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TWO EXERCISES IN SUPERSYMMETRY: 

A LOW-ENERGY SUPERGRAVITY MODEL 

AND 

FREE STRING FIELD THEORY 

Christian Richard Preitschopf, Ph.D. 

St anford University, 1986 

This thesis consists of two parts. In the first we study the new features 

of a supersymmetric standard model in the presence of heavy families. We as- 

sume the minimal set of Higgs fields, the desert between the electroweak and the 

grand unification scale and perturbative values of the dimensionless parameters 

throughout this region. Using the numerical as well as the approximate analytic 

solution of the renormalization group equations, we study the evolution of all the 

parameters of the theory in the case of large Yukawacouplings for the fourth fam- 

ily. The desired spontaneous symmetry breaking of the electroweak symmetry 

takes place only for a rather unnatural choice of the initial values of certain mass 

parameters at the grand unification scale. Two scenarios are possible, depending 

on the value of the gravitino mass. If it is smaller than 200 GeV the vacuum ex- 

pectation values of the Higgs fields emerge necessarily in an interplay of the tree 

level Higgs potential and its quantum corrections and are approximately equal. 

The quark masses of the fourth family are roughly 135 GeV, while the mass of 

the fourth charged lepton has an upper bound of 90 GeV. Further characteristic 

features of this scenario are one light neutral Higgs field of mass 50 GeV and 

gluino masses below 75 GeV. If the gravitino mass is higher than ZOO GeV one 

obtains a scaled up version of the well-known three family, heavy top scenario 

with quark masses between 40 and 205 GeV and all superparticle masses heavier 

than 150 GeV except the photino, gluino, one chargino and one neutralino. 
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In the second part of the thesis we generalize the gauge-invariant theory of 

the free bosonic open string to treat closed strings and superstrings. All of these 

theories can be written as theories of string differential forms defined on suitable 

spaces. All of the bosonic theories have exactly the same structure; the Ramond 

theory takes an analogous first-order form. We show explicitly, using simple and 

general manipulations, how to gauge-fix each action to the light-cone gauge and 

to the Feynman-Siegel gauge. 

. . . 
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I. INTRODUCTION 



1. Supersymmetry 

Since its discovery in the early seventiesi’] supersymmetry has risen to quite 

a prominent place in particle physics. It provides a symmetry operation trans- 

forming fermions into bosons, which has turned out to be a rather useful concept: 

we may explain small bosonic masses by linking the bosons to chiral and hence 

massless fermions, or use this symmetry to cancel certain radiative corrections to 

our theory, enabling us for instance to fix mass ratios to all orders in perturbation 

theory. There is hope that eventually a supersymmetric theory will be able to 

explain the huge gap between the weak interaction scale, i.e. 100 GeV, and the 

energies at which one will no longer see the difference between the strong and 

the weak force, roughly 1014 - 1017 GeV. Of course, it may turn out that nature 

has populated the intermediate region of energy scales. In this case it may be 

that supersymmetry will find its experimental verification not in particle physics, 

but in other areas such as nuclear physics[21 or in solid state physics, in systems 

which at their critical point can be described as superconformal field theories in 

2 dimensions. [‘I 

But let us be optimistic and believe in the concept of grand unification. Then 

we notice that we have to deal with physics uncomfortably close to the Planck 

scale, 101' GeV, where we expect gravity to become an important force on micro- 

scopic scales. Our distress arises from the realization that the theoretical tools we 

used so successfully to describe physics up to the weak scale fail fundamentally 

when applied to gravity. At low energies this does not bother us too much, since 

we may always argue that we have set up only an effective theory valid at low 
energies and that the ultraviolet infinities that arise and are thrown out in the 

process of renormalization deserve their fate because they are just an artifact of 

an approximation scheme which breaks down at very high energies. 

At grand unified scales, however, we have lost most of of room we need to 

sweep such difficulties under the rug. Also, if we treat gravity as an ordinary 

quantum field theory, we run into severe problems: instead of alleviating it ac- 
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tually worsens the set of problems associated with renormalization. 

First attempts to solve this puzzle used a Fermi-Bose symmetry of gravity - 

supergravity. I” The old problems did not plague these theories as seriously as they 

had pure gravity, but they persisted. It was the realization that supersymmetric 

string theories could provide finite, consistent quantum theories of gravity”’ that 

finally saved the day. 

These theories now provide at least one class of theories that has a chance 

of encompassing the theory of the world. Moreover, string theories are strikingly 

beautiful, and in the absence of any experimental evidence for their validity 

for some time to come, this has to be regarded as one of the main reasons for 

their attractiveness as a description of nature. At the moment, there is of cause 

an immense interest in bringing strings into contact with the observed world, 

and to give an example, efforts are under way to calculate the electron mass in 

orbifold compactification models? A whole new industry has sprung up, called 

superstring inspired models,‘71 that seeks to bridge the gap between what is known 

about strings at the Planck scale and the physics at the weak scale we hope to 

explain. However, no model has yet emerged that yields a satisfactory connection 

between Planck scale physics and the standard model of electroweak and strong 

interactions at 100 GeV. 
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2. Model Building 

In the absence of a sufficiently successful top-down scenario of descibing 

physics, we are urged to find our way from the bottom up. Actually these days 

it is from the Z” up. 

This is the process of building models: Explore the consequences of plausible 

assumptions about the structure of the world at energies higher than the weak 

scale and predict the consequences for experimentally accessible physics. At first 

we will invariably generate a great number of candidates for the model that 

best represents nature; this number may then be cut down by new experiments. 

However, many hypotheses which seem plausible a priori may be discarded or 

highly constrained by combining existing data with theoretical analysis. Chapter 

II. provides an example of this. I analyze the consequences of the assumtion that 

nature organizes itself in a way predicted by a quite general class of supergravity 

models, such that at the weak scale we would see just a minimal supersymmetric 

extension of the standard model, but with four families instead of the observed 

three. Does the weak scale emerge without introducing new uncomfortably large 

dimensionless numbers? Are we at liberty to organize the model in a way that 

it looks almost unified at very high energies? 

Questions like these already place quite substantial restrictions on our model, 

and we expect the upcoming experiments SLC, LEP and SSC to either verify or 

(more probably) kill it. 

Chapter II. consists of work done in collaboration with Mirjam Cvetic and 

has appeared in print. 18’ 
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3. Superstrings 

In contrast to the models mentioned above, string theories will not be defin- 

tely verified or falsified very soon. Also, the constraints imposed by demanding 

internal consistency - finiteness and freedom of anomalies,‘51 do not reduce the 

number of allowed models to just one or very few, as was hoped early on. This 

hope was based on the fact that initially only a very small number of Calabi-Yau 

manifolds, which parametrize the low energy limit of string theories, was known. 

However, the great interest in these manifolds led to the rapid discovery of a 

large number of them, and each of these manifolds may serve as an approximate 

compactification of the superstring. 

But then, there are quite a few aspects of string theory that are not well un- 

derstood, and among them we find in particular the question of what mechanism 

selects the correct ground state of string. This is a question one ought to ask 

in an off-shell setting of string theory, and almost all aspects of this ‘string field 

theory’ are currently the object of research. The free theories are now known 

and are described in section III., although some problems remain in the Ramond 

sector of closed superstrings. Various proposals for the interactions have been 

brought forth, and at the moment it is far from clear whether they are equiv- 

alent and in which approach actual calculations can be performed. Again, in 

the absence of experimental knowledge we have substituted aesthetic arguments 

and searched for a formulation of the free string theories which looks elegant and 

pretty. From a unified point of view we tried to construct covariant actions for 

all the free string fields . I do not claim complete success here, but let the reader 

judge which parts of chapter III. satisfy these requirements. 

This chapter is based on the work of ref. 9, done in collaboration with T. 

Banks, D. Friedan, E. Martinet and M. Peskin. 
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II. A LOW-ENERGY SUPERGRAVITY MODEL 



1. Preliminaries 

Locally supersymmetric gauge theories”’ provide an attractive way of link- 

ing, though not truly unifying gravity with other forces of nature. It is very 

intriguing that N = 1 supergravity (SG) in ten dimensions (d = 10) arises”’ 

as an effective field theory of superstrings,“’ which naturally incorporate grav- 

ity. Dimensionally reduced N = 1 SG models in d = 4 are therefore promising 

candidates for the effective theory which crosses the desert between the physics 

at the grand unification mass scale and the physics at presently accessible en- 

ergies. Those theories are very attractive because they provide the most sat- 

isfactory mechanism for spontaneous breaking of local supersymmetry (SS).14’ 

Realistic scenarios have been based on specific grand unified groups,“’ the left- 

handed electroweak symmetry sum x U(l)y ,“-” and the left-right symmet- 

ric group sum X sum X U(~)B_L[‘~‘~~’ . In these models the electroweak 

symmetry breaking is induced by the soft SS breaking terms which arise from 

the spontaneous breakdown of local SS. Mass parameters in these terms are of 

the order of the gravitino mass m3/2 which therefore sets the weak scale, i.e., 
j&j,7 = () ( m312), “‘5’G’71 * 

If the soft SS breaking parameters do not evolve substantially from their ini- 

tial values at pi = 0 (M~I) , one cannot break sum x U(l)y at the tree level of 

the Higgs potential unless one is willing to introduce a highly unattractive Higgs 

singlet chiral superfield. Here PR is the renormalization scale and Mpl is the 

Planck mass where local SS is broken. However, it is reasonable that the renor- 

malization of these parameters is substantial and that it is this renormalization 

which at PR = 0 (A&) triggers the spontaneous symmetry breaking (SSB) of the 

electroweak symmetry. In the heavy top scenario 17A101 a large Yukawa coupling 

of the top quark is responsible for this SSB. The Coleman-Weinberg scenario bQ1 

uses the idea that the parameters at A.&J leave the vacuum expectation values 

(VEV’s) of the Higgs fields undetermined at the tree level of the potential unless 

* In Ref. 11 m3/2 sets the scale of the right-handed vector boson. 
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one also includes radiative corrections of the Coleman-Weinberg type”” in the 

effective potential. In this case one ends up with a light Higgs particle in the 

mass spectrum. 

Here we study the effects of additional heavy families on the low energy N = 1 

SG theory in d = 4 with the gauge group: 

G = sum x U(l)y x SU(3)’ . (1 1) . 

We assume the desert between Mw and the grand unification mass scale MG 

as well as perturbative values of the dimensionless parameters throughout this 

region. In particular we investigate the evolution of all the parameters according 

to the renormalization group equations (RGE’s) when in addition to the usual e-, 

p- and r-families one has a heavier fourth family, consisting of the #,b’ and t’, with 

larger Yukawa couplings.’ Based on the mass pattern of the first three families 

it is a plausible hypothesis that the fourth family is a few times heavier than 

the third family. Therefore we assume that at MG the Yukawa couplings hU,D 

for the fourth family are at least a few, i.e., 2 3, times larger than the Yukawa 

coupling of the top quark. Our Higgs sector is the minimal one with two sum 

doublet fields H1,2. For an appropriate choice of parameters, either the heavy 

top’ or the Coleman-Weinberg scenario is realized, and we find distinctive mass 
. 

spectra for both cases. It turns out that the latter is phenomenologically more 

attractive, giving rise to superparticles whose mass is within reach of experiments 

under construction. We therefore concentrate on the Coleman-Weinberg scenario, 

always keeping in mind that there is an alternative. 

A supersymmetric model with additional heavy families may arise from family 

unification models or from the Es x Es heterotic string theory.[‘31 Therefore an 

analysis of the influence of such additional families may have implications for the 

low energy phenomenology of such theories. 

t In the case of more than four families we lose asymptotic freedom for the strong interactions 
and gs diverges below MC. 



In the non-supersymmetric theory based on the gauge group G a careful 

study [l*] of the RGE’s has shown that the Yukawa couplings of heavy families 

approach an infrared-stable fixed point determined by the gauge couplings.“5”61 

As we shall see the supersymmetric case shows similar features (see also Ref. 17). 

This in turn implies that the mass parameters of the theory evolve in a specific 

way, constraining the theory at the weak scale. Thus, the nature of the SSB 

pattern and the particle spectrum exhibit characteristic features which tightly 

constrain. 

This chapter is organized as follows. In Sec. 2 we specify the model and the 

assumptions and fix the notation. We devote Sec. 3 to a study of the renormal- 

ization group evolution of the parameters presenting the numerical results and 

explaining them via the approximate analytic solution. In Sec. 4, the SSB pat- 

tern of the electroweak symmetry is investigated ; the low energy mass spectrum 

is presented in Sec. 5. A summary is given in Sec. 6. For the sake of complete- 

ness we write down the complete set of the RGE’s for our model in Appendix A. 

The approximate analytic solution is presented in Appendix B. 
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2. The Model 

In this section we shall describe in detail the model and the assumptions used 

in the analysis. 

Desert Hypothesis 

We assume the group G of Eq. (1.1) to be the gauge symmetry of the theory 

between the weak scale A4w = 100 GeV and the grand unification scale & = 2. 

1016GeV. This enables us to study the undisturbed evolution of parameters over 

a wide range of energies from MG down to Mw. This allows certain parameters 

to reach an infrared fixed point to a good accuracy as PR + Mw, independent 

of their initial values. 

