KEK-SLAC X-Band Design Miniworkshop December 5, 1994

Overview of

NLC Beam Delivery and Removal

<u>Subsections</u>

- 1. E.O.Linac -> Collimation
- 2. Collimation system
- 3. Collimation -> IP Switch
- 4. IP Switch
- 5. Centerline
- 6. Big Bend
- 7. Big Bend -> Final focus
- 8. Final focus system
- 9. Final doublet
- 10. Crab cavity
- 11. Dumpline
- 12. Dump

and the second second

E.O.Linac -> Collimation

Function

Beta and dispersion match Coupling removal? <u>E.O.Linac instrumentation</u> E.O.Linac dump(line) Passive protection

<u>Special Issues</u> None

<u>Status</u> Begin

and the second second

<u>Major decision branches</u> <u>Extent of instrumentation</u>

and a second second

Collimation system

Function

Collimate transverse and energy halos E.O.Linac beam-quality verification?

Special IssuesWakesPassive protectionMaterialsIncoming halo specificationJitter amplificationChromatic correctionTolerancesLength containment

<u>Status</u>

2nd generation design Beampipe radius change required Quad string minimization required <u>Q: Vacuum capability of plated graphite?</u> <u>Ab sor ber design not complete</u>

<u>Major decision branches</u> <u>Three or four phases of collimation?</u> <u>Length for 1.5 TeV c.m.?</u>

Collimation -> IP Switch

<u>Function</u> Beta and dispersion match

<u>Special Issues</u> None

and the second

<u>Status</u> 1st generation design

<u>Major decision branches</u> None

and a second second

IP Switch

Function

<u>3-way switch</u> to either IP or centerline Beta and dispersion match to Big Bend <u>Post-collim.</u> beam-quality verification

<u>Special Issues</u> Machine protection

<u>Status</u>

1st generation design, <u>not 3-wey</u>, <u>no instrum</u>. Motch to Big Bond dispension

<u>Major decision branches</u> Mechanical motion or purely electrical? <u>Specification for switching frequency</u>

<u>Centerline</u>

<u>Function</u>

Post-collim. beam-quality verification for collimation system tuning

<u>Special Issues</u> None

<u>Status</u> Zero

<u>Major decision branch</u>es <u>To include this functionality or not?</u>

Big Bend

<u>Function</u>

Muon protection for detector (+100) Allows for two IPs Allows for crossing angle change (hopefully it would never come to that!).

<u>Special Issues</u>

Emittance growth from synchrotron radiation from filamentation Ease of alignment Length containment Magnet design, if combined feth.

<u>Status</u>

1st generation combined function design Need separated function design <u>*t tokrance colculations*</u>

Major decision branches Combined or separated function bends?

Big bend -> Final focus

<u>Function</u> Beta and dispersion match Coupling removal E.O.Big_Bend beam-quality verification

<u>Special Issues</u> <u>Operational ease</u>

<u>Status</u> Begin

<u>Major decision branches</u> Coupling correctors preceding β match?

Final focus system

Function

Compensate final doublet chromaticity Final beam-halo collimation Aberration removal

Special Issues Tolerances

Ease of operation

Length optimization (in progress) Detector synch. rad. backgrounds

Status

1st generation design

Major decision branches Chromaticity (H. and V.) of doublet: Free length to IP? Horizontal IP divergent angle? Tolerance specification Emittance growth from synch. rad. "Brinkmann" sextupoles or not? Anti-symmetric dispersion function?

Parameter	l Ti Original	e V "Optimized"	Original 1.5	TeV "optimized"
L _B [m]	43 +2;	17	רך	22
N. [mm]	45	10.8	42.	11.6
B B [Km]	160	88	160	95
Px [km]	6.4	1.0	3.0	1.34
he 10 [m-2]	2.8	23	3.1	21
OB [prod]	489	297	373	361
∆ 4/J a	8.10-5	6.105	1.2.104	5.6.105
∆x [µm]	0.4	0.1 	0.4	0.1
leng	th redu	ced by	about a fac	for 3 ?!

Crab cavity

Function Compensation of 40 mr crossing angle

Special Issues

Phase tolerance on rf. (feedback system proposed) Multi-bunch operation

Status Begin

Major decision branches

IP disp. function not possible for 40 mr! mr crab cavity possible? **40** Is

. ...

Final doublet

<u>Function</u> Parallel (approx.) to point imaging

<u>Special Issues</u> <u>Stabilization (≈ 0.5nm)</u> <u>Detector backgrounds</u> Wakefields

<u>Status</u>

1st generation design

<u>Major decision branches</u> <u>Free length to IP</u> (backscattering issue)? Horizontal IP divergent angle? Permanent or superconducting? crossing angle impact detector impact

NLC IP Region Working Parameters

Parameter	0.5 TeV	0.5 TeV*	1.0 TeV	1.5 TeV	Comments
LL	0.5	0.8	1.06	1.07	
L	0.7	1.0	1.4	1.6	Luminosity w/ Pinch
σχ	<u>320 nm</u>		<u>360_nm_</u>	_360nm	Variable
σγ	<u>3.2 nm</u>		<u>2.3nm</u>	<u>2.3_nm</u>	
٤ _X	10-11		1/2 10-11	1/3 10-11	$\gamma \varepsilon_{\rm X} = 5 10^{-6} \rm m \cdot r a d$
εy	10-13		1/2 10-13	1/3 10-13	γε _y = 5 10 ⁻⁸ m-rad
β x	10 mm		25 mm	37 mm	
βγ	100 μm		100 μm	150 μm	
0x',y'	30, 30 µrad		14, 23 µrad	10, 15 µrad	IP Divergent Angle
σz	100 μm		100 μm	100 μm	Bunch Length
θd	3.2 mr		3.6 mr	3.6 mr	Bunch Diagonal Angle
± Δbox	$< \pm 4 \ 10^{-3}$		$< \pm 4 \ 10^{-3}$	$< \pm 4 \ 10^{-3}$	Square Energy Profile Width
D _{x,y}	.07, 7.3		.04, 8.8	.03, 5.2	Disruption Parameter
Hd	1.3		1.4	1.5	Enhancement from Pinch
ΘD	.25 mr		.17 mr		Max. Disrupt. Angle
					@ Beam Energy
Y	.09	.11	. 2 8	.42	Upsilon Parameter
δΒ	.03	.04	.12	.16	Mean Energy Loss to
					Beamstrahl. ys
ſΓγ		1.0	1.1	1.1.	# of Photons per Electron
NHad	.04	.07	0.3	0.3	# of Hadronic Events / Cross.
Njet5	.001		0.03		# of Mini-Jets per Crossing

299

ļ

ŧ

OIDE LIMIT FOR NOU GAUSSIAN DISTRIBUTIONS (scaled from H, Z & O)

\$

Dump

<u>Function</u> Absorb 10 MW beam

<u>Special Issues</u> Window Heat removal Radiation removal

<u>Status</u> <u>"Engineered design</u>

<u>Major decision branches</u> None known

•

Dumpline

<u>Function</u>

Transport beam from IP to dump IP beamsize and position monitoring Beam energy monitoring Beam polarization monitoring Post IP test and secondary beams? Energy recovery (tempting)?

Special Issues

Detector & instrumentation backgrounds Radiation levels Component protection

<u>Status</u> <u>Begin</u> (complet task)

<u>Major decision branches</u> First post-IP quad position First post IP collimation Parasitic uses of beam? Secondary beams?

Requirements for Detector

Characteristic features are that all physics processes can be recognized in terms of known fundamental particles (leptons, quarks and gauage bosons).

To make muximum use of this advantage, we have to design a detector so as to exclusively reconstruct all final state particles except for neutrinos.

Reconstructions of W and Z in jet invariant mass are very important in order to use large decay branching fractions.

Identification of b-quarks by vertex detection is important for detailed studies of top and Higgs.

The detector should be capable of confirming the narrow decay width of, for instance, Higgs.

- 1) Hermetic calorimetry in the polar angle region of $|\cos\theta| < 0.98$.
- 2) Jet invariant mass resolution comparable with natural widths of W and Z.
- 3) Lepton pair recoil mass resolution (e⁺e⁻ -> Zh) < 300 MeV.

DETECTOR	TYPE	CONFIGURATION	PERFORMANCE
VTX (Vertex Detector)	Silicon CCD	Pixel Size ; 25 μm Number of Layers ; 2 layers Layer Position ; r=2.5cm & 7.5cm Thickness ; 500 μm / layer cos θ < 0.95	Position Resolution ; $\sigma = 7.2 \ \mu m$ Impact Parameter Resolution $\delta \ [\mu m]$; $\delta^2 = 11.4^2 + (28.8/p)^2 / \sin^3 \theta$
CDC (Central Drift Chamber)	Small-cell Jet Chamber	Radius ; $r = 0.3 - 2.3 \text{ m}$ Length ; $l = 4.6 \text{ m}$ Number of Sampling = 100 $ \cos \theta < 0.70$ (full sampling) $ \cos \theta < 0.95$ (20 samplings)	Position Resolution ; $\sigma = 100 \mu m (/ \text{ axial wire })$ $\sigma_z = 2 mm (/ \text{ stereo wire })$ Momentum Resolution ; $\sigma_{Pt} / Pt = 1.1 \times 10^{-4} Pt + 0.1\%$ $\sigma_{Pt} / Pt = 5 \times 10^{-5} Pt + 0.1\%$ (with vertex constraint)
CAL	Lead + Plastic Scintillator Sandwitch (Compensated)	EM part ; thickness = 29 Xo cell size = $10 \text{ cm x } 10 \text{ cm}$ HAD part ; thickness = $5.6 \lambda \text{o}$ cell size = $20 \text{ cm x } 20 \text{ cm}$ Si Pad ; pad size = $1 \text{ cm x } 1 \text{ cm}$ $ \cos \theta < 0.99$	Energy Resolution ; $\sigma_E / \sqrt{E} = 15\% / \sqrt{E} + 1\% (e \& \gamma)$ $\sigma_E / \sqrt{E} = 40\% / \sqrt{E} + 2\%$ (hadron) Si Pad Position Resolution ; $\sigma = 3$ mm Si Pad e/π Rejection = 1/50
MUON	Single Cell Drift Chamber	Number of Superlayers ; 6 $ \cos \theta < 0.99$	Position Resolution ; $\sigma = 500 \ \mu m$ Pt > 3.5 GeV (barrel)

* All momentum and energy are expressed in [GeV].

