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1. INTRODUCTION 

Our work has explored an innovative way of numerically analyzing lattice 

gauge theories. Previously, most particle theorists have used the Monte Carlo 

technique introduced by Creutz. [‘I However, results obtained using this method 

are not definitive because of inherent difficulties in the method (stringent com- 

putation requirements and relative inefficiency). Our techniques promise poten- 

tially more accurate measurements of physically relevant quantities in these same 

models. Additionally we will clarify the relationship of our technique with the 

standard one. 

We developed the Projector Method technique so it would take advantage 

of certain simplifying features of gauge theory models. Simultaneous and inde- 

pendent efforts to analyze models in atomic, molecular and condensed matter 

physics led people to develop the Green Function Monte Carlo.‘a’ Differences in 

formalism between our workF3’ and the latter line of research have obscured their 

similarities. We believe these techniques are different applications of one underly- 

ing idea. Unifying these approaches may lead to a more complete understanding 

of the numerical methods and ultimately , the physical models. 

The Projector Method possesses several advantages over the usual Monte 

Carlo algorithm. Since the Projector starts from the Hamiltonian and Hilbert 

space structure of the problem, the lattice for realistic models is three dimen- 

sional. Because of the way that samples are generated in the Projector Method, 

the critical slowing associated with the standard method is avoided. Finally, the 

presence of certain conservation laws in the Hamiltonian formulation allow the 

extraction of string tension between charges that are separated by a distance 

equal to the size of the lattice. 

Starting from a very general notion of what the Projector Method is, we 

begin applying the techniques to several model problems in chapters 2 and 3. 

After these examples have traced the development of the actual algorithm from 

the general principles of the Projector Method, a direct comparison between the 



Projector and the Euclidean Monte Carlo is made in chapter 4. Following this is 

a discussion of the application to Periodic Quantum Electrodynamics in 2 and 3 

spatial dimensions. Several methods for improving the efficiency of the Projector 

in various circumstances are outlined in the final chapter. 

Finally, it is hoped that the reader will not be discouraged by the demands 

made by the author in understanding arguments and technical points discussed 

in the following pages. 



2. APPLICATION TO A MODEL PROBLEM 

We present here the most naive type of Projector Method evaluation of an 

analytic expression. Let M be some n x n matrix of positive real numbers, and 

let u be an n dimensional vector of positive real numbers. Suppose we wish to 

compute u = M’v. Multiplication of M times v takes n2 multiplications and n2 

additions. Computation of u requires r - n2 multiplications and r - n2 additions. 

If n and r are small finite numbers, an exact calculation is easy. 

If M is the transfer matrix of some statistical mechanics system, then n may 

be quite large even if the statistical mechanics system is relatively small (in 2 

dimensions, the 10 x 10 site classical Ising model is naturally associated to a 

1024 dimensional transfer matrix; in 3 dimensions, the 10 x 10 x 10 site classical 

Ising model has n E 103’). Even if we had a computer sufficiently rapid to 

carry out the multiplication of such a sparse matrix by some vector, most of the 

2 - r - n2 operations would be trivial since transfer matrices are quite sparse. This 

inefficient use of computer resources will be avoided if the method of evaluation 

of the required expression could take advantage of the triviality of most of the 

arithmetic operations. 

A stochastic method may then be appropriate. The elements of the result 

vector u are given by 

ui, = C M,,i,-l Mr--l,ir-a - - - Ml,io vi0 * (2.1) 
to,11,*2 ,..., 1,--l 

The idea is to sample terms from the sum stochastically. This means that we 

imagine creating a probability space fl, each element of which is a sequence of 

indices. Each element of fl is associated uniquely with a single term from the 

sum. Sampling the probability space then allows us to approximately evaluate 

the sum. 



2.1 CHOICE OF MEASURE AND RANDOM VARIABLES 

We can dispense entirely with the subtleties of the a-algebra C defined on n 

(see appendix A) and take C to be the set of all subsets of n, because n is finite. 

To construct a probability space we now have to define a measure function on 

C. Since each element w of n comprises a set {w} contained in C, we may define 

the measure function ,u on the elements of w directly and extend it to all of C 

by using the requirement of additivity. The two constraints remaining on the 

measure /.L are that it be non-negative and normalized to 1. It is clear that there 

are an infinite number of measures we could define to satisfy these constraints, 

thus we need some criteria to make a reasonable choice. To this end, we jump 

ahead a bit and explain how to use the measure once it is defined. 

Assuming that we have defined some measure on the space fl, we wish to 

define a set of random variables Vi (; = 1,. . . , n) so that the expectation of 

Vi gives ui. By choosing points from the space n according to the probability 

measure CL, we obtain a sample realization of each of the random variables Vi. 

From these samples we will compute the means for each Vi to get approximate 

values of ui. In order to establish reasonable criteria for choosing a probability 

measure, note that once the measure is chosen there is only one natural choice 

for the random variable Vi. This is because we require the expectation of the 

random variable Vi to be the same as ui. 

To see this, consider the following simple example. 

YZCY, ; Yi>O * 
iEZ 

We imagine I to be a probability space* with measure given by pi. Thus 

(2.2) 

* Here and hereafter we assume the u-algebra associated to any probability space to consist 
of the set of all subsets of the probability space if we do not explicitly specify otherwise. 
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Pi 1 Cl 

c Pi=1 m 
iEZ 

(2.3) 

We define a random variable si and we want its expectation to be Y. 

(S) = C Sipi = Y m (2.4 
iEZ 

Given the p; and Y there are many random variables which satisfy this condition, 

but one choice is more natural than the others: 

(2.5) 

Note several important features of this example: (i) Choice of the measure 

dictates a natural choice for the score. (ii) So that s is well-defined, we should 

never take pi = 0 if yi # 0. (iii) If the probability distribution of s is tightly 

peaked, the method will converge more quickly. This last statement will be a 

strict requirement on the measure p. This is because choice of measure leads to 

a natural choice for the score random variable, whose probability function is in 

turn determined. 

Return to our previous example and consider the choice of a measure p for 

the probability space n of sequences of indices. The standard Projector Method 

measure we define as follows: 

; &ix & (2.6) 

P(iO,ilr..., in) = Qi, pil,io Pia,il * - * Pir,irel . (2.7) 

The positivity of the measure p follows from the positivity of the matrix elements 

of M and of the vector v. It is also easy to see that the normalization condition 
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is satisfied. Consider 

The sum over i, may be done using Eq. (2.6). The sum over ir-r is now easily 

done. This process proceeds until all sums are done and the far r.h.s. of the 

above expression equals 1. 

As indicated above, now that we have chosen a measure for the space n of 

sequences of indices, there is only one natural choice for the random variable 

whose expectation is a component of the vector u. Before giving this choice, 

one more technical preliminary must be dealt with. Suppose we are trying to 

determine a particular component of the resultant vector u, say us. If we use 

the meaSure /.J defined earlier, then many of the elements picked from s1 will 

not have their final index equal to 3. Such states should not contribute to a 

computation of the third component of u. Thus the domain of definition of the 

random variable U3 whose expectation is us cannot be taken to be all of n, but 

only those elements of n for which the final index equals 3. But if the measure 

~1 assigns positive probability to states of fI outside of the domain of definition 

of Us, then a problem arises: the random variable U:, is not normalized to unity. 

This means that the sum of the probabilities for all the possible independent 

outcomes of U3 is less than 1. 

/ 
dfi<l . 

domain US 
CM 

To avoid this unpleasant state of affairs, we can use a conditional measure for 

the random variable Uj given by 

/Ji,=j (i0, ily - - * 9 ir-1) = 
P(~O,~l,...,G-1,j) 

s domain lJj dL‘ ’ 
(2.10) 

We are now in a position to define the random variable Uj whose expectation 
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gives the jth component of the resultant vector, uj. 

Uj(iO,il,e*a, &-a, &-I, j) = Mj,i.-l M,-,,i,-, - - * Mi,,i, vi0 
Pi,=j (io,ii,. -. ,G-l,j) ’ 

(2.11) 

According to our earlier discussion we define Uj only on those sequences that end 

on the index j. The assertion is that the expectation of Uj is uj: 

J Uj dpi,=j = uj n (2.12) 

domain Vi 

Use Eqs. (2.10,ll) to rewrite the integral in Eq. (2.12). 

J Uj dp= C Pi,=j (iO3 il, *. a 7 iv-l) * 
Mj,i,-, - * - Ml,io vi0 

domain Vi c3,zlr...,ir-1 cli,=j(iO,il,...,i,-I) 

= c Mj,i.-1 M,-l,i,-a * * - M,,i, vi0 
u,h,t2 ,..., G-1 

(2.13) 

The expectation of Uj has the desired form given in Eq. (2.1). 

Because of the special form of U, it is simple to construct an algorithm for 

computing U which only requires knowledge of the components of some sequence 

w in a serial fashion. This assertion follows from the definition of Uj in Eq. (2.11) 

and pi,=j in Eq. (2.10): 

j=wr. 

Knowledge of the first p components of w allows computation of the leftmost 

p + 1 factors in parentheses on the r.h.s. of the equation. Computation of the 

p + 2nd factor in parenthesis requires only wP+l, thus all previous components of 

w may be discarded. This means that computation of U may be accomplished 

by keeping track of only the current component of w. 



2.2 SAMPLE REALIZATION AND THE SIMULATION FUNCTION 

Now that we have defined the probability space R and the set of random 

variables Uj such that the expectations of Uj give Uj, we face the sample real- 

ization problem. As discussed in the mathematical appendix, we may phrase the 

requirement as follows. Given a particular probability space R which we will 

define in a moment, construct a random variable M on R whose range is not the 

real numbers, but is the set f3. The probability space R is the Cartesian product 

of n copies of the unit interval, the a-algebra on R is just the set of Bore1 sets 

on R, and the measure is just the Lebesgue measure in n dimensions, which we 

denote PL. The requirement we place on M is that 

PL(@(~) =&J) (2.15) 

where o is some element of the o-algebra C over a. 

The intuitive meaning of this construction is quite simple. We give an exam- 

ple of the construction to clarify the meaning of the requirement above and the 

simulation function M. In our example n is replaced by T, a probability space 

with a small finite number of elements. Order the elements of T, so they are 

referred to as ti, where i = 1,. . . , N. Associated with each ti is its measure p(ti). 

Now define a T-valued random variable M on the probability space I, the unit 

interval with Lebesgue measure. 

M(z) = tf ; f?ESUp j C /.h(ti) < Z 
i<j I 

(2.16) 

To understand why we call this a simulation of the probability space T, look at 

Eq. (2.15) as it applies to this example. Let D be {tt}. Then we have 

f-l 
C P(h) 3 5 P(h) * 
i=l i=l 

(2.17) 

8 



Now certainly ~L(u, b) = b - a for b > a, so 

PL * (2.18) 

Thus the meaning of the simulation function M can be seen as follows: the 

probability of choosing an element of I in the interval (Cs: p(ti) , Et, p(ti)) 

is p(tl). Whenever we choose an element of I in this interval, and only then, do 

we say we have chosen the element tf of T. But the probability of choosing tt 

from T is also p(tf). Thus M has been constructed so that these two probabilities 

are equal. 

After this brief discussion of the sample realization problem, we may return 

to the problem of defining an appropriate simulation function M for the space 

of indices summed over in Eq. (2.1). The first impulse is to use the simulation 

function M of the most recent example, replacing the space T by n. This is 

generally inadequate for a very simple reason. Computation of the function M 

from its definition requires a linear search through a significant fraction of the 

elements of T ( or n). If T has many elements, this is clearly very inefficient. 

Even ordering the elements of T so that p(ti) 2 p(ti+l) is of little help in most 

cases. 

The observation that the sample realization technique employed above uses 

a linear search order suggests that different types of search orders may be more 

efficient. A tree-like search through the elements of T is certainly much more 

efficient: using n yes/no decisions arrayed in a linear fashion we can choose 

between n objects, using a tree structure we may choose between 2n objects (see 

Fig. 1) after making n choices. 

In fact the sample realization method of the Projector Method is analagous to 

the tree-type search, with one important modification. Instead of using the same 

random number x to determine the decision to be made in each of the boxes, a 

number x1 is used to made the decision at the top level, a second random number 
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Pigure 1. (a) Sequential search order (b) Tree-type search 

is used in the appropriate box on the second level, etc. In this way the domain 

of M is In instead of I. 

Now define the simulation function M and show that it satisfies Eq. (2.15). 

The domain of M will be the r + 1 dimensional unit hypercube, denoted by I’+l. 

