
SLAC - 297
UC-32

(Ml

THE VM VERSION OF INTERLAN’S NS4240
XEROX ITP NETWORK SOFTWARE*

Hans Frese

R. Leslie Cottrell

Teresa Downey

Stanford Linear Accelerator Center

Stanford University

Stanford, California 94305

April 1986

Prepared for the Department of Energy

under contract number DE-AC03-76SFOO515

Printed in the United States of America. Available from the National Techni-
cal Information Service, U.S. Department of Commerce, 5285 Port Royal Road,
Springfield, Virginia 22161. Price: Printed Copy A05, Microfiche AOl.

* Manual

Table of C&tents
1. PREFACE 2

1.1 INTENDED AUDIENCE 2
1.2 SUGGESTED READING 2

2. INTRODUCTION TO ITP/VM 3
2.1 FEATURES OF ITP/VM 3

2.1.1 STRUCTURE OF ITP/VM 3
2.2 XEROX ITP FUNCTIONS 4

2.2.1 Protocols 4
2.2.2 Routing 4

2.3 NETWORK MANAGEMENT 5
2.4 USER INTERFACE 5
2.5 PRODUCT REQUIREMENTS 5

3. XEROXNS NETWORKS 6
3.1 PHYSICAL CONFIGURATIONS 6
3.2 ITP PROTOCOL LEVELS 7

3.2.1 ITP Level0 8
3.2.2 ITP Level 1 9
3.2.3 ITP Level 2 10

3.3 IDP PACKET ADDRESSING 11
4. USER INTERFACE TO ITP/VM 13

4.1 OVERVIEW 13
4.2 USER INTERFACE 15
4.3 GROUPS OF ITP/VM USER LIBRARY CALLS 16
4.4 ACCESS IDENTIFIERS: The aid argument 18
4.5 REQUESTS TO ITP/VM18

4.5.1 ITP/VM calling format 18
4.5.2 msgcnvrt - the MESSAGE facility 19
4.5.3 Timeouts 19
4.5.4 Two Ways to Receive Packets 19
4.5.5 Multicast Addressing 21

4.6 DESCRIPTION OF ITP/VM PROGRAM CALLS 22
4.6.1 deaccess() 23
4.6.2 echacc() 24
4.6.3 echreq() 25
4.6.4 idpacc() 26
4.6.5 idphrcv() 27
4.6.6 idptrcv() 28
4.6.7 idpxmt() 29
4.6.8 itpclose() 31

ii

4.6.9
4.6.10
4.6.11
4.6.12
4.6.13
4.6.14
4.6.15
4.6.16
4.6.17
4.6.18
4.6.19
4.6.20
4.6.21
4.6.22
4.6.23
4.6.24
4.6.25
4.6.26
4.6.27
4.6.28
4.6.29
4.6.30
4.6.31
4.6.32

itpini()
loadmcast()

pw-4)

stataconn()

pepares
pephreq()

statanet ()

pephres()
peptreq()

statasock()

peptres()
pep=eq()

statnet

penes 0
wacc()

statsconn()

sppclose()
sppforce()

statsgen()

whrcv()
wpop4)

statssock()

wptrcv()
sPP=t 0

.......

.......

......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......

.......

.......

.......

.......

.......

.......

.......

A. Appendix: ITP errors

.

.

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .
B. Appendix: THE INTERLAN REMOTE STATISTICS SERVER
C. Appendix: PROGRAMMING EXAMPLES FOR ITP/VM . .

C.1 S0URCE.C
C.2 S1NK.C

D. Appendix: NETMON - NETWORK MONITORING UTILITY
D.l OVERVIEW
D.2 MAIN MENU DISPLAY
D.3 GENERAL ITP STATISTICS DISPLAY
D.4 ITP NETWORK STATISTICS DISPLAY
D.5 ITP SOCKET STATISTICS DISPLAY
D.6 ITP CONNECTION STATISTICS DISPLAY

32
, 33

34
35
36
37
38
39
40
42
43
44
45
47
49
50
52

. 54
55

. 56
57

. 59
61

. 63

. 64

. 66

. 67
68
70

. 72
72

. 72

. 73

. 75

. 77

. 78

. . .
111

ACKNOWLEDGMENTS

This document is adapted from INTERLAN’s NS4240 ITP/UNIX Network Soft-
ware y’ Documentation Part Number 950-1015-AA. Permission to use large
portions of the INTERLAN document was kindly given by INTERLAN.

NOTICE

The software described in this document is subject to change without notice.
This software is furnished under a license and may be used or copied only in
accordance with the terms of such license.

The information in this document is subject to change without notice and should
not be construed as a commitment by INTERLAN. While reasonable precautions
have been taken, INTERLAN assumes no responsibility for any errors that may
appear in this document.

No part of this document may be copied or reproduced in any form or by any
means without the prior written consent of Interlan.

CMS, DACU, and VM are trademarks of International Business Machines Cor-
poration.

UNIX is a trademark of Bell Laboratories.

VMS and UNIBUS are trademarks of Digital Equipment Corporation.

XEROX (R), X erox Network Systems, and NS are trademarks of Xerox Corpo-
ration.

Copyright (c) 1985 by MICOM-Interlan, Inc., 155 Swanson Road, Boxborough,
MA 01719 (617) 263-9929.

All Rights Reserved.

1. PREFACE

This manual describes SLAC’s VM adaptation of INTERLAN’s NS4240 ITP
Network Software. The ITP Network Software, hereafter called ITP/VM, is an
implementation of the Xerox Network Systems (Xerox NS) Internet Transport
Protocols (ITP). ITP/VM runs under the VM/SP operating system.

This manual explains how to write application programs that interface to
ITP/VM. This manual also contains information about computer networks that
use Xerox ITP-based protocols.

1.1 INTENDED AUDIENCE

This manual assumes you are familiar with the use of the VM operating system.
It assumes you have experience assembling, linking, and running application
programs on your system. This manual also assumes you have a basic familiarity
with the concepts of computer networking, and that you understand the more
specific concepts of Ethernet-based networks.

1.2 SUGGESTED READING

Before using ITP/VM, you should read the Xerox ITP Manual (Xerox publica-
tion “Internet Transport Protocols” XSIS 028112, December 1981). It describes
in detail the protocols that ITP/VM implements and will be referred to as!’

There are two additional Xerox documents that describe other parts of the Xe-
rox Network Systems (NS) architecture. These are not required reading to use
ITP/VM, but they are useful if you are connecting to Xerox equipment. They are:
“Level 0 Point-to-Point Protocol/Product Specification T33-2.0” XSIS 018201,
January 1982”’ and “Courier: The Remote Procedure Call Protocol”, XSIS

038112, December 1981!8’ These manuals are available from Xerox.

These three IBM manuals provide most of the operating system details:
“VM/SP System Programmer’s Guide” I” “VM/SP CMS Command and Macro
Reference” r’ and “VM/SP CMS User’s Guide” !“I

2. INTRODUCTION TO ITP/VM

ITP/VM allows a virtual machine to communicate with other ITP-compatible
hosts in a Xerox NS internet. You use ITP/VM with a DACU containing one
INTERLAN NIlOlOA UNIBUS Ethernet controller board.

ITP/VM implements layers 0 through 2 of the Xerox Network Systems Internet
Transport Protocols. These levels correspond to layers 1 through 4 of the In-
ternational Standards Organization (ISO) Open Systems Interconnection (OSI)
Model for Network Communications.

ITP/VM provides a program interface so you can write application programs
that access ITP protocols such as Packet Exchange, Echo, and Sequenced Packet
Protocols.

ITP/VM provides sample programs that demonstrate the use of these protocols.

2.1 FEATURES OF ITP/VM

The following sections give a general overview of the operation and interfaces of
ITP/VM.

2.1.1 STRUCTURE OF ITP/VM

ITP/VM consists of two main pieces. These are:

1. a program called ITPACP running in the Disconnected Service Virtual
Machine (DSVM) ITPACPl and

2. a runtime library (SNITPUSR TXTLIB on the SLACNET disk), which con-
tains subroutines that interface to ITPACP. These subroutines are called
by your application programs running in a virtual machine other than IT-
PACPl.

Your application programs can be written in higher level languages that support
Waterloo-C subroutines.

The ITP interface runtime library contains subroutines which your program will
call to invoke the various services provided by ITP.

The ITPACP program contains all the Xerox NS ITP Level 1 and Level 2 pro-
tocols as well as part of Level 0.

2.2 XEROX ITP FUNCTIONS

This section briefly describes ITP/VM’s support of the Xerox Internet Transport
Protocols (ITP). Chapter 3 provides more information on ITP. For complete
information on ITP, please consult the Xerox documentation mentioned in the
Preface.

2.2.1 Protocols

Specifically, ITP/VM provides interfaces to the following ITP protocols:

1. Internet Datagram Protocol (IDP) and, indirectly, the Error Protocol
(ERR) and Routing Information Protocol (RIP),

2. Packet Exchange Protocol (PEP),

3. Echo Protocol (ECH), and

4. Sequenced Packet Protocol (SPP), including Reliable Packet Mode, Packet
and Byte Stream.

ITP/VM does not implement the following protocols:

1. Courier

2. Clearinghouse

These protocols are in the level above PEP, RIP, ERR, ECH, and SPP. ITP/VM
does not implement any other application-specific protocols.

ITP/VM does provide easy-to-use interfaces on which you can implement higher-
level protocols.

2.2.2 Routing

ITP/VM contains all router functionality. ITP/VM can route packets from

1. sockets to networks (for transmission),

2. networks to sockets (for reception),

3. sockets to sockets, and

4. (optional1 y) f rom networks to networks as an internet router.

2.3 NETWORK MANAGEMENT

ITP/VM maintains various statistics about the state of the internet and about
sockets and connections. These statistics are available (both locally and re-
motely) to your programs.

ITP/VM includes a network monitoring utility, NETMON. NETMON is a menu-
driven, screen-oriented program for 327x type terminals that allows you to inspect
local and remote network statistics and configuraton information. For more in-
formation see Appendix D.

ITP/VM implements an integral Echo Request Server which listens at a well-
known socket for Echo Protocol requests.

ITP/VM implements a Statistics Request Server which listens at a well-known
socket for Remote Report Statistics requests. (Note that the Statistics Request
Server is an INTERLAN extension to the Xerox ITP specification).

2.4 USER INTERFACE

You can write application programs that use the ITP/VM software. Chapter 4
describes how your programs use a set of runtime subroutines that in turn exe-
cute itpiucv() calls to communicate via the Inter-User Communications Vehicle
(IUCV) i1:llo-17el and[el with the ITPACPl virtual machine to access the various
ITP/VM protocols.

The ITP/VM user interface was adapted from the ITP/UNIX user interface”l
for SLACNET needs. At the same time, an ITP/VMS interface was created with
identical calling conventions to ITP/VM.

2.5 PRODUCT REQUIREMENTS

ITP/VM requires one INTERLAN Ethernet controller NIlOlOA in a UNIBUS
slot of the DACU connected via a channel interface to a 3Oxx/43xx.

3. XEROX NS NETWORKS

Thii chapter describes some of the basic concepts of the Xerox ITP Specifica-
tion. We provide this information for your convenience in configuring your own
networks and in developing application programs that use the ITP/VM user in-
terface.

For more detailed information on ITP, please consult the original Xerox ITP
documentation mentioned in the Preface.

3.1 PHYSICAL CONFIGURATIONS

Although you may be using only one network transmission medium (an Ether-
net), the Xerox protocols are general enough to support the connection of (in-
compatible) transmission media into networks of networks or “internets”. This
means, for example, that you could connect your Ethernet network to another
Ethernet network via a phone line. At the junction of two (or more) networks,
sits a store-and-forward device called an “internet router”.

The following diagram illustrates your VM system participating in local and
internet configurations.

Figure 1

3.2 ITP PROTOCOL LEVELS

The Xerox ITP protocols break down the communication of data in an internet
environment into clearly-defined sub-functions. These sub-functions form layers,
one on top of another, with each sub-function using the services of the layer
beneath it and providing services to the layer above it. These layers are called
Level 0, Level 1, and Level 2. All hosts on an ITP-compatible network that en-
gage in end-to-end communications implement all three Levels. The INTERLAN
ITP/VM product provides a user interface to Level 1 and Level 2.

The next figure shows the relationship of the three levels.

q StAtild.IC~
suppIior

--------_-___--- -__-__--_
t

Level 1
Trarmpm-t Protocola:
Internet Packet format, Internet Datagram Protocol
Internet addressing
and rouunS

L f-++-------: ---------

IAvelO
l-ransport nadia
Protocols:
Packet Tre.nmport
mechanism

Figure 2

3.2.1 ITP Level 0

Level 0 is also called the Transmission Media Protocol. In ITP/VM there is at
least one network driver for the network controller connected to your VM host.
The functionality of the Level 0 Ethernet network drivers in ITP/VM is shared
among the Ethernet controller hardware, the driver software for this controller,
NI, and the ITPACP program that uses this driver software.