CDC R&D

Goal

$$\frac{\sigma_{P_T}}{P_T} = 1.1 \times 10^{-4} P_T (GeV) \oplus 1.5 \times 10^{-3}$$

Simulation

B = 2 Tesla $r_{in} = 30 \text{ cm}$ $r_{out} = 230 \text{ cm}$ L = 460 cm n = 100 points $\sigma = 100 \text{ }\mu\text{m}$

But L = 460 cm : Very long !

Wire sag due to gravitational and electrostatic forces will be large.

Verify this can be corrected.

Tension must be adjusted to a good accuracy for each wire.

Test Chamber

JLC test chamber 全体図

Wire径 sense 30µm field 120µm

Calorimeter R&D

Goal $\frac{\sigma_E}{E} = \frac{0.15}{\sqrt{E(GeV)}} \oplus 0.01$ (EM) $\frac{\sigma_E}{E} = \frac{0.40}{\sqrt{E(GeV)}} \oplus 0.02$ (Had) Simulation Pb: Scintillator = 4:1EM : Pb 4.0 mm Goal : achievable Had : Pb 8.0 mm cf) ZEUS T-36 (Beam test results) $\sigma_E / E = 0.23 / \sqrt{E} \quad \text{(EM)}$ $\sigma_E / E = 0.44 / \sqrt{E} \quad (\text{Had})$ **SPACAL** $\sigma_E/E \sim 0.13/\sqrt{E}$ (EM) $\sigma_F/E \sim 0.30/\sqrt{E}$ (Had)

Beam Test

Preshower+Si-pad+EM+Hadron

(ZEUS type Lead/Sci Sanndwich)

10 mm Pb + 2.5 mm Scinntilator Wave Length Shifter : Y-7 30 ppm (2mm thick) x 2 PMT : R580 x 2

· · · · · · ·

Status of CDC R&D

We have constructed a 4.6 m long test chamber.

1) Machining errors on the wire holes within tolerance

 $\longrightarrow \Delta x < 10 \ \mu m$

2) Wire tension uniformity

 $\longrightarrow \Delta T < 1 \%$ (relative)

inspite of initial tension drop by ~3 % in the first two weeks due to wire creeping.

To be continuously monitored to check longer term stability.

3) Wire sag (gravitational/electrostatic)

To be measured by a telescopic microscope equipped with a CCD camera.

σ_{xy} < 3 μm (resolution) 1 mm x 1 mm (visual field) 1 mm (focal depth)

A precision mover will be ready soon.

-->> Measurements

TE-Leak corrected with GEANT 321 + FLUKA

 E_{CAL} (~GeV)

Status of Calorimater R&D

What have been achieved

Test module made
Beam test doneforBaseline design
SciFi option

- $e/\pi=1$ confirmed
- e/π separation works well

Detailed studies to undertand the test results are going on.

Future Plan

LC INTERACTION REGION SUBGROUP

Chris Adolphson Gordon Bowden Dave Burke Pisin Chen Kim Cook Spencer Hartman Stan Hertzbach John Irwin Lew Keller Tom Markiewicz Gholam Mazaheri Tor Raubenheimer Ron Ruth Francisco Villa

Specification of IR:

Essentially UNCHANGED since LC '92 - Garmisch LCWS '93 - Hawaii We are still looking at problems There are NO design solutions as yet (should thus be easy to reconcile with JLC design!)

Dominated by uncertainty of if we can and how can maintain 2.2 - 3.0 nm vertical spots

Detector: LC Physics Workshops '91, '93 > SLD-like detector adequate We have NOT done any physics simulations locally Backgrounds: SYNCHROTRON RAD > Assumptions of beam tails + collimation BEAM-BEAM NVT. -> Looks OK HADRONIC EVENTS. MUON BACKGROUNDS: SPOILERS REDUCE FLUX X100

321

TO LEVEL OF 1pt / 1012 MELDENT

TOLERANCES

IR group serving as a clearing house for vibration concerns for the whole machine. Clearly issue of final quad doublet is most severe.

For example:

2% Luminosity loss from y spot position

corresponds to

 $r^2 = r_0^2 + (\Delta r)^2$

 $\frac{\Delta\sigma}{\sigma} = \sqrt{2\Delta L} = 20\%$, or 0.6 nm jitter in y spot position.

Source multipliers connect this number back to various possible motions of Q1 and Q2 at the final doublet

These calculations need to be firmed up and translated into engineering specifications on the final doublet support structure. For now, consider worst case:

 π mode oscillation of Q1 and Q2

 $dy_{Q1,Q2} = dy_{IP} / (1.6 - (-0.6)) = 0.3 \text{ nm}$

Beam-beam attraction eases this tolerance RMS motion easy tolerance by $\sqrt{2}$

Sharing 2% at Loss beyond find doublot tightens to loron ee

FINAL FOCUS TOLERAL LES J. IR WIN (3)

TABLITY 2)))	PEP. PER 7. 10 A	nch - Le	= (14 D15,	HT) > 1200 P ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2/UG FCT PCTPACCU ST & SKC	DERCE -	6000 616NAL 3,00T 518G
ти н 3 ст.ир 1	() (f)	DAYS MONTH Lit!1	= 2.90	CA Ju Table NLC Tole	ALACALIO AVENT III rances ^{ant} E.	7 1 SCXT 88 ALI 64 6 LAIKO 74 SIN	AB MAA WALES E DIAG	51 .
	Time Scale	Generator (IP coord.)	Final Quadrupoles	Other Qu Worst	adrupoles RMS	Sextupoles	Dipoles	
0/ Jaco	τo		Δ2	or	Δy	n/a	n/a	
EFRUG		* (*	0.08 µ 3 Am Ray 4.38 nm P2	0.32 μ 10 Σ nm	0.24 µ 4 3 nm	1 w/c "st-	Contract of	αε
3/Dmin	'n			10	Δy	n/a	n/a	
IS PERSICA	r	z'ó y'ó	0.7 H	1.7 μ 71 nm	1.0 µ	and i		∝ £. Srms
	τz		$a_{\Delta k/k}$	no	Δ 9	Δz or Δy	$\Delta B/B \text{ or } \Delta \phi$	(1)
		z"	4.7 10-4	4.5 10-3	6.2 10-3	0.30 µ	1.6 10-5	(1) S/
04158		y ²	1.9 10-5	2.9 10-4	1.3 10-4		37 µrad	(,,)
		z'y'	11.3 µrad	129 µrad	80 µrad	بر 0.68		(2)
DAYS	n			k,		$\Delta k/k$ or $\Delta \theta$	n/a	de
OTHER I		z ¹² 6, y ¹² 6		0.69 m ²	0.33 m ⁻²	1.4 10-2		59
	air	τ'y'δ		1.27 m ⁻²	0.38 m ⁻²	15 mrad		
7552716		z' ³ , z'y ²	1.4 m ⁻²	0.75 m ⁻²	0.37 m ⁻²	1.6 10-2		
		y' ³ , z' ² y'	0.40 m ⁻²	0.50 m ⁻²	0.23 m ⁻²	3.4 mrad		

· MONTHS ·

T STATIC TOLEPLANCES (600 a 6)

+ IUCOMINA BEAM PC. + CAPTURE TOLERANCES PRISUE ISOLATIONS JITTER STRATEGIES + ACTIVE STABILIEARON { field } if accessory.

MULTIPLICEZ JOURCE

CONCEPTUAL I.P. DESIGN

× SECTION @ 1.5m

Possible Correction Schemes:

Measure acceleration or velocity and feed back signal to drive either crystal magnet supports or steering coils.

Measure change in B field seen by beam and drive corrector coil to null

Passive isolation of magnets from source of vibrations

Beam based feedback

Questions

Source terms:

Spectra of ground motion as a function of geology environment Coherence of noise sources as a function of frequency and direction Normal modes of support structures

Detectors:

Accelerometers, geophones, etc.: Sensitivity frequency response cost vs. sensitivity practicality

Pick up coils:

Signal to noise in accelerator environment Inertial support for coil Practicality of mounting in quad bore Ideas for other detectors or mounting locations

Feedback schemes:

Devise scheme, given source spectra properties and detector response, to drive correcting element.

Source terms:

Measurements of the frequency dependence and coherence of local of ground motion spectra using geophones listed below and their associated DAQ. In particular FFTB tunnel investigated so as to correlate results with spot size measurements from last run.

