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SL$L-; = (III.2Oc) 

2L- 1 2L+3 
s,;,,,; = 4L +2sL-l'L'L+ G+LLL+ 

(L + 2)(2L + 3) 

6(L + 1)(2L + 1) 
SL+I,L,L (III.20d) 

(Of course (111.2la) and (111.21~) only make sense if L > 0; likewise the first term 

on the right-hand side of (IIL2ld) is absent for L = 0.) Thus for example the 

PI1 channel examined in [21] is given by (1/3)scrr + (2/3)srrr instead of pure 

“breathing mode” sorr; we will return to this channel shortly. 

The Argand plots obtained from these equations are presented in Figure 19, 

juxtaposed with the corresponding experimental results as drawn from RGhler 

et al.““ (Th e ex erimental graphs are the ‘inner’ ones.) As is customary we have p 

graphed the T-matrix instead of the S-matrix; they are related by T = (S-l)/%. 

Pion energy w is given in units of efir for our graphs, while those drawn from Ref. 

24 are parametrized by total center-of-mass energy W in GeV. For each of our 

resonances we give the corresponding value of w, as well as the mass and width 

in MeV, using our ‘best-fit’ values {e = 4.79, frr = 150 MeV, cf* = 718.5 MeV} 

that we shall obtain at the end of this section.* The locations of resonances 

in the real-world data are indicated by vertical lines. Note that, as mentioned 

earlier, a resonance in the Skyrme model (as determined by the speed criterion) 

tends to occur toward the right-hand side of a circle and not at the top. 

Before discussing the successes of the model we should confront its failures; 

these lie in the S- and P-waves. Indeed one’s natural inclination is to turn first 

to the Ps3 channel, where in one of the cleanest examples of elastic scattering 

in Kature the delta manifests itself dramatically as a full rotation around the 

unitarity circle. Instead, one finds in the Skyrme model initial repulsive (i.e., 

clockwise) behavior, followed by a highly inelastic resonance at w N .34ef,, then 

* In light of our ‘no-recoil” approach, which is not only built into our treatment of pion 
scattering in the jizcd skyrmion background but also implicit in the derivation of Es. 
(X1.11), we interpret the rest-rnms of a resonance to be given simply by the sum rn~ + w; 
this is in accord with Ref. 21. 
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one that is extremely broad (and poorly defined) at 1,05ef,. A similar sad story, 

albeit somewhat less egregious, is to be found in the Prr channel; this is where 

the second-lightest resonance, the N(1440), appears in Nature. 

Interestingly, this was first noticed by Skyrme himself: 

The P-wavemeson-particle interaction [is] repulsive on the average. There 
is no indication of the strong attraction observed in the pion-nucleon 
resonant state, but this would hardly be expected in a static classical 
treatment where the rotational splitting of the particle states has been 
ignored. “I 

Yet these results are not necessarily fatal for the model. That is, despite the 

large discrepancies, one can argue that small perturbations in the P-wave sector 

of the theory can cause enormous effects in the corresponding Argand plots which 

could easily produce the observed real-world behavior for the amplitudes. 

To see this, note that the physical P-wave amplitudes (PII and P33 espe- 

cially) all contain contributions from the elementary S-matrix element ~111, as 

is apparent from (111.21). Th is is the channel to which the rotational zero-mode 

of the skyrmion, Eq. (III.lga), couples at threshold. As a result, in the model, 

the S-matrix has a pole and a zero that have coalesced at the origin of the 

energy-plane for all four P-wave channels of zN scattering. Now, one can eas- 

ily envision effects which perturb these poles and zeroes away from the origin; 

certainly the quantization of the collective coordinates, which involves the next 

order in the l/N expansion, is one such effect. Consequently some of these poles _ 

might end up in the fourth quadrant, slightly below the positive real axis (Fig. 

20a), while others might be pushed into the second quadrant (Fig. 20b). (These 

are quadrants of the ‘second sheet.‘) 

If this scenario actually takes place in the real world, what would we ac- 

tually observe. 3 The channels in which the poles have been perturbed into the 

fourth quadrant would contain clear P-wave resonances lying reasonably close 

to threshold: suggestively, the resonances our model lacks, the A(1232) and the 

N(1440) are in fact the two lowest-lying excitations in pion-nucleon scattering. 
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In contrast, the channels in which the poles have been pushed into the second 

quadrant would be characterized by precisely the kind of repulsive behavior at 

low energies that one finds in the Pl3 and P31 amplitudes. Thus our scenario 

gives at least a consistent interpretation of the real-world P-wave amplitudes 

near threshold. 

In a sense we already know that the delta-pole must be pushed into the fourth 

quadrant by such higher-order corrections. This, after all, is the essence of the 

calculation in Ref. 13 leading to the mass formula (111.5). Recall that in the large- 

N expansion f7 - N1j2 while e - N-‘i2. Con sequently, according to Eq. (111.5) 

(which of course gets renormalized by additional l/N contributions), the nucleon- 

delta mass-difference is proportional to e3fr and hence of order l/N, whereas 

typical excitation energies as obtained in the present analysis are measured in 

units of e fr which is of order unity. Thus it would actually have been inconsistent 

for the delta to appear in our lowest-order calculation. (Note that the ratio 

(ma-'%V)/WV - 1/N2; this is just a special case of the well-known fact that 

the zero-modes of a soliton, when quantized, produce energy splittings of order 

fi2, which in the large-N approach is equivalent to 1/N2.) 

Before leaving the P-waves we ought to point out that the Pl3 and P31 

amplitudes are already given quite nicely. Indeed, the standard lore is that the 

repulsive regions of Argand diagrams are very difficult to concoct in quark models 

of resonances, and so we consider it especially satisfactory to find such behavior 

emerging automatically from such a simple model. Nor is the agreement merely 

qualitative: the ‘cusps’ in the real-world Pl3 and P31 diagrams occur at 1530 and 

1560 MeV, respectively, while the Skyrme-model prediction is 1640 MeV in each 

case. 

We turn next to the S-wave channels, where we find a similar discrepancy. In 

particular the model fails to reproduce the observed initial repulsive behavior of 

the amplitude in the S31 channel. But the S-waves couple to the translational 

modes of the soliton, Eq. (III.lSb). Thus just as for the P-waves one can argue 

69 



that a small perturbation of the form depicted in Fig. 20b would induce such 

behavior. The situation for $1 is not so clear: If one considers the real-world 

resonance at 1526 MeV to be ‘close’ to threshold than presumably it is Fig. 20a 

that gives the correct picture; otherwise it is Fig. 2Ck. 

In short, we have outlined a framework according to which all the S- and 

P-wave amplitudes in the real world can be understood as arising from higher- 

order corrections in an underlying chiral-soliton model such as Skyrme’s. In 

particular, repulsive behavior near threshold arises in this picture from S-matrix 

poles that have been perturbed from the origin into the first or second quadrant. 

(Reassuringly, the only amplitude other than Ssr, P31 and Pl3 which exhibits 

such behavior in the real world is 035, and this, too, mixes with the translational 

mode (111.195).) Of course, at higher energies the effect of perturbing a threshold 

pole becomes negligible and so we would expect to see reasonable agreement once 

again between the model and experiment, as in fact we do in the S- and P-waves. 

We turn now to the higher waves, which fortunately present no such problems. 

We can be brief since the graphs, for better or for worse, speak for themselves. 

By way of a conclusion we offer the following observations: 

1. The partial waves with L 2 2 are on the whole in very satisfactory agree- 

ment with Nature. Many of the discrepancies in the higher waves can obviously 

be accounted for by the fact that our simple approach does not allow for the 

plethora of inelastic processes that occur in the real world; consequently our Ar- 

gand plots stick too closely to the rim of the unitarity circle, and are simply much 

too large. Ideally one should allow for multiple pion production, other mesons 

and/or strangeness (cf. Chapter IV). 

2. The F-wave plots are in particularly close correspondence with experiment; 

this point has already been made in Ref. 18. Note that these are the first channels 

which do not mix with the zero-modes of the skyrmion. In the F35 channel a 

speed-analysis actually revealed two overlapping resonances in the model at 1831 
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and 2032 MeV. Suggestively, the experimental data seems likewise characterized 

by a double peak, implying “that there might be additional structure, but the 

data do not allow additional structures to be resolved.” w Consequently the 

assignment in the real world is to a single broad (I’ = 260f20 MeV) Fss resonance 

at 1905 MeV. (Interestingly, a similar splitting of the Fa5 resonance is predicted 

by the quark model.‘“” 

3. Even in those channels where the Argand diagrams are not reproduced 

very well, the model accurately predicts the locations of resonances with an 

appropriate choice of e and fr (see Table I). In fitct, almost all of the masses 

are given to within 16% of their actual values, and a majority are given to 6%. 

This holds for all known resonances up to 3 GeV, which is surprising for a “low- 

energy” theory. The general rule that masses increase with increasing partial 

wave comes out naturally, while the model correctly pinpoints several exceptions 

to this rule in the lower waves. 

4. A serious discrepancy is that, except for P33 , the model fails to predict 

more than one resonance at reasonable energies in the channels where it should 

do so. In particular the model misses three 3- or &star resonances, namely the 

Srr(165O),Ss;(1900) and Drs(1700), in addition of course to the delta and the 

Roper resonance as we discussed at length. 

5. Except for the F- and G-waves, the model predicts widths that are too - 

large by roughly 50% or more. (Question-marks following some of our width 

assignments indicate a strong background phase-shift to the right of the resonance 

which makes a precise determination of the widths difficult.) Note that, unlike the 

quark model, there is no particular reason in the Skyrme model why resonances 

should be narrow. 

6. Finally, the Skyrme model accurately mimics the big-small-small-big pat- 

tern discussed in Chapter II. This is because the dynamical assumption that 
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SL+~,LL varies negligibly from unity in comparison to SL-~,LL and SLLL is true 

for the Skyrme model, as we have seen. 

Our results for the mass spectrum are presented in Table I. They are based 

on a least-squares fit with all resonances weighted equally. In fit #l we fixed 

the proton mass, leaving only one free parameter, while in fit #2 we allowed the 

proton mass to vary. The optimal values for the Skyrme parameters turn out to 

be {e = 6.29, fir = 142 MeV ) and {e = 4.79, fr = 150 MeV ), respectively. An 

alternative approach would be to fix both the proton and the delta mass using 

(III.B), which gives”” {e = 5.45, fir = 129 MeV ), but this yields a much poorer 

fit to the spectrum as a whole. (This is not too surprising since specifying the 

nucleon-delta mass-difference involves a fine-tuning to order l/N.) In light of 

our earlier discussion we have chosen to compare our lowest-lying excitations in 

the Pl1 and Pa3 channels, not with the Roper and the delta, but with the next- 

higher resonances in those channels; our ‘predictions’ in Table I for the delta- 

mass merely come from Eq. (111.5). In all other cases where there was more than 

one resonance in a channel we compared the Argand plots to determine which 

resonance we should actually use. 

Note that fit #l gives a nucleon-delta mass-difference that is much too large; 

in fact, it inverts the ordering of the first two P33 resonances. Furthermore 

the corresponding Skyrme parameters yield substantially worse static properties 

of the model when plugged into the formulas obtained in Ref. 13. For these 

reasons we prefer fit #2, which actually improves some of these properties, at 

the expense of allowing a proton mass of 1190 MeV (from Eq. (111.5)); it is these 

mass assignments that we have noted in the Argand plots. 

Table II lists a handful of static properties that were first calculated[lsl in 

the Skyrme model by Adkins, Nappi and Witten (ANW). The middle column 

lists their predictions for the proton and neutron magnetic moments, the axial 

coupling constant, and the mean isoscalar and isoscalar magnetic radii; the third 

column gives the same quantities recalculated using the values for the Skyrme 
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parameters given by fit #2; and the first column lists the experimental results. 

In summary we find it intriguing that this simple two-parameter model could 

yield a reasonable fit to such a wide range of both static and dynamic properties 

of hadrons. 
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Table I 

Comparison between experiment and Skyrme model predictions 

for baryon resonances 

a Average of two peaks at 1732 and 1981 MeV. 
b Average of two peaks at 1831 and 2032 MeV. 

Fit # 1 - Nucleon mass fixed. 

Fit # 2 - Nucleon mass allowed to vary. 
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Table II 

Static properties in the Skyrme model 
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IV. EXTENSION TO THREE FLAVORS 

1. Formalism for a-Flavor Scattering 

It is important to consider the effect of incorporating additional low-lying 

mesons into our analysis. In this chapter we shall discuss how to extend the 

scattering formalism to the case of three light flavors, restricting ourselves to 

the idealized case of exact SU(3)aavor. We shall focus in particular on how the 

introduction of strangeness modifies the 2-flavor results of the last two chapters. 

The unrotated skyrmion can be embedded in an SU(2) subgroup of SU(3) 

as follows: BJ71 

with Xa , a = 1, . . . . 8, the Gell-Mann matrices.* A novel feature of models with 

three or more flavors is that the effective Lagrangian must be augmented by the 

so-called Wess-Zumino term:’ 

iN -- 
240~~ / 

d5zcijk1m Tr(Ut~~UUt~jUUt~kUUt~luut~mu) (IV.2) 

which correctly reproduces the flavor-current anomalies of the strong interactions; 

here the integration is over the manifold S3 x D2 whose boundary is compacti- 

fied space-time S3 x S1.“@’ Although, strictly speaking, the space of collective 

coordinates should be taken to be SU(3)/U(l)hypercharg,‘~‘~” it turns out that 

for physically relevant baryon representations, one can allow the collective coor- 

dinates to range conveniently over the full SU(3).‘37’171 

* The alternative, ‘spin-l” embedding of the skyrmion turns out to have baryon number two. 
t Our conventions are eo1234 = e”la3 = -60123 = -1. 
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Experience teaches us that it is fruitful to forget about the baryon’s collective 

coordinates at first, and to concentrate instead on the simplified problem of a 

pseudoscalar-octet meson t#” scattering from a,n unrotated skyrmion in its canon- 

ical hedgehog orientation (N.l); we shall again refer to this as reduced scattering. 

Following the a-flavor example, these mesons are naturally incorporated into the 

Lagrangian by letting 

U. = exp{iF(r) 2 ?‘A’) + exp{iF(r) 2 ?‘A’ + F e 4”X”) W3) 
i=l i=l 9r a-l 

with Aa the Gell-Mann matrices. The Lagrangian is then expanded about the 

skyrmion to quadratic order in the 4’s. In particular, the WZ term makes a 

contribution 

iN 
- 
473 / 

cos F) (K-k+ + ?I?‘) (IV.4) 

to the action.* As always, cubic and higher terms are ignored in our lowest-order 

treatment, since they are suppressed by powers of l/f% - l/a. The result is 

a set of linear Euler-Lagrange equations for the 4’s. 

As in the 2-flavor procedure, we can obtain an effective radial problem by 

expanding 4” in eigenstates of the symmetries of the unrotated skyrmion: in this 

case, (K2, K,,Y). H ere K (not to be confused with the kaon!) is the vectorial sum 

I + L of the meson’s isospin and angular momentum,* and Y is its hypercharge - 

(proportional to A*). Specifically, these fluctuations decompose into the following 

noninteracting sectors: 

(a) There are the vector spherical harmonics familiar from the 2-flavor anal- 

ysis, Eq. (111.8), where the first, second and third components stand for fluctu- 

ations in the ?r+, no and rr- directions, respectively. These are definite states of 

* This contrasts with the baryon-number-zero sector of the theory, in which the WZ term 
f&t contributes to five-meson processes.““” 

$ We identify the isospin subgroup as the group generated by f/Ii with i = 1,2,3. 
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KS and Kz by construction, and have Y = 0. We will call the associated reduced 

S-matrices s$“,~ with K = L - 1, L, L + 1. 

(b) Analogously, one can define “spinor spherical harmonics” 

where the first and second components stand for fluctuations in the K+ and K” 

directions, respectively. These have Y = 1. By parity, yE$ does not mix with 

Y KK* K+;’ so that L = L’. The associated reduced S-matrices will be called sgp 

with K = L f $. As is clear from (IV.4), the Wess-Zumino term contributes a 

term linear in time derivatives to the differential equations that determine the 

meson field (from which the phase-shifts are extracted).“” 

(c) Same as above, with the first and second component now standing for 

-K’ and K- . These fluctuations have Y = - 1. The corresponding reduced 

S-matrices, which we shall call skpr, are extracted from precisely the same 

differential equations as spin, except that the Wess-Zumino term contributes 

with the opposite sign.‘aO1 In the absence of the Wess-Zumino term, we would 

have skkr(w) = s~;~(w). 

(d) Finally, fluctuations in the rl direction, expanded in the usual spherical 

harmonics. These have %? = 3 and Y = 0. The corresponding reduced S-matrix - 

is sfa. 

This decomposition allows us to characterize the S-matrix for the process 

4”(x) + URS + &t’) + URS, (IV.6) 

with 4 the meson field and URS standing for “unrotated skyrmion.” Here a and b 

are SU(3) flavor indices labeling the octet; each is short for the triplet of indices 

(i,i,,Y). When a and b are of the form (l,iz,O), Eq. (A.8) of Appendix A is 
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valid, When a and b are both of the form (i,i=,+l) or (f,iZ, -l), the relevant 

formula is 

where the reduced amplitude stands for s?;~ or skFr, respectively. And when 

a = b = (0, 0, 0), the S-matrix is just 

These formulas together form the 3-flavor analog of Eq. (A.8). The con- ’ 

served quantities for the process (IV.6) are the sum K = I + L of the meson’s 

isospin and angular momentum, as well as the meson’s hypercharge Y. Of course, 

these are not preserved in physical 3-flavor meson-baryon scattering, for which 

the conserved quantities are the total meson-baryon angular momentum J, and 

the total SU(3) flavor quantum numbers {hot, 7, Itot, Iztot , Ytot }. * Ple=indy, we 

shall see momentarily that these conservation laws emerge naturally from the 

skyrmion formalism once the collective coordinate structure of the baryons is 

properly taken into account. Other physically relevant (albeit not necessarily 

conserved) quantum numbers are the meson partial wave L, and the spin s and 

flavor representation R of the baryon [i.e., (s,R) = (f,@ or (g,X!)]. 