The a-algebra on Ir+l is the set of all Bore1 sets on Ir+’ and the measure is 

Lebesgue measure. Given a point in I r+l, the map M produces some sequence 

of r + 1 indices. Denote a generic point in Ir+l by X, which has Cartesian 

coordinates Xi, i = 0,. . . , r. Denote an element of D by w, which is a sequence 

of indices, the jth of which is wj. NOW suppose 

M(X) =w . (2.19) 

Then we have relations between the Xi and the wj which define the map M. The 

set of these relations is 

(2.20) 

wn =sup 
i 

j: CPi,wn-, < X, , n=l,..., r. 
i<j 1 

The definitions are inductive, and w,, depends on Xi for all i 5 n. 

10 



Now verify Eq. (2.15). It suffices to check the relation with cr replaced by an 

arbitrary element w of n* . We check the relation by defining the set R by 

R s M-‘(w) . (2.21) 

Find the Cartesian coordinates of R and then show that its Lebesgue measure 

equals p (w) . 

First verify that the following specification of R agrees with the definition of 

R given in Eq. (2.21). 

R E XE Ir+’ : c Qi < Xo < c Qi 3 
i<WO igoo 

(2.22) 

To check this assertion, we will take this last formula as a definition of R and 

check the following: (i) X E R + M(X) = w. (ii) X 4 R + M(X) # w. First 

check (i). Let M(X) = Y and u has components vi, i = 0, 1,. . . ,r. Show that 

pi = wi, beginning with i = 0. According to the definitions in Eqs. (2.20), 

(2.23) 

Now from the second line, 

C Qi < XO 3 (2.24) 
i<w0 

therefore wo is an element of the set whose supremum is ~0. Thus vc 2 wo. Again 

* The countable additivity of the measure functions allow one to extend the relation from 
single elements of fl to subsets of fI. 
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from the second line, 

XO -C C Qi= C Qi 5 C Qi y m21 (2.25) 
i<w0 i<wo+l i<w&m 

so wc + m cannot be a member of the set with supremum ~0. Thus wo is the 

supremum of the set, and ve = we. 

Now prove the inductive step. Suppose wi = Vi for i = 0,. . . , n - 1. Then we 

wish to show that wn = v,. Again, the relevant definitions are 

JJ, E sup 

I 

i 

j : C Pi,wn--l < Xt 

i<j 

x&E c ( i<w, 

P Wn,Wn-1 9 c 
i<w, 

P 

1 
WnWn-1 * 

As before , the relation 

(2.26) 

(2.27) 
i<w, 

implies that wn is in the set whose supremum is u,, so that u, 2 w,,. And again, 

the relation 

xn < c Pw,,“,-l = c pw,,w,-I I c pwn,wn4 
i<wn i<w,+l i<w,+m 

(2.28) 

shows that wn + m cannot be in the relevant set for m 2 1. Thus wn is the 

supremum of the set, and wn = un. 

Now we check (ii). If X $ R th en either Xc lies outside the appropriate in- 

terval, or X, does for some n = 1,. . . , r. Suppose Xo is the offending coordinate. 

If the lower bound is violated clearly u < wo so u # w. If the upper bound 

is violated then ue > wc and again u # w. Analogous reasoning holds if the 

offending coordinate is not the zeroth. Thus our assertion that the definitions of 

R in Eqs. (2.21,22) are equivalent is proved. 

12 



(2.29) 

Finally, to check the relation 

compute the Lebesgue measure of R. 

c pw”,w,-l - c PWnrWn--l 
i<w, i<w, 

(2.30) 

This is the same as p(w), originally defined in Eq. (2.7). Thus the simulation 

function has the desired property expressed in Eq. (2.15). 

Through the artifice of the simulation function, the problem of computing 

expectations of random variables can be looked at somewhat differently. Re- 

member that A4 is just a function from I r+l to the probability space hl being 

simulated, such that 

PL(M-l(4) =/J(a) * (2.31) 

Now a random variable U defined on fI is just a measurable real-valued function 

on a. The expectation of U is given by 

(U) =p d/L . (2.32) 

i-l 

We can compose M with U to form a random variable U defined on IT+‘: 

UEUOM . (2.33) 

By virtue of the relation between M, p, and PL the expectation of lf satisfies 

W,L = 03, . (2.34) 

Thus the expectation value of interest is nothing but the Lebesgue integral over 

the r + l-dimensional hypercube of the constructed function lf . 

13 



3. THE ISING QUANTUM SPIN SYSTEM 

We apply the formalism developed in chapter 2 to a specific physics problem. 

The problem is a standard example from quantum statistical mechanics, part 

of whose usefulness lies in its susceptibility to analytic methods. The model is 

specified by a Hamiltonian which contains as free parameters the real number h 

and the integer N. 

The Hamiltonian H is an operator in a 2N dimensional Hilbert space. The 

relations between the Pauli matrices are standard: 

i # j, i,j= 1 ,*-*, N . 

(3.2) 

(3.3) 

In extending our treatment of the problem in chapter 2 (where we evaluated 

M’u ) to the Ising model, the vector v will be some state in the Hilbert space. 

The matrix M will be an approximate version of the exponentiated Hamiltonian. 

Several issues arise in applying the method to this case. One wishes to multiply 

the matrix by the vector so that only local computations (ones that do not grow 

faster than N) h ave to be made. Also it is preferable not to store the entire 

probability matrix or score matrix, as the size of these grows exponentially with 

N. With these guidelines in mind, we begin development of the Projector Method 

applied to the Ising model. 
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Pick the matrix M by which we multiply the vector v. If M is the matrix e-PH 

then v is projected onto the ground state of H as B grows larger, provided that 

the overlap of u with the ground state is non-zero. Since we cannot compute 

e-flH, we approximate it with an expression provided by the Trotter product 

formula: 

r@+B = lim 
( 

@In eBln 
> 

n 
. 

n--to3 

Taking n to be some fixed positive integer gives the approximation. A careful 

choice of A and B makes the problem yield to analysis. For the Ising Model we 

choose 

(3.5) 
(ii) i=l 

Both A and B are easily exponentiated, so that the r.h.s. of Eq. (3.4) is easily 

evaluated. 

Referring to the initial example in which M’v is evaluated, we see that a 

generalization is required to accommodate the Trotter product formula. We now 

anticipate computing an expression of the form 

urMNMN . . . MNv . (3.6) 

The substance of the work done in chapter 2 is unchanged. We may define a 

probability space and random variables whose expectations give the components 

of u. Again the measure is defined as the product of a string of matrices, but 

now the string alternates between P(M) and P(N), where 

P(R)- x:&j ; R=M,N . (3.7) 

The issue of defining the simulation function changes only in some detailed par- 

ticulars. Most importantly, we retain the property that the sequence of basis 

states w need not be remembered in its entirety, since the computation of w and 

the random variables both can proceed serially. 
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Using the machinery developed in chapter 2, we now describe a computation 

of the following quantity carried out in the Ising Model: 

(3.8) 

The ket 14) corresponds to the vector v in the earlier example, and the string 

of operators depends on the positive integer n and the real parameter p. The 

interpretation of d will depend on n and p. We are not calculating a vector 

in Hilbert space like in our earlier example. Instead a single matrix element is 

obtained by taking the overlap of the vector with the bra (xl. We now define and 

construct the probability space, the random variable, the simulation function, 

and a simple algorithm for computing the random variable. 

In analogy with our earlier example, the structure of the probability space is 

suggested by writing the number we wish to compute as a sum. By inserting a 

resolution of the identity operator to the left of each operator eFAPln and emBflIn 

and to the left of lb), we obtain 

a’ = c (x 1~2~) (~2~1 eepAln (w2,+1). . . (~21 ewpA”’ [WI) (~11 edpBln IWO) (~014) . 

WP”+l,...,WO 

(3-g) 

Elements of the probability space will be sequences of Hilbert space basis vectors 

and each sequence is of length 2n + 1. Each basis state is stored as a set of N 

numbers, which are the eigenvalues of the basis state under the N operators o, (4 . 

Thus an element of the probability space is a sequence of 2n + 1 sets, each of 

which is comprised of N numbers, 1 or -1. The generic element of the probability 

space Sa is w, the jth element in the sequence w is wj (j = O,l,. . . ,2n), and the 

eigenvalue of 0!*) in the state wj is Wj(t). Note that w is naturally stored as a 

two index array of the numbers 1, -1. However, since we have shown that the 

simulation function and random variables may both be computed serially, we will 

never have occasion to store the entire array w at once. 
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Begin the definition of the measure by choosing the ket 14) which will replace 

v. To motivate our choice for [4), b o serve that the operator product occurring in 

Eq. (3.8) becomes diagonal as h -+ 0. In this limit the operator product projects 

onto two states: one in which the eigenvalue of a?) is 1 for all n, and one in 

which it is -1. Arbitrarily pick 14) to be equal to the first state, so that in the 

h -+ 0 limit, the projection process should leave 14) invariant. The measure can 

now be written down in analogy with the previous example. 

Q is vector, since it assigns a number (a probability) to each basis vector: 

Q two 14) 
lJJo - c, (44) 

(3.10) 

(3.11) 

Qw, = fi 4,w,(r) (3.12) 
r=l 

c Qw, = 1; Qw, L 0 . (3.13) 
WO 

Each of the P’s is a matrix whose indices run over the set of basis vectors. 

p(A) Wl,WO - 
(wl(e-PAln(wo) 

C, (vle-PA!n(wo) ’ 

A is diagonal in this basis, so 

The matrix associated with B is less trivial. 

p(B) W2,Wl - 
(w21e-PBInlw1) 

C, (vle-PBlnlwl) ’ 

(3.14) 

(3.15) 

(3.16) 

Using the commutativity of all CJ~) and the standard identity for exponentiating 
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Pauli matrices, obtain the following: 

edpBln = fi (1 cash ($) + a$‘) sinh (c)) . (3.17) 

The factorizability of this exponential is a key point in the Projector Method, for 

it essentially allows all computations in the algorithm to be local on the lattice. 

This simplification motivated our split of the Hamiltonian into two parts. 

Understanding how the computation of PcB) is carried out should suffice in 

convincing the reader that the entire algorithm is now local. The matrix element 

of e-flBjn between (~1 and Iwr) can be factored into a product of single site matrix 

elements: 

(vle-PB’nlwr) = $ (v(r) I(1 cash (F) + a?) sinh (F)) ) WI(~)) . (3.18) 

Summing over the 2N values of (~1 in the denominator of Eq. (3.16) is equivalent 

to summing over the two values of (v(r)] for each I: 

C (vle-PBlnJwl) = fi 
v r=l 

. ’ The factor in parentheses just gives cash (g) +sinh (c), so we have 

F (vle-PB’nlwl) = fi (cash (F) + sinh (F)) = eNh/n . (3.20) 

The numerator in Eq. (3.16) is 

ia 



= [cosh(g)li [sinh(F)]N*j . (3.21) 

j = 5 6”,(,),,,(,) 
r=l 

The final expression for PcB) is 

P&1 = # (1 - p) N-j 

P= 
cosh( @) 

exp(G) . n 

(3.22) 

(3.23) 

(3.24) 

PcB) has the form of a probability for N independent distinct events, each of 

which has one outcome of probability p and one of probability (1 - p). The 

locality of the algorithm manifests itself in the fact that transitions made at each 

lattice site are independent of one another. 

Positivity of the measure follows from positivity of the individual matrix 

elements. The verification that 

c CL(W) = 1 
w 

(3.25) 

is carried out exactly as in the discussion after Eq. (2.8) and follows from 

c Pk!L = 1 ; v wr (3.26) 
W+l 

c Pc!!,,w, = 1 . 
WI+1 

(3.27) 

Now define a random variable D whose expectation gives d. In analogy with 
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Eq. (2.5), 

D(w) E (zlw&(Wzn le-PA’nlW2n-l)(wzn-l le-PB’nlw2n--2) . . . (w2 Ie+AinIwl) 

x (wlle-PB’nlwO)(wOld)/~(w) . 

(3.28) 

Note that unlike Uj in Eq. (2.11), D is defined on all of 0. The computation of 

the expectation of D gives the matrix element defined in Eq. (3.8). 

(D)lL 3 ] D(w) d/i(w) = cp(w) . D(w) = d 
w 

The definitions of D and d involve the state (xl. Define (xl so that its overlap 

with every basis state is unity. 

(x)u) = 1 k+ I4 * (3.30) 

This choice is made so that every w selected from R will contribute non-trivially 

to the expectation of D. 