Detectors:

Accelerometers, geophones, etc.:

Study the response and calibration of two MARK Products L-4C 1 hz geophones w/ 1kg suspended mass

Survey the literature to find cost/sensitivity of other devices

Pick up coils:

Have pickup coil supported on a pneumatic isolation leg within a short length of permanent magnet.

RF BPM at FFTB:

Integrated RF BPM/ spot size monitor w/ 1 nm sensitivity is under construction for January FFTB run.

Will be mounted at location of current laser spot size monitor.

Will drive corrector coil. Try to see level to which we can stabilizize beam

Feedback schemes:

Plan to model a feedback scheme but have not yet begun.

(11-11-94	Data	11:00	pm)
-----------	------	-------	-----

Position of Geophone	ms vibration amplitude 1-100Hz (nm)		
Concrete Floor near KEK Table	24		
Center of KEK Table	28		
KEK BSM	37		
Orsay BSM	69		
QC1	27		
QX1	26		
QC2	32		
QC3	60		
QC4	22		
QC3	23		
Concrete Floor near QC5	19		

ULTIMATE SENSITIVITY OF THIS DEVICE

<7Hz OVER ~ 30m

NEED TO UNDERSTAND CORR. US distance for any feed back scheme to work.

Vibration Reduction Strategies

Other Issues

Backgrounds: No new results since LCWS 1993 e+e- pair creation in field of colliding bunches hadrons produced by photons from beam-beam effect Synchrotron radiation Muon Backgrounds

Distortion of energy spectrum of colliding beams due to beam-beam interaction:

No explicit work done. See Miller in LCWS 93.

Crossing angle: assume 20 mrad per beam, not yet optimized

Detailed Engineering Design of IR area: nothing new yet

Beam Spot Diagnostics near IP Laser wires or other diagnostics Interferometer Vertex Detector Support tube Beam Pipe

Polarized source and conservation of polarization: Yes.

One or Two IP's: assume Yes

any real design work done within John Irwin's FF group.

e - Gamma and Gamma-Gamma Implications No real work done. Assume for the moment that other IP is reserved for these interactions.

H. de Staebler 6. Punkar

Propogate SR Photons into NLC Detector : EGS

339

Results: For 2 (e+, e-) 250 GeV bunch trains ABEL Beam-Beam Interaction code as input

		#photons / train	#e [±] / train	#e [±] / mm ² / train
Small rad	lius VXD			
VXD-L1	(1.4 cm)	200	6200	1.98
VXD-L6	(4.0cm)	0	800	0.34
CDC	(25cm)	4.2E+04	200	
Larger R	adius VXD			
VXD-L1	(6.0 cm)	20 0	200	0.002
VXD-L6	(20 cm)	1000	0	0
CDC	(25cm)	4200	0	

4. REWER

MUON BACKGROUNDS

Collimator distance from IP (feet)

- Magnetized iron toriods give about x150 improvement
- Best to fill tunnel completely : round toroids in a rectangular tunnel don't work as well
- Small tunnel (5' x 5') is 5-10x better than large tunnel (10' x 10')
- Removing BIG BEND is about x10 worse
- 5-10x more muons reach the IR, but don't hit a 6 x 6 m² detector

Experimental Apparatus

General feeling that it is way too early to think about a detailed apparatus. For now simulations have assumed:

Vertex detector:	6 planes, pixel based, at various radii		
Magnetic Field:	2 Tesla	no optimization done	
Masking:	Tungsten Masks from 190-200 mrad		
Timing:	Assume sub 1 ns timing possible in both		
	calorin	neter and tracking systems	
Lum. Monitor:	Place at ± 1.5 m to avoid backsplash		

Assume SLD detector for the rest

Tracking Resolution and Granularity Calorimetery Resolution and Granularity Muon Coverage Acceptance

DAQ issues: not yet addressed

Extracted Beams:see John Irwin's Beam Disposal subgroup Energy spectrometer Compton polarimeter BSM monitors Small angle Bhabba LUM monitor

Calibration (?): not addressed Z pole running Varying # of bunches / train

Problems to be considered for JLC.

- Damping ring new problem ion. see ATF
- · Compressor consistent design with 1-stage compressor
- . Pre-Linac
 - . energy
 - . frequency \$?
- . Power Source
 - higher peak power, longer pulse than NLC . see klystran developement.
 - . dark current study
 - . Acc. Structure
 - . length 1.3 m, not really optimized
 - . chokemode cavity

. Final Focus

- . small \$. no problem
- . feedback within pulse (D.Burke) with no crab cavity?

. 1.5 T.T serious design (to say no ?)

345

Parameters Summary

R. Rut N 12/8/94.

No Fundamental problems
with JhC /NKC parameters
differences between parameter
sets are relatively minor and
involve technical choices.
understanding these technical

choices can improve NLC/JLC Designs.

· · · · ·

 $(\mathbf{r}_{i})_{i} = (\mathbf{r}_{i})_{i} = (\mathbf{r$

Highlights

- Injectors:
 No important differences
 - · Jitter Tolerances
 - · Been loading compensation
 - · Positron Acceleration. Sort?

- · Similar Designs., Energy
- · Wiggler vs bending -> damping
- ITF > important!
- Compressors
 - · Should there be 1 or 2?

Accelerator Structures · Detuned structures are "in" Damped / Detuned re "in" lengths =? 1.3 -> 1.8 912 - ? .16 -> .18 Technology = good progress. • · KEK/SLAC collaboration important

Final Focus

- · Spot Sizes ~ same
- To crab or not to crab?
- · 27 bration Tolerance?

t

· Detailed Design Differences

E = 500 GeV starting. Definite upgrade. = ITeV = 1.5TeV Possibilitz Open.

DR and BC

DR and BC goal - generate beams with very good stability and reliability. Parameters for JLC and NLC are similar - NLC bunch current slightly larger - JLC initial E is slightly larger and rep. rate is slightly different.

⇒ JLC and NLC final designs will probably be very similar.

⇒ At this time some difference in approaches / technology

ATF will demonstrate many of the choices: wigglers, kickers, vacaum design, single/double compression.
2 GeV SLC DR et Pre DR 110 meters Train = 90 times 3. $\mathcal{V} \mathcal{E}_{edge} = 6 \times 10^2 \quad \Delta \mathcal{E}_{edge} \leq \pm 2\%$ bunches of Vacuum Aperture 4×3cm < 1.5×1010 YEx, y < 104 Coupled separated 2 Trains separated by 60ns by 1.4ns 714 MHz RF Achromatic Extraction 714 MH2 RF 2 GeV Main ring 220 meters injection: YEx, y < 104 extraction: $76x = 3 \times 10^6$ $7Ey = 3 \times 10^8$ equilibrium: VEx = 2×10 VEy = 2×10 arc 5 damping times @ 180 Hz => ty < 4.5ms 4 Trains of bunches separated by 60 ns 70m Combined function "TME" lattice 20 m Wiggler

Figure 4.21: Lattice parameters of half of the damping ring.

Lattices

NLC - strong damping TME arcs ~ 1/3 JLC XV Short hybrid wiggler 20m B~22kG 50% of damping (No E decrease) JC weak field (looser align.) FOOF arcs & larger 140m B~17k6 Long E+M wiggler 80% damping ATF weak field 25Hz FooF arcs & larger 20m Br 17k6 E+ M wiggler 202 damping

RF Parameters for the NLC and ATF Damping Rings (Dec, 1994)

Cavity	Related Properties	NLC	ATF
$f_{rf} [MHz] = \frac{h}{h}$ $V [MV]$ $R \left(= \frac{\sqrt[A]{2F}}{2P}\right) [M\Omega]$ Q $T_{fill} [1^{iS}]$ $\frac{\Delta E}{E} [7_{0}]$ N_{c}	Accelerating Frequency Harmonic Number Total Cavity Voltage Cavity Coupling Parameter Loaded Shunt Impedance/Cavity Loaded Quality Factor Cavity Fill Time Bucket Height Number of Cavities	$714 \\ 524 \\ 1.5 \\ 12 \\ 3.3 \\ 2040 \\ 0.91 \\ 3 \\ 4$	$714 \\ 330 \\ 1.0 \\ 2.4 \\ 1.8 \\ 6500 \\ 2.90 \\ 2.2 \\ 4$
Klystron	Related Properties	NLC	ATF
$\begin{array}{c} P_b \ [\mathrm{kW}] \\ P_c \ [\mathrm{kW}] \\ P_{max} \ [\mathrm{MW}] \\ N_k \end{array}$	Total Beam Power Total Wall Loss Maximum Klystron Output Power Number of Klystrons	925 85 1.2 4	94 69 0.250 1
Beam	Related Properties	NLC	ATF
$E [GeV]$ $I [A]$ N_t N_b $n_b [10^{10}]$ $U_0 [keV]$ $U_{kom} [keV]$ $\sigma_z [mm]$ α $\phi_s [deg]$ ν_s	Beam Energy Maximum (dc) Beam Current Number Bunch Trains Number Bunches/Train Number Particles/Bunch Radiation Loss/Turn Higher Order Mode Loss/Turn Bunch Length Momentum Compaction Synchronous Phase Synchrotron Tune	2.00 1.0 4 75 1.5 635 1.5 635 1.0 3.5 0.0005 54 0.0048	$1.54 \\ 0.60 \\ 2-5 \\ 10-60 \\ 1-3 \\ 156 \\ - \\ 3.1 \\ 0.0019 \\ 81 \\ 0.0080$

NLC and JLC RF systems very similar Large beam loading. In 2 MW Klystrom power. Transients are question. BPs is a question.