Local SS is broken at Mpi - lOl*GeV, thus giving rise to the soft SS breaking 

mass parameters. We ignore the renormalization of these parameters between 

A4”l and &. In that way the number of the initial values of the free parameters 

in the theory does not proliferate. 

Perturbative Unification 

We assume that all the dimensionless parameters have perturbative values be- 

tween Mw and MG. We are then allowed to analyze the RGE’s using only 

one-loop beta functions. 

Particle Content 

We work with chiral superfields which transform under sum x U(l)y x SU(3)c 

as follows: 

(EL)/ = (24, N 1) ; (a?)f = (LL 1) N N 

(Qdf = (5 & 3) ; (UR)f = (1 -$, 3) N N N (&)f = (;, $,s) N 

HI = (2 -f, A) H2 = (2,; 1) ’ 

(2.la) 

@lb) 

(2.lc) 

Here f = 1,2,3,4 denotes the family index. The fourth family therefore trans- 

forms in the same way as the first three families. The Higgs superfields (2.1~) 
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are the minimal set for the supersymmetric extension of the standard model. 

Superpotential 

The most general renormalizable superpotential consistent with the particle con- 

tent (2.1) has the following form: 

$I= ER~EE~EHI -I- UR~UQ~~-H~ + DRI’DQ~EH~ + pHFcH2 . (2 2) . 

01 
Here c = [ 1 -1 0 

and I?E,u,D are Yukawa matrices. Family indices are sup- 

pressed. 

We neglect flavor-changing effects and therefore set the off-diagonal elements 

of I’E,u,D to zero. The Yukawa couplings of the fourth family are assumed to be 

much larger than those of the other families. 

(rE,U,D)44 = hE,U,D B (rE,U,D)ii ; i = b%3 ( 1 2.3 

However, (I&&ii, i = 1,2,3, are not neglected in the RGE’s. Out of the 

many examples we have analyzed on the computer, we pick five with initial 

values h”v 2 h; E NN (3 to 20) l (r;)33 N (0.5 to 3.0) at j..&G in order to display the 

typical behavio; of the relevant solutions of the RGE’s in graphs. 

Soft Supersymmetry Breaking Terms 

In addition to the supersymmetric part of the Lagrangian we include the most 

general soft SS breaking terms as they arise from the spontaneous breakdown of 

SG. These terms are of the following form: 

Ls = fzg + &1+ Ls2 

where 
3 

Lg = - c mi4,X,Xa 
a=1 

(2.5a) 

Ls1= - [ER(mdh)E;~Hl + u R ~U~U)Q~EH~+DR(~D~D)Q~~H~ ( 
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+ u$“$J,,uR + H!m2 ~$1 + Hlm&2H2] l 

The fields here denote the scalar components of the appropriate superfields. The 

subscript a = 1,2,3 refers to the gauge group U(l)y, sum and SU(3)‘, 

respectively and again we have suppressed the family indices. The mass matrices 

CrnE,KD x rEsU,D) and mf3~,En,Qt UR DR are chosen to be flavor diagonal. Here 

rnkl, rnk2 and rn& denote the three’mass parameters of the Higgs fields Hl,2. 

In order to get as close as possible to the experimentally determined values 

for the gauge coupling constants as extracted from Ref. [18], we set 

= g; = g; = go = 0.96 ( 6) 2. 

atMG= 2 l 10l”GeV. This value is determined to about 1% to 2% by integrating 

the RGE’s for our particle content. We also assume that at MG the soft SS 

breaking mass parameters have the following symmetry: 

rnA1 = rnA2 = mx3 = rni (2.7a) 

mH3 = rns3 (2.7b) 

mE =mU=mD=mO (2.7~) 

(2.7d) 

Here rng3 and mo are naturally of the order of the gravitino mass m3i2, while 

the gaugino mass rni is a free parameter, which can be smaller than m3i2. This 

pattern of soft SS breaking mass parameters emerges from the hidden sector 

mechanism, [‘I which spontaneously breaks the local SS at Mpl; by assumption 

the pattern persists down to MG. 
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Table I 

Examples for typical initial values of the parameters at i& = 2.1016 GeV 

which ensure the proper spontaneous symmetry breaking pattern 1 (IS:) 1 R 

1 (Hg) 1 FZ 123 GeV. 

(a) 5 3 1 100 30 70 5 668 

(b) 5 3 1 100 30 70 50 908 

(c) 2 1 0.5 100 20 40 5 232.6 

(d) 0.5 0.5 0.3 40 20 30 30 85 

(e) 3 3 1 200 200 200 200 3050 

The results are obtained by using the numerical solutions. Here hi,,,, denote 

the Yukawa couplings for the fourth family, ~0 is the mass parameter of the 

superpotential (see Eq. (2.2))) rng and rn,/, are the gaugino mass, and the 

gravitino mass, respectively while rn& and m0 denote the soft supersymmetry 

breaking mass parameters defined in Eq. (2.7b) and (2.7~). All the masses are 

in GeV. 
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3. Evolution of the Parameters 

The coupling constants and the masses of our model evolve from the unifi- 

cation scale & to the weak scale Mw according to the renormalization group 

equations (RGE’s) given in Appendix A. Their solution for the gauge couplings 

and gaugino masses are examined in Sec. 3.1. Results for the parameters of the 

superpotential and for the soft SS breaking mass parameters are presented in 

Sec. 3.2 and 3.3, respectively. 

3.1 Gauge Parameters and an Approximation Scheme 

The solution of the RGE’s for the gauge couplings and gaugino masses with 

initial conditions (2.6) and (2.7a) is of the following form: 

sl = sf2 
1 - 2 (y Nf + 1) gy2t 

s; = St2 
1 - 2(2Nf - 5) gi2i 

s32 = gg2 
1 - 2(2Nf - 9) gz2t 

and 

mxi 0 gi2 *=123 
=mA902 2 ” i 

(3.la) 

@lb) 

(3.lc) 

(3 2) . 

Here t is related to the renormalization mass scale pi in the following way: 

l en& tr- 
167r2 MG (3 3) . 

and Nf denotes the number of families. If Nf > 4 we lose asymptotic freedom for 

the strong interactions and g3 diverges below &. This fact allows us to restrict 

our study to Nf = 4. 
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Fig. 1 

Gauge couplings in the case of four families 

We can now use the running gi’s as parameters of other RGE’s and numeri- 

cally integrate those equations to find the evolution of other parameters. We have 

done that for a wide range of initial values and obtained accurate data for many 

examples. Unfortunately, the computer fails to give us adequate information 

regarding the generality of these results. 

In our efforts to prove that we did not miss any phenomenologically attractive 

example in some corner of parameter space we found a way to obtain approximate 

analytic solutions for the RGE’s (see Appendix B). They enable us to analytically 

relate parameter values at Mw to those at MG and thus to understand the 

computer results. 

From Eqs. (3.1) one sees that gi and gi evolve slowly changing at most by a 

factor of two between MG and A.&.+ One may then expect to obtain a reasonably 

good approximate solution of the RGE’s for other parameters if one sets for all 
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gi = $[gi(PR = Mw) +g;] i = 1,2,3 (3 4) . 

mAi = i $bR=~W) +1 SF2 1 ,o A ; i= VA3 (3 5) . 

where gi = 0.55, 0.81, 1.09 and mA,. = 0.62mi, 0.73 rni, 1.31 rni for a = 1,2,3, 

respectively. One also has gf << gi,3 and gf usually appears in the RGE’s with 

a smaller coefficient than gi 3. 2 In most cases we are allowed to neglect gf and 

gfrnil compared to gi,3 and gz,3mi x 2, 3, respectively. In the approximate solution 

for the soft SS breaking mass parameters of the theory we performed an expansion 

in (kJ - hD)/(hJ + hD) and neglected hE in comparison with hu,D; these two 

approximations are justified by the evolution of hE,U,D as given in Sec. 3.2. This 

will allow us to obtain to an accuracy of less than 10% the approximate analytic 

solution for the mass parameters p (see Eq. (2.2)), m&l,IIz and (??+&UR,DR)& 

which are important in determining the nature of the SSB pattern. For the 

sake of completeness the approximate analytic solution for other relevant mass 

parameters are stated in Appendix B. However, our approximations are generally 

good only to an accuracy of 10% to 30%. In all cases we use the analytic estimates 

only to explain and substantiate the numerical results. 

3.2 Parameters of the Superpotential 

The evolution of the Yukawa couplings for the fourth family hE,U,D is gov- 

erned by the RGE’s (A.5), (A.6) and (A.7), respectively. The numerical results 

for typical initial values of hglu,, at MG are presented for hu,D and hE in Fig. 2 

and Fig. 3, respectively. From those plots one sees that hu and ho approach the 

same values N 1.1 at A& to an accuracy of lo%, while the value of hi decreases 
as PR + Mw. This behaviour is quite independent of hf,D, as shown by Bagger, 

Dimopoulos and Masso’171 . In particular, we find that as long as h&, ho0 >, 0.5, 

one obtains the same fixed point for any ratio of the two. In order to explain 

17 



these observations we obtained the following approximate analytic expression for 

hU,D,E: 

-2 

h2 g 
u =- 

1-x 1+220 [g (:::)]5'7++: [g (:I:)]) 

[$ (:-z)]) 
h$= & [I-,, [$- (;-“xo)]5’7+O(z; 

(3.6~) 

(3.6b) 

(3.6~) 

where 

X = Xoexp(14Tj2t) ,X0 = 1 - g 
0 

ho = 
hO, + hO, 

> zo= 
hO, - hO, 

2 h”v+h; 

(3.7a) 

(3.76) 

(3.7c) 

J(x) = { 1 + f hOE2 Ff$ [(g-l- (g)1311j1 (3.7d) 

and t is defined in Eq. (3.3). H ere 0 refers to the initial values of parameters at 

MG and g1,2,3 denote the average values for the gauge couplings defined by Eq. 

(3.4). Equations (3.6a,b) show that hu and hD approach the same infrared fixed 
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point:* 

(3 8) . 

One sees that at PR = 100 GeV, X/X0 is a very small quantity, i.e., X/X0 = 

0.031 < 1. Therefore, even for 20 = 1 the correction terms in Equs. (3.6) are 

small and our approximation should make sense. We then find just as in our 

numerical solutions that as long as h,, D o ho > 0.5, the Yukawa couplings hU,D 
assume their asymptotic values (3.8) at A& to an accuracy of 10%. From Eqs. 

(37a,b) as well as from the numerical solution one also sees that this result 

persists even in the case h& 2% h&, as long as hD 2 0.5. For comparison, (I’&)33 

is of order 0.15 for the top quark with a mass around 40 GeV. This implies that 

(I’&3 contributes to RGE’s only as a small correction to the leading contribution 

from hu,D, and the top mass becomes a free parameter of the model. 

On the other hand from (3.6~) one sees that hE decreases as PR --+ Mw and 

it has the infrared fixed point hE = 0. However, this value is not reached at 

Mw because [(X/X0) 1-Q]3/7 - 0.75 - 0 (1). Instead we can obtain an estimate 

h;(PR = A&) = Min (hg , g2) x 0 (i). In Figs. 2 and 3 we also plot the 

approximate formulae (3.6) (dashed 1 ine or ) f h u,D and hE, respectively. One sees 

that these solutions are in good agreement with the numerical results. 

The evolution properties of hE,U,D also justify the approximation that in the 

analytic solution for the evolution of the soft SS breaking mass parameters we 

performed an expansion in (hb - h$) / (hi + h$) and neglected h,g in comparison 

with hu,p 

The Yukawa couplings of the first three families are small compared to g = 

1.09, i.e., (I’E,u,D)~~ < g where i = 1,2,3. They have the characteristic feature 

that when PR + Mw, (I’& decrease, while (rU,& increase. 

* Of course, this is not a fixed point in the exact sense 114,171 , because the gauge couplings 
do run. However, because 92,s run slowly and g? < g& at A&, Eq. (3.8) is a good 
approximation. 
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(d) 
Ecevl 

Fig.2 

Exact solution for the evolution of hu (solid line) 

and hD (dotted line), the Yukawa couplings for the up- 

and down-quarks of the fourth family. The dashed 

line denotes the approximate analytic solution for h = 

(hu + hD)/2. Th e initial values for hu,D at & are 

taken from examples (a-d) of Table I. 

From Eq. (A.8) we see that the mass parameter p decreases and approaches 

the infrared fixed point p = 0. However, at j.@ = Mw, p need not reach the fixed 

point, especially when ~0 is large compared to the other mass parameters and 

%D are not much larger than 0 (8). Th is argument is supported by analyzing 

tL form of the analytic estimate (B.4), which is in good agreement with the 

full numerical solution as seen in Fig. 4. In Sec. 4 we show how the possibility 

that or. does not reach the infrared fixed point at 100 GeV allows us to break 

sum x u(l)y down to U(l),, at PR = 100 GeV without contradicting known 

phenomenology. 
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Fig.2 

Evolution of hE, the Yukawacoupling for the lepton 

of the fourth family. The numerical and approximate 

analytic solution are plotted with the solid and dashed 

line, respectively. The values for the Yukawa couplings 

at MG = 2 l 10IG GeV are chosen from examples (a-d) 

of Table I. 

