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Chapter 1

Introduction

This report describes commonly used strategies for the control of charged particle
beams and the manipulation of their properties. Emphasis is placed on relativistic
beams in linear accelerators and storage rings. After briefly reviewing the fundamen-
tals of accelerator optics, we discuss basic and advanced beam control techniques,
such as transverse and longitudinal lattice diagnostics and matching procedures, or-
bit correction and steering, beam-based alignment, and linac emittance preservation.
Techniques for the manipulation of particle beam properties are presented next, in-
cluding bunch length and energy compression, bunch rotation, changes to the damp-
ing partition number, and beam collimation issues. Finally, we discuss a few special
topics, such as injection and extraction methods, beam cooling, spin transport and
polarization.

The different techniques are illustrated by examples from various existing or past
accelerators: the large electron-positron collider LEP1 at CERN, the SLAC PEP-II
B factory2, the linac of the KEK B factory3, the Stanford Linear Collider (SLC)
4;5, TRISTAN at KEK6, the synchrotron light source SPEAR at SLAC7, the CERN
Low Energy Antiproton Ring (LEAR)8, the Accelerator Test Facility (ATF) at KEK
9, the electron-proton collider HERA at DESY10, the final-focus test beam at SLAC
11, the CERNp�p collider SPS12, the ASSET experiment at SLAC13, and the ISR at
CERN14. At various places, we will also extrapolate to planned or proposed future
accelerators, such as the Large Hadron Collider 15, the Next Linear Collider16, the
TESLA Linear Collider17, and the Muon Collider18.
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1.1 Review of Transverse Linear Optics

In linear approximation, the transverse motion of a single particle in an accelerator
can be described as the sum of three components19;20

u(s) = uc:o:(s) + u�(s) + �(s)� (1.1)

whereu�(s) = x or y is the horizontal or vertical coordinate at the (azimuthal) lo-
cations, anduc:o: denotes the closed equilibrium orbit (or, in a transport line, some
reference trajectory),u� the orbit variation due to betatron motion (transverse oscil-
lations), and�� the orbit change resulting from an energy offset;� is the dispersion
function, and� = �p=p the relative deviation from the design momentum.

The betatron motion can be parametrized by a pseudo-harmonic oscillation of the
form19

u�(s) =
q
2Ix;y�x;y(s) cos(�x;y(s) + �0) (1.2)

where�x;y(s) is called the beta function,�x;y(s) the betatron phase, andIx;y is an
action variable. The functions�x;y(s) and�x;y(s) depend on the azimuthal location
s, while the actionIx;y and initial phase�0 are constants of motion. The value ofIx;y
averaged over all particles of a beam is equal to the rms beam emittance,�rms

x;y =<

Ix;y >. The `betatron oscillation' described by Eq. (1.2) refers to a particle at a fixed
design energy. Later, we will discuss how the motion is modified if the energy is not
constant, presenting the two concepts of dispersion and chromaticity. Furthermore,
when the beam is accelerated, as in a linac, Eq. (1.2) must be multiplied by a factorp
(0)=(s), since the increase in longitudinal momentumps reduces the transverse

beam size (it effectively introduces a damping forced2u=ds2 � �pu=p2s dps=ds).
In addition to the beta function�, two closely related functions are often intro-

duced to characterize the betatron motion. These are

�(s) = �1

2
�0(s) and (s) =

1 + �2(s)

�(s)
(1.3)

where the prime indicates a derivative with respect to the longitudinal positions, and
we have dropped the subindex `x; y' . Henceforth, we will usex instead ofu, but, here
and in the following, the same equations apply in the horizontal and in the vertical
plane. The main difference is that quadrupoles which are focusing in one plane are
defocusing in the other. Finally note that if the location is inside a linac accelerating
structure the formula for� reads�(s) = (��0(s)=2+�E0(s)=(2E(s))), whereE(s)
is the beam energy at locations.

The three optical functions�(s), �(s) and (s) are proportional to the three
second moments of the beam distribution, with the beam emittance as constant of

2



proportionality:

< x2 >s = �(s) � (1.4)

< xx0 >s = ��(s) � (1.5)

< x02 >s = (s) � (1.6)

where< : : : >s denotes an average over the beam distribution at the locations. Thus,
the actual values of�, � and can be deduced from the measured beam distribution.
It is a challenge to the accelerator physicist to make them coincide with their design
values.

In a storage ring, the optical functions�, � and are periodic:�(s) = �(s+L),
�(s) = �(s + L), and(s) = (s + L), whereL is the ring circumference. For a
transport line, or linac, no such periodic boundary condition exists; so the values of
the optical functions depend on the incoming beam distribution.

An alternative description represents the motion of a single particle in terms of
a transport matrix21;22. Here, a trajectory is given by a point in phase space(x; x0)

which is transformed from the initial locationi to a new (final) locationf through a
linear transformation�

x

x0

�
f

=

�
R11 R12

R21 R22

�
fi

�
x

x0

�
i

: (1.7)

This can also be generalized to a 6�6 transport matrix for motion with coupling
between the horizontal, vertical and longitudinal planes. In the 6-dimensional case,
the vector(x; x0) is replaced by(x; x0; y; y0; z; �), where�, the relative energy error,
and z, the longitudinal distance to a reference particle, are the coordinates in the
longitudinal phase space.

Let us look at a few examples. For a drift space of lengthL, the 2-dimensional
transport matrix is

Rdrift =

�
1 L

0 1

�
: (1.8)

The matrix for a focusing quadrupole of gradientK = (@B=@x)=(B�) and of length
lq is

Rquad =

�
cos� sin�=

p
jKj

�
p
jKj sin� cos�

�
(1.9)

where� = lq
p
jKj. If we take the limit of vanishing quadrupole lengthlquad ! 0,

while holding the integrated gradientk = jKjlq constant, we arrive at the matrix for
an idealized `thin-lens' quadrupole

Rthin�lens =

�
1 0

�k 1

�
: (1.10)
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Thus, the focal length of the thin quadrupole is given by1=k. TheR matrix for a
sequence of quadrupoles and drift spaces is simply the product of theR matrices for
the individual elements.

It is important to note that the description in terms of optical functions and the
R matrix formalism are equivalent and complementary: we can transform the optical
functions from one location to another using the elements of theR matrix:0

@ �

�



1
A

f

=

0
@ R2

11
�2R11R12 R2

12

�R11R21 1 + 2R12R21 �R12R22

R2

21
�2R21R22 R2

22

1
A

fi

0
@ �

�



1
A

i

(1.11)

Alternatively, we can express the elements of theRmatrix fromi to f in terms of the
optical functions at the initial and final locations,

Rfi =

0
@

q
�f
�i
(cos�fi + �i sin�fi)

p
�f�i sin�fi

�1+�f�ip
�f�i

sin�fi +
�i��fp

�f�i
cos�fi

q
�i
�f

(cos�fi � �f sin�fi)

1
A ;

(1.12)
where�fi = (�f � �i) is the betatron phase advance between the two locations.

1.2 Review of Longitudinal Dynamics

If the energy of the beam, or of a particle in the beam, differs from the design energy
its trajectory may deviate from the trajectory of a particle at the right energy. In first
order, this deviation is linear in the momentum deviation� = �p=p. For a transport
line we can write

�x(s) = R16� (1.13)

whereR16 is the (1,6) transport matrix element from the location where the energy
error � was induced to the locations. In a storage ring, the orbit deviation due to an
energy offset is given by the periodic dispersion function�(s) as

�x(s) = �(s)� (1.14)

Also theR16 matrix element of Eq. (1.13) is often called dispersion, but it should
be kept in mind that this term is not uniquely defined and can be very different for
different energy-error sources. As a result, the correction of dispersion in a transport
line or a linac can become conceptually quite complicated.

If the beam (or particle) energy is varied, the radius of curvature and, thus, path
length in the bending magnet changes. The first order path length change is charac-
terized by the momentum compaction factor�:

� =
�L=L

�
=

1

L

I
�(s)

�(s)
ds: (1.15)
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If  > 1=
p
�, a ring is said to operate `above transition' ; this is the case for most

electron and high-energy proton rings. For a transport line,� and�(s) in Eq. (1.15)
must be replaced by

R56(s) =

Z s

s0

R16(s
0)

�(s0)
ds0; (1.16)

whereR(s) is the transport matrix from the location at which the energy is changed
(e.g., a cavity) to the locations.

Just as the beam, or an individual particle in the beam, executes betatron oscil-
lations, it also performs oscillations in the longitudinal phase space, in a storage ring
with nonzero rf voltage. The frequency of the synchrotron motion is much lower
than the two betatron-oscillation frequencies (one synchrotron period typically corre-
sponds to 100s of turns). It can be expressed in terms of a synchrotron tuneQs (which
is the synchrotron frequencyfs in units of the revolution frequencyfrev):

Qs =
fs

frev
=

s
(�2 � �)heV̂ cos s

2�cp0
(1.17)

where� is the momentum compaction factor,V̂ the amplitude of the rf voltage (as-
sumed as simply sinusoidal),h the rf harmonic number (frf = hfrev), e the particle
charge,p0 the equilibrium momentum,c the speed of light, and s the synchronous
phase angle. The latter is determined by the equalityeV̂ sin s = U0, whereU0 is the
average energy loss per turn, and by the condition for phase stability,�=2 <  s < �

above transition.

1.3 Beam Matrix

The beam matrix� is defined, in this case in the horizontal (x) plane, as:

� = �

�
� ��
�� 

�

=

� hx2i � hxi2 hxx0i � hxihx0i
hx0xi � hx0ihxi hx02i � hx0i2

�
: (1.18)

Here�, �, and are the ellipse parameters (see Fig. 1.1, from Ref.21;22), � is the beam
emittance, and the bracketed terms are various moments of the beam distribution;
i.e. hxi is the first moment, or mean, of the distribution in position,hx0i is the first
moment, or mean, of the distribution in angle, andhx2i; hx02i are the second moments
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of the beam distribution. Specifically, for a beam intensity distributionf(x),

hxi =

1R
0

xf(x)dx

1R
0

f(x)dx

; (1.19)

and

hx2i =

1R
0

x2f(x)dx

1R
0

f(x)dx

: (1.20)

The root-mean-square (rms) of the distribution�x is (usually) the physical quantity
of interest:

�x =
p
hx2i � hxi2: (1.21)

If the mean of the distribution is neglected (i.e. disregard the static position offset of
the core of the beam, or define the coordinates with respect to this offset), then Eq.
(1.18) reduces to

� =

� hx2i hxx0i
hxx0i hx02i

�
(1.22)

and the rms of the distribution is simply�x = hx2i 12 .
The transformation between an initial beam matrix�0 to the beam matrix� at a

desired observation point is
� = R�0R

T ; (1.23)

whereR is the transfer matrix andRT is the transpose ofR. For an uncoupled system,

� =

0
B@
�11 �12 0 0

�21 �22 0 0

0 0 �33 �34
0 0 �43 �44

1
CA ; (1.24)

and

R =

0
B@
R11 R12 0 0
R21 R22 0 0

0 0 R33 R34

0 0 R43 R44

1
CA : (1.25)

Note that the�-matrix is symmetric with�12 = �21 (cf. Eq. (1.18)), however in
general,R34 6= R43.
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Figure 1.1: Ellipse parameters for the beam matrix.

Ex.1.1. Projected beam emittances
a) Consider a beam whose distribution function depends only on the action variable; i.e.
�(Ix; �x) = �(Ix). Define the horizontal emittance as�x =< x2 > =�x. Show that
�x =< Ix >, where the square brackets denote an average over the beam distribution.
b) Consider now a 2-d distribution which is Gaussian and uncorrelated in the 4 vari-
ablesx0, x0

0, y0 andy0

0 with emittances�x and �y. Suppose the beam passes a skew
quadrupole of strengthk with beta functions at the quadrupole equal to�x and�y . Af-
terwards the coordinates of the new distribution arex, x0 , y andy0. They are correlated
as

x0 = x0

0 + ksy0 (1.26)

y0 = y0

0 + ksx0 (1.27)

x = x0 (1.28)

y = y0 (1.29)

Calculate the beam matrix.
c) The projected horizontal and vertical emittances are given by the square root of the
determinant of the2 � 2 submatrices. Calculate the projected emittances and express
them in terms of the initial uncoupled emittances, and the skew quadrupole strengthks .
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Chapter 2

Transverse Optics
Measurement and Correction -
Part I

2.1 Betatron Tune

2.1.1 Introduction

In a storage ring, theQ value, or betatron tune, is defined as the number of betatron
oscillations per revolution (often it is also called�):

Q =
�(L)

2�
=

1

2�

I
L

ds

�(s)
(2.1)

where the integral is taken around the ring of circumferenceL. The integer part of the
tuneQ is easily inferred from the orbit distortion induced by exciting a single steering
corrector. This orbit distortion is essentially a betatron oscillation; thus, counting the
number of oscillation periods around the ring determines the integer value of the tune.
A more intricate method, discussed in Section 2.2, is to perform a harmonic analy-
sis of betatron oscillations recorded by multi-turn beam-position monitors. Thereby
the betatron phase advance between adjacent BPMs can be determined, and the total
phase advance around the ring gives the tune. If the integer part of the tune agrees
with model predictions, large optics errors can be ruled out. More important than the
integer value of the tune is its fractional part, since the latter can have a strong effect
on beam lifetime or emittance.
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Tune measurements are useful for quite a variety of applications: the tune shift
with quadrupole strength gives the local beta function, the tune shift with rf frequency
the chromaticity, the tune shift with current the effective transverse impedance, and
the tune shift with betatron amplitude the strength of the nonlinear fields. Further,
optimizing and controlling the tunes improves the beam lifetime and thedynamic
aperture, and it can reduce beam loss or emittance growth duringacceleration. For
example, Fig. 2.1 shows the variation of the extracted vertical beam size as a function
of the vertical betatron tune which was measured at the SLC electron damping ring.

Figure 2.1: Rms vertical size of the electron beam extracted from the SLC damping ring as a function of
the vertical betatron tune. This measurement was performed under unusually poor vacuum conditions1.

Also space charge, ionized gas molecules, beam-beam interaction and radiation
damping can affect the tune signal, for example, the shape of the beam response to
a swept-frequency excitation. An example for the dramatic effect of the nonlinear
beam-beam force is shown in Fig. 2.2. In addition, fast decoherence and filamen-
tation, head-tail damping or instabilities may make it difficult to extract a clean and
reproducible tune signal. On the other hand, this also implies that all these processes
can be studied by means of tune measurements.

In the following we will describe three approaches to measure the fractional part
of the tune. These approaches fall into two different categories: (1) precision tune
measurements and (2) tune tracking (to monitor and control fast changes,e.g., during
acceleration). For simplicity, the fractional part of the tune will also be denoted byQ.

2.1.2 Fast Fourier Transform (FFT)

A common method to measure the fractional part of the betatron tune is to excite
transverse beam motion and to detect the transverse beam position over a number
of successive turnsN . The excitation may consist of white noise or a single kick.
Beam oscillations caused by injection are also often used, in order not to interfere
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Figure 2.2: Transverse tune measurement (swept-frequency excitation) with 2 colliding bunches at Tristan
2. (Courtesy K. Hirata, 1998.)

with the machine operation. The power density of the detected signal is computed
via a Fourier transformation, and the betatron tunes are identified as the frequencies
with the highest amplitude peak (this is not always the case, as sometimes the beam
is strongly excited at other frequencies). Figure 2.3 shows typical multi-turn BPM
measurements. Alternatively, a spectrum analyzer could be used to frequency analyze
the detected signal.

A Fourier analysis uses a time seriesx(1); x(2); :::; x(N) of N orbit measure-
ments for consecutive turns as input. This time series is expanded as a linear combi-
nation ofN orthonormal functions,

x(n) =

NX
j=1

 (Qj) exp(2�inQj): (2.2)

The expansion can be done efficiently with a Fast Fourier Transform algorithm. The
frequency corresponding to the largest value of is taken as the approximate tune
(see Fig. 2.4). The error due to the discreteness of the frequency steps is equal to

j�Qj �
1

2N
(2.3)

Thus, to obtain a tune value with a resolution of 0.001 or better using Eq. (2.2) requires
orbit data for about 1000 turns. As anillustration, Fig. 2.4 displays FFT spectra of the
orbit motion measured at the two BPMs of Fig. 2.3. The FFT demonstrates that a large
part of the orbit motion in the dispersive region is due to synchrotron oscillations.
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Figure 2.3: Multi-turn orbit measurement for the motion of the 500th bunch in a train of 1760 bunches at
PEP-II. Shown are horizontal BPM orbit readings as a function of turn number: (Left) BPM in a dispersive
region; (right) BPM in a non-dispersive region. For this number of bunches at high current the beam was
self-excited. The slow oscillation in the left picture corresponds to energy (or synchrotron) oscillations.
The fast oscillations are the betatron motion. The corresponding FFT spectra are displayed in Fig. 2.4.

(Courtesy U. Wienands, J. Seemanet al, 1998.)

Figure 2.4: FFT spectra for the two BPM measurements of Fig. 2.3 in a dispersive (left) and in a nondis-
persive region (right). The horizontal scale is in Hz. (Courtesy U. Wienands, J. Seemanet al, 1998.)
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Interpolated FFT

If we use a simple Fourier analysis based on the peak amplitude of in Eq. (2.2),
typically we need about 1000 turns of orbit data to obtain an adequate tune resolution.
During this time the beam could filament or the oscillation amplitude could decrease
significantly, giving rise to spurious results. Fortunately, interpolating the shape of the
Fourier spectrum around the main peak improves the resolution quite dramatically3.
Thereby the same resolution can be achieved by processing data for a much smaller
number of turns.

The basic idea is that the shape of the Fourier spectrum is known, and equal to
that of a pure sinusoidal oscillation with tuneQFint,

j (Qj)j =

���� sinN�(QFint �Qj)

N sin�(QFint �Qj)

���� (2.4)

The formula for the interpolated tuneQFint reads4 :

QFint =
k

N
+

1

�
arctan

 
j (Qk+1)j sin

�
�
N

�
j (Qkj+ j (Qk+1)j cos

�
�
N

�
!

(2.5)

wherej (Qk)j is the peak of the Fourier spectrum in Eq. (2.2), andj (Qk+1)j its
highest neighbor. So, instead of using only the peak value of the FFT, one interpolates
between the two highest points. For largeN the error is given by

j�Qj �
CFint

N2
(2.6)

whereCFint is a numerical constant. So, the resolution improves quadratically with
the number of turns, and already from a beam signal recorded over 30–60 turns fairly
accurate tune values can be obtained. ForN � 1, Eq. (2.5) may be approximated by
the simpler form3

QFint �
k

N
+

1

N
arctan

�
j (Qk+1)j

j (Qkj+ j (Qk+1)j

�
(2.7)

Interpolated FFT with Data Windowing

The accuracy of the Fourier analysis can be further improved with data windowing
5;4. Here, the datax(n) are weighted with filter functions�(n) before the interpolated
FFT is applied. The Fourier coefficients of the filtered signal are

 (Qj) =
1

N

NX
n=1

x(n)�(n) exp(�2�inQj) (2.8)
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Figure 2.5: Tune precision vs. number of turns, considering different FFT techniques applied to tracking
data for the 4-D H´enon map4. The abbreviation `APA' refers to a calculation of the average phase ad-
vance, which can be computed either in the original phase-space coordinates or in so-called normal-form
coordinates. See Ref.4 for more details on these alternative methods. (Courtesy M. Giovannozzi, 1998.)

Applying a Hanning-like filter of orderl, �l(n) = Al sin
l (�n=N) with Al some

normalization constant, in the limitN � 1 the interpolated tune reads

QFint =
k

N
+

1

N

�
(l+ 1) (Qk+1)

 (Qk) +  (Qk+1)
�
l

2

�
(2.9)

The resolution improves with the (l + 2)th power of the number of samplesN :

j�Qj �
CFHan

N l+2
(2.10)

whereCFHan again is a numerical constant.
An example comparing the precision of different FFT procedures is shown in

Fig. 2.54, which clearly demonstrates the superiority of the interpolated FFT with
data windowing (Hanning filter). Unfortunately, the beneficial effect of the Hanning
filter disappears when the signal contains a small noise component4, in which case
the resolution decreases as� N�2 only, just as with the simple interpolated FFT.

2.1.3 Swept-Frequency Excitation

A different method to measure the tune is to excite the beam with a steady sinusoidal
wave and to detect the amplitude and phase of the beam response. The excitation
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frequency is increased in steps. The strength of the harmonic excitation is adjusted so
as to produce beam oscillations of adequate amplitude at the resonant frequency.

The result of this measurement is a `transverse beam-transfer function' , which
is the (complex) response of the beam to a harmonic excitation as a function of fre-
quency. The beam-transfer function contains important information, for example,
about the transverse impedance or about radiation damping6. It is easy to see from
Eq. (2.2) that, in frequency domain, the tune signal repeats itself in frequency intervals
corresponding to multiples of the revolution frequencyfrev (i.e.,a spectrum analysis
of the signal from one pick up contains no information about the integer part of the
tune). If nb equidistant bunches are stored in a ring and the combined signal of all
bunches is detected, the periodicity of the FFT signal isnbfrev. In addition, the tune
spectrum from 0 tonbfrev=2 and that fromnbfrev=2 to nbfrev are mirror images
of each other. Therefore, for the study of multibunch instabilities, it is sufficient to
measure the beam transfer function around each revolution harmonic between zero
andnbfrev=2.

The concept of the beam-transfer function can be extended to higher-order beam
excitations. At the CERN AA a quadrupole pick-up was used to measure the quadrupole
mode beam-transfer function of an antiproton beam7.

The frequency-sweep method as discussed so far requires a relatively long time
in order to measure the response at each frequency with sufficient accuracy. However,
there exists a fast version of this method, called a chirp excitation. Here the frequency
of the excitation is ramped rapidly across the tune resonance, while the beam response
is observed8. This is useful to monitor fast tune changes, as, for instance, during
acceleration in the SPS9.

2.1.4 Phase Locked Loop

While exactly at the betatron tune the amplitude of the beam-transfer function has
zero slope as a function of excitation frequency, the phase of the beam-response has
maximum slope. The phase difference between excitation and beam motion changes
from 0 degree to 180 degree when the excitation frequency is ramped through the
resonance. Directly at the betatron tune, the phase difference is 90 degrees. The
phase can be monitored continually by a phase locked loop circuit (PLL); see,e.g.,
Ref.8;10.

The signal flow diagram of a phase locked loop is sketched in Fig. 2.6. The phase
detector compares the frequency of a beam position signal,e.g., from a BPM, with
the frequency of a local oscillator. The phase-detector output voltage is a measure of
the frequency difference of its two input signals. After low-pass filtering and amplifi-
cation, this signal is used to adjust the frequency of the local oscillator (VCO), such
that the oscillator `locks' to the frequency of the input beam signal. The oscillator
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Figure 2.6: Schematic of phase locked loop for continuous tune control.

frequency serves as the betatron tune signal which is displayed or processed by the
accelerator control system. Sometimes the oscillator signal is also used to excite the
beam, in which case the phase locked loop becomes part of a `lock-in amplifier' . PLL
circuits allow a continuous tracking of the time evolution of the betatron tune.

2.1.5 Schottky Monitor

All the techniques reported so far measured the coherent betatron tune,i.e., the oscil-
lation frequency of the beam centroid. In the case of proton beams it is also possible
to measure the incoherent betatron tune,i.e., the oscillation frequency of individual
particles in the beam (in the absence of centroid motion). The incoherent signal is
proportional to

p
� N �f , where� is the beam emittance,N the number of particles

in the beam, and�f a frequency bandwidth. Though this signal is small, it can be
detected with sensitive `Schottky monitors'11.
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Ex.2.1. Schottky signals
The spectrum of a single particle circulating in an accelerator is given by

i(t) = ef + 2ef

1X
n=1

cosn!t; (2.11)

wheren represents the turn number and! = 2�f is the angular revolution frequency.
a) Sketch the current spectrum for this particle in both the time and frequency domains.
b) Show that averaging Eq. 2.11 over N particles gives the dc beam current Nef .
c) The power spectrum one would measure with a spectrum analyzer is proportional to

the rms currentirms = hi2i
1

2 . Show that

irms = 2ef

r
N

2
: (2.12)

2.1.6 Application: Nonlinear Dynamics Studies

For studies of nonlinear dynamics a multi-turn BPM readout is a great advantage.
Three examples may illustrate this point.

Tune Shift with Amplitude: The interpolated FFT with data windowing was ap-
plied at LEP and SPEAR to measure the tune shift with betatron amplitude12. The
latter is of interest since it carries information about the nonlinear fields experienced
by the beam, that may affect the beam stability and lifetime. Anynonlinear field can
cause a tune shift with amplitude; these nonlinear fields change the average focusing
experienced by a particle executing large betatron oscillations.

In the LEP experiment, the beam was kicked in the vertical plane, and the tune
was calculated over successive short time windows, of 32 turns each, as the beam
oscillation damped rapidly. Figure 2.7 shows a result for LEP at 20 GeV. In Fig. 2.7
(left), the vertical beam position is displayed as a function of time demonstrating the
fast damping, over 200 turns. The shift of the horizontal and vertical betatron tune
with the vertical action variable, as computed over 32-turns time windows is presented
in Fig. 2.7 (right). The vertical action was inferred from the oscillation amplitudes in
each time window. The amplitude-dependent tune shifts calculated by an off-line
model and the measurement agreed to within 5%.

Higher-Order Resonances and Hamiltonian Reconstruction: Nonlinear mag-
netic fields not only cause a tune shift with amplitude, they also induce higher-order
resonances. These show up as additional lines in the Fourier spectrum.
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Figure 2.7: Measurement of tune shift with amplitude in LEP at 20 GeV, using a high-precision FFT
tune analysis12: (left) vertical oscillation amplitude after a kick; (right) horizontal and vertical betatron
tunes vs. twice the vertical action variableIy of the beam centroid motion. The observed tune shift with
amplitude was consistent with the expected effect of the sextupole and octupole field components in the

dipole magnets. (Courtesy R. Bartolini, 1998.)

In general, betatron resonances are defined by the condition

kQx + lQy = p (2.13)

wherek, l, andp are integers. Spectral analysis in the presence of nonlinear reso-
nances13 shows that in the Fourier spectrum of the horizontal coordinatex(n), the
above resonance gives rise to lines at the two frequencies(k � 1)Qx + lQy , and in
the Fourier spectrum of the vertical signaly(n) it generates lines atkQx+(l� 1)Qy .
Note that there is no line atkQx + lQy , as one might have naively expected! The
amplitude and phase of the higher-order resonance lines in the FFT spectrum can be
used to reconstruct the nonlinearities affecting the beam motion14;15.

Tune Scans: The beam lifetime is often related to the dynamic aperture of the stor-
age ring, where the term `dynamic aperture' denotes the maximum stable betatron
amplitude beyond which particles are lost after a certain finite number of turns. In the
case of colliding beams, the lifetime is likely limited by the beam-beam interaction.
Both dynamic aperture and the beam-beam interaction are sensitive to the value of the
betatron tune. Measuring and plotting the beam lifetime as a function of the horizontal
and vertical betatron tunes,Qx andQy , yields a tune diagram, in which higher-order
resonances, given by Eq. (2.13), are evident as stripes with reduced lifetime. Figure
2.8 compares a typical beam-lifetime tune scan performed during the commissioning
of the PEP-II High Energy Ring with the result of a dynamic-aperture simulation16.
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Figure 2.8: Tune scan in PEP-II centered atQx = 24:709 andQy = 23:63416 : (top) simulated dynamic
aperture (for a momentum offset�p=p = 10 �� , where� is the rms momentum spread) as a function
of the horizontal and vertical betatron tunes,Qx andQy ; (bottom) measured beam lifetime as a function
of Qx andQy . Total scan range is�0:005 on both axes. The different slope of the resonance line, as
compared with the top figure, is attributed to a miscalibration of the tune knobs. (Courtesy Y. Cai, 1998.)

11



Ex.2.2. Betatron Tunes
The circumference of the PEP-II accelerator is 2200 m.
a) From Fig. 2.4, what is the synchrotron tune?
b) When the quadrupole family for the horizontal tune is increased in strength, the
horizontal tune line is observed to move to the right in similar measurements. What is
the fractional horizontal betatron tune?
c) After how many turns would a particle with the tunes found in a) and b) return to
exactly the same place in phase space?

studies (contains a section on tune shift with amplitude)
Ex.2.3. Application of multipole field expansion
An extremely handy formula for fields produced by a magnet of ordern (n = 0 repre-
sents a dipole) is

Bz + iBx = �n=0(bn + ian)(x+ iz)
n
: (2.14)

a) For the case of a normal (an = 0) sextupole, show that the Lorentz force seen by the
particle is

Fx / (x
2 � z

2
) and Fz / xz: (2.15)

b) For a nondispersive orbit (x = xco + x� andy = yco + y� , where the subscripts
refers to the closed orbitco and the betatron orbit�), show that a beam off-axis in
x at the sextupole experiences a normal quadrupole field while a beam off-axis inz

experiences a skew quadrupole field.
c) What transverse-to-longitudinal coupling terms arise if the dispersive contribution
to the orbit (x� andz�) are also included?

2.2 Betatron Phase

2.2.1 Harmonic Analysis of Orbit Oscillations

By exciting transverse oscillations, sampling the beam position overN turns, and
performing a simple harmonic analysis, we can determine the betatron phase at the
location of the pick up17.

The oscillation detected by the BPM is a harmonic function

xkm = Ak cos(2�Qxm+ �0k) (2.16)

where the indexk specifies the BPM,m is the turn number, andAk the measured
amplitude, which depends on the BPM calibration, on the local beta function, and on
the magnitude of the oscillation.

In the limit of largeN , the two Fourier sums

Ck =

NX
m=1

xkm cos(2�mQx); Sk =

NX
m=1

xkm sin(2�mQx): (2.17)
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Figure 2.9: Difference between measured and predicted betatron phase advance (in degrees) as a function
of position around the PEP-II HER (BPM number) for 5 consecutive measurements; the 5 curves are

superimposed. The total phase advance around the ring is about 9000�. (Courtesy M. Donald, 1998.)

approach the asymptotic values

Ck �
AN

2
cos�0k Sk �

AN

2
sin�0k; (2.18)

and, thus, the betatron phase at thekth monitor can be expressed as

�0k � tan�1
�
Sk

Ck

�
(2.19)

and the amplitude is given byAk � 2
p
C2
k + S2k=N . Figure 2.9 shows 5 consecu-

tive measurements of the betatron phase advance around the PEP-II HER. The phase
advance predicted by the model was subtracted from the measured phase. The figure
demonstrates that the measurement is highly reproducible, and that, for this example,
it is in good agreement with the model. The offset of about40� is due to different
reference points in model and measurement.

Application: Transverse Impedance Measurement

Measuring the betatron phase advance for different bunch currents provides informa-
tion about the effective transverse impedance, a quantity which describes the electro-
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magnetic coupling of the beam to its environment. A measurement of the current-
dependent phase advance around the LEP ring is shown in Fig. 2.10. Clearly visible
as step changes are the locations of the rf cavities in the straight sections.

2.3 Beta Function

2.3.1 Tune Shift induced by Quadrupole Excitation

Presumably the simplest beta-function measurement is to detect the shift in the be-
tatron tune as the strength of an individual quadrupole magnet is varied. This shift
can be computed using the `thin-lens' approximation of Eq. (1.10). The tune shift
induced by a gradient change for a long quadrupole can then be obtained by linear
superposition.

With a quadrupole excitation of�k, the 2�2 transport matrix for the entire ring
is the product of the original transport matrix, Eq. 1.12 withf = i,�

cos(2�Qx;y) + �x;y sin(2�Qx;y) �x;y sin(2�Qx;y)
� sin(2�Qx;y) cos(2�Qx;y)� �x;y sin(2�Qx;y)

�
;

(2.20)
and a perturbation matrix representing the effect of the change in gradient,�

1 0
�(��k) 1

�
; (2.21)

whereQx is the original tune,�x;y and�x;y the optical functions at the quadrupole,
and the plus or minus sign refers to the horizontal and vertical plane, respectively.
The function�x;y is to be determined.

The trace of the product matrix must be equal to2 cos(2� �Qx;y), where �Qx;y =
(Qx;y +�Qx;y) is the new tune, and�Qx;y the tune shift induced by a quadrupole
excitation of�k. Explicit evaluation of the trace gives the equation

2 cos(2�(Qx;y +�Qx;y)) = 2 cos(2�Qx;y)� �x;y(��k) sin(2�Qx;y) (2.22)

Solving for�x;y we find19:

�x;y = �
2

�k
(cot(2�Qx;y) f1� cos(2��Qx;y)g+ sin(2��Qx;y)) (2.23)

where the� sign refers to the horizontal and vertical planes, respectively. For a small
tune change, (i.e., 2��Qx;y � 1), far from the integer or half integer resonance (i.e.,
cot(2�Qx;y) � 1), we can further simplify and obtain

�x;y � �4�
�Qx;y

�k
(2.24)
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Figure 2.10: Dependence of the horizontal betatron phase advance on the bunch current,d�=dIb=(2�) in
units of A�1 , measured at LEP18. (Courtesy A. Hofmann, 1998.)
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Figure 2.11: The ratio�cor=�appr of the correct beta function,�cor, inferred from Eq. (2.23), to the
approximation�appr given in Eq. (2.24), as a function of the nominal tuneQ. The three curves correspond

to different magnitudes of�Q.

Figure 2.11 illustrates the error involved in approximating Eq. (2.23) by Eq.
(2.24). The difference between the two expressions becomes important ifQx;y is
close to an integer or half integer resonance, and for large changes�k19.

Care also has to be taken that the applied change in quadrupole strength does not
alter the beam orbit, which happens if the beam is off-center in the quadrupole whose
strength is varied. If the orbit changes, part of the measured tune shift could be caused
by the closed-orbit variation at the sextupole magnets elsewhere in the accelerator. If a
strong effect on the orbit is observed, the orbit should first be corrected with the help
of steering correctors before the new (shifted) tune value is measured. Sometimes,
several magnets are connected to the same power supply, and then the strengthski
(i = 1; :::;m) of m quadrupoles must be changed simultaneously, all by the same
amount�k. The above result is easily generalized to this case: the induced tune
change is related to the average beta function at them quadrupoles via< �x;y >m�

�4�
�Qx;y

m�k
.

A � function measurement based on the tune shift induced by quadrupole ex-
citations requires independent power supplies (or trim coils, or shunts) for single
quadrupoles or groups of quadrupoles, as well as a tune monitor.
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2.3.2 Betatron Phase Advance

A different method determines the beta function from betatron oscillations measured
with multi-turn beam position monitors (BPMs): the beta function is calculated from
the betatron phase advance between three adjacent BPMs. The betatron phase at each
BPM can be obtained with a high precision, using Eqs. (2.17) and (2.19)20. Since the
oscillation amplitude may be subject to calibration errors, it is not used as an input
to this calculation. Instead, the computed beta functions can be used to check and
correct the BPM calibration.

The first row of the matrixRfi in Eq. 1.12 can be rewritten as

tan �fi =
R12

R11�(si)�R12�(si)
(2.25)

where�fi is the phase advance from monitori to monitorf , and theRkl are trans-
port matrix elements between the same two locations. These matrix elements can be
calculated from the geometry of the beam line assuming that the quadrupole magnets
located between the BPMs are at their nominal strength. For a set of three BPMs,
there are two independent equations of the form (2.25), which we can solve for the
two unknowns� and� 20.

Let us denote the transport matrix from BPM 1 to 2 byM and the matrix from
BPM 1 to 3 byN:

M(1! 2) =

�
m11 m12

m21 m22

�
N(1! 3) =

�
n11 n12
n21 n22

�
(2.26)

and denote by�21 and�31 the phase advances from BPM 1 to 2, and 1 to 3, respec-
tively. Applying Eq. (2.25) twice, we arrive at two expressions for the values of� and
� at the first BPM20:

�(s1) =

�
1

tan�21
�

1

tan �31

�
=

�
m11

m12

�
n11

n12

�
(2.27)

�(s1) =

�
n11

n12 tan�21
�

m11

m12 tan�31

�
=

�
m11

m12

�
n11

n12

�
(2.28)

An example of beta functions obtained by this method is given in Section 2.4.3,
Fig. 2.15.
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Ex.2.4. Beta-beat
Consider a quadrupole error parameterized by the usual matrix for a quad

Mq =

�
1 0

� 1

f
1

�
: (2.29)

Let the one turn map (OTM) with the field error be given byM = MqMMq (where
for algebraic convenience we have taken as a reference point the center of the quad),
whereM is the OTM for the ideal ring:

M =

�
cos�0 �0 sin�0

� 1

�0
sin �0 cos�0

�
: (2.30)

a) Show that the perturbed phase advance� is given in terms of the unperturbed phase
advance�0 by

cos� = cos�0 �
�0

f
sin �0: (2.31)

b) From the measurement of phase advance errors in Fig. 2.9, estimate the amplitude
of the modulation on the beam size.

2.3.3 Orbit Change induced by a Steering Corrector

A simple method to measure the local beta function at a steering corrector magnet
with a nearby BPM is to excite the corrector and to detect the orbit change at that
BPM21.

The formula for the closed-orbit distortion�xc:o: induced by a single dipole kick
is

�xc:o:(s) = ��

p
�(s)�(s0) cos(j�(s)� �(s0)j � �Q)

2 sin�Q
+��

�(s)�(s0)

�L
(2.32)

wheres is the location of the BPM,L the ring circumference, ands0 the location
where the kick(��) is applied. The last term is a small correction reflecting the
change in beam energy induced by a kick at a dispersive location, for constant rf
frequency. If the locationss ands0 are the same, and if we ignore the small correction
due to the energy change, the formula simplifies, and the beta function at the BPM-
corrector pair can be obtained from

�BPM=cor � 2 tan �Q
�xc:o:
��

(2.33)

2.3.4 �� at Interaction or Symmetry Point

To determine the beta function at the interaction point of a collider ring, or at any other
symmetry point (e.g., in a light source), one can excite a pair of symmetrically placed
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quadrupoles, by an amount��k (asymmetric excitation), wherek is the integrated
quadrupole gradient in units of m�1. From Eq. (2.24), the total tune shift is given by

�Qtot = �Q+ ��Q� �
�k

4�
[< �+ > � < �� >] (2.34)

where< ::: > indicates the average over the quadrupole, and the� sign refers
to the left or right quadrupole. The advantage of the asymmetric excitation of two
quadrupoles is that, if the phase advance between the two quadrupoles is about 180
degree, almost no beta beat is induced. In addition, if the optics is perfect and the
beam waist is centered at the collision (or symmetry) point, the beta functions at
the two quadrupoles are the same and, to first order, there is no net tune change
�Q+ ��Q� = 0.

The beta function at the collision (symmetry) point�� is a quadratic function of
the ratio

� =< �+ > � < �� >= 4�
�Q+ ��Q�

�k
(2.35)

which takes the form22

�� = ��design
�
1 + aoptics�

2
�

(2.36)

where��design is the nominal interaction-point beta function, and the coefficientaoptics
depends on the optics between the quadrupoles which are being varied and the interac-
tion point, and can be calculated with any optics program,e.g., MAD 23. For the LEP
low-� insertions,aoptics � 1=1522 . The optics is optimally adjusted, if�Qtot = 0.