The network driver has two main functions:

1. Accept data from Level 1 and send it to a specified destination on the
transmission medium.

2. Accept data from the transmission medium, decapsulate any medium-
specific information and pass the data up to Level 1.

Note that a network driver does not enhance the reliability of the network trans-
mission medium. If data is lost due to errors, such as CRC failures or buffer

a

limitations at the receiver, the corresponding network driver takes no special ac-
tion. In fact, the driver may not even know of the demise of the data. Note also
that a network driver makes no assumptions about how sequences of packets may
be ordered or related. Level 0 is said to provide a “mostly reliable” datagram
service between hosts on a common transmission medium.

Every network is a broadcast, multicast, or point-to-point network.

1. A broadcast network can deliver a packet to all hosts on the network.

2. A multicast network can deliver a packet to a subset of all hosts on the
network.

3. A point-to-point network can deliver packets only from one host to another.

Ethernet is both a broadcast and multicast network.

3.2.2 ITP Level 1

Level 1 is also called the Internet Datagram Protocol (IDP).

Level 1 implements a packet addressing scheme that allows many unique local ad-
dresses inside any one host. These local addresses, called sockets, are the sources
and destinations of all internet datagrams. In this way, Level 1 can multiplex
and de-multiplex packet streams.

Level 1 implements a packet switch called an internet router. The router en-
hances the functionality of Level 0 by providing an internet delivery system
between networks. Level 1 routers try to share a common description of the
internet configuration (which may change over time) by exchanging topological
information with each other. The Level 1 functionality in ITP/VM is in the IT-
PACP program running in the Disconnected Service Virtual Machine (DSVM)
ITPACPl.

Level 1:

1. Routes outbound packets from local sockets to local sockets.

2. Routes outbound packets from local sockets to Level 0 network drivers.

3. Routes inbound packets from Level 0 network drivers to local sockets.

4. On internet routers only, routes inbound packets from one Level 0 network
driver to another Level 0 network driver.

Note that, like Level 0, Level 1 does not enhance the capabilities of the underlying
transmission media nor does it relate sequences of packets. Level 1 provides a
“mostly reliable” internet datagram service between sockets. Figure 3 shows the
delivery of a packet in an Ethernet environment and in an internet environment.

9

ETHERNET ENVIRONMENT

Ethernet
u

- - - -
Ethernet 1 Ethernst 2

INTERNETENVIRONMENT

Figure 3

3.2.3 ITP Level 2

The highest Level of ITP, Level 2, is responsible for giving structure to a stream
of related packets.

Different Level 2 protocols allow packets to be related in different ways. For
example:

1. The sequenced packet protocol (SPP) ensures that an arbitrary number of
transmitted packets are reliably delivered exactly once to the destination
application in the same order as sent.

2. The packet exchange protocol (PEP) causes each transmitted packet to
be answered by a packet from the receiver; this is useful for transaction-
oriented communications.

3. The echo protocol (ECH) lets a transmitter “bounce” a packet off a host
anywhere in the internet. ECHO is useful for finding out if a host exists
and if there is a path to it.

10

Other Level 2 protocols exist mainly for communication between hosts and do
not require explicit user initiation.

1. The error protocol (ERR) is for one host to inform another that a specific
error has occurred.

2. The routing information protocol (RIP) is used by the Level 1 routers to
communicate routing information among themselves.

ITP/VM allows you to use these protocols should your application require them.

The Level 2 functionality is in the ITPACP program running in the ITPACPl
DSVM.

3.3 IDP PACKET ADDRESSING

As we said, the Level 1 router routes internet datagrams between end-points
called sockets. More than one socket exists in a host; more than one host (usually)
exists on a network; and a network may be connected to other networks, which
together are called an internet.

Every IDP packet contains a source network address and a destination network
address. Each of these two network addresses has three parts: the network
number, the host number, and the socket number.

The host number and socket number uniquely identify a socket, while the network
number is used for internetwork routing. The host number of any host is the same
as its 48-bit Ethernet address. The Xerox ITP specification gives a detailed
description of the network address fields.

WARNING: The ITP specification restricts the values that these fields may have,
and ITP/VM enforces these restrictions.

In the following discussion, UNKNOWN means zero (0) and ALL means all ones
(the ones complement of 0).

1. A socket number cannot have the value UNKNOWN or ALL. The Level 1
router can’t deliver to an UNKNOWN socket. Broadcasting to ALL sockets
is not defined by the Xerox ITP specification.

EXCEPTION: When your application program asks ITP/VM to allocate
a local socket, specifying UNKNOWN means you don’t care what socket
number ITP/VM assigns. ITP/VM assigns a socket number in the range
3001 to 65534 (decimal).

2. The host number cannot have the value UNKNOWN. The Level 0 network
drivers can’t deliver to an UNKNOWN host. A destination host number

11

can be ALL or a multi-cast host number only if the destination network
supports broadcast. (Ethernet supports broadcast).

3. The network number cannot be ALL. A broadcast to ALL networks (“global
broadcast”) is not supported. A destination network address that in-
cludes a destination network number of UNKNOWN causes transmitted
packets to be sent on all networks to which your VM system is directly-
connected. This is not as efficient as sending the packet on the correct
directly-connected network and you should specify it only while the actual
network number is unknown.

12

4. USER INTERFACE TO ITP/VM

4.1 OVERVIEW

User programs can use the ITP/VM runtime subroutines to interface to ITP/VM.
These subroutines are contained in the library file SNITPUSR TXTLIB on the
SLACNET disk.

To link these subroutines, you must load your program with a GLOBAL TXTLIB
SNITPUSR in effect (plus any other TXTLIBs you might need). You may also
use the GENPROG exec which is on the SLACNET disk.

The sample programs SOURCE and SINK in Appendix C demonstrate how to
establish a virtual circuit between two programs.

Note that the calling conventions of the ITP/VM subroutines are identical to the
calling conventions of the ITP/VMS interface produced for SLACNET.

13

The following figure is a block diagram of ITP/VM in operation.

I NxlOlO
Ethernet

CCdIDll~~ I

Figure 4

1. Your application program (running in the APPLICATION VM) issues an
I/O request to ITP/VM. Such requests can open or close connections, send
internet datagrams, get statistics, etc. This I/O request is passed to the

ITPACP program (running in the ITPACPl VM) via IUCV’l’ll”-““l and!’

Your program will be in a wait for a Network Communications Executive
(NCX) semaphore Ial until your request is satisfied or times out.

2. ITPACP performs your request. This may or may not involve sending
packets on the network; the request may simply go from one of ITPACP’s
local sockets to another.

3. ITPACP returns status information to your program.

14

4.2 USER INTERFACE

Your VM program can access ITP/VM functionality in several ways. For exam-
ple, your program may:

1. Open a virtual circuit connection to a remote program, or

2. Exchange related datagrams with a remote program, or

3. Send unrelated datagrams to a remote program, or

4. May request statistics about local Ethernet level and connection level per-
formance.

Requests from an application program to ITP/VM typically follow this sequence:

1. The program requests the type of access it wants. For the four functions
just mentioned, the type of access would be as a client of either:

(a) Sequenced Packet Protocol

(b) Packet Exchange Protocol

(c) Internet Datagram Protocol

(d) (No access required.)

2. The program then issues requests that are appropriate for the type of access.
Following the four functions again:

(a) Send and/or receive sequenced, reliable, unduplicated, flow-controlled
arbitrary data.

(b) Send and/or receive Packet Exchange requests and responses.

(c) Send and/or receive unrelated Internet Datagram Packets.

(d) Request link or connection statistics.

3. The program then terminates the transaction stream (deaccess).

15

The following figure shows a typical interaction (access) between a user-written
application program and ITP/VM.

APPLICATION VM ITPACPl VM

Access for Sequenced
Packet Protocol - - - - - - - >

Return Access-identifier
and status

Open connection on
Access-identifier - - - - - - - >

Open connection and
return status < - - - - - - -

Send and receive
sequenced data on
Access-identifier - - - - - - - >

Perform operation and
return status < - - - - - - -

Deaccess Access-
identifier -------

<------T Return status

4.3 GROUPS OF ITP/VM USER LIBRARY CALLS

The calls fall into eight groups:

1. IDP related

2. ECH related

3. SPP related

4. PEP related

5. Statistics related

6. General Deaccess Call

7. The Load-Multicast Call

8. Calls to initialize and terminate the user interface

The following list describes the calls in each group.

1. IDP related:

(a) idpacc - access as client of the Internet Datagram Protocol.

(b) idpxmt - transmit an Internet Datagram packet.

10

(c) idptrcv - receive an Internet Datagram packet and truncate the re-
mainder.

(d) idphrcv - receive an Internet Datagram packet hold the remainder.

2. ECH related:

(a) echacc - access as client of the Echo Protocol.

(b) echreq - transmit an Echo packet.

3. SPP related:

(a) sppacc - access as client of the Sequence Packet Protocol.

(b) sppopen - open a Sequence Packet Protocol connection.

(c) sppxmt - send a Sequence Packet Protocol packet over an SPP connec-
tion.

(d) spptrcv - receive a Sequence Packet Protocol packet and truncate the
remainder.

(e) spphrcv - receive a Sequence Packet Protocol packet and hold the re-
mainder.

(f) sppforce - send a packet to a local SPP socket.

(g) sppclose - close a Sequence Packet Protocol connection.

4. PEP related:

,

(a) pepareq - access as a Packet Exchange Protocol requester.

(b) pepxreq - transmit a PEP request and wait for response.

(c) peptreq - receive PEP response and truncate the remainder.

(d) pephreq - receive PEP response and hold the remainder.

(e) pepares - access as a PEP responder.

(f) pepxres - transmit a PEP response.

(g) peptres - receive a PEP request and truncate the remainder.

(h) pephres - receive a PEP request and hold the remainder.

5. STAT related:

(a) statsgen - report general statistics.

(b) statssock - report statistics on a specific socket.

(c) statsconn - report statistics on a specific connection.

(d) statnet - report statistics on a specific level 0 network interface.

(e) statasock - report statistics on all sockets.

17

(f) stataconn - report statistics on all connections.

(g) statanet - report statistics on all level 0 network interfaces.

6. General Deaccess call:

(a) deaccess - terminate an ITP access.

7. Load Multicast call:

(a) loadmcast - load multicast address(

8. Init and Close calls:

(a) itpini - initialize the ITP user interface.

(b) itpclose - close the ITP user interface.

. 4.4 ACCESS IDENTIFIERS: The aid argument

Your program, which may have many concurrent program-to-ITP request
streams, (e.g. many open connections), begins each stream by requesting an
access for a particular purpose (e.g. “I want to be a client of the Sequenced
Packet Protocol”).

If ITP/VM successfully grants the access your program requested, it returns to
your program a value called an access identifier or access-ID. The returned access-
ID is your “handle” and you must specify it in future related I/O requests.

NOTE: It is possible to have more than one active access to the same local socket.
Furthermore, these multiple accesses do not have to be of the same type.

Be careful if you use this capability since packets received at the socket are
matched up to supplied receive buffers on a first-come-first-served basis. Un-
less you make other provisions, there is no way of determining which access will
receive the packet.

4.5 REQUESTS TO ITP/VM

This section describes some general features of the ITP/VM calls.

4.5.1 ITP/VM calling format

All requests to ITP/VM use the format:

msgcode = call-name{ argl, arg2, . . . argn);

where “msgcodd is the value returned by the call.

18

All ITP related subroutines in the ITP User Interface library (SNITPUSR
TXTLIB) return an UNSIGN32 value. The three rightmost bits of the msg-
code indicate SUCCESS or ERROR, and in the latter case, the severity of the
error:

0 Warning
1

z
EFS
Informational

5%
Severe error, FATAL
Reserved

XN-SUCCESS indicates a successful return. The files IUCVMSG H and XNMSG
H (appendix A) on the SLACNET disk contain the complete catalog of possible
error codes.

4.5.2 msuCnvrt - the MESSAGE facility

The <msgCnvrt> function on the SLACNET disk can be used to translate the
32-bit error code into a pointer to an ECBDIC string which then can be printed
out. For details, see”01 and the examples in section 4.6

4.5.3 Timeouts

Many ITP/VM requests let you specify a timeout value. This allows you to
abort a requested operation that has not completed after the specified time. The
timeout value that you supply is in 10 millisecond units; for example a value of
600 decimal means “six seconds”. A timeout value of zero indicates an indefinite
wait, i.e., return only when the request is satisfied or aborted.

In VM, the clock granularity is one second. Timeout values of any fraction of a
second are always truncated. For example, a timeout value of 620 is equivalent
to 6 seconds.

