) 

n+a 3 
(A-7) 

+ 0.3+- cos(3k)] + .OOl[l- cos(4k) 
11 

, 

where C o decreases exponentially with n. It is easy to prove that, 

starting with a lattice Lapalacian d (O)(k) of range I 4, d +k) reaches 

the maximal range of four. An interaction term of range r lattice sites 

becomes, upon blocking, of the range [(r-2)/21+1, where [xl is the 

largest integer smaller or equal to x; this range rapidly iterates to 

nearest-neighbor, 1. But with a nearest-neighbor adiabatic shift, z. J-1 

"knows" about "x j+l through f;- Cj ) 9 so we must add 2 to the iterated range: 

r- 1 
r = [ 1 +3 

it 2 

which iterates to 4 for all r initial 
5 4. 
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APPENDIX B 

A QUALITATIVE EXPLANATION FOR THE ANOMALOUS MASS GAPS 

Simple-blocking schemes tend to give the massless model fictitious 

mass-gaps, decreasing as the -l/2 power of the block volume; this is 

responsible for asymptotic exponents (y, in the one-variable schemes and 

1 . 
yG in the two-variable schemes) coming out to be- l/2. Why this occurs 

may be understood in a qualitative way as follows: consider a super- 

block, formed after n iterations, of volume V = 2n sites; we look at the 

part HV of the original Hamiltonian that involves only fields inside 

this super-block, and add to it two symmetric surface terms to represent 

the effects of the rest of the system:l' 

The freedom in choosing the surface terms stems from the arbitrary 

nature of the decomposition into "block energy" and "block-block 

interaction," pointed out in Section 2. The surface terms will cause 

the field xj quantized in this volume to have an effective mass am , 

which scales with the anomalous power-l/2 (a being of order unity). 

The particular choice a = 1 corresponds to the choice of block 

Hamiltonian of Ref. 19. 
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APPENDIX C 

We now demonstrate the method used to solve the recursion relations 

(4.20) for the values of Green's functions at k = k,. The example to be 

worked out in detail is the no-shift, one look-ahead case, i.e., 

p,(k) - 0. For a nearest-neighbor gradient d (O)(k) = 1 - cask [Eq. (3.3) 

for p = 01, we find from (4.13) 

yb) 3 ci- K.1) 

In this case, Eq. (4.20) simplifies to 

G(n)(k) -mi- (l+cosk) G (n+l) 

=Jz 
(2k) + -!- (l-cask) , 

4fi 
C2) 

R(n)(k) = 1 (l+ cask) R(n+1)(2k) + 9 (l- cask) . 
2J!z 

Using 1 + cask = l/2 [sin2k/sin2(k/2)l, we find upon iterating (C.2) 

ad infinitum 

G(k) = G(')(k) = L l-cask + 
46 

2 [l- cos(2mk)] (&)m sin2(2m-1k' ) 

m=l 
sin2(k/2) 

(C.3) 

R(k) = R (O)(k) 
4 . 

l-cask c (32) 

m=l 

These are nonanalytic functions, but at k = kr = IT X 2 -r the sums 

terminate and we obtain 
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GCk 1 r 
1 

4& 
’ - ‘Oskr + l- zosk r 

r 

c 
m=l 

(8)-m'2 sin 
4 m-l-r 7rx2 

Y 

(C.4) 
r 

4 
c 02) 

-m/2 sin4 Trx2 m-l-r 
I- cask, i 

. 

m=l 

These are the types of sums that appear in all our truncation schemes. 

For large r, the first few terms (low m) behave approximately as a geo- 

metric series, with some ratio CC. If a > 1, the large-m part of the sum 

dominates, whereas if c1 < I the low-m terms dominate. For the case at 

hand, a > 1 for both sums (C.4), so they are dominated by m = r: 

-l/2 
(8)-r’2 - (kr) 

(see Table I). 
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Table I. Results from one-variable schemes in the massless model 

Scheme nQ nshift pg.s. yG r 00 

Simple-blocking without mean field 0 0 .773 - .5 0 

Simple-blocking 
with mean field 

1 0 .670 - .5 0 

1 1 .643435 - .984 - .384 

2 1 .643447 - .979 - ,388 

3 1 .643425 - .987 - .380 

Adiabatic 4 1 .643424 - .989 - .378 
truncation 
schemes 5 1 .643424 - .989 - 3.78 

1 2 .643933 - .91 

1 co .643878 - .93 

2 2 .643399 - .997 - 

3 2 .643377 - .998 - 

Exact values .6366 -1 
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Table II. Ratios of trial to exact quantities for various masses and 
momenta kr = n 2-r: a) for the adiabatic truncation scheme with 

"shift = n% = 1, and b) for the no-shift scheme, i.e., simple blocking, 
with a mean-field look-ahead. 

(4 

1 2 
2 p 

10 

1o-6 

1o-g 

pgms. (trial> 

pg s (exact) . . 

1.000095 

1.01 

1.01 

G 
trial(kr) 

G exact(kr) 

r= 5 r= 14 

,990 .99998 

.518 .328 

,518 .472 

W 

12 
2 lJ 

10 

1O-6 

1O-9 

(trail) 
P g.s. 

Pg.s. (exact) 

1.00025 

1.05 

1.01 

G trial(kr) 
G trial(kr) 

r=5 r= 14 

,995 .99999 

.249 .082 

.249 .Oll 
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Table III. Results for the various two-variable schemes. 
The numbers in the first row are the ratios of trial to exact 
ground-state energy densities. 5 is the mixing angle of the 
two odd-parity modes within a block, and the y parameters are 
the asymptotic exponents, defined in Eq. (5.10). 

Two-look-ahead 
shift-mix No shift Simple- 

Scheme adiabatic 
one-look-ahead blocking Exact 

exponents 
truncation mixing no look-aheads 

lo P o,s, (trial) 
1 nn3 I 



PART III 

REAL SPACE METHODS FOR THE XY MODZL 
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1. Introduction 

We have developed several methods for treating the XY model in the 

Hamiltonian, or real-space, formulation. These methods fall into two 

(overlapping) categories. 

(.l) Periodic-Gaussian trial wave functions for the ground state, 

with variationally determined propagators. 

These are similar to the wave functions used in Part I. Physical 

quantities are then expressed as averages in a classical, one-dimensional 

statistical-mechanics ensemble. The transfer matrix method, applicable 

for finite-range propagators, is used to evaluate the partition sums 

exactly; for infinite range propagators, a self-consistent mean-field 

method is used to approximate the sum. The transfer matrix results 

mimick the small-X perturbative behavior of the exact ground state, 

and undergo an abrupt change at the coupling value expected from Pad6 

approximants. This change falls short of a transition, and this is 

traced to the approximations made in converting the field theory to a 

finite-range classical ensemble. 

The mean-field calculation is a dielectric-medium approximation; 

that is, the partition sum is interpreted as a Coulomb gas, and the 

screening effect taken into account via a self%onsistent, separation- 

dependent dielectric constant. This approximation is based on the 

original Rosterlitz-Thouless treatment of the Euclidean XY model;' 

the differences are the lower dimensionality of the Coulomb gas (one- 

rather than two-dimensional), and the variational treatment of the 

'force law' in the one-dimensional gas. The resulting transition, and 

a comparison between it and its Euclidean counterpart, furnish us with 
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insight into the way in which the vortex physics is reproduced in our 

simple trial state. 

(2) Ground-state trial wave functions obtained via a real-space --v- . 

blocking-truncation iteration. 

IIere, the main challenge proved to be carrying out the 

renormalization-group evolution while preserving the periodicity of the 

global wave-function. The problem was solved by means of what we call 

the quasi-spin formalism. The bookkeeping of the periodicity properties,' 

which becomes progressively more cumbersome with repeated iterations, is 

handled via effective spin-towers that grow in dimension as the block 

volume. In this formalism, iterated operators act both on continuous 

variables and on discrete indices, and the result is a cross between a 

field theory and a spin model. 

Our main result in this approach is a renormalization-group scheme 

obtained by naive blocking of the propagator in the periodic Gaussian 

wave-function. This scheme, which we name for short NBPG (Naively 

Blocked Periodic Gaussian), is shown to be a special case of the quasi- 

spin formalism; thus the methods of (1) and (2) overlap. NBPG was 

chosen for its simplicity, and we shall see that it has several easily 

correctable flaws. - 

The scheme is studied analytically in the two perturbative regions, 

X << 1 and X >> 1, and numerically for all couplings. The result is an 

order-disorder phase transition, which appears to be infinite-order (in 

a restricted numerical sense). It is manifested as a change in the 

large-distance behavior of the correlation functions. . 
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The NBPG scheme is the first real-space renormalization group we 

know of that gives a smooth (high-order) phase transition with nontrivi- 

al physics in both regimes. It is but one of a whole class of schemes 

allowed by our formalism. Its main drawback is that it is based on a 

naive blocking, which as seen in Part II leads to incorrect correlation 

functions. For the model at hand, we do not have the exact solution, 

but a comparison can still be made with the Euclidean path-integral 

transition, and also with real-space Pad6 results. Such a comparison 

shows that NBPG indeed gives the wrong correlations in both regimes. 

Simple ways now being studied, which will improve the situation and 

give a true Kosterlitz-Thouless transition, are discussed. 

Part III is organized as follows: In Section 2.1, the Hamiltonian 

formulation of the model is presented. In Sections 2.2, 2.3 we discuss 

the physics in the A << 1 and A >> 1 regions, respectively. 

In Section 3, a brief review of past work on the XX model is presented. 

In Section 4 the periodic Gaussian trial wave-function is intro- 

duced, and the no-tunneling (pure-Gaussian) case is treated. 

In Section 5 finite-range approximations are employed, using the trans- 

fer matrix method. In Section 6, the long-range case is treated in the - 

dielectric medium approximation. Section 7 is devoted to iterative 

blocking-truncation schemes, leading up to NBPG. 

2.1 The model 

The model under investigation is the (l+l)-dimensional field 

theory with the Hamiltonian 
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J-J = 
c 

cos .x ( jBxj+l) Y (2.1.1) 

j=O j=O 

where A is the (positive) coupling, L is the volume, and the lattice 

spacing is set to unity. 
xj 

is the field at the site j and p. is the 
J 

corresponding canonical momentum. We shall refer to this as the real- 

space XY model. 

H possesses the following symmetries: 

(1) The U(1) symmetry: Xj-fXj+ffy pj-tpj, 

where a is a constant between 0 and 27~. 

(2) Periodicity: xj+xj+27T6. 
Jr > Pj+Pj for any given site r. 

(3) Space-reflection: x,+x 
J -jY Pj+P-j' 

(4) Field-reflection: x.+--x 
J jy pi+-p l l J 

2.2 X << 1 region 

Here the field theory is best described as a spin model with 

infinite spin-towers. We proceed to formulate the model in this manner. 

Define . 

J+(j) f e I-7 (raising operator) , 

-ix. - 
J-(j) : e J (lowering operator) , 

J3W 5 P. (magnetic quantum-number) 
3 

The canonical commutation relations then become 

E J3(j), J+(j ‘> 1 = +6 jj’ J+(j) 3 

. 

(2.2.1) 

1 = 0 
(2.2.2) 
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and the Hamiltonian (2.1.1) becomes 

1 H=? 
c 

J,(jj2 - 1 J+(j) J-(j--W + J-(j) J+(j+l> . (2.2.3) 

j 

The convenient 

states I(m)>, where 

as follows: 

j 

basis of states for small A is the discrete set of 

mj range over the integers. J ,J act in this basis 3 IL 

J,Wl(m)> = mjj{m]> , 
(2.2.4) 

J+(j)lb)> = [id)>, mi = mr + 6rj . 

The ground state is I{rn,: 
3 

O)>, perturbed by massive spin-pair exci- 

tations created by the operators J+(j) J?(j+l) Since exciting a spin 

+_m at a site requires at least m applications of the Hamiltonian, all 

but the lowest spins will remain inactive for small enough A. 

The main physical quantities in this region are the ground-state 

energy density and the mass gap. The latter is the slope of exponential 

falloff for the correlation function <J+(j) J (j-i-n)> as n >> 1. 

Perturbative calculations, carried out to the critical point using Pad6 

approximants, 3 have been to date the main source of knowledge about the 

real-space XY model. 

The correlation function, 

C(n) f <J+(j) J-(j+n)> 

is disordered in the small-A regime, but the dual correlation, 

(2.2.5) 

E(n;a> 5 {exp iia gl J3(r)) ), any a ) (2.2.6) 

= 
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is ordered. We will concentrate for the most part on C(n), and by 

'disorder' we shall generally mean 'decay of C(n) for n >> 1'. 

2.3 X << 1 region -- 

The model in this region is a massless scalar field theory with 

weak quartic (and higher) self-couplings. The large coefficient X in 

(2.1.1) forces the cosines to be close to 1, so xj * 0. It is thus 

convenient to rescale the fields via the cannonical transformation, 

x. + x’ = h +1/4 
J 3 

X* 3 ' 

“j j 
-3-p’ = A - l/4 

pj ’ 
(2.3.1) 

H-+-H'= X -l/2 H . 

The Hamiltonian becomes 

1 
H' =-z- c 'j 

j 

‘2 + + c (x;+1-x;)2 + c 2 @+;;y2 ($+l-qzn 

j j n=2 

(2.3.2) 

We recognize the first two terms as the massless free-field theory 

of Part II. The third term is the self-interaction of the field, and 

can be treated perturbatively for X >> 1. A demonstrative calculation 
. 

to relative order 0(X-l) is carried out in Appendix A. The results for 

ground-state energy density and long-range correlation function are, 

respectively, 



-86- 

Pg.s. f 
x + 0 (x-3/2 , 

(2.3.3) 
-l/2. - (1,81T2W 

C(n) = (cOs(xj - Xj,)) = (4 ZEn)-'1'2')A + o(x-3'2), 

where yE is Euler's constant and I is a number given in (A.12). 

The power falloff of the correlation is due to disordering caused 

by the fluctuations of the free field; complete order is forbidden by 

Coleman's theorem. As X decreases, nonperturbative disordering will 

occur due to topological excitations (vortices) caused by the U(1) 

symmetry. Below A = Xc, the critical coupling, that disordering is 

sufficient to change the power-law into an exponential decay, as we 

saw in Section 2.2. 

3. The Kosterlitz-Thouless Phase Transition: A Review of the Known 

It was discovered,1'2 in the Euclidean path-integral formulation, 

that the XY model undergoes a phase transition from the small-A regime 

(disordered, spin-model-like) to the large-1 regime (massless field, 

power law correlations). We will now describe the mechanism for the 

transition, as a background to our real-space approach. 

The Euclidean action of the planar XY model is 

S = J C ( isxjl cos x (3.1) 

<ij> 

where Xi is the classical rotor angle at site i on the square lattice, 

and the sum is over all nearest-neighbor pairs of sites. J corresponds 
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roughly to X of the Hamiltonian model (although for an exact correspond- 

ence, H should be constructed as a transfer matrix.) 