2.3.5 R Matrix from Trajectory Fit

Consider a set of three BPMs, which are not a multiple of� apart in betatron phase and
with nonzero dispersion for at least one. The horizontal orbit readings at these three
BPMs, x(1), x(2), andx(3), then contain complete information about the betatron
motion (x andx0) and the energy offset (�) of each trajectory. This means we can
express the orbit at every other BPM as a linear combination of the orbit reading for
these three BPMs:

x(s) = B(s)x(1) + C(s)x(2) +D(s)x(3) (2.37)

If the three BPMs are adjacent, and the optics between them is known, Eq. (2.37) is
equivalent to the more familiar form,

x(s) = Rs0!s
11 x(s0) +Rs0!s

12 x0(s0) +Rs0!s
16 �; (2.38)

because then the three variablesx(s0), x0(s0) and� are known linear combinations
of x(1), x(2) andx(3).
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Figure 2.12: Systematic slope error introduced in a linear�2 fit of the formy = px + q, neglecting the
noise smearing in thex measurement24. Shown is the reconstructed slope normalized to the true slope as

function of signal-to-noise ratioRx in the horizontal coordinate. (Courtesy P. Emma, 1998.)

If we take data sets for many different turns (in a ring) or for many bunch pas-
sages (in a transport line), we can obtain the coefficientsB(s), C(s), andD(s), or
equivalently the R matrix elementsR11, R12 andR16, by a fitting procedure. How-
ever, care has to be taken: a simple least squares fit may not give the right answer.
The reason is that the BPM readings on the left and right side of Eq. (2.38) both have
a noise component.

The effect of the noise in the horizontal coordinates can be illustrated by a simple
example, taken from Ref.24. We consider a linear fit of the formy = px+ q, wherep
andq are to be determined, and bothx andy are smeared stochastically. Figure 2.12
shows the reconstructed slope normalized to the true slope as a function of the signal
to noise ratio in the horizontal coordinate,Rx. Even for a signal-to-noise ratio of 3
the fitted slope still has a 10% error. This result is independent of the noise in the y
coordinate.

A better approach, which takes into account the noise in the horizontal coordi-
nates, is schematically to `find the principal axes of the set of data points and then
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turn the parameter vector parallel to the principal axis along which the data points
fluctuate the least'24. The general problem and its solution are as follows. Letxn
be a measured variable which is linearly correlated with(n� 1) other measurements
x1; :::; xn�1, and suppose there are a total ofN data sets. We introduce normalized
coordinates:

zi =
xi� < xi >

�i
(2.39)

Using these coordinates, the fit equation (2.37) or (2.38) is rewritten as

u
T � z = 0 (2.40)

Introducing the symmetric covariance matrix

Cij =

NX
l=1

zlizlj (2.41)

Eq. (2.40) is solved in a least squares sense by

C � u = �u (2.42)

juj2 = 1 (2.43)

�2 = � (2.44)

where the solutionu is simply the normalized eigenvector corresponding to the small-
est eigenvalue� of C; � is also the�2 of the fit.

If we assume that� = �1 (the smallest eigenvalue) is not degenerate, and cosider
a scalar functionf(u) of the fit parametersu, the rms fit error inf is given by

�(f)2 = (ruf)
T �T � (ruf) (2.45)

whereT is a symmetricn� n matrix defined by

Tij =

nX
r=2

�r + �

(�r � �)2
(ur)i(ur)j (2.46)

In particular, the rms error of the coefficientui in the normalized equation (2.40) is
simply�(ui) =

p
Tii.

The reconstruction of lattice parameters from orbit and energy fluctuations can be
studied by computer simulations. Figure 2.13 presents simulation results for the SLC
final focus with an assumed BPM resolution of20 �m, employing both a standard�2

fit and a principal axes transformation. The results of the former differ strongly from
the underlying model parameters, despite of good fits and small error bars, while the
principal axes method reconstructs the optics almost perfectly.
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Figure 2.13: Reconstructed final focusR matrix elementR16 , from a sample of 100 simulated trajectories
with fluctuations in betatron orbit and energy, and assuming20 �m BPM resolution24: (top) standard�2

fit; (bottom) principal axes transformation. The fit results (dashed) are compared to the model used for the
trajectory generation (solid). (Courtesy P. Emma, 1998.)
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2.4 Gradient Error Detection and Cures

Once the beta functions have been measured and a significant difference from the
model has been found, the source of the discrepancy must be determined. In most
cases, the difference from the model beta function will be a beta beat (an oscillation
of the measured beta function around the design beta function at twice the betatron
frequency) and the source will be a gradient error in one (or more) of the quadrupole
magnets.

A gradient error�k (in units of m�1) at locations0 will result in a beta beat of
the form

��(s) =
�(s)�(s0)

2 sin(2�Q)
�k(s0) cos(2j�(s)� �(s0)j � 2�Q) (2.47)

2.4.1 First Turn Trajectories

A first attempt to find the error may consist in exciting steering correctors (or changing
the amplitude of the injection kicker) and fitting first-turn difference trajectories to
an on-line or off-line optics model. The difference of two trajectories measured for
different injection amplitudes should match a betatron oscillation predicted by the
model.

The parameters of the betatron oscillation can be determined by fitting the differ-
ence orbit for a few BPMs to the model. The oscillation so obtained is then propa-
gated along the beam line. It will agree with the measured difference trajectory, until
it passes the location of a large gradient error, at which point the propagated betatron
oscillation and the measurement will start to disagree. The location of the gradient
error thus identified can be confirmed by fitting a betatron oscillation backwards start-
ing in a region further downstream. The fit should begin to deviate from the model at
the same point as for the forward fit.

In principle, by analyzing first-turn orbits gross optics errors are easily identified.
In practice, it is not always so simple, as beam loss, BPM spray (from lost particles),
or kicker noise may corrupt the BPM readings on the first couple of turns.

2.4.2 Closed-Orbit Distortion

A variant of this method is to make use of the fact that, except for the location of the
corrector, a closed-orbit distortion for a stored beam has exactly the same pattern as a
betatron oscillation. Thus, in much the same manner as for the first turn, the model can
be used to fit the change in the closed orbit (with and without corrector excitation) to a
betatron oscillation, and then to propagate this oscillation around the ring. Again, the
location where a noticable disagreement starts identifies the magnet with a gradient
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Figure 2.14: Finding quadrupole gradient errors by fitting betatron oscillations to closed-orbit distortions:
an example from the PEP-II HER commissioning, using the codes LEGO25 and RESOLVE26. The
induced orbit change is fitted to a betatron oscillation over a small number of BPMs (further to the left);
the betatron oscillation so obtained is propagated along the beam line using the model optics (solid line)
and compared with the actual orbit variation (plotting symbols). In this example, the two agree well up to
a region close to the interaction point, nears = 700 m on the horizontal axis. It was later verified that two

quadrupole pairs in this region had gradient errors of the order of 0.1%. (Courtesy Y. Cai, 1998.)

error. The excitation of this magnet can be changed, and the measurement repeated,
until the agreement with the model is satisfactory. Figure 2.14 shows an example of
this method from the PEP-II commissioning. A gradient error close to the interaction
point was clearly identified.

It is possible to considerably extend this simple closed-orbit distortion scheme.
For example, the response of all BPMs to every single steering corrector may be
combined into a big matrix, which can be used as an input to a sophisticated statistical
fitting program, such as LOCO27;28. LOCO then varies the individual gradients of
the quadrupoles in a computer model (e.g., MAD 23) to find the gradients that best
reproduce the measured orbit response data.

2.4.3 Phase Advance

Instead of fitting trajectories, we can also use Eq. (2.27) to compute the beta functions
from the measured phase advance around the ring. Then we can adjust either the
model quadrupoles or change the actual magnet settings of the machine to improve
the agreement of measured and predicted phase advance and to identify the source of
the discrepancy.

An example from PEP-II is presented in Fig. 2.1529. From left to right we see the
improved agreement of model and measurement, when the strength of a quadrupole
pair (QF5) in the IP region is changed by a total of 0.15%. For each quadrupole value,
the upper row of pictures shows the entire ring, the lower row a close-up view of a
particular section. As can be seen, the final quadrupole strength, on the right, yields a
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Figure 2.15: Ratio of the horizontal beta function inferred from phase advance measurements to the model
beta function: (top row) for the entire PEP-II High Energy Ring (HER); (bottom row) for a limited region
only; (left column) with all magnets at nominal strength; (center) for an increased strength of a single
quadrupole pair (called QF5) by 0.1%; (right column) for a strength increase of 0.15%. The fliers with
large error bars correspond to bad BPMs or to a phase advance between successive BPMs equal to0 or �.

(Courtesy M. Donald, 1998.)

satisfactory agreement with the model.

2.4.4 � Bump Method

Another method which can be used to identify local gradient errors is the�-bump
technique, applied at Tristan and at the ATF30;31;32. Here, local orbit bumps are
induced, one by one, across each quadrupole magnet (or across small groups of
quadrupole magnets), so as to cover the entire ring. The non-closure of a theoreti-
cally closed bump is indicative of an optics error in this region. Of course, also an
error in the calibration of the bump dipole magnets may result in non-closure of the
bump, but the effects of dipole errors and optics errors can be separated by their beta-
tron phase. In particular, for an ideal� bump, the bump leakage due to a gradient error
and that due to a dipole error are perpendicular to each other. In more complex situa-
tions, computer programs can be used to process a large number of measurements for
overlapping bumps, so as to determine both the dipole and the focusing errors.
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Ex.2.5. Quadrupole with a turn-to-turn short
So-called difference orbit measurements are taken by saving a BPM reference orbit
under nominal conditions, perturbing the beam with a single corrector and forming the
difference orbit consisting of measurements of the perturbed orbit and the nominal orbit.
This difference orbit may be easily compared with model expectation. Suppose such
lattice diagnostic measurements are made in an electron accelerator and reveal that
the beam is errantly deflected up and outboard (away from ring center) at a focussing
quadrupole.
a) Based on these observations, which of the quadrupoles' coils is suspect of a turn-to-
turn short?
b) With a position resolution of 10�m, how well can the relative change in the current
through the offending coil be determined?
Ex.2.6. Quadruple gradient errors
a) Design a closed�-bump spanning a focussing quadrupole of strengthk assuming
perfect calibration of the corrector dipoles.
b) Using this bump, suppose that the orbit is observed not to close with a residual am-
plitude measured with a BPM ofA. Find an expression relating the measured leakage
A to the gradient error�k.
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Chapter 3

Transverse Optics
Measurement and Correction -
Part II

3.1 Orbit Measurement and Control

In the next few sections we describe methods used to control the beam orbit. We be-
gin by illustrating the very practical issue relating to the precision to which the beam
position can be determined. Next we describe a form of lattice diagnostics, used rou-
tinely at almost all accelerators, which serves to identify optical and/or instrumental
errors. While such simple checks are absolutely mandatory, to achieve design beam
emittances, more advanced tuning algorithms are required. We present a subset of
such optimization techniques.

3.1.1 BPM Offsets

In practice, there may be uncertainties associated with the electronic center (and/or
mechanical center) of a BPM and the magnetic center of a quadrupole into which
BPMs are typically mounted. Consider the case asillustrated in Fig. 3.1. In this
case, the deviation from the reference axisa, the definition of which is still subject to
debate, is given by

x = xd + xb + xm; (3.1)

aA famous little-known paper by Courant1 from the early 60's was titled something like ' Where is
Zero?' which we see is still relevant today!
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wherexd represents the quadrupole offset,xb gives the BPM offset, andxm corre-
sponds to the actual measurement. The reference axis may be chosen to minimize
emittance dilutions in a global sense. Neglecting this issue for the moment, we see
that even in the ideal case (of perfect local corrections) for which the reference axis is
in the center of the quadrupole, a so-called one-to-one steering algorithm designed to
zero the BPM readings would still place the beam off-axis in the quadrupole.

Beam 

BPM Center

Quad Center

Linac Axis

m = BPM 
Measurement

d = Quad 
Misalignment

b = BPM Bias

6112A49-88

Figure 3.1: Sketch showing relative positions of the BPM, the quadrupole, and the beam position measure-
ment from an ideal reference axis. (Courtesy C. Adolphsen, 1999).

If the orbit is off-center in a quadrupole magnet, dispersion is generated, and,
in a ring, also the beam energy may be changed or the depolarization may increase.
An orbit that is off-center in a sextupole induces skew coupling and/or beta beating.
Thus it is very important to center the orbit in these magnets. The standard tools for
correcting the orbit are corrector dipoles. Of course, such an orbit correction will
never be perfect. Figure 3.2 shows a typical absolute orbit reading from the PEP-II
HER, after moderate orbit correction during commissioning.

We will see that if the BPM offsets are not known, and possibly larger than the
alignment errors, a better strategy is to reduce the rms strength of the steering cor-
rectors, and to pay less attention to the absolute orbit reading. In several cases, at
the SLC and at the ATF, this second approach significantly reduced the magnitude
of the residual vertical dispersion2. Sometimes other constraints are imposed on the
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Figure 3.2: Typical commissioning orbit in the PEP-II HER: (top) horizontal orbit in mm; (center) vertical
orbit in mm; (bottom) intensity in1010. (Courtesy U. Wienands, J. Seemanet al, 1998.)

orbit. For example, a certain orbit amplitude or a certain angle may be desired near
the injection or extraction points, or near a synchrotron light beamline. In such cases,
a constant orbit must be maintained at the adjacent BPMs.

3.1.2 Lattice Diagnostics and R Matrix Reconstruction

Consider a beam line with no coupling elements as shown in Fig. 3.3 consisting of
dipole and quadrupole magnets, BPMs and corrector magnet dipoles. The point-to-
point transfer map between any two points (1) and (2) is given by�

x

x0

�
2

=

�
R11 R12

R21 R22

��
x

x0

�
1

(3.2)

Let the initial point (1) be at a corrector and the final point (2) be at a BPM. Two
measurements are required to determineR12: (x; x0)BPM with the nominal beam
trajectory and(x; x0)COR, and with(x; x0 + �)COR after the beam is kicked by an
angle�. The difference inxBPM between the two measurements isR12 = �x

�
.

In practice to decrease sensitivity to measurement error, one introduces a series of
large betatron oscillations by varying the corrector in steps. The response of the
BPM readings to these perturbations3 is then measured. The resulting dependence of
position on the kick angle� is fitted with a straight line as shown in Fig. 3.4.
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Figure 3.3: Simple FODOlattice. Shown are the focussing quadrupoles (QF), the defocussing quadrupoles
(QD), and dipoles (rectangles). The BPMs are usually mounted within the quadrupoles. Corrector magnets

are denoted by triangles.

Shown in Fig. 3.5 is an example of a beam trajectory after excitation by a cor-
rector magnet and an amplitude fit using many downstream BPMs. For good viewing
conditions the measured trajectory is plotted for the case of a maximum kick angle
� = �max. The solid line connects the measurements from each BPM. The dashed
line represents the fitted positionx = R12� + xo evaluated at�max wherexo is the
offset in the linear fit. To probe all magnetic elements in the beamline, a second
measurement is required using a second corrector dipole separated by90� in betatron
phase advance. Discrepancies between the measurement and fit are used to reveal
phase errors, which could result from a shorted quadrupole magnet, and/or “bad”
BPMs for example. Identification and exclusion of bad BPMs is required for good
convergence of steering algorithms.

Assuming the linear transport matrices between the different correctors and the
transport matrices between adjacent BPMs are known with sufficient accuracy, the
R matrix between the correctors and the BPMs can be determined by a simple least
squares fit3. Including the additional constraint that theRmatrix has to be symplectic
eliminates several degrees of freedom, but then the problem must be solved by non-
linear regression3. Reference3 describes how a rigorous error analysis allows an
estimate of the unknown systematic errors.

Suppose the agreement between the measured data and fit is unsatisfactory. In
the absence of hardware errors, this may result from systematic measurement errors
or from an incomplete model. Accuracy of the model is vital for basic optics checkout
and requires, for example, accurate representations of magnetic field strengths. In a
linear accelerator, it may be necessary to take into account the energy dependence
of the point-to-point transfer matrix elements. The change in the betatron phase� 
relative to the expected phase is given by

� 

 
= ��; (3.3)

where� is the relative energy deviation and� is the chromaticity. With� = �1=� for
a 90� FODO cell, then a 1% energy error corresponds to a change in phase advance

4



Figure 3.4: Example of anR12 measurement: transverse positionx versusB � dl where the kick angle, in
terms of the magnetic rigidityB�, is� = B�dl

B�
.

of � = �0:003 per cell.
To take into account the energy dependence of the transport matrix, the matrix

elements may be expanded in a Taylor series. Keeping the linear term only,�
x

x0

�
2

=

NsY
k=1

 
R1;1

k
+

dR1;1
k

dEk
�Ek R1;2

k
+

dR1;2
k

dEk
�Ek

R2;1
k
+

dR2;1
k

dEk
�Ek R2;2

k
+

dR2;2
k

dEk
�Ek

!�
x0
x00

�
1

; (3.4)

whereNs is the number of regions in which the accelerator has been subdivided. The
procedure consists of

1. measuring the transverse positionxm after the beam has been deflected,
2. selecting a set ofEk 's,
3. comparing the measured positionxm with the expected, or calculated, positionxc
by computing

�2 =
X

(xm
2 � xc

2); (3.5)

where the sum is over all the BPMs used in the measurement, and
4. iterating steps 2 and 3 to minimize the�2.

An example is shown in Fig. 3.6 for the SLAC linear accelerator5. In the top
plot an amplitude fit was used (as in Fig. 3.5). In bottom plot, the minimum�2

corresponded to an energy error of about 30%, which far exceeded the estimated un-
certainty in the energy. Possible reasons for the discrepancy might include calibration
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Figure 3.5: Comparison of measured data (solid curve) and amplitude fit (dashed curve). Plotted are the
horizontal and vertical beam positions as measured as a function of distance along the transport line. See

also ref.4.

errors in the quadrupoles, random errors in the BPM gains, or wakefields, which are
not included in the model. Nonetheless, the dynamics are predictable by incorporat-
ing the fitted errors into the accelerator model.
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Figure 3.6: Comparison of measured data and fit to betatron amplitude only (a) or fit to both betatron
amplitude and energy in the different linac sections (b). Plotted is the horizontal beam position as a function

of distance along the linear accelerator. (Courtesy T. Himel, 1999).
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3.1.3 Singular Value Decomposition

A common situation is that the BPM offsets are known fairly well and the orbit al-
ready fulfills a number of constraints, but many of the corrector magnets are strongly
excited with some of them `fighting' (compensating) each other. Fortunately, there
exists a very powerful technique to reduce the rms strength of the orbit correctors,
while maintaining a set of constraints. This technique is sometimes called `corrector
ironing'6 and it is based on a `singular value decomposition' 7.

Suppose we want to solve the linear equation

�x = A � � (3.6)

where the vector�x = (�x1; : : :�xM) may describe the desired correction (or
constraint) atM BPMs, and� = (�1; : : : ; �N ) are the excitation strengths ofN
correctors, that we want to determine. IfM � N , we can decompose the matrixA
as

A = U �

0
BB@

w1 0 : : : 0
0 w2 : : : 0

: : : : : :

0 0 : : : wN

1
CCA �Vt (3.7)

The column vectors of theM�N matrixU and theN�N matrixV are orthonormal

U
t �U = IN (3.8)

V
t �V = IN (3.9)

whereIN denotes theN � N unity matrix. The decomposition of Eq. (3.7) can be
performed, for example, using the FORTRAN subroutine described in Ref.7. An SVD
decomposition is also provided in a convenient form by many mathematical analysis
packages, such as MATLAB8.

We now consider three different cases: First, we suppose the number of correctors
is equal to the number of BPMs. In this case the matrixA is square. We can write
down a formal solution

� = A�1 ��x = V �

0
BB@

1=w1 0 : : : 0
0 1=w2 : : : 0

: : : : : :

0 0 : : : 1=wN

1
CCA �Ut ��x (3.10)

If none of thewi is zero, this is the unique solution to the problem. If one or more of
thewi are zero, the equation may not have an exact solution, but for thesewi one can
simply replace1=wi by 0, and with this replacement Eq. (3.10) still gives the solution
in a least squares sense. This means it minimizes the distancer = jA � � ��xj.

8



Furthermore, the solution vector� so obtained is the (either least-squares or exact)
solution with the smallest possible lengthj�j2. In other words, the solution derived
from the SVD decomposition also minimizes the rms strength of the correctors.

In addition, it is worthwhile to note that the columns ofU whose same numbered
wi are nonzero are an orthonormal set of basis vectors that span the range of the
matrixA while the columns ofV whose same-numbered elementswj are zero are an
orthonormal set for the nullspace ofA.

Next, we consider the case that there are fewer equations than correctors. In this
case, we can simply add rows with zeroes to the vectors and matrices of Eq. (3.6)
until the matrix is square, and then apply the SVD formalism, as described above. In
this case, there is (at least) one zero eigenvaluewj for every row of zeroes added.

Finally, in the case of more BPM constraints than unknown correctors (M > N ),
SVD works just as well. In general thewj will not be zero, and the SVD solution
will agree with the result of a least-square fit. If there are still some small valueswj ,
these indicate a degeneracy inA and the corresponding1=wj should be set to zero, as
before. The corresponding column inV deserves attention, since it describes a linear
combination of corrector excitations, which does not affect the constraints.

The SVD steering algorithm has been used successfully at many accelerators, for
example, at the synchrotron light source SPEAR9 or throughout the SLC.

3.1.4 Beam-Based Alignment

In many modern accelerators, the alignment tolerances on quadrupole and sextupole
magnets are so tight that they cannot be achieved by state-of-the art surveying and
installation methods with residual errors of 100-200�m. The standard approach to
achieve and maintain tight tolerances is beam-based alignment.

Beam-based alignment determines the relative offset between magnet centers and
nearby BPMs. If these offsets are sufficiently stable, a simple orbit correction (steer-
ing) can maintain a well-centered orbit, until the alignment measurement is repeated
at a later time (after several months).

Quadrupole Excitation

If the beam is not centered in a quadrupole magnet, and the strength of this quadrupole
is varied, the beam receives a kick. This causes a change in the beam trajectory, for
single-turn measurements, or a change in the closed orbit, for measurements on a
stored beam.

For a single-pass measurement, the dipole kick� can easily be inferred by fitting
the difference trajectory to a betatron oscillation including one additional kick at the
location of the quadrupole. The dipole kick� obtained from the fit is proportional to
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the quadrupole misalignmentxq and the change in the integrated quadrupole strength:

� = �k xq (3.11)

If beam-based alignment is performed on a stored beam, the additional kick of
the closed orbit induced by the change in quadrupole strength is given by the sum of
two components, the change in field strength and the change in the closed-orbit offset
at the quadrupole. In lowest order, we have10

� � �k xq � k �x (3.12)

wherexq is the original quadrupole offset,�x the change in closed-orbit position,
k the integrated quadrupole gradient, and we have neglected a second-order term
(�k �x). We can apply the formula for the closed orbit distortion at the location of
the dipole kick, Eq. 2.33, and find

�x = (�k xq � k �x)

�
�

2 tan�Q

�
(3.13)

which we can solve for�x,

�x = �k xq

�
�=(2 tan �Q)

1 + k�=(2 tan �Q)

�
(3.14)

Inserting this back into Eq. (3.12) gives the closed-orbit kick induced by a gradient
change�k:

� = �k xq

�
1

1 + k�=(2 tan�Q)

�
: (3.15)

This is the stored-beam equivalent of Eq. (3.11).
The precision of this method is much improved by taking difference orbits for

several quadrupole-to-beam off-sets,�xq, varied with a local bump11. One can also
define a merit function

f(�xq) =
1

NBPM

NBPMX
i=1

(xi(�k)� xi(��k))2; (3.16)

whereNBPM is the total number of BPMs in the ring, and determine the quadrupole
offset by minimizingf(�xq) as a function of the bump amplitude�xq, using a least-
squares parabolic fit. At the Advanced Light Source (ALS), this procedure measures
the center of the quadrupoles to within�5 �m10 (in case of the ALS, the orbit at the
quadrupole is varied with a single corrector and not by a closed bump).
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Figure 3.7: Beam-based alignment with quadrupole shunts at SPEAR12: (left) electric circuit with shunt
resistor; (right) shunt-induced orbit shift at two downstream BPMs as a function of the beam-position read

back at the BPM nearest to the quadrupole being varied. (Courtesy J. Corbett, 1998.)

This type of measurement does not require an independent power supply for each
quadrupole to be aligned, but, for several magnets in series, a simple switchable shunt
resistor across each magnet will suffice. Simultaneously, such shunt resistors allow a
measurement of the beta function since

�x;y � 4�
�Qx;y

�k
: (3.17)

Figure 3.7 illustrates the application of this technique at the storage ring SPEAR.
The left figure shows the circuit diagram for a magnet with shunt resistor, and the right
figure presents a typical alignment measurement for a SPEAR quadrupole. Plotted in
the right figure is the orbit shift induced by the shunt at two downstream BPMs as a
function of the orbit at the shunted quadrupole, which is varied by a local bump. The
orbit is centered in the quadrupole when no orbit shift is induced by the shunt (the
intersection of the two lines).

If the number of BPMs is small and only groups of quadrupoles can be changed
simultaneously, it is still possible to determine the quadrupole misalignments, by ap-
plying a statistical fit to a sufficiently large number of trajectories taken for different
quadrupole-group excitations, different incoming conditions and different corrector
settings. An interesting example of such an analysis can be found in Ref.13.

Quadrupole Gradient Modulation

A scheme which allows continuous monitoring of quadrupole alignment and BPM
offsets was implemented at LEP; see for example Ref.14. Here the strength of several
quadrupoles is modulated at different frequencies in the range 0.8-15.6 Hz, and the
induced oscillation amplitude, of the order of 1�m is detected. Figure 3.8 shows the
FFT over 4096 data points of this detector signal, at a time when four quadrupoles
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Figure 3.8: FFT spectra with 4 modulated quadrupoles in LEP14. The amplitude of the peaks is propor-
tional to the beam displacement in the 4 quadrupoles. (Courtesy I. Reichel, 1998.)

were modulated. Clearly visible are 4 peaks in the frequency sprectrum, correspond-
ing to the four different modulation frequencies. The amplitude of the peak is propor-
tional to the beam offset in that quadrupole.

Using thisk modulation technique, one can infer the BPM offsets from the natu-
rally occurring beam-orbit jitter and orbit variation. This is illustrated in Fig. 3.9. The
left figure shows a BPM orbit reading in LEP during several hours of a luminosity
run. The reasons for the slow changes are not fully understood; the fast steps reflect
corrections of the closed orbit. Making use of this natural orbit variation, one can plot
the amplitude of the beam response to the quadrupole modulation as a function of the
BPM reading for the corresponding quadrupole. The result is a `V plot' , as shown in
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the right figure. The minimum in this plot determines the BPM reading at which the
beam is centered in the quadrupole.

Sextupole Excitation

In present-day storage rings, it is often assumed that the sextupoles are well enough
aligned with respect to the quadrupoles that only the quadrupole alignment has to be
verified. An orbit off center in a sextupole will result in vertical dispersion, betatron
coupling, or beta beating. Although, in principle, also the sextupoles in a storage
ring can be aligned by changing their strength and measuring the induced orbit shift
(which is a quadratic function of the excitation) there is little experience with such a
scheme. To reach the same sensitivity as for the equivalent quadrupole alignment, the
change in the sextupole gradient�ks would have to be equal to

�ks =
�kq
2xs

(3.18)

wherexs is the horizontal orbit offset at the sextupole, and�kq the correspond-
ing change in quadrupole gradient. A different approach, which was tested at KEK
15, is to equip the sextupole magnets with additional quadrupole trim windings for
beam-based alignment. This is based on the assumption that the magnetic centers of
quadrupole trim coil and sextupole will coincide. Sextupole alignment with a preci-
sion better than 50�m was demonstrated15.

Local orbit bumps across single sextupoles have been used for the purpose of sex-
tupole alignment at KEK16;17 and DESY18. The strength of all sextupoles is changed
together and the induced orbit change is measured. Then the measurement is repeated
for a different bump amplitude. The horizontal deflection depends quadratically on
the horizontal bump amplitude, while the vertical deflection is a linear function:

��x = �0:5Ks(xbump � xs)
2 (3.19)

��y = Ks(xbump � xs)ys (3.20)

wherexbump is the amplitude of the bump, andxs, ys are the sextupole misalign-
ments. The advantage of this method is that it does not require individual power
supplies for the sextupoles.

Alternative approaches are conceivable: one could vary multiple sextupoles at
once, and fit for multiple kicks. Also, one could vary the sextupole strength and mea-
sure the induced tune variation or the tune separation near the difference resonance
19.

In the final-focus systems of linear colliders, sextupole alignment is essential.
At the SLC final focus, the orbit in the sextupoles must frequently be measured and
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Figure 3.9: Determination of BPM offsets usingk modulation and natural orbit variation in LEP14: (top)
natural orbit drifts and corrections during a LEP luminosity run at one quadrupole; (bottom) amplitude of
beam response tok modulation vs. BPM orbit reading for the modulated quadrupole. The minimum of this
plot gives the BPM offset. These data were taken continuously during 5 hours of luminosity run. (Courtesy

I. Reichel, 1998.)
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adjusted to maintain a high luminosity. The SLC sextupole alignment is based on
varying the sextupole strength and detecting the induced optics (not orbit) change20.
If the orbit is off center, the first order effect of the sextupole excitation is a waist shift
(change in the beta function), skew coupling, or dispersion at the interaction point.
These optics changes can be quantified easily by reoptimizing the spot-size at the
collision point, after a change in the sextupole strength. The reoptimization is done
by scanning a group of quadrupole and skew quadrupole magnets excited together so
that they only affect one optical parameter. For each value of the parameter correction,
the IP spot size is remeasured with beam-beam deflection scans, and the magnets are
finally set to a value where the beam size is minimum. The change in the optimum
waist, dispersion, etc., as a function of the sextupole excitation is proportional to the
orbit offset at the sextupole. The measured offsets are corrected by means of closed
bumps.

An interesting feature of the SLC final focus is that it has 2 pairs of interleaved
sextupoles. The sextupoles in each pair, connected to the same power supply, are
separated by an optical�I transform. Thus, the alignment procedure actually consists
in generating symmetric or antisymmetric orbit bumps for each sextupole pair, in
response to the amount of waist motion or dispersion etc., induced by a change in the
sextupole-pair strength21.

Sextupole Movement

It is also possible to align the sextupole magnets by detecting the second-order effect
of the sextupole excitation: the induced orbit kick. This method works well when
the sextupoles are installed on precision movers, which can be used for both the mea-
surement and the alignment. The basic idea is straightforward. Measuring the orbit
change downstream as a function of horizontal or vertical sextupole-mover position
results in a parabolic curve. The sextupole is aligned when the mover position is set
to the minimum of this curve. A sample measurement from the FFTB22 is displayed
in Fig. 3.10.

Structure Alignment using Beam-Induced Signals

For future high-gradient linear accelerators it is essential to center the beam orbit
in the accelerating structures, thus minimizing the transverse wakefields. Alignment
techniques were studied on a test structure for the Next Linear Collider, which was
installed in the SLAC linac, as part of the ASSET experiment. These studies demon-
strated that the beam-induced dipole-mode signals can be used to center the beam to
the level of 40�m23. The result in Fig. 3.11 shows the amplitude and phase (with re-
spect to a reference phase derived from a BPM signal) of a 15-MHz wide slice of the
beam-induced dipole mode signal, centered near 15 GHz, as a function of the nominal
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Figure 3.10: Sextupole alignment in the Final Focus Test Beam (FFTB)22: downstream orbit variation
is measured as a function of sextupole mover position; the sextupole is aligned at the minimum of the

parabola. (Courtesy P. Tenenbaum, 1998.)
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beam position. The beam position was varied with dipole steering magnets. Clearly
visible is a minimum in the amplitude along with a 180 degree phase jump. Steer-
ing the beam to the position with minimum signal successfully centered the orbit in
the structure as was verified by detecting the deflection experienced by a subsequent
witness bunch.

3.1.5 Orbit Feedback

Feedback systems that stabilize the beam orbit are becoming more common inaccel-
erators, both in light sources, such as the APS, and in accelerators for high-energy
physics, such as the SLC24. A comprehensive overview of orbit feedback systems
can be found in Ref.25. A simple orbit feedback maintains a constant orbit by ad-
justing the strength of 2 or 4 steering correctors based on BPM readings. Many orbit
feedback systems employ an SVD algorithm which flattens the orbit while at the same
time minimizing the strength of the correctors.

Slightly more complicated feedback loops are designed so that they maintain
both the beam orbit and the beam energy. Orbit and energy can be separated using
BPMs at dispersive locations. The orbit is corrected via steering correctors; the beam
energy by adjustments to some upstream rf phase.

The effectiveness of a feedback can be tested by measuring its response to a step
change. An example in Fig. 3.12 shows the response of an SLC feedback loop to a
sudden step change in energy. The pictureillustrates the improvement achieved by
increasing the number of feedback BPMs to better constrain the fit.

There are different techniques to calibrate the local transport matrices between
correctors and BPMs within each feedback loop, which are used to continually com-
pute the excitation of the feedback steering correctors. For example, the induced
change in orbit position and angle can be measured as a function of the individual
feedback corrector strengths.

If there are successive feedback loops on a beam line, these loops could interfere
with each other, ande.g., cause unwanted orbit oscillations. This interference can
be avoided by either one of 4 different approaches25: (1) orthogonality, (2) different
speed, (3) inter-loop communication (feedback cascades) and (4) integration into one
global loop. At the SLC, the orbit feedbacks in the linac are connected by an adaptive
cascade. Each feedback passes its information to the loop downstream, in order to
avoid overcorrection of the same perturbation. The linear transport matrix between
successive loops is measured continuously using natural beam orbitjitter.
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Figure 3.11: Amplitude (top) and phase (bottom) of the beam-induced dipole mode signal in an X-band
accelerating structure versus the nominal beam position (arbitrary zero), which was varied by steering

correctors23. (Courtesy M. Seidel, 1998).
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Figure 3.12: Response of the orbit and energy feedback in the ring-to-linac transfer line of the SLC to a
fast step change in energy24: (left) before and (right) after additional BPMs were included in the feedback

loop.
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Ex.3.1. Design of an orbit feedback loopWrite an algorithm for orbit correction
in one plane assuming uncoupled, linear transport in a transport line. Let the beam
position be detected using two BPMs and use two fast corrector dipoles for implement-
ing the desired deflections. Introduce (assumed known) relative phase advances and
beta functions as needed to take into account phase differences between the correctors,
between the BPMs, and between the correctors and BPMs.

3.2 Beam Emittance and Emittance Preservation

The beam emittance represents the volume of the beam occupied in the six dimen-
sional phase space (x; x0; y; y0; �; �), wherex andy are the transverse positions,x0

andy0 are the transverse angles,� is the time-like variable representing the relative
phase of the beam, and� is the relative beam energy. Often one discusses a beam
emittance with implicit reference to a particular plane of interest; i.e. the horizon-
tal, vertical, or longitudinal emittance. In this section we describe not single particle
transport, but transport of the beam as a whole. Next we outline methods used to
measure the beam emittance and to parametrize the degree of mismatch using very
commonly used wire scanners.

3.2.1 Single Wire Measurement of Beam Emittance

An (invasiveb.) measurement of the beam emittance can be performed by varying the
field strength of a quadrupole located upstream of a single wire (or screen). The trans-
fer matrix isM = SQ, whereS is the known transfer matrix between the quadrupole
and the wire, andQ is the transfer matrix of the quadrupole:

Q =

�
1 0

k = � 1
f

1

�
(3.21)

in the thin-lens approximation for which the length of the quad is short compared to
the focal lengthf . After multiplying the matrices, one obtains

M =

�
S11 + kS12 S12
S21 + kS22 S22

�
: (3.22)

Expanding the matrix product� = (SQ)�0(SQ)
T and equating the (11) element on

both sides, the horizontal beam size is

bThe measurement could be made nonivasive by simultaneously adjusting another quadrupole down-
stream of the wire scanner, so as to compensate for the change in the beta function induced by the first
quadrupole
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�11(= hx2i) = (S11
2�110 + 2S11S12�120 + S12

2�220)

+ (2S11S12�110 + 2S12
2�120)k + S12

2�11k
2; (3.23)

which is quadratic in the field parameterk.
To make use of these results in an emittance measurement, the following proce-

dure is often used:
1. For each value of quadrupole field strengthk, the wire is scanned and the amplitude
of the response measured by a detector is obtained as a function of wire position.
2. For each wire scan at fixedk, the distribution is fit with a Gaussian of the form

f(x) = f0 + fmaxe
�

(x�hxi)
2

2hx2i ; (3.24)

wheref0 is the baseline level offset andfmax is the peak value of the Gaussian dis-
tribution.
3. The fitted beam sizehx2i is plotted as a function ofk.
4. The result is fit with a parabola. One parametrization for the fit is

�11 = A(k �B)2 +C

= Ak2 � 2ABk + (C +AB2): (3.25)

5. The� matrix is reconstructed by equating coefficients:

A = S212�11; (3.26)

�2AB = 2S11S12�11 + 2S212�12; (3.27)

C +AB2 = S11
2�11 + 2S11S12�12 + S12

2�22; (3.28)

and solve for�11, �12 (= �21), and�22. The results are

�11 =
A

S12
2
; (3.29)

�12 = � A

S12
2
(B +

S11

S12
); (3.30)

�22 =
1

S12
2
[(AB2 +C) + 2AB(

S11

S12
) +A(

S11

S12
)2]: (3.31)

6. The beam emittance is then calculated from the determinant of the beam matrix
� =

p
det � and the errors are propagated:

det � = �11�22 � �12
2
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=
AC

S12
4

(3.32)

so

� =

p
AC

S12
2
: (3.33)

The above results also give the ellipse parameters�, �, and:

� =
�11

�
=

r
A

C
; (3.34)

� = ��12
�

=

r
A

C
(B +

S11

S12
); (3.35)

 =
1

�
=

S12
2

p
AC

[(AB2 +C) + 2AB(
S11

S12
) + A(

S11

S12
)2]: (3.36)

As a check, the ellipse parameters should satisfy� � 1 = �2.
An example of emittance measurements in the two transverse planesx andy is

shown in Fig. 3.13. The graphics output shows the square of the measured beam size
in �m2 as a function of the quadrupole field strength in(kG

m
)m. The first two rows

in the text display show the measured emittance (�j) and the normalized emittance
(�j ) with j = x; y. The unit designation “M-R” denotes mm-mrad; for example,
the measured normalized emittances are(3:0� 0:4)� 10�5 [m-rad] inx by (4:00�
0:04)� 10�6 [m-rad] iny.

3.2.2 Multiple Wire Measurement of Beam Emittance

The beam emittance may be measured (in many applicationsnoninvasively) using 3
wire scanners if there are no coupling elements or using 4 wire scanners wit coupling
(in the latter case each wire scanner should be equipped with several wires oriented at
different angles in the transverse plane,e.g., a horizontal, a vertical and a 45� wire).
The optimum wire locations for maximum sensitivity (without coupling) are such that
the separation between wires correspond to a difference in betatron phase advance� 
of 90�

Nw

, whereNw is the number of wires used in the measurement. Letting�i denote
the measured�11's for wirei, and considering the case of 4 wires, the matrix equation
to be solved is

0
B@
�1
�2
�3
�4

1
CA =

0
B@
c1
2 2c1s1 s1

2

c2
2 2c2s2 s2

2

c3
2 2c3s3 s3

2

c4
2 2c4s4 s4

2

1
CA
0
@ �11
�12
�22

1
A =M0

0
@�11
�12
�22

1
A (3.37)
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Figure 3.13: Example transverse beam emittance measurements using a single wire.

whereci andsi are theR11 andR12 transfer matrix elements from the point at which
the beam matrix is defined to the location of the wire.
Notice thatM need not be a square matrix. Rewriting Eq. (3.37) asA = MC , then
MTA =MTMC , orC = (MTM)�1MTA; that is,

0
@�11
�12
�22

1
A = (MTM)�1MT

0
B@
�1
�2
�3
�4

1
CA ; (3.38)

which in a least-squares sense gives the beam matrix elements (�ij) in terms of the
measured sigmas.