4.5.4 Two Wavs to Receive Packets

This section describes two ways for a user program to receive packets from
ITP/VM: RECEIVE AND HOLD and RECEIVE AND TRUNCATE.

When your program supplies a buffer for packet reception, it usually has no way
of knowing how large the next arriving packet will be and hence doesn’t know
how large a buffer it should supply. There are several ways to solve this problem;
the solution usually depends on the application. Here are some solutions:

(a) Your program can always supply a buffer big enough to hold the largest
packet it expects to receive. This method requires a lot of buffer space,
and can be inefficient when the packets vary in length.

19

(b) Your program can have the protocol pass it the size of the received
packet. This lets your program allocate a buffer of the correct size. This
method is not as wasteful of memory space, but doubles the number of
transactions that must occur between the program and the protocol.

(c) Your program can ask for the packet one (or a few) bytes at a time.
This method simplifies your program’s logic, it is usually inefficient
because it requires a transaction for each byte or group of bytes in the
packet.

There are other issues related to packet reception. For example, how can your
program obtain the first part (the header) of a packet to see if it is interested in
the remainder (the data)? Further, if your program doesn’t want the remainder,
how can it tell the protocol to discard it?

ITP/VM supports all of these strategies by providing a very general interface for
receiving packets. This interface works as follows:

1. Your program issues one of two types of receive requests, either RECEIVE
AND HOLD or RECEIVE AND TRUNCATE. With this request it specifies
the address and size of a receive buffer. The size is allowed to be zero bytes.

2. As soon as there is received data available, ITP/VM transfers as much
as will fit into your receive buffer. If the specified buffer size is zero, no
transfer will take place. ITP/VM returns the number of bytes transferred
and the number of bytes remaining (potentially zero) as described in each
call below.

3. If the receive request is RECEIVE AND TRUNCATE, ITP/VM throws
away any remaining received data that didn’t fit into the supplied receive
buffer. If the receive request is RECEIVE AND HOLD, ITP/VM will hold
on to any remaining received data. Your program can obtain this data by
issuing another receive request, specifying either TRUNCATE or HOLD.

You can use combinations of these requests to implement any receive buffer-
ing strategy. For example, your program could specify HOLD to receive a
packet header, followed by TRUNCATE with a zero length buffer to throw
away the packet data. Your program could find out the length of the next
received packet by specifying HOLD with a zero length buffer.

With the exception of SPP RECEIVE AND HOLD requests, ITP/VM will
never return more than one packet in response to a single receive request.
If you supply a buffer which is larger than the next arriving packet (or the
rest of a partially consumed packet from a previous HOLD request), the

20

request is completed when the packet is returned in the buffer. ITP/VM
will not wait for further received data to fill the buffer. Because of this, you
are assured that packets aren’t arbitrarily placed in receive buffers. The
beginning of a received packet will always be returned at the beginning of
a supplied receive buffer.

A different strategy is used for SPP RECEIVE AND HOLD: the data por-
tions of multiple packets are considered a unstructured byte stream unless
EOM or ATTN are set. When the request is made and several packets have
arrived, data is copied into the user buffer until either the buffer is filled
or the data is exhausted (see also section 4.6.22). Thus, the sender’s SPP
packet structure is invisible to the receiver.

4.5.5 Multicast Addressing

ITP/VM allows you to specify as the destination network address parameter of
many requests a 48-bit Ethernet multicast (sometimes called group or logical)
host number. Each transmitted Ethernet packet that specifies a particular multi-
cast destination address will be received only by network hosts that have enabled
that multicast address.

When ITP/VM begins operation, it will only receive packets addressed to its
host’s physical address or the broadcast address. If your application requires
reception of multicast packets, it can enable one or more multicast addresses to
be recognized for the duration of an ITP/VM access. Your application should
specify the required multicast address in the load multicast call (loadmcast()).

21

4.6 DESCRIPTION OF ITP/VM PROGRAM CALLS

This section describes each ITP/VM request in detail. The descriptions are listed
in alphabetical order.

Each request to ITP/VM involves a call to one of the subroutines in the SNIT-
PUSR TXTLIB. Each of these subroutines, in turn, builds a block of information
about the client process. ITP/VM will use this information to process the user
request. This block of data is delivered to ITPACP via IUCV[“““-““l and!“]

Your program must include the file “snitpusr.h” to make use of the subroutines
in the SNITPUSR TXTLIB and the definition of structures such as statsconn,
statsgen, statnet, statssock, rcvspp, and rcvitp.

Note that all the necessary extern definitions are included in “snitpusr.h”, and in
consequence need not be put in your program. Note also that all these subrou-
tines are macro definitions which the C compiler will convert to a special call (to
one of a much smaller set of routines). Therefore you must ensure that you put
no spaces between the routine name and the opening parenthesis of the routine
name.

22

4.6.1 deaccesso

Dissolve an ITP access.

Synopsis:
unsign32 deaccess(a-id);
unsignl6 a-id;

Description:
This request causes the access with access-ID of aid to be terminated. Any out-
standing requests on this access are finished with an error return of XN-ABORT.
Any related socket and/or Sequenced Packet Protocol connection will be de-
stroyed. The access-ID is now meaningless.

If your VM is re-ipled with any accesses still active, this operation will be im-
plicitly performed by ITP/VM on all active accesses owned by your VM.

Errors: See Appendix A.

Ezample:
#include <snitpusr.h>

extern char *msgCnvrt 0 ;

char msgbuf [512] ;
unsignl6 a-id;
unsign32 msgcode;

if ((msgcode = deaccessc a-id) > != XN,SUCCESS >
printf (nXs\n’t, msgCnvrt(msgbuf. msgcode. 0) >;

23

4.6.2 echacc()

Access as a Client of the ECHO Protocol.

Synopsis:
unsign32 echacc(&a-id. sock-num 1;
unsignld a-id, sock-mm;

Description:
This request identifies the issuing program as a client of the Echo Protocol.
In aid, the call returns the access-ID to be used in subsequent Echo Requests

(echredl).

A local socket with number <socknum> is created. If <socknum> is zero, the
socket will be given a dynamically allocated socket number from 3001 to 65534
decimal.

Errors: See Appendix A.

Ezample:
#include <snitpusr.h>

extern char *msgCnvrt (1 ;

char msgbuf [5121 ;
unsignl6 a-id. sock-num;
unsign32 msgcode;

if ((msgcode = echacc(La-id. sock-num)) != XN-SUCCESS >
printf (“Xs\n*‘, msgCnvrt (msgbuf , msgcode, 0) > ;

24

4.6.3 echreq()

Echo Request.

Synopsis:
unsign32 echreq(dmbytes.a-id,dna,timeout.buff.buffsize >;
char buff [I ;
unsignl6 a-id. buffsize. dna[6]. nbytes. timeout;

Description:
This request is useful for verifying that a path exists through the internet to and
from <dna[6]>.

The request causes the contents of a user-supplied buffer to be sent as an Echo
Request packet. The packet is sent from the socket obtained in a previous Echo
Access request (echacc()). Th e ac e is sent to the destination address specified p k t
in <dna[6]>. The request then waits at the local socket for an Echo Protocol
reply.

The argument <aid> is an Access-Identifier that was obtained in a previous
Echo Protocol Access (echacc()).

The request will timeout if no PEP request packet is received within the
<timeout> interval.

You should take care when specifying a multicast or broadcast host number in
<dna[6]>. A large number of Echo Response packets could appear at the local
socket causing buffers internal to ITP/VM to be consumed. These buffers are
unavailable until the local socket is destroyed as a result of a Deaccess request
(deaccesso).

The number of bytes transmitted is returned in <nbytes>. If you are not inter-
ested in this number, specify a NIL pointer instead of <&mbytes>.

Errors: See Appendix A.

Ezample:
#include <snitpusr.h>

extern char *msgCnvrt 0 ;

char buff [] = “test echo\n”. msgbuf [512] ;
unsignl6 a-id,

dna[6] = {0x0000.0x0000.OxAAOO,OxO4OO~OxO9A4.0x004O},
nbytes ;

unsign32 msgcode;

echacc(&a-id. 0 > ;
if ((msgcode = echreq(ambytes, a-id, dna, 600. buff,

sizeof(buff >) > != XN,SUCCESS >
printf (%\ntl, msgcnvrt (msgbuf , msgcode, 0 1 > ;

25

‘I ,

4.6.4 idpacc!)

Access as Client of IDP.

Synopsis:
unsign32 idpacc(&a-id, sock-nun >;
unsignld a-id. socknum;

Description:
This request identifies the issuing program as a client of the Internet Datagram
Protocol (IDP). A 1 ocal socket with socket number <socknum> is created. The
call returns the access-ID to be used for all other further requests on socknum.

If <socknum> is UNKNOWN (zero), the socket number will be assigned dynam-
ically. You have no control over what socket number is assigned if <socknum>
is UNKNOWN (except that it will be in the range of dynamic socket numbers:
decimal 3001 to 65534).

After successful completion of this operation, you can send and/or receive IDP
packets from the local socket and/or obtain socket specific statistics.

Errors: See Appendix A.

Example:
#include csnitpusr .h>

extern char *msgCnvrt (> ;

char msgbuf [512] ;
unsignld a-id, sock-nun;
unsign32 msgcode;

if ((msgcode = idpacc(&a-id, sock-mm) > != XN-SUCCESS)
printf (“Xs\n”, msgCnvrt(msgbuf. msgcode. 0));

26

4.6.5 idphrcv()

Receive IDP Packet and Hold.

Synopsis:
unsign32 idphrcv(&rcv,itp,a-id.timeout,buff,buffsize);
char buff [I ;
struct rev-itp rev-itp;
unsignld a-id. buffsize. timeout;

Description:
This request causes the next available IDP packet from the local socket (created
at IDP Access time) to be returned in <buff>. The packet is not de-capsulated;
the SO-byte IDP header is also available. All packets arriving at the socket
(including Error Protocol packets) are available.

If the length of the data to be returned is greater than the size of the user buffer,
the remainder will be held and can be obtained with another Receive Internet
Datagram (Hold or Truncate) request.

The variable “rcvitp.nbytes” contains the number of bytes remaining in the
packet. The variable “rcvitp.rcv-bytes” contains the number of bytes actually
placed in the user buffer. If you are not interested in these numbers, specify a
NIL pointer instead of <&rcvitp>.

The request will timeout if no packet is received within the specified <timeout>
interval.

Errors: See Appendix A.

Example:
#include <snitpusr.h>

extern char *msgCnvrt 0 ;

char buff [512], msgbuf [512] ;
struct rev-itp rev-itp:
unsigni6 a-id;
unsign32 msgcode;

idpacc (&a-id. 0 > ;
if ((msgcode = idphrcv(&rcv-itp. a-id. 600. buff,

sizeof (buff > > > != XN-SUCCESS)
printf (“%s\nll, msgcnvrt (msgbuf , msgcode, 0)) ;

27

4.6.6 idptrcvo

Receive IDP Packet and Truncate.

Synopsis:
ui’Mign32 idptrcvt &rcv-itp, a-id, timeout. buff. buffsize 1:
char- buff [I ;
struct rev-itp rev,itp ;
unsignl6 a-id. buffsize. timeout;

Description:
This request causes the next available Internet Datagram Protocol packet from
the local socket (created at IDP Access time) to be returned in the user buffer.
The packet is not de-capsulated; the 3U-byte IDP header is also available. All
packets arriving at the socket (including Error Protocol packets) are available.

If the length of the data available is larger than the user buffer, the remainder will
be thrown away. The variable “rcvitp.nbytes” will contain the number of bytes
that were thrown away. The variable “rev-itp.rcv-bytes” contains the number of
bytes actually placed in your buffer. If you are not interested in these numbers,
specify a NIL pointer instead of <&rcvitp>.

The request will timeout if no PEP request packet is received within the
<timeout> interval.

Errors: See Appendix A.

Ezample:
#include <snitpusr.h>

extern char *msgCnvrt 0 :

char buff 15121 , msgbuf [5121;
struct rev-itp rev-itp;
unsignid a-id;
unsign32 msgcode;

idpacc (&a-id. 0 > ;
if ((msgcode = idptrcv(&rcv-itp. a-id. 600. buff,

printf (%\nt*,
sizeof(buff > > > != XN-SUCCESS >

msgCnvrt(msgbuf, msgcode, 0) >;

28

4.6.7 idpxmt!)

Transmit an IDP Packet.

Synopsis:
unsign32 idpxmt(knbytes. a-id. dna, type, check, buff,

buff size) ;
BOOLEAN check;
char buff Cl , type ;
unsignl6 a-id. buffsize. dna[6]. nbytee;

Description:
This request encapsulates the data in the buffer into an Internet Datagram and
transmits it,

Arguments:
The argument <aid> is the Access-ID returned by a previous IDP Access op-
eration (idpacc()).