Given the definition of the measure (Eq. (3.10)) and the matrices and vector 

occurring in the definition of the measure (Eqs. (3.12,15,23)), the definition of the 

simulation function M is straightforward. There is one subtlety which must be 

addressed and is connected with the domain of definition of M. In the example 

of chapter 2, the domain of M was Ir+l and not I’. The analog in the Ising 

model would be to take the domain of M to be I’-+‘. This approach means each 

of the 2n + 1 coordinates of a point in 12n+1 would govern the transition from 

a basis state w, at the rth step to a basis state wr+r at the r + lth step. Since 

there are 2N possibilities for the basis state wr+r, one random number is used 

to choose between 2N possibilities. To avoid the inefficiency of using a single 

random number to select between many alternatives, we adopt a tree-like search 

pattern for the new basis state that uses N random numbers. We enlarge the 

domain of M from 12n+1 to IN(2n+1). Each coordinate of a point in the domain 

of the simulation function is required to make a binary decision. 
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We now begin the explicit definition of M. Let X be a point in I(2n+1)N and 

denote its Cartesian coordinates by Xi, i = 1,. . . , N(2n + 1). Put M(X) = w 

where wr is the basis state which is the r th element of the sequence w. Define M 

by giving wr(n) in terms of Xi. Because of the form of Qw,, the state we is fixed 

and the dependence of we on Xi is trivial: 

wg(r) = 1 . (3.31) 

For the next two elements of the sequence , we have 

WI(r) = wO(r) [e(P - xN+r) - @(XN+r - P)] (3.32) 

w2(r) = w(r) (3.33) 

where p was defined in Eq. (3.24). The coordinates Xl through XN are reserved 

for determining we, thus the coordinates XN+~ through X2N are used to get wr. 

Since HA is a diagonal operator, wq is determined from wr without dependence 

on the coordinates X2N+r through X~N. Extend the definition of M to specify 

the remaining components of w in terms of the coordinates of X. 

w2n+l (“1 = w2n(r) [e(P - XN(2n+l)+r) - OcXN(2n+l)+r - P)] (3.34) 

w2n(r) = W2n-l(7) * (3.35) 

This completes the definition of the simulation function. 

Now check that M satisfies the criteria ~L(M-l(w)) = p(w). First compute 

the 1.h.s. as was done for the similar expression in chapter 2. Then simplify the 

definition of the r.h.s. provided in Eq. (3.10) to verify the desired equality. 

If w does not satisfy Eq. (3.35) for all n,r then w is not in the range of M 

and it follows that M-‘(w) = 4 and p(M-l(w)) = 0. Alternatively, suppose w 
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does satisfy Eq. (3.35). Then 

M-‘(w) = {X E 12nN : X2nN+r c P&l) and 

XN(an+l)+r c b * b~,,+~(r),-w&r) > P + t1 - P) * 6wp,+,(r),-wz,(r))> * 
(3.36) 

This follows directly from the definitions in Eq. (3.34,35). In this case the set 

M-‘(w) is a hyper-rectangle and its Lebesgue measure is just the product of its 

extent in each dimension. 

(2n+l)N 

/1~W-'(w)) = n (Ut -Lt) 
t=1 

ut E 
i 

1 if t=2nN+r 

P + (1 - P) * 6u,,+,(+--wa.(r) otherwise 

0 if t=2nN+r 
Lt z 

P . L,+l(r),-w2,(l) otherwise 

To simplify this expression , note that 

ut - Lt = 
1 if t=2nN+r 

P QW . (1 - p)%r otherwise 

and so 

pL(M-’ (w)) = pa . (1 - p)2nN--a 

(3.37) 

(3.38) 

(3.39) 

The definition of the r.h.s. in Eq. (3.10) vanishes if w does not satisfy Eq. 

(3.35) for all n,r, since the matrices PcA) are diagonal (they are the identity 
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matrix). Thus we have verified the desired equality in this case. Now suppose w 

does satisfy Eq. (3.35) for all n,r. Then 

p(w) = g exp (F) . [cash (:)I”. [sinh (F)lN-’ (3 40) 

Carry out the product to obtain 

p(w) = exp (-2PNh) * [cash (:)]“a [sinh (c)]2nN-J 

.JEFji. 
I=1 

(3.41) 

Using the definition of p in Eq. (3.24), the quantities in Eq.(3.39) and Eq.(3.41) 

are identical, and the equality is verified. 

Now that the probability space has been defined along with the relevant 

random variable, and the simulation function has been constructed, we have, in 

principle, finished describing the computation of the number d. There are several 

algorithms which implement the computation, and they differ greatly in their 

efficiency and computation requirements. We outline the naive implementation, 

then indicate how the computation can be simplified. The simplification results 

from a property of the random variable (it can be computed serially) and a 

property of the measure (it represents a Markov.process). 

The naive implementation of the method begins by picking a point X at 

random from IN(2n+1). This entails picking the N(2n + 1) Cartesian coordinates 

Xi of X. Using these coordinates compute the image of X under M, which we 

denote w. Now from the sequence w compute and record D(w), which is one 

instance of the random variable D. Repeat this chain of events many times and 

construct an approximate probability distribution for D from the samples. The 

mean of the distribution gives an estimate for d, and its scatter about the mean 

can be used to estimate the uncertainty. 
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As mentioned above, the Projector Method measure has been chosen to have 

the form of a Markov process. A Markov process refers to a probability distribu- 

tion for a sequence of events in which the conditional probability for a particular 

event (conditioned by specifying the outcome of several earlier events) in the se- 

quence depends only on the most recent event specified. For example specification 

of any state in the sequence allows determination of the conditional probability 

distribution for the following state in the sequence. To see that this assertion 

is true, form the conditional probability distribution for the j + 1” state in the 

sequence, given that the previous j states are fixed. Take j even for convenience. 

(3.42) 

Thus we see that this conditional probability distribution reduces to the condi- 

tional probability distribution that results when only the immediately preceding 

state in the sequence is fixed. 

The related property of the random variable D is serial computability. To 

see that D may be computed serially, refer to the definitions of D and p to see 

that 

D(w) = (W2nIe+A’nlW2n-l) 

p(A) - 
(W27+--lle-PBinIW2n-2) . . . (w21e-PAlnlwl) 

~ln,wh-1 
pP) 

wln-lrWln-2 
p(A) 

w2Wl 
(3.43) 

. w~~‘nlwo) . bold - . 
WlrWO Q wo 

The argument that demonstrated the property of serial computability in the 
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random variable Uj (see the discussion concerning Eq. (2.14)) applies identically 

to the above expression. 

The fact that the measure on n describes a Markov process means that 

elements may be chosen from fl according to their probability by selecting their 

components serially. Thus the choice of wj depends only on ~j-~. This is reflected 

in the recursive structure of the simulation function (see Eqs. (3.32-5)). The fact 

that D is serially computable means that an algorithm exists for its computation 

which is compatible with the serial selection of components of n. 

The simplified algorithm picks* the first N Cartesian coordinates of X to 

select we. The right-most factor of D(w) is then calculated. Now pick the next 

N coordinates of the point X. Using the definition of wr in terms of we and the 

new coordinates we determine wr. Next calculate the factor second to the right 

in the definition for D. These two right-most factors may be multiplied, since 

the functional dependence of D on these arguments is so simple. Consideration 

of the logical extension of this procedure shows that the state wo will not be 

needed any further. Thus, we may overwrite we in storage and decrease the 

storage requirements on the computer. This process is extended until all the 

components of the sequence w have been computed and the random variable has 

been evaluated at this point. 

The interplay between the properties of the measure and random variables 

should be clear by now. It is this structure which allows the explicit simulation of 

the probability space that motivated the development of the Projector method. It 

is an added bonus that this method allows the reduction in storage requirements 

from 4 to 3 dimensions for realistic models. 

* The probability distribution for the point X factors into independent probability distribu- 
tions for each of its Cartesian coordinates. 
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4. COMPARISON: PROJECTOR 
AND STANDARD MONTE CARLO 

We elucidate some general principles of the Projector Method which distin- 

guish it from the standard Monte Carlo. We review the basic formalism under- 

lying the standard Monte Carlo. Then the Projector Method is discussed with 

reference to this formalism. 

In the standard Monte Carlo simulation, ‘*’ there is an underlying probabil- 

ity space whose elements correspond to particular configurations of a classical 

mechanics system. There is a Boltzmann measure defined on the probability 

space and certain random variables are defined on this probability space. The 

expectations of these variables give macroscopically measurable quantities such 

as thermodynamic potentials and specific heats. The Monte Carlo simulation re- 

quires that we generate some approximation to the true measure and then obtain 

approximate expectations of the random variables in the Boltsmann measure by 

using the expectations in the approximate measure. 

Here is how the approximate measure is generated. Suppose PB is the exact 

measure. The standard Monte Carlo provides an algorithm for producing N 

elements of the probability space for any N such that the following requirement 

is fulfilled . If state w is chosen n, times, so that 

xn,=N, 
w 

(4.1) 

then 

$lim f n, = PB(~) . (4.4 

The above limit must be interpreted in the appropriate probabilistic sense. The 

choice of the N states yields an approximate measure ,.&N which ultimately 
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converges to pB. 

@N(W) - % 

For example, suppose we wish to calculate the average energy. Then 

The Boltzmann measure is given by 

(4.3) 

(4.5) 

The standard Monte Carlo algorithm picks N states, with the w th state occurring 

n, times. The expectation of the random variable e in the approximate measure 

pN is simply 

(djm = c 6,~ k‘N(“‘) - (4.6) 
w 

If N is very large then 

&J(w) = cLBcw) (4.7) 

so that 

At this level of abstraction there is no difference between the standard Monte 

Carlo and the Projector Method. Both rely on simulation of a given probability 

space and random variables defined on it. The differences first manifest them- 

selves when we analyze the technique used for simulating the probability space. 
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The Boltzmann measure approximated in standard Monte Carlo suffers from 

the disadvantage that it cannot be directly calculated. The normalization sum in 

the denominator is the partition function, which is notoriously intractable. The 

standard Monte Carlo sidesteps this difficulty by relying on a Markov process to 

generate the N states which determine the approximate measure. The Markov 

process generates a sequence of configurations stochastically, so that the proba- 

bility distribution of one state in the sequence depends on all previous states in 

a simple way: the dependence is only on the immediately preceding state. 

The Projector Method differs radically from the standard Monte Carlo at 

this point. The measure for the Projector Method probability space is explicitly 

calculable from Eq. (2.7). The simulation function A4 can always be calculated 

explicitly. The Markov process upon which the standard Monte Carlo relies is 

unnecessary in the Projector Method. A very different Markov process is used in 

the Projector Method. 

We would like to explicitly distinguish between the way in which the standard 

Monte Carlo and the Projector Method rely on Markov processes. This analysis 

begins by recognizing that both simulation problems may be divided into two 

parts. The first part is the sampling problem discussed in the first mathematical 

appendix: both techniques must somehow “sample the probability space” accord- 

ing to their respective measure. The second part of the problem is to evaluate 

the random variable at specific elements of the probability space. It is useful to 

divide each technique into these two parts because our analysis relates only to 

the first part of the techniques. 

Our analysis will consist of transforming a standard Monte Carlo simulation 

into a Projector Method simulation. Imagine a finite lattice statistical mechan- 

ics problem in D dimensions. Single out one dimension as the time direction 

with coordinate r and construct a transfer matrix for this direction. Denote 

the configuration of the D - 1 dimensional sublattice specified by r = n by 

Wn (7-L = 0,. . . , N). The boundary conditions for the lattice in the D - 1 
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directions orthogonal to r may be chosen in any way. Fix the configuration 

at r = 0 and do not allow the introduction of any coupling between the lattice 

states at r = 0 and r = N. 

If the above conditions are satisfied, then we write the partition function as 

z= c w {-B S(wo, ~1, . . . WN)) (4-9) 
WI,...rWN 

where S is the energy or action, depending on one’s prejudices. If S does not 

contain couplings of range longer than nearest neighbor in the r direction, intro- 

duction of the transfer matrix T allows us to rewrite the Boltzmann factor. 

exp(-P S(wo, ~1, . . . UN)) = TL,,w, TL,w, . . . TwNMl,wn . (4.10) 

The partition function is related to a product of transfer matrices: 

Z = c Tw,,,wl Twl,wz . . . TwN--1,wN . (4.11) 
WI,...,WN 

The Boltzmann measure, which just gives the probability of obtaining a given 

state from the canonical ensemble, is given by 

/‘BlwO 
T 

,...,WN) = w”‘w= 
Tw,,wo . . . Twnr+wiv 

Z 
(4.12) 

If the sublattice configurations wg through wj inclusive are fixed, the probability 

of sublattice j + 1 assuming a value wj+r is given by 

C Twt,,wl . . - TwN+wrs 
P (Wj+l IWO, e a a , Wj) = “j+a’e*“wN 

C Tw,,w, .-. Twrv-,,wIv 
wj+lt..vWN 
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It is simple algebra to verify the following identity: 

PB (Wo, . . . , UN) = ~uo,u,(o) &,,u,(l) . . . hr.,-,,w..(N - 1) . 

Note that the R matrices satisfy 

(4.14) 

Rwj,Wj+l(j) > O (4.15) 

and 

C Rwj,wj+l(j) = l * (4.16) 
wi+l 

Therefore we may use these R matrices to implement a Projector Method sim- 

ulation, identically to the way we use the P matrices from Eq. (2.7). The fact 

that the Boltzmann measure is expressed as a product of R matrices means 

that a Projector Method simulation using R(j) in place of P will select states 

according to the Boltzmann measure. The non-trivial dependence of the R ma- 

trices on j means that the Markov process employed by the Projector method is 

non-stationary. 