A possible procedure for the multiple wire emittance measurement is as follows:
1. Each wire is scanned to obtain detector counts as a function of wire position x.
2. For each wire scan, the distribution is fit with a Gaussian using Eq. (3.24).
3. The� matrix is reconstructed using Eq. (3.37), the transfer matrix elementsMi

from the model, and the�i from the measurements.
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4. The emittance is calculated� =
p
det �.

5. The ellipse parameters� = ��12
�

, � = �11
�

, and = �22
�

are calculated, if desired.

3.2.3 Graphics

Increased operational efficiency may be obtained from meaningful graphical repre-
sentation of the experimental data. In the multiple wire emittance measurement it is
useful to project the measurements to a single point along the accelerator and to plot
the normalized phase space. The emittance�, multiplied by�, corresponds to the area
of the ellipse parametrized by

� = x2 + 2�xx0 + �x0
2
: (3.39)

Since� = 1 + �2,

� =
1

�
[x2 + (�x+ �x0)2]

=
1

�
(x2 + px

2); (3.40)

wherepx = �x+ �x0 is the orthogonal coordinate tox.
A useful representation of the data may be obtained with the following procedure.

In this representation, the data are shown in normalized phase space for direct viewing
of deviations from design. The wire orientations are also plotted to show the phase
space coverage by the wires.
1. Plot the design, rms ellipse in the phase space (a circle)�

xp
�
;
�x + �x0p

�

�
(3.41)

at some reference points along the trajectory. Normalize the design ellipse to unit
radius.
2. Plot also the ellipse obtained from the measurements of the ellipse parameters at
the reference point. Apply same normalization as in step 1.
3. Using the lattice model, foreach wire project its orientation back to the reference
point and add the result to the figure; that is, for each point along the wire(x; x0)w ,
do an inverse mapping to the reference point�

x

x0

�
refpoint

=M�1

�
x

x0

�
w

: (3.42)

The display should summarize the measurements which might include the measured
and expected beam widths at each of the wires, the measured and design beam emit-
tance, and the beam intensity. Also, a measure of the degree of “mismatch” is useful.
This will be further discussed in the next section.
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An example of these graphics is shown in Fig. 3.14. The raw data are given in Fig.
3.15. From Fig. 3.14 it is immediately obvious that while the measured ellipse has
roughly the same emittance as the design circle (the horizontal emittance is208:8�9:9
[mm-mrad] compared to the design of200 [mm-mrad], the vertical emittance is 323�
26.7 [mm-mrad] compared to the design of200 [mm-mrad]), the ellipse orientation is
incorrect. As will be shown in the next section, if this beam were allowed to propagate
uncorrected, the final emittance titledBmag� would be 390.0� 10.2 [mm-mrad] inx
and 543.3� 13.2 [mm-mrad] iny. The emittance dilution factorBmag represents
the degree of the mismatch. From Fig. 3.14 can be deduced immediately the degree
of phase space coverage spanned by the wires. In the horizontal plane, for example,
the wire orientations are about0�, �45�,�22.5�, and�67.5�, which is ideal for this
4-wire measurement from the SLC linac.

Figure 3.14: Graphics output of multiple wire transverse beam emittance measurement in the SLC linac.

The “measured ellipse”, that is the ellipse that was reconstructed from the in-
dividual wire scans based on the measured beam widths and the model-dependent
transport matrices, does not represent in this case a true rms of the distribution as can
be seen by inspection of the raw data shown in Fig. 3.15. For more complex beam
distributions, a better characterization is achieved by using an “asymmetric Gaussian”
distribution in which the left and right hand sides of the measured beam profile are fit
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independently with two separate Gaussians. The fitting function26 is

f(x) = f0 + fmaxe

h
�

(x�hxi)
2

2hx2i(1+�[sign(x�hxi)]

i
(3.43)

where� represents an asymmetry factor and is zero for a perfect Gaussian. The� for
the left and right hand sides of the fitted distribution are� = hx2i(1 � �). For the
ellipse reconstruction the average� was used. When large tails are present in the raw
data this more accurately represents the beam distribution. Based on the raw data it
is clear however that even with the more sophisticated fitting algorithm, the fit only
marginally represents the actual distributions.

For reasonably well “matched” beams, the graphical summary display is most
useful. In this example however, the raw data are more revealing: the “double-humps”
in the raw data are characteristic of an upstream error; a beam, if kicked transversely
will filament (lose coherency due to the natural spread in the phase advance) resulting
in an increased emittance and thedouble-humps.

If a wire is mounted at 45� with respect tox andy (a “u-plane” wire), then it is
also possible to measure the coupling betweenx andy. The full�-matrix is

� =

0
B@
�11 �12 �13 �14
�21 �22 �23 �24
�31 �32 �33 �34
�41 �42 �43 �44

1
CA ; (3.44)

where for example�14 represents the coupling between betweenx andy0. Notice
that�14 6= �23. Whereas for the single plane, uncoupled beam matrix reconstruction
a minimum of 3 measurements are required, to fully reconstruct the coupled beam
matrix a total of 10 measurements is needed. This includes the 3 measurements in the
x plane, 3 in they plane, and 4 in theu plane. An example of a coupled emittance
measurement is presented in Figs. 13-16. In this case the raw data are well fit by a
Gaussian. In the text of Fig. 3.16, the parameters�1 and�2 represent the emittance
one would measure in the absence of coupling. They are in good agreement with the
measured projected emittances�x and�y, which indicates that, in this example, the
coupling is small.
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Figure 3.15: Raw data showing individual wire scans used in summary display of Fig. 3.14 and “asymmet-
ric Gaussian” fits (cf. Eq. 3.43).
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Figure 3.16: 4-dimensional emittance measurement summary.

Figure 3.17: Raw data inx-plane corresponding to 4-D measurement of Fig. 3.16.
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Figure 3.18: Raw data iny-plane corresponding to 4-D measurement of Fig. 3.16.
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Figure 3.19: Raw data inu-plane corresponding to 4-D measurement of Fig. 3.16.
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3.2.4 Emittance Mismatch

In this section we begin by explicitly computing, in two dimensions, the transverse
position and angle using the general form of the beam transfer matrix for a periodic
lattice. The results are used to calculate the individual elements of the beam transfer
matrix and to derive an expression for the mismatch parameterBmag. The mismatch
parameter is well suited for analysis in circular machines for which the periodicity
is implicit. We will see that the same formalism is useful in describing emittance
transport in linear accelerators and transport lines as well.

Derivation of Beam Matrix Elements

Recalling from Eq. 1.18, the beam matrix obtained after subtracting out the contribu-
tion from the mean of the beam distribution is

� =

� hx2i hxx0i
hxx0i hx02i

�
: (3.45)

The point-to-point transfer matrix is

M =

0
@

q
�
�0
(cos + �0 sin )

p
��0 sin 

�0��p
��0

cos � 1+��0p
��0

sin 
q

�
�0
(cos � � sin )

1
A ; (3.46)

where� and� are the ellipse parameters at a points from the observation point which
is denoted by the subscript 0. Here is the phase advance between the reference point
and the observation point and is equal to

 =

Z
ds

�
: (3.47)

For a periodic lattice for which� = �0 and� = �0, the periodic point-to-point
transfer matrixMper is

Mper =

�
cos + �0 sin �0 sin 

�0 sin cos � �0 sin 

�
: (3.48)

The beam matrix elements aftern iterations through the periodic lattice are

hx2in = hx2i0M11
2 + 2hxx0i0M11M12 + hx02i0M12

2 (3.49)

hxx0in = hx2i0M11M21 + hxx0i0[M11M22 +M12M21]
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+ hx02i0M12M22 (3.50)

hx02in = hx2i0M21
2 + 2hxx0i0M21M22 + hx02i0M22

2: (3.51)

After substitution of the matrix elements of Eq. (3.48) into Eqs. (3.50-3.51), and
usingcos 2 = cos 2 � sin 2 andsin 2 = 2 sin cos ,

hx2in =
1

2
[hx2i0 + h(�x+�x00)2i]

+
1

2
[hx2i0 � h(�x0 + �x00)

2i] cos 2 
+ [�hx2i0 + �hxx0i0] sin2 ; (3.52)

hx02in =
1

2
[hx2i0 + h(�x+x00)2i]

+
1

2
[hx2i0 � h(�x0 + x00)

2i] cos 2 
� [�hx02i0 + hxx0i0] sin2 ; (3.53)

hxx0in =
1

2
[��hx2i0 � �hxx0i0 � ��hx02i0]

+ [
�

2
hx2i0 + (1 +

�

2
)hxx0i0 + ��

2
hx02i0] cos 2 

+
1

2
[�hx2i0 + �hx02i0] sin2 : (3.54)

Next, let

a =
�

2
[hx2i0 + 2�hxx0i0 + �hx02i0] (3.55)

b =
�


a (3.56)

c = ��
�
a (3.57)

and use

c1 cos 2 + c2 sin 2 =
p
c12 + c22 cos(2 � �); with � = tan�1

�
c2

c1

�
: (3.58)

Then,

hx2in = a+

q
a2 � �2(hx2i0hx02i0 � hxx0i02 cos(2 � �hx2i0); (3.59)
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hx02in = b+

q
b2 � 2(hx2i0hx02i0 � hxx0i02 cos(2 � �hx02i0); and (3.60)

hxx0in = c+

r
(hxx0i0 � c)2 + (�

2
hx2i0 +

�

2
hx02i0)2 cos(2 ��hxx0i0): (3.61)

Note that since� =
p
det � is an invariant in the absence of filamentation,

hx2inhx02in � hxx0in = hx2i0hx02i0 � hxx0i0: (3.62)

The Mismatch Parameter27 Bmag

Dividing both sides of Eq. (3.59) by��0 = �

q
hx2i0hx02i0 � hxx0i0, we have

hx2in
��0

=

a
�q

hx2i0hx02i0 � hxx0i02

+

vuuut
0
@ a

�q
hx2i0hx02i0 � hxx0i02

1
A
2

� 1 cos(2 � �hx2i0)

= Bmag +
q
B2
mag � 1 cos(2 � �hx2i0); (3.63)

where the mismatch parameterBmag is defined as

Bmag =

a
�q

hx2i0hx02i0 � hxx0i0
: (3.64)

With the ellipse parameters�, �, and representing those for the steady-state or
equilibrium beam distribution, then

Bmag =
1

2

[nhx2i0 + 2�nhxx0i0 + �nhx02i0]q
hx2i0hx02i0 � hxx0i0

(3.65)

i.e. Bmag is the ratio of the area of the decohered beam to the area of the injected
beam. The factor of 2 results from the numerator representing an rms area.
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Examples of Emittance Dilution due to Mismatch

Emittance dilution results ifBmag 6= 1 due to the difference in the transverse phase
advance of the particles within the bunch. There are multiple sources of such phase
advance variations. The two most commonly considered sources depend on the chro-
maticity and the amplitude of the betatron oscillations. The chromaticity� = � = �
characterizes the energy dependence of the phase advance where� is the difference
in the phase advance of a particle from the mean phase advance of the bunch and�

is the relative energy deviation of that particle compared to the mean energy of the
bunch. The amplitude dependence of the phase advance due to sextupole and higher-
order magnetic fields is

2� = 2� 0 + �a2; (3.66)

where 0 is the phase advance for the on-axis particle,� characterizes the amplitude
of the quadrupole field, anda is the distance from the center of the magnet to the
particle. Less commonly considered sources for phase advance variations include
wakefield focussing for high current beams, focussing due to ions, and focussing due
to the beam-beam tune shift in colliding beamaccelerators.

a) Periodic Lattice
Let the length of the lattice period beL. Then, as shown in Fig. 3.20, forBmag =

1, the beam always fills the same area in phase space after each lattice period. The
rms area of the ellipse is

hx2in = ��0 (3.67)

and the beam is said to be matched. Under these conditions, no emittance dilution
will occur. In particular, sincehx2in is independent of the phase advance , the
phase space area is unchanged even if the phase of each of the particles in the beam
advances differently.

ForBmag > 1, then

�n =
hx2in
�

= �0[Bmag +

q
Bmag

2 � 1 cos(2 � �hx2i0)] (3.68)

as shown in Fig. 3.21. The solid, small ellipse represents the matched (Bmag = 1)
ellipse. The shaded ellipse represents the (1�) rms distribution of the mismatched
beam. During the first few traversals of identical lattice segments, the phase advance
variations of the different particles may not be obvious. Asn approaches infinity,
however, the phase advance variations lead to a smearing in the transverse phase space
resulting in a larger emittance. This is represented by the area occupied by the shaded
ellipse as given by Eq. (3.63).
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Figure 3.20: Horizontal phase space for a matched beam in a periodic lattice.
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Figure 3.21: Horizontal phase space for a mismatched beam in a periodic linear lattice.
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b) Circular Lattice
For a circular accelerator, the periodicity is usually taken to be not the superperi-

odicity of the machine (i.e. the number of identical lattice sections), but the revolution
period. The indexn therefore represents turn number. The mismatchBmag most of-
ten arises from improper orientation of the beam ellipse at injection. Neglecting the
static phase offset�hx2i0 in Eq. (3.63), the equilibrium emittance is

�n =
hx2in
�

= �0[Bmag +
q
Bmag

2 � 1] cos(4��); (3.69)

where the phase advance per turn is� = 2� . Shown in Fig. 3.22 is the evolution
of the transverse phase space forBmag along with the projections onto the horizontal
axis. With a turn-by-turn beam size monitor, the consequences of a mismatch can be
measured directly by detecting the beam size changes at every turn.
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Figure 3.22: Horizontal phase space andx-projection for a mismatched beam in a circular accelerator.

3.3 Beta Matching in a Transport Line or Linac

The beam size (squared) at the locations can be expressed in terms of the� and�
functions and the emittance at an upstream locations0 as

< x2(s) >= R2
11�(s0)�� 2R12R11�(s0)� +R2

12(s0)� (3.70)
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In a quadrupole scan, the transfer matrix elementsR11 andR12 are varied, by chang-
ing the strength of a quadrupole betweens0 ands. Beam-size measurements for at
least 3 different quadrupole settings are required in order to solve for the three inde-
pendent unknown parameters:�, �(s0) and�(s0). The fourth parameter,(s0) is not
free, but determined by�(s0) and�(s0):  = (1 + �2)=�.

A multi-wire (or multi-screen) emittance measurement is very similar. Here, the
quadrupole gradients stay constant, but theR matrices betweens0 and the different
wire scanners (or other beam-size monitors) are different. Again, at least 3 measure-
ments are required.

Either case can be described by a matrix equation of the form:

0
BBBBB@

�
(1)2
x

�
(2)2
x

�
(3)2
x

: : :

�
(n)2
x

1
CCCCCA =

0
BBBBB@

R
(1)2
11 2R

(1)
11 R

(1)
12 R

(1)2
12

R
(2)2
11 2R

(2)
11 R

(2)
12 R

(2)2
12

R
(3)2
11 2R

(3)
11 R

(3)
12 R

(3)2
12

: : :

R
(n)2
11 R

(n)
11 R

(n)
12 R

(n)2
12

1
CCCCCA
0
@ �(s0)�

��(s0)�
(s0)�

1
A (3.71)

where the superindex on the right hand-side refers to the different measurements,i.e.,
it either corresponds to the setting of some quadrupole magnet, in case of a quadrupole
scan, or to a different wire scanner or monitor, in case of a multi-wire emittance
measurement. At least 3 measurements are required (N � 3) in order to solve for the
three independent parameters�, �(s0) and�(s0).

To simplify the notation, let us denote then� 3 matrix on the right-hand side of
Eq. (3.71) asB, then-component vector on the left side by�x = (�

(1)2
x ; :::; �

(n)2
x ),

and the 3-component vector on the far right by

o = (�(s0)�;��(s0)�; (s0)�): (3.72)

The equation then reads:
�x = B � o (3.73)

The problem of determining the elements of the vectoro can be solved by a
simple least-squares fit. We have to minimize the sum

�2 =
nX
l=1

1

�2
�
(l)

x

 
�(l)
x �

3X
i=1

Blioi

!2

(3.74)

where�
�
(l)

x

denotes the rms error of�(l)
x = �

(l)2
x . This error is obtained from the fit

to thelth wire scan which determines the rms beam size�
(l)
x .
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We find it convenient to normalize the coordinates�(l) so that the rms error is1:

�̂(l)
x =

�
(l)
x

�
�
(l)

x

(3.75)

B̂li =
Bli

�
�
(l)

x

(3.76)

Forming a symmetricn� n covariance matrix

T = (B̂T � B̂)�1 (3.77)

the least-squares solution to Eq. (3.73) reads:

o = T � B̂T � �̂(l)
x (3.78)

and the error of any scalar functionf(o) is given by

�(f)2 = (rof)
T �T � (rof): (3.79)

In particular, the errors of the parameterso themselves are

�oi =
p
Tii (3.80)

Once the components ofo are known, we still need to perform a simplenonlinear
transformation to infer�, �, and�:

� =
q
o1o3 � o22 (3.81)

� = o1=� (3.82)

� = �o2=� (3.83)

The error propagation is straightforward, using Eq. (3.79).
The deviation of the�, �, and from the design parameters�0, �0 and0 is

often characterized in terms of the `Bmag ' (� matching) parameter27;28:

Bmag =
1

2
(�0 � 2��0 + �0) (3.84)

The parameter Bmag has an important physical meaning. If a beam is injected into a
ring or linac with a mismatch, the beam will filament until its distribution approaches
a shape that is matched to the ring or the linac lattice. However, the filamentation
causes the beam emittance to increase, such that, after complete filamentation, the
emittance is given by the product ofBmag and the initial value of�.
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Figure 3.23: Beta matching in the KEK/ATF BT29: (left) quadrupole-scan emittance measurement; shown
is the square of the vertical beam size on a profile monitor vs. the strength of an upstream quadrupole;
(right) the vertical beta function obtained by propagating the measured twiss parameters (solid) through

the actual BT optics is compared with the beta function expected for the design optics (dashed).

Ex.3.2. Beta mismatch
Suppose a beam is injected with a distribution characterized by optical functions�, �
and different from the matched values�0, �0 and0. Show that the beam emittance
after filamentation is given by� = Bmag �0, where�0 is the initial emittance of the
injected beam, andBmag was defined in Eq. (3.84). Hint: filamentation corresponds to
a randomization of the betatron phase and� = hIi.

Once the values of� and� are known, quadrupole magnets can be adjusted
so as to match the optical functions at a selected point to their design value, which
is equivalent to Bmag=1. The above procedure also provides an absolute measure of
the emittance. The SLC has more than 10 multi-wire emittance measurement stations,
which monitor the beam emittances in various parts of the machine inhourly intervals,
and are indispensable for emittance control and tuning. For example, in the SLC linac
transverse orbit bumps are intentionally induced as a global correction which cancels
the accumulated local effects of dispersion or wakefields. The bumps are optimized by
minimizing the emittance downstream, as calculated by this measurement technique.

Example

To illustrate the beta matching method, Fig. 3.23 shows an example from the KEK/ATF
beam transport line (BT), connecting the S-band linac and the ATF damping ring. The
left picture shows the result of a typical quadrupole scan at the end of the BT. Plotted
is the square of the vertical beam size versus the strength of an upstream quadrupole,
as well as a quadratic fit to the data. We can propagate the twiss parameters deduced
from such a fit through the BT, using a model derived from the actual or the design
magnet settings. The right picture displays the inferred beta functions.

39



Ex.3.3. Propagation of Twiss parameters
In Fig. 3.16, the Twiss parameters were measured at a single location yet the `measured'
values are shown as a function of position along the transport line. Derive the matrix
for propagation of the Twiss parameters from a known location to an arbitrary location
along the transport line. Hint: use the equation for the phase space ellipse

x
2
+ 2�xx

0

+ �x
02
= �; (3.85)

the definition� � �2
= 1 and the2� 2 trasport matrix of the form�

x

x0

�
=

�
C(s) S(s)

C(s)
0

S(s)
0

��
x0
x0

0

�
(3.86)
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Chapter 4

Transverse Phase Space
Manipulation

In this chapter we discuss several approaches for manipulating, shaping and preserv-
ing the transverse beam emittance. These include the measurement and correction
of linear betatron coupling, changes to the equilibrium emittance and to the damp-
ing time of stored electron beams, emittance preservation in a linac, compensation
of space-charge induced emittance growth inphotoinjectors, and collimation of beam
halo in linear colliders and storage rings.

4.1 Betatron Coupling

Skew quadrupole field errors and detector solenoids generate betatron coupling be-
tween the horizontal and vertical plane of motion. Spurious betatron coupling is a
concern, since it may reduce the dynamic aperture1, and since, in electron machines,
it contributes to the vertical equilibrium emittance. The coupling of horizontal and
vertical oscillations generates two new eigenmodes of oscillation. These eigenmodes
are no longer purely vertical or purely horizontal, but rather they correspond to oscil-
lations whose reference planes are tilted and rotate with the azimuthal positions. In
this case, new coupled beta functions can be defined2;3;4;5 .

The important coupling parameters are the two driving terms for the sum and
difference resonances, which are given by5;1;6:

j�
�
j =

���� 12�
I

ds Ks(s)
q
�x(s)�y(s) e

i(�x��y�(Qx�Qy�q�)2�s=L)

���� (4.1)
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whereKs is the normalized gradient of the skew quadrupole (in units of m�2), L
is the circumference,�x;y are the uncoupled beta functions, and we assume that the
betatron tunes are near the resonance:

Qx �Qy + q
�
= 0 (4.2)

whereq
�

is an integer. The dynamic aperture or the beam lifetime of colliding beams
can be increased by measuring and minimizing the two driving termsj�

�
j.

In an electron storage ring, the vertical emittance contribution due to weak beta-
tron coupling is7

�y =
Cq

3

16
H
G2ds

I
HxjG3j

"X
�

jW
�
(s)j2

sin2 �(�Q
�
)

+
2Re

�
W �

+
(s)W

�
(s)
	

sin�(�Q+) sin�(�Q
�
)

#
ds (4.3)

whereCq = 3:84� 10�13 m,Hx is the horizontal dispersion invariant,G = 1=� the
inverse bending radius,� is the complex conjugate,Re gives the real portion of its
argument,�Q

�
= Qx +Qy � q

�
, and

W
�
(s) =

Z s+L

s

dz K(z)
p
�x�ye

i[(�x(s)��y(s))�(�x(z)��y(z))+�(Qx�Qy)] (4.4)

are the driving terms, including all Fourier components. Note thatjW
�
(0)j � j�

�
j=(2�).

Equation (4.3) shows that, in order to minimize the vertical emittance, the driving
termsW

�
(s), for the two nearest sum and difference resonances, should be corrected.

4.1.1 First Turn Analysis

Large coupling sources can be identified as locations where a horizontal orbit change
generates a vertical kick and vice versa. In order to find such locations, the orbit is
changed in one plane, by exciting steering correctors or by changing injection con-
ditions (kicker amplitude), and the effect on the orbit in the perpendicular plane is
measured. The same type of analysis can be applied to a transport line.

Large numbers of orbits and BPM data for excitations of different correctors can
be fitted to determine the skew quadrupole component of each magnet in the beam
line.

4.1.2 Beam Response after Kick

The driving termj�
�
jmay be measured by first kicking the beam, and then observing

its response in the plane of the kick overmany turns.
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In the vicinity of the difference resonance, the envelopes of the oscillations in
the horizontal and vertical plane exhibit a beating (energy exchange between the two
planes) with a characteristic total modulation amplitude of8;5

S =
x̂2min

x̂2max

: (4.5)

Herex̂ denotes the envelope of the betatron oscillation in the plane in which the kick
was applied;̂xmin is its minimum value, and̂xmax its maximum value; these two
extreme values are assumed alternately, with a modulation (or beating) periodT . The
driving term for the difference resonance,j�

�
j of Eq. (4.1), is given by8

j�
�
j =

p
1� S

frevT
(4.6)

Thus a measurement of the modulation periodT and the squared envelope ratioS
after a kick is sufficient to inferj�

�
j.

An example from the ATF Damping Ring is shown in Fig. 4.1. The frequency
spectrum from a horizontal BPM signal is viewed over a wide frequency range on a
spectrum analyzer (top figure), and the frequency of the betatron signal is identified as
the peak of the spectrum. The span of the spectrum analyzer is then set to zero, and its
center set to the betatron frequency. This produces a signal proportional to the square
of the betatron-oscillation amplitude. The output signal of the spectrum analyzer can
be viewed on an oscilloscope, with results as displayed in Fig. 4.1 (bottom). The
slow oscillation in this picture corresponds to synchrotron motion (the BPM is at
a dispersive location), while the fast beating reflects the transverse coupling. The
picture was taken for a tune separation ofjQx � Qy + q

�
j � 0:02. If the two tunes

are separated further, the modulation period increases and the modulation amplitude
decreases. Using Eq. (4.6) withT � 17:6 �s andS � 0.3-0.7, we infer a coupling
term of j�

�
j � 0:02, consistent with other measurements9.

It is of course possible to perform a much more detailed analysis of multi-turn
BPM data. For example, one can determine the evolution of the coupled optical func-
tions (e.g., the tilt angle of the two transverse eigenplanes) around the ring. An exam-
ple may be found in Ref.10.

4.1.3 Closest Tune Approach

Near the difference resonance, the tunes of the two coupled eigenmodes in the vertical
plane are5;8

QI;II =
1

2

�
Qx +Qy + q �

q
(Qx �Qy + q)2 + j�

�
j2
�

(4.7)
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Figure 4.1: Monitoring betatron coupling at the ATF Damping Ring9. (Top) frequency spectrum of a
horizontal pick up on a spectrum analyzer; (bottom) evolution of the peak signal in the frequency spectrum
as a function of time, as viewed on an oscilloscope; the slow variation reflects synchrotron motion, the fast
beating with a period of about 17.6�s is due to the transverse coupling; the amplitude and period of the

modulation can be used to determine the driving termj�
�

j.
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Figure 4.2: Closest tune approach in the PEP-II HER before final correction11. Shown are the measured
tunes as a function of the horizontal tune `knob' (which would only changeQx if the machine were
uncoupled), in dimensionless units. The minimum tune distance is equal to the driving termj�

�

j of the
difference resonance. (Courtesy Y. Cai, 1998.)

whereQx andQy are the tunes which one would expect without coupling. A similar
formula, with the same fractional values ofQI;II , describes the coupled tunes in the
horizontal plane. Equation (4.7) shows that the measured tunes,QI andQII, are
never exactly equal, but can only approach each other up to a distancej�

�
j. Figure

4.2 illustrates this with an example from the PEP-II HER. A common technique for
correcting the betatron coupling in a storage ring is to minimize the distance of closest
approach using at least two skew quadrupole magnets. It is often the only correction
necessary, especially if the tunes are close to the difference resonanceQx�Qy+q = 0

(q integer).
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4.1.4 Compensating the Sum Resonance

In the vicinity of the difference resonance, there is a continuous energy exchange
between the two transverse planes, but the beam or particle motion remains bounded.
By contrast, close to the sum resonance, forjQx + Qy + qj < j�+j, the motion
is unstable. The total width of the stop band around the sum resonance is equal to
twice the driving termj�+j of Eq. (4.1)5. Although this may be more difficult in
practice than to determine the driving termj�

�
j for the difference resonance, from

the closest-tune approach, the driving termj�+j can be compensated by adjusting
two skew quadrupoles so as to minimize the stop band width of the sum resonance.

Equation (4.3) shows that in order to optimize the vertical emittance in a damping
ring, in general it is necessary to correct both driving terms,j�

�
j andj�+j. The min-

imum number of skew quadrupole correctors needed to correct both coupling driving
terms as well as the vertical dispersion function is six (one sine-like and one cosine-
like corrector are required for each effect).

4.1.5 Emittance near Coupling Resonance

A third approach to determine the coupling parameterj�
�
j is to measure the hori-

zontal (or vertical) emittance as a function of distance from the difference resonance
13. Equation (4.3) does not apply close to the resonance. Instead, near the difference
resonance, the horizontal emittance is described by14

�x = �x0
2(j�

�
j=�Q

�
)2 + 1

4(j�
�
j=�Q

�
)2 + 1

(4.8)

The tune difference�Q
�
= (Qx �Qy � n) function is related to the measured tune

difference�QI;II = jQII �QI j via

�Q
�
=
q
�Q2

I;II � j��j2 (4.9)

After inserting this equation for�Q
�

, Eq. (4.8) is transformed into

�x = �x0
j�
�
j2 +�Q2

I;II

3j�
�
j2 +�Q2

I;II

(4.10)

In the experiment, the horizontal emittance�x was inferred from the spot size
�x measured with the ATF interferometric monitor15, using the formula�x = (�2x �
(��)2)=�x, where the design beta function (�x = 0:33 m) and dispersion (� = 4 cm)
at the point of light emission, and the calculated energy spread of� = 7:14 � 10�4

were assumed.
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Performing a nonlinear fit to Eq. (4.10) of the emittance�x obtained for various
tune differences�QI;II , the driving termj�

�
j can be extracted13 To this end, we

employ the nonlinear regression subroutine RNLIN which is part of the IMSL pro-
gram library16. Figure 4.3 shows the measured horizontal emittance as a function of
tune separation�QI;II . The result of the nonlinear fit is also depicted. The coupling
strength ofj�

�
j � 0:037 inferred from the fit13 agrees well with the coupling strength

j�
�
j � 0:042 obtained from a measurement of the closest tune approach under the

same conditions17.

4.1.6 Coupling Transfer Function

A different method of measuring the coupling is through the `coupling transfer func-
tion' 18. Here, the beam is excited horizontally, while detecting the resulting vertical
coherent motion. Such a technique was used to continually monitor and correct the
coupling strength during collisions in the CERN ISR18.
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Figure 4.3: Horizontal emittance as a function of the tune separation�QI;II at the ATF Damping Ring;
the measured data17 as well as the result of a nonlinear fit to Eq. (4.10) are shown; the fitted coupling
strength ofj�

�

j � 0:037 is consistent with the valuej�
�

j � 0:042 inferred from a simultaneous mea-
surement of the closest tune approach12;13.
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4.2 Equilibrium Emittance

We now discuss different methods for changing and controlling the equilibrium emit-
tance in electron or positron storage rings.

Recall the expression for the quantum excitation of the transverse emittance19:

d�u
dt

= cCQE
5

�
Hu

�3

�
(4.11)

where

CQ =
55

48
p
3

re�hc

(mec2)6
� 2� 10�11 m2 GeV�5; (4.12)

u = x or y, and� the bending radius. The angular brackets denote an average over
the ring. The emittance decrease due to radiation damping is described by

d�u
dt

= �2�uCdJuE3

�
1

�2

�
(4.13)

where� is the beam emittance,

Cd =
c

3

re
(mec2)3

= 2:1� 103 m2 GeV�3 s�1; (4.14)

andJu the damping partition number.
The equilibrium emittance is reached when the quantum excitation and the damp-

ing are of equal magnitude:

�u;1 = Cq
2

Ju



H
u
=�3
�

h1=�2i
(4.15)

where

Cq =
55

32
p
3

�hc

mec2
= 3:84� 10�13 m: (4.16)

Thus�u is inversely proportional to the transverse damping partition numberJu. Sim-
ilarily, the longitudinal emittance is inversely proportional toJz.

We obtain the exponential damping time�u from 1=�u � d�u=dt=�u. Including
also the longitudinal degree of freedom, the exponential damping times for all three
oscillation modes can be written as20

�i =
2E0

< P > Ji
(4.17)
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whereE0 is the nominal energy,< P > the average rate of energy loss. The latter is
given by

< P >=
cC

2�
E4

0

�
1

�2

�
(4.18)

where

C =
4�re

3(mec2)3
� 8:877� 10�5 mGeV�3 (4.19)

as defined by Sands20.
The factorJi in Eq. (4.17) is the damping partition number for theith degree of

freedom. A general theorem by Robinson21 states that the sum of the three partition
numbers is a constant:

Jx + Jy + Jz = 4 (4.20)

If the ring only contains horizontal, but no vertical bending magnets, thenJy = 1 and
the partition numbers in the other two planes are related by a termD20:

Jx = 1�D (4.21)

Jz = 2 +D (4.22)

where

D =

H
�=�

�
1=�2 + 2K1

�
dsH

1=�2 ds
(4.23)

For separated function magnetsK1=� = 0 and the value ofD is typically much
smaller than 1.

It is often desirable to increase one of the damping rates or to vary the horizontal
emittance. For example, in linear collider applications, a fast horizontal damping and
a small horizontal emittance are advantageous, while in storage-ring colliders one
may instead want to increase the horizontal emittance near the beam-beam limit, to
avoid instabilities.

The damping rate and the equilibrium emittance can be changed by adjusting the
value ofD and/or by adding wiggler magnets. Depending on the application, there
are various possibilities to do so. We here describe the effect of a change in the ring
circumference, and two different applications of wigglers.

4.2.1 Circumference Change

If the geometric circumference of the ring is changed by moving the magnet centers
outwards by a step�xmag while holding the ring rf frequency fixed (so as to maintain
synchronization with other systems) the quantityD changes by

�D � �

 X
q

K2

q;1�qLq

!
2�2

C
�xmag (4.24)
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whereK1 is the non-integrated quadrupole gradient,Lq the quadrupole length,�q the
dispersion function at the quadrupole,C the ring circumference, and� the bending
radius of the dipole magnets. The minus sign arises because the orbit moves inwards
with respect to the quadrupole magnets (orbit shift:�x = ��xmag). Note that
the contributions from focusing and defocusing magnets add up, because the effect is
quadratic inK1;q . The maximum shift�x is determined by the available aperture,
and the beam size at injection.

In 1992, the magnet support girders of the SLC North Damping Ring were pulled
outwards by about�x = 1:5 mm, increasing the geometric ring circumference by 9
mm. As a result the measured horizontal damping time decreased from4:11 � 0:11
ms to3:41� 0:09 ms, consistent with predictions.

An equivalent change inD can be achieved with a shift of the rf frequency by

�frf
frf

=
2��x

C
(4.25)

More accurately, the orbit shift in the quadrupole is proportional to the local disper-
sion function

�x(s) = �
�

�C

�frf
frf

(4.26)

with �C the momentum compaction factor, and the change in the partition number
reads

�D �
H
2K2

1
�2dsH

ds=�2
�p

p
� C0

�p

p
(4.27)

However, in practice the rf frequency often has to be locked to the rf of the injection
(or extraction) system. Therefore, at the SLC damping rings in addition to the static
circumference change a dynamic rf frequency shift was implemented22. The dynamic
rf frequency shift by up to 100 kHz started about 1.33 ms into the store, and it was
stopped 200�s before extraction, in order to stabilize the injected beam and to min-
imize emittance and extraction jitter, respectively23. The total store time was 8.33
ms, equal to about 2.5 nominal damping times. For a dynamic frequency shift of 62.5
kHz the normalized emittance of the extracted beam decreased from3:30� 0:07 m to
2:66� 0:06 m. The 20% reduction agreed with SAD calculations22.

Ex.4.1. Static and dynamic change of partition numbers
Assume parameters typical for the SLC damping rings: 40 quadrupoles,K1 � 15 m�2,
�q � 0:15 m,Lq � 18 cm,� � 1=2 C=(2�),C = 35 m, harmonic numberh = 84, rf
frequencyfrf = 714 MHz, and momentum compaction� = 0:0147.
a) What is the change inD for an outward shift of all magnets by�x = 1:5 mm?
b) What would be the equivalent change in the rf frequency?
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From Eq. (4.27) the partition number changes with the particle momentum. If a
particle performs synchrotron oscillations

�p

p
= �max sin
st (4.28)

its partition number and damping time vary with the synchrotron period:

1

�
=

1

�0
(1� C0�max sin
st) (4.29)

The equation for the equilibrium emittance of such a particle is then19

�(t) = �
1

exp

�
2�maxC0


�0
(cos
t� 1)

�
(4.30)

The effect is largest for particles with large synchrotron oscillations.

4.2.2 Wigglers

A wiggler magnet generates additional synchrotron radiation, and thus can enhance
the radiation damping or change the equilibrium emittance. The damping time is
modified according to

�u;w = �u;0
1

1 +
<1=�2>w

<1=�2>0>

(4.31)

where the subindex0 on the right hand side indicates an average over the ring without
wiggler magnets, while the subindexw indicates the contribution from the wiggler
magnets. On the left,�u;x is the damping time in theuth plane, with the effect of the
wiggler included, and�u;0 is the damping time for the ring proper.

Similarily, the relative emittance increase due to the presence of the wiggler is

�w
�0

=
1 +



H=�3

�
w
= < H=�3 >0

1 + h1=�2iw = < 1=�2 >0

(4.32)

where the averages are given by, for example,�
1

�2

�
w

=
1

C

I
1

�2w
ds (4.33)

with C the circumference, and�w the bending radius in the wiggler.
In addition to changing the emittance, wigglers also affect the energy spread19:

�2�;w
�2�;0

=
1 +



1=�3

�
w
= < 1=�3 >0

1 + h1=�2iw = < 1=�2 >0

(4.34)
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Damping Wigglers

If we place a wiggler in a region with no dispersion,� = 0, we might expect that the
equilibrium emittance decreasesaccording to Eq. (4.32) with< Hw >= 0. However
this is not completely correct, because the wiggler itself generates dispersion. As an
example, we consider a sinusoidal wiggler, with field:

B(z) = Bw cos kpz (4.35)

wherekp = 2�=�p and�p the wiggler period length. The differential equation for
the dispersion function reads:

�00(z) =
1

�w
cos kpz (4.36)

which can be solved as

�(z) =
1

k2p�w
(1� cos kpz) (4.37)

assuming that�(0) = �0(0) = 0. Using

1

�
=

1

�w
j coskpzj; (4.38)

for each half period of the wiggler we find19

Z �p=2

0

H
j�j3

dz =
36

15

1

�

1

k5p�
5
w

+
4

15

�

k3p�
5
w

�
4

15

�

k3p�
5
w

(4.39)

where we assumed�p � �, and� is the beta function. Introducing the deflection
angle per wiggler pole�w = 1=(�wkp), and the number of wiggler periodsNw, we
can rewrite this as Z

w

H
�3

dz � Nw

8

15

�

�2w
�3w (4.40)

and, similarily, Z
w

1

�2
dz � �Nw

�w
�w

(4.41)

We finally get for the emittance ratio:

�w
�0

=
1 + 8

30�
Nw

�
<H0>

�2
0

�2
w

�3w

1 + 1

2
Nw

�0
�w
�w

(4.42)
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where< H >0 is the average value ofH in the ring magnets, excluding the wiggler
magnets. The latter can be re-expressed in terms of the emittance�x0 to yield, i.e.,
with a vertical wiggler field the horizontal emittance

�x;w
�x;0

=
1 +

8Cq
30�Jx

Nw
�x

�x0�w
2 �0

�w
�3w

1 + 1

2
Nw

�0
�w
�w

(4.43)

The emittance is reduced by wiggler magnets if

8

15�

Cq
Jx

�x
�0�w

2�2w � 1 (4.44)

For a large number of wiggler periods the emittance reaches an asymptotic value

�xw !
16

30�

Cq�x

�w
2�2w (4.45)

The horizontal damping time with wigglers can be written as

�x;w = �u;0
1

1 + 1

2
Nw

�0
�w
�w

(4.46)

and, in the limit of a very long wiggler channel, assuming intermittent re-acceleration:

�x;w �
2�2w

CdJxE3
(4.47)

Ex.4.2. Effect of wiggler on beam equilibrium emittance
Consider a ring which consists mainly of wiggler magnets, with a peak magnetic field
Bw of 40 kG, and a wiggler oscillation period of�p of 20 cm. Calculate the equilibrium
emittance and the damping time in such a ring, assuming beam energies of 1 GeV and
5 GeV. Compare this with a typical damping-ring design for a future linear collider,
where�x � 3 �m, and�x � 3 ms.