The argument <dna[6]> is the address of the destination socket (network, host,
and socket number).

A destination network number of UNKNOWN (0) causes the data to be sent
on all directly connected networks and is less efficient than a specific (non-zero)
destination network number. The destination network number can be ALL (ones
complement of zero) or a multicast host number only if the destination network
supports broadcast and multicast.

The argument <type> is the IDP Packet Type byte to be placed in the packet.
This value should be used to indicate to the receiving program how the data
portion contents of the packet should be interpreted. You can obtain from Xerox
unique values for the Internet Packet Type.

The argument <checkflag> should be TRUE (1) if you want the IDP packet to
carry a software checksum within it; otherwise, it will be transmitted uncheck-
summed. You could specify a value of FALSE for <checkflag> if you knew that
the underlying transmission medium provided an acceptable level of packet data
reliability. For example, each Ethernet packet contains a 32-bit CRC, guarantee-
ing a high level of packet data reliability.

Note that the supplied data buffer should contain only the data portion of the
IDP packet. ITP/VM will encapsulate the data into an IDP packet.

The actual number of data bytes transmitted is returned in <nbytes>. If you
are not interested in this number, specify a NIL pointer instead of <&mbytes>.

Errors: See Appendix A.

29

‘,

Example:
#include csnitpusr.h>

extern char *msgCnvrt();

char buff Cl = "test idp\n". msgbuf[512];
unsignl6 a-id.

dnaC61 = {0x0000.0x0000.OxAA00.0x0400.0x09A4,0x0040}.
nbytes;

unsign32 msgcode;

idpacc(&a-id. 0);
if ((msgcode = idpxmt(knbytes. a-id. dna, 0. FALSE, buff,

printf(%3\n1*,
sizeof(buff > >) != XN-SUCCESS >

msgCnvrt(msgbuf. msgcode. 0) >;

30

4.6.8 itpclose!)

Close the ITP User Interface.

Synopsis:
unsign32 itpclose0 ;

Description:
The itpclose() call causes ITP to deaccess all active sockets belonging to the
calling program. The call also severs the IUCV path to ITPACP”“66-‘K’1 and!“’

Errors: See Appendix A.

Ezample:
#include csnitpusr.h>

extern char *msgCnvrt (1 ;

char msgbuf 15121 ;
unsign32 msgcode;

if ((msgcode = itpcloseo > != XN-SUCCESS)
printf (%\n” , msgCnvrt(msgbuf, msgcode, 0 > 1;

31

4.6.9 itpinio

Initialize the IUCV path to the ITPACP VM.

Synopsis:
unsign32 itpini 0 ;

Description:
This call connects an IUCV path to the ITPACP VM[1’143-144’ !“I

Errors: See Appendix A.

Example:
#include <snitpusr.h>

extern char *msgCnvrt 0 ;

char msgbuf [512] ;
unsign32 msgcode;

if ((msgcode = itpinio) != XN-SUCCESS >
printf (“%s\n” , msgCnvrt(msgbuf , msgcode, 0)) ;

32

. i

4.6.10 loadmcastf)

Load Multicast Address(

Synopsis:
unsign32 loadmcast(knbytes. a-id, buff. buffsize 1;
char buff [I ;
unsigni6 a-id. buffsize, nbytes;

Description:
The loadmcast() call enables the multicast addresses in <buff> for the duration
of the access defined by <aid>.

<buff> points to a list of multicast addresses.

<buffsize> is the length of this list, in bytes, and it must be a multiple of six
bytes.

The actual number of bytes transmitted is returned in <nbytes>. If you are not
interested in this number, specify a NIL pointer instead of <&nbytes>.

The specified multicast addresses are actually loaded into the NIlOlOA Con-
troller. The NIlOlOA filters all received multicast packets.

Errors: See Appendix A.

Ezample:
/* enable two multicast addresses */

#include <snitpusr.h>

extern char *msgCnvrt 0 ;

char msgbuf C5121;
unsignl6 a-id.

mcast[J = {0x0307,0x0100.0x0100.0x0307.0x0100.0x0101};
unsign32 msgcode;

if ((msgcode = loadmcastt NIL.a-id.mcast,sizeof(mcast > > >
!= XN-SUCCESS)
printf (lt%s\nt’, msgCnvrt(msgbuf. msgcode. 0 > >;

33

4.6.11 pepareq()

Access as a PEP Requester.

Synopsis:
pepareqt Da-id. sock-nun >;
unsignl6 a-id. sock-num;

Description:
Creates a local socket with number <socknum> which the issuing program can
use for issuing PEP requests. The Access-ID returned in <aid> can be used in
subsequent Transmit PEP Request (pepxreq()) and Receive Response (pephreq(),
peptreq()) calls.

If <socknum> is UNKNOWN (0), a socket number between 3001 and 65534
(decimal) will be dynamically allocated.

Errors: See Appendix A.

Example:
#include <snitpusr.h>

extern char *msgCnvrtO;

char msgbufC5121;
unsignld a-id, sock-num;
unsign32 msgcode;

if ((msgcode = pepareq(&a-id. 0) > != XN-SUCCESS >
printf(%\n". msgCnvrt(msgbuf , msgcode, 0 >) ;

34

4.6.12 pepares

Access as PEP Responder.

Synopsis:
unsign32 pepares(&a-id. sock-mm >;
unsigni6 a-id, sock-nun;

Description:
Your program can issue this request to obtain a socket so that it can receive PEP
Requests and transmit PEP Responses.

<aid> will contain an Access-ID to be used in subsequent Send PEP Response
(pepxres()) and R eceive PEP Request (pephres(), peptres()) calls.

<socknum> is the number of the (local) socket. A value of UNKNOWN (0)
means that ITP/VM is to dynamically allocate a socket number from the range
3001 to 65534 (decimal). You will probably want to specify a “well-known” socket
number here unless you have made arrangements for remote PEP Requesters to
know the socket number.

Errors: See Appendix A.

Ezample:
#include <snitpusr.h>

extern char *msgCnvrt (> ;

char msgbuf [5121 ;
unsignl6 a-id;
unsign32 msgcode;

if ((msgcode = pepares(&a-id. 100)) != XN-SUCCESS)
printf (lt%s\nllt msgCnvrt(msgbuf. msgcode, 0 > >;

35

4.6.13 pa

Receive PEP Response and Hold.

Synopsis:
unsign32 pephreqc krcv-itp, a-id. timeout, buff, buffsize >;
char buff [] ;
struct rev-itp rev-itp;
unsignl6 a-id. buffsize. timeout;

Description:
After a PEP Request operation (pepxreq()) completes, your program can invoke
this function to obtain PEP Response data. <aid> is the Access-ID returned
from a prior PEP Requester Access (pepareq()).

If the supplied buffer is smaller than the remaining PEP Response data, as much
of the PEP Response that will fit is moved into the buffer, and the remainder
is kept. The number of bytes remaining is returned in <rcvitp.nbytes>. The
remainder of the packet can be obtained with another Receive PEP Response
and Truncate (peptreq()) or Hold (pephreq()) call. The number of bytes actually
placed in the buffer is returned in <rcvitp.rcv-bytes>. If you are not interested
in these numbers, specify a NIL pointer instead of <&rcvitp>.

The value of <timeout> is not used by this call since, by definition, a response
must be waiting to be read.

Note that the entire PEP Response packet, is available. This includes the IDP
header, PEP ID and Client Type as well as any data.

Errors: See Appendix A.

Example:
#include <snitpusr.h>

extern char *msgCnvrt 0 ;

char buff [512], msgbuf [512] :
struct rev-itp rev-itp;
unsigni6 a-id;
unsign32 msgcode;

pepareq(&a-id, 0 1;
if ((msgcode = pephreq(&rcv-itp, a-id. I. sizeof(buff) >)

!= XN-SUCCESS)
printf (“%s\n” , msgCnvrt(msgbuf. msgcode. 0) 1;

4.6.14 pephres(]

Receive PEP Request and Hold.

Synopsis:
unsign32 pephres(&rcv-itp, a-id. timeout, buff, buffsize >;
char buff [I ;
struct rev,itp rev-itp;
unsignl6 a-id. buffsize, timeout;

Description:
Your program can invoke this operation to wait for the arrival of a PEP Request
packet. The PEP Request packet is returned in the supplied buffer.

<aid> is the Access-ID returned by a previous Access for PEP Responder re-
quest (pepares(

The request will timeout, if no PEP request packet is received during a <timeout>
interval.

If the remaining PEP Request packet data is larger than the size of the
supplied buffer, the remainder will be kept. The remainder can be ob-
tained with additional Receive PEP Request, Packet operations (pephres(), pep-
tres()). <rcvitp.nbytes> will contain the number of bytes remaining, and
<rcv-itp.rcv-bytes> will contain the number actually transferred into <buff>.
If you are not interested in these numbers, specify a NIL pointer instead of
<&rcvitp>.

Note that the entire PEP Request packet is available. This includes the 30-byte
IDP header as well as the PEP ID and Client Type.

Errors: See Appendix A.

Ezample:
#include <snitpusr.h>

extern char *msgCnvrt 0 ;

char buff [512] , msgbuf [512] ;
struct rev-itp rev-itp;
unsignl6 a-id;
unsign32 msgcode;

pepares(&a-id, 100) ;
if ((msgcode = pephres(krcv-itp.a-id,lOOO,sizeof(buff >) >

!= XN-SUCCESS >
printf (81%s\n*’ , msgcnvrt (msgbuf , msgcode, 0 >) ;

37

4.6.15 peptreo!)

Receive PEP Response and Truncate.

Synopsis:
unsign32 peptreqc &rcv-itp. a-id. timeout. buff, buffsize >;
char buff [I ;
struct rev-itp rev-itp;
unsignl6 a-id. buffsize. timeout:

Description:
After a Transmit PEP Request operation (pepxreq()) completes, your program
can invoke this function to obtain the PEP Response data.

<aid> is the Access-ID returned from a previous PEP Requester Access (pe-

pares()).

If the supplied buffer is smaller than the remaining PEP Response data, as much
of the PEP Response that will fit is moved into the buffer, and the remainder is
lost. The number of bytes lost is returned in <rcvitp.nbytes>. The number of
bytes actually placed in buff is returned in <rcvitp.rcv-bytes>. If you are not,
interested in these numbers, specify a NIL pointer instead of <&rcvitp>.

The value of <timeout.> is not used by this call since, by definition, a response
must be waiting to be read.

Note that the entire PEP Response packet is available. This includes the IDP
header, PEP ID and Client Type as well as any data.

Errors: See Appendix A.

Example:
#include <snitpusr.h>

extern char *msgCnvrt (> ;

char buff [512], msgbuf 15121, rq[] = “this is a request”;
struct rev-itp rev-itp;
unsignl6 a-id,

dna[6] = {0x0000.0x0000,OxAAOO,OxO4OO,OxOQA4.0x004O},
nbytes ;

unsign32 msgcode;

pepareq(&a-id. 0 > ;
pepxreq(&nbytes, a-id, dna. I. 1000, 100. FALSE, rq.

sizeof(rq) 1;
if ((msgcode = peptreq(&rcv-itp, a-id, I, buff,

sizeof(buff)) > != XN-SUCCESS 1
printf (“%s\nl’, msgcnvrt (msgbuf , msgcode, 0) > ;

38

4.6.16 peptres()

Receive PEP Request and Truncate.

Synopsis:
unsign32 peptresc Brcv-itp. a-id. timeout, buff, buffsize 1;
char buff [] ;
struct rev-itp rev-itp;
unsignl6 a-id. buffsize. timeout;

Description:
Your program can invoke this operation to wait for the arrival of a PEP Request
packet. The PEP Request, packet will be returned in the supplied buffer.

<aid> is the Access-ID returned by a previous Access for PEP Responder op-
eration (pepares(

The request will timeout if no PEP request, packet is received within a <timeout>
interval.

If the remaining PEP Request packet data is larger than the size of the supplied
buffer, the remainder will be thrown away. Upon success, <rcvitp.nbytes> will
return the number of bytes lost and <rcvitp.rcv-bytes> will return the number
of bytes actually placed in <buff>. If you are not interested in these numbers,
specify a NIL pointer instead of <&rcvitp>.

Note that the entire PEP Request packet, is available. This includes the 3C-byte
IDP header as well as the PEP ID and Client Type.

Errors: See Appendix A.

Example:
#include <snitpusr.h>

extern char *msgCnvrt 0 ;

char buff [512], msgbuf [512] ;
struct rev-itp rev-itp ;
unsigni6 a-id;
unsign32 msgcode;

peparesc &a-id, 100 1;
if ((msgcode = peptres(&rcv-itp. a-id. 1000. buff,

sizeof (buff))) ! = XN-SUCCESS)
printf (r’%s\n”, msgCnvrt(msgbuf , msgcode, 0 >) :

39

’

4.6.17 pepxreq!)