We translate a Projector Method simulation into a standard Monte Carlo 

simulation to complete our analysis. Begin with a finite spatial lattice and arbi- 

trary boundary conditions. Associated with the lattice is a Hamiltonian operator 

and a Hilbert space in which the Hamiltonian acts. Specify a basis in the Hilbert 

space by simultaneously diagonalizing a maximal mutually commuting collection 

of operators (typically one or several operators per site ). A basis state is spec- 

ified by the eigenvalues of these operators. Elements of the Projector Method 

probability space are N-element sequences of basis vectors. If we denote the jth 

basis vector in such a sequence by wj, the Projector Method measure is given by 

,.‘pM (~0,. . . ,wN) = Qw, PWI,WO PW.,WI *** P~~r~~--l (4.17) 

where the construction of P in terms of the Hamiltonian and the basis has been 

discussed. To translate the simulation procedure of the Projector Method into 
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a standard Monte Carlo simulation, construct a Markov Process which will con- 

verge to the above measure. We will not carry out this construction explicitly, 

but instead will indicate why this is a straightforward exercise. 

In order that a Markov Process generates a sequence of states that will con- 

verge to some measure, one requires three conditions of the Markov process: 

normalization, ergodicity, and homogeneity. Normalization requires that the 

transition from any state be made to some other state with probability unity. 

Ergodicity means that a finite number of applications of the stochastic matrix 

suffices to connect any two states. Homogeneity says that the desired measure is 

an eigenvector of the stochastic matrix with eigenvalue unity. 

Given some measure to be simulated, the above requirements do not select 

a stochastic matrix . Many such matrices obey the above three properties. Two 

familiar examples are the heat bath and the Metropolis algorithm. In fact any 

stochastic matrix satisfying the property of detailed balance will converge to the 

desired measure. An appropriate stochastic matrix may be constructed as follows. 

Visit each site of the lattice in any predetermined but random order making ran- 

dom changes to the eigenvalues of the operators there. These changes are made 

with probabilities specified by the principle of detailed balance. These probabil- 

ities are not difficult to calculate, since probabilities for each of the possible final 

states are given explicitly by the measure. 

To summarize our comparison of the standard Monte Carlo and Projector 

Method, we recapitulate. One can simulate a Boltzmann measure for a classical 

statistical mechanics system in D dimensions using Projector Method ideas. This 

means choosing elements from the ensemble of systems one at a time by filling out 

D - 1 dimensional sublattices one after another, until the D dimensional lattice 

is filled out. Then evaluate the random variables, discard the configuration, and 

begin again. The drawback is the difficulty of calculating the matrices R which 

specify the probabilities of choosing the various new D-1 dimensional sublattices. 

Going in the other direction is trivial: a Projector Method measure can always 

31 



be simulated using a Markov process. An initial sequence of N basis states is 

chosen in an arbitrary way. Then make systematic and stochastic changes to 

this sequence of basis vectors according to some stochastic matrix. Naturally 

the Markov matrix has to be constructed to converge to the Projector Method 

measure, but we have noted this is possible in practice as well as in principle. 

As an application of the above analysis, we simulate the classical two di- 

mensional Ising model by a Projector Method technique. On each site of a two 

dimensional lattice (see Fig. 2) there is a spin variable which can assume two 

values: 1 and -1. The Hamiltonian is 

H = -C S(i) S(j) e (4.18) 

(ii) 

The sum is over nearest neighbors and determines the magnetic character of the 

model. 

Figure 2. Ising model lattice 

The spin configuration at r = 0 is fixed. The boundary conditions are periodic 

in the z direction, and the spins at r = 0 and 4 have three, not four, nearest 

neighbors. The measure of a particular spin configuration w is given by 

e-Pff(w) 
P(W) = z 

.2-E ce 
-PH(w) . 

w 

(4.19) 
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To proceed with the Projector Method type simulation we first compute the R 

matrices of Eq. (4.13). Since configurations will be selected at r = 1,2,3,4 we 

compute R(O), R(l), R(2), R(3). 

The following recursive definition scheme expresses R(j) in terms of R(j + 1) 

and an additional quantity Z. First define Z: 

&j-l (j - l) s C Zj-l,ij Zi, (j) 

ij 
(4.20) 

Z&(4) 5 1 . 

The Z functions can be computed recursively in reverse order starting at j = 3 

and working back to j = 0. The Z’s are the denominators needed in Eq. (4.13). 

zij (j) = C Zj,ij+l Tij+l,ij+a Tiwsl,iN (4.21) 
ij+l,...,iN 

The R matrices are given by 

&, ., 
>,*3+1 

(j) = Tiisii+l 'ij+l(j + 1) 

zij (j) 
(4.22) 

The matrix &j,ij+I(j) g’ Ives the probability that the state at time slice j will be 

ij+r, given that the state at time slice j - 1 is ii. Using these R matrices, one can 

pick states from the canonical ensemble according to the Boltzmann measure. 

How can the Projector Method measure be improved so that statistical fluc- 

tuations are reduced? The inspiration for the following suggestion comes from 

the last example. There, the Boltzmann measure is factored in a way which al- 

lows application of the Projector Method. This technique suggests we can choose 

new Projector Method measures, as long as they factorize in a similar fashion. 

Correspondingly, the new Projector Method measure opt, is defined as in 

Eq. (2.7). 

PPM(W) = Pwdl) PUOJ, (2) -. * PwN,wN-I(N) * 
(4.23) 

Note that the Markov process governed by these P matrices is not stationary, 
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since the P matrices depend on the current time slice. We have avoided the issue 

that H must be divided into HI and Hz. The basis state I is the initial element 

of all sequences w. The P matrices will be defined by a recursive scheme identical 

to Eqs. (4.20-22). The exponentiated Hamiltonian replaces the transfer matrix. 

Qwj-,(.i - 1) E C uwj-t,wj 9wjC.i) 
wi (4.24) 

p (j) = ‘wjtwj+l Qwj+l(j + 1) W,+J>il Qwj (j) 

Random variables can be defined whose expectations in IipM equal the ex- 

pectations of D, N, etc. in pp~. The statistical fluctuations encountered in 

simulating the first set of random variables should be significantly smaller than 

those encountered in the second set. This is because I believe the Boltzmann 

measure more accurately reflects the important terms in the sums that yield 

the random variables of interest (see Eq.(3.9)). Modifying the Projector Method 

measure to reflect the properties of a Boltzmann type measure should then mean 

the important terms in the sum are sampled more frequently. This suggests a 

direction in which future Projector Method research might profitably develop. 
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5. PERIODIC QUANTUM ELECTRODYNAMICS 

We now duplicate the analysis of the Ising Model and apply it to Periodic 

Quantum Electrodynamics (PQED). The Hilbert Space and Hamiltonian of the 

problem are defined after some geometrical preliminaries are reviewed. The sym- 

metries of the Hamiltonian are mentioned and a basis in Hilbert space is chosen. 

The probability space and measure are defined as well as the typical random 

variable. The simulation function is then discussed. 

5.1 THE HAMILTONIAN, ITS STATES AND SYMMETRIES 

We will apply our formalism to PQED in two and three spatial dimensions, so 

the notation for vertices, links, and plaquettes of the lattice will be kept general. 

These parts of the lattice will be referred to as vi, ej, and pk, where i = 1,. . . , V, 

j = l,..., L, and k = 1,. . . , P. For a two dimensional (three dimensional) 

lattice with cubic connectivity and toroidal boundary conditions, V, L, and P 

are respectively N,2N, N, (N,3N,3N). Each link is associated with the two 

vertices which are its endpoints, and each plaquette is associated with the four 

links which are its edges. The fact that each plaquette has four edges merely 

reflects the “triangulation* of the spatial torus. The association of vertices to 

links and links to plaquettes may be made precise16’ through the introduction of 

a boundary operator d which acts on formal sums of vertices, links, plaquettes, 

and higher dimensional “simplices”, if they exist. 

This formalization is not without benefits, for it allows a convenient expres- 

sion of the lattice versions of geometric differential operators such as curl, grad, 

div. This is useful to the extent that continuum QED has a simple geometrical 

interpretation. We will not undertake the automation of formalism necessitated 

by a careful definition of the boundary operator and concomitant definitions of 

coincidence numbers and orientation. Instead, we list the formulas we will use 

and note that a rigorous meaning may be given to the symbols. We will content 

ourselves with a heuristic explanation. 
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The boundaries of the vertices, links, and plaquettes are given by 

&Ji = 0 

aej = C dl (j, i) - Vi 
i (5-l) 

apk = 1 d2 (k, j) - fj . 
i 

The first equation merely asserts the fact that a point has null boundary. The 

second equation indicates that the boundary of the jth link is a formal sum over 

all vertices, weighted by the factor dr (j, i) . The weight dl assumes values 0, 1, -1 

according to the following rules. If vertex vi is not at one of the two ends of link 

!j, then dr = 0. Now imagine assigning an arrow to each link. If Vi is the vertex 

pointed at by the arrow on link 4 , then dl = 1 , and if Vi is at the other end of 

link ej then dl = -1. 

Figure S. Spatial lattice for 2+1-dimensional PQED 

The third equation expresses the boundary of the kfh plaquette as a weighted 

formal sum over links. Weighting factor d2 assumes the values 0, 1, -1 and van- 

ishes if ei is not one of the links bordering the plaquette pk . To determine d2 

when it is non-vanishing, one must assign an orientation, clockwise or counter- 

clockwise, to each plaquette. If the arrow on a link bordering a plaquette matches 
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the plaquette’s orientation, then d2 = 1 . Otherwise d2 = -1. The typical orien- 

tation assigned to links and plaquettes in the two dimensional case is shown in 

Fig. 3. 

The Hilbert space of the problem can now be defined. It is the space of 

complex-valued square integrable functions of L variables, where each variable 6 

runs from -rr to rr. Each link is associated to one of these variables, thus we refer 

to the variables as Blj. We define a pair of operators for each link: 61j, $e. 

The first operator is bounded and may be defined on all of the Hilbert space: 

SUP ll'fj I$,> II = A . 

Id II Iti> II 
The second operator is unbounded and cannot be defined on all of Hilbert space. 

We can choose its domain to be the subspace of finite linear combinations of 

vectors like 

where ncj assigns an integer to each link. The operator i& has finite norm 

for any vector in this subspace, and this subspace spans the Hilbert space. Self- 

adjointness of both sets operators on their domains can be verified. 

Lastly we wish to check the canonical commutation relations: 

[ 

1 a 
iae,* 

61j, 1 = f 6j,jl a 

Unfortunately the domains of definition of the operators i&Olj, and Bl,,i& 

do not overlap, so there is no significance to the above relatiok. The solution ;s 

to relinquish the validity of the desired relations, and instead rely on the Weyl 

relation: 

[ 7 1 a - d 
&I[; 

, f? iec 3 ., 1 = eieci’ 6j,j, . 

These relations are formally obtained from the canonical commutation relations 

and possess the advantageous feature of being true on a dense domain of the 
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Hilbert space. The significance of choosing this particular domain for the deriva- 

tive operators will become clear when we examine the symmetries of the problem. 

The Hamiltonian is a Hermitian operator in the Hilbert space: 

(5.6) 

H is unbounded, but it is defined on the same domain on which the derivative 

operators are defined. The first term is identified with the I?2 term in the classical 

Hamiltonian. A power series expansion of the cosine term and retention of the 

first non-trivial part gives the g2 term in the classical Hamiltonian. 

The form of H has been largely dictated by a desire to transcribe to the 

lattice a version of continuum QED which retains explicit gauge invariance. The 

price paid for this desire is that interactions have been introduced via the cosine 

term. Truncation of the cosine term at its quadratic part would yield a solvable 

theory that lacks explicit gauge invariance. Current folklore maintains that the 

continuumlimit of the theory is more likely to be gauge invariant if the regularized 

form of the theory maintains the gauge invariance. By continuum limit we mean 

the normal heuristic procedure.‘6’ A physical length is assigned to the lattice 

spacing, and this length is taken to 0 while the coupling constant g (and possibly 

an overall scale factor in the definition of H) is varied so as to maintain constant 

the correlation length, as measured in physical units. The theory is expected to 

exhibit Lorentz invariance in the limit that the physical length scale of the lattice 

vanishes. 

