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Abstract 

We present a heuristic description of the SLAC-LBL three-meson partial wave 
model, and describe how we have implemented it at SLAC. The discussion details 
the assumptions of the model and the analysis, and emphasizes the methods we 
have used to prepare and fit the data. 
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1. Introduction 

The study of three body final states has been a source of considerable infor- 

mation about excited hadronic states. In particular, the three body decay modes 

of mesons have given us valuable data on the mass, width, and decay modes of a 

large number of the excited strange and non-strange states which inhabit the region 

between 0.5 and 2.0 GeVJc2. 

The three-body isobar model has been used extensively by various experi- 

menters to describe their data on three-body final states. We have employed the 

SLAC-LBL version of this model in analyses of two previous experiments E-75 and 

E-132, and are currently using it to analyze the data from a higher statistics ex- 

periment E-135. Because of our increasing familiarity with this model, and because 

of the usual mystery surrounding how it is properly realized in practice, we have 

prepared this report. It provides a rather informal exposition of the main features 

of the SLAC-LBL three-body isobar model, and details how we have chosen to im- 

plement it at SLAC. Its target audience is the experimenter who is interested in 

performing a three-body isobar analysis. As such, we have intentionally avoided a 

rigourous presentation of the model’s formalism and have instead focused on how 

the model is implemented, and what steps are needed to perform the analysis. 

As an example, we discuss how we have used this model to analyze our own 

data, and the software tools that are generally available to make the analysis easier. 

Of course, our approach to this is not the only possible way to implement the model. 

However, we feel that it is instuctive to appreciate how we have proceeded if only 

to avoid some of the pitfalls we have encountered in our studies. 
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2. The Decay Amplitude 

In this chapter we describe in fair detail the form of the three-body decay 

amplitude. Although we will attempt to discuss all aspects of the amplitude, 

we will not go into extensive derivations these being done in exhaustive detail else- 

where le3. 

2.1 THE PROBABILITY DISTRIBUTION 

Consider as a model the reaction 

(2-l) 

where we cyclically label the three bosons (ijk). We assume that all 4-vectors in 

(2.1) are known, but that no information on nuclear polarization is available. We 

write the probability distribution for (2.1) as 

d’s 2 
p=- 

dw8 AvJX,J 
a=+.- 

(2.2) 
VI=+;- 

Equation (2.2) is just the eight fold differential cross section (12-4 = 8) appropriate 

to (2.1). Since we assume that nuclear polarization is unmeasured in (2.1), there 

are four incoherent terms in (2.2) (labeled by s and r] described below). One of 

the eight phase space variables is an azimuthal angle about the beam which may be 

trivially integrated over. Thus reaction (2.1) may be described by an appropriate 

choice of seven variables which we shall discuss below. 

The XtlJ of (2.2) are the decay amplitudes; they are known functions of the 

seven variables. The index J denotes a sequence of quantum numbers needed to 

specify a partial wave (“wave” for short). The index r] (= 311) is a discrete quantum 

number (“naturality”) which we shall discuss in the next chapter. 

The A,,J of (2.2) are the complex partial wave amplitudes (“amplitudes”) 

which we want to find from the data by using the probability distribution (2.2) in a 

likelihood fit. We assume these are only functions of KIT mass, m, and pin - pout 

4-momentum transfer, t’ = t - t,i,. In addition to the indices r) and J, the 

amplitudes are also labeled by the net nuclear flip; that is, s = + corresponds 
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to +i + + a or “non-flip” while s = - corresponds to +g -+ -i or “flip”. 

For a given r], parity invariance ensures that there are only two independent flip 

amplitudes. Notice that we associate the same decay amplitude XtlJ with both 

A+, J and A-, J. This reflects the fact that we have no information on nuclear 

polarization in (2.1); thus, we do not expect to be able to measure the nuclear 

flip and non-flip amplitudes. We defer a discussion of the precise meaning of the 

amplitudes AkqJ to the next section. 

2.2 THE MAGIC FORMULA 

For ease of discussion, let us write the decay amplitude as 

xfIJ = cJ G,J BJ* WI 

We discuss below each of the factors in (2.3) with the principal aim of establishing 

notation. In later sub-sections we will more fully discuss the form of G, J and B J. 

The factor CJ is simply the product of two Clebsch-Gordan coefficients in 

isospin space, 

CJ = C(T&T; +fT')C(?-j@;; +;tf). (2.4) 

This is just the isospin weight of a Kmr final state of isospin T and projection TX. 

Notice that there are three independent ways we can get T,TZ: 

T = ?I + (T2 + ?3) = f2 + (73 + 11) = f3 + (Fj + a). 

We refer to these three possibilities as distinct types, or isobars. In other words, 

for type i we think of bosons jk forming an isospin eigenstate t; “recoiling” from 

boson i. Note that for (2.1) the three types are KTxF(K*‘s), rrizT(p’s), and 

r$?KT (“exotics”). Note also that T, Tz and isobar type are three of the quantum 

numbers associated with J. 

The factor G, J in (2.3) is written 
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We will discuss the form of (2.5) in the following subsections. Here it will suffice 

to define the various quantities in (2.5). From Fig. 1 we see that 0; is the decay 

angle of the jk system in its own rest frame, I; is the spin of the isobar, and rni is 

the invariant mass of the isobar. The z-axis is the direction of the recoiling meson 

7r$f. 

364Ot.l 

Figure 1. Definition of variables in the K* isobar rest frame. 

To understand the other variables in (2.5), consider the t-channel system 

sketched in Fig. 2. We associate a coordinate system with this picture as follows. 

In the Kmr rest system, let the z-axis be in the direction of KtL. Choose the y-axis 

normal to the production plane, 2 = iin A Bout. For a KIT system of total spin J, 

we must have orbital momentum L; between the 7rT and K;*” (jk isobar, spin li): 

J’ = i?; + <. In order to measure the spin of the Kxn system, we must relate the 

production coordinate system to a decay coordinate system , such as that in Fig. 3. 

We define the decay coordinate system with the z-axis along the direction of the 

r+ and the y-axis normal to the Dalitz plane, 5 = k: A 2;. Again, all vectors 

are in the Km rest frame. In terms of these two systems, the remaining angles in 

(2.5) are 

p; = arccos(i * Zi); (24 
I ,. 

7i = arctan( 
* t 

From Fig. 2 and (2.6) we note that ,i3i is conjugate to L; and the magnetic substate 

of the Km system (M=J,) is conjugate to 7;. 
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+ 
Kin 1 

6-79 364OAZ 

Figure 2. The t-channel production coordinate system. 

Figure 3. The Knn decay coordinate system. 

Comments: 

1. The cyclic notation for specifying types is important! In a case like 7r+r+?r-, 

XnJ has proper symmetry when the sign changes in both CJ and G, J are 

taken into account. 

2. The index J corresponds to the quantum numbers 

(2.7) 

The term “wave” will mean this string of quantum numbers. A more colourful 

notation which is in general use is 

Wave = JPMn(Isobar) L. (2.8) 

For example the principal wave in the L meson region (- 1750 MeVJc2) is 

believed to be the 2-O+K*(1430)S. 

3. In a final state such as KY7r-7r+p it is not possible to distinguish T = i and 

T=$ waves! For example, it is known from comparison with K”r 
- - 

r p 
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that small amounts of T = $ waves are present. In other final states like 

z+z~&’ it is possible to distinguish total isospin states. (Why?) 

4. Equations (2.4) and (2.5) are valid for any three-body final state consisting 

solely of pseudoscalars. A more general expression for arbitrary spins and 

parities can be found in Ref. 4. 

The remaining factor in (2.3), BJ, expresses our a priori assumptions about 

the partial wave amplitude. We shall discuss it further below, but record it here for 

completeness. 

BJ= 
Qp 

fJcmpt’) 
eigi (%) sin 6~~ (m;) 

QfLi + . . . + constant 
Zi+l * (2.9) 

mm;9; 

The first factor in (2.9) is k nown as the barrier factor. Qi is the momentum of the 

isobar of type i and the “bachelor” meson in the three-body CMS. 

The second factor f J(m, t ‘) just emphasizes that other a priori knowledge about 

a wave could be built in. For example, suppose we knew a given wave J had a 

momentum transfer behaviour like 

exP(bJ(m)t’) 

where the slope bj was a function of Km mass (m). We would model this 

knowledge in (2.9) with 

fJ(m,t’) = exp(bJ(y)t’). 

Were this model correct, we would expect &nJ(m,t’) to be constant for a fixed 

mass. 

The remaining term in (2.9) is the so-called Watson final state interaction 

factor. q; is the momentum of particles j and k in the jk rest frame and 

rni is the jk invariant mass. The phase shift factor ei6sin6 (or more generally 

( rle 2i6 - I) J2i) we take from our current knowledge of zz, Kz, KK, etc. scattering 

for the appropriate isobar. 
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2.3 DISCUSSION OF THE FORM OF GVJ 

At first sight (2.5) seems formidable. Here we elaborate on its structure. To do 

so, let us consider the decay of a Jp = 0 - particle into a vector meson (Jp = l-) 

and a pseudoscalar. The basic quantum mechanical argument goes as follows. First 

introduce three mutually orthogonal spinors X&+1, Qo and q-1 corresponding to 

the spin projections of the vector meson. With reference to the angles aZ E (0, @) 

defined in Fig. 4, the wave function for the O- state is then 

We used the Y1 spherical harmonics since we need overall spin 0. Note that 1Q12 = 

constant. This is not surprising in view of the fact that the form of Q depends 

intimately on the spin state of the vector meson. Fortunately for our purposes, we 

can learn about the l- projections by letting it decay. We do this by replacing the 

spinors with spherical harmonics over a second set of angles w E (0,4): 

q= ~Y-:(o,m)Y+:(e,~) - gY;(O,qYy(e,d) + ~Y+:(o,~)Y-:(e,qs~. 

This replacement is justified since the transformation properties in angular momen- 

tum theory of the YfM7 s are the same as for the spinors. Notice that 1Q12 is no 

longer trivial although 

/ 
IQ12du = constant. 

Figure 4. The two body decay coordinate system. 
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The expression for \k is readily generalized: 

\EJM = c C(LlJ; NnM)Yf(O,Q)Yr(8,4), (2.10) 
-L<N<L 

-I+$1 

where JMLl have the same meaning as in (2.5). On rather basic grounds, we see 

that four angles are required to define a spin state for three pseudoscalars. 

We next sketch a sequence of formal manipulations which bring (2.10) into the 

form of (2.5). A n alternative discussion can be found in Ref. 5 (section II through 

equation 2.6). We may think of these angles as specifying rotations in space. Clearly 

there exists some Euler rotation (specified by the angles r, x and p) which relates 

the w and bt directions, 

R(w) = R(@R(~xP), 

From the properties of the rotation group 617, we have 

Since Yy (w) = 

Now the product of two D functions of the same argument can be reduced via 

DFo(n) D:;(a) = c C(LlJ’; OXX)C(LlJ’; NnM’) DGn(il). 
J’M’ 

Using in addition, the orthogonality property 

C C(LIJ; NnM) C(LlJ’; NnM’) = ~JJI 6~~1, 

Nn 

we obtain 

‘@JM = d-F-$- c(LlJ; 0xX) D&(@@r) die(x). (2.11) 
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Given that (2.11) can be derived from (2.10), why do we use the perhaps less 

intuitive form of (2.5)? The answer is simply of historical origin. Equation (2.5) 

was originally derived for arbitrary spin 4. The helicity representation was used 

because keeping track of phases, etc. is easier. 

2.4 THE EULER ANGLES ~~37 

It is useful to have a physical picture for the angles o$37. We begin by first 

discussing the origin of (2.6). We restrict ourselves to one specific isobar type (K*) 

in the present discussion. 