In order to describe physical scattering, we need the analog of Eq. (11.8), 

with the integral now ranging over the group SU(3). For this we require the 

correct SU(3) generalization of the baryon wavefunctions, which is given by: 

’ X(A) = ; (-l)- 

where a = (s,--sZ,l), b = (i,il, Y), and R denotes the representation of the 

* Here 7 is a largely redundant index whose only real purpose is to distinguish between 
degenerate representations that can occur in the product of two SU(3) representations, as 
for example the 8,, and 8entisym in 8 x 8. It is not in general conserved, as is clear if one 
considers the non-vanishing coupling Tr((B, Q)[B, 91) of the baryon and meson octets. 
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baryon.’ 

The projection of the initial and final meson-baryon systems onto states of 

definite total SU(3) q uantum numbers is accomplished with the help of an SU(3) 

Clebsch-Gordan coefficient 

which can be factored conveniently into the product 

(ili2izliz211totI~tot) . 
RI R2 

;,yl 
i2y2 

of an SU(2) Clebsch with a so-called isoscalar factor.1801 The projection onto states 

of definite total angular momentum -J’ is of course accomplished with ordinary 

SU(2) Clebsches as before. As in the %flavor case, the physical S-matrix can 

then be expressed as a linear superposition of reduced amplitudes: 

r 

t These differ somewhat from the wavefunctions given in Ref. 27, which have nonstandard 
transformation properties under I and J. The fact that the ‘left-handed hypercharge” iz 
unity is a nontrivial quantization condition arising from consideration of the Wess-Zumino 
term. I”’ Our normalization in (IV.9) is such that JsV(3) dA = 2?r2 = ~supl dA. 
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bLL'&ee' 
ddim R. dim R’ 

dim Rt,,t 

dimR.dimR’ 
(29 + 1)(29’ + 1) 

R 8 
sl ;,-1 c 7iLLss ‘I JK ’ f&gr i- 

K=Lf+ 

(rv.10) 

This is the 3-flavor analog of Eq. (11.11). The F-symbols are defined exactly 

like the P-symbols, Eq. (II.lO), with the single exception that the l’s in the 6-j 

symbols are to be replaced by f’s (reflecting the fact that kaons have isospin k). 

Only half-integral values of the index I contribute to the coefficient of spion, while 

only integral values contribute for skaon and skabar. The long string of Kronecker 

6’s in the first line of Eq. (IV.10) expresses the reassuring fact that total angular 

momentum and SU(3)d,,, are conserved in the scattering process, as promised. 

The explicit forms of the group-theoretic coefficients multiplying the reduced 

amplitudes in (N.lO) are presented in Appendix D. We have focused there on 

the physically relevant cases where the initial baryon is in the octet, and the final 

baryon is in either the octet or decuplet. 

As in the 2-flavor case, Eq. (Iv.10) points the way to two possible avenues of 

inquiry. On the one hand, one can calculate the reduced amplitudes in a specific 
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model, such aa the 3-flavor Skyrme model. On the other hand, one can extract 

from Eq. (IV.10) a host of model-independent linear relations between scattering 

amplitudes in different representations of SU(3) and different channels of total 

angular momentum, albeit in the same partial wave. We will consider both these 

approaches in turn. 

2. The S-Flavor Skyrme Model 

We now consider the specific case of the chirally-invariant 3-flavor Skyrme 

model, whose Lagrangian is given by the sum of Eqs. (1.17) and (IV.2), and 

whose underlying skyrmion solution is given by Eq. (IV.l). The scattering of 

pseudoscalar mesons in this model from the baryon octet/decuplet is governed 

by Eq. (IV.lO), with the following dynamical input: 

1) The reduced amplitudes sgc,L are precisely the same as in the 2-flavor 

case, as a moment’s thought will confirm. (These were depicted in Figs. 13-18.) 

2) The Lagrangian which governs fluctuations in the q (i.e., X8) direction is 

just that of a free field in this model. Consequently, sf”(w) s 1. 

- 

3) Consider next the fluctuations $K&L(r)eiWt, K = L f fl in the kaon 

direction, summed against the spinor spherical harmonics defined in Eq. (IV.5). 

The effective radial equation of motion for these fluctuations turns out to be:* 

* We have multiplied the equation directly obtained from a variation of the Lagrangian by 
2F/(l- COB F) and introduced the dimensionless variable t’ = e jrrr. 
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(F2 + 2 sin2 F) 

+ [2r” 
P 

-4F’sinF+ F’(l+cosF)(m +6sinF)] $ WKK,LIF) 

[L(L+l)-K(K+l)-i] [2+3*“sinF+5s~22F - (F’)2 

- (1 + cos F)(l + 
4 sin2 F 

2”2 
- 2(F’)2)] - (L - l)(L + 2) [l + q + (F’)21 

2F 
R 

sin 2F 
+ ~+2sin2F)F”+fF’+F’2sin2F---4--- 

sin2 F sin 2F 
l-cosF 4 P 1 

+u2(P+2sin2F+i”(F’)2)-$ F/sin2 F -($KK.L/F) =O . 

(rv.11) 

Here the bracketed expression in the next to last line is the defining equation for 

F, Eq. (111.4), which vanishes identically. The final term in (IV.11) represents 

the effect of the WZ term; note that it gives an attractive contribution to the 

phase-shifts. Numerically, however, its contribution turns out to be extremely 

small. The reduced S-matrix elements s&~, K = L f $, are extracted from 

(IV.ll) by the usual phase-shift analysis. 

4) Finally, there are the fluctuations in the antikaon direction, likewise ex- 

panded in spinor spherical harmonics. The corresponding reduced amplitudes I 

sk?’ are also extracted from (Iv.ll), except that the WZ term contributes with 

the opposite sign (as recently noted in Ref. 29), yielding a repulsive contribution 

to the phase-shifts. Numerically, we find spr E skkr. 

As a check on Eq. (IV.ll), we note the existence of the four independent 

zero-mode (w = 0) solutions, two of type (3) and two of type (4), corresponding 

to L = 1, K = rtKz = 4, and $(r) = F(r). Th ese are the zero-modes associated 

with perturbing the canonical embedding of the skyrmion depicted in (IV.1) by 

an infinitesimal unitary transformation of the form exp(ieX’), a = 4,5,6,7. AS a 
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Fig. 21. Phase-shifts 62;” (solid linea) and 6kp (dotted lina) plotted againat kaon momentum in unite 

of efr. Valuea of L ranging from 0 to 7 are indicated. (a) The case K=,L-4. (b) The clue K=L+i. 

second check on (N.ll), it is easy to verify that far away from the skyrmion, it 

correctly describes the propagation of a free particle in a partial wave L. 

Figure 21 depicts the phase-shifts 62-n and J$pf related to the reduced 

amplitudes via by SF;% = exp(2i6kin), etc. It is clear that @‘,0”(w) NN 6&t’(w), 

as asserted. Note that, for L > 1, the phase-shifts with K = L - i enjoy a 
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much more dramatic rise than those with K = L + i; we shall make use of this 

observation later. In contrast, note the threshold repulsive behavior associated 

with 8tTon and 6,, k-bar; this is the hallmark of the threshold boundstates in this 
3 3 

channel mentioned above (cf. Levinson’s Theorem). 

We are now in a position to compare 3-flavor meson-baryon scattering in the 

Skyrme model to Nature. We will focus first on the familiar process zN -+ ?rN . 

Note that, according to Eq. (IV.lO), th ere are contributions to this process from 

the “strange” reduced amplitudes 132;” and sky. 

Figure 22 shows both the 2- and 3-flavor Skyrme model amplitudes for a 

couple of representative partial waves compared with experiment. Clearly the 

size of the amplitude has moved into somewhat closer agreement with Nature. 

The same pattern holds for most partial waves, and can be attributed to the 

opening-up of additional inelastic channels such as CK in the 3-flavor approach. 

We should emphasize, however, that the poor agreement obtained in the previous 

chapter for the Pir, Ps and Sal channels is not improved; improvement in these 

channels must await a higher-order l/N analysis. 

Figure 23 depicts the 2- and 3-flavor H-wave amplitudes in the Skyrme model. 

These illustrate the point that the S-flavor Skyrme model does just as good a 

job as the 2-flavor model in mimicking the big-small-small-big pattern which 

characterizes the experimental curves for nearly all partial waves, as discussed in 

Chapter II. We will return to this phenomenon in the next section. ,- 

A particularly intriguing modification of the 2-flavor results occurs in the 

Fls and F37 channels (Fig. 24). The dominant peaks in these graphs indicate 

Skyrme-model resonances at roughly 1820 MeV, in reasonable accord with the 4- 

star Fls(1684) and F3,(1913) states found in Nature. The interesting new feature 

is the emergence in the 3-flavor model of additional (weak) resonances at 2060 

MeV, in plausible correspondence with the observed l-star Fl5(1882) and 2-star 

&(2425). Suggestively, no such second peak emerges from the Skyrme model 

in the Fl7 channel, where in Nature no second resonance is observed. The F35 
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Fig. 22. Comparison of 2- and &flavor Skyrme model amplitudes with experiment for some representative 

partial waves 
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Fig. 24. Speed of T-matrix plotted against total c.o.m. energy in GeV for the four independent F-wave 

amplitudes in the a-flavor (dotted liner) and fflavor (rolid liner) Skyrme models Rasonance maeses are 

indicated. Note the emergence of rubridiary resonances in PI5 and F9, channels in the 3-flavor model. 
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amplitude in both the 2- and 34iavor models is characterized by two overlapping 

resonances at 1830 and 2030 MeV, although the experimental situation here is 

somewhat unclear, as discussed in the previous chapter (cf. Section 111.2). 

Finally, it should be emphasized that the values of the resonance masses 

are hardly affected by inclusion of strangeness, and the 8% “best-fit” agreement 

with experiment found in Chapter III continues to hold. Overall, the inclusion 

of a third light flavor improves the agreement between the Skyrme model and 

experiment for the 2-flavor process TN + TN . 

Of course, Eq. (IV.10) enables us to study KN and TN scattering processes 

as well. However, these constitute much less rigid tests of the model because the 

experimental status of these processes is much more volatile than for TN. An 

additional problem for our purposes is that most of the experimental work has 

focused on S-, P- and D-wave scattering, where, to leading order in l/N, the 

Skyrme model can be expected to stumble due to mixing with zeromodes. 

Figure 25 illustrates elastic KN scattering in the Skyrme model versus ex- 

periment for a variety of partial waves. Although there is nothing particularly 

special about KN scattering in the chiral soliton approach, it is very interesting 

from the point of view of the quark model, since resonances in these channels 

(unlike EN) cannot correspond to qqq, but rather qqqqij states. The existence 

of such exotics has been the subject of considerable controversy over the past 15 

years, with recent results tentatively favoring such states in the Per, Prs and Do3 

channels.1s11 The Skyrme model results confirm the Do3 state. In addition, there 

appear to be very weak low-lying resonances in the Pcl and Pr3 channels (note 

that there is actually counterclockwise activity in these curves before the cusps 

at 2 GeV* ). In agreement with experiment, there are no low-lying Skyrme-model 

resonances in the Pi1 and Po3 channels. 

It is not clear that these results should be taken as anything more than 

suggestive, given the failure of the model to reproduce the observed repulsive 

* This number assumes that excitation energies are measured from the KN threshold. 
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Fig. 25. Elastic KN ecattering amplitudes in a variety of partial waves. The notation ie LI,~J. (a) 
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behavior in the S-waves. Furthermore, the Skyrme model predicts resonances in 

several channels where, in Nature, no counterclockwise behavior has been seen. 

Clearly a higher-order l/N analysis, in which the skyrmion’s zero-modes have 

been properly disentangled, would be of great interest. 

3. Model-Independent Results 

We now leave the specific case of the s-flavor Skyrme model behind, and apply 

Eq. (IV.10) directly to the study of real-world ?FN amplitudes. Our operating 

assumptions are that a chiral soliton interpretation of the baryon is legitimate, 

and that the simultaneous approximations of large-N and exact SU(g)lavor (both 

of which entered crucially in the derivation of (lV.10)) are physically relevant. 

A particularly notable success of the Z-flavor chiral soliton approach to TN 

scattering was the natural emergence of the big-small-small-big pattern, as dis- 
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cussed in Chapter II. The necessary dynamical input was the assumption that, 

for each value of L, the reduced amplitude SL+~,LL varies negligibly from unity 

compared to the other two. A natural question is: Will the big-small-small-big 

pattern survive the extension to (unbroken) SU(3)? 

It is clear from Table IV of Appendix D that the “big” physical amplitudes 

with (I,J) = (f,L-i) or ($,L+i) are built primarily out of the reduced ampli- 

tudes s~ZY,~~, 
spion kaon LLL, s~-+,~, and $F L. In contrast, the “small” amplitudes with 

’ (I,J) = ($,L+ k) or (p,L- i) receive large contributions from srzILL, s?Q’: L 
2’ 

and s?Jy L. Accordingly, if one makes the dynamical assumptions that, for each 
!a’ 

partial wave L, the deviations from unity of s$z,,,, sg”, s$ L and skplL are 
2’ 2, 

essentially negligible compared to the other four, then the pattern emerges au- 

tomatically. (These assumptions are numerically the case in the SU(3) Skyrme 

model, as we have just seen.) Furthermore, as in the 2-flavor case, the “big” 

amplitude with I = 3 ’ is predicted to be somewhat bigger than the amplitude 

with I= 9, which holds experimentally for L > 1 (cf. Fig. 9). 

We next consider what model-independent linear relations follow from Eq. 

(IV.10). We will again focus our attention on the familiar 2-flavor processes 

rN+rNand?rN*7rA. 

Let us represent the physical amplitudes for TN -+ aN by SkyjN, with L de- 

noting the pion partial wave and I and J the total isospin and angular momentum _ 

of the pion-nucleon system. Eq. (Iv.10) can be shown to imply: 

(4L + 2)S$& 
a 

- (L - 1,q;-t - (3L + WiTZ+; 

= F(s$, - g-;,y 13L-5 (pzk@i,, - sp;,L) + 
90 

(rv.12)a 

and 
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(IV.12)b 

These equations relate the experimental zN amplitudes to reduced amplitudes 

obtainable, in principle, from a phase-shift analysis of the “optimal” nonlinear 

sigma model of Nature. Unfortunately, this optimal nonlinear sigma model, 

obtainable in principle from QCD, is unknown. Thus, without some further 

approximation, Eq. (IV.12) is entirely without predictive power. 

However, using the 3-flavor Skyrme model as a guide (cf. Fig. 21), one can 

expect the right-hand sides of (IV.12) to be extremely small (note that they would 

vanish identically were it not for the WZ term). Accordingly, let us examine the 

linear relations between experimental amplitudes that result from setting the 

right-hand sides of (IV.12) to zero. Here we find a surprise: these are precisely 

the relations (11.18) which we derived, without any such dynamical assumption,* 

from the 2-flavor formalism! Since, in general, these relations work quite well, 

the logical conclusion is that the WZ term probably makes only a very small 

numerical contribution to the real-world meson-baryon S-matrix.’ 

It should be emphasized that we had no right to expect any relations, approx- 

imate or not, between physical zN + zN amplitudes to emerge from the 3-flavor 

formalism. The reason is the following. In the 2-flavor approach, the four physi- 

cal TN amplitudes for each L (i.e., J = Lf f and I = $, Q) are expressed through 

Eq. (11.11) as superpositions of only three reduced amplitudes. Consequently, at 

least one nontrivial relation between physical amplitudes is guaranteed (in fact, 

there are two). In contrast, in the 3-flavor approach, these same four ampli- 

tudes are linear combinations of eight reduced amplitudes. That the relations 

* Recall that the WZ term vanishes in the a-flavor case. 
t This conclusion differs from that of Ref. 29. 
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turn out to be the same in both formalisms is cause for further surprise, since 

pion the group-theoretic factors multiplying the sKLL ‘s are completely different in the 

two approaches. (This can be seen by comparing Eq. (B.l) of Appendix B to 

Table IV in Appendix D.) 

We can also extract from (IV.10) information about TN + TA . Let us 

represent the physical amplitudes for this process by S:NL;fJ with L’ the exiting 

pion partial wave (which can differ from L by two). For the case L = L’, Eq. 

(IV.10) implies: 

S rNrA 

LL%,L--+ - 

&= - l)tL + l) (s2p_oy L _ gk-bar 
18(2L + 1) 3, L-&L - BEyL + SgyL, 

and likewise 

(Iv.13)a 

S rNsA 
3 

LLg,L+; -2L 

4(L + 2) 
- Jl?j(2L+ 1) .%<L+; = 

& + 1) p-pQyL - 8k!yL - spqL + s::;,L) 
(IV.13) b 

Setting the right-hand sides to zero as before, we again recover precisely the 

a-flavor predictions (11.19). Similarly, for the case L = L’ f 2, Eq. (N.lO) 

implies the simple proportionality relations given by Eq. (11.20), with no “WZ 

corrections.” (This is due to the ILL, multiplying the kaon-like and antikaon-like 

reduced amplitudes in (Tv.lO).) 

92 



In the 2-flavor case, there was for each L one further model-independent 

prediction relating the processes nN -+ ?rN to AN + zA , namely Eq. (11.21), 

but this is lost in the 3-flavor formalism. 

Thus, with the dynamical assumption spin M s$$ suggested by the 3-flavor 

Skyrme model, the bflavor formalism yields almost all the model-independent 

linear relations between experimental TN scattering amplitudes that emerged 

from the 2-flavor approach. It is natural to explore the consequences of making 

additional dynamical assumptions about the optimal 2- and 3-flavor nonlinear 

sigma models of Nature. 

A natural set of such assumptions is suggested by the big-small-small-big 

pattern. This pattern characterizes the broad class of a-flavor models (Skyrme’s 

included) for which the reduced amplitude spz LL vary neglibly from unity in 

comparison with sF2,LL and s$‘z. Similarly, ii emerges from 3-flavor models 

if, out of the eight reduced amplitudes for each partial wave, the variation of 
spion eta kaon 

L+l,LL’SL ‘*L++,L’ and s~P;,~ is small compared with the others. Fortunately, 

we have the means of directly testing whether these dynamical assumptions are 

valid approximations as regards the “optimal” 2- and 3-flavor nonlinear sigma 

models of Nature. For, with these additional approximations, Eqs. (11.11) and 

(IV.10) can be shown to imply the extra relations: 

gL(S$& - 1) + (3L + S)(S;;;+l - 1) 5 

+ 3(1OL + 11) (IV.14) 

and 

sL(s;y,$-; - 1) + (3~5 + 6)(Siy;++ - l) 
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= 32L 2L - ’ SINIA 

lO(L + 1) L%L-+ + 8(14L + 15) L srNrA 

lO(2L + 3) LLw+;’ (rv.15) 

respectively. 