Kosterlitz and Thouless' noted the existence of topological vortex 

configurations of vorticity +l (see Fig. l), and approximated the 

partition integral 

z 
/[ 1 

dx e -6s = (3.2) 

by a sum over vortex configurations. The fluctuations (spin-waves) 

around these configurations are assumed to decouple. Namely, once the 

compact nature of the model was taken into account through the vortices, 

the cosine action was replaced by its free-field counterpart, 

( ) 
2 

cos x.-x. 
= J 

(3.3) 

and x was decomposed into noninteracting vortex and spin-wave components. 

The approximation (3.3) is reasonable in the strong-coupling regime, 

as we saw in Section 2.3. 

Since the spin-waves 

a two-dimensional Coulomb 

z - 

decouple, what is left is a partition sum of 

gas of vortices, 

z exp 

i 

-+ B C qi4jU(lriwrjl) 

{qd i,j- i \ 
(i#j > (3.4) 

Where{q,r) denotes a configuration with vortices of charges qi located 

at positions si. U(r) is the interaction energy between two vortices: - 

it is 

U(r) = 

r>r 0 

r<r 0 

(3.5) 
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where p plays the role of chemical potential. It is half the energy 

required to create a vortex pair of opposite charges at separation r 0 

lattice sites. Both r. and u depend on the details of the definition 

of a single vortex near its center; Kosterlitz and Thouless found 

-YE 
e 

"Y rO = 2fi t E = Euler's constant > , 

(34 

lJ . 

For low temperatures, or high couplings, the vortex gas is dilute. 

The energy of an isolated vortex diverges logarithmically with the 

volume, so only closely bound vortex pairs of opposite charges are 

created in the gas. 

In a simple mean-field approximation, valid for large couplings, 

the interaction between different pairs is ignored. But as J decreases, 

the density of pairs increases and they become larger, so pairs overlap 

and screening occurs. The gas acquires a distance-dependent dielectric 

constant, for which a self-consistent equation can be written. Beneath 

a critical coupling, J=J,, the vortex-vortex potential is completely 

screened at some distance- the correlation length (inversely related 
- 

to the mass gap discussed in Section 2.2) In this regime, free vortices 

occur and the Coulomb gas becomes conducting. The transition is an 

infinite-order one, with an essential singularity at J= Jc. 

Kosterlitz and Thouless found (for f3 = 1) 

J CT + 1.12 = .357 . (3.7) 



-89- 

Jose et al., 4 find, using a Villain model (that allows for spin-wave- 

vortex interaction), Kc = 2/r = .637; K is, however, an effective 

coupling and is an unknown function of J. K(J)/J + 1 as J -t 00. 

Finally, for the real space version of the XY model, Elitzur 

et a1.,3 find* from high order strong-coupling perturbation theory with 

Pad& approximants, 

x * 
critical .86 (3.8) 

4. The Periodic Gaussian Trial Wave Function 

We have seen in Part I that for a field theory with a periodicity 

in the field, a periodic long-range Gaussian may serve as a reasonable 

trial ground-state wave function. Such a wave-function $ combines two 

essential aspects of the field theory. One is the Gaussian shape of Ji 

near the bottoms of the degenerate potential wells, i.e., near the 

classical degenerate vacua. This shape describes the free-field fluctu- 

ations of the field. The other aspect is the tunneling between the 

degenerate vacua, which is related to semiclassical field configurations 

in the path-integral approach. 

The two aspects couple in a nontrivial way if the Gaussian 

propagator is treated variationally. 
- 

From what is known about the XY model in the path integral formula- 

tion, semiclassical configurations (two-dimensional vortices) cause the 

phase transition. It is also known 4 that, unlike in the original 

dialectric-medium mean field calculation, the free-field fluctuations 

* 
They treat the Z(N) model, but the results quoted for n212 may be 
approximately applied to the XY model, which is the N-+a limit of Z(N). 
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(spin-waves) in the massless regime do couple to the vortex Coulomb gas. 

Thus, it is natural to use the Periodic Gaussian as a trial ground-state 

wave function in the real space XY model. 

This trial wave function is, in the Villain form, 

$Cxl = c exP 
IN) 1 

-00<N.<~J 
J 

1 -- - - 2 xj 2nNj) A(j-j')(xj, 2nNj, 9 (4*1) 

where the propagator components A(j) are variational parameters. 

All operator expectation values in this state can be expressed as 

statistical-mechanics expectation values in a Coulomb gas, with the 

norm serving as the partition sum 

<$I$> = const 05, exP (_T~ F(Nj-Ni) A(j-j') (Nj*-'~,)~ l (4*2) 

We may remove an infinite but irrelevant factor form this sum, since the 

expression inside the sum depends only on differences N.-N! . We then 
J J 

get up to a constant 

(4.2)' 

This is the partition sum for a Coulomb gas, with an interaction law 

A(j-j'). The Nj# 0 contributions to the sum stem, quantum mechanically, 

from interference between two Gaussian terms in Jr with centers differing 

by 28Nj; this is the tunneling effect mentioned above. In order to pre- 

serve the space-reflection symmetry of the Hamiltonian, xj+x 
-j ' we must 

have 
A(j) = A&j) . (4.3) 

Then the wave function (4.1) respects all the symmetries of the Hamilton- 

ian listed in Section 2.1. As we shall see, this is crucial since trial 

wave functions that do not obey the U(1) or periodicity symmetries give 
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spurious first- or second-order transitions. We next look at an example 

of this behavior, the pure Gaussian case. Consider the single (nonperi- 

odic) Gaussian wave function, 

$JCxl = exp [-ix xj A(j-j') ~~1) . 
jj ' 

(4.4) 

This is an interesting choice because $ becomes the exact wave function 

in the free field limit, X-+m. We want to know how well it does for 

finite X. The calculation is straightforward. Going to the momentum 

basis, 
A(j) = i c eijk x(k) , 

k 
(4.5) 

where k=2rn,?/L, O<n,-<L-1. We have, in the infinite volume limit, 
n n 

<$I cos x ( j -xj+l)J$> = e-P 2 

p z -&- 
s 

dk (l-cask) x-'(k) 

0 

(4.6) 

And thus from (2.1.1), 

pg.s. = k <JI]H[$> = & /dk-x(k)-2 egp . (4.7) 

Varying x(k) to minimize P g.s.' 
we find the condition 

8P g*s. 1 

6x(k) = 4Tr 
- - hemp -& (l-cask) x(k)-2 = 0 , 

(4.8) 

x(k) = 
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Combining this with (4.6), we find a transcendental equation for the 

parameter p: 

f(P) Epe -P/2 1 = . (4.9) 
Trh- 

Solutions of this equation are stationary points of p g.s.' but we only 

want the absolute minimum of the energy density. From (4.7), (4.8), 

P g s (p;X) = + - A e-' 
. . 

*P 
(4.10) 

f(p) is plotted in Fig. 2. It attains its maximal value at p= 2 where 

f(2) = 2/e, so (4.9) has no solutions for X < (e2/4a2>= .187, and two 

solutions 

p1 = P,(X) s 2 9 
(4.11) 

p2 = p 2 (A) 2 2 9 

for X 2 2 (e /4n2). From (4.9), (4.10) it is easy to prove that p2 is a 

local maximum, and that the two regimes are as follows: 

(1) for X < X E e/7F 2 = .275 the absolute minimum of p is at C g.s. 

P =03 
' pg.s. 

= 0 and x(k) E 0; 

(2) for X > X c the absolute minimum is at p = pi(x). P&) = 1, 
- 

and the resulting (spurious) transition is first order. 

From (4.9).(4.10), 

PI(X) - 1 

P&P = $+)2 l / 

(4.12) 

The energy density and l/p are plotted versus A in Figs. 3,4. 

Note that from (4.8), x(k) is proportional to the free-field propagator 
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but with a coupling-dependent coefficient. The correlation function is, 

i 

1 A -l/2 = exp -4 -z 0 

PIW 27T dk l- cos(nk) 
e 

s 
0 

z J 1-cask 

-f const. n [ 
-(1/2m)X-1'2 exp[Pl(X)i] 

asn-+m ; 

In the X -+ 00 limit, 

P , 

(l- cosk)1'2 + O(l) 3 

(4.13) 

(4.14) 

P (A) =-A -I- 
g.s. - a fi +0(1) . 

Comparing (4.13) with (2.3.3), we see that the power-law is the 

exact perturbative result to leading order in X 
-l/2 , but not to the 

next order. 

The spurious first order transition resulting from the use of the 

wave function (4.4) is due to the growing importance of inter-vacua 

tunneling, i.e., wave-function periodicity, as A decreases. Below Xc 

it is important enough to force ;c1 to be periodic, which it can only be 

at x(k) E 0; hence the sharp transition. As we shall see, this does 

not occur for the periodic Gaussian (4.1). 

5. Transfer Matrix Method --I_ 

Expectation values of operators in the trial state (4.1) are statis- 

tical-mechanics averages in a Coulomb gas, with the partition sum (4.2)'. 
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In this section, we will evaluate these averages for finite-range prop- 

agators using transfer matrices, and carry out a variational calculation 

to find the propagator that minimizes the ground-state energy. In add- 

ition to restricting the spatial range, we truncate the infinite spin- 

towers, in order to keep the size of the transfer matrix manageable. 

We go up to a range of two lattice spacings, and spin-tower dimension 

of seven. 

Our main results are that in this approximation, the small-A 

physics is qualitatively reproduced, and there is sharp change of 

behavior at roughly the critical coupling value expected from Pad6 

calculations. It is not actually a phase transition, because of the 

spin truncation and the finite range. We will discuss methods that 

systematically improve upon this approximation. 

The section is organized as follows. In 5.1 we employ a Poisson 

resummation and convert the partion sum to the basis {m}. In 5.2 we 

treat the zero-range (quantum-mean field) case, show that it exhibits 

a spurious second-order transition and find the cause of this in the 

violation of the U(1) symmetry by the trial state. We then switch to 

a new spin-basis, that is manifestly U(l)-invariant. In 5.3, we treat 

the zero-range mean-field case in the new basis; the spurious transi- 

tion disappears. In 5.4, we improve the approximation by allowing a 

range of two lattice spacings, and set up the transfer-matrix formalism. 

We use the formalism to compute the ground-state energy, minimize it 

with respect to the propagator components and calculate the correlatin 

functions. These calculations are performed numerically. In 5.5 we 
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present the conclusions for this Section, and discuss mass gaps and 

systematic improvements of the trial ground-state. 

5.1 Converting to (m} basis - 

Starting from (4.1), we apply a Poisson resummation by noting that 

for any function F, 

00 

27T 
c 

S(y- 2~rN) 

N S-03 

. aI 
c ( ’ Yj - 27TM. 

J ) 
.*j 

Z-00 

al 

= c e imy 
9 

m=-03 

F(~ITN) = c G(m) 

{ml- 

where G is the Fourier transform of F: 

G(m) = ( yJ$ exp (imjYj) ) P(Y) 

F (Y? ’ 

(5.1.1) 

(5.1.2) 

We thus find a new form for $, the Periodic Gaussian wave-function: 

Q{~) = z exp ii C mjxj\ exp{- i C mj A%-j') m-j'} 3 

m j W 
(S.1.3) 

Where A -1 is the inverse propagator. The partition sum defined by the 

norm of the state, (4.2)', becomes in this basis 

z E QJIICI) = C exp f-x mj A-l(j-j') "j,) 9 (5.14) 

bd 

modulo irrelevant volume-dependent factors. 
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5.2 Quantum mean-field in the (ml-basis 

Since in this part of the thesis we go back and forth between the 

quantum-mechanical formulation and the effective statistical-mechanics- 

problem generated by it, it is useful to point that there are two 

correspondin. g varieties of mean-field approximations. 

We now restrict the inverse propagator to be zero-range: 

A-'(j) = t y 
.o l J 

(5.2.1) 

Then $J(x) is a product wave function, 

$(x1 = n $o(xj) , 
j 

(5.2.2) $,(x> = c I exP{ - 2y ' m21 exp (i-1 . 
m=-02 

This is a quantum mean-field trial state. 

The Hamiltonian is, [(2.1.1)1 

9 = 
c ~ pi - A C ‘““(“j -xj+l) ) 
j j 

and the energy density in $ is 

Pg.s. = L L <$~H~I/J> = + 
($0 1 Q()> 

(5.2.3) 

, (5.2.4) 

expressed in terms of single-site expectation values. Those can be 

written as sums, 



m 
Qo/P21tJo> = c 

2 
2 

m exp -F 9 
m=- 00 r I 
03 

<~oIcosxIJio> = = ‘I 
2 

ew 
(m+l)2 

- % - ---- 2Y 
I 

9 
m=- Co 

and (5.2.4) gives us: 

(5.2.5) 

(5.2.6) 

This is to be minimized with respect to y. The result for z= exp {-l/y} 

and p 
g.s. 

as a function of X is shown in Figs. 5,6. For X < AC = l/4, 
-- 

z vanishes and p g.s. = 0. By expanding pg s in powers of z we find, . . . 

Pg s (z;U = (l-4A)z + (16X- 2)z2 + O(z3) (5.2.7) . . 

and for h = (l/4) + E this attains a minimum at 

2 
Z = z 

min =E+OE ( ) 2 

(5.2.8) 

Pg.s. = - 2E2 + o(2) Vu - 2(h- xc)2 . 
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Thus the mean-field state exhibits a sharp (second-order) transi- 

tion at Xc = l/4 and a trivial behavior for X < X 
CO 

It has neither 

the correct massive regime nor the infinite-order transition. In the 

X > Xc regime, that should be massless, it does not give the correct 

physics either. 

The above behavior does not depend on the particular wave-function 

form we use for I),. As a demonstration of this, we chose 

$0 (xl = 1 + 2ZlCOSX + 2z2cos(2x) (5.2.9) 

and solved for z 1,z2 variationally. The results for zl,z2 are shown 

in Fig. 7. 

The failure of the product trial state (5.2.2) to reproduce the 

spin-excitation physics in the small-coupling domain is due to the fact 

that I/J contains nonphysical excitations. For instance, the 

configuration 

I{mI> = I00 l ., 010 . . . 0> (5.2.10) 

is not created by the Hamiltonian; as mentioned in Section 2.2, only 

configurations with total spin c m. = 0 are created. The creation of 
J 

'good' configurations is accompanied by 'bad' ones, and for small 

enough X this does not lower the energy and so-the optimal Qo(x) is 

a constant. 

Another way to state the problem is that since cj mj f 0 the U(1) 

symmetry of the model is violated by 9. We proceed to restore the 

invariance, by making mj a gradient: 

R -R 
“j=j j-1’ 

---<g.<@J 
J 

(5.2.11) 
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The periodic Gaussian (5.1.3) now becomes 

q(x) = z exp (i F Qj(xj-xj+l)} exp 1-i 5 QjA~l'j-j') 'j.) ' 

Ayl(j) = 2Av1(j) - A-'(j-i-1) - f&j-l) 
l 

(5.2.12) 

It is now manifestly invariant under the global U(1) transformation, 

x, -f x. + a . 
3 J 

5.3 Mean-field in ik} basis 
-1 

In this case we choose Al to be of zero range, 

-1 
Al (j) = 5’jo 

Then $ is again a product [(5.2.12)1 

l/J(x) = n+O(xj-"j+l) 
j 

(5.2.13) 

(5.3.1) 

Y 

(5.3.2) 

Q,(y) = 2 exp 1iQy / exp I- i c Q2 ) . 

