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Abstract 

This thesis reports a measurement of the average lifetime of hadrons containing 

bottom quarks. It is based on data taken with the DELCO detector at the 

PEP e+e- storage ring at a center of mass energy of 29 GeV. The decays of 

hadrons containing bottom quarks are tagged in hadronic events by the presence 

of electrons with a large component of momentum transverse to the event axis. 

Such electrons are identified in the DELCO detector by an atmospheric pressure 

Cerenkov counter assisted by a lead/scintillator electromagnetic shower counter. 

The lifetime measured is l.l7~~:$ (stat.) zE:$ (sys.) psec, consistent with previous 

measurements. This measurement, in conjunction with a limit on the non-charm 

branching ratio in b-decay obtained by other experiments, can be used to constrain 

the magnitude of the V’a element of the Kobayashi-Maskawamatrix to the range 
0 042 +O.OOS +0.004 . -0.004 (stat*) -0.002 (sys.), where the errors reflect the uncertainty on rb only 

and not the uncertainties in the calculations which relate the b-lifetime and the 

element of the Kobayashi-Maskawamatrix. 
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1 

1. INTRODUCTION 

This thesis reports a measurement of the average lifetime of hadrons containing 

bottom quarks. It is based on the data taken with the DELCO detector at the PEP 

e+e- storage ring during the years 1982 to 1984. Hadrons containing bottom quarks 

( B-hadrons ) are produced by electron positron annihilation at the storage ring with 

a cross section of approximately 3 l * 2 +*eq ( eq =-f is the b-quark charge ).l At a 

center of mass energy of fi = 29 GeV this amounts to 34.4 pb. This production of 

B-hadrons is understood to be the result of the production of a b6 quark pair ( or 

quark pairs plus gluons, bbg ), followed by the subsequent “fragmentation” of this 

system into hadrons. Two of the subsequent hadrons will contain one of the original 

b-quarks. The properties of these hadrons are dominated by the characteristics of 

the b-quark. Because of this, while the hadron is thought to be a spin-0 boson, 

its decays are in some ways characteristic of a heavy spin-i fermion. Among these 

characteristics is a large branching fraction ( = 10 - 15% ) into the light leptons 

( e,p ) with a momentum spectrum characteristic of a V-A interaction. This is 

typical for a decay which proceeds through the production of a virtual W* ( the 

intermediate vector boson ). The copious production of electrons in the decays of 

B-hadrons makes it possible to tag these events with reasonable efficiency. Fig. 1.1 

shows an example of such an event recorded by the DELCO detector. Because 

B-hadrons decay by way of the weak interaction, their lifetime is comparatively 

long. This makes it possible to measure the average lifetime of these particles by 

looking at the displacement of the tracks from the decay products relative to the 

point where the hadrons were first produced. The remainder of this thesis discusses 

the many details involved. 

1.1 THEORETICAL CONSIDERATIONS 

The Standard Model [SU(2) x U(1) x SU(3)c010r], which appears to provide 

an adequate2 description of the decay of heavy ( bottom and charmed ) hadrons, 

is briefly summarized in Fig. 1.2. It contains three “generations” of quarks and 



Figure 1.1. A high pt electron in a hadronic event logged by the DELCO detector 
at PEP. The electron is identified by the Cerenkov counter ( the large trapezoid 
in the first quadrant of the figure ) in conjunction with the lead/scintillator shower 
counters ( the rectangles around the periphery ). The Cerenkov counters provide 
efficient electron identification at low momentum. The electron j,n this event has a 
pt relative to the sphericity axis greater than 1 GeV and is probably from the decay 
of a B-hadron. See the next chapter for a more complete discussion of the detector. 
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Figure 1.2. A summary of the Standard Model. Quarks and leptons are 
subscripted I or t for the left-handed and the right-handed components 
respectively. 

leptons. For instance the lightest generation consists of the leptons e- and ye and 

the quarks u and d. Within a generation the quarks and leptons are further grouped 

according to their weak interactions. In the first generation the left-handed part of 

the u and the d quarks form a weak isodoublet as do the left-handed parts of the 

e- and the ve. The right-handed parts of the u and d quarks as well as the right- 

handed part of the e- are all in weak isosinglets. Transitions within the doublets 

are mediated by the charged vector boson W*. For our present purposes the effects 

of the photon ( 7 ) and the neutral vector boson ( Z” ) will be neglected. This is 

possible because firstly neither one changes the “flavor” of the particle with which 

it interacts and therefore it is not possible for it to be responsible for a decay, 
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Table 1.1. Quark composition of some hadrons containing bottom quarks. 
An asterisk in the mass column indicates that the particle is expected to 
exist, but has not yet been observed. 

1 HADRON 1 quarks 1 mass (GeV) 1 

I B- I bri I 5.271 I 

B” I b;i I 5.274 

I J% I bs I 
* 

AB I bdu I * 

and secondly, to the accuracy with which these calculations are done, neither one 

introduces a significant radiative correction. The remaining gauge boson, the gluon 

( g ), is also not capable of initiating the decay of heavy quarks, but it produces 

a correction to the decay rate. The gluon couples only to the quarks which carry 

the SU(3) color charge ( hence the distinction between quarks and leptons ). These 

QCD corrections are not necessarily small and it is not possible to calculate them 

in all the cases where it would be useful. This difficulty is ameliorated by the 

availability of measurements of the ratio of B + Xe to B ----) Xt ( the semileptonic 

branching ratio ). 

The B-hadrons, whose lifetimes are reported on in this thesis, are composed 

of a single b-quark and some other combination of quarks so that the total color 

charge of the hadron is zero. Some of the possibilities are shown in TabIe 1.1. 

The simplest model of heavy quark decay ignores the presence of these so 

called “spectator quarks” and computes the decay rate as if the heavy quark 

were an isolated free object. This is shown schematically by the diagram 

in Fig. 1.3. Since mt > mb it is clear that in the absence of mixing 

between the generations the decay rate would be exactly zero. Because 

heavy quarks ( including the bottom quark ) do decay, it must be that 

the weak interaction eigenstates are not the same as the mass eigenstates. 

t The symbol X stands for anything. 



B- 

S 

c 

Figure 1.3. Contributions to B-meson decay in the spectator model 
assuming no mixing between the generations. Multiple labels on the 
top two fermion lines represent the six different diagrams which could 
in principle contribute to the decay. 

This mixing is described by the Kobayashi-Maskawa3 ( K-M ) matrix: 

d’ 

0 i v ud vu, v&J 

8’ = &d vc, vcb 

b’ Vtd vt, Vtb 

(11) . 

where the primed quarks are now eigenstates of the weak interactions. Constraints 

of unitarity and the ability to remove unphysical phases from the matrix by 

redefining the phases of the quark states can be used to restrict the K-M matrix. 

For the case of three families of quarks, which is being considered here, it is 

possible to reduce the number of parameters in the matrix from 18 to 4. A typical 

parameterization in terms of 3 angles ( #,O,+ ) and a phase ( 6 ) is 

(14 . 

In this expression c4 = cos+ , s+ = sin4 and so forth. The mixing introduced 

by the K-M matrix results in the single diagram in Fig. 1.3 being replaced by the 
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V tb V cb V ub 

Figure 1.4. Contributions to b-quark decay in the presence of mixing. 
Each diagram has an amplitude proportional to the element of the K-M 
matrix shown directly beneath it. The fermion pair labeled q# can be any 
of the six pairs of fermions shown in Fig. 1.3. 

three diagrams in Fig. 1.4. As before the diagram involving a b + t transition does 

not contribute. The amplitude of each diagram is proportional to the corresponding 

element of the mixing matrix. The total decay rate can then be written in the form: 

Got = qb ---) CX) + Iyb + UX), (13) . 

where I’(b + cX) and I’(b + uX) are presumably calculable in the standard 

model and proportional to IV&l2 and IVUb12 respectively. It is possible to calculate 

I’(b + cX) and I’(b + uX) by summing all of the various decay modes represented 

by the q$ in Fig. 1.4. 4#5 This involves calculating the amplitudes for the diagrams 

where q@ is a pair of quarks. Because of QCD effects these calculations are more 

uncertain than the calculations for the semileptonic decays. This difficulty can be 

avoided by making use of the measured semileptonic branching ratio for the decay 

of B-hadrons: 

.BR(b + Xe&) = 
I’ (b + cepe) + I’ (b + uepe) 
r(b-+cX)+r(b-+ux) l 

Plugging this expression into equation 1.3 gives 

hot = 
1 

BR(b + Xe@ 
[I’ (b + ce@ + I’(b + ueDe)]. 

(14 . 

(15) . 



e- 

Figure 1.5. QCD corrections due to soft gluon radiation from either the 
initial or the final quark leg. 

One is then left with the job of calculating I’ (b + cepe) and r (b + ueP,). The 

relevant matrix element is 

(16) . 

The task of squaring this and integrating over the appropriate phase space is left 

to Appendix D. The result is 

G2??g 
I’(b + qeii,) = IVqb12m [l - 8z2 + 8z6 - z* - 24t4 lnz] , ( 7) 1. .' 

whereqiscoruandz=%. The GZmf term is the well known expression for the -7izF 
muon lifetime with the muon mass replaced by the bottom quark mass. The term 

in the parenthesis is a correction due to the not necessarily negligible mass of the 

final state quark and will be referred to as g(z). 

There are also small modifications to the above expressions due to radiative 

QCD corrections. To the lowest order in cy8, two sets of graphs contribute. 

The first, which corresponds to the radiation of a gluon off either the initial or 

the final quark leg, is shown in Fig. 1.5. The second set, which represents the 

radiation and subsequent reabsorption of a gluon is shown in Fig. 1.6. The 

matrix elements for these processes have been calculated6 and integrated first 
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e- 

b- 

Figure 1.6. QCD corrections due to radiation and subsequent reabsorption 
of a gluon from one of the two quark legs of the graph. 

numerically6 and then analytically7j8 to obtain the electron spectrum. This, 

in turn, can be integrated to obtain the total rate. For the case at hand 

parts of this procedure can be by-passed. It was observed some time ago 

that the QCD corrections to heavy quark decay are simply related to the QED 

corrections to muon decay.g Therefore it is possible to obtain the corrections to the 

decay rate for heavy quarks by integrating the electron spectrum from muon decay 

after making the substitution: 

1*-4 
CY --) -cYa 

4 c X'X' = -cYa, 
i=l 

3 

where 

127r 
a!& = 

(33 - 2nf) In 
( > 

$ 
. 

(18) . 

(19) . 

In the above nf is the number of flavors, mb is the mass of the bottom quark, and 

A = 0.2 GeV. This produces cys = 0.28. The electron spectrum from muon decay 

has been calculated as a function of $10j11j12 Th is spectrum ( which corresponds 

to the momentum spectrum of the charmed quark in b-decay ) has been integrated 

in ref. 9 for various values of e. The result is to modify the previous expression 
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for I’ (b -+ qe&) to 

The function f(z) is tabulated in ref. 9 and is plotted in Fig. 1.7 along with the 

phase space correction which appears in equation 1.7. Taking mb = 4.7 GeV, 

m, = 1.5 GeV, and mu = 0.15 GeV gives g(z) = 0.48 and f(z) = 2.5 for b + c and 

go = 0.99 and f(z) = 3.5 for b + u. The total semileptonic rate is then 

I’(b + Xeii,) = g&J [0.41 l lVcb12 + 0.79 l iv,al2] . (1.11) 

This calculation suffers from a large uncertainty due to the factor of rni. While the 

masses of the B-mesons are well known, the ?nb which appears in the expression 

is the mass of the “bare” quark and is uncertain at least at the level of 0.2 to 0.4 

GeV. This produces an uncertainty on I’ which is comparable to that due to the 

error on rb. 

The difficulty associated with the rni term can be alleviated ( albeit in a model 

dependent way ) by using some of the information which can be obtained from the 

momentum spectrum of electrons produced in the decay of B-mesons. The end 

point of the electron spectrum is sensitive to the mass of the bottom quark as well 

as to the mass of the charmed quark. B-mesons are produced copiously in e+e- 

annihilations at the Y’(4S). T wo experiments at CESR have reported results on the 

lepton spectrum. 14J5 In fitting the momentum spectrum from the decay b + cep, 

it is necessary to account for the effect of the binding of the bottom quark to the 

spectator quark. The model used here is due to Altarelli et. a1.13 It accounts for 

the Fermi motion within the meson in a way which respects kinematic constraints. 

In particular, if the B-meson has a mass of MB and the spectator quark has a mass 

of msp, then the b-quark mass is taken to be 

(1.12) 
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Figure 1.7. Corrections to the leptonic decay rate of B-hadrons. The 
lower curve labelled g(z) is simply a phase space correction caused by the 
non-negligible mass of the charmed quark in the final state. The upper 
curve is due to lowest order QCD corrections to the simple spectator model 
calculations ( see equation 1.10 ). This analysis uses z = 0.34. 

where 5 is the spectator momentum which is randomly distributed according to 

2 

P(P)P2dP = 
4 IPI -exp -- 

fiP$ ( ) & 
P2dP. (1.13) 

In this expression PF is a parameter which describes the Fermi motion. J. Lee- 

Franzini has used this procedure to fit the CUSB electron data taken at the T’(4S)? 

The fit takes into account gluon corrections as calculated in ref. 8 and accounts 

for the initial velocity of the B-meson, detector resolution, and other sources of 

electrons. She finds mb M 5.0 GeV and kc k: 1.7 GeV. Acceptable fits are obtained 

using various values of msP and PF in the range of 0 to 300 MeV. The uncertainty 

on mb and m, associated with this is apparently small ( = 0.05 GeV ) compared 
to the uncertainty on q,. While this model has an obvious intuitive appeal, it is 

not clear how large the systematic uncertainties associated with it are. Using the 
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values of ?nb and me obtained above and mu = 0.15 GeV, the total semileptonic 

decay rate is 

r(b + Xe@ = 
G2mf 

s [,*37 l l&b 

For mb 
G2mi 

= 5.0 GeV the .cs term becomes 1.08 1O24 se& so that the total rate 

can be written as 

2 + 0.79 ’ lvu#] . (1.14) 

l?(b + XePJ = L0.40. lvc,12 +0.85* lv&j12j l lo14Sd? (1.15) 

An alternative approach is to calculate the semileptonic decay rates of B-mesons 

into specific decay products and to then sum the different channels to get the 

total rate. 17J8 This requires a model for the B-meson involved as well as for its 

weak interactions. The matrix element is modified so that it has the form ( for 

B-+ % et/,; q = b,c ): 

M = Gvgbz7p(l + 75)vG (x,(Pz,sz)lj~lB(PB)). 
4 

(1.16) 

The new object on the right hand side describes the hadronic part of the decay. 

In refs. 17 and 18 the hadrons are described by a non-relativistic quark potential 

model. Within this model the quarks are given masses of mu = rnd = 0.33 GeV, 

m8 = 0.55 GeV, m, = 1.82 GeV, and mb = 5.12 GeV. The authors find that for the 

decay B + XCepe the decays to D and D* account for nearly the entire rate. They 

find the contribution to the total rate from b + c decays to be o.58~lo14~vc~~2 set-? 

The uncertainty on this, which comes from varying the wave functions in the 

quark model, is estimated to be less than 20%. This compares with a rate of 

0.49 l lo141vcb I2 6ec- 1 which is obtained for free quarks with the masses used in this 

model. For the case of B --+ XuePe, they find that the tota rate is not saturated by 

the decays to the lowest lying states and that the absolute normalization of their 

answer is quite sensitive to the wave functions used. They suggest using a free 
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quark rate of 1.18 9 10141vub12 set B-1 for the b ---) u decays. This results in a total 

semileptonic rate given by 

r(b + Xe&) = [,.58 l lvcb12 + 1.18 l lvub12] l lo14sec-1. (1.17) 

This differs substantially from equation 1.15. For the b + u transition this 

difference stems partially from the larger value of mb ( - 10% ) and partially from 

the lack of a QCD correction ( M 20% ). Since the b + u transition makes only a 

negligible contribution to the total rate ( see Chapter 6 ), this difference does not 

affect the constraints on l&b I. The difference for the b + c transition is larger than 

for the b + u transition and directly affects the constraints on Iv& The factor 

of 0.58 in equation 1.17 is approximately 20% larger than the corresponding free 

quark factor of 0.49. This is within the 20% uncertainty claimed by the authors 

in ref. 17. The free quark factor of 0.49 is approximately 20% larger than what 

appears in equation 1.15. This difference is due to the different quark masses and 

the lack of a QCD correction. 
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2. THE DELCO DETECTOR 

This thesis is based on data taken with the DELCOt detector at the PEP e+e- 

storage ring. Fig. 2.1 shows a cross section of the detector and Fig. 2.2 shows an 

end-on view. DELCO ran at interaction region 8 until the spring of 1984. It logged 

data corresponding to a total luminosity of 214 pb-l. All of this data was taken at a 
center of mass energy of 29 GeV. The DELCO detector emphasizes the identification 

of electrons at relatively low momenta. The detector combines charged particle 

tracking from drift chambers in a magnetic field with particle identification from 

an atmospheric pressure Cerenkov counter. Since one of the principle aims of the 

detector was to study the production of electrons from the decay of heavy ( charm 
and bottom ) quarks, particular attention was given to the problem of detecting 

electrons in hadronic events. The major backgrounds come from the production of 

real electrons by gamma conversions and Dalitz decays. Particular effort has been 

made to minimize the amount of material before the Cerenkov counters and thereby 

minimize the number of conversion electrons produced. The material between the 

beams and the beginning of the gas volume in the Cerenkov counter amounts to 

only 3% of a radiation length for the final configuration of the detector. This 

material is summarized in Table 2.1. There is a second set of drift chambers outside 

the Cerenkov counters. In addition to providing tracking information, gamma 

conversions which are not detected in the inner tracking chambers can sometimes 

be tagged by the presence of track stubs in these chambers. 

2.1 CHARGED PARTICLE TRACKING 

The direction and momentum of charged particles are measured by three sets 

of drift chambers in a magnetic field. The magnetic field is produced by a set of 

coils and an iron flux return. The field ( which is far from uniform) is 3.3 kG at the 

center of the detector and has a total integrated bending strength of 1.8 kG-m. The 

momentum resolution is 7 = (0.022 + 0.062p2) 4, where the first term comes from 

t DELCO is an acronym for the Direct ELectron Counter. 
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IO- 82 438906 

Figure 2.1. A cross section of the DELCO detector. Limited material 
between the interaction point and the gas volume of the Cerenkov counter 
reduces the number of electrons produced by gamma conversions in 
hadronic events. This allows the efficient identification of low momentum 
electrons from heavy quark decay. 

multiple Coulomb scattering and the second from the limited resolution of the drift 

chambers. The drift chamber closest to the beam pipe is the Inner Drift Chamber 

( IDC ). Immediately outside the IDC is the Central Drift Chamber ( CDC ). The 

last drift chambers, the Planar Drift Chambers ( PDC’s ), are the ones mentioned 

above which are outside the Cerenkov counter. All of the drift chambers ran on 

a mixture of 50% argon and 50% ethane in 1982, and 90% argon, 8.5% carbon 

dioxide, and 1.5% methane in 1983 and 1984. The drift chambers were read out 
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Figure 2.2. An end-on view of the DELCO detector. The fine segmentation 
in the Cerenkov counter ( 36 cells ) is necessary in order to identify 
electrons in hadronic events. 

using multi-hit TDC’s with 4 nsec bins. lQ These drift chambers provide solid angle 

coverage over approximately kO.8 in cos 8 ( 6 is the polar angle ) and very nearly 

27r in 4 ( 4 is the azimuthal angle ). Because of the importance of minimizing the 

material in the detector before the (4erenkov counter gas volume, the walls of the 

drift chambers and the beam pipe were ,made from a hexagonal cell core material 

sandwiched between two thin skins of aluminum. 2@21 As stated previously, this 

technique made it possible to reduce the material before the Cerenkov counter to 

only 3% of a radiation length. 
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Table 2.1. A summary of the material in DELCO. The numbers given are 
for tracks at normal incidence. Two numbers separated by a slash indicate 
changes to the detector. The original thick beam pipe and the entrance 
wall of the Cerenkov counter were replaced between '83 and '84. The two 
numbers given for the cerenkov gas correspond to isobutane and nitrogen 
respectively. 

Material in DELCO 

What # of radiation lengths 

beam pipe 0.0225 / 0.0059 

IDC - entrance 0.0070 

- gas + wires 0.0033 

- exit 0.0019 

CDC - entrance 0.0035 

- gas + wires 0.0041 

- exit 0.0035 

Cerenkov - entrance 0.0040 / 0.0014 

- f!w 0.0047 / 0.0026 

- mirrors 0.0540 

- exit 0.0710 

2.1.1 The inner drift chamber 

The IDC consists of 6 layers of sense wires with 64 cells per layer in a cylindrical 

geometry. The active volume of the chamber is 62 cm in length. The wire pattern 

and a typical residual distribution are shown in Fig. 2.3 for one layer. The other 

layers are similar. The sense wires were operated at ground potential, the field wires 

at approximately -2.4 kV and the guard wires at approximately -1.2 kV. These 

voltages varied from year to year depending on the gas used and on the amount of 

background radiation produced by the storage ring. The sense wire pattern at z=O 

is shown in Fig. 2.4. The inner layer of the IDC is at a radius of 12.07 cm and the 

spacing between the layers is 1.71 cm. Alternate layers are offset in 4 by one half 
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Figure 2.3. Wire pattern for one cell and residuals in the IDC for layer 
3. The sense wire appears as a small diamond, the field wires as vertical 
crosses and the guard wires as diagonal crosses. The curve is a Gaussian 
fitted to the residual distribution. 

of a cell width so that the left/right ambiguity can be resolved. In layers 3 and 4 

the wires run parallel to the z-axis. The wires in the remaining layers are tipped 

at a small angle relative to the z-axis to provide information on the z-coordinate 

of the track origin and the track’s dip angle. This small “stereo angle” is achieved 

by displacing the wires by two cells in the end plate of the drift chamber. This 

displacement results in a stereo angle of 6, e 2.9’. Layers 1 and 2 are tipped in 

the same direction and layers 5 and 6 are tipped in the opposite direction. Because 

the precision obtained in this drift chamber is central to the lifetime measurement, 

special care has been taken in locating the wires. The mechanism used is shown 

schematically in Fig. 2.5. 22 It results in wire location errors less than 60 pm. This 

chamber achieved the best resolution of the three tracking chambers in DELCO. 