Figure 26 displays these relations as applied to the experimental ?rN --) TN 

and nN -+ TA P-, D- and F-waveamplitudes.* Clearly, there is no substantial 

difference in agreement between the 2- and bflavor predictions. Although the 

overall magnitudes of the curves are not in particularly close accord, the shapes 

are roughly similar. Furthermore, the agreement in the signs of the amplitudes 

is in itself a completely nontrivial result (as a glance at the Argand plots of Ref. 

14 will confirm). Certainly (N.14) and (IV.15) are as successful as Eqs. (11.19)- 

(11.21), which were derived without additional dynamical assumptions. In other 

words, incorporating these extra approximations does not noticeably worsen the 

agreement. 

Our conclusion, suggested by the big-small-small-big pattern and reinforced 

by Fig. 26, is that the dynamical assumptions stated above are accurate de- 

scriptions of the 2- and 3-flavor effective Lagrangians derived from QCD. We 

hope that, as such, they will prove to be useful constraints on the current model- 

building efforts in skyrmion physics. 

- 

* In order to make u&e of the available curves for TN -+ ?rA ,‘l” we have combined Eqa. 
(IV.14) and (IV.15) with EJq. (11.19) in Figs. 26a and 26~. 
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APPENDIX A: Derivation of Equation (11.9) 

The purpose of this appendix is to fill in the steps between Eqs. (11.8) and 

(11.9). We shall not assume isospin and angular momentum conservation ab 

initio; these will emerge in the course of our derivation. 

We begin by considering the integral over the SU(2) group manifold in (11.8). 

Changing variables to AC-~ transforms the integral to 

I dA DR’(A)i~,: (Dl(A)c’)im (“lD’(A)-‘),j (DR(A)w1)8aiz 

= (~1)~~~ / dA ~R’(A);:d:D’(A)i,-m(D1(A)-l)-n,j(pR(A)-l)s.i, 

(A4 

using 

It turns out that the A-integration can be carried out explicitly, thanks to the 

Clebsch-Gordon decomposition 

DR'(A)at,DRa(A)cd = CDR"(A),+~,t,+d (RIRu@,=+c) (ii,b+d\&Rzbd) 
E 

(A.4 

and the orthogonality relation 

We obtain: 

mnR 

x R’li:ij&’ + i, 
( >( &sz - nlR’ls:, -m > 

x ( RlsZ, -nlfi, sz - n ) (&j+i.lRlij) 
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It is useful to project the initial and final pion-baryon states onto states of 

definite total isospin I1&) and [1’1:), respectively. A straightforward calculation 

yields the somewhat simpler expression 

(4 
&2R + 1)(2R’ + 1) 

Rfs,;R’?‘s ’ I = b&J: 2I+1 

x C(-1)“-” (7rYr~)0 
mn 

(A-5) 

x (I, sz - nlR’lsl, -m) (Rls,, --n\I,s, - n) . 

Happily, isospin conservation is now manifest in the Kronecker-deltas. 

We have not yet arrived at our final destination, where the initial and final 

pion-baryon states are characterized, not only by definite isospin, but by definite 

angular momentum as well. But in order to make progress we must necessarily 

return to the question of diagonalizing the differential operators &i defined in 

Eqs. (11.3) and (11.4). Complicated though 2 may be, it respects the symmetry 

rl E f(pion) + .Z(pion). C onsequently c preserves the subspaces of states of 

definite K and Kz. 

How do we construct these subspaces? Consider the quantity 

(LlKz - 1, 1IKKz) YL,IL-I (n) 
l-pql) = (LlKsOIKK,) Y&(Q) ; (A4 - 

(LlKz + 1, -1IKKz) YL,K.+I(~) 
these are the vector spherical harmonics, By the familiar rules for addition of 

angular momenta IIfKn is indeed a state of definite K and Kz. Unfortunately 

it also has definite orbital angular momentum L, which is not preserved by c: 

the pion can jump two units in L in the process zN + IDA , for example, in a 

manner consistent with angular momentum conservation. Therefore, in order to 

block-diagonalize c we must sum over all allowed values of L for each K, namely 
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L = (K - 1, K, K + 1). Parity precludes the states with L = K from mixing 

with those with L = K f 1; consequently the eigenstates of 2 are of the following 

form: 

Parity(-l)L-l : $K(t,t)TI$F{(n) + $+K(r,t)II~~;(n) 

Parity (-l)L : ti,“(r, t)n,KK=(n) * 

One can imagine expanding an arbitrary pion field in terms of these eigen- 

functions and carrying out the angular integration in (11.3). The result will be a 

purely radial problem, where for each value of K, c is replaced by an operator 

acting on the space 

with the zeroes of course reflecting parity conservation. 

Furthermore from the radial wavefunctions tiK(r, t) one can construct the - 

“effective” Green’s functions gK(?$ r’t’) associated with e$; this is of course a 

3 x 3 matrix checkered with zeroes just as in (A.7). We will find it convenient 

to label its matrix elements by pairs of subscripts (L, L’) that take values (K - 

1, K, K + 1) instead of the usual (1,2,3) or (+, 0, -); thus g435, say, instead of 

(g4)1,3* 

Having defined gK we are now in a position to write down the partial wave 

decomposition of the pion propagator in the unrotated soliton background. One 
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finds 

(7ry~‘t’)7rn*(~,t))o = d yL’L:~wy~L.uv 
LL*L’L’ s 

w-4 

c (KK,ILlL,n) (L’lLimjKK,) gKpL(rt;r’t’) 
KK. 

with i and i’ the incoming and outgoing pion angular momentum, respectively. 

This formula will presently prove very useful to us. 

We now have all the machinery in place for our final result. 

(A.5) and project the initial and final pion-baryon states onto 

We return to Eq. 

states of definite 

total angular momentum IJJz) and IJ’JL), respectively; likewise the incoming 

and outgoing pions are restricted to partial waves L and L’, which we still have 

the freedom to specify. A short calculation making use of (A.8) then produces 

(4 
d(2R + 1)(2R’ + 1) 

RfJ-L;R’I-‘J-‘L’ = hb*I: 21+1 

x c c (-l)n-mgKL8L 
KK,mn r,s:L,L: 

x (RLs,L,IJJ,) (J’J,‘IR’L’s:L;) 
(A-9) 

x (I, sL - nlR’ls:, -m) (Rls,, -nil, sz - n) 

x (KK,ILlL,n) (L’lL~mlKK,) . 

It is certainly not manifest from this rather unwieldy formula that total an- 

gular momentum is conserved, as of course it must be. In order to see that, it is 

convenient to reexpress the Clebsch-Gordon coefficients as 3j-symbols 

jl j2 J 
ml m2 -M 

= (-l)j1-jz+M(2J + 1)-‘i2 (jlj2mlm2IJM) . 
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These, in turn, can be used to construct the 6j-symbols via 

c (-1) J1+Jz+Js+M~+M~+Ms JI 52 j3 

MlMM.8 
MI 442 m > 

J3 5 

>( 

JS JI h 
-M3 ml M3 -MI m2 > 

A short calculation making use of some standard properties of 6j-symbols pro- 

duces 

c (A.lO) 
= bI&sI:6JJ ,~,.J/ PLL~RR~IJK - gKL’L(rt; f”t ‘1 

K 

where the P-symbols are defined in Eq. (11.10). Both isospin and angular mo- 
mentum are now manifestly conserved. This is Eq. (11.9). 
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APPENDIX B: Explicit formulae for P-symbols 

This appendix contains explicit formulas for those P-symbols as defined by . . 

Eq. (11.10) which contribute to either sN + TN or IAN + TA . The notation is 

PLLIRR~IJK where L and L’ give the orbital angular momentum of the incoming 

and outgoing pion, respectively; R and R’ denote the spin (and isospin) repre- 

sentation of the initial and final baryon; I and J are total isospin and angular 

momentum; and K labels the conserved vector &ion) + Z(pion). 

We consider first the process TN + XN , which in our notation implies L = 

L’ and R = R’ = i. With two exceptions as noted below, the scattering must 

be P-wave or higher in order for the P-symbol not to vanish. For L 2 1 the 

nonvanishing values of the P-symbols are given by: 
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ZL-1 
PLL#,L- 1 ,L-1 =-XT- 

L+1 
P LLLLL L-$,L = - aal’ 3L 

L 
PLLg$,L+QC = 3L + 3 

pLL;+L+i,L+l 
= ?$-$ (also valid for L = 0) 

PLL#,L-&L-l (2L - l)(L - 1) = 

6L(2L + 1) 

2L-1 
PLL”S L-&L = - 

1 a a 6L 

2L+3 
PLL$&L-f,L+l = - 4L+2 

2L-1 
PLLll9 3p'i,L+iJ-l = 4L+ 2 

2L+3 
PLL$;;*L+;,L = m 

pLL;$q,L+;,L+l = 
(~+2)(2L+3) 
(6L + 6)(2L + 1) 

(also valid for L = 0) . 

(B-1) 

Consider, next, the process TN 4 IDA with L = L’. Here L must be >_ 1 without 

exception, in which case the nonvanishing P-symbols are: 
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PLL+$;,L-&L--l = 
j/(L + 1)(2L - 1) 

3L 

PLLf$$,L- &L = 
-&L + 1)(2L - 1) 

3L 

PLL;q&L+;,L = 
dz@izq 

3L+3 

PLLf;;,&&L = 
(L+4) ZL-1 

3L i- lO(L + 1) 

2L+3 2L-1 
PLL;g;,L-f,&1 = -- 

J 2L+1 10(L+1) 

PLL+$&L++,L-l = 2L + 1 

PLLg;q,L++,L = -- 

pLL;g;,L+Q,L+l = - 
4(L + 2) 

(3L + 3)(2L + 1) 

(B-2) 

The final possibility is TN + ?FA with L = L’ f 2. Now L = 0 is allowed, and 

we have: 
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APPENDIX C: Further Details on Skyrme Model Equations 

In this appendix we give some further details concerning the differential equa- 

tions (111.12~) and (111.12b). W e will express our results in terms of the dimen- 

sionless variables 7 = efFr and V% = m/(ef,) . 

We consider the ‘1 x 1’ case (1II.12~) first. After multiplying through by 

2F2/ sin2 F the equation turns out to be 

+(F’)2 
2cot F 8 sin 2F 

-f-“;;;Z” -;+T+ +.2F 

+ F [?2F”+...]-w2 
F sin2 F 

1+4(F’)‘+4f9 f&o 

(C-1) 
The term [?F” + . ..I d enotes the defining equation for F, Eq. (111.4), which of 

course is identically zero. Near the origin the regular solution satisfies $5 - 

FKml[vr - CYF + 0 (p)] where Q[ z IF’(O)1 s 1; from this we obtain the initial 

conditions needed to carry out the numerical integration. 

The ‘2 x 2’ case (111.12b) is more complicated. It is convenient to change 

variables to 

105 

(C.2b) 



We then need to solve the coupled linear equations 

- 2F4F2 (f2 + 8 sin2 F) d K - 4F4+2(r’ + 4F’sin2F)-&~ + 

{ 

2F4[2cos2F + K(K + 1)][q2 + 4sin2 F] 

+ 2F4[4 sin2 2F - G2 F” sin 2F + Ga2F4 cos F - 8;2(F’)2 cos 2F] 

- 2F2 F4(F2 + 8 sin2 F)u2 t/f d K - 8dmF3FF’t2 sin2 F-&J~ (C.3a) 

+ F2dmsin2 F(16Fsin2F - 16P2FFN 

+ 4t2F cot F[l - 4(F’)2] + 8r”(F’)2} t@ = 0 

and 
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da K - 2F2F2(F2 + 4 sin2 F)s$2 + 

-4F2f3 + F2F’(-16F2 sin2F - 4F2 cot Ff2 + 16F sin’ F + 4r”LF) 
I 

K(K + 1)F2(8 sin2 F + 2P[l + 4(P)‘]} 

+ 2f2[-8F2(F’)’ - 2F2 + 4F sin2 FF” + 8F sin 2F(F’)2 + FF(2F’ + r”F”) 

+ 2Fcot F?2(F’)2 - 8sin2 F(F’)2 - 2f2(F’)2] - z[i2F” + . . .] 

- 2W2F2q2 [4 sin2 F + 4f2 (F’)2 + +2] 
> 

t@ + 8JK~~2F3F’~~~ 

P 
+ 8F3dm[2sin2F - f2F”+ Tcot F] 

(C.3b) 

where we have multiplied through by -4’24F4 and -4pF4/ sin2 F, respectively. 

(The advantage of the change of variables is that each of these equations is 

second-order in only one variable.) We are relieved to find that, in the case of 

massless pions, Eqs. (C.l)-(C.3) are in agreement with Ref. 22. One can check 

that the translational mode (IILlSb) is a zero-energy solution of Eq. (C.3) when 

K= 1. 

Now there are two regular solutions near the origin: 

( $1” > ( 
FK*l [1+ O(P)] 

$,” - B*FKf’ [s - 1+ O(?)] ) 

where 

1+ 2a2K + 1Ocr2 
-l+ 2dK - 4a2 
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and 

It is straightforward to integrate these equations numerically out to large r”, 

reconstruct $2, and extract the phase shifts. The development then proceeds as 

outlined in Sec. III.1. 
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APPENDIX D: Explicit Formulae 
for SU(3) Scattering Coefficients 

In this appendix we present explicit formulae for the group-theoretic coeffi- 

cients multiplying the eight reduced amplitudes in the SU(3) scattering formula, 

Eq. (IV.10). For fixed baryon representations, these depend only on the total 

meson-baryon representation Rtot and the total angular momentum J. We will 

restrict ourselves to the physically relevant cases when the initial baryon is in the 

spin-i octet, and the final baryon is in either the octet or the spin-z decuplet. 

Table III presents the coefficients of the reduced amplitudes for the case when 

the initial and final baryon are both in the octet. The relevant decomposition is 

8~8=27+~+10+8r+82+1 (D-1) 

where (following DeSwart”” ) the 81 and 82 are synonymous with 8rym and 

8 anti*rm, respectively. 

Table IV gives the prescription for ?rN elastic scattering in the 3-flavor for- 

malism. These coefficients can be directly compared to their 2-flavor cousins 

presented in Appendix B. 

Table V presents the relevant coefficients when the initial and final baryons 

are in the octet and decuplet, respectively, and when the initial and final meson 

partial waves are the same (L = L’). The relevant decomposition is 

10 x 8 = 35 + 27 + 10 + 8. (D.2) 

Table VI lists the coefficients for the analogous 8 x 8 + 10 x 8 processes 

when IL-L’1 = 2. Note that these coefficients all multiply the single contributing 

reduced amplitude s$‘!‘~, where K = (L + L/)/2. Thus, to leading order in l/N, 

all these processes are predicted to be strictly proportional to one another; this is a 

model-independent result. 
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Rtot 

(27127) 

(lollo) 

w10> 

(81 Pl> 

(82 182) 

@lb) 

w> 

Rtot 

P7127) 

:iqiq 

Pvo> 

0% IQ> 

(82 182) 

(81 IQ 

(111) 

i$d%(@ 
1 2L-1 

is-z- 

pg$ 

3 2L-1 
2a-r 

2L-1 
iz 

2L-1 
izE 

0 

,pion 
‘L-l,L,l 

4 2L-1 -- 
27 2Lt-1 

0 

2 2L-1 
g?irzi 

0 

0 

0 

0 

srrL 

2 7L-tlC 
135TK 

L 
h?xi 

&!I% 

3 L 
Wt+l 

L 
‘iqzq 

&E5 

0 

2 7L-3 
m-r 

1 L 1 
rs -5 

2 2L-I 
i-s-37 

3 L+l 
%-II- 

L+1 
12L 

L+l 
g7z 

0 

‘K,L,L 

_11_2 3 
+- 272 +l 

0 

2 2L 3 
B2 +1 + 

0 

0 

0 

0 

J=L+$ 

CZ,L,L 

l 2L 3 
is 1 d- 

2L+3 
ot/80 

0 

s kaon 
L-&L 

skaon 
t+g 

4 2L-I 16 L+1 
Em 2-i:zTi 

0 

0 

0 

0 

0 

0 

skaon 
L-&L 

L -- 
:t 2Ls-1 

0 

0 

0 

0 

0 

0 

skaon 
L+; 

4 2L+3 
275izi 

Q 

0 

0 

0 

0 

0 

s k-bar 
L-i,L 

sk-bar 
L+i 

1 14L-1 
is?x?zi 

1 2L-1 
~2t+l 

1 2L-1 
iiFz!zi 

1 4L-1 
i62zTi 

1 4L+l 
82L31 

1 
iqqzTq 

1 

16 Ltl 
135 2L+1 

4 Ls-1 -- 
15 2L+1 

4 Ls-1 -- 
15 2L+1 

3 L+l 
5zTi 

1 L-t1 
3 2L-tl 

0 

*k-bar 
L-&L 

sk-bar 
L-t; 

1 14L-tlE 
135 2L+1 

1 2L+3 -- 
15 2L+1 

1 2L+3 -- 
15 2L+1 

1 4L+5 -- 
10 2LSl 

1 4Ls3 -- 
6 2LSl 

,qz&ij 

1 

Table III 
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37 2L-1 25L-t37 
135(Gtl) !35(2L+l)(L+l) 

2L+3)(13L+=) & 26L 16L-t21 
135 2L+1 iiiqzqm L+$ g 

G,L,L 

0 

0 

Table Iv 

J=L-; 

It’ 
- 
0 

0 

0 

0 I 
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&ot I 
(27127) 

(10110) 

(8181) 

(8182) 

J=L+f 

I 
. j 

Table VI 
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Fig. 27. An unrotated hedgehog. 
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Fig. 28. A rotating hedgehog. 
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ABSTRACT 

The S-matrix characterizing the scattering of pions from nucleons is calcu- 

lated in the context of skyrmion models of the nucleon. These are models in 

which the nucleon is considered a soliton in the field of pions. The spectrum of 

nucleon and delta resonances in the Skyrme model is calculated and found o be 

in overall good agreement with Nature. Model-independent sum rules between 

amplitudes in the same partial wave are derived and examined. An extension of 

the formalism to the case of three light flavors is presented. 

ii 



ACKNOWLEDGMENTS 

I am indebted to my friend and collaborator Marek Karliner for hundreds of 

hours of vigorous discussions on all facets of this work. I feel especially privileged 

to have learned at the hands of a true keyboard virtuoso how useful a servant 

(and how jealous a mistress) a computer can be. 