The rotation R(a,P,7) is one which takes the decay or Dalitz coordinates 

i~,c~,pD (see Fig. 3) into the production coordinates S$,&,,ZP (see Fig. 2). To 

construct this rotation recall 6 that 

R(a,/3,7) = exp(-iJ,cr) exp(-iJy/3) exp(-i.7,7) 

= exp(--iJL’7) exp(--i.@) exp(--iJ,a). 

Notice that the Jz directions in the second line are different and the order a/?7 has 

become 7@. 

For the transformation to the production coordinate system, we have: 

(2.12) 

XD 

= Ii 1 YD . 

ZD 

c7cpccY-s7scY c7cpsa+saca -c7sp 

- s7cpca-c7sa s7cpsa+c7ca s7sP 

spca spscx CP 

(~7 = cos 7,s7 = sin7, etc. in 2.12) Equation (2.12) is the well known result for 

expressing a vector in a new basis in terms of the coordinates in the old basis and 

the Euler angles which describe the transformation from the old to the new basis. 

By taking the products 
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ep.cD = sin,8sinff 

kpa,%D = -COS7Sin,d (2.13) 

gP ‘fD = SinPcosa! 

$pp’D = Sin7Sinp, 

we readily obtain the result given on (2.6). It is possible to show that @7 can 

be written in terms of Lorentz invariant quantities up to a phase for the azimuthal 

angles (Y and 7. For example, one finds (in the notation of Ref. 8 ) that 

sina! = f 
A4(pK,,, ‘&r-y qK+, qK,;)A2(PKrar ‘&+) 

‘3 hm qK,+& > t&r- )AdPKmv qK+ > qA+) in 

where the p’s and q’s are four-vectors and the An are symmetric Gram determinants. 

We can now briefly discuss a physical picture for the angles crP7. In the pro- 

duction coordinate system, Fig. 5, the A+ direction may be written 

ii+ = sin B cos dZip + sin B sin bGp + cos f92p. 

However, ii’ is just the orientation of $D in the decay coordinate system. Using 

(2.13) we thus have 

w+*2p=cose=cosp 

g+.g p = sinecosfp = -cos7sin/3 

ii+ .cp = sinesin = sin7sinP 

From this we conclude that 

e=p and +=?r-7. (2.14) 

In words, p and 7 are the polar and azimuthal angles of the bachelor meson in the 

production coordinate system. These angles are more commonly referred to as the 

Jackson and Treiman-Yang angles. In a similar manner we may write the beam 

direction as 

it%& = sin 8’ COS ~$2, + sin 8’ sin ~$3, + COS e’iD. 
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b-79 
364OAS 

Figure 5. The odd meson (z+) in the production coordinate system. 

From this and (2.13), it follows that p is the polar angle and (Y is the azimuthal 

angle of the beam as seen in the decay coordinate system. 

2.5 FURTHER REMARKS ON THE FORM OF BJ 

The form of the barrier factor in (2.9) h as its origin in two body scattering. It 

is generally accepted 7tg that 

where & is the center of mass momentum, a is the scattering length and 6~ is the 

elastic scattering phase shift. This formula is in turn justified by analogy with 

potential theory or on the basis of general S-matrix theory. To the extent we are 

studying K*OrIT+ + K*O'IT+ scattering, say, we could write 

4-r tan6~ 2 
I I 

.Q2L 2 
OL=$ l-itanbL =47r l-iaQ2L-tl . 

Thus the elastic amplitude has a threshold behaviour of 

T - Q2L. 

If the scattering is inelastic, say K+fp" -+ K*'s+, this is generalized to 

(2.15) 
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Since (2.5) and (2.9) represent the decay amplitude, we pick off from (2.15) only the 

factor of Qf$. Note from (2.9) that we have normalized the barrier factor so that 

it approaches 1 as Q -+ co. This is the ususal practice based more on common sense 

than any strong physical reason. The explicit forms used for the barrier factors are 
10 

(QW2 
(SRI2 + 1 

for L=l 

(QW4 
(QR)4 + 3(QR)2 + 9 

for L = 2, (2.16) L_ . . . . 
$ . ..-. ” .-: . .._ y 

:. 

where R is set to one fermi. 

Phase space for a threebody final state goes as 

Q; qi --. 
m rni 

One can generalize the arguments concerning (2.15) by guessing that the barrier 

factor should go as 
qf Qp 

m m;’ 

The second factor q? does in fact appear in (2.9) through the Watson factor 

(2.17) 

To see this consider the behaviour of C$ where the partial wave is well approximated 

by a single Breit-Wigner resonance. That is, suppose 

tan 61i = 

where I’0 is the width at resonance mass, mo, and q; is the K+ or x- momentum 

in the K*’ rest system. In this case (2.9) would read 

BJ= 
Q&qli 
t 

ro/(2q;1i+1) 1 
mm; m. - m; _ ;(-S)21i+1Po ’ 

1 

( > ‘; 21i+1 ro/2 

90 m0 - m; 

(2.18) 
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which is in accord with (2.17). Notice that our definition of BJ ensures that the 

decay amplitude X,J includes the three-body phase space factors; this is important 

for broad isobars such as the ~(1300) where the phase space varies substantially 

over the width of the isobar. 

As already noted in section 2.2, other knowledge about the partial wave can be 

incorporated with the factor f~( m,t’). We have already discussed the example of 

different t ’ slopes for different waves. Another example of this sort of modeling is 

the behaviour of waves for which M = 1 (and no net nucleon spin flip). On rather 

general grounds (Martin, 1979)) we would expect that such waves vanish as t’ -+ 0 

as m. In this case we would write 

fJ(m,t’) = nexp(y). 

In practice what we are trying to learn from the data is the detailed behaviour 

of the amplitudes as a function of both mass and t ‘. It is clear then that we can only 

use fJ(m, t’) in an iterative sense. What is generally done for the t’ dependence 

is to start the analysis with the behaviour observed for the mass spectrum. The 

partial wave analysis then gives us a second order estimate of its behaviour for each 

partial wave. In principle one should perform the analysis once again using the 

refined knowledge of the t’ dependence. 
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3. Symmetry Properties, the Observables and the Isobar Model 

This section is an extensive discussion of the properties of the amplitudes 

Asr)J(m, t’) introduced in section 2.2. Symmetry properties include such topics 

as the number of independent helicity amplitudes and the origin and meaning of 

the index 1). Although we speak in terms of amplitudes, we can measure only density 

matrix elements averaged over nucleon spin. As will be seen, our amplitudes pro- 

vide a means through which rank constraints can be imposed on the density matrix. 

The assumptions of the isobar model are discussed. The existence of the Watson 

factor, in particular, is crucial to the measurement of the complex off-diagonal ma- 

trix elements. Studies of these crucial assumptions are briefly mentioned. To date 

there is no evidence that these assumptions lead to serious misinterpretations of the 

data. 

3.1 THE DENSITY MATRIX 

Equation 1.2 may be written in density matrix form as 

= c (X+JIM’ X-JIM’) 
JIMI 

Y/M’\ 

0 

C Aa-JIMIA:-J1lMll )( 
a 

= c XVJ’M’ Py’““q x;J”M’I 
JIMbi 
J’IM’I’ 

where 
IWI~‘I~ - 

‘JJ’ - C A8vJIW A:vJIW. 
a 

(3.1) 

(3.2) 

In going from (2.2) to (3.1), we have changed notation somewhat and have made 

explicit the dependence of A,,J on IM(, the magnitude of JZ in the Kxr system. 
IWM’Iv Notice that the unnormalized density matrix pJs is block diagonal in 7; the 

sum on s runs over +, -, for nucleon non-flip and flip. 

In what follows, we discuss the origins of the forms of (3.1) and (3.2). To do 

so we must backtrack a bit in our derivation of P. In our discussion of the decay 

-- 
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amplitude, no mention was made of the spin nature of the amplitudes. That is, the 

results of section 2.3 only bring us to the stage where 

P= C 1 C .$/GJMCJBJ/~ 
IL=+,- J 
v=+,- -JgJ<.l 

=p -MM’ -‘* 
JM TJ P J JI GJIMI T;I) 

J.J’ 
M;M’ 

where we set TJ = C JB J and 

p=+,- 
v=+,- 

In (3.4) the summation runs over all four helicity amplitudes i$y, iif, i:y and 
AJM --. 

To bring (3.3) into the final form of (2.1), we must impose the well-known 

parity constraints for two-particle scattering a + 6 + c + d (see, e.g. Ref. 7), 

where ~1 denotes helicity, q denotes parity and o spin. For our purposes (3.5) yields 

In addition, we shall also need the symmetry result 

3.2 THE NATURALITY BASIS IJIMjr]) 

Define a new set of amplitudes A$“‘, by 

(3.6) 

(3.7) 
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Here NM = fi for M # 0 and NM = i for M = 0. Note that this new basis 

IJIMjq) spans the same space as IJM). Using (3.6) we have 

(3.9) 

Let us apply this transformation to the sum over JM in (3.3). Using (3.7), (3.8) 

and taking real and imaginary parts of GJ~, we have 

~;l$% Jo TJ = 
JM 

c 2N;~1~ { A$ e JM + i$LM 2 J-M}TJ 

JIM’ 
= c ZNM~ { JIL$~’ R@#.f’) + $L!‘~ Irnce JIMI)}TJ 

JIMI 
= c &i:‘“‘Gq~‘M’TJ (3.10) 

JlMltl 

where 

G Re@JM), q = +1, 
tlJ’M’ = 

lm('Jhf)y r] = -1. 

We note here an interesting property for M = 0 waves. Since G Jo = (-l)J+L+‘G>o 

we see that Im(Gy) = 0 if J + L + 1 is even and Re(c’~o) = 0 if it is odd. From 

the second line of (3.10), we can conclude that 

TJ = (-l)J+L-t’ for M = 0. 

We will give a physical picture for this result later. 

With the aid of (3.10), the probability distribution (3.3) becomes: 

P = c GqJl~l TJ ~A$"'~~~'M"* GQJl~lT; 

I~i+? 
w 

=t G,~IMI TJ ‘J J’ 
IJ4vIM’lo’ G* 

$J”M” T;f’ 
7 II 

(3.12) 
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Using (3.9) we can now see that p is block diagonal in v, that is 

IWrllM’lrl’ = 6 
PJS 

‘W~~‘JWI’ 
'l'tpJf ' (3.13) 

since, by substitution, 

IW+‘+’ _ 
PJS 

_ c A;~lMl ,@M’I* 
IJy 

I IMlrllM’lrl’ =w PJJl * 

If r] # v’, we see that pys’M”rl’ is equal to the negative of itself and is thus zero. 

Lastly, we can use (3.9) once again to reduce the number of independent helicity 

amplitudes, 

IMllM’ls - 
‘JJ’ - CA+U tl JIM’ A~< IM’I* 

u 
+C((-l)q(-l)-++qy) ((-1),(-1)-2+bI:J_y*) 

Ic 

= 2 C ~$M’,@f’l*, (3.14) 
” 

since the sum over v is complete. Using (3.13) and (3.14) we finally obtain 

P=C/C JZA:J?"'Gq~~~~C~B~/2, 

w J’M’ 

which is essentially the form of (2.2). We can now make the identification 

A+-,J = A:J!“’ and A-,J = A:e”I 

between the partial wave amplitudes Aa, J and the helicity amplitudes. 

3.3 FURTHER REMARKS ON v 

The transformation to the IJjMlq) b asis is well known in the literature. Tech- 

nically q indexes what are called parity eigenstates. That is, if I& denotes the 

reflection operator in the production plane (cf. Fig. 2), then 

%plJIMld = -olJlMlv). 
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A succinct discussion of this symmetry is given in the beginning of section II of 

Ref. 11. Note that from the point of view of the partial wave formulation, the 

meaning of Q is exact and well defined as indicated by the above formal algebra. 

A more colourful nomenclature for r] is naturality. This stems from the fact that 

q may be identified with the parity and spin of the system exchanged to produce 

the Kmr system: 

q = Pez(-l)J”= (3.15). 