Gauge symmetries are manifested in different ways in the final theory, de- 

pending on the quantization scheme employed. Here quantization has been car- 

ried out in the axial gauge, eliminating the time-like component of the vector 
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potential as a degree of freedom from the Lagrangian. The passage to the Hamil- 

tonian is then canonical. Examination of the resulting Hamiltonian reveals a large 

number of symmetries: one per spatial point. These symmetries correspond ex- 

actly to the unfixed time-independent gauge degrees of freedom. Diagonalizing 

the symmetry operators which commute with the Hamiltonian fixes the remain- 

ing gauge degrees of freedom, and is equivalent to choosing a configuration of 

external charges in which the system is to evolve. In our problem these symme- 

try operators are labelled by sites: 

G; = 2 -dl (j,i) - f & . 
j=l I 

(5.7) 

The operator G,; is just the lattice version of the divergence of the electric field 

at the vertex vi. It is straightforward to check that 

[H , G,;] = 0 . (5.8) 

The natural interpretation of the eigenvalue of G,, is as the external charge at 

the site vi. 

The reason for the particular choice of the domain for the electric field opera- 

tors can now be stated. The spectrum of each Gvi contains 0 in this domain, thus 

there is a vanishing external charge sector of the Hilbert space. If we had chosen 

a different domain for the derivative operators, then no longer would there exist 

a sector of the Hilbert space in which all GVi would have 0 eigenvalue. 

To make this explicit, suppose for the link Lr we choose the subspace 

eid 2 a, ,iet,n ; 

n=-CO 
a, # 0 for finitely many n (5.9) 

to be the domain of 1 a taec,* The spectrum of this operator is shifted from 

. . . . -3,-2,-1,0,1,2,3 ,... to -3+a, -2+cY, -1+a, (Y, 1+cr, 2+CY, 3+a: ).... 
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If vr (~2) is oriented positively ( negatively) with respect to er, then the spectrum 

of G,, ( Gva) is now.. . ,-3 + a, -2 + o,. . . ( -3 - a, -2 - a,. . .). Thus the 

effect of this change of domain is to effectively place a fractional charge +(Y at vr 

and -a: at ~2. We are more interested in the analysis of our numerical method 

than in analysis of these charges, so this topic will not be pursued further here. 

These alternative domains are exploited in exhibiting a confinement mechanism 

by Drell et al (see reference 7). 

To complete the analysis of the symmetry properties of our Hamiltonian, 

note that 

5 Gui = 0 , (5.10) 
i=l 

implying that of the N symmetry operations, only N - 1 are independent. The 

above equation has a natural interpretation, which is that the total external 

charge on the lattice must vanish: this is obtained by integrating Gauss’s Law 

over the volume of the lattice. 

In D spatial dimensions there are D additional symmetry operators which 

have not been included in the above discussion. These correspond to the possi- 

bility of introducing an external background electric field in any of the spatial 

directions. These symmetry operators can be written as linear combinations of 

the electric field operators. In two dimensions they are 

(5.11) 

(5.12) 

See Fig. 4 for the sets S, and S,. One can then check that 

[H , G,] = [H , GY] = 0 . (5.13) 

There is a great deal of arbitrariness in choosing the links to include in S, or S,. 

For instance, choosing the set SL of Fig. 4 gives rise to a different operator G’,. 
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However, it can be shown that G: may be obtained by adding combinations of 

the G,, to G,. The same arbitrariness exists in choosing S,. 

l-38 :i 

Figure 4. Sets of links used to define background electric field: (a) S, (b) S, (c) SL 

We wish to choose a basis that diagonalizes the Hamiltonian in the strong 

coupling limit. The basis states are then 

In) = (25~)~~~~ fi exp (ita~0~~) . 
j=l 

It follows that 

(5.14) 

(5.15) 

The eigenvalues labeling the basis states are just the electric field values on 

the links. The vector potential, which is conjugate to the electric field in this 

formulation, has maximal uncertainty in this basis. Local gauge symmetries 

formulated above are especially transparent in this basis. We find that the sum 

of eigenvalues on the inward pointing links at a vertex minus the sum of the 

eigenvalues on the outward pointing links gives the external charge on a vertex. 

This quantity vanishes at each vertex in the vanishing external charge sector. 
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5.2 CHOICE OF PROBABILITY SPACE AND RANDOM VARIABLES 

We begin the definition of the probability space n. As before, its elements 

are sequences w of Hilbert space basis vectors. An element of the sequence is 

w,, and the eigenvalue of wn under the electric field operator on link ej is wn(Q). 

Now we turn to defining the measure on fl. The form of the measure is identical 

to that in the Ising model case* 

(5.16) 

though here the P matrices are harder to compute. The matrix elements of P 

are expressed in terms of matrix elements of the exponentiated Hamiltonian, and 

thus we embark upon an analysis of this operator. 

In two spatial dimensions the Hamiltonian is split into two parts so that each 

part may be exponentiated exactly. The following decomposition is convenient 

in that HA and HB are treated identically. The electric term is divided evenly 

between HA and HB while the magnetic term is split on a plaquette by plaquette 

basis into two parts. 

HA=$ e(;&)‘-$ 1 cos e,, 
j=l * PkEP.4 

HB=$ k(;&)‘-$ 1 cos 8,, . 
j=l 4 PkEPB 

(5.17) 

(5.18) 

This splitting of all plaquettes into the sets PA and PB is checkerboard fashion 

as in Fig. 5. 

* This is true for 2 + l-dimensional PQED. For the 3 + l-dimensional case it is necessary to 
subdivide the Hamiltonian into four pieces so that each piece may be exponentiated locally. 
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Figure 5. Decomposition of plaquettes into sets PA and PB 

The Hamiltonian is a sum of these two parts, 

H=HA+HB, (5.19) 

and HA and HB are separately gauge invariant. Furthermore, we can write 

Hx = c h,, ; X=A,B (5.20) 
PkEPx 

where h,, is a single plaquette Hamiltonian given by 

h,, = $ 5 (dz (k,j) * 5 -& 2 (5.21) 
3=1 I 

Note that 

[hPk ) hpk,] = 0 if k,k’ E A or k, k’ E B . (5.22) 

From this follows the fact that HA and HB can be exponentiated, provided we 

can exponentiate the single plaquette Hamiltonian. 

In appendix B the single plaquette Hamiltonian h is numerically exponenti- 

ated. The Trotter product formula is used to provide a convergent approximation 

to eVh. Truncated matrices represent the operators in the approximation, and 
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the matrices are handled on a computer. The error in this computation can 

be made as small as desired, and in our case is comparable to the accuracy in 

representing a real number on the computer. 

The operators eeHA and emHa are tensor products of the single plaquette 

operators e -h, thus matrix elements of the former pair are appropriate products 

of matrix elements of the latter. The P matrices appearing in the definition of 

the measure are defined as in the Ising model example. 

p(B) (wan+1 (e-PHBin(w2n) 
‘JJ~+~+‘-J- = c, (Vle-PH~/nlw2n) 

The sums in the denominators factor into separate sums for each plaquette, and 

thus can be carried out locally. 

As opposed to the Ising model case, neither HA nor HB is diagonal in this 

basis, which has been chosen to diagonalize the strong-coupling limit of the prob- 

lem. In fact, HA and HB are just translations of one another. More precisely, the 

unitary operators which implement spatial translations can be used to classify 

operators on the Hilbert space. Under this classification, HA and HB form a 

two-dimensional irreducible representation of the group of translations. 

The factor Q which occurs in Eq. (5.16) is a Kronecker delta function of its 

index wg. This has the effect of assigning zero probability to every sequence of 

states that does not start with the particular state 14) specified by the Kronecker 

delta. The initial state 14) may lie in any symmetry sector. Because the operators 

HA and HB commute with the operators which label the external charge and 

background field, the entire sequence w will lie in the same sector as wu. This 

leads to the technique of choosing 1~~5) t 0 1 ie in a particular symmetry sector in 

order to determine information about that sector. 
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The simplest random variable to simulate is analogous to D, defined in Eq. 

(3.28) in the Is’ g m model. We defer discussing more sophisticated random vari- 

ables until several improvements to the basic method have been developed. The 

expectation of the simplest random variable satisfies 

(D), = (xl (c+HAlne+HBln)n 14) . 

This quantity decays exponentially in /I at a rate equal to the lowest eigenvalue 

of H (in the sector specified by 14) ). Extracting this rate is the most naive way 

of determining ground state energies in the Projector Method. 

The simulation function M is similar to the one defined for the Ising model. 

The domain of M is InP. As noted earlier, neither eVHA nor emHB is diagonal 

and thus M depends non-trivially on all its coordinates. In the Ising model case, 

each coordinate of the sample point X was used to make a binary decision. For 

this case each coordinate corresponds to visiting one plaquette in the lattice. 

The coordinate is used to pick an integer An which determines the change to 

the plaquette quantum numbers via Eq. (B16). Since the probability for making 

a transition involving an addition or subtraction of arbitrarily many units of 

flux is non-zero, the single coordinate is used to make an infinitary decision. 

Fortunately, for typical values of the couplings, several of the infinite number of 

possibilities comprise 99% of the range of the coordinate (see Fig. 6). Thus, 

picking An given the Cartesian coordinate is not computationally difficult. 

An 

- xi - 

Figure 6. An M a function of Xi 
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Finally, the similarity of this problem to the Ising model problem should 

convince the reader that the random variable D possesses the property of serial 

computability. Furthermore, the measure constitutes a Markov process. These 

properties allow a reduction of the storage requirements to spatial degrees of 

freedom only. 

All these arguments apply equally to the 3 + l-dimensional case, except that 

H must be divided into four parts. It is impossible to reduce the number of 

sub-Hamiltonians below four since each link borders four plaquettes. The single 

plaquette Hamiltonians associated with these four plaquettes do not commute 

with one another. Thus, they must be included in separate sub-Hamiltonians, 

of which there must then be at least four. That it is actually possible to divide 

all the plaquette terms into four groups so that the sub-Hamiltonians consist of 

sums of commuting terms is best seen by construction. We will not carry out 

this construction but note that it is straightforward. 
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6. PARALLEL SCORING AND EXTENSIONS 

By now the mathematical formalism underlying the Projector Method has 

been constructed. We will no longer be so explicit in the mathematical exposition 

since we wish to change the focus of our analysis slightly. Here we present 

several applications and modifications of the basic method. These include trial 

parameter, parallel scoring, and multiple configuration techniques. Numerical 

results are presented. 

6.1 PARALLEL SCORE EVALUATION OF ENERGIES 

There are several methods for computing ground state energies using the 

Projector Method. All methods follow more or less directly from the observation 

that 

Here 14) and Ix) should have non-zero overlap with the ground state, and p should 

be large. The simplest method is the (NE + NT)/NT method. A modification 

of this method yields the parallel score technique, and a particular limit of the 

parallel score technique gives the derivative technique. 

In the (NE + NT)/NT method we define a pair of random variables, the 

expectations of which give the numerator and denominator of Eq. (6.1). The 

most naive implementation requires that the numerator be simulated, then the 

denominator, and then the ratio is formed. The ratio of the expectations of the 

random variables is the exponential of the mass gap multiplied by -S/3. 

There exists a simple variant of the (NT + NE)/NT method, for which 

the method is named. The variant arises from the observation that the work 

done in computing the denominator of the ratio in Eq. (6.1) can be used in the 

computation of the numerator. To see this remember that we do not actually 

simulate matrix elements of e-PH, but an approximation to this operator. The 

Trotter product approximation necessitates choice of an integer, in the infinite 
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limit of which the approximation becomes exact. If we choose the integer to 

be NT, then every sequence of NT basis states selected using the simulation 

function gives rise to a particular value of the score random variable relevant to 

the denominator. Choose Sg so that 

SP+P = NT+NE 
P NT (64 

for some positive integer NE. Then instead of choosing a new sequence of NT + 

NE basis states for the numerator, just choose NE additional ones and append 

them to the initial sequence of NT states. The numerator random variable is 

evaluated on the full sequence of NT + NE states as though the sequence had 

been picked in the standard way. We assert that the expectation of the numerator 

random variable computed in this way is identical to the expectation computed 

in the normal manner. The proof of this assertion follows directly from Eq. (6.1) 

and the definition of the simulation functions and scores. 

In fact, we can imagine that the entire problem consisting of a pair of proba- 

bility spaces and their associated formalism collapses into one probability space: 

the one for the numerator. The numerator random variable is unchanged, but we 

have to give a definition of the denominator random variable. The new denomi- 

nator variable evaluated at a point of the numerator probability space is just the 

original denominator variable evaluated on the first NT elements of the sequence 

which is the element of the numerator probability space. The new denominator 

random variable has a probability distribution identical with the original de- 

nominator random variable. The high degree of correlation observed between 

the numerator and denominator random variables suggests that computing these 

expectations in parallel is a statistical improvement. 