Robinson wiggler

A “Robinson wiggler” is a wiggler consisting of a series of combined function mag-
nets, arranged such as to increase the horizontal partition number. Such a magnet
was first used at the CEA to convert the synchrotron (which because ofD > 1 was
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horizontally unstable) into a stable storage ring with0 < D < 1 21. Such a wiggler
will change the partition numberaccording to24

�D �
��xLRobK1

2�(1 + F!)

�0
�Rob

(4.48)

whereLRob and�Rob are the length and the bending radius of the Robinson wiggler,
��x the average dispersion in the wiggler,�0 the bending radius of the main bends,K1

the magnitude of the wiggler quadrupole gradient (in units of m�2), and

F! �
1

2
Nw

�0

�w
�w (4.49)

Unfortunately, the Robinson wiggler not only increases the damping but it can also
blow up the equilibrium emittance, since it is preferably placed at a location with
large dispersion.

Other applications of wigglers include polarization wigglers for electron storage
rings. These decrease the polarization time at low beam energies25 or invert the spin
direction26.

4.3 Linac Emittance Control

4.3.1 Introduction

In a linac, the beam experiences emittance growth due to alignment errors of theaccel-
erator components, which arise from steering the beam through misaligned structures
and quadrupole magnets using beam-position monitors with residual offset errors27.
The resulting transverse wakefields and dispersive effects increase the beam emit-
tance. Some countermeasures that have been developed to minimize linac emittance
growth are BNS damping, trajectory oscillations, and dispersion-free steering.

4.3.2 BNS Damping

The wakefield effect can be reduced by proper adjustment of the rf phase profile along
the linac. By passing the rf wave off-crest a position-energy correlation is generated
along each linac bunch, such that the tail particles have lower energy than the particles
in the bunch head. This results in so-called BNS damping28, where the defocusing
due to the wakefields is compensated by the stronger focusing for lower-energy tail
particles.

Consider a 2-particle model, each with half the total bunch current and a distance
z apart. Let the first particle be at the design energy and assume that the bunch head
performs a pure betatron oscillation:

y1(s) = ŷ cos s=� (4.50)
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with � the average beta function, using a smooth approximation. The equation of
motion for the second particle with a momentum deviation� is then29

dy2(s)

ds2
+

1

�2(�)
y2(s) =

NreW1(z)

2L
ŷ cos s=� (4.51)

whereW1(z) denotes the value of the transverse wake function per cavity (in units
of cm�2), N is the bunch population, andL the cavity period. We have ignored
the effect of acceleration and have assumed an electron beam. There is a value of�
where, in first order, the bunch tail exactly follows the bunch head. Writing�(�) =
�(0) + ��(�) it corresponds to29:

��(�)

�(0)
=

Nbre�
2W1(z)

4L
(4.52)

a condition which is also known as `autophasing' . Now the relative change in beta
function as a function of energy can be expressed using the linac chromaticity�

��

�
= ��� (4.53)

and for a FODO cell:

� = �
2

�
tan

�

2
(4.54)

where� is the betatron phase advance per FODO cell. In case of an accelerated beam,
the autophasing condition is still given by Eq. (4.52), if we simply replace the factor
1= by ln(f =i)=f wherei andf characterize the initial and final energies in
units of the rest mass.

Ex.4.3. BNS at the SLC
For the SLAC linac� � 20 m,W1(1 mm) � 1 cm�2, L = 3:5 cm,N = 4 � 10

10 ,
� � �=2, with an injected beam energy of 1.2 GeV and a final energy of 47 GeV. How
large is the BNS energy chirp� over the bunch length of 1 mm?

In practice, BNS damping can only partially be realized, since the energy spread
at the end of the accelerator must be small to fit inside the energy acceptance of the
downstream beam delivery system.

4.3.3 Trajectory Oscillations

In addition to BNS damping, empirically distributing a set of short-range oscillations
along the accelerator proved indispensable for SLC operation27. Examples of induced
betatron oscillations in the SLAC linac are shown in Fig. 4.427.
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Figure 4.4: Two trajectory ocillations in the SLAC linac, which were used to study the effect on the
downstream emittance. (Courtesy F.J. Decker, 1999.)

Wakefields and dispersive effects in the linac generate both emittance growth and
a mismatch. Mismatch induced early in the linac has completely filamented at its end,
while perturbations near the linac end also result in residual unfilamented tails and
in a phase-space mismatch, which is conventionally characterized by the parameter
Bmag (this factor specifies the emittance growth after filamentation; for a matched
beam:Bmag = 1). Similarily, trajectory oscillations induced in the early parts of the
linac only change the beam emittance�, while those in the later sections also affect
the measured betatron mismatch. This is illustrated in Fig. 4.5, which presents the
measured normalized emittance versus the amplitude of the two trajectory bumps in
Fig. 4.4.

The SLC employs a series of more than 10 orbit feedbacks, with roughly equidis-
tant spacing along the SLAC linac. These feedbacks continually maintain constant
values of offset and slope at certain beam-position monitors, by adjusting the strengths
of a few steering correctors. The feedback set points for position and slope are set to
empirically determined target values.

A closed trajectory oscillation is generated most easily by changing a feedback
set point (for either slope or position). The induced trajectory oscillation is then
automatically taken out by the next feedback downstream, because the latter attempts
to restore the original orbit.
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Figure 4.5: Change in the normalized emittance as a function of the amplitude of a trajectory oscillation
induced early in the linac (top) and towards the end of the linac (bottom). In the first case, the betatron
mismatch is constant, and the normalized emittance decreases by 25% for an oscillation amplitude of
about 1.5 mm. On the right, the trajectory oscillation does not reduce the normalized emittance. Instead it
enhances the observed betatron mismatch, which is evident by the separation of the two curves representing

� andBmag�. (Courtesy F.J. Decker, 1999.)
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In the later years of SLC operation, typical oscillation amplitudes were of the
order of 100 or 200�m, comparable to the presumed structure misalignments.

4.3.4 Dispersion-Free Steering

A very efficient steering algorithm has been developed in order to minimize the dis-
persive emittance growth in a linac. By its effect, this method is known as 'dispersion-
free steering'30;31. The basic idea of the method is to steer the orbit such that the
particle trajectories become independent of the particle energy. In practice this can
be achieved, for example, by exciting the steering coils in order to minimize the orbit
response to a constant relative change of all quadrupole strengths.

In the routine implementation of this method at the SLC, the strength of the
quadrupole magnets was not varied, however. Instead, advantage was taken of the fact
that both electron and positron bunches traversed the same linac. As far as dispersion
is concerned, a change in the sign of the charge is equivalent to a 200% energy error.

The so-called two-beam dispersion free-steering then consisted in measuring the
orbit of both electron and positron beams, and correcting the absolute orbit offset of
one beam as well the difference to the orbit of the other beam. At the same time,
the overall excitation strength of the steering correctors was also constrained. This
steering method was implemented in the SLC control system by means of an SVD
algorithm, where weighting factors could be assigned to the different minimization
constraints.

4.4 Space Charge Compensation in Photoinjectors

Nowadays, photoinjectors, rather than thermionic injectors, are used for all applica-
tions requiring the combination of high-peak current and low emittance32. After the
electron emission from the cathode, at low energies, space charge forces are very im-
portant. Scaling arguments, supported by simulations, show that after a drift distance
s the transverse emittance growth for a drifting `slug' beam of lengthL and radiusa
with peak currentI is33;32

�xN �
eIs

16��0m0c32�2
G

�
L

a

�
(4.55)

The geometric factorG depends on the longitudinal distribution. In the long-bunch
limit, if the radial distribution is uniform,G can be calculated to be0:556 for a Gaus-
sian longitudinal distribution and0:214 for a parabolic distribution.

The radial space-charge force is a function of position within the bunch. Follow-
ing32 we introduce cylindrical coordinates� and� within the bunch,� = 1 defining
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the radial edge, and� = �1 the longitudinal ends. There is no emittance growth if
the radial force is linear in� and independent of� 32,

�(�; �; t) =
eEr(�; �; t)

m03�2c2
= �0�0(t); (4.56)

where� is the normalized force andEr the radial electric field in the laboratory
frame.

If the longitudinal bunch distribution is not constant, this condition is not fulfilled,
and there will be a growth in the transverse emittance because different slices of the
beam experience different radial space-charge forces. It is the projected emittance that
increases, while the emittance ofeach short slice remains constant. In phase space the
slices rotate against each other.

Now there exists an elegant method by use of a focusing solenoid to realign the
different slices in the same phase space direction, and thus to recover the original
emittance.

Consider again a slug beam. For simplicity, we assume that the space-charge
force does not vary in time. If initially the beam isnon-divergent and has a radiusr0,
a point in the slug will obey non-relativistic transverse motion:

r(�; �) = �r0 + �(�; �)
z2

2
(4.57)

and
r0(�; �) = �(�; �)z (4.58)

at a distancez downstream. Now put a lens at a positionz = zl with a focal length of
32

f =
z2d

2(zl + zd)
(4.59)

Then, at positionzd further downstream from the lens, the ratio of the beam diver-
gence to the radius is

r0(�; �)

r(�; �)
=

2(zl + zd)

zd(zd + 2zl)
(4.60)

which is independent of the particle's motion within the bunch. Thus the effect of the
lens was to back-rotate the slices along the bunch with respect to each other so that
they are re-aligned at a total distancezl + zd.

Ex.4.4. Solenoidal focussing
Verify Eq. (4.60).
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Figure 4.6: Space charge compensation in photoinjectors. The two arrows illustrate the particle motion at
the center and at the end of the bunch: (1) after initial drift, (2) after solenoid focusing, (3) after final drift

until slice emittances are realigned.32.

The normalized emittance can be written as32

�x;y =
1

2
�
p
< �2 >< �2 > � < �� >2

�
2r0(zl + zD)�

z2dr0
f

�
(4.61)

which confirms that the emittance can vanish with the proper choice of lens. The
compensation recipe is illustrated schematically in Fig. 4.6.

In reality thephysics is not quite so simple. In particular, the space-charge force is
not constant, resulting in a residualnonzero emittance. Nevertheless, in experiments
at Los Alamos32 the above compensation scheme was shown to reduce the normalized
rms emittance by up to an order of magnitude.

Let us assume the beam is focused to a beam-radius minimum. If the space-
charge forces are weak, all particles cross through the beam's center. This can be
called acrossover32 . On the other hand, for strong space-charge forces, the particles
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will be deflected away from the center. This may be called awaist32, but be careful
not to confuse this with the notion of beam waist used to describe a generic position
of minimum beam radius. In general, parts of the bunch will have a high density and
particles there will experience a waist, while particles in the other parts will crossover.
Indeed there exist particles at the border between these two regions, which are initially
extremely close together and later on will be a finite distance apart. This is called a
phase-spacebifurcation32.

The space-charge induced emittance growth can only be compensated for those
particles which do not cross over, and only for those the above approximations can
apply. Therefore, one of the most important design criteria for photoinjectors is to
minimize the fraction of the beam crossing over.

The technique described here may be generalized to other situations where one
wants to correct a correlated growth in the projected emittances, that is induced by a
nonlinear force.

4.5 Collimation and Beam Halo

4.5.1 Linear Collider

In general, the beam entering the beam delivery system of a linear collider is not of
the ideal shape, but it can have a significant halo extending to large amplitudes, both
transversely and longitudinally. There are many sources of beam halo:

(1) beam-gas Coulomb scattering,

(2) beam-gas bremsstrahlung,

(3) Compton scattering on thermal photons34,

(4) linac wakefields,

(5) the source or the damping ring

The halo generation due to (1) will be reduced by a higher accelerating gradient, while
the halo formation due to (2) and (3) scales with the length of the accelerator. The
contributions of (4) and (5) to the halo size depend on many parameters; in a first,
very rough approximation, if measured as a fraction of the bunch population, they
could be considered as constant, independent of energy. A Monte-Carlo simulation
study of beam loss in the NLC beam-delivery system due to the first three processes
and the positive effect of additional collimators is described in reference35 .

If halo particles hit the beam pipe or magnet apertures close to the interaction
point, or if they traverse the final quadrupole magnets at a large transverse amplitude,
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Figure 4.7: Schematic of a conventional collimationsystem, consisting of a series of spoilers and absorbers.
The size of the spoilers and absorbers is approximately 1/4 and 20 radiation lengths, respectively.

they may cause unacceptable background. This background can be due to muons,
electromagnetic showers, or synchrotron radiation.

In particular, muons, with a large mean free path length, are difficult to pre-
vent from penetrating into the physics detector. According to the SLC experience,
1 muon per pulse entering the detector corresponds to a marginally acceptable back-
ground. Muons are produced when electrons and positrons impinge on apertures. The
muon generation occurs by a variety of mechanisms, the most important one being the
Bethe-Heitler pair production36: Z ! Z�+��. On average about one muon is pro-
duced for every2500 lost electrons. Differential cross sections for muon production
were derived by Tsai37, and are used in simulations of the muon-related background
36.

At the Stanford Linear Collider (SLC), collimation upstream of the final focus
was found to be essential for smooth operation and for obtaining clean physics events.
In addition, large magnetized toroids had to be placed between the location of the col-
limators and the collision point to reduce the number of muons reaching the detector.
When a muon passes through such a toroid it scatters, loses energy, and its trajectory
is bent. A complex collimation system and muon toroids will also be indispensable
for future linear colliders38;39.

A conventional collimation system proposed for future linear colliders consists
of a series of spoilers and absorbers, which serve two different functions: they remove
particles from the beam halo to reduce the background in the detector, and they also
protect downstream beamline elements against missteered or off-energy beam pulses.
The spoilers increase the angular divergence of an incident beam so that the absorbers
can withstand the impact of an entire bunch train38. A schematic is shown in Fig. 4.7.
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Collimator shape (surface angle) and material should be chosen so as to mini-
mize the fraction of re-scattered particles46. A further design criterion are collimator
wake fields50. An important requirement determining the system length is also that
the collimators have to survive the impact of a bunch train. This requires a large
spot size, in order that the collimator surface does not fracture or that the collimator
does not melt somewhere inside its volume. For the NLC parameters, fracture and
melting conditions give rise to about the same spot-size limit (roughly105=�m2 for
a copper absorber at 500 GeV38). While the surface fracture does not depend on the
beam energy, the melting limit does, since the energy of an electromagnetic shower
deposited per unit length increases in proportion to the beam energy. Therefore, for
energies above a few hundred GeV, the beam area at the absorbers must increase lin-
early with energy. Since, in addition, the emittances decrease inversely proportional
to the energy, the beta functions must increase not linearly but quadratically. Assum-
ing that the system lengthl scales in proportion to the maximum beta function at
the absorbers, this results in a quadratic dependence of the system length on energy:
l / 2. Counting both sides of the IP, the NLC collimation system is 5 km long. At
5 TeV the length of a conventional collimation system could approach 50 km.

Presently, ideas for shorter and indestructible collimation schemes are being pur-
sued, such as laser collimation40 and nonlinear resonant collimation41.

4.5.2 Storage Rings

Also the performance of storage rings can be limited by beam halo. At electron or
positron rings the halo arises from beam-gas Coulomb scattering, beam-gas bremsstrahlung,
beam-beam resonances and at high energies also from Compton scattering on thermal
photons. In the case of proton or ion rings, halo may be caused by space-charge
forces, injection errors, diffusion driven by magnet nonlinearities or by the beam-
beam interaction. A collimation system proved invaluable at the HERA proton ring
42, and an advanced two-stage collimation system is contemplated for the LHC43.
The halo normally extends in both transverse and in the longitudinal direction, and
collimation may be needed in all three planes.

The performance of LEP1 at 45.6 GeV (Z production) was limited by unstable
transverse tails generated by the beam-beam interaction. Associated with these tails
were a drop in the beam lifetime and background spikes (involving electromagnetic
showers and hard synchrotron radiation from low-� quadrupoles), which frequently
tripped the experiments. The partial cure consisted in changing tune and chromaticity,
increasing the emittance (via a shift in the rf frequency), and opening the collimators.
A lesson learnt was that scraping into the beam halo close to the experiments had to
be avoided.

For the higher energies and shorter damping times at LEP2 (80–100 GeV), back-

24



collimator position/ Öb (10
-3

 Öm)

in
ve

rs
e

 li
fe

tim
e

 (
1

/h
)

10
-5

10
-4

10
-3

10
-2

10
-1

1

0 0.5 1 1.5 2 2.5 3 3.5

0 2 4 6 8 10 12 14 16   in s

gaussian with 38 nm emittance

collimators far out

off-momentum.R4
(with dispersion) to 8s

COLH.QS1B.R4 to 8.6 s
   ( no dispersion)

collimator position/ Öb (10
-3

 Öm)

in
ve

rs
e

 li
fe

tim
e

 (
1

/h
)

10
-5

10
-4

10
-3

10
-2

10
-1

1

0 0.5 1 1.5 2 2.5 3 3.5

0 2 4 6 8 10 12 14 16   in s

Figure 4.8: Beam tails in LEP2 at 80.5 GeV: (left) measurement using movable scrapers at dispersive and
nondispersive locations, and (right) result of Monte-Carlo simulation44;45. (Courtesy H. Burkhardt, 1999.)

ground spikes are no longer observed. Stationary tails due to beam-gas scattering and
thermal-photon scattering were however still present. Figure 4.8 compares a measure-
ment of the beam tails in LEP using movable scrapers and the result of a Monte-Carlo
simulation.

An important scattering process for electron beams is beam-gas bremsstrahlung.
The differential cross section for this process is

d�

dk
=

A

NAX0

1

k

�
4

3
�

4

3
k + k2

�
(4.62)

wherek denotes the ratio of the energy of the emittedphoton and the beam energy:
k = E=Eb, X0 is the radiation length (X0 / A=(Z(Z + 1)) or roughly� / Z2).
For carbon monoxide molecules:A=(NAX0) = 1:22 barn, and the total cross section
for en energy loss larger than 1% evaluates to 6.5 barn (2.9% barn for an energy loss
larger than 10%)46. For a gas pressure of 1 nTorr at a temperature of 300 K, the
scattering probability is2� 10�14 m�1.

The effect of elastic Coulomb collisions can also be significant. Here, the incident
particles can scatter off the nucleus or the atomic electrons. In the former case, the
energy change of the incident particle is relatively small and the primary effect is
an angular deflection that may cause the particle to exceed the beam-pipe aperture.
In comparison, the energy change can be significant when scattering off the atomic
electrons.
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The differential cross-section for Coulomb scattering on atomic nuclei can be
written:

d�en

d

=

4F 2(q)Z2r2e
2

1

(�2 + �2min)
2

(4.63)

where�min is a function of the screening due to the atomic electrons, equal to�min �
�h=pa wherep is the incident particle momentum anda is the atomic radius:a �
1:4��e=�Z

1=3. In addition,F (q) is the nuclear form factor which for relatively small
scattering angles can be approximated by 1 and we have neglected the recoil of the
nucleus; both of these later effects will reduce the large angle scattering and will cause
a slight overestimate of the scattering effect.

A further type of Coulomb collision is the elastic scattering with the atomic elec-
trons. Here, the angular deflection can be roughly accounted for by replacingZ2 with
Z(Z +1) in Eq. (4.63); again this will over-estimate the scattering but is a small cor-
rection anyway. However, in this case the recoil of the electron cannot be neglected
and can result in a significant energy change to the incident particle. The differential
cross-section for a relative energy change of� is47:

d�ee
d�

=
2�Zr2e


1

�2
(4.64)

and the cross section for scattering beyond a limiting energy aperture�min is:

��min =
2�Zr2e


1

�min

: (4.65)

At ultra-high energies (several 10s of GeV) also the Compton scattering on ther-
mal photons becomes significant34;48. The photon density from Planck black-body
radiation is

� =
2:4(kBT )

3

�2(c�h)3
� 20:2

�
T

K

�3
1

cm3
(4.66)

or, at room temperature,

�(T = 300K) � 5� 1014 m�3: (4.67)

The scattering cross section is of the order of the Thomson cross section,�T � 0:67
barn. If all scattered particles are lost, the beam lifetime would be

�beam �
1

�c�T
(4.68)
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Figure 4.9: Layout of the straight section around IP4 or IP8 in the horizontal and vertical planes. Shown
are the quadrupoles (QS), electrostatic separators (ES), and collimators/masks (COLH, COLV, COLZ).
The solid lines mark the inner vacuum chamber radii for the LEP1 layout49;46. (Courtesy H. Burkhardt,

1999.)

Ex.4.5. Particle loss due to thermal photons
a) Estimate the beam lifetime due to scattering on thermalphotons in LEP atT = 300

K, and for a storage ring with a vacuum chamber cooled to 4 K.
b) Consider an NLC-like beam with1012 electrons per bunch train. How many particles
per train are scattered on thermal photons (T=300K) over a linac length of 10 km?

The synchrotron radiation of electron (or positron) beams has to be kept away
from the experiment. Both LEP and SLC achieved this by weakening the last bending
magnets closest to the interaction point by a factor�10, which reduces the critical
energy of the emittedphotons as well as the number of photons emitted per unit
length, and by installing radiation masks, which absorb the synchrotron radiation of
the weak bend as well as that from the upstream strong bending magnets. The layout
of bends and synchrotron masks for LEP is illustrated in Fig. 4.9.

Radiation collimators and masks around each LEP experiment provide a com-
plete shield against direct photons and also against singly scattered synchrotron radi-
ation, as illustrated in Fig. 4.10. For this reason, at LEP residual background arose
mainly from multiply scattered radiation. Specular reflection of soft X rays is close to
100% at angles of incidence smaller than a so-called critical angle�c, with the angle
measured between the photon direction and the plane of impact. The critical angle is
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roughly

�c � 30 mrad
keV

E

: (4.69)

For a photon energy of 30 keV it is equal to about 1 mrad. Photons of this energy
would still have a 95% chance of penetrating through a 1-mm Be layer. Multiple
photon reflection can be reduced by coating or roughening of the vacuum chamber
surface.
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Chapter 5

Longitudinal Optics
Measurement and Correction

5.1 Synchronous Phase and Synchrotron Frequency

In a storage ring, a measure of the synchrotron frequency is useful to parameterize
the relationship between energy lost and gained by a circulating beam. Relative to
the synchronous particle (the hypothetical on-energy and nominal-phase particle), the
equations of motion for small perturbations can be expressed in terms of the devi-
ation of a particle within the bunch from the synchronous phase� and the relative
momentum deviation

� =
p�p0

p0
; (5.1)

wherep0 is the momentum of the synchronous particle. The equations of motion are

d�

dt
=

�
�C �

1

2

�
!rf �; (5.2)

where!rf is the angular accelerator frequency,alphaC the momentum compaction
factor, the particle energy in units of the rest mass, and

d�

dt
=

eV 0�2

!rfETrev
; (5.3)

where the derivatives are with respect to time,� = v=c the velocity in units of the
speed of light. The momentum compaction factor�C is a property of the magnetic
focussing lattice of theaccelerator (typically in the range of10�4, for high brightness
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accelerators and future storage rings, to10�2 for existing storage rings). The quantity
V 0 represents the restoring force supplied by the cavity to supress phase oscillations.
Specifically, for a low current particle beam, it is the slope of the accelerating voltage
evaluated at the particle position: withVc(t) = Vc cos(!rf t),

V 0 = �!rfVc sin�b(t); (5.4)

where�b(t) denotes the phase of the beam with respect to the cavity voltage which is
equal to the synchronous phase in the steady-state; i.e. averaging,< �b(t) >= �s.

The physical interpretation of the synchronous phase�s is shown in Fig. 5.1.
In order to store the beam without losses, each particle of chargeq must gain an
amount of energyqVc equal to the amount of energy lost. Sketched in the figure is the
energy gain curve as a function of time. The cavity voltageVc is drawn cosine-like:
~Vc = Re[Vce

�c ] = Vc cos�c, and the synchronous phase is measured with respect to
the crest. The total loss is

P
U = U0 + Uhom + Upar , whereU0 is the energy loss

per turn per particle due to synchrotron radiation,Uhom is the loss due to higher order
modes in the cavities, andUpara represents all other losses arising, for example, from
the interaction of the beam with components of the vacuum system. From Fig. 5.1,

Vc cos�s =
X

U (5.5)

or

�s = cos�1
�PU

Vc

�
: (5.6)

With this definition of�s (often the synchronous phase is defined with respect to the
zero crossing),�s = �

2
corresponds to zero energy loss.

The overvoltage factorq = eVcP
U

is useful for parametrizing the energy accep-

tance of the accelerator. From reference1 , the low current energy aperture is given in
the limit of a sinusoidal accelerating voltage by

�

E0

=

r
U0

��ChE0

F (q); (5.7)

whereh =
frf
frev

is the harmonic number and the aperture functionF (q) is

F (q) = 2[
p
q2 � 1� cos�1(

1

q
)]: (5.8)
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Figure 5.1: Energy gain as a function of time for a particle of chargee traversing a cavity of voltage
amplitudeVc. The gain must equal to the total loss per turn,

P
U = U0 + Uhom + Upara . The phase

of the on-energy particle is the synchronous phase�s .
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Ex.5.1. Review of Fourier transformations and application
a) Calculate the Fourier spectrum for two equal charge, macroscopic (i.e. the particle
distribution can be represented as a�-function), unequally spaced, interacting bunches
assuming that the bunches have equal synchrotron oscillation amplitudes. That is, in
the time domain, take the current distribution to be

i(t) = Q

1X
n=�1

�
�(t�nT��a cos(!snT ))+�(t�nT�

T

2
��t��a cos(!snT+�)

�
;

(5.9)
whereQ is the individual bunch charge,T is the revolution period,�a is the synchrotron
oscillation amplitude,!s is the angular synchrotron frequency,�t is the relative timing
offset between the bunches, and� is the relative phase between the two bunches. (Some
useful properties of Fourier transformations are given below.)
b) Considering dipole mode oscillations only, sketch the frequency spectrum assuming
�t = 0 for ”0-mode” oscillations (bunches oscillate inphase, that is� = 0) and for
” �-mode” oscillations (for which the bunches oscillate out ofphase; i.e.� = �). Show
that these two normal modes of oscillation can be distinguished from one another by
measuring the frequency spectrum.
c) Optional. Suppose you wanted to build a passive cavity to damp the�-mode oscilla-
tions. (At high beam currents the 0-mode oscillations are Robinson damped.) Consid-
ering cavity resonant frequencies in the range offrf < f0 < frf +2frev , what would
be a suitable choice of resonant frequency for the passive cavity assuming (i)�t = 0

or (ii) �t = 2�
c

, where� is the rf wavelength?

Application of Poisson sum rule

1

2�

1X
n=�1

e�2�jn(
!
!r

) = !r
X

�(! � n!r) (5.10)

Delta-function property Z
1

�1

f(t)�(t� x)dx = f(x) (5.11)

Bessel function sum rule

ejz cos� =

1X
k=�1

jkJk(z)e
jk� (5.12)
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The dc beam currentIdc is the amplitude of the zeroth rotation harmonic in the
Fourier spectrum of the beam and represents an average beam current. It can be
expressed in terms of the number of particles per bunchNppb, the number of bunches
per trainNbpt, the number of trainsNt, the particle chargee = 1:6 � 10�19 C, the
accelerating frequencyfrf , and the harmonic numberh:

Idc = NtNbptNppbe
frf

h
: (5.13)

Given the accelerator circumferenceC andfrf , the harmonic number is known.
Eqns. 5.2 and 5.3 can be combined to give two second order, uncoupled equa-

tions:
d2�

dt2
+ !s

2� = 0 (5.14)

and
d2�

dt2
+ !s

2� = 0: (5.15)

Here!s =
q

�CeV 0

ET
is the angular synchrotron frequency.

The harmonic solutions to Eqs. 5.14 and 5.15 are represented by the small am-
plitude contours in the phase space (� � � plane) plot given in Fig. 5.2. The constant
energy trajectories are ellipses centered about the synchronous phase and energy. It
is convenient to define the synchrotron tune�s by normalizing the measurable syn-
chrotron frequencyfs to the beam revolution frequencyfrev:

�s =
fs

frev
=

r
�ChVc sin�s

2�E
(5.16)

For the small amplitude oscillations shown in Fig. 5.2, a particle or bunch returns to
the same place in this phase space in1

�s
turns.

Since the arrival time of the particle at the BPM is modulated by the synchrotron
frequency, synchrotron sidebands will appear off any harmonic of the revolution fre-
quency. An example is shown in Fig. 5.3.

In a manner quite similar to the measurement of the betatron tunes, turn-by-turn
BPM measurements may be recorded and Fourier analyzed to detect the arrival time
modulation of the beam due to synchrotron oscillations provided the selected BPM is
in a region of nonzero dispersion. A typical example was shown shown in Fig. 2.3.

5.2 Dispersion and Dispersion Matching

5.2.1 RF Frequency Shift

In most storage rings the dispersion function is inferred from the orbit change induced
by a shift in the rf frequency. A frequency shift�frf changes the beam energy by an
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Figure 5.2: Longitudinal phase space for a low current bunch showing three separate rf buckets. The
relative energy (in percent) is plotted as a function of phase (in degrees). The oscillator equations, Eqs.

5.14 and 5.15, describe the linear response for which the phase space trajectories are ellipses.

amount

� = �
1

�C � �2
�frf

frf
� �

1

�C

�frf

frf
: (5.17)

The last approximation, which ignores the change in particle velocity, is applicable
for all electron rings. Combining Eqs. (5.18),

�x(s) = �(s)� (5.18)

and (5.17), we can relate the dispersion to the measured orbit change:

�(s) =
�
�2 � �C

� �x(s)

�frf=frf
(5.19)

This `static' dispersion measurement is quite simple. It requires the capability of
stably unlocking the ring rf frequency (e.g., from the injector rf) and a minimum
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Figure 5.3: Measurement of multiple synchrotron sidebands at injection in the SLAC electron damping
ring. The synchrotron frequency is given by the difference in frequency between the fundamental and one

of the synchrotron sidebands.

energy aperture; by energy aperture we here mean the range over whichfrf can be
changed without beam loss. The residual vertical dispersion is obtained from the
vertical orbit shift, in quite the same way.

As an illustration, Fig. 5.4 shows a static dispersion measurement at the PEP-II
HER.

5.2.2 RF Modulation

In very large rings, operating at high energy, the above method may not be applicable,
because of a finite energy aperture and the lack of orbit reproducibility. At LEP, a
dynamic measurement is applied2: the phase of the rf voltage is harmonically modu-
lated at a frequency close to the synchrotron frequency and the frequency component
of the induced (resonant) orbit variation at the synchrotron frequency is used to infer
the dispersion function at each BPM.

The result of such a dynamic dispersion measurement is displayed in Fig. 5.5. If
the dispersion at the cavities isnonzero, the dynamic measurement will give a result
different from the static measurement3. The difference has the azimuthal pattern of

7



Figure 5.4: Static dispersion measurement on the PEP-II HER: the orbit change induced by a 2-kHz shift in
rf frequency. The nominal rf frequency is 476 MHz; the harmonic numberh = 3492; and the momentum

compaction factor�C � 0:0024. (Courtesy U. Wienands, J. Seemanet al, 1998.)

Figure 5.5: Dynamic dispersion measurement at LEP2: the rf voltage is modulated at the synchrotron
frequency, and the dispersion deduced by a harmonic analysis of the beam response at each BPM. (Courtesy

C. Bovet, 1998.)
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a betatron oscillation, and it is clearly visible in the figure. At every locations, this
component oscillates at the synchrotron frequency, but, in principle, a precise phase
measurement from BPM to BPM could be used to correct for this effect.

In the arcs, the maximum value of this spurious dispersion is given by3:

j��jmax =
p
�H0

���� sin(2�Qs) sin(�Q)

cos(2�Qs)� cos(2�Q)

���� ; (5.20)

whereQ andQs are the betatron and synchrotron tune, respectively,H0 is the disper-
sion invariant1 in the straight section, and� the arc beta function.

5.2.3 RF Amplitude or Phase Jump

Similar dynamic schemes have been tested at the SLC and at the ATF damping rings.
In both these rings, a longitudinal oscillation is induced by a shock excitation: either
a sudden step-change to the rf voltage (at the SLC4) or a fast phase jump (at the ATF
5). These methods can also give spurious results if there is residual dispersion at the
rf cavities.

On the other hand, the dynamic schemes may be used to correct the synchrobe-
tatron coupling by minimizing the spurious dispersion.

5.2.4 Higher-Order Dispersion in a Transport Line or Linac

The dispersion (or, more precisely, theR16 matrix element) in a transport line can be
inferred from the measured variation of the beam orbit as a function of the incoming
beam energy. We can extend the concept of dispersion by including higher-order
nonlinear terms, of the form:

�x(s) = R16(s)� + T166(s)�
2 + U1666(s)�

3 (5.21)

�x0(s) = R26(s)� + T266(s)�
2 + U2666(s)�

3 (5.22)

Sufficiently large energy changes allow a measurement not only of the first-order dis-
persion matrix element,R16, but also of the 2nd and 3rd order contributions,T166(s)

andU1666(s).
Such measurements have been performed at the North ring-to-linac transfer line

(NRTL) of the SLC. Under normal operation, the phase of the rf compressor at the
entrance to the RTL is set so that the beam center passes at the zero crossing of the rf
wave. For a dispersion measurement, the phase is shifted such that the beam center
is positioned at the top of the rf crest, and the beam energy is varied by changing the
amplitude of the rf voltage.

Figure 5.6 (top) shows the beam position on one of the RTL BPMs as a function
of the beam energy. Clearly visible is a nonlinear dependence, which indicates the
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presence of 3rd order dispersion. The value of the 3rd order dispersion at this BPM
can be obtained by fitting a 3rd order polynomial to the measurement. Plotted in the
bottom figure is the 3rd order dispersion function so obtained as a function of position
along the RTL and the early part of the SLAC linac.

The large 3rd order dispersion led to undesired and irrecoverable emittance growth.
To correct this, in 1991 two octupole magnets were installed which cancel theU1666

andU2666 terms. The optimum octupole strength was found by minimizing the linac
emittance as a function of the octupole excitation. Such a measurement is shown in
Fig. 5.7. The octupole setting for minimum emittance and the correspondingU1666

value are in good agreement with the 3rd order dispersion inferred from the BPM
readings, which was depicted in Fig. 5.6 (bottom).

Ex.5.2. Adjusting the incoming beam energy
An off-energy beam will have orbit contributionsx� = �� not unlike that shown in
Fig. 5.4. For a proton beam, the dispersive offset will persist, whereas for electrons,
the beam will naturally radiation damp to the on-energy equilibrium orbit. In either
case, describe a procedure using difference orbits at fixed rf frequency for correcting
the energy of the incoming beam. Hint: consider a beam injected perfectly into the
center of an rf bucket and determine, at which turn one is maximally sensitive to beam
energy deviations.

5.3 Momentum Compaction Factor

It is sometimes of interest to measure the momentum compaction factor�C , Eq.
(5.23),

�C =
�L=L

�
=

1

L

I
�(s)

�(s)
ds:; (5.23)

for example, in storage rings operating near�C = 0.

5.3.1 Synchrotron Tune

If the rf voltage is well calibrated, one can use Eq. (5.24),

Qs =
fs

frev
=

s
(�2 � �C)heV̂ cos s

2�cp0
; (5.24)

where�C is the momentum compaction factor, andV̂ the amplitude of the rf voltage,
to infer the momentum compaction factor from the measured synchrotron tune, taking
into account that the synchronous phase angle s is also a function of the rf voltage.
However, often the rf voltage calibration is not very accurate. In addition, if the ring
accommodates several rf cavities, these may be not optimally phased with respect to
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Figure 5.6: Evidence of 3rd order dispersion in the SLC ring-to-linac transfer line (RTL)6: (Top) BPM
reading vs. beam energy; (bottom) 3rd order dispersion inferred for all BPMs in the RTL and in the early
linac; the 3rd order dispersion in the linac is fitted to calculate the magnitude of theU1666 andU2666

matrix elements. (Courtesy P. Emma, 1998.)
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Figure 5.7: RTL emittance minimization with an octupole correcting the 3rd order dispersion. Shown on
the horizontal axis is the octupole strength in units of the generated 3rd order dispersion (U1666). The
vertical axis represents the product of Bmag and normalized emittance in units of10�5 m. The octupole
strength for which the emittance is minimum agrees with the magnitude ofU1666 estimated from the fit in

Fig. 5.6 (bottom). (Courtesy P. Emma, 1998.)
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each other, complicating the calculation of the total rf voltage. It is then advantageous
to confirm the momentum compaction without having to assume a value for the rf
voltage.

5.3.2 Bunch Length

The rms bunch length in an electron ring is proportional to�C and to the rms energy
spread1 , namely

�z =
c�C

2�Qsfrev
��; (5.25)

wherec is the speed of light, andfrev the revolution frequency. The rms energy spread
can either be deduced from the measured decoherence of a transverse oscillation due
to nonzero chromaticity and its subsequent recoherence after one synchrotron period
7, or it can be calculated from1

�2� =
Cq < G3 > 2

J� < G2 >
(5.26)

whereCq = 3:84� 10�13 m,G = 1=� the inverse bending radius,< : : : > indicates
an average over the ring, is the beam energy in units of the particle rest mass, and
J� the longitudinal damping partition number. The theoretical value for the latter
could be verified by measuring either the horizontal emittance (which determines the
horizontal partition numberJx = 3� J�) or the longitudinal damping time.

Plotting the bunch length as a function of the inverse synchrotron tune imme-
diately gives the value of�C as the slope8. Note that the synchrotron frequency
fs = !s=(2�) can be measured very precisely. Figure 5.8 shows a measurement of
bunch length vs. synchrotron tune in PEP-II.

5.3.3 Lifetime

A different approach, also applicable for electron rings, is to measure the quantum
lifetime8, which in an electron storage ring is given by1

�q =
��

2

e�

�
; (5.27)

where�� is the longitudinal damping time, and� is given by the ratio of the energy
aperture�max and the relative rms energy spread��:

� =
�2max

2�2�
(5.28)
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Figure 5.8: Rms bunch length in the PEP-II HER as a function of the inverse synchrotron tune9. The fitted
slope determines the momentum compaction factor�C , if the rms energy spread is known. (Courtesy U.

Wienands, A. Fisher, J. Seemanet al, 1998.)

The energy aperture, if limited by the rf bucket size, is1

�2max �
eU0

��ChE0

F (q) (5.29)

with

F (q) = 2
�p

q2 � 1� cos�1(1=q)
�
: (5.30)

and

q =
eV̂

U0

(5.31)

The termU0 = CE
4
0L < G2 > =(2�), is the energy loss per turn, andC =

8:85� 10�5 m GeV�3. A formula for the rms relative energy spread�� was given in
Eq. (5.26).

We may express�� in terms of�z using Eq. (5.25), and in addition replace the
rf voltageV̂ in the definition ofq byQs and�C , making use of Eq. (5.24). We then
arrive at an equation for the quantum lifetime�q in terms of the measurable quantities
Qs and�z, and the unknown parameter�C . The latter can then be obtained from a fit
to data taken at different rf voltages8.
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5.3.4 Path Length vs. Energy

The momentum compaction factor, orR56 matrix element, can also be measured
directly by changing the beam energy at the entrance to the beam line of interest, and
observing the shift in arrival time at the end of that section.

Such measurements were performed to fine-tune the optics in the nominally
achromatic arc of the KEKB linac. The time of arrival at the exit of the arc was
measured by a streak camera. The streak camera converts the time structure of a
pulse of synchrotron radiation from a bend, or of optical transition radiation from a
target, into vertical deflection at the CCD camera.