The resolution obtained for each year and layer is shown in Table 2.2, 

2.1.2 The central drift chamber 

The CDC consists of'10 layers of wires with 64 cells per layer in layers 1 to 6 

and 96 cells per layer in layers 7 to 10. The active volume of the chamber is 100 cm 
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Figure 2.4. Sense wire pattern in the IDC. This figure shows the wire 
locations in the z=O plane ( the z-axis is oriented along the beam line ). 
The first two layers and the last two layers are at small angles relative 
to the z-axis. Alternate layers are staggered to allow for the resolution of 
left-right ambiguities. Only sense wire locations are shown in this figure. 
For the location of the field and guard wires relative to the sense wires, 
see the cell in Fig. 2.3. 

in length. The wire pattern is similar to that in the IDC and a typical cell is shown 

in Fig. 2.6 along with a typical residual distribution. The sense wires were operated 

at ground potential, the field wires at approximately -2.8 kV and the guard wires 

at approximately -1.4 kV. These voltages varied from year to year. As in the IDC 

alternate layers are offset by one half of a cell width. In the CDC layers 1,2,5,6,9, 

and 10 have their wires parallel to the, z-axis. Layers 3 and 4 have a stereo angle 

in one direction and layers 7 and 8 have a stereo angle in the opposite direction. 

In the CDC the stereo angle results from a displacement of one cell width which 

produces a stereo angle of 8, ti 1.7’. The resolution obtained for each year and 

layer is shown in Table 2.2. 
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Figure 2.5. Drift chamber feedthroughs. This figure shows a cross section 
of the mechanism used to locate the wires in the IDC. In each end plate 
there are plastic ( Delrin ) feedthroughs (A) which provide high voltage 
insulation between the wires and the end plate. The wire is located and 
held in the feedthrough by means of a hollow stainless steel crimp pin (B). 
The crimp pin is retained in the feedthrough by means of the crimp in 
conjunction with either a metal sleeve (C) or a spring (D). The springs 
serve to maintain a constant tension on the wires during the stringing 
process. A gas seal is provided by a drop of epoxy around the crimp pin 
and a layer of cast silicon rubber between the plastic feedthroughs and the 
aluminum end plate. 

2.1.3 The planar drift chambers 

The PDC’s consist of six sets of planar chambers with six layers in each set. 

Each set covers approximately one side of a hexagon around the outside of the 

Cerenkov counter. Fig. 2.7a shows a schematic representation of the construction 

of one layer of the PDC. Layers 1,2,5, and 6 run parallel to the z-axis and layers 

3 and 4 are at large stereo angles of zt30°. The residual distribution for layer 3 is 

shown in the same figure. The resolution obtained by layer and year is shown in 

Table 2.2. The ribs are operated at -3.2 ‘kV and the wire at 2.0 kV. These voltages 

also varied from year to year. 

2.2 THE CERENKOV COUNTERS 

Electron identification in the DELCO detector is provided principally by a latge . 
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Table 2.2. Drift chamber resolution by layer and year. Numbers given are 
obtained from a least squares fit of Gaussians to the residual distributions. 
They represent averages over all the cells in a layer. 

I IDC resolution 

(P 1 m 

I layer 1 I 142 I 221 I 141 I 

I layer 2 I 137 I 212 I 142 I 
layer 3 I 165 I 209 I 180 I 
layer 4 I 159 I 213 I 186 I 

I layer 5 I 127 I 199 I 155 I 
I layer 6 I 131 I 205 I 135 I 

CDC resolution I Year 

(P 1 m I 1982 I 1983 I 1984 

layer 1 I 194 I 280 I 228 

layer 2 I 149 I 206 I 185 

layer 3 I 162 I 223 I 191 

layer 4 I 175 I 244 I 210 

layer 5 I 151 I 215 I 155 

layer 6 

layer 7 I 170 I 231 I 186 

layer 8 I 184 I 238 I 198 

layer 9 I 173 I 201 I 178 

layer 10 I 214 I 257 I 253 

PDC resolution 

(Pm) 1982 

Year 

1983 1984 

layer 1 I 505 I 571 I 464 I 
layer 2 I 536 I 595 I 512 I 
layer 3 

layer 4 I 460 I 529 I 448 I 

layer 5 I 554 I 647 I 540 I 
layer 6 I 600 I 683 I 660 I 
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Figure 2.6. Wire pattern for one cell and residuals in the CDC for layer 
2. The sense wire appears as a small diamond, the field wires as vertical 
crosses and the guard wires as diagonal crosses. The curve is a Gaussian 
fitted to the residual distribution. 

solid angle Cerenkov counter. This counter covers from +0.62 to -0.62 in cos 8 and 

nearly all of 27r in 4. The counter system is segmented in both 4 and 8. Each cell 

of the counter covers from 0 to 0.62 ( or -0.62 ) in cos 0 and 20’ in 4. A cross 

section of one cell of the Cerenkov counter is shown in Fig. 2.8. The ellipsoidal 

first mirror in the Cerenkov counter provides for a constant path length between 

the interaction point and the phototube face independent of the initial direction of 

the particle producing the radiation. Because of this all light produced by particles 

originating from the interaction point arrives at the phototube face at the same time. 

The faces of the phototubes ( 5 inch diameter RCA 8854 Quantacons ) are coated ./ 
with p-terphenyl, a wavelength shifter. This improves the total light yield since a 

substantial part of the Cerenkov radiation is in the UV where the glass window of 
the phototube is absorptive. The p-terphenyl absorbs the short wavelength light 

and r&emits it at a longer wavelength which can be transmitted through to the 
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Figure 2.7. A cross section and the residuals for a layer in the PDC. The 
curve is a Gaussian fitted to the residual distribution. 

photocathode. As in most of the counter systems at DELCO, the phototubes in 

the Cerenkov counter are “read out” in three separate ways. For each tube there 

is a latch to indicate the presence of a signal, a TDC ( Lecroy 2228A ) which gives 

the time of the signal relative to the beam crossing, and an ADC ( Lecroy 2249A ) 

to record the amplitude. Fig. 2.9 shows a scatter plot of the pulse height in the 

Cerenkov counter versus momentum for isolated tracks in hadronic events. The 

quantity plotted here is the “corrected number” of photoelectrons. This is obtained 

from the ‘raw number” ( ADC information after pedestal subtractions and gain 

corrections ) by making corrections for the path length in the radiator, the curvature 

of the track, and the Cerenkov light spot size on the phototube. A separate band 

is clearly visible for pions above threshold. Isobutane was used as the radiator for 

the data in this figure. Two different gases where used as radiators. A total of 147 

pb-l of data was taken with isobutane and 67 pb-l with nitrogen. The indices 

of refraction and corresponding minimum momenta to produce Cerenkov radiation 
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Figure 2.8. A cross section of the Cerenkov counter showing the optics 
involved. The mask restricts the Cerenkov solid angle to be the same as 
that of the PDC’s. 

are given in Table 2.3. This counter system suffers from a single photoelectron 

background in hadronic events. This is believed to be due to photons from very low 

momentum electrons which can be reflected repeatedly between the mirrors of the 

counter before finally entering a phototube. 23 

2.3 THE TIME OF FLIGHT COUNTERS 

Additional particle identification is provided in the DELCO detector by a time 

of flight system. This system consists of 52 plastic scintillators each approximately 

3.2 m long, 2.5 cm thick, and 20 cm wide.. They are located outside of the PDC’s and 

run parallel to the beam line. They are read out by 2 inch diameter phototubes on 

each end. Both timing and pulse height information is digitized for each phototube. 

( The pulse height information is used to perform slewing corrections. ) A time 

residual distribution for these counters is shown in Fig. 2.10. These counters are 
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Figure 2.9. Pulse height in the Cerenkov counter versus momentum for 
isolated tracks from hadronic events. This data was taken with isobutane 
as a radiator. The pulse heights shown have been corrected ( see the text ). 

Table 2.3. Characteristics of gases used as radiators in the Cerenkov ) 
counter. The index of refraction ( n ) and the minimum momentum to 
produce Cerenkov radiation for pions ( pr ) and kaons ( pi ) are given for 
the two gases. 

GAS n PT PK 

isobutane 1.00144 2.7 9.4 

nitrogen 1.000295 5.6 20.0 

not directly used in this analysis. 

2.4 THE SHOWER COUNTERS 

The DELCO detector contains three sets of lead/plastic-scintillator shower 

counters. These shower counters obtain only a modest resolution in both energy 

and angle and are used primarily for tagging or to confirm particle identification 
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Figure 2.10. Residual distribution for the T.O.F. system. The tracks are 
electrons in two-gamma events. Quantity plotted is the difference between 
the counter time and the time expected for a /? = 1 particle. 

already made in the Cerenkov counter. 

2.4.1 The barrel shower counters 

The largest system of shower counters is the barrel shower counter which is 

located just behind the TOF system. The counters are made up of three layers of 

lead and plastic scintillator. Each layer of lead or scintillator is 1.25 cm thick for 

a total of 6 radiation lengths. These counters are used in the electron analysis 

to provide confirmation of the particle identification provided by the Cerenkov 

counter. In solid angle they cover approximately ho.62 in cos8 and most of 27r 

in C/L There are small gaps in 4 at the corners of each sextant. This system is 

broken into 48 segments in 4. Position resolution in the z-direction is obtained by 

timing information on the first layer and by segmentation ( 0 to +0.62 and 0 to 
I, 

-0.62 in cos 8 ) in the other two layers. 

2.4.2 The pole tip shower counters 

The magnet pole tips are covered with a system of shower counters which 

provides tagging for events in which some number of particles strike the pole tips. 



These counters cover from 0.79 to 0.98 and from -0.79 to -0.98 in cos 8 and essentially 

27r in 4. They are segmented in qS with each section covering 20° and have a total 

thickness of 5 radiation lengths. The scintillator is read out by BBQ bars which run 

radially along each section. They are used only indirectly in the electron analysis 

to tag ( and remove ) hadronic events in which a large part of the energy missed 

the tracking volume of the detector. 

2.4.3 The luminosity monitors 

These counters provide tagging at very small angles relative to the beam. They 

cover from 0.025 to 0.068 and from -0.025 to -0.068 in cos 0 and essentially 27r in 

4. Each segment covers an interval of 60' in 4 and has a thickness of 16 radiation 

lengths. They are used for luminosity measurements and to tag two-photon events. 

2.5 THE BEAM POSITION MONITOR 

The position of the interaction point is determined on an event by event 

basis by the beam position monitors ( BPM’s ). They consist of two sets of four 

“beam buttons” located 3.7 meters on either side of the interaction point. The 

Ubuttons,” which are small electrical probes which intrude into the beam pipe, 

are shown in Fig. 2.11. The passing beam bunch induces a signal in them which 

depends on the current in the ring and on the position of the beam relative to the 

buttons. The signals from these probes are first processed in a “stretcher” where 

the signal is rectified and broadened, and then the total integrated charge is 

measured in a Lecroy 2249A ADC. The raw signals for one set of buttons are 

given by v; (; = 1,4) and gain and pedestal corrections are applied by 

ai = gi l (Vi -Pi)- (2 1) . 

These quantities are proportional to the current in the storage ring. Due to the 
symmetry of the buttons, for small displacements about the center, the changes in 
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Figure 2.11. Cross section of a beam position monitor. Only the upper 
left hand assembly is shown complete. The other three are similar. The 
probe extends 0.5 mm beyond the inner circumference of the beam pipe. 

the signals induced in the buttons will cancel each other so that 

A==k ai 
i=l 

is independent of the position of the beam and proportional to the current 

ring. Dividing by A removes the current dependence so that the quantities 

2 cx ’ 
a2 + a3 - al - a4 = 

A 

and 

y = cy l 

al + a2 - a3 - a4 
A 

(2 3) . 

(2 4) . 

. ‘I give the position of the beam at the BPM. The constants cz and cy are determmea 

prior to installation for each set of buttons by pulsing a probe placed between the 

buttons and observing the change in the signals induced as the probe in moved. 

The c’s are all approximately 5 cm. The position of the beam at the interaction 

point is interpolated from the position of the beam at the two BPM’s. The location 

(2 2) . 

in the 
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Figure 2.12. The y-coordinate of the beam position as a function of time 
as determined by the beam position monitor. The particular data shown 
here is from early 1983. 

of the BPM system relative to the detector is determined using tracks from Bhabha 

events. 

This measurement is sensitive to pedestal errors. For instance, if ei is the 

pedestal error for the i’th channel, then ( assuming gi = 1 ) the error in x is 

Az=cza e2+eg--1-4 ?. 

A l 

(2 5) 
. 

As a result, if ai is typically 500 ADC counts, then a one-count pedestal error 

produces a position error of 25 pm. The average value of this error is taken out 

in the process of surveying the BPM’s relative to the detector; however, since A is 

proportional to the current in the ring, part of the error will remain. Fig. 2.12 shows 

the y-coordinate of the beam position as a function of time for a particular run block. 

Prior to correct pedestal subtractions, this distribution had a pronounced saw-tooth 

shape due to an interaction between the pedestals and the changing current in the 

storage ring during a run. 

2.6 THE TRIGGER 

The DELCO detector employs a collection of triggers which will be described 
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below. Because the lifetime analysis does not involve measuring cross sections, 

questions of trigger efficiency are not important and therefore only a brief discussion 

of the trigger will be given. Because hadronic events have many tracks and because 
they generally deposit a fair amount of energy in the shower counters, there is a 

high probability that they will satisfy more than one of the triggers. 

The high rate at which beam crossings occur at the PEP storage ring ( 417 khz ) 
requires the use of a two stage trigger. The first stage employs only information from 

the various shower counters and the Cerenkov counter. If these counters indicate 

that an event has occurred, then a second stage is employed which uses information 

from the tracking chambers ( the IDC and the CDC only ). The hardware tracker 

involved has been described previously. 24 It uses the drift chamber information 

( hits only without regard to time ) to detect the presence of a “track” pointing 

to a latched shower counter. If such a “track” is present, then the event is read 

out. More specifically, the following collection of counters is sufficient to produce a 

trigger if the hardware tracker finds a track: 

a Two barrel shower counters latched in two different sextants of the detector. 

l A latched Cerenkov counter and a latched barrel shower counter in the same 

0 

sextant. 

A latched barrel shower counter plus a poletip counter with a minimum 

energy. 

l A latched barrel shower counter plus a luminosity monitor with a minimum 

energy. 

In addition to these triggers which require the presence of a charged track in the 

detector, there are several neutral triggers which do not require a charged track. 

These are: I, 

l Two barrel shower counters latched in two different sextants plus a minimum 

total energy deposited in the barrel shower counter. 

l Four barrel shower counters latched in four different sextants. 

0 A latched barrel shower counter and a latched Cerenkov counter in the same 
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sextant. This trigger is scaled by 128. 

l Two pole tip counters opposite each other with sufficient energy. ( This 

trigger is intended to catch Bhabha events where the tracks go into the 

poletips. ) 
l Two luminosity monitors opposite each other with sufficient energy. ( This 

trigger is intended to catch Bhabha events where the tracks go into the 
luminosity monitors. ) This trigger is prescaled by 128. 
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3. THE ELECTRON ANALYSIS 

It is clear from the proceeding chapter that the DELCO detector was designed 

with an eye toward the analysis which will be described in this chapter. This chapter 

logically breaks into two halves. The first describes the filters which are used to 

separate out events which contain an “electron.” Because not all tracks identified as 

“electrons” are in fact really electrons and because there are various sources of real 

electrons in the data, it is necessary to fit the data to a model in order to extract 

the physics from it. This fit is described in the second half of this chapter. The 

results of this fit are used in the subsequent chapters which deal specifically with 

the lifetime measurements. 

3.1 THE PASSE FILTER 

The PASS1 filter described here is the first step in the off-line analysis. Its 

purpose is to separate the triggers caused by real physics events from those caused 

by various sorts of noise in the detector. These “noise events” make up the majority 

of the triggers. This separation is not difficult for hadronic events because of the 

large number of charged tracks they typically contain and because they produce a 

total visible energy which is of the order of the beam energy. For this reason and 

because questions of overall efficiency are irrelevant for the bottom lifetime analysis, 

this filter will not be described in great detail. There are two principal paths by 

which a hadronic event can pass this filter. 25 The first requires only that the event 

produce a sufficient response in the barrel shower counter. Specifically, there must 

exist at least two clusters of energy in the shower counters. Each cluster must have 

an energy of at least 40 gap crossings. 26 The second requires that there be at least 

two charged tracks in the event. At least one of these tracks must have produced a 

consistent response in either a time of flight counter or in a barrel shower counter. In 

either case a hadronic event in which the jet axis points into the detector acceptance 

will almost certainly pass. 
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3.2 THE HADRON FILTER 

The first step in the electron analysis is to select a hadronic data set from 

the output of the first pass. Hadronic events produced in e+e- annihilation at 

29 GeV are distinguished by large multiplicities and large visible energies. The 

filter described below cuts on these quantities to separate the hadronic events 

present at the output of the PASS1 from the obvious non-hadronic events ( i.e. 

e+e- + e+e-,p+p-,r+r-, and low multiplicity two-gamma events). These cuts 

are followed by other cuts which remove the more hadron-like backgrounds which 

remain. To minimize the use of computer time, the filter is divided into two steps. 

These two steps correspond to the two stages of track reconstruction. At the first 

stage various combinations of drift chamber hits are compared to a particle path 

which is based on a simple parameterization in order to “recognize” the tracks. The 

cuts applied to each event after this stage are: 

l The total number of tracks foui?d must be at least 5. 
l The sum of the momenta of all the tracks must be at least 2.5 GeV. For this 

cut and all cuts involving track momentum ( p ), tracks with p > 14.5 GeV 

( the beam energy ) are assumed to be mismeasured. Such tracks are given 

a momentum of p = 14.5 GeV. 

l The total energy ( Et ) in the event must be greater than 5.0 GeV. The total 

energy is defined as the sum of: (1) the sum of all track momenta, (2) the 

sum of all the energy in the barrel shower counter and, (3) the sum of all the 

energy in the pole tip counters. ( For the last two the energies are corrected 
to minimize double counting of charged energy. This is done by subtracting 

the expected counter response assuming minimum ionizing particles. ) 

l At least three of the tracks in the event must have at least two hits from 

PDC wires which run parallel to the beam line. This cut helps remove “noise 

events? In such events the drift chambers in the center of the detector 

will have a great many hits which are erroneously identified as tracks. Such 

“tracks” will seldom contain hits in the PDC’s because the PDC’s, which 
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are located outside the Cerenkov counters, are distant from the other drift 

chambers and not usually affected by the noise. 

These cuts are followed by two more which remove events which originate in the 

interaction of an electron from the beam with a residual gas molecule in the 

beam pipe. Such events are characterized by a large asymmetry because the total 

momentum of the beam-gas system is equal to the beam momentum ( as opposed 

to zero for beam-beam interactions ), and by initial z-coordinates which have a flat 

distribution. ( The beams are parallel to the z-axis. ) The cuts which remove such 

events are: 

l The energy asymmetry ( Ecrsym ) of the event must be 

Easym < 0.224 l dm, (3 1) 
. 

where energy is measured in GeV. The asymmetry is defined as Easym = 

(EC + PC) / Et where E, = c Ei SOS 8i . The sum is over shower counters and 

8i is the polar angle. The quantity PC is defined similarly for charged tracks. 

l The difference between the average z-coordinate of the origin of all the tracks 

and the z-coordinate of the beam center must be less than 4.5 cm. 

The second stage of track reconstruction consists of another fit of the track to 

the drift chamber hits. At this stage a full “swim” of the particle through the 

nonuniform magnetic field is employed. Drift chamber hits may also be added or 

deleted, based on the improved information from this “swim”. In the following a 

“good” track is one which: (1) h as at least twelve drift chamber hits, (2) has a 

distance of closest approach to the beam of less than 2 cm and, (3) had a good x2, 

etc. during this second stage of track reconstruction. The following cuts are just 

tighter versions of the previous cuts: : 

l There must be at least five “good” tracks. 

l The sum of the momenta of the “good” tracks must be at least 6 GeV. 

l The average z-coordinate of the origins of the Ugood” tracks must be within 

4.5 cm of the z-coordinate of the beam. 
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The last two cuts in the hadron filter are used to ensure that most of the event went 

into the part of the detector which is well instrumented. Hadronic events which clip 

the edge of the tracking chambers can produce events which are asymmetric and/or 

deposit a lot of energy into the poletip counters. 

l There must be at least two tracks in each event hemisphere. The event is 

divided into two hemispheres by a plane perpendicular to the sphericity axis. 

This cut also removes certain two-gamma backgrounds. 

l The total energy in the pole tip counters must be less than 20.0 

GeV ( corrected for charged energy as above ). 

3.3 THE ELECTRON FILTER 

The PASS1 filter ( which separates real events from “junk” events ) and the 

hadron filter ( which separates hadronic events from all other events ) are followed 

by one more filter which identifies events which contain electrons. The particle 

identification in this filter is provided by the Cerenkov counters in conjunction with 

the shower counters. These systems were described in the previous chapter. The 

electron filter logically breaks into four parts. The first part attempts to define 

a “good” c eren k ov cell; the second removes identifiable backgrounds; the third 

decides which of the tracks in the cell could have produced the Cerenkov and barrel 

shower counter responses associated with it; and the last ( which is used only in 

the case where there are multiple tracks in the cell, all of which are consistent 

with the barrel shower and Cerenkov responses ) applies a minimum x2 selection 

criterion to the tracks in a cell in order to select the one which is most likely to be 

an electron. The first part of the filter, which defines a good Cerenkov cell, consists 

of the following cuts: 

a The time for the cell must be within ~411 nsec ( 33.5 nsec if nitrogen was 

used as the radiator ) of the expected time. Early times are often the 

result of particles striking the phototube. Such particles may be produced by 

beam-beam interactions and travel directly from the interaction point to the 
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phototube or they may be degraded beam particles which strike the detector 

from the outside. 

l The number of charged tracks which pass through the cell must be less than 

six. The probability of correctly identifying the electron in a group of six or 

more particles is very small. Most events only have one or two tracks in a 

cell. 

l The momentum of all the tracks in the cell must be less than 2.5 GeV ( 5.5 

GeV for nitrogen ). These numbers are slightly below the threshold for 

the production of Cerenkov radiation by pions in isobutane and nitrogen 

respectively. 

l The raw pulse height recorded for the phototube in this cell of the Cerenkov 

counter must correspond to more than 1.75 photoelectrons. This removes 

the 1 photoelectron background mentioned in the previous chapter. 

These cuts are followed by another set which is aimed at removing backgrounds. 