I have profited from discussions with many people including Larry Bieden- 

harn, Yosef Dothan, Doron Gepner, Fred Gilman, Igor Klebanov, Rick Mackenzie, 

Mark Soldate, Marvin Weinstein and Shimon Yankielowicz. My understanding of 

the relevant experimental results has benefited from correspondence with Richard 

Arndt and G. HChler, and especially from discussions with David Leith. 

I would like to thank Eric D’Hoker for an elegant departmental colloquium 

on the topic of skyrmions which motivated me to drop whatever I was doing at 

the time in order to contribute to the renascence of this beautiful, if forgotten, 

subject. 

Many thanks to Donald Knuth for assistance in typing. 

I am indebted to my wife Judy and daughter Joanna for everything, most of 

all keeping me sane and making me happy through it all. 

Finally, it has been a joy and privilege these last three years to have benefited 

from the gentle guidance of Michael Peskin: teacher and collaborator, babysitter 

and friend. I have come to share, not only his faith in the ultimate simplicity 

and elegance of Nature at its most basic level, but also-to my own surprise- 

his deep respect for experiment. The multitude of his flock is testimony to his 

extraordinary commitment to his students’ education; if I am not the educated 

man I ought to be, it is not for his want of trying. Most of all, I will never forget, 

and can never hope to repay, his special dedication to his students on a personal 

level. 

Thanks to all. 

. . . 
lu 



To my dear parents, Daniel and Nokmi, and in loving memory of 

my grandfather, Chaim Perelman. 

iv 



TABLE OF CONTENTS 

FOREWORD 1 

I. INTRODUCTION 5 

1. Solitons in Effective Lagrangians 5 

2. Large-N QCD 14 

II. SYSTEMATICS OF TN SCATTERING IN CHIRAL SOLITON 

MODELS 24 

1. Assumptions, Approximations, and Apologies 25 

2. Derivation of Linear Relations 32 

3. Comparison with Experiment: rcN + TN 36 

4. Comparison with Experiment: ?rN + nA 45 

III. THE BARYON SPECTRUM OF THE SKYRME MODEL 51 

1. Pion-scattering from unrotated skyrmions 53 

2. Pion-nucleon Scattering 60 

IV. EXTENSION TO THREE FLAVORS 76 

1. Formalism for S-Flavor Scattering 76 

2. The 3-Flavor Skyrme Model 82 

3. Model-Independent Results 89 

APPENDIX A: DERIVATION OF EQUATION (11.9) 96 

APPENDIX B: EXPLICIT FORMULAE FOR P-SYMBOLS 101 

APPENDIX C: FURTHER DETAILS ON SKYRME MODEL 

EQUATIONS 105 

APPENDIX D: EXPLICIT FORMULAE FOR SU(3) 

SCATTERING COEFFICIENTS 109 

REFERENCES 113 

V 



LIST OF FIGURES 

1. Graph of skyrmion profile. 12 

2. Gluon correction to quark propagator. 15 

3. Typical baryon self-interaction diagrams. 15 

4. Typical contribution to baryon-baryon scattering. 15 

5. Typical contribution to meson-baryon scattering. 15 

6. Relation of the six coupled angular momenta in either the initial or the final 

state of pion-skyrmion scattering. 31 

7. Experimental I = g nN amplitudes compared with predicted linear 

combinations of I = i amplitudes. 37-38 

8. Speed of motion of predicted P33 amplitude. 40 

9. Motion of zN amplitudes in the unitarity circle. 44 

10. zN -+ rrA processes in which the pion jumps two units of angular 

momentum. 47 

11. zN -+ XA processes in which intial and final pion angular momenta 

are equal. 48 

12. Comparison of zN + xN and nN -+ zA in the same partial wave. 49 

13. Phase shifts GKKK versus pion energy. 59 

14. Phase shifts ~K,K+~,K+I versus pion energy. 59 

15. Phase shifts GK,K-~,K-~ versus pion energy. 59 

16. Absorption parameters vf: versus pion energy. 59 

17. Absorption parameters ~2~ versus pion energy. 59 

18. Phase shifts ~K,K-~,K+I versus pion energy. 59 

19. Partial-wave T-matrix for the Skyrme model versus Nature. 62-66 

20. Possible movement due to l/N corrections of the poles and zeroes of the 

S-matrix, and the resulting effects on the amplitude near threshold. 

21. Phase shifts @Ln and 6kp’ versus kaon momentum. 84 

22. Comparison of 2- and 3-flavor Skyrme model amplitudes with 

experiment. 86 

68 

vi 



23. The big-small-small-big pattern in both the 2- and 3-flavor Skyrme 

models. 8’7 

24. Speed of T-matrix for the four independent F-wave amplitudes 

in the 2- and 3-flavor Skyrme models. 87 

25. Elastic KN amplitudes in the Skyrme model versus experiment. 89 

26. Test of Eqs. (IV.14) and (IV.15). 95 

vii 



FOREWORD 

This thesis is a compendium of my work on pion-nucleon scattering in the 

Skyrme model. “-‘I This is a model in which the nucleon is considered, not as 

a bound state of three quarks, but rather as a soliton in the field of pions”“’ 

(henceforth “chiral soliton” or “skyrmion”). Note that we are thereby construct- 

ing fermions out of bose fields! Skyrme himself recognized the apparent difficulty 

of such a task: 

This programme is the obverse of the more fashionable endeavour to 
reduce the truly elementary particles to a set of spinor fields, out of 
which everything can be built by simple conjunction. It is a priori much 
less reasonable because, in particular, it is more difficult to construct half- 
integral representations of rotation groups out of integral than conversely; 
indeed it is patently impossible to do this within the limitations of a 
polynomial expansion. The hope that remains is that the particle-like 
states will be of a kind that cannot be reached by perturbation theory, 
and which cannot necessarily be discounted by general arguments.“’ 

It was Finkelstein and Rubinstein who realized this hope by showing how 

a soliton could be endowed with fermi statistics.“’ Later, Witten strengthened 

this result by proving the following remarkable theorem:‘” the skyrmion must be 

quantized as a fermion if N, the number of colors of the underlying gauge theory 

(assuming that there is one), is odd, and as a boson if N is even. This result 

(which, strictly speaking, holds only if the number of light flavors is greater than 

two) is consistent with the standard picture of a nucleon made out of N quarks. 

Certainly it places Skyrme’s bold identification of the nucleon as a soliton on a - 

stronger theoretical footing. 

The focus of our investigations will be effective Lagrangians of the form 

L = $Tr(3PUPUt) +“e, fr P 186MeV WI 

where U E SU(2). The leading term is the usual a-flavor nonlinear sigma model, 

while the dots stand for higher-derivative terms, which are not usually exploited 
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in traditional soft-pion physics. The standard identification of the pion field in 

(F-1) is via: 

U(z) = exp($Z(z) . c?) 

Thus the pions can be thought of as “small fluctuations” about the trivial vacuum 

U(z) E 1. 

The Lagrangian (F.l) is invariant under the chiral transformations sum x 

sum which take U to AUB- l. Note that the diagonal SU(2) subgroup, with 

B = A, simply rotates ii like a vector; this subgroup is isospin. In contrast, 

the “axial” transformations, with B = A-‘, act to first order like translations 

on the pion field. These are precisely the criteria necessary”] for identifying the 

pions with the pseudo-Goldstone bosons of SU(2)h x SU(2)R/SU(2)isospiny which 

describes the approximate flavor symmetries of the strong interactions. 

It is a straightforward procedure to introduce additional fields to the model 

in such a way as to preserve chiral invariance. ‘*’ In particular, we can write down 

a Lagrangian describing the coupling of pions to the nucleon isodoublet N: 

f = $ Tr (a,UWUt) + m(iy”D, - m)N + SAD,,+. flFvpr5N. (FJ) 

Here D is the covariant derivative appropriate to the nonlinear sigma model with 

variables in the manifold 

=Q)L x SW%2 

SU(2)irwpin ’ 

From this Lagrangian, all soft-pion theorems pertaining to the pion-nucleon in- 

teraction, such as Weinberg’s calculation of the S-wave ?rN scattering lengths,“” 

can be derived. 

It is the moral of this thesis that, insofar as the rrN system is concerned, 

the Lagrangian (F.l) contains at least as much information as does (F.3)! Not 

only does (F.l) properly encompass soft-pion physics, as Schnitzer has shown,‘” 
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but in addition-well beyond the soft-pion regime-it yields surprisingly accu- 

rate predictions concerning the spectrum of nucleon and A resonances and the 

qualitative behavior of the large majority of rrN partial wave amplitudes. 

The organization is as follows. In the first chapter, I shall motivate the 

Skyrme model from two seemingly orthogonal lines of thought. First, with the 

help of some elementary topology, I shall review how solitons can arise in a 

nonlinear field theory, and how they can be quantized as fermions. The second 

approach is that of large-N QCD. The intent is to demonstrate that these ap- 

proaches combine to form a pleasingly consistent picture of the nucleon. Apart 

from details of presentation, none of this work is my own. 

Chapter II develops the group-theoretic formalism for rrN scattering for a 

broad class of models, Skyrme’s included, in which the nucleon is constructed 

from a “hedgehog” soliton in the field of pions. Energy-independent linear re- 

lations between AN * nN and zN + ?rA partial-wave amplitudes are derived 

from a leading-order large-N analysis and shown to be in reasonable agreement 

with experiment. These relations can be considered model-independent tests of 

both the treatment of the nucleon as a soliton and the l/N expansion. It is also 

shown that the skyrmion approach provides a natural framework for understand- 

ing some striking qualitative features of the nN partial-wave amplitudes. This 

work was done in collaboration with Michael Peskin.“’ 

Chapter III, developed in collaboration with Marek Karliner,“’ applies this 

formalism to the particular case of the Skyrme model. The spectrum of nucleon 

and A resonances of the model is calculated. The masses obtained are accurate 

on the average to 8% of their experimental values up to 3 GeV. For most partial 

waves, the model reproduces many significant features of the experimental Ar- 

gand diagrams correctly, although there are severe discrepancies in some of the 

low partial waves. 

Finally, Chapter IV presents an extension of the formalism corresponding to 

the case of three light quark flavors.‘s1 This enables us to study the scattering 
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of the pseudoscalar mesons from the baryon octet. It turns out that the model- 

independent linear relations developed in Chapter II need to be modified, due to 

the presence in the 3-flavor case of the Wess-Zumino term. The chapter concludes 

with results, recently obtained with Marek Karliner,“] for the J-flavor Skyrme 

model. 



I. INTRODUCTION 

1. Solitons in Effective Lagrangians 

Skyrme recognized that the nonlinear nature of the Lagrangian (F.l) per- 

mits a rich structure of field configurations that are topologically unconnected 

to the trivial vacuum.[6c’ To see this, consider the class of time-independent 

configurations U(E). These define maps from R3 into SU(2). We will concentrate 

on the finite energy configurations. This condition requires U(Z’j - constant 

as IZI - 00. In turn, this allows us to adjoin the point at infinity to R3, which 

yields a space that is topologically equivalent to the J-sphere S3. We are thus led 

to an examination of 7r3(SU(2)), the group of homotopically distinct maps from 

the 3-sphere into the manifold SU(2). 

Now, elements of SU(2) can be conveniently parametrized as 

where the afiLls are real numbers satisfying ai + 1q2 = 1. So SU(2) is also a 3- 

sphere! Thus qt(SU(2)) 2 7rs(S3) = 2, the group of integers. In short, we have 

shown that the finite-energy static configurations U(Z’) can be characterized by 

an integer, or winding number, which measures how many times the 3-sphere is 

“wrapped around” the group SU(2). This number is topologically conserved, in 

- the sense that two finite-energy configurations characterized by different wind- 

ing numbers cannot be continuously deformed into one another without passing 

through configurations of infinite energy. Skyrme’s bold proposal was the iden- 

tification of this winding number with baryon number. 

It is worth a brief digression to note that the existence of topologically stable 

nontrivial configurations is due to the nonlinear nature of (F.l). This point 

becomes clear if we consider the “toy” example in 1 + 1 dimensions of a single 

angular field 6(z, t), which takes values on S’. Let us furthermore compactify 

5 



the spatial variable x into a circle.* Since xr(S’) = 2, there are nontrivial 

configurations corresponding to a change of 13 from (say) 0 to 27r as z likewise 

ranges from 0 to 2n. Now consider that, in addition to 6, there is a radial field 

p(z, t) in the picture; we also assume a standard “Mexican hat” potential with 

a circle of vacua at p = ~0. Then the nontrivial configuration described above 

is no longer topologically stable (q(R2) = 1). To visualize this, imagine a 

rubber band wrapped tightly around the rim of the hat; it has winding number 

1 and a finite energy (due to tension) which is analogous to the finite energy of 

the skyrmion (the minimum-energy configuration with baryon number 1). The 

rubber band has a non-zero probability of exploding up the cone of the hat, and 

landing flaccid at an arbitrary point in the rim; it is now in a “trivial vacuum,” 

with zero energy, and has winding number zero. The moral for 3 + 1 dimensions 

is clear: Had we started with a linear u model, characterized by the addition of 

a fourth field, the “u field”, then our skyrmion would have been unstable against 

decay (7r3(R4) = 1). 

Returning to Eq. (F.l), h ow do we actually construct a nontrivial finite- 

energy static configuration? By chiral invariance, it suffices to consider the 

situation U(S) - 1 as IZj - 00. Following Skyrme, we further restrict our 

attention to maximally symmetric “hedgehog” configurations 

*-, 

U(Z) = exp(iF(r)i:.a’) = cosF(r) . 1+ isinF(r)F.Z. (I-2) 

(We note, for future reference, that U is annihilated by the vectorial sum 2 = 

I’+ Jof isospin and angular momentum; this turns out to be the linchpin around 

which all the results of Chapts. II-IV revolve!) Our boundary condition im- 

plies F(r) - 2nz as r - 00; without loss of generality we choose n = 0. 

Furthermore, continuity at the origin requires F(0) = m?r. Although U is then 

continuous, note that, for nonzero m, its “logarithm” i;(z) has a monopole-like 

* Unfortunately, the requirement of finite energy does not accomplish this for us in 1-t 1 
dimensions. 
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singularity at the origin. We will focus on the choice m = 1, with F(r) monoton- 

ically decreasing. Comparing (1.1) with (1.2) , it is clear that we have succeeded 

in constructing a bijective mapping from S3 onto SU(2), with winding number 

fl. Let us fix our orientation convention henceforth so that this configuration is 

assigned a winding number of +l. We have a baryon! It ought to be emphasized 

that any configuration of winding number one is homotopic to the hedgehog 

configuration we have constructed. 

As a quantitative messure of baryon number density, consider the quantity 

PB(Z) = &Cijk TrTiTjTk, Ti E Ut(Z)aiU(Z). (1.3) 

PB can be thought of as the time-component of the baryon current 

This quantity has the following desirable properties: 

1) It is automatically conserved: 

t3,Bp = 0. 

This follows from the identity 

and the cyclic invariance of the trace. 

2) For the hedgehog configuration (1.2) , 

~B(z?) = -&F’sin’F = -&%(F - isin2F). 

(1.4) 

(1.5) 

(1.6) - 

(1.7) 

Integrating over space yields a baryon number B = F(O)/?r = +l as desired. 



3) Baryon number so defined is invariant under deformations; this prevents a 

baryon from decaying by emitting pions. A small perturbation on a configuration 

can be parametrized by U - UW with W = 1 + iZ* a’+ O(c2). This change 

induces 

T/, - Wt(Tp + Qw, Fp = a,w * wt = ;a,<. a’+ O(P). P.8) 

Thus 

PJJ ---+ &Lijk Tr(Ti+?i)(Tj+?j)(Tk+?k) = pB-$tijk Tr(C’iGS”Tk)+O(c2). 

(1.9) 
Dropping the O(e2) contribution and using (1.6), we can rewrite this as 

APB= $cijkai Tr(F’* Z!“jTk) (1.10) 

which is a total derivative, vanishing upon integration. This proves the claim. 

4) The baryon number of any configuration that can be continuously de- 

formed to the trivial vacuum U E 1 is zero. This follows immediately from the 

previous observation. In particular, configurations built from the usual pion fields 

as given in (F.2), which are continuous, singularity-free and vanish at infinity, 

are purely “mesonic,” with B = 0. 

5) The baryon number of a product lJllJ2 is just the sum of the individual 

baryon numbers: 

J d3w#-hUz) = J d3x(&h) + PB(U2)). (1.11) 

To see this, note that 

PB(UlU2) = &Cijk Tr(Ti+?i)(Tj+?j)(Tk+?k), Ti = U,‘aiUl, ffi = aiU2.U; 

(1.12) 
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This can be written 

pB(U~U2) = P&h) + PB(U2) - s ‘1 ’ t”k TrTi(Tj + Fj)fk (1.13) 

But the last term can be expressed as a total derivative 

8;t Eijkaj Tr Ti?“k - 

which follows from (1.6) together with the identity 

WY 

ajTk = -TkTj + ajakU2 * Ul. 

(1.14) 

(1.15) 

This establishes the claim. 

6) The hermitian conjugate Ut of a baryon-number-one configuration has 

baryon number -1; this is an immediate consequence of the previous claim. So 

the baryons have antiparticles. 

7) The superposition of two pion field configurations of baryon number one 

is a configuration of baryon number two. To see this, consider deforming each 

configuration to a tightly localized hedgehog and then separating the centers suf- 

ficiently so that the regions of nonzero field do not overlap. Then U factors into 

- a product VI&, and the claim is established. By similar arguments it follows 

that the baryon number of a superposition of n configurations of baryon number 

1 and m configurations of baryon number -1 is just n - m. 