We now turn to the parallel score technique. Imagine that we have defined 

a probability space, a random variable D, and a simulation function. Then the 

identity 

(D), = (x 1 (empA/’ emPBir)‘l 4) (6.3) 
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is expected to hold. Now define a second random variable N on the probability 

space with the property that 

(N), = (x 1 (e-(B+6P)A/8 e-(P+6PPls)“l~) . (6.4 

The value of N on a particular element w of the probability space is 

. . . (w2 le-(P+‘P)AI~lwlJ (wl Ie-(P+‘P)BlS Iwo) * a. eoi4,/ P(W) 
(6.5) 

in analogy with the definition of D. Clearly, N shares the virtue of serial com- 

putability with D. The similarity of form between D and N means that the 

simulation of N can be carried out with very little additional computing over- 

head if D is already being simulated. The matrix elements used in the definition 

of N are tabulated identically to the matrix elements used in the definition of D. 

Thus, all indexing arithmetic done to compute D may be used in computing N. 

As with the (NE + NT)/NT method, there is a strong correlation between 

the random variables D and N. If 6p = 0 then the random variables become 

equal. The ground state energy is computed according to 

1 w, ~0 = sp en o, . 
( > 

The temptation to make 6/3 very small is curbed by the presence of the factor 

l/S/? in the energy. This is called parallel scoring because a single sequence 

of basis states is converted into a pair of scores which track one another quite 

closely. 

Note that the introduction of the energy scale 6p into the problem seems 

unnecessary. Elimination of this scale by passing to the limit SD + 0 yields 

the derivative method. In order to isolate the random variable upon which this 

method relies, begin by considering the random variable N of the parallel score 
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method. Clearly N is parametrized by Sg, so we can Taylor expand the random 

variable N about SD = 0. 

N(6P) = N(0) + 6p. N’(0) + O(6p2) . (6.7) 

The above equation is understood as an equality between functions defined on 

the probability space. Using the fact that N(0) = D, we have 

1 

E” = sp en 
(D + 6P N’(O) + O(W2))p 

(D)P > 
(6.8) 

The energy scale S/3 does not appear in the first term of the power series expansion 

that contains the ground state energy. The price paid for this simplification is 

the necessity of simulating a new type of variable, N’(0). 

To see how the simulation of N’(0) must proceed, recall some basic principles. 

The underlying probability space has been chosen and the expectation value of 

N’(0) can be written down as a sum of terms. To define a random variable whose 

expectation is the desired sum, impose a condition similar to Eq. (2.5). 

Let us carry out this prescription out explicitly. The expectation of N’(0) 

satisfies 

(N’(O)), = -& W(W)) 3 (6.9) 

where we have 

(N(6P)) = c.. . c (xlw2n)(w2nle-(P+6P)A/81w2,-lj.. . (w~Ie-(p+sp)B~slwo)(woI~) . 
wo wan 

(6.10) 

Forming the SD derivative of this expression and evaluating it at 6p = 0 will give 

the expectation value of N’(O). Doing this completes our first task of writing 

(N’(O)), as a sum of terms. 

50 



We would like to associate each one of these terms with one element in the 

probability space and assign the value of the random variable at that element 

to be the term divided by the measure of the element. Unfortunately, there are 

many more terms in the sum than there are elements in the probability space. 

That is because forming the 60 derivative of any single term in the sum for 

(N(SP)) generates 2n terms, by application of the product rule. Thus we have to 

associate all 2n of these terms to a single element of the probability space. The 

random variable then has a value at a generic element of the probability space 

equal to the sum of those 2n terms (arising from the derivative) divided by the 

measure. 

d 
N’(o)(w) E D(w) ’ { (w2nle-Pialw2n-l) d6P sp=o 

(w2nle-(P+6P)Alslw2n-Ij 

+ . . . + lwl ,e-;&8/wo) & 6p=o (w1~e-(P+aP)B’8~wo) 
(6.11) 

Given the definition of the random variable N’(0) we can finish the discussion 

of its simulation. Since the measure has not been changed, the usual simulation 

function picks elements of the probability space. The form of the definition 

of N’(O) above shows that we need only compute the quantity in brackets for 

arbitrary w in order to finish the simulation of N’(0). 

The random variable D is serially computable and its simulation does not 

necessitate storage of the element of the probability space in its entirety. We 

assert that, like D, N’(0) is serially computable, so that the quantity in brackets 

may be accumulated in a temporary register. This follows from an inspection 

of the definition of N’(0). The rightmost term in the brackets can be computed 

as wr is generated from wo. Thereafter, wu is not needed and may be discarded. 

The same argument clearly applies to all the terms. 

Finally we address the issue of computing the derivatives of the matrix el- 

ements indicated in Eq. (6.11). Remember that the decomposition of H into 
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A and B was performed so that the matrix elements became computable. This 

same technique allows a computation of the derivative. Use the formula 

d 
dap~,,=, (Wi+l Ie-(P+6p)AislWi) E 

(Wi+l le-(P+6p)AislWi) - (Wi+l IebPAlsIWi) 

6P 

(6.12) 

for suitably small 6p. The matrix elements on the r. h. s. of this expression are 

calculated as usual. The matrix element derivatives are then tabulated before 

running the simulation and referenced as needed, identically with the conven- 

tional score factors. 

Energy Approximants vs. Beta 

-1.8 

0 0.5 1 1.5 2 2.5 3 
Beta (4 Sites, H=l.) 

Figure 7. Energy approximants versus ,9 

As with all methods presented so far for computing ground state energies, 
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there are systematic errors encountered in the derivative method. To appreciate 

the magnitude of these errors, one can undertake an exact evaluation of the 

ground state energy as computed by the derivative method. For models whose 

Hilbert space is finite dimensional and relatively small (2 lOOO), a computer can 

be taught to carry out this computation exactly. 

In Fig. 7 results from such a calculation are presented. The curved lines are 

graphs of the first term on the second line of the r.h.s. of Eq. (6.8) as a function 

of the inverse energy S. The four curves are labelled by the value of the integer s 

(denoted by L in the figure ) which appears in the Trotter product formula (Eq. 

(6.4)). The abscissa scale is energy per site of the Ising model specified in Eq. 

(3.1) with iV = 8 and h = 1. The exact energy (obtained by fermionization and 

Fourier transform ) is shown along with results from Projector simulations. All 

simulations agree (within error bars) with the appropriate analytic result. The 

graph underlines the significance of understanding the influence of the parameters 

/3 and s on the final answer. 

6.2 TRIAL PARAMETERS 

The motivation for the trial parameter technique comes from a simple anal- 

ysis of the Ising model. Using the same notation as in chapter 3, compute the 

probability pt for obtaining the element of 0 with all spins up. This probability 

is given by Eq. (3.10) with wj(r) equal to 1 for- all j,r. Both the Q and PcA) 

factors evaluate to 1. Each of the n factors of P(@ contributes pN, where p is 

given by Eq. (3.24). Collecting these results, we have 

Pt = e+lvh [cash (c)lnN . 

The score St for this element is given by 

(6.13) 

(6.14) 

Now compare these expressions with the probability and score for the following 
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element: 

cdj(r) = 
1 if j 2 k and r # p ; or if j < k 

-1 ifj>kandr=p . 
(6.15) 

This is identical to the first element, except that a spin flip occurred at the kth 

time step, mediated by PtB). D enoting the probability and score for this element 

by PfliP and SO’P , one obtains 

p%(k) = ,-PNh [cash (c)lNmml [sinh (e)] 

S@(k) = [exp (:)I”” [exp (:)]“-I [exp (S’N~4))]~-(‘-1) 

= ,-PAN-PA’ exp[-4p(l+y)] . (6.16) 

Dividing by similar factors for the spin up state, we have 

(6.18) 

If c > 1, then the probability of obtaining the flipped configuration is not appre- 

ciably different from the spin up configuration. However the factor multiplying 

St in Eq. (6.18) may be quite small, so the score for the flipped configuration 

may be relatively negligible. It is not hard to understand this intuitively, and 

the k dependence of SfliP(k) provides the key. If k attains its maximum value 

of 7z, then the two scores St and SftiP are comparable, but when k is near 0 the 

scores can differ greatly. Every application of e-PAIn to the flipped spin basis 

state means a suppression factor of e-‘Pln. Since the flipped configuration per- 

sists until the last state in the sequence, the score is suppressed by (n - k) such 

factors. 
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The following picture emerges. The measure allows the flipped spin states 

to occur with a probability comparable to the spin up state, although these 

states have negligible score in many circumstances. It is desirable to modify the 

measure so that trials are not wasted computing negligible contributions to the 

final expectation value. This modification to the measure requires compensating 

changes to the random variable so that the expectation value is invariant. Both 

these changes are easily accomplished in the trial parameter technique. 

The essence of the trial parameter method is to keep the same form for the 

expression defining the measure, but to calculate the matrices P with a modified 

Hamiltonian. The change in the score random variable is exactly analogous to 

the change in si in Eq. (2.5) if pi is changed while yi is fixed. Choice of the 

proper modified Hamiltonian is suggested by the preceding analysis of the Ising 

model and one further requirement. The requirement is that any configuration w 

for which ,u(w) -D(w) * is non-zero must have p(w) non-zero, where p is the new 

measure arising from the modified Hamiltonian. If this condition is not fulfilled, 

then the modified score, defined by 

D(w) E ICW) CL(w) * D(w) (6.19) 

is undefined for w. In practice this requirement is never hard to fulfill. 

We now give a choice for the modified Hamiltonian in the Ising model and 

argue why the choice might be expected to improve convergence. Define the 

modified Hamiltonian p by 

(6.20) 
(iA i=l 

As stated above, the measure for the probability space is calculated in the usual 

manner, except that p is used instead of H. The trial parameter v has been 

* D(W) is any random variable similar to the one defined in Q. (3.28). 
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introduced. To convince the reader that a is a good choice, we calculate the 

modified scores for the two configurations used above. From Eqs. (6.17,18,19): 

St = Pt - St 

Ff 

zO’*(k) = PfliP(k) . S’-(k) 

Fflip(k) 
(6.21) 

After incorporating the trial parameter V, the probability and score of the flipped 

configuration are related to the same quantities for the spin up configuration as 

follows: 

P”‘(k) = tanh 

fip(k) = exp [-4p (1 + e)] * tt~~~~~/~~) *St . (6.23) 

Before the trial parameter was introduced PfliP and Pt were comparable, though 

SfliP was much smaller than St. We hoped to reduce Pflip so that the flipped 

configurations, which contribute little to the final expectation values, are chosen 

less often. By choosing u appropriately, it is possible to adjust the modified 

probabilities and scores to achieve just this. If v is a small positive number, 

the probability for choosing the flipped configuration is diminished while the 

corresponding score is scaled upwards. 

In Fig. 8 we demonstrate two points: i.) the expectation of the random 

variable of interest is independent of Y ii.) there is an optimum value of Y for 

which the statistical fluctuations are smallest. The data presented there are 

for the four site Ising model of Eq. (3.1) with h = 1. The graph shows the 

dependence of the ground state energy as a function of the trial parameter V, 
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with p = .5 . The ground state energy is calculated using the derivative technique 

of the previous section. 

For each value of Y we obtained 100,000 samples of the random variable. 

These were grouped into 100 bins of 1000 samples each, and the mean from each 

bin was computed. The 100 means thus obtained are expected to be distributed 

gaussianly, according to the law of large numbers. The means and widths of 

these gaussian distributions are plotted as a function of Y. 

241 

22 

20 
t 

q” 

1 
18 

Figure 8. Dependence of energy measurements on Y 
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The figure shows that the ground state energy is computed correctly regard- 

less of the value of V, indicating that the modification of the probabilities is 



correctly compensated for by the accompanying change in the scores. There is 

an optimum value of Y, given by choosing the gaussian distribution with the 

smallest width. This value of Y is somewhat less than 1, in keeping with the 

heuristic argument above. 

Similar trial parameters are used in the PQED calculation. As in this case, 

the probabilities are calculated from a Hamiltonian whose form is identical to 

the original one, but which has different coefficients multiplying the electric and 

magnetic terms. The coupling constant g is replaced by a trial coupling constant 

denoted by gT, and the entire Hamiltonian is multiplied by a scale factor 7. This 

effectively allows the coefficients for the two terms in H to be picked separately. 

A heuristic argument suggests that the value of gT should be greater than 1, 

and this is borne out by numerical simulations. The argument notes that when 

H is split into HA and HB, the electric term (which is responsible for suppressing 

transitions to states with a large amount of electric flux) has a coefficient only 

half as large as before. One can compensate for this inadequate suppression of 

transitions to states with large electric flux values by taking gT larger than g. 

This use of trial parameters is responsible for much of the improved statistical 

behavior of our simulation as compared with De Grand et al (see reference 8). 

6.3 PARALLEL CONFIGURATIONS 

We now come to the multiple configuration technique. It is this technique 

which enhances the capability of the Projector Method for computing string en- 

ergies. The multiple configuration technique is limited in applicability to certain 

types of simulations. We discuss the technique first heuristically, then more pre- 

cisely to delimit its realm of applicability. 