Since a pion with momentum less than pion threshold never turns on a Cerenkov 

counter, backgrounds are always caused by electrons. These backgrounds either 

take the form of an electron from a gamma conversion ( or from a 7r” Dalitz decay ) 

appearing directly, or of an electron from a background source which is missed by 

the tracking program, but which turns on a cerenkov cell which is occupied by a 
pion. The following cuts are aimed at eliminating events in which the electron was 

not tracked in the central tracking chambers ( the IDC and the CDC ): 

l There must not be any track stubs found in the drift chambers behind the 

Cerenkov cell ( the PDC’s ). This cut removes events in which a gamma 

converted in the outer parts of the drift chambers or in the Cerenkov counters 

so that no recognizable tracks were left in the IDC or CDC. Electrons from 

such gamma conversions may produce track stubs in the PDC’s. 

l There must not be any adjacent empty Cerenkov cells fired. Such cells can 

be produced by gamma conversions in which the produced electron crosses 

more than one cell. 
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The following cuts are aimed at picking up gamma conversions which occurred 

early enough in the detector for all or part of the products to have been successfully 

reconstructed by the track-finding programs: 

l Every track in the cell must have a hit on the first or second layer of the 

IDC. This cut removes events in which a gamma converted inside the central 

drift chambers. Likely places for such a conversion are the walls separating 

the IDC and the CDC. 

l Every track in the cell must have a distance of closest approach to the beam 

of less than 0.3 cm. Electrons from gammas which convert in the beam 

pipe will appear to have originated away from the beam because of their 

curvature in the magnetic field. The 0.3 cm cut is as tight as can be used 

without introducing a significant bias into the lifetime measurement. 

l Every track in the cell is paired with other tracks in the event to. look for 

pairs consistent ( on the basis of kinematic cuts ) with their having come from 

a gamma conversion. Any cell which contains a track identified as coming 

from a gamma conversion is dropped. 

l Each event is visually scanned for the presence of gamma conversions. In 

a certain fraction of the gamma conversions, one of the electrons receives 

most of the momentum from the original gamma. This results in a soft 

track which curls up inside the central tracking chambers. Such tracks are 

difficult to find using the tracking programs, but easy to see on the single 

event display. Events with such tracks, where the soft track could be paired 

up with the electron, are dropped. 

After these cuts a further set of cuts is applied to the individual tracks in the 

Cerenkov cell. It is not necessary for all the tracks in the cell to pass the following 

cuts, but in order to be considered as an electron, the track in question must pass 

them: 

l The track must use at least 16 drift chamber hits. Of these at least two must 

be from wires that are parallel to the beam and in the drift chambers which 
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are located outside the Cerenkov counters ( the PDC’s ). These two cuts 

ensure that the track is well measured in the drift chambers. 

l The track must strike a barrel shower counter module and the energy 

measured in that module must be large enough to be consistent with the 

track having been produced by an electron. No upper limit is placed on 

the shower counter response because of the possibility of more energy being 

deposited in that counter by other particles. 

0 The number of photoelectrons in the Cerenkov counter must be consistent 

with their having been produced by the track in question. ( Because of the 

small number of photoelectrons produced in the nitrogen data, this cut is 

not used there. ) 

In about 25% of the cases, there is more than one track in the Cerenkov cell which 

passes all of these cuts. In this situation the “electron” is selected based on the 

barrel shower and cerenkov responses. For each possible assignment of particle 

types the expected counter responses are calculated along with their errors and 

a x2 is calculated based on the difference between the measured and calculated 

response. The combination with the lowest x2 is accepted. These situations, which 

typically involve just two tracks, occur mostly at low p and pt and therefore have 

only a small influence on the b-lifetime measurement. A scatter plot of the resulting 

distribution in p and pt in shown in Fig. 3.1. 

3.4 THE FIT TO THE ELECTRON SPECTRUM 

The “electrons” identified by this filter are produced by several different 

processes. The ones of interest to this analysis are from the semileptonic decay 

of heavy ( bottom and charm ) hadrons. In addition to these “direct electrons” 

there are background contributions to the signal from misidentified pions and from 

electrons produced by gamma conversions and 7r” and q Dalitz decays. These 

sources of electrons are summarized here: 

l The semileptonic decay of hadrons containing bottom quarks ( b + e ). The 



38 

. . . . . 
.: . 

l . 
. . 

0.. . 0. 
. . 

. l 

. . 

2 
P ( Gev > * 

. 

. 
. 

. 
0. . ’ 

. 
. 

6 

Figure 3.1. The distribution of the electrons in p and pt. This figure 
combines both the nitrogen and the isobutane data. 

number of electrons from this source is clearly proportional to the branching 

ratio for 23 + eX. The distribution of electron transverse momentum ( pt ) 

is determined qualitatively by the mass of the hadron ( 5.2 GeV ). The 

distribution of electron momentum ( p ) is determined by the hadron’s 

mass and its momentum after the fragmentation process. The latter is 

parameterized in a simple form ( the fragmentation function ) and is included 

in the fit. 
* 

l The semileptonic decay of hadrons containing charmed quarks produced in 

the decay of hadrons containing bottom quarks ( b + c + e ). The number of 

electrons from this source is proportional to the branching ratio for C + eX. 

The distribution in p and pt of electrons from this source is soft because of the 

two sequential decays involved. These distributions are clearly affected by 

both mb and m, as well as by the B-hadron momentum after fragmentation. 

l The semileptonic decay of hadrons containing charmed quarks produced . 

directly ( c + e ). This is very similar to the first source ( b + e ) 

considered above. The smaller masses involved here ( w 1.9 GeV ) result 

in a different pt distribution for electrons from this decay. This difference in 

the pt distribution makes it possible to separate ( in a statistical sense ) the 
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electrons from the decay of the two heavy hadrons. 

Pions which are misidentified as electrons. These are caused by pions which 

share a Cerenkov counter cell with an electron from a gamma conversion ( or 

possibly from a heavy quark decay, a Dalitz decay, or an energetic &ray ). 

Since the momentum spectrum of pions in hadronic events peaks at low 

momentum, this background will also peak at low momentum. 

Electrons from gamma conversions or from 7r” and q Dalitz decays. Since 

most of the gammas come from x0 decay and since most pions in hadronic 

events are quite soft, the gamma conversion part of this background is 

strongly peaked at low momentum. 

l Electrons from the decays of r’s which were produced by the decay of 

B-hadrons. Because of the similar decay chain and because the 7 mass 

is similar to that of the charmed hadrons, the distribution in p and pt of 

electrons from this source is very similar to that from b --) c + e. Because 

the b + r branching ratio is expected to be small compared to b + c, this 

source of electrons makes a small contribution relative to b 3 c + e. 

3.4.1 The method 

The electron spectrum in p and pt obtained above is fit to obtain parameters 

which will be used in the lifetime analysis. The quantities determined by the fit 

are: 

0 z,b, which describes the average momentum of the hadrons containing bottom 

quarks. 

0 zoc, which describes the average momentum of the hadrons containing 

charmed quarks. 

l BR(b + e ), the average semileptonic branching ratio for particles containing 

bottom quarks. 

l BR(c + e ), the average semileptonic branching ratio for particles containing 

charmed quarks. 
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a sir, which scales the pion background. This parameter is introduced 

to account for the uncertainty in the normalization of this background. 

It is constrained to its nominal value by a Gaussian with a width 

of 10% ( CrT = 0.10 ). 
0 s7, which scales the gamma conversion background. This parameter is 

introduced to account for the uncertainty in the normalization of this 

background. It is constrained to its nominal value by a Gaussian with a 

width of 10% ( a7 = 0.10 ). 

The likelihood function for the fit is 

(3 2) . 
where the first product runs over the 4 run blocks ( ‘82, ‘83 isobutane; ‘83 nitrogen; 

‘84 nitrogen; ‘84 isobutane ) and the second product runs over the various bins in 

p and pt. The P(z;j, nij) are just Poisson distributions: 

P(z,n) = y, 
. (3 3) . 

where the nij are the number of events measured in a particular bin for a particular 

run block, and zij is the number expected. The sij are calculated as follows: 

4 
=ij = 2 ' ~ij ' Nj6 l BR(b + e) l c q&b) l Ph.k (3 4 . 

k=l 

4 
+1.167 l N;’ . BR(C’+ e) l c cYk(zob) l pt”i”l; 

A=1 

+Nj” l BR( c --) t?) ’ 2 &(zoc) ’ p”ik 
k=l 1 

+ s,-N; + s7.N; + N&. 
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In the above Nib6 is the number of b6 events expected in the j’th run block and 

NiZ is the number of cz events. The factor of 2 accounts for the fact that two 

B-hadrons are produced in each b6 event, etc. The factor of 1.167 is an estimate of 

the average number of charmed hadrons produced in the decay of B-hadrons. It is 

slightly greater than one because a cS quark pair can be produced in the decay in 

addition to the c-quark from the b + c transition. 

The eij term is a correction which accounts for deficiencies of the full detector 

simulation Monte Carlo. The corrections are calculated in the following manner. 

The cuts in the electron filter which depend on the Cerenkov counter response or on 

the barrel shower counter response are turned off. The efficiency of the remaining 

cuts is measured versus p and pt. The ratio of the efficiency for the data to the 

efficiency for the Monte Car10 is cij. These numbers are of the order of 0.8 and are 

tabulated in Appendix E. The final b-lifetime is insensitive to this correction.27 

The backgrounds for the i’th bin in the j’th run block are NG , N,$ and 

N&. for pions identified as electrons, electrons from gamma conversions and Dalitz 

decays, and electrons from ( e+e- + b6, b ---) rX, r + eX ) respectively. The 

backgrounds have been calculated by two different methods. The gamma conversion 

background is obtained from a full detector simulation Monte Carlo calculation as 

is the ( entirely negligible ) tau background. The background due to misidentified 

pions is obtained directly from the data by a “track flipping” algorithm. Because a 

pion below threshold never turns on a Cerenkov counter,28 the pion background can 

be understood as a sort of “convolution” of the distribution of pions in an event and 

the distribution of turned on Cerenkov cells. This “convolution” can be determined 

from the data in the following manner. Each track in each hadronic event is flipped 

( one track at a time ) across the sphericity axis for that event. The flipping process 

consists of adding new drift chamber information to the event record for a track 

with the same momentum but the opposite direction. The event record is also 

modified to include a simulated response in the barrel shower counter. This new 

event is then analyzed, and if the flipped track is identified as an “electron,” it is 
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Table 3.1- Intervals used to calculate cYk and Pk ( see equations 3.5 and 
3.4 ). The intervals used do not extend all the way to zero because the 
fragmentation function makes a negligible contribution in those regions. 

interval number - /c range - t%!k range - Pk 

1 0.35 - 0.50 0.10 - 0.30 

I 2 I 0.50 - 0.65 I 0.30 - 0.55 

I 3 I 0.65 - 0.80 I 0.55 - 0.80 

I- 4 I 0.80 - 1.00 I 0.80 - 1.00 

counted as one background event. 

The terms in equation 3.4 involving summations account for the dependence of 

the electron spectrum on the fragmentation parameters ZOb and zoc. The term 

o&,b) is the probability that a B-hadron will have a momentum in the k’th 

momentum interval given a particular value of z&j, and &(&b) is the analogous 

probability for C-hadrons. The ak’6 depend on the shape of the fragmentation 

function used to fit the data. The shape used here is that suggested by Peterson 

et. c11.~~ and has the form: 

(3 5) . 

where q = b or c and N is a normalization constant. The ok’s and &‘s are the 

integral of this function over the intervals given in Table 3.1. The fit is done in 

terms of the parameter zoq which is related to eg by 

1 
cq = %q + - -2. 

P' zo9 
(3 6) . 

This results in more symmetric error bars. This parameter can, in turn, be related 

to zq = %e b y integrating D,(Z) over the appropriate interval, i.e. 

fq = J z - D&). (3 7) . 
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.Pkk is the probability that a B-hadron in the j’th run block, produced in the k’th 

momentum interval, will produce an electron which is detected in the i’th p,pt bin. 

P/$ is the analogous probability for the process ( e+e- + b6, b + c, c -+ e ) and 

PGk for the process ( e+e- + CZ, c + e ). These probability tables are calculated 

using a full detector simulation Monte Carlo. 

3.4.2 The results of the fit 

Fig. 3.2 and Fig. 3.3 show the results of projecting the fit onto the momentum 

and the transverse momentum axes. The first figure is for the isobutane data 

and the second is for the nitrogen. ( Both data sets are fit simultaneously. The 

projections are separated because the 2.5 GeV upper limit on p produced by the 

pion threshold in the Gerenkov counters for the isobutane data produces as artificial 

“step” in the momentum distribution. ) From the figures it is clear that the 

electrons from the b 4 e process make the dominant contribution at pt > 1 GeV. 

The backgrounds are heavily peaked at low p and low pt. The agreement between 

the fit and the data for the lowest two bins in p for the nitrogen data set is poor. 

Whether this is a small error in the analysis or a statistical fluctuation is not known. 

If tracks with p < 1 GeV are not used, the fit yields similar values for all the 

parameters. 3o The results of the fit are tabulated in Appendix E along with the 

probability that a track in a given p and pt bin came from any of the various sources. 

These probabilities are used in the maximum likelihood fit to obtain the b-lifetime. 

From this appendix it is clear that there are almost no electrons from gamma 

conversions and very few misidentified pions with pt > 1 GeV. The parameters from 

the fit are summarized in Table 3.2 and in Table 3.3. The parameters which describe 

the momentum spectrum of the parent hadron ( zoc and zob ) are also used in the 

lifetime analysis. As will be demonstrated later, the momentum distribution of the 

parent hadrons affects the distribution of the impact parameters of the hadrons’ 

decay products. 

The statistical errors from the electron analysis introduce an uncertainty in the 
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Figure 3.2. Projections of the fit to the isobutane data. Part (a) shows the result of 
projecting the fit to the electron spectrum onto the paxis. The contributions to the 
fit are labelled on the figure. Part (c) shows the contributions to the background 
in part (a). Part (b) h s ows the result of projecting the fit onto the n-axis and the 
points and lines in this figure have the same meaning as in part (a). Part (d) shows 
the contribution to the background in part (b). 
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Figure 3.3. Projections of the fit to the nitrogen data. Part (a) shows the result of 
projecting the fit to the electron spectrum onto the p-axis. The contributions to the 
fit are labelled on the figure. Part (c) shows the contributions to the background 
in part (a). Part (b) h s ows the result of projecting the fit onto the n-axis and the 
points and lines in this figure have the same meaning as in part (a). Part (d) shows 
the contribution to the background in part (b). 
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Table 3.2. Parameters estimated from the electron spectrum. This table 
gives the estimated values of the fit parameters and the statistical errors. 

parameter I fitted value I errors I 
zob 0.83 +0.048 -0.060 

zoc 0.68 +0.050 -0.054 

BR(b 3 e) 0.15 +0.019 -0.018 

BR(c + e) 0.12 +0.0066 -0.0065 

br 0.97 +0.090 -0.090 

s7 1.07 I , +0.090 , -0.090 , 

Table 3.3. Correlation coefficients from the fit to the electron spectrum. 

ZOb zoc BR( b ---) e) BR( c -+ e) S1r 

zoc -0.52 

BR(b + e) 0.49 -0.11 

BR(c + e) 0.26 0.19 -0.53 

Sn. 0.05 0.09 0.21 -0.54 

s7 0.01 0.15 0.08 -0.13 -0.13 

measurement of the b-lifetime. Because of the significant correlations between the 

various parameters in the fit, it is not entirely straightforward to propagate these 

errors through to the end of the lifetime analysis. The procedure used here is to 

find another set of uncorrelated fitting variables which are linearly related to the 

“physical” ones given above. Having done this, it is possible to propagate the errors 
simply by changing each of the new variables by &l sigma and observing the change 

in ?b. The resulting changes can then be added in quadrature. (This last step is 

not justified in the presence of correlations. ) The uncorrelated variables are linear 

combinations of the parameters given above. The coefficients are the elements of 

the eigenvectors obtained by diagonalizing the inverse error matrix from the fit. 

The errors on the new parameters are given by the square roots of the reciprocals 
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Table 3.4. Uncorrelated parameters from the fit. The old parameters are 
linear combinations of the new parameters. The coefficients are given in 
this table ( I.e., zob = O.O2=pl+... ). The errors indicated are the statistical 
errors on the new parameters. 

parameter error Zob =oc BR(b 3 e) BR(c -+ e) sn s7 

Pl Ito. 0.02 0.04 -0.17 -0.98 -0.04 -0.01 

P2 310.0152 -0.21 -0.07 0.96 -0.17 -0.04 -0.02 

P3 ztO.0362 0.63 0.74 0.19 0.01 -0.09 -0.10 

P4 ztO.0652 -0.74 0.65 -0.12 0.03 -0.04 -0.11 

P5 zko.0957 -0.03 0.04 -0.02 0.02 -0.69 0.73 

I ?‘S lf0.0850 1 0.00 1 -0.17 1 -0.05 1 0.04 (-0.72 l-0.67 1 

of the eigenvalues. The results of this procedure are shown in Table 3.4. 
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4. THE IMPACT PARAMETER TECHNIQUE 

The b-lifetime measurement reported on here is based on the impact parameter 

technique. This method has been used previously by several different groups31s32y33 

to measure the average lifetime of hadrons containing bottom quarks. The impact 

parameter ( 6 ) is the distance of closest approach in the x,y plane of a track 

to the nominal beam center. This is shown in Fig. 4.1. The sign of the impact 

parameter is determined by the direction of the track relative to the assumed 

direction of the parent hadron. This is done in a manner so that a positive 6 

corresponds to the parent hadron traveling a positive distance along its assumed 

direction before decaying. The parent hadron direction is approximated by the 

beam ellipse in the x,y plane 

Figure 4.1. Definition of the impact parameter. A B-hadron is produced 
at the point marked primary vertex. In this figure the B-hadron is shown 
decaying into 3 charged tracks. Tracks 1 and 3 intersect the event axis at 
spots which correspond to the B-hadron having traveled a positive distance 
from the center of the beam ellipse before decaying, and they therefore have 
6 > 0. Track 2 has 6 < 0. In this figure this arises because the primary 
vertex is not coincident with the center of the beam ellipse. Impact 
parameters Iess than zero are also produced by tracking resolution errors, 
and by errors in finding the events axis. In this analysis the sphericity 
axis, as determined from all charged tracks, is used as the event axis. 
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Figure 4.2. A Monte Carlo calculation of $J ( the angle between the 
sphericity axis and the B-hadron direction ). 

sphericity axis for events in this analysis. Fig. 4.2 shows a Monte Carlo calculation 

of the angle between the sphericity axis and the parent hadron. Typical errors in 

the direction are about 15’. These errors are caused by the presence of charged 

particles from the fragmentation process, by neutral particles produced in the decay 

of the bottom hadrons, and by gluon radiation. As can be appreciated from Fig. 

4.1, for events in which the angle between the parent hadron direction and the decay 

particle direction is not x 0’ or = 90°, a small error on the parent direction has no 

effect on 6. The systematic error associated with this will be discussed in the next 

chapter. 

This method of putting the sign on the impact parameter has important 

implications. Since the sources of error in the measurement of 6 generally are 

unrelated to the sphericity axis, this method will flip the sign on 6 in a random 

manner. Therefore, in the absence of particles with finite lifetimes, the average 

value of 6 ( 8 ) will be zero. Because of this, any deviation of 6 from zero is 

evidence for a non-zero lifetime. The contribution to 6 made by the finite lifetime 

of the parent particle depends both on the parent’s path length and on the geometry 

of the decay. From Fig. 4.1 it is clear that the decay products which make a small 

angle with the parent direction produce small impact parameters and vice versa. 
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Figure 4.3. Average impact parameter as a function of p and pt for 
electrons from the decay of B-hadrons. This figure is the result of a Monte 
Carlo calculation with rb = 1.0 psec. The dashed line shows the p = pt 
limit. 

This gives rise to substantial acceptance effects. Fig. 4.3 is a contour plot of a 

Monte Carlo calculation of the average impact parameter ( 8 ) for electrons from 

the decay of B-hadrons. It shows a large variation of 6 over the range of interest. The 

DELCO detector’s ability to identify low momentum electrons gives it a substantial 

advantage over other experiments because of these acceptance effects. While this 

advantage is partially offset by the detector’s modest resolution, the measurement 

remains competitive. 

4.1 THE TRACK QUALITY CUTS FOR THE LIFETIME ANALYSIS 

Stringent track quality cuts are placed on the tracks from the electron analysis 

to ensure that the impact parameters are well measured and to try to eliminate any 

possibility of confusion due to the presence of nearby or overlapping tracks. The 

cuts which are applied to the tracks are: 

l There must be at least 4 wires in the IDC associated with the track. 
l There must be at least 7 wires in the CDC associated with the track. 

l There must be at least 4 wires in the PDC associated with the track. 
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Table 4.1. The fractions of tracks from various sources for the b-region 
and the c-region defined in the text. These numbers are obtained as part 
of the fit to the electron spectrum which is described in Chapter 3. 

\ I 
region b-,e b+c+e c+e bckg 

b 0.70 0.09 0.17 0.04 

C 0.15 0.15 0.56 0.14 

There must be at least 17 wires in the sum of the IDC, CDC, and PDC 

associated with the track. 

The x2 of the track after fitting must be less than 40. ( x2 = the sum of the 

squares of the normalized residuals. ) 

The greatest residual in the IDC must be less than 800 pm. 

The greatest residual in the CDC must be less than 900 pm. 

The RMS residual in the IDC must be less than 400 pm. 

The RMS residual in the CDC must be less than 450 pm. 

The distance between the z-coordinate of the track origin ( zo ) and the z- 

coordinate of the event vertex must be less than 2.5 times the error on zo 

calculated during fitting. The z-coordinate of the event is calculated using 

all the tracks in the event. 

There must be no other tracks in the event within 50 mr in 4 ( where 4 is 

the azimuthal angle ). 

4.2 THE ELECTRON DATA 

In order to exhibit the signal, it is useful to divide the data into two subsets. 

The p, pt plane can be divided into a b-region ( pt > 1 GeV ) and a c-region ( p > 1 

GeV, pt < 1 GeV ), such that most tracks in the b-region will be electrons from 

B-hadron decay and most tracks in the c-region will be electrons from charmed 

hadron decay. Table 4.1 shows the result of breaking the plane up in this manner. 
The fractions of tracks from various sources are calculated from the results of the 

fit to the electron spectrum in p and pt. 
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Figure 4.4. Impact parameter distributions before track quality cuts. Part 
(a) is for the b-region and part (b) is for the c-region. 