For the KEKB linac commissioning, the streak camera trigger signal was locked
to the linac rf frequency upstream of the arc. The beam energy was varied by adjusting
the voltage of the last klystrons prior to the arc. Figure 5.9 shows two measurements
of theR56, performed before and after the strengths of a few quadrupoles were ad-
justed to match the dispersion, as inferred from the energy dependence of the orbit.
Figure 5.9 demonstrates that the dispersion match also eliminated the linear compo-
nent of theR56. The remaining path length dependence on energy is purely quadratic.
In the future, it is planned to reduce this quadratic component, as well as the second
order dispersion, by adjusting sextupole magnets.

5.3.5 Beam Energy via Resonant Depolarization

In electron storage rings with polarization the beam energy can be determined with a
very high precision, using a resonant depolarization technique. The spin tune is given
by

�0 = ae =
E [MeV]

440:6486(1) [MeV]
(5.32)

whereae is the electron anomalous magnetic moment. If a radially oscillating field
generated by a coil is in resonance with the fractional part of the spin tune, the effect
of the field adds up over many turns and the spin vector can be brought into the
horizontal plane. The exact value of the resonance frequency determines the beam
energy via Eq. (5.32).

With this technique, it is possible to very precisely measure the energy variation
induced by a change in the rf frequency. The slope of this measurement gives the
momentum compaction factor:

�p

p
=

1

�2 � �C

�frf

frf
� �

1

�

�frf

frf
(5.33)

An application of this technique at LEP is shown in Fig. 5.10
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Figure 5.9:R56 measurement for the asynchronous arc of the KEKB linac, before and after dispersion
correction, A streak camera was used to measure the arrival time (vertical axis) as a function of the beam

energy. (Courtesy H. Koiso and K. Oide, 1998.)

16



Figure 5.10: Change of beam energy,E, as a function of the rf frequency,frf , in LEP10. Only the last four
digits of the rf frequency are shown (the nominal value isfrf = 352 254 170 Hz). Several strong spin
resonances are indicated by the dotted lines. From this measurement the momentum compaction factor was
determined to be(1:86�0:02)�10�4 , which compared well with the calculated value of1:859�10�4 .

(Courtesy R. Assmann, 1998).
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Ex.5.3. Resonant depolarization application
Resonant depolarization at the IUCF cooler ring was initially observed at a driving fre-
quency slightly different from expectation assuming the beam energy. Using well-known
kinematic reactions with an internal target, the beam energy was precisely determined.
Show that the apparent discrepancy can be explained by a small adjustment to the as-
sumed orbit circumference.

5.3.6 Change in Field Strength for Unbunched Proton Beam

The energy of an unbunched proton beam is constant. If the strength of all magnets
(dipoles and quadrupoles) is increased by a factor�B=B, the orbit moves inwards
and the revolution time is reduced. This change in revolution period can be detected
with a Schottky monitor11. The momentum compaction factor� then simply follows
from the relation

�T

T
= ��

�B

B
(5.34)

whereT denotes the revolution period.
Ex.5.4. Approximate expression for�
Using the approximate formula for the average dispersion function

h�i �
h�i

�
; (5.35)

and Eq. 1.15,
a) show that a good approximation for the momentum compaction factor is given by
� � 1=�2. Give a numerical example.
b) Find an analogous expression for the transition energyt using these approxima-
tions.

5.4 Chromaticity

5.4.1 RF Frequency Shift

The dependence of the focusing force on beam energy is generically referred to as
chromaticity. In a storage ring this is characterized by the energy dependence of the
betatron tunes, which is denoted as�.

The natural chromaticity due to the energy dependence of the quadrupole focus-
ing is usually compensated by means of two or more sextupole families. Usually a
total chromaticity close to zero is desired, as this minimizes the tune spread induced
by chromaticity and finite energy spread, and also the amount of synchrobetatron cou-
pling. The chromaticity should be slightly positive to avoid the head-tail instability.
Since a positive chromaticity gives head-tail damping, sometimes� is intentionally
increased in order to counteract beam instabilities.
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The total chromaticity can easily be determined by measuring the tune shift as a
function of the rf frequencyfrf .:

�x;y =
�Qx;y

�p=p
=
�
�2 � �

� �Qx;y

�frf=frf
(5.36)

where� is the momentum compaction factor. As an example, Fig. 5.11 shows a
chromaticity measurement performed at LEP.

5.4.2 Head-Tail Phase Shift

Recently, a new technique to measure the chromaticity was successfully tested at the
CERN SPS13. A bunch was kicked transversely, and the linear head-tail phase shift
��� as a function of arrival time�t was measured half a synchrotron period later.
The chromaticity is then obtained from the relation

� = �
!s
�
�� �2

�
2!0

���

�t
(5.37)

The advantage of this method is that it is very fast.

5.4.3 Natural Chromaticity

The natural chromaticity is the chromaticity that derives from the energy dependence
of the quadrupole focusing. In other words it is the chromaticity the ring would have
without sextupole magnets. Fortunately it is not necessary to turn off the sextupoles
to measure the natural chromaticity. Rather the latter can be obtained by detecting the
variation of the betatron tune as a function of the main dipole field strength. In this
case, since the rf frequency and, hence, the total path length are unchanged, the orbit
in the sextupoles remains approximately the same, and the sextupoles thus do not con-
tribute to any tune change. (This is a good assumption for FODO lattices. However, it
is conceivable that for certain low-emittance lattices, the orbit in the sextupoles might
change when the dipole field strength is varied. This effect can be estimated with
computer codes. One can also monitor the orbit stability at the sextupoles when the
dipole field is varied.) However, the absolute beam energyE is changed in proportion
to the field change:�E=E = �B=B. Thus, the natural chromaticity�natx;y is given
by

�natx;y �
�Qx;y

�B=B
(5.38)

A typical measurement is depicted in Fig. 5.12.
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Figure 5.11: Horizontal tune as a function of the rf frequency change in LEP. Plotting symbols with error
bars are the data. The dashed line is the linear chromaticity as calculated from tune measurements at

�frf = �50 kHz. (Courtesy H. Burkhardt, 1998.)
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Figure 5.12: Measurement of the natural chromaticity in the PEP-II HER. Shown is the horizontal tune as
a function of a relative variation in the main dipole field. The slope is the natural chromaticity. (Courtesy

U. Wienands, J. Seemanet al, 1998.)
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Figure 5.13: Variation of chromaticity in time, due to persistent-currentdecay without (left) and with (right)
chromaticity control based on continuous measurements of the sextupole fields in two dipole reference
magnets at the HERA proton ring. The horizontal axis is the time in units of 3 minutes per division. The
vertical axis refers to the horizontal (upper trace) and vertical chromaticity (lower trace) in dimensionless

units. (Courtesy B. Holzer, 1998.)

5.4.4 Local Chromaticity:d�=d�

Measuring the beta functions (e.g., with the tune shift method of Eq. (5.39)),

�x;y � �4�
�Qx;y

�k
; (5.39)

for different values of the rf frequency yields informations on the local chromaticity.
This can help to identify the origin of chromatic errors or to find sources of chromatic
nonlinearities.

5.4.5 Chromaticity Control in Superconducting Proton Rings

In superconducting proton rings the natural chromaticity is small compared with the
chromaticity arising from the persistent-current sextupole components in the dipole
magnets. For example, in the HERA proton ring the sextupole component in the
dipoles contributes a chromaticity that is 5 times larger than the natural chromaticity.
At injection energy, a significant part of the persistent current decays in time, causing
a large variation in chromaticity. This is illustrated in Fig. 5.13, which also demon-
strates the effect of an automatic correction system. The correction is done locally, by
exciting sextupole correction coils mounted inside all bending magnets. The excita-
tion for these correction magnets is determined from the instantaneous sextupole field
measured by rotating coils in two reference magnets, which are connected in series
with the main superconducting magnet circuit.

The persistent-current sextupole field in the dipole magnets decays during injec-
tion at 40 GeV. It is reinduced at the start of acceleration, resulting in large variations
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Figure 5.14: Variation of the chromaticity in the HERA proton ring during acceleration from 40 GeV
to 70 GeV15: (a) measured chromaticity without correction; (b) change in chromaticity derived from the
reference-magnetmeasurements; (c) measured chromaticity with correction. (Courtesy O. Meincke, 1998.)

of the chromaticity. Figure 5.14 shows the change in chromaticity during acceleration
from 40 GeV to 70 GeV. The figure compares the actual chromaticity,i.e., the change
in tune detected per relative rf frequency change, Eq. (5.36)15, measured without
continuous correction; the chromaticity predicted by the reference magnets; and the
chromaticity measured with a correction derived from the reference magnets.

Another noteworthy feature of the persistent-current sextupole field is that it is
not very reproducible from cycle to cycle. An example of the nonreproducibility is
depicted in Fig. 5.15. After each magnet cycle, when the ring is back at injection
energy, the chromaticity is first corrected by means of a direct measurement (tune
shift versus rf frequency). Subsequently, the chormaticity is held constant using the
automatic control based on the reference magnets.

5.4.6 Application: Measuring the Central Frequency

Measuring the chromaticity for different sextupole strengths determines the `central
frequency' . This is the rf frequency for which the orbit on average passes through the
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Figure 5.15: (Ir)reproducibility of the chromaticity for different machine cycles of the HERA proton ring.
(Courtesy B. Holzer, 1998.)

center of all sextupoles16;17. An example of such a measurement is shown in Fig.
5.16. Usually adjacent sextupoles and quadrupoles are well aligned with respect to
each other, so that one can expect that at the central frequency the beam also passes
(on average) through the center of the quadrupoles.

On close view, four different center frequencies can be measured by changing the
strength of the horizontal or vertical sextupole families and by measuring the resulting
change in the horizontal or vertical tune, respectively. In most cases, the four central
frequencies so obtained are found to be the same, supporting the hypothesis that the
magnets are usually well aligned on short length scales.

This method allows one to monitor changes of the beam energy, using the relation

�p

p
=

�
1

�2 � �

�
�frf

frf
(5.40)

and the fact that the quadrupoles and sextupoles are well aligned with respect to each
other. This energy-monitoring technique was applied at BEPC18 and LEP19.
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Figure 5.16: LEP chromaticity measurements for different sextupole excitation patterns, with net chro-
maciticities in the range� = �10 to +40. The intersection of the different lines determines the central

frequency, where the orbit is on average centered in the sextupoles. (Courtesy H. Burkhardt, 1998.)
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Ex.5.5. Achieving design parameters in the presence of unknowns
Suppose upon initial commissioning of an accelerator, the beam energyE, the ring
circumferenceC, and main dipole fieldB are known to only about�1 � 2%. De-
scribe a strategy for setup that ensures the desired beam energy, dipole field strengths
matched to this energy, and dictates the required rf frequency to center the beam in the
quadrupoles.
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Ex.5.6. Chromatic Phase Advance
Maintaining the second order driving terms in Hill's equations for the particle motion,
we have

x00 + kx = kx� �
b2

2
(x2 � z2)

z
00 � kz = �kz� + b2xz; (5.41)

whereb2 is the sextupole coefficient from the multipole field expansion of Ex. 2.3.
a) Assuming horizontal dispersion (�) only show that

x�
00 + kx� = (k � b2�)x��

z�
00 � kz� = �(k � b2�)z��; (5.42)

where the higher-order, so-called geometric aberrations, have been set to zero.
b) Noting that the perturbation in betatron tune may be expressed as

�� = �
�0

4�

Z
e(s)ds; (5.43)

wheree(s) represents the focussing error (for example, you can convince yourself that
e = 1

f
in the previous exercise), show that the chromatic tune shifts are given by

��x = �
�

2

s+lZ
s

�x(k � b2�)ds

��y =
�

2

s+lZ
s

�z(k � b2�)ds: (5.44)

c) Using the definition of chromaticity, show that

�x = �
1

4�

Z
�x(k � b2�)ds

�z =
1

4�

Z
�x(k � b2�)ds (5.45)

The first term on the right-hand side of the last two equations gives the natural chro-
maticity while the second term shows the additive contributions arising from the sex-
tupoles.
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Chapter 6

Longitudinal Phase Space
Manipulation

In this chapter we describe various techniques used to control the longitudinal prop-
erties of particle beams. We concentrate on manipulation of the second moments of
the longitudinal distribution; that is, on the bunch length and energy spread. As will
be shown, the bunch length can be varied using both existing and additional rf cav-
ities to compress, coalesce, split, and lengthen stored bunches. The energy spread
of the beam can also be adjusted (usually for a minimum) by proper phasing of the
rf, by invoking cancellations between the applied and beam-induced rf, and by more
sophisticated techniques for the case of long bunch trains. A practical application of
the use of rf systems to affect the beam's transverse emittance is presented lastly.

6.1 Bunch Length Compression

Bunch length compression using dedicated accelerating structures and beamlines is
common to all linear collider designs1;2;3. Compression is usually performed in two
or more steps. First an rf section (for example an accelerating structure) is used to
introduce a correlation between the particle energy and position within a bunch. In
the second stage the beam passes through a transport line with nonzero dispersion
(i.e. bends) where the actual compression occurs due to the energy dependence of the
particle trajectory.

The longitudinal phase space through the compressor evolves as follows. Let
z1; �1, z2; �2, andz3; �3 denote the longitudinal positionz and relative energy� into
the compressor, downstream of the compressor structure, and at the end of the com-
pressor, respectively. A particle within the bunch is transported through the compres-
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sor cavity as

z2 = z1

�2 = �1 +
eV

E
cos�; (6.1)

wheree is the particle charge,V is the compressor voltage,E is the beam energy,
and� is the relative phase of the particle with respect to the zero crossing of the
compressor voltage. After the dispersive downstream arc,

z3 = z2 +R56�2
�3 = �2: (6.2)

Combining Eqs. 6.1 and 6.2, the particle position and energy at the end of the com-
pressor are given in terms of its initial conditions by

z3 = z1 +R56(�1 +
eV

E
cos�)

�3 = �1 +
eV

E
cos�: (6.3)

Phase errors may be critical particularly if the compression takes place upstream
of a linear accelerator with tight injection phase tolerances. For the (single-stage)
compressor scheme described above with� = !

c
z, the resulting beam phase�3 in

terms of the initial beam phase�1 is

�3 = �1 �R56

!

c
[�1 +

eV

E
sin(�1 � �c)]

� [1�R56

!

c
(�1 +

eV

E
)]�1 �R56

!

c

eV

E
�c; (6.4)

where! is the angular accelerating frequency of the structure. Assuming that the
errors in the injected beam phase�i and the compressor phase�c are independent,
and thatd�1

d�1
= d�1

d�c
= 0, then

d�3

d�c
= � and

d�3

d�1
= 1� � with � = R56

!

c

eV

E
: (6.5)

Combining the contributions in quadrature gives

(d�3)
2 = �2(d�c)

2 + (1� �)2(d�1)
2: (6.6)

Ex.6.1. Phase tolerances in bunch compressors
a)Sketch as a function of compressor voltage the injection phase tolerance for a 1.2
GeV electron beam passing through a 2856 MHz compressor cavity and a transport
line with R56 = 0:6 m.
b) At what compressor voltage is the phase of the beam at extraction of the compressor
region minimially sensitive tophase errors at injection?
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An example bunch compressor designed for the Next Linear Collider4 is shown
in Fig. 6.1. There is two-fold compression in this design. The principle of the first
compressor (BC1) is as described above with the energy-dependent path length gen-
erated by a wiggler magnet. At high energy, the second compressor stage (BC2) is
applied. It consists of an arc, a second rf section, and a magnet chicane. In BC2 a net
360� phase space rotation is used to minimize sensitivity to incoming phase errors.

Figure 6.1: Schematic of the NLC bunch compressor.
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6.2 Bunch Length Precompression

Bunch precompression using rf systems is frequently used for reducing the bunch
length (at the expense of increased energy spread) for transferral of hadron beams
from one accelerator to a downstream, higher frequency accelerator. Bunch precom-
pression has also been used to reduce the consequences of current-dependent bunch
lengthening (i.e. beam loss) in lepton accelerators.

The equations of motion for the beam phase� and the beam energy� are:

_� = �!� (6.7)

and

_� = �
e _V

E!T
�; (6.8)

where� is the momentum compaction factor, E is the beam energy,! is the angu-
lar rf frequency, andT is the revolution period. Combining the equations gives the
harmonic solution:

��+
�!e _V

E!T
� = 0: (6.9)

The longitudinal emittance� is given by

�2 = h�2ih�2i � h��i
2
: (6.10)

Since

h _�2i = 2h� _�i = 2�!h��i;

h _��i = h� _� + _��i;

h _�2i = 2h� _�i (6.11)

then

h ��2i = 2�!h _��i

= �
2�e _V

ET
h�2i+ 2(�!)2[

1

h�2i
(�2 +

h _�2i2

(2�!)2
)]

= �
2�e _V

ET
h�2i+

2(�!)2

h�2i
�2 +

1

2

h _�2i2

h�2i
: (6.12)

From the second moment of the distribution (i.e. the bunch length)

�� = h�2i
1

2 ; (6.13)

4



and since
d

dt2
��2 = 2(�� ��� + _��

2); (6.14)

then the equation of motion for the bunch length is

��� = �
�e _V

ET
�� +

(�!)2�2

��3
; (6.15)

where
_V = !V (t) sin�b (6.16)

with �b equal to the synchronous phase measured with respect to the rf crest. A
similar analysis for the rms energy spread is likewise calculable. The results are
summarized as

��� + !s
2�� = (�!s)

2 �2

��3

��� + !s
2�� =

(e _V )2

E!T

�2

��3
: (6.17)

Bunch rotations are used for better capture efficiency of the proton beam at
HERA 5;6. There two schemes were tried to shorten the bunch at extraction from the
upstream PETRA ring. Initially, the bunch rotation was made by introducing a 180�

phase jump in the accelerating rf, waiting for the bunch to lengthen, then restoring the
phase to its original setting, and extracting the beam about a quarter of a synchrotron
period later. Beam loading effects however caused bunch shape distortions during the
phase jump5.

Presently bunch precompression at HERA is achieved by amplitude modulating
the rf system to induce a quadrupole mode oscillation. A similar scheme was used at
the SLC primarily for reducing transmission losses within the transport line. A single
step change in requested cavity voltage in the storage ring results in a longitudinal
phase space mismatch which elongates the bunch. The resulting beam phase oscilla-
tion is then eliminated while amplifying the bunch length oscillation by application
of a second, appropriately timed, step change to the cavity voltage.

An example in Fig. 6.2 shows measurements from the SLC of the cavity volt-
age (measured using a diode detector), bunch length (obtained from a peak current
measurement, which is inversely proportional to bunch length, using a single stripline
of a position monitor), and mean energy of the beam during precompression. The
centroid energy was measured using a horizontal beam position monitor in a region
of high dispersion in the damping ring.
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Figure 6.2: Measured cavity voltage [50 kV/dvsn, 10�s/dvsn] (a), peak current [10%/dvsn, 5�s/dvsn] (b),
and centroid energy [50�m or 0.77%/dvsn, 20 turns or 2.34�s/dvsn] (c) during bunch precompression in

the SLC damping rings.
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Ex.6.2. Bunch precompression
a) Sketch the motion of the beam centroid using phase space diagrams for the following
process:

Vc = V0 for t < t0
= 0:75V0 for t0 < t < t1 =

�s;l

8

= V0 for t1 < t < t2 =
�s;h

4

= 0:75V0 for t2 < t < t3 =
�s;l

8
= V0 for t3 < t < t; (6.18)

where�s;l is the synchrotron period at the lower voltage and�s;h is the synchrotron
period at the higher voltage.

b) Taking into consideration a multiparticle beam, sketch the particle distribution in
phase space during the process given. Show that the the bunch length is compressed (at
the expense of increased energy spread).

6.3 Bunch Coalescing

Bunch coalescing, used primarily in hadron accelerators, consists of combining mul-
tiple bunches into a single bunch for high peak intensity. At Fermilab two types of
coalescing are used7: standard coalescing for the low intensity antiprotons and `snap'
coalescing for high intensity proton beams.

Experimental data from the Fermilab Main Ring are shown in Fig. 6.3 which
demonstrate the bunch coalescing concept. The different traces correspond to differ-
ent times. Initially there are 9 bunches in 53 MHz rf buckets. The vector sum of the rf
voltages is then adiabatically reduced, or `paraphased' by shifting the relative phases
between the accelerating cavities, to lengthen the bunch while preserving the longitu-
dinal beam emittance. The bunches are next subjected to a higher voltage 2.5 MHz rf
system. The bunches rotate with the synchrotron frequency in this low frequency rf
potential. In practice8, a 5 MHz rf is also applied to help linearize the rotation. When
the bunches are vertically aligned in the 2.5 MHz rf bucket, they are then captured in
a single 53 MHz rf bucket.

The snap coalescing scheme replaces the adiabatic voltage reduction with a phase
space rotation. Here the coalescing procedure is initiated with a fast reduction of the
primary rf amplitude. The beam is then longitudinally mismatched and shears in
longitudinal phase space. After one quarter synchrotron oscillation the low frequency
rf systems are turned on and the bunches are recaptured back into the primary rf bucket
as before. Simulations7 have shown that the capture efficiency of snap coalescing
is about 10% less than with the adiabatic coalescing. However, at high currents,
beam instabilities have been observed during adiabatic paraphasing of the 53 MHz
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Figure 6.3: Experimental data from the Fermilab main ring showing multiple bunches being coalesced into
a single bunch. Successive traces occur at 6.8 ms intervals. (Courtesy P. Martin, 1999.)

rf systems. This is avoided with snap coalescing and is therefore the implemented
technique for the high intensity proton beams in the Fermilab Main Ring.

Two practical issues associated with bunch coalescing are increased longitudinal
emittance (optimized by adjusting the amplitude of the rf during initial bunch length-
ening) and the production of satellite bunches which can arise fromnonlinearities in
the rf of the capturing bucket. The latter, which can cause detector backgrounds, may
be eliminated using a longitudinal damper to discard the offending bunches9 .

6.4 Bunch Splitting

The splitting of bunches using additional harmonic cavities has been proposed for the
LHC. Basically, preexisting injectors are modified to include higher harmonic cavities
to allow for the production of multiple bunches as required by the LHC10. To produce
as many bunches as possible, the bunches will be split in the upstream PS accelerator
in a 2 step process. First, at low energy (3.57 Gev/c) each of the 6 bunches from the
booster ring will be split into 3 as shown in Fig. 6.4. Then, after ramping to high
energy (26 Gev/c) the bunches will be further split into 4 as shown in Fig. 6.5. On the
left of these figures is shown the relative amplitude of each of the different harmonic
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rf systems as a function of time during the bunch splitting process.

Figure 6.4: Bunch splitting in the CERN PS at low energy (3.57 GeV/c) in preparation for injection into
the LHC. (Courtesy R. Garoby, 1999.)

Bunch splitting has been experimentally demonstrated11 in the PS booster at
CERN in application to ongoing neutrino experiments. Shown in Fig. 6.6 is the mea-
sured evolution of the longitudinal distribution using tomographic measurement tech-
niques12;13 from the CERN PS10;13. Plotted is the phase space at the indicated times
and distribution of primary and harmonic cavity voltages.

In a series of dedicated experiments at the IUCF Cooler Ring, proton bunches
were split by application of phase14 or amplitude15;16 modulations of the rf cavi-
ties. An example is shown in Fig. 6.7. In this case, longitudinal modulation resulted
from application of a sinusoidal variation to a transverse dipole located in a region of
high dispersion. Since the time of these data further experiments at the ALS17 with
electron beams have included the use of streak camera to more directly measure the
evolution of the bunch length.
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Figure 6.5: Further bunch splitting in the CERN PS at high energy (26 GeV/c) in preparation for injection
into the LHC. (Courtesy R. Garoby, 1999.)

Figure 6.6: Bunch splitting in the CERN PS booter ring after accelerationwith3�1012 protons. (Courtesy
R. Garoby, 1999.)
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Figure 6.7: Longitudinal beam profile observed using an oscilloscope (top) and the rf wave form (bottom)
during rf modulation of proton bunches in the IUCF Cooler Ring. (Courtesy S.Y. Lee, 1999.)
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6.5 Harmonic Cavities

The use of additional rf cavities for longitudinal phase space manipulation has a vari-
ety of applications - we have already seen two such examples for bunch coalescing and
splitting. Applications of harmonic cavities to reduce emittance growth when cross-
ing transition has been demonstrated at the Fermilab main ring18;19 and at BNL20. In
this section we describe the use of harmonic cavities for lengthening the bunch. This
approach has been adopted at various synchrotron light sources21 to increase beam
lifetime or to increase the bunch length to avoid longitudinal beam instabilities, for
example, at DAPHNE22;23 and as once proposed at LEP24;25.

Low energy (� GeV ) electron beam lifetimes may be dominated by large angle
intrabeam scattering otherwise known as Touschek26 scattering. The lifetime� is
given by

1

�
=

�

N

Z
�2dV; (6.19)

where� is the probability for scattering beyond the momentum acceptance,� is the
volume charge density, andV represents the volume. For a fixed beam energy and
charge, the lifetime can be increased by increasing the bunch length (nominally inde-
pendently of the transverse emittances so that the transverse brightness is unchanged).

Increasing the bunch length via addition of a higher harmonic rf system can be
easily understood from Fig. 6.8. Here a third harmonic cavity is added to the primary
rf such that the vector voltage seen by the beam is constant over the length of the
bunch.

For electrons with nonzero synchronous phase, the total voltage is given by

V (t) = Vrf
�
sin!rf t+ k sin

�
n(!rf t+ �)

��
; (6.20)

where!rf andVrf are the angular rf frequency and voltage of the fundamental rf,n is
the ratio of frequencies,k is the desired net voltage ratio for the two rf amplitudes, and
n� is the relative phase between the two systems. For optimum bunch lengthening,
V (0) = U0, whereU0 is the energy loss per turn (taken here to be dominated by
synchrotron radiation), and both the slope and curvature of the net voltage at the
position of the bunch is zero; i.e.

dV

dt
= 0 and

d2V

dt2
= 0: (6.21)

The potential seen by the beam with and without a third harmonic rf system is shown
in Fig. 6.9.

Satisfying these conditions, Eqs. 6.20 and 6.21 give the optimum amplitude and
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Figure 6.8: Conceptual illustration of bunch lengthening with a higher harmonic cavity. (Courtesy J. Byrd,
1999.)

phase of the harmonic cavity:

k2 =
1

n2
�

( U0
Vrf

)2

n2 � 1

sin(n�) = �

U0
kVrf

n2 � 1
: (6.22)

Simulations for the expected longitudinal density distribution are shown for the case
of the ALS in Fig. 6.10.

Ex.6.3. Harmonic cavities
a) Verify the equations given in 6.22.
b) Sketch the relative phase between the two rf systems of Fig. 6.8 as the ratio of ra-
diative losses to primary rf voltage varies from zero (proton beam limit) to slightly less
than one.

13



Figure 6.9: Potential seen by circulating bunch with and without a harmonic cavity for the parameters of
the ALS. (Courtesy J. Byrd, 1999.)

Figure 6.10: Bunch length with and without a third harmonic cavity at the ALS. (Courtesy J. Byrd, 1999.)
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Ex.6.4. Minimum voltage required to store a beam
The powerP radiated due to synchrotron radiation per turn by an electron or positron
may be expressed27 as

P =
cC

2�

E4

�2
; (6.23)

wherec is the speed of light,C = 8:85 � 10�5 m-GeV�3, E is the beam energy in
GeV, and� is the local radius of curvature of the bending magnets.
a) For an accelerator (without insertion devices) with� = 2 m andE = 1 GeV, what
is the total radiated power for1011 particles?
b) With a 100 ns particle revolution period, at what voltage could the beam no longer
be captured? What is the synchronous phase at this voltage? Assume that there are no
other energy loss sources.
c) For low current beams, the bunch length scales with total accelerating voltageV

asV �

1

2 . What is the disadvantage of lowering the cavity voltage for increased bunch
length compared with the use of harmonic cavities?

6.6 Energy Spread

As compared with the other 5 dimensions of a beam's phase space, the second mo-
ment corresponding to the beam energy spread is perhaps the most difficult to measure
and control. In circular accelerators, lepton beams are naturally radiation damped
to the limit of quantum fluctuations. Hadron beams on the other hand experience
emittance dilutions particularly if subjected to internal targetry. For this reason var-
ious cooling mechanisms (see chapter 8) have been devised to combat large energy
spreads.

Experience with lepton accelerators with high beam currents has shown that as
the currents are increased, single-bunch instabilities, dominated by the so-called mi-
crowave instability, can lead to increased beam energy spreads. Measurements made
with a downstream wire in a region of high dispersion are shown in Fig. 6.11 which
demonstrated a dramatic increase beyond currents of about 1.5�1010 particles per
bunch28. While relatively unimportant provided that the distribution remains stable
from pulse-to-pulse, observations have shown that increased energy spread is associ-
ated with random turbulent bunch lengthening. Detailed analyses of this yet not fully
understood phenomenon are beyond the scope of this lecture. Rather we will focus on
methods for preserving, controlling, and minimizing the beam energy spread assum-
ing a constant incoming energy spread in linear accelerators and transport lines. We
have already seen one example whereby the energy spread of a beam is increased as
the bunch length is decreased using bunch precompression and bunch compression.

In linear accelerators with high current bunches the longitudinal density profile
can be further adjusted (so-called bunch shaping) to minimize transverse emittance
dilutions arising from short-range wakefields and/or dispersion. This is particularly
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Figure 6.11: Measured energy spread of beams exiting the SLAC electron damping ring as a function of
beam current.

useful since the outgoing energy spread, and especially energy `tails' , often cause
even further emittance dilutions in downstream final focus systems arising from chro-
matic aberrations.

Minimization of the energy spread depends critically on the single-bunch charge.
In the single particle approximation, the energy gained is given by

eV = E0L cos �; (6.24)

whereE0 is the accelerating gradient,L is the length of the accelerating region, and
� is the time-like variable representing the phase of the particle relative to the crest of
the rf.

For a bunch of particles, the energy seen by a given particle is reduced due to
loading of the accelerating structure by leading particles within the bunch. Letting �0
represent the phase at the head of the bunch, the energy gain becomes

eV (�) = E0L cos � �

�0��Z
0

f(�0)WL(�0 � � � �0)d�0; (6.25)
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wheref(�0) represents the bunch charge distribution, andWL is the wake function
for the entire accelerator and is given by the product of the single-bunch wakefield
times the number of accelerating structures.

Minimum energy spread within the bunch requires thatV (�) is independent of
�; that is

@V (�)

@�
= 0: (6.26)

It has been shown29 that there exist solutions for the bunch charge distribution which
satisfy this criterion. The solution is

f(x) =
E0L

WL(0)
sin(�0 � x)�

xZ
0

@WL

@dx
(x� �0)f(�0)

WL(0)
; (6.27)

wherex = �0 � �. The interpretation of Eq. 6.27 is quite analogous to that shown in
Fig. 6.8 where the voltage provided by the higher harmonic cavity is replaced by the
decelerating voltage induced by beam loading of leading particles.

The solution given in Eq. 6.27 is shown in Fig. 6.12 for the case of the SLC
linac. The horizontal axis shows the phase angle of particles within the bunch with
the leading bunch at zero phase angle. The different curves correspond to different
BNS phase angles and the points marked ”T ” indicate where the integrated bunch
charge reaches the design single bunch charge of5�1010 particles per bunch. As can
be seen, for minimum energy spread, the prefered charge distributions tend in general
to have a steep rising edge.

The tradeoff between bunch length and energy spread in a linear accelerator is
shown in Fig. 6.13 which shows the effect of the combined voltages from the power
source ERF and the longitudinal wakefield WLong. On the left is depicted the longitu-
dinal phase space of a long bunch while the projection onto the energy axis is given on
the right. In the limit of long bunches one can see that a 'double-horned' distribution
produces the minimum rms energy spread.

Measured energy spread profiles taken at the end of the SLAC linac are shown
in Fig. 6.14. A wire scanner located in a dispersive region of a downstream transport
line was used to measure the profile�w - after subtracting out, in quadrature, the
contribution from the beam size��, the energy spread�� was measured:

�� =
q
�w2 � ��2: (6.28)

The angle� denoted in the figure shows the BNS phase angle at the time of the
measurement. These data show clearly the effects of not only misphasing the linac,
but the additive contributions of the short-range longitudinal wakefield and have been
used together with simulation30;31 to determine the longitudinal bunch distribution.
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Figure 6.12: Optimum bunch shape for beam loading compensation in the SLC linac. (Courtesy G. Loew,
1999.)

A clever technique to avoid the undesirable energy spread tails (see Fig. 6.14)
useful particlularly for the case of long bunches was devised using overvoltaging the
upstream energy compressor32 . A conceptual drawing illustrating the effect is shown
in Fig. 6.15. While perhaps nonintuitive, simply by `overcompressing' the bunch,
the tails in the energy spread distribution could be eliminated without diluting the
longitudinal beam emittance.

18



ERF

Z
+

WLong

Z

E
(E–E0)

Z

E

#

#

Best

7051A8

#

(E–E0)

(E–E0)

Z

Z

11-91

E

(d)

(c)

(b)

(a)
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Figure 6.14: Energy spread measurements taken at the end of the SLAC linac for different BNS phases (�).
(Courtesy K. Bane, 1999.)

Figure 6.15: Longitudinal phase space (top) and projections onto time axis (bottom) with and without
overcompression. (Courtesy F.-J. Decker, 1999.)
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6.7 Energy Compression

The energy spread of a single bunch can be made smaller (at the expense of increased
bunch length) using reverse application of a bunch length compressor. In this case,
the beam passes through a region with an energy-dependent path length followed by
an accelerating section which decelerates and accelerates the high and low energy
particles respectively. Energy compression for single bunches was designed and im-
plemented33 for the positron transport line into the SLAC positron damping ring. The
net increase in particle yield was observed to be about 10%.

6.8 Beam Loading

In the quest for obtaining ever-increasing total beam currents, both newly constructed
and future accelerators have in common bunch trains consisting of multiple high cur-
rent closely spaced bunches. In both linear and circular accelerators this may lead to
a relative phase shift between the bunches of a bunch train.

When a beam passes through an accelerating cavity, it induces a voltageVb;m
in each modem of the cavity. The induced voltage is always retarding; that is, the
beam-induced voltage always acts to decelerate the beam. Expressed another way, the
beam always takes energy away from the cavity. This is refered to as beam loading.

The fundamental theorem of beam loading34 is relevant on very short time scales
(i.e. for a single pass through an accelerating cavity). The theorem states that the
voltage that a test particle would experience when trailing a (point) source particle at
time t0 > 0 is exactly twice its beam induced voltage att0 = 0. More generally, the
induced voltage, or wake potential,V� is given by

V�(t0) = 0 for t0 < 0
= �kq for t0 = 0

= �2kqe
�

t0
�f cos!t0 for t0 > 0; where �f =

2Q

!
: (6.29)

This function is illustrated in Figure 6.16. Here the variable

k =
!

2

�
R

Q

�
(6.30)

is called the loss parameter which tends to be determined by the structure geometry
close to the beam. In practice,k is often calculated for each cavity mode using nu-
merical programs (e.g. MAFIA). The wake potential describes the electromagnetic
field that the point-like beam generates as it interacts with its surroundings and how
this field acts back on the beam thus perturbing its motion.
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Figure 6.16: Wake potential. This function shows the voltage that would be experienced by a particle
trailing a point-like test particle by timet0 after passing a resonant structure.

In a circular accelerator containing a single accelerating cavity and a single parti-
cle bunch, the steady-state (t >> �f ) beam-induced voltageVb is given by summing
over the contribution from all previous turns. Using Eq. 6.29 withTr denoting the
bunch revolution frequency,

Vb = �kq � 2kq

1X
n=1

e
�

t0
�f cos!to�(t0 � nTr)

= �2kq
h 1X
n=0

e
�

t0
�f cos!to +

1

2

i
�(t0 � nTr)

= �2kq
h 1X
n=0

e
�

nTr
�f cosn!Tr +

1

2

i
: (6.31)

Driving the cavity near its resonance frequency (i.e. taking! = !rf ), and noting that
cosn!Tr = 1 for all n, then

Vb = �2kq
h 1X
n=0

e�
n!rf
2Q

Tr +
1

2

i

= �2kq
h 1

1� e�
n!rf
2Q

Tr
+

1

2

i
(6.32)
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Neglecting the small self-loading term, and applying

1

1� e�x
�

1

x
for x =

!rfTr

2Q
<< 1; (6.33)

then

Vb = �2kq(
2Q

!rfTr
); k =

!0

2
(
R

Q
)

= �2qfrevR
= �IbR: (6.34)

This simple result shows that with the cavity tuned to resonance, the beam-induced
voltage is simply given by the beam current at the resonance frequency (Ib = 2Idc)
times the cavity impedance. (Note that this is the loaded impedance since the expres-
sion for the cavity fill time used the loaded quality factor.) The minus sign, again,
indicates that the beam takes energy away from the accelerating cavity.

Application of Eq. 6.29 to transport of high current particle beams is a subject of
great interest in modern accelerators. In the extreme short-range limit, the variable
t0 above may represent the time interval between particles within a single bunch in
which case, by causality the chargeq represents the charge of all preceeding charges
within the bunch. As the beam current is increased, eventually, as many experimental
and theoretical studies have shown, the ensuing motion can become unstable.

One way to achieve high beam currents while avoiding intrabunch beam instabil-
ities arising from increased single-bunch beam currents, would be to introduce multi-
ple bunches (often called a bunch train) each with lower single-bunch beam currents.
In this case,t0 in Eq. 6.29 refers to spacing between appropriate bunches; here the
beam-induced voltage experienced by a particular bunch is given by the sum of the
voltages induced by all preceeding bunches each obtained by evaluation of Eq. 6.29
at the appropriate timet0. In recent years, much effort has been devoted in carefully
designing and testing new cavity designs (such as ARES or super conducting cavities)
in order to minimize the net ' wakefield' experienced by all bunches within a bunch
train.

6.9 Multibunch Energy Compensation

Two methods, known as�f and�t compensation have been proposed to combat
multibunch phase transients in linearaccelerators. Shown in Fig. 6.17 is the principle
of �t compensation35. Here the voltage Vk represents the voltage response of a
finite bandwidth accelerating structure to a step function input pulse. The lower curve
labeled Vb represents the beam-induced voltage of the entire bunch train. By injecting
the beam prior to the time the linac structure is at peak voltage, the vector sum is
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observed to be flat over the duration of the bunch train. The projected energy spread
is therefore minimized and the phase relationship between the bunches is constant.

t

V
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tf

tb

Vk + Vb

Vk

Vb,maxBeam Starts
Here

2-96
8047A362

Figure 6.17: Conceptual diagram illustrating multi-bunch,�T beam loading and energy compensation.

Beam loading compensaton using the�t method may be advantageous since the
correction may be applied locally at each accelerating section. On the other hand it is
anticipated35 that about 10% more power is required relative to the�f compensation
scheme.

The principle of the�f compensation is illustrated36 in Fig. 6.18. In this design
from the ATF in Japan, some fraction of the many accelerating structures are slightly
detuned by��f which changes the net accelerating field seen by each of the bunches
within the train.

Ex.6.5. Phase shift along a bunch train
The cavity fill time�f describes, in the absence of feedback, the time evolution of the
cavity voltage in response to a step function. For example, if a cavity initially at ampli-
tudeV0 has suddenly its power source turned off, then the cavity voltage decays as

Vc(t) = V0e
�

t
�f ; where �f =

2Q

!rf

: (6.35)

For the case of a storage ring, estimate the change in synchronous phase across a 500 ns
long bunch of 100 mA dc beam current and cavities withQ = 30000, a total impedance
of 50 M
, and an rf frequency of 476 MHz.
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Figure 6.18: Conceptual diagram illustrating multi-bunch,�f beam loading and energy compensation.
(Courtesy J. Urakawa, 1999.)