For M = 0, (3.15) f 11 o ows from a simple argument in the rest system of the ex- 

changed particle (see Fig. 6). If L,, is the orbital momentum between the Ktc and 

the Kmr system, then 

&,, = 5 + z,, 

P,, = (-l)P(-l)LeY 

For J’ and ,?,, to couple to yield & requires that C(L,,, J, Jez; O,O,O) to be non- 

zero. This is true only if Lez + J + JeZ is even, that is 

or 

C-1) L+J+J,, = 1 

(-1)J = (-qLm+Jez* 

Recalling (3.12) and using P = -(-l)L+“, we have 

PJ-l)Jez = -P(-l)J = (-l)J-tL+l= q. 

For M # 0, the assertion that the linear combination of helicity amplitudes given 

by (3.8) isolates naturality (3.15) is valid only to order (l/s) 7112. 

t’= (Pout-P,n)*,J? 

&-k%~p~ : 
6-79 3640.46 

Figure 6. The rest system of the exchanged particle. 
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The above physical picture for q is often useful in guessing which of the four 

incoherent terms in (2.2) p t a ar icular partial wave is most likely to contribute to. We 

give two examples of this sort of reasoning for the K*(l&O) wave, the 2+M’lK*D. 

Consider first the reaction K-p + J??r+z-n. What value of Mq might we expect? 

As this is a charge exchange process, we might guess that T-exchange is important. 

Thus r] = -1. Then given the rule (3.12), we would certainly include the 2+0-K*D 

wave in our fit. Furthermore, since z’s prefer to couple to proton-neutron flip 

amplitudes, we would single out the corresponding flip amplitude for the 2+0-K*D 

as most important. For our other example consider the diffractive reaction K-p --+ 

K-rr+n-p. Diffraction brings to mind Pomeron exchange and nucleon non-flip. 

Again appealing to (3.12), we would guess the non-flip 2+l+K*D wave to be the 

most important. 

3.4 THE OBSERVABLES IN THE ANALYSIS 

Having established the formalism and notation, we are now in a position to 

discuss what it is we can measure in the partial wave analysis. It cannot be empha- 

sized too strongly that we are not measuring helicity amplitudes and their phases. 

Indeed we are not even measuring relative phases between these amplitudes. 

We begin by recording those quantities which are presented as the results of a 

partial wave analysis. 

d2a 
“’ 

-= AmAt’ dmdt ’ 
c [ IAaqJIZS ‘TirF”] > 

a 
(3.16) 

where a0 is the microbarn equivalent for a fit in an m, t’ bin of area Amht ‘. As 

discussed later, the likelihood fit is normalized such that (3.16) without the factor 

of ao/AmAt’ is just the number of produced events in the m, t’ bin. The integrals 

in (3.16) are integrated over the angles (Y, p, +y and the Dalitz plot variables m;, 0; 

of the particular isobar specified by J; this factor is included to restore the m, t ’ 

effects of BJ to the cross section. 

The isobar model permits us to measure both the real and imaginary parts of 

the off-diagonal elements of the density matrix. Such measurements are tradition- 

ally expressed in terms of a relative phase and coherence between two “waves”. The 
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relative phase between two waves I and J is given by 

(3.17) 

where both waves can only have the same v. The coherence is defined by 

(3.18) 

If cl Jrl happens to be equal to one, it is easily seen that we may interpret ~$1 J,, 

as the phase between two waves with the same helicity. Such an interpretation, 

however, is not unique as we shall see in the discussion of coherence in the next 

section. Furthermore, CIJ,, is often less than one in practice. In such cases some 

care must be taken in interpreting q51 J,, as the phase between two partial wave 

amplitudes. 

The last observable is known as the interference term between two waves of the 

same JpMq but with different isobars. It is defined by 

where the notation is similar to that of (3.16). It should be emphasized that (3.19) 

exists only for waves of the same J’MV. Although the integral in (3.19) extends 

over the Dalitz plot, the interference term has a more basic origin than the overlap 

of two isobars. In particular, one may show 2!13 

J GJPM’I ((~3 P, 7) GJ,plMtr, (a, P, 7) dad(cosP) dr 

= 6JJl 6MM’ &Ppl fJ(%t’)- 

This is a technical statement of two fairly obvious facts. First, it is well known 

that states of different JpMq cannot interfere across the Dalitz plot. Secondly, 

we observe that GTJ for a given type, say K*, form a complete set; the angular 
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structure of the Kmr system can be represented by using only partial waves of the 

K* type. In using the isobar model, we are mixing two types, e.g. K* and p. It 

is evident that each wave of the K* type must contain some contribution from a p 

type since both representations are complete. This overlap, in turn, must be across 

the Dalitz plot for a given JpMq. The practical consequence of this discussion is 

that the total number of observed events for a given JpMq will not be a~ + oJ, 

but rather al + oJ + 01 J. 

As noted at the outset, it is meaningless to interpret the amplitudes A%~J 

as helicity amplitudes since we have no polarization information for reaction (2.1). 

Note that in our definition of observables above, we always summed over s. We now 

show that while we can measure, for the most part, the A,,J complex numbers, 

we can only base physical conclusions on the observables (3.16-3.19). Consider the 

arbitrary transformation in helicity space, 

A vJIM\ - - c ussf Bsr,JJMI (3.20) 
s’ 

where U is an arbitrary unitary matrix (UtU = UUt = 1) and B,, Jl~l are a new 

set of amplitudes. Notice that we use only one U for all waves. It is easily seen (do 

it!) that (3.20) leaves all observables unchanged for all waves, 

IMIIM’lrl - 
‘JJ’ - C A~9 JIMI Aww7* 

= 2 Bs9 JIMI Bsv j’lM’I*. (3.21) 
s 

Equations (3.20) and (3.21) are just the mathematics of saying we have no infor- 

mation on nucleon polarization - the orientation in “spin-spacen is undefined. 

Even though we can’t identify the A,, J with the “true” helicity amplitudes, it 

is easy to see that we can still measure these amplitudes. Consider P for a given Q, 

2 2 

P= CA+,J&J + CA-VJ&J . 
J J 

(3.22) 

Suppose there are Nu, waves present, and that each wave corresponds to a 

different isobar or Watson factor. Notice that for a given Q, the G,J are relatively 
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real so that it is the complex factor ei6 sin 6 that permits us to measure Re (Aso J) 

and Im (Asq~). 

In the first term of (3.22) there are 2N, - 1 real numbers to be measured since 

there are NW amplitudes and one overall arbitrary phase. It is fairly evident that 

the first term of (3.22) possesses sufficient information through the direct (1x7 ~1~) 

and cross (Xv JX~I*) terms to measure these 2N, - 1 parameters. 

Let us turn to the second term in (3.22). Its formal structure is identical to the 

first term. In particular, were there also Nu, waves present in it, it is evident that any 

fitting scheme would be unable to distinguish these two terms, the decay amplitude 

Xv, being the same. Suppose we drop one wave from the second term. In this 

case, there would be 2N, - 3 parameters in the second term. Since the interference 

patterns of the two terms in (3.22) are now different, it seems plausible that 4N, - 4 

parameters can be measured. This conclusion is discussed more carefully in Ref. 11. 

Notice the same reasoning will apply to both r] = f contributions to P. 

We conclude this section with a collection of random remarks. 

Remark 1 : Amplitudes versus density matrices. 

The correct interpretation of our amplitudes is that they provide a means of im- 

posing rank constraints on the density matrix. Recall (3.1), 

’ = c Xtll PIJrl x;J (3.1’) 

IJS 

where we have condensed the notation again so that I, J run over all the wave labels. 

It is perfectly feasible in principle to fit the data using (3.1’) and the PI Jq as free 

parameters. This, in fact, is the approach taken by Ascoli and colleagues. Studying 

P in terms of amplitudes tells us, however, that the rank of p1 Jq must in principle 

be four (two for each r]); that is, PI Jq can have only four non-zero eigenvalues. The 

rank four condition can be ensured in the density matrix approach provided 

for all waves. 
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Remark 2 : Why then PI Jq? 

The Ascoli approach chooses not to impose the rank four condition. There are two 

motivations for not doing so. In any real experiment there are effects which could 

artificially introduce incoherence and thus increase the rank of PI Jv. These effects 

are 

1. “broad” binning of the data in either m or t’, and 

2. finite resolution of the measurements of the final state. 

Examples of how these concerns can affect a partial wave analysis are given by 

Cashmore l4 and Chaloupka 15. 

The other reason for using PI J’, relates to the non-orthogonality of the Xv, 

(Recall (3.19) and the associated discussion). The use of the isobar model makes 

the concept of a density matrix and rank conditions somewhat questionable when 

all the basis functions are not properly orthogonal. 

Remark 3 : Why then A,, J? 

With increasing Km mass the number of partial waves NW which we can measure 

increases. For the PI Jv approach, the number of free parameters is growing like NW2 

while for the A,,J approach, like 4N,. This additional fact of life indeed forces 

the Ascoli approach to introduce plausible assumptions to reduce the number of 

parameters (see Ref. 3 or Ref. 1). 

Unfortunately, these assumptions are not always justified to the extent that 

they could cause more problems than the concerns of Remark 2. In particular, 

Hansen did not observe the s-channel helicity nature of the l+Kp waves until they 

were disregarded l6 . 

The amplitude approach solves the parameter density problem with minimal 

(and, in principle, no) assumptions. The concern over incoherence effects due to 

broad binning is best handled by doing high statistics experiments. Although better 

measurement techniques can ameliorate the concern about resolution, it will always 

be with us. In particular, while we can write down likelihood functions which model 

resolution, their non-linear nature precludes analysis in a reasonably finite amount 

of time. The rank condition imposed by the amplitude approach is not a priori 

justified given the non-orthogonality of the basis functions across the Dalitz plot. 

It is, however, correct in the limit of narrow isobars or zero overlap. The effects 
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due to the isobar model are at least well defined in the amplitude approach. 

Remark 4 : Ambiguities 

Consider (3.22) in the situation where all waves have the same isobar. The Watson 

factor, ei6 sin6, being common to all waves would contribute no phase information 

in (3.22). Since the G,J are relatively real, we could no longer measure $1 Jrl but 

only cos 41 Jo. Th is is precisely the situation in K?r scattering studied in reactions 

such as K-p -+ K-z+n. In this limit we must recover the well known ambiguities 

of Kz or zrr scattering. 

3.5 SOME COMMENTS ON COHERENCE 

We elaborate here on the meaning of the coherence observable (3.18). We 

restrict the discussion to waves of the same q since the density matrix is block 

diagonal in q. As noted above, the use of amplitudes ensures that the density matrix 

can only have two non-zero eigenvalues for each r]. These non-zero eigenvalues are 

given by 

2 

+4C (I pIJ’d2 - PIIrl PJJrl (3.23) 

IfJ 

Notice the connection between the second term under the radical sign and the 

definition of coherence in (3.18). In particular, there are two interesting limiting 

cases governed by the value of CI Jfl. If CI J,, = 1 for all waves, then 

A= 
PIIll 

0 
CIJ,, = 1. 

We call this case perfect coherence; there is only one non-zero eigenvalue given by 

the sum of the diagonal elements of PI Jr]. In the other extreme, suppose CI J,, = 0 

for all waves. Then we have 

(PIIS 
A= 

c PIJ’I 
CIJ,, = 0. 

I#J 
(3.25) 
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We refer to this case as perfect incoherence; notice the distinct role played by some 

wave J in (3.25) ( recall the discussion following (3.22)). 

To gain some insight into the meaning of coherence, we next consider a model 

consisting of only two waves. Denoting nucleon helicity non-flip and flip amplitudes 

by n; and fi respectively, the density matrix elements may be written as 

Pll = bl12 + IhI 

~21~ = ~12 = nln2* + M2* (3.26) 

P22 = ln212 + lf212. 