Vocuum

NLC 109 Torr - Avy~ 0.02 ion instab. Ante chamber in bends plus pumping chamber Double ante chamber in wiggler

JLC/ATE 6x10 Tor - check suy ions Ante chamber in bends Pouble pumping chamber in wiggler Kickers

All designs use double/triple/guad/ kicker systems 5x10° D0/0 tolerance Pre-DR kickers stronger but looser.

Ions in Linacs of Future LC Future linear colliders have long trains of bunches and/or very dense bunches ⇒ Significant ion densities thru Tunnelling concertion Collisional ionization and trapping Effects Non-uniform distribution (1) ⇒ skew fields and p-coupling Focusing variation between bunches \rightarrow (2) = filamentation of E dilutions Bunch-to-bunch coupling \rightarrow (3) > two stream instability Y-2 correlation (4) => kicks to beam tail Generation of beam halo (5) > Similar to intense ion beams

Beam: Y vs Z

k. Kubo

(4) 3 Kicker System for DR

Two kickers 180° apart for extraction (one inside and one outside ring) Two bands (septem and dipole) 180° apart Injection kicker 360° from extraction. Transparent to RF system TE. シャちょ cancel ې م 6 90° Follo 62 0 1

362-1

Source and Pre-Injector Issues / Comparisons

	NLC	JLC-X
e- Sources	Poralized e- DC gun	Thermionic gun RF photocathode gun Poralized e- gun
Bunch separation	1.4 ns	1.4 ns
Total numbe of bunches	90	100
Bunch population	1 E+10	0.7 E+10
Bunch length (FWHM)	< 10 ps	< - 0 ps
Micro stability (rms)	1%	1%
Macro stability (rms)	0.25 %	0.25 %
SHB	714 MHz SHB x 2	714 MHz SHB x 2
Beam loading compensation	Reduce R; (x1/10) Phase step drive (0 - 45 deg)	Double feed BL compensation
Buncher	2856 MHz TW	2856 MHz single-cell cavity x 4
Pre-Injector		
Beam energy	~70 MeV	~80 MeV
Accelerator section	2856 MHz TW ~1.5m long (14 MeV/m) ~1.5m long (33 MeV/m)	2856 MHz ~1 m-long(14 MeV/m) ~2 m-long(33 MeV/m)

Injector Linac Issues / Comparisons

	NLC	JLC-X
Beam Energy	2 GeV	1.98 GeV
Total number of RF unit/Linac	8 with space for Δf upgrade	$10(5) + ECS \times 2$
RF Unit		
7/1		
Klystron	150 MW, 3.5 μs	85 MW, 4.5 μs (170 MW, 4.5 μs)
RF pulse compression	SLED	Two irises SLED
	135 MW => 400 MW	80 MW => 300 MW peak
	average pver pulse	average pver pulse
Accelerating structure	3 m-long CG TW x 4	3 m-long CG TW x 2 (x 4)
	, i i i i i i i i i i i i i i i i i i i	
Accelerating gradient	30 MeV/m maximum	52 MeV/m maximum
	22 MeV/m with beam loading	40 MeV/m with beam loading

- * Zero current to the design bunch population
- * Compensated at the same gap

* Zero current to the design bunch population

BEAM LOADING IN SUBHARMONIC BUNCHER

ASSUME BUNCH 90° OUT OF PHASE WITH VOLTAGE.

 $P_{min} = \frac{\alpha_1}{2} I.V\left(\frac{B+l}{2B}\right)$

S. H. B. BEAM LOADING (CONT)

FOR SECOND SHB: a, 1. ~ 1 A. V~100 kV $P_{min} \sim 100 \, kW \quad B = 1$ Pmin ~ 50 kW B>10 (SLC PSHE ~ SHW) "OPTIMUM IMPERANCE" $\left(\frac{R}{Q},\frac{Q_{o}}{\beta+i}\right)\lesssim\frac{V}{a_{i}}$ ~ 100 k M BEST TO MAKE ROSMALL BECAUSE ;

V, ~ a: I: wR to

Pre-Linac Issues / Comparisons

	NLC	JLC-X
Beam Energy	10 GeV	10 GeV
Total Length	~500 m	~300 m
Total number of RF unit/Linac	32	34(17) + 4 for ECS
RF Unit		
Klystron	150 MW, 3.5 μs	85 MW, 4.5 μs (170 MW, 4.5 μs)
RF pulse compression	SLED 135 MW => 400 MW average over pulse	Two irises SLED 80 MW => 300 MW average over pulse
Accelerating structure	3 m-long CG TW x 4	3 m-long Shintake choke-mode structure x 2 (x 4)
Accelerating gradient	30 MeV/m 22 MeV/m with beam loading	52 MV/m maximum 40 MeV/m with beam loading
Energy Compensation System		
Scheme	Δt or combination of Δt and Δf	Δf
Configuration		(3 m long for $f+\Delta f$) x 2 (3 m long for $f-\Delta f$) x 2
ΔE after compensation	0.1 % (10 % without correction)	0.1 % (6.6 % before ECS)
Flexibility	Adequate	High flexibility
ΔE jitter	< ±0.03 %	< ±0.025%

•

Energy Distribution of 90 Multi-bunch After ECS

$$\label{eq:Ne} \begin{split} & Ne=0.63E+10, \ Nb=90, \ 1.4ns, \ -00, \ 16:0 \\ & ds=090.0, \ Emax=-10.9 \ MV, \ \ Inj=-120, \ df=0.961616 \ MHz \end{split}$$

	unit	SLC existing reference	anc	JLC	NLC	VLEPP	DESY/ THD	TESLA
General Parameters								
Ne ⁺ per pulse	1010	3 to 5	0.6	40 70	63	20	360	4000
number of bunches per pulse		1	1 to 4	70-100	90	1	125	800
pulse duration	μs	3 🕫	2.3 ps	0.20.4	0.126	-	2	800
bunch spacing	R6	•	0.8	2.0.14	1.4	-	16	1000
repetition frequency	H z	120	1700	150	180	~150	50	10
Full Bunch width et	<u>ps</u>	<u> </u>		30	60)		<u> </u>	
Positron Source Type				SLC-type		wig	eler/undulato	based
Primary Beam								
energy	GeV	30	1.8	10	3.0	150	≥150	≥150
Ne [*] per pulse	1010	3 to 5	6.2 to 25	\$+47	135	20	360	4000
beam power	kW	17 to 29	31 to 124	120 IM	121	721	≥4326	≥9613
linac frequency	MHz	2856	1250	2156	2856	14000	2998	1300
wiggler length		-	-	•	•	-150	35 (2150)	35 (2150)
wiggler period	C	-	-	-	•	-1.0	3.6 (-1.2)	3.6 (-1.2)
peak field	Т	•	•	•	-	0.5	1.7 (-0.9)	1.7 (-0.9)
sumber of photons per electron		•	-	-	-	100	350 (~350)	350 (-350)
Conversion Target								
material		W(75)Re	w	W(74)Re	W(75)Re	W, Hg	Ti alloy	Ti alloy
t nickness	Xe	6.0	4.0	6.0	5.0	0.5	0.4	0.4
rus spot size of prim. beam		0.6	1.0	1.2	1.6	1.0	0.7	0.7
temperature rise per pulse	K	200 to 300	•	-600 30	200	200	-800	800
mean deposited power	kW	4.2 to 6.0	10 to 41	-40	40	0.2	5.9	14
Ne ⁺ per pulse at exit	1010	180 to 300	2.5 to 10	+200	800	60	3930	43700
Collection System			· · · · ·		·			
matching device *		AMD	AMD	AMD	AMD	Li-Lens Gel 5 T/m	AMD	AMD
initial field	Т	7.0	7.0	8.0	7.0	•	10	10
taper parameter	m ⁻¹	-	-	50		•	30	30
end field	Т	0.5	0.5	0.8	0.7	-	0.62	0.62
length (F/ux conc.)	m	0.15	-	0.18	0.2	0.01	0.5	0.5
wavelength of accel. structure	m	0.1	0.24	0.105	0.21	-	0.1	0.1
min. iris radius	mm	9.0	16.0	13	20	-	9.0	9.0
gradient	MV/m	30	20	30	20		30	15
pre-damping ring required		Y	Y	Y	Y	-	N ·	N
Ne ⁺ per pulse at entrance of (pre-)damping ring	10 ¹⁰	4.5 to 7.5	1.6 to 6.4	140	126	50	720	8000
efficiency incl. dephasing	96	2.5	64	K 14	14	•	18	18
γA of the (pre-)damping ring **	πm	0.01	0.36	0.027	0.06	0.1	0.012	0.012
energy of (pre-)damping ring	GeV	1.15	1.8	1.98	2	30	3.15	4.5
energy accept. of match. device	MeV	20	20	40	30	-	±30	±30
Polarization								
degree of polarization	96	- 1	-	- 1	-	-75%	(max, 70%)	(max. 70%)

AMD = adiabatic matching device, realized as flux concentrator

** yA = normalized acceptance

Tab. 1 Positron Source parameters of various linear collider projects. SLC parameters are given as reference. Parameters in brackets refer to the option of a polarized source in case of DESY/THD and TESLA.