6.10 Damping Partition Number Change via RF Frequency Shift

The generation of small emittance beams is a key issue for synchrotron light sources,
collider rings, and for future linear colliders. Dedicatedaccelerators have been de-
signed to produce such beams, but techniques to further reduce the design emittances
would yield immediate improvements. At injection into such accelerators, the trans-
verse beam emittances are large and often fill a large fraction of thedynamic aperture.
For lepton beams, at later times after the beam has radiation damped, the horizon-
tal damping time and equilibrium emittance may be reduced by shifting the rf fre-
quency, such that the particle orbit moves inwards. By passing off-center through the
quadrupoles in regions of nonzero dispersion, the horizontal partition numberJx is
changed. This reduces both the horizontal damping time and equilibrium emittance.
In addition, to the extent that the vertical emittance is determined by betatron cou-
pling, the reduction in horizontal emittance may beaccompanied by a corresponding
reduction in vertical emittance.

The horizontal damping time and beam emittance are both inversely proportional
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to the horizontal partition numberJx = 1�D, where27

D =

R
�G(G2 + 2K1)dsR

G2ds
: (6.36)

Here � is the horizontal dispersion,G andK1 describe properties of the magnetic
guide field, and the integrals are evaluated around the ring circumference. For the
non-combined function SLC damping ring dipole magnets,GK1 � 0.

For an orbit offset�x in the quadrupoles, the change inD is given approximately
by

2K1
2�qLgNq

2�=�
�x; (6.37)

whereK1 = ec
E
(@B
@x

) with e = 1:6� 10�19 C, c = 3� 1010 m/s,E = 1:19 GeV,� is
the local bending radius,�q is the dispersion at the quadrupoles, andLq andNq are
respectively the quadrupole length and number of quadrupoles.

The orbit may be offset in the quadrupoles by either changing the accelerating
frequency or by physically displacing the magnet support girders. Emittance opti-
mization using the accelerating frequency has been used ine + =e� storage rings
previously37 and is used routinely at LEP38. The circumference adjustment is appli-
cable provided that the transverse acceptance is not limited and that the injected beam
energy spread is small compared to the energy acceptance. At the SLC, the electron
damping ring was 'stretched'39 in 1992 by 9 mm for a 15% increase inJx. In doing
so, the energy aperture at injection was reduced without any loss in transmitted beam
current. For the case of the positron ring, the incoming beam filled the entire aperture
so stretching the accelerator was not an option.

Shown in Fig. 6.19 is a calculation of the horizontal emittance�x as a function
of time for 4 different frequency offsets for the case of the SLC damping rings. It is
assumed that the beam is injected at the nominal rf frequency of 714 MHz with an
initial emittance of20� 10�5 m-r. The accelerating frequency is increased after 1 ms
(dashed line) for which the longitudinal emittance has damped by about a factor of
2. The simulations (using SAD40) with a trapezoidal approximation for the bending
magnet fringe fields show a half unit reduction (i.e. 15-20%) in normalized emittance
with a 100 kHz frequency change while the damping time reduces from 3.4 ms to 3.0
ms.

At storage rings and colliders there is no tight tolerance on maintaining the de-
sired rf frequency. In a damping ring, the time required to reset the frequency and
relock the beam phase to the desired extraction phase is critical since the frequency
must be ramped back to nominal just before extraction in order not to introduce any
energy and/or phase errors in downstream subsystems (in this case bunch compres-
sor and SLC linac). Minimizing this time is critical since reverting to the nominal rf
frequency is associated with corresponding antidamping of the beam.
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As a practical point, with a change in accelerating frequency, the accelerating
cavities are detuned by an amount characterized by the tuning angle�z which is
given by

�z = tan�1
�
2Q

�
f0 � frf

f0

��
; (6.38)

whereQ is the loaded cavity quality factor,f0 is the resonant frequency of the cavity,
andfrf is the frequency of the applied rf. With the cavity tunersfixed, the new tuning
angle�z

0 corresponding to the new applied rf frequencyfrf
0 = frf + �frf is given

by

tan�z
0 = 2Q

�
1� (1�

1

2Q
tan�z)

frf
0

frf

�
: (6.39)

An example is shown in Fig. 6.20(a). Typically, the tuning angle is set for minimum
reflected power:

�zj�l=0 = �
IbR

Vc
sin�b; (6.40)
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whereIb is twice the dc beam current,R is the total loaded impedance,Vc kV is the
total cavity voltage, and�b is the synchronous phase measured with respect to the
crest of the accelerating rf. The loading angle�l is related to the tuning angle�z by

tan �z =

�
1 +

IbR

Vc
cos�b

�
tan�l �

IbR

Vc
sin�b: (6.41)

In the case of the SLC, the cavity detuning exceeded the power capabilities of the
power source as shown using a solid curve in Fig. 6.20(b).
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Figure 6.20: Cavity tuning considerations. The initial and final tuning angles atfrf andfrf 0 = frf+100

kHz, respectively, are shown in Fig. 6.20(a). The stability boundary for cavity voltage regulation at 600
kV is given by the solid curve in Fig. 6.20(b). The dashed curves show the loading angle�l which is
measured and regulated by the tuner feedback loops. At zero beam current, the loading angle is equal to

the tuning angle.

Assuming sufficient frequency aperture, which may be limitede.g.by transverse
betatron resonances that can be encountered during the frequency ramp with nonzero
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chromaticity, the maximum frequency change may be limited by either available rf
power as discussed above or by the damping poles41 at which the damping rate be-
comes zero.
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Measurements42 showing the effect of a frequency ramp in the SLC positron ring
are given in Figs. 6.21 and 6.22. In this experiment, the downstream compressor
was turned off in order to more cleanly detect the effect of the frequency shift on
beam emittance. From Fig. 6.22, with a 62.5 kHz shift, the reduction in normalized
emittance was from3:30 � 0:07 m-r to 2:66 � 0:06 m-r. For the electron damping
ring, the reduction with the frequency shift was from3:22 � 0:08 m-r to 2:93 �
0:07 m-r. Using the 1997 SLC interaction point parameters of�x; �y = 450; 250
�r angular divergence, and�x; �y = (5:2; 1:1)� 10�5 m-r normalized emittances
measured in the final focus, the corresponding rms beam sizes are�x; �y = 1:3; 0:5
�m. With a 1 mm bunch length and4 � 1010 particles per bunch, the luminosity is
estimated from guinea-pig43 to be 4.28�1032 m�2 per collision. This corresponds to
an estimated increase of over 40% in luminosity by application of the frequency shift
in the damping rings.

Figure 6.21: Nominal emittance measured in the downstream linear accelerator. The measured normalized
emittance was3:30 � 0:07 m-r.
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Figure 6.22: Emittance measurement with a 62.5 kHz frequency shift. The normalized emittance was
reduced from3:30� 0:07 m-r to2:66 � 0:06 m-r.
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Decreasing the beam emittance by changing the damping partition numbers is
also part of the HERA luminosity upgrade44. To maintain matched beam sizes, with
a reduced proton beam size resulting from modified optics at the interaction points of
HERA, the electron beam size must be reduced. The approach to be taken is twofold
- both stronger focusing in the arcs and a +200 Hz frequency shift.
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Chapter 7

Polarization Issues

In this chapter spin transport in circular accelerators and transport lines is described.
We begin with a review of the Thomas-BMT equationa. The spin equation of motion
will be given in terms of the SU(2) spinor representation. Basic concepts of spinor
algebra will be introduced and applied in the description of techniques used for pre-
serving the spin of polarized beams up to very high beam energies. Lastly we present
a few concepts from spin resonances theory.

7.1 Thomas-BMT Equation

The concept of particle spin was first introduced by Uhlenbeck and Goudsmit in 1926.
In 1927 Thomas1 showed that a purely kinematic precession governs the behavior of
relativistic accelerated particles which possess a magnetic moment. This helped to
explain an outstanding discrepancy in describing both the anomalous Zeeman effect
and the fine structure splittings of the Coulombic energy levels in thehydrogen spec-
trum. In 1959, Bargmann, Michel, and Telegdi2 expressed the magnetic field in terms
of its transverse and longitudinal components. The resultant Thomas-BMT equation
describes the spin motion in the presence of electromagnetic fields experienced by an
orbiting particle in the laboratory frame.

Uhlenbeck and Goudsmit presupposed that the (in this case) electron of massm

and chargee, possessed both a magnetic moment~� and spin angular momentum~S
related to one another by

~� =
ge

2mc
�h~S; (7.1)

aHere BMT stands for Bargman, Michel, and Telegdi.
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wherec = 2:9979�108 m/s,�h is Planck's constant (normalized by2�), S again is the
three-dimensional particle `spin' , andg is the gyromagnetic ratio. For spin transport
calculations one defines the deviation of the gyromagnetic ratio, or Lande' g-factorg,
from 2 as

G =
g � 2

2
= 1:7928 for protons; and

a =
g � 2

2
= 0:00115966 for electrons: (7.2)

The equation of motion for the spin in an external magnetic field3 is given, in the
particle rest frame, by

d~S

dt
= ~�� ~B

= ~
� ~S; (7.3)

where the angular velocity of the spin precession is simply

~
 = �
ge

2mc
~B: (7.4)

The kinematic solution for the precession frequency for a relativistic particle in exter-
nal electromagnetic fields is given by the Thomas-BMT equation:

d~S

dt
= �

e

mc

��
a+

1



�
~B �

a

1 + 
~�(~� � ~B)�

�
a+

1

1 + 

�
~� � ~E

�
; (7.5)

where~� = ~v
c

with ~v the particle velocity, and = 1=
p
1� �2 is the Lorentz factor

or ratio of the particle energy to mass. For many practical applications there are no
significant electric fieldsb, and the Thomas-BMT equation reduces to

d~S

dt
=

e

mc
~S � [(1 +G) ~B? + (1 +G) ~Bk]; (7.6)

where ~B? and ~Bk represents the magnetic fields perpendicular and parallel to the
particle velocity respectively.

bMore precisely, in transforming the electromagnetic fields, the term~� � ~E is nearly zero since the
electric fields in an accelerator are usually parallel to the particle velocity
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Ex.7.1. Electrostatic lenses and muon storage ringsa

The muon anomolous magnetic moment, now recognized to be about 0.001166, can be
measured very accurately using electrostatic lenses with a transverse electric field. In
the rotating reference frame, the spin precession is given by

~
 = �
e

mc

� ~B

�



2 � 1
~� � ~E

�
: (7.7)

Show that even the transverse electric field~E does not contribute to spin precession
when the Lorentz factor is

 =

r
1 +

1

a
: (7.8)

aAdapted from lecture notes of A. Chao (1999)

From Eq. 7.6 notice that the amount of spin `kick' due to a transverse magnetic
field depends on the particle energy through the factor1 + G while the amount of
spin precession due to a longitudinal magnetic field is energy independent. We will
see later that this has implications on spin rotator design.

7.2 Spinor algebra using SU(2)

While we first present an entirely classical approach4 to spin dynamics calculations,
we can still use quantum mechanics formalisms to more easily describe spindynam-
ics. It is mathematically advantageous to do so since transporting2 � 2 spinors (	)
is simpler than transporting the 3-dimensional spin polarization vector~S. The rela-
tionship between the two is given by the expectation value of the Pauli spin vector~�;
i.e.

Si = 	y�i	; (7.9)

with the Pauli matrices definedc as

�x =

�
0 1
1 0

�
�s =

�
0 �i

i 0

�
�y =

�
1 0
0 �1

�
: (7.10)

Together with the identity matrix these 4 matrices generate an irreducible representa-
tion of the SU(2) group.

cCaution–different authors adopt different conventions; here we adopt the convention (often used by
high energy physicists) thatx is radial,s is longitudinal, andy is vertical. A cyclic permutation may be
used to transform between conventions.
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Ex.7.2. Spinors
For practice, these exercises are informative.
a) Using Eq. 7.9 find the spinor wave function for the spin basis~S = [~Sx; ~Ss; ~Sy] with
~Sx = [1 0 0], ~Ss = [0 1 0], and~Sz = [0 0 1].
b) Show that the Pauli matrices are unitary (�j�

y
j = I) and Hermitian (�y

j = �j )
with ~�y � ~� = 3I .
c) Verify the compact form of the commutation relations:

�j�k = �jkI + i�m�jkm�m; (7.11)

where

�jk = 1 if j = k

= 0 if j 6= k (7.12)

and�jkm is the Levi-Civita tensor defined by

�jkm = 0 if any two indices are equal

= +1 for even permutation of indices

= �1 for odd permutation of indices: (7.13)

Ex.7.3. Spin precession in solenoidal fields
Consider a vertically polarized beam traversing (~� = �ŝ) a longitudinal solenoid of
field ~B = Bzŝ of lengthl in the absence of any electric fields.
a) Show that the spin precession� after traversal of the solenoid is given by

� = �
e

mc2
l

�
(1 +G)Bz: (7.14)

b) Suppose this solenoid is in a circular accelerator. By equating the centrifugal and
Lorentz forces on the particle show that the magnetic rigidity is

B� =
�E

e
(7.15)

and reexpress Eq. 7.14 in terms of the rigidity.
c) For spin polarization in a storage ring we will see that spin precession by� per turn
helps cancel various spin resonances. For the case of a 100 MeV proton beam specify
the required integrated field strength to achieve this.
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7.3 Spin Equation of Motion

For generality we can reexpress the spin equation of motion for spinor wave function,
Eq. 7.3, in terms of a time-like variable� defined as

� =

Z s

0

ds0

�(s0)
(7.16)

which is equal to the accumulated bending angle or so-called orbital angle. Then the
equation of motion is

d	

d�
=
i

2
H	; (7.17)

whereH denotes the spin precession matrix which in the absence of depolarizing
resonances is

H =

�
�� 0
0 �

�
; (7.18)

with � = G for protons and� = a for electrons.
If the spin precession matrixH is time-independent, or equivalently independent

of the orbital angle,�, and there are no perturbing fields, then the2�2 unitary matrix
can be written as a linear combination of the three components of the Pauli matrix
vector. Eq. 7.17 may then be expressed as

d	

d�
= �i

�

2
(~� � n̂)	; (7.19)

in which � depends on the particle coordinates (to emphasize the basic underlying
principles, we defer the explicit expressions until needed in section 7.9), andn̂ is a
unit vector. The solution, which defines the spinor transformation matrix M is

	(�) =M	(0); (7.20)

where
M = e�i(

�
2
)(~��n̂)�: (7.21)

By expanding the exponential, the solution is then

	(�) =

�
cos

�
��

2

�
� i(~� � n̂) sin

�
��

2

��
	(0): (7.22)

To complete this section we give also the spin equation of motion for the po-
larization vector~S which serves also to illustrate some of the algebraic conversions
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presented to far. Since the components of the polarization are given by the expecta-
tion value of the Pauli spin matrices (~S = 	y~�	), the spin equation of motion for the
vector polarization is obtained by taking the derivative of the last expression

d~S

d�
=
d	y

d�
~�	+	y~�

d	

d�
: (7.23)

Using Eq.7.19 and its Hermitian conjugate,d	y

d�
= i�

2
	y(~� � n̂), one finds

d~S

d�
= i

�

2
	y[(~� � n̂)~� � ~�(~� � n̂)]	 = i

�

2
	y[2i(n̂� ~�)]	: (7.24)

Using�i�j = 1 for i = j and�i�j = i�ijk for i 6= j, one can show that

[~� � ~n; ~�] = 2i(~n� ~�): (7.25)

Then,
d~S

d�
= ��	y(n̂� ~�)	 = ��n̂� (	y~�	) = ��(n̂� ~S): (7.26)

7.4 Periodic Solution to the Spin Equation of Motion

For a circular accelerator we seek a periodic solution to the spin equation of motion.
Here we write the spin transfer matrixM as a product ofn precession matrices, each
of which characterizes a spin precession field; i.e.M = M1M2 � � �Mn. The one
turn spin transfer map is the transfer matrix corresponding to one revolution around
the accelerator. Because spin is conserved, the matrixM is unitary. It may therefore
be expressed as

M = e�i��s(��n̂s) = cos��s � i(� � n̂s) sin��s (7.27)

or

M =

�
cos��s � i sin��s cos�y � sin��s cos�s � i sin��s cos�x

sin��s cos�s � i sin��s cos�x cos ��s + i sin��s cos�y

�
(7.28)

Here the directional cosines are used to specify the stable spin direction

n̂s = (cos �x; cos�s; cos�y): (7.29)

The directional cosines satisfy the normalization

cos2 �x + cos2 �s + cos2 �y = 1: (7.30)
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The stable spin direction, is defined as the axisd that returns to the same place in every
turn around the ring. The spin tune,�s, is the number of times the spin precesses about
the stable spin direction in one turn around the ring. It may be obtained from the trace
of the spin precession matrix:

TrM = 2 cos ��x or

�s =
1

�
cos�1

�
TrM

2

�
: (7.31)

Ex.7.4. Periodic spin motion
Using the expansion of the exponential

e
i��j = cos�+ i�j sin� where j = x; s; y (7.32)

verify Eq. 7.28.

7.5 Depolarizing Resonances

Depolarizing resonances occur whenever the spin tune,�s, equals a resonance tune,
�res, by satisfying

�s = �res � n+mP + q�x + r�y + s�syn; (7.33)

whereP is the superperiodicity (the number of identical lattice sections) of theaccel-
erator,�x and�y are the horizontal and vertical betatron tunes,�syn is the synchrotron
tune, whilem;n; q; r;ands are integers. In the absence of any longitudinal and radial
error fields, the spin tune,�s, is equal toG or a for protons or electrons, respec-
tively.

The general resonance condition specifies the criteria for many first order reso-
nances. Imperfection depolarizing resonance, for which

�s = �res = n = integer; (7.34)

arise from horizontal magnetic fields experienced by the orbiting particle due to mag-
net imperfections, dipole magnet rotations about the beam direction, and to verti-
cal quadrupole magnet misalignments. Gradient error resonances and intrinsic reso-
nances, which result from the horizontal fields of quadrupoles, occur if

�s = �res = n+ r�y and �s = �res = mP + r�y; (7.35)

dthe existence of this axis hold true for conservative force fields only
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respectively. Synchrotron depolarizing resonances due to the coupling between trans-
verse and longitudinal particle oscillations occur if

�s = �res = n+ s�syn or �s = �res = mP + s�syn: (7.36)

Finally, betatron coupling resonances, given by

�s = �res = n+ q�x + r�y (7.37)

can also result in spin depolarization. Other higher order spin depolarizing resonances
may occur for any combination of integers which satisfy Eq. 7.33.

Resonant spin motion was observed in the SLC collider arcs5. The 1 mile arcs
were used to transport 45.6 GeV polarized electrons from the linac to the interaction
point where they collided headon with positrons. The arc consists of 23 achromatic
sections with a 108� phase advance per cell. The vertical beam trajectory and the
components of the spin (denoted here by Sy for vertical and Sz for longitudinal) is
shown in Fig. 7.1 assuming an initial vertical offset of 0.5 mm. The equal orbit and
spin phase advance is seen to contribute to a net spin precession as evidenced by the
increase in vertical polarization along the arc. In practice, vertical bumps were used
to optimally align the spin to be longitudinal at the interaction point.

Ex.7.5. SLC `3-state experiment'
Assuming no resonant depolarization (that is pure spin precession) in the SLC arcs,
show that the magnitude of the polarization at the interaction point (IP) can be obtained
from three successive measurements of the longitudinal polarization at the IP by proper
orientation of the incoming polarization with each measurement.

7.6 Polarization Preservation in Storage Rings

The first requirement of maintaining a beam's polarization is preserving this polariza-
tion at injection into a downstream accelerator. This is easily achieved by orienting
(using upstream spin rotators) the beam polarization so that it is aligned with the
stable spin direction of the downstream transport line or storage ring.

A mismatch at injection results in a cosine-like reduction of the beam polariza-
tion. The injected polarization is replaced by

~S = ~Sinj(cos �x; cos�s; cos�y); (7.38)

where the directional cosines for the injected beam are (cos �x; cos�s; cos�y). The
resultant polarization is given by the projection of the injected polarization vector on
the stable spin vector,~ns; i.e.

k~Sk = ~Sinj(cos�x cos�x + cos�s cos�s + cos�y cos�y); (7.39)
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Figure 7.1: Polarization transport in the SLC collider arc. (Courtesy P. Emma, 1999).

where�j with j = x; s; y are the directional cosines corresponding to the one turn
map of Eq. 7.28. The components of the resultant polarization vector are then ob-
tained by projecting the polarization onto the three coordinate axes:

Sy = kSk cos�y ; Sx = kSk cos�x; Sz = kSk cos�s: (7.40)

A conceptual illustration is given in Fig. 7.2.
Once the beam is successfully injected without loss of polarization, it must be

ramped to high energy thereby encountering numerous depolarizing resonance along
the energy ramp. With considerable effort, polarized proton beams were accelerated
through many intrinsic and imperfection depolarizing resonances to GeV energies at
the ZGS6, Saturne7, the AGS8, and KEK9. The methods employed were based
on overcoming each depolarizing resonance individually. In this section we review
the physics and techniques used to overcome these resonances. In the next section
we describe so-called ' Siberian snakes' , the use of which has recently been success-
fully demonstrated experimentally and is now the prefered technique for all newly
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constructed and future high energy accelerators.

7.6.1 Harmonic correction

The concept of harmonic correction of imperfection depolarizing resonances was
used at the AGS to ramp polarized proton beams to about 22 GeV. There 96 correc-
tion dipoles were employed whose currents were programmed to be proportional to
an cosn�+ bn sinn�, wheren is the resonance harmonic and� is the orbital location
of the correction dipole. As will be shown later, the resonance strength depends on
the vertical beam displacement (in quadrupoles, for example, the nominally vertical
polarization experiences a radial precession field with an off-axis beam). To eliminate
depolarization, the coefficientsan andbn were experimentally adjusted to cancel the
horizontal magnetic fields causing each imperfection resonance.

Harmonic correction methods were successfully applied for the cases of high
energy electron beams at both HERA10 and, deterministically, at LEP11. Instead of
empirically varying the closed orbit, closed orbit bumps were used to minimize the
strength of the nearest imperfection resonances.
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7.6.2 Adiabatic spin flip

The method of adiabatic spin flip, which was also used at the AGS, is based on the
results of Froissart and Stora12. The Froissart-Stora formula, which describes the
spin transport through a single, isolated resonance, is

Sz(1) = 2e�
��2

2� � 1; (7.41)

where the resonance strength (see section 7.9) is parameterized by�, and� is the rate
of spin precessiond�s

d�
.

The Froissart-Stora formula mandates that the spin of the orbiting particle will
flip if the passage is slow and the resonance is strong. This behavior has also been
verified by experiment13;14;15. An example taken from the IUCF cooler ring15 is
shown in Fig. 7.3. Here a solenoid was used to produce a sinusoidally varying lon-
gitudinal field to induce a depolarizing resonance at frequencies related harmonically
to the revolution frequency of the orbiting proton beam. For a fixed frequency range
of 2 kHz, the rate of the frequency change, or ramp rate, was varied for different
peak magnetic fields proportional to the voltage given on the horizontal axis. The
curve shows the Froissart-Stora equation with the measured resonance strength and
variable ramp rate.

Figure 7.3: Spin flip of a vertically polarized beam. (Courtesy A. Krisch, 1999).
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7.6.3 Tune jump

Intrinsic depolarizing resonances were overcome at the AGS using the method of tune
jump16. As  increases during acceleration, the resonance condition can be rapidly
traversed by rapidly shifting the vertical betatron tune,�y. A classic example16 is
shown in Fig. 7.4. To achieve this, strong pulsed quadrupoles and special ceramic
beam pipes (to allow passage of the field) were required.

Figure 7.4: Oscilloscope traces showing pulsed devices during the energy ramp to 16.5 GeV/c at the
AGS. Shown are the pulsed dipoles (top), the pulsed quadrupoles (middle), and the dipoles fields (bottom).

(Courtesy A. Krisch, 1999).

7.7 Siberian Snakes

The above mentioned correction schemes were anticipated to be of limited applicabil-
ity when accelerating polarized beams to very high energies. The harmonic correction
employed at the AGS was complicated and time consuming; the empirically found
corrections also depended on the closed orbit of the accelerator, which were seen to
drift with time and change between running periods. At very high energies, where the
resonances will be overlapping, the method of adiabatic spin flip fails17. The method
of tune jump is stopband limited since, for a very strong intrinsic resonance, the ver-
tical betatron tune shift required to overcome the resonance may exceed the sepa-
ration between the machine betatron resonances. Finally, the number of resonances
increases with increasing energy. At the SSC, where there would have been more than
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104 depolarizing resonances, overcoming each resonance individually clearly would
become impractical.

An ingenious arrangement of magnets was proposed18 by Derbenev and Kon-
dratenko in 1976. This techniquee would simultaneously overcome all depolarizing
resonances by making the spin tune to be energy independent. A so-called Type-1
snake rotates the spin of each proton by 180 degrees about the longitudinal axis on
each turn around the ring without changing the closed orbit outside of the snake. This
forces the spin tune to be1

2
. The resonance condition of Eq. 7.33 is therefore never

satisfied regardless of the beam energy: the integer spin tune imperfection resonance
criterion is never satisfied and, for betatron tunes not equal to1

2
(corresponding to

half integer orbit resonances), imperfection resonances are also avoided. A type-2
Siberian snake precesses the spin about the radial direction. A type-3 Siberian snake,
which has not been considered to date as a means to preserve polarization, precesses
the spin about the vertical direction.

The best construction of a Siberian snake depends upon the energy range of in-
terest. A longitudinal Siberian snake consists of a solenoidal field and quadrupoles
used for coupling correction. The required field strength isZ

Blong � dl =
mc�

(1 +G)e
 (longitudinal snake) (7.42)

in which  (= � for a full Siberian snake) is the angle through which the spin is
precessed. Notice that the required field integral depends linearly on. Due to tech-
nical constraints the field strength and magnet length cannot be increased indefinitely.
Therefore longitudinal Siberian snakes are better suited for low energy operation.
A transverse Siberian snake conventionally consists of eight transverse field dipoles
each of which precesses the spin by�

2
. The required field strength for a transverse

Siberian snake is Z
Btran � dl =

mc�

Ge
 (transverse snake) (7.43)

which is independent of. Transverse Siberian snakes therefore have the advantage
that a single set of dipole operating currents suffices for all beam energies once�

is close to 1. However, the orbit displacement angle is 

G
. For low beam energies

( < 10), transverse Siberian snakes would require the construction of large and
costly dipoles. Transverse Siberian snakes are therefore more suitable for operation
at high beam energies.

The spin equation of motion with a type-1 Siberian snake, which precesses the
spin about the longitudinal direction by an amount�, is

M = e�i��s(~ns�~�) = [e�i
G
2
(���)�ye�i

�

2
�s ][e�i

G

2
(�+�)�y ]; (7.44)

edubbed ' Siberian snake' by Courant
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where� is the orbital angle representing the location of the polarization monitor, and
� gives the spin precession about the longitudinal in radians. Taking the trace of
Eq. 7.44, the particle spin tune is

cos��s = cos (�G) cos
��
2

�
: (7.45)

If the Siberian snake is off (� = 0), then�s = G as expected.
The use of transverse magnetic fields acting on the spin have the unfortunate

consequence of also deflecting the particle orbit. Optical transparancy must be main-
tained usually at the expense of increased snake length. Many different snake de-
signs19;20;21 have been proposed. Shown in Fig. 7.5 is one such design consisting of
alternating horizontal and vertical dipoles. This design is conveniently expressed as

H(
�

2
)H(�

�

2
)V(

�

2
)H(�

�

2
)V(��)H(

�

2
)V(

�

2
); (7.46)

where H and V represent horizontal and vertical dipoles rotating the spin through the
angle of the argument.
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Figure 7.5: A design of a type-1 Siberian snake showing the geometry (top) and the mean trajectories in
the horizontal (middle) and vertical (bottom) planes. (Courtesy A. Chao, 1999).
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Ex.7.6. Type-3 snakes
With L representing a precession about the longitudinal axis
a) show that the configuration

[H(�
�

2
)L(+

�

2
)H(+

�

2
)] L(�

�

2
) [H(�

�

2
)L(+

�

2
)H(+

�

2
)] (7.47)

is optically transparant but produces a net spin precession about the vertical axis.
b) Draw the spin orientation and the particle orbit for the given magnet configuration.
In addition to preserving the spin, it is often desirable to rotate the spin from

vertical to longitudinal at one of possibly many interaction points in a storage ring as
is done at HERA22, for example. An optically transparant spin rotator which does
that was proposed by Montague23 in 1976. The spin rotation matrix R is given by

R = V(�)V(��)V(�
�

4
)H(��)V(

�

4
)� V(�

�

4
)H(�)V(

�

4
): (7.48)

For transverse magnetic fields, the orbital bending angles are obtained by the preces-
sion angle divided byG. The contribution of each magnet to orbital displacements,
which commute, is seen to sum to zero. Since the time of this invention numerous
other schemes have been proposed and some implemented. Some novel designs of
Steffen exhibit also the highly desirable feature of energy-independent spin preces-
sion.

Interestingly, it was not until 1989 that the Siberian snake concept was tested
experimentally24;25. Shown in Figs. 7.6 and 7.7 are measurements of the vertical
and radial polarization taken at different beam energies in the vicinity of theG = 2
imperfection resonance. The horizontal axis shows the error field introduced 180�

opposite of the Siberian snake. With the snake turned off, the polarization of the
injected beam was vertical to match the stable spin direction in the ring. With the
snake on, the incoming polarization was oriented in the plane of the accelerator at an
angle consistent with the prefered longitudinal orientation at the Siberian snake.

It is worth mentioning that the presence of a Siberian snake in an accelerator may
introduce a new kind of resonance dubbed a snake resonance26 . The snake resonance
condition is given byu�res = t�s+n in which�s (=1

2
) is the spin tune determined by

the snake,�res is defined in Eq.7.33, andu; t andn are integers. Depolarization may
occur if the spin precession frequency is modulated by the frequency at which the de-
polarizing precession elements are encountered by the orbiting particle. Experimental
verification of the presence of the snake resonance is given in ref.27
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Radial Polarization
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Figure 7.6: Measurements of radial polarization near aG = 2 imperfection resonance (at about 106.4
GeV) at 5 different beam energies with a 100% Siberian snake on (left) and off (right).
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Vertical Polarization
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Figure 7.7: Measurements of vertical polarization near aG = 2 imperfection resonance (at about 106.4
GeV) at 5 different beam energies with a 100% Siberian snake on (left) and off (right).
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7.8 Partial Siberian Snakes

In 1989 T. Roser28 proposed an elegant and intuitive variant of the Siberian snakes
called partial Siberian snakes. With the benefit of reduced cost and required space, at
lower beam energies partial snakes may be used place the spin tune (not at1

2
as in the

case of full snakes) at a desired value thus avoiding known locations of imperfection
and/or intrinsic resonances. The expression for the spin tune versus energy was given
in Eq. 7.45 and is shown in Fig. 7.8 for different percentages of applied longitudinal
field (� = � denotes a full snake which is designated in the figure by 100%). The
diagonal line shows the spin tune with no snake. As can be seen, even a relatively
weak (� few%) snake can be used to avoid the imperfection resonance at�s =integer.
Moreover, once the betatron tunes are known, the snake strength can be set such that
intrinsic resonances are also avoided.

aγ-n

ν s-n

+0.75

-0.75

0.00

-0.75 +0.750.00

0%

25%

50%
75%
100%

Figure 7.8: The dependence of the spin tune onG for various strengths (indicated by percentage of full
180 degree spin precession).

An example showing the first demonstration of the ability of partial Siberian
snakes to avoid depolarizing resonances is shown in Fig. 7.9. With a 10% snake full
polarization was maintained. Since the time of these data, partial snakes have been
installed and successfully used29 to ramp polarized protrons to high energy (� 22
GeV) at the Brookhaven AGS in preparation for high energy spin physics in RHIC.
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Figure 7.9: Demonstration of polarization preservation in the vicinity of an imperfection resonance using
a partial Siberian snake.

7.9 Spin resonance theory

Until now we have avoided the use of complicated formulas and have presented basic
concepts one needs in practical applications of spin transport and preservation. In
particular the resonance criterion of Eq. 7.33 was simply stated without proof. Here
we expand on the Thomas-BMT equation and demonstrate explicitly the resonance
conditions of spin motion.

We rely on the work of Courant and Ruth30, who expressed the magnetic fields
in the Thomas-BMT equation in terms of the particle coordinates. They found that
the spin equation of motion reduces to

dSx

d�
= ��Ss � rSy;

dSs

d�
= +�Sx � tSy ;

dSy

d�
= +rSx + tSs; (7.49)

where�; r;andt are functions of the transverse coordinates of the particle orbit. In the
cartesian coordinate system (withx̂ radially outward,̂s along the beam direction, and
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ŷ vertical) and� the local radius of curvature of the reference orbit, these variables
are given by30

� = G � (1 +G)�x00 � G

r = (1 +G)y0 � �(1 +G)

�
y

�

�0

t = (1 +G)�y00; (7.50)

with the derivatives taken with respect to the longitudinal coordinate,s.
Eq. 7.49 can then be transformed into an equivalent spinor representation, for

which
d	

d�
=
i

2
H	: (7.51)

HereH is the spinor precession matrix given by

H =

�
�� �t� ir

�t+ ir �

�
; (7.52)

and	 is a two component complex spinor. As before the polarization components
are obtained by taking the expectation value of the Pauli matrix vector,~�; i.e.

Si = 	y�i	: (7.53)

The off diagonal matrix elements inH characterize the effect of spin depolarization
due to the coupling between the up and down components of the spinor wave function.
Due to the periodic nature of a synchrotron, the coupling term of Eq. 7.52 may be
expanded in terms of the Fourier components; i.e.

t+ ir =
X

�ie
�i�ires� (7.54)

in which � is the particle's orbital angle,�ires is the value of the resonant tune for
the ith resonance from Eq. 7.33, and�i is the resonance strength and is given by the
Fourier amplitude

�i =
1

2�

Z
(t+ ir)ei�

i
res�d�: (7.55)

The resonance strength, which may be calculated by summing over error fields en-
countered by the particle in one turn around the ring, is approximately

�i �
1 +G

2�

X @By=@x

B�
yei�

i
res�: (7.56)

This corresponds to summing over the precession angles due to each radial error field.
The functionH is uniquely determined by the properties of the synchrotron. In the
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analyses of previous sections we have assumed that the function,H, is piecewise
constant.

As an illustration of the previous results, we now show that a transverse imper-
fection resonance can also shift the spin tune. In the single resonance approxima-
tion26;31, the spin equation in the particle rest frame is given by

d	

d�
= �

i

2

�
G ��

��� �G

�
	; with � = � � e�i�res�; (7.57)

in which � is the resonance strength,�res is the resonance tune, and� is the particle
orbital angle around the accelerator. Transforming the spin equation to the resonance
precession frame (the reference frame in which the polarization vector does not pre-
cess) using

	k = ei
�res�

2
�y	; (7.58)

we obtain
d	k
d�

=
i

2
(��y + �R�x � �I�s)	k; (7.59)

where�i are the Pauli matrices and� = �R+ i�I . Eq. (90) can be integrated easily to
obtain

	k(�f ) = e
i
2
(��y+�R�x��I�s)(�f��i)	k(�i): (7.60)

Transforming back to the particle rest frame, we obtain then

	(�f ) = e�i
�res�f

2
�ye

i
2
(��y+�R�x��I�s)(�f��i)ei

�res�i
2

�y	(�i)
= T (�f ; �i)	(�i): (7.61)

By expanding the exponential, the spin transfer matrixT (�f ; �i) for a single reso-
nance may be calculated26;31:

T (�f ; �i) =

 
aei(c�

�res(�f��i)

2
) ibe�i(d+

�res(�f+�i)

2
)

ibei(d+
�res(�f+�i)

2
) ae�i(c�

�res(�f��i)

2
)

!
(7.62)

with

b =
j�j

�
sin

�(�f � �i)

2
; a =

p
1� b2;

c = arctan[
�

�
tan

�(�f � �i)

2
]; d = arg��;

� = �res �G; � =
p
�2 + j�j2: (7.63)

The spin tune can be obtained from the trace of the one turn transfer map,T (�+
2�; �) of Eq. 7.62, i.e.

cos��s = a cos(c� �res�): (7.64)
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Figure 7.10 shows the effect of the spin tune shift,�res �G, as a function ofG �
2 for the special cases wherej�j =

p
�2R + �2I = 0:0008 and j�j = 0:0015. In

both cases, forG far away from the resonance tune,�res, � >> j�j anda � 1 so
�s � G. As G approaches the resonance tune, the spin tune is shifted fromG

by ��s = �j�j below the resonance and by��s = j�j above the resonance; i.e.
the spin tune is always shifted away from the resonance tune. Therefore at a given
energy, the observed width of the vertical polarization would always be increased
when the effect of the imperfection resonance is included. The observed slope of the
radial polarization through the fully compensated field value would also be lessened
in magnitude. Figure 7.10 indicates that the effect of the imperfection resonance
becomes important only in very close proximity to the resonance.

 νres-Gγ

Gγ-2
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ε=0.0015
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Figure 7.10: Spin tune shift vs.G � 2 near an imperfection resonance. From Eq. 7.64 the dependence
of the shift in the spin tune onG � 2 due to an imperfection resonance is plotted. The dashed curve
corresponds to a resonance strength of magnitude 0.0008. The solid curve results for a resonance strength

of 0.0015.

Near the imperfection resonance, the spin motion can be seen by transforming to
the resonance precession frame by letting

	1 = e�
i
2
���y	 (7.65)
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with � = ��G in Eq. 7.57. Then

d	1

d�
= �

i

2

�
�� �

�� �

�
	1: (7.66)

The solution, decomposed into two eigenmodes, is

	� = e�i
��
2

0
@ �

j�j

q
���
2�

�

q
���
2�

1
A ; (7.67)

where� =

q
�2 + j�j

2. The particle spin is given by a linear combination of the
eigensolutions:

	1(�) = C+	+ +C�	� (7.68)

normalized such thatjC+j
2
+ jC�j

2
= 1. The component along the y axis is

Sy = 	y�y	

= 	1
y�y	1

=
�

�
(jC+j

2
� jC�j

2
) +

2j�j

�
Re[C+C�

�ei��]: (7.69)

For an initially vertically polarized particle, the time averaged vertical polariza-
tion is found to be

hSyi =
�

�
(jC+j

2
� jC�j

2
) =

�2

�2
=

�2

�2 + j�j
2

(7.70)

which is less than the initial polarization by an amount that depends on the resonance
strength�.
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Chapter 8

Injection and Extraction

Injection into a storage ring or linac is the final part of beam transfer from one ac-
celerator to another. Injection should be accomplished with minimum beam loss and
emittance dilution. Single-turn injection is straightforward. In many cases, one also
wishes to accumulate beam, in a storage ring, by reinjecting different beam pulses
into the same rf bucket. This is called multi-turn injection. In addition to conven-
tional schemes, there are several new or more exotic injection techniques, devised to
control and improve the properties of the stored beam.

Extraction refers to the removal of beam from an accelerator. It is roughly the re-
verse process of injection. One difference is that usually at extraction the beam energy
is higher. Thus space charge effects are less important, but the hardware requirements
are more challenging. A high extraction efficiency is necessary to avoid activation of
accelerator components and to make optimum use of the accelerated beam. Which
extraction procedure is chosen depends on the specific application. Fast one-turn
extraction is used for transfering bunches between different circular machines in an
accelerator chain. For fixed-target experiments, slow extraction by the controlled ex-
citation of nonlinear betatron resonances is a common technique, which provides a
slow uniform spill. Again, several novel extraction schemes are being studied, for
example, extraction using a bent crystal.

A good overview of conventional beam injection and extraction can be found in
Refs.1 and2.