3.3 Soft Supersymmetry Breaking Mass Parameters 

The RGE’s for the soft SS breaking mass parameters are complicated (see 

Appendix A). We are especially interested in the infrared behavior of those pa- 

rameters which are relevant for the proper breaking of sum x U(l)y down 

to q&n* These are the mass parameters mH,, rn& and rn& which appear 

in the terms with the doublet fields H1,2, only (see Eqs. (Mb,c)). However, we 

shall also comment on the evolution of other SS breaking parameters which are 

relevant for the particle mass spectrum of sleptons and squarks. 

From Eq. (A.12) one sees that the value of ?nH, decreases as /xR + Mw and 
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[GeVl 
Fig.3 

Numerical solution (solid line) and approximate an- 

alytic solution (dashed line) for p, the mass parameter 

of the superpotential (see Eq. (2.2)). The initial values 

for hE,U,D and p at i& are chosen from the set (a), (c) 

and (d) of Table I. 

its value at Mw depends linearly on its initial value rng3 at MG. This behavior 

can also be seen from the analytic solution (B.5a). Since rn& does not appear 

in the evolution equations for other mass parameters its value is not restricted; 

thus m& remains a free parameter of the model. 

The RGE’s (A.21,22) for m&1,Ha together with the RGE’s (A.18,19,20) for 

mth,U~,D~ 
-the squark masses for the fourth family reveal that neither mkl,& 

nor mt?~,U~,D~ 
approach an infrared fixed point for nonzero gaugino masses. 

The parameters mkl,& decrease, while mbL,uRIDR increases as PR + Mw. The 

numerical evolution for m$,,& and m&&& is plotted in Fig. 6 and Fig. 7, 

respectively. From Fig. 6 one sees that on the scale m3i2 the mass parameters 
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Numerical solution (solid line) and approximate an- 

alytic solution (dashed line) for ??zH,, (see Eq.(2.5b)). 

The initial values for the parameters at MG are from 

examples (a) and (b) of Table I. 

rn%l and rn& approach the same value as PR + Mw even if at MG one has 

hb # h& and hi - 0 (Zj). This is a consequence of the fact that as PR + Mw, 

hu and ho assume the same fixed point value and hE decreases. Also, in the 

RGE’s h& appears with a smaller coefficient than the one in front of h&,D. The 

latter arises from the color degrees of freedom. Therefore if one takes hu $=5 hD 

and hE E 0 the RGE’s for rn& and rn& become equivalent (see Appendix A) 

and then the evolution of these two parameters is the same. 

At this point, two comments are in order. Firstly, a splitting of rnbl and rnb2 

does exist and we can enhance it by choosing hb and h; such that hu(t) and 

ho(t) are different as long as possible. In practice, this means setting h& Q 3.0 

and h& R 0.5. Secondly, even if (m&, - m&J 
I 

(m&, + m&J is quite small, we 
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may choose m3j2 large enough so that rn& - rng2 x m&. Of course, this requires 

m312 > mw, and on the computer we obtain m3i2 > 200 GeV, depending on 

ho,,ho,. 

10000 

5000 

0 

-5000 

- 10000 

Fig.4 
Dvl 

Numerical solution for the evolution of rnk (solid 

line) and m2 Hz (dotted line) (see Eq. (2.5~)) for the val- 

ues at MG given in (a) and (b) of Table I. The dashed 

line denotes the approximate analytic solution for m&+ = 

From Figs. 6,7 we also see that at pi = 100 GeV, m&,,H, are negative while 

m$L,UR,DR are strictly positive. This can be understood by examining the RGE’s 

for m%l~,H2 and m$~,UR,DR* Let us assume first that the gaugino masses are zero. 

In this case the relation between the beta functions for m&,,& and m&,UR,DR is 
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Fig.5 

Numerical solution (solid line) and approximate an- 

alytic solution (dashed line) for ??2H,, (see Eq.(2.5b)). 

The initial values for the parameters at & are from 

examples (a) and (b) of Table I. 

m&I and rnL2 approach the same value as PR -+ Mw even if at & one has 

hb # hg and hg w 0 (g). This is a consequence of the fact that as PR -+ Mw, 

hU and hD assume the same fixed point value and hE decreases. Also, in the 

RGE’s hj4, appears with a smaller coefficient than the one in front of h&,. The 

latter arises from the color degrees of freedom. Therefore if one takes hl = ho 

and hE m 0 the RGE’s for rnkl and rn& become equivalent (see Appendix A) 

and then the evolution of these two parameters is the same. 

At this point, two comments are in order. Firstly, a splitting of rnkl and rnk2 

does exist and we can enhance it by choosing hk and h& such that hu(t) and 

hD(t) are different as long as possible. In practice, this means setting h; B 3.0 

and hg m 0.5. Secondly, even if (mk - m&J I (mk + m&J is quite small, we 
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may choose m3i2 large enough so that rn%l- rn& tirn &. Of course, this requires 

m3i2 > mw, and on the computer we obtain m312 2 200 GeV, depending on 

ho,,h;. 
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Fig.4 

Numerical solution for the evolution of rn& (solid 

line) and rn& (dotted line) (see Eq. (2.5~)) for the val- 

ues at MG given in (a) and (b) of Table I. The dashed 

line denotes the approximate analytic solution for m&+ = 

( mgl + mkJ/2a 

From Figs. 6,7 we also see that at pi m 100 GeV, m&,,H, are negative while 

m&UR,DR are strictly positive. This can be understood by examining the RGE’s 

for m$,,Ha and m~~,UR,DR= Let us assume first that the gaugino masses are zero. 

In this case the relation between the beta functions for m&,,H, and miL,UR,DR is 
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Numerical solution for the evolution of m2 
QL ( solid 

line), rn& (dotted line) and rn& (dot-dashed line), 

corresponding to the squark masses of the fourth fam- 

ily. The approximate analytic solution for mi+ = 

3 [ miL + fb$J~ + ma.)] is plotted with the dashed 

line. The initial values of the parameters are taken from 

examples (a) and (b) of Table I. 

the following: 

(3 9) . 

Since ii miill,Hz ’ 8 m$L,uR,uD 
it follows that m&,,& decrease at a larger rate 

lihan m~L,ul.2,DR and therefore mkl,& < ?n&uR,Dx for all pi < MG. On the 

other hand we see from Eq. (B.6) that 

1 1 
- (mf& ' m%2) + m$L + 2 (m&R + m&R) e mkl,Hz + 2miL,uR,DR + 0 2 (3.10) 
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as PR -+ Mw. This implies that at Mw, m&l,H 
2 

ti -2m$L,UR,DR and therefore 

the Higgs masses mkl,H2 are necessarily negative while the squark masses are 

positive. This feature persists even in the case of nonzero gaugino masses because 

the beta function for m2 QL,UR,DR gets an additional negative contribution from 

gluino masses and it is therefore even smaller than the beta function for m&H,. 

The above analysis is explained quantitatively by using the approximate an- 

alytic solutions (B.Sb,c) for mkl,H2 and (B.8b,c) for rntL uR,& which are pre- > 
sented with the dashed line in Fig. 6 and Fig. 7, respectively. From the analytic 

estimates one can also obtain the following quantitative values for mgl,HQ at MW 

as a function of initial values of mass parameters: 

1 
-(n& -I- mk2) w -0.28 rnii2 - 3.86 rnz2 . 
2 

(3.lla) 

1 
- 
2 ( 

rnkl 20 - mk2) = 0.078- 
h517 (3 m&2 - 0.7lmi + 2.40mi2 - 4.25mi mo) (3.llb) 

0 

Here 20 and ho are defined in Equs.(3,7b). The result that for any hO,, hs 2 0.5, 

at PR = 100 GeV the splitting is small on the scale of rn& and the average 

mass square is negative and of order of the gravitino and/or gaugino masses has 

strong implications for the nature of SSB of sum x U(l)y. We discuss this in 

Sec. 4. 

For the sake of completeness we also mention the evolution of the other soft 

SS breaking parameters for the fourth family. The values for mU,D increase as 

PR + Mw and they approach the same value - 1.8 rnt. This behavior can also 

be seen from the analytic estimate (B.8a). 

From Eq. (A.13) one sees that the value of ??2E decreases as PR + Mw. If 

hi = o(g) and ?n”E > m’,$.,J& it may be the case that at PR - 100 GeV one 

ends up with mkL,ER < 0 (see Eqs. (A.16,17)). In this case the solution which 

preserves U(l),, is a saddle point, because the slepton masses are imaginary. 
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60 

Fig.8 

The trilinear soft supersymmetry breaking parame- 

ter mu (solid line) and ??2D (dotted line) corrsponding 

to the squarks of the fourth family (see Eq. (2.5b)). The 

dashed line presents the approximate analytic solution 

for m+ = (mu + ?nD)/2. The values of the parameters 

at & are chosen from examples (a) and (b) of Table I. 

One may avoid such a pathological behavior by choosing the initial conditions 

We briefly comment on the evolution of the soft SS breaking mass parame- 

ters for the first three families. The mass parameters (mE,U,D x I’E,u,D)~~, i = 

1,2,3, are small compared to ?nE,JJD x hE,U,D because the Yukawa couplings 

(r~p,D)ii,i = 1,2,3, are smaller than hE,U,D. The slepton and squark masses 

for the first three families (m&ER,QL,uR &ii, i = 1,2,3, evolve with a negative 

beta function which is in the leading aider proportional to the product of the 
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Fig.9 

Numerical solution for ?nE, the trilinear soft super- 

symetry breaking mass parameter corresponding to the 

slepton of the fourth family (see Eq.(2.5b)). The ini- 

tial parameters at MG are from examples (a) and (b) of 

Table I. 

squares of gaugino masses and gauge couplings. Therefore at PR = 100 GeV 

these masses are in general rn?& + 0 (mi2). 

For all the above mass parameters we obtained the numerical solution. How- 

ever, since their numerical values are not essential for determining the nature of 

the SSB pattern, we do not present them. 
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Fig.10 
bV1 

Numerical solution for rn& (solid line) and m& 

(dotted line), th e s e 1 pt on masses of the fourth family 

(see Eq.(2.5c)). P arameters at i& are taken from ex- 

amples (a) and (b) of Table I. 

4. Spontaneous Symmetry Breaking 

The fixed point behavior of large Yukawa couplings determines to a large 

extent the magnitude and the symmetry pattern of the mass parameters in our 

model. In this section we study the implications for the spontaneous breakdown 

of SU(2)L x U(l)y as they arise from the structure of the Higgs potential. 

The SSB pattern should be compatible with the low-energy phenomenology, 

therefore it should ensure Maz[ (HF) , (H20>] = 0 (Mw) while the VEV’s of other 

scalar fields must be zero. Here the superscript 0 denotes the neutral component 

of the field. For the sake of further discussion we shall give here the part of the 
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tree level potential which depends on the Higgs fields Hl,2 fields, only:* 

bL = ( mkl + P”)H~HI + (mk2 + p”)H$f~ - pmHa(HTcH2 + h.c.) 

922 3 

C( 
71 

H,tdh - H~GH~)~ + $ (HAHN - H,tH2)” . 
= 

(4 1) . 

The mass parameters cc, ??2& and ?r&,& are defined in Eqs. (2.2), (2.5b) and 

(2.5c), respectively, ra are Pauli matrices and E = k-2. 

Let us first consider the heavy top’ scenario of SSB. In Ref. [24] Hall shows 

that if VTL is bounded from below and its minimum breaks SU(2) x U(l), one 

obtains 

Im&- mk2I = 
[(mkl + m& + 2~~)~ - (2pmH3)2]1/2 

mkl + m& + 2p2 
(m&,+m&l+m&2+2p2) (4.2) 

For sufficiently small ?nH, we find ]rnLl -m& ] 2 rn& as a necessary condition 

for the heavy top’ SSB pattern. A numerical study shows that its realization 

requires m312 2 200 GeV (see also Eq. (3.1 lb)). In addition, ~0 has to be chosen 

quite large (2 3m3,2), while rn& and mg must be kept small (5 50 GeV), 

otherwise we get transfered into a Coleman-Weinberg scenario with large m3j2. 

We commment on the problems one then runs into at the end of section 5. The 

larger m3i2 is chosen the more freedom one has with rnks and mo. The scenario 

necessitates introducing a rather large mass hierarchy that poses a formidable 

problem for model building. It leads to a distinctive mass spectrum, which we 

will discuss in section 5. 

* All the squarks and sleptons should have zero VEV’s. In the Higgs potential those fields 
appear in the bilinear combination, and therefore the extremum equations are trivially 
satisfied. We shall prove later that such a VEV pattern for squarks and sleptons also 
satisfies constraints for the minimum. 
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Now, let us look at the case with m3/2 = 100 GeV. Since then the RGE’s 

lead to approximately equal values of rnkl and rn& at pi = O(Mw) (see Eq. 

(Ul)), the minimization of VTL yields the VEV pattern: 

I(G) I = I (Ha I = HP ’ (4 3) . 

This pattern is correct up to order (m& - mL2) 
I 

(rngl + rnL2) 5 10% (see also 

Fig. 6). 