Q= -co 

We define new canonical variables 
- 

Yj = xj-xj+l 
(5.393) 

P. 
J 

= py(j> - py(j-1) l 

The Hamiltonian becomes 

1 
H = -y 

U 
P,(j) - py(j-1)12 - C 'O'Yj l 

j 
j 

(5.3.4) 
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The computation of the energy proceeds as in (5.2). We find from 

(5.3.2)-(5.3./k) 

co 
c Q2 exp 

I 1 
-c Q2 

Pg s (WJ = “=-f 
_ Ae-1;/4 %=-a ' 

. . 

C exp l-5 Qz) 2 ew[-CQ') 
Q=-- Q =-CO 

(5.3.5) 

And this should be minimized with respect to c. The results for 

Z =e -c and p g.s. 
are shown in Figs. 8,9; note that the spurious trans- 

ition disappeared, and there is now no transition at all. The correla- 

tion function is: 

Z 
114 

co 

c 

CQ+(1/2) I2 
Z 

Q =-Co co 
c Q2 

Z 

(5.3.6) 

Q Z-0 

and 01 varies smoothly between (2 and 1 (Fig. 10); in order for the 

massless regime to exist, a must be 1 above some X value. 

- 
5.4 Range 2: the transfer matrix 

We next improve upon the mean- field approximation by allowing the 

inverse propagator to be of range two: 

A;‘(j) = 266 
LO 

+166 Tz 1 j,+l 
+b 6 2 2 j,+2 

The partition sum in the (RI basis is C(5.2.12)1 

(5.4.1) 
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We will truncate the R-spin-towers, so that only those terms in the 

wave function with 

- Rc 5 15 !?J 
C (5.4.3) 

are left. We want to write the configuration sum (5.4.2) in a form 

where a transfer matrix may be defined, i.e., the exponent must contain 

only nearest-neighbor correlations. This can be done by grouping the 

sites into pairs; let sites (Zj, 2j+l) belong to the j-th block, and 

define some block spin variable L, that has a one-to-one correspondence 

with a pair of spins (R 
2j "2j+l 1; specifically, we choose 

L 
j 

=l+R 
2j 

+ Rc + (2Rc+ ') (a2j+l+ Rc) ~ L(~2j'"2j+l) 

) 

l'Lj 5 (2fic+1)2 (5.4.4) 
. 

The range-two site-site interaction in (5,4.2) now becomes a 
- 

nearest neighbor block-block interaction: 

(5.4.5) 

where P(L,L') are the elements of the (2Rc+l)-dimensional transfer matrix 

X It is defined as follows: 



-102- 

L' = L(I1;,I1;) 

P(L,L') = exp -B Ef + 11; + RV2 + kV2 
I ( 1 2 ) 

(5.4.6) 

The only aspects of f-) P that will enter the equations are its 

dominant (highest in magnitude) eigenvalue, pl, and its corresponding 

eigenvector + f-t 
vl' P is in general not symmetric, but it has the 

following property: 

P(L,L') = P(LVS,LS) 

where Ls is the spatial reflection of L: 

L= L(+R2), LS = qe29q . 

(5.4.7) 

(5.4.8) 

This property is due to the space-reflection symmetry of the model. 

If we define for the vector Gl a corresponding vector, 

v;(L) = VJLS) 

then the dominant part of 7 is 

Dominant = 
+ -+s 

plvlvl l 

The normalization condition is 

¶ (5.4.9) 

(5.4.10) 

v;*vl = 1 . (5.4.11) 

With these definitions , the partition sum is simply (p,) volume 
. 
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Next we calculate operator expectation values. For an operator 

exP 

( 
$ 

i zj qj yj}, where qj are integers, we find 

,,(iC qjy)l+) = C exp(--$C ("j+4S)n;1(j-j')(aj'+qj~) 

j CR1 W 

1 -- 
2 c Rj a;l 

( 
.j - j' 

W 

) 1 
'j I 

(5.4.12) 

C qj A& - j') qjt 

W 

X R. A;l.(j - j') Rj, - C ~~ Rj 
J 

j 

where 

Ej = C Ai'(j - j') qjf . 
l q J 

For the nearest-neighbor correlation, we find, by rewriting 

(5.4,12) in terms of block spin variables, 

( ( 
-6 1 -+stff-,+ 

cos x*-x. 
J J+l = 0 

'1cI 1 'OS Yjl9' 
<$ +> = e 2 v1 l Am B* vl 

p1 - 

where +z Tare defined in (B.l). Similarly, 

1 ( II 2 p,(j) - p,(j - l)]*) = Gs l 77 l Gl , 

where 

D(L,L') = l 

Thus the trial energy is 

(5.4.13) 

3 (5.4.14) 

(5.4.15) 

(5.4.16) 
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;; l +i&‘;;i - X e -B-ts c+++ -t 
v1 A.B l v1 2 

pg.s. = (5.4.17) 

We have minimized P g.s. 
with respect to 

B, 61 and 62, for spin cutoffs Q = 1, 2 and 
C 

parameters and the energy are given in Figs. 

the propagator parameters 

3. The results for these 

11-14. As Qc increases, 

a change of behavior develops for these quantities at x * .8. We refer 

to this as the 'turnover'. 

We have computed the large-distance behavior of the correlation 

functions C and E (see Section 2.2). For C(n), we use (5.4.12); the 

result in the transfer matrix language is 

,.s~j-xj~))n~~~[(~~'2 exp (-(S ++ +$)}I i an , (5.4.18) 

L 

where pE is the leading eigenvalue of the matrix %+[(B,7)] . The 

derivation of (5.4.18) is given in Appendix B. In Fig. 15, a is 

plotted versus X for AC = 2,3. a undergoes a smooth, but rapid, in- 

crease at the turnover and reaches a constant value in the large x limit; 

this value increases with Q, and will tend toward unity as Qc+ 00 ; the 

A > .8 regime is thus the one where C(n) is more ordered, as expected. 
- 

For the dual correlation, we find for large n, (E arbitrary) 

Qxp[iE E pJ) = (exp ji$py(j+d - pyW] 1, * [n(&)12 3 

r=j+l (5.4.19) 

where 
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a and n ('IT) are plotted against h for Qc = 2 in Fig. 16. It drops 

sharply at the turnover, in accord with the fact that &,E) is more 

ordered in the small A regime. 

5.5 Possible Improvements 

We have seen that a range-two inverse propagator in the Q-spin 

(or y.) basis is sufficient to see a smooth but rapid turnover, 
3 

associated with an increase of order in C(n), and a decrease of order 

in the dual E(n). This turnover, however, is not yet a phase transition; 

C(n), for instance, decays exponentially for all A. The calculations 

we have done indicate that as Qc and the range r increase, the turnover 

becomes sharper, but it is unlikely there will be a transition as long 

as r is finite. In this the XY model differs from simpler models such 

as the one treated in Part IV; there the transition exists in the 

simplest approximations. 

We regard our transfer-matrix exercise as a first approximation 

that can be improved upon systematically. These improvements are 

along two main lines. 

(1) Within the Periodic Gaussian approximation. Here, we may add 

a range > 2 piece to Al -l(j) and treat it perturbatively. We can also 
- 

increase the spin-tower size Qc to infinity, without having to diagon- 

alize the matrices of absurdly high dimensions, by means of the 

following approximation. The transfer matrix formulation is really a 

reduction of the one-dimensional statistical-mechanics problem to a 

zero-dimensional quantum-mechanical problem, with a Hamiltonian matrix, 
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-T = QnT 

acting on the Q-spin basis. We may therefore apply a Rayleigh-Ritz 

variational approximation, i.e., pick a trial form for v' 1, with a small 

number of parameters and vary them to maximize <P>. Thus we can avoid 

diagonalizing P. Note, however, that this approximation will no longer 

yield an upper bound for the energy <H>, only for the free energy of the 

statistical-mechanics problem; and the latter does not have a direct 

physical meaning for the XY model. 

(2) Improvements outside the Periodic Gaussian (PG) approximation. 

These might include an expansion in spin and/or kink excitations around 

+PG' A useful exercise in that direction would be a calculation of mass 

gaps of isolated plane wave excitations. A moving kink, for instance, 

has the wave function 

C exp[iz 

j t n=O 

8 (5.54 

where 8.,0 2 j s nl, is some kink configuration of size nl. A station- 
J 

ary kink always lies higher in energy than the trial ground-state 

(see Appendix). The mass gap of the moving kin1 may be negative for 

some coupling regions, thus signaling the inadequacy of the trial 

ground state. 
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6. Dielectric Medium Mean-Field 

6.1 Counting vortices 

It was pointed out in Section 4 that the {N) configuration in the 

partition sum (4.2)' correspond to semiclassical vortex configurations 

in the Euclidean formulation. In this Section, we will apply the self- 

consistent mean-field approximation, originally used in Ref. 4 for the 

two-dimensional vortex gas, to our one-dimensional gas. In order to 

do that, it is useful to make the correspondence between CN3 and 

vortices more specific. 

Consider a vortex-antivortex pair separated by a distance R in the 

spatial direction of the space-time plane at a common time t = t 0' 

Assume, along with Ref. 1, that the field configurations xj of the two 

monopoles are additive. Then x is zero far from the vortices and is 

maximal (HIT) along the line sigment AB between them. This corresponds . 

to an N. f 
J 

0 vacuum before and after to, and a tunneling in and out of 

the degenerate vacuum, 

1 1ljrR 

N. = 9 
J 

0 otherwise 

occuring at t = to. Thus, the gradient of N., 
J 

-1 atj =0 

M 
j 

3 N-N 
j j+l = 

+1 atj =R 

0 otherwise 

(6.1.1) 

(6.1.2) . 

reproduces the vortex charge distribution for the pair. 
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The above is no more than a heuristic argument, but it is 

justified a pasteriari by the logarithmic behavior of the interaction 

law between M. 
J 

charges, as we now show. 

The (N) partition sum is C(4.2)'1, 

Z = 
c exp - 

IN) 1 

Let x(k) be the momentum-basis 

let us define a new propagator 

Al(j) 

2 7T c Nj A(j-j') Njl 

W 

. (6.1.3) 

propagator defined by (4.5), and 

1 
c 

%k) 
= E 2(1- cask) 

,ikj 

k#O 

then Z is rewritten in terms of the M. charges as follows: J 

Z = g exp (- ‘2 ~,Mj A$-j’) Mjt 1 

(6.1.4) 

(6.1.5) 

Note that Al is the same as that defined in (5.2.12). 

The propagator A(j) should be determined variationally; but if we 

use the pure-Gaussian result C(4.8)1, valid forX >> AC, 

x(k) a 64Fzz 9 (6.1.6) 

we find 

(6.1.7) 
Al(j) a &iQn(j) l 
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Thus the Coulomb gas of the M charges has a logarithmic interaction 

law, as the two-dimensional vortex gas does. We may think of the {M) 

configurations as one-dimensional time slices of the vortex gas. Due to 

the logarithmic interaction law, we may apply the approach of Ref. 1 to 

our one-dimensional gas. 

6.2 Self-consistent mean-field 

In this Section we will apply the method described in Section 2.4 

to the partition sum (6.1.15). Following the discussion of Section 6.1, 

1 5 we shall refer to the M configurations as 'vortices . We truncate 

the allowed Mj values to be -1, 0 and 1: 

-l_<M.sl . 
3 

(6.2.:) 

For large coupling A, the Coulomb-gas coupling constant J is 

C@.i1.7)1 

Ja fi, A>>1 . (6.2.2) 

There is a long-range logarithmic attraction between vortices, and they 

are created in pairs [since the energy of an isolated vortex diverges 

as log (L)l. The chemical potential per pair is proportional to J, 

so the gas is dilute for large A. - 

The residual interaction between vortex pairs is small, so they 

may be treated in a mean field approximation. But as X decreases, 

the pairs grow in size and density, and begin to overlap and screen 

each other. We separate the treatment of the screening phenomenon into 

three steps. 
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(1) Independent-pair approximation: The vortex-antivortex pairs 

are treated as independent, and their average density distribution is 

computed as a function of their size. 

(2) Polarization: A vortex-antivortex pair, treated as external 

charges, polarizes the smaller pairs lying between them. 

(3) Screening: The polarized pairs partially cancel the inter- 

action energy of the external charges, thus modifying A,(j) into an 

effective screened propagator, A,(j). 

Independent-pairs. The Boltzmann factor for vortex-antivortex c- 

pairs a distance j lattice sites apart is 

Z(j) = exp - AI(j) 9 (6.2.3) 

and this is also the density of pairs of separation j; the latter 

follows from the Independent pair assumption, since the pairs then 

obey a Poisson distribution. 

Polarization, Consider two charges, a vortex at site J and an 

antivortex at site J'. 

MJ = +l, MJ, = -1, J<J' . (6.2.4) 

We will denote this pair as (J,J'), and treat it as external. - 

Let us define as a 'small' pair (j, j+r) one lying between the two 

external charges, 

J<j 9 (j+r) < J’ where r << (J'-J) . (6.2.5) 

The small pair is polarized by the interaction energy, 
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&(j ,r> 1 
(692.6) 

2 a N -2nr aj - J> - A,(j-J') 
I 

9 

between it and the external charges. Without the external charges there 

are equal numbers of pairs (j-r, j> and (j, j+r) with opposite orienta- 

tions: with the external charges, the average densities of such pairs 

are 

p,(r;j> = 
2z(r) exp idr) 1 

exp {s(r)) + exp {-e(r)) ' 
for pairs (j, j t r) l (6.2.7) 

The average interaction energy per unit volume among 'small' pairs 

(j, j + r) of all sizes r, and the external pair, is C(6.2.3)-(6.2.7)1 

<E(j)> = c[ dr)P+ Cr;j) - dr)P- 
r 

= -2 
c 

z(r) e(r) tanh e(r) 

r 

N- 8 2 
r z(r) 

I( 1 

-$j- 
2 

IT 

(6.2.8) 

2 
A,(j - J’> 

The r sum is cut off at r= J'- J, since the strongest polarization is in 

the region between the two external charges. The total energy, summed 

over the position j of the small pair, is 

J’-J 2 

( E N l 
(6.2.9) 

total ) 
-8~~ c r2z(r) - A&j-J’) 

r=l 
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Screening. The interaction energy between the external charges 

and the small pairs lowers the energy of the external pair, 

2n2CA1(0)- A,(j) 1, to an effective 2?r2CAs(0)- As(j)], where As(j) is a 

screened propagator. Since the 'small' pairs are in turn screened by 

yet smaller pairs, one should replace Al(j) by As(j) in (6.2.9) to 

obtain a self-consistent approximation for the screening effect. Thus 

we find. 
s 

Ks(J'-J) = K1(J' -J)-4[cr2z(rjg [-&- [K&j-J)-~~&i-J’)] I23 

or9 if we set J= 0 and rename some dummy indices: 

. 