If we think of the pair (ni, fi) as being a vector in “spin space”, then the density 

matrix elements of (3.26) are all the possible complex dot products of the vec- 

tors (721, jr) and (7~2, f2). By Schwartz’s inequality, we see that the coherence is 

bounded, 

0 5 Cl2 = Ip12’ < 1. 
JEii% - 

(3.27) 

Consider the upper limit of (3.27), Cl2 = 1. From (3.26) this implies 

I702 -nzf1l = 0. (3.28) 

There are two interpretations of this limit. 

1. Both fr and f2 zero. Physically we would say that both waves are produced 

solely by nucleon helicity non-flip. 

2. nl/fl = n2/f2. This says the vectors in spin space are parallel, as shown in 

Fig. 7.J.n this sense we may think of (3.28) as requiring the cross-product of 

the two spin vectors to equal zero, implying that the vectors must be parallel 

or anti-parallel. 

As noted in (3.24), perfect coherence leads to the eigenvalues X = ~11 + ~22 and 

x = 0. 

The lower limit of (3.27), Cl Jo = 0, has a similar interpretation. Since 

Ip121= 1m2* +f1f2*l= 0 

we say the spin vectors are orthogonal. The simplest physical interpretation is to 

say that one wave is produced via helicity non-flip while the other by helicity flip. 
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Figure 7. Perfect Coherence of an Amplitude. The most general orienta- 
tion of the flip and non-flip amplitudes of a perfectly coherent wave. 

Clearly, this viewpoint is not unique. The eigenvalues of the density matrix for 

perfect incoherence are X = ~11 and X = ~22. 

We conclude our remarks on coherence by considering two effects which most 

likely do not reflect the behaviour of actual helicity amplitudes. They are most 

likely induced coherence effects 14*15due to particular experimental procedures. In 

Fig. 8 we show measured coherence as a function of t’ in the Km mass interval 

1.2 - 1.35 GeV/c 2. The results are two coherence parameters, C(l+O+pS, I+O+K*S) 

and q1+1+ps,1+o+x*s)~ from two K-p + K-?r+n-p experiments performed at 

comparable energies, and labeled SLAC (E75) and B.C. “l.Other results (intensities, 

phases, etc.) from these two experiments are known to be consistent. While these 

coherences agree at “large” t’, they show strikingly different systematic behaviour 

as t’ -+ 0. The B.C. results suggest that the coherence for these waves vanishes 

as t’ -+ 0. A possible physical interpretation of such a result is that the l+p 

system corresponds to a pure helicity flip amplitude while the l+O+K*S wave is 

produced with some combination of flip and non-flip amplitudes. The SLAC results, 

in contrast, suggest a value closer to one as t’ + 0; note carefully, however, that the 

systematic trend is to a finite value less than one. Since the SLAC results are close 

to one for all t’, one might argue that both the l+p and l+K* systems are produced 

with pure helicity non-flip amplitudes, characteristic of diffractive production. 

It may be shown in general that coherence must approach either zero or one 

as t’ + 0. We now argue that the spurious SLAC results are most likely incoherent 

effects generated by averaging over a broad mass bin. The amplitudes we are 
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0 . SLAC 
0 x B.C. 

7-85 t’ [(GeVk)‘] 3640All 

Figure 8. Coherence as a function of t ‘. Comparison of results from two 
experiments studying K-p --+ K-n+?r-p. The open and closed circles 
show the coherence of the ~+O+&!J’ and the l+l+pS waves determined 
from the SLAC data. The squares and X’S are the corresponding results 
from the B.C. data. 

measuring are functions of both m and t’, 

A(m,t’) = IA(m,t’)l &‘(‘@‘) z IA(m) 1 ci6 Ib(t’) 1 eiaft’). (3.29) 

We often think of A( m, t ‘) as though we can factor the m, t ’ dependence as indicated 

by the approximate equality in (3.29). If the wave is resonant we would expect A to 

show a Breit-Wigner phase behaviour. Based on Regge theory we might expect cr(t ‘) 

to vary slowly. If the wave is helicity flip, we would expect Ib(t’)l to vary rapidly 
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as fl. With (3.29) in mind we can make a crude estimate of how much the 

coherence might be distorted if we average over a broad mass bin, 1.22 5 m 5 1.34 

GeV/c for the SLAC data. Thus 

P12 - J b1lb2lexd~4142) dm 

- l7ulb2I ((cash) + i binh)), 

where &.el is the measured relative phase and (a.*) denotes a mass average. This 

suggests a distortion in observed coherence by 

c 
-2.k - 1 (cos q&l) + i (sin&l) 1 ss r. 
GtL, 

(3.30) 

In the limit of a small mass bin or where CJ&~ changes slowly with mass, the ratio 

becomes one. However, in this case the relative phases of these waves are varying 

substantially with m; in addition, the l+p intensity shows a Breit-Wigner behaviour 

across the mass interval. Indeed averaging cos dreg and sin&l, we estimate that 

r = .95; that is, an observed coherence is only 95 % of the true coherence due to 

mass averaging effects. 

Turning to the B.C. results of Fig. 8, we indicate reasons why C + 0 as t’ + 0 

is unlikely. As t’ --f 0, the K- and ‘lr- will, in an average sense, be faster in the 

lab. In a bubble chamber, fast K’s and 79s are less likely to be distinguishable by 

ionization. The B.C. experiment was forced to ignore such ambiguous events in 

the partial wave analysis. Since these events are intuitively correlated with low t’, 

there exists a possibility that dropping them from the analysis led to the vanishing 

coherence at low t’. 

3.6 ASSUMPTIONS OF THE ISOBAR MODEL 

“It’s well known that the 

isobar model is wrong. 

. . . but it gets the right results!” 

Cashmore, 1976 

With due deference to the pragmatic wisdom of the above quotation 18,we 

now discuss the crucial approximations of the isobar model. Our remarks will be 
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necessarily qualitative and sketchy. Detailed and quantitative results may be found 

in the references; the talk by Aitchison “remains a fine introduction. 

We begin by restricting ourselves to two waves with the same JpMq but of 

different type, K* and p. The wave function for the state is then 

Ap(m,mp,t’)BpGp +Ap(m,mp,t’)BpGp. (3.31) 

Here BK* and BP denote the Watson factors, and GK* and G, are the decay ampli- 

tudes of (2.5). B arrier factors and Clebsch-Gordan coefficients have been absorbed 

into the amplitudes Ap and A,; they and the t’ dependence are essentially irrel- 

evant for our discussion. Note, however, that these amplitudes are now functions 

of the sub-energies rnK* and mp. The principal assumption of the isobar model is 

that 

AK* (m, mp, t ‘) N Ap (m, t’) 

A,Jm,q,t’) = Ap(m,t’) (3.32) 

that is, the amplitudes are only weakly dependent on sub-energy. As discussed in 

83.4, GK* and G, are not orthogonal across the Dalitz plot; we are mixing complete 

representations of the Kss system. The second assumption of the isobar model is 

roughly stated as 

J B, G, B;(, G;, dw5 N 0 (3.33) 

that is, the overlap between different representations with Watson factors included 

is small. In the limit of narrow isobars, (3.33) becomes clearly valid and (3.32) 

would also hold. 

In principle the amplitudes A are always a function of sub-energy simply by the 

nature of angular momentum representations for three-body states; if we carefully 

(see, e.g. Ref. 20 ) record all the labels for our basis vectors we get 

IJ’MqLl; mm;). 

There is a more physical way to appreciate that the amplitudes must be functions 

of two-body mass. Consider a situation where an isobar partial wave (i.e. ei6 sin6) 



30 

resonates twice. For example, the favoured I = 1 P-wave amplitude in ?rr scattering 

shows resonance behaviour both at the p mass of - 770 MeV/c2 and again in the 

vicinity of - 1600 MeV/c2, which has been taken as evidence for the p’(1600); 

a similar situation exists in the I = g P-wave Kx scattering. We may think of 

the three-body state as having decay modes into both the p(772)K and p’(l6OO)K 

isobar states. In this situation, however, all the quantum numbers JpMqL 1 are 

the same for both modes; only through the TX mass dependence can we distinguish 

which mode is more important. For a given three-body mass, we could in principle 

measure the relative decay rates by introducing two amplitudes A, and A,’ and by 

splitting the Watson factor into two pieces 

where we would take 

A’, B, + A,‘B,r 
> 

G, (3.34) 

ei6p sin 6 
B, = P, rnnT < 1 GeV/c2; 

0, m,, 2 1 GeV/c2. 

(3.35) 

rnRr < 1 GeV/c2; 

m,, 2 1 GeV/c2. 

Although the definitions of p and p’ made by (3.35) are somewhat arbitrary, it is 

evident that such a procedure would permit us to measure the two amplitudes A, 

and A,‘. 

The above example clearly illustrates potential pitfalls in assuming (3.32). We 

might hope that for narrow isobars this assumption is not too bad. Unfortunately, 

taking K* and p as typical “narrow” isobars and (3.33) as a measure of how much 

they overlap, we still find reason for concern. We show in Fig. 9 the overlap (3.19) 

for the l+O+pS and l+O+K*S waves. The data are from the E75 K+r+r-p 

analysis. The correlation between direct and interference terms, Fig. Q(a), is quite 

similar to the relative phase behaviour between these waves. From Fig. Q(b) we 

see that the interference is at least 20 % of the l+O+pS intensity at peak. We 

must conclude that assumption (3.33) is, in practice, not true. Furthermore, there 

is a concern that the measurements we interpret as indicative of resonances are 

somewhat spurious effects due to using (3.31) with the assumption of (3.32). 
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Figure 9. Interference of the l+O+pS and l’O+K*S waves. Shown 
is the ratio of the interference term to the direct terms for the l+O+pS 
and l+O’K*S waves as a function of Kmr mass (a), and the absolute 
intensities of the l+O+pS wave (square’s) and the interference term (X’S) 

@I* 

From a-theoretical point of view, a formulation of the isobar model using (3.31) 

and (3.32) is immediately at odds with a subset of unitary constraints. Schemati- 

cally these are written 
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=8- - =@= = c i (3.36) 

6 -79 364OA8 

Here we are considering a 2 --+ 3 process; the 2 + 3 bubble represents this 

amplitude while the 2 -+ 2 bubble refers to the isobar amplitude (i.e. the Watson 

factor). The f signs refer to whether we approach the real axis from above or below 

the cut in isobar mass. In principle (3.36) should hold for all isobar types. If we 

had only one isobar type, (3.36) would be easily satisfied, viz 

A(m)ei6 sin 6 - A(m)emi6 sin6 = 2iA(m)ei6 sin 6emi6 sin 6 

44 1 
,i6 _ ,-i6 

2i 1 sin 6 = A(m) sin2 6. 

However, as soon as we have two types, (3.36) no longer holds. In particular we are 

again forced into concluding that the A’s must be functions of two-body mass in a 

manner governed by the strength of the overlap (3.33). 

It is possible 21122 to reformulate the isobar model so that it satisfies the sub- 

energy unitarity constraints (3.36). Ascoli 21 used such a model to fit 39r data 

and compared the results from the more traditional approach. There were two 

interesting results from this study. First it was found that no major qualitative 

features of the fits were changed, such as intensities or phases. While large changes 

in various details occurred, no evidence of the hoped-for phase variation signaling 

an Al resonance state was found. The second observation was that the quality of 

the fits was significantly worse. Although it may be argued that the likelihoods of 

different models are not directly comparable, it is disconcerting that the supposedly 

“improved” unitary formulation led to a poorer description of the data. 

Shortly after the introduction of the unitarized isobar model, Aitchison lg 

observed that such a formulation was still in principle incomplete. In particular he 

argued that a formulation based solely on unitarity only imposed constraints on the 

imaginary part of the ampltitude. Schematically, 

Im(T) = C IT12. 

isobars 
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A proper formulation should use this result and a dispersion relation (i.e. analyticity 

of the scattering amplitude) to put constraints on the real part of the amplitude. 