Fig. 4.4a shows the distribution of impact parameters for tracks in the b-region 

and Fig.4.4b shows the same distribution for tracks in the c-region. Both of these 

‘distributions were made before the track quality cuts. The result of these cuts 

is to reduce the number of tracks in the b-region from 164 to 113 and in the 

c-region from 783 to 449. The impact parameter distributions for the two regions 

after these cuts are shown in Fig. 4.5. Applying the track quality cuts results in 

a substantial narrowing of these distributions. The widths of these distributions 

before the cuts were 619 zt 34 (stat.) pm and 727 & 18 (stat.) pm for the b-region 

and the c-region respectively. After the cuts the widths are 529 rf: 35 (stat.) pm 

and 594 =fr 20 (stat.) pm. From the figures it is clear that a substantial portion of 

the tracks eliminated by the cuts were in the tails of the distributions. The mean 

impact parameters after the track quality cuts are 6 = 259 & 49 (stat.) pm for the 

b-region and 8 = 146 & 28 (stat.) pm for the c-region. In both cases these numbers 

are significantly greater than zero and suggest the existence of long lived particles. I. 
AS wzs stated previously, tracks with impact parameters greater than 0.3 cm are 

not used. It is reasonably clear from the distributions of 6 that this produces only 

a small bias. This cut will be expIicitIy accounted for in the fit. 
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Figure 4.5. Impact parameter distributions after track quality cuts. Part 
(a) is for the b-region and part (b) is for the c-region. 

4.3 THE ERRORS AFFECTING THE MEASUREMENT OF 6 

There are three obvious contributions to the error on 6 ( as ). The largest 

comes from the finite beam size. The beam is expected to be Gaussian in x and 

y with the height quite small ( less than 100 pm) and the width somewhat larger 

( several hundreds of pm’s ). This 4 dependence in ag is clearly present in the 

distribution of 6 for tracks from Bhabha events. Fig. 4.6 shows the distribution of 6 

for tracks which are nearly vertical (a) and for tracks which are nearly horizontal (b). 

The difference in the widths of these distributions is clear. For tracks which are 

nearly horizontal, the beam size makes a small contribution. For these tracks ag 

is dominated by the drift chamber resolution ( 0D.C. ) which typically contributes 

about 230 pm. In addition to the beam size and the drift chamber resolution, 

multiple Coulomb scattering in the beam pipe and the inner wall of the IDC 

contributes to the resolution obtained in measuring 6. 

4.3.1 The errors due to the beam size’and the drift chambers 

The errors from the finite beam size and the drift chamber resolution are 

assumed to be Gaussianly distributed with a width that can be written as 
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Figure 4.6. Impact parameters for vertical and horizontal tracks from 
Bhabha events. In part (a) the tracks are within =t45’ of the vertical and 
in part (b) they are within &45O of the horizontal. Both distributions have 
means consistent with zero. The width of the first is 393 &3pm (stat.) 
and the width of the second is 273 ZL lpm (stat.). 

where 4 = 0 corresponds to a track pointing along the x-axis. The constants a, 

and ay describe the sum in quadrature of the drift chamber resolution and the 

horizontal and vertical beam size respectively. These numbers are measured using 

tracks from Bhabha events. Because of their large momenta, these tracks should 

not be affected by multiple scattering. A maximum likelihood fit is done to get crx 

and ay. The probability density function used is 

P(8) = l 
62 

6 
exp 

“06 ( ) -q l 

(4 2) . 

Tracks with impact parameters greater than 2 06 are not used in this fit so that 

the tails of the distribution will not pull the fit. 34 This causes a bias on the fitted 

values of a, and ay of order 14 %. A correction is made for this bias.35 Table 4.2 

summarizes the results of these fits for various run blocks. 

Although it is not essential to the analysis, it is interesting to determine how 

much of the error on 6 comes from the beam size and how much comes from the drift 

chamber resolution. It is possible to measure the error due to the drift chamber 
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Table 4.2. A summary of the resolutions obtained in measuring 6 for 
various data sets. The exact definitions of Q, cry, trD.c., and A are given 
in the text. Briefly, a, and ay are the sum in quadrature of the drift 
chamber resolution and the horizontal or vertical beam sizes respectively, 
aD.C. is the drift chamber resolution, and A describes the contribution of 
the multiple scattering to the resolution. 

data ax (cl4 ay (Pm) 0D.C. (Pm) ’ A (pm. GeV) 

'82 506 212 212 246 

'83 439 242 241 263 

'84 388 227 220 198 

resolution by using the two nearly parallel tracks produced in Bhabha events. Since 

these two tracks are produced at the same point, their separation near the beam 

center ( 62tr ) is just the sum of their respective drift chamber errors. More 

specifically, if & is a unit vector in the direction of track i, and if Zi is the point of 

closest approach of track i to the beam center, then 62tr = I(& - 22) x 21 where 2 

is a unit vector in the direction of & - 22. This procedure is necessary because the 

two tracks are generally not exactly parallel. The drift chamber resolution is given 

bY & times the standard deviation of the &t/s. Events with 6ztr > 2fitrg.c. are 

not used. This causes a bias similar to that mentioned above and is corrected in 

the same manner. The results are shown in Table 4.2. 

This prescription for calculating 06 can be tested by making a histogram of the 

quantity 6. This distribution will be referred to as the resolution function. If the 

calculation of 06 is correct, and if the assumption that 6 is Gaussianly distributed is 

correct, then the resoIution function will be a Gaussian centered on zero with unit 

width. The result of this check for tracks from Bhabha events is shown in Fig. 4.7. 

The two curves agree well inside of f2.5'a, but there is a substantial excess of events 

in the data outside this region. The effect of this deviation from a Gaussian shape 

will be investigated in the next chapter. 
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Figure 4.7. The distribution of 6 for tracks from Bhabha events. The 
histogram is the data and the smooth curve is a Gaussian centered on 
zero with unit width. Part (a) is plotted with a linear scale and part (b) 
is plotted with a logarithmic scale. The distributions are normalized to 
unity. 

4.3.2 The errors due to multiple scattering 

Multiple scattering in the beam pipe and the inner wall of the IDC contributes 

to the errors on 6. This contribution can be calculated according to the Gaussian 

approximation from the Particle Properties Data Booklet 36 as follows: 

R 0.0141 x, 1 Xr 
0m.s. =-- 

sin0 pp \i ( 
-T--& 1+ 5 log10 - 

( >> sin8 ’ 

where 6 is the polar angle, p is the momentum of the particle in GeV, /3 is the 

velocity in units of the speed of light, and Xr is the thickness of the material in 

radiation lengths. Table 4.3 summarizes the amount of material and its location for 

the various run blocks. This expression only provides a description of the Gaussian 

core of the multiple scattering distribution. It is well known36 that the tails of the 

multiple scattering distribution are much larger than those of a Gaussian. ( In the 

projected angle distribution they fall only as qF3. ) In order to check the accuracy 

of this calculation, as well-as the size of the tails on the resolution function, a source 

of low momentum tracks is needed. These tracks are obtained from the two-photon 
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Table 4.3. The material between the beam and the drift chambers at 
normal incidence. Numbers separated by a slash indicate a change in 
the detector. The original thick beam pipe was replaced with a thinner 
one between ‘83 and ‘84. 

What radius ( cm ) 

beam pipe 8.79 / 7.65 

IDC entrance 10.0 

# radiation lengths 

0.0225 / 0.0059 

0.0070 

process e+e-+ e+e-e+e-. Events are required to pass the following cuts: 

l One and only one of the luminosity monitors must have a large pulse height. 

l Each event must have exactly two “good” tracks after fitting. ( See the 

description of the hadron filter in Chapter 3 for the definition of a “good” 

track. ) 

l Each track must be associated with a latched shower counter. A shower 

counter should latch in response to a minimum ionizing particle. 

l Each track must have produced either eight ( isobutane ) or one ( nitrogen ) 

corrected photo-electrons in the Cerenkov counter. 

For this data set the “sphericity axis” is taken to point in the direction of the 

vector sum of the two particles’ momenta. The impact parameter distribution 

for tracks which pass the track quality cuts and which have p > 1 GeV 

is shown in Fig. 4.8. The mean of this distribution, 6= -0.8 & 6.7 (stat.) 

pm, is consistent with zero as expected. This provides some confidence 

that there are no subtle instrumental effects which can produce an average 

impact parameter greater than zero. The accuracy of the calculation of 

06 described above is checked by making a histogram of $ for this data. 

The histogram is shown in Fig. 4.9. ;The non-Gaussian tails are clearly larger 

than those in the Bhabha events. The core of the distribution is also wider than 

expected. It is clear that equation 4.3 does not provide an adequate description 

of the degradation of the-impact parameter resolution for low momentum tracks. 

Because of this it was necessary to measure this degradation. For these tracks the 
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Figure 4.8. The distribution of 6 for electrons from e+e-+ 
e+e-e+e-. This distribution serves as a check that there are no 
spurious sources of average impact parameters greater than zero. 

error on 6 can be written as 

0; = 0: l sin’ # + 0; l c0s2 # + . (4 4 . 

The constant A is determined from a maximum likelihood fit similar to the fit used 

to obtain oZ and gy. The factor of i arises from the f dependence of multiple 

scattering. The factor of sin-g 8 is produced by the dependence of the path length 

and the material thickness on 8. Since the material in question has a cylindrical 

geometry, the path length produces a factor of sin w-1 8 and the material thickness 

a factor of sin-4 B ( by way of the fl term in equation 4.3 ). In this fit ax and 

cry were held constant at the values determined from the fit to the Bhabhas. The 

results of these fits are also shown in Table 4.2 for the various run blocks. The 

value expected, based on the known material between the interaction point and the 

first layer of the IDC, is 176 pm l Gev for ‘82 and ‘83 and 108 pm l Gev for ‘84. 

This degradation may be due to the material in the drift chambers which is not 

accounted for in the simple analysis given above. This material ( the outer wall 

of the IDC, the inner wall of the CDC, and the gas and wires of both chambers ) 

amounts to 0.0128 of a radiation length and is therefore comparable to the material 
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Figure 4.9. The distribution of 6 for tracks from two-gamma events. 
In this case the multiple scattering contribution to ag is calculated using 
equation 4.3. The histogram is the data and the smooth curve is a Gaussian 
centered on zero with unit width. Part (a) is plotted with a linear scale 
and part (b) is plotted with a logarithmic scale. The distributions are 
normalized to unity. 

between the interaction point and the first layer of the IDC. The resolutton function 

obtained from tracks in the two-gamma data set, when a6 is calculated using 

equation 4.4, is shown in Fig. 4.10. As was the case with the tracks from Bhabha 

events, the distribution of & appears Gaussian in the central region, but there are 

substantial non-Gaussian tails outside of about k2.5 0. A similar study has been 

carried out using a mixture of pions and muons from the two-gamma processes 

e+e- + e+e-lr%r- and e + e- --$ e+e-p + p-. The results obtained are very similar 

and suggest that the resolution is independent of the particle type.37 

4.3.3 Additional errors in hadronic events 

A third data set which ca.n be used to determine the resolution consists of 

all the tracks in hadronic events. Impact parameter distributions from tracks in 
hadronic events have been examined to verify that there are not any sources of 

error which give rise to positive average impact parameters which are particular to 

hadronic events. An example of such a source would be confusion between tracks 

during track reconstruction. Errors from this source would clearly depend on the 
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Figure 4.10. The distribution of 6 for tracks from two-gamma events. In 
this case ag is calculated using the fitted value of A. The histogram is 
the data and the smooth curve is a Gaussian centered on zero with unit 
width. Part (a) is plotted with a linear scale and part (b) is plotted with 
a logarithmic scale. The distributions are normalized to unity. 

number and distribution of tracks in the event and could, therefore, be very different 

for different types of events. 

The cuts used to select these tracks were identical to those used to select 

the electron tracks for the lifetime analysis, except that no Cerenkov counter was 

required. The data was divided into a b-region and a c-region in the same manner as 

was done for the electrons. In both cases the average impact parameter is expected 

to be small and positive because a fraction of the tracks will be from the decay 

of hadrons containing heavy quarks. The distribution for the b-region is shown in 

Fig. 4.11a and the distribution for the c-region is shown in Fig. 4.11b. The means 

of these distributions are $= 46915 (stat.) pm for the b-region and 8= 42&2 (stat.) 

pm for the c-region. These means are calculated using only tracks with 161 < 0.3 

cm to prevent them from being pulled by the tails of the distribution. ( Pions 1 
from the decays of KS’s, for instance, can have enormous impact parameters. ) 

This is the same maximum impact parameter used in the lifetime analysis. A full 

detector simulation Monte Carlo calculation of these quantities gives 6= 38 3~ 11 

(stat.) pm for the b-region and 6= 43 & 4 (stat.) pm for the c-region. In both 
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Figure 4.11. Figure 4.11. Impact parameter distribution for all tracks in hadronic Impact parameter distribution for all tracks in hadronic 
events. Part (a) is for tracks in the b-region defined in the text and part events. Part (a) is for tracks in the b-region defined in the text and part 
(b) is for tracks in the c-region. (b) is for tracks in the c-region. 

cases these numbers are consistent with the data. A histogram of 6 for the tracks 

from hadronic events is shown in Fig. 4.12. This resolution function is skewed in 

the positive direction and contains large tails. Both of these effects are due to 

the presence of long-lived particles in this data. The tails are due to the inclusion 

of pions and protons from the decay of KB’s and A’s, and the shift of the central 

portion of the distribution is due to the inclusion of particles from the decay of 

bottom and charmed hadrons. Because of the contamination by long-lived particles, 

this distribution can not be directly compared with a Gaussian. 

An involved “unfolding” process has been used to obtain the resolution function 

from this data. 38 The distribution of 6 obtained from the hadronic events is 

assumed to result from the convolution of a known lifetime distribution with an 

unknown resolution function. If the distribution of 6 in the data is given by 

Pm (&) and the resolution function is given by P’f (&) then one expects 
,’ 

P”(z) = Irn prf (Y>C(Y,4dY, 
-00 

(4 5) . 

where C(y, z) is a known function which describes the smearing due to particles 



62 

0.4 

0.3 

0.2 

0.1 

0.0 

100 

10-l 

10-2 

10-3 

Figure 4.12. The distribution of c ’ for tracks from hadronic events. The 
histogram is the data and the smooth curve is a Gaussian centered on 
zero with unit width. Part (a) is pIotted with a linear scale and part (b) 
is plotted with a logarithmic scale. The distributions are normalized to 
unity. 

with finite lifetimes. Breaking this up into’a discrete form gives 

pi" = 
/ 

00 prf (Y)Ci(Y)dY, (4 6) . 
-00 

m where Pi is now the expected contents of the i’th ( i=l,n ) bin of the histogram 

of &; i.e., 

pi" = 
/ i,th btn Pm(xJdx* . (4 7) . 

If the resolution function is written as a linear combination of m other functions, 

then 
m 

p’f (Y) = xaj l Pi(Y)* 

:)=I 

(4 8) 
. 

Plugging this into equation 4.6 gives 

\ 
pi" = 

aj l Pj(Y) l ci(Y)dY, (4 9) . 
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and interchanging the order of summation and integration gives 

(4.10) 

Since the pj(y)‘s as well a~ the Ci(y) ‘s are known functions, it is convenient to write 

the integral in the above equation as 

/ 

00 

Cij = Pj(Y) ’ ci(Y)dY* 
-co 

(4.11) 

Therefore, Cij represents the contribution of the function pi(y) to the i’th bin of 

the distribution of $- obtained from tracks in hadronic events. Plugging this back 

into equation 4.10 gives 

Pim=fl:Cij’(lja (4.12) 
j=l 

If the real content of the i’th bin of the data is Q, then the likelihood of having 

observed the Di’s is 

L(tZl...ttm) = fi e 
-pi”. (pn2)Q 

D ,’ , 
i=l i* 

(4.13) 

where the product is over bins. It is then straightforward to estimate the values of 

the aj by maximizing the above expression. 

The functions pi(y) were chosen to be cubic b-splines. These functions are 

defined and graphed in Appendix B. The values of the Cij’s are obtained by a 

Monte Carlo calculation. Each event consists of generating a value of fin uniformly 

distributed on the range [-lO,lO] and then smearing it by an amount s. In this 

expression 61 is the contribution to the impact parameter from a particle with finite 

lifetime, and 06 is the calculated error on the impact parameter for that particle. 

For each event the values of the Cij’s are incremented according to 
. . 

cij = Cij + Pj(&), (4.14) 
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Figure 4.13. The resolution function from hadronic events. The histogram 
is the unfolded data and the smooth curve is a Gaussian centered on zero 
with unit width. Part (a) is plotted with a linear scale and part (b) 
is plotted with a logarithmic scale. The distributions are normalized to 
unity. 

where j runs from 1 to m and i labels the appropriate bin for & + $-. The result 

of this unfolding is shown in Fig. 4.13. This distribution has non-Gaussian tails 

which are comparable to the tails in the resolution function for the tracks from 

e+e-+ e+e-e+e-. Unfortunately it is also somewhat wider than the resolution 

function obtained from the electron tracks from the two-gammaprocess and it is still 

somewhat asymmetric. Both of these characteristics lead to systematic errors in the 

b-lifetime. Since there is no obvious mechanism which can produce the asymmetry 

observed in the tails of the resolution function and which would not be associated 

with long-lived particles, the resolution function has been symmetrized u by hand .” 

This is shown in Fig. 4.14. The difference in the b-lifetime obtained with the two 

resolution functions will be included as a systematic error.3g 

4.4 THE TAU DATA SET 

As a final test of the impact parameter method, a measurement of the lifetime 

of the tau lepton has been made. The tau lifetime has been measured with 

high precision by other experiments40*41~42~43~44 and is found to have a value of 
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Figure 4.14. Figure 4.14. The resolution function from hadronic events after The resolution function from hadronic events after 
symmetrization. symmetrization. The histogram is the unfolded data and the smooth The histogram is the unfolded data and the smooth 
curve is a Gaussian centered on zero with unit width. Part (a) is plotted curve is a Gaussian centered on zero with unit width. Part (a) is plotted 
with a linear scale and part (b) is plotted with a logarithmic scale. The with a linear scale and part (b) is plotted with a logarithmic scale. The 
distributions are normalized to unity. distributions are normalized to unity. 

TT = 0.286 & 0.016 (stat.) & 0.025 (sys.) psec.45 Comparing this “known” value 

of 77 with a measurement made using the impact parameter technique provides 

confidence that the b-lifetime is measured correctly. A measurement of the tau 

lifetime is particularly useful as a check since the three track side of the 1:3 track 

tau decays t used in this measurement will suffer some of the same tracking confusion 

problems that the electron tracks in the b-lifetime analysis suffer. The l:3 track tau 

decays were picked for this analysis because they are easily identified by topological 

cuts only, without the need for particle identification. The large velocity of the 

tau before decay (7 w 8) results in its decay products typically all being thrown 

forward to produce the characteristic signature of a single high momentum track 

back-to-back with three other high momentum tracks. The cuts used to select the 

tau data set were: ,‘ 

l The thrust and the thrust axis are calculated for each event. Each event 

t That is, of the two initially produced taus, one decays to produce one charged 

track and the other decays to produce three charged tracks. 
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must have a thrust greater than 0.97. 

The event is divided into hemispheres using the thrust axis. The event must 

have exactly one good track on one side and three good tracks on the opposite 

side. 

The total charged energy of the event must be at least 6.0 GeV and no greater 

than 24.0 GeV. 

The z-coordinate of the origin of each track must be within rtr 3.5 cm of the 

nominal beam center. 

The momentum of each track in the event must be greater than 0.2 GeV. 

Each track in the event must have at least one hit each in the IDC, the CDC, 

and the PDC. 

The invariant mass of the three track system must be greater than 0.1 GeV 

and less than 1.8 GeV, assuming the particles have electron masses. 

The invariant mass of the three track system must be greater than 0.5 GeV 

and less than 2.0 GeV, assuming the particles have pion masses. 

The energy of the three track system must be greater than 3.0 GeV, assuming 

the particles have pion masses. 

The total charge of the event must be zero. 

The result of these cuts is a data set of 1357 events. Monte Carlo calculations 

estimate that there are backgrounds of 31 hadronic events and 12 Bhabha events. 

This last background comes from radiative Bhabha events in which the photon 

converts in the beam pipe or the inner wall of the IDC. Both of these backgrounds 

will produce only very small errors in the lifetime and are neglected in the 

following. The tau lifetime can be estimated from the mean of the impact parameter 

distribution. After applying the track quality cuts listed earlier in this chapter and ,’ 
requiring each track to have p > 1 GeV, there are 2177 tracks left with impact 

parameters less than 0.3 cm. This is the same maximum 6 cut used in the b-lifetime 

analysis. In this case it keeps the lifetime measurement from being pulled by tracks 

from KS decay. The tracks in this data set have a mean impact parameter of 
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Figure 4.15. Impact parameters from tracks from tau decays. The points 
are the data and the smooth curve is a Monte Carlo calculation of the 
expected distribution based on a tau lifetime of 0.3 psec. 

8 = 56.8 rt 9.3 (stat&m. The distribution of these impact parameters is shown in 

Fig. 4.15. 

The tau lifetime is obtained by a Monte Carlo calculation of 6 for various values 

of rr. The result of this calculation is shown in Fig. 4.16. As one would expect, 

there is a simple linear relationship between the lifetime and the average impact 

parameter. The lifetime inferred from these figures is q = 0.263zk0.046 (stat.) psec 

which is consistent with previous measurements. 

Figure 4.16. Average impact parameter as a function of q. This figure is 
the result of a full detector simulation Monte Carlo calculation. 
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5. THE FIT TO THE IMPACT PARAMETERS 

A maximum likelihood ( M.L. ) fit has been done to estimate the B-hadron 

lifetime from the impact parameters in a manner similar to previous analyses.32 

This method was picked because it makes it possible to account for the variation in 

resolution and in the distribution of 6 which one expects for tracks with different p, 

pt, directions, etc. M.L. fits are also desirable because in some sense they make the 

best use of the data .46 They also do not depend heavily on the data in calculating 

the error on the lifetime. This is in contrast, for instance, to comparing the mean 

impact parameter, 6, with that expected from a M.C. calculation.33 In this case the 

error on 6 ( which is calculated from the width of the data ) is used to determine 

the error on rb. Given the limited statistics of this experiment, the uncertainty of 

the error on 6 could be large, making it difficult to determine the significance of the 

final result. A M.L. fit also makes it possible to test for certain systematic errors 

in a simple way. For example, it is easy to change the ratio of b + e and c + e in 

the fit and observe the effect this has on the measured value of rb. 

5.1 THE PROBABILITY DENSITY FUNCTION 

In order to perform a M.L. fit, it is necessary to calculate the probability of 

observing the i’th event ( Pi ). This probability is a function of the parameters 

we wish to estimate; i.e. Pi = @(rb, rC). It is also a function of the variables 

which describe each event; i.e. the impact parameter ( 6 ), the error on the impact 

parameter ( 06 ), the momentum of the track ( p ), the momentum transverse to 

the sphericity axis ( pt ), the sphericity of the event, etc. This fit explicitly accounts 

for those variables which are most directly affected by the lifetimes ( clearly this 

means 6 ), and also for some of the other event characteristics which affect 6. The 

most important of these is q, while p and pt are of secondary importance. 