KS(j) = K&j) - 4 2 r2 exp I-2Ks(j) 
2 

-K,(j -r) 9 

r=l 
(6.2.10) 

We have defined for convenience the subtracted propagators, 

Kl(j) = n2[n,(0) - a,(j) 1 9 
(6.2.11) 

KS(j) = ITS - a,(j> 
I 

The equation (6.2.10) may be solved iteratively, starting from the 

initial condition KS(l) = Kl(l) and incrementing the vortex-antivortex - 

separation, j, by one at each step. The input to the equation is the 

unscreened propagator Kl(j), which is to be determined variationally. 

We next discuss the solution of the mathematical problem formulated 

heretofore. 
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6.3 Solution of the problem --* 

The variational mean-field problem as formulated so far consists 

of the following steps: 

A) the bare (unscreened) propagator, Kl(j), is parameterized with 

a small number of variational parameters; 

W the self-consistency equation (6.2.10) is solved, and the 

screened propagator KS(j) is determined as a function of the variational 

parameter; and 

Cl the quantum mechanical ground-state energy and correlation 

functions are computed in the dialectric-medium approximation, and p g.s. 

minimized with respect to the variational parameters. 

A. Parameterization. We parameterize x(k) to be a constant times - 

the free-field propagator, following the pure-Gaussian form (4.8): 

but where p = 

pure-Gaussian 

x(k) = A-cask (2h eeP) l/2 
9 (6.3.1) 

p(X) is not necessarily the function determined in the 

computation. It is the propagator in the {N) (or (x)) 

basis, governing the partition sum (4.2)'. Thus the(M) (or {y))-basis 

propagator Al(j) is [Eqs, (5.2.12), (6.1.5)-J 

2Tr 

Al(j) = & / dk 
x(k) -- ,ijk 

2(1-cask) 
0 

(6.3.2) 

Therefore from the definition (6.2.11), 
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Kl(j) = - T ' (2h e-p)1'2 ir dk ~11 k (eikj- 1) . (6.3.3) 

0 - cos 

It is straightforward to show that 

27' j-l 

s 
dk 1 

Jl- cask 
( 

0 m=O 

so the input (unscreened) propagator for Eq. (6.2.10) is 

K&i) = 2n(h e-p)1'2 E yj--&- . 

m=O 

The asymptotic behavior of this for large distances j is 

Kl(j) - IT(A e-p)1'2 [En(j) + yEuler + 2 Rn 21 
j >> 1 

B. Solution of self-consistency equation. We have - 

9 (6.3.4) 

. 

(6.3.5) 

(6.3.6) 

solved (6.2.10) 

numerically, and also found an approximate analytical solution; we used 

(6.3.5) for the bare propagator. We now discuss the behavior of the 

equation as a function of the effective coupling A' = he -P , without 

specifying X' as a function of A at this point. The following facts 

were found from a combination of analytical and numerical methods. 

For large A', the Boltzmann factor z = exp (-2Ks(j)) supresses 

the screening correction to the propagator as exp {-constfi), SO 

$0) = Kl(jL For finite A' above a critical value Ai, K,(j) __lf 
j>>l 

Kl(j) + co, where co is a negative constant. Therefore the 

screening is additive, rather than the multiplicative screening at 

large separations that one would expect in a dielectric medium. 
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The multiplicative screening does occur in the two-dimensional 

(Euclidean) screening equation (Ref. 1); this can be seen in the two- 

dimensional version of (6.2.10).6 The question arises, how do we 

recover the multiplicative screening that exists in the Euclidean calcu- 

lation, in our real-space calculations The answer is that the variation- 

al parameter p, which as we saw in Section 4 is greater than one in the 

h > AC regime, causes the effective coupling X' to be lower than h, 

and so long-range screening in the massless regime is recovered throug& 

the variational parameter. --- The numerically determined co(A') is plotted 

in Fig. 17. 

Below A' = Xi ~4: .24, the screening is sufficiently strong to make 

KS(j) go negative above a certain distance j = jl(A'); j, may be thought 

of as inverse mass gap. Unlike in the Euclidean calculation, jl(x') 

does not possess an essential singularity at A' = A', but rather diver- C 

ges as a (noninteger) inverse power: 

j,(V) = A'-AL +I , t-l * 10 . 
( > 

jl(h') up to A' = .1 is shown in Fig. 18. Note that j,(X') might have 

an essential singularity, depending on what the function X'(X) is. 

Figure 19 shows the bare and screened propagators for X' = .19; - 

note the precipitous drop of KS(j). The correlation function is 

approximately given by (4.13). 

C. Minimization of energy. If we use the function p(A) deter- 

mined in the pure-Gaussian variational calculation (Section 4), we get 

the effective coupling X'(X) plotted in Fig. 20. At X =Ac = .44, 

X’(X) = .24, so AC is the critical point in this approximation. 
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Better results for both Xc and the (h-Xc) dependence of physical 

quantities near the transition would probably result, if p(X) were 

redetermined variationally in the framework of the dielectric-medium 

approximation. Our result for p g s (P;U is . . 

m 
P (p;x> = - A2 X'S - 

g.s. 7r X(1-8s) exp Y 

where S is the sum 

S = c exp I-*K&j)/ 
j=l 

The minimization of p 
g.s. with respect to p has not yet been done. 

7. Renormalization Groun Annroach 

We have seen in Section 5 that increasing the range of the propaga- 

tor improves the ground-state wave-function, and that an infinite range 

is probably needed to get an actual phase transition. In this section, 

we will study trial wave functions obtained by iterative blocking- 

truncation schemes. These wave functions have built into them infinite 

range effects, and so furnish a realistic picture of the transition. 

One could block the model in the spin-model formulation of the 

model (Section 2.2) and keep a small number of-spin-states per block; 

that would, however, not suit our purpose. We have sought an approach 

that makes the physics in both the massive and massless regimes equally 

transparent. As h increases, more and more states in the spin-towers 

become active, and in order to gain insight into which states should be 

truncated, we need a continuous variable (Schrodinger) picture. In the 



-117- 

A + 00 limit, infinite (RI- spin towers must be kept in order to get a + 1 

(a is the correlation parameter; see Section 5). 

However, ordinary continuous-variable blocking, or even the kind 

developed in Part II, must fail for the XY model, due to its periodicity 

symmetry; this is shown in Section 7.1. We were thus led to develop block- 

ing schemes that use a hybrid spin variable-continuous variable basis; 

this is what we call the quasi-spin formalism. This formalism is devel- 

oped in Section 7.2. In Sections 7.3-7.4 we return to the periodic- 

Gaussian wave function of Section 4 and show how, with a naively blocked 

propagator, it becomes a special case of the quasi-spin formalism. We re- 

fer to such schemes as naively-blocked periodic-Gaussian, or NBPG schemes 

for short. In Section 7.5 we report the results of solving the renormali- 

zation group equations for the NBPG scheme. The solution is performed an- 

alytically for the regions A<< 1 and A>> 1, and numerically for all val- 

ues of the coupling. The resulting model for the transition is discussed. 

In Section 7.6, we point out several ways to improve the NBPG scheme. 

7.1 Inadequacy of standard truncation 

We want a blocking scheme for the Hamiltonian C(2.2.1)1 

H= 
c ' 

j j 
- 

(7.1.1) 

We will concentrate on two-site blocking. The sites 2j, 2j+l are 

grouped to form the j-th block, for which we define the variables 

N 1 =- x 
xj 2 2j ( +x2j+l > (slow block variables) 9 

(7.1.2) 

x-(j) = x2j -x2j+l (fast block variables) l 
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The "fast" modes are the ones to be truncated; for a detailed discussion 

of this concept, see Part II. 

The cannonically conjugate variables are 

Pj = '2j + 'Zj+l 9 

P-(j) = '2j -'2j+l 9 

and the Hamiltonian becomes 

(7.1.3) 

H= 
c 

l-2 
4 Pj + P-(j) 

2 
- xcos X-(J)) ( ' 7 - A C cos(x2j+l - x2j+2) 

j j j 

c( 

1 -2 - xcos z 
[ 

- = 
T 'j j -xj+l - z l (x-(j) + x_(j+l)] 

j 1 
(7.1.4) 

+ 
CL p-W2 - hco+Jj))] . 

Standard continuous-variable truncation methods call for choosing 

a trial state in the {x ) (fast mode) sector of a block, 

g x-(j) 9 [ 1 (7.1.5) 

and truncating the (x-} dependence of the global trial state $ as a 

product of the g functions, 

$(X3 = I7 g x-(j) +,,,G3 . 
j [ 1 (7.1.6) 

Here JIres is the residual wave-function in the x j (~10~) block modes. 

(7.1.6) is not the most general truncation possible, as we saw in 
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Part II; larger blocks may be used, or more than one mode retained per 

block. But all such schemes share a common inadequacy when applied to 

the XY model. In order to point out that problem, and to build success- 

ful blocking schemes, we shall use the class of truncation schemes 

(7.1.6) as our departure point. We already saw in Section 4 that a pure- 

Gaussian trial wave-function fails to recover the small-A and transition- 

region aspects of the model; it is therefore useless to choose g(x-) 

as a Gaussian. Since $ should be periodic in xj with period 2~, a 

natural choice seems a g(x ) periodic in x with the same period: 

g:x 
( -1 

= 1 + aJZ cosx-(0 < x- I 4r) , (7.1.7) 

where the range of x- follows from the fact that 0 s x. 5 2~. After 
J 

integrating out the x- variables, the truncated Hamiltonian is [(7.1.4)3, 

(H) 2Aa 

fi(l+a2) 
c c2 . . (7.1.8) 

tru 
j J 

Here L is the volume and the subscript 'tru' denotes 'truncated'. 

We see that the interaction terms have dropped out, leaving a trivial 

free-rotor model after a single iteration. This is due to the 

exp {+ix-/2) dependence of the interaction in (7.1.4). Thus our choice 
- 

for g (x ) was over-periodic. 

Our next attempt is to choose g to be periodic with period 4~; e.g., 

X 

g( -1 
X = l+aficosy , ( 1 OIX <47T . (7.1.9) 

This truncation causes Q(X) to be nonperiodic under xj + xj + 2~ 6. Jr 
; 

we will now show how this causes a spurious 'transition. By truncating 
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with this g, a nontrivial evolution for H results. From (7.1.4), the 

iterated Hamiltonian is 

(H) tru 
= P a2 

4(1+a2) 
+ c +"p; - 

j 

2x 
(1Ta ) 2-z: c 

j 
..,(Zj - zj+,> . 

(7.1.10) 

We have carried out a single-look-ahead variational calculation (see 

Part II), that is, we used for the residual wave-function the trial form 

$J res G ‘3 = 
l 

(7.1.11) 

The reason we chose a product state in the yj = x.-x. basis is because 
J J+l 

we saw in Section 5 that this prevents a spurious transition caused by 

lack of U(1) invariance. We will now show that another spurious transi- 

tion occurs in this renormalization-group scheme, this time caused by 

the lack of periodicity. 

The look-ahead trial energy density is c(7.1.10), (7.1.11)1 

PLookb,b;~) = + ((H)trU) 
Look 

2 
b2 

2 
= (l-21) 

S(l:a2) + 4(l+b2) + A (l+:2;;l+b2)* 
- 

(7.1.12) 

This should be minimized with respect to a and b. For X = 0, the mini- 

mum is clearly a = b = 0. By Taylor expansions with respect to a and b, 

we get 

pLook=$(l-2X) a2(l-a2)+ib2 -Xfia2b+O(b4)+0(a2b3)+O(a6)+O(a4b) . 

(7.1.13) 



-121- 

From this expansion, it is easy to prove that for X < l/2, there is 

a local minimum at a=b= 0, whereas for A> l/2, there is not. In fact, 

numerical calculations show that the transition to a nonzero minimum 

occurs already at X = Xc= .36. pLook, a and b are plotted in Fig. 27 

as functions of A. Once again, the physics of the trial wave-function 

is trivial for the small-A regime. Further iterations of the renormali- 

zation group mapping (7.1.10) are useless, since the iterated Hamiltonian 

is trivial in that regime. 

The first-order spurious transition obtained from the choice (7.1.9) 

for the fast-mode wave-function is due to the lack of periodicity of the 

total ground-state wave-function, and is similar to the transition 

encountered in Section 4 when we used a pure (long-range) Gaussian for $J. 

Since both periodic truncation, such as (7.1.7), and nonperiodic trunca- 

tions yield trivial physics for the massive regime of the model, it is 

clear that we must develop truncation schemes that respect the periodi- 

city of the total wave-function. In the next Subsection we develop 

a class of such schemes. 

7;2 The quasi-spin formalism 

In order to develop a truncation scheme that respects the periodic- 

ity symmetry of $, we will truncate the x- modes to two states, one 

periodic under x + x +~IT and one antiperiodic: _ 

go(x-) 
= Go(x-> 3 

X 

g 1 x- = cos 2 1 x- , 
( > ( -) G( ) 

(7.2.1) 

G0,1 - ( x +2n 1 = Go,1 x- l c ) 
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Both of these states are necessary pieces in the wave function of the 

small-X regime, as the following simple consideration shows. $ must 

include plane-wave spin-pair excitations of zero momentum, 

plane-wave = C COS(xj -xj+l) , 

with an amplitude of order A. These excitations arise in small-A 

perturbation theory (see Section 2.2). But in terms of the block 

variables (7.1,2), 

plane wave = C '""("j -Xj+J = C [Cos x-(j) + cos(x2j+l-x2j+2)] 

j j (7.2.2) 

1 = 
c cos x (j) + 

j 
-"x j+l-2 x_(j) + xJj+l) 9 

j 

and thus contains both periodic and antiperiodic functions of x-. 

The total trial wave-function in the scheme (7.2.1) is 

i I 2 

3 
=O,l 

- 

where $ is the residual wave-function in the slow block modes, G.. 
res J 

Operators truncated via (7.2.3) will act on both Ix"3 and (r); thus the 

effective model that evolves in this renormalization-group scheme will 

be a hybrid field theory-spin model. We therefore call this approach 

the quasi-spin formalism, where rj are the quasi-spin variables. These 

variables allow us to transform the periodicity constraint, 
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[expl 2nipj I-l] $CxI = 0 y (7.2.4) 

into a constraint on the iterated (residual) wave function; by (7.2.1) 

and (7.2.4), this iterated constraint is 

[ I exp .icj 1 - expj nirj/] $&,r3 = 0 ; (7.2.5) 

where x (j) range between 0 and 41~. The orthonormality condition 

(grT,gr) = &rtr (internal product) 

therefore implies 
4r 

(7.2.6) 

J dx-[Gr(x-)]2 = l 

0 

l 

We use the abbreviation: 

j G2 for /dx-G(x-)' , etc. 

Truncation of x- of p, dependent operators turn them into 2~ 2 

matrices in the r basis. In order to truncate the Hamiltonian (7.1.4), 

we note that 

‘i(x_/2)g 
r rl 'rro)+fio Gl (l+cosx-)* (7 2 6)' . . 