8.1 Transverse Single-Turn Injection

In single-turn injection, the beam is brought onto the central orbit using a septum
magnet and a fast kicker element, as illustrated in Fig. 8.1. In the following, we
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assume that the injection is performed horizontally. The expressions derived can be
extended easily to the vertical case, or to a combined horizontal and vertical injection.

At the exit of the septum, the injected beam must be at a horizontal distancexsep
from the center of the machine aperture:

xsep � nx(�xi + �xs) + �x

�
�p

p

�
i

+ xco;rms + xi;rms + dsep (8.1)

where�xi, �xs are the rms beam sizes of the incoming beam and of the stored beam,
respectively,nx is the required beam stay-clear for sufficient beam lifetime or neg-
ligible injection losses (e.g., reasonable values may benx � 8 for electron rings,
andnx � 4 for proton rings),(�p=p)i the relative momentum deviation of the in-
jected beam with respect to the ring energy,�x the dispersion function,xco;rms the
rms closed-orbit offset at the location of the septum,xi;rms the rms orbit variation of
the injected beam, anddsep the thickness of the septum. For simplicity in Eq. (8.1)
we assumed that the injected and the stored beam have the same beam stay-clear, in
units of their rms beam size.

The injected beam must be at the center of the aperture when it reaches the kicker.
Let R denote the2 � 2 transport matrix between the septum and the kicker. The
conditionxkic = R11xsep + R12x

0

sep = 0 determines the correlation of anglex0sep
and offsetxsep of the injected beam at the exit of the septum:

x0sep = �
�sep + cot�

�sep
xsep (8.2)

where� denotes the phase advance from septum to kicker, and�sep and�sep are the
beta and alpha function at the septum. The angle can be adjusted by changing the
strength of the septum magnet. The kicker must then apply an angular deflection of

�kic = �
xsepp

�sep�kic sin�
(8.3)

A large value of�kic reduces the kicker strength, and also reduces the relative contri-
bution to� due to the septum thickness.

In case of a FODO lattice, septum and kicker are best placed downstream of a
focusing quadrupole, where the beta functions are close to maximum. In the partic-
ular case that the phase advance� is �=2, the above formulae simplify tox0sep =

��sepxsep=�sep, �kic = �xsep=
p
�sep�kic.
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Ex.8.1. Required septum fields for injection and extraction
Suppose that the minimum beam separation at the septum isxsep > ns�x. Derive an
expression for the integrated kick strengthBkicLkic, withBkic the kicker magnetic field
andLkic its length, as a function of normalized emittance�x;N and energy.
Assumens = 10, � = 100 m, � = �=2, a kicker length ofLkic = 5 m, and a
normalized emittance�x;N = 4 �m. Compute the magnetic fieldBkic required at a
beam energy of 10 GeV and at 10 TeV.

The septum units can be either dc septum magnets or dc electrostatic wires. In
either case, the stray or leakage fields of the septum are a concern. These nonlinear
fields can affect the quality of the stored beam, if too large and improperly shielded.

The kicker magnets must be fast, since their rise and fall time determines the
size of the gaps between bunches or between bunch trains in the ring. Typical time
constants are tens of nanoseconds, and voltage and current levels of 80 kV and 5000
A, with fields of 500 Gauss, are not uncommon. Frequently ferrites are used for
field containment, and sometimes a ceramic vacuum chamber is inserted between
ferrite and the beam, with a conducting layer deposited on the inside of the ceramic.
It is remarkable that the conducting layer can be much smaller than the skin depth
and still provide adequate shielding of the beam fields. Shielding occurs when the
thickness of the metal coating is larger than the square of the skin depth divided by the
thickness of the ceramic3. The coupling impedance experienced by the beam should
be measured prior to installation of the kicker chamber; as an example, measurements
for a prototype LHC kicker chamber are documented in Ref.4.

Other injection issues are transient beam loading and phase-space matching. Ref.
5 gives a thorough review of beam loading compensation in storage rings, including
a discussion of direct rf feedback and of problems that can arise from klystron power
limititions. Horizontal and vertical dispersion and beta functions, as well as the ratio
of bunch length and energy spread must be matched to the ring (or linac) optics. The
latter can be achieved via bunch rotation, bunch compression, or energy compression.
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Ex.8.2. Emittance dilutions from injection errors
Consider injection into a storage ring with a 1 mm orbit error at� = 100 m, in both
betatron phases.
a) Estimate the corresponding (growth in) normalized emittance after complete filamen-
tation for proton, muon and electron beams at 10 GeV and at 1 TeV. Compare this with
the design normalized emittances of the LHC (3.75�m), the multi-TeV Muon Collider
(50�m), and the NLC (3 nm vertically). Note thatmec

2 = 511 keV,mpc
2 = 938 MeV,

andm�c
2 = 105:7 MeV.

b) In general the orbit error results in emittance growth comparable to the design emit-
tance when it is of the same order as the rms beam size. Calculate the rms beam sizes
for a 7-TeV proton beam (LHC), a 500-GeV electron beam (NLC) and a 2-TeV muon
beam (MC) at� = 100 m.

It is also possible and indeed more elegant, to install two kickers in the ring,
powered in parallel by the same pulser. They are arranged such that only the second
kicker of the pair deflects the injected beam, while both kickers act on the stored
beam. If the phase advance between the two kickers is� or 2�, and the sign of
the kick appropriately chosen, the kicker deflections generate a closed bump for the
circulating beam. The advantage is that in this case the rise and fall times of the
kicker do not have to be smaller than the bunch spacing, but can be on the order of
the revolution time. The requirements on the kickers can be further alleviated by a dc
orbit bump, which brings the stored beam closer to the septum prior to the injection.
Such a scheme is used at PEP-II6. The PEP-II injection process is illustrated in Fig.
8.2.
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Figure 8.1: Schematic of single-turn injection with septum and kicker: (top) magnet arrangement, (bottom)
phase-space diagram.
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(a) nominal situation
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Figure 8.2: Injection process for PEP-II6.

6



8.2 Multi-Turn Injection

8.2.1 Transverse Multi-Turn Injection

Multi-turn injection usually employs a programmed orbit bump in the vicinity of the
septum, instead of a fast kicker. The injection scheme is different for electrons and
for protons or heavy ions.

In case of electron rings, radiation damping is utilized. First, a single bunch is
injected. Then the orbit bumps is reduced over a few revolution periods. After a
few damping times, when the beam size has shrunk to its small equilibrium value,
the orbit bump is reintroduced, and another bunch is injected into the same bucket.
Similar schemes, though usually in the synchrotron phase space, are employed for
accumulation of stochastically cooled antiproton beams.

For proton or heavy ions beams, the orbit bump is reduced slowly in time, and
bunches are injected into different regions of the ring acceptance, so that the early
bunches occupy the central region, and the later ones the outer parts of the acceptance.
Some emittance dilution is inherent to this scheme. ForN turn injection, the final
emittance can be estimated from the rough formula1:

�s > 1:5N�i (8.4)

Much larger emittance dilutions arise when space charge effects are important.

8.2.2 Longitudinal and Transverse Multi-Turn Injection

The accumulation efficiency can be increased by combining transverse and longitu-
dinal injection. This option is being studied for LEAR7. As in the purely transverse
multi-turn injection scheme, a local orbit bump is created and then decreased during
the injection of successive linac bunches. At the same time the linac energy is ramped
such that, at the injection septum, the closed orbit corresponding to the instantaneous
linac energy remains constant. In other words, the change in the bump amplitude
xbump(t) and the simultaneous variation of the momentum�(t) are related by

��(t) = �xbump(t) + x0 (8.5)

wherex0 is a constant and� the dispersion at the injection septum. In this scheme,
the final transverse emittance is smaller than for the conventional multi-turn injection
at the expense of an increased momentum spread. Figure 8.3 compares simulated
phase space distributions7 for transverse and combined injection into LEAR. Figure
8.4 shows the predicted improvement in the accumulation efficiency7.
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Figure 8.3: Plots of the simulated horizontal phase space for multiturn injection into LEAR7: (left) 10 turns
after start of purely transverse injection and (right) 20 turns after start of combined longitudinal transverse

injection. Each bunch is represented by three ellipses with slightly different momentum deviations.

8.2.3 Longitudinal Multiturn Injection

If for an electron ring the time between subsequent injections is short compared with
the radiation damping time, multiturn transverse injection becomes difficult. In such
a case, longitudinal injection offers a solution. Here the circulating beam is brought
close to the septum with an ac bump and the incoming beam is injected with a negative
energy offset such that the product of this offset in energy and the dispersion is equal
to the distance between the newly injected and the stored beam. The injected bunches
conduct slow synchrotron oscillations.

Consider as an example the case of LEP8. Half a synchrotron period after the
first bunch is injected, the next injection occurs. At this time, the first bunch is at its
maximum distance from the septum. The situation is illustrated in Fig. 8.5. Similarily
one could conceive injecting every 1/4 oscillation period, thusaccumulating 4 injected
bunches in one rf bucket. An advantage of longitudinal injection is a factor two faster
damping of the injection oscillations. A possible disadvantage is that theacceptable
time separation of successive injections is constrained by the synchrotron frequency.

8.2.4 Phase-Space Painting

For proton and ions beams, the multi-turn injection is often described as “phase-space
painting”9;10. This term refers to the injection of many small (linac) bunches into dif-
ferent spots of a 2- or 6-dimensional storage-ring phase space, so as to generate a
desired beam distribution,e.g., an approximately uniform distribution with reduced
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Figure 8.4: Effective number of turns stored in LEAR as a function of the number of injected turns7.
The solid lines represent the combined transverse longitudinal injection scheme, for three different LEAR

optics. For comparison, the dashed line is for a purely transverse injection.

space-charge effects. The combined longitudinal-transverse injection into LEAR dis-
cussed in subsection 8.2.2 can be considered as an example of phase-space painting.

In the simplest case the beam is injected at a fixed locus in the longitudinal (or
transverse) phase space, and the painting is done automatically by the synchrotron
oscillations.

The locus can also be moved in time at a speed slow compared with the syn-
chrotron oscillations. The injected phase-space densityP (r) and its projectionp(x)
are related via

p(x) = 2

Z R

x

rP (r)drp
r2 � x2

(8.6)

whereR denotes the maximum radius in phase space at which bunches are injected.

Ex.8.3. Filamentation
Consider a point bunch which is injected somewhere in phase space at a radiusr.
Compute the projected beam densityp(x), normalized to unity, after filamentation.

From a desired functionp(x), the corresponding radial densityP (r) can be com-
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puted. The radial increment between two successive bunches is9

�r �
1

2�rP (r)Ninj

(8.7)

with Ninj the total number of injected bunches.
More complicated schemes are frequently used. Similar to the above horizontal-

longitudinal injection for LEAR, one can also combine horizontal and vertical paint-
ing. For example, at RAL, a vertical steering magnet in the injection line is ramped,
while the guide field in the ring is decreased10 . Initially, there are small horizontal
and large vertical oscillations, while at the end of the injection the situation is re-
versed. Instead of the vertical steering in the injection line, a programmable vertical
orbit bump in the ring could be employed.

8.3 H� Charge Exchange Injection

The idea ofH� exchange injections originated in Novosibirsk11. It is now the pre-
ferred injection scheme for proton machines1. In this schemeH� ions are accelerated
by a linac and are stripped to protons, when they traverse a thin foil during injection
into the ring1;12, as illustrated in Fig. 8.6.

Since the stripping of theH� ions to protons occurs within the ring acceptance,
Liouville's theorem does not apply, and, in principle, a very high proton density could
be attained by injecting successive bunches into the same region of phase space. In
most practical applications, however, vertical steering in the injection line is combined
with a ramped horizontal orbit bump in the ring in order to provide a very uniform
filling of the phase space and to minimize space charge effects.

The heating of the stripping foil and stripper scattering effects limit the foil thick-
ness. Typical thicknesses range between 50 and 200�g cm�2 (less than 1�m), with
stripping efficiencies of 98% for 50 MeV protons1. As foil materials, polyparaxylene,
carbon and aluminum oxide have been used. The rms scattering angle for a single foil
traversal is typically on the order 0.2 mrad. The total scattering angle increases as the
square root of the average number of passages through the foil. The stripping foils are
supported at three edges, so that vertical beam motion cannot be exploited to reduce
the number of foil traversals.

Stacking simultaneously in both betatron and synchrotron phase space reduces
the number of foil traversals. This can be achieved by changing the magnitude of an
orbit bump, while also ramping the frequency and phase of the rf system during the
injection cycle. The following lattice parameters at the location of the foil are advan-
tageous1: �0 = 0, �x = 0, and�(�p=p) >

p
A�, where�p=p is the momentum

acceptance andA is the transverse acceptance (in emittance units). A location be-
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tween two symmetric defocusing quadrupoles is suitable. The quadrupole assists in
deflecting the unstrippedH� ions.

Stripping foils are used for heavy ions as well. The final charge distribution of
the ions depends on the foil thickness and on the particle energy13. In the extreme
case, the ions can be fully stripped.

Foils are also used for extractingH0 atoms or protons fromH� storage rings. A
gas jet or a laser beam14 would facilitate extraction in a similar way.

8.4 Resonant Injection

Another injection schemes worth mentioning is a proposal for resonant injection15.
Here bumper magnets with dipole, quadrupole and octupole fields are excited to pro-
duce a separatrix with two stable regions in phase space; the stored beam is in one re-
gion, and a bunch is injected into the other region. Afterwards, the fields are adjusted
to merge the two parts of the beam. Then the injection condition is reestablished.

8.5 Continuous Injection

Continuous injection has been proposed as a means for maximizing the luminosity of
a circular collider16. The motivation is obvious. If the stored beam could be continu-
ally replenished so that the current per bunch stays constant, then the average luminos-
ity would roughly equal the peak luminosity. Continuous injection would also reduce
fill-to-fill variations and avoid transient events, thereby establishing quasi-static con-
ditions. Finally, at the beam-beam limit, the beam lifetime decreases exponentially
with the luminosity. Thus, continuous injection supporting a much reduced lifetime
could provide a substantial gain in peak luminosity.

As an example, taking all these effects together, continuous injection is estimated
16 to potentially increase the average luminosity of the PEP-II B factory by about a
factor of 5, assuming that each bunch in both rings can be replenished every 2.1 s. In
this example, a 67-ns long orbit bump would move the injected bunches transversely
to about 4� from the stored beam core. This is done so that the injected bunches have
an unobstructed passage through the physics detector. The effective minimum beam
lifetime which can be supported is given by16

� =
N

�N
�t; (8.8)

whereN is the nominal number of particles per bunch,�N is the number of particles
added into a single bunch per injection, and�t the time period between successive
injections into the same bunch. Extreme parameters for PEP-II are16 N � 1:2�1011,
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�N � 109, and�t � 2:1 s, yielding a minimum supportable beam lifetime of
� � 4:2 minutes.

8.6 Injection Envelope Matching

At injection into a storage ring, if the incoming beam distribution is not properly
matched to the ring optics, the beam envelope in phase space will rotate around the
matched design envelope. This oscillation will result in turn-to-turn beam-size varia-
tions, which can be measured on a synchrotron light monitor using a gated camera.

An injection-mismatch measurement from the SLC damping ring17;18 is shown
in Fig. 8.7. The different pictures correspond to successive turns after injection, start-
ing with turn number one. Each picture is an average over 8 individual images.
Clearly visible is a variation of the bunch shape from turn to turn.

In case of the SLC damping ring, the matching of the injected beam distribution
consists of minimizing the measured beam size after 1250 turns, by varying several
quadrupoles at the end of the injection beam transport line. A number of 1250 turns
was chosen, because at this time the initial beta and dispersion mismatch has com-
pletely filamented. Since, on the other hand, the time scale is much shorter than the
radiation damping time, the emittance is given directly by(Bmag � �), where� is the
emittance of the injected beam.

It is interesting to note that, in much the same manner as for the centroid mo-
tion measured with BPMs, the beam size variation can be analyzed in the frequency
domain by a Fourier transform. A beta mismatch will appear as a frequency line at
twice the betatron tune, while a dispersion mismatch will be evident as a line at the
betatron tune itself18. If only a beta mismatch is present, the ratio� of the dc Fourier
component and the component at2Qx is equal to(Bmag=

p
Bmag2 � 1). From this,

Bmag = 1=
p
1� ��2 can be determined18;19.

Figure 8.8 shows the beam size for the first 100 turns after injection, as well as
the FFT (multiplied with=� where is the relativistic Lorentz factor and� the beta
function). Clearly visible are peaks at2Qx in the horizontal signal and at(1� 2Qy)

in the vertical one. The final emittance after filamentation,Bmag�, is given by the dc
component of the FFT.

The standard matching procedure reduces the FFT signals at2Qx, (1�2Qy ) and
Qx, as illustrated in Fig. 8.9.
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Figure 8.5: Double injection into the same rf bucket; bunches are injected off-energy at a point with
dispersion. Time between the two injections is half a synchrotron oscillation period modulo a full period.

This picture is copied from Ref.8.
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Figure 8.6: Schematic ofH� stripping injection.
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Figure 8.7: Beam images on the first twelve turns after injection into the SLC Damping rings, illustrating
the effect of an injection mismatch17;18. These are pictures from a synchrotron light monitor taken with a
gated camera. Each image is an average over 8 beam pulses. The beam-size variation from turn to turn is

an indication of injection mismatch.
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Figure 8.8: Horizontal (top) and vertical (bottom) beam sizes for the first 100 turns after injection into the
SLC damping ring (left) and their FFT (right)18. Clearly visible in the frequency spectra are lines at2Qx;y

(top) and at1� 2Qy (bottom), whose amplitude is a measure of the amount of beta mismatch.
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Figure 8.9: Same as Fig. 8.8, after beta matching18. The peaks at twice the betatron tune have disappeared.
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8.7 Fast Extraction

Fast extraction is similar to single-turn injection. Orbit bumps are generated which
move the stored beam close to a septum magnet. Then a fast kicker is fired, which
deflects the next bunch, or group of bunches, into the extraction channel. If only
one kicker is used, the kicker rise time must normally be smaller than the separation
between two circulating bunches. The pulse length and fall time of the kicker are
determined by the number of bunches to be extracted, and by the ring fill pattern. The
minimum deflection angle required is

�kic =
xsepp

�sep�kic sin�
(8.9)

where�sep and�kic are the beta functions at septum and kicker,� is the phase ad-
vance between these two elements, andxsep is the minium displacement at the septum
required for clean extraction. The initial orbit bump reduces the value ofxsep. In a
FODO lattice, the kicker can be positioned just upstream of the focusing quadrupole,
and the septum at the identical position one cell downstream. This gives the maxi-
mum values for the beta functions, and thus minimizes the deflection angle from the
kicker.

For extraction from the damping ring of a linear collider, it is extremely important
that the deflection imparted by the kicker has a very small pulse-to-pulse fluctuation
(`jitter' ) and is sufficiently flat over the length of a bunch train. In order to confine
the IP orbit variation at the interaction point to 0.1�� (�� is the IP spot size), the orbit
variation at the septum should be smaller than0:1�sep. The tolerance on the relative
deflection error is��kic=�kic < 0:1�sep=xsep, where�sep is the rms beam size at he
septum, andxsep the transverse displacement of the kicked beam. This can also be
rewritten as20

��

�
�

(0:1)
p
�ext�sep

dsep + ns
p
�inj�sep

(8.10)

where�ext and �inj are the injected and extracted beam emittances,�sep the beta
function at the septum, andns the distance between the closed orbit and the injection
plate in units of the injected rms beam size, when the beam is largest. For electron
rings, one must havens � 7. Using typical parameters, the jitter tolerance for the
kicker is on the order of a few10�4, and it is mainly determined by the ratio of the
extracted beam emittance to the injected emittance20. A possible solution is the use
of a double kicker system, separated by a betatron phase advance of�, to cancel the
jitter20;21. This compensation scheme is illustrated in Fig. 8.10. One kicker would be
placed before the septum and one in the extraction line. If a pulser feeds both kickers
in parallel, with appropriate cable delays, kicker pulse errors in the first magnet are
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canceled by the second magnet. A double-kicker system of this type has been built
and installed at the KEK ATF22.

-I

kicker
pulser

kicker 2

kicker 1

septum

circulating beam

extraction line

pulser cable

Figure 8.10: Damping ring extraction with double kicker system, for reduced beam orbit fluctuation down-
stream. A change in the pulse shape alters the deflection from both kickers equally. The R matrix between
the two kickers and cable delay times are chosen such that the effects of the two deflection errors cancel

exactly, and the final beam trajectory is unchanged.

Similar techniques can be applied to compensate for drifts of the septum field.
So contemplates the NLC design the use of a compensating bending magnet in the
extraction line, which is powered in series with the septum and placed such that field
fluctuations will cancel21.

8.8 Kickers and Septa

There are several different types of kicker magnets such as23;6: (1) current loop inside
the vacuum, (2) terminated transmission line inside the vacuum, (3) ferrite magnet
outside the vacuum, and (4) multi-cell transmission lines with ferrite flux returns21.
As an example, Fig. 8.11 shows the ferrite kicker and the kicker pulser circuit adopted
for PEP-II6.

Typical kicker rise and fall times are 50-150 ns (SLC and NLC design: 60 ns,
PEP-II: 120 ns). For a fast horizontal kicker with ferrite yoke, the characteristic time
constant of the kicker scales aslw=g, wherel is the length,w the width, andg vertical
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gap of the kicker. This time constant can be reduced by dividing the kicker into several
shorter length segments. The kicker magnets are powered by kicker pulsers, usually
based on thyratron cable discharges. The pulse shape can be modified by adding filters
and capacitors in parallel with the charge line. Spark gaps and solid-state FETs, such
as in Fig. 8.11, are thyratron alternatives with potentially shorter rise and fall times21.

For many future applications with closely spaced bunch trains, shorter kicker
time constants are desired. A very fast counter-traveling wave kicker was designed
and built for the TESLA project24. This kicker scheme uses two parallel conducting
plates or electrodes. These are excited by short pulses from a generator, generating an
electromagnetic wave which travels in a direction opposite to the beam, and produces
a horizontal kick. At the end of the kicker plates, the wave passes into two ceramic
outputs, in which ideally it is fully damped. For a beam traveling opposite to the wave
the magnetic and electric forces add, while they cancel each other for a beam moving
in the same direction. The maximum integrated kicker strength in units of voltage is
given by

S0 �
2Uml

a
(8.11)

whereUm is the maximum pulse voltage at each plate,a is the half aperture, andl the
length. A kicker was tested withUm = 2 kV, a = 25 mm, and total lengthl of 0.5 m.
Figure 8.12 shows output pulses measured on this kicker prototype, demonstrating
a zero-to-zero pulse length of about 6 ns. The maximum pulse height corresponds
to the predicted kick strength of 80 kV, or 2.76 Gm. ForE = 3:3 GeV, this would
amount to a deflection angle of 24�rad.

An ultrafast beam-beam kicker was proposed25, which could provide even faster
kicker pulses. Here, a wide high-charge low-energy bunch traverses the beam pipe
either parallel to the beam direction or perpendicular to it. The electro-magnetic or
electric field of this bunch is used to deflect (and extract) a bunch circulating in the
ring. The pulse length of the beam-beam kicker is determined by the length of the
low-energy bunch and can be on the order of 2 ns. Figure 8.13 illustrates the two
different geometries for a beam-beam kicker.
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Figure 8.11: Schematic of PEP-II kickers6: (top) kicker magnet cross section; (bottom) pulsing circuit
with FET switch.
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Figure 8.12: Very fast kicker prototype24: (top) layout; (bottom) measured output rf pulses. (Courtesy V.
Shiltsev, 1998).
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Figure 8.13: Beam-beam kicker: `Head-on' (top) and `cross' scheme (bottom)25. (Courtesy V. Shiltsev,
1998).
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As we have seen, a small septum thicknessdsep reduces the requirements on
the kicker and increases the extraction efficiency. For this reason, electrostatic wire
septa have been employed since many years, for example, during fast extraction at the
Fermilab Tevatron27. The Tevatron electrostatic septum consists of two 354 cm long
sections with 86 cm space in between, made from 75% tungsten and 25% rhenium
wires of 0.002 inch diameter and 0.1 inch spacing with an angle of 25�rad between
sections. The voltage of 93 kV results in an electric field of 83 kV/cm27. Very similar
electrostatic deflectors have been proposed for the muon collider28. At high energies,
the integrated strength of a wire septum often cannot provide a deflection angle large
enough for clean extraction, and, in such cases, an additional thin septum magnet is
positioned downstream.

In general, two types of septum magnets are widely used26: Lambertson iron
septum dipoles and current carrying septum dipoles. The former is illustrated in Fig.
8.14. The triangular cut-out in the window frame leaves space for the circulating
beam. As shown, a kicker deflects the beam horizontally into the septum, by which it
is then bent vertically.

Figure 8.15 depicts a current sheet septum. A current carrying septum with thick-
nessd and current densityJ generates a fieldB = �0Jd. For d of the order of
a millimeter, the septum is used in a pulsed mode to provide enough field strength.
For larger thicknesses, dc operation is common. Septum leakage fields which affect
the circulating beam are a concern. In addition to dipole and higher order fields, the
septum stray field may contain a skew quadrupole component.

coil

coil

Β

yoke

c e

Figure 8.14: Schematic of Lambertson septum iron magnet. Picture is copied from Ref.2.
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Figure 8.15: Cross section of current sheet septum6.

8.9 Slow Extraction

Slow extraction is accomplished by exciting a third ordernonlinear resonance, using
sextupoles. Also a second order linear resonance can be used, in combination with
octupoles. The extraction efficiency depends on the ratio of the amplitude growth per
turn and the septum thickness. It can be improved with a high-beta insertion at the
septum.

Figure 8.16 depicts the phase space near the 3rd order resonance, excited by
sextupoles. Particles inside the inner triangle are stable, particles outside are lost
rapidly, along one particular direction in phase space (in this example, towards the
right). The size of the triangle depends on sextupole strengths and tune.

Near the 1/3 resonance,3Q � q � 0, with integerq, the particle motion can be
described by a Hamiltonian of the form

H(I;  ) = (Q� q=3)I +
1

24
(2I)3=2j ~Ksj sin(3 + �0) (8.12)

whereI and are the action-angle variables, which are related to the transverse parti-
cle coordinates at the septum viaxsep =

p
2�sepI cos andx0sep = �

p
2I=�sep sin �
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�
p
2I=� cos . The termj ~Ksj is the absolute value and�0 the complex phase of the

resonant Fourier harmonic of the sextupole distribution weighted by the beta function:

j ~Ksje�iq�0 =
1

2�

Z 2�

0

ks(�)�
3=2(�)e�iq� d�; (8.13)

Here� is the azimuthal angle around the ring, and the sextupole strength (in units of
m�3) is given byks(�) = @2Bz(�)=@x

2=(B�), withB� the magnetic rigidity.
Suppose the tune is slightly below the 3rd integer resonance,(3Q�q) < 0. Then

a corner point of the separatrix coincides with the horizontal position coordinatexsep
at the septum, if�0 = 0. Above the resonance,(3Q � q) > 0, the optimum choice
would be�0 = �. The value of�0 can be adjusted by changes to the sextupole
configuration, or by changes to the ring optics. The particles arrive at the septum with
a large amplitude on every 3rd turn. The amplitude growth over three turns, for a
particle near the unstable fixed point is approximately

�xsep �
3�x2sepj ~Ksj

8�
1=2
sep

: (8.14)

This shows that large sextupole strengths and a large beta function at the septum (since
xsep �

p
�sep) are advantageous.

Ex.8.4. Beam offset for slow extraction
Derive Eq. (8.14).

A slow spill can be controlled by adjusting either the strength of the sextupoles or
the betatron tune. More indirectly, extraction may also involve beam steering. Making
use of chromaticity, particles of different momenta can progressively be brought onto
the resonance. Extraction starts when the beam particles at one end of the momentum
distribution fill the triangular stable area in phase space. The stable area then shrinks
to zero for these particles, and subsequently particles of different momenta are being
extracted.

For a slow extraction efficiency greater than 98%, the effective thickness of the
septum must be of the order of 100�m.

8.10 Crystal Extraction

Crystal extraction is quite a different extraction scheme. It was first studied at Dubna
and Protvino29, and later tested extensively at the CERN SPS30;31 and at the Fermilab
Tevatron32. Particles in the transverse beam halo, entering a crystal placed close to the
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Figure 8.16: Phase space schematic for slow extraction near the 3rd integer resonance. The sextupole
excitation pattern around the ring is chosen such that the maximum excursion in the horizontal coordinate
x occurs at the location of the septum. The position of the septum wire is indicated as a vertical line close

to the unstable fixed point.

beam, are trapped between the crystalline planes33. If the crystal is slightly bent, the
particles can be deflected outwards, and subsequently be transported to a fixed-target
experiment. Figure 8.17 shows a schematic view of crystal extraction.

Crystal extraction is foreseen as an option for the LHC. It would be parasitic to
the normal collider operation, and re-utilize the halo particles which do no longer
contribute to the collider luminosity.

Channeling occurs if the incident angle of the particles is smaller than the Lind-
hard critical angle. For the (110) planar direction in silicon the critical angle is33

	crit = 5�rad

p
Zp

p[TeV=c]
(8.15)

wherep is the momentum of the incident particle andZ is its charge in units of the
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scattered

channeled

surface layer

crystalline planes

Figure 8.17: Extraction from the transverse halo of a circulating proton beam by means of a bent crystal.
Particles incident with a large impact parameter are channeled and deflected outwards. Particles hitting the
inefficient crystal surface layer experience multiple scattering, and may be channeled on a later turn; this

is called multi-pass extraction.

electron charge.
Thermal vibrations, the discreteness of the crystal lattice, and the presence of the

electrons in the target all increase the transverse energy of a channeled particle, and
can ultimately lead to dechanneling. This is approximated by an exponential depletion
of the numbern of channeled particles with the traversed distancez:

n = n0 exp(�z=L0) (8.16)

The empirical parameterL0 is called the dechanneling length, and it increases linearly
with momentum. For silicon, we have33 L0 � 0:9 m p[TeV=c]. Since scattering
on nuclei is an important dechanneling process, the channeling can be improved by
cooling of the target.

Another concern are surface imperfections. To be extracted in a single pass, par-
ticles must enter the crystal with a large impact parameter. This is necessary to avoid
the inefficient surface layer, which typically is of the order a micrometers. Particle
passing through the surface area, on the other hand, experience multiple scattering.
These particles can re-enter the crystal on subsequent revolutions, this time at a larger
impact parameter and under the right conditions to be channeled and extracted.
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There is a minimum bending radius of the crystal for which channeling can occur.
For the (110) plane of silicon, this critical radius is33

Rc � 0:4 m p[TeV=c] (8.17)

Ex.8.5. Channeling in a crystal
What is the maximum bending angle over a length of 3 cm, for the LHC beam energy of
7 TeV?

The efficiency of cystal extraction is defined as the number of particles extracted
divided by the number of particles lost. Proton extraction efficiencies up to 18% have
been obtained31. Using a crystal coated with a 30�m amorphous SiO layer, pure
multi-pass extraction with an efficiency of4–7% was demonstrated31. The impor-
tance of multi-pass extraction implies that not only the initial impact parameter, but
also global machine parameters such as the beta function at the crystal and the beta-
tron tune play an important role for the overall efficiency.

Finally, not only protons but also heavy ions can be extracted by a bent crystal.
For fully stripped Pb ions (Z = 82) at 22 TeV, an extraction efficiency of 10% was
achieved at the SPS31. This was slightly lower than for protons of equivalent energy
per nucleon.
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Chapter 9

Cooling

9.1 Introduction

Many applications of particle accelerators require beam cooling, by which we mean
a reduction of the beam phase space volume or an increase in the beam density via
dissipative forces. In electron and positron storage rings cooling naturally occurs
due to synchrotron radiation, and special synchrotron-radiation damping rings for the
production of low-emittance beams are an integral part of electron-positron linear col-
liders. For other types of particles different cooling techniques are available. Electron
cooling and stochastic cooling of hadron beams are used to accumulate beams of rare
particles (such as antiprotons), to combat emittance growth (e.g., due to scattering
on an internal target), or to produce beams of high quality for certain experiments.
Laser cooling is employed to cool ion beams down to extremely small temperatures.
Finally, designs of a future muon collider rely on the principle of ionization cooling.
Reference1 gives a short review of the principal ideas and the history of beam cooling
in storage rings; a theoretical dicussion and a few practical examples can be found in
Ref.2.

In the presence of cooling, the evolution of the 1-dimensional beam distribution
functionf(x; x0; t) is described by the differential equation2

df(x; x0; t)

dt
= �f (9.1)

with the solution
f(x; x0; t) = e�tf0(x0; x

0
0
) (9.2)

where the subindex0 characterizes the initial distribution or variables. The latter,
x0 andx0

0
, are related tox andx0 by the equation of motion including the damp-

ing. Note that the phase space density about each particle increases exponentially.
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Without cooling force, the system is Hamiltonian and the local phase-space density is
conserved (df=dt = 0), so that� = 0.

It is common to introduce action-angle variables(I;  ) (whereI is proportional
to the square of the oscillation amplitude) via the relation

xp
�

=
p
2I cos (�) (9.3)

p
�

�
x0 + �

x

�

�
= �

p
2I sin (�) (9.4)

Cooling in the three phase-space dimensions dimensions results in an exponential
damping of the 3 action invariants:*

@ _Ii
@Ii

+
= ��i (9.5)

wherei = (x; z; s). The angular brackets denote an average over both angle variables
and time,

< ::: >=

Z
2�

0

d 

2�

d�

2�
(:::) (9.6)

and the�i are the damping rates in the three planes. Some algebra yields

X
i

*
@ _Ii
@Ii

+
=

X
i

*X
k

@

@Ii

@Ii

@pk
Fk

+

=
X
i

*X
k

@

@Ii

@Ii

@pk
Fk +

@

@ i

@ i

@pk
Fk

+

=

*X
k

@Fk

@pk

+
(9.7)

where we have made use of the fact that the average over of any derivative with
respect to is zero. The sum of the action damping coefficients is

�x + �z + �s = �
�
@Fx

@px
+
@Fz

@pz
+
@Fs

@ps

�
=< � ~div~p ~F >; (9.8)

independent of any coupling between the three planes of motion.
Cooling due to synchrotron radiation and due to ionization cooling is approxi-

mately described by a cooling force that is anti-parallel to the particle velocity2:

~F = �a~v (9.9)
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where the coefficienta may depend on the particle energy. The cooling is accompa-
nied by an energy loss

dE

dt
= �W = ~F � ~v = �av2; (9.10)

which can be compensated by an rf system. Assuming ultrarelativistic particles,
the cooling force of Eq. (9.9) may be rewritten in terms of the energy loss as~F =
�~vW=c2, and direct evaluation yields:

� ~div~p � ~F =

�
W

pc

��
2 +

@ lnW

@ ln p

�
(9.11)

Upon insertion into Eq. (9.8) the total decrease rate in phase space volume can be
calculated. Equations (9.8) and (9.11) state that the sum of the three damping rates
is a constant, only depending on the total rate of energy loss. In the special case of
synchrotron radiation, this is known as the Robinson theorem.

One might think it would be possible to produce a beam of nearly zero temper-
ature by cooling for a very long time. However, there is always noise inherent to all
cooling forces, which prevents reaching this limit and gives rise to an equilibrium
emittance. In the case of synchrotron radiation this noise is due to quantum fluctua-
tions, in ionization cooling it is due to multiple scattering, and in the case of stochas-
tic cooling there is electronic noise in the detector-amplifier chain and Schottky noise
from the finite number of particles in the beam.

With such noises present, the evolution of the distribution functionf(I; t) is
described by a Fokker-Planck equation of the form

@f(I; t)

@t
=

@

@I

�
�
�
�I

�t

�
f (I; t)

�
+

1

2

@2

@I2

���
(�I)2

�t

�
f(I; t)

��
(9.12)

where the angular brackets denote an average over the beam distribution. Sometimes,
for example, the Fokker-Planck terms< �I > and< (�I)2 > are linear inI and
constant, respectively, and the equation reduces to

@f

@t
=

@

@I

�
�If +

D

2

@f

@I

�
(9.13)

The beam then asymptotically approaches the distribution,f1 / exp(�I=I0), with
the equilibrium emittance

I0 =
D

2�
(9.14)

Using Eq.(9.13), it is easily verified that this distribution is stationary:@f1=@t = 0.
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If a radiation length contains more than one particle, the cooling of various par-
ticles is coupled. Under these circumstances, the beam is cooled only when particles
enter or leave the common interaction region (`mixing' ).

Ex.9.1. Longitudinal damping rate with beam cooling
Consider two particles which interact simultaneously with the cooling system2. Let the
cooling act on the momentum variable only. The equations of motion then read

dp1

dt
= ��(p1 + p2) (9.15)

and
dp2

dt
= ��(p1 + p2) (9.16)

Calculate the damping rate of the centroid motion and the momentum spread.
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9.2 Electron Cooling

Electron cooling was proposed in 1966 by G.I. Budker4. The basic idea of electron
cooling is the heat exchange between a stored hadron beam and an accompanying
electron beam via Coulomb collisions. The temperature of the electron beam is held
constant. It should be lower than the temperature of the hadron beam to be cooled.
This is easily fulfilled since for equal ion and electron velocities,ve � vi, the temper-
ature of the ion beam is

Te �
me

M
Tion; (9.17)

whereM andme denote the ion and electron masses, respectively. Because of their
mass ratio, the temperature of the ion beam is much larger than that of the electron
beam. The average velocities of the hadron and electron beams should coincide in the
cooling interaction region, in order to maximize the Coulomb cross section. Viewed
in the electron rest frame, moving with the electron beam, the ions are 'stopped'
similarly to the slowing down of charged particles traversing matter, because in the
Coulomb collisions energy is transferred from the ions to the electrons. The typical
layout of an electron cooler and a photo of the electron cooling system at LEAR are
depicted in Figs. 9.1 and 9.2, respectively.

Transverse and longitudinal temperatures of the ion beam can be defined by anal-
ogy with kinetic gas theory:

T? =
Mu2?
kB

(9.18)

and

Tjj =
M�u2jj

kB
(9.19)

whereM is the ion mass andu the ion velocity. The two temperatures are usually not
the same. The electron-beam temperature is defined in the same way.

The cooling force may be estimated by considering the collision of a single ion
with a single electron in a reference frame where the electron is at rest before the
collision2.

We split the collision into two steps. During the first step, electron and ion ap-
proach each other, in the second step they are separating again. We assume that during
the first part the electron is accelerated by the field of the ion and that it moves in the
direction of the impact parameter. The situation is sketched in Fig. 9.3.

At the end of the first time step, the electron velocity is

�ve =
Zrec

2

�u
(9.20)
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Figure 9.1: Schematic of electron cooling for an ion storage ring.

whereu is the velocity of the ion and� the (initial) impact parameter. At this time the
electron has moved about a distance

�� � Zrec
2

u2
(9.21)

The average variation of the ion momentum projection on the directionu is�
dpu

dt

�
= unemec

2

Z
�max

�min

�
Zrec

�u
� Zrec

(����)u

�
2�� d� (9.22)

wherene denotes the local density of the electron beam, andme the electron mass.
Expanding in powers of�� and keeping only the leading contribution, one finds�

dpu

dt

�
=

2�ner
2

e
Z2mec

4

u2
LC (9.23)

where we have introduced the Coulomb logarithmLC � ln
�
�max

�min

�
. As an upper
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Figure 9.2: Electron cooling system at LEAR. (Courtesy M. Chanel, 1999).

integration limit�max we may take the Debye shielding length of the electron beam:

rD �
�

kBT

4�mec2nere

�1=2
(9.24)

A lower limit can be determined from the validity of the approximations made above,
or from the maximum momentum transfer to the electron (classical head-on colli-
sion):

�min =
Zrec

2

u2
(9.25)

In numerical estimates,LC is usually taken to be constant, of the order of 10.
The averaging of Eq. (9.23) over the electron distribution functionfe results in

the cooling force

Fel =

�
d~p

dt

�
= 2�Z2r2

e
mec

4LC

Z
d3vefe(~ve)

~v � ~ve
(~v � ~ve)3

(9.26)

The result of a more precise evaluation of the cooling force starting from the Ruther-
ford cross section agrees within a factor of 2 with Eq. (9.26). The cooling can also be
thought of as an excitation of plasma oscillations in the electron beam.
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Figure 9.3: Collision of one ion and one electron during electron cooling2.