First consider a naive Projector Method calculation of a string energy. By 

string energy we mean the lowest eigenvalue in that sector of the Hilbert space 

which is characterized by non-vanishing eigenvalues of a . E’ at two sites of the 

lattice. The eigenvalues of a.2 are just the values of the external charge on these 
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lattice sites. To see why the Projector Method calculation of the string energy is 

easy let us begin by considering one of the energy approximants discussed above. 

By inserting complete sets of energy eigenstates, the denominator of Eq. (6.1) 

can be rewritten 

(6.24) 

The operators ‘? . g all commute with H, so the energy eigenstates In) each lie 

in a particular external charge sector. This means that many of the terms in 

the above sum vanish if I+) has fixed external charge. In fact if 14) lies in the 

external charge sector which corresponds to the string, then 

lim (xle-PHj+) = (x[O,t,.) (Ostr.I$) e+bo(etr*) 
P+m 

(6.25) 

where IOstr.) is the ground state in the string sector. An analogous argument 

applies to the numerator of Eq. (6.1). As a result, if we perform a standard 

Projector Method simulation of Eq. (6.1) with the exception that 14) is chosen 

to lie in the desired external charge sector, then the ground state energy extracted 

is the string energy. This completes our discussion of the naive Projector Method 

calculation of a string energy. 

There is a heuristic motivation for the multiple configuration technique. 

Imagine simulating the ground state energy in the vanishing external charge 

sector. If we pick any basis state wi occurring in any sequence w chosen in such 

a simulation, then by our above argument w; surely lies in the vanishing external 

charge sector. It is possible to invent an operator which, when applied to such an 

wi, converts it into a new state CJ~ which is in some non-vanishing external charge 

sector. We will exhibit such an operator shortly. At any rate, the existence of 

such an operator is very suggestive. It indicates that while simulating the ground 

state energy of the PQED system, we can apply the above operator to each basis 

state generated and thus simultaneously generate elements from the part of the 

probability space relevant to the fixed external charge problem. Of course the 
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states generated in this fashion will occur with a probability not equal to their 

measure, but this problem can be fixed in the scores. 

Let us be more precise. Consider the operator 

where each Sti assumes integer values only. Its commutator with the lattice 

version of the electric field divergence is easy to compute. 

Now if In) is a basis state whose eigenvalues under all Gv; are 0, observe the 

consequence of applying the above equality: 

Gvi I4 = 0 In) 

Gvi(O In>) = ([Gvi, 01 + OGv,) In) (6.28) 

= c dl(j,i)SLj - 0 In) . 
j 

Thus the state 0 In) has fixed external charge Cj dr(j,i)SLi. The operator 0 

may be thought of as creating a configuration of.external charges on the lattice 

whose values at the lattice sites equal the divergence of the discretized vector 

field S. 

A point crucial to the success of the multiple configuration technique is the 

following. Imagine applying the operator 0 to the entire vanishing external 

charge sector of the PQED Hilbert space. The result is exactly the entire sector of 

the Hilbert space with external charge Cj dr(j, ~)SL~. Furthermore, the mapping 

of these sectors one to the other is an isomorphism: the null space of 0 is 

trivial and the map is surjective. The necessity for these conditions will become 

apparent. 
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In a standard simulation of a matrix element such as in Eq. (5.25), choosing 

IX), I+), NT and p dictates the measure on the probability space. The ran- 

dom variable whose expectation gives the matrix element is then defined in a 

natural way. In the multiple configuration technique, while such a simulation is 

proceeding, we will simultaneously calculate the expectation value of a matrix 

element identical with the first, but possessed of a different initial state, I+)str.. 

If such a simulation were done independently, it would inherit a particular mea- 

sure depending on lx), 14)str., NT and /3. Instead of this measure, the multiple 

configuration dictates that we define a measure* 

p(w) = /4 (0-‘(w)) . 

Now a random variable is defined in the natural way so that its expectation gives 

the desired matrix element. 

a(w) ~ (xl-J b2n le -PAiaIW2~-1) . . . (W Ie+BiS(Wo) @Jo Id)etr. . 
P(w) 

(6.30) 

By construction we have 

/ 
I7 G = (Xle-PH14)str. . (6.31) 

It should now be clear why 0 has to satisfy the twin requirements of injectiv- 

ity and surjectivity. If 0 were not injective, then we could find pairs of elements 

of the probability space that get mapped into the same element. In this case we 

would have to define p to be a sum of ~1 evaluated at several elements. Though in 

principle this is possible, it would be awkward at best. If 0 were not surjective, 

then for some w, O-‘(w) would not exist. This would mean that certain elements 

of the probability space relevant to the string problem would never be chosen. 

In these circumstances it is not clear how to modify the definition of D so that 

its expectation still yields the desired matrix element. 

* Here we have extended the domain of 0 from elements of Hilbert space to sequences of 
such, according to (O-‘(w)); = O-+.+) . 
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An alternative viewpoint of the same mathematical formalism exposes one 

advantage of the multiple configuration technique. Above we imagined simulating 

one particular probability space using a simulation function M, a measure ~1 and 

random variable D. Simultaneously we wished to simulate a probability space 

with simulation function itI@‘.), measure P@~.), and random variable DtStr.). 

Instead we used for the second problem the simulation function 0 . M, which 

is certainly different from M( str.). Additionally the measure on the space is not 

P@~*), but ji. To compensate, we defined a new random variable F on the space 

which satisfies 

I 
p(str.1 dpW) = 

I 
D fi . (6.32) 

The alternative viewpoint is to transfer all operations back to the original prob- 

ability space. The original simulation takes place with the random variable D. 

The multiple configuration part employs a random variable 5 defined on the 

same space via 

F(w) = D(O(w)) . (6.33) 

Clearly, 

/~dp=/&iji. (6.34) 

As in the parallel score technique, we find that the variables D and 5 are highly 

correlated. This correlation can be used to reduce the statistical fluctuations in 

calculating string tensions. 

To combine the parallel score technique with the multiple configuration tech- 

nique, begin by noting that the string tension is the difference in the string and 

vacuum energy. 

T = Estr. - 60 

l =-- 
SP ( 

en e-wB.t.. _ & e-6Pso 
> 

(6.35) 
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Substitute ratios of matrix elements from Eq. (6.1) for the exponentials. 

(6.36) 

From our discussion in the parallel score section and above, it can be seen that 

all four matrix elements in the parentheses can be simulated at the same time. 

Cancelling of fluctuations makes the above quantity quite stable. In fact, strings 

of different lengths can be calculated simultaneously, further increasing the effi- 

ciency of our technique. Detailed numerical results of this approach are presented 

in reference 3. 
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APPENDIX A 

MATHEMATICAL ASIDES 

We include the following definitions of mathematical terms’*’ to avoid confu- 

sion and to make this work more self-contained. By a probability space we mean 

a triple of objects, {&&II}. fI is a set of objects which, it is worth noting, is 

usually not endowed with a topology. This means that we need not worry about 

the “smoothness” or “continuity” of functions defined on fl, and that in fact n 

need not even have a particular dimension. 

C is a u-algebra on n, which means for our purposes that we should think of 

C as a subset of the set of all subsets of D. The fact that C is a a-algebra means 

that not just any subset of the set of all subsets of n will do. Specifically, C 

must be closed under the setwise operations of complementation (if Q E C then 

iT~{wEn:w~a} is also in C) and countable unions (if on E C V n E I and 

I is a countable index set, then UnEI on E C). 

In intuitive terms, we can explain the significance of these restrictions as 

follows. The a-algebra C will be the domain of a function which we call the 

measure and will introduce shortly. Certain desirable properties of the measure 

function are lost if we allow its domain to become too large. By requiring the 

domain of the measure function to be a a-algebra, it becomes an easy matter (for 

mathematicians) to check that the measure function has the desired properties. 

We may thus view the defining properties of the a-algebra C as insurance that 

the measure function behaves correctly. 

Finally, /.L is the measure function. As implied above, p is just a real valued 

function whose domain is the u-algebra C. In other words, ~1 assigns a real 

number to certain subsets of fl. We have dignified the function p with the 

title measure, and thus expect p to satisfy certain special properties. They 

are positivity (p(a) 2 0 f or all 0 E C), countable additivity (p (U,,, a,) = 

c nEI ~(a,) if on are pairwise disjoint sets from C and I is a countable index 
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set), and normalization (/A ( UrEC 0) = 1). These criteria derive significance from 

the fact that they allow one to interpret ~1 as a probability function. 

To see how the interpretation comes about, imagine that we have a collection 

of objects and an algorithm for picking an infinite number of elements of the 

collection in a random but consistent way. Consistent means that any particular 

element occurs with a fixed frequency in any sufficiently large contiguous subset of 

the infinite sequence of chosen elements. Random has the simple intuitive mean- 

ing that there should be no correlation between neighboring pairs of elements in 

the series, as well as non-neighboring pairs, triplets, etc. The probability space 

s2 consists of our initial collection of objects. To understand the necessity for 

introducing a a-algebra in order to model the above situation, it is important to 

recognize the fact that the initial collection of objects may be infinite. In this case 

it is easy to see that the probability for obtaining any particular element of the 

collection may be 0 ( there is no chance of picking any members of a given finite 

set of real numbers from the unit interval in a finite number of trials). Thus one 

is forced to group objects from the collection together in order to form entities 

that have a chance of having one of their elements chosen. In this context, the 

a-algebra C does exactly this : those groupings of the original collection which 

do not occur in C have no chance of any of their constituents being picked. Now 

the role of the measure is easy to explain : the measure assigned to an element 

o of C gives the frequency with which one expects to observe members of u in 

the original infinite series. 

We will frequently ignore the subtleties touched upon in the previous para- 

graph and refer to processes which select elements of R according to their mea- 

sure. Of course, if C is identical to the power set of n ( the set of all subsets 

of D), the terminology is precise. This is the case in both the Ising Model and 

PQED. In the former case n will be finite, while in the latter it is countably 

infinite. 

Of course we have proceeded in reverse here. People spoke of events occurring 
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with particular probabilities long before the introduction of the probability space. 

The probability space is merely the result of the mathematicians’ attempt at 

abstracting some formal structure from intuitive examples. We find the language 

of the probability space more precise, and employ it with varying degrees of 

success throughout the text. 

A few additional bits of structure are required to make contact with actual 

simulation. If, as a result of some process, an element of the set l2 is chosen 

according to the probabilities determined by the measure p, it is frequently the 

case that we are satisfied with information less comprehensive than that required 

to specify uniquely the chosen element of n. In a typical example, elements of R 

may be the Cartesian coordinates of points in a 100-dimensional space. We may 

be interested only in the distance of points in the region to the origin. Thus, 

most of the information contained in the 100 Cartesian coordinates of a sample 

point is irrelevant to us. To accommodate such a situation, we define random 

variables on probability spaces. These are simply real valued functions defined 

on the space !l. They must satisfy an additional restriction which has to do with 

measurability but which will not concern us. 

Intuitively a random variable differs from an ordinary variable in a simple 

way. If z is an ordinary real variable, we imagine that it can take on any real 

value, without prejudice as to certain ones such as 7 or 47r. A random variable is 

identical, except in that it has a particular probability of taking on a given value, 

or range of values. In practice, if z is an ordinary real variable, then the equation 

0 2 z 5 .l may or may not be true depending on the value of z. If z is a random 

variable, then the equation 0 5 z 5 .l has a particular probability of being true. 

In fact, if r is a function from the space fl to the reals which is a random variable, 

then the probability that r lies in the range (a,b) is just p(r-‘(a,b)). 

Two features arise immediately in connection with random variables. The 

first is integration and the second is probability distribution. Taking up the first, 

we note that a random variable, being a function defined on a measure space, 
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is susceptible of integration. The integral against the measure p of a random 

variable r is called the expectation of r, which we write s r dp. This number may 

or may not be infinite. 

Secondly we introduce the probability distribution associated with a random 

variable r. As mentioned earlier, it is possible, by composing the inverse function 

of r with the measure function cc, to associate with certain subsets of the real line 

a probability. In fact, for a Lebesgue measurable set u on the real line, define 

cLR(u) by PR(u) = @(rF1(u))- Th e unc ion J&R thus assigns a real number to f t' 

each Lebesgue measurable set on the real line. The function ,.&R inherits all the 

properties of the function /.J, and thus PR is a probability measure on the real 

line. We will prove no mathematical theorems using the structure introduced 

above. We merely find it convenient to have available this precise language for 

exposition. 

While we are collecting together language of a mathematical nature, it seems 

worthwhile to mention a certain central aspect of simulation of stochastic pro- 

cesses. In all our simulations, we begin by defining a probability space and some 

random variables. Ideally we would like to be able to compute expectations of 

these random variables exactly. Of course this is impossible in most cases of 

interest, and we rely instead on an approximation. The approximation is said to 

“sample the probability space” according to the measure, using random numbers. 