The once-iterated Hamiltonian H (1) 
= Htru already achieves the 

fixed form of H (4 : 
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The once-iterated Hamiltonian H (1) = (HI tru already achieves the 

b-d. fixed form of H . 

c p; + c 
j j [ 

Tl (j) -y 
++T 

' F2 (j) f12 (j+l) 

(7.2.7) 

x exp 
I 
-i x.-x. ( J J+I ,i 

- $- F2T(j) F2(j+l)exp i( ( xj -xj+l)ll ' 

where F1, are matrices in the r basis, given in (C.3). The super- 

script T denotes "transpose." 

We proceed to iterate H b-9 for n 2 1. We shall be making use of 

some facts that we later prove by induction for all n. 

The periodicity constraint for the wave-function of the n-th 

iteration is 

[exp(2ni2-npj) - expi2ni2‘nrj )]I$(")) =O, for all j . 

There are thus 2n distinct quasi-spin values: 

Osr <2n o 
j 

(7.2.8) 

(7.2.9) 

The rj will be understood from here on to be modulo 2n. 

As discussed at the beginning of Section 7, infinite spin-towers 

are needed to recover the correct high-1 physics, and so we must keep 

all those spin sectors; this will indeed be done in Section 7.3 when 

we treat the NBPG schemes. But in order to demonstrate the quasi-spin 

formalism, we treat the simplest case that leads to a nontrivial 

renormalization group; this turns out to be when r. are truncated 
J 

as follows, 
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-2rr.,<2 J (ns2> ; (7.2.11) 

Thus, the spin matrices in H h> will be of rank 5 for n 2 2. 

Blocking for n 2 1, When we block the model, not only x but the 

quasi-spins in a block must be truncated, since otherwise we would have 

to keep 4n spin states per block, which is more than the 2 n+l sectors 

of +(n+l) defined by the constraint (7.2.8). By combining the con- 

straints at sites 2j and 2j+l, we find 

bp[2ri2-n pj) - exp(2ni2-n(r2j+r2j+l)/] $= 0 . (7.2.12) 

To preserve the form of the constraint in the (n+l)-th iteration, we 

want a residual wave function $I,,,( x" j,Rj} such that 

~xp[2.i2-"-',li - exp\,.i,-n-lRj I] $res(g,R] = 0 l (7.2.12)' 

From (7.2.12) we see that $J contains two R. components for every J 

given (r2j,r 2j+l); this is because {r} are defined modulo 2n. The addi- 

tion rule for quasi-spins is thus 

R. = r ,<l . 
J 2j 

+r2j+l+2nnj 9 0 s nj (7.2.13) 

This variable is modulo 2 n+l . The n-th iteration wave function is - 

expressed in terms of the (n+l)-th as follows: 

(7.2.14) 

n. 
( 1 3 

'j 
=O,l 
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The function g specifies the truncation in both the quasi-spin and con- 

tinuous variables. In addition to the total block spin Rj, we also 

define an internal spin, 

S. E r 
J 2j 

-r2j+I- 2nnj 
= 2r2j - Rj ' 

then by (7.2.8), (7.2.12)' and (7.2.14), 

[up(2ni2Bnp-(j)/ - exp[2Tri2-n-1Sj)l gnj = 0 . 

(7.2.15) 

(7.2.16) 

,Like R., Sj is modulo 2 
n+l 

l 

J 

We now completely specify the truncation, as follows: 

g, 
j 

2jsr2j+J = exP[iSj~x-(j)/ GSj[X_(j+Rjr2jr2j+l, (7.2017) 

where by (7.2,16), Gs are (normalized) periodic functions with period 

2V2-n : 

(7.2.18) 

In (7.2.17) we have truncated the quase-spins in the simplest 

possible way, with a pure spin wave-function t that may be treated 

variationally along with Gs(x-). 

Symmetries. We are building a trial wave function that obeys all 

the model symmetries listed in Section 2.1, and in particular the 

symmetries 

xj 
+ -x. 

J 

i 

(field-reflections) , 

'j 
+- 

'j 

(7.2.19) 
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+X xj -j 

Pj + P-j 
(space-reflection) . (7.2.20) 

We now derive the consequences of these symmetries for Gs and tRr r . 12 

Due to (7.2.8), the quasi-spins transform as follows: 

2 
3-r 

1 
(field-reflection) , 

(7.2.21) 

-+r 
'j -j 

(j-reflection) . 

Replacing the dummy indices 17. in (7.2.14) by (l-~~)p we find for the 
J 

block variables 

R, -+ -R. , sj -f - Sj (field-reflection) , 
3 J 

(7.2.22) 

Rj +R -j 9 s. 3-s 
J -j 

(space-reflection) . 

The symmetry conditions on the wave-function are 

(7.2.23) 

By imposing the same symmetry on the (n+l)-th wave function, qreS, and 

using (7.2.12), (7.2.17) and (7.2.21)-(7.2.23), we obtain the desired 

symmetry conditions: - 

Gs x- ( 1 = G+(-X-) 3 (7.2.24) 

tRrlr2 = '(-R)(-rl)(-r2) = tRr2rl l 

(7.2.25) 
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We satisfy (7.2.24) by choosing Gs(x )to be symmetric in s and x-; we 

will also choose Gs,t to be real. 

There is one more constraint: from the norm condition 

and from (7.2.18), we obtain 

' 

Note that t vanishes unless the addition rule 

R= rl+r2+2nn 9 n=Corl (7.2.13)' 

. 

9 (7.2.26) 

(7.2.27) 

is obeyed. 

In Appendix C, the derivation of the renormalization group trans- 

formation for the matrices el,f12 is outlined. These matrices specify 

the iterated effective Hamiltonians, H 64 5 via (7.2.7). We also give 

the outlines of the minimal quasi-spin renormalization-group, the one 

where five spin states are kept: 

-2sRj<2, -2~Sj<2 ' (7.2.28) 

In that Appendix we also explain why keeping less spins than (7.2.28) 

leads once more, as happened in Section 7.1, to a trivial evolution of 

the Hamiltonian. We will not pursue the minimal scheme, as it turns out 

that the full r-spin towers are needed to recover the free-field physics 

in the X -t 03 limit (see Section 7.5 below). The minimal scheme will, 

however , prove useful for studying the A << 1 region, where the full 

towers are not needed. 
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We now proceed to derive a quasi-spin scheme that keeps the full 
* 

r-spin towers. 

7.3 The periodic Gaussian scheme: evolution of the partition sum 

Let us return to the periodic Gaussian trial wave-function, (4.1). 

We will evaluate the norm partition sum Z, (4.2)', by truncating the 

propagator A(j) in a way that corresponds exactly with the free-field 

simple blocking scheme with a look-ahead, described in Part II. 

That is, the propagator is characterized by one Gaussian parameter per 

length scale; this is the parameter y, appearing in the truncating wave 

function, Part II Eqs. (4.2), (4.4). We first derive the iterative 

renormalization-group transformation for Z and for various expectation 

values, and then iterate the trial wave-function. The latter iteration 

shows that this scheme is just a special case of our quasi-spin formal- 

ism of the last subsection,, 

This scheme, a periodic Gaussian wave function blocked as a free- 

field theory, will henceforth be called the NPBG scheme, or schemes: 

Naively Blocked Periodic Gaussian. The plural is used because the number 

of look-ahead steps is arbitrary. All of the computations reported in 

Section 7 were done for the NBPG schemes, or variants thereof. 

For the Nj, effective Coulomb gas, the norm partition sum is C(4.2)'1 

Z : <I)[$> = 2 exp(- n2C Nj A(j-j') 'jam l (7*3*1) 

W 

* 
This does not mean the r-spins will not be truncated, but rather 
that all the 2n sectors allowed by (7.2.12) will be kept. 
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We block the lattice sites as in Section 7.2, and define slow and fast 

N variables in a block: 

. (7.3.2) N+(j) = N2j ’ N2j+l 

2 is next rewritten in terms of the Nt variables, 

Z = 

= lc 

exp - N+(j) A++(j - j ') N+(j '> 

W 3 
(7.3.3) 

-c N_(j) A--(j - jr) N-(j '> - 2 c 
N+(j) A+-<j -j') N-(j') 3 

W jj' 

where the three blocked propagators are 

2 
A++(j) = y [ 

2A(2j) + A(2j+1) + A(2j-1) 1 9 
2 

A,(j) = y - A(2j+l) 
3 

, (7.3.4) 

A (j> = - A(2j+l) - A(2j-1) . 
-c 1 

The simple (no-shift) truncation consists of setting A+-, the part of 

the propagator that couples the fast and slow variables, to zero, and 

using a mean-field (zero-range) approximation to evaluate the N-(j) - 

summations; that is, (6 is a variational parameter) 

A+-(j 1 5 O,A--(j) = (7.3.5) 

The truncation next calls for defining N+(j) as the new effective 

variable in a block, and summing over the N-(j) variables. There is, 

however, a complication arising from the discreteness of IN}: N+ and N 
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do not vary independently. Namely, (N+-N-3 must be even, due to (7.3.2). 

This constraint may be taken care of by introducing the factor 

inside the summation (7.3.3). This factor vanishes unless N+(j)-N-(j) 

are even, and so the summations over {N+,& Y 3 may now be carried out in- 

dependently. Making use of (7.3.5), we obtain 

Z = x exp(-C N+(j)A++(j-j')N+(j') + ir c rj N+(j) A 
(1) 

(rj) ) 

bh{N+) jj' j 

Olrjll (7.3.7) 

A(l)(rj) = 2 exp I- r26 Nf -i.rrj N-1 _ . ' 

N c-00 

We renamed the dummy indices n. as r., J 3 
to signal the fact that they 

correspond to the quasi-spin variables for the n=l iteration; hence also 

the superscript of the function A. We now redefine N+(j) as N(j), define 

a decimated lattice with the blocks as its new sites, and set A++ to be 

the new iterated propagator: 

n2Ac1'(j) E A++(j) . (7.3.8) 

The iterated form of Z will turn out to be, for-all nz 0, 

Z = ( sN+exp[-r2 c N(j) A(n)(j-j')N(jt)+21-n~i~ rjN(j))@n)(rj)* 

r p W j 

OSrjS2 n-l 
(7.3.9) 

In particular, for n (0) = 0, A (r) has only one component, 

fi”+o> = 1 . (7.3.10) 
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We next set out to derive the recursion relations for the parameters 

A(n)(,r). Let us start from (7.3.9) and block the lattice. Define N+(j) 

according to (7.3.2), and truncate the propagator A b) (j > via (7.3.3)- 

(7.3.5). We again insert p(N+), and carry out the N- summations by 

defining: 

In&> = 2 exp I- IT~~~(N->" + in2-nN-w) . (7.3.11) 

N =-a0 

Here 6n is the propagator parameter for this length scale. We then find,‘ 

Z = 
c - C N+(j) AE'(j -Y) N+(Y) 

h3,W,(N+J W 

OsTlj 'l 
Ogj r2n-l + iritBn C N+(j) (r2j + r2j+l + 'n,j (7.3.12) 

j 

x yA(n'(r2j) Acn)(r2j+l) 'nk2j - r2j+l - 2nnj) ' 

In order to cast this in the fixed form (7.3.9), we must also block 

and truncate the r indices: let 

R. = r 
J 2j + r2j+l + 2Yj 

j 7 

(7.3.13) 

S. = r 
J 2j 

- r2j+l - 2"qj =-2r2j - Rj . 

At this point, we recognize these as the quasi-spin addition rules, 

(7.2.13) and (7.2.15). Replacing the sum over nj,r 
2j and ‘2j+l bY 

sums over 

0sR.12 n+l 
3 -1t oss. 12 

n+l 
J -1 7 
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we arrive again at the form (7.3.9) for the (n+l)-th iteration. The 

recursion relation for A Cd is 

A(“+l)(R) = c A(n'(rl) A"'~-rl) In(2rl- R) . (7.3.14) 

As in Section 7.2, rl ranges from 0 to 2n-1, R over 0 to 2 
n+l - 1 

and R, rl are defined modulo 2 
n+l and 2 

n , respectively. This completes 

the iterative blocking of the partition sum; the initial condition for 

the recursion relation (7.3.14) is (7.3.10). 

7.4 NPBG as a quasi-spin scheme 

We could now proceed to iterate statistical-mechanics averages 

computed in the partition sum. It is evident, however, that the NBPG 

scheme is related to our quasi-spin formalism; we 

in fact, a particular case of the formalism, with 

of truncating wave function; we will then analyze 

formalism. 

now show that it is, 

a particular choice 

NBPG using the 

The periodic-Gaussian wave function is [by (4.1)1, 

q(x) = z exp(- $c (xj-‘rNj) A(j-jt)(njl’2~Njt))- 

{N) jj' 

(7.4.1) 

We block the lattice sites, and define block variables x &' N, 

through (7.1.2), (7.3.2). The propagator is blocked and truncated via 

(7.3.3)~(7.3.5). We also insert the factor p{N+) of (7.3.6) into the 

(N+) summation, and carry out the N- sums. This gives 
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$ixl = c 

jN+19'irjl 

exP I- 3 c [N+(i) - a ~j] A++(j - I') 

jj' (7.4.2) 

X N+(j') --fxj 

where 

J&-) = c exp I- i 6o(x- - ~ITN_>' - irrN_ ) . (7.4.3) 

Formula (7.4.2) specifies the truncation of the x- (fast) modes. 

By making use of the Poisson summation formulae (5.1.1)- (5.1.2), 

we may rewrite Jr as 

Jr@-) = exp[- igx-/]g 9, exp (imx-1 exp 1-k (m-i r)') 
m=-co 

(7.4.4) 

We note that J,(x ) are periodic (antiperiodic) functions for r= 0,l 

respectively; we thus identify them as the trial x wave-functions of 

(7.2.1). The x" dependent factor in the sum (7.4.2) is the residual 

wave-function, and depends on the quasi-spin variables as well as 

continuous variables. From (7.3.8) 
- 

VJ resC%r3 = q~ (l){Z r) a > 9 

+ i7r (7.4.5) 
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The residual wave function is therefore once more a periodic 

Gaussian, but with a Bloch wave-number r. J 
for the sum over degenerate 

vacua; the period of $ (1) is 7r, rather than HIT. We also note that the 

wave-functions J (x ), used to truncate the x- modes in (7.4.2), are 
r - 

themselves periodic Gaussians. 

Using the above, and the results of Section 7.3, it is straight- 

forward to prove the following facts: 

(1) The n-th iterated NBPG wave-function is 

6(n) {x,r) = C exp[-ix (xj-ZnL-nNj) A(n’(j-jt)(xjt-2~2-nNjt) 

IN) W 
(7.4.6) 

+ 27Fi2-n Orr 
j 

r2 n-l, osx s2l.f , 
j 

and obeys the periodicity constraints, (7.2.8). 