The potential VTL as a function of the real VEV H is then given by: 

1 
VT~, = 5 miH2 (4.4a) 

where 

1 
mi=-( 

2 mgl + mk2) + P2 - IPmH,I * (4.4b) 

Obviously, if rni > 0 the system has a minimum at H = 0, while for rn$ < 0, 

VTL is unbounded from below. In such a situation one has to include quantum 

corrections to the tree level Higgs potential VTL. This may be achieved by re- 

garding rni as a function of H, i.e., rnf, = rni (PR = H), or by improving the 

potential a la Coleman- Weinberg.“‘] We thus observe that m3/2 determines the 

nature of the SSB of Sum x U(l)y down to U(l),,; the SSB is necessarily 

radiative for m3i2 5 200 GeV , i.e., quantum corrections to the tree level Higgs 

potential determine the magnitude of H. 

The stable minimum of the potential occurs at the scale PR where rn$ - 0 

and H = I. From Eq. (3.11) one observes that at PR = Mv, ?$$,H, are 

negative and large, i.e., of order of the gaugino and/or the gravitino mass. Also, 

~1 approaches the fixed point value zero (see also Eq. (B.4)). Therefore, rn$ is in 

general negative and large. This implies that the radiative SSB of sum x U(l)y 

takes place too early in the renormalization group evolution, i.e. at PR >> && 

yielding H = 0 (PR) >> Mw. This of course contradicts H = 245 MeV which 
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is obtained from the experimentally observed VV* and Z”-boson masses. This 

implies that without careful adjustments of the mass parameters at MG, this 

scenario is not consistent with low energy phenomenology. 

In order to obtain a realistic SSB pattern one has to choose ~0 G ~(PR = MG) 

in such a way that rn$(pR = H) assumes a value close to zero, i.e., rnN << 

o( mO,, W/2) at Mw* From the expression (4.4) for m$ and analytic estimates 

for CL, mH, and m&l,Ha as given in (B.4), (B.5a) and (B.5b,c), respectively, one 

obtains the following constraint on ~0 in terms of the initial values ho = (hb + 

h&)/2, mO,, mo, rng3 and m312 (see Eqs. (2.7)): 

p. a 2.85 (h0)‘i7 + 3.86 rnx2 + o.%rn& + 0.5mH, 
> 

(4.5a) 

with m& being the value at Mw. In order to obtain the desired SSB pattern 

and to avoid the tuning of parameters one has to choose the following relations 

among the parameters at &: 

Also, rn& has to be adjusted to ensure mH3 < rng3 at the weak scale. If we relax 

any of the above constraints we have to introduce additional mass hierarchies in 

the model. Different typical initial values of the parameters at MG which yield 

mx - 0 at Mw are also obtained by using the numerical solution and are given 

in Table I. These values are in good agreement with the bounds (4.5) which were 

obtained from the analytic estimates. To our knowledge there does not exist any 

model that satisfies naturally the constraint ~0 2 3 m3i2. For example theories1’Q1 

starting from a superpotential containing only dimensionless couplings cannot 

accommodate heavy families. 

In the following we shall present the form of the quantum corrections to VTL 

and the minimization of the total potential. In the case when H is larger than 

the soft SS breaking masses one can use the mass independent renormalization 
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and sum all the powers of the leading logarithms. In this case one obtains the 

so-called renormalization group improved potential which is of the following form: 

1 
VT=im$(pR=H)H2. 

In the leading logarithm approximation, VT has the following form: 

1 
v; = s”“u(PR = PLL)H2 + VLL 

where 

1 drn; 
V-L = - - 

2 dt tl;t 

(4 6) . 

(4 7) . 

14 8) . 

and t = &+2$$$ 

At PR = I one may actually encounter a situation when H is of order 

of the largest soft SS breaking mass parameters. In this case the leading loga- 

rithm formula (4.7) is changed quantitatively and assumes the following Coleman- 

Weinberg form: 

m$(pR = PLL)H2 + vcw 

where 

3 
2 

vcw = - 
167r2 c 7@2 vi 1 h2H2 

i=l 

- - 8 h4H4bz - 
PEW %W 

and 

, 

m,2 = na?+ + i h2H2 rf: 
d - 

rn$ + i h2H2(m+ - psignm&)2 

h= kJ + hD 

2 

mU+mD 
m+= 

2 

(4 9) . 

(4.10) 

(4.11a) 

(4Slb) 

(4.llc) 
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(klld) 

The free parameter ~CW is related to ILL in such a way that V&I is identical 

to VLL when H is much larger than the soft SS breaking masses. In expression 

(4.10) we have included only the leading contribution to V&L All the parameters 

in V’L and VCW are taken at the renormalization scale ILL. 

Potential 

-02: . 
0 200 400 600 800 1000 

H[ GeV] 

Fig.6 

Potentials VT, VG and V; given by Eqs. (4.6), (4.7) 

and (4.9) as functions of H = 21 (Hf) 1 = 21 (Hi) I. The 

scale ILL is chosen to be 7 TeV. For aesthetical reasons 

we subtract a constant from Vi and V$ so that VT, 

V$ and V. have the same value at H = 10 GeV. The 

initial values of parameters are taken from example (a) 

of Table I. 

We choose ILL to be a few TeV. Then we may safely assume the mass in- 
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dependent RGE’s between ILL and MG while the leading logarithm potentials 

Vi or VI still provide a good approximation at Mw. We compare VT, V$! and 

V$ in Fig. 11. The location of the minimum is different in each case. However, 

this difference is not very significant, it can be countered by changing the initial 

value of the parameters at MG by a few percent. We may neglect the difference 

between VT, V$ and V$ safely, since the two-loop corrections are expected to be 

of order 10%. The minimization of VT yields a local minimum for the values of 

the parameters at MG given in Table I. We have checked numerically that this 

minimum is also the global minimum. 

This version of our model (a heavy fourth family and the top quark having 

mass around 40 GeV) is very different from the models of Refs. [7-9,191 with 

three families only and a heavy top quark mass (2 65 GeV). In those models the 

large Yukawa coupling (I’(I)~J of the top quark determines rn& to be negative at 

Mw while rnkl is still positive at Mw. Therefore the electro-weak symmetry is 

broken already at the tree level of the Higgs potential with the pattern (Hz) w 

245 GeV, (HI) fi: 0. In our case the Yukawa couplings of the fourth family 

hU,D 2 0.5 are the dominant ones and they determine the pattern of SSB while 

the contribution from (I’& is only a small correction. 
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5. Mass Spectrum 

We compute the mass spectrum by diagonalizing numerically the tree level 

mass matrices with renormalization group improved parameters. Formulae for 

the masses are readily obtained form the Lagrangian described in Sec. 2 and 

have been given in the literature.“” 

Heavy top’ scenario 

In the heavy top’ scenario our results coincide with what one would expect from 

a simple extension of three family models17’81 . For the fourth family quarks one 

obtains the BDM bound (Bagger-Dimopoulos-Masso 114,171 ) Gu,i%D < 205 GeV. 

Of course, previous bounds on the top mass no longer apply. It becomes an 

arbitrary parameter of the model. The only superparticles which can be naturally 

light are the gluino,photino and an additional neutralino which is mostly a z”, 

as well as a chargino, a mixture of z- and w”+. The lightest Higgs has a mass 

close to the electroweak gauge bosons. All the other superpartners have masses 

dictated by m312 N 300 GeV and are therefore safely out of range of detection 

by present experiments and those in construction. 

Coleman- Weinberg scenario 

If we assume the Coleman-Weinberg mechanism to be operative, the neutral 

Higgs mass matrix calculated from the tree level potential with renormalization 

group improved parameters has an imaginary eigenvalue. We replace it by the 

square root of the curvature of the potential VT (see Eqs. (4.6), (4.7) and (4.9)) 

at its minimum. Examples of mass spectra generated in that way are presented 

in Figs. 12. 

Our model predicts the quark masses of the fourth family. In Sec. 3 we have 

seen that the Yukawa couplings hU and hD approach the same fixed point g = 

1.09 at the weak scale. Since the only possible spontaneous symmetry breaking 

pattern is 1 (HI) 1 w 1 (H2) 1 = 123 GeV, we obtain up- and down-quark masses of 

135 GeV to an accuracy of 10%. From the approximate analytic solution (3.6~) 

for the evolution of hE we derive the approximate inequality hE < 0.65g and 
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we get an upper bound on the mass of the fourth lepton of 90 GeV. In most 

examples this mass is below 50 GeV. 

Since sum X U(1) y is broken radiatively, one neutral Higgs fields ends up 

light, i.e., in the range of 20-40 GeV. 

In our model we are able to accommodate photino masses my = O-40 GeV. As 

my rises the unpleasant mass hierarchy p/m3i2 > 3 at MG becomes even larger, 

as we easily see from Eq. (4.5). The model therefore prefers my 5 10 GeV. This 

in turn implies gaugino masses rnA3 2 75 GeV. 

Barring any further fine-tuning of parameters all the other superparticles 

acquire masses of order m3i2. The radiative symmetry breaking mechanism we 

employ decouples the value of (HI) from that of m3i2. This is illustrated by 

examples (a) and (e) of Table I and Figs. 12a and 12b where we have chosen 

m3/2 = 100 GeV and m3i2 = 200 GeV, respectively. In principle it is even 

possible to shift the masses of the superpartners of the ordinary particles into 

the TeV region. Apart from an increasingly difficult tuning of parameters we 

then have (HI) fm3i2 ~=5 0.1 and two-loop effects must be taken into account. 

Also, since we may have m&, - rng2 = 0 (m&), we are faced with the formidable 

problem of the Coleman-Weinberg analysis of a potential that is stabilized by 

quantum corrections in more than one direction. 

It is also interesting to observe that for the case with m3j2 = 200 GeV the 

mass of the lightest neutral Higgs field can be larger than the mass of Z” boson 

(see Fig. 12b). This differs from the results of Ref. [2l] where the lightest neutral 

Higgs field cannot be heavier than Z” even in the case of radiative SSB. However, 

in our example the relation (H) < m3/2 is different from the assumption of Ref. 

[2l] where the soft supersymmetry breaking parameters are all of order or smaller 

than Mw. 
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Particle mass spectrum of the model. The initial 

values of the parameters are chosen from examples (a) 

and (e) of Table I, for Fig. 12a and Fig. 12b, respec- 

t ively. 
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6. Summary 

We have studied a standard model in the context of N = 1 supergravity when 

a heavy fourth family is present. The theory has a minimal set of Higgs fields 

with the two Higgs doublets. The fourth family is a replication of the first three 

families with the same gauge transformation properties, but its Yukawa couplings 

@ID We also assume that a desert r at MG are chosen to be large, i.e., > 0.5.* 

extends between Mw = 100 GeV and MG = 2.101” GeV and that dimensionless 

parameters are perturbative through this region. 

First we studied systematically the evolution of all the parameters of the 

theory from & down to Mw. We obtained the numerical solution which was 

illuminated by the approximate analytic solution. The Yukawa couplings and 

certain other mass parameters of the theory have an interesting infrared behavior: 

(i) the Yukawacouplings hu and ho for the up and down quarks of the four family 

approach the same infrared fixed point g - 1.1, (ii) the masses rnkl and rngz of 

the Higgs fields Hr and H’s decrease and approach a negative value which is of 

order of the gravitino or gaugino mass, with a splitting which is smaller by a factor 

of IO and (iii) the mass parameter p in the superpotential approaches the infrared 

fixed point 0. For m312 5 200 GeV the fact that rn$$ R rn&% < 0 at PR = MW 

forces the spontaneous symmetry breakdown of the electroweak symmetry to 

occur in an interplay between the tree level Higgs potential and its quantum 

corrections. The spontaneous symmetry breaking pattern is then (.&) x (Hz). 

However, in order to obtain (HI) sa 123 GeV one has to choose unnatural initial 

values of the parameters at i&: ~0 2 3m3i2, h”v,o 2 5, rni 2 0 (m3i2) and 

rngs has to be chosen so that IrnH3) << m”H, at Mw. For m3i2 2 200 GeV we 

get p-1) m 0,(H2) N 245 GeV, provided ~0 > 3m3i2 and m&, mo < m3/2. It 

remains to be seen whether these constraints can be derived from a grand unified 

theory. 

* The results persist for any ht,* 2 0.5, even in the case h$ >> hg as long as hg 10.5 - (2 
to 3) (r&)33. Here (r&)ss is the top quark Yukawacoupling at MG. 
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Our model with a heavy fourth family and the top quark mass around 40 

GeV is different from the models of Refs.[7-9,191 with three families only and 

a heavier top quark (1 65 GeV). In those models the SSB of the electro-weak 

symmetry takes place already at the tree level of the Higgs potential yielding the 

pattern (Hz) = 245 GeV, (HI) x 0. 

Our model also imposes interesting restrictions on the particle mass spectrum. 

In the heavy top’ scenario, the fourth family quark masses have the BDM’14’171 

bound of 205 GeV. The lightest neutral Higgs has a mass around mw. Only the 

gluino, photino, wiggsino and one other neutralino can be naturally light, while 

all the other superparticles acquire masses exceeding 150 GeV. In the Coleman- 

Weinberg scenario the up and down quarks of the fourth family have the same 

mass 135 GeV to an accuracy of IO%, while the mass of the lepton has an upper 

bound of 90 GeV. Because of the radiative nature of the spontaneous symmetry 

breaking one ends up with one relatively light neutral Higgs field with a mass 

below 50 GeV. The gluino masses tend to be light, i.e., below 75 GeV. Masses of 

other particles, except fermions of the first three families, are in general in the 

region of 100 GeV. 