ID=

HANDYPAK KAR20:20 21SEP93

ID=

Bunch Compressors Comparison

	Single	VS	Double	BC
Length / Complexity	Ð		-	
Space Charge	\odot		Ð	
Nonlinearity	-		-	
Multibunch Beam Loading Compensation	Ŧ		-	
No S-band Possibility after BC	÷		-	
	· · ·			

If we can make a low impedance DR, we increase the acceleration voltage to reduce the bunch length in DR.

So, we can reduce the position shift due to the beam loading in DR and loosen the tolerances in the single BC.

Need more study for Single Stage BC! (Both) Simple is Best but not Easy! Challenging scheme is Better for Linear Collider. Kikuch proposed 'at Emittance'93.

- (L) 1.428 GHz
- (S) 2.856 GHz (X) 11.424 GHz

10-94 7636A2

NLC Instrumentation

December 8, 1994

Outline

Table of BPM, beam size and other instrument

Updated from Monday's presentation Represents a union rather than an intersection of efforts Questions about requirements

Machine Protection - Power control sequences

How can linac train current be quickly reduced?

Stabilization

Long term alignment stability Vibration - recent results from SLC linac

Requirements for Transverse Beam Position

Meas.		location	resolution (pulse to pulse error -> signal to noise)	stability beyond which recalibration is required	accuracy (initial placement)	bunch train
X,Y	Beam Position	Injector /Pre- Linac	<1µm		<50µm	average
		Damping Ring	<1µm		<50µm	av.
		Bunch	<1µm		<10µm	av.
		Compressor				
		Linac				•
	· ·	Stripline	<1µm	1 -2 μm wrt	<10µm	av.
		(3000 ea)	·	quad center	·	
		Structure	<1µm	5μm	<10µm	av.
		Multi-Bunch	<100nm	·	·	few bunch
		Final Focus	<10nm	<10nm	<1µm	av.

384

Key Parameter: **Re-calibration interval** (and re-calibration time)

What are the characteristic stability time scales? How many may be beyond stability tolerance? How can they be found?

At SLC BPM offsets are measured to about $30\mu m$ using e+/e- technique. After a few days the distribution is about $100\mu m$ RMS. Quad alignment is measured <100microns. It degrades after 2 months.

Possible techniques:

Quad Shunt Coupling from Quad to BPM electrodes Signal injection and processing Quad Field monitoring - not necessarily a BPM issue **BPM** Resolution, Accuracy and Stability

Requirements for Main Linac BPM's (nom. striplines):

Accuracy - Reference to external locating reference (initial placement)

10µm

Resolution - Short, pulse to pulse noise rejection <1µm

Stability - Long term repeatability

<1µm

Resolution specification should be achievable - scaling from FFTB

Accuracy of initial placement may not be so tight

Stability is the most difficult tolerance

Bolt BPM to Quad cores (to be tested at KEK)

What is FFTB experience?

What calibration procedures are needed? Higher bandwidth increases calibration difficulty

Transverse Size

Meas.		location	resolution (detectable size change)	accuracy (systematic error)	bunch train	# of unit	possible candidates
σx,σy	Transverse Size	Injector /Pre- Linac	50µm		av./each	30	wire scanner
		Damping Ring	20μm for σx 2μm for σy		av./each	3	synchrotron radiation/Compton scattering
		Bunch Compressor	1µm		av./each	20	synchrotron/ Compton scattering
		Main Linac	0.3 ~ 1µm	<10%	av./each	100	Compton scattering
		Final Focus	0.3 ~ 1µm	<10%	av./each	20	Compton scattering
		Final Focus	3~30nm	<10%	each.	2	Compton scattering
		Final Focus	<1nm	?	each	1	Compton scattering

387

Number of units is scaled from the number in the SLC linac, assuming 4 per group. Five or more may be required in order to accurately correct coupling errors.

What accuracy is required for coupling correction? for emittance control?

What range of sizes is important? For SLC linac 50 x is used.

What sort of Compton scattering monitor is best? Two candidates - interference fringe device and laserwire device.

Single pass size monitor - measures projected size of train bunches.

Laserwire and Interference Fringe Compton scattering beam size monitor - comparison

Disadvantages	Laserwire	Interference
	Diffraction dependent spot shape	Higher laser power needed
	Limited minimum spot size	Limited dynamic range
	Calibration is more difficult	Mechanical stability
	More complex optics - radiation damage to optics	
SINGLE PASS LASERWIRE SCANNER

Compton monitor

Bunch Spacing

Most important at entrance to Main Linac

Meas.		location	resolution	accuracy	bunch train	# of unit	possible candidates
Delta Z bet. bunches	Bunch Spacing	Bunch Compressor	0.01mm (0.03ps) 0.1 degree X	0.03mm (0.1ps)	each	2	Auto-correlation of fast pulse or coherent radiation
		Main Linac	0.01mm (0.03ps) 0.1 degree X	0.03mm (0.1ps)	each	4	Auto-correlation of fast pulse or coherent radiation

What are phase difference tolerances? Are these devices needed at places other than the linac entrance?

390

į

ŧ

Beam Power Limiting and Restoration sequences (Machine Protection System)

Avoid rapid changes in damping ring average current

Vary the number of bunches in the train slowly - from the injector

Emittance increase control in linac

3 to 4 orders of magnitude increase required Can this be done in the damping ring - antidamping?

A linac entrance aperture filling I_0 single bunch train is too small by the end of the linac to prevent damage

How many other emittance - increasing controls are required?

Thermal feedforward will be needed for heavily loaded linac structures

·,

Thermal Distortion of the Table 1994/08/23 - 08/26

A summary table of the rms movement in nanometers follows. All the measurements were done in sector 12 at girder 7 except for quadrupoles 801 which is on a girder like 701 and 901 which is on an instrumentation girder.

Item measured	sec 12 Z Location	Water On	Water OFF
floor	near support	34 nm rms	
light pipe	quarter point	718 nm rms	
light pipe	midpoint	906 nm rms	
girder	quarter point	945 nm rms	
girder	midpoint	989 nm rms	
accelerator (dlwg)	quarter point	1010 nm rms	185 nm rms
accelerator (dlwg)	midpoint	1110 nm rms	190 nm rms
quadrupole	701	278 nm rms	
quadrupole	801	298 nm rms	95 nm rms
quadrupole	901	330 nm rms	

Other Data:

The power spectrum of electrical noise was measured to be orders of magnitude below the data, and therefore not a problem.

Yet to be analyzed:

Cross correlation data was taken between the midpoint of accelerator sections 12-7 and 12-8. Cross correlation data was taken between the midpoint of accelerator section 12-7 and quad 801. Impulse data was taken to determine the resonant frequencies of various structures and quads.

Summary and Conclusions:

Measurements indicate that a 1 micron rms vertical motion of the accelerator structure drops by a factor of 5 to .2 micron rms motion when the cooling water circuits connected to the accelerator structure are turned off. The quadrupoles have 300 nanometer rms vertical motion with the accelerator structure water on and drop by a factor of 3 to 100 nanometer motion with it off. This indicates that the water turbulence drives the accelerator section motion which translates to the girders and quadrupoles. More analysis of the data taken is yet to be done.

🗵 1 A Schematic Diagram of an RF Power Distribution System

JLC parameters(Ecm=1Tev)

Beam energy	500Gev	
RF frequency	11.424ghz	I
No.of particles per bunch	6.9x10e9	
Nr of bunches per pulse	85	(120nsec train)
Bunch spacing	1.40nsec	
Repetition rate	150Hz	
Luminosity	10e34	
Nominal accelerating gradient	76.1MeV/1	nı
Effective gradient in cavities	57.1MeV/	m
Length of a cavity unit	1300mm	(8413m per beam)
Nr of cavity units(per beam)	6423	
a/L	0.1576	
Filling time(Tf)	120nsec	
Attenuation parameter	0.648	
Vg/c	3.64%	
Rf input per a cavity unit	130MW	(240nsec)
Efficiency(wallplug to RF)	30%	
Total AC power(RF)	194MW(a	nd some more)

Problem-1) Find differences between This Table and

Yokoya Parameters presented this morning.

The prototype RF power source for JLC(Ec=1Tev)

(1)Klystron(XB72k) 97MW RF out 130MW 500ns Pulse width 42% 36%(50MW) Efficiency Super cond. Mag. (unit test OK) Focusing (2)x2 or x3 RF pulse compression system (Design stage) 500ns 130MW RF input RF out 240ns 250MW >96% Efficiency (3)Blumlein modulator 600kV 500ns(flat top) Output pulse 500kV 700ns 75% Effiency Pulse trans. 1:5 1:7 was tested Rise &Fall time 150ns 200ns 250ns(rise)

Table-1)XB-72 Parameters

550kV Beam voltage 490A Beam current 273kV/cm Max. surface field 110-1 Beam areal compression 72 mm Cathode diameter 17A/cm2 Current density(Max.) 6.5kG Focusin field(Max.) 5 Number of cavities 11.424GHz Frequency 120MW RF power 47% Efficiency 720kV Max. surface Grad. (Output gap) 53-56dB Gain

	· Beam Voltage	620 KV	
ok?	· Bean Current	550 A	
	· Bean Power	340 MW	Drode is OK.

- · Efficiency · Out put Cavity · Peak RF Power
- 35% Need Damaged. (Discharge) Multi Gap 95MW **(26%)**
- OK(?) . Window Focusing Solenoid

TEn 1/2 Xg 600 as 70 MW under Test Bz OK. to be measured in SLAC (94. Dec)

Next.