(2) P) obeys the recursion rel.ation (7.2.14) derived in the 

quasi-spin formalism, where the spin-truncation wave function is 

In(2rl- R) A'")(rlj A(n)@-rl) 
. l/2 

tRrl(R-rl) = A("+l)(R) 1 9 
and the fast-mode wave-function is a periodic Gaussian, 

Gs(x-) = 2 exp ( -i2nm-) exp I- 6 (m-s2-1-n)2) . 

m= -00 

(7.4.8) 

Gs satisfies the periodicity property, Eq. (7.2.18). Note that t 

satisfies the normalization condition, (7.2.27), by virtue of 

Eq. (7.3.14). 
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(3) The parameters D (n'(r) and Ecn) (r) defined through (7.2.7) 

and (C.3) are 

D(n+r) = C(“>(r> 
A(n'(r) ' 

(7.4.9) 

Ecn'(r) = Rcn' (r) 

1'2 ' 

where Acn', Ccn), R(n) obey the recursion relations, 

2n-l 
A(n+1) ( ) r = c Acn)(rl) A(")(r-rl) In(2rl- r) , 

rl =0 

pen+” (r) = \ exp (- -&--\‘s R'"'(rl) A'"'(r-rl) In(2r1 - r ++) , 

r1 =0 

Ccn+') (r) = ? Ccn'(rl) A(n'(r-rl) In(2rl-r) + i? A'"'(rl> 

rl =0 5 =0 

xAO(r- rl) In(2rl- r) -e2-n-1 exp - k 
1 I 

x 2 Rcn)(-rl) Rcn)(r- rl) 1,(2rT- r- 1) 

rl =o 

. (7.4.10) 

Here 0 s r 5 2 n+l , and 
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In(s) = (~6~)-'/~ 2 exp {- E (m- Zn-'S)21 

m=-cn 
, 

(7.4.11) 

I,(s) = (~6~)~~‘~ 2 (m- 2-“-lrr exp 1-e (m- 2-n-1S)2 } . 

m=-co 

This expression for In(S) was obtained from the definition, (7.3.11), via 

Poisson's summation equation. The number of parameters iterated grows 

proportionally to the size of the quasi-spin towers, i.e., as 2n. The 

initial conditions are 

A(')(O) = 1 7 

do)(o) = 0 

R(')(O) = 6 

7 

; 

(7.4.10)' 

this is the only part where A enters the equations. 

Look-ahead schemes and the trial energy. Since the parameters 

,h> (r), I+) (r) completely specify the effective Hamiltonian, .we are 

now in a position to compute a trial energy <H (n+l> >. The renormalization- 

group transformation in the NBPG scheme is characterized by a single pa- 

rameter, 6 n' that specifies the propagator truncation, (7.3.5). We will 

minimize <H (n+l> > with some suitable mean-field- look-ahead wave function 

in the slow modes x Cd E x(n+l) ; this will give us the parameter 6n and 

the look-ahead wave function. The latter will be discarded, as explained 

in Part II. 

The look-ahead wave function is chosen as the product state, 

Qh+l){x.r] = n ++‘I 

look ' 
j 2 

[ xj (n+l)] , (7.4.12) 
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where xCn+l' 
j 

are the variables in the (n+l)-th iteration, and F(n+l) is 

(naturally) chosen to be a periodic Gaussian, with period 2~r2-~. 
This 

period is chosen so that 9 (nt-l> look obeys the periodicity constraint (7.2.8). 

In Section 5, we saw the disadvantages of using U(1) noninvariant wave- 

functions such as (7.4.12) in the x basis; but $ 
look is merely a guess 

for the slow modes and is not part of the final qtrial, 
so this viola- 

tion of U(1) should not matter too much. In Section 7.5, we will see 

that this is indeed the case. 

Let F(n+l) r be the periodic Gaussian given in (C.6); it depends on 

the variational parameter 6' 
n-t1 ' With the look-ahead (7.4.12), the trial 

energy at the (n+l)-st iteration comes out to be 

h+l) 
'look = + (EI(n+l)) look 

c I' n+lW ++l)(r) 
c 

?A+l(r) A(n+l)(r) 
r = r 

c Ii+1 (r) Atn+l> (IT) 
+ 1 

' 
c 

IA+l (r) Atn+l) (r) 
(7.4.13) 

r r 

- 2 -1-n 
exP Or rr,< 2"+l-1 9 

r 

where I' n+l C-i) s TA+l W are the same as I,(r), Tn(r), but with 6 
n 

replaced by 6& p (n+l> 
look is a function of both Bn and &A+1 and should 

be minimized with respect to both of them. 
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Correlation Functions. By using the quasi_spin formalism, it is 

possible to iterate not only the Hamiltonian, but any operator. In 

particular, we find for the two dual correlation functions, 

x. 'X., 
J J >> 

(7.4.14) 

l t J 

exp 

i 

i const. 
c 

k=j+l 
'k N 

1) t 

1 

exp - const. 

e,Ij’-j 1 , 

= 1 6 n l 

n=O 

Sy,mrnetries. It is easy to prove by induction that 

A(n)(-r) = A(n)(r) 

C(")(-r) = C(n)(r) , 

R(n) (r) = R(n)( -r- 1) 9 

where r is treated modulo 2n. 

7.5 The results 

(7.4.15) 

The recursion relations (7.4.10), with initial conditions (7.4.10)', 

give the evolution of the 2 n+l Hamiltonian parameters D (n)(r) and E(n)(r), 

and of the auxiliary parameters A (n) b-1 g overning the iteration of the 

partition sum 2. Unlike in ordinary renormalization-group transforma- 

tions, or even the minimal scheme described in Appendix C, the number of 

iterated parameters grows with n; this is because the NBPG scheme keeps 

the full r-towers. We saw in Section 7.4 that it is necessary to keep 
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them for the case of the periodic Gaussian wave-function. Since in the 

X -t 00 limit the exact wave function is a Gaussian, we conclude that the 

full quasi-spin towers are needed, if one is to recover the free-field 

regime. 

Keeping all the parameters numerically proved easy, up to n values 

sufficiently high (n= 6) so the scaling properties of the large- 

distance correlation functions can be seen. 

We have analyzed the physics of the NBPG renormalization-group 

equations in three ways: analytically, in the A << 1 and X >> 1 regions, 

and numerically for all. coupling values. What follows is a review of 

the results in each of these approaches. 

(1) Small-A region. For A << 1, only the lowest-lying spins in 

the r-spin towers are activated, and NBPG reduces, approximately, to the 

' minimal quasi-spin scheme. It is then sufficient to iterate only five 

parameters: R(n)(l)/A(n)(0), R(n)(O>/A(n)(0), C(n)(0)/A(n)(O), 

C(n)(l)/A(n)(0), A(n)(l)/A(n)(0). This is due to the symmetries 

(7.4.15), and due to the fact that only ratios of the parameters A, C, R 
* 

appear in physical quantities. 

The results are as follows: The final ground-state trial energy is 

pg.s.(x) = lim pztik(X) = - .28x2 -L(A4) , (7.5.1) 

n-+03 

as compared with the exact perturbative result, - (1/2)X 2 + O(h 4 ). The 

discrepancy is due to the use of the ixj} basis, rather than the Iyj} 

.-- 
* 

Since A(*) (r) are related to the norm (Section 7.3) and hence 
unphysical; e.g., see the expression for the energy, (7.4.13). 
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basis defined in Section 5 (Eq. 5.3.3). That this is indeed true is 

proven in the following subsection. Figure 21 shows p g.s: [The recur- 

sion relations for the five parameters, from which the results reported 

here were derived, follow easily from (7.4.10)- (7.4.10)', and are 

listed in (C.7).1 

By minimizing the trial energy (7.4.13) we got for the Gaussian 

parameter of the n-th iteration, for large n, 

-n ( ) 2 1 
-i;- (X<<l,n>>l) , (7.5.2) 

and thus from (.7.4.14), the correlation function is: 

( ( 
cos x. - 

3 xjI Oc 

)) 

A21j - jtlB2 

lj -1’1 >> 1 (7.5.3) 

This is, of course, the wrong behavior, since the falloff with distance 

should be exponential. This problem as well may be corrected by working 

in the iyj3 basis, as shown in Section 7.6. 

(2) Large-X region. In this regime, the tunnelings between 

degenerate classical vacua are suppressed as* exp{ - const. fi 1, and 

the correct physics is that of the free massless field, corrected by 

0 0 
-m/2 ) perturbative corrections to the power-falloff and to the 

energy; see Section 2.3. In the NBPG approximation, too, one obtains 

the free-field physics- but only that which the naive blocking of the 

propagator allows. As we recall from Part II, that means a spurious 

* 
See Section 6 for a discussion of the strength of tunneling effects. 
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long-range order rather than power falloff: d- 

( ( 
cos x. ‘X.1 

J J 
Ij-j'l >>l . (7.5.4) 

This behavior violates Coleman's theorem,9 that forbids local operators 

from having vacuum expectation values in (l+l)-dimensional models. 

The true correlation function in this region falls off as a power, but 

this discrepancy can be corrected via adiabatic truncation, as showed 

in Part II. In Section 7.6 we discuss a way to extend the adiabatic 

method to intermediate couplings. 

(3) Numerical results -t-"-* Our numerical calculations yield a phase 

transition between the asymptotic behaviors (7.5.3) and (7.5.4), i.e., 

between power-law disorder in the A < AC regime and long-range order in 

the X > Xc regime, with X N 
C 

.35, While this is not the correct 

transition of the XY model, it is an order-disorder transition, and it 

appears to be of infinite order- in the sense explained below. 

The transition is found to have the following properties: 

(~1) 6,(X) have a weak singularity at X = X 
C’ 

which becomes weaker 

when n R is increased from 1 to 2. [n R is the number of look-ahead steps; 

see Part II.1 This singularity is a spurious one, caused by the U(1) 

(n+l) violation in $look . We encountered such a tfansition in Section 5.2. 

Here it manifests itself merely as a nonanalyticity, since the violation 

occurs only in the look-ahead part of +, which is not present in the 

'We recall that there, <x(k)x(-k)>t,ial - kn1'2in momentum basis; that 
translates to (7,5.4) in the position basis. See Ref. 16 of Part II 

§ 
for a discussion of this long-range order vis-&vis Colemans theorem. 

Or, more accurately, the Mermin-Wegner theorem. 
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full wave-function. Figure 22 shows - l/(48,) versus X, for OSn< 6, 

inthecasen =l. R Figure 23 shows the same parameters, for 01~124, 

in the n 
& 

= 2 case, Figure 24 shows - l/(46,) near X = Xc for both 

look-ahead schemes. Here we note that the change is only several 

percent at its largest, but that the nR = 2 curve is smoother at X = Xc. 

This is as it should be, since when n R is increased, the U(1) violation 

occurs at larger length scales and affects 6n less. The look-ahead 

parameters exhibit the full spurious transition, but these parameters 

are unphysical (See Fig. 25). This spurious singularity should 

disappear altogether when the {yj) basis is used, because of its 

manifest U(1) invariance. 

(B) Apart from the above-mentioned weak singularity, the functions 

$$X> are smooth for finite n; but as n increases, they become steeper 

near X = AC (Fig. 26). The numerical results indicate that l/6 n 

approaches a step-function as n-tm , 

I 
0 x > AC 9 

1 - 
$.p> 

4 (7.5.5) 

4 Rn 4 A < x . 
C 

Thus, any physical quantity involving finite length-scales is smooth, 

but the asymptotic large-distance behavior (large-n) of correlation 

functions is discontinuous. This is an important feature of the true 

Kosterlitz-Thouless transition; and so although we cannot determine 

the X-dependence at X = A analytically, we have found (in a numerical 
C 

sense) an infinite-order transition. With the aid of the improvements 
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suggested in the next subsection, we hope to turn this into a more 

realistic phase transition in the near future. 

7.6 Improvements using our methods. 

The NBPG scheme is the first quasi-spin scheme for which we obtained 

the results, but much better schemes are easy to implement using the 

quasi-spin formalism. In this section we describe two such improvements, 

which when combined will yield the correct physics in both extreme 

regions of the coupling axis- and hence will also give a more realistic 

phase transition. 

The first improvement consists of working in the {yj3 basis 

(Yj = xj+l- 
xj> rather than the {xj3 basis. We then easily recover the 

plane-wave perturbative excitation, (7.2.2), as a special case of the 

periodic Gaussian, to order 
01 l This is because 

1 + c ACOS(Xj -xj+l) = n 1 + Acos(xj+l-xj 

j j [ ,3 + "(A') 

(7.6.1) 

where F(x) is a very flat periodic Gaussian. It is trivial to show 

that for the wave-function $,, naive blocking-is exact-and so the 

correct perturbative wave-function falls within ,our trial Hilbert 

subspace, to lowest order in A. Thus, to that order, we will get the 

correct results for energy and correlation, 

Pg.s. = - ‘2- s2+ 0(x3) , 

(7.6.2) 

( ( cos x.-x., 
J J 

))- [A + O(h3)]lj-j'l; lj- j'l >> 1, A << 1 . 
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Therefore, the massive (A< Xc) regime indeed possesses a mass gap in 

the {y) basis NBPG, and one can study how it vanishes as X -+ A . 
C 

The second improvement would be to use shifted periodic Gaussians, --- 

i.e., to use an adiabatic truncation similar to the one employed in 

Part II. To preserve periodicity, it would be necessary to shift x 

by a sine-function of the surrounding slow modes, 

x-(j) -t x-(j) - 5 sin 2n ~j+l 
[ ( 

- ‘j-1 )I 9 (7.6.3) 

rather than the linear shift used in the free-field case c(4.2)- (4.3) 

in Part II]. It is possible to incorporate this periodic shift in 

our quasi-spin approach. 
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APPENDIX A 

A PERTURBATIVE CALCULATION FOR HIGH ?t 

We temporarily drop the primes in (2.3.2). To second order in the 

small expansion parameter, l/Ji; , 

Hz+ c Pj2 + c (xj+l-xj 

j j 

- ~ x-1'2 c (xj+l-xj)4 

i J 

(A.11 

In the momentum basis, 

1 

xj = z c 
.-ijk 

x(k) 
k 

(A. 2) 

1 

pj = z 
c 

,-ijk 
p(k) 

k 

where L is the volume, k ranges over HIT nk/L$ 0 s nk < L, and x(k); 

p(k) satisfy th e canonical commutation relations 

1 = i"k,$ . (A.3) ' 

[Due to the existence of a momentum lattice cutoff, a Kronecker delta 

involving momenta is always modulo 27-r.] 

We rewrite in terms of annihilation and creation operators 

H= l/2 -t 1 [ a (k)a(k)+i +HI , 
k 

1 (A.4) 
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where H I is the interaction part 

H = _ $m x-1/2 
I , xj+l - xj 

4+1 - 
6! A1 "j+l * 

a(k), a'(k) are defined in the usual way, namely 

x(k) = [2o(W] -1'2 [a(k) + at(-k)] 

p(k) = i [ y]l’* [a+(k) - a( 
where 

o(k) = 2(1- cask) 3 l/2 

> 

6 
xj l (A.4)’ 

(A. 5) 

(A. 6) 

The effects of HI are treated perturbatively by means of Feynman 

diagrams. Since this is a routine calculation, we skip the gory details 

and highlight the main steps in the derivation. 