We conclude that the large Yukawacouplings of the fourth family have strong 

implications on the low energy structure of the standard model within N = 1 

supergravity. They determine the spontaneous symmetry breaking pattern and 

restrict the particle mass spectrum. 
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Appendix A. Renormalization Group Equations 

In the following we present the renormalization group equations for the model 

described in Sec. 2. They have been partially given in the literature.‘aay231 We 

have derived them by calculating the infinite parts of the one-loop diagrams 

in the superfield and component field formulation of the most general renor- 

malizable softly broken super-Yang-Mills theory with chiral matter fields. The 

regularization method employed was dimensional reduction which is equivalent 

to dimensional regularization for our purposes. The difference between the two is 

proportional to E = (4 - d) and hence has no effect on the residues of the simple 

poles in C. Higher poles do not appear in a one-loop calculation. 

Recently an independent evaluation using the effective potential approach 

has been given in Ref. [23], with identical results. 

In the following equations we regard ~E,u,D, (?nE,U,D X ~E,u,D) and 

??$&&QLrDRIUR as matrices with family indices. S is defined to be 

S = -mkl + mil2 - trm& + trm& + trm$, + trm$, - 2tf-mgR , (AJa) 

and 

t 
1 =- ha pR 

16n2 & 

while Nf denotes the number of families. 

Gauge couplings 

d dt g2 = (2Nf - 5) s; 

d 

dt $73 = (2Nf - 9) s; l 

(A.lb) 

(A4 

(A4 

(A 4) . 
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Yukawa couplings 

d 
dt rE = rE(tr rErEt + %rDrD+ - 39; - 3&) -f 3rErEtrE (A 5) . 

d 
dt rD = rD tr rErEt + 3tr rDrDt 

> 

d 

ru ru 3tr ruru+ 

13 16 

-& = - 9 gf - 3gi - 3 gi > 

+ 3rvrutru + rurDtrD 

The supersymmetric mass parameter p 

d 
-& p = @tr ruru+ + 3tr rDrDt -b tr rErEt - gf - 39;) (A 8) . 

Gaugino masses 

P*g) 

d 
dt Q2 = 2 (2Nf - 5) rnx,gi (A.lO) 

d 
dt m&3 = 2 (2Nf - 9) rnx,gi (A.ll) 

The Mass parameter of the bilinear soft term 

d 
dt mHa = 2trrE+(mErE) +6trrDt(mDrD) +6trI’~+(m~I’~) -2mX1gf-6mA,gz 

(A.12) 

Mass parameters of the trilinear soft terms 

1 (mErE) = drErE+(mErE) + s(mErE)rE+rE 
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+ (mErE) (tr rErEt + 3tT rDrDt - 3s; - zig;) 

+ 2rE trrE+(mErE) + 3trrD+(mDrD) - 3mx,gf - 3rnx,gi 1 (A.13) 

$ (mi&J) = aJrd(mUrU) + 2rUrDt(mDrD) 

3tr IIu+(muru) 

13 16 
- -m& - 3mx,s22 - -mx,si 

9 3 1 (A.14) 

$ (mdb> = 4rDrDt (mob) -k 2rDrvt (??2vru) 

-k (mDrD> (3tr rDrDt -t- tr rErEt 
7 16 

- 9 ill" - 3s; - -j- cl,", 

2rD tf%&mErE) 
7 

+ 3trrD+(??ZDrD) - G T&Y&x,$ 

(A.15) 

Soft mass squares 

mAA2 - $I$] 1 
(A.16) 

= 2rE*rETm& + 2m&rEtrET $- 4(mErE)*(mErE)T 

+ 4m$lr~*rET + 4rE*mi,r$ i- [-8gfirnxl I2 + 2g$]l 
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+ ~(~DJJD)+(~D~D) + 2(m&J)+(772urv) 

d 
ZrnR & = 2mbRrU*rUT + 2r$ruTm2U, + 4m&rU*rUT + 4ru*m~$TuT 

+4(mdb)*(mUrU)T + 1 TgflrnAl12 ~gZJrn~,12 4 2 - - -391 s 1 1 

(A.19) 

= 2m&,rD”rDT + 2rD’rDTm&, + h?&rD*rDT -f- 4rD*??$j~rDT 

+ 4(mDrD)*(mDrD)T -k - i g$72A112 - ~&?2A,12 + igf s 1 1 

(A.20) 

= 2mkl (tr rErEt + 3tr rDrDt) 

+ 2tr (mErE) (mEFiT)+ + 6tr (mDrD> (7?2DrD)+ 
(A.21) 

+ 2tr rE(mE, -b m&$ht + 6tr r&2$, -k ?&R)rDt 

- 2db% I2 - 6s: ImA I2 - gf s 

d 
dt m&z = Q-&p ruI’u+ + 6tr (mul?u) (muru)t 

(A.22) 

+6~rru(m$, -t- mbR)rut - 2g~1m~l~2 - 6g$rnAa12 + gfS 

Here 1 denotes the identity matrix with respect to the family indices. 
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Appendix B. Approximate Analytic Solution 

We give the approximate analytical solution for the relevant parameters of 

the model. The approximations are justified in Sec. 3 and are of the following 

form: 

(rE,U,D)44 f ~E,U,D >> (~E,u,D)G ; i = I,&3 (BSa) 

gi = 2 ’ [g&R = Mw) t-g;] ; i = 1,2,3 (BSb) 

gi(m = Md2 
gi 02 + 1 

I 
m; ; i = l 9 2 9 3 (BSc) 

Here (rE&& denote the Yukawa couplings for the ith family while gr,2,3 and 

mAr,Aa,As are the gauge couplings and the gaugino masses for U(l)y , sum 

and SU(3)’ gauge groups, respectively. The renormalization mass PR spans the 

range form the unification scale MG down to the weak scale Mw. We use the 

following notation 

t 
lir en 

PR =- 
2 - MG 

X = Xoexp(14g2t) , X0 = I- 5 
0 

ho = hOU+h$, ,=hO,-h~ 
2 h”v + h& 

J(z)={l+;!Jp[(~)y--~)]3/‘}-1 
X 

(B.2a) 

(B.26) 

(B.2c) 

(B.2d) 

(B.2e) 

Subscript 0 denotes the values of parameters at PR = MG. 
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Yukawa couplings of the fourth family hE,U,D 

ha=+& [1-2Zo[$(;-~)1”“] 

h2 E = hg 

Mass parameter p of the superpotential 

.J 

317 

J(z) 

P = CL0 [ ($L) (tf$)]3’7exp[-3gitj 

(B.3a) 

(B.3b) 

(B.3c) 

W) 

When evaluating the evolution of soft SS breaking parameters we neglected hE 

in comparison with hu,D and expanded in (hu - hD)/(hu + hD). 

Mass parameters m&, rnk and rnk 

+ p g [ (I- X0) (m - TEA) + X05iA h ($)I - 

m&+ = m&I +rn?il2 = -2 
m:/2 

6 
2 7 

+ ? i2i21n 

rn&- = m&I - mYi2 
2 

= p. [$ (Ls)]5’7 

(B.5a) 

(B.5b) 

X C-Co+Ri21n 
1 

($-)+i [m+-mo+QLn. $ 2 ( ,I} 
(B.5c) 
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where 

+f$j {(I-X0@-(m-WQ2 (‘y-p) 

+ 2(m - 7ii~)Bi~ - 1:p 
X 

( > x0 

- jig---2 ( mJ 
1 [ 

+X0 Ei2+E+ 
i+ (2>] en (I$) 1 

and 

TEA = ) / (:g:+39:) 

52= 32 2 2 

[ 
3 93 mAa + G&-n:, ] / (k$l;+39:) 

P4 

-2 m= 
[ 

I6 2 2 
y- g3mx3 - ij g2mx2 IL 2 q/($,2+3!?;) l 

I (B.7a) 

(B.7b) 

(B.7c) 

Here parameters m$L,UR,DR refer to the mass parameters corresponding to the 

fourth family. Subscript 0 denotes again the values of the corresponding param- 

eters at MC. Thus, rng3, mo and rni are the parameters defined in Eq. (2.7) 

and CO = 3mi,2. 

soft supersymmetry breaking mass parameters mU,D and m&L,UR,DR corre- 

sponding to the fourth family 

mUmmD=mA+ $ - [ (1 - &)(mo - m;\) + Xo??ixln ($-)](B.8a) 

1 2 3 
“$L=irn~/2+iE-j 

( 
G2 + 1 d 

2fP42) en (g) (B.8b) 

m&R 

1 
wm 

:R 7 z--m 6i2 - - i $ mi2) tn ($-) (B&) 

Mass parameters mu and G2 are defined in Eqs. (B.7). 
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III. FREE STRING FIELD THEORY 



1. Overview 

Why do we want to learn about string field theory ? We have grown ac- 

customed to thinking about physics at a fundamental level in terms of quantum 

field theory. So, whenever a new candidate for a replacement appears, one ought 

to check whether there is an appropriate correspondence, such that the usual 

picture of quantum field theory emerges at least in the limit where we know that 

it describes nature. I believe string theory to be just such a candidate, and that 

its connection to quantum field theory should be made explicit. Of course, this 

has been done at the level of scattering amplitudes[18’ long ago, and we know 

how to formulate string field theory on the light cone!” However, this formal- 

ism does not lend itself easily to calculations, and our experience with light cone 

field theories leads us to believe that a covariant formulation will be clearer and 

simpler to calculate with. This should hold particularly for problems that require 

off-shell amplitudes, such as that of finding cosmological solutions or determining 

the structure of the Higgs sector. Also, since string theories encompass gravity, 

there should be a generalization of the equivalence principle, and on the light cone 

this is probably impossible to find. At the level of practicality, we would like to 

find a Feynman diagram technique for strings, that would render the integration 

over their moduli spaces straightforward, if possibly tedious. 

The revival of string theories was accompanied by progress[16’20-30’2941 on 

the most pressing issues, the construction of gauge invariant interactions of 

open I16,31,5,71 bosonic and closed’32Y0.11 bosonic string fields and supersymmet- 

ric string field theory122’8-151 However, a complete and unified picture has not yet 

emerged and an efficient calculus is still missing. 

As one step towards that goal we present the gauge invariant free string 

field theories, i.e. the open and closed bosonic, Neuveu-Schwarz (NS) and Ra- 

mond (R) string field theories. We fix them to the Feynman-Siegel and to the 

light cone gauge and obtain the known physical degrees of freedom, together 

with the appropriate Faddeev-Popov (FP) determinants’231 . Into the center of 
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our formulation we put ‘L-dimensional BRST-invariance, with a natural calculus 

of differential forms1401 arising from the creation and annihilation operators of 

worldsheet ghosts. We obtain a simple formulation of free string field theory, in 

which the gauge invariant kinetic energy operator for open bosonic strings con- 

sists just of the 2-dimensional BRST charge Q.131’11-1a’31 We find that worldsheet 

and spacetime statistics are related and that the GSO projection eliminates fields 

with the wrong spacetime statistics, such as physical vector particles behaving 

like fermions. 

The chapter is organized as follows: First we introduce the calculus of forms 

mentioned above and decompose Q into differential operators acting on forms. 

Then we present open bosonic strings in a formulation equivalent to that of ref. 

23. , but simpler due to the introduction of additional auxiliary fields and the 

use of differential form language. We gauge fix explicitly to the Feynman-Siegel 

and to the light cone gauge in a fashion that easily generalizes to other string 

theories. We continue with a discussion of closed bosonic strings. In this case 

we modify the kinetic energy operator, changing the worldsheet BRST charge 

Q into another operator Q closely related to Q that also satisfies Q2 = 0. In 

addition, we require that our string fields be singlets under rotations on the 

worldsheet. This constraint may be derived’171 from an extended theory as an 

equation of motion, and we show how this is done. Now, in order to work 

out the NS sector of superstring field theory, one simply supersymmetrizes the 

differential forms obtained previously. In the R sector we encounter complications 

which originate in the zero mode structure of the string. As in the closed string 

case, we circumvent this problem by introducing a kinetic operator & that 

satisfies 6% = 0 and is built out of pieces of Q. Yamron has proposed a 

gauge invariant action that properly includes all the zero modes, and we gauge 

fix this theory to the action based on 6~. The last section will be devoted to 

closed superstrings. The construction of gauge invariant actions in the NS/NS 

sector is straightforward and for the NS/R and R/R sectors proceeds with the 

Q- method. In the R/R sector, this formulation requires an externally-imposed 
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dynamical constraint. This is a shortcoming of our theory. Nevertheless, all of our 

string field actions are quantum-mechanically complete: in the light-cone gauge 

we recover the known physical spectra, without generating dynamical ghosts. 

We adhere to the conventions of ref. 35, as far as the mode decompsition and 

the (anti)commutators of quantum fields on the world sheet are concerned. 
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2. The String Exterior Derivative and the BRST Charge 

We define a string field to be a functional of the &dimensional quantum fields 

#(z), the reparametrization ghosts c(z) and b(z) and, in the case of superstring 

theories, their superpartners I,!+(Z) , $2) and p(z), with x = esp(T + ia) for an 

Euclidean metric on the world sheet : 

IQ) = ~[~IL,v,C,M7]p) 

= $(x0) + ic~~~A~(x~) + c-%(x0) + l . l In) 
(2 1) . 

