SLAC-R-95-456 CONF-941248

KEK/SLAC X-Band Collider Design Mini-workshop

December 5–9, 1994

Stanford Linear Accelerator Center Stanford, California

Prepared for the Department of Energy under contract number DE-AC03-76SF00515

Printed in the United States of America Available from the National Technical Information Services, U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161

KEK/SLAC X-Band Collider Design Miniworkshop SLAC December 5-9, 1994

KEK and SLAC have long enjoyed an exciting and fruitful collaboration for the development of electron-positron colliders. Joint research on the accelerator physics and technologies required for a future high-energy linear collider has included important collaboration on all major areas of R&D – parameters, particle sources, damping rings, high-power rf sources, accelerating structures and dynamics, final focus systems, instrumentation, as well as study of goals for particle physics and experimentation. Particularly close collaborations exist between KEK and SLAC on the development of a linear collider based on acceleration of beams with X-Band frequency (11.4 GHz) microwaves. Physicists from the two institutions met at SLAC during the week of Decmeber 5-9, 1994 to review and compare their progress, designs, and plans for such a collider.

The goal of the workshop was to discuss and compare the KEK JLC and SLAC NLC collider designs and technologies, to discuss important similarities and differences, and to identify and discuss ways to further enhance and strengthen collaboration between the two laboratories.

The first day of the workshop was used for presentations by people from each laboratory. Individual and small group meetings were held on Tuesday and Wednesday, and reports from the working groups were presented on Thursday afternoon and Friday morning. Many interesting and important topics were covered during the review, and the detailed comparisons of the two X-Band designs added insight to our understanding of each of them.

Although the basic approach and parameter sets of the KEK JLC and SLAC NLC X-Band designs are similar, a number of important and interesting differences were found during the workshop. The JLC scheme to compensate for beam loading in the injector uses pairs of klystrons operating at frequencies shifted slightly from the central band, while the NLC plan is to shape the applied rf by controlling the klystron phase at input to the compression stage. Neither

technique has been fully tested yet. The rf systems for the main linac are also slightly different. The JLC design calls for a 130 MW klystron with a 500 ns output pulse that is compressed a factor 2 with a 3 db coupler and the transit time delay of the accelerated bunches. By contrast, the NLC design leans more heavily on the use of pulse compression to allow use of a lower power (50 MW) pulse 1.5 μ s long. A more elaborate SLED II system amplifies the peak power by a factor nearly five. Work at both laboratories continues to improve the overall efficiency of rf power systems through such developments as PPM focused klystrons, superconducting focusing coils, and Blumlein modulators. Both groups will use detuned accelerating structures, and a very healthy diversification exists in fabrication methods being developed at the two laboratories – KEK is exploring diffusion bonding techniques while SLAC is working on precision brazing. A very interesting comparison was made of the final focus designs. The JLC incorporates a new "double bend" layout that minimizes the crossing angle of the beams at the interaction point. This has the advantage that no crab cavity is required, and most probably could also be designed to minimize muon backgrounds at the detector. The NLC design maintains a relatively large 40 mr crossing angle at the collision point, and corrects for the skew angles of the beams with a pair of crab cavities. Tolerances on the phase difference of such cavities are tight.

These are only some highlights of the KEK/SLAC miniworkshop on X-Band colliders. The meeting proved to be a useful stimulus for both teams, and the discussions of the week will strengthen each design. It was agreed that follow-on workshops will certainly be beneficial, and we look forward to getting together again in Tsukuba next Fall.

> D. Burke G. Loew T. Matsui K. Takata

KEK/SLAC X-Band Design Mini-workshop SLAC Dec 5 - 9, 1994

The goal of this workshop is to discuss and compare the KEK JLC and SLAC NLC collider designs and technologies, to discuss important similarities and differences, and to identify and discuss ways to further enhance and strengthen our collaborations.