IfI in momentum basis. -- For the quartic term in HI we have . 

xj+l - xj )" 

x [,u(ka)]-1’2 1 + crossed terms , 

(A.71 

where by 'crossed terms' we mean those obtained through the replacement 

a(k) + a+(-k) 

in one or more of the four momenta. A similar expansion holds for the 

second term in HI. 
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.iiormal ordering. -- -- v- The interaction terms H, are not normal-ordered, 

and in the process of normal ordering them self-energy terms arise. 

Those can be eliminated by a Bogoliubov-Shirkov transformation: 

we define new operators, 

a(k) = vb(k) + ub+(-k) 9 

a(k) = * + v b (k) + u*b(-k) 3 

I 1 2 v -u I I 
2 = 1 

(A. 8) 

u and v are chosen to eliminate b(k)b(-k) terms in H. 

Let yj be a new field, with canonical momentum ~j, defined in terms 

of b and b t ; in the momentum basis, 

Y(k) = [&]1'2[b(k) + b+(-k)] , 

n(k) = i[y.]1'2 [b+(k) - b(-k)] . 

Our results are: 

3 u=-.. 
4*$2 

+- 2 
47T x 

+ o(A-3’2) 

(A. 9) 

v= 1+1 
32a2A 

+ o(x-3’2) 

(A.lO) 
1 21 

27T 
2 + -- 

x l/2 ,1, 2 
321~ A 

X 
c 

w(k) b+(k) b(k) - i-L’2 

k 

4-x -1 1 
gy-: 

U 
YJ+1 - YJ > 

6 : + o(A-3'2) , 

j 
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where the colons mean normal-ordering with respect to the b-s and we 

have reinserted the primes. The rest of the calculation is straight- 

forward, old-fashioned perturbation theory; the results for ground- 

state energy density and long-range correlation function are 

L <H> P5.s. = L ground state 

=fi 2 
[ 

- _ 1 +2 + f-1 
7T 

2Tr2 
(-$- + I) + o(Pq ’ 

C(n) = x. -x. 
J J+l ground state 

F 

n >> 1 
4 exp ly 1 E/ n)ex,(_[g+s +&3'2) , 

(A,ll) 

where I is the Feynman integral resulting from the one-loop diagram: 

I = 

4 ( )i 4 
x 6 c ka c 

a=1 a=1 

sin 3 
-1 

(A. 12) 

0.03 

yE in (A.ll) is Euler's constant, and the infinite-volume limit 

is understood. 
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APPENDIX B 

{R&BASIS TRANSFER MATRIX FORMULAE 

The matrices A and ?? appearing in (5.4.14) are: 

where P is the transfer matrix (5.4.6), and 

AI(L,L') = dLL, exp 5 &2 - -2 R2 - 2 

A2043 = 0 fil + ij 6LL, ( =P 
3 - 29 - 2 R2 9 03.2) 

A3(L,L’) = 6LL, -pi-$ RI) 

Here e(n) is 0 if n > Rc and 1 otherwise. L,L’ are the variables 

enumerating the two-site blocks: 

(Be3) 

Derivation of large-distance correlation. We now compute the 

exponential falloff of the correlation function C(n) for n >> 1. 

The correlation is a special case of the expression on the left-hand 

side of (5.4.12), with 
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4. = 
J 

\ 0 otherwise 

(B.4) 

; 

Thus 

(~~Cos~~-x~)~~)’ (il”“P (i C  4jYj) i,> 

j 

From (5.4.1) and (B.4) 

c qj A$j-j’) 9j’ 

= 4Bn + 26l(n-1) + 262(n-2) 

W 

(5.4.12) then yields 

C(n) E k 
\ 

\ 4 ( 
cos x0-Xn 

)I ) 
$! 

= exp[-f$+ sz) exp(-(~+$+$)n}(pl)-n’2M1 ?f* 

where 
n 3 -- 

v1 l ( ) T2 . -F 2 

f-t 
Here F1,2 are n-independent matrices, and 

. 

E(L,L') = exp[-(f3+-f$+$) (i,+fi2+ki+fi;;1 

03.6) 

(B.7) 

X O(tl + 1) B(R2 + 1) e(R; + 1) e(g; + 1) p(L,L') l 

The above formulae readily yield (5.4.18); the matrices yl 2 are 
9 

irrelevant for the asymptotic behavior. 
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APPENDIX C 

QUASI-SPIN FORMULAE 

We continue the derivation of the renormalization-group transforma- 

tion in the quasi-spin formalism, begun in Section 7.2. By truncating 

the internal ('fast') block variables x-(j),Sj according to the decompo- 

sition (7.2.14), and using (7.2.17)-(7.2.18), we may truncate any 

operators that act on the spins and/or the x-variables. Let us truncate 

the general block operator, 

M r+;;rlr2(x-7P-) = f (x_,p_> ':irl 'tir2 (c.1) 

where I and II act on the first (1) and second (2) sites of the block, 

respectively. Integrating over x- and summing over S and S', we get 

the truncated spin matrix acting on the total block spin: 

( ) M tru R'R = 

= cs dx_GZr;_R’(“-) exP [+$- ri)x-) Mri(R’-ri);rl(R-rl) (x-7p-) 

where 

4TT 

Cf (S';S) = 
/ 

dx_Gs, x 
(-) I 

=P 
1 -is' ,X- 
2 I 

f(x-,p-Jexp i&$.x- 
1 1 

‘Gsl(“J l 

0 
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In arriving at (C.2) we have also made use of (7.2.15). It is 
straightforward, although tedious, to iterate the matrices z17 %' 2 
characterizing the Hamiltonian H (4 . From the field-reflection and 

space-reflection symmetries, we have proven that for all n, 

( ) @I rtr = drtrr D(r) 

@I r’r = fit, ( ) 1711’1 
E Cd 

Cc.31 

There are thus 2 n+l parameters describing the Hamiltonian H (4 . dm is 
a Kronecker delta modulo 2n. 

Summations. All sums over r17ri range from 0 to 2"- 1, and are 

treated modulo 2n. 

From (7.2.17), (C.2) and (C.3) we find 

D(n+l+R) = 2 [$rl(R-rl)] 2 ( ['2r1F'2 + ~x-G~~~-R]~-~+D'~'(?, ) 

CC.41 

E(n+l'(R) = 
c 
rl=l 

tRrl(R-rl)t(R-l)rl(R-l-rl)E(RR+1-rl)C2(2R-rl+1) 9 
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where 

Cl(S) = + i” dx- G&L) [Gs+&L) Gs-2(x-!] ’ 
0 

3(s) = i” dx- G&J Gs+&L) ’ 
0 

Minimal quasi-spin towers, The smallest spin towers consistent 

with field-reflection symmetry are of dimension three, 

cc.51 

-1 5 r. < 1 
J 

Since under the symmetry, r. + -r.. The exception is at n = 1, where 
J 3 

9 
= +l are identical (r. are defined modulo zn). 

J 
But from (C.4)-(C.5) 

it is easy to prove that in that scheme, 72 vanishes for n 2 3 and the 

long-range renormalization group is thus trivial. If, however, we keep 

-2 I r. 5 
3 

2, and truncate t 
Rrlr', 

so that -2 ,< Sj ,< 2, the evolution is 

nontrivial. Due to the symmetries (7.2.25) of t, it has only five 

independent nonvanishing components in this minimal quasi-spin scheme; 

these are for the spin values listed in the table below. 

R 

- 

0 

0 

1 

2 

2 

S 

0 

2 

-1 

0 

-2 

r1 ‘2 

0 

-1 

1 

1 

2 
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The t components, along with parameters characterizing the five 

periodic functions GS(x,), are varied to minimize the trial energy in 

this scheme. All those parameters may also be expanded in powers of A 

in the small-X region. 

Mean-Field Look Ahead. The crude guess for the slow-mode wave 

function, called for by the look-ahead approach, is chosen in the NBPG 

scheme to be the product state (7.4.12), where F (n+l > is the periodic 

Gaussian, 

++1)(;) = 2 
Y 

m=-c0 
exp (-i2-‘m;) exp (- E (m- SmnM1J2) 7 CC*61 

where 6' ' 
n+l Is another parameter to be determined variationally. 

Minimal scheme for X << 1. For small couplings, we may neglect 

all but the lowest-lying quasi-spin components of A,R,C: thus the 

renormalization-group equations, (7.4.10), simplify. We retain only 

-2 s R ,< 2, and further neglect A(-+ 2), C(_+ 2), R(2). Then by (7.4.15) 

we are left with only A(O), A(l), C(O), C(l), R(O), R(1) as independent 

parameters; and only their five ratios appear in physical quantities. 

. The recursion-relations for small A become: 
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A ,+,(l> - 2y.j+.#) 

where 

and 

C n+l (O) * cn (0) - zgnCt2R (O)2 + a4 nn n C 2enlAnC1>Cn(l) 

+ 4-nenlAn(1)2+ 6 
n0 1 9 

c n+l(l) a? 'n enlCn(l)+4-n-1A (I)- zqn"R (0)2 
n n 1 9 

R n+l (0) 3 '< Rn(0) 

R n+l(l) = '< Rn(0)An(l) , 

a n = exp 1 

i 1 
-46 

n 

I 
0 n<m 

em = 

1 n2m 

Unlike in a normal renormalization-group, n occurs explicitly in 

these recursions. 

(C.7) 
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FIGURE CAPTIONS 

Fig. 1. A vortex in the Euclidean XY model. 

Fig. 2; The function f(p). 

Fig. 3. The energy density for pure Gaussian wave-function. 

Fig. 4. l/p vs. coupling X for pure Gaussian wave-function. 

Fig. 5. z vs. A. 

Fig. 6. pg.s. VS* A. 

Fig. 7. z1,z2 vs. A. 

Fig. 8. z vs. X ((k) basis). 

Fig. 9. Pg.s. vs. X ({!&I basis). 

Fig. 10. Correlation parameter a vs. h. 

Fir;. 11. Parameter e 43 
vs. X for EC = 1, 2, 3 (going up). 

Fig. l2. Parameter =p (61/2) vsO A for 2 = 2 (dotted curve is g = 3). 
C C 

Fig. 13. Parameter exp 162/2) vs. x for k = 2 (dotted curve is fi = 3). 
C C 

Fig. 14. Ground-state energy density curves. Going from top to bottom: 

energy for the irn) basis mean-field, exhibiting the spurious 

transition (second order); mean-field, {RI basis; transfer 

matrix results for Ilc = 1, 2, 3 (last two are indistinguishable). 
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Fig. 15. Transfer-matrix results for (Y vs. X, with Qc = 2,3. 

Fig. 16. a,q vs. X for Qc = 2. 

Fig. 17. Additive screening constant vs 1'. 

Fig. 18. Screening distance jl VS. 1'. 

Fig. 19. From top to bottom: bare and screened propagators for X' = .19. 

Fig. 20. Effective coupling A' vs. h for the pure-Gaussian case. 

The critical point resulting from self-consistent screening 

is above the spurious critical point of Section 4. 

Fig. 21. Again the (Q&basis energy results of Fig. 14, but with 

(NBPG) pg s superimposed (plotted curve). . . 

Fig. 22. -l/(46,) vs. Qn x for nQ = 1 and 0 5 n 5 6. 

Fig. 23. _ -l/(46,) vs. Qn X for nQ = 2 and 0 I n < 4. 

Fig. 24. -1/(46o) near Qn X = X 
C’ 

for nQ = 1, 2. 

Fig. 25. Exp {-1/(4S;+l) 1 vs. Qn X for 0 5 n 5 4, nQ = 1. 

Fig. 26. Seven plots, of -1/(4dn(h)) vs. Qn h for 0 2 n < 6, nQ = 1. 

Fig. 27. From top to bottom: a,b and ground-state energy-density 

exhibiting a spurious first-order transition. 
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Fig. 5 
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1. Introduction 

In Parts I and III of the thesis, we have seen the usefulness of 

periodic Gaussian trial wave- functions for studying lattice models 

posessing a compact U(1) symmetry. Such models may be formulated as 

spin models with infinite spin towers. [See Part III, Sec. 2.2.1 In 

that language, the trial wave-function became a (long-range) Gaussian 

in the discrete spin variables. [See Fart III, Sec. 5.7.3 The long- 

range Gaussian propagator characterizing the wave -function is varied to 

minimize the ground-state energy density, so the method is in fact a 

generalized Hartree-Fock variational calculation. 

In this part of the thesis, we use such a trial ground-state for 

the soluble one-dimensional Ising chain in a transverse magnetic field. 

The resulting statistical-mechanics sums are evaluated via the transfer- 

matrix method, used in Fart III Sec. 5 for the XY model. 

The presentation is organized as follows. In Sec. 2, the model 

is defined, the Hartree-Fock trial state introduced and the quantum- 

mechanical problem converted to statistical-mechanics language. In 

Sets. 3, 3.1, the transfer-matrix formalism is presented for a nearest- 

neighbor propagator (a calculation by PearsonI), and perturbative 

results are derived in the two extreme limits of the coupling constant. 

In Sec. 3.2, the transfer matrix method is extended to propagators of 

arbitrary (finite) range. In 3.3, numerical results for ranges up to 

four lattice spacings are presented and discussed. 
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2. A Trial Ground State for the Model 

2.1 The model 

The model is an Ising chain in one space dimension in a transverse 

magnetic field. Its Hamiltonian is 

H = 
CL 

oz(j) - Aox ox(j+l) 
3 

Y 

j 

(2.1.1) 

where ox(j), o,(j), oz(j) are the Fauli spin matrices acting on site j. 

A is the coupling constant, ranging from 0 to d. The first term is the 

interaction with an external magnetic field in the z direction, while 

the second term is the spin-spin interaction. In the A -+ 0 limit, the 

spins are aligned in the negative z direction. In the A -+ 00 limit the 

system is a pure zero-temperature Ising model, with all the spins aligned 

in the same (plus or minus x) direction. Our convention for spin states 

is 

azlt> = I+> 9 

ozI+> = -I+> , 

a,[+> = I+> 9 

+> = + 3 

1 > 
1 + z- 
fi 

((4) + 1 w 9 

I-> -L- (-I-+> + I+>> l 

=z 

(2.1.2) 

The Hamiltonian (2.1.1) is symmetric under the ox-reflection 

transformation, effected by the operator 
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(2.1.3) 

For A < 1, there is a single ground state, whereas for A > 1, the 

symmetry is spontaneously broken and there are two ground states related 

bY Pz’ 

2.2 A discrete Hartree-Fock trial ground state 

In a field theory, the variational Hartree-Fock approximation 

consists of 

(1) Expressing the fields in terms of creation and annihilation 

operators, with an arbitrary single-particle spectrum u(d) 

and arbitrary single-particle SchrEdinger wave functions 

(this defines a Fock space); 

(2) taking the trial vacuum to be the naive Fock space vacuum; and 

(3) varying over the single particle wave function to minimize 

the vacuum energy density. 

If the single-particle wave-functions are to be in the momentum basis, 

the wave-functions are just plane waves, exp(ikj). Then only w(k), or 

in other words the propagator, is left undetermined, to be found 

variationally. 

In the position basis, the above procedure is equivalent to taking 

the vacuum wave functional to be 

qHF{$} = exp - C $j Ajj, $jT 
4::t 

(2.2.1) 

JJ 
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where A 
3 ' 

is the position basis propagator from site j to site j', and 

9 
is the field. 