Here In) is the vacuum state satisfying +,$I) = 0 for all annihilation operators 

& in the theory and 2: is the center of mass coordinate of the string. Of course, 

for bosonic strings there is no dependence on the world sheet fermion tip(z) and 

the ghosts r(z) and ,0(z) , and for closed strings we have to add in P(Z) , $@) 

and so on. The mode expansion of I,!J, 7 and ,0 is in integer powers of z for the 

Neveu-Schwarz case, and in half-integer ones for Ramond boundary conditions; 

for example 

(2 2) * 

W$ tiL> = bi+m,orlp” ; qpu = diag(- + + + l l l +) . 

We distinguish the indices of $, 7 and ,0 from those of x, c and b by dotting 

them. The zero modes of the 2-dimensional fields deserve our special attention: 

we define IR) such that 

(2 3) . 

where Iw) is the vacuum wavefunction for all the nonzero modes and, in the case 

of the Ramond superstring the zero modes of $+, while the wavefunction for the 
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ghost zero modes is denoted by lw&. Th ese states have the properties 

(wlw)=l 

(2 4 . 

b-dCOIW~) = 1 

and 

bo I%) = P,lw,) = 0 (2 5) . 

For comparison with ref. 35 , where the SL(2)- invariant vacuum IO) is used, note 

that 

In> = 210) (2 61 . 

for open bose strings , 

In) = cllq*e = 0, q/jr = -1) (2 7) . 

for NS strings and 

IN 
1 

= C1lQbc = v@y = -5) (2 8) . 

in the R sector of superstrings. 

For closed strings we drop all the zero modes, and instead we introduce a set 

of auxiliary modes Z(’ and TO which have the same anticommutators as co and bo, 

and a vacuum state In) with properties equivalent to (2.4) and (2.5) . A more 

detailed account of the zero modes in the Ramond sector is given below. 

We find it useful to first expand *In) in ghost operators: 

Q[whhP]p) = {Qo[xd] + CO~o[X,~] + C-NQN[x,$] +. . . 

+ c-Nb l l l C-N’j=j-Ma - l l B-~l\E~l”‘M,Nl...Nb[x, $1 

+ l -*}p) 9 
(2 9) . 
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where 

C-N E {C-y+ } ,B-NE{b-n,P-ri},nEZ,liE ‘+’ (NS) . (2.10) 
Z CR) 

The summations run over the indices appropriate for the string field under con- 

sideration. 

We say that cwnb l l l c-nib-ma l . . b-,, Wml”‘ma,l...nb IR) is a (t) form and , in 

the case of NS or R strings, CBNb l l l B-M~ W”l***Ma~l...~bIn) is a (i) superform. 

Forms are conveniently classified by their ghost number g, which we define as 

follows: 

slfq = 0 

g(c”) = g(p) = 1 P (2.11) 

!&I) = s(P?i) = -1. 

The ghost number operator defined in this way is not hermitian; it satisfies 

g+ = 1 - g, but it acts on forms in a particularly simple way: a (i) form has 

ghost number g = b - a. Note that a general form does not include any ghost zero 

mode. The zero modes play a special role and are therefore treated separately. 

String fields will in general contain zero modes, even if they have definite ghost 

number. For example, the fields that appear in the gauge invariant action are 

(i) and ( k’l) forms for k E No. They form a string field I @) = (4 + c’q) In) of k 
ghost number 0, wh;ch means g(4) = 0 and g(q) = -1. We will see that in the 

gauge fixed theory all possible forms appear. 

Now, let us turn to the BRST charge on the world sheet. It is given by: 

Q 
1 = cBnLn + COZO - ~~-‘G~ 

(2.12) 
1 

+ ~FmnkCvnCwmbk 
1 3 - qJi’,.hk7-“7-“bk + fmh+,,-fi~i 

where normal ordering is implied, the summations extend over Z or Z + i and 

56 



FNM K are the structure constants of the (super-)Virasoro algebra: 

[LLn] = FnmkLk + Gdn+m,o = (n - m)Ltn+n + frdn+m,o 
[Gi, %I = Fh%kLk + ri,&+,~ = 2.&-m + r&i+,jq 
[L%,G+] = FnhkG6 = ( $2 - ~)Gn-+ria 

(2.13) 

With rN we denote the central charges: 

g n(n2 - 1) (bosonic strings) 
rn = 

9 n(n2 - 1) (superstrings) 

rti D ‘iL2 =- 
2 ( 1 -- 

4 1 

and with 20 the Regge intercepts: 

-1 (Bose) 

10 = -l/2 (Ns) 
-D/l6 (R) 

(2.14) 

(2.15) 

One can show that Q2 = 0 precisely when the spacetime dimension is 26 for the 

bosonic strings and 10 for the superstrings. 

If one separates the terms in Q according to their zero mode content and 

their action on forms, one obtains 

Q = d + S + c°K - 2bo u -; y°F + ; ,& 1 -a y”yobo (2.16) 

6 takes (t) forms into (“,‘) forms, whereas d maps (;1) forms into (&) forms. 

J. converts a (i) form into a (;I:) f orm. It serves as an index lowering operator 

on our differential forms. j. is its supersymmetric complement. The differential 

operators d and S used here are very similar, but not exactly equal to those of 
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ref. 23. The difference lies in their normalization. 

(2.17) 

is the Laplacian already encountered in ref. 23. The operators Nb,C,p,7 are the 

ghost mode equivalents of LO. They count the sum of indices of b, c,p and 7 

respectively. Note that the terms in Q containing 7O and p0 are present only 

in the Ramond sector of the superstring. They contain the 2-d supersymmetric 

completion of the co and bo terms in Q. Since worldsheet supersymmetry is 

explicitly broken by the NS boundary conditions on fermions, they do not appear 

in the BRST charge for the NS sector. The Dirac-Ramond operator 

F= 

is the square root of K in the 

Klein-Gordon operator Cl + m2, 

Gb’fbl 
0 + other terms 

same sense in which 

and satisfies F2 = K. 

and all the other (anti-)commutators are zero. (2.19) implies 

dS + Sd = F(F lJ + 4 F) 

(2.18) 

9 + m is the root of the 

Now, Q2 = 0 implies 

(2.19) 

(2.20) 

We will use this identity extensively in our treatment of the Ramond string. For 

the open bosonic string, (2.19) is just the algebra laid out in ref. 23, apart from 

a different normalization. The scalar product between two string fields @ and q 

will now bw written as 

(q@) = (nphqn) (2.21) 

With respect to this scalar product d is the adjoint of 6, while K,F,u and 1 are 

selfadjoint operators. 
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3. The Open Bosonic String 

The formulation of Banks and Peskin[231 of the open bosonic string can be 

written in terms of the differential operators we just defined (note the change 

in the normalization of d, 6, K and v with respect to ref. 23). A form of the 

open bosonic string theory considerably simpler than the original formulation of 

refs. 23-25 was independently discovered by Restuccia and Taylor,[161 Witten,‘“‘] 

Ramond, I41 Neveu, Nicolai and West ,“” and Aratyn and Zimerman!*’ 

This simplified form of the theory has the virtue of bearing a much closer 

resemblance to Witten’s interacting theory of open bose and fermi strings. [31,131 

The action is written as 

S = -;(@lQl@) (3 1) . 

with 

I@) = W) = (4 + cOTl)lq (3 2) . 

a general string field of ghost number 0. We obtain the following obvious gauge 

invariance: 

&I@) = QP), 

IE) = (E + c”e)p), 

which has the following successive redundancies: 

(3 3) . 

&IE) = QIG) 

6.W) = QIH) (3 4) . 
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Expanding (2.1) in ghost zero modes yields 

(3 5) . 

and the gauge transformations read 

63rl = KE - (d + 6)8. 

The E transformation of 4 displayed here is the gauge symmetry identified in refs. 

23-25. 

The action presented in refs. 23-25 may be obtained from (3.1) by gauge- 

fixing some of the auxiliary fields which this action contains. In order to do 

that, we should recall from ref. 23 the concept of a maximaZZy symmetrz’zed 

form. Consider the coefficient $M1-*Ma N~,..N~ as a tensor with upper and lower 

indices, separately antisymmetrized. Imagine lowering the upper indices and 

then projecting the full set of indices onto combinations of definite symmetry. 

Because of the separate antisymmetrization, one may find only representations of 

the permutation symmetry corresponding to Young tableaux with two columns. 

The maximally symmetrized combination is defined to be the combination in 

which the second column is as long as possible, that is, in which as many lower 

indices as possible are symmetrized with upper indices, and vice versa. In a O- 

form such as 4, with equal numbers of upper and lower indices, the maximally 

symmetrized component is that in which every upper index is symmetrized with 

a lower index in the process of Young symmetrization. In general, maximally 

symmetrized forms with g 2 0 are annihilated by #, and form the kernel of this 

operator. 
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Let us, then, partially gauge-fix (3.5) by imposing JJ 14) = 0. The resulting 

Fadeev-Popov determinant is nondynamical. Since & commutes with d and 6, 

we can see that (d + 6) 14) is a maximally symmetrized l-form; thus, only the 

maximally symmetrized component of 1 q) couples to the remaining components 

of 14). Since 1~) is in any event nondynamical, we can freely drop (or integrate 

out) the other components, leaving only the maximally symmetrized one. This 

component is annihilated by fi, an operator encountered previously in ref.23. We 

define it as follows: 

n- = c 
mEN 

lb-mbm - 
m 4 c P-UPU 

UEM 

M= 
N+; (NS) 

. 
N (R) 

(3 7) . 

Then, on string fields not containing zero modes, [.& fi] = n, + n7 - nb - np = g, 

where nd is the number operator for the modes of 4 = b, c&7. In particular, 

for maximally symmetized forms of negative ghost number fi is proportional to 

the left inverse of 4 : in our case fi# (17) = 1~). Using this relation to integrate 

out this last piece of IQ), we find at last 

(3 8) . 

which is the action of ref. 23, written in our new conventions. Our gauge-fixing 

left the residual gauge invariance: 

where 1~) has ghost number -1 and is restricted to be maximally symmetrized; 

this is precisely the gauge invariance of refs. 23-25. If we now use the results 
of ref. 26, we see that one can show the equivalence of S in (2.1) to the open 

bosonic string in the light cone gauge[‘O] and to Siegel’s covariant gauge fixed 

actioxGZol . 
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In order to go to the Feynman-Siegel gauge, however, it is not necessary to 

take the above route. There is a shortcut, discovered by Witten[311 : the gauge 

fixing condition b#) = Ir]) = 0 leads to the gauge fixed action 

%f = -+lQl@) + ;(&lboQIE,) 

= -;(+~c°Kl+) + ;(TiglcoKlrg) - ;(g, I(d + 6)~’ IO > 9 
(3.10) 

The ghost part possesses a gauge invariance of its own: 

&I&) = QIG) 

&$7g) = 0 

which we may fix by requiring bolE,) = 16,) = 0. Then 

%f = -;(QlQl@) + $(a,jbolEg) - ;(-drlbolG,) 

The process continues and we finally end up with 

(3.11) 

(3.12) 

S sf = -&c°K14) + ;(B,lc°Klcg) - ;(“gIcoKlcg) + l a l ] (3.13) 

where g(4) = 0, g(gg) = 1, g(Eg) = -1, g(Xg) = 2,, g(cg) = -2, .=a. This, of 

the form of the action found by course, constitutes exactly the field content and 

Siegel [201 . The BRST invariances are 

Lwl~) = (d + 6) 

s BRST Eg = 0 I 1 

s,RSTle,) = o Y 
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replacing the gauge invariance of Ia), 

LwI~g) = (d + S)lcg) 

&3ml~g) = 0 

Ls*I~g) = -(d + qs,> 

613RST18,) = 0 ) 

(3.15) 

replacing the gauge invariance of IEG), and so on. The E transformation of 4 

displayed here is the gauge symmetry identified in refs. 23-25. 

Let us now discuss the gauge-fixing of (3.1) to the light-cone gauge. The 

action of the open string in the light-cone gauge is given by 

S LC = -;pt 1 K Ia t 3 (3.16) 

characterize these states, let us where q& contains only transverse states. To 

denote the light-cone components of cr: by 

KN = (.Y& , MN = CY& . (3.17) 

With this notation, the transverse states are those which include no K, M, B, 

or C creation operators acting on IO). W e must, then, show that all states other 

than the transverse states may be removed from (3.1) by a choice of gauge. To 

do this, we will use a counting argument similar in form to the one developed in 

ref. 26 to discuss the gauge fixing of the action of refs. 23-25. (The reader who 

finds this argument a bit sketchy should consult ref. 26 for a more discursive 

presentation.) 