In addition, Aitchison also noted that K-matrix approaches, which are equivalent 

to only constraining Im(T), were well known to often cause “violent” changes in 

the amplitude. In this sense he was not surprised that the unitarized formulation 

was less consistent with the data. 

The criticisms voiced by Aitchison have been addressed by Schult and Wyld 23. 

As emphasized by Schult and Wyld, their particular implementation of analyticity is 

. not unique but is most likely representative of what would arise in a more complete 

theory. Using a now analytic, unitary formulation of the isobar model, they fit 

the same data studied by Ascoli and Wyld 21. When they compared their results 

with the results from the basic model incorporating the assumptions of (3.31) and 

(3.32), they found no significant difference in phases or intensities. Furthermore, 

the description of the data provided by the new model was just as good as that of 

the basic formulation. 

~ (1. 
j.: 

Given the theoretical complexities of the problem, it is dangerous to draw 

strong conclusions from these encouraging results of Schult and Wyld. We shall, 

however, offer the following guidelines2* for results obtained with the isobar model. 

Measurements of comparatively large phase changes or intensities as a function of 

three-body mass would probably be consistent when compared with the results of 

a more complete formalism. One should be quite careful, on the other hand, of 

drawing conclusions from comparatively small phase effects since these could be 

significantly altered by inclusion of sub-energy dependences. 

, 
1.: :. :.‘:. 
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4. Mechanics of the Likelihood Fit 

In this and the following chapter, we address the problem of estimation of 

the partial wave amplitudes A,,j from the data. By the nature of this problem, 

our discussion is generally qualitative and heavily biased to the procedures used in 

analyzing E-75, E-132 and E-135 data. We shall attempt to record those details 

of the analysis which were found either essential or practically useful. It should be 

kept in mind that our procedures are often subjective in nature, although we have 

attempted to abstract the general methodology out of the mire of our own physics 

analyses. We have developed several software tools to assist our own analyses, and 

it will often be convenient to refer to these programs as we proceed. We divide the 

problem of amplitude estimation into two broad areas: likelihood fits and solution 

determination. The latter topic is discussed in $5. 

The term likelihood fit as discussed in this section will refer to several related 

problems. In defining a likelihood function we specify certain input requirements 

for the fitting program. These include such things as data, Monte Carlo informa- 

tion, and first derivatives of the probability distribution. The output of the fitting 

program includes solutions (the A,,J) and th eir error matrix. Provision for man- 

aging and storing this information must be made. This chapter will outline the 

mechanisms by which we have managed these problems. 

4.1 OVERVIEW OF THE LIKELIHOOD FITTING 

Before turning to the details of the likelihood fitting, it is useful to have an 

overview of the analysis procedures. This is given by the flow chart in Fig. 10. 

The probability that we observe an event (Pobs) in the apparatus is the product 

of the physics probability that it occur (P given in (2.2)) and the probability that 

it is properly measured in the apparatus E (the acceptance). Traditionally, the 

acceptance is determined by a Monte Carlo procedure in which events are generated 

and the effects of the spectrometer are then modeled to determine the acceptance as 

a function of the kinematical variables describing the event. To properly account for 

the effect of the data selection procedure on E, the selection cuts placed on the data 

events must also be applied to the Monte Carlo events in a consistent manner. We 

choose to do this by putting all the Monte Carlo events through the same selection 

program used to extract the data event sample. Because of this, our flow chart 
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I 
30 I 

divides into two branches. All of the events (data and Monte Carlo) are required 

to pass the selection program. For every passed event, the Euler angles describing 

the three-body final state are computed with a call to the routine OILER, and 

then the routine CALCPI is used to compute the decay amplitudes (the XV,) for 

the event. The XV, from each event are the data needed to perform the likelihood 

fit. In the case of the Monte Carlo events, besides computing the Euler angles and 

XV~ for every event passing the selection using the measured event parameters, the 

Euler angles and the Xtl~ are also computed using the generated event information. 

This latter information is needed to determine the acceptance corrected partial wave 

amplitudes. 

The X,, from the data events then form part of the input into the likelihood 

fitting program PWAOP. The Monte Carlo events are used to compute the other 

inputs into the fit, namely the acceptance and normalization integrals, 

w;yJ = 
/ 

EX~~X,,~* dw5 
IS 

dw5 

(4.1) 

wNor - 
qIJ - J 

a&,,&, J* dw5 
I/ 

dW5. 

The integration is done over each mass and t’ bin chosen for the analysis by the 

program PWAWIJ. (Strictly speaking, only the W;Ij are necessary to perform the 

likelihood fits; the WNor however, are used after the fit to determine the acceptance dJ’ 
corrected wave intensities. This will be discussed in more detail in a later section.) 

The calculation of the acceptance and normalization integrals predicates a 

choice of mass and t’ binning for the analysis. In principle we would like this 

binning to be as fine as possible (recall that A,,J = AsgJ(m,t’) and those nasty 

coherence effects). On the other hand our data sample is finite. As a rough estimate 

we suppose 100 events/wave will determine a complex A,,J, If we then suspect that 

perhaps 15 partial waves are important in a given m, t’ region, we would introduce 

an m, t ’ mesh on our data such that there were N 1500 events in each AmAt’ box. 

Having chosen AmAt’, we limit our data and the W,“iF, WqTP; to the region of 

interest and save the necessary information on disk. 

The user drives P WAOP by providing it a series of control cards which specify 

each set of fits. These control cards are normally generated with the aid of PWA- 
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CON, an interactive program which serves as a control card editor. The results 

of the fitting program PWAOP are saved on a number of solution files. This in- 

formation includes the A,, J, a subset of the error matrix, and other bookkeeping 

information. The solutions can be edited using the program PWAED and they 

can plotted, wave-by-wave, using the program PWAAP. Both of these activities 

are necessary to keep track of the solutions as they are churned out by PWAOP 

. We defer a discussion of the “Solution Selection” procedure in Fig. 10 until the 

next chapter; this decision loop is properly a part of the solution determination 

procedure. 

We now come to the final steps, roughly speaking, in our overview. The pro- 

gram TALMUD is designed to study all possible observables (3.16-3.19) as a 

function of m or t’. As such it is a highly flexible program requiring access to the 

full error matrices from the fit. Additional inputs to TALMUD are the solutions 

and the Wzj ; the latter are used to correct the final results for the spectrometer 

acceptance and selection cuts. Most physics conclusions about the partial wave 

analysis are made on the basis of TALMUD output. 

Another program AMPFIT is designed to accept as input the solutions and 

the corresponding error matrices and to fit the behaviour of the amplitudes as a 

function of m and t’ to any number of multi-parameter models. For example, we 

may want to fit the 2+0-K*D ,2+l+K*D and 2+1-K*D amplitudes to a common 

Breit-Wigner amplitude with separate background terms in each wave. AMPFIT 

can fit these three amplitudes simultaneously to that model, taking into account 

the correlations between these partial wave amplitudes through the error matrices 

provided by PWAOP. 

Lastly we may compare the results of the fits with the data using the program 

PWACF. This routine will compare the predicted data distributions derived from 

the likelihood fit with the observed data distributions, and will also show the effect 

of the acceptance correction on the various distributions. 

This overview of Fig. 10 has been presented as a guide for the codes and 

methods developed in our Kmr studies. It is not meant as a rigorous guide on how 

to proceed but it is indicative, rather, of how one might approach the analysis. 



38 

4.2 THE EXTENDED MAX~UM LIKELIHOOD FUNCTION 

We assume that the probability for the ith event in our sample is given by 

(4.2) 

where P(‘) is the theoretical probability (2.2) for the ith event to occur, and c: (4 

is the probability that it is observed in the spectrometer and passes the selection 

criteria. Notice that an event is specified by a unique set of kinematical variables in 

the sense of (2.5). One may think of &) as being either zero or one depending on 

the geometry of the apparatus multiplied by an overall weight (5 1) reflecting such 

things as track decay, absorption, tracking efficiency, etc. As we shall see shortly, 

the &) need not in practice be determined for the observed data. 

Consider a sample of N observed events in a bin of area AmAt ‘. The likelihood 

function may be written 25,26 

where 

x = J Poba (w)dw5. (4.4) 

The integral in (4.4) extends over all phase space. Equations (4.3) and (4.4) are 

functions of the A,,J. The principle of extended maximum likelihood maintains 

that the best estimate of the Aa, J is that which maximizes L3. 

In practice we work with InC. Some interesting simplifications of (4.3) then 

occur. Using (4.2) and (2.2) we find 

- CC 1 Aav JA,, J* 
s 

E(W)XI)J(W)X~~J*(W)~~~. (4.5) 
arl I J 

We note that the acceptance for the observed events may be effectively dropped 

from (4.5). This follows since the first term is an overall scale to 1nL: which is 

independent of the value of the amplitudes and the number of waves; so long as we 

.: . ,. ,, .:: ,.. ’ 

! 

! 
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consider the same bin, it is constant. The other important simplification is seen in 

the third term of (4.5). Acceptance only enters through the acceptance integrals 

which may be computed independently of the actual values of the amplitudes. 

Our likelihood function thus reduced to 

In ,f = 5 In P(‘) - C 8~ C C Aa,IAa,J*W$j 
i=l I J 

(4.6) 

where 

Equation (4.7) is the Monte Carlo evaluation of the acceptance integral defined in 

(4.1); Nt is the number of thrown events in the particular mass and t’ bin. The 

sum in (4.7) is effectively only over the Monte Carlo events which are detected in 

the apparatus and satisfy the selection cuts, since c(‘) is zero otherwise. The second 

term in (4.6) is the number of observed events F predicted by the fit. In principle, 

and in practice for good fits, this integral is quite close to the number of observed 

events N. At the end of each fit, PWAOP scales the parameters Aa,J to ensure 

that this is so. 

For N large (- 103), we can roughly estimate the scale on In L. At the end of 

lnL?-~lnP(i)-N 
i=l 

The average value of P(‘) is roughly N/( ) h c w ere e is some average acceptance. ( ) 

We thus estimate 

(lnf!)-Nln (4.8) 

For E-75 with (E) - 12% and N - 103, (4.8) gives 1n.L N 8N which is what was 

observed. 

4.3 SOME DETAILS ON THE INPUT TO THE FIT 

As mentioned earlier, the user of P WAOP is responsible for inputs of data and 

acceptance and normalization integrals. The fitting program uses a multi-purpose 

fitting algorithm called OPTIME2’ which performs the actual In L maximization. 
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OPTIME employs subroutine HUME that computes such quantities as P and its 

derivatives with respect to the fit parameters A,,J. As this information would be 

needed for any implementation of this three-body analysis, we record some of the 

relevant details here. 

Consider the probability distribution, 

P-2) 

This is the basic expression computed in HUME. Recall that (2.2) assumes no 

nucleon polarization information. Should a reaction such as K-p -+ I?” K+T- A be 

studied, (2.2) and the corresponding acceptance integral (see (4.11) below) would 

have to be modified. One way of doing this is described by Wagner ‘s. After a bit 

of algebra, the first derivatives of (2.2) are shown to be 

(4.9) 

In addition to these derivatives (4.9), we must also provide OPTIME with deriva- 

tives of the predicted number of observed events r defined in (4.4). 

(4.10) 

4.4 COMMENTS ON THE ACCEPTANCE CALCULATION 

As we have seen from our formulation of the likelihood function (4.5-4.6), 

the acceptance of the apparatus appears only in the normalization integrals W,$j 

defined in (4.1). Th ese in turn are calculated by Monte Carlo techniques. It is 
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therefore essential that the MC program properly incorporate all cuts, acceptances, 

decay probabilities, detection efficiencies, etc., that could have affected the observed 

data. In the course of the partial wave analysis, it may be necessary to impose 

further cuts on the data; such cuts must also be incorporated into the MC data 

when the W,“fF are computed. For a high acceptance apparatus, the most likely 

such cuts will be to remove low mass A’s, N*‘s and/or Y*‘s. Although the partial 

wave decomposition of the Kn?r system could in principle describe such data, the 

number of waves required would be prohibitive, especially for prominent A or Y* 

signals. 