Working Groups

Parameters Sources, Injectors, and Prelinacs Damping Rings and Compressors RF Power Systems Accelerator Structures Final Focus and Collimation Instrumentation Experimentation		ICS SOTS	Yokoya/Ruth Takeda/Miller Urakawa/Raubenheime Mizuno/Wilson Higo/Wang Oide/Irwins Hayano/Ross Matsui/Markiewicz			
Committee:	D. Burke	G. Loew	T. Matsui	K. Takata		

KEK/SLAC X-Band Design Mini-workshop Program

Monday, Deco Orange Room	ember 5 Presentat	ions of JLC and NL(
Morning Sess	ion Chair Burke		
Morning Sess	Welcome	Drell	
0900-0940	Parameters	Vokova/Ruth	1
0945-1030	Sources etc	Tokoda/Millar	
1030-1100	Coffee Break		
1000-1100	Demping Rings/Compres	sore Urakawa/Dauba	heimer 57
1145-1230	Instrumentation	Hayano/Ross .	
Afternoon Ses	ssion Chair: Takata		
1400-1440	RF Power	Mizuno/Wilson	145
1445-1530	Structures	Higo/Wang .	
1530-1600	Coffee break	0	
1600-1640	Final Focus	Oide/Irwin	
1645-1730	Experimentation	Matsui/Markiew	icz 305
Tuesday-Wedr	nesday: Working Group	Meetings and Prepar	ation
Thursday, De	cember 8 Working Grou	p Reports	
Orange Room			
Afternoon Ses	ssion Chair: Takata		
1400-1440	Parameters		345
1445-1530	Sources, etc		
1530-1600	Coffee break		
1600-1640	Damping Rings/Compre	ssors	
1645-1730	Instrumentation		383
Friday, Decen	nber 9 Working Grou	ıp Reports	
Orange Room			
Morning Sess	ion Chair: Loew		
0900-0940	RF Power		401
0945-1030	Structures		413
1030-1100	Coffee break		
1100-1140	Final Focus		419
1145-1230	Experimentation .		
Afternoon Ses	ssion Chair: Loew/T	akata	
1400-1515	Discussions		
1515	Monbusho Visit		
			1

Parameters at E_{CM} =0.5, 1.0, and 1.5 TeV with X-Band

•

I

ŧ

version Dec.1.1994

Basic Parameters					
Beam Energy	E	GeV	250	500	750
Main accelerating frequency	f_{rf}	GHz	11.424	11.424	11.424
Number of particles per bunch in main linac	N	10 ¹⁰	0. 7 53	0.753	0.770
Number of bunches per pulse	m_b		72	72	7 2
Bunch spacing	tb	nsec	1.40	1.40	1.40
Repetition frequency	frep	Hz	150	150	150
Normalized emittance at damping ring	E ₃	rad.m	3×10^{-6}	3×10^{-6}	3×10 ⁻⁶
	ευ	rad.m	3×10^{-8}	3×10^{-8}	3×10 ⁻⁸
R.m.s. bunch length	σ_z	$\mu \mathrm{m}$	89.1	90.2	98.3
Parameters related to Main Linac RF					
Nominal accelerating gradient	G_{0}	MeV/m	71.4	71.4	71.4
Effective gradient in cavities	Geff	MeV/m	53.5	53.5	53.5
Active length of main linac per beam	L_{ac}	m	4296	8966	13635
Length of a cavity unit	leav	m	1.31	1.31	1.31
Number of cavity units per beam			3279	6844	10509
Iris radius/Wave length	a/λ		0.1658	0.1658	0.1658
Cavity filling time (CG)	T_{f}	nsec	102.8	102.8	102.8
Attenuation parameter	au		0.553	0.553	0.553
Q-factor	Q		6671	6671	6671
Average group velocity	\bar{v}_g/c		0.0425	0.0425	0.0425
Loss parameter	k_1	10 ¹⁴ V/C/m	2.06	2.06	2.06
Total average power into cavities for two linacs		MW	25.8	53 .8	81.2
Wall-plug power for two linacs		MW	86	179	271
Assumed efficiency from AC to RF		%	30	30	30
Peak power per cavity	P_{peak}	MW	130	130	130
Single-bunch extraction efficiency	η_1	%	1.40	1.40	1.43
Multibunch energy compensation by filling time shift		%	2	2	2
fraction of cavities of zero and full timimg shift		%	49	49	48