The probability of observing the i’th event can be expressed as 

(5 1) . 
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where the sum over four terms accounts for the four sources of “electrons” in 

the analysis. These are: the decay of a hadron containing a b-quark to produce 

an electron ( b + e ) , the decay of a hadron containing a b-quark to a hadron 

containing a c-quark followed by the decay of that hadron to produce an electron 

( b + c + e ) , the decay of a hadron containing a c-quark to produce an electron 

(c-+e) 3 and the various backgrounds. The fi’s ( z = b, bc, c, bkg ) are functions 

of p and pt only and are the probabilities that an “electron” with a given p and 

pt came from the indicated source. They are obtained from the electron analysis 

described previously. The Pi’s are functions of 6, 06, p, and pt. They are the 

probabilities that an “electron” from a given source, with given p, pt, and 06, 

would have an impact parameter 6. 

5.1.1 The fractions 

The fg’s, which are found as part of the electron analysis, are tabulated in 

Appendix E. These numbers are calculated in 0.5 GeV square bins in p and pt. 

They have systematic uncertainties as a result of the limited statistics of the electron 

analysis. It is important to note that not all of the errors in the published electron 

analysis apply in this case. 47a48 For instance the uncertainty in the luminosity 

produces an uncertainty in the branching ratios, but this error exactly cancels in 

the /‘i’s and so is not considered here. 

5.1.2 The impact parameter distributions 

The Pi’s are calculated on the assumption that the distribution of 6 can be 

understood as the convolution of two himpler distributions, one due to the finite 

lifetimes and the other due to the limited resolution in the measurement of 6. The 

first of these is referred to as P.$exad and the second as Pi’mC08. Pj then has the 

form: 

p;(6) = 

/ 

O” p~-d(6’)pi?‘-=(~ - &‘)&jf. 
(5 2) . 

-00 
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The measurement errors are described by the resolution function P’f(t5) 

discussed in the previous chapter and are assumed to be independent of the source 

of the “electron.” In terms of this function: 

i mea8 P) (4 = $PT’ : ) 

6 0 4 
(5 3) . 

where 05 is the error on 6 for the i’th event. This definition of Pi,mcas(6) is just the 

inverse of the procedure used in the previous chapter to obtain p+f (6). The factor of 

& in front of P’f(6) is needed to maintain the normalization. Because P’f(6) is in 

effect scaled by 0: on an event-by-event basis, the differences in resolution from one 

track to the next, due to the beam size and the multiple scattering, are accounted 

for in the fit. Plugging the resolution function into the previous expression for Pi (6) 

makes it possible to display explicitly the ag dependence and gives 

(5 4 . 

The exact impact parameter distributions P,Czad(6; p, pt) are determined by a 

Monte Carlo calculation. This calculation requires the generation of a large number 

of Monte Carlo events ( = lo6 ). To generate this many events using a full detector 

simulation Monte Carlo would require a prohibitively large amount of computer 

time. Because of this it was necessary to develop a simple “non-simulation” Monte 

Carlo which would reproduce the full simulation Monte Carlo in its gross features 

and which would use a minimal amount of computer time. The non-simulation 

Monte Carlo consists of applying the following cuts to the events generated by the 

Lund Monte Carlo code which is described in Appendix C: 

l Only stable charged tracks inside of 1 cos Sl < 0.8 are considered ( 6 is the 

polar angle ). 

l Tracks with p 5 0.20 GeV are kept or dropped with an efficiency of 16 %. 
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Table 5.1. Tracking efficiency in 4. This table is used in the non-simulation 
Monte Carlo to simulate the tracking confusion which occurs in jets. 

I 

4 interval ( radians ) efficiency 
, I 

0.00 - 0.05 0.47 

0.05 - 0.10 0.64 

0.10 - 0.15 0.68 

0.15 - 0.20 0.76 

0.20 - 0.25 0.84 

0.25 - 0.30 0.86 

0.30 - 0.35 0.88 

0.35 - 0.40 0.90 

0.40 - 0.45 0.92 

0.45 - 0.50 0.94 

0.50 - 0.55 0.96 

0.55 - 0.60 0.98 

0.60 - 3.14 1.00 
r m 

l The momenta of tracks which pass the above cuts are smeared according to 

p + p/(1 + A) where A is drawn from a Gaussian distribution with width 

equal to the known detector resolution for a track with momentum p. 

l Tracks are kept or dropped at random depending on how close they are to 

other tracks in 4 ( cf, is the azimuthal angle ). The probability of keeping a 

track is given in Table 5.1. This procedure is applied twice. 

At this point two “event cuts” are applied. Events which fail either of these cuts 

are dropped: 

l The tota number of charged tracks left must be at least 5. 

l The total energy of all of the charged tracks ( assuming pion masses ) must 

be at least 6 GeV. 

If the event passes these cuts and if it still has an electron in it, then the following 

cuts are applied: 

l The electron must be inside of 1 cos Sl < 0.6. 
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Figure 5.1. Comparison of the non-sim. and full sim. ME. The histogram 
is the result of the non-detector simulation Monte Carlo and the points 
are the result of the full detector simulation Monte Carlo. Part (a) shows 
a comparison of the sphericity ( s ) and part (b) shows a comparison of 
the sphericity axis ( $ ) dotted into the direction of the B-hadron ( j!~ ). 

l If there is another track in the same Cerenkov cell as the electron, then the 

efficiency for keeping the electron is 30 %. 

The p1 of the electron is calculated relative to the sphericity axis determined 

from all of the charged tracks remaining in the event. The following distributions 

demonstrate the ability of this procedure to reproduce the effects of the full detector 

simulation Monte Carlo. Fig. 5.la compares the distribution of the sphericity and 

Fig. 5.lb compares the distribution of the dot product of the parent hadron ( the 

hadron containing the b- or c-quark ) and the sphericity axis. In both cases 

the agreement is good and demonstrates that the non-simulation Monte Carlo 

reproduces the sphericity axis properly. Fig. 5.2 is a comparison of the impact 

parameter distributions of electrons from the decay of heavy quarks as calculated 

by the two Monte Carlos. The distributions are clearly consistent with each other 

and show that the non-simulation Monte Carlo correctly accounts for the acceptance 

effects in the full detector simulation. Similar agreement is obtained for electrons 
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Figure 5.2. Comparison of the calculated impact parameter distributions 
for electrons from the decay of bottom quarks. The histograms are from 
the non-simulation Monte Carlo and the points are from the full detector 
simulation. The electrons were required to have momentum in the range 
1 < p 5 2.5 GeV. Part (a) is for the b-region defined in the text and part 
(b) is for the c-region. 

Table 5.2. Summary of the average impact parameters for electrons 
from the decay of b-quarks and c-quarks calculated using a full detector 
simulation ( top number ) and a non-simulation ( bottom number ) Monte 
Carlo. 

I I all I b-region I c-region I 

from c-quark decay. The means of these distributions are summarized in Table 5.2. 

The average impact parameters calculated using both the full detector simulation 

and the non-simulation Monte Carlos are consistent for all regions in p and pt and 

for both b-quark and c-quark decay. 

There exists a substantial systkmatic uncertainty associated with the 

calculation of the exact impact parameter distributions. Since the parent hadron 

is part of a jet produced in the fragmentation process, it does not have a 

unique momentum. This uncertainty in the momentum produces a corresponding 
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uncertainty in 6. This is not, in and of itself, a major problem. There are 

many other details about each event which are known only in an average sense. 

Because there is no clear theoretical understanding of the fragmentation process, 

the momentum distribution of the parent hadrons must be measured from the data. 

This was done in Chapter 3. The limited statistics in this measurement produce a 

substantial uncertainty in the final b-lifetime measurement. As has been pointed 

out previously,4g it could be worse. A particle with lifetime r will travel a distance 

2 = pycr ( where /3 is the velocity in units of the speed of light, 7 = (1 - p2) 3, and c 

is the speed of light ) before it decays. The angle between the track and the parent 

direction tends to close up as +, so that as p + 1 the impact parameter becomes 

independent of the momentum of the parent hadron. In the present situation 

p fi: 0.87, so that the limiting case has not been reached and some sensitivity to the 

parent hadron momentum remains. There is also a contribution to this systematic 

error due to changes in the number of electrons which come from backward decays 

of the parent hadron. Fig. 5.3 shows the result of a Monte Carlo calculation of the 

average impact parameter for different values of Q. ( The variable ~6 describes the 

B-hadron momentum distribution. See Appendix C for a definition. ) The details 

of how this systematic error is propagated through the analysis are covered later in 

this chapter. 

For a given source of electrons, the P~~ezact’s depend on p and pt. If the 

“electron” in the i’th event has momentum equal to p’ and transverse momentum 

equal to pi, then 

pmct(6) = p;=act(& pQ). 
2 (5 5) . 

The p and pt dependence is accounted for by binning the PIZaCt's in 0.5 GeV 

intervals in p and pt. Fig. 5.4 shows typical results of such a Monte Carlo calculation. 

Impact parameters less than zero result from backward decays in which the electron 

ends up in the “wrong” jet and from events in which the sphericity axis does not 

accurately describe the direction of the parent hadron. The lifetime contribution 
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Figure 5.3. Average impact parameter as a function of ~6. This figure is 
the result of a Monte Carlo calculation done with rb = 1.0 psec. Only 
tracks with 1.0 2 p < 5.5 GeV and pt 2 1.0 GeV were used. 

to the impact parameter for a given event can be thought of as being produced in 

a two step process: first an exponential decay characterized by a length A, followed 

by a projection to give 6. This projection is necessary since the impact parameter 

is defined to be the distance of closest approach of the track, 06 projected onto 

the z-y plane, to the z-axis. The probability of observing a decay of length 2 is 

proportional to 

P(l;X) = iexp(-$. (5 6) . 

This distribution in I has the following property: 

P(l; A) = +P(+; X0). (5 7) . 

Since the projection is a purely geometrical operation and is independent of I, it 

follows that 6 oc I and therefore 

(5 8) . 

so that, for the cases where the impact parameter is due to a single decay ( i.e. 

b + e and c + e ), it is possible to generate the exact distribution once for a given 
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Figure 5.4. Exact impact parameter distributions. Part (a) is for the 
b ---) e process and part (b) is for the c 3 e process. The lifetimes used 
for this calculation are rb = 1.00 psec and rc = 0.64 psec. 

lifetime, and then scale it as a function of rb or rc to do the fit. The distribution for 

the cascade process ( b + c + e ) does not possess any obvious scaling properties. , 

It is put in as a fixed distribution, independent of ?b and rc. After the fit the 

distribution is recalculated with the new rb and rc and the fit is repeated. Since the 

cascade process contributes little in the p and pt range of interest, this procedure 

converges quickly. 

The exact impact parameter distribution for the backgrounds does not depend 

on either rb or rc. It is put in as a &function for the part of the background which 

is due to misidentified pions, and as a Gaussian whose width depends on p for the 

part due to gamma conversions. This width arises from the apparent curvature 

of the electrons from 7 + e+e- in the 3.3 kG magnetic field. The widths are 

summarized in Table 5.3. They are obtained by a full detector simulation Monte 

Carlo calculation in which photons are c,onverted in the beam pipe and the resulting 

electrons are “swum” through the magnetic field in the detector. In this case the 

resolution of the drift chambers has been set to zero ( no measurement error ) so 

that only the effects of the magnetic field and the geometry will be present. Tracks 

are fit to the simulated drift chamber hits in the usual manner. The widths of these 
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Table 5.3. Widths of the distributions of 6 for 7 + e+e- in the beam 
pipe. These numbers are obtained from a full detector simulation Monte 
Carlo calculation in which the drift chamber resolution is set to zero. The 
correction to the final b-lifetime due to these effects is very small because 
there are very few high pt tracks from gamma conversions. 

/ 
momentum ( GeV ) width (pm ) 

1.0 - 1.5 520 

1.5 - 2.0 370 

2.0 - 2.5 286 

2.5 - 3.0 234 

3.0 - 3.5 200 

3.5 - 4.0 173 

distributions have only a very small effect on the final lifetime because of the small 

number of gamma conversion electrons present in the b-region. 

The expression above for scaling PixaCt can be plugged into the convolution 

integral: 

(5 9) . 

By defining a scaling variable s such that r = s 9 ro and by changing the variable of 

integration one obtains 

(5.10) 

( Since TO is a constant, the dependence of Pixud on it is not explicitly shown. ) 
Because the exact distributions in 6 are calculated by Monte Carlo methods, it is 

not possible to do the convolution of P mcas with P’f analytically. Hence, the above 
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Figure 5.5. Contour plot of the likelihood function versus rb and rc for all 
tracks with p > 1 GeV. The curves shown are at the one, two, and three 
sigma levels. 

integral becomes.a summation. The P exact’s are binned in 6 so that the value of 6 

at the middle of the j’th bin is 

t5j = 60 + j l A6, 

where j runs from 1 to nb and A6 is the width of a bin in 6. 

6j-+A6<6<6j+iA6: 

P;=t(&pi,pf) = p;yct(pi,pt), 

and the previous integral becomes 

5.2 THE RESULTS OF FITTING THE ELECTRON DATA SET 

(5.11) 

Then for 

(5.12) 

Fig. 5.5 is a contour plot of the likelihood function versus rb and rc. The 
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Figure 5.6. The likelihood function versus rb. The minimum is at rb = 
1.15 psec and the 1 sigma error bars are +O.25 psec and -0.21 psec. 

resolution function used was obtained from tracks in hadronic events by the 

unfolding described previously. The one, two, and three sigma contours are shown. 

The minimum at ?b = l.lO"?,:",i (stat.) psec and rc = 0.79fi:$ (stat.) psec is 

consistent with the known value of the average charmed particle lifetime of rc = 

0 64+:$ psec. ( See Appendix C for the origin of rc and its uncertainty. ) This . 

measurement of rb suffers from systematic uncertainties due to the uncertainty in 

the relative fraction of b ---) e and c + e in the data and due to the uncertainty in 

rc. This effect is driven by tracks in the low pt region ( pt < 1 GeV ) where there 

is a reasonable chance that the track came from the decay of either a charmed or 

bottom quark. The effect of this systematic error can be reduced by only using 

tracks with pt > 1 GeV. As was stated previously, the probability that a track in 

this region came from the decay of a B-hadron in 70 %. The result of fitting just 

the tracks in the b-region ( with rc fixed to 0.64 psec ) is rb = l.lSfz:$ (stat.) 

psec. A plot of -2 (log L - log I/,,& is shown in Fig. 5.6. 

5.3 GOODNESS OF FIT TESTS 

It is implicit in the work above that a M.L. estimate assumes an understanding 

of the distribution from which the data was drawn. It is desirable that some check 

be made that the data is consistent with the distributions to which it is fitted. This 



is important because errors made in the assumed shape of the pi’s will manifest 

themselves as systematic errors on the lifetime. In particular if the width of the 

resolution function is underestimated, then the lifetime will be overestimated. This 

can be understood heuristically as follows. If the resolution function is too narrow, 

then for the correct lifetime the probability of observing an event in the tails will be 

underestimated leading to a small value of the likelihood function. This small value ’ 

of L can be improved on in the fit by an increase in the lifetime. This is because long 

lifetimes produce tails in both the positive and the negative directions. The result of 

this will be a poor fit because the tails on the resolution function are ( presumably ) 

symmetric while the tails due to lifetimes are asymmetric. In this section several 

tests of the consistency of the data with the distributions are considered. The 

first consists of binning the data in 6 and then doing a Monte Carlo calculation 

of the number of expected events in each bin. The second uses the value of the 

likelihood function at its maximum as a test of the fit, and the third considers 

various parameterizations of the resolution function which can be used as tests. 

In later sections a comparison will be made with a full detector simulation Monte 

Carlo calculation of the first moments of the impact parameter distribution and the 

effect of cutting off the events in the tails of the distribution will be considered. 

5.3.1 The histogram test 

It would be convenient if a full detector simulation Monte Carlo calculation 

could be used to obtain the expected 6 distributions, however, the computer time 

needed to do this would be prohibitive. The calculations in this section are based 

on the probability tables and exact impact parameter distributions used in the M.L. 

fit. The procedure for generating these distributions is: 

0 For each real electron in the data, pick at random a type ( b + e, etc. ) 

depending on the fractions ( fi’s ) for an electron with that p and pt bin. 

l Using the chosen type, p, and pt, pick an exact impact parameter using the 

exact impact parameter distributions Pzzad (6; p, pt). 
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l Smear the exact impact parameter to account for the measurement error. 

This is done by generating a random number distributed according to the 

resolution function and multiplying it by 0;. This number is then added to 6. 

Applying this procedure to each track in the data set produces a single Monte 

Carlo Uexperiment .- By repeating this “experiment” many times, it is possible to 

obtain the desired distributions. The result of this exercise is shown for the b-region 

in Fig. 5.7a and for the c-region in Fig. 5.7b. These distributions are calculated 

with rc = 0.64 psec and rb = 1.17 psec. For the b-region $~,c. = 222 zt 6 (stat.) 

CL=% zdata = 257 If 49 (stat.) pm, and for the c-region $JUC. = 101 313 (stat.) pm, 

zdat a = 133 -+ 25 (stat.) pm. A quantitative estimate of the agreement between the 

data and the Monte Carlo calculation can be had by calculating the x2 of the fit. 

The contribution of one bin to the x2 is 

(N data - NM.C.12 

NM.C. 
3 (5.14) 

where Ndata is the number of tracks in that bin and NM,c. is the number of tracks 

expected based on the Monte Carlo calculation. The sum is taken only over bins 

occupied by data, and the number of degrees of freedom is equal to the number of 

bins summed ( c-region ) or the number of bins summed minus one ( b-region ). 

The results of this are x2 = 7.1 for 7 D.F. for the b-region and x2 = 6.6 for 10 D.F. 

for the c-region. These numbers correspond to confidence levels of approximately 

40 % and 90 % respectively. 5o In both the b-region and the c-region, the number 

of events in the tails of the data is consistent with the number expected from the 

Monte Carlo calculation. 

5.3.2 The likelihood test 
.’ . 

Appendix A contains the motivation for the statistic which is used as a goodness 

of fit test in this section. For the case of the Gaussian distributions considered in the 

appendix, the distribution of x2 can be calculated analytically and is well known. 

For the probability density function used in the lifetime fit, this is hardly the case. 
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Figure 57. A comparison of the measured and the expected impact 
parameters. Part (a) is for the b-region and part (b) is for the c-region. 
The smooth curve is the Monte Carlo calculation. The lifetimes used in 
this calculation were rc = 0.64 psec and rb = 1.17 psec. ( See the next 
section. ) 

In fact, since the exact impact parameter distributions are obtained from a Monte 

Carlo calculation, no analytic calculation of the distribution of U x2 n is possible. It 

is possible, however, to obtain this distribution by another Monte Carlo calculation. 

The procedure for generating one value of u x2 * is: 

l Generate a fake experiment as outlined in the previous section. 

l Fit the data set and save the value of u x2 “: 

N 
u X 293 = -2 log L - c log(27rc$). (5.15) 

i=l 

This procedure is then repeated many times in order to obtain the distribution of 
u x2 n . The results are shown in Fig. 5.8a for the entire data set ( 2-d fit ), and 

in Fig. 5.8b for just the b-region ( 1-d fit ). Th e confidence levels given in the 

figures are the probabilities that the u x2 n will exceed the u x2 n obtained in this 

experiment. In all cases the data is consistent with the distribution to which it WLS 
fitted. As a by-product of this test, one can check for bias in the fitting procedure 

( see Appendix A ). The result of such a test is that the bias is less than 5%. 
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Figure 5.8. Distribution of u x2 n expected for the data. Part (a) is for all 
tracks with p > 1 GeV and part (b) is for just the b-region. The small 
arrows mark the value of u x2 n for the data. 

5.3.3 Changes in the shape of the resolution function 

It is possible to use the data being fitted to test the assumptions that were 

made about the distributions from which the data was drawn. The general form 

for doing this is as follows. If the original P.D.F. was P(r), then an additional 

parameter ( c ), which affects the shape of the distributions, is introduced so that 

P(r) 3 P(q E). For some nominal value of E the two distributions coincide; i.e. 

P(7) = P(r,q)). (5.16) 

Then the data being fit can be used to estimate the value of c. If the estimated value 

of c is not consistent with ~0, then it is clear that the fit is not being done correctly. 

The converse does not hold, however. Since changing c only sweeps out a particular 

family of distributions, it is not possible to know whether there is a more correct 

one which has not been considered. In vithat follows two different parameterizations 

will be considered. By showing that it is possible to ruIe out a couple of obvious 

deviations from the assumed resolution, some confidence is gained that the data 

agrees with the distribution to which it was fitted. The first parameter ( q ) scales 

the calculated errors; i.e., 06 + rl l as. This provides a measure of the accuracy 
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Figure 5.9. Contour plots of L in the (?b,cl) and (Tb,q) planes. The 
contours are drawn at the one, two, and three sigma levels. These plots 
use only the data in the b-region. 

with which the width of the central part of the distribution is calculated. A contour 

plot of the likelihood function in the (q,, q) plane for the b-region is shown in 

Fig. 5.9. The values from the fit ( rb = 1.27 psec and q = 0.81 ) are consistent with 

the measured value of the b-lifetime and with a correct calculation of the detector 

resolution. 

The second additional parameter ( ~2 ) allows a flat background in the fit ( flat 

in the sense that it does not depend on the impact parameter ). In this case if Pi is 

the probability of observing the i’th event, then Pi --) e2 + (1 - ~2) . Pi. A contour 

plot of the likelihood function in the (q,, ~2) plane for the b-region is shown in Fig. 

5.9b. The values from the fit ( rb = 1.14 psec and c2 = 0.001 ) are consistent with 

the measured value of the b-lifetime and consistent with a correct calculation of the 

detector resolution. 

5.4 A FIRST MOMENT COMPARISON WITH A FULL SIMULATION MONTE 

CARLO 

As an additional check on the maximum likelihood fit, a comparison has been 

made between the first moments of the data and the first moments as calculated 

by a full detector simulation Monte Carlo using the measured value of rb. The 
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Table 5.4. A first moment comparison of the average impact parameters 
in the data and the Monte Carlo. The Monte Carlo calculation uses a full 
detector simulation with rc = 0.64 and rb = 1.17 ( see the next section for 
the reason for using this value of q, ). 

Data Monte Carlo 

I b-region I 259 3~ 49 (stat.) pm I 192 * 14 (stat.) firn I 

I c-region I 146 rt 28 (stat.) pm I 116 3~ 8 (stat.) pm I 

results of this comparison are shown in Table 5.4. The errors on the Monte Carlo 

calculations are statistical only. The data and the Monte Carlo agree within the 

statistics. 