Beyond these remarks there are other important considerations which must be 

addressed before generating the MC events. Among them are: 

1. How many MC events? 

2. How should they be distributed in m and t’? 

3. What a priori information should be included in BJ (see $2.5)? 

4. Do we compute waves in the s or t channel, or in both? 

In what follows we discuss the procedures adopted in our experiments (E-75, E-132 

and E-135) to address these issues. 

The number of MC events one chooses to generate is closly related to the chosen 

event distribution in m and t’. These choices follow from considering how the data 

are distributed and from the need to have reliable estimates of W,$‘j and W,$“j. In 

Table 1 we show the m and t’ distribution of the observed K+t,+n- data events 

from E-75. The table was arrived at after several iterations, using several criteria. 

It was realized at an early stage that the WvlJ Acc should be available in a much finer 

AmAt’ mesh than would ever be used in a fit. This gave us the freedom of not 

having to fix the binning of the data before we knew the important physics features. 

The lower limit on Am was chosen to keep at least some (2 20) events in each t’ 

slice. The number of MC events required to pass in each bin, NP, was chosen to 

be about 10 times the number of observed events. Note that this requires some a 

priori knowledge of acceptance in each bin so that the number of thrown events, 

Nt, could be properly chosen. This number of MC events was chosen to keep the 

error in the evaluation of WqAf’j and WqNf) small relative to the statistical weight of 

the data. 



- 

,I 

- 

0.00 107 316 548 286 369 412 449 506 519 514 475 429 385 358 386 358 292 

0.01 110 225 448 291 275 327 373 384 414 434 410 316 346 306 305 286 247 

0.02 74 209 342 231 272 279 339 348 376 395 350 316 308 258 250 238 220 

0.03 67 199 303 185 223 248 272 293 321 354 264 308 263 244 244 209 206 

0.04 83 180 265 176 174 188 237 199 270 254 289 253 214 238 197 211 193 

0.05 55 138 251 146 185 194 189 240 246 268 257 215 200 227 181 182 162 

0.06 53 144 208 135 171 172 164 204 209 228 222 204 175 164 160 145 166 

0.07 39 115 176 120 140 133 178 190 203 174 214 177 136 160 154 147 140 

0.08 64 177 291 217 227 257 284 289 348 314 348 294 284 261 280 255 224 

0.10 62 151 223 157 182 207 234 231 282 281 284 252 236 223 192 197 216 

0.12 42 94 201 121 135 167 171 194 211 214 202 195 191 183 199 182 162 

0.14 33 80 126 99 112 122 164 135 175 192 173 165 149 160 132 149 124 

0.16 34 77 123 70 95 112 123 133 148 151 133 123 137 129 116 112 112 

0.18 31 65 81 54 67 85 87 97 127 106 122 116 109 96 110 86 96 

0.20 17 42 77 44 61 69 78 86 88 93 85 87 109 83 88 85 77 

0.22 30 65 121 61 75 110 113 118 170 155 142 120 143 132 116 129 126 

0.26 17 54 67 56 50 80 65 72 97 99 106 81 102 81 103 64 88 

0.30 31 67 97 69 66 83 83 108 93 128 117 112 100 122 126 146 129 

0.40 19 19 35 23 33 23 28 53 47 48 53 66 53 37 48 59 59 

0.50 7 5 21 12 12 13 15 18 16 23 37 28 283 33 34 34 33 

0.60 11 23 26 14 18 27 17 21 42 61 41 39 39 33 39 45 45 

Table 1. The Monte Carlo binning used in the E-75 K+h?r- analysis. 
The m and t’ numbers are leading bin edges. Each m and t’ node is the 
number of observed events in the bin. The last t’ bin is from 0.6 to 1.0 
(GeV/c)2. 

1.00 1.04 1.08 1.12 

- 

1.14 1.16 1.18 

mpY+?r+s-) 

1.20 1.22 1.24 1.26 1.28 1.30 1.32 1.34 1.36 1.38 
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Since the data was fit in bins which will in general be larger than the bins for 

which the W,“i) are computed in, these integrals were averaged over each data bin 

when the inputs to the fit were set up. This averaging was done with the following 

formula 

where 

(4.11) 

(4.12) 

in the notation of (4.7). The index k runs over the bins of Table 1 which were to 

be averaged, and Nik) is the number of observed events in the kth bin. Notice 

that (4.11) and (4.12) assume that the number of events passed by the Monte Carlo 

in each bin was in proportion to the observed event distribution in m and t’, i.e. 

Nt(k)crNik)/(ek). Since NJk’/(ek) is roughly the true number of events in each 

bin, the averaged normalization integrals, W$‘?, were also computed using (4.11) 

and (4.12). Even with these qualifications, (4.11) remains an approximation which 

becomes worse as the number of bins averaged increases. 

For each mass slice in Table 1, t’ slopes were determined from the observed 

spectrum. Monte Carlo events were generated in the corresponding t ’ bins according 

to these distributions corrected for the t ’ acceptance of the apparatus. This amounts 

to assuming that each wave has the same t’ dependence; that is 

, 
BJ cc fJ(m,t’) = e$-, for all J. (4.13) 

Note, however, that the function f~( m, t’) in (2.9) was set to one for all waves 

both for the data and the MC events. This would seem to be inconsistent with 

distributing the MC events as ebt’ also. To see that there is no inconsistency, 

suppose we had computed waves with (4.13) but generated the MC events flat in 

t’. In this case (4.6) and (4.7) become 



where 

WAcc _ A 2 k bt’ 
sIJ - Nt E e LX~J(Wk)X~J(Wk)a 

k=l 

Notice that Xt7r in (4.6’) and (4.7’) denotes the decay amplitude with fJ(m, t ‘) = 1; 

that is, with no ebt’12 dependence. We see from (4.6’) that a t’ dependence which 

is the same for all waves simply contributes a constant term to 1nL. On the other 

hand, this dependence occurs in (4.7’) in a manner equivalent to having generated 

MC events according to ebt’. The advantage of generating the Monte-Carlo events in 

accordance with the major trends in the data distributions is that the Monte Carlo 

result for the acceptance is obtained Uefficiently,” i.e. the acceptance measurement 

has the most accuracy in the kinematical regions with the largest number of data 

events. 

Although we might expect each wave to have a different t’ dependence, we 

generally do not have sufficient information to specify that dependence before the 

partial wave analysis. The best we can do is to generate MC events according to the 

t’ distribution observed in each mass slice. The above discussion shows that this is 

equivalent to having used (4.13) and MC events with a flat t ’ distribution. Once the 

partial wave analysis has been done and we know something about the t ’ dependence 

of each wave, we should in principle repeat the fits using this information. In 

practical terms, this requires that both the data and MC waves must be modified 

and the normalization integrals recomputed. Note, however, that it is not necessary 

to recompute the X,,r nor to regenerate MC events. 

As a concrete example, suppose that the partial wave analysis indicates a func- 

tion fJ(m, t’) for each wave, and that the MC events have been generated according 

to ebt’. Then the data and MC waves should be modified in the following way: 

XVI -+ 
i 

fJ(m,t’)&I, for data events, and 

fJ(m,t’)XqIe+, for MC events. 
(4.14) 

4.5 ANALYSIS IN THE S-CHANNEL 

It may happen that certain results of a partial wave analysis performed in the 

t/-channel are better emphasized in the s-channel. We record here the formulae 
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necessary to do this. As in the case of a t/-dependence, we can set up s-channel fits 

without recomputing the X,,I or regenerating MC events. 

In the rest frame of the Kmr system, we take the s and t-channel z-axes to be 

&? = -@out 

.2t = q. 

The cosine of the angle between .2S and 2t is given by 

(4.15) 

&m Kin (P 
cos et8 = 

+ ’ PPout) - (PK~~ * PKi+,) (PK~~ . Ppout ) 

A2(PKn?r,PK+)A2(~Kna,~p ) 
(4.16) 

rn ou 

where Az(a, b) = a2b2-(u.b)2. The dot products in (4.16) are between the 4-vectors 

PKlrr, pKi+, and PPout ’ 
In the IJM) basis the desired transformation is 

ii!& = c $&&f, (et,). (4.17) 
M’ 

To go to the (J(M(Q) basis we use (cf. (3.8) and (3.11)) 

GqJIMI = NM (tiJ~ + (-1)J+L+‘+M2! _ JM 9 > 
(4.18) 

where we have denoted the angular part of the decay amplitudes in the t and s- 
- (4 channel by GJM and GF&, respectively. We find from (4.17) and (4.18) the result 

GFjlMI = ~NM c NMI 
M’20 

[ 
d$‘,M,(et”)+“(-l) J+L+z+M~;lj/-,M,(&s)] $&- (4.19) 

Notice that the transformation from the t to the s-channel basis does not mix parity 

eigenstates. As a practical matter, however, we must have all the GfJIM, waves 

(0 5 M 5 J) to compute any one G ($1 
‘1 JIMI’ 
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It is well known that the transformation which relates the decay amplitudes 

(4.19) will also relate the density matrices. Schematically, if 

I$) = D&), (4.20) 

$4 = Dt,(t)D. (4.21) 

To the extent that #) is measured in very fine m and t’ bins we can use (4.21). In 

practice, however, we find that Bt, is a very rapid function of t ’ and slowly varying 

in m. It is thus dangerous to use (4.21) when the fits have been performed over 

broad t’ bins. 

4.6 COMPARISON OF FIT RESULTS AND DATA 

Although the principal need for the MC events is to calculate the acceptance 

and normalization integrals (4.1), they are also useful in comparing the results of 

the fits with the data. This is illustrated in Fig. 11. On the left of the figure are 

shown histograms for the q cosp and 7 distributions of the data. Superimposed 

on these are the fit histograms obtained from the passed MC data using the weight 
p(4 

obs 
= pi (cf. (4.2)) for the ith MC event. In effect, this gives the observed 

event distribution predicted by the partial wave amplitudes and the Monte Carlo 

simulation, and provides a method of comparing the results of the fit with the raw 

data distributions. The right hand column shows the same distributions corrected 

for acceptance. These latter histograms were obtained using all the generated MC 

events weighted by P(‘) for the ith event. 

Given the large acceptance losses in (Y and cosp, it is worthwhile discussing 

1) whether we believe the results, and 2) by what magic do we accomplish such 

large corrections. Consider the corrected ~$7 distributions; these Euler angles are 

for the K* isobar, KTT + K*r. It is well known that most of the events in this 

region correspond to Jp = l+ for the K* and z in the S-wave. From the cosp 

plot (0 = cosB~-J) we see an S-P interference with the S-wave dominant. The 

P-wave corresponds to a bit of the O-K*P wave. Turning to the (Y plot, we see 

something rather similar to 1 + 4cos2 (Y which is what is expected for dominant 

l’O’K*S . The 7 distribution is flat in accord with approximate t-channel helicity 
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3640A13 y (degrees) y (degrees) 7-85 

Figure 11. Comparison of a typical fit with data for the K* isobar. Ob- 
served (histograms) and predicted (curves) distributions are on the left, 
corrected distributions on the right. 
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conservation. We conclude that these distributions are consistent with what is 

known about diffractive Kmr production. 

Although there are significant losses in the Q: and p distributions of Fig. 11, 

there are several good reasons why the analysis could still be performed. First the 

statistics where acceptance is high are quite good. There are regions in each of the 

distributions which are only marginally affected. Coupled with these observations is 

the fact that each decay amplitude has definite symmetry properties in o@y; thus, 

for example, losses for o - 180’ are compensated by symmetry and no losses at 

cy - 0’. Lastly, we are fortunate that there are few partial waves active in this, the 

&1(1270) and Qz(1400) region; namely Jp = O-, l’, and 2+. With respect to the ,f3 

distribution, for example, we are studying mostly S and P-wave interferences. Had 

there been 2- and 3+ waves present, the analysis may not have been as successful. 