Represent the classes of states we must gauge away as: 

KpCQMrBG IO) ) (3.18) 

where p, q, r, s denote the number of creation operators of the given type which 

act on IO), p+q+r+s = N > 0. Since at any given mass level, J/ has a maximum 
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value, we can confine our attention to states with a fixed value of J/, beginning 

at the maximum, and sequentially remove all of these states from (3.1). We can 

remove these fields without generating Fadeev-Popov determinants if we shift by 

terms in (3.6) which involve no factors of p-. We will, in fact, use only terms in 

(3.6) involving (d + S). W e will only need to consider the term in d of the form 

d = CvN*p+M~ +... (3.19) 

and the term in 6 of the form 

6 = CN*p’M.-~ +... ; (3.20) 

we may imagine, then, that d simply converts a K to a C and S simply converts 

a B to an M. 

As a simple illustration of the use of these rules, let us discuss the counting of 

gauge parameters for states with .Ai = 1 and 2. For states with Y = 1, the only 

gauge parameters are of the form B]o). Th ese suffice to gauge away all states in 

14) of the form MIO). Th e remaining states in 14) which we need to eliminate 

are those of the form KIO). Th ese states appear together with the states MIo) 

in the first term of (3.5), but this term has been removed by our choice of gauge. 

The only remaining place that the states KIO) appear is in the cross terms of 

(3.5); since d converts a K to a C, this state can overlap with states BIo) in 1~). 

This matrix element uses only the term (3.19) in d, which contains no p-. Thus, 

the states KIo) act as Lagrange multipliers to eliminate the states BIO) in 1~). 

Thus, we have exactly the gauge freedom we require to eliminate all states with 

N = 1. 

The analogous argument for .M = 2 illustrates some complications found at 

higher levels. The stat ,es in 14) and (7) h h w ic must be eliminated have the form 

K210) 9 KM1 0)) M210), KJ+), MBIO), BCIO) l 
(3.21) 
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The gauge parameters in 16) and 16) have the form 

KBIO), MBIO), B210) . (3.22) 

In addition, we must consider the gauge parameters of the gauge parameters, 

which characterize the redundancies in (3.22). These are states in IG), of the 

form 

2 B IO> . (3.23) 

It is useful to think of these multiplets of states as components of tensors whose 

indices run over all positive integers. The commutation relations of these opera- 

tors place restrictions on these tensors: B2 IO) is antisymmetric in its indices, and 

M2 lo> is symmetric. Thus, we can use (3.23) to gauge away the antisymmetric 

part of MBIO) in (3.22); the remaining symmetric part of this multiplet can 

gauge away the states M210) in (3.21). KBIO) in (3.22) can gauge away KMIO), 

and B210) in (3.22) can gauge away the antisymmetric part of MBIo) in (3.21). 

The remaining states in (3.21) are either Lagrange multipliers or are eliminated 

by Lagrange multipliers: K2 IO) 1 e iminates the symmetric part of MBIo) , and 

KBIo) eliminates BCIO). 

Let us now generalize this counting argument to all levels. As a first step, we 

must reduce the full set of gauge parameters in IE) to those parameters which 

cannot be gauged away by higher-level gauge transformations. Consider, for 

example, the components of IE) of the form 

K?‘CqMr--lBs+l 0 . I > (3.24) 

Some of these components can be removed by acting with S on components of IG) 

of the form KWqMre2 Bsf2 IO). These components have their own redundancies, 

corresponding to the states KW’qMr-3Bs+3 IO), and so forth. The nonredundant 

components of 1-E) can be identified as follows: Operators Mr form an r-index 
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symmetric tensor with indices in the set of values of N (N > 0). Similarly, oper- 

ators BS form an s-index antisymmetric tensor. It is convenient to project states 

with both M’s and B’s onto states of definite (mixed) permutation symmetry, 

labeled by Young tableaux. For example, M4B3 10) belongs to 

I I I I I X 
II 

= + El= . (3.25) 

Since we will be seeing many products of this form, let us refer to a Young tableau 

of r symmetrized boxes as {T}, a tableau of s antisymmetrized boxes as [s], and 

a tableau with a row of T boxes above a column of s boxes as (T/S). In this 

language, (3.25) reads 

(41 x PI = W) + P/3) l 
(3.26) 

One can then see that states (3.24) in IE) contain M’s and B’s in the representa- 

tion (T/S) + (T - l/s + 1). Their redundancies belong to (r - l/s+ 1) + (r - 2/s + 2). 

The redundancies of the redundancies belong to (r - 2/s + 2) + (r - 3/s + 3). 

Continuing until one runs out of M’s, and then resolving the net effect of these 

parameters, one finds that the nonredundant component of the gauge parameters 

in (3.24) have M’s and B’s combined to the symmetry (r/s). 

We will act on IQ) with th ese symmetry motions in a different way depending 

on whether or not r 2 p. If r 2 p, act 6 on the nonredundant components of 

(3.24) to remove states of the form (3.18). The piece of (3.18) which remains 

has M’s and B’s symmetrized according to (r + l/s - l), so that the full set of 

operators displayed has the character 

{PI x [tll x (r + l/s - 1) l 
(3.27) 

If r < p, decompose {p} x [q] + (p + l/q - 1) + (p/q). Act S on the (p+ l/q - 1) 

component to remove states of the form KWqMrBslO). Act d on the (p/q) 

66 



component, to remove states of the form Kp-lCq+lMr-lBsS-l IO). The effect of 

this transformation is to reduce each group of states KWqMrBSIO) with r < p 

to the structure: 

(Pld x (r + l/s - 1) + (P/d x (TI4 = (PM x w x [s] l 
(3.28) 

Now let us examine the form of (3.1) that we have obtained. We have gauged 

away all states with q = s = 0, r 2 p. Thus, the states with q = s = 0, 

r < p cannot appear in the first, diagonal term of (3.5). They can only appear 

in the off-diagonal terms involving (d + S), using a d to convert it to the struc- 

ture Kp-lCIMr IO), which h as a nonzero matrix element with states of the form 

K’Mp-lBl IO). As in our simple examples above, the terms with q = s = 0 

act as Lagrange multipliers which eliminate terms with s = 1. After the gauge 

transformations described in the previous paragraph, both sets of states have 

been reduced to the multiplet (p/O) x {r}, so all of the remaining states of the 

form (3.18) with q = 0, s = 1, and T 2 p are eliminated. Now the states with 

Q = 0, s = I, r < p appear only as Lagrange multipliers for the states with 

9 =l,s= 1, r 2 p. Comparing the representations into which these h&e been 

projected, we see that all of these states are eliminated. The pattern continues 

until all components of Ia) h ave either been removed or have acted as Lagrange 

multipliers to remove others. 

In comparing this argument to that of ref. 26, the reader should note that 

here we find no nondynamical component fields in addition to the transverse 

fields. All unwanted components of 1~) disapp ear. It is never necessary to use 

the fact that the 1~) components are purely auxiliary. This last feature is essential 

for generalizing this argument to the theories we will consider in Section 6. 
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4. The Closed Bosonic String . 

It is possible to construct a gauge invariant theory of closed strings along 

the lines of the previous section. However, just enlarging the index space to 

include barred operators and replacing Q in (3.1) by the BRST operator for the 

closed string does not work. The physical spectrum has to obey the algebraic 

constraint K - K = 0, and this condition is not a consequence of the Ansatz. 

The complications arise from the zero mode structure of the ghosts. We may 

circumvent these difficulties by just dropping all the zero mode dependence of 

the string fields and introducing instead two formal operators & and p with the 

same algebra as bo and co : 

(b > -02 = 32 ( > = 0 ,{&,P} = 1. (4 1) . 

Then, let us define the vacuum to have a structure analogous to the open string 

case, eq. (2.4). We build all our string fields on this vacuum, and impose the 

constraint 

(K-??)I@) =o. (4 2) . 

Henceforth we will work in the subspace of string fields obeying this condition. 

Now replace Q by 

Q “=c”(K+li;)+d+6S;i+&2bo(U+ji) (4 3) . 

Then it is easily verified that Q2 = 0 and therefore 

SC = -;(qQp) (4 4) . 

with I@) = (4) + q7) is g g au e invariant just like in the open string case. Note 

that the constraint K-K commutes with all the operators we encountered in our 

discussion of the open string as well as with their barred counterparts. Therefore, 
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the gauge fixing procedures to the Feynman-Siegel gauge and to the light cone 

gauge can now be taken verbatim from the section on open strings. Again we find 

Siegel’s gauge fixed action’201 , but without the Lagrange multipliers that enforce 

K = K . This constraint, even though it is algebraic, is one of the constraints 

one encounters when first-quantizing the closed string, and hence it should be 

regarded as an equation of motion for second-quantized string fields. Therefore 

we would like to find a formulation of closed string field theory that leads to this 

equation of motion. This has been done by Ballestrero and Maina[171 and we will 

describe their construction in the following. 

For that purpose, let us change our notation from barred and unbarred 

operators a and ?i to the linear combinations a* = l/fi(a zt Z) . Also, let 

D=d+G+d+T. ThentheBRSTchargeis 

Qc=Q+Q= c”+K+ + co-K- + D - 2b,S .&+ -2b, &-- . (4 5) . 

We keep the complete zero mode structure and build out of a linear combination 

of the ghost zero mode states IQ) @ 14 9 co1 wg) @ I49 9 lwg) @ IQ> 3 and 
cO+Jg) QD lug) a vacuum state ISZ,) that satisfies 

c”-lf&,) = 0 , b@,) = 0 

and 

(flslco+b,ln,) = 1. 

Explicitly, IQ,) = co- IUS> @ Ia,) , and we build string fields on the vacuum state 

In) = Iw) 8 In,) . Then the action 

S = -&[(Qijb,, QclP) + (W&K-~C)-(C~K-Q~~@)] (4 8) . 

is gauge invariant under 

&I@) = Qcl@) 
(4 9) . 
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Now, let us show the equivalence of (4.8) to (4.4) . We use the components of 

IA) that do not satisfy K- = 0 to fix the partial gauge K-IX) = 0. This leads 

to a nondynamical Fadeev-Popov determinant, which we may normalize to 1. In 

other words, we do not generate ghosts by this procedure. The IX)-dependent 

terms in the action vanish and if we now expand I@) in the ghost zero modes, 

Ia) = (4 + dtic’+~ + -+x + c’+b,+)lR)> (4.10) 

we obtain 

S = &[ - (4IK’I4> + m? 1014) + h-(+lDlrl) - 4(rll u+ 1’1) 

+ &ww + ~wl~-ls) + ;wqx) + &K-Is)]* 
(4.11) 

This action has exactly the form we wanted to get: the fields I$) and Ix) are 

Lagrange multipliers enforcing K- = 0, and if we integrate them out, we obtain 

precisely (4.4) in component form, as one easily recognizes by comparing (4.11) 

with (4.4) and (3.5) . 
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5. Neveu-Schwarz Strings 

One obtains the Neuveu-Schwarz sector of the superstring by a straightfor- 

ward supersymmetrization of the bosonic string. In the construction of super- 

forms (2.9) we now sum over dotted and undotted indices. Our forms then differ 

from the ones found in supersymmetry textbooks13” only by the rule [P, rli] = 0, 

whereas the standard choice reads {&P, d&} = 0. 

A general field I@) now contains as expanison coefficients tensor fields of 

different statistics. In 

let us choose A,(x) to be bosonic, since we wish to describe spacetime bosons in 

the NS sector. Then ]a) must be a Grassmann-valued form. For the ghost field 

c(x) and the antighost E(X) this works out nicely, since they have fermi statistics. 

However, the fields x(x), VJx), and T&x) are also assigned Grassmann values, 

even though the corresponding forms have ghost number 0, and the fields are 

therefore physical. They have integer spin and then clearly the wrong statistics. 

We will have to project out these unwanted fields. In (a), they arise as expansion 

coefficients of products of creation operators with an even number of creation 

operators ci” E {$J$~~,P~},;L E N - i. Obviously, the projection to use is just 

the good old GSO one’331 , 

. (5 2) . 

The remarkable correlation between two-dimensional and space-time statistics 

first appeared in Siegel’s papersIZol on the gauge-fixed bosonic string theory. The 

observation that the GSO projection must be made in order to preserve the cor- 

rect statistics of fields in the Neveu-Schwarz-Ramond theory has also been made 
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by LeClair. Is1 For properly GSO-projected string fields it is now straightforward 

to supersymmetrize the preceding two sections. We simply use instead of the 

operators Q ,Q and Qc their natural extensions to the NS sector. The ghost 

zero mode structure is the same as before, and therefore all the manipulations 

go through as described above. 

The Neveu-Schwarz-Ramond theory contains three types of closed strings, 

those with Neveu-Schwarz boundary conditions for both left- and right-movers, 

those with Ramond boundary conditions for one set of modes, and those with 

Ramond boundary conditions for both left- and right-moving modes. The sectors 

of the first and third type lead to bosonic string states; however, it is convenient to 

treat the third type together with the fermionic strings. We are ready, though, to 

write the action for the first sector. In fact, this action is exactly (4.4) , with the 

bosonic string operators d, 6, K, J. replaced by their Neveu-Schwarz counterparts 

and with a GSO projection applied independently to the left- and right-moving 

components of each form. This projection does not affect the proof of gauge 

invariance or the process of gauge-fixing, both of which proceed exactly as above. 