For a field theory where the field develops a vacuum expectation 

value, (2.2.1) is modified to 

qiFC$3 = ew 
I 

- C (gj-c)A(j-j') (~j(- c 3 (2*2*2) 

W 

where c is an additional variational parameter. 

In order to apply these ideas to a spin model, we will take the 

trial ground state for the Ising model to be 

8 E exp 

1 1 

mj 
=+1 

iy c a,(j) I$,(OD 

i 

where the ax-spin basis of states is 

I(m)> = “lmj>j 3 mj = +l 3 
j 

(2.2.3) 

(2.2.4) 

and from parity symmetry A(j) = A(-j). 

The main conceptual difference between (2.2.2) and (2.2.3) is the 

extra rotation operator in front; both 8 and r; are mean-field parameters, 

i.e., characterizing the mean-field wave-function at a single site. In 

that sense, they both correspond to c in the field theory. 

In the case of pure mean-field,2 A(j) vanishes. The parameters 8,< 

then over-specify the state and we may set one of them to zero. The re- 

sults are a transition at AC=. 5, and a critical power-law vanishing of 
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the magnetization at the transition: 

(ox(j)) - (A - -$'2, A z$ , (2.2.5) 

whereas the correct critical power is l/8. 

For nonvanishing A of range greater than zero, both 0 and 5 are 

needed. 

2.3 Statistical mechanics formulation of the model 

From (2.2.3), the norm of the state II/I,> is the partition sum 

z E (q 0)l~,(0)) 

= g exp ( GX mj __ C mjmj+n A(n)/ 
j An 

= -c 'Im3 9 
@3 

(2.3.1) 

where n ranges over all nonvanishing integers. (This is because A(0) 

2 multiplies m. Z 
J 

1 and therefore drops out.) 

Expectation values of operators in IQ,> are expressible as averages 

weighted by the partition sum. We will need the expectations of the 

following five operators. 

'Single-site operators 

The single-site matrix elements of aZ are [(2.1.2)1 

so from (2.2.3)5 

(m’l ‘~1~) = - 6m+mT,o ’ (2.3.2) 
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A f (+t(o)~~z(j>l~t(o)) 

= - 

= (c 

exp 5 m - 
c 

mm r r r+n A(n) 
b3 rfj rfj 1 

r+n#j 
(2.3.3) 

= c ZEm3 exp -5mj + 2 
I 

c 
mjmjh Ah) . 

Cm3 n i 

Likewise for ox, which is diagonal in the Im> basis, 

B ~(~,(0)Iox(j)llClt(O)) = C Ztrn) mj l (2.3.4) 

b3 

By folding back the rotation matrices in (2.2.3) on the operators, we 

find for the expectations of the single site operators in the e-rotated 

trial states 

(~~,(e)lo~(j)&W) = Acos6 + Bsine , 

(2.3.5) 
(Jlt(0)lox(j)($,(O)) = - Asine -I- Bcos6 . 

Two-site operators 

The two-site operator appearing in the Hamiltonian is <ox(j)ox(j+l)> 

and through 8 rotation this will mix with <ax(j)oz(j+l)>, <oz(j>ox(j+l)> 

and <oz(j)az(j+l)>. The first two are the same because of parity and 

translation symmetries, so we have three two-site expectations values 

to compute. 

From (2.2.3) and (2.3.2), 
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E: ($,(O)l a,(jhz(j+l>l $Qo> ) 

= 
c 

ZIm) er,p - 5(mj - mj+l) + 2C mjmj+n A(n) + 2 Cmj+lmj+l+nA(n) ' 

h3 1 1 n n 

D ~(~t(O>I~z(j)~x(j+l)I~t(0) ) (2.3.6) 

=- 
c 

ZIm) mj+l exP 
c 

Cd n 

c 5 (Jlt(O>~~x(j~~x(~+l~l~t~o~)~~ '{ml "j"j+l l 

hn3 

By (2.1.1), (2.3.3)- (2.3.6), the trial energy density is 

1 
P = 

g.s. volume ( ~twHl+tb3~) 
(2.3.7) 

= AcosG $ Bsin0 - A Ccos29 - Dsin(20) + Ikin 1 . 
3. Transfer matrix method for range 1 and higher 

The case where A(j) is of range one was done by Pearson. In this 

case, the partition sum is reduced to r-(2.3.1)1 

Z = 
c 
Em3 

Zfrn) = C exp ( CCmj - 2A,xmjmj+l) 3 (391) 

tm3 n j 

where A1 = A(1). The transfer matrix method consists in this case of 

decomposing Z 
{ml 

as follows: 

'{m) = "'("jPmj+l) 
j 3 (3.2) 

and defining F as a 2x 2 matrix. if we demand that F be symmetric, 

we find 
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exp 1 -5-Q exp_ 

‘it= 

12A exp 1 
I 

lf =P 

(3.3) 

F is called the transfer matrix. We adopt the convention whereby the 

first row (column) corresponds to m = -l(m' = -1). 

The partition sum is dominated by the leading eigenvalue of F, 

p1 = Jexpl -4Al\sh2< + exp ( 4Al/ , 

with the corresponding normalized eigenvector 

q1 = 

1 
t 

, (3.4) 

(3.4)' 

[See (A.l) in the Appendix for t.] 

At this point, we note that when the symmetry operation F [see 
Z 

(2.1.3)1 is applied to (q,(e)>, it flips the signs of 6 and 5 and leaves 

A(n) invariant. Therefore, we may adopt the convention 5 L 0 without 

loss of generality, since it suffices to study only one of the degener- 

ate ground states. As we shall find later, this convention corresponds 

to positive magnetization: with the convention c 2 0, 

( > CT 20. (3.5) 
X 

The operator expectation values we need, (2.3.3)-(2.3.6), can be 

expressed as 
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+ + 

v1 
.y. v 

1 9 (3.6) 

where 2 4-h 1 is the dominant eigenvector of F, and M are various matrices. 

The resulting expressions for A through E are given in (A.2). 

3.1 Ferturbative analysis 

To find the best trial wave function IJ~,(o)>, the three parameters 

8, 5, A must be varied to minimize the energy density p g s [(2.3.7)1. 
. . 

For finite couplings A this must be carried out numerically, but for 

the two extremes, A << 1 and A >> 1, the variational analysis may be 

carried out perturbatively. Since the derivation of these results 

involves mainly tedious Taylor expansions, we shall omit most of the 

calculation and merely quote the results. 

A << 1 mgion. Since in the A < AC regime there is only one ground 

state, it is possible to prove that 

8 <=o , = A=A 
c l 

(3.1.1) 

These parameters vanish because they violate the Fz symmetry C(2~1.3)1. 

Therefore, in the A CC 1 region we need only solve for Al. The results 

are 

Al = -$+OA ( ) 
3 

9 

pg.s. = -1-z ' A2 + O(A4) , (3.1.2) 

( > 0 z 0 . \ x 

Thus the wave function in {m} basis is very flat, which corresponds 

to a probability distribution in the z-spin basis that is peaked around 

0 - 
Z= 

-1 Csee (2.1.2) 1. 
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h >> 1 region. Here we have found by minimizing p as a function of g.s. 

Al = -4 l Rn 2 +O(a-2> , 

r; = En(U) + O(AV2) 

< is large, 

that is why 

pg.s. agree 

8 = 0 (a-3) 

pg.s. = 
-A-& 

( > 
0 = 1-L 

X 
8A2 

1 -- 
642 

. 

so the probability distribution is peaked around ox = +l; 

(3.1.3) 

the magnet%zation is near one. The first three terms in 

with the exact perturbative result, as noted by Pearson. 

3.2 Longer-range propagators 

What we have done in this part of the thesis is to carry out the 

variational computation for propagators of ranges 2, 3 and 4 lattice 

spacings. This was done using the transfer matrix method, in the 

following way. For range r we divide the sites into blocks of r sites 

each. The spin configuration of the lattice is then classified as (MJ) 

where MJ is an integer describing the spin configuration in the Jth 

block: r-l 

x 
. 

MJ = 21 mJr+i+l ' \ MfmJr+l' l ** m(J+l)r) ' 
i=O (3.2.1) 

OrM 52 r 
J -1 
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Since by definition A(j) = 0 for all j > r, every block interacts 

only with its nearest neighbors in the partition sum (2.3.1). Thus we 

can again decompose 

'{m) = I7 p("~'M~+i) 5 (3.2.2) 

where now the product is over blocks, and the transfer matrix T is 

of rank 2r. 

As in the r = 1 case, operator expectation values are computed by 

diagonalizing 
f-f 
P and finding its leading eigenvalue pl and eigenvector 

3 
vl' The details of these derivations are given in the Appendix. 

3.3 Results 

In Figs. 1,2 we see 8 and c, respectively, plotted versus A for 

range r = 2 (for higher ranges the curves look almost exactly identical). 

In fig. 3, the solid curves show Al for ranges 1, 2 and 3, and A2, A3 

for range r = 3. To get these curves, Al, A2 and A3 were varied indepen- 

dently; the dotted curves show the corresponding propagator components 

for r = 4, using an ansatz for the components: 

Al , n=l ; 

A(n) = (3.3.1) 

4A2 
-T- ' n>l . 
n 

These curves are for the vicinity of the true (and trial) critical 

point. The approximate agreement between the two sets of curves is 

probably a reflection of the fact that the exact theory becomes massless 

at A = AC = 1. 
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Finally, Fig. 4 shows the magnetization curves for ranges r = 1, 

2, 3 and 4. The critical points in these four calculations are 

A, = .813 (the result of ref. 1); = .889 (for range 2); = .916 

(range 3); and = .925 [for range four lattice spacings, with the 

hypothesis (3.3.1)]. For comparison, the mean-field result is A, = l/2. 

Our conclusion is that the AC value begins to converge, and in order to 

get closer to the exact result this method should be combined with a 

long-range (e.g., renormalization-group) approach. 
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APPENDIX A 

The ranqe = 1 (Pearson) calculation 

The leading eigenvector is: 

where 

v1 = 

r 

(A.1) 

t = 1 + exp (-88) 

The expectation values A through E defined in (2.3.3)- (2.3.6), 

are 

A z (oz(j)) = - -$- es5'2 + ec'2Jt2 - 1 )' Y 

1 

(u,(j>) = t2j * 

(ox(jhfx(j+l>) = l- 4 

9 

[ 

exp(2*l)J;2KS 

2 
t p1 (A. 2) 

D = (Qibx(j+l)) = - --& 1j - e-’ , 

t p1 
I 

2ch(2Al) 
E G (yz (j >aZ (j-r-1)) = - A . 

p1 

Rancre r > 1 calculations: the transfer matrix 

We will rewrite the partition weight ZCmj in (2.3.1) as a product 

over block-block factors, according to (3.2.2). This is not a unique 
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decomposition, but unlike the r = 1 case, 
f-3. 
P cannot be chosen to be 

symmetric; -7 does, however possess a related symmetry:: 

P(M,M') = P(Mfs,MS) , (A. 3) 

where MS is defined through (3.2.1) but with the block parity-reflected: 

M= M mlsm29 ( . . . , mr ' > 
(A.3)' 

MS = Mmr,mr 1, 
( 

. . . ) ml l ) 

We have enumerated the block as J = 0 for convenience. The symmetry 

(A.3) is a manifestation of the parity (mj + m -j> symmetry of the model. 

Let M, M' be the block-spins for two adjacent blocks: 

M = Mm19 m2) l a.9 mr) S ( 
(A-4) 

M' = M mi, m;, 
( 

. . . . m’ . r ) 

Then we choose the transfer matrix as follows, 

P(M,M') = exp 5 C (mj+m;) - i C A(j1-j,)(mjlmj2+m;~~2) 

lsjrr lSjlsr 

-2 

1 

1 

c 
rj Ir 1 
sj Sr 2 
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Owerator insertions 

The formalism for computing operator expectation values via the 

transfer matrix is identical to that of Part III, Sec. 5. For an 

operator @, one starts from 

for <tQ>. It is rewritten in 

v/2 

the statistical-mechanics average formula 

block-block matrix form as 

(V/*-n) 

( 
4-F u -b--f u 

tr POP* . ..*P*MO . +$-. . . . 3 > 
<o> = ? (A. 6) 

V factors 

tr ( 

. 
where MO is a square matrix of rank 2r and V is the volume of the lattice. 

n is related to the number of blocks affected by @. 

In the infinite-volume limit, ??may be replaced by 

T + 3s 
+ Plvlvl , (Ae7) 

u+ 
where p1 is the dominant eigenvalue of P, vl is its corresponding 

eigenvector, and Gy is the transpose of zl a 16 (A.3)'. We choose Gl 

to be normalized as follows, 

+s + 
v1 l v1 = 1 . (A. 8) 

(A.6)- (A.8) yield for the expectation value: 

3-S 

lim <@> = 
v1 l To l 5, 

2 
Y+a ( > 

. 
pl 

(A. 9) 
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For the five expectation values (2.3.3)- (2.3.6)' we get using this 

formalism: 
es -+Yz++z -t 

A= l 
v l A1 A2 l v1 

2 
p1 

B 
+-se + = vlaA l v1 

C 
+s -xx + = vloA l v1 

’ 

’ 

(A.lO) 

+s+--%xc-tz 
yA1 A2 4 1 

D = 2 
' 

Pl 

+s f-*zz +-tzz -f 

3-2 = 
vl*Ai A2 l v1 

2 ' 

where the seven matrices introduced here are 

A;@@') = P(M,M') exp I 1 -T5mi+ml 
c 

A(j-l)m;+ 2 
c 

l<jSr lsj<r 

A;(M,M’) = P(M,M') exp j-f<ml".; ~rA(j-l)mj+2~rA(j-1'r)mlm~~ ' 

- - 

AX(M,M') = 6m,ml Y Axx(M,M') = Gm,mlm2 Y A;X(M,M') = Ai(M,M')m; , 

Ay(M,M') = P(M,M') exp -+c ITli+lTl1)'mi 
( c 

A(j-l)m; +mi 
c 

A(j-2)m; 

2<j sr 2<jrr 

+ 2Illi 
c 

A(j-l-r)mj f 2m; 
c 

l<j<r 1SjLr 
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AiZ(M,M') = P(M,M')exp -35(ml+m2)+ml 
c 

A(j-l)mj+m2 
c 

A(j,-2)mj . 

2cjsr 2<j_<r 

+*ml 
c 

A(j-l+r)m; + 2m2 
c 

(A.11) 

lrjrr l,<j<r 



-211- 

REFERENCES 

1. R. B. Pearson, Phys. Rev. A18, 2655 (1978). 

2. H. R. Quinn and M. Weinstein, Phys. Rev'. Dg, 1661 (1982). 



-212- 

FIGURE CAPTIONS 

Fig. 1. 8 versus the coupling A for r = 2. The transition is at .889. 

Fig. 2. s versus the coupling A for r = 2. 

Fig. 3. Propagator components versus A (see text, Sec. 3.3). 

Fig. 4. Magnetization versus A for ranges 1, 2, 3 and 4. 

The range increases towards the right. 
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