One may analyze this process into two parts, the first of which is tractable 

and admits many solutions for a specific problem. This first part is that dealt 

with centrally by the Projector Method, and in this work. This first problem 

is the following: one assumes that one has at one’s disposal a probability space 

of In where In is n Cartesian products of unit intervals, and the o-algebra is 

the standard one of all Lebesgue measurable sets in n dimensions. The measure 

is also Lebesgue, and n may be as large as necessary. It is then incumbent on 

one to construct some random process from this probability space such that the 

possible outcomes of this random process are exactly elements of the probability 
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space fl we are trying to simulate. 

This is a careful way of saying that our ultimate computer program needs as 

input some set of n uncorrelated random numbers all in the unit interval. If we 

averaged the result of our program over all possible sets of n random numbers, 

the answer should be the same as if we had actually done the integrals over the 

probability space. If this last constraint has been fulfilled, then we have solved 

the first problem. This is what we attempt to do in the text, for a particular 

type of measure. 

The second part of this approximation is intuitively plausible, but any at- 

tempts to give a rigorous justification lead quickly into a deep and dangerous 

quagmire. The second part refers to the fact that we never actually average the 

output of the program over all n-tuples of random numbers. Worse yet, the n- 

tuples are far from random. They are quite deterministic, as must be the output 

from any algorithm that runs on a computer. Perhaps most surprising is the fact 

that attempts even to define what one means by a random number or sequence 

of numbers often result in triviality.i”‘1 Indeed, the most robust definition of a 

random number yet seems to be information theoretic: If the size of the smallest 

computer program which can generate a given number is comparable to the size 

of the number itself, then the number is said to have a high degree of randomness. 

Of course, from this point of view, the random numbers employed in numerical 

simulations are the worst possible, since they are typically generated by quite 

small programs. 

In fact the above idea leads quickly into the field of cryptoanalysis if one 

chooses to look at these simulation programs backwards. Normally we assume 

that our random numbers are random, and that we are actually simulating the 

probability space in question. The output of the program is then taken to char- 

acterize the probability space. If we shift our focus to the random numbers, then 

the numerical simulation program is clearly nothing but a deterministic func- 

tion of the input random numbers. One is then certainly tempted to attribute 
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aberrations in the program’s output to the program’s ability to decipher the 

non-randomness of the input parameters. 
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APPENDIX B 

ANALYSIS OF THE SINGLE PLAQUETTE 

We analyze the single plaquette Hamiltonian h, given by 

a2 az a2 
+ ae; + as; + Z@ 

- b cos (el + e2 - e3 - e,) Pl) 

where the Hilbert space is the space of square integrable functions defined on 

[0, 27r14 and the domain of the derivative operators is as specified in section 5.1. 

Write a basis element as 

1 

-( > (2n)2 exp 
ik ni Bi E In;) . 

i=l 

(B2) 

The matrix elements of interest are denoted by 3, 

(n:le-Ahlni) F 3 (ni; ni) w 

tensor products of which give the matrices P. Computation of 3 begins by using 

the Trotter Product Formula: 

eA+B = J&g (eAfs e”f’)’ . 

Apply this to the single plaquette Hamiltonian with 

a2 a2 a2 
+as,z+ae,z+q > 

P5) 

B = -b COS (e, + e2 - 83 - e4) . ( w 

Imagine that s goes to infinity by passing through integer values. We can then 

evaluate 3(n:; ni) by inserting complete sets of states between each operator e AIs 
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and eBls. The sum over the intermediate states will be done numerically. First 

evaluate the matrix elements of eA18 and eB/8. 

(n:leAlslni) = fJ 6,+: eexp 
i=l ( 1 

-: $ tzt 
;=I 

W) 

(7Z:IeBi81ni) = idO1 idO2 id& Tdt!?, 
0 0 0 0 

xexp -s [ 
’ cos (e, + e2 - e3 - 64) + i 2 Bi(ni - ni) 

I/ 
w4 

i=l 

To get the last matrix element, change variables in the 04 integral. 

p 3 e1 + e2 - e3 - e4 

(7L~leBi”Ini) = TdO, ids2 TdO3 exp 
0 0 0 

WI 

e1+ea-es+2rr 

X 
I 

dp exp -i cos cp + ;(n!, - n4) - (e, + e2 - es - p) 1 . 
el+ea-es WO) 

Use the fact that the cp-integrand is a periodic function of p with period 297 

to shift the region of integration. Group the B-dependence into the appropriate 

integrands. 
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(41eB’“Ini) = iexp [i(ni - nl + ni - n4)&] 2 
0 

2a 

*I 

de2 
exp [i(ni - n2 + nk - n4)02] G 

0 

2R 
de3 

.Jexp[i(n:-n3+n\-n4)02] G 

0 

2rr 

*I [ 

b 
exp -; cosp-i(n:-n4)p 1 

dp 2n. 
0 

The first three integrals are just Kronecker deltas of the eigenvalues. The last 

integral can be done using a generating function for modified Bessel function. 

ezcosp = lo(z) + 2 2 Ik(Z) COS(kp) . 
k=l 

W2) 

Substitute this into the integral: 

cos p - i(ni - n&p 

0 

+ 2 c Ik(z) (-f) CO.,,,)) (B13) 
X exp [-;(nk - n4)p] 2 . 
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Interchanging orders of summation and integration, we get 

2rr 
= 

0 

exp [-i(n: - n4)v] 

w4 

~L+L,,O + 2 2 rk 
k=l 

; h:-n,-k,O + ; &n.+k,O 

The desired matrix element is 

(B 15) 
The symmetries of the potential term in the single plaquette Hamiltonian are 

manifest in the form of this matrix element. The operator eBls can add a number 

of quanta -nk + n4 to nr, add the same number to ns, subtract this number 

from ns, and subtract this number from n4. Whereas a potential term with less 

symmetry might be expected to change all quantum numbers independently, we 

see that the potential term here affects only one linear combination of quantum 

numbers. 

Returning to the Trotter product formula, note that since eAla changes no 

quantum numbers and eBfa changes only one combination of the four quantum 

numbers, 3(ni; ni) vanishes unless we have 
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ni - nl = An 

n; - n2 = An 

VW 
ni-ns=-An 

nk-n4=-An 

for some integer An. Actually a much stronger statement than this can be made. 

The most general function 3 that satisfies the above constraint may still have 

complicated dependence on its variables when it is non-vanishing. We will see, 

however, that even for non-vanishing 3, the dependence on some of the variables 

is quite simple. 

To prove this assertion, begin by rewriting the matrix element of eA18. Note 

that 

i(nl+nz-n3-n4) ‘+knf- [2(n,+n2-n3en4)]2 1 . (B17) 
i=l 

Now evaluate the last two terms on the r.h.s. with ni replaced by ni + A for 

i = I,2 and ni - A for i = 3,4. 

i(nl + n2 - n3 - 724) 2 1 - (nl + A)2 + (n2 + A)2 + (ns - A)2 

-I- (n4 - A)2 - i [nl + A + n2 + A - ns + A - n4 + Al2 

2nl+ 2n2 - 2n3 - 2nd - 2nl- 2n2 + 2n3 + 2nd) 
i=l 

+ A2(1 + 1 + 1+ 1 - 4) - a (nl + n2 - ng - n4)2 

4 

= 

c [ 
4 - i(nl + n2 - ng - n4) 2 

i=l 1 VW 



We have separated Cf=, ni into a part which is invariant under the transitions 

induced by the potential term and a part which is not. The advantage of this is 

that when we write 3(n:; ni) as a sum of products of matrix elements of eA18 and 

eBls obtained by inserting complete sets of intermediate states into the Trotter 

product formula, it is possible to separate the overall factor from the matrix 

elements of eAjs which corresponds to the invariant part isolated above. In this 

way we obtain s such factors, each equal to 

exp -a 
[ ( 2 4-a (nl+n2-n3-t24)2 . 

i=l 11 
In analogy with angular momentum, we then define a reduced matrix element: 

2 nf-i (nl+n2-n3-n4)2 (n~lle-Ahllni) . 
i=l 

U320) 

We hope by now the reader is convinced that the dependence of the reduced 

matrix element on the eigenvalues may be expressed as 

R (ni ; ni) E (n:Ije-Ahllni) = R (ni - n4, nl -I- n2 - ng - n4) . 

An objection may be raised at this point that the above argument has been 

unnecessarily circuitous. The symmetry factors were extracted from the approx- 

imate expression for the exact matrix element before the limit in the Trotter 

product formula is taken. This is not a problem, since the factors extracted from 

the limit were independent of the s parameter. It certainly is true, however, that 

a careful exploitation of the symmetries of the problem at the outset would have 

reduced our problem to a one dimensional quantum mechanics problem. The 

boundary conditions that define the domain of the derivative operators become 

awkward to formulate if we change variables, so the above pedestrian approach 

was favored. 
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Numerical evaluation of the reduced matrix element is straightforward. Care 

must be taken chiefly in deciding how large s must be before the Trotter product 

formula has converged adequately, and also in determining a reasonable cutoff 

for the sum over intermediate states. We now indicate how this may be done, 

while insuring that there is no error in determining R greater than some preset 

tolerance. 

For convenience, define the following notation: 

n4 = ni+A ifi=1,2 
I 

ni-A ifi=3,4 ’ W2) 

It follows that 

(n~le-Ahlni) = C . . . C (n~IeAldeBlslnp~-l)(np~-lJeAJSeBISln~O-l) 
Adz I..., A.-I 

. . . (n~lleAlseB~“Ini) . ( w 

To obtain a similar expression for the reduced matrix element, assume that there 

is a A, such that ni = nFV (otherwise the matrix element (n{lc-Ahlni) would 

vanish). Replace the matrix element of eAis by its non-invariant part and discard 

the invariant part. 

(?Z~ll~-Ahl17Zi) = F F.. . C (niIIeAlseBlsIln4*-1). . . (nflIIeA~seB~sIIni) 
1 2 A.-l 

Fw 

(npN+1IIeA/~eB/s l]nf”) = exp [-f f ( nl + nz - n3 - n4 + 4A~+r)~ 1 P25) 
Rewrite the part of this matrix element using the following notation: 

u = (1,1,-1,-l) ) u . n = nl + n2 - ng - n4 W6) 
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] = exp [-fi(w.n)‘] exp [-%2(~.n)A] 

(B27) 
x exp (-t4A2) . 

Insert this rewriting of the factor occurring in each reduced matrix element in 

the r.h.s. of Eq. (B24) to obtain 

(n~lle-Ah))ni) E exp [-: (v. n)‘] c.. . c exp [-t 2(v . n) f: An] 
Al A.-l n=l 

Define A0 = 0, so that 

(n~Ile-Ahllni) E exp [-: (V * n)“] 

x~...~~exp[-~(2’“‘n)~A~+4~A~)] (B29) 

.9 
x n llA,-A,-,l 

n=l 

These sums over the A, should all go from -oo to 00 over the integers and exact 

equality obtains when s + 00. We have to compute the sum numerically, so a 

finite range for the sum must be chosen and a finite value of s picked. With 

these modifications the expression above is precisely the one used to calculate 

the reduced matrix element. 

We now outline the logic involved in truncating the sum. First fix s. Now 

set a to 0. For this special case, Eq. (B29) becomes an exact equality. 

(n{lle-Ahllni) = C.. . C fi ~A.-A,-~I (-g) 

Al A,-1 n=l 

However, since the only difference between the reduced matrix element and the 
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exact matrix element lies in the treatment of the operator A, which has now been 

set to 0, we have 

(n~le-Ahlni) = (n:I\e-AhJJn;) . w 1) 

Finally, combining the last two equalities and using Eq. (B15), 

&1(-b) = ~--~ fj llA,-A,-,l (-;) * 

Al A. n=l 
(B32) 

It is interesting to note the strong analogy between this equation and that which 

expresses the finite time Green function for a non-relativistic quantum mechanics 

problem as a sum over products of Green functions along all paths that share 

the same endpoints as the finite time Green function. More succinctly, the above 

equation is merely an embodiment of Huygen’s principle. 

To return to the subject at hand, note that we have an exact expression for 

the finite s sums for which the range of summation has not been truncated when 

a = 0. It is easy to check the effect of truncating the sum at finite (A,( on 

this expression. The truncation of the sums was then chosen so that its effect is 

smaller than some preset tolerance. Now we wish to see that this same truncation 

is adequate even when a > 0. This follows from Eq. (B29), which shows that for 

a > 0, there is a preferential weighting of terms for which An is near -(v . n)/4. 

Thus, we make sure that the range of truncation is always taken to include these 

preferentially weighted terms. As a is increased from 0, the terms that become 

most important in the sum are retained. In such a manner it is possible to 

confidently place an upper bound on each IAnI while maintaining control over 

the accuracy. 

In choosing the value for s, the above computation was carried out for various 

values of s. In particular we used s = 1,2,4,8. The change in any given matrix 

element was smaller than our preset tolerance of 10e6 in passing from 4 to 8. All 

computations were done at s = 8. 
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