Transmit PEP Request and Wait for PEP Response.

Synopsis:
unsign32

BOOLEAN
char
unsignld

pepxreq(&nbytes,a-id,dna,ctype,timeout,response.
check, buff, buffsize >;

check:
buff [j ;
a-id. buffsize. ctype. dna[6]. nbytes. response,
timeout:

Description:
This request causes a PEP Request packet to be sent from the local socket ac-
quired by a previous PEP Requester Access request (pepareq()).

The packet’s destination is given by <dna[6]>. The packet carries a client type
of <ctype>. If <check> is TRUE, the PEP packet also carries an Internet Data-
gram Protocol checksum.

<response> is an estimate of the delay time (in 1Oms units) at the remote node.
This is the time that the remote node would take to process an incoming PEP
Request, formulate the PEP response, and transmit the response.

The request waits for a PEP Reply to arrive at the local socket. The Reply
must match the Request. If no Reply is received in a <timeout> interval, the
request is finished with a timeout error. ITP/VM may repeatedly transmit the
PEP Request packet, depending on <response>, <timeout>, and an internally
generated network %ound-trip delay* estimate.

After a PEP Request has been successfully completed, you can obtain the PEP
Response packet by issuing a Receive PEP Response (pephreq(), peptreq()) call.

Note that the buffer should ,contain only the data portion (if any) of the PEP
Request. ITP/VM will encapsulate the data and provide the IDP header and
PEP ID.

The number of bytes transmitted from the buffer <buff> is returned in
<nbytes>. If you are not interested in this number, specify a NIL pointer instead
of <&nbytes>.

Errors: See Appendix A.

40

Ezampler
#include <snitpusr.h>

extern char *msgCnvrt();

char msgbufC6121. request Cl = "this is a request";
unsignl6 a-id,

dna[6] = {0x0000.0x0000.OxAAOO~oxO4oo,oxo9A4.0x004o},
nbytes;

unsign32 msgcode;

pepareq(&a-id, 0);
if ((msgcode = pepxreqt knbytes. a-id. dna, 0. 1000. 0. FALSE,

request, sizeof(request >) > != XN-SUCCESS >
printf('9Xs\n'1. msgCnvrt(msgbuf, msgcode. 0 1 1:

41

. . :

4.6.18 pepxres!]

Send PEP Response.

Synopsis:
unsign32 pepxresl &nbvtes.a id.ctvne.check.buff.buffaize 1:
BOOLEAN check:
char buff [I ;
unsigni6 a-id, buffsize. ctype. nbytes;

Description:
After a PEP Request packet (pephres(), peptres()) is received, your program can
invoke this operation to send a PEP Response packet.

<aid> is the Access-ID returned by a previous Access for PEP Responder op-
eration (pepares(

<ctype> is the Client Type that ITP/VM will use when it constructs the Re-
sponse packet.

<checkflag> should be TRUE (1) if the Response packet is to carry an IDP
checksum with it.

Note that the buffer should contain only the data portion of the PEP Response
packet. ITP/VM will encapsulate the data with an IDP header, PEP ID and
the specified Client Type. ITP/VM will send the PEP Response packet to the
socket that originated the PEP Request packet.

The number of bytes transmitted from the buffer <buff> is returned in
<nbytes>. If you are not interested in this number, specify a NIL pointer instead
of <&nbytes>.

Errors: See Appendix A.

Ezample:
#include <snitpusr.h>

extern char *msgCnvrt();

char msgbuf 15121 , req[6121 , resp[] = “this ,is the response”;
struct rev-itp rev-itp;
unsignld a-id. nbytes;
unsign32 msgcode:

pepares(&a-id. 100 >;
peptres(&rcv-itp. a-id, 1000. req. sizeof(req) 1;
if ((msgcode = pepxres(dmbytes, a-id. 0. FALSE. rasp,

sizeoft reap >) > != XN-SUCCESS >
printf("%s\n'. msgCnvrt(msgbuf. msgcode. 0 > >;

42

J

4.6.19 b

Access as a Client of SPP.

Synopsis:
unsign32 sppacc(&a-id. sock-num >;
unaignl6 a-id. sock,num;

Description:
This request allocates a socket with number <socknum> for purposes of sending
and receiving Sequenced Packet Protocol (SPP) packets. The sppacc() call does
NOT open a connection. To open an SPP connection, use the sppopen() call.

Upon successful completion, <aid> contains the Access-ID which must be speci-
fied in subsequent Sequenced Packet Open (sppopen()), Send (sppxmt()), Receive
(spptrcv() and spphrcv()), Force(sppforce()), Close (sppclose()), and Deaccess
(deaccesso) operations.

Errors: See Appendix A.

Ezample:
#include <snitpusr.h>

extern char *msgCnvrt () ;

char msgbuf [512] ;
unsignld a-id;
unsign32 msgcode;

if ((msgcode = sppacc(&a-id. 0 > > != XN-SUCCESS)
printf (%\n” , msgCnvrt(msgbuf. msgcode. 0 >);

43

4.6.20 sppclose()

Close an SPP Connection.

Synopsis:
unsign32 sppclose(a-id >;
unsignld a-id;

Description:
This request causes an open connection to be dissolved. The remote end of the
connection is not informed. The local socket still exists. The Access-ID <aid>
is still valid.

All unconsumed received packets are thrown away. All transmitted but unac-
knowledged packets are thrown away.

No packets are transmitted or received as a result of this request.

Because the local socket still exists, any further packets that arrive at the socket
are retained.

Errors: See Appendix A.

Ezample:
#include <snitpusr.h>

extern char *msgCnvrt (1 ;

char msgbuf [SIZ] ;
unsignI6 a-id;
unsign32 msgcode;

if ((msgcode = sppclose(&a-id)) != XN-SUCCESS)
printf (aXs\n’V, msgCnvrt(msgbuf. msgcode. 0 > 1;

44

,

4.6.21 sppforce()

Force Sequenced Packet.

Synopsis:
unsign32 aI-
char buff [] ;
unsignI6 a-id, buffsize

)pforce(&nbytes. a-id, buff, buffsize >;

9 nbytes ;

Description:
This request is used by a service-listener program to pass a previously received
service-request packet (SPP) to a service-supplier program. Your service-listener
program is responsible for starting the service-supplier process and coordinating
the service-supplier’s socket.

<aid> is the Access-ID returned by a previous Access for Sequenced Packet
Protocol request (sppacc()).

The packet pass-off goes as follows (ITPACP has been modified to permit this
type of pass-off):

1. Your program accesses a “well-known” service-listener socket as a client of
the IDP (idpacc()).

2. Your program issues an IDP receive request (idptrcv()) on the returned
AccessAID.

3. A service-request packet (SPP) arrives at the well-known socket and the
receive request issued in step 2 completes.

4. Your program accesses an UNKNOWN socket as a client of the SPP (sp-
pact()), causing a new socket to be dynamically allocated.

5. Your program issues the Force Sequenced Packet request (sppforce()) spec-
ifying the Access-ID returned by ITP/VM in step 4. ITP/VM will change
the destination socket number in the packet to be that of the socket ob-
tained in step 4. ITP/VM then sends the packet to that socket as if it had
been received from the network and routed to that socket.

6. Your listener program spawns a supplier process passing it the Access-ID
obtained in step 4.

7. Using the passed-off Access-ID, the supplier program executes a passive
sppopen() and proceeds.

The number of bytes forced on the SPP socket is returned in <nbytes>. If you
are not interested in this number, specify a NIL pointer instead of <&nbytes>.

Errors: See Appendix A.

45

Ezample:
#include Qnitpusr.h>
#define PRI-supplier 5
#define SIZ-supplier

/* priority of supplier process */
8192 /* stack size of above */

extern char *msgCnvrt();
extern struct pcb *c-fork();

unsignl6 dnaOC1 = (0. 0. 0. 0. 0. 0);

PROCESS listener-0
{

extern PROCESS supplier();
char buff15121. msgbufC5121;
struct rev-itp rev-itp;
unsigni6 idp-aid. nbytes. spp-aid;
unsign32 msgcode;

idpacc(&idp-aid. 0);
while ((msgcode = idptrcv(&rcv-itp. Bidp-aid. 0. buff,

sizeoft buff)) > == XN-SUCCESS 88
(msgcode = sppacc(Bspp-aid. 0)) == XN-SUCCESS &&
(msgcode = sppforcet dmbytes:Sspp-aid, buff.

rev-itp.rcv-bytes >) == XN-SUCCESS >
c-fork(supplier. spp-aid. PRI-supplier. SIZ-supplier);

)
printf(llXs\nll, msgCnvrt(msgbuf. msgcode. 0));

PROCESS supplier(a-id >
unsignl6 a-id;
{

sppopen(a-id. dna0. 600. FALSE, FALSE, FALSE);

deaccessc a-id);
)

46

:

4.6.22 spphrcv()

Receive SPP Data and Hold.

Synopsis:
unsign32 spphrcvc 8crcv_spp, a-id. timeout, buff, buffsize >;
char buff [I ;
struct rev-spp rev-spp;
unsignld a-id. buffsize, timeout;

Description:
Returns in a user-supplied buffer pointed to by <buffp> at most <buffsize>
bytes of Sequenced Packet data that has not been accepted by the program.
Only the data field of Sequence Packets is returned.

Note that, unlike all other receive requests, the size of the buffer is not restricted
to 1500 bytes. As SPP packets arrive, their data will be appended into the buffer.
The request will successfully complete on the following conditions:

1. The buffer is filled.

2. The buffer contains data from previous packet(s) and a just-arrived packet
has a different datastream type.

3. The buffer contains data from previous packet(s) and a just-arrived packet
is an Attention packet.

4. The buffer contains data from previous packet(s) and no new data is re-
ceived in the timeout period.

5. The last data byte of a packet with the EOM bit set has been placed in the
buffer.

6. The buffer contains data byte from an Attention packet.

In all cases, the remaining packet data will be held and can be obtained with
another Receive Sequenced Packet (spphrcv(), spptrcv()) call.

<aid> is the Access-Identifier returned by a previous Sequenced Packet Protocol
Access(sppacc()).

The request will timeout if no data is available in a <timeout> interval.

Upon success the call returns the following items:

1. <rcvspp.rcv-bytes> contains the number of bytes placed in the user buffer
<buff>.

2. <rcvspp.nbytes> contains the number of bytes not transferred to the user.

3. <rcv-spp.type> is the datastream type from the packet that contained the
returned data.

47

4. <rcvspp.eom> is TRUE (1) if the eom bit was on in the packet that
contained the received data.

5. <rcvspp.attn> is TRUE if the Attention bit was on in the packet that
contained the received data. As per the Xerox ITP Specification, attention
packets are delivered twice, immediately upon reception and again in the
order of packets transmitted.

Errors: See Appendix A.

Example:
#include <snitpusr.h>

extern char *msgCnvrt (> ;

char buff[5121, msgbufI5121;
struct rev-spp rev-spp;
unsignld a-id;
unsign32 msgcode;

sppacc(&a-id. 0 1:
if ((msgcode = spphrcv(&rcv-spp. a-id. 1000. buff.

printf(t*)/,s\n".
sizeof(buff))) != XN-SUCCESS >
msgCnvrt(msgbuf, msgcode. 0) >;

48

r

4.6.23 sppopeno

Open an SPP Connection.

Synopsis:
unsign32 sppopen(a-id, dna. timeout, active. check, relp);
BOOLEAN active, check, relp;
unsignl6 a-id. dna[61, timeout:

Description:
This request opens a Sequenced Packet Protocol connection between the local
socket obtained in a previous Sequenced Packet Access request (sppacc()) and
the destination network address specified in <dna[6]>.

The request will timeout if no connection is made within a <timeout> interval.

If <active> is TRUE, the connection will be initiated from the local socket (active
open) and a probe will be sent to <dna[6]>. Otherwise, the request will wait at
the local socket for an initiation from the destination network address (passive
open). In the case of a passive open, any or all <dna[6]> fields may be specified
as UNKNOWN (0), 11 a owing “don’t care” address matches of remote active open
attempts.

If <check> is TRUE, all outbound packets will carry a software (IDP) checksum.
In any case, all inbound packets containing a software checksum will be checked.

If <relp> is TRUE, the local end of the connection will receive packets in reliable
packet mode, that is, exactly once, but not necessarily in the order sent by
the other end of the connection. Reliable packet mode decreases the received
packet buffering load placed on ITP/VM. Reliable packet mode should be used
by applications (such as real-time or voice applications) that require once-only
delivery, but not packet ordering.

Errors: See Appendix A.