5.5 THE EFFECT OF TRUNCATION ON THE FIT 

It was stated above that tracks with impact parameters greater than 0.3 cm 

have not been used in this analysis. The impact parameter distributions calculated 

in the previous section suggest that this should have a negligible effect on the fit 

since the tails outside of & 0.3 cm are very small. It is possible to account explicitly 

for this utruncation” in the course of the maximum likelihood fit. The details of 

this procedure are described below. The general idea is as follows. If the fit is to be 

done only over a certain window, then events outside this window are ( obviously ) 

dropped from the fit. The shape of the P.D.F. inside this window is the same 

as before, but because the tails have been cut off, the normalization is no longer 

correct. Fixing this requires integrating the tails of the distribution and multiplying 

the P.D.F. by the appropriate correction factor. Specifically, if &a% is the greatest 

impact parameter allowed in the analysis, then the P.D.F. is modified to: 

(5.17) 

so that the shape of the Pi is unchanged for (sl < &zr but the normalization is 
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different. Thus for ISI < bmaz 

Pi(new) = 
1 

1 - t1 - t2 
l P’(old), (5.18) 

(5.19) 

(5.20) 

where 

and 

J 

00 
t1 = P’(6)d6, 

6 ma2 

-6maz 
t2 = 

I 
Pi(6)d& 

--oo 

If this holds for the complete P.D.F., then clearly it also holds for the P.$i)‘s. 

Therefore they can be written as 

where 

> 

9 (5.21) 

(5.22) 

and similarly for ti. Moving the integration inside the summation gives 

A change of variable gives 

nb ti = A% 
j=l 

(5.23) 

P exact 
xi ( > Pi, Pt 

.’ / 

00 

3 (brnaz-s*6j) 
P’f (z)dz. (5.24) 

6 

This integral can be performed numerically and the result expressed as a cubic 

spline. By defining the new function: 

C’f (z) = 
/ 

O” Prf (z)dz, (5.25) 
2 
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Figure 5.10. Contour plot of the likelihood function versus ?b and rc for 
the full data set, this time accounting for the ztO.3 cm maximum impact 
parameter cut. 

t$ can be expressed as 

Similarly for t2: 

(5.26) 

(5.27) 

The result of this modification for the 2-D fit is qj = 1.12f~:$ (stat.) psec and 

rc = O.Sl~@~ (stat.) psec, and for the J-D fit is rb = 1.17~~:~~ (stat.) psec. These 

changes are small as expected. Fig. 5.10 shows the contour plot for the 2-D fit 

including truncation effects. 
This procedure can also be used to check that the fit is not being pulled by the 

tails of the data. If the data contains more events in the tails of the distribution 
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Figure 5.11. Lifetimes as a function of the largest impact parameter 
( &ax ) used in the fit. Part (a) shows the values of ?b ( top ) and 
rc ( bottom ) obtained using all the data with a 2-D fit, and part 
(b) shows the value of ?b obtained from a 1-D fit to just the b-region. 

than is expected based on the events in the core of the distribution, then there 

could be a systematic shift in the measured lifetime as the tails are dropped from 

the fit. This check consists of plotting the lifetimes as a function of the cut and 

looking for any net drift as the cut is changed. Fig. 5.11a shows the result for the 

2-D fit and Fig. 5.1lb shows the result for the 1-D fit. While the sensitivity of 

this test is clearly limited by the available statistics, the values of ?b and 7c for all 

values of the cut are consistent with the lifetime obtained from the 9~0.3 cm cut 

used for the final analysis. The “sawtooth” shape can be understood as follows. As 

Lax is made smaller, the size of the correction to the lifetime becomes larger. This 

gives rise to the slope of the curves. At distinct values of &ax individual tracks are 

dropped from the fit. This gives rise to discontinuous jumps in the lifetime. From 

the. figure it is clear that the gradual changes offset the jumps so that the lifetime 

remains constant within the statistics f&r different values of Lax. As Lax is made 

very small ( 53 0.1 cm ), the statistical uncertainty becomes comparatively large. 

For the case of Fig. Ulb, the error bars on rb are ‘f:i cm when Lax = 0.1 cm 
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and ‘z*i; when bmax = 0.2 cm. A similar increase in the error bars occurs for the . 
two parameter fit. 

5.6 THE SYSTEMATIC ERRORS 

Most of the systematic errors affecting 6 have been discussed in previous 

sections as each one arose. In addition to these there is clearly a dependence of 

?b on the average charmed particle lifetime. Since 7c is a parameter in the fit, it 

is trivial to display this error. The particular charmed particles, their lifetimes, 

and relative production ratios are listed in Appendix C. The overall systematic 

uncertainty on 7c is taken to be -to*1o -o o8 psec. This gives rise to an uncertainty on . 
rb of less than 0.01 psec and is neglected. The remaining systematic errors can be 

broken into three groups. The first group occurs as a result of the uncertainty in the 

experimental resolution; the second group occurs as a result of the limited statistics 

in the electron analysis, and the third comes from the uncertainty in the modeling 

of the sphericity axis. 

The uncertainty in the modeling of the sphericity axis is parameterized in the 

non-simulation Monte Carlo in the following way. If B is a unit vector in the direction 

of the sphericity axis and fi is a unit vector in the direction of the parent hadron, 

then one can define a new vector: 51 

e'=(l-p)*B+p*jh (5.28) 

The new “sphericity axis” is taken to point in the direction of Z. Thus for p = 0 

there is no change; for p = 1 the parent direction is used, and for p = -1 the 

error is overestimated by 100 %. The effect of these changes on the b-lifetime is 

determined by generating new sets of pezact (5)‘s for different values of p. Letting 

p vary over the range of 0.5 to -0.5 changes the fitted lifetime by 2X:% psec.This 

range of p was picked rather arbitrarily. It corresponds to a 3~50 % error on the 

determination of the error introduced by using the sphericity axis to approximate 

the parent direction, and is hopefully a conservative guess. 
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Figure 5.12. Various resolution functions. Curve (a) shows a Gaussian 
with unit width. Histogram (b) shows the resolution function for tracks 
from Bhabha events; (c) shows the resolution function for tracks from two- 
gamma events, and (d) shows the resolution function obtained from the 
unfolding procedure ( after symmetrizing ). The curve and the histograms 
are normalized to unity. 

The various resolution functions obtained from different data sets were shown 

individually in the previous chapter. Here they are overplotted for purposes of 

comparison in Fig. 5.12. The symmetrized resolution function obtained from 

the unfolding procedure has been used in the b-lifetime analysis. It is possible 

to test the others using some of the procedures outlined previously. A sensitive test 

can be made by doing a 2-D fit to the tracks in both the b-region and the c-region. ,’ 
The result of this for the four resolution functions is shown in Table 5.5. From this 

table it is clear that the Gaussian and Bhabha resolution functions can be excluded 

based on the values of rc measured. The two remaining resolution functions are both 

consistent with the data. The one obtained by the unfolding method has been used 
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Table 5.5. Tests of the resolution functions. Results of 2-D fits to all 
tracks with p > 1 GeV using various resolution functions. The “known” 
value of the charmed particle lifetime ( rc = 0.64~~'~~ psec ) can be used 
to exclude certain resolution functions. In the table “unfolded hadrons” 
refers to the resolution function obtained from the unfolding procedure 
after symmetrizing. 

resolution function rb ( psec ) rc (psec) 
I 

Gaussian 124+0.24 . 1 40+0.28 
-0.19 l -0.27 

Bhabha 123+0.24 . 
-0.20 

1 l 1g+o.32 
-0.26 

two-gamma 1 . 21 +0.24 -0.20 1 l 07+0.28 -0.25 

I unfolded hadrons 1.12 ~~:~~ . I I 
o 81+0.24 

-0.24 I 
in this analysis for the obvious reason that the electrons come from hadronic events. 

The small possibility that the degradation in resolution observed for tracks in 

hadronic events might not affect electrons is discounted because ( as was stated 

previously ) the resolution obtained from pions and muons produced in two-gamma 

events is very similar to that obtained from electrons, and because the resolution 

function from the hadronic events gives a reasonable fit to the tau data ( see 

below ). This suggests that the degradation observed in the hadrons is independent 

of the particle type. The cause of this degradation is not known. The systematic 

uncertainty associated with this problem is taken to be the difference in rb obtained 

using the two consistent resolution functions. Using the two-gamma resolution 

function to fit the tracks in the b-region gives a lifetime of ?b = 1.24 psec, which is 

0.07 psec greater than that obtained using the unfolded symmetrized resolution 

function. Fitting the impact parameters with the unsymmetrized resolution 

function obtained from the unfolding process gives ?b = 1.13 psec, which is 0.04 

psec lower than the value obtained from the symmetric resolution function. This 

difference is also included as a systematic error. 

The problem of propagating the errors from the electron analysis has been 

discussed in Chapter 3. At that time it was pointed out that the correlations 
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Figure 5.13. The b-lifetime versus E for b-quark fragmentation. This figure 
is made by generating new Pezact (5)‘s and redoing the 1-D fit. The arrow 
marks the nominal value. 

between the “physical” variables make them unsuited for propagating the errors, 

and another set of uncorrelated variables was introduced. At this point it is 

necessary to calculate rb as a function of each of the new variables. This is 

complicated by the fact that each of these new variables affects both the fractions 

( fi’s ) and the exact impact parameter distributions ( Pcza;d(~)‘~ ). The later are 

affected by way of the momentum spectrum of the parent hadron as was discussed 

previously. The first is easily accounted for by generating a new set of fi’s. The 

second is somewhat more difficult because the Pexud(z)‘s are produced by a Monte 

Carlo calculation. The dependence of ?&, on zb is shown in Fig. 5.13. The points 

are produced by varying the value of zb, recalculating the Pczad (z)‘s, and refitting 

the lifetime. The dependence of ?b on & is extremely small. The final result 

of propagating the electron analysis errors is shown in Table 5.6. The sum in 

quadrature of the entries in the last column is ~~:~~~ psec. From the table it 

is clear that the uncertainty on the fi’s makes a negligible contribution to the 
.’ 

systematic error on rb. Most of the uncertainty comes from the Pezud(z)‘s which 

are influenced by the fragmentation parameter. The most probable value of zb is 

0.73. The statistical uncertainty from the electron analysis lets zb vary between 0.70 

and 0.81. This is consistent with many recent measurements and a recent world 

average. 52 Table 5.7 summarizes the systematic errors affecting the b-lifetime. The 



Table 5.6. The systematic errors due to the electron analysis. The column 
labeled “total” is the linear sum of the column labeled ufz’~n and the 
column labeled u Pezuct (2) ‘s .” The sum in quadrature of the entries in the 
last column is $:$~. 

parameter f2’s pcxlact 2 ys ( 1 total 

Pl -0.0027 
+0.0022 MO -0.0027 

+0.0022 

P2 

P3 

P4 

P5 

PS 

-0.0095 e0 -0.0095 
+0.0109 +0.0109 , 
-0.0077 -0.0200 -0.0277 
+0.0076 +0.0300 +0.0376 
-0.0050 +0.0600 +0.0550 
+0.0039 -0.1200 -0.1161 

-0 e 0 MO 
-0.0060 
+0.0062 e 0 -0.0060 

+0.0062 

Table 5.7. A summary of the systematic errors affecting the 
The result of adding these errors linearly is ‘i::i psec. 

G b-lifetime. 

source + error (psec) - error (psec) 

electron analysis + 0.07 - 0.12 

resolution functions + 0.07 - 0.04 

sphericity axis + 0.03 - 0.00 

largest error is due to the statistics in the electron analysis and results primarily 

from the uncertainty in the fragmentation function. The total systematic error on 

?b is obtained by adding the errors linearly and is ‘g:$ psec. 

5.7 THE RESULT OF FITTING THE TAU DATA SET 

One additional check can be had by fitting the tracks from the tau data set 

described in the previous section. This data set provides an additional opportunity 

to check the understanding of the resolution function since it combines high statistics 

with the possibility of tracking confusion as in the hadronic events. In this case many 

of the previous details of the fit can be ignored. The unique l-3 topology of the tau 

decays makes it possible to skim a very high purity sample. The backgrounds are of 
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Figure 5.14. Exact impact parameter distribution for tracks from tau 
decay as determined by a full detector simulation Monte Carlo calculation 
with 7r = 0.30 psec. 

the order of a couple of percent and are neglected in this fit. This means that there is 

only one source of tracks ( z = tau ) and f” = 1 independent of p and pt. The exact 

impact parameter distributions remain somewhat problematic. The non-simulation 

Monte Carlo described above was “tuned” to produce agreement on hadronic events 

run through the electron analysis and would not necessarily work on taus. In order 

to simplify this check, the following compromise was made. Only one Pczad(z), 

which averaged over all of p and pt, was used. Since this greatly reduces the number 

of events needed, it is possible to find Pezad (z) by a full simulation Monte Carlo 

calculation. The resulting distribution is shown in Fig. 5.14. It has a mean of 8 = 

66.7 zt 0.6 pm and is consistent with what one would expect from Fig. 4.16. 

The maximum likelihood fit has been done as a function of the tau lifetime 

( r7 ) and ~1 ( which expands the errors on 6 ). The results of this fit are shown 

in Fig. 5.15 for two different resolution functions. It is clear from this figure that 

neither resolution function provides an’ entirely adequate description of the data. 

The resolution function obtained from the two-gamma data set results in best fit 

values of rT = 0.298 psec and ~1 = 1.09. From the contour plot in Fig. 5.15b it 

is clear that this resolution function can be excluded with high probability. The 
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Figure 5.15. Contour plots from fits to taus. Part (a) shows the result 
of the fit when the resolution function unfolded from hadronic tracks is 
used, and part (b) h s ows the result when the resolution function from the 
two-gamma data set is used. Contours are drawn at the one, two, and 
three sigma levels. 

resolution function obtained from the unfolding process described previously results 

in best fit values of rr = 0.301 psec and ~1 = 0.96. The contour plot in Fig. 5.15a 

is obtained using this resolution function. The nominal value of q lies just outside 

of the two sigma contour. The probability of el being this small if the detector 

resolution is described correctly is only a couple of percent. It is not possible to 

reject definitively this resolution function, but it is also difficult to accept it. For 

this reason q is left as a free parameter in this fit. This provides a certain amount 

of robustness and makes the fit much less sensitive to the details of the resolution 

function. ( The two resolution functions tried here produce the same tau lifetime to 

within 0.003 psec if q is left to float. ) The cost of this procedure is an increase in 

the statistical error on rr. The result of this fit is ?T = 0.30~~:~~ (stat.) psec. If ~1 is 

fixed to 1 the result is ?T = 0.25 ti:“,t (stat.) p sec. In either case the measured value 

is consistent with the value obtained in the previous chapter ( rr = 0.263 zt 0.046 

( stat. ) psec ) and with the “known value” ( rT = 0.286&0.016( stat. ) &0.025( sys. ) 

psec ). This situation is consistent with the degradation of the resolution observed 
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in hadronic events coming from the large number of tracks in a typical event. In 

the case of the taus, the average number of tracks is intermediate between the 

two-gamma events and the hadronic events and this gives rise to an intermediate 

degradation in the resolution. 
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6. CONCLUSIONS 

6.1 A SUMMARY OF THE B-LIFETIME MEASUREMENT 

The b-lifetime measurement reported on here is obtained from a maximum 

likelihood fit to the impact parameters of 113 ‘electron” tracks with pt > 1 GeV. 

The result of this fit is 

?b = 1.17~~‘~~ (stat.) Ti*:i (sys.) psec. 
. . (6 1) . 

This fit accounts for the various non-b-decay sources of tracks in the data sample, 

the non-Gaussian tails on the detector resolution, and the ~4~0.3 cm maximum impact 

parameter cut. This measurement has been checked by ( among other things ) doing 

a two-parameter fit to rb and ?c with all 562 tracks which have p > 1 GeV. Values 

are found which are consistent with the measurement of ?b obtained using just the 

high pt tracks and with the known value of rc. The distribution of 6 for the b-region 

is shown in Fig. 6.1 and the distribution of 6 for the c-region is shown in Fig. 6.2. 

The curves plotted on these figures are Monte Carlo calculations of the expected 

distributions based on the fitted value of ?b and rc = 0.64 psec. 

6.2 CONSTRAINTS ON THE STANDARD MODEL 

As was explained in the first chapter, q, can be used to constrain the elements 

of the K-M mixing matrix. In that chapter it was shown that ?b is related to l&b1 

iid i&b\ by 

1 1 -= 
7b ’ = BR(b --+ eX) l 

[,.58 l Iv&l2 + 1.18 l Ivub12] . lo14sec-1. (6 2) . 

The semileptonic branching ratio for B-mesons has been measured by many 

collaborations. 52 The most precise single measurement comes from CLEO and is 

BR(b + eX) = 0.12 IL 0.007 (stat.) =t 0.005 (sYs.).~~ This gives 

rb = [4.8 l Iv,b12 + 9.8 l Ivub12]-1 l lo-14SeC. (6 3) . 
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( pt > 1 GeV ) 
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6 = 259 & 49 (stat.) pm 

rb = 1.17++;; (stat.) ‘“,;iz (sys.) psec 
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Figure 6.1. A summary of the b-region. The top box shows the number of tracks 
in this region, the average impact parameter, and the b-lifetime obtained from the 
maximum likelihood fit. The second box summarizes the sources of the tracks in 
the b-region. The figure shows the distribution of impact parameters in this region. 
The points are the data ( the error bars are statistical only ). The smooth curve is 
a Monte Carlo calculation of the expected distribution based on rb = 1.17 psec and 
rc = 0.64 psec. 
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Figure 6.2. A summary of the c-region. The top box shows the number of tracks 
in this region and the average impact parameter. The second box summarizes the 
sources of the tracks in the c-region. The figure shows the distribution of impact 
parameters in this region. The points are the data ( the error bars are statistical 
only ). The smooth curve is a Monte Carlo calculatik of the expected distribution 
based on rb = 1.17 psec and rc = 0.64 psec. 
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Because the mass of the charmed quark shifts the endpoint of the lepton spectrum 

for the decay b + ceti, relative to the endpoint for b + ue&, it is possible to 

determine the relative strengths of these two transitions. Fits to this spectrum 

were discussed in the first chapter in the context of determining the quark masses. 

CLE014 has reported H < 4% and CUSB15 has reported rgEg< 
5.5%, both of which are at the 90% confidence level. Since that time E. Thorndikes 

has reported that when certain models are used for the decay b + ue&, the limit 

obtained from the CLEO data deteriorates to 9%. In any case the contribution to 

the total decay rate from b + uepc is small compared to the errors on the lifetime. 

The constraint from rgE# < 9% along with the constraint from the lifetime 

are shown in Fig. 6.3. If the b + uet;, transition is ignored, then 

Iv bl 2 
C 

= t l 0 21 l 10-14sec 

?b ’ 
. 

Using the value of rb from equation 6.1 produces 

l&b 1 = 0.042 ~~*~~~ (stat.) Ti*i:“, (sys.) t4 
. . 

(6 4 . 

(6 5) . 

where the systematic error reflects only the systematic uncertainty associated with 

rb and not the uncertainty associated with equation 6.4. 

6.3 A COMPARISON WITH OTHER RESULTS 

Since the first null result on the lifetime of bottom hadrons by the JADE 

collaboration31 in 1982, there has been a succession of improving measurements. 

The first non-zero result was by the MAC collaboration33 in the summer of 1983, 

followed closely by the MARK11 collaboration. Fig. 6.4 is a ( not necessarily 

complete ) chronology of bottom lifetime measurements. The entries in this 

figure are not all independent. Some later measurements contain the data 

from earlier measurements. Table 6.1 contains a summary of the latest bottom 

lifetime measurements from most groups. 52 The first MARK11 measurement uses 
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Figure 6.3. Constraints on lvUbl and Iv,.& The solid curved line comes 
from ?b = 1.17 psec. The dashed lines near it are the limits due to 
the statistical errors. The dotted lines are the limits due to adding the 
statistical and systematic errors linearly. The solid straight line is the 90% 
confidence limit from the ratio Tg$# < 9%. 

a maximum likelihood fit to the impact parameters of leptons from B-decay which 

is very similar to the fit used in this analysis. The MAC analysis also uses high pt 

leptons from B-decay; however, they estimate the bottom lifetime by comparing the 

average impact parameter with a Monte Carlo calculation. The JADE measurement 

is an average over two methods of analysis. They obtain a set of events tagged as 

B-decay by the presence of high pt leptons. In the first method they relate the 

average impact parameter to the lifetime using a Monte Carlo calculation. In 

the second method they make additional use of the aplanarity of the event to 

provide more information on whether the event is really due to b6 production. 

The TASS0 result is obtained by a comparison of a measured impact parameter 

with Monte Carlo calculations. The tracks used in this analysis are not leptons 

however. TASS0 obtains their b-enriched data by making cuts on event shape 

and then uses all tracks in the events with p > 1 GeV. The second MARK11 

measurement is made by reconstructing the vertices in events which have been 
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Figure 6.4. A chronology of bottom lifetime measurements. Most of 
the b-lifetime measurements which have been reported in the literature 
appear here. The inner error bar is the statistical error only and the 
outer error is the linear sum of the statistical and the systematic errors. 

identified as B-decay by the presence of’high pt leptons. The average value of these 

measurements ( obtained by adding the statistical and the systematic errors linearly 

and then weighting them by the reciprocal squared error ) is 

world average 
76 = 1.10 rt 0.21 psec. 
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Table 6.1. A summary of bottom lifetime measurements to date. This 
table contains the latest numbers from various collaborations. 

i 

rb ( psec ) Source 

1 17?:*:72 (stat.) tE::L (sys.) . this measurement . 

0 85 2E.i; (stat.) ~~$: (sys.) . MARK11 - ref. 44 

0 81 &zi (stat.) &T (sys.) . MAC - ref. 57 

1 SO’~$ (stat.) ~~:~~ (sys.) . JADE - ref. 58 . 

1 83 ~~$ (stat.) z$i . TASS0 - ref. 59 . . (sys.) 

1 25 $ii (stat .) -$ii (sys.) . MARK11 - ref. 60 . . 

Since some of the above measurements are made using very similar methods, the 

systematic errors are probably not all independent and the error on the above value 

of rb probably understates the real uncertainty. 



Appendix A. The Maximum Likelihood Method 

This appendix is a brief review of the maximum likelihood ( ML ) 

For a thorough discussion of the subject, see the literature.46*61 Given: 

0 a collection of N events, each of which is described by n parameters 

i’th event one has (~1, ri2, . . . tn r’>)=d, 
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method. 