By replacing only the left-moving operators by Neveu-Schwarz operators, while 

keeping the right-moving operators those of the bosonic string, we find a free 

field action for the bosonic states of the heterotic string?’ 
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6. Ramond Strings 

In the Ramond sector, things get a little more complicated due to the exis- 

tence of zero modes in the fermion sector on the worldsheet. In particular, in 

addition to co and bo there now exist ghost zero modes r”,po with bose statis- 

tics. Also, we have to cope with the zero modes of tip(~). We do this by splitting 

the 10 fermionic operators $J,” into 5 creation and 5 annihilation operators. The 

ground state is then %&fold degenerate, and for Euclidean spacetime we denote it 

as the spinor Icr) E 16+16 of SO(10). A n even number of $0’~ generates the 16, 

i.e. lefthanded spacetime spinors, while applying $0’~ an odd number of times 

yields the 16, which describes righthanded particles. The vacuum with respect 

to the $$s is then the highest weight state of the 16 of SO(lO), and the $fi 

zero modes act on it as T-matrices. If we represent the operators $0” in matrix 

form, we will implicitly multiply all operators with worldsheet fermi statistics 

with ( -)n+~ = I’ll in order to maintain the proper anticommutation relations. 

The hermiticity properties of the BRST-charge and its components follow from 

I? = I’“I’4Yo and are given by 

@=r"Qro , Ft =r"mo , dt= r"6ro ,... (6 1) . 

Note that for SO(10) the spinor representations are complex, while in Minkowski 

spacetime, i.e. for SO(1,9), these representations may be chosen to be real Ma- 

jorana spinors. 

As in the Neveu-Schwarzsector the GSO projection ensures the proper space- 

time statistics of the component fields. For example, in order to define a general 

string field 

IQ”) = {E” + c”?p + . . . In) (6 2) . 

with uniform statistics, we have to project I” such that it has definite spacetime 

helicity. The choice we make then requires vu to have the opposite helicity. 
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Therefore the GSO projection must fix the sign of 

n$ +nc-knb 
7 (6 3) . 

where the number operators include the zero modes. When we choose to work 

in the T-representation of the $+ zero modes, we simply replace their contribution 

t0 PGso by I?? 

In order to write down an action for R strings, we employ the same trick 

we used for closed bose strings. We drop all the ghost zero modes and replace 

them by Z? and &. We modify P OS0 accordingly and are again able to contruct 

a nilpotent operator 

N 

Q R = ;“(-)+ + d + S -;o(-)f(F jJ+ JJ F). (6 4) . 

The operator (-)f is inserted to make G anticommuting. By definition it anti- 

commutes with any 2-d field with fermi statstics, and hence it may be chosen to 

be identical to PGso . Our Ansatz for the Ramond action is then 

(6 5) . 

where I4P) = ((aa +&P) In) is a g = 0 string field that satisfies PCs0 = 1 and 

(51 = p)W . 

This action has the gauge invariance 6, I@) = &I@, where E is now a 

spinor-valued g = -1 field. By directly applying the steps leading from (3.10) to 

(3.13) , this action can be gauge-fixed to the Feynman-Siegel gauge 

. 
S FS = -$q$P), (6 6) . 

, where now I+) is a general PCs0 = +l form in the space of nonzero moaes. 

Using the arguments given for the, descent to the light-cone gauge, (6.6) can also 

74 



be gauge-fixed to the form 

S LC = -~(&lc,la) 7 (6 7) . 

where 1 h) is a transverse state. From this formula, one can then easily reach 

the light-cone gauge action by integrating out the components of l4t) satisfying 

r+J4t) = 0. 
Written in components (after performing the zero mode algebra), the action 

(6.7) takes the form 

S = -${(iJlq4, + (rlpY+UF~rl) 

(6 8) . 
- @p+qrl) - (vp+q4)}. 

Note that in this expression, unlike the bosonic string actions, the auxiliary field 

iI?> has become dynamical. This turns out to have no effect on the gauge-fixing 

of the action by the methods of Section 3; our arguments there did not make 

use of the explicit form of the term quadratic in the auxiliary field. However, 

it is interesting to note that this fact does play a role in more conventional, 

component-by-component covariant gauge-fixing. As a concrete example, let us 

consider the first excited mass level. The components of 14) at this level are the 

vector-spinor coefficients of the states CY’“-~ IO) and T/J!, IO); these have opposite 

chirality and thus can form a massive spin-p 3 field. In fact, after redefining these 

component fields appropriately, one recovers the action for a gravitino made mas- 

sive by compactifying a spin-i field in 11 dimensions on a circle. The conventional 

covariant quantization of this field would bring in 3 massive spin-i ghosts, the 

third being the Nielsen-Kallosh ghost. 138’303 The Feynman-Siegel gauge action for 

the Ramond string contains only two massive ghosts. But (6.8) also contains, at 

this level, two dynamical components of IQ-), corresponding to the states b-110) 

and ,&~Jo); th ese have opposite chirality and combine to form a massive spin-i 
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fermion with normal statistics. This fermion precisely compensates the Nielsen- 

Kallosh ghost. 

We have now reached an understanding of how the physical Ramond spectrum 

may be generated by a covariant field theory. What we are still lacking is a clear 

picture of the ghost zero modes. We expect that the reduction of the zero mode 

space to 3 and TO bears some resemblance to the case of closed bose strings. 

However, in the Ramond sector this problem is substantially more difficult: not 

only is the Hilbert space infinite dimensional, being generated by the commuting 

operator 7 O, but in addition there exist an infinite number of inequivalent copies. 

These copies are called ‘bose seas’ and are characerized by integers 1M. All 7’ 

with jL < 1M act on the M-vacuum as creation operators, and the remaining 7’ 

annihilate it. For on-shell states Friedan, Martinet and Shenker’351 have shown 

the equivalence of all the bose seas, in the sense that scattering amplitudes for 

physical states may be evaluated in any one of them, and the result is independent 

of the bose sea chosen for the computation. This proof does not hold for off-shell 

states, and we are left with the so-called bose sea problem: how do the bose seas 

enter the field theory and what does the reduction to (6.8) look like? 

A partial answer to this question has been given by Yamron , who con- 

structed a free field theory in one bose sea. We will describe his formulation 

briefly and gauge fix his action to (6.8) . First, let us discuss some properties of 

the bose ghost zero modes. They satisfy [r”,Po] = 1, and we will work in the 

bose sea where 1M = 0. Its vacuum IQ) is annihilated by PO and therefore the 

zero mode Hilbert space H is the space of functions of r”. The vacuum state is 

represented as the constant function 1, and j30 acts like a derivative: PO = 4,0. 

The inner product of H must be defined in such a way that ,& is antihermitian: 

(wb] = J &y”. This implies 

(6 9) . 
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The Ansatz for the action is 

s= -iA (31~~1~) , (6.10) 

where Q is the BRST charge (2.16) and G is an operator that acts like a metric. 

In order to obtain a nonzero inner product, G must contain the function S(7'), 

and since we want a first order action, a factor co should appear. The gauge 

invariance 

&El@) = QIE) 
is obvious if {G, Q} = 0. Yamron has constructed a metric satisfying all these 

requirements. In our convention it reads 

G=c°F ’ n o (272 + l)! (-8 y, aTo 
n 2n+1S(yo) = 2~'6((7')~ +8 4) . (6.12) 

= 
A comparison of (6.12) with (2.16) shows that the terms in Q that contain bo 

do not appear in S . Consequently, the string field components which contain co 

are projected away by G. Then the expansion of I@) in ghost zero modes has the 

form 

I@) = (4 + $7’7 + (Y’)~Ao + (Y’)~& + (Y’)~A~ + . . .)ln) , (6.13) 

and the gauge parameter IE) may be written as 

IE) = 2 Em(~“)“l~) + ~DncO(~o)nln) l (6.14) 
m=O n=O 

We now use the gauge parameters Dn,n 2 0 to set An = 0,n 2 0. The corre- 

sponding gauge transformations are 

6 IAn) = -iIOn, - 2 U IDn+2) 3 (6.15) 

and we see that the corresponding Fadeev-Popov determinant is algebraic, so 

that no dynamical ghosts are generated. If one now performs the yO-algebra in 
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(6.10) , then S reduces exactly to (6.8) , and we have arrived at our original 

formulation of open Ramond strings. 

The fermionic closed string theories can be constructed along the same basic 

lines. The closed strings with Ramond left-movers and Neveu-Schwarz right- 

movers can be written for string forms satisfying the constraint (4.2). Define 

(3 = p(-)fF + d+S+ij+$ - &I (-)f(F # + # F + Fv + VF) . (6.16) 

Then the appropriate action is given by (6.7)) where now I a) is a string form built 

on the product space of left- and right- movers, GSO projected independently in 

each subspace. The fermionic heterotic string action is constructed in the same 

way, using the bosonic string operators to build the right-moving subspace. 

Finally, we turn to the closed superstring theory corresponding to Ramond 

boundary conditions for both left- and right- movers. In this sector, our simplis- 

tic treatment of the zero modes breaks down. We have been able to construct a 

quantum-mechanically complete theory, but this theory has two defects. First, 

it requires a constraint which, in a general frame, is dynamical. Second, it re- 

quires that part of the GSO projection be done after quantization rather than 

before. Despite these defects, we are encouraged to present this formulation be- 

cause does generalize the formal structure we have set out for the other strings, 

and because it continues our formulation of the other closed superstrings in a 

suggestive pattern. 

The basic fields in this sector will be string fields carrying two Dirac indices 

and satisfying the condition 

(F -F) I@ = 0 . (6.17) 

Since F2 = K, this condition implies (4.2). However, while (4.2) is a purely 
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algebraic condition, this condition contains time derivatives of I/?). Choose 

N 

Q = ‘Eo + (d+b+‘;i+‘8) - To (F(F # + u F) + F(Fq + # F)) , (6.18) 

where xbo, E” satisfy (4.1) and have odd GSO parity with respect to both the 

left-moving and the right-moving GSO operators PGso and FGSO. Define 

P) = (IP) +c”Ob)) I”> 9 

and 

(ZI = (BlrOrO. 

Then the gauge-invariant action for this sector may be written 

(6.19) 

(6.20) 

I 1 B should be restricted to have the correct statistics: PCs0 e~GSO = 1. However, 

if we apply at this point the separate conditions PCs0 = PGs0 = 1, the chirality 

conditions do not match and (6.20) vanishes. Note that the closed superstring 

charges that we have defined (eqs. (4.3), (6.16), (6.18)) fall into a simple pattern. 

Despite the fact that the constraint (6.17) is dynamical in a general frame, we 

can quantize this system straightforwardly by observing that, in the light-cone 

frame, (6.17) b ecomes a set of nondynamical relations. To make this point clear, 

we will discuss in a very explicit way the quantization of the massless level of this 

string. This level contains antisymmetric tensor fields, and so one would suspect 

that it should have a gauge invariance. In our formulation, however, there is no 

gauge invariance; the required reduction of degrees of freedom is implemented by 

the dynamical constraint. (The constraint (5.10) looks suggestively like a gauge- 

fixing condition for a Duffin-Kemmer Lagrangian.) The light-cone quantization 

of the remaining levels will then follow by analogous manipulations, after fixing 

of the light-cone gauge for the oscillators in the manner of Section 3. 
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Choose the following representation of the I’p matrices: 

r-t= (z -y) ,r-=($ ;) ,ri=(i: -P7Q) ) (6.22) 

where 7: are a set of real symmetric Dirac matrics of O(8). Express the massless 

level of Ip) as b = pro; b transforms under Lorentz transformations like a Dirac 

matrix. The action (6.21), restricted to this level, takes the form 

S = $r[I”b’I”b] . 

Decompose b in the basis of eq. (6.22), as follows: 

b = 

(6.23) 

(6.24) 

On the massless level, F = -fi $, so (6.17) may be written: 

db = -b $. (6.25) 

Let j3 = pi$. Then the full content of (6.25) is expressed by the relations: 

hp+bl = -hp+bT - [&IL] , 

dp+b+ = tip-b- - {fi,bt} . 
(6.26) 

Use these equations to eliminate bi and b+ in (6.23). Then bt may be seen to 

be auxiliary and can be integrated out. This reduces (6.23) to the form 

S = $tr[b?L - . 
2p+b 1 (6.27) 

If one now imposes the chirality conditions on b- which follow from G = G = 1, 

we are let with a theory of a doubly chiral O(8) bispinor. This is the correct 

physical content for the massless section of the Ramond/Ramond closed string. 
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To generalize this discussion to higher mass levels of the string, we need two 

observations. First, the light-cone gauge-fixing procedure of Section 3 still allows 

us to remove all states with longitudinal, timelike, and ghost excitations. Then 

the quantization procedure reduces to the treatment of the explicit Dirac indices. 

On higher levels, (6.17) equates two massive Dirac operators. The mass terms 

always couple two different field components which have opposite chirality but 

the same GSO parity. Thus, each massive Dirac operator may be written as the 

action on a pair of Dirac spinors of the operator 

(i a+mkf) 7 (6.28) 

where I’M anticommutes with the P. (If these massive equations follow by 

dimensional reduction, in the manner suggested by Siegel and Zwiebach,‘24’ I& = 

I’?) Then the analysis of the previous paragraph can be repeated for every 

massless level by treating the mass term in (6.28) as an extra component of the 

transverse momentum. This demonstration completes our formulation of free 

field theories, which can be explicitly gauge-fixed to the known physical spectra, 

for all of the known strings and superstrings. 
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