Example:
#include <snitpusr.h>

extern char *msgCnvrt();

char msgbufC5121;
unsignl6 a-id,

dna[6] = {0x0000.0x0000.OxAAOO~OxO4OO,OxO9A4,OxOO4O};
unsign32 msgcode;

sppacc (&a-id, 0 1;
if ((msgcode = sppopen(a-id,dna,lOOO,TRUE,FALSE,FALSE) >

!= XN-SUCCESS >
printf(V%s\ntf, msgCnvrt(msgbuf, msgcode. 0) 1;

49

,

:

4.6.24 Spptrcvo

Receive SPP Data and Truncate.

Synopsis:
unsign32 spptrcv(Orcv-spp, a-id. timeout, buff, buffsize >;
char buff [I ;
struct rev-spp rev-spp;
unsignl6 a-id. buffsize, timeout;

Description:
Returns in a user-supplied buffer pointed to by <buff> at most <buffsize> bytes
of Sequenced Packet data that has not been accepted by the program.

Only the data field of Sequence Packets is returned. If the length of the data
remaining in the packet is greater than the size of the buffer, the remaining packet
data will be lost.

<aid> is the Access-Identifier returned by a previous Sequenced Packet Protocol
Access (sppacc()) request.

The request will timeout if no data is available in a <timeout> interval.

Upon success the call returns the following items:

1. <rcv-spp.rcv-bytes> contains the number of bytes placed in the user buffer
<buffp>.

2. <rcvspp.nbytes> contains the number of bytes not transferred to the user,
These bytes are now lost.

3. <rcvspp.type> is the datastream type from the packet that contained the
returned data.

4. <rcvspp.eom> is TRUE (1) if the eom bit was on in the packet that
contained the received data.

5. <rcvspp.attn> is TRUE if the Attention bit was on in the packet that
contained the received data. As per the Xerox ITP Specification, attention
packets are delivered twice, immediately upon reception and again in the
order of packets transmitted.

Errors: See Appendix A.

50

Example:
#include <snitpusr.h>

extern char *msgCnvrt();

char buffC5121. msgbuf[512]:
struct rev-spp rev-spp;
unsignl6 a-id;
unsign32 msgcode;

sppacc(&a-id. 0);
if ((msgcode = spptrcv(Drcv-spp. a-id. 1000, buff.

printf("%s\n".
sizeoft buff > > > != XN-SUCCESS >
msgCnvrt(msgbuf. msgcode. 0 I 1;

51

’ /

4.6.25 sppxmt()

Transmit SPP Data.

Synopsis:
unsign32 sppxmt(dmbytes. a-id. type, attn-flag, eon-flag.

buff, buffsize >;
BOOLEAN attn-flag. eom-flag;
char buff [I , type ;
unsignl6 a-id. buffsize. nbytes;

Description:
This request causes the contents of a user-supplied buffer to be accepted for
transmission by the Sequenced Packet Protocol.

Successful completion of this request does not necessarily mean that the data has
already passed to the remote process, received by the remote node, or sent by
the local node. If necessary, a higher level protocol can be used to determine if
a specific packet has been accepted by the remote process.

<aid> is the Access-Identifier that was returned by a previous Sequenced Pro-
tocol Access Request (sppacc()).

<type> is a user-supplied datastream-type. Its value is passed uninterpreted to
the remote process. <type> should be used to indicate to the remote process
how to interpret the data. You could, for example, specify different <type> val-
ues to multiplex several data stream formats onto a single connection.

<attnflag> can be set to TRUE (1) to cause the packet to be marked as an
Attention Packet. If <attnflag> is true, only one byte of data is allowed in the
buffer. As per the Xerox ITP Specification the packet will be sent to the remote
node regardless of the receivers flow control state.

<eomflag> can be set to TRUE (1) t o cause the Sequenced Packet carrying the
supplied data to have its eom flag set. You could set <eomflag> to TRUE, for
example, to indicate the end of a logical message that is being sent as more than
one SPP packet.

Note that the buffer should contain only the data to be sent. ITP/VM will pro-
vide the IDP and SPP headers.

The number of bytes accepted for transmission by ITP/VM is returned in
<nbytes>. If you are not interested in this number, specify a NIL pointer instead
of <&mbytes>.

Errors: See Appendix A.

52

Example:
#include csnitpusr.h>

extern char *msgCnvrt();

char buff[512], msgbuf[5121;
unsignl6 a-id. nbytes;
unsign32 msgcode;

sppacc(&a-id, 0 1;
if ((msgcode = sppxmt(dmbytes. a-id. 0. FALSE, FALSE, buff,

sizeof(buff >) > != XN,SUCCESS)
printf("%s\n", msgCnvrt(msgbuf, msgcode. 0) 1;

53

4.6.26 stataconn()

Report Statistics On All Local Connections.

Synopsis:
unsign32 &l$;onn(dmbytes, buff, buffsize >;
char
unsignl6 buffsize. nbytes;

Description:
This request returns, in a user supplied buffer, information about all (any) con-
nections. \

The first value returned is a X&bit unsigned binary number of currently open
connections.

Then follows zero or more blocks of per connection statistics. Each block follows
the format defined in the Get Specific Connection Statistics request (statsconno).

Note that if the supplied buffer is not large enough to hold the above statistics,
no error will occur.

The number of bytes transferred to the user buffer is returned in <nbytes>. If you
are not interested in this number, specify a NIL pointer instead of <&nbytes>.

Errors: See Appendix A.

Ezample:
#include <snitpusr.h>

extern char *msgCnvrt 0 ;

char buff [5121 , msgbuf 15121;
unsignl6 nbytes;
unsign32 msgcode;

if ((msgcode = stataconn(knbytes, buff, sizeof(buffp > > >
!= XN-SUCCESS)
printf (ll%s\n*f, msgcnvrt (msgbuf , msgcode, 0 > > ;

54

4.6.27 statanet

Report Statistics On All Level 0 Network Interfaces.

Synopsis:
unsign32 statanet(knbytes, buff. buffsize >:
char buff [I ;
unsignl6 buffsize, nbytes;

Description:
This request will return, in a user-supplied buffer, statistics of all (any) Level 0
network interfaces.

The first value returned is a 32-bit unsigned binary number of network drivers
found.

Then follows zero or more blocks of per network statistics. Each block follows
the format defined in the Report Specific Network Statistics request (statnet
except that each block is preceded by the 32-bit network number of that network.

Note that if the supplied buffer is not large enough to hold the above statistics,
no error will occur.

The statistics block corresponding to a Level 0 network interface not provided
by INTERLAN will be filled with zeroes.

The number of bytes placed in the user buffer <buff> is returned in <nbytes>.
If you are not interested in this number, specify a NIL pointer instead of
<&nbytes>.

Errors: See Appendix A.

Example:
#include <snitpusr.h>

extern char *msgCnvrt 0 :

char buff [512], msgbuf 15121 :
unsignl6 nbytes;
unsign32 msgcode;

if ((msgcode = statanet(dmbytes, buff, sizeof(buffp) >
!= XN-SUCCESS >
printf (“%s\n”, msgcnvrt (msgbuf , msgcode, 0 > > ;

55

4.6.28 statasock!)

Report Statistics on all Local Sockets.

Synopsis:
unsign32 statasock(dmbytes. buffp. buffsize);
char buff [I ;
unsignl6 buffsize. nbytes;

Description:
Returns in a user-supplied buffer, statistics about all existing (local) sockets.

The first value returned is a 3%bit unsigned binary number of existing sockets.

Then follows zero or more blocks of per-socket statistics. Each block follows the
format described in the statssock request, which is used to report statistics on
a specific socket.

Note that if the supplied buffer is not large enough to hold the above statistics,
no error will occur.

The number of bytes transferred to the user buffer <buff> is returned in
<nbytes>. If you are not interested in this number, specify a NIL pointer instead
of <&nbytes>.

Errors: See Appendix A.

Example:
#include <snitpusr.h>

extern char *msgCnvrt 0 ;

char buff [512], msgbuf 15121 ;
unsignl6 nbytes;
unsign32 msgcode;

if ((msgcode = statasock(dmbytes. buff, sizeof(buff))
!= XN-SUCCESS)
printf (“%s\nV’, msgCnvrt(msgbuf. msgcode, 0) 1;

56

4.6.29 statnet

Report Statistics on a Specific Level 0 Network Interface.

Synopsis:
unsign32 statnet(&nbytes. net-num. buffp, buffsize);
unsignl6 buffsize. nbytes. net_num[2];
struct statnet *buffp;

Description:
This request will place, in a user-supplied buffer, network interface statistics from
the INTERLAN controller interfacing to network <netnum>. This request will
fail if the network interface is not an INTERLAN controller.

This request returns 16bit unsigned binary values and character arrays as follows:
struct statnet {

unsignld zero, /* always zero */
sixtytwo, /* always sixty-two */
phys-addC31 , /* physical address

(eg 0702 0001 6~03 hex) */
nf rames s /* number of frames received */
rev-frames , /* number of frames in receive fifo */
xmt-f rames , /* number of frames transmitted */
excess, /* number of excess collisions */
toll-f rags, /* number of collision fragments
I’ received */
nlost , /* number of times 1 or more frames

lost */
rev-mcast, /* number of multicast frames accepted */
lost-mcast. /* number of multicast frames rejected */
crc-f rames , /* number of frames received with crc

error */
align-frames,/* number of frames received with

alignment error */
collisions, /* number of collisions */
owind-toll. /* number of out-of-window collisions */
reservedCal ; /* reserved */

char mod-id 161 , /* up to 6 ASCII module ID bytes
plus a null terminator byte */

firm-id 161 ; /* up to 6 ASCII firmware ID bytes
plus a null terminator byte *!

):

These values are obtained from the INTERLAN Ethernet controller board. The
controller zeroes the counters after they are read. Refer to the appropriate User
Guide (NI1010A/NI2010A) f or a complete description of these values.

Note that if the supplied buffer is not large enough to hold the above statistics,
no error will occur.

57

The number of bytes placed in the user buffer is returned in <nbytes>. If you
are not interested in this number, specify a NIL pointer instead of <&nbytes>.

Errors: See Appendix A.

Example:
#include <snitpusr.h>

extern char *msgCnvrt 0 ;

char msgbuf [5121;
struct statnet stats ;
unsignl6 nbytes, net_num[21 ;
unsign32 msgcode;

if ((msgcode = statnet (dmbytes. net-num. &stats,
sizeof(stats)) > != XN-SUCCESS >

printf (*‘Xs\nlV, msgCnvrt (msgbuf , msgcode, 0)) ;

58

4.6.30 statsconn!)

Report Statistics on a Specific SPP Connection.

Synopsis:
unsign32 statsconn(&nbytes, a-id. buffp, buffsize);
unsignlfi a-id, buffsize, nbytes;
struct statconn *buffp;

Description:
This request returns in a user-supplied buffer, statistics about a specific connec-
tion.

<aid> is the Access-Identifier returned by a previous “Access for Sequenced
Packet Protocol” request (sppacc()).

The buffer will contain 32-bit unsigned binary values:
struct statconn {

unsign32 sock-num. /*
rev-packts, /*

xmt-packts, /*

corm-id, /*
rem-host 131 , /*

rem-sock, /*
rem-corm-id. /*
rt-delay,

rev-usr ,

xnt-acked,
rev-probes,
xmt-probes.
rev-acks ,

xmt-acks,

rev-dups ,
rxmt-packs,

/*

/*

/*
/*
/*
/*

/*

/*
/*

16-bit local socket number */
number of packets delivered to the
associated socket by the router */
number of packets sent from the
associated socket */
16-bit local connection id */
remote host number
(eg 0207 0100 0781 hex) */
16-bit remote socket number */
16-bit remote connection id */
round trip delay to remote host
(in 10 ms units) */
number of received packets taken by
user program */
number of packets sent and acked */
number of probes received */
number of probes sent */
number of non-probe system packets
(acks) received */
number of non-probe system packets
(acks) sent */
number of duplicate packets received */
number of packets retransmitted */

Note that if the supplied buffer is not large enough to hold the above statistics,
no error will occur.

The number of bytes placed in the user buffer is returned in <nbytes>. If you
are not interested in this number, specify a NE pointer instead of <&mbytes>.

Errors: See Appendix A.

59

Ezample:
#include csnitpusr.h>

extern char *msgCnvrt();

char msgbufC5121;
struct statconn stat-buff;
unsignl6 nbytes;
unsign32 msgcode;

sppacc(&a-id, 0 1;
if ((msgcode = statasock(knbytes. a-id. &stat-buff.

printf(Q\ns,
sizeoft stat-buff) > > != XN-SUCCESS)

msgCnvrt(msgbuf. msgcode. 0 >):

‘,

4.6.31 stats.gen@

Report General Statistics.