4.7 DETAILS ASSOCIATED WITH THE FIT OUTPUT 

We conclude this section by describing the contents of a solution record pro- 

duced by the fit. In addition we record the details of the error propagation in going 

from amplitudes to the observables (3.16-19), as performed in TALMUD. 

The results of each fit, a solution, are written to one record of a direct access 

disk file (see IBM’s description of the DEFINE FILE statement). The disk file is 

subdivided into a number of fixed length records, the first record being an index of 

which records in the file contained valid solutions. PWAOP would first read the 

index, determine the next available empty record on the file, write the new solution 

onto it and finally update the index record. Besides minimizing the bookkeeping, 

this allows a number of jobs to be accessing the same file simultaneously. Having 

three or more fit jobs running on the SLAC computer, each reading and writing the 

same solution file, is not uncommon. 

The information on one solution record consists of: 

1. the mass and t’ bin being fit; 

2. the list of waves used in the fit; 

3. the real and imaginary parts of each fitted amplitude; 

4. the fit quality, InL: and the estimated increase in 1nL which would have 

occured in the next step, and 

5. the diagonal of the error matrix, and the covariance of the fitted real and 
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imaginary parts of each wave. 

The portion of the error matrix stored on a record is sufficient to be able to de- 

termine the acceptance corrected intensity, u J, and phase, 4 J, of each wave, along 

with the errors on these two quantities. Let UJ N Re(&nJ) and bJ u- I??Z(AavJ). 

Then o J and CJ~ J are related to the fitted amplitudes by the following: 

UJ = *zAt, (a”J + bjF3.Y 

(4.22) 

OJ then is the differential cross-section for the Jth wave in the fitted mass bin, and 

C$J is the phase of this wave relative to the partial wave used as a reference wave 

for that Q term (see $5). A short calculation yields the errors on these quantities 

2 *0 
ITUJ = AmAt’ asVaJaJ + 2aJbJVaJbJ f btVbJbJ 

(4.23) 

Note from (4.23) that the errors on OJ and 4 J can be strongly correlated for a 

given wave; in assessing the statistical significance of a wave we must consider both 

OJ and f$J. We can think of the change of variables from (aJ, bJ) -+ (oJ,$bJ) as 

a nonlinear transformation, and in that sense (4.23) is a first order mapping of 

the error ellipse from one set of variables to another. In particular, the mapping 

into C$J becomes highly non-linear as OJ -+ 0, so that adJ from (4.23) becomes 

increasingly unreliable in this limit. Because of this, some caution must be taken 

when interpreting the phase behaviour of a relatively weak wave; the calculated ~4, 

often underestimates the “true” uncertainty in 4 J. 

The full error matrix from the fit can be written onto a special “error matrix” 

disk file, for subsequent use by TALMUD and AMPFIT. The full error matrix 

is needed when the cross-section and associated uncertainty is computed for any 

specified set of waves. We present the relevant formulae for such a calculation 

below, using as an example, the calculation of the error on the total differential 
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cross section. We begin by rewriting (3.16) 

d2cr 
a’ - = 

dmdt’ 
CA,, JA,, J*Wzj. 

AmAt’ J, 
afl 

Expanding real and imaginary parts explicitly as in (4.22-23) 

d2a - = dmdt ’ A;At’F[ aIaJ + bIbJ + i (aJbl - albJ)] Wvyj. 

=J 

Then by the “Word”, we can calculate the error 

Computation of the derivatives is not difficult: 

a d2a 00 --= 
aa1 dmdt’ 

c [(a Jw,“Jo; + a Jw$?) + i (bJW$j - bJW,$$] . 
AmAt’ J 

But by its definition, 
wNor _ WNor* 

tlIJ - qJI 9 

then 
a d2a 

-- = AzAtr c [aJRe(w$j) - bJlm(W$j)] . aal dmdt’ 
2 

J 
(4.25) 

Similarly, we find that 

a d2a 
-- = AzAtt c [aJIm(w,f$) -I bJRe(W$j)] . dbl dmdt’ 

2 (4.26) 
J 

Note that the sums in (4.25-26) are over waves of the same Q only. 

TALMUD also calculates the coherence and relative phase of any two waves, 

I and J, of the same r]. Rewriting then (3.17-18) in terms of the density matrix p, 
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and 

where 

PI Jrj = c (ar + ib1) (aJ - ibJ) 4-j. 

s 

The errors are again obtained by propagation in the same way as (4.24). 
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5. Finding the Solution 

Having established the mechanics of describing the data with (2.2), we now dis- 

cuss how the solutions for the partial waves are obtained. We begin by considering 

the flow chart for the solution determination procedure shown in Fig. 12. 

5.1 OVERVIEW 

From the results of the previous analyses or from physics prejudices, one starts 

by choosing an initial set of partial waves, which we shall call the “base set”. The 

relative magnitude of these waves are established through a process of “random 

starts”. Thus in each mass and t’ bin, we perform several (- 100) likelihood fits 

where the initial values of the amplitudes are randomly assigned. In general the 

results of such random starts are unique; redundant solutions are scrubbed from 

the solution disk. 

Having established a base set, one proceeds by adding one wave at a time to 

the solution. In practice, a series of fits are performed with each new wave, the new 

wave being initialized randomly. The significance of the wave to the description 

of the data is judged both by the 1n.C change per mass bin, as well as by the 

continuity and bin-to-bin significance of the wave amplitude. If the new wave is of 

little significance (5 2 - 3a), it is immediately removed from the wave set, and the 

fit solutions with the wave included are scrubbed from the solution file. Notice that 

several new waves may be considered in parallel and that one should try each new 

wave in all bins to establish the continuity or lack thereof of the wave amplitude. 

Once several new waves have been found and assuming the list of possible waves 

has not been exhausted, we define a new base set by repeating the random starts 

with the augmented set of waves. Although these new random starts rarely reveal 

anything new, they do establish confidence in the solutions up to this point. Notice 

that in the flowchart, we are back in the “add wave” loop; in principle we should 

try all waves remaining in our list, even those previously tested. Because waves can 

(and do!) interfere, one has to keep in mind that the effect of two new waves on 

the quality of the solution can be substantially greater than we would expect from 

examining the effect each wave had individually. 

The flowchart of Fig. 12 was drawn under the assumption of spin coherence. 

After either the wave list or the analyst is exhausted, we next investigate spin 
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Figure 12. Flow chart for the solution determination procedure 
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coherence by adding flip waves to the solution. This can be done either with the 

“add wave” loop or via the “Chung” alternative. 

Having established both the non-flip and flip waves, it may be useful to study 

the data in a different t’ interval but still as a function of mass. The flow chart 

indicates that the “add wave” procedure should in principle again be followed. In 

practice, one rarely has the energy to do this honestly. Keep in mind, however, 

that waves of a marginal nature in the previous t’ interval may very well be more 

significant in the new interval. At the very least such waves should be tested, In 

addition, by changing the t’ interval, one tests for spurious coherence effects. 

At this point in the analysis, well defined trends will most likely exist in the 

amplitudes; a physics story may be emerging. It is useful to perform some final fits 

to emphasize these features by rebinning in msss and using a broader t ’ interval. In 

addition, one wants to make quantitative statements about otherwise non-existent 

waves (e.g. in the Kmr channel, one might wish to determine the ratio of the 

l+O’K*S and l+O+K*D amplitudes in the &1 and Qz region). After coming to 

a final set of amplitudes, the selected fit solutions are refitted with the full error 

matrix being stored away so that it can be made available to TALMUD and/or 

AMPFIT. As remarked earlier, all physics statements should be based on the 

observables calculated in these programs. Physics features as a function of mass 

will determine which mass intervals should be used to study the t’ dependence of 

the amplitudes. 

Of course a flow chart such as Fig. 12 is at best only a rough guide to establish- 

ing a solution. In practice one quite often jumps out of some loop for one reason or 

another. In this regard, it useful to study initially a small sample of the available 

data in order to best define the procedure to follow. 

In the remainder of this section, we discuss some of the details associated with 

the various steps indicated in Fig. 12. 

5.2 THE INITIAL WAVE SET AND CHOICE OF DATA BINS 

The choice of initial waves is a difficult one, as it perforce involves some as- 

sumptions about the physics one expects to uncover in the analysis. An obvious first 

place to start is to review all the available literature on the channel one is studying, 

and from that source determine which waves one should expect to be significant. It 
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is a safe bet to include all the, low-spin waves in any case, as these have the least 

impact on the size of the wave set (owing to the fewer magnetic substates). For the 

higher spin waves, one must try to be realistic and include only those waves which 

are either known to exist, or are plausible candidates for significant waves. 

In practice the problem remains tractable as long as the number of waves in 

the base set can be kept to a reasonable size. As a concrete example, the El32 

R%+?F- analysis had a complete wave set consisting of 142 waves. The base set 

consisted of only 8 waves, which were drawn from the results of previous analyses 

of this channel. The final wave set consisted of only 9 waves at low iir%+t,- masses 

and upwards of 16 waves above 1.8 GeV/c2. 

For each set of coherent waves (waves with same nucleon polarization and v), 

a reference wave must be chosen whose imaginary component is fixed at 0.0 since 

only relative phases between waves are measurable. This reference wave is normally 

taken as one of the largest waves in the set, as this is the most stable choice for 

the given parameterization of the wave amplitudes. This choice has no physics 

consequences! One is always free to perform an arbitrary rotation of the waves in 

each incoherent term without changing In L!. 

Since the Monte Carlo data sample is usually generated in the smallest bins 

with which one can expect to fit the data, the choice of the data bins in which to 

perform the fits is quite flexible and can be changed relatively easily. The important 

criteria to consider are that each bin should contain enough events to ensure that 

the fitted amplitudes are stable from bin to bin, at the same time making the bins 

small enough so that rapid changes in an amplitude are detectable. Often a suitable 

compromise is achieved by having a varying bin size which increases as the density 

of data events decreases, or as the number of fitted waves increases. 

It is perhaps appropriate to emphasize a point made earlier. The assumption 

we have employed throughout is that bin smearing effects are not important. For 

example, when we calculate the Monte-Carlo acceptance for a bin, the generated 

events fall inside the bin, but the measured events in general do not. If the accep- 

tance is changing rapidly across the bin, this effect can systematically change the 

behaviour of the fitted amplitudes (cf. Fig. 8 and the related discussion of coherence 

effects). There is no generally agreed upon solution to this problem. To the extent 
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that bin sizes are typically much larger than the smearing of events across bins, this 

issue is usually not relevant. One, however must be cautious when using bin sizes 

that approach the resolution of the detector. 

5.3. COMMENTS ON WAVE SELECTION 

The process of wave selection is perhaps the most arduous part of the analysis. 

We have developed a number of software tools which ease this task substantially. 

Let us describe a typical “add wave” step, as shown in Fig. 12. 

The fitting program PWAOP uses a stream of input cards to determine the 

mass bins and waves which should be fitted. A list of possible P WAOP input cards 

is provided in Appendix B. An interactive program PWACON is used to set up 

these cards, although we occasionally take an existing input card file and edit it by 

hand. Once the PWAOP input cards are prepared, the fitting job is submitted to 

perform the fits. 

To examine the fit solutions the interactive program PWAED is used to edit 

the solution files, scrubbing statistically identical solutions and unconverged fits, and 

sorting the remaining fits in order of likelihood. The interactive program PWAAP 

is then used to plot each wave amplitude (magnitude and phase) as a function of 

mass or t’ for all of the acceptable fit solutions. These plots are then examined 

by hand to determine the overall significance of the added wave or waves. Once a 

decision is made, the new solutions are either stored away or scrubbed and another 

wave is tested. 

When a wave is added, the number of parameters used to describe the data 

increases (i.e. the model becomes more flexible), so in most cases In f! of the new 

solutions will show increases over the solutions using the smaller wave set. We have 

found that as a rough rule of thumb, a difference in In ,!Z of more than 5-10 between 

two fit solutions in the same bin is significant, especially if the fitted amplitudes are 

reasonably continuous across neighboring bins. The most powerful criteria we have 

found is this requirement of continuity across several bins. 