Prototype Test. wall plug -> Linac Imput

3 very efficiency etc.

@ Problem "Money"

• • • • • •

-

-

· ...

RF Pulse Compression (Includes transmission of power to arc. JLC M=937 P.G. = 1.85 "DLDS Simple, low not technology

NLC M = 72% P = 3.X5 SLEO-A Proven components Tested at high power in ASTA Extensive tests to come in MILCTA some improvements needed to meet design ' Future: X8 BPC Swutched SLED-A Mx80% PG=6.1 Loaded Delay Linez Probally 5-11 Lumped Carities/Bik Implies "ripple" But correct with low level & module

Modulator

	JLC	NLC
Output Villings (LV)	600	550
Thyrdrom (Max hv)	1.50	80
PFN Voltager LVI	120	69
Pulse Transformer	1:5	1:8
Pulse Length (ps)	0.5	1.2 1.75
Every Fficing	75).	80% 85%
Net efficiency (with Fur. Supply)	71%	75%. 80%
Eyengy/pube 1J)	225	325 450
		(2 leleptome)

Mature technology e Improvements possible with \$\$ 0 · Replace with grid-switched blystron? (M x 9070?) · Some ripple O.K - - #2% =7 #20° b\$ for NLC keystron

Table-1)XB-72 Pa	arameters		NLC
*K	/.1	L_	0.6
Beam voltage	550)kV	535
Beam current	490)A	235
Max. surface field	d 273	kV/cm	
Beam areal comp	ression 110)-1	145
Cathode diameter	. 72	mm	57.2
Current density(N	fax.) 17 A	4/cm2	174 eng
Focusin field(Ma	x.) 6.5	kG	3.0 sinunit
Number of cavitie	esí 5		6+0-4-
Frequency	11.	424GHz	Same
RF power	120)MW	75
Efficiency	479	76	60%
Max. surface Gra	d. 720)kV	730
(Output gap)			·
Gain	53-	•56dB	57
output circuit			4 cell TW
· Bean Voltage	620 KV		
KP Base Current Pase Poorer	550 A 340 MIT	Droda is	ok.

• Efficiency • Out put Cavely • Peak RF Power

25% Nood Domaged. (Discharge) Multi Gap 15M0 (36 %)

?) . Window . Focusing Solenoid

TEn 1/2 2 600 - 2 70 MW under Tost Bz ok. to be measured in SLAC (94. Doc)

original transparency	10 Tol C.M	•• ••••	12-9-94
Basic K	RF Paras	noters & Sea	"preferned"
U U		NL NL	c pardmeters
	JLC	" Realistic	Future
str. Length (m)	1.3	1.8	
Filling time (ns)	120	100	
Ave Jy/c (%)	.036	.060	
No. Structures por My (Str. Longot, / Tily)	2 (2.6m)	2 (3.6m)	
Acel. Gradient (MV/m) Undochod / Londod	76/57 (71/53)	60/45	80/60 (<u>85</u> 635)
RF Power at Str. (NW)	130	130	230 (269)
Mw/m @ 50 MV/m	43	50	
Tp at Accel (ns)	120+120+10=250 (85 birda)	100 + 105 + 1	15 = 220
Pulse Comp. System	DLDS	xs sled-I	XB BPC
Power Gain/Efficiency	1.85/9370	3.6/72%	6.4/80% (6.8)
Mastron Pouver (NW) Repetition Rate (172)	140 150	72	(77)
They. Pulse hangth (1)	0.50	1.20	1.76
Hystron Efficiency	457.	60%	60 % (657.)
Modulator Essiciency	7170	75%	80% (40%)
Not KF Efficiency	30%	(32 %)	38 % (50%)
Wall Plug Power (MW)	225	135	150 125
Total Adive Longth (hon)	7× 9.0	2×11.4	2×8-6 (2×8·1)
Number of heliptrons	6900	6300	4800 4500

. . .

• • • • •

Revised 12/12/94	1.0 TeV c.m	. SLACT	KER Wortshop
Basic R	F Perame	ters 12	19/94 Summary
	JLC (MIZNOO)	NLC (Present Technology)	NLC (Further RED)
Structure Length (m)	13	1.8	1.13
Filling time (ns)	120	100	100
Ave sale (70)	.036	.06	.06
No. Structures pertily. (Str. Longth/My)	Z (2.6m)	(1.8m)	z (3.6m)
Accel Gradient (My/m Unforted /Loaded	76/57	85/63.5	85/63.5
Particles / bunch (10')	0.69	1.1	.
No. Bunda / Rep Rite	85/150	75/120	75/120
MW/m 250 HV/m	43 T	50	50
To at Arcel (ns)	120+120+10=250	100 +105 +15=220	220
Pulse Comp. System	DLDS	KS SLED-I	x 8 BPC
Power Gam / Efficiency	1.95/93%	3.6/72%	6.4/80%
Pur. Regd at Str. (IMW)	130	260	260
Klystron Poor (NW)	140	72	81
Hlystron Pulse Length (M)	0.50	1.20	1.76
Klystra Efficiency	457.	60%	63%
Modulator Efficiency	719.	75%	807.
Net RF Efficiency	307.	327.	407.
Total Active Length (ky)	2 x 9.0	2×8.1	2×8.1
Wall Plug Power (NW)	225	193	155
Number of trystros	6940	9016	4508
Notes () (2)	Includes power f Includes as to de	power supply	auelente

941209 Ø

J. Wang. T. Higo

Structure I	Essues
-------------	--------

Issues		SLAC	KEK	
• Structure Type		Detuned	Detuned	
long range dipole	wake	"DDT" manifold	pure detune / medium daup	
		· · · · · · · · · · · · · · · · · · ·	(Detuned + Choke mode?) later option	
• RF properties	Ls	$1.8m \frac{a}{2} = 0.18$	$1.3m$ $\frac{a}{2} = 0.16$	
fundamental mode	T_{f}	100 m s	106 ms	
, # of structures	С	0,5	0,58	
cost (" plystrons	Pkly	90HW/structure	130 MW/structure	
	ENL, ELD	50 MU/m ->	73 MV/ -> 54MV/	
multi-bunck co	energy mpensation	RF ramping	injection timing non-local	

		SLAC	KEK
• Dipole mode	≤fı/fı	10%	11%
langet disple mole	Dex	~(000	~2000
towest capoie and	a.	4~5.7 (20.18)	3.6~5.3 (2 0.16)
high er	t	1~2 Gaussian	1~2.4 fo ganssian
	Ncell	206	150
• Wake field celcula	ition		
Equivalent cinqu	it	karl	Kubo→Jamanoto→
Open mode exp.			Yamamoto
Mode matching		5am's	
MAFIA		kusk	
. Parallel processor		"	
. Manifold damping	(eg. cire)	kroll, kathy , kusk	
• Wake field measure me	t	ASSET	Æ

ł

	SLAC	KEK
 Emittance growth calculation Single bunch multi bunch tolerance freg. alignment freedback method 	malytical formula simulations Chris Karl Kathy Kubo	
 Fabrication tolerance, QC freg., alignment 	Brazing (Cn-Cn contait) dimple tune	Diffusion bonding no tuning
low power (two e check)	Vertical (SW/TW)	Horizontal (SW)
QC (cell/stack)	final twe after brazing	(dimension of cell. simple RF on cell
present status	1.8 m	0,3m (1.15m)
S famo chining		±0.3HHz
5 fabording		< 1445
alignment	4 p / 16 wel	4 ju (40 ju)
shrinkage	~0.1mm/16 wel	(0.5mm)

	SLAC	KEK
• High field performances	>55MV/m 1.8m	100 mV/m 0,2m
dark current simulation		stop band in Eace
• Test of RF unit	ASTA	AR-south exp. hall.
• Test of Linac unit	NLCTA	not proposed yet
RF control Single / Multi-bunch		
Energy compensation		
Transverse dynamics Wake field, alignment RDM	, feedback, -	
resolution, accuracy, c	dark current,	
. stems to be checked & confir	h col	

Summary of Beam Delivery

12/8/1994 K. Oide

1) The relative phase jitter between two crab cavities must be checked by R&D with real beam (for example using FFTB). Fast common jitters of crab rf are not problem. Slow drift of phase due to temperature change is correctable with steering correctors.

2) The layout strongly depends on the crossing angle.

3) The vibration of final quads with mechanical support for the detector should be checked under realistic environment (water flow for quad if it is iron, or nearby human activities if two IP is necessary).

4) The size of the system is nearly proportional to the beam energy. The maximum energy must be determined at the beginning.

5) Both linear and nonlinear collimation schemes are still alive. The depth of collimation depends on not only the beam energy and also the design of detector, so a simple scaling on the energy can be inadequet.

6) There are several techniques to improve the bandpass and to shorten the length of the final focus:

a) Asymmetric dispersion

b) Brinkmann sextupoles

c) "Brinkmann quadrupoles"

Yet the merit of a big bandpass should be stated clearly in the design, otherwise the system becomes uselessly long.