( for the 

0 a known probability density function ( P.D.F. ), from which the events were 

drawn, which is a function of m parameters (~1, ~2, . ..z.,,); i.e., 

P(rl,tZ, l aarn; =Cl, 339 ---%a), 

then the “likelihood” of observing the i’th event is defined to be 

pi = p(vil,r~2p ---tin; Zl,S29 . ..Xm). 

(A 1) . 

The likelihood of observing all N events is the product of the individual likelihoods: 

N 
L(q, SC& . ..xm) = n Pi. (A-3) 

i=l 

The ML estimates of the parameters (~1~2, . ..xm) are the values of these 

parameters which maximize L. Alternately, one can minimize the quantity 

-2 log L(Xl, x2, . ..xm). 

The reason for choosing this particular. function will became clear latter on. As a 

concrete example, consider the case of N events drawn from a Gaussian distribution 

with mean p and width CL Then the P.D.F. is 

p(r; P, 0) = &exP[-;(y)2], (A 5) . 
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and the log of the likelihood function is 

-2logL(p) = 5 [ (y)2 +log (2noa)] , 
i=l 

(A-6) 

so that the motivation for choosing -2 log L is clear. For the case where sigma is 

known, the second term is constant and it is sufficient to minimize 

5 (yLy2, 
i=l 

which is exactly chi-squared. This of course yields 

1 =- 
’ N 

N 

c xi. 
i=l 

If p is known then an estimate of the width of the distribution is 

CT2 = $&x;-p)? 
i=l 

(A-7) 

(A-8) 

(A 9) . 

If p and 0 are unknown, then both can be estimated by minimizing -2 log L . This 

produces the same equations as obtained above, except that in the equation for CT, 

the value of ~1 used is the estimated value. This illustrates an important point. Since 

it is well known 36 that an unbiased estimate of the width of a Gaussian distribution 

with an unknown mean is 

c2 = 1 
N-l 

(A-10) 

it is clear that the M.L. estimate has a bias of order &. It is generally known 46 

that M.L. estimators are only asymptotically (N + 00) unbiased. 
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A goodness of fit test can be motivated by the following example. If N data 

points (xi; i = 1, N) are drawn from Gaussian distributions with a common mean 

(JL) and independent widths (ai;i = 1, N), then the log of the likelihood function is 

log L(P) =-;~[(y)2+log(2Toq. 
= 

The chi-square term in this expression is clear, so if we define 

&(y)“, 
i=l 

(A-11) 

(A-12) 

then 

x2 = -2 log L - 5 log (27roQ . (A-13) 
i=l 

This suggests a statistic to use as a goodness of fit test. For the lack of a better 

name, this quantity is called U x2 n in this work. 

This example also suggests the method of determining the confidence intervals 

from the fit. If the likelihood function has a minimum at (zy,x$ . ..xE). then 

there should exist a ( not necessarily linear ) transformation such that -2 log L will 

be quadratic in terms of a new set of parameters (yl,yz., . ..ym). In that case the 

confidence intervals are just given by the surface in m-space such that 

-2 log L(Yl, Y2, l -•Ym) = -2 log L& + X&, (A-14) 

where 

-2 log Lmin = --2+43 L(YF, Yz”, l -•Y,“), 

ahnd &I = 1,4 and 9 for the 1,2 and 3 sigma error ellipses. It follows immediately 

that the confidence interval for the xi’s is given by 

-2 log L(Xl, 229 l -•Xm) = -2 log Lmin + XPtcp, 
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where 

-210gL,~n = -2logL(s~,s~,...z~) (A.17) 

also, and that it is not actually necessary to find the transformation between the 

x;‘s and the y;‘s. 
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Appendix B. Cubic B-Splines 

The functions described in this appendix are a type of cubic spline function.62 

A cubic spline is defined by a set of cubic polynomials with one polynomial for each 

of a finite number of intervals. The points separating intervals are called knots. The 

polynomials are required to be continuous and to have continuous first and second 

derivatives at the knots. The particular splines ( B-splines ) used in this analysis 

are shown in Fig. B.l and defined by 

= &” z = (X - tj)/d tj L X < tj+l 

= g1+ 3(1+ z(1 - z))z) 2 = (5 - tj+l)/d ti+r < X 5 tj+2 

bj(x) = &(l + 3(1+ ~(1 - ~))(l - z)) z = (x - tj+a)/d tj+2 5 X 5 tj+3 

= i(l-2)s z = ( x - tj+3 lld tj+3 5 X 5 tj+4 

= 0 otherwise, 

. 
VW 

where j goes from 1 to 24. The knots are given by tj = $j - 4) - 10. There are 

a total of 20 B-splines. Each spline has the form of a bump extending over four 

intervals. The B-splines have the property that for -10 5 x 5 10 : ~~~, 6j(x) = 1. 

0.6 

0.4 

0.2 

0.0 
-10 -5 0 5 10 

X 

Figure B.1. The B-splines used to fit the resolution function. The twenty 
splines shown in this figure are defined by equation B.l. 
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Appendix C. The Lund Monte Carlo 

The Monte Carlo generator used in this analysis ( JETSET 4.3E ) was 

developed at the University of Lund in Sweden. 63j64 It provides a phenomenological 

description of the hadronization process. It is motivated by the idea of a color flux 

tube connecting the original qq pair. The energy density in the tube is constant, 

which gives rise to a linear potential between the qq pair. This is consistent 

with what is expected from, for instance, charmonium spectroscopy. Transverse 

momentum is introduced by way of a tunneling approximation and gluons appear 

as “kinks” in the color flux tube. 

The Monte Carlo has also been modified to use a different decay scheme for 

B-hadrons. In the case of the semileptonic decays, the existing code is satisfactory. 

The momenta of the D, I, and Q ( 2 = lepton ) are determined by the standard V-A 

matr’rx element. The ‘9” is a charmed hadron made from the c-quark produced 

in the decay of the b-quark and from the spectator quark ( or quarks ) in the 

original B-hadron. The momentum distribution obtained is shown in Fig. C.l. The 

distribution in this figure agrees with the stiff distributions measured by CLE014 

and CUSB. l5 In the case of non-leptonic decays, the existing code is not satisfactory. 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0 0.5 1 1.5 2 2.5 3 

P (GeV) 

Figure C.l. The electron spectrum from the decays B + De& and 
B + DRIP, produced in the Monte Carlo. This figure shows the expected 
stiff momentum distribution from the V-A decay. 
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It uses n-body phase space to determine the momenta of the decay products, where 

n is a random number whose mean and width have been picked to reproduce the 

observed multiplicity distributions. This results in a very soft spectrum for the 

D*‘s and P’s produced in the decay. Such a spectrum is not consistent with the 

observations of the CLEO collaboration. 65@ Because of this an alternate decay 1 
scheme is used in this analysis. In this scheme the B-hadron is broken into three 

pieces: a ‘9” composed of the charmed quark and the spectator quark(s), plus 

two other quarks from the decay of the virtual W. These three particles are given 

momenta according to the standard V-A matrix element ( just as was done in the 

leptonic decays ). The two quarks are then fragmented according to the standard 

LUND fragmentation procedure. If the invariant mass of the two quark system is 

too small, then the quarks are assumed to fuse into a single meson and the momenta 

are adjusted accordingly. This procedure produces the momentum distribution for 

Do’s and D*‘s shown in Fig. C.2. 

This Monte Carlo has also been modified to use a different fragmentation 

function for the production of heavy ( bottom and charm ) hadrons.2Q 

D&) = 
N 

41 - $ - l&JJ2 
(c4 

One must not confuse the zQ (q = b, c) which appears in this expression with the ZZ~ 

which appears in the fit to the electron spectrum. The present z is internal to the 

Lund Monte Carlo and is defined to be 

E 
zq = had + pzhad 

Equark + pzquark ’ ,’ 
W) 

where pz is a momentum along the quark direction. In equation C.1 N is a 

normalization constant and cq is a parameter which describes the momentum 

spectrum of the heavy hadrons. This parameter can be related to the zq measured 

in the electron analysis by running the Lund Monte Carlo with various values of cq 
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Figure C.2. The momentum distribution of D’s from B-decay. Part (a) 
shows the momentum distribution of Do’s from the decay of B-mesons 
( including Do’s from D*‘s ). The histogram is produced by the Monte 
Carlo and the data points are from CLE0.65 Part (b) is the analogous 
distribution for D*‘s from the decay of B-mesons. The points in (b) 
are also from CLEO. 66 In both (a) and (b) structure is evident in the 
momentum distribution produced by the Monte Carlo. This is the result 
of two particle final states ( i.e., Do + D*+p-, etc. ). Such decays have 
been observed.67)68 

and finding the average value of zq = %ez in the events generated. The result 

of this exercise is shown in Fig. C.3. A similar exercise has been done for charmed 

particle events. In the text of this thesis when it is stated that the Monte Carlo 

was run with a particular value of sq, it is understood that zq has been related to 

the appropriate value of eQ and that this parameter is set in the Monte Carlo. 

The Monte Carlo has also been modified to include the effects of the 

finite lifetimes of the heavy hadrons. The lifetimes of the bottom hadrons 

( B”, B+, B,, AB, etc. ) are all set equal to each other. The particular value 

used is given in the text where it is relevant. The charmed particle lifetimes, . 
semileptonic branching ratios and relative fractions produced are summarized in 

Table C.l. This data is taken from ref. 36. A recent measurement of the Do 

lifetime6g is somewhat larger than the value in ref. 36. In addition the data reported 

on in ref. 69 contains an event with a proper lifetime r > 5.5 psec. The authors 
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Figure C.3. Average value of ~b as a function of eb for events generated by 
the Lund Monte Carlo using a modified fragmentation function. 

Table C.l. A list of the charmed particles in the Monte Carlo. The column 
labeled uBR( eX )” is the branching ratio for that particular hadron into 
e + anything. The column labeled “Fraction” gives the probability that a 
charmed quark will hadronize into the indicated particle. 
\ 

Particle Lifetime Fraction BR( eX ) 

DO 0 44 +0.17 . -0.17 psec 53 % 5% 

D+ 0 g2+0.17 . -0.12 psec 27 % 16 % 

F+ 0 1g+o.13 . -0.07 psec 13 % 10 % 

I c - baryons I 
0 23+0-05 . -0.05 Psec I 7 % I 5 % I 

estimate that the probability of observing such an event in their data sample is 

6 l 10m4 if the value of q,o in ref. 36 is correct. Because of this the errors on 

Q,O have been expanded to HI.17 psec. The average value of the charmed particle 

lifetime based on this table is 
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Appendix D. The Bottom Quark Lifetime in the Spectator Model 

In the absence of strong interaction effects, the decay of a hadron containing 

a bottom quark can be understood as the decay of just the bottom quark. In this 

picture the semileptonic part of this decay is given by the diagrams in Fig. D.l. 

The first diagram makes a contribution to the total rate which is proportional to 

lVcb[2 and the second makes a contribution proportional to IVJ2. For the sake 

of definiteness only the first diagram is calculated here and the factor of lVca12 

is suppressed. The relation between the two is clear. Since the mass of the 

intermediate vector boson M;, = 80 GeV is large compared to any other masses or 

energies appearing in the problem, the effect of the W- can be ignored. The problem 

then reduces to calculating the diagram in Fig. D.2.70171 The matrix element for 

this diagram has the form:t 

M= G z (@b) (GA), W) 

where 0, is the standard V-A interaction: 

0, = 7&+ 7519 (D4 

G is the Fermi coupling constant ( G = l.166XI-5 GeVw2 ) and the four component 

spinors u = (b, c, e, y,) satisfy the Dirac equation: 

W - m,)u = 0 and (W 

a(#- m,) = 0, (fi = u+7’). VW 

t In the following the letters generally denote &vectors ( p = (EP,pz,py,pz) ); 

letters with arrows on top denote Z&vectors ( y = (pz,~ar,pa) ); and the meaning 
of dot product depends on the type of vector ( p l q = EpEg - pzqz - pyqy - 

PZQk or P --+.Q. = pzqz + pyqy + pzgz ). The usual Feynman dagger notation is used 

($=PprV 
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Figure D.1. Feynman diagrams for the semileptonic decay of a bottom 
quark. 

Figure D.2. Feynman diagram for the semileptonic decay of a bottom 
quark where the W- has been ignored. The first variable in the parenthesis 
labels the spin and the second labels the d-momenta. 

The expression for M given in equation D.l can be transformed by applying the 

following Fierz identities: 

(wQb) (wad) = (ad) (eb) - .; @Tad) @y&b) (D.5) 

+sfd)(~rsr&) + (md)(crsb), and 

(~757Qb)(~7574 = -(ad)(zb) i +d)(q& 

+757.d)(mxb) - (~754(~75b). 

CD 6) . 

Since the first and last terms in D.5 and D.6 cancel, the matrix element can be 



written as 

M= -5 (~0%~) (ztOab). 

The complex conjugate of this is 

M+ = -5 (b+Oiz+) (viOa+Ft). 

Since u+ =a70 and a+ =7O,: 

M+ =-- $ (S7°0~70e) (Pe700ut70c). 

Since 7OOL7O = Ocu: 

M+ = -5 (60ae) (l&O%). 
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(D-7) 

VW 

P.9) 

(D.10) 

Then combining equation D.10 and equation D.l the squared magnitude of the 

matrix element is 

PI 2 = MM+ = -~(~Onb)(60ge)(~0,Vc)(~~O~c). (D.11) 

This is calculated between states of known momentum and spin. Since the 

polarizations are not measured, one must take the appropriate sums and averages. 

This gives 

WI 2 = -$ c z(s2)O”b(sl) 6(S$$?(S3) i?(S3)0aVe(S4) &(,,)Oa,(,,). 

81@2 
“3 984 

(D.12) 

At this point it is useful to recall the expression for the density matrix: 

~U(P,S)a(P,S) = I+mu9 (0.13) 
8 

so that 

-= -$Tr{O~($+m~)Op(~+~)O,(nOa(d+m”))~ WI 2 (0.14) 
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Here the trace is over the indices on the gamma matrices. Since me is very small 

compared to typical energies in this decay it can be neglected to give: 

(D.15) 

-= -$Tr {O”$O~~O~JOPd} WI 2 

G2 
- -mbTr 

4 

(D.16) 

G2 
- -mamCTr 

4 

The first term in this express can be written as 

Tr{7”(1+75)~7p(l+75))t7t$+75)~7B(1+7~)d}~ (0.17) 

Since (1 + 75)7a = 741 - 75) and (1+ 75)2 = 2(1+ 75) this is equal to 

8*Tr{7”(l+75)~7p~7*r7pd) l 
(0.18) 

Using the identities 7”$jd$7a = -2$&d and then 7a$v7a = 4a l b reduces this to 

-64 k l q Tr ((1 + 75)tin. (D.19) 

The identities Tr {@75} = 0 and Tr {$y} = 4a l b allow this to be reduced to 

-256 (k l q) (p = I). (0.20) 

The three remaining terms all contain factors of the form: 

oaop = 7y1+ rs)rp(l + 75) (D.21) 
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= ra7g(l - 75)(1+ 75) 

= r&7/3(1 - 73 = 0 

since 7: = 1. Thus 

WI 2 = 64G2 (k 9 q) (p. I). (0.22) 

This is the end of the dynamical part of the calculation. The phase space and 

kinematical factors are accounted for by71 

d3k d31 
d3q 

2mb 2Ek(2~)~ 2Ei(2~)~ 2E,(2~)~ 
(2~)~S~(p - k - I - q) (0.23) 

where Ek is the electron energy, etc. Since the neutrino is massless and the electron 

mass can be neglected El = IfI = I, E, = ITI = q. For the charmed quark 

Ek = (mz + lk12); = E. This gives 

I‘() = 
1 yd3k d31 d3q 4 

16mb(2T)5 WI E-5-qtS (p-k-l-q). 

Plugging in lMl2 produces 

ro = 
4G2 

mb(2n)5 
(P l 1) (k l Q) 

d3k d31 d3q 4 
ETT6 (p-k-l-q). 

(0.24) 

(0.25) 

Lf PO is evaluated in the rest frame of the bottom quark, then p = (mb,O, 0,O) so 

that 

ro 
4G2 

= ---p 
(2 1 

%d k-q 3 kd .‘ 3 1 d 3 qtS4(p-k-1-q). 

The k l q term can be written out explicitly to give 

4G2 
ro = y--g 

(2 1 ( 
l- 

-zq+ 
0 

d3k d31 d3q b4(p - k - I- q). 

(0.26) 

(0.27) 
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The momentum conservation part of the delta function can be used to eliminate 

the integration over the neutrino momentum: 

d3k d3q 6(mb - E - q - 17 + ?I), (0.28) 

wherelT+-$l= k2+q2+2CT 1 f . The integral over one direction ( say 2 ) 

and one azimuthal coordinate ( say for 7 ) can both be done trivially and give 

factors of 47r and 27r respectively. The decay rate can then be written as 

8G2 r. = - kq cos 8 

(2 > n3 ‘- Eq > 
k2dk q2dq dcos 8 6(mb -E-q-l-%++Tl), (0.29) 

where 8 is the angle between -? and 7. Letting x = cos 6 this can be written as 

ro=i$/(l-$)k2dkq2dqdx6(mb-E-q-JkZ+q2+2kqx). (0.30) 

The energy conservation delta function can now be used to eliminate the integration 

over x. Setting the argument of the delta function to zero one finds for z 

x = 2mbE i- 2mbq -I- 2Eq - ml - rnz 

2kl 
. (0.31) 

Recalling that 

J f (x)6 (g(x)) dx = ’ (xo) 
IS’W I ’ 

(0.32) 

where x0 is the only solution to g(x) = 0, one must solve for g’(xg). This produces 

a factor of 
m&E-q 

k!b 
(0.33) 

Plugging this in gives 

4G2 
I-0 = ,3 

(2 1 I( 2mbE + 2mbq - rni - mf (ma - E - q) dEdq. (0.34) 
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This can be put into a simpler form by defining a new constant X = ,w so that 

r. = 8c;$b 1 (E + q - A) (E + q - mb) dEdq= (0.35) 

Up to this point the limits of integration have been ztoo for each component of 

the momentum. Since z is limited to being a real number on the interval I-1, 11, 

equation D.31 can not be solved for completely arbitrary values of E and q. Setting 

2 = &l one can obtain ( after some algebra ) the following contours in the E, q 

plane: 

E= 2q(q - mb) + md 
mb-2q ’ 

(0.36) 

E = A. (0.37) 

They coincide at q = 0 and q = 
m2-mz 
k. The region of integration is bounded by 

these two contours. At this point it is straightforward to integrate with respect to 

E in equation D.35 and to plug in the appropriate limits. After some algebra this 

reduces to 

where 6 = 
2mb l 

It 

q2(6 - d2 
(mb - 2q)3 

(mb - %?)(mb - 6) + $?(!? - 6) 1 da (0.38) 

m2-m2 
is convenient to define a new constant xm = ,v and a 

mb 
new variable of integration x = g. In terms of these 72 

G2mi 
I-0 = w I 

zm X2(Xm - X)2 

(l-x>3 
[(1 - xm)(3 - 5) + (2~ - 3)(x - I)] dx* (0.39) 

0 

This integral is also straightforward to evaluate. The result of this is 

G2mi 
I-0 = - 

192~~ 
l-8z2+8z6-z8-24z41nz (0.40) 

where z = $. This is identical to the expression for the muon lifetime when the 

electron mass is taken into account. 73 This is not immediately obvious since it is 
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the charmed quark and not the electron which has a finite mass in this problem. 

From equation D.22 it is clear that the matrix element is not changed by k c-) q so 

that equation DA0 is as expected. 
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Appendix E. Results from the Electron Analysis 

This appendix contains the detailed results of the fit to the electron spectrum. 

Each section corresponds to one run block. Each entry in each table corresponds to 

a single 0.5 GeV square bin in the fit. The labels on the tables indicate the lower 

edge of the bin. For the two isobutane run blocks, bins corresponding to p > 2.5 

GeV are zero and left blank because of the 2.5 GeV pion threshold. 