The fitted In L: function is not necessarily well-behaved, and often has a number 

of local maxima over the parameter space formed by the partial wave amplitudes. 

PWAOP (and almost every other maximization routine) will converge on one of 

these local extrema with no guarantee that the maximum found is where In Ll attains 
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its global maximum. Which maximum the fit converges to depends strongly on 

the initial parameters, and so a large number of fits should always be done with 

the same wave set to the same bin, with a variety of initial parameter values. 

Unfortunately, there is no practical way of ensuring that the global maximum has 

been found even after a very large number of fits have been performed with the 

same model to the same data. Very often PWAOP will find the global maximum 

after a reasonable number of fits have been started. We generally perform 100 fits 

to each mass bin with the same wave set, and then select the best solutions from 

each bin. The best solutions in each bin are then used to initialize a fit to the data 

in the adjacent bins (here PWACON comes in very handy). This “propagation” 

of solutions rarely results in a fit solution which hasn’t been seen before. We follow 

this procedure whenever a new wave set was tried, or when we rebin the data. 

In addition we find it useful to fit the data in overlapping bins as this gives us 

more information about the continuity of the solutions as a function of mass. Of 

course, when it comes down to fitting the partial wave amplitudes to resonances, 

only amplitudes in non-overlapping bins should be used as only they can be truly 

considered independent measurements, whereas the amplitudes in overlapping bins 

are not statistically independent. 

5.4 ANALYZING THE FIT SOLUTIONS 

Once a final set of waves and solutions have been determined, the most inter- 

esting part of the analysis begins, namely understanding the physics which govern 

the observed behaviour of the partial wave amplitudes. TALMUD provides one 

perspective on the behaviour of the amplitudes. The program computes the physi- 

cal observables of the model (3.16-3.19) along with the error propagated from the 

fit error matrices. The behaviour of these observables as a function of mass and 

t’ can then be studied. AMPFIT takes a further step and provides the ability to 

directly fit the various amplitudes to models which either predict their behaviour 

or the behaviour of the physical observables calculated by TALMUD. 

The latter approach was used to understand the results of the El32 R’%r+r- 

analysis, and was instrumental in determining the consistency of the measured 

partial waves with our interpretation of the resonance structure. The E75 data was 

interpreted with the aid of TALMUD alone. 
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The choice of how one should interpret the behaviour of the partial wave ampli- 

tudes is to some extent a matter of taste, as there is no universally accepted model 

of how a resonant three-body amplitude should behave. In addition to this there 

is always the question of what behaviour the non-resonant background amplitudes 

exhibit. One can (and often does!) hypothesize explicit models which predict the 

behaviour of the amplitudes. To the extent that these models are physically real- 

istic and describe the data, they can be used to answer questions such as what is 

the mass and width of a resonance decaying through an isobar, how does the res- 

onance’s production cross-section fall as a function of t, how coherent the relative 

production mechanisms are, etc. 

The fact of the matter is that the model does work and produces results which 

are consistent with our understanding of how resonances form and decay. As long 

as this is the case and no better description of the data appears on the scene this 

formalism will continue to be used to describe three-body final states. 
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Appendix A. Contents of /TRI2/ 

The kinematic quantities of an event that are relevant to the J-body PWA are 

computed by a routine called OILER. OILER is given the set of 4-vectors which 

describe each of the initial and final state particles in the laboratory frame, and 

produces a set of Euler angles (cf. $2.2) and invariant masses which can then be 

used to compute the decay amplitudes for each partial wave. 

The quantities computed by OILER are listed below in the order that they 

appear in the WORD array which forms the common block /TRI2/. 

TORD Variable Definition 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

ml23 

t’ 

ml 

m2 

m3 

4 

e2 

e3 

a1 

Pl 

71 

ff2 

P2 

72 

a3 

P3 

73 

mm2 

the invariant mass of the three meson state 

4-momentum transfer from beam to 3-meson state 

invariant mass of mesons 2 and 3 

invariant mass of mesons 3 and 1 

invariant mass of mesons 1 and 2 

fI angle for particles 2 and 3 

0 angle for particles 3 and 1 

0 angle for particles 1 and 2 

(Y angle for particles 2 and 3 

p angle for particles 2 and 3 

7 angle for particles 2 and 3 

(Y angle for particles 3 and 1 

/? angle for particles 3 and 1 

7 angle for particles 3 and 1 

(Y angle for particles 1 and 2 

,0 angle for particles 1 and 2 

7 angle for particles 1 and 2 

(missing ma.5s)2 against 3-meson state 
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Appendix B. Commands for the PWA Fitting Program PWAOP 

PWAOP is the program which performs the maximum likelihood fits to the 

observed data using the Monte Carlo calculated acceptance integrals. Because of the 

complexity of the probability function which is used to model the observed event 

distribution, a typical analysis uses PWAOP very heavily, both to develop an 

understanding of how well the model describes the data and to actually determine 

the partial wave amplitudes which best represent the observed data distributions. 

For this reason, a flexible method of driving PWAOP exists which allows a user 

to perform almost any sort of fit. 

PWAOP reads a set of input cards which are interpreted as commands to 

initialize and perform a fit. The entire set of cards can be divided into the speci- 

fications for one or more fits. PWAOP reads the cards for the first fit, performs 

the fit, and then commences reading the cards for the next fit. 

The information needed to set up a fit can be divided into three categories: 

1. The range of mass and t’ which specifies the fitted data bin. 

2. The partial waves that are to be included in the fit. The reference wave for 

each incoherent set of waves (i.e. the different Q and spin flip/non-flip terms) 

must also be specified. 

3. The initial values of the wave amplitudes. These initial values can come from 

a solution to a previous fit stored on disk or from the previous fit, or can be 

defined randomly by PWAOP . It is possible to “fix” a subset of the partial 

waves; they will be considered as constants throughout the fit. 

Thus, a fit is specified by defining the data bin, by choosing the waves to be fitted, 

and by specifying how the waves are to be initialized. 

Besides having the ability to define the data bin, a number of special features 

are available which can be invoked when the data bin is defined. A solution obtained 

in one mass bin can be propagated across a number of adjacent mass bins in much 

the same way one fit is specified. One uses a special control card (the “DO LOOP” 

command) that sets up the first fit in one mass bin, and then intializes the next fit 

in the adjacent mass bin with the wave amplitudes determined by the first fit. A 

series of fits in the same mass bin with random initialization of the amplitudes for 

each fit can be specified with the “RANDOM” command. 
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There are a number of ways the partial waves can be initialized. Some or all 

of the wave amplitudes can be initialized randomly, from a previous fit solution, or 

from values given on the control cards. Any combination of these three methods 

can be used simultaneously. 

The syntax of the PWAOP control cards is described below. Each card is an 

80 character record; the first column must always contain an asterisk, followed by 

a keyword that is up to 8 characters long. A blank space is left in column 10, and 

the rest of the card is divided into 7 S-character fields. For integer arguments, the 

fields are 18 format, while for floating point arguments the fields are F8.3. 

B. 1 DEFINITION OF BINS 

* BINS masslo masshi tlo thi AVERAGE 

This card defines the mass and t ’ bins for the data. All arguments are floating point. 

The option AVERAGE specifies that the acceptance integrals are to be averaged 

across the data bin (if the Monte Carlo binning is finer than the specified data bin). 

* DO LOOP mbeg mend mstep tlo thi AVERAGE 

This defines a series of fits that propagate a solution from the mass bin [mbeg, mbeg+ 

mstep] through the adjacent mass bins of width mstep till the bin with upper or 

lower limit mend is reached. The initialization for the next fit comes from the 

results of the previous fit in the adjacent mass bin. 

* RANDOM masslo masshi nfits tlo thi AVERAGE 

This defines nfits random starts on the specified mass bin. All the chosen waves are 

initialized randomly for each fit. All the arguments are floating point. 

B .2 SELECTION OF WAVES 

* ADD NOFP WV1 WV2 WV3 . . . 

This adds the waves wvr wv2 wv3 . . , to the set of non-flip waves. The waves are 

specified by their position in the list of waves. wv1 wv2 wq . . . is in 718 format. 

* ADD FLIP WV1 WV2 WV3 . . . 

This adds the given waves to the flip set of waves. 
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* USE REC record unit 

This will add the flip and non-flip waves that were fitted in the fit stored on solution 

record record on the solution disk defined at logical unit unit. If unit is omitted, it 

defaults to unit 42. 

* SCR NOFP WV1 WV2 WV3 . . . 

This will scrub the specified non-flip waves from the list of fitted waves. Format is 

718. 

* SCR FLIP WV1 wq WV3 . . . 

This will scrub the specified flip waves from the list of fitted waves. 

* FIX NOFP WV1 wy WV3 . . . 

This will fix the specified non-flip waves; they can be initialized to non-zero values, 

but are not going to be fitted by the program. 

* FIX FLIP WV1 WtQ WV3 . . . 

This will fix the specified flip waves. 

* REF WAV WV++ WV-+ WV-f WV-- 

This card defines the reference wave for each incoherent term. The reference waves 

for the q+/non-flip and q-/non-flip are given followed by the v+/flip and r]-/flip 

reference waves. Format is 418. 

B .3 INITIALIZATION OF WAVES 

* RAN NOFP WV1 WV2 WV3 . . . 

This causes the specified non-flip waves to be initialized randomly. 

* RAN FLIP WV1 WV2 WV3 .*. 

This causes the specified flip waves to be initialized randomly. 

* INIT REC record unit 

This will use the fit solution stored in record number record on the solution disk file 

at logical unit unit to initialize the fitted flip and non-flip waves. 

t INIT ADD wave amplitudes 

The floating point values specified in wave amplitudes will be used to finish the 
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initialization of the remaining uninitialized waves. The list of waves is scanned, and 

whereever a wave is found that has not been initialized, the next two numbers in 

wave amplitudes are used to initialize the wave. Care must be taken so that enough 

parameters are actually given to complete the initializaition. 

* GOFIT 

This card signals the end of the cards for the next fit. PWAOP will perform the fit 

as specified, provided that the fit has been initialized correctly. If any cards follow, 

they will be interpreted as specifications for the next fit. 

B.4 EXAMPLES 

The first example specifies one fit to be performed on non-flip waves only, with 

all the waves initialized randomly. 

* FIRST ATTEMPT AT KOPI+PI-(N) 
*BINS 1.430 1.470 0.000 l.OOOAVERACE 

*ADD NOFP 2 6 35 85 87 100 102 
*REF WAV 35 100 0 0 

*RAN NOFP ALL 
*GOFIT 

The next example is the specification of a series of random starts to be per- 

formed on one data bin. 

*RANDOM 1.670 1.710 24.000 0.000 l.OOOAVERAGE I 

*ADD NOFP 2 6 35 85 87 100 102 

*REF WAV 35 100 0 0 

*GOFIT 

The next set of control lines specifies the propagation of a previously found 

solution in solution record 38 over a set of adjacent mass bins. I 
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*DO LOOP 1.430 1.710 0.040 0.000 l.OOOAVERAGE 

*USE REC 38 41 

*REF WAV 35 100 0 0 

*INIT REC 38 41 

*GOFIT 

The next example shows how a previouly found solution can be used to partly 

initialize the fit, and how the rest of the waves can be initialized. Three waves are 

added to the waves that were fit for the solution in record 2 on unit 42. Two of 

those waves (111 and 112) are initialized randomly, and the third (109) is initialized 

as (10.0,10.0). 

*BINS 
*USE REC 

*ADD FLIP 

*REF WAV 

*INIT REC 
*RAN FLIP 

*INIT ADD 

*GOFIT 

1.450 1.490 0.000 
2 

109 111 112 

IO 60 110 

2 
111 112 

10.000 10.000 

l.OOOAVERAGE 

132 
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