<u></u>				
β_0	m	0.95	0.95	0.95
		88.7	139.9	179.3
Ør f	deg	16.3	16.3	15.1
-	%	0.50	0.50	0.50
$\langle \sigma_z d\epsilon/dz \rangle$	%	-0.738	-0.768	-0.780
• • •	%	-0.295	-0.299	-0.329
N^*	10 ¹⁰	0.678	0.678	0.693
β_x^{\bullet}	mm	10.0	11.9	22.8
β_{y}^{*}	μ m	100	100	107
σ_x	nm	260	200	227
σ_y	nm	3.04	2.20	1.96
Øcross	mrad	5.52	5.00	5,00
σ_x / σ_z	mrad	3.25	2.78	3.17
$D_{\boldsymbol{x}}$		0.1019	0.0868	0,0505
D_y		8.70	7.90	5.84
$D_{y,eff}$		6.32	5.25	3.96
n_{γ}		1.03	1.22	1.07
Υ_{max}		0.316	0.802	0.993
δ_{BS}	%	3.78	8.00	8.00
Bsol	Tesla	2.0	2.0	2.0
	m	0.66	0.66	0.66
	radian	0.0848	0.0873	0.0839
		3.00	1.64	1.30
		0.676	0.624	0.633
H_D		1.60	1.55	1.48
L	10^{33} /cm ² /s	5.42	8.66	8.68
	β_{0} ϕ_{rf} $\langle \sigma_{z}d\epsilon/dz \rangle$ N^{*} β_{x}^{*} β_{y}^{*} σ_{x} σ_{y} ϕ_{cross} σ_{x}/σ_{z} D_{y} $D_{y,eff}$ n_{γ} Υ_{max} δ_{BS} B_{sol} H_{D} L	$ \begin{array}{cccc} \beta_0 & m \\ \phi_{rf} & deg \\ \% \\ \langle \sigma_z d\epsilon/dz \rangle & \% \\ \langle \sigma_z d\epsilon/dz \rangle & \% \\ N^* & 10^{10} \\ \beta_x^* & mm \\ \beta_y^* & \mu m \\ \sigma_x & nm \\ \sigma_x & nm \\ \sigma_y & nm \\ \phi_{cross} & mrad \\ \sigma_x/\sigma_z & mrad \\ D_x \\ D_y & D_{y,eff} \\ n_{\gamma} \\ \Upsilon_{max} \\ \delta_{BS} & \% \\ B_{sol} & Tesla \\ m \\ radian \\ \end{array} $ $ \begin{array}{c} H_D \\ L & 10^{33}/cm^2/s \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Longitudinal wake function $W_L(z) = W_0 + W_1\sqrt{z} + W_2 z$ with $W_0 = 1.90 \times 10^{15}$, $W_1 = -6.41 \times 10^{16}$, $W_2 = 7.03 \times 10^{17}$, (z in m, W in V/C/m).

Transverse wake slope $dW_T/dz=1.532\times10^{20}$ V/C/m³.

Ν

NLC Parameters

R. Ruth KEK/SLAC X-Band Design Miniworkshop SLAC. December 5-9, 1994

1.) Layout and General Parameters

2.) Sources

3.) Damping Rings

4.) RF System

5.) Final Focus

in the second second

NLC e- Source

- High Polarization
- "Acceptable" emittance
- Polarized cathode current limit?
- Conventional approach may be O.K.

NLC INJECTOR: CRITICA ISSUES

ALL RESULT FROM LONG PULSE TRAIN

- HIGH CURRENT -LONG PULSE PERFORMANCE
 OF GUN:
 - · CURRENT LIMIT
 - · DROOP DURING PULSE
- LASER
 - · PULSE TO PULSE JITTER
 - PULSE SHAPING TO CORRECT DROOP
- NON-RELATIVISTIC BEAM TAANSPORT
 CURRENT LIMITED APERTURE
 TO REDUCE JITTER
- · BEAM LOADING COMPENSATION
 - · SUBHARMONIC BUNCHERS
 - S-BAND BUNCHER(S)
 - · S-BAND ACCERATOR SECTIONS
- MULTIBUNCH DIPOLE WAKEFIELDS
 IN BUNCHERS & S-BAND ACC.
- TIME STRUCTURE FLEXIBILITY