In each section the first table ( labeled “Data” ) is just the number of tracks 

identified as electrons in that run block. The second table ( labeled “Efficiency 

Corrections” ) contains the ratios of the efficiencies of the kinetic and the topological 

cuts in the electron analysis as applied to the data and the Monte Carlo ( i.e., e;i 

in Equation 3.4 ). After this the tables come in pairs, the first for the number of 

tracks from a given source and the second for the fraction of the total signal in each 

bin which comes from this source. The tables labeled “Total background” are the 

sum of the backgrounds due to pions, gamma conversions, and taus. 
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E.1 FIRST RUN BLOCK - '82 + '83 ISOBUTANE 

Data 
(number of tracks) 0.00 

2.0 
5.00 9.00 1.5 

20.00 20.00 10.00 1.0 
52.00 51.00 28.00 26.00 0.5 

216.00 192.00 86.00 50.00 32.00 0.0 T Pt 
P- 0.0 0.5 1.0 1.5 2.0 

Efficiency Corrections 0.91 2.0 
0.89 0.87 1.5 

0.85 0.85 0.86 1.0 
0.87 0.86 0.85 0.85 0.5 

0.88 0.83 0.82 0.79 0.77 o-0 t Pt 

P- 0.0 0.5 1.0 1.5 2.0 
Electrons from b --) e 0.69 2.0 
(number of tracks) 4.58 4.57 1.5 

13.25 11.71 8.38 1.0 
19.66 12.43 8.47 8.28 0.5 

4.94 4.55 2.65 2.76 3.64 0.0 t Pt 

(fraction of total) 0.69 2.0 
0.72 0.73 1.5 

0.70 0.70 0.53 1.0 
0.32 0.23 0.21 0.30 0.5 

0.02 0.02 0.03 0.06 0.11 0.0 t Pt 
P+ 0.0 0.5 1.0 1.5 2.0 

Electrons from b + c ---) e 0.05 2.0 
(number of tracks) 0.56 0.32 1.5 

1.73 1.67 0.77 1.0 
16.26 6.33 3.85 0.5 
13.36 5.96 3.00 0.0 t Pt 

0.05 2.0 
0.09 0.05 1.5 

0.09 0.10 0.05 1.0 
0.30 0.16 0.14 0.5 
0.15 0.14 0.09 0.0 t Pt 

17.50 
35.54 33.16 

(fraction of total) 

0.28 
0.15 0.16 

P- 0.0 0.5 1.0 1.5 2.0 
Electrons from c - e 
(number of tracks) 0.17 

2.0 
1.20 1.39 1.5 

2.08 2.70 3.71 1.0 
15.60 24.48 22.44 13.32 0.5 

59.49 89.81 47.28 26.49 20.84 1 0.0 t Pt 
(fraction of total) 0.17 2.0 

0.19 0.22 1.5 
0.11 0.16 0.23 1.0 

0.25 0.45 0.55 0.48 0.5 
0.24 0.44 0.52 0.60 0.65 0.0 t Pt 

v- 0.0 0.5 1.0 1.5 2.0 
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Total Background 2.0 
(number of tracks) 

0.00 
0.00 0.00 1.5 

1.81 0.75 2.99 1.0 
9.50 1.70 3.31 2.55 0.5 

145.02 75.58 27.10 8.60 4.48 o-0 t Pt 
(fraction of total) 0.00 2.0 

0.00 0.00 1.5 
0.10 0.04 0.19 1.0 

0.15 0.03 0.08 0.09 0.5 
0.59 0.37 0.30 0.20 0.14 0.0 t Pt 

p 3 0.0 0.5 1.0 1.5 2.0 
Background Due to Pions 2.0 
(number of tracks) 

0.00 
0.00 0.00 1.5 

1.49 0.75 2.98 1.0 
4.48 0.75 2.98 2.24 0.5 

67.87 58.92 23.87 7.46 4.48 0.0 t Pt 
(fraction of total) 0.00 2.0 

0.00 0.00 1.5 
0.08 0.04 0.19 1.0 

0.07 0.01 0.07 0.08 0.5 
0.28 0.29 0.26 0.17 0.14 0.0 t Pt 

P- 0.0 0.5 1.0 1.5 2.0 

~~;~~-yvu~~ 7 - e+e- 
o o. ;.cl; 

2.0 1.5 
0.30 0:oo 0:oo 1.0 

4.98 0.92 0.30 0.30 0.5 
77.12 16.63 3.23 1.13 0.00 0.0 t Pt 

(fraction of total) 0.00 2.0 
0.00 0.00 1.5 

0.02 0.00 0.00 1.0 
0.08 0.02 0.01 0.01 0.5 

0.31 0.08 0.04 0.03 0.00 0.0 t Pt 
P- 0.0 0.5 1.0 1.5 2.0 
Background Due to Taus 0.00 2.0 
(number of tracks) 0.00 0.00 1.5 

0.01 0.00 0.00 1.0 
0.04 0.03 0.02 0.01 0.5 

0.03 0.03 0.01 0.01 0.01 0.0 t Pt 
(fraction of total) 0.00 2.0 , 

0.00 0.00 - 1.5 
0.00 0.00 0.00 1.0 

0.00 0.00 0.00 0.00 0.5 
0.00 0.00 0.00 0.00 0.00 0.0 t Pt 

P-+ 0.0 0.5 1.0 1.5 2.0 
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E.2 SECOND RUN BLOCK - $83 NITROGEN 
Data 
(number of tracks) 1.00 

0.00 
1.00 

0.00 0.00 1.00 0.00 2.0 
0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00 1.5 

8.00 4.00 4.00 0.00 1.00 3.00 0.00 1.00 0.00 1.0 
13.00 14.00 11.00 11.00 8.00 6.00 2.00 1.00 1.00 1.00 0.5 

84.00 48.00 22.00 14.00 5.00 5.00 7.00 5.00 4.00 6.00 3.00 0.0 t pt 
P- 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 5 4.0 4.5 5.0 

Efficiency Corrections 0.88 0.88 0.88 0.88 0.88 0.88 0.88 2.0 
0.88 0.88 0.87 0.86 0.86 0.85 0.85 0.84 1.5 

0.87 0.86 0.85 0.84 0.84 0.83 0.83 0.82 0.82 1.0 
0.87 0.84 0.84 0.83 0.81 0.80 0.79 0.79 0.79 0.79 0.5 

0.86 0.82 0.79 0.77 0.76 0.77 0.79 0.79 0.79 0.78 0.78 0.0 t pt 
p + 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
Electrons from b + e 
(number of tracks) 

5.09 
1.67 1.25 

(fraction of total) 

0.25 
0.03 0.02 

w- 0.0 0.5 

0.19 0.31 0.14 0.08 0.04 0.13 0.00 2.0 
0.89 1.27 1.05 0.64 0.22 0.31 0.16 0.05 1.5 

2.46 2.78 2.10 1.37 1.08 0.66 0.56 0.22 0.50 1.0 
3.15 2.25 1.66 1.54 1.37 1.19 1.06 1.02 0.37 0.5 
0.71 0.55 1.00 1.15 0.55 1.03 1.00 1.11 0.81 0.0 t pt 

0.19 0.31 0.14 0.08 0.04 0.13 0.00 2.0 
0.71 0.80 0.75 0.56 0.22 0.31 0.16 0.05 1.5 

0.71 0.70 0.65 0.77 0.73 0.66 0.56 0.22 0.50 1.0 
0.28 0.24 0.17 0.29 0.34 0.48 0.41 0.69 0.37 0.5 
0.04 0.03 0.09 0.18 0.10 0.27 0.31 0.33 0.40 0.0 t pt 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
Electrons from b -+ c 
(number of tracks) 

5.08 
7.30 7.85 

(fraction of total) 

0.25 
0.14 0.15 

P- 0.0 0.5 
Electrons from c -) e 
(number of tracks) 

4.10 
15.66 22.23 

(fraction of total) 

0.21 
0.29 0.42 

v- 0.0 0.5 

-e 0.00 0.00 0.02 0.00 0.00 0.00 0.00 2.0 
0.07 0.17 0.08 0.06 0.00 0.00 0.05 0.00 1.5 

0.36 0.53 0.45 0.18 0.07 0.00 0.09 0.00 0.00 1.0 
2.68 1.72 0.97 0.67 0.07 0.13 0.05 0.00 0.09 0.5 
3.40 1.76 0.66 0.55 0.41 0.21 0.15 0.00 0.09 0.0 t pt 

0.00 0.00 0.02 0.00 0.00 0.00 0.00 2.0 
0.05 0.11 0.06 0.05 0.00 0.00 0.05 0.00 1.5 

0.10 0.13 0.14 0.10 0.05 0.00 0.09 0.00 0.00 1.0 
0.23 0.19 0.10 0.12 0.02 0.05 0.02 0.00 0.09 0.5 
0.17 0.11 0.06 0.09 0.08 0.05 0.05 0.00 0.04 0.0 t pt 
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

0.29 
0.55 0.64 
5.07 4.48 
13.31 10.26 

0.23 
0.16 0.16 
0.45 0.49 
0.66 0.64 
1.0 1.5 

0.12 
0.14 
0.70 
6.50 
5.99 
0.12 
0.09 
0.21 
0.65 
0.53 
2.0 

0.10 
0.27 
0.14 
q.10 
4.60 
0.10 
0.20 
0.08 
0.59 
0.72 
2.5 

0.17 0.00 0.00 0.00 0.00 2.0 
0.35 0.23 0.00 0.22 0.00 1.5 
0.32 0.21 0.22 0.16 0.10 1.0 
2.44 1.16 1.48 0.46 0.31 0.5 
3.64 1.87 2.04 2.26 1.11 0.0 f pt 

0.17 0.00 0.00 0.00 0.00 2.0 
0.30 0.23 0.00 0.22 0.00 1.5 
0.22 0.21 0.22 0.16 0.10 1.0 
0.61 0.47 0.57 0.31 0.31 0.5 
0.68 0.49 0.64 0.67 0.55 0.0 t pt 

3.0 3.5 4.0 4.5 5.0 
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Total Background 

(number of tracks) 
0.00 0.00 

0.00 
0.00 0.00 0.00 0.00 2.0 

0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 1.5 
0.11 0.01 0.01 0.09 0.00 0.00 0.00 0.00 0.00 1.0 

5.70 0.50 0.76 0.85 0.00 0.10 0.01 0.00 0.00 0.00 0.5 
29.32 21.80 2.66 3.52 3.73 0.09 0.75 0.75 0.00 0.00 0.00 0.0 t pt 

(fraction of total) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.0 
0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 1.5 

0.03 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 1.0 
0.29 0.04 0.08 0.09 0.00 0.02 0.00 0.00 0.00 0.00 0.5 

0.54 0.41 0.13 0.22 0.33 0.01 0.14 0.19 0.00 0.00 0.00 0.0 t pt 
P- 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
Background Due to Pions 
(number of tracks) 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.0 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.5 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.0 
4.48 0.00 0.75 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.5 

10.44 17.15 1.49 2.98 3.73 0.00 0.75 0.75 0.00 0.00 0.00 0.0 t pt 
(fraction of total) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.0 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.5 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.0 

0.22 0.00 0.08 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.5 
0.19 0.32 0.07 0.19 0.33 0.00 0.14 0.19 0.00 0.00 0.00 0.0 t pt 

P+ 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

1.18 
18.86 4.63 

(fraction of total) 

0.06 
0.35 0.09 

P- 0.0 0.5 

- e+e- 0.00 
0.00 0.00 

0.10 0.00 0.00 
0.47 0.00 0.09 
1.16 0.52 0.00 

0.00 
0.00 0.00 

0.03 0.00 0.00 
0.04 0.00 0.01 
0.06 0.03 0.00 
1.0 1.5 2.0 

0.00 
0.00 
0.09 
0.00 
0.09 

0.00 
0.00 
0.05 
0.00 
0.01 
2.5 

0.00 0.00 0.00 0.00 0.00 2.0 
0.10 0.00 0.00 0.00 0.00 1.5 
0.00 0.00 0.00 0.00 0.00 1.0 
0.09 0.00 0.00 0.00 0.00 0.5 
0.00 0.00 0.00 0.00 0.00 0.0 t pt 

0.00 0.00 0.00 0.00 0.00 2.0 
0.08 0.00 0.00 0.00 0.00 1.5 
0.00 0.00 0.00 0.00 0.00 1.0 
0.02 0.00 0.00 0.00 0.00 0.5 
0.00 0.00 0.00 0.00 0.00 0.0 t pt 
3.0 3.5 4.0 4.5 5.0 

Background Due to Taus 
(number of tracks) 0.00 0.00 0.00 0.00 

0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 
D.-Q5 nt)3 0.01 0.01 0.00 0.00 0.01 0.00 0.00 , 

0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
(fraction of total) 0.00 q.00 0.00 0.00 0.00 0.00 

0.00 0.00 6.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

P- 0.0 0.5 1.0 1.5 2.0 

0.00 2.0 
0.00 1.5 
0.00 1.0 
0.00 0.5 
0.00 0.0 t pt 

0.00 2.0 
0.00 1.5 
0.00 1.0 
0.00 0.5 
0.00 0.0 t pt 
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E.3 THIRD RUN BLOCK - ‘84 NITROGEN 

Data (number of tracks) 0.00 1.00 1.00 1.00 0.00 0.00 0.00 2.0 
3.00 1.00 1.00 0.00 ~.oO 1.00 0.00 0.00 1.5 

9.00 6.00 4.00 4.00 3.00 4.00 1.00 1.00 1.00 1.0 
23.00 23.00 21.00 9.00 6.00 14.00 4.00 6.00 3.00 3.00 0.5 

112.00 76.00 29.00 35.00 19.00 12.00 7.00 6.00 2.00 5.00 3.00 0.0 t pt 
P- 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

Efficiency Corrections 0.88 0.88 0.88 0.88 0.88 0.88 0.88 2.0 
0.88 0.88 0.87 0.86 0.86 0.85 0.85 0.84 1.5 

0.87 0.86 0.85 0.84 0.84 0.83 0.83 0.82 0.82 1.0 
0.87 0.84 0.84 0.83 0.81 0.80 0.79 0.79 0.79 0.79 0.5 

0.86 0.82 0.79 0.77 0.76 0.77 0.79 0.79 0.79 0.78 0.78 0.0 t pt 
D--, 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
Electrons from b 3 e 
(number of tracks) 

8.90 
2.82 2.69 

(fraction of total) 

0.32 
0.03 0.03 

P--' 0.0 0.5 

0.32 0.21 
1.99 2.34 0.93 

5.93 5.29 3.33 2.83 
5.60 4.24 2.10 2.44 
1.03 1.14 1.43 1.83 

0.32 0.21 
0.85 0.86 0.77 

0.76 0.70 0.67 0.62 
0.23 0.23 0.16 0.24 
0.03 0.05 0.08 0.16 
1.0 1.5 2.0 2.5 

0.24 
0.73 
2.20 
2.17 
1.36 
0.24 
0.73 
0.79 
0.31 
0.12 
3.0 

Electrons from b ---) c + e 
(number of tracks) 

0.00 0.00 
0.07 0.07 0.20 

0.68 0.73 0.56 0.54 
7.14 7.00 3.02 1.47 0.79 

16.34 16.38 6.45 3.09 1.32 0.74 
(fraction of total) 0.00 0.00 

0.03 0.03 0.17 
0.09 0.10 0.11 0.12 

0.26 0.28 0.16 0.11 0.08 
0.16 0.17 0.16 0.13 0.08 0.06 

D--, 0.0 0.5 1.0 1.5 2.0 2.5 

0.07 0.00 0.00 
0.00 0.00 0.00 
0.44 0.06 0.00 
0.27 0.32 0.12 
0.46 0.06 0.00 
0.07 0.00 0.00 
0.00 0.00 0.00 
0.16 0.03 0.00 
0.04 0.06 0.03 
0.04 0.01 0.00 
3.0 3.5 4.0 

0.12 0.09 0.03 0.00 2.0 
0.75 0.39 0.15 0.12 1.5 
1.94 1.10 0.88 0.28 1.0 
1.86 1.66 1.65 1.42 0.5 
1.45 1.76 1.37 1.27 0.0 t pt 

0.12 0.09 0.03 0.00 2.0 
0.75 0.39 0.15 0.12 1.5 
0.78 0.86 0.79 0.28 1.0 
0.37 0.44 0.63 0.56 0.5 
0.26 0.35 0.23 0.34 0.0 t pt 
3.5 4.0 4.5 5.0 

0.00 
0.00 
0.06 
0.06 
0.11 
0.00 
0.00 
0.06 
0.02 
0.02 
4.5 

0.06 2.0 
0.00 1.5 
0.00 1.0 
0.00 0.5 
0.12 0.0 t pt 
0.06 2.0 
0.00 1.5 
0.00 1.0 
0.00 0.5 
0.03 0.0 t pt 
5.0 

Electrons from c + e 
(number of tracks) 

7.42 
30.47 43.74 

(fraction of total) 

0.27 
0.30 0.46 

D--, 0.0 0.5 

0.27 
1.16 1.55 

11.20 10.46 
22.38 15.63 

0.11 
0.15 0.20 
0.45 0.56 
0.56 -0.63 
1.0 1.5 

0.24 0.18 0.18 0.00 0.37 0.00 0.00 2.0 
0.32 0.08 0.00 0.08 0.15 0.08 0.00 1.5 
1.04 1.23 0.15 0.50 0.17 0.17 0.00 1.0 
8.94 6.20 2.93 2.84 1.96 0.89 1.14 0.5 
9.17 7.94 7.57 4.07 3.32 4.43 2.33 0.0 t pt 

0.24 0.18 0.18 0.00 0.37 0.00 0.00 2.0 
0.12 0.07 0.00 0.08 0.15 0.08 0.00 1.5 
0.21 0.27 0.05 0.20 0.14 0.15 0.00 1.0 
0.70 0.60 0.42 0.57 0.52 0.34 0.44 0.5 
0.52 0.70 0.65 0.73 0.65 0.73 0.63 0.0 t pt 
2.0 2.5 3.0 3.5 4.0 4.5 5.0 
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Total Background 
(number of tracks) 

\ 
4.32 

51.79 32.89 
(fraction of total) 

0.16 
0.51 0.34 

P--' 0.0 0.5 

0.00 
0.01 0.01 
0.95 0.93 
9.88 4.82 

0.00 
0.00 0.00 
0.04 0.05 
0.25 0.20 
1.0 1.5 

0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0,oo 0.00 0.00 0.00 0.00 
0.35 0.92 1.66 0.00 0.00 
5.55 0.91 .2.24 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0.03 0.09 0.24 0.00 0.00 
0.32 0.08 0.19 0.00 0.00 
2.0 2.5 3.0 3.5 4.0 

0.00 0.00 2.0 
0.00 0.00 1.5 
0.00 0.00 1.0 
0.00 0.00 0.5 
0.17 0.00 0.0 t pt 

0.00 0.00 2.0 
0.00 0.00 1.5 
0.00 0.00 1.0 
0.00 0.00 0.5 
0.03 0.00 0.0 t pt 

4.5 5.0 
Background Due to Pions 

(number of tracks) 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.0 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.5 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.0 

3.73 0.75 0.75 0.00 0.75 1.49 0.00 0.00 0.00 0.00 0.5 
33.56 28.34 9.70 4.48 5.22 0.75 2.24 0.00 0.00 0.00 0.00 0.0 t pt 

(fraction of total) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.0 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.5 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.0 
0.13 0.03 0.04 0.00 0.07 0.21 0.00 0.00 0.00 0.00 0.5 

0.33 0.30 0.24 0.18 0.30 0.07 0.19 0.00 0.00 0.00 0.00 0.0 t pt 

P- 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

~;~~~;;ft~;$ 7 ----) e+e- ;a; ' y33 . ;.;; l 0.00 0.00 0.00 0.00 o * o. 0.00 0.00 0.00 0.00 2.0 1.5 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.0 

0.55 0.18 0.18 0.35 0.17 0.17 0.00 0.00 0.00 0.00 0.5 
18.20 4.51 0.17 0.33 0.32 0.16 0.00 0.00 0.00 0.17 0.00 0.0 t pt 

(fraction of total) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.0 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.5 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.0 
0.02 0.01 0.01 0.03 0.02 0.02 0.00 0.00 0.00 0.00 0.5 

0.18 0.05 0.00 0.01 0.02 0.01 0.00 0.00 0.00 0.03 0.00 0.0 t pt 

P- 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
Background Due to Taus 
(number of tracks) 

0.01 
0.04 0.02 

0.03 0.03 0.01 

(fraction of total) 

0.00 
0.00 0.00 

0.00 0.00 0.00 
v- 0.0 0.5 1.0 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.0 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.5 
0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.0 
0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.5 
0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0 t pt 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.0 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.5 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.0 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.5 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 t pt 
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
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E.4 FOURTH RUN BLOCK - ‘84 ISOBUTANE 

Data 
(number of tracks) 

1.00 2.0 
2.00 2.00 1.5 

7.00 11.00 7.00 1.0 
52.00 38.00 21.00 13.00 0.5 

163.00 122.00 47.00 28.00 30.00 o-0 t Pt 
P+ 0.0 0.5 1.0 1.5 2.0 

Efficiency Corrections 0.91 2.0 
0.89 0.87 1.5 

0.85 0.85 0.86 1.0 
0.87 0.86 0.85 0.85 0.5 

0.88 0.83 0.82 0.79 0.77 0.0 t Pt 
P- 0.0 0.5 1.0 1.5 2.0 
Electrons from b + e 2.0 
(number of tracks) 

0.42 
2.14 2.54 1.5 

8.11 5.57 5.74 1.0 
11.09 8.09 5.83 3.93 0.5 

4.48 3.11 1.31 1.77 1.81 o*o t Pt 
(fraction of total) 0.42 2.0 

0.78 0.77 1.5 
0.79 0.64 0.76 1.0 

0.33 0.27 0.25 0.23 0.5 
0.03 0.03 0.03 0.06 0.08 a0 t Pt 

P- 0.0 0.5 1.0 1.5 2.0 

Electrons from b -+ c 
(number of tracks) 

11.12 
21.77 22.13 

(fraction of total) 

0.33 
0.16 0.20 

D---, 0.0 0.5 

+e 0.08 
0.36 0.26 

0.76 0.66 0.91 
8.68 3.66 1.36 
9.13 2.70 2.36 

0.08 
0.13 0.08 

0.07 0.08 0.12 
0.29 0.16 0.08 
0.21 0.10 0.11 
1.0 1.5 2.0 

2.0 
1.5 
1.0 
0.5 
0.0 t Pt 

2.0 
1.5 
1.0 
0.5 
o*o t Pt 

Electrons from c + e 
(number of tracks) 

8.86 
38.59 51.64 

(fraction of total) 

0.26 
0.28 0.47 

P- 0.0 0.5 

0.24 
1.43 1.71 
11.68 12.03 
25.29 16.82 

0.09 
0.14 0.20 
0.38 0.52 
0.58 0.59 
1.0 1.5 

0.14 
0.50 
0.87 
10.38 
14.37 r 
0.14 - 
0.15 
0.12 
0.60 
0.65 
2.0 

2.0 
1.5 
1.0 
0.5 
0.0 t Pt 

2.0 
1.5 
1.0 
0.5 

o*o t Pt 



129 

Total Background 
(number of tracks) 

0.01 
2.60 1.93 

72.22 32.66 7.67 
(fraction of total) 

0.00 
0.08 0.06 

0.53 0.30 0.18 

0.00 2.0 
0.00 0.00 1.5 
0.76 0.00 1.0 
1.72 1.50 0.5 
7.11 3.73 o*o t Pt 

0.00 2.0 
0.00 0.00 1.5 
0.09 0.00 1.0 
0.07 0.09 0.5 
0.25 0.17 0.0 t Pt 

P- 0.0 0.5 1.0 1.5 2.0 
Background Due to Pions 
(number of tracks) 

0.00 
0.00 0.00 

0.00 0.75 0.00 
1.49 1.49 1.49 1.49 

38.04 27.60 7.46 6.71 3.73 
(fraction of total) 0.00 

0.00 0.00 
0.00 0.09 0.00 

0.04 0.05 0.06 0.09 
0.28 0.25 0.17 0.24 0.17 

2.0 
1.5 
1.0 
0.5 
0.0 t Pt 

2.0 
1.5 
1.0 
0.5 
0.0 t Pt 

P- 0.0 0.5 1.0 1.5 2.0 

fiif%K..:~t,“a”cg,t,o r + c+c- o o. 
0.00 0:oo 

1.05 0.42 0.21 
34.13 5.03 0.20 0.38 

(fraction of total) 
0.00 

0.00 0.00 
0.03 0.01 0.01 

0.25 0.05 0.00 0.01 

0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 

2.0 
1.5 
1.0 
0.5 
0.0 t Pt 

2.0 
1.5 
1.0 
0.5 
0.0 t Pt 

P+ 0.0 0.5 1.0 1.5 2.0 
Background Due to Taus 0.00 2.0 
(number of tracks) 0.00 0.00 1.5 

0.01 0.01 0.00 1.0 
0.05 0.02 0.02 0.00 0.5 

0.05 0.03 0.01 0.01 0.00 0.0 t Pt 

(fraction of total) 0.00 2.0 
0.00 0.00 *I 1.5 

0.00 0.00 0.00 1.0 
0.00 0.00 0.00 0.00 0.5 

0.00 0.00 0.00 0.00 0.00 o*o t pt 
P4 0.0 0.5 1.0 1.5 2.0 
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