	NLC 1.5 TeV	JLC 1.5 TeV
Crossing	Crab 40 mrad	Nocrab 8 mrad (optional crab)
Layout	Collimate-Bend-FF	Bend-Collimate-Reverse Bend-FF
Collimation	Linear	Nonlinear
	4%, 6 σ _X , 35 σ _y	1.5%, 6 σ _X , 35 σ _y
Length	2000 m @ 1TeV	1000 m @ 0.5 TeV
Chromaticity Correction	Symmetric Dispersion	Asymmetric Dispersion
	Brinkmann Sext	"Brinkmann Quad"
Bandwidth	±0.45%	±1%
Length	1500 m	900 m
Final Quad	Permanent	Normal Conducting Iron
-	$B_{poletip} = 1.4 T$	$B_{poletip} = 1.3 T$
	a = 4.5 mm	a =3.2 mm
	L = 3 m	L = 3 m
1*	2 m	2.5 m

$$\frac{RF}{V_{\perp}} = \sqrt{V_{\perp}} = \sqrt{V_{\perp}} = \sqrt{(\frac{1}{2})^{N_{\perp}}} (1 - e^{-T})$$

$$\frac{V_{\perp}}{V_{\perp}} = \sqrt{V_{\perp}} = \sqrt{(\frac{1}{2})^{N_{\perp}}} (1 - e^{-T})$$

$$\frac{V_{\perp}}{V_{\perp}} = \sqrt{V_{\perp}} = \sqrt{(\frac{1}{2})^{N_{\perp}}} (1 + e^{-T})$$

$$\frac{V_{\perp}}{V_{\perp}} = \sqrt{V_{\perp}} = \sqrt{V_{\perp}} = \sqrt{(\frac{1}{2})^{N_{\perp}}} (1 + e^{-T})$$

$$\frac{V_{\perp}}{V_{\perp}} = \sqrt{V_{\perp}} = \sqrt{V_{\perp}} = \sqrt{(\frac{1}{2})^{N_{\perp}}} (1 + e^{-T})$$

$$\frac{V_{\perp}}{V_{\perp}} = \sqrt{V_{\perp}} = \sqrt{V_{\perp}} = \sqrt{(\frac{1}{2})^{N_{\perp}}} (1 + e^{-T})$$

$$\frac{V_{\perp}}{V_{\perp}} = \sqrt{V_{\perp}} = \sqrt{V_{\perp}} = \sqrt{(\frac{1}{2})^{N_{\perp}}} (1 + e^{-T})$$

$$\frac{V_{\perp}}{V_{\perp}} = \sqrt{V_{\perp}} = \sqrt{(\frac{1}{2})^{N_{\perp}}} = \sqrt{V_{\perp}} = \sqrt{(\frac{1}{2})^{N_{\perp}}} = \sqrt{(\frac{1}{2})^{N_{\perp}}}} = \sqrt{(\frac{1}{2})^{N_{\perp}}} = \sqrt$$

Schem for Feedback and control of DY

 $\Delta x, \Delta y (\mu m)$ for $\Delta x, \Delta y (\mu m)$

Band pass plot for 1 TeV c.m. collider 12/05/94 Without chromatic correction of telescopic sections No synchrotrom excitation

Band pass plot for 1 TeV c.m. collider 12/05/94 With chromatic correction of all telescopic sections No synchrotrom excitation

Band pass plot for 1 TeV c.m. collider 12/05/94 With chromatic correction of all telescopic sections Synchrotrom excitation in dipoles and quadrupoles

Band pass plot for 1 TeV c.m. collider 12/06/94 With chromatic correction of all telescopic sections Synchrotrom excitation in dipoles and quadrupoles Q2 lengthened from 2.45 to 5.0 m

Band pass plot for 1 TeV c.m. collider 12/05/94 With chromatic correction of all telescopic sections Synchrotrom excitation in dipoles

 $\beta_x^+ = 10 \text{ mm}$

ŧ

a second a second design of the second design of th		فتكوية الأرجيب والبراج والمتروي المروي				_
Parameter	0.5 TeV	0.5 TeV*	1.0 TeV	1.5 TeV	Comments]
Lo	0.5	0.8	1.06	1.07	Luminosity w/o Pinch	1
L	0.7	1.0	1.4	1.6	Luminosity w/ Pinch	1
ng x N	90.651010	90.78 1010	751.11010	751.11010		1
σχ	320 nm		360 nm	360 nm	Variable	1
σ _{y,0}	3.2 nm		2.3 nm	2.3 nm		1
σy.Lat			2.4	2.6	NFDSR # LAT WOSR.	
٤ _X	10-11		1/2 10-11	1/3 10-11	$\gamma \epsilon_{\rm X} = 5 \ 10^{-6} \ {\rm m-rad}$	2. 20
ε _γ	10-13		1/2 10-13	1/3 10-13	$\gamma \epsilon_{v} = 5 10^{-8} \text{m-rad}$	la che
β _x	10 mm		25 mm	37 mm		<i>w</i> 7
βv	100 μm		100 μm	150 µm		
σx'	30, 30 µrad		14, 23 µrad	10, 15 µrad	IP Divergent Angle	
σz	100 µm		100 µm	100 μm	Bunch Length	
θd	3.2 mr		3.6 mr	3.6 mr	Bunch Diagonal Angle	
± Abox	$< \pm 4 \ 10^{-3}$		< ± 4 10-3	< ± 4 10-3	Square Energy Profile Width	
D _{x,y}	.07, 7.3		.04, 8.8	.03, 5.2	Disruption Parameter	
Hd	1.3		1.4	1.5	Enhancement from Pinch	
θD	.25 mr		.17 mr		Max. Disrupt. Angle @ Beam Energy	
Y	.09	.11	.28	.42	Upsilon Parameter	
8 B	.015	.02	.07	.08	Mean Energy Loss to Beamstrahl. ys	
ħγ	.8	1.0	1.1	1.1	# of Photons per Electron	
L1/L.995/L.95	.48/ /	.40/ /	.37/.5/.67	.38/.5/.66	L+=Lum, fract'n w/ c.m. E> tEa	
NHad	.04	.07	0.18	0.23	# of Hadronic Events / Cross.	
Njet5	.001		0.014	0.03	# of Mini-Jets per Crossing	

NLC IP Region Working Parameters

3.10° -7 5.10° 20720+20 = 60% É line-07P.

Tolerance Accounting & Specification Needed for comparisons of alternative systems

1. Description of tolerance:

if motion, then relative to what

if stability, then relevant time scale

2. Basis of tolerance

What is basic impact(s).

What is total impact permitted, all sources. (total allotment)

What of total, is alloted to this source? (the budget)

3. Contingency

What is probability of meeting goal?

Relative to this uncertainty, what is judicious margin for possiblly larger impact?

Important not to get carried away.

A rough first pass already very helpful.

a second second

P. Chen

P. Chen Dec. 7, 1994

Linear Colliders	NLC 1.0 TeV	;		NLC 1.5 TeV		
$\mathcal{L}[10^{34} \text{cm}^{-2} \text{sec}^{-1}]$	1.05	i		1.05		
frep[Hz]	120			120 ,		
n	75			75		
$\mathcal{L}_1[10^{-3} \mathrm{nb}^{-1}]$	1.17			1.17		
N[10 ¹⁰]	1.1	1.56	1.31	1.1	1.56	1.31
$\sigma_z/\sigma_y[nm]$	360/2.3	360/4.6	254.56/4.6	360/2.3	360/4.6	254.56/4.6
$\sigma_z[\mu m]$	100	100	100	100	100	100
$\beta_{z}^{*}/\beta_{y}^{*}[mm]$	25/0.1	25/0.1	2 5/0.1	37/0.15	3 7/0.15	3 7/0.15
D_{z}/D_{y}	0.049/7.60	0.068/5.36	0.114/6.33	0.032/5.07	0.046/3.57	0.076/4.22
A_z/A_y	0.004 /1.0	0.004/1.0	0.004/1.0	0.003/0.667	0.003/0.667	0.003/0.667
H _p	1.29 (1. 3 5)	1.25(1.29)	1.29(1.32)	1.47(1.49)	1.41(1.43)	1.46(1.46)
$\bar{\mathcal{L}}[10^{34} \mathrm{cm}^{-2} \mathrm{sec}^{-1}]$	1. 3 5	1.31	1.35	1.54	1.49	1.53
$\bar{\mathcal{L}}_1[10^{-3} \text{mb}^{-1}]$	(1.57)	(1.51)	(1.54)	(1.73)	(1.67)	(1.70)
T ₀	(0.27)	(0.38)	(0.45)	(0.40)	(0.57)	(0.67)
Т	(0.27)	(0.38)	(0.45)	(0.40)	(0.57)	(0.68)
δ _B	0.07(0.07)	0.11(0.12)	0.14(0.16)	0.08(0.09)	0.13(0.15)	0.15(0.18)
n _y	1.2(1.1)	1.6(1.5)	1.9(1.8)	1.1(1.1)	1.5(1.4)	1.8(1.7)
$\mathcal{L}_{100}/\tilde{\mathcal{L}}$	(0.37)	(0.27)	(0.23)	(0.3 8)	(0.29)	(0.24)
L ₉₉ /Ē	(0.50)	(0.38)	(0.33)	(0.50)	(0.39)	(0.34)
L ₃₀ /Ē	(0.67)	(0.55)	(0.49)	(0.66)	► (0.54)	(0.4 8)
$N_{\mathrm{pair}}[p_{\perp} \geq 20\mathrm{MeV}]$	(7.04)	(7.92)	(8.84)	(7.04)	(7.75)	(8.47)
Nhad	(0.18)	(0 .25)	(0.30)	(0.23)	(0.30)	(0.36)
N _{jet5}	(0.014)	(0.023)	(0.031)	(0.031)	(0.048)	(0.062)

Seam-Beam Effects in NLC 1.0 TeV and 1.5 TeV

* The quantities in (...) are from theoretical calculations.