		SLC max		NLC 1.0 or
Parameter	SLC 93	design	NLC 500 GeV	1.5 TeV
Scavenger Beam				
Energy Ee- (GeV)	30.00	30.00	3.11	6.22
Intensity Ne- / bunch	3.00E+10	7.00E+10	1.50E+10	1.50E+10
coul / bunch	4.80E-09	1.12E-08	2.40E-09	2.40E-09
bunch length (psec)	3	3	5	5
n bunches / pulse	1	1	90	75
Intensity Ne- / pulse	3.00E+10	7.00E+10	1.35E+12	1.13E+12
cout / pulse	4.80E-09	1.12E-08	2.16E-07	1.80E-07
Beam Pulse Energy (Joules)	144	336	672	1120
rep. rate (Hz)	120	120	180	120
Beam Power (Watts)	1.73E+04	4.03E+04	1.21E+05	1.34E+05
Beam size , sigma (mm)	0.6	0.8	1.6	1.6
Power Density=Ee-*Ne-				
/pulse/(pi*sigma^2)				
(GeV/mm^2)	7.96E+11	1.04E+12	5.22E+11	8.70E+11

Positron Collection				
Wall emittance (m)	0.01	0.01	0.06	0.06
Energy Cut at 200 MeV (MeV)	20	20	20	20
Long. Cut at 200 MeV/c (psec)	15	15	60	60
Yield/Ee- (1/GeV)	0.083	0.083	0.300	0.300
Yield	2.50	2.50	0.93	1.87
Intensity Ne+ / bunch	7.5E+10	1.75E+11	1.4E+10	2.8E+10
coul / bunch	1.20E-08	2.80E-08	2.24E-09	4.48E-09
Intensity Ne+ / pulse	7.50E+10	1.75E+11	1.26E+12	2.10E+12
coul / pulse	1.20E-08	2.80E-08	2.02E-07	3.36E-07

Global				
Efficiency	0.4	0.4	0.5	0.5
N e+ / bunch at IP	3.00E+10	7.00E+10	7.00E+09	1.40E+10

Damping Rings

- Postitions --> pre-damping ring
- High Current ~ B-factory
- Single bunch effects important
- KEK ATF Damping Ring:
 Key Prototype

Damping Rings

Energy	2 GeV
Circ.	114 m
Current •	1 Amp
ν_{z}, ν_{y}	10.18, 5.18
$\gamma \epsilon_{x,y}$	27 mm-mra d
σ_{ϵ}	0 .1%
σ_z	5.4 mm
$\tau_{x,y}^{b}$	3.5 m s
\mathcal{J}_{x}	1.34
α	0.005
V _{RF}	2.5 MV
<i>f</i> _{RF}	714 MHz
$\Delta E/E_{RF}$ c	2%
Lattice	30 FOOF Cells
Vacuum Aperture ^c	4.0 cm by 3.2 cm
Dynamic Aperture ⁴	$> 0.1 \text{ m-rad at } \pm 2\%$

Parameters for Pre-Damping Ring

d Aperture defined as $\gamma \hat{x}^2/2\beta$.

a Assuming two trains of 75 bunches of 1.5×10^{10} — the maximum train length is 90 bunches with a 1.4 ns spacing (126 ns) leaving 60 ns for the kickers.

b Assuming the ring is coupled.

c Full aperture — this provides room for a hard edge emittance and energy spread of 0.06 m-rad and $\pm 2\%$ with a $3 \pm$ mm clearance.

Parameters for Main Damping King				
Energy	2 GeV			
Circ.	220 m			
Current ^a	1 A mp			
ν_x, ν_y	23 .81, 8.62			
$\gamma \epsilon_x, \gamma \epsilon_y^{b,c}$	2.3 mm-mrad , 0.02 mm-	nrad		
σ_{ϵ}^{c}	0.09%			
σz ^c	3 .5 mm			
τ_{x}, τ_{y}^{c}	4.2 ms, 4.8 ms			
\mathcal{J}_{x}	1.15			
α	0.0005			
V_{RF}	1.5 MV			
<i>f</i> _{RF}	714 MHz			
$\Delta E/E_{RF}$	3%			
Lattice	40 TME Cells			
Vacuum Aperture ^d	2 cm?			
Vacuum Pressure	1 nTorr?			
Dynamic Aperture ^e	$> 0.009 \text{ m-rad} \text{ at } \pm 1$	%		
L _{bend}	6 8.4 cm			
B _{0 bend}	15.3 kG			
$B_{1 bend}$	1 33 k G/m			
$L_{wiggler}$	20 m			
Beff	15.6 kG			
B _{peak}	22 kG			