Synopsis:
unsign32 statsgen(dmbytes. buffp, buffsize);
struct statgen *buffp;
unsignl6 buffsize. nbytes;

Description:
This request places general statistics in a user-supplied buffer. Each statistic is
returned as a 32-bit long binary value.

The statistics are returned in the following format:
struct statgen {

char pname 181 ; /* up to seven protocol name ASCII
characters immediately followed by a
null byte */

char version [8] ; /* up to seven ITP/VM version ASCII
characters immediately followed by a
null byte */

unsign32 host_numb[3]./* local host number
(eg 0207 OiOO 03bd hex) */

rte-packets , /* number of packets routed between
(locally connected) networks */

rev-packets. /* number of idp packets received
from network drivers */

xmt,packets, /* number of idp packets given to network
drivers for transmission */

rte,bytes. /* number of bytes routed between
(locally connected) networks */

rev,bytes, /* number of idp packet bytes received
from network drivers */

xmt-bytes. /* number of idp packet bytes given to
network drivers for transmission */

err-packets, /* number of error packets given to router
for transmission */

lost-packets./* number of received packets router threw
away due to software checksum error or
non-existent destination socket */

ech-packets. /* number of echo responses given by
internal echo request listener to
router for transmission */

rip,req, /* number of rip requests received
at Socket 1 */

rip-res, /* number of rip responses received
at Socket 1 */

rip-xres, /* number of rip responses given by
routing information listener to a
router for transmission */

spp-~ts. /* total spp send requests from user
programs */

61

spp-revs. /* total spp receive requests from user
programs */

pep-reqs . /* total pep requester requests from user
programs */

pep-res . /* total pep responder requests from user
pgms and internal statistics server */

rte-entries. /* number of routing table entries in
use */

freebytes; /* number of free bytes remaining
(dummy) */

Note that if the supplied buffer is not large enough to hold the above statistics,
no error will occur.

The number of bytes placed in the user buffer <buffp> is returned in <nbytes>.
If you are not interested in this number, specify a NIL pointer instead of
<&mbytes>.

Errors: See Appendix A.

Example:
#include <snitpusr.h>

extern char *msgCnvrt();

char msgbuf[6121;
struct statgen stats:
unsign16 nbytes;
unsign32 msgcode;

if ((msgcode = statsgenc dmbytes. &stats, sizeoft stats > 1)
!= XN-SUCCESS)
printf(VtXs\nll. msgCnvrt(msgbuf. msgcode. 0 1 1;

62

4.6.32 statssock!)

Report Statistics on a Specific Socket.

Synopsis: Synopsis:
unsign32 statssock(knbytes, a-id, buffp, buffsize); unsign32 statssock(knbytes, a-id, buffp, buffsize);
unsignl6 a-id. buffsize. nbytes; unsignl6 a-id. buffsize. nbytes;
struct struct statsock *buffp; statsock *buffp;

Description:
This request returns, in a user-supplied buffer, statistics about the socket ob-
tained by a previous UAccess for Internet Datagram”, Access for Sequenced
Packet u, n Access for Echo Protocol“, or Access for Packet Exchange” request.

<aid> is the Access-ID returned by the previous access request.

The information is returned as three 32-bit unsigned binary values:
struct statsock {

unsign32 sock-num. /* the 16-bit socket number */
rev-packets. /* the number of packets delivered to the

socket by the router */
xmt-packets; /* the number of packets sent from the

socket */
1;

Note that if the supplied buffer is not large enough to hold the above statistics,
no error will occur.

The number of bytes placed in the user buffer is returned in <nbytes>. If you
are not interested in this number, specify a NIL pointer instead of <&nbytes>.

Errors: See Appendix A.

Example:
#include <snitpusr.h>

extern char *msgCnvrt (1 ;

char msgbuf [5121;
struct statsock stats;
unsignld a-id, nbytes;
unsign32 msgcode ;

sppacc (&a-id, 0) ;
if ((msgcode = statssock(dmbytes. &stats, sizeof(stats) >)

!= XN-SUCCESS)
printf (lI”/ls\n”, msgcnvrt (msgbuf , msgcode , 0) > ;

63

A. Appendix: ITP errors

This Appendix describes all the possible function values returned by ITP. These
return values are all defined in the include files “IUCVMSG H" and “XNMSG
H" on the SLACNET disk.

XNPSUCCESS OxOC598001
XNIBADHST OxOC59800A
XN NOSOK OxOC598012
XN-SOKFUL OxOC5980lA
XNIBADNET OxOC598022
XN-BADSOK OxOC59802A
XN-NETOS OxOC598032
XN-NETHW OxOC59803A
"XPKE

OxOC598042

XN-TIMOUT
OxOC59804A

XN:SOKEXI
OxOC598052
OxOC59805A
OxOC598062
OxOC59806A
OxOC598072

XN,CONOPE
XN-NONET
XN-NOTBRO

XN-NOMEM
XN,CONNS
XN-NONUM

OxOC59807A out of dvnamic memory
OxOC598082 no more ;cbs available
OxOC59808A unknown locally connected network

ft"N-jggB"
XNIKILL
XN,NOTOPE
XN-WINDOW
XN HIMDED
XN-NOISMI
XNINOPEPR

OxOC598092
OxOC59809A
OxOC5980A2
OxOC5980AA
OxOC6980B2
OxOC5980BA
OxOC698OC2
OxOC5980CA

OxOC5980D2
OxOC5980DA
OxOC5980EA
OxOC5980F2
OxOC5980E2
OxOC5980FA

XN-TOOBIG
XN,NOAID
XN,DIFFER
XN-XXXX
+E~&ID

9EK4
XNIRXXX
XNIRSUM
XN,PATH
XN-HOPS

XN-SIZE
XN,ERR
XN-NOSTAT

Normal successful completion
something wrong with host number
local socket doesn't exist
no more local sockets available
something wrong with network number
something wrong with socket
interface error - OS related
interface error - hardware related
error number reserved for future use
signaled to abort
Network timeout occurred
local socket already in
connection already open
unknown network number
dest network does not support
broadcast

OxOC598102
OxOC598lOA
OxOC598112
OxOC598llA
OxOC598122
OxOC59812A

OxOC598132
OxOC59813A
OxOC598142

number
Ethernet addresses conflict at init
out of rte's on initialization
signalled to die
connection not open
client's receive window too large
breath-of-life failure
not an Interlan controller
PEP response not allowed without
request
data (packet) too large
no ACBs for external client access
echoed packet is different
unspecified error at destination
access-ID not in use or bad
checksum or pkt fmt error at
destination
no such socket at destination
resource limitation at destination
unspecified error at router
checksum or pkt fmt error at router
no path to network from router
pkt routed too many times
(router loop)
packet too large for router
unknown error packet returned
no statistics available

64

XN-NONCB OxOC59814A
XN-NETNUM OxOC598152
IUCV-SUCCESS OxOC5D8001
IUCV-IPATHID OxOCSD800C
IUCVjJUIESCED OxOC5D8014
IUCV-EX-MSGLIM OxOC5D80lC
IUCV-NPRI-MSG OxOCSD8024

IUCV-SHORT-BUF OxOC5D802C
IUCV-PROT-EXCP OxOCSD8034
IUCV-ADDR-EXCP OxOCSD803C
IUCV-I,CLSPATH OxOCSD8044
IUCV-PURGD-MSG OxOCSD804C
IUCV-NEG-MSGLN OxOC5D8054
IUCV-LOGOFF-TG OxOC5D805C
IUCV-NOBUFF-TG OxOCSD8064

IUCV-COMCOJAX
IUCV-TGTCO-MAX

OxOCSD806C
OxOC5D8074

IUCV UNAUTHRZD
1UCV:ICPSERVIC
IUCV INVCPFUNC
IUCV-MSGLIM255
IUCV:DECL-BUFF
IUCV-ORG-SEVER
IUCV-PARM-N-AL

OxOCSD807C
OxOC5D8084
OxOCSD808C
OxOCSD8094
OxOCSD809C
OxOCSD80A4
OxOCSD80AC

OxOCSD818C
OxOCSD8194

IUCV-DIR-ERR
IUCV-NO-MSGFND
IUCV-NMSGBLK OxOC5D819C
IUCV-NOSERVICE OxOCSD8lA4
IUCV-REFUSED OxOCSD8lAC
IUCV-CLOSED OxOCSD8lB4
IUCV-AUDIT OxOCSD8lBC
IUCV-TIMEOUT OxOCSD8lC4

no more ncb's available
network number already defined
Normal successful IUCV return
Invalid path id
Path quiesced - no sends allowed
Message limit exceeded
Priority messages not allowed on
this path
Receive/answer buffer too short
Protection exception on buffer
Addressing exception on buffer
yi$z%ioGd but*MSGCLS or PATHID
Message has been purged
Message length is negative
Target communicator not logged on
Target communicator has not declared
buffer
Maximum number of connections for this
communicator exceeded
Maximum number of connections for
target exceeded
No authorization found
Invalid CP svstem service name
Invalid CP fhction code
Message limit greater than 255
A buffer has been nreviouslv declared
Originator has invbked SEVER
Parm list data not allowed on this
path
CP directory error
Soecified message not found
Nb free MSGBLK gvailable
This service was never offered
IUCV connection refused by target
IUCV connection to ITPACP not open
IUCV error recorded in audit word
IUCVWAIT timeout

65

B. Appendix: THE INTERLAN
REMOTE STATISTICS SERVER

Your program can obtain ITP statistics from remote INTERLAN ITP nodes.

ITP/VM contains a Remote Statistics Server process. This process (internal to
ITP) waits at well-known socket 04Ob (hex) and responds to Packet Exchange
Protocol (PEP) request packets.

To interface to the Remote Statistics Server, your program should issue an Ac-
cess as PEP Requester (pepareq()) request. After this request completes, your
program should issue a Transmit PEP Request (pepxreq()) call. In the transmit
call, your program should specify a PEP Client Type of 8002 (hex). This speci-
fies “Remote Statistics Request”. The first (and only) word of the PEP Request
data should specify the type of remote statistics desired, as shown in Table 1.

First Buffer Word Meaning
0 Request General Statistics
1 Request All Socket Statistics
2 Request All Connection Statistics
3 Request All Link Statistics.

Table 1. Remote Statistics Request

After successful completion of the Transmit PEP Request call, your program
should issue a Receive PEP Response (pephreq(), peptreq()) call. This call will
return in the specified buffer an IDP packet that contains the PEP Response
from the Remote Statistics Server. The PEP Client Type of this packet will be
8003 (hex). This specifies “Remote Statistics Response”. The first data word of
this packet will be as shown in Table 2.

First Data Word (hex) Meaning
General Statistics
All Socket Statistics
All Connection Statistics
All Link Statistics

Table 2. Remote Statistics Response

The remaining data will be formatted as described in the appropriate Get All
Statistics request (stataconn(), statanet 0, statasock(), statsgeno).

66

C. Appendix: PROGRAMMING
EXAMPLES FOR ITP/VM

The following two programs are included in the ITP/VM distribution kit.

The two sample programs are written in the C language. They are “source.?
and “sink.?.

You can run these programs to create a Sequenced Packet Protocol (SPP) con-
nection. These programs will run on the same host, or on different hosts. The
programs illustrate the use of the SNITPUSR TXTLIB subroutines and the ma-
nipulation of access-id%.