1.0 .995 .95

Ą

Fle

** The quantities not in (...) are either by definition or from ABEL simulations.

No N° effect! (but = N) "En eff reduction of J (?)

 $k_2 \cdot l_2 = const$

$$\beta_{\rm X}^{\rm H} = 25 \, \rm mm$$

EXPERIMENTATION SUBGROUP REPORT

12/9/94

T. Markiewicz T. Matsui

w/ thanks to Tim Barklow

Detector strategies are roughly independent of machine design

with exception of backgrounds as discussed in Final Focus working group

Here we take this opportunity to discuss physics driven machine requirements for

- Energy
- Luminosity
- Energy Spread
- Polarization

USE as guide: DRAFT of Technical Review Committee report for Int'l Collab. for RXD Toward Tel Scale L.C. OUTLINE

Draft #0, 19 September 1994 Draft #1, 28 October 1994

0.1 Experimentation

R. Settles¹ (Chairman), T. Markiewicz² (Deputy Chairman), S. Bertolucci,³ S. Kawabata,⁴ D. Miller,⁵ R. Orava,⁶ F. Richard,⁷ T. Tauchi,⁸ and A. Wagner⁹

	ee500	ee500	LEP/SLC-	1000GeV	JLC	
	1991	Typical	Style	Detector	Detector	
Tracking						
$\frac{\delta p_i}{p_i^2} = C$:				
$\ddot{C} =$	5-100	10	8	2	1	$\times 10^{-4} { m GeV}^{-1}$
E-M Calorimeter						
$\frac{\delta E}{\sqrt{E}} =$	0.02-0.15	0.1	0.2	0.1	0.15	√GeV
Hadronic Calorimeter						
$\frac{\delta E}{\sqrt{E}} =$	0.3-1.0	0.8	0.9	0.65	0.40	$\sqrt{\text{GeV}}$
Energy Flow						
$\frac{\delta E}{\sqrt{E}} =$	0.3-0.8	0.5	0.65	0.4	0.3	√GeV
Vertexing						
$\delta(IP) = A \oplus \frac{B}{P}$						
A =	5-20	10	25	10	11	$\mu \mathrm{m}$
<i>B</i> =	50-100	50	100	50	28	μmGeV
Hermetic coverage						
$ \cos \theta <$	0.70-0.99	0.95	0.96	0.98	0.98	

Table 3: Examples of detector performances used in physics studies up to now.

PHYSICS	MACHINE				DETECTOR						
	∫Ldt	\sqrt{s}	Narrow	Pol.	Herme-	Track-	Calor-	3-Dim.	Lepton	Vertex	pi/K
	љ ⁻¹ /у	TeV	$\mathcal{L}(\sqrt{s})^a$	beams	ticity	ing	imetry	Granul.	I.D.	Tag	1.D.
•HIGGS	[
Bj-prod.	1-10	.2									
Boson fusion	10	to	* ⁶	-	***	**	**	**	**	***	*
SM/Susy B.R.	100	· 1									
●ТОР	<u> </u>				[
Thr. scan	10	~.35	***	**	***	**	**	**	**	***	*
Rare decays	10	.4									
g-2,hel.	5 0	to		**	***	**	**	**	**	***	**
Yukawa	100	~.6									
•ww											
WWV-coupl.	10	~.5									
WWV-hel.	50	to	***	**	***	**	**	**	**	-	•
WWVV-coupl.	100	1									
Strint.Higgs	200	~1.5			***	***	**	***	**	-	•
•SUSY											
Slepton	10	.2								·····	
Chargino	10	to									
Neutralino	10	.5	-	* ^c	***	**	**	*	**	•	•
Susy param.	100	to									
Squark,gluino	100	1									
●QCD											
Hadronization	1	For									
Heavy flavors	10	الد	•	-	**	**	**	*	*	**	*
$\alpha_{s}(s)$	10	\sqrt{s}									
•γγ											
$F_2^{\gamma}(x,Q^2)$	10		**	•	***	**	**	**	**	*	*
Flavors	10						_				
•NEW PHEN.	200	2			***	***	**	***	**	**	
OVERALL			***	** ^c	***	***	**	***	**	***	**
$\mathcal{L}(\sqrt{s})$ Detector					**	***	**	**	**	-	•

Table 1: Main physics issues and the corresponding performance needed for machine and detector aspects. Key: from"-" not important, to "***" very important.

^a Here the *'s indicate how important it is to have a narrow and well-measured c.m.s. energy spread arising from machine and beamstrahlung effects. The detector for mapping the luminosity as a function of \sqrt{s} to high precision is treated in the last row of the table. If $M_{higgs} < 600$ GeV is discovered, this should be upgraded to ** or more. If supersymmetry is discovered, this should be upgraded to ***.

f6-'

		r	20
$m_{\iota} \left[{\rm GeV}/c^2 \right]$	$\Delta m_{\rm t} [{ m MeV}/c^2]$	Δας	
120	130	0.005	
150	300	0.006	
180	520	0.009	

MEASURING LUMINOSITY DIST. (MILLER + FRARY, 117191) as all TESLA a L Table 1: Pag m 217 | Beam 318 ty (30 an - -14 44 21 tion of ormals h BHABHA with Ap < 8.81.5. 8.45 1.35 44 from Beemstrahlun ACOLLINEARITY Spread in L. S. 0.17 6.57 0.1 **10** e 01 e Ke ER + Beemate $\Theta_A = \frac{\Delta P}{P} \sin \Theta$ measured to Imred IS.P+ Beams ISR 2.5 7.5 ü 75 4..... ISR+B NOT ENOUGH EVENTS IN PEAK 2 TO DE-CONVOLVE dulde Table 2: Practice of events with $\theta_{\perp} < 1 \text{ mrad.} (30) < \theta < 600 \text{ mrad.}$ Beam 16 Beam 2[7] Beam 3[8]

Initial state radiation.	0.56	0.56	0.56
ISR + Beamstrahlung.	0,24	0.13	0.25
ISR + Beamstrahlung + beam spread.	(0.18)	(0.05)	

Figure 3: Distribution of the recomputed mass of the Higgs pair in the four-jet topology (a) before and (b) after b-tagging, for all known backgrounds (shaded histogram) and for the signal $(m_{\rm H} = 110 \ {\rm GeV}/c^2)$.

Figure 6: Visible mass distribution in the missing energy channel for all background processes (shaded histogram) and for $H\nu\bar{\nu}$ with $m_{\rm H} = 120 \text{ GeV}/c^2$, (a) before and (b) after b-tagging.

7<u>-9</u>4

. . .

SUPERSYMMETRIC PARTICLES

- EASY TO DETECT IF THEY EXIST & ARE KINEMATICALLY ALLOWED

MORE HSSM MODELS (G.KANE)

STUDY OF CONSTRAINED MINIMAL SUPERSYMMETRY

TABLE VI. The same as in Table IV but now for $m_t^{\text{pole}} = 170 \text{ GeV}$, $\tan \beta = 20$, $A_0/m_0 = 0$, and $\operatorname{sgn} \mu_0 = -1$ (Fig. 9).

Mass limits (GeV)	COM	COMPASS		M	MD	M
	Lower	Upper	Lower	Upper	Lower	Upper
h	113	131	116	125	114	119
A	532	1502	564	1020	532	828
\widetilde{e}_L	244	1069	244	1011	244	832
~ CR	167	1023	167	1004	167	824
$\widetilde{ au}_1$	144	9 80	144	96 0	144	788
$\tilde{\tau}_2$	250	1051	2 50	9 91	2 50	816
$\widetilde{\nu}_L$	230	1066	230	1008	230	828
ũ	641	1681	677	1156	641	931
ũ	631	1611	654	1110	631	924
\tilde{t}_1	441	1302	501	883	464	607
\tilde{t}_2	584	1579	687	1117	6 05	814
$\chi_1^0 = LSP$	28	353	34	232	34	152
X2	51	657	62	432	62	2 81
\hat{x}_{1}^{\pm}	50	657	61	432	61 .	281
Ĩ	207	1812	249	1257	249	874

• • • • • • • • • •

• •

GAUGE BOSON STUDIES

 $50 \, \text{fb}^{-1} \, \sqrt{5} = 500$

図 1.67: ゲージ粒子の具常結合定数に対する現在の潮定程度と若来の実験で期待される精度。結合定数の大きさのみ を比較した。

PHYSICS CASE FOR HIGHEST ENERGY

In SZANDARD Model

WL Scattering is STRONG & VIOLATES UNITARITY @ VS~1-2TeV

EVEN 15 no light (< 6006ev) Higgs exists going to 1-2 Tel guarantees' EWSB

Strong Electroweak Symmetry Breaking

 $F_T = F_T(M_{\rho}, \Gamma_{\rho})$ is the form factor for $e^+e^- \rightarrow W_L^+ W_L^$ where M_{ρ}, Γ_{ρ} = mass, width of a techni-rho resonance.

 F_T is analogous to the rho-dominated pion form factor for $e^+e^- \rightarrow \pi^+\pi^-$

A Maximum Likelihood analysis of the production and decay angles of all $W^+W^-_L$ events isolates $e^+e^- \rightarrow W^+_LW^-_L$