a Assuming four trains of 75 bunches of 1.5×10^{10} — the maximum train length is 90 bunches with a 1.4 ns spacing (126 ns) leaving 60 ns for the kickers.

- **b** Before IBS has been included.
- c With 20 meters of wiggler.

d Full aperture — this needs to be determined by the transverse and longitudinal dynamics and the vacuum pressure.

e Aperture defined as $\gamma \hat{x}^2/2\beta$ — this is without a proper injection/extraction region.

NLC RF System

- PPM Focused Klystrons ~ 50-70 MW
- Pulse Compression --> SLED II + ?
- Structure, --- Damped and Detuned
- Moderate Accelerating gradient

	500 GeV		<u>1.0 T</u>	1.0 TeV	
Active Str. Length ⁽¹⁾ (km)	13.5	10.7	16.2	2	24.5
Accelerating Gradient ⁽²⁾ Unloaded/Loaded (MV/m)	50/37.3	60/44.8	85 /63	85/63.4	
Input Power to Str. ⁽²⁾ (MW/m)	50	72	145	i i	145
No. 7.2m RF Stations ⁽³⁾	1877	1487	2254	4	34 04
Particles per Bunch (10 ¹⁰)	0.65	0.78	1.10)	1.10
Repetition Rate (Hz)		180	120)	120
Bunches per RF Pulse		90	75		75
RF Pulse Length ⁽⁴⁾	1	250	22 0	2 20	
Pulse Compression System	SLE	D-II (x5)	SLED-II (x5)	BPC (x8)	BPC (x8)
Power Gain/Comp. Efficiency ⁽⁵⁾	3.6	/ 72%	3.6 / 7 2%	7.2 / 90%	7.2 / 90%
Klystron Pulse Length (μs)	1	1.25	1.10	1.76	1.76
Klystron Efficiency	(50%	65%	6	65%
Peak Pwr. per RF Station (MW)	100	145	289	145	145
No. Kly. per Station @ Peak Pwr. (MW)	2 @ 50	2 Q 72	4 Q 72	2 Q 72	2 @ 72
Total No. Klystrons ⁽⁶⁾	3754	2974	9016	45 08	6 808
Modulator Efficiency ⁽⁷⁾	PFN Q 75%		PFN @ 80%		PFN @ 80%
Energy per Pulse per Station ⁽⁸⁾ (J)	278	401	611	489	489
Net RF System Efficiency	:	32%	37%	47%	47%
Wall Plug Power ⁽⁹⁾ (MW)	94	107	165	132	20 0

NLC RF Parameters

			<u> </u>		
Parame	ter0.5 TeV	0.5 TeV ²	1.0 TeV	1.5 TeV	Comments
L()	0.5	0.8	1.06	1.07	
L	0.7	1.0	1.4	1.6	Luminosity w/ Pinch
Hd	1.3	· ·	1.4	1.5	Enhancement from Pinch
σχ	320 nm		360 nm	360 nm	Variable
σγ	3.2 nm		2.3 nm	2.3 nm	
ε _x	10-11		1/2 10-11	1/3 10-11	$\gamma \epsilon_{\rm X} = 5 \ 10^{-6} \ {\rm m}$ -rad
Ey	10-13		1/2 10-13	1/3 10-13	$\gamma \epsilon_y = 5 \ 10^{-8} \text{ m-rad}$
β _x	10 mm		25 mm	37 mm	
βy	10 0 μ		100 μ	150 μ	
σ χ',y'	30, 30 µra	d	14, 23 µrad	10, 15 µrad	IP Divergent Angle
σΖ	100 μ		100 μ	100 μ	Bunch Length
θd	3.2 mr		3.6 mr	3.6 mr	Bunch Diagonal Angle
± Δbox	< ± 4 10-3	3	$< \pm 4 \ 10^{-3}$	$< \pm 4 \ 10^{-3}$	Square Energy Profile Widt
D _{x,y}	.07, 7.3		.04, 8.8	.03, 5.2	Disruption Parameter
ΘD	.25 mr		.25 mr	.25 mr	Max. Disrupt. Angle @ Beam Energy
Y	.09	.11	. 2 8	. 4 2	Upsilon Parameter
δΒ	.03	.04	.12	.16	Mean Energy Loss to
					Beamstrahl. ys
nγ	. 8	1.0	1.1	1.1	# of Photons per Electron
NHad	.04	.07	0.3	0.3	# of Hadronic Events / Cross
Njet5	.001		0.03		# of Mini-Jets per Crossing