8) Finally, we would like to be able to say something about the location of the 

baryon.“’ In particular, for a field configuration of the type (1.2), our intuition 

tells us that the baryon is concentrated about the center of the hedgehog, where 

U = -1. Typically PB will be maximized here. In addition, it is suggestive that 
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the “velocity” of this particle is proportional to the baryon number flux, defined in 

Eq. (1.4). To see this, let us assume that U( zo,to) = U(so+bz,to+6t) = -1. This 

implies that tPa,U = 0. Multiplying by Ut and tentatively equating VP with BP, 

this becomes BJ‘T, = 0. To verify immediately that this is so, it suffices to rewrite 

T,, as i cr u’ Tr(arTcc) and BP as & fp”aBEijk Tr(a’T,) Tr(dTa) Tr(okTp). Since 

the index 1 must equal one of the indices i, j, k, the product vanishes by antisym- 

metry. We have established v,, cx B,. 

Thus far we have succeeded in concocting a plausible facsimile of a baryon. 

In addition, we have constructed a quantity that has many of the preperties one 

would desire from a baryon number current. However, we have not yet come up 

with a nucleon. Such an object ought to be identified with a minimum energy 

configuration in the B = 1 sector. More importantly, it should have spin and 

isospin ). Let us deal with these two considerations in turn. 

It is easy to show that the leading term in the Lagrangian (F.l) is not in 

itself able to support a soliton, i.e., a nontrivial stable static classical solution. 

To see this, assume the existence of such a soliton Uo(Z). Its mass (i.e., energy 

in its rest frame) would be given by 

EO = g J d3x Tr L$U,-J(S)&Uo(s?‘). (1.16) 

Now consider the family of configurations Uo(z’; A) = Uo(XZ); these have &(A) = 

X-r a,?&. This is minimized, not for X = 1 as we assumed, but rather for X - 00. 

Put another way, the soliton shrinks to zero size. This is, of course, Derrick’s 

Theorem. ‘la1 

The situation is not improved by adding a chiral symmetry-breaking mass 

term Tr(UM+MtUt) to the Lagrangian; such a term would give a contribution to 

the energy that scaled like Xe3, and the soliton would still shrink away. Instead, 

it is necessary to add a term with four or more derivatives. Skyrme proposed the 
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Lagrangian 

f = ii Tra,uaWt + ’ 
16 

32e2 Tr[(d,U)U+, (w)u+l2. (1.17) 

The second term, or “Skyrme term,” is the unique chiral- and Lorentz-invariant 

four-derivative term containing no more than two time derivatives; it is thus 

amenable to a standard Hamiltonian treatment. For our present purposes, what 

is important is that its contribution to the energy scales like X. Thus it permits a 

stable classical configuration of nonzero extent, for which the energy contributions 

of the first and second terms in (1.17) will be precisely equal. 

The Euler-Lagrange equation obtained from (1.17) is extremely complicated. 

Skyrme’s simplifying ansatz was that the minimum-energy solutions of nonzero 

baryon number could be written in the hedgehog form (1.2). The resulting equa- 

tion for F(r) is reproduced as Eq. (111.4) below; the solution with boundary 

conditions appropriate for B = 1 is graphed in Fig. 1 (drawn from Ref. 13). 

Although it follows from the numerical analysis presented in Chapter III that 

this configuration is locally stable, the question of whether it is in fact a global 

minimum in the B = 1 sector has never been fully established. Nevertheless, this 

is universally believed, and we will assume in what follows that it is. 

The second crucial link in the identification of the skyrmion with the nucleon 

is the problem of endowing the soliton with the quantum numbers I = J = k. 

The possibility of quantizing a soliton as a fermion was established long ago by 

Finkelstein and Rubinstein.“] - We will now review an explicit construction given 

by Adkins, Nappi and Witten.“*’ 

This construction begins with the realization that a hedgehog soliton Uo picks 

out only one of an infinite class of possible orientations between spin and isospin 

axes; equally acceptable solutions to (F.l) are furnished by 

uA z AU~A-~ E ,WW’(A)~)J (1.18) 

where A is any (constant) SU(2) group element with spin-l representation D1(A). 
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radial dbtance i=ef,r 

Fig. 1. Graph of skyrmion profile 

The natural action of isospin and angular momentum on this rotated soliton is 

given by: 

Isospin : UA + LQAUoA-‘U;’ = U(u,A) 
(1.19) 

Angular Momentum : VA + AU~‘UOUJA-’ = U~AU,-I) 

It is fruitful at this point to think of A, the so-called “rotational collective 

coordinate” of the soliton, as a quantum-mechanical variable that takes values 

on the group manifold SU(2). We will let IUA) denote the state containing a 

chiral soliton in the orientation A; it satisfies 

- 

< UA~IUA >= 6(A- A’) . (1.20) 

A suitable candidate for a physical baryon is then a coherent superposition 

Pit) = / dAx(A) IUA) . (1.21) 

Here dA represents the group-invariant measure, normalized so that JdA = 

27r2, and the wavefunction x(A) is chosen appropriately to make this expression 
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an eigenstate of both isospin 7 and spin s’. One may think of this expression 

as describing a rotating soliton. Under the simultaneous action of isospin and 

angular momentum, 

In other words, the transformations induce a change 

x(A) - x(~~‘AW 

in the soliton’s wavefunction. 

The construction of the wavefunctions x(A) corresponding to definite states 

of (i, iE) and (s, sZ) is now an easy exercise. ‘ls’ In fact (for two flavors) one has the 

choice of quantizing the collective coordinates either as fermions or as bosons. 

For nucleons (with i = s = i) one finds 

$;,(A) = ; ( cAt) d,i‘ ; IT = _“, ; . 
( ‘) 

Indeed, this transforms as 

(1.24) 

which is just what one wants. Likewise, a general rotational eigenstate, with 

i = s = R, has as its properly normalized wavefunction* : 

x&,(A) = ;/$=l (~RDRV)t)d.= . (1.26) 

Since the x’s form a complete set of functions on SU(2), the result i = s holds 

in general. Those states with i = 8 2 i are unphysical artifacts of the model, 

* Of course, for each R, we have the freedom to redefine the wavefunctions xt,, by a common 
phase; our choice agrees with Ref. 13 for the nuc1e.o~ but differs by a sign for the deltas, 
in order to conform in this case to Ref. 14. A different phase convention modifies the linear 
relation (11.21) below. 
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although they would be present in a world with more than three colors. The key 

result obtained from quantizing the collective coordinates is that the quantization 

energy is proportional to i(i + l).‘ls’ Thus, in these models, the lowest-lying 

fermionic states in the B = 1 sector of the theory correctly correspond to the 

nucleon, while the first excited states have the quantum numbers of the A. We 

will see in Chapters II and III that states with i # s, corresponding to the 

observed nucleon and A resonances, emerge naturally from a consideration of 

pion-skyrmion scattering. 

Equations (1.20), (1.21) and (1.26) allow one to calculate expectation values 

of various currents between nucleon states. As a result, a host of static prop- 

erties of the nucleon and A, such as magnetic moments and charge radii, can 

be obtained.“” It is the semiquantitative success of these calculations (20-30% 

typically) that is largely responsible for the resurgence of interest in the Skyrme 

model after a nearly twenty year hibernation. 

2. Large-N QCD 

We will now discuss another approach to the depiction of baryons as solitons, 

that of large-N QCD. This is the scheme in which the gauge group SU(3),,1,, 

of the strong interactions is replaced by SU(N), with N taken to be large. The 

qualitative phenomenological successes of large-N in describing meson physics 

are well-known.[“’ Mesons are stable in this limit, with decay rates and two- 

body scattering amplitudes vanishing like l/a and l/N, respectively. They _ 

have masses of order No, as they should, since regardless of N they are always 

composed of one quark and one antiquark. (Admixtures of qijqtj etc., already 

suppressed experimentally when N = 3, become more and more negligible as N 

gets large.) As N + 00, phenomenological rules of thumb such as Zweig’s rule 

and the dominance of 2-body decays become exact; indeed, the very ezistence of 

mesons in each Jpc channel allowed by the quark model is guaranteed. We will 

now review what large-N has to say about baryons. This approach was developed 

by Witten,” whom we shall follow closely. 
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Fii. 2. Glnon correction to quark propagator 

. . . 
fl 

. . . 

Fig. 3. Typical baryon a&interaction diagrarm 

Fig. 4. Typical contribution to baryon-baryon mcattming 

(b) 

Fig. 6. Typical contribution to melon-baryon scattaring 
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In large-N, there are N quark degrees of freedom but N2 - 1 FZ! N2 gluonic 

degrees of freedom. Consider the simple gluonic correction to the quark propa- 

gator depicted in Fig. 2. Even after we specify the color index of the external 

quark, this diagram receives a combinatoric factor of N corresponding to the N 

possible values for the index of the internal quark. Thus, if we want the theory 

to have a smooth-but nontrivial-limit as N -+ 00, we must require that the 

ijqg vertex scale like l/a. By similar arguments, the 3- and 4-gluon vertices 

must scale like l/e and l/N, respectively. 

With this knowledge, it is easy to see that the mass of a baryon is of order 

N, as one naively expects for an object built from N quarks. Figure 3 shows two 

typical connected diagrams which contribute to the energy of a baryon. Figure 3a 

should be multiplied by a combinatoric factor proportional to N3, which comes 

from choosing the three quark lines that couple to gluons. In addition, it has 

four qqg or ggg vertices. Thus it scales like N, as asserted. Figure 36 has a 

combinatoric factor of N6 and a suppression of Nm5 from the vertices, so it too 

is proportional to N. 

By the same naive methods we can arrive at the correct N-dependence of a 

variety of scattering processes. For example, Fig. 4 shows a typical contribution 

to baryon-baryon scattering. It is easy to verify that this diagram contributes a 

factor of N2/(fi)2 = N. Thus th e interaction terms in baryon-baryon scattering 

are of the same order of magnitude as the kinetic energy and mass terms of the 

two-baryon system, and baryon-baryon scattering has a smooth, nontrivial large- - 

N limit. The same holds for baryon-antibaryon scattering. 

Figure 5 displays a typical graph contributing to meson-baryon scattering, 

which is the topic of this thesis. It is clear that this diagram is of order 1. Thus, 

in large-N, the baryon doesn’t “feel” the meson at all, while the meson, whose 

free Hamiltonian is itself of order 1, scatters in a nontrivial way from the baryon. 

This jibes with our intuition of a baryon as a heavy object in large-N which would 

be unperturbed by the influence of a meson, which is just a ijq boundstate; the 
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meson, in contrast, sees the baryon as a fixed source and scatters accordingly. 

We can gain additional insight by considering the idealized example of N 

very heavy quarks. Since, in a baryon, the quarks are already -antisymmetric 

in color indices, they must necessarily be symmetric under the simultaneous 

exchange of spin, isospin and spatial wavefunctions. Following Witten, we will 

restrict ourselves to the particularly simple case in which they have been placed in 

identical states of spin and isospin. The N-quark state must then be symmetric 

under exchange of spatial wavefunctions; we have, in effect, a system of bosons. 

Now, for any N, a heavy quark system can reasonably be modeled by a 

nonrelativistic SchrCdinger equation: 

Here V2 is the ordinary ‘L-body force, V3 is the three-body force resulting from 

diagrams such as Fig. 3a, etc., while the oi’s are coupling constants which 

scale like No. The N dependence of the various terms follows from the naive 

diagrammatic analysis presented above. 

The crucial point is the following. As N gets very large, each quark feels, 

in effect, the same average potential obtained from summing the 0 (l/N) contri- 

butions from each of the other N - 1 quarks, the O(l/N2) contributions from 

each of the other (N - l)(N - 2)/2 quark pairs, etc. Fluctuations about this I 

mean-field potential become increasingly negligible as N --t 00. Thus in this limit 

the N-quark spatial wavefunction Q(sr, . . . . XN) describing the ground state of the 

system should be written simply as a product 

Q(Zl, ‘.‘, (1.28) 
i=l 

of N identical one-particle wavefunctions, each of which is in the ground state of 

the mean potential; this is the Hartree approximation. 
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Inserting this product ansatz into the Hamiltonian yields 

< XPlHl’X’ >= Nm - N 
I 

d3z+&“*V24 

+ ;N2(z)/ d3zjd3v$.(z)d(z)m*(V),(y)V2(z,y) 

+ +N3($/d3z/ / d3Y d34*(44(5)~*(~)4(~)~*(44(4Vs(z,~~) 

+- a.+ O(N”) 

(1.29) 

The resulting eigenstate equation for C$ is found by varying with respect to 4*(z): 

with cc the average quark ground state energy. This self-consistent equation can 

be solved, in principle, by iteration, with the simplifying radial ansatz 4(z) = 

#~(Izl) which is surely true for the ground state wavefunction. For our purposes, 

the important feature of (1.30) is the simple observation that N has factored 

smoothly out of this equation, implying that the size and shape of the baryon 

are quantities of O(N’), in contrast to its mass. 

With this back-of-the-envelope apparatus we can “calculate” various scatter- 

ing processes as well. For example, baryon-antibaryonscattering can be described 

by a wavefunction 

*(a ,..-rZN,Yl,..-,YN) = fi4(zi, fiwbj) (1.31) 
i=l j=l 

which results in two coupled equations similar to (1.30) for 4 and w, N factoring 

out as before; likewise for baryon-baryon scattering. 

18 



Meson-baryon scattering can be described by introducing a meson wavefunc- 

tion u(z, y), with z the quark position and y the antiquark position. Let us place 

the quark in the same spin-isospin state as the quarks of the baryon. Then, since 

these exhaust the available color degrees of freedom, the meson quark must be 

orthogonalized in position space: 

I 
dq75*(Z)u(z, y) = 0. (1.32) 

We consider the meson-baryon wavefunction: 

QM&lr **-, ZN+l, y) = CO,&. x x(-l)” fi 4(%(i))u(zx(N+l), Y) (I-33) 
i=l 

where we have antisymmetrized the meson’s quark with respect to the others 

by summing over permutations as indicated. (Color indices are suppressed as 

always.) Inserting \~MB into the Hamiltonian (1.27) yields 

< QMBIHISMMB >= (N + 2)” -N d3z2$5*V2r+6 

d3y9* W(zW (MdVz (2, Y) 

- J J d3x d3y&+, y>(V: + V;)+, Y) 

+ $ d3x / J d3yu*(Z,y)u(z,y)V2(Z,y) 

+ $- N/d3z/d3y/ d3~~*(z)~(z)u*(2,y)u(z,y)[Vz(z,z) +vZ(y,z)] + *** 

(1.34) 

Here we have dropped the 3-body terms, and assumed the same force for qq, qq 

and ijq. 

From (1.34) one obtains the SchrGdinger equations for the baryon and meson 

by varying with respect to 4*(z) and u*(z, y), respectively. The key point is 
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the following. It is clear that for the baryon equation of motion, the leading 

terms, which are 0 (N), are completely independent of the meson field u(z, y), In 

fact, we obtain just the “unperturbed” equation as given by (1.30). In contrast, 

for the meson, the last line of (1.34) gives a nontrivial baryonic contribution 

to the equations of motion. We have confirmed the naive picture given earlier, 

according to which, for large N, the baryon is impervious to the meson, while the 

meson scatters nontrivially from the baryon. What we have discovered is that 

the leading-order equation of motion for the meson is a linear one. 

At this point, we should pause to compare the qualitative picture of the large- 

N baryon with that obtained in the previous section. N enters the Lagrangian 

(F.l) through fir, which - 0. We make the following points: 

1) The size and shape of the baryon in both pictures is independent of N as 

N + 00. Indeed, from the chiral soliton point of view, the shape of the skyrmion 

emerges from the classical equations of motion obtained from (F.l), 

di(UtaiU) + ’ * ’ = 0 (1.35) 

which is manifestly N-independent, since fir has been factored out. In the quark 

picture, the baryon is given as the self-consistent solution to an N-independent 

Hartree equation as typified by (1.30). Note that both kinds of equation are 

completely nonlinear. 

- 2) In contrast, the mass of the baryon is proportional to N. We have con- 

firmed this in the quark picture by considering typical connected diagrams such 

as Fig. 3. In the soliton picture, the same conclusion emerges from Eq. (1.16). 

3) Baryon-baryon and baryon-antibaryonscattering in both pictures is deter- 

mined by complicated coupled nonlinear equations. We have convinced ourselves 

of this in the quark picture. In a soliton approach, one starts by considering 

initial conditions in which the two solitons (or the soliton and antisoliton) are 

widely separated, and evolves them toward one another via Eq. (1.35). AS is well 
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known, this is, in general, a highly nonlinear procedure which poses an enormous 

numerical challenge, even in 1 + 1 dimensions. 

4) In contrast, meson-baryon scattering, to leading order in l/N, is charac- 

terized by linear equations of motion for the meson in the baryon background. 

We have seen this explicitly in the context of the “heavy quark” model considered 

above. This characteristic is implicit in the soliton approach as well, as discussed 

in Section 11.1. 

The two seemingly orthogonal approaches to the baryon which we have con- 

sidered have converged into a remarkably self-consistent picture! It is known from 

‘t Hooft’s analysis that, as N + 00, QCD becomes better and better described 

as a theory, not of quarks and gluons, but of hadrons: mesons and glueballs.‘“’ 

Accordingly, &CD can be replaced in this limit by an effective meson Lagrangian 

with an infinite number of fields, to which the Skyrme Lagrangian (1.17) can be 

thought of as a low-energy approximation. What we have discovered is that, on 

the one hand, baryons in large-N have many of the properties one usually asso- 

ciates with solitons, and on the other hand, that effective Lagrangians such as 

(1.17) do in fact possess soliton solutions whose lowest-lying fermionic excitations 

have I = J = {f, i} : p recisely the quantum numbers of the nucleon and A. 

Another connection between the two approaches is due to Manohar,“” who 

showed that all purely group-theoretic results (e.g., F/D ratios) obtained in 

the chiral soliton model are exactly the same as one would obtain in the naive - 

large-N quark model. The essence of his argument is easy to give for the case 

of two flavors. Consider the matrix element between initial and final soliton 

states, as given by Eqs. (1.21) and (1.26), f o an irreducible tensor operator 6 

which transforms like 1 J, Jz > and 11, Is > under angular momentum and isospin, 

respectively. By the Wigner-Eckart theorem, the matrix element 

(1.36) 
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is proportional to the product of Clebsch-Gordan coefficients 

< R’i:IIRI,i, >< R’s’,IJRJ,s, > (1.37) 

where the constant of proportionality, the “reduced matrix element,” contains 

the relevant dynamical information about 8 but is independent of Iz and Jz. 