67

C.l S0URCE.C

/* SOURCE:
This program listens for the connection then sends the data */

#include nsnitpusr.hn
#define MY-SOCKET 0x28
extern char *msgCnvrtO;
extern int printfo. sscanf0;
extern exit();
main(argc. argv >

int argc;
char *argv[l;

{
BOOLEAN execo; /* forward declaration of exec */
char *buff, *malloc();
static unsign16 aid. bytes, dnaC61;
int nprt, npkt = 100. nskp = 0, bufsz = 512, i;
unsigned sock-num = MY-SOCKET;
if (argc >= 2 > sscanf(argvCl1. "%d". knpkt >;
if (argc >= 3 > sscanf(argv[21. "Xd". &nskp >;
if (argc >= 4 > sscanf(argvC31, "Xd", &bufsz >;
buff = malloc(bufsz):
for (i = 0; i < bufsz; i++) buff[i] = i;
printf(I'Source: no. packets = Y,d. packet size = Xd\n".

npkt. bufsz >:
if (exec(itpini(). l'itpini" > &&

exec(sppacc(&aid, sock-num 1. "sppacc" > B&
exec(sppopen(aid, dna, 6000, FALSE, FALSE, FALSE >.

n sppopen" 1 1 {
nprt = I;
if (nskp <= 0) nprt = 0:
for (i = 0 ; i < npkt ; i++) {

if (exec(sppxmt(&bytes,aid,O,O,O,buff.bufsz >.
Itsppxmt" > == FALSE > break;

nprt--;
if (nprt == 0 > {

printf("Source: buffer no. 'Ad sent.\n", i);
nprt = nskp;

)
)
exec(deaccess(aid >. l'deaccess" 1;

)
exec(itpclose0. "itpclose" 1;

68

BOOLEAN exec(funcval. funcname >
char *funcname;
unsign32 funcval;

{
static char *lastname = 0:
char bufferC6121;
if (funcval == XN-SUCCESS) {

if (lastname != funcname >
printf("Source: %s successful.\n". funcname 1;

1
lastname = funcname; return(TRUE >;

printf("Source: %a failed: %s\n".
funcname.

return(FALSE >;
msgCnvrt(buffer.funcval.0 > >;

)

69

C.2 S1NK.C

/* SINK:
This program initiates the connection and receives the data */

#include "snitpusr.h"
extern char *msgCnvrtO;
extern int printf0. sscanf0;
extern exit0;
#define MY SOCKET 0x29
#define HIS SOCKET 0x28
#define ALL-Oxffff
main(argc. argv >

int argc;
char *argv[];

I
/* forward declaration of exec */

100. nskp = 0. i, bufsz = 512;
struct rev-spp rev-spp;
static unsignl6 aid,

dna[6] = { o.O.ALL.ALL,ALL.HIS-SOCKET };
char *buff, *malloc();
if (argc >= 2) sscanf(
if (argc >= 3) sscanf(
if (argc >= 4 > sscanf(
buff = malloc(bufsz 1;

argv[ll, "%d", &npkt 1;
argvC21, "%d", &nskp >;
argv[3]. Il%d'l, dcbufsz);

printf("Sink: no. buffers = %d, buffer size = %d\n",
npkt. bufsz >;

if (exec(itpini0, "itpini" 1 B&
exec(sppacc(&aid. MY-SOCKET >. "sppacc" > &&
exec(sppopen(aid, dna, 6000. TRUE, FALSE. FALSE 1.

11 sppopen" 1 1 {
nprt = 1:
if (nskp <= 0) nprt = 0;
for (i = 0 ; i < npkt ; i++) {

if (exec(spphrcv(krcv-spp,aid,2OOOO,buff.bufsz),
"spphrcv" > == FALSE) break;

nprt--;
if (nprt == 0 1 {

printf=(iEIc: buffer no. %d received.\n".i);
nprt

1
1
exec(deaccess(aid >. "deaccess" 1;

)
exec(itpclose(). ~~itpclose~~);
free(buff 1;

70

exit(0 1;
)

BOOLEAN exec(funcval, funcname
char *funcname;

r unsign32 : funcval;

static char *lastname = 0;
char bufferESl21;
if (funcval == XN-SUCCESS) {

if (lastname != funcname >
printf(Wink: %s auccessful.\n", funcname 1:

lastname = funcname; return(TRUE 1;
)
printf("Sink: %s failed: Xs\n*l.

funcname.
return(FALSE 1;

msgCnvrt(buffer.funcval.0) 1;

)

71

D. Appendix: NETMON - NETWORK
MONITORING UTILITY

D.1 OVERVIEW

NETMON helps you to verify that ITP/VM is operating correctly and helps you
to understand the functions of Xerox NS ITP-based computer networks. It is a
screen-oriented menu driven program designed to run on 327x type terminals.

D.2 MAIN MENU DISPLAY

Entering NETMON<cr> will display the main menu.

*********** NETMON ***********

Use Tabkey to move cursor to desired display and enter Host
h;;e;; Address Number (#### #### ####I. defaults to local

Press ENTER to go into Statistics or PF03 to EXIT.

Host Name/Address
General ITP Statistics
ITP Network Statistics
ITP Socket Statistics
ITP Connection Statistics

72

D.3 GENERAL ITP STATISTICS DISPLAY

12:51:14

General ITP Statistics Host: 0207 0100 27DA

XNS ITP Protocol VOI-003 Version
0 IDP Packets Routed 0 IDP Bvtes Routed

3903 IDP Packets Received 1785583 IDP Bites Received
4055 IDP Packets Trans. 1675324 IDP Bytes Transmitted

2 Error Packets Sent 0 Packets Disc. by Router
0 Echo Responses Sent

41 Router Requests Revd.
0 Router Responses Sent

2401 SPP Send Requests
0 Router Responses Revd.

192 Packet Exchange Req.
2504 SPP Receive Requests

0 Routing Table Entries
36 Packet Exchange Resp.

0 Free Bytes Remaining

To EXIT: <cr>, <cr>
==r=>

Host: The host number is a twelve hex digit value. The host number is either
hardwired into an Ethernet controller board or entered at NETGEN time. Note
that host numbers are unique and that there is only one host number per host,
independent of the number of Ethernet controllers on that host.

Protocol: Currently ITP/VM supports the Xerox NS ITP Protocol.

version: This is the current version of ITP/VM.

IDP Packets Routed: Internet datagrams routed between network drivers on
the host.

IDP Bytes Routed (Internet): Bytes routed between network drivers on the
host.

IDP Packets Received: Internet datagrams given to the router by network drivers
on the host.

IDP Bytes Received: Bytes given to the router by network drivers on the host.

IDP Packets Transmitted: Internet datagrams given to network drivers on the
host.

IDP Bytes Transmitted: Bytes given to network drivers on the host.

Error Packets Sent: ITP error packets given to the router for transmission.
Some possible errors are datagram checksum errors, non-existant destination
socket and resource limitation problems.

73

t

Packets Discarded By Router: Received datagrams discarded by the internet
router. Some possible errors are datagram checksum errors, non-existant des-
tination socket, datagram in an infinite loop (the IDP specification has defined
this to be a datagram routed through 15 internet routers), or the packet is too
large to be routed to another network driver.

Echo Responses Sent: Echo response packets given to the router by the well
known echo socket for transmission. The Echo Protocol is used to verify that a
remote host may be reached and that the Internet Datagram Protocol is func-
tioning correctly.

Router Responses Sent: This is the total number of router responses given to the
router for transmission either gratuitously or in reponse to an external request.

Router Requests Received: Requests for routing information the router has re-
ceived.

Router Responses Received: Router response packets the router has received be-
cause it requested another host’s routing information or it received a gratuitous
routing response.

SPP Send Requests: Sequenced Packet Protocol send requests made by user
programs.

SPP Receive Requests: Sequenced Packet Protocol receive requests made by
user programs.

Packet Exchange Requests: Packet Exchange requests made by the user pro-
grams.

Packet Exchange Responses: Packet Exchange responses made by the user pro-
grams or the internal remote statistics server.

Routing Table Entries: Networks the host is aware of (either directly connected
or accessible through one or more internet routers). The upper bound on the
number is selected during NETGEN time.

Free Bytes Remaining: Free bytes available in the dynamic memory region. A
certain amount of the dynamic memory region is used by ITP/VM in maintain-
ing internal tables; the remainer is used for data buffering. The upper bound on
this value is selected during NETGEN time.

74

D.4 ITP NETWORK STATISTICS DISPLAY

12:61:48

ITP Network Sfa;&itics
Module ID:

Host Number: 0207 0100 27DA
Firmware Version: VO5.00

To EXIT:
r===>

Frames Received
Frames in Receive FIFO
Frames Transmitted
Excess Collisions
Collision Fragments Received
Frames Lost
Multicast Frames Accepted
Multicast Frames Rejected
Frames Received with CRC Error
Frames Received with Alignment Error
Collisions on Transmit
Out-of-window Collisions

<cr>. <cr>

This display shows the statistics maintained by an INTERLAN NIlOlO Ethernet
Communications Controller. Refer to the NIlOlO manual for a detailed descrip-
tion of these values. While ITP/VM statistics are maintained on a cumulative
basis, the network driver statistics are reset each time the Network display is
called by NETMON. (In ITP/VM frames are equivalent to “packets”.)

Host Number: The INTERLAN contoller’s physical address; a twelve hex digit
value.

Module ID: The identifier of the Interlan Ethernet Protocol Module. (e.g. NM10
or NMlOA).

Firmware Version: The firmware version number of the Interlan Ethernet Pro-
tocol Module (e.g. V5.00).

Frames Received: The cumulative number of packets (including collision frag-
ments and multicast packets) that were received by the controller.

Frames in Receive FIFO: Number of packets waiting in the controller’s received
packet buffer.

Frames Transmitted: The number of packets transmitted onto the Ethernet.

Excess Collisions: The cumulative number of times a transmit packet incurred
16 successive collisions when attempting to gain access to the network.

Collision Fragments Received: Number of collision fragments that the controller
received.

75

Frames Lost: Frames lost.

Multicast Frames Accepted: Packets received having a multicast address match-
ing one of the multicast address assigned to the controller.

Multicast Frames Rejected: Packets received having a multicast address not
matching any of the multicast addresses assigned to the controller.

Frames Received With CRC Error: Number of packets received having a CRC
error.

Frames Received With Alignment Error: Packets received with an alignment
error (i.e. the frame size was not an integral multiple of 8 bits).

Collisions on Transmit: The cumulative number of collisions incurred by the
controller in attempting to transmit a packet.

Out-of-window Collisions: The number of out-of-window (i.e. beyond the 51.2
uSec slot time) incurred by the controller in attempting to transmit a packet.

D.5 ITP SOCKET STATISTICS DISPLAY

12:61:35

ITP Socket Statistics Host: 0207 0100 27DA
Socket Nun. Socket Description Inbound Pkts Outbound Pkts

To EXIT: <cr>. <cr>
====>

This display shows the numberofinboundand outbound packets through every
allocated socket. There are four permanently allocated sockets in ITP/VM:

SOCKET NUMBER SOCKET DESCRIPTION

;
Routing Information
Echo

:OB
Router Error
INTERLAN Statistics Server

77

D.6 ITP CONNECTION STATISTICS DISPLAY

ITP Connection Statistics
12:52:55

Remote Host
Socket Corm-Id Pkts-Rcvd Pkts-Xmtd Delay User-Revd..

Rem-Sock Rem-Corm Probe-Rcvd Probe-Xmtd Acks-Rcvd Acks-Xmtd.. ____________________---

02~7cA0100 pD&

BCB 52D4

TO EXIT: <cr>. <cr>
=z==>

11
4 26Y :,

This display provides a complete picture of up to four sequence packet protocol
connections.

Remote Host Number: The INTERLAN contoller’s physical address; a twelve
hex digit value.

Socket: Currently allocated socket for the connection.

Connection ID: Local Connection Identification.

Packets Received: Packets delivered to the associated socket by the router.

Packets Transmitted: Packets sent from the associated socket.

Delay: Round trip delay to remote host (in 10 ms units).

User Received: Received packets taken by user program.

Sent/Ackd: Packets transmitted and acknowledged.

Remote Socket: Socket number of the other end of the SPP connection.

Remote Connection ID: Connection Identification of the other end of the SPP
connection.

Probe Received: Number of probes (a request for allocation or acknowledgement)
received.

Probe Transmitted: Probes transmitted.

Acks Received: Non-probe system packets (acks) received.

Acks Transmitted: Non-probe system packets (acks) transmitted.

Duplicates Received: Duplicate packets received.

78

Retransmitted: Packets retransmitted due to delayed acknowledgment by the
receiver.

79

REFERENCES

1. IBM Virtual Machine/System Product System Programmer’s Guide, Re-
lease 9 Endicott, New York: August, 1983; edition SC146203-2

2. IBM Virtual Machine/System Product CMS Command and Macro Refer-
ence, Release S Endicott, New York: September 1983; edition SC19-6209-2

3. IBM Virtual Machine/System Product CMS User’s Guide, Release 3 En-
dicott, New York: September 1983; edition SCl9-6210-2

4. Interlan, Inc. HOW TO USE THE INTERLAN NS&?~O XEROX ITP
NET WORK SOFT WARE (ITP/IlNIX) Westford, MA 01886: December,
1983; Documentation Part Number 950-1015-AA

5. InterIan, Inc. Network Communications Executive Programmer’s Manual
Westford, MA 01886: October, 1984; Documentation Part Number 950-
1045-00

6. Xerox System Integration Standard Internet Transport Protocols Stamford,
Connecticut 06904: December, 1981; XSIS 028112.

7. Xerox System Integration Standard Level 0 Point-to-Point Protocol/Product
Specification TH-2.0 Stamford, Connecticut 06904: January, 1982; XSIS
018201.

8. Xerox System Integration Standard Courier: The Remote Procedure Call
Protocol Stamford, Connecticut 06904: December, 1981; XSIS 038112.

9. Hans Frese SNETOlO: The Cometized IUCV Subroutine Package SLAC:
1985

10. Dave Wiser SNETMS: The Message Facility SLAC: (in writing)

80

. ’

	slac-r-297a.pdf
	slac-r-297b.pdf