NLC IP Region Working Parameters

l

4

10-94 7636A2

NLC PARAMETERS

Parameter			NLC	
CM Energy (TeV)	0.5	T	1	1.5
Luminosity (10**33)	8 / 11	t	14	16
Rep Rate (Hz)	180	T	120	120
Bunches/RF Pulse	90	t	75	75
N (10**10)	0.65 /0.78	T	1.1	1.1
x/y Emittance (10**8m)	500/5	Ī	500/5	500/5
x/y Beta at IP(mm)	10/0.1		25/0.1	37/0.15
x/y Sigma at IP(nm)	320/3.2	Γ	360/2.3	360/2.3
Bunch Length (microns)	100		100	100
Upsilon	0.09 /0.11		0.28	0.42
Pinch Enhancement	1.4 /1.4	Γ	1.4	1.5
Beamstrahlung Delta	0.03 /0.04		0.11	0.16
No. Photons per e-	0.8 /1.0		1.1	1.1
Loaded Grad.(MV/m)	37 /45		63	63
Linac Length (km)	13.5 /10.7		16	24
Number of Klystrons	3750/2970	9	000/4500	13.5k/6.8k
Klystron Pk Pwr (MW)	50 /72		72 /72	72 /72
Pulse Compression Gain	3.6		3.6 /7.2	3.6 /7.2
Power/Beam PB (MW)	4.2 /5.0		7.9	11.9
AC Power PAC (MW)	94 /107		165 /132	250 / 200
2PB/PAC	0.09 /0.09	0	.10 /0.12	0.10 /0.12

12/5/94.

S.Takeda & H.Matsumoto / JLCDiag / 910906

Basic Parameters of Electron Bunch

Total number of bunch / shot :	90 bunches
Bunch separation :	1.4 ns
Repetition rate :	150 Hz
Bunch population :	$0.63 \ge 10^{10}$
Total number of electrons / shot :	$5.7 \ge 10^{11}$
Tolerance of bunch population :	< ± 1.0 %

Electron Sources

Thermionic Electron Gun

Laser Driven Photocathode RF Gun

Polarized Electron Gun

1.98 GeV Injector Linac for X-band JLC

Pre-Injector Linac

Thermionic Electron Gun System

Thermionic electron gun: up to 200 kV

714 MHz subharmonic bunchers

Buncher section

Accelerator section : ~ 30 MeV

Beam diagnostics section for individual bunch

Accelerator section : ~ 80 MeV

* Total system similar to the ATF pre-injector

Laser Driven Photocathode Gun System

- * Gun is under development
- * Total system in near future

JLC

1.54 GeV ATF Linac

80 MeV Pre-Injector Linac & 1.54 GeV ATF Linac

Multi-bunch generation by Thermionic Gun

80 MeV Injector of ATF LINAC ('95 plan)

Multibunch from thermionic Gun

Specifications of Injector

- 1. 2.8ns spacing / 20 Multi-bunch / 25Hz repetition
- 2. 2 e10 electrons/bunch
- 3. energy E=80MeV / Δ E/Erms $\leq 0.3\%$
- 4. bunch length $\sigma z \leq 5ps$
- 5. normalized rms emittance ϵx , $\epsilon y \leq 3 e-4 rad.m$

Injector Configuration

200keV Gun + 2 x 357MHz SHB + 4 x 2856MHz Buncher + 3m Acc.