By a “purely group-theoretic result” we mean one that does not depend on the 

details of this reduced matrix element, but only on the structure of (1.37). 

We would now like to repeat this little exercise in the naive large-N quark 

model. Following Manohar, let us consider the N-quark state 

~o=2-N/2.1ul-dt>Iul-dt>Iu1-dt>... (1.38) 

This state is annihilated by f+5’, so it is in fact the proper quark-model analog of 

the hedgehog configuration (1.2)! As in Eq. (X.18), we can likewise construct the 

states \kA in which the isodoublet (i) is rotated by an SU(2) matrix A relative to 

the spin doublet. Then, just as in the chiral soliton case, we can form “large-N” 

nucleons and A’s by considering a linear superposition of the QA’s, weighted by 

the very same wavefunctions x(A) defined in (1.26). The matrix element of the 

quark-model analog of 6 is then given by: 

< ‘D’ldl* > = 
J J 

dA dA’ &?(A’) x$(A) < Q(A’)@lQ(A) > (1.39) 

Comparing (1.39) with (1.36) makes it clear what the difference is between 

the quark model and chiral soliton group theoretic approaches. The discrepancy 

is due to the fact that, in general, 

< !P(A’)I6jQ(A) > $ 6(A - A’), (1.40) 

in contradistinction to (1.20). What Manohar observed is the following. A typical 

operator 8 will be a sum of operators, each of which acts on only a finite number 
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of quarks at a time. As N ---t 00, the matrix element in (1.40) will thus contain 

a single-quark matrix element in which 8 doesn’t enter, raised to a very large 

power. For A’ # A, this single-quark matrix element will be given by some 

number cos 0 less than unity, whose Nth power tends to zero. Hence, as N + 00, 

we find 

< Q’(A’)I&X’(A) >- 6(A - A’), (1.41) 

and the chiral soliton and quark model results (so far ss group theory goes) 

coincide! 

In summary, we have good reason to believe that-insofar as a large-N anal- 

ysis is sensible-the physics obtained from a soliton picture of the baryon will be 

surprisingly close to what one would obtain from the quark model. 
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II. SYSTEMATICS OF TN SCATTERING 
IN CHIRAL SOLITON MODELS 

In this chapter we shall examine some implications of the chiral soliton picture 

of nucleons for the real world. At leading order in l/N, this approach will be 

shown to imply a set of energy-independent linear relations between pion-nucleon 

scattering amplitudes in various channels of isospin and angular momentum, as 

recently noted by Hayashi et al.[“’ in their analysis of zN scattering in the Skyrme 

model. These relations can be used, for example, to express the isospin-z ?rN 

elastic scattering amplitudes as linear combinations of the isospin-i amplitudes 

in the same partial wave. Similar relations will be shown to hold for the process 

?rN + aA. We shall find that in Nature these relations seem to be satisfied 

fairly well for most partial waves. Furthermore we shall argue that the handful of 

channels for which the relations are grossly disobeyed are precisely the ones most 

sensitive to higher-order corrections, which we have not attempted to calculate. 

In addition, we shall see that the soliton interpretation of baryons provides 

a coherent framework for understanding some general features of the nN + ?rN 

partial wave amplitudes. In particular it offers a simple explanation for a surpris- 

ingly consistent pattern that emerges for when the four independent amplitudes 

in a given partial wave L are compared: namely, the amplitudes corresponding 

to (I,J) = (i,L--)) or ($,L+)) are characterized by much bigger excursions 

through the unitarity circle than those with (I, J) = (i, L+ )) or (t , L- fr). (Here 

I and J denote the total isospin and angular momentum of the pion-nucleon SYS- - 

tern.) Furthermore, the chiral soliton picture gives an intuitive understanding 

for why the S-, P- and D-waves are characterized both by enormous, low-lying 

resonances in some channels and marked repulsive behavior near threshold in 

others (this point will be made clear in Chapter III). 

We begin our exposition in Section II.1 with a general discussion of ?rN 

scattering in the large-N limit. Here we set out our approximations and justify 

them as appropriate to a systematic analysis to leading order in l/N. In Section 
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11.2, we employ these approximations to derive the general structure of the spin- 

and isospin-dependence of rrN amplitudes implied by the l/N expansion. Our 

results agree with those obtained in Ref. 18 by somewhat different means; the 

lengthier derivation given here has the advantage of highlighting the various 

points at which we invoke the large-N approximation, which we hope will help 

pave the way for a higher-order calculation. We recover the linear relations of Ref. 

18 for elastic scattering and present new relations among partial wave amplitudes 

for the process zN + nh . Finally, in Sections II.3 and 11.4, we apply these 

relations to the experimentally determined partial wave amplitudes, considering 

aN -+ xN and sN + nA , respectively. 

1. Assumptions, Approximations, and Apologies 

Most of the approximations we will make relate in one way or another to 

the large-N expansion. Our major approximation will be that of deriving the 

?rN --+ ?rN and nN -+ ?rA amplitudes from the lowest-order pion propagator in 

the (appropriately rotated) soliton background, ignoring all loop contributions to 

the two-point function. Loop diagrams necessarily contain 3-meson, 4-meson or 

higher-order vertices which are damped by increasingly higher powers of f;’ u 

N-i. Consequently, all loop contributions to the propagator are suppressed by 

at least one power of N and can therefore be disregarded in our lowest-order 

treatment. The resulting Euler-Lagrange equations of motion for the pion field 

will be linear, in agreement with Witten’s result from large-N QCD, as discussed 

in Section 1.2. 

The fact that the bare pion propagator has enough structure to lead to non- 

trivial scattering is noteworthy and deserves some comment. On the one hand, 

this should be expected from the soliton picture, since meson-soliton scattering 

normally appears at zeroth order in a weak-coupling expansion. On the other 

hand, this fact implies that, in large-N, baryon resonances are not at all the 

counterparts of excited mesons. As noted in Chapter I, the widths of all excited 

mesons vanish like N-’ as N + co. Among the baryons found in Nature, how- 
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ever, only the nucleon and delta (and perhaps a handful of others: see Section 

111.2) appear as sharply defined states in this limit. Higher-mass baryons cannot 

be identified with narrow states; they appear only as resonances above threshold 

in the various channels of pion-nucleon scattering. The widths of these baryons 

are determined by the motion of the ?rN phase shifts in the relevant partial waves; 

since the equations for aN scattering have a definite, finite largeN limit, both 

the widths and the excitation energies of these resonances will be of order No. 

This picture contrasts sharply with the quark model description of baryon 

resonances. One may think of the quark model as representing the leading term 

in a nonrelativistic approximation to the baryon and meson states. In this limit, 

unlike that of large N, the baryon resonances appear as eigenstates of a Hamilto- 

nian and hence are stable to lowest order. The first nonzero contribution to their 

widths arises from the corrections to this approximation involving the creation 

of extra quark-antiquark pairs. 

The major limitation of our lowest-order large-N analysis is that it is appro- 

priate only to elastic or quasielastic nN scattering. Multiple production of pions 

is formally suppressed by powers of l/N; nevertheless, in Nature it becomes the 

dominant feature of zN scattering at high energies. Our analysis, on the other 

hand, allows a pion to scatter inelastically from a nucleon only by producing a 

rotationally excited state of the soliton. This may be a delta, with I = J = $, 

or a specific higher excitation, peculiar to chiral soliton models, with I = J = g, 

as discussed further in Section 11.2. 

Our second approximation will consist of ignoring the rotation of the soli- 

ton during the scattering process. As we reviewed in Chapter I, nucleons and 

deltas correspond in the chiral soliton models to rotating solitons’“’ of angular 

momentum J2 = i(i + l), with i = ) and i = g, respectively. The nucleon-delta 

mass-difference is then simply due to to the rotational kinetic energy term J2/21, 

where I denotes the moment of inertia of the soliton. Since I w N this mass 

splitting is a l/N effect. The rotational frequency of the soliton is then given by 
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w = J/I, which likewise vanishes like l/N for large N, thereby justifying our 

approximation in this limit. 

This argument might not appear particularly compelling when applied to 

the real world, where N = 3. However one can reverse the above relations and 

solve for w in terms of rn~ and ma; the result is w = gJ(m~ - mN). The 

ratio of the time it takes a pion of velocity v to cross the charge radius R of 

a nucleon to the period of rotation of the nucleon viewed as a soliton is then 

(v/c)-~(wR/~T) k: $(u/c)-l, while th e corresponding ratio in the case of the 

delta is roughly i(w/c)-l. Th us our approximation appears to be a reasonable 

one for xN -+ nN except near threshold, whereas for nN -+ KA it is somewhat 

more severe. 

Finally, we will ignore both the deformation and the recoil of the soliton. 

This, too, is formally justified for large N, since in this limit the baryon is much 

more massive than the pion. But in Nature this would seem to be a drastic 

assumption if one wants to go up to typical resonance energies, say 1700 MeV. 

Curiously, the linear relations among nN -+ rrN scattering amplitudes work bet- 

ter and better for higher energies for a reason that has nothing to do with the 

validity of the large N limit; we will discuss this point in Section 11.3. But it 

is remarkable that in the Skyrme-model calculation of Chapter III, in which the 

same approximations are invoked, locations of resonances of very high mass (up 

to 3 GeV) are, if anything, obtained more accurately than for the lighter ones. 

- For xN -+ xA this last approximation is even harder to justify. In that case, 

the linear relations derived in Section II.2 are only valid on an unphysical line 

in momentum space for which, not only are the initial and final baryons both at 

rest, but in addition the momenta of the incoming and outgoing pions are equal. 

When the final baryon is a nucleon we can get arbitrarily close to this line by 

considering pions sufficiently near threshold, but this is obviously not the case 

when the final baryon is a delta. 
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2. Derivation of Linear Relations 

We begin our analysis of pion-nucleon scattering from Skyrme’s assumption 

that the solitons associated with the Lagrangian F.l have the hedgehog form: 

(11.1) 

As discussed in Chapter I, if F(r) tends to 0 as r ---f 00 and to R as r + 0, 

this defines a configuration with topological charge equal to unity-a baryon. 

This configuration is maximally symmetric in the sense that, although it is not 

invariant with respect to isospin or spatial rotations separately, it is invariant 

under a combination of space and isospace rotations. 

We shall use the symbols zand s’to denote the isospin and angular momentum 

of the baryon alone, and reserve I’ and J’ for the pion-baryon system, i.e., r’ = 

7+ &ion) and J’ = s’+ &ion). In this language, the soliton is transformed 

both by 7 and by 6’, but is preserved by z+ Z We shall see the significance 

of this peculiar symmetry in a little while, when we consider the expansion of 

L: about the chiral soliton and identify the fluctuations with pions; the result 

is that the pion wavefunctions decompose into eigenstates of the operator rl’ E 

&ion) + &ion). 

Of course, U.. as it stands is not a suitable candidate for a nucleon or delta; 

this is because physical baryons are characterized by definite values of 7 and s’ 

individually. One obtains a state with the correct quantum numbers by intro- 

ducing collective coordinates A(t), as reviewed in Section 1.1. Note that the 

wavefunctions x(A) given in Eq. (1.26) are really only appropriate for baryons 

at rest; however, as we have discussed in Section 11.1, we plan in any event to 

neglect the baryon’s recoil in the scattering process. 

We shall represent pion field fluctuations about the classical soliton by letting 

F(r)? + F(r)? + f-x’(it) 
r 

(11.2) 

in the exponent of (11.1). Expanding Eq. F.l in powers of the pion field yields 
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an action 

S=-/dtm.+/ d’Z Tit (Z)Zijd(Z) + O(?r”/fr), (11.3) 

where m, is the mass of the soliton and i and j are isospin indices that we shall 

think of as running over (1,2,3) or (+,O, -) as convenient. 2 is accordingly a 

3 x 3 matrix of differential operators formed from various products of ai, at ,Ti 

and 6ij. That is, 

2, = Gl(r)kj + G(r)kj$ + G3(r)iiPj$ -t--G,(r) ijai + Gs(r)iiaj + * - * (11.4) 

with the Gk(r) being, in general, horrible, model-dependent functions of the 

soliton profile F(r) and its derivatives. We note that, with no loss of generality, 

2 can be chosen uniquely to be self-adjoint. As discussed in Section 11.1, we shall 

henceforth neglect all 0 (rr3/fX) t erms in keeping with our lowest-order approach. 

We can now imagine constructing the pion propagator (rr’(?, t’)zj(Z, t)), in 

the soliton background by the following procedure: The pion field is expanded 

in terms of a complete set of appropriately normalized eigenfunctions $J!(z?,~) 

satisfying 

Zij?),l; = a(X) l/!JLf (11.5) 

The propagator is then given, somewhat schematically, by 

(11.6) 

The ‘nought’ on the propagator will serve to remind us that (11.6) represents 

pion-scattering from a fixed soliton in its standard orientation (11.1). 

It is obvious how to generalize this formula to the case of a rotated soliton 

VA as defined in Eq. (1.18). P ion fluctuations are naturally incorporated by 
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letting F(r)D’(A) i: 4 F(r)D’(A)$ + tZ(Z,tt) as before. This results in 2 + 

Dl(A)ib’(A)-‘, $1 + D’(A)jk$i, and thus 

(A+), -+ (&+A = P’(A){, (A”K~)~ D’(A);;* (11.7) 

We should point out that this step assumes the rotation A to be time-independent; 

thus, it is valid only in the limit in which the soliton does not rotate significantly 

during the scattering process. This approximation was justified in Section II.1 

as arising from the l/N expansion. 

It is now a simple matter to express in this framework the Green’s functions 

for the Yreal-world” processes sN -+ sN and aN + XA . If we represent the 

initial and final baryons by the wavefunctions $,,(A) and &:(A), respectively, 

then the Green’s functions are given by 

(r’nj) = / dAXz>,(A)D'(A)im ( rrnOo D'(A);lilx:&j (11.8) 

= &(ZR + 1)(2R’ + 1) c (~~?y”)~ 
mn 

X dA(DR’(A)tR’)i:,:D1(A)imD1(A)~~(tRDR(A)-l)ssi, 
/ 

where we have substituted the explicit expressions for the baryon wavefunctions 

given in Eq. (1.26). 

It turns out that the A-integration in Eq. (11.8) can be carried out explic- 

itly. The most compact expression for the Green’s function is then obtained 

by projecting the initial and final pion-baryon states onto states of definite total 

isospin and angular momentum II1JJ,). (f and J’are of course conserved in the 

scattering process.) Following convention, we further restrict the incoming and 

outgoing pions to partial waves L and L’, respectively, while the initial and final 

baryons are characterized by spin (and isospin) R and R’ as before. These steps 
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Fig. 6. Relation of the six coupled angular momenta in either 

the initial or the final state of pion-kyrmion scattering 

are carried out in detail in Appendix A. The appropriately projected pion Green’s 

functions, which we label GLL,RR,rf (rt; r’t’), are then given by an expression of 

the form: 

GLLtRRtr.i = c PLL’RR’IJK ’ gKL’L(rt; r’t’) 
K 

(11.9) 

The meanings of the terms on the right-hand side of this expression are 

as follows: gKL,L(rt;r’t’) is the %educed” radial Green’s function describing 

elastic pion-scattering from the “elementary” soliton (II.l), where the incoming _ 

and outgoing pions are restricted to partial waves L and L’, respectively; this 

restriction leaves a purely radial scattering problem. The index K denotes the 

conserved quantum number of this YelementaryD process, which is the vectorial 

sum J? = &ion) +.&kn). Note that, by the triangle inequality, K is restricted 

to the values max(lL - 11, JL’ - 11) < K 5 min(L + 1, L’ + 1). Finally, the P- 

symbols are group-theoretic coefficients calculated in Appendix A: 

PLLIRR~IJK = (-1)R’-Rd(2R + 1)(2R’ + 1)(2K + 1) 

(11.10) 
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The appearance of 6&symbols in this expression is quite natural, since, as 

indicated in Fig. 6, the problem in both the entering and the exiting nN channels 

is characterized by six intertwined angular momenta. Explicit formulas for the 

P-symbols relevant to IAN --) nN and rrN -+ rrA are presented in Appendix B. 

Note that all the model dependence arising from the details of the Lagrangian 

F.l is subsumed in the quantities gKLlL; the P-symbols, in contrast, depend only 

on the hedgehog nature of the chiral soliton. 

Since 6$symbols embody various triangle inequalities, the same is true for 

the P-symbols. Specifically, the seven triads (RlL), (R’lL), (RLJ), (R’L’J), 

(LlK), (L’lK) and (IJK) must each satisfy the triangle inequality in order for 

the P-symbol not to vanish (cf. Fig. 6). Of these triads, the first four merely 

express the obvious bounds on the total isospin and angular momentum formed 

from a baryon of spin and isospin R (or R’) and a pion with orbital angular 

momentum L (or L’). 

As for (LlK) and (L’lK), these reflect the existence of the conserved vector 

I? in processes in which a pion scatters off an elementary soliton. Indeed Eq. 

(11.9) can best be regarded as an expansion of the physical processes xN + xN or 

AN + ?rA in terms of these elementary channels, each labeled by its own value 

of K. The emergence of this new quantum number as a quantity of physical 

import is of course peculiar to models that admit solitons of the form given in 

Eq. (11.1). The final triad (IJK) is something of a surprise. (In fact it is the only 

one of the seven triangle inequalities not already manifest in the Clebsch-Gordon 

coefficients of Eq. (A.9), which is the penultimate formula in the derivation of 

(11.9).) In practice, it frequently serves to eliminate one of the (typically three) 

elementary channels associated with fixed K which would normally be expected 

to contribute to a given (I, J, L) channel of physical pion-baryon scattering. 

Despite these restrictions it turns out that Eq. (11.10) does not prohibit any 

?rN or rrA processes otherwise allowed by parity, isospin, and angular momentum. 

For example, (LlK) and (L’lK) taken together forbid jumps in pion angular 
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momentum greater than two; but AL 2 3 is in any event excluded by parity 

and/or angular momentum conservation. 