The cooling time�el follows from7

1

�el
=

���� 1u dudt
���� =

���� FelMu

���� (9.27)

In the laboratory frame the cooling time is larger by a factor due to time dilation
(there is a further factor of due to Lorentz contraction if the distribution function
fe is taken to be that in the laboratory frame). In the limit of large ion velocities,
the electron velocity may be replaced by a delta function; in the opposite limit an
isotropic Gaussian distribution is assumed. The cooling time in the two limits reads7 :

� =
2

�

M

me

1

Z2r2
e
c4

1

nLLC

(
1

4�
u3 u� ve;rms

3

2
p
2�

�
3

2
kBTe

me

�3=2
u < ve;rms

(9.28)

where� is the ratio of the cooling section length to the ring circumference, andnL
the electron beam density in the laboratory frame. The equation shows that electron
cooling becomes inefficient for high energies, � 1, and that the cooling time is
short for light ions of high charge. The cooling time of hot beams scales asu3, while
the cooling time of cold beams is independent of the ion velocities and only depends
on the electron temperature.

Figure 9.4 shows a schematic of the transverse and longitudinal cooling forces,
illustrating the two different cooling regimes incurred for high and low ion velocities.

Typical example parameters for electron cooling arekBTe � 0:2 eV, nL = 3�
108 cm�3, LC = 10, � = 0:05,  = 1, andZ = 1, which results in a cooling time of
40 s.

In reality, there are two additional effects which considerably reduce the cooling
times: First, the electron velocity distribution is not Gaussian, but Maxwellian, and
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Figure 9.4: Cooling force in a flattened electron beam as a function of ion velocity. The dashed curve
corresponds to the asymptotic formulae derived in the text; picture redrawn from Ref.7.

due to acceleration in the electron gun, the distribution is flattened in the longitudinal
direction. This flattening leads to much shorter longitudinal cooling times. Second, a
longitudinal magnetic field is employed to guide and confine the electron beam. This
results in cyclotron motion of the electrons. If the cyclotron period is small compared
with a typical ion-electron collision time, the cyclotron motion decreases the effective
transverse temperature of the electron beam, and could reduce the cooling times, to
values below one tenth of a second2;5;7.

The first experiments of electron cooling were performed at the NAP-M storage
ring of the Budker INP in Novosibirsk, where a 65-MeV antiproton beam was cooled
down to a final momentum spread of1:4 � 10�6 and to an angular divergence of
12:5 �rad, much smaller than the 3 mrad angular divergence of the 0.3-A 50-keV
electron beam. Cooling times of the order of 25 ms were achieved2.

The cooling stops when the temperatures of the electron and ion beam are equal.
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The velocity of a cooled coasting ion beam is equal to that of the electron beam,
vion = ve. This is useful for tuning the ion beam energy.

To relate electron cooling times for different types of particle beams, we note that
the cooling rate scales like1

1

�
/ Z2

A
(9.29)

whereA is the atomic mass number of the ion, andZ its charge number (in units of
the electron charge). We thus expect that cooling is faster for highly charged ions.
However, these ions can also more easily pick up cooling electrons and get lost. The
rate of recombination due to radiative electron capture scales approximately as1

1

�r
/ Z2 (9.30)

If the electron beam temperature is low compared with that of the ion beam, the
electron cooling rate scales as

1

�
/ 1

u3
� 1

�3
x;y

(9.31)

where� =
p
�=�x;y is the transverse rms divergence (and� here the lattice beta

function). One might thus imagine that a large value of�x;y would give the best
cooling results. However, for a large value of� also the beam size is large, and
the ions sample the nonlinear space-charge field of the electron beam. This space-
charge effect complicates the electron-ion velocity matching. In addition, a large ion
beam may only incompletely overlap with the electron beam. For this reason, an
intermediate beta function turns out to be optimal, where the ion beam is slightly
smaller than the electron beam.

One would also expect that the cooling rate increases in proportion to the electron
beam current. In reality, for larger current one observes a tendency of saturation.
Again, the limit arises from the space-charge force in the electron beam.

Let us have a closer look at the electron space-charge effects. Consider a cylin-
drically symmetric beam with longitudinal density� = I=(�c), whereI is the current
andc the speed of light, and of radiusa. For a uniform charge distribution the space
charge force is linear inside the radiusa:

Er =
2�e

4��0a2
r (9.32)

Sufficiently far away from the gun, the beam reaches an equilibrium state where the
sum of kinetic and potential energy is a constant for all particles and8:

mec
2(r) = mc2(0) + e

Z
r

0

dr0 Er(r
0) (9.33)
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or

(r) = (0) + �r0
r2

a2
(9.34)

Since
�v(r)

v
=

1

2 � 1

�(r)


(9.35)

the velocity distribution in the electron beam is parabolic as a function of radial po-
sition. For high currents, the increase in the velocity spread of the electron beam
degrades the cooling force. The situation is illustrated in Fig. 9.5, which shows the
velocity of electron and ion beams as a function of radial position. It is evident that
a nonzero dispersion at the electron cooler can reduce the average velocity differ-
ence between electrons and (off-momentum) injected beam, thereby improving the
performance. The optimum value of the dispersion function scales as9;10

D /
s

Ua2

I(�p=p)rms

(9.36)

whereU is the accelerating voltage of the electron beam,I the electron current,
(�p=p)rms the energy spread of the ion beam, anda the electron beam size. The
positive effect of a nonzero dispersion was confirmed by observations9;10.

x

v | |

e l e c t r o n  b e a m

i n j e c t e d  i o n  b e a m

s t a c k

s l o p e ~ 1 / d i s p e r s i o n / γ
2

Figure 9.5: Velocity vs. horizontal position of the electron and ion beams. Due to space charge the electron
velocities lie on a parabola; the ion velocity varies linearly, with a slope inversely proportional to the

dispersion. Because of betatron oscillations, ions occupy a large area in phase space, as indicated9;10.

Finally, it is worth mentioning that for relativistic energies electron cooling be-
comes less efficient; seee.g., Eq. (9.28). In addition, higher electron-beam energies
would be required in the cooling system.
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For the cooling of high-energy beams, it has been proposed to store the electron
beam in a storage ring, sharing a common straight section with the ion or proton
storage ring, where the cooling takes place11;12.

The emittance of the electron beam is then maintained by radiation damping. In
such scheme, the bucket spacing of the electron storage ring should be an integral
multiple of the bucket spacing of the ion storage ring12:

Ce

he
= n

Ci

hi
(n integer) (9.37)

wherehe andhi denote the harmonic numbers of the electron and ion rings, andCe
andCi their circumferences.

Ex.9.2. Temperature of a cooled beam
For each plane of motion a beam temperature can be defined by analogy with kinetic
gas theory:

< p2x >

2m
=

1

2
kBTx

< p2y >

2m
=

1

2
kBTy

< p2jj >

2m
=

1

2
kBTjj (9.38)

where all quantities refer to the beam rest frame.

a) Show thatTx = mc2

kB
�  �N

�x
and Tjj = mc2

kB
�2�2p where�N is the normalized

emittance,�p = (�p=p)rms the rms momentum spread in the laboratory frame, and
�x the horizontal beta function (so the temperature is position dependent).
b) Calculate the horizontal and longitudinal temperature for the beam from a proton
linac at injection into a cyclotron, with�N = 0:5 mm mrad,� � 0:7, �x = 10 m, and
�p=p � 10�3. Compare this with the transverse and longitudinal temperatures of an
electron, which is generated at the cathode withkBT

c = 0:1 eV in all directions and
then accelerated by a voltageU0 = 100 kV.
c) What is the transverse Debye radius of the electron beam at this temperature? As-
sume a typical electron-beam density of3� 108 cm�3 in the laboratory frame.
d) For a longitudinal solenoidal guide field of strength 500 Gauss, calculate the electron
cyclotron period and compare it with a typical impact time of� rD=u?, whereu? is
the relative transverse velocity (since the electron beam temperature is much smaller,
this is determined by the temperature of the proton beam).

Ex.9.3. Recombination of ion beams with electron cooling
Assume an electron cooler for protons provides a cooling time of 10 ms, with a recom-
bination time of105 s. Suppose the same cooling system is used for a beam of fully
stripped lead ions (A = 207, Z = 82). What is the fraction of lead ions that would be
lost by recombination during one cooling time?
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Ex.9.4. Required energy of electron beam for electron cooling
What would be the electron-beam energy required to cool the 7-TeV LHC proton beam?

Ex.9.5. Derivation of the Debye length
Derive the formula for the Debye length, Eq. (9.24), by calculating the electron density
distribution in the potential of the ion charge and assuming the electrons are in thermal
equilibrium. Makeappropriate approximations.

Ex.9.6. Interaction probabilities with electron cooling
Compare the minimum ion-electron interaction time�t = bmin=u (in the beam frame),
with the time of traversal through a 10 m cooling section. Estimate the ion velocityu

assuming a normalized emittance 10�m and a 5 m beta function. At which value of

are the two times equal?

13



9.3 Laser Cooling

9.3.1 Ion Beams

Laser cooling of atoms trapped in electromagnetic traps is well known and widely
used. In 1981 P. Channel suggested to apply laser cooling also to ions in a storage
ring13.

The idea of laser cooling exploits the Doppler shift in frequency to interact se-
lectively with ions of a certain energy. The Doppler shifted frequency in the ion rest
frame is

!0 = !(1� � cos �) (9.39)

where� is the angle between the ion velocity and the incident laser. Ions with a
velocity� so that! = !AB , corresponding to a transitionA! B of the ion electronic
state, abosrb photons, which are subsequently re-emitted. The emission is isotropic,
while the momentum received during absorption is in the direction of the laser. In one
absorption, the ion acquires the recoil velocity:

vr =
�h!AB
mionc

(9.40)

wheremion is the ion mass. To avoid isotropic stimulated emission, while yet main-
taining a short cooling time, the upper levelB of the ion should have a short decay
time. The ultimate temperature that can be reached is determined either by the en-
ergy of a single absorbed photon, or by a balance of cooling and heating due to the
randomness in the spontaneous emission recoils,

Tmin =
7

20

�h�

kB
; (9.41)

where� is the spontaneous decay rate (inverse lifetime) of the excited ion state. Laser
cooling is illustrated schematically in Figs. 9.6 and 9.7.

As an example7, consider a 100-keV7Li+ beam. The ion has a closed transition
at 548.5 nm, which can be reached by CW dye lasers. The lifetime of the upper state
is 43 ns. The change in energy due to a single absorption is 12 meV. A few mW laser
power on a 5-mm spot result in a spontaneous emission of1:2 � 107 s�1, or about
15 absorptions in an interaction region of 2 m length. This corresponds to a change
in energy of 0.2 eV. To cool an ion beam with an energy spread of 1 eV would only
require a few revolutions, or a few tenths of microseconds. The ultimate temperature
corresponds to the energy of a single kick,i.e., 12 meV.

Laser cooling requires adequate energy levels and transitions that can be reached
by tunable lasers. So far, only 4 ion species fulfill this condition (7Li+, 9Be+, 24Mg+,
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Figure 9.6: Photon absorption and emission during laser cooling7.

and166Er+). Laser cooling was demonstrated experimentally in TSR and ASTRID,
where energy spreads less than10�6 were obtained for Li beams.

So far laser cooling affects mainly the longitudinal temperature of a beam. How-
ever, it is believed that by resonantly coupling the synchrotron and betatron motion,
the very fast laser cooling can be extended to the transverse phase space15. The cou-
pling between synchrotron motion and horizontal betatron motion may be provided
either by a special coupling cavity16, or, more simply, by momentum dispersion in a
regular rf cavity17. With such coupling present, the transverse cooling is considerably
improved if the tunes are close to a linear resonance:

�x � �s � k (9.42)
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Figure 9.7: Evolution of ion velocity distribution during laser cooling of a bunched ion beam.

�x � �y � l (9.43)

wherek andl are integers.

Ex.9.7. Beam temperature with laser cooling
Consider laser cooling for 100 keV Mg+ ions (A = 24). Suppose the laser operates at
a wavelength of 280 nm, equal to a short-lived transition with a natural linewidth of 46
MHz. (a) Which relative ion velocity corresponds to the laser tuning range of 20 GHz?
(b) What is the ultimate temperature one mighthope to achieve?

9.3.2 Electron Beams

A different type of laser cooling was proposed by Telnov18 for e+e� linear colliders,
as a scheme to reduce the transverse emittances and to reach ultimate luminosities.
Collision of an electron beam with a high-power laser beam does not change the
beam spot size, nor much the angular divergence. Only the beam energy is decreased,
for example, from an inital valueE0 toE. This means that in a laser-cooling stage the
two transverse normalized emittances decrease by a factorE=E0. Telnov estimated
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that ultimate emittances of�x;y = 2 � 10�7 m could be achieved, far better than
what can be delivered by conventional damping rings.

More recently, Huang and Ruth studied a laser-electron storage ring (LESR)
where radiative laser cooling overcomes the intrabeam scattering effect19. The LESR
is sketched in Fig. 9.8. It consists of bending magnets, an rf cavity, an injector, and
a laser-beam interaction region. A circulating bunch in the ring counterpropagates
on each turn through the intense laser pulse. The laser pulse is stored in a high-Q
optical resonator, whose path length is adjusted such that the laser-pulse repetition
frequency equals the beam revolution frequency. Thus, the a single laser pulse can
interact several104 times with the same electron bunch. The LESR can be configured
either as a damping ring producing beams with very small transverse emittances, or
as a high-intensity X-ray source.

l a s e r

r f  c a v i t y

f a b r y - p e r o t  r e s o n a t o r

e l e c t r o n
i n j e c t o r

Figure 9.8: Schematic of a laser-electron storage ring19.

The effect of the laser field is the same as that of a wiggler static with peak field
strength20

Bw =
2

c

p
2Z0I (9.44)

whereI is the laser intensity andZR the vacuum impedance (377
). The power
radiated in the laser field is then

P =
32�

3
r2
e
2I (9.45)

and the energy loss of an electron per turn

(�E) =

Z
P
dz

2c
=

32�

3
r2
E
2

EL

ZR�L
; (9.46)
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whereZR is the laser Rayleigh length. The latter characterizes the depth of focus
of the laser beam and is equivalent to a laser-beam beta function. In Eq. (9.46), we
have assumed that the laser beam is diffraction limited (so that the effective laser
emittances are�L; x;y � �L=(4�)), in which case its transverse spot area�L at the
focal point is given by:�L � 2��L;x�L;y = ZR�L/2.

From the energy loss per turn we can compute the longitudinal damping time. It
corresponds to a number of turns equal to

nd =
E

(�E)
=

1:6� 105�L[�m]]ZR[mm]

EL[J] E[MeV]
; (9.47)

with E the beam energy.

Ex.9.8. Damping times with laser cooling
Calculatend for the parametersEL � 1 J, �L � 1 �m,ZR � 1 mm, andE � 100

MeV. What is the equivalent damping time for an average ring radius of 1 m?

The transverse emittances are damped at the same rate as the energy spread,

�RLC
x;y

� � 1

�x;y

�
d�x;y

dt

�
=

1

ndTrev
=

�E=E

Trev
; (9.48)

whereTrev is the revolution time.
The laser field does not only provide damping, but in the same way as regular

synchrotron radiation, it also introduces a quantum excitation. The quantum excita-
tion consists of two parts: a dispersive component, which is dominant in conventional
storage rings, and a component due to the finite opening angle of photon emission
(� � 1=). The LESR is designed with zero optical dispersion in the laser-beam
interaction region. A small amount of dispersion generated by the wiggler field is
negligible compared with the effect of the opening angle, since the wiggle angle is
much smaller than1=. This is quite different from the situation in a conventional
ring, where the dispersive part is always much larger than the opening-angle contri-
bution. Thus, in a conventional ring the emittance is determined by the dispersion
(via the ' curlyH' ), while in the LESR it is defined only by the opening angle.

The number of photons scattered into a frequency intervald! is21

dN

d!
=

1

�h!

dE

d!
=

3(�E)
�h!2

m

"
1� 2

�
!

!m

�
+ 2

�
!

!m

�2
#

(9.49)

where the energy loss per turn(�E) was given above, and!m = 42!L = 8�2c=�L
is the maximum photon frequency. The photon frequency! and the scattering angle
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� are related by

! =
!m

1 + 2�2
(9.50)

The transverse recoil of the electron is� = �h!�=E, causing an average change in
the transverse emittances of��n

x;y
� ��

x;y
� 2=4. Here, one factor of 2 is due to

the projection onto a transverse plane, the other is due to averaging over the betatron
phase.

Integrating over the photon spectrum yields the average emittance excitation per
turn

�(�n
x;y

) =
��

2

Z
!m

0

d!
� 2

2

dN

d!
=

3

10

�c

�L

(�E)
E

��
x;y

(9.51)

where��
x;y

is the beta function at the laser-electron interaction point, and�c =
h=(mc) � 2:43 � 10�12 m the electron Compton wavelength. The average emit-
tance excitation per unit time reads�

d�n
x;y

dt

�
=

(�E)
Trev

(9.52)

As usual, the balance of damping, Eq. (9.48), and excitation, Eq. (9.52), deter-
mines the equilibrium emittance:

�n
x;y

=
3

10

�c

�L
��
x;y

(9.53)

According to Eq. (9.53), small emittances require a small beta function��
x;y

. In addi-
tion, reducing the value of�� also helps for matching the electron beam to the laser
spot size for confining the energy of the laser pulse.

Longitudinally, the energy spread is increased by the energy fluctuation of the
emittedphotons:�

d(�E)
2

dt

�
=

1

Trev

Z
!m

0

d! (�h!)2
dN

d!
=

7

10

�h!m (�E)
Trev

(9.54)

As in a normal storage ring, the longitudinal damping occurs at a rate

1

�2
E

�
d(�E)

2

dt

�
= �2�E=E

Trev
� ��RLC

s
(9.55)

Equating the excitation and damping terms yields the equilibrium energy spread19

�� �
�E

E
=

r
7

5

�c

�L
 (9.56)

which tends to be larger than in a conventional storage ring.
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Ex.9.9. Equilibrium emittances with laser cooling
As an example, consider a ring withE = 100 MeV and��x;y = 1 cm, and a laser
with wavelength�L = 1 �m. Calculate the equilibrium emittance and relative energy
spread.

The increased energy spread widens the beam size in the arcs, where the dis-
persion function is large. Thereby it both reduces the emittance growth rate due to
intrabeam scattering and it keeps the incoherent space-charge tune shift at an accept-
able value (for the above parameters, a bunch population of1010 and 6 mm rms bunch
length, the tune shift is about 0.01)19. However, the large energy spread demands a
good chromatic correction, and a high-frequency rf system in order to maintain a short
bunch length.

The depletion of the laser pulse due to its interaction with the electron beam is
negligible. Nor does the laser-pulse energy significantly decrease over several damp-
ing times, if the two mirrors of the optical resonator have a reflectivity of 99.99% or
better.

9.4 Thermal Noise and Crystalline Beams

Laser or electron cooling produce extremely cold beams. These beams have unusual
noise spectra22. Suppose the azimuthal density of a stored proton beam is described
by a Fourier expansion as

�(�; t) =

1X
n=�1

An(t)

2�
exp(in�) (9.57)

and

An(t) =

NX
a=1

e�in�a(t) (9.58)

wherea counts the particles andN is the total number of particles in the beam. In an
ordinary beam, where the fluctuations arise from so-called Schottky or 'shot' noise,
we have< jAnj2 >= N .

Interaction of the particles via the external environment (characterized by the
longitudinal impedance) suppresses the density fluctuation at thenth revolution har-
monic as22

< jAnj2 >=
N

1 +N=Nth

(9.59)

where the threshold numberNth follows from equating the longitudinal coherent fre-
quency shift


2

n
= n2

Nrpmc4�!0!
0
0

Z0C

�
Zn

n

�
(9.60)
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with !0
0
= d!0=dp, Z0 the vacuum impedance,C the circumference andrp the

classical particle radius, to the spread in revolution frequencyn �! nearn!0. This
yields22:

Nth =
CZ0 �!

2

4�rpmc!0!00

�
n

Zn

�
(9.61)

When the beam is cooled,Nth becomes smaller thanN . Under these conditions the
noise power of the beam does no longer depend on the number of particles. Instead it
is a direct measure of the beam temperature:

< jAnj2 >� Nth / �!2

�
n

Zn

�
(9.62)

The impedanceZn=n can be determined from the observed shift in coherent fre-
quency as a function of beam current. The remarkable suppression of the noise spec-
trum for a cold beam was first observed with an electron-cooled proton beam at the
NAP-M storage ring in Novosibirsk22.

The fast cooling techniques open up the exciting possibility to generate a new
state of matter: a crystalline beam. Crystalline beams were proposed by Dikanski
and Pestrikov23, motivated by the observation at NAP-M22. Theoretical studies of
crystal beams were first performed by Schiffer and Rahman24;25, and later by Wei,
Li, Sessler, Okamoto, and others26;27;28 .

A crystalline beam is an ordered state, where the particles forming the beam
`lock' into fixed positions so that the repelling intra-particle Coulomb forces just bal-
ance the external focusing force. Crystalline beams might provide a venue for obtain-
ing ultra-high luminosity in colliders.

The generation and possible maintenance of the ordered state was investigated
with molecular dynamics (MD) methods starting from a Hamiltonian describing the
external focusing and the inter-particle forces in the beam-frame. For example, in a
combined-function cyclotron magnet, this Hamiltonin reads

H =
1

2
(P 2

x
+ P 2

y
+ P 2

z
)� xPz +

1

2
(1� n)x2 + 1

2
ny2 + Vc(x; y; z) (9.63)

with n � �@By=@x �=B0 measuring the strength of the quadrupole field,� the
bending radius associated with the dipole fieldB0, and the potential

Vc =
X
j

[(xj � x)2 + (yj � y)2 + (zj � z)2]�1=2 (9.64)

where the summation is over all other particles. In the above Hamiltonian all dimen-
sions were scaled by the characteristic distance� = r0�

2=�22, time is measured in
units of�=(�c), and energy in units of�22Z2e2=�.
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The beam-frame is an accelerated frame of reference, and the above Hamilto-
nian includes, so to speak, the relativistic generalization of centrifugal and Coriolis
forces26 . The effect of shear, given by the termxPz, can render the Hamiltonian
unbounded. This and the time dependent focusing in an alternating gradient focusing
lattice may heat and melt the crystal.

Studying the circumstances under which the crystal is stable, one finds that two
conditions have to be fulfilled in order to maintain the crystalline state27:

1. the storage-ring must be alternating focusing and the beam energy must be
below the transition energy

2. the ring lattice periodicity should be larger than2 times the maximum betatron
tune.

. The first condition arises from the requirement of stable kinematic motion. The
second condition ensures that these is no linear resonance between crystalphonon
modes and the machine lattice periodicity28.

Although the crystalline ground state will show a periodic variation of its shape
as the beam travels around the storage ring, at low temperatures verylittle heat is
absorbed by the crystal and the crystal can remain stable for a very long time.

When the ion density is very low, the crystalline ground state is a 1-dimensional
chain stretching around the ring. The 1D crystal changes into a 2D structure at a
density where the nearest-neigbor distance�z (in the scaled units) obeys the equality
26

min(�2
y
; �2

x
� 2) = 4:2

�3
z

(9.65)

The 2D structure extends into the transverse plane of weaker focusing. At still larger
densities, a 3D crystal is formed.

9.5 Beam Echoes

An echo is a coherent oscillation which grows out of a quiet beam with some delay
after the application of two independent pulse excitations. Echoes can occur in un-
bunched and in bunched beams, both transversely and longitudinally. The shape and
magnitude of the echo signal contains information on diffusion processes in the beam
and on the beam temperature (e.g.energy spread). Echoes may thus become a useful
diagnostics tool for beam cooling.

We first give a simple illustration how an echo signal can arise. We next calculate
the echo signal in the transverse plane, following closely the pioneering work by
Stupakov29 . Then we discuss experimental results obtained with longitudinal echoes
in unbunched beams.
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9.5.1 Illustration

The successive application of a dipole kick (at timet = 0) and a quadrupole kick (at
time t = � ) can generate an echo signal (at timet � 2� ), as illustrated schematically
in Fig. 9.9.

x '

x

a f t e r  d i p o l e  k i c k
x '

x

q u a d r u p o l e  k i c k
a t  t i m e  τ

x '

x

c o h e r e n t  s i g n a l  r e e m e r g e s  
a t  l a t e r  t i m e  t = 2 τ

Figure 9.9: Two-particle model of signal recoherence after applying first a dipole kick and then a
quadrupole kick30. For the echo generation it is essential that the betatron tune depends on the oscil-

lation amplitude.

9.5.2 Calculation of Transverse Echo

We now want to calculate the response of the beam centroid to the dipole and quadrupole
kick and derive an analytical expression for the echo response. To describe the trans-
verse motion of particles in a storage ring, we here employ the normalized coordinates

ŷ =
yp
�

and p̂ =
1

�


dy

dt
(9.66)

where� is the beta function,
 the revolution frequency, and� the tune. The beam dy-
namics can be studied using the distribution function�(p̂; ŷ; t)with

R
�(p̂; ŷ; t) dp̂dŷ =
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1. The initial distribution is assumed to be Gaussian:

�(p̂; ŷ; 0) =
1

2�J0
exp

�
� p̂

2 + ŷ2

2J0

�
(9.67)

with J0 a constant equal to the rms beam emittance. It is customary to introduce
so-called action-angle coordinates(J; �) via:

ŷ =
p
2J cos� (9.68)

p̂ = �
p
2J sin� (9.69)

The initial distribution function then assumes the form

�0(J; �) = �(J; �; 0) =
1

2�J0
exp

�
� J

J0

�
(9.70)

and the transformation corresponding to free betatron oscillations conserves the action
J :

J(t) = J(0) (9.71)

�(t) = �(0) + �
t (9.72)

In the original coordinates this oscillation reads

p̂(t) = ŷ(0) cos �
t+ p̂(0) sin�
 (9.73)

ŷ(t) = �ŷ(0) sin �
t+ p̂(0) cos �
 (9.74)

We assume that the tune� depends on the amplitude of the oscillation as

� = �(J) = �0 +��
J

J0
(9.75)

where�� has the meaning of a tune spread. This tune shift with amplitude is crucial
for the echo effect.

From the distribution function�(J; �; t) we can calculate the evolution of the
averaged (centroid) displacement, by means of a simple integration:

< ŷ >=

Z 1

�1
dp̂

Z 1

�1
ŷ�(p̂; ŷ; t)dŷ =

p
2

Z 1

0

p
J dJ

Z 2�

0

cos� �(J; �; t) d�

(9.76)
The evolution of the distribution function is governed by the Vlasov equation:

@�

@t
+
d�

@ŷ

dŷ

dt
+
@�

@p̂

dp̂

dt
= 0 (9.77)
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Alternatively and equivalently, the distribution function at timet can be obtained by
expressing the coordinatesp̂(t) andŷ(t), or the corresponding action-angle variables,
in terms of those at time0. In other words, the Hamiltonian mapping induces the
following transformation of the distribution function:

�(p̂(0); ŷ(0); 0)! �(p̂(t); ŷ(t); t) = �(p̂(p̂(t); ŷ(t); 0); ŷ(p̂(t); ŷ(t); 0); 0) (9.78)

which links the distributions at times0 and t. We will use the second method for
computing�(p̂; ŷ; t).

Suppose that at timet = 0, the beam is displaced from the closed orbit by a trans-
verse dipole kick of size�p̂ = �. This dipole kick gives rise to the new distribution
function:

�1(p̂; ŷ) = �0(p̂(0) � �; ŷ(0)) (9.79)

where the�0 is our initial Gaussian function at timet = 0. Assuming that the kick�
is small, we can expand the above equation to first order:

�1(p̂; ŷ) � �0(p̂; ŷ)� �
@�0

@p̂
= �0(J) + �

p
2J sin�

d�(J)

dJ
(9.80)

The kick is followed by a free betatron oscillation over a time� . This changes the
distribution function as

�2(J; �; �) = �1(J; �� �
� ) (9.81)

Inserting the previous expression for�1 we find

�2 = �0(J) + �
p
2J sin(�� �(J)
� )d�0(J)

dJ
(9.82)

Using Eqs. (9.75), (9.76), and (9.82), and performing the integration, we find the
centroid motion after the dipole kick:

< ŷ >= �

�
1���2
2�2

(1 +��2
2�2)2
sin �0
� +

2�� 
�

(1 +��2
2�2)2
cos �0
�

�
(9.83)

It is illustrated in Fig. 9.10 and clearly shows the decoherence of the signal. For large
� , the average displacement< ŷ > decreases as��2.

Now at time,t = � we apply a quadrupole kick of strengthq:

p̂new = p̂old +�p̂quad = p̂old � qŷ (9.84)

The new distribution function is

�3(p̂; ŷ) = �2(p̂��p̂quad; ŷ) (9.85)
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Figure 9.10: Average displacement of the beam as a function of time following a dipole kick, for a tune
spread�� � 10 %29 .

To perform again a Taylor expansion, we assume that also the quadrupole kick is
small, or, more precisely, that

q�
� � 1 (9.86)

Inserting all the terms from above we have

�3(p̂; ŷ) � �0(J) + �
p
2J sin(�� �(J)
� ) d�0(J)

dJ

+qŷ
@

@p̂

�
�0(J) + �

p
2J sin(�� �(J)
� )

d�0(J)

dJ

�
(9.87)

The echo effect is contained in the last term on the right-hand side of this equation.
Using the relation

@

@p̂
= �

p
2J sin�

@

@J
� 1p

2J
cos�

@

@�
(9.88)

the largest term that contributes to the echo comes from the derivative ofsin(� �
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�(J)
�) with respect toJ . Denoting this term by�echo
3

one has

�echo
3

� 2�q�� 
� sin(�) cos(� � �(J)
� ) J
J0

d�0(J)

dJ
(9.89)

Following the quadrupole wake, there is another free betatron oscillation of duration
s, with

�4(J; �) = �echo
3

(J; �� �
s) (9.90)

Putting this into Eq. (9.76) and integrating, we finally obtain the equation for the echo
response:

< ŷecho >� q���
�

�
A(A2 � 3)

(1 +A2)3
cos �0
(� � s) +

3A2 � 1

(1 +A2)3
sin �0
(� � s)

�
(9.91)

whereA � �� 
(� � s). The echo is illustrated in Fig. 9.11 as a function of the
time difference(� � s), for a tune spread of 10% (��=�0 = 0:1). The peak of the
echo signal is proportional to the strengths of the two kicks and does not depend on
the time interval between them; though the time of occurrence arounds = � does.

9.5.3 Measurements of Longitudinal Echoes

Let us now turn to experimental results for longitudinal echoes in unbunched beams.
Such experiments were performed at the Fermilab Accumulator31 and at the CERN
SPS32. In these studies, two rf kicks were applied at frequenciesfkick1 andfkick2.
The response was observed at the difference frequency31

fecho = fkick2 � fkick1 (9.92)

For example ifhkick1 = 10 andhkick2 = 9 (h is the harmonic number), the response
occurred near the fundamental frequencyhecho = 1. The time of the echo is

techo =
fkick1

fkick2 � fkick1
�t (9.93)

where�t is the time separation between the two kicks.
The presence of diffusion destroys the reversibility of the decoherence. Diffusion

thus reduces the response of the echo signal, especially for echoes at large timestecho.
The amplitude of the echo is of the form31

Iecho / J1(k1��t) exp(�k2�t3echo) (9.94)

where� is proportional to the kick strength,�t denotes the time between the kicks,k2
is a constant which depends on the two kick harmonics (and on the echo harmonic),
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Figure 9.11: Echo signal of the beam after a second (quadrupole) kick was applied29.

� is the diffusion rate (or collision rate), andtecho the time from the first kick to
the center of the echo. This decorrelation due to diffusion results in an exponential
decay of the echo signal ast3. By comparing the echo responses for different sets
of harmonics, the contributions from the Bessel function and from the diffusion can
be distinguished. In the Tevatron Accumulator, a diffusion of� � 3� 10�4 Hz was
measured, which suppressed the response signal already within the first lobe of the
Bessel function31.

Further points should be mentioned. At the center of the echo signal the response
is zero. We have seen the same behavior in our above analysis for the transverse echo
(compare Fig. 9.11). It is related to the fact that the echo signal is proportional to the
slope of the distribution function, which is zero at the center of a symmetric bunch.
The separation of the two peaks, on either side of this zero, is inversely proportional
to the energy spread within the bunch as31

�tpeak =
�2

hecho�frevj�j�EE
(9.95)
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where� is the slippage factor,frev the revolution frequency, and� the velocity di-
vided by the speed of light (� = v=c). This equation was confirmed experimentally.

If the distribution function is not Gaussian, the shape of the echo response changes.
The echo signal thus could permit a reconstruction of the actual beam distribution.
Care has to be taken, as the echo shape may also be modified by longitudinal wake
fields.

Another interesting observation was that for sufficiently large energy spread the
notch at the center of the echo signal disappeared. A possible explanation is the
contribution from higher-order momentum compaction (or slippage) to the spread in
revolution frequencies:

�f

frev
= � �

�2
�E

E0

= � 1

�2
�E

E0

�
�0 + �1

1

�2
�E

E0

+ : : :

�
(9.96)

For larger energy spread, the nonlinear contributions destroy the linear correlation
between energy and particle phase.

9.6 Ionization Cooling

The successful operation of a future muon collider requires a reduction of the 6-
dimensional beam phase space by about a factor of10�6. The proposed approach to
achieving this reduction is ionization cooling. Ionization cooling is similar to electron
cooling, but the electron beam is replaced by a solid or liquid.

In ionization cooling the muon beam is passed through some material where the
muons lose energy, experiencing an average force opposite to their momentum, as in
Eq. (9.9). The average energy loss is described by the so-called Bethe-Bloch formula:

�dE�

ds
= 4�NAr

2

e
mec

2�
Z

A

1

�2

�
ln

�
2mec

2�22

I

�
� �2 � �

2

�
(9.97)

whereNA is Avogadro's number, the product4�NAr
2

e
mec

2 equals 0.3071 MeV cm2

g�1, � is the material density,A andZ are mass number and atomic number, re-
spectively, and� represents adensity effect(shielding by the atomic electrons) and at
high energies approaches2 ln. The energy loss per length for Beryllium is shown
in Fig. 9.12 as a function of the incident muon momentum. Only the longitudinal
energy is restored by rf sections, resulting in a transverse cooling. The process must
be repeated many times to achieve a large cooling factor. Figure 9.13 illustrates the
concept of transverse ionization cooling.

The equation describing transverse cooling is35

d�n

ds
= � 1

�2
dE�

ds
+

1

�3
�?
2

(14MeV)2

E�m�c2LR
(9.98)

29



Figure 9.12: Average muon energy loss per length in Beryllium33.

where�n is the normalized emittance,E� the total muon energy,�? the beta function
at the absorbing material,dE�=ds the energy loss per unit length, andLR the radia-
tion length. The first term in this equation describes the cooling, and the second the
heating term due to multiple scattering. The heating is minimized if�? is small, and
LR large (lowZ material).

If no further action is taken, the energy spread evolves according to

d(�E)2

ds
= �2

d
�
dE�

ds

�
dE�

< (�E�)
2 > +

d(�E�)
2

straggling

ds
(9.99)

where the first term is the cooling (or heating) due to the average energy loss and the
second is the “energy-straggling” term given by36

d(�E�)
2

straggling

ds
� 2�(remec

2)2N0

Z

A
�2 (9.100)

whereN0 is Avogadro's number and� the density.

30



dE/dx
rf rf rf rf

dE/dx dE/dx

Figure 9.13: Schematic of ionization cooling in the transverse phase space using a series of low-Z energy
absobers and reacceleration34.

The energy spread is reduced by a transverse variation in absorber thickness at a
location with dispersion, as shown in Fig. 9.14. The use of such wedges reduces the
longitudinal emittance, and it increases the transverse emittance. Thus, the longitudi-
nal cooling is based on emittance exchange with the transverse plane.

absorber

+∆Ε+∆Ε

−∆Ε

Figure 9.14: Schematic of ionization cooling in the longitudinal phase space using a wedge34.
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Ex.9.10. Damping rates and equilibrium emittances with ionization cooling
The emittance evolution in an ionization cooling system is described by the equation

d�n

ds
= �

1

�2
dE�

ds

�n

E�

+
1

�3
�?

2

(14MeV)2

E�m�c2LR
(9.101)

where�n is the normalized emittance,�? the beta function at the absorbing material,
dE�=ds the energy loss per unit length, andLR the radiation length. Consider a muon
beam with an initial normalized emittance of 0.01 m-rad and a kinetic energyEk of 150
MeV. The muon mass is about 105.7 MeV.
(a) Calculate the average cooling rate� (in units of m�1) and the emittance reduction
in a 10-m long cooling section containing 320 cm of liquidH2 (radiation lengthLR
equal to 890 cm). Assume that the beta function at the absorber is 10 cm, and that the
minimum energy loss per length,dE�=ds is 0.29 MeV/cm.
(b) Ignoring the second (heating) term, how many such stages and which total length
would be required to damp the transverse emittance by a factor 10? In reality the
complete cooling system might have a length of 500 m. Which fraction of muons is left
after traversing this distance at 150 MeV? Note that the muon lifetime at rest is2:2 �s.
(c) What is the minimum normalized emittance that can be achieved in such a cooling
system of arbitrary length?
(d) Can you derive the above equation? Note that the projected angular distribution
due to multiple scattering isapproximately Gaussian with an rms width after distance
s equal to

� �
14 MeV

�cp

r
s

LR
(9.102)
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9.7 Comparison of Cooling Techniques

Table 9.1 compares the different cooling methods. Synchrotron radiation works mainly
for electrons and positrons, ionization cooling can be used for muons, laser cooling
for ions. Stochastic cooling and electron cooling are rather universal, and comple-
mentary: Stochastic cooling functions best for a hot beam, while the electron cooling
time decreases with decreasing beam temperature. The stochastic cooling takes care
of the beam tails, whereas the electron cooling freezes the core. Stochastic cooling
favors high beam velocities; for electron cooling it is theopposite. Both electron and
stochastic cooling are by now well established and used at various storage and accu-
mulation rings. Laser cooling in a synchrotron was demonstrated only recently. This
scheme is applicable for 4 types of ions only: Mg+, Li+, Be+ and Er+. Momentum
spreads of less than10�6 have been achieved. Perhaps laser cooling will even allow
to enter a new regime of low temperatures and to generatecrystalline beams. The
cooling times for laser cooling are of the order of 10 or 100s of microseconds, only
surpassed by the time scale projected for ionization cooling.

Table 9.1: Comparison of cooling techniques, modified from Ref.7; N is the number of particles in the
beam.

technique stoch. electron synchr. rad. laser ioniz.

species all ions e+e� some ions muons

favored high medium very high any medium
beam 0:01 < � < 0:1  > 100  < 5

velocity

beam low any any any any
intensity

cooling N � 10�8 s 1–10�2 s � 10�3 s � 10�4–10�5 s < 10�7 s
time

favored high low any low any
temp.
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