29

- Specifications of Injector
- 1. 2.8ns spacing / 20 Multi-bunch / 25Hz repetition
- 2. 3 e10 electrons/bunch
- 3. energy E=20MeV
- 4. bunch length FWHM $\leq 15ps$
- 5. Beam Chopper at 20MeV

6. Small analyzer magnet

7. small R/Q SHB and TW-buncher for multi-bunch beam loading

Injector Configuration 200keV Gun + 2 x 357MHz SHB + 2856MHz TWBuncher & Im Acc. complex

Positron Sources for X-band JLC

Basic Parameters of Positron Bunch

Incident Electrons	JLC	ATF
Beam energy :	10 GeV	1.54 GeV
rms beam radius :	1.2 mm	0.7 mm
Repetition rate :	150 Hz	1 Hz
Number of electrons / shot :	5.4 x 10 ₁₁	$6.25 \ge 10^9$
Beam power :	130 kW	0.04 kW
<u>Target</u>		
Material :	W-Re	W
Thickness (radiation length) :	6 (21 mm)	4 (14 mm)
<u>Phase-space Transformer Sec</u>	tion	
Length :	180 mm	120 mm
Initial magnetic field :	8.0 T	8.0 T
Accelerating Section		
Accelerating gradient :	30 MV/m	
Length :	1.5 m x 2	
Iris diameter at exit :	26 mm	
Solenoid field :	0.8 T	

Positron Sources for X-band JLC

Positron Sources

Basically scale up present SLC design Need to increase positron/pulse by ~10

Larger electron beam diameter at target

Increase beam power

Keep energy density fixed

Larger acceptance for capture and acceleration

Pre-damping ring

STakeda/PositronProblem/941201
10 GeV S-band Pre-Linear Accelerator

~40 MeV/m with beam loading Multi-bunch Energy Compensation System 40 (or 20) RF units / Linac, L=~300 m / Linac

STakeda PreLinac 94120

High Power Operation of the ATF 1.54 GeV Linac Unit

Waveforms of RF Power

1st : Klystron output power, 80MW, 4.5μs
2nd : Refrection power from SLED+Acc.x2
3rd : Input power for left Acc., 200MW peak, 1μs
4th : Input power for right Acc., 200MW peak, 1μs

KEK ATF group, FEB. 15 '94 (H. Matsumoto)

1.54 GeV ATF Linac

į

ŧ

ATF (KEK)

JLC Accelerator Test Facility

Energy Compensation System of 1.54 GeV ATF Linac

JLC

1.54 GeV ATF LINAC

Beam Loading in an S-band Pre-Linac Structure

without Energy Compensation System

ds=090.0, dds=00.0, Emax=-0.00, INjE-00

STakeda/Beam941202

ds=090.0, Emax=-10.9 MV, Inj=-120, df=0.961616 MHz

STakeda/BeamECS/941202

1.54 GeV ATF LINAC

JLC

Shintake Choke Mode Cavity is Under Testing at ATF

July 1 '94

The first hot model of the choke mode cavity is under testing at ATF in order to confirm capability of high accelerating gradient for the future linear collider. RF processing has been started since June 25. An average accelerating gradient up to 26MV/m has already been achieved with an integrated of processing time of 50 hours without any senious problems. Present input rf-power is 33MW and the pulse width 1 micro-sec at S-band. The structure will be processed up to 100MW to generate the gradient of 45MW/m on average. World-wide first trial of the beam acceleration will be started end of this month at ATF.

Shintake Choke Mode Cavity

RF wave form

XLC SOURCES

CUNS

DC Polarized Gun for Electrons

DC Thermionic Gun for Beam to Drive Positron Converter

<u>TWO S-BAND INJECTORS:</u> (very similar, one with polarized gun, and one with thermionic gun)

714 MHz Subharmonic bunchers

S-band Traveling Wave Prebuncher and Buncher

S-band Capture Section

FOUR S-BAND LINACS

One 2 GeV Linac from Electron Injector to Damping Ring

One 3 GeV Linac to Drive Positron Converter

Two 8 GeV Linacs from each Damping Ring to each Second Compressor

POSITRON SOURCE: A Converter target, Flux Concentrator, a DC Solenoid, an L-band Capture Section, and a Magnetic Chicane for Eliminating Electrons and Collimating the Positrons

ONE 2 GeV L-BAND (1428 MHz) ACCELERATOR: Positron Source to Damping Ring. Focussed with Close-spaced Quadrupoles. mounted around the accelerator sections.