The relation (1X.9) for Green’s functions can be immediately converted to 

a relation for S-matrix elements by moving onto the pion mass-shell and ex- 

tracting the pole term on each side of this equation. Modulo the extrapolation 

from an unphysical region in momentum-space as discussed in Sec. 11.1, these 

manipulations do not change the form of the relation, and we have: 

SLL,RR,ff=+ R'f:L'IR??L )-=C PLL’RR’IJK * SKL’L- (11.11) 
K 

We will refer to the SKLIL as the reduced S-matrix. Notice that a resonance in 

some elementary channel (KLL') manifests itself in TN scattering as a family 

of resonances coupling to that value of K. It is thus appropriate in the chiral 

soliton picture to classify resonances according to K. This scheme replaces the 

conventional SU(6) (or, in the 2-flavor case, SU(4)) classification of baryon reso- 

nances. We should recall, though, that these resonances should not be considered 

narrow, so that one may not ignore background contributions from other values 

of K coupling to the same physical partial wave amplitude. 

As a check on (11.11) let us verify the unitarity condition 

+ UN- = c + (fIti)” o (w-9 (11.12) 

J, 

where I$)” runs over a complete set of states at an intermediate time. Accordingly 

we rewrite the reduced S-matrix as 

8KL’L E S&L = + (KL'IKL)- 

and insert 

c /R"ffL")' ' (R"f.fL"I 
R"L" 

(11.13) 

(11.14) 
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into (11.11). Taking advantage of the fact that 

c PLL”RR”IJK’PL”L’R”R’ZJK = 6KK’PLL’RR’IJK (11.15) 
R” 

(which holds BO long as the triad (L”lK) satisfies the triangle inequality), we 

obtain the constraint 

c PLL’RR’IJK ’ (S&L - c f$L~L~&L”L) = 0, 
K L” 

(11.16) 

where we have set + (KL’IKLN)o = sZ~,~,,, etc. From this we can draw the 

reassuring conclusion that if the reduced S-matrix obeys (11.12) (as surely it 

must), then the physical amplitudes are guaranteed to do so as well. 

Note, however, that it is generally necessary to include the “exotic” baryons 

with R” > 312 called for by the model among the states of the complete set 

(11.14). This should not be surprising; the chiral soliton model contains a state 

of spin and isospin f as the second rotational excitation of the nucleon, and 

there is no selection rule forbidding the production of this baryon in isospin-i nN 

scattering, via the process nN + xB$. By analogy with the rigid rotor, the mass 

of this baryon would satisfy (m; - m~)/(ma - mu) = %, or m; N 1720 MeV. 

Of course, in Nature there is no such state narrow enough to be distinguished. 

It is nevertheless conceivable that a very broad i = s = i resonance exists. _ 

Presumably it would decay mostly into A?T and would therefore show up obliquely 

in Nature as an enhancement of the Anr final state in pion-nucleon scattering. 

The obvious benefit of Eq. (11.11) is that it decomposes a large number of 

physical scattering amplitudes in terms of a substantially smaller set of reduced 

amplitudes. Consequently it is possible to eliminate the latter and be left with 

nontrivial energy-independent linear relations between physical amplitudes. Be- 

fore doing so, however, we pause briefly to take note of two general constraints 

on the the reduced amplitude 8KLlL. First of all, parity conservation together 
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with the triangle inequalities discussed above for (LlK) and (L’lK) imply that 

either L = L’ or L = L’ z!z 2. Secondly, it follows from time-reversal invariance 

and unitarity that the S-matrix is symmetric:“‘] 

BKL’L = SKLL’. (11.17) 

Bearing these constraints in mind, we can now straightforwardly find linear com- 

binations of the left-hand side of (11.11) so that the model-dependent right-hand 

side cancels out. 

We focus first on the case ?rN + ?rN ; in our notation this implies L = L’ 

and R = R’ = ). We choose to solve for the I = i amplitudes in terms of those 

with I = $. From the explicit formulas for the P-symbols as given in Appendix 

B one obtains: 

SLL+;q,L-; = 
L-l -. 

4L-k2 SLLf;+,L-’ 3 
(11.18)~ 

+ 
3L+3 -. 
4L+2 SLL+;;,L+; 

and 

3L -. SLL$;;,L++ = 4L + 2 SLL+g,L-t (11.18)b 

+L+2 -. 
4L+2 sLL;;),L+; 

These relations were also derived in Ref. 18. 

For xN + XA we can have either L = L’ or L = L’ f 2 consistent with 

angular momentum conservation. For L = L’ we find: 

(II.lS)a 



and likewise 

4(L + 2) 
+ m(2L+1) +LLgf,L+f, 

while for L = L’ f 2 we obtain the simple proportionality relations 

(II.lS)b 

(11.20) 

Finally, for each L there is one additional linear relation which serves to relate 

IrN+xNtoxN+IrA: 

(11.21) 

(Note that this relation depends on the phase convention of the delta wavefunc- 

tions vis-a-vis the nucleons.) 

We turn now to an examination of how well these relations are obeyed in 

Nature. 

3. Comparison with Experiment: nN + TN 

We focus first on the process ?rN + TN . Elastic sN scattering in the low- 

energy regime has been the subject of thorough experimental investigation. Our 

analysis in this section relies on the data compilation of HBhler, et al.,‘“41 in 

which a complete partial-wave analysis of elastic TN scattering is presented for 

center-of-mass energies W up to 4.5 GeV. For elastic scattering the relevant linear 

relations are given by Eq. (11.18) , which expresses the two isospin-i amplitudes 
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Fig. 7. Experimentally determined Z=i partial-wave amplitudes for sN elastic scattering, plotted 

together with the linear combinations of I=& amplitude8 which should reproduce them if ELq. II.18 is 

valid. The I=; amplitudes are indicated by solid lines, the I=; combinations by dotted lines. We have 

used the value8 of these amplitudes presented in Ref. 24. 

as linear combinations of the two isospin-i amplitudes in the same partial wave. 

We now examine the experimental validity of these relations. 

In Fig. 7, we display the experimental isospin-i TN scattering amplitudes for 
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Fig. 7, cont. 

L 5 7 juxtaposed with those particular linear combinations of isospin-i ampli- 

tudes to which they are predicted to correspond; these are indicated by solid and 

dashed lines, respectively. The closeness of these comparisons can be considered 

a model-independent test, not only of the chiral-soliton description of baryons, 

but also of the extent to which a lowest-order analysis in the l/N expansion can 

be trusted to give a reasonable description of Nature. We should point out that, 
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in keeping with tradition, our Argand plots depict the T-matrix; this is related 

to the S-matrix via T = &(S - l), with 1 d enoting the identity operator on 

the Hilbert space (which vanishes for inelastic scattering). The most striking 

feature of the graphs taken ss a whole is the substantial qualitative agreement 

that one finds between theory and experiment, particularly for L 2 3 (F-waves 

and higher). On a quantitative level, it turns out that, with few exceptions, 

the actual I = g resonances are typically more massive by 150-300 MeV than 

predicted by the superposed I = f amplitudes. This systematic splitting is pre- 

sumably caused by the same rotational energy contribution that is responsible 

for the nucleon-delta mass difference; since this is a l/N effect, it does not, in- 

deed cannot, emerge in our lowest-order analysis. In contrast, it is apparent 

on the whole that the shapes of the resonances are correctly predicted by Eq. 

(11.18), and that the form of the backgrounds are reproduced quite satisfacto- 

rily. The correlation between the detailed structure of the F37 resonance and the 

corresponding linear combination &Flb + aF17 is particularly remarkable. Note 

that the background contributions tend to be given correctly even in those low-L 

channels such as P33 for which the structure of the resonances is not reproduced 

well. 

Having noted the generally high degree of agreement, it is of course important 

to confront the disappointing results in the Ssr, P33 and 035 channels. It turns 

out that the poor agreement in these channels is not necessarily fatal to the chiral 

soliton ansatz. To see this, note that in each case the discrepancies are clearly the - 

greatest near threshold. Now, it is a property of all chiral soliton models in which 

the soliton is of the hedgehog form that the threshold behavior of the S-, P- and 

D-wave amplitudes (and only these amplitudes) is extremely sensitive to small 

perturbations. This point will be argued at length in Chapter HI; the upshot 

is that it is completely unrealistic to expect a lowest-order calculation in l/N 

such as ours to yield good agreement near threshold for the S-, P- and D-wave 

amplitudes. We find it encouraging that these are the only partial waves which 

are in serious disaccord with Eq. (11.18) at low energies, and furthermore, that 

39 



at higher energies (albeit still in the resonance region) the agreement markedly 

improves. 

I I I , 
1 2 3 

AW (GeV) 

Fig. 8. Speed of motion jdT/dWI of the predicted Paa nN elastic scattering amplitude, P~~d=~Pl,+ 

~PIs. AW L the energy above threshold (1077 h&V). 

As evidence for this latter claim, consider Fig. 8, where we have plotted the 

speed of motion IdT/dWI f o our prediction for the P33 partial wave amplitude 

as a function of the excitation energy AW; the maxima of the speed should give 

the positions of resonances. In Nature, this channel is characterized by three 

resonances, at 1232, 1522 and 1868 MeV. Our prediction likewise gives evidence 

of three resonances, at 1360, 1780 and 2140 MeV; the shifts from Nature are 

of the order of l/N corrections. The discrepancies at low energies evident in 

the juxtaposed graphs in this channel can be traced to the large difference in 

elasticity between the A(1232), in the true Ps channel, and the ‘Roper resonance’ 

Pr1(1410), which contributes to the comparison curve. Now, elasticity factors 

are measures of the phase-space of available decay modes; consequently, near 

thresholds they are extremely sensitive to small shifts in mass, and hence, to 

higher-order l/N effects. We conclude that the agreement obtained in the P33 

channel is as good ss can reasonably be expected in a lowest-order treatment. 
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Before leaving the discussion of discrepancies in the low-lying partial waves, 

we should address the subject of the apparent violation of Weinberg’s well-known 

calculation”” of the S-wave scattering-lengths* or=; and a*,;. The prediction 

is 

(II.22) 

which, in particular, correctly implies that the isospin-i and isospin-i S-wave 

amplitudes should exhibit attractive and repulsive behavior, respectively, near 

threshold. In contrast, the chiral-soliton prediction emerging from Eq. (11.18)b 

is that these amplitudes should be identically equal to one another! This is all the 

more puzzling in light of the result’111 that chiral soliton models must necessarily 

obey all soft-pion theorems, of which Weinberg’s is a notable example. 

Actually, there is no contradiction. To see this, recall that the equality of 

the amplitudes implied by (II.lS)b is only valid to order No. To this order, as 

we shall discuss in Chapter III, there are S-channel poles that sit precisely on 

the real axis at the nucleon mass (where they have actually coalesced with zeroes 

of the S-matrix). Now, by elementary trigonometry, a phaseshift evaluated at 

a given value of energy is roughly proportional to the imaginary part of the 

nearby pole; this implies that, to lowest order, both a1=; and a1=; must vanish 

identically. And indeed, the right-hand side of Eq. (11.22) is manifestly of order 

l/N, with the result that Weinberg’s prediction is trivially satisfied to order No. 

A nontrivial consistency check, then, must await a higher-order calculation. - 

We should comment further on the striking agreement apparent in all the 

channels depicted in Fig. 7 in the high-energy limit. Actually this agreement is 

something of an accident: in Nature, the four independent amplitudes in each 

partial wave become virtually degenerate at high energies (typically, W 2 2800 

MeV), with the result that Eq. (11.18) is satisfied automatically. What we 

* Recall that the S-wave T-matrix is related to the scattering length (1 near threshold via 
T = &(exp(2iak) - l), where k ia the pion momentum. 
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have, then, is in essence no more than a pleasing consistency check on our linear 

relations . t 

In fact, one can argue that the l/N expansion is no longer appropriate at 

high energies. In this regime, the zN total cross section is dominated by mul- 

tiple production of pions. The elastic amplitude (which becomes characterized 

more and more by forward scattering) then arises as the shadow of this multiple 

production via the optical theorem. In the language of Regge theory, the elastic 

amplitude is dominated by Pomeron exchange. The couplings of the Pomeron 

are independent of spin and isospin orientation; this accounts for the degeneracy 

mentioned above. In any case, it is clear that these couplings, arising as they do 

from multiple pion production, depend simultaneously on many orders in l/N. 

Consequently, where the Pomeron dominates, a leading-order l/N analysis is 

necessarily inadequate. It is therefore not surprising that explicit calculations of 

the partial-wave amplitudes in the specific case of the Skyrme model grossly un- 

derestimate the inelasticity of ?rN scattering in all partial waves at high energy, 

as we shall see in the following chapter. 

We turn, finally, to what we consider the most compelling argument in favor 

of the chiral soliton ansatz that can be gleaned from an analysis of pion-nucleon 

scattering. We have just seen that, as the center-of-mass energy W --f 00, the four 

independent amplitudes corresponding to each partial wave approach a common 

limit. However, for intermediate ranges of energy this is decidedly not the case. In 

fact, when one restricts W to be 5 2.5 GeV the experimental Argand plots exhibit 

a strikingly consistent pattern: for each value of L, the excursion of the amplitude 

into the unitarity circle is nearly always much larger for the (I, J) = (), L - f) 

or (g,L+i) channelsthanfor (i,L+i) or (i, L - 3). We will refer to this as 

the “big-small-small-big” pattern. This pattern is even more pronounced if, for 

each L, one considers energies ranging up the ‘natural’ scale characterizing the 

t It should be mentioned, however, that for the majority of channels the agreement in this 
region is closer by 30 - 50% than what one would expect from comparing to a ‘random’ 
(convex) linear combination. 

42 



resonance region of that partial wave (a precise determination of these ‘natural’ 

scales is unimportant). Certainly in a case such as this a picture is worth a 

thousand words; we present the relevant pictures in Fig. 9. (Not surprisingly, 

the only exception to the rule is in the recalcitrant 035 channel; also, the Gra 

amplitude is as large as the Gag.) 

Clearly, this pattern of size alternation is consistent with Eqs. (11.18)a and 

(II.lS)b, since, in these equations, the ($, L - f) and (i, L + fr) amplitudes are 

linked by large coefficients to the (f, L + )) and (f, L - )) amplitudes, respec- 

tively. But of course, the reversed pattern, with the ‘small’ and ‘big’ channels 

interchanged, would have been equally consistent. For a more compelling argu- 

ment, one must necessarily go beyond the purely group-theoretic reasoning that 

led to (11.18) and add a single plausible dynamical assumption. 

To this end, let us return to Eq. (II.ll), in which the physical nN + rrN 

amplitudes in the Lth partial wave are expressed 8s linear combinations of the 

‘reduced’ amplitudes sKLL with K = L - 1, L, L + 1. Now, in the specific case 

of the Skyrme model, it turns out that the variation of SL+~,LL away from unity 

is essentially negligible compared to that of BL-~,LL and BLLL for energies less 

than 2.5 MeV, as we shall see in Chapter III. Certainly it is not unreasonable - 

to assume that this continues to be true for the ‘optimal’ two-flavor effective 

Lagrangian, especially in light of the relatively high degree of success with which 

the Skyrme model will be shown to reproduce the full spectrum of nucleon and 

delta resonances in Nature. If accordingly we make the dynamical assumption 

that SL+~,LL = 1 throughout the relevant energy ranges (ignoring inelasticities 

for the sake of simplicity) and represent the physical amplitude SLL;iIJ more 

compactly as SLZJ, then Eq. (11.11) becomes: 
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threshold into the resonance region in that channel. 
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(11.23) 

S L;,L-f - ’ = 
(2L-l)(L-1) 2L-1 

6L(‘JL + 1) - (SL-1,LL - 1) + 7 * (su - I)> 

SL$,L+; - l= 

The pattern of alternating size now emerges as an automatic consequence of the 

group theory: it is simply due to the relatively small coefficients in the middle 

two equations of (11.23) as compared to the outer two! A further prediction of 

these expressions is that, of the two ‘big’ amplitudes, SLiIL-+ should dominate 

S,;,,++-and, with the single exception of the P-channels, this is also apparent 

in Fig. 9. 

4. Comparison with Experiment: TN + ‘KA 

We conclude this chapter with a brief examination of the inelastic process 

rrN -+ AA in the chiral soliton framework. We should remark at the outset that 

this process constitutes a much more tenuous proving ground for the chiral soliton 

ansatz than the elastic case: On the one hand, the extraction of partial-wave 

amplitudes from experiment requires a nontrivial and model-dependent analysis 

to disentangle KA from a variety of other final states such as pN, cN and TN’. On 

the other hand, from a theoretical point of view, several of the approximations we - 

have invoked in the derivation of the linear relations become substantially more 

drastic in the inelastic case, as we have discussed in Section 11.1. Throughout 

this section we draw from the recent partial-wave analysis of Manley et al.‘14 ; 

the TA data presented there is restricted to W 5 2 GeV and L < 3.* 

* The analysis of ref. 14 presents the values of the partial-wave amplitudes derived from an 
energy-independent analysis and a unitary, energy-dependent fit to this values. Because 
the directly extracted amplitudea are often sparse and erratic, we have chosen to use the 
fit in making our comparison. This fit is generally a good representation of the elementary 
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We begin by looking at processes in which the pion jumps two units of angular 

momentum. From Eq. (11.20) we predict simple proportionality relations between 

partial-wave amplitudes:’ 

SDll = -&is DS13 = -0. SD31 = a- DS33 (11.24)a 

and 

FPIS = -&is FP35. (11.24) b 

These relations are checked in Fig. 10. For the SD and DS waves, the agreement 

is not impressive. The relative signs of the four amplitudes are predicted correctly, 

but there is no evidence for the factor of &6 which connects the first and second 

pairs of terms in Eq. (11.24) a. One should note, of course, that these channels 

all couple to the translation zero-modes. For the FP waves, which do not, the 

agreement is quite satisfactory, up to the customary 150-200 MeV energy shift 

between the isospin-i and the isospin-$ amplitudes. 

We turn next to processes for which the initial and final pion angular mo- 

menta are equal. In both the D- and F-waves, the partial-wave amplitudes for 

three out of the four possible channels could be resolved from the data in the 

analysis of Ref. 14. These triplets of amplitudes are predicted to obey the rela- 

tions: 

DD33 = --!-- 
9 7 

5Jicl 
* 0013 i- - 

10 J 
-a DDls 
5 

and 

7 
FF3, = - . 

2 5 

‘3d 
FF15+- -.FF35. 