DESIGN ISSUES

• All the Major Design Problems for the Sources are Related to the Long Bunch Train.

• SLC Has Demonstrated all the Technologies for the XLC Injectors for Single Bunch (or a few bunches).

POLARIZED ELECTRON GUN: the Average Current Limit during the 126 ns Pulse and Pulse to Pulse Intensity Jitter are the Dominant Problems. Because of Beam Loading Intensity Jitter Produces Energy Jitter at the end of the Collider.

THE 2 XLC INJECTORS: Beam Loading in the Subharmonic Bunchers and the S-band Prebuncher and Buncher is the Dominant Problem.

POSITRON SOURCE: Average power and energy per pulse hitting the target are very significant (but solvable) problems.

ELECTRON SOURCE PARAMETERS

NORMALIZED EMITTANCE (RMS)	100 mm-mr
BUNCH LENGTH (FWHM)	15 ps
BUNCH FREQUENCY	714 MHz
BUNCHES PER PULSE	90
MACRO-PULSE INTENSITY JITTER (RMS,)	0.3% *
BUNCH TO BUNCH INTENSITY JITTER	1%
PULSE REPETITION RATE	180 Hz

* PRODUCES 0.07 TO ENERGY JITTER DUE TO BEAM LOADING = 1 x0.2 To 1 SPEC. FOR OAE

and a second

INJECTOR FOR XLC

POLARIZED GUN SPECIFICATIONS

TYPE	PIERCE DIODE
VOLTAGE	120 kV
CURRENT	2 A
PULSE LENGTH	1 to 120 ns
CATHODE	STRAINED GaAs or SUPER LATTICE
POLARIZATION	> 80%
MACRO-PULSE JITTER (RMS)	1%

POSITRON SOURCE PARAMETERS

NORMALIZED EDGE EMITTANCE	.06 r-m
BUNCH LENGTH FULL WIDTH	60 ps
ENERGY SPREAD FULL WIDTH	10%
NLC/SLC; NUMBER e+/MACRO-PULSE	12
NLC/SLC; NUMBER e+/sec	18

Draft NLC Positron System

POSITRON CAPTURE SECTION

L-BAND BECAUSE:

• INCREASES VOLUME IN G-D PHASE SPACE × 32

 \mathcal{E}_{x} : x4

 $E_Y : x 4$

DZ; XZ

USE ONE FACTOR OF ~4 FOR POWER: $\sigma_r = 1.6 \text{ mm}$ = 2× 510

Damping Rings / Compressors

Junji Urakawa (KEK), 1994.12.5 at SLAC

1. Damping Rings (DR) and Bunch Compressors (BC) Scheme for JLC

* Requirements to the Beam Sources

* DR Scheme

Long Wiggler Sections in a Zero-dispersion Region Racetrack Shape to minimize the Space for the Dispersion Suppression and Matching Combined Function FOBO Cell for the Arc DR are designed, using the same components as those developed for the

Accelerator Test Facility (ATF) at KEK.

* BC Scheme Two-stage Scheme Single-stage Scheme Bunch-Compressor Test Facility

2. Tech nical R&D Status at ATF

* Alignment

Initial Alignment

On-line Monitoring

Reconfiguration

* Magnet

Machining and Constructing Accuracy for Magnetic Poles is less than 20µm.

* **R**F

The Cold Model of Damped Cavity showed enough results. A Hot Model of Damped Cavity was ordered.

* Vacuum Chamber

18 Vacuum Chambers with Two BPM for Arc Section were completed.

The resolution of the BPM is less than 5µm.

3. Summary

			1994. Tunii Ll	December 5
Requiremen	its to the F	Beam Source fo	r the II C-1	akawa, NLN
1	at the d	amping ring		
e /e +	S-band	C-band	X-band	ATF
Bunch spacing [nsec