J 3 3 

(11.25)~ 

(11.25)b 

In Fig. 11 we have displayed the experimental 0033 and FF37 amplitudes (in- 

dicated by solid lines) juxtaposed with the appropriate linear combinations dic- 

data, but one should note that there are some large deviations, for example, in the SD31 
and PP33 partial waves. 

t The notation is JX;~,~~, with L and L’ the incoming and outgoing pion angular momenta, 
respectively. 
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Fig. 10. TN-MA processes in which the pion jumps two units of angular momentum: (a). Test of Fq. 

(II.24a) by comparison of the various SD and DS TN-WA partial-wave amplitudes. The upper graph 

plots SDu against -6DSm; the lower graph plots SDal against -ti.DSss. (b). Test of Eiq. (E24b) 

by comparison of Fi% to -fi.F&.. In each case, the first-named amplitude is represented by the 

solid CUN~. Here and in Figs. 11 and 12, we have used the values of these amplitudes corresponding to 

the fits presented by Ref. 14. 

tated by (11.25) (dotted 1 ines). Although in the first instance (where again there 

is mixing with the translational mode) the shape of the Argand plot is reasonably 

rendered, the predicted curve is obviously too big by roughly a factor of four. 

In the second case, however, as for F-waves in general, the agreement is quite 

respectable. 

Unfortunately, out of the four possible PP processes, only PPl1 and PP33 

were considered by Manley, et al., to be adequately determined by the data. 

This makes it impossible for us to test the validity of Eq. (11.19) for this case. 
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Fig. 11. rN+rA processes in which the initial and final pion angular momenta are equal. The DDsa 

and FFs7 amplitudes (solid lines) are juxtaposed with the linear combinations to which they are predicted 

to correspond via Eq. (lI.25) (dotted lines). 

If, however, we assume the PPl3 amplitude to be small, Eq. (II.lQ)b suggests 

that the PPll and PP33 amplitudes will have the same sign; this is indeed what 

is observed experimentally. 

We turn, finally, to Eq. (11.21), which links the processes TN + ?rN and 
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Fig. 12. Comparison of rN+rN and TN-WA scattering in the same partial wave. The linear combi- 

nations of elastic amplitudes (solid lines) are juxtaposed with the appropriate combinations of inelastic 

amplitudes (dotted lines) as dictated by EZq. (II.26). Excitation energy AW is measured from the nN 

threshold in the elastic cade, and from the ovcra~e of the rN and rA thresholds in the inelastic cue. 

TN --t KA . The relations which follow from (II.21) may be expressed in several 

different ways, by combining this equation with the relations (11.18) and (11.19) 

already discussed. For example, one may obtain: 
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(11.26) b 

The left- and right-hand sides of these equations are compared in Fig. 12; they 

are indicated by solid and dotted lines, respectively. The comparisons are typical 

among the choices which we have examined, though different choices yield curves 

of very different size.* In making this comparison, it is also necessary to choose 

a convention for relating energies in nN + zA to those in zN -+ zN . It is not 

clear to us to us whether it is best to define the excitation energy in xN ---) zA as 

starting from the xN or the XA threshold; as a compromise we have taken the 

average of the two (for these graphs only). Once again, although the sizes of the 

amplitudes are not in especially close agreement, the signs are correctly given 

and the general shapes are similar. 

All in all, we can conclude that the limited rN + aA data, while not par- 

ticularly compelling in and of itself, is certainly consistent with the elegant in- 

terpretation of the baryon ss a soliton in the field of pions. 

* We should note, though, that iu (11.26) we have avoided combinations which require can- 
celations among large amplitudes, or which involve the exceptional channels Pas and 036. 
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III. THE BARYON SPECTRUM OF THE SKYRME MODEL 

In this chapter we shall apply the formalism developed in Chapter II to the 

particular case of the Skyrme model.‘“’ A pleasing feature of this model is that 

one can readily calculate many static properties of baryons such as magnetic 

moments and charge-radii.‘“’ With the glaring exception of &.4, these typically 

agree with experiment to within 30%, when the adjustable parameters of the 

model are chosen to give the nucleon and delta masses correctly. 

Much less attention, however, has been focused on the dynamical properties 

of skyrmions. Important progress in this direction was made independently by 

Zahed, Meissner and Kaulfuss”” and Breit and Nappi.‘a’1 Interpreting fluctua- 

tions around the soliton as pion-nucleon scattering, these authors calculated the 

phase-shifts in the Ubreathing-mode” of the skyrmion and looked for a resonance 

in this channel by seeing if and when the phase-shift crossed 90’. (We shall adopt 

a different criterion for the existence of a resonance below.) With this criterion 

there is no resonance for the case of massless pions, and a marginal resonance at 

1270 MeV for massive pions which Breit and Nappi tentatively identified with 

the real-world Roper resonance Prr (1440).’ We shall see that this identification 

needs to be modified. 

In this spirit we shall examine the process rrN + TN in all channels of 

isospin and angular momentum for which experimental data was available for 

comparison. As in the previous chapter, we will restrict ourselves to a lowest- - 

order calculation in l/N. 

We are not motivated by the belief that there is anything especially fun- 

damental about the Skyrme Lagrangian. Rather, we find it instructive to see 

how well the actual spectrum of nucleon and delta resonances can be fit starting 

t We shall follow the standard notation Ls,,lJ for resonances, where L = S, P, D, F.. . 
denotes the partial wave in which the resonance is formed, and I and J give the total isospin 
and angular momentum. Nucleon and delta resonances are characterised by I = l/2 and 
I = 312, respectively. 
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from a model that contains no explicit baryon fields and only three adjustable 

parameters: {fir, c, m,}. Indeed, we shall specialize to a two-parameter fit (one- 

parameter if the proton mass is &red) by working in the chiral limit m, = 0. 

Nevertheless our findings are in generally good agreement with the real world 

for energies up to 3 GeV, with masses predicted on the average to within 8% 

of their actual values. (Our baryon-mass predictions are presented in Table I 

of Section 111.2.) This is all the more surprising given the rather drastic nature 

of our approximations, such as completely neglecting baryon recoil (cf. Section 

11.1). Another noteworthy result of the Skyrme model is that it correctly repro- 

duces the big-small-small-big pattern found in Nature, as discussed in Chapter 

II. And finally, as a bonus, we shall find that our ‘best-fit’ values for the Skyrme 

parameters substantially improve some of the static properties of the model as 

calculated by Adkins, Nappi and Witten.“” 

We should at the outset mention some of our disappointments as well. The 

most obvious of these is our failure to find in pion-skyrmion scattering what in 

the real world is the most spectacular baryon resonance of all, the delta itself; 

likewise the 41 and S31 channels at low energies are manifestly in poor agreement 

with experiment. It is not clear to us whether these represent failures of the 

Skyrme model or merely of our approximations near threshold. Either way, 

we shall argue that these discrepancies are not necessarily fatal to the model 

by showing that small perturbations can easily restore the correct low-energy 

behavior in these channels. In particular we can expect the delta to reappear - 

in the next order in l/p. One can even take the optimistic view that these 

chiral soliton models provide precisely the right framework for understanding 

why some of the S-, P- and D-wave channels contain clear, low-lying resonances, 

while others, in stark contrast, are marked by repulsive behavior near threshold. 

We will return to a full discussion of these matters in Sec. 111.2, where we 

take up pion-nucleon scattering, but first, in Sec. III.1, we lay the groundwork 

by examining the “reduced” processes in which a pion scatters elastically off an 

unrotated skyrmion (recall that nucleons and deltas should properly be identified 
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with rotating solitons). 

Much of the development of this chapter is similar to work carried out at 

Siegen University.[““‘l In particular, the Argand plots presented in Ref. 18 (for 

F-wave ?rN scattering only) appear to be in good numerical agreement with our 

own. 

1. Pion-Scattering from Unrotated Skyrmions 

The Skyrme Lagrangian with a chiral-symmetry-breaking mass-term is given 

by 

fi L = GTra,U&Ut + & Tr[(a,U)Ut, (a,U)Ut]’ + F(Tr U - 2). (111.1) 

Here fr is the pion decay constant (186 MeV in the real world), n, is the pion 

mass, and e is a new, dimensionless coupling constant peculiar to the model. The 

%mall parameter” l/N enters the Lagrangian through frr and e, which behave 

like N; and N-f in the the large-N limit, respectively. 

As before, we shall focus on the hedgehog solution 

u. = ,iF(r);:d . (111.2) 

Indeed, if we plug this ansatz into (111.1) and look at small fluctuations about 

the soliton 

F(r)? - F(r)?+ +,t) 
r 

we obtain the Euler equation 

- sin2F-Asin2Fsin2F-rhi?sinF =O 
7 1 

(111.3) 

(111.4) 

where the derivatives are taken with respect to the dimensionless variable 7’ = 

ef,r, and fir = m,/ef,. Field configurations of the form (111.2) are thus au- 
I 

tomatically stable against angular fluctuations 7’ = ae* + b+. To render them 
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stable against radial fluctuations ss well, one requires the expression in square 

brackets to vanish, which gives the defining equation for F(r). Straightforward 

Hamiltonian quantum mechanics in the collective coordinates A then yields for 

the nucleon and delta masses”*] 

mN = mo + qe3f, mA = mo + -ye3f, (111.5) 

where no is the mass of the unrotated skyrmion (approximately 36.5f,/e) and 

7 w 4.7 x 10-s. 

This concludes our brief review of the Skyrme model; in the remainder of 

this section we put aside the issue of collective coordinates and focus purely 

on the question of pion-scattering from unrotated skyrmions of the form (111.2). 

Explicit forms of the rather unwieldy differential operators involved are presented 

in Appendix C. The results for the S-matrix that we obtain in this section will 

be reassembled in the next to yield the amplitudes for the physical processes 

UN + UN. 

Following Chapter II, we incorporate pions into the Skyrme Lagrangian (111.1) 

by substituting (III.3) into the exponent of (111.2). After integration by parts one 

obtains 

S=-/dtmo+/ d'sn'*(~9t)2~j.lrj(~,t) + O(T3/fw) (111.6) _ 

with 2 a complicated 3 x 3 matrix of second-order differential operators. (We are 

allowing complex pion fields as a convenience; this way we are spared from having 

to take real parts of spherical harmonics and of e iwt throughout.) Consistent with 

the large-N spirit that motivates the model we will henceforth drop all terms of 

cubic or higher order in the pion fields; these are damped by powers of frr N Ni . 

As a result, the equations of motion for the pion fields that we will derive will be 

linear ones. 
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We can make substantial progress by realizing that 2, complicated though it 

may be, preserves the symmetry K = I(pion) + L(pion). Explicitly, 

-ifijkr’aj& - kkba = 0 (111.7) 

Following Appendix A, we can take advantage of this fact by expanding the pion 

field in terms of the vector spherical harmonics 

( 

(LlKe - l,llK,Kz) yL,K.-l(n) 

(LlKeOIK, Kz) yL,K, (n) 

(Ll& + I,-lIK,&) Y&K,+@) 

which are states of definite K2 and K,. Accordingly we plug 

1 (111.8) 

(111.9) 

into (111.6). Parity precludes the 40’s from mixing with the &“s; $J+ and $L can 

mix in this model, however, as they do in Nature, where jumps of two units of 

pion angular momentum are allowed in the process TN -+ aA . 

The angular integration can be performed, thanks to the identities 

K-l v.ny;=-- 
r 

‘.r$ff; = YKK. 

v.nKKi- K+2&fi= K+2 
K+l- r 

-- YKK. 
r 

(111.10) 
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We are left with 

S = - 
J 

dt mo + c r2dr$FKs* (r, t)Z$$fK*(r, t) 
K,K. / 

(111.11) 

where the zK’s are complicated second-order differential operators in r and t 

alone. We will refer to the 2 x 2 matrix of operators here as cK and the 2- 

component column-vector of wavefunctions as qK. 

The determination of phase-shifts now proceeds in a completely straightfor- 

ward manner, exactly se in Ref. 21. The %ormal-mode” equations to be solved 

are 

and 

2F [$$(r)eiwt] = 0 (111.12a) 

EK [lPK(r)eiw’] = 0 (111.12b) 

for all w; here we are assuming that 2 and 2 have been chosen with care to be 

self-adjoint. By time-reversal invariance 2 and c are real operators, so it suffices 

to consider the real radial wavefunctions that are regular (i.e., square-integrable) 

at the origin and integrate out past the point where the skyrmion profile F(r) 

is negligible. In this regime the theory is one of free pions, so $$ can be fit to - 

A(w)jK(kr) + B(w)nK(kr) with k = &v. (We follow Messiah”‘] in our 

definitions of the spherical Bessel functions.) The S-matrix in this channel is 

extracted by rewriting this as 

constant X (hE - SKKK(W)~~;) (111.13) 

yielding 

SKKK(W) = -(I3 + iA)-‘(B - iA) (111.14) 

56 



which lies on the unit circle. (Following Chapter II, we shall represent the reduced 

amplitudes by ~KLIL, where L and L’ refer to the incoming and outgoing angular 

momentum of the pion, respectively.) 

The ‘2 x 2’ case (III.12b) proceeds analogously. Near the origin for each 

K 2 1 there are two independent regular solutions XPF and @ , which behave 

asymptotically as 

c+ Ai(W)jK-l(kr) + &(w)nK-l(kr) 

Ci(W)iK+l(kr) + Di(W)nK+l(kr) 
i= 1,2 (111.15) 

(The exception is the translational zero-mode (111.196) below; the second zero- 

energy solution which is well-behaved at the origin blows up for large r.) If we 

work in the convenient basis in which the incoming pions are in pure (K - l)- 

waves or (K + l)-waves of orbital angular momentum, the 2 x 2 S-matrices are 

given by 

SK = 
sK,K-l,K-1 

sK,K+l,K-1 

sK,K-l,K+l 

sK,K+l,K+l > 

BI +iAl DI +iCl B1 - iAr Dl- iCr =- 
B2 + iA 02 + iCz B2 - iA D2 - iC2 

(111.16) 

Note that SK as given is correctly invariant under different choices of regular 

solutions \ki = crQr + p\Ez and @II, = 7Qr + 6Qz. Furthermore it is trivial to - 

prove that a matrix of the form -M-‘M* can be unitary if and only if it is also 

complex-symmetric, SO that ~213 = ~231, etc. This result, which follows gener- 

ally from time-reversal invariance,“*‘) provides a useful check on one’s numerical 

calculations. Accordingly we can parametrize SK as 

VK 
ODe2i6K,K+1,K--1 

t7;e2i6K.K+1,K+1 
(111.17) 

where the phase-shifts and absorption parameters are constrained by unitarity 
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to obey 

6K,K-l,K-l(w) + k,K+l,K+l(W) - 2k,K+l,K--1(W) = (n + fb (111.18a) 

and 

(&w,)‘+ (&W)’ = 1 (111.18b) 

(The superscripts D and OD here stand for diagonal and off-diagonal.) 

We should mention the special case K = 0, for which only the right-most 

term in (111.9) exists; this is the breathing-mode ii cc f. In our notation the 

only nonvanishing component of the S-matrix when K = 0 is se11 = e2i6011. We 

further note that the zero-modes corresponding to rotations and translations of 

the skyrmion, 

WYfWr); (III.lSa) 

and 

(III.lSb) 

respectively, appear in the model as threshold bound-states. These will play a 

crucial role in our later discussion. 

Some further details of the above procedure, including explicit expressions 

for zK and cK, are given in App. C. The results of our phase-shift analysis for - 

the various S-matrix components sKLLl with L, L’ 5 7 are plotted in Figures 

13-18. We have restricted our numerical analysis here to the case mT = 0. 

Fig. 13 depicts the phase-shifts 6 KKK graphed against pion-energy w, mea- 

sured in units of efrr. (Th is number should be thought of as lying somewhere 

between 700 and 900 MeV; we will take up this matter in Sec. 111.2.) The absence 

of a resonance for K = 1 is of course due to the presence in this channel of the 

rotational zero-mode (111.19a). For K > 1 the obvious trend is for the resonances 

to become broader and more massive with increasing K. 
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Fig. 19. Phase shifts 8,~~ plotted YS pion energy o, measured 
in units of ef,. 

Fig. 14.. Phase shifts &,~+l,~+I plotted vs pion energy o, 
measured in units of ef *. 

Fig. 16. Phase shifts &,x-l,x-l @Otti VS piOn energy 0, _ _ __ 
measuraiinunitsofej.. 69 

Fig. 16. Absorption parameters 7: plotted vs pion energy o, 
measured in units Of ef *. 
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Fig. 17. Absorption parameters 7BD plotted‘vs pion ei%rgy o, 
measured in units of ef-. 
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Fig. 18. Phase shifts Gx,x-,,x+, plotted vs pion energy o, 
measured in units of ef r 



Figures 14, 15 and 16 present our results for the diagonal components of 

SK. Clearly, for L 2 3, the phase-shifts JL-~,L,L rise sooner than SLLL , and 

certainly much more dramatically than &+~,L,L. As a consequence, the location 

of the resonances in the corresponding channels of zN scattering can essentially 

be read off from Fig. 14b. In contrast to L 2 3 note the tepid behavior of &rr 

and 6122 (Fig. 14a). The former is the breathing-mode; as for the latter, the weak 

rise, like that of 6111, is due to mixing with the translational mode (111.195). 

Figures 1’7 and 18 present the corresponding graphs for the off-diagonal el- 

ements SK,K+~,K-1. These describe processes in which the orbital angular mo- 

mentum of the pion jumps by two units. By conservation of angular momentum 

these processes are nN 4 rA necessarily, and so we defer discussion to the 

future. 

At this point we should make a technical comment about how we determined 

the location of resonances. In principle it is unsatisfactory merely to find where 

the phase-shift crosses 90°, due to the often significant effects of background. 

A much more reliable criterion is to look for a well-defined peak in the speed 

IdS/dwl in those regions where the amplitude is curving counter-clockwise in the 

Argand diagram. Surprisingly, for SK,K+~,K+~ this occurs when the phase-shifts 

are approximately 45’. We turn now to our main topic of pion-nucleon scattering 

in the Skyrme model. 

2. Pion-Nucleon Scattering 

So far we have discussed the (linearized) equations of motion for pions moving 

in a fixed external skyrmion background. To relate this to zN scattering requires 

the use of Eq. (11.11). We find: 

S 
2L-1 L+1 

Li,L-i = 3L SL-l,L,L + TfJLLL (111.20a) 

L 2L+3 
s,;,,++ = 3L + 3sLLL + 3L + 3sL+1,L,L (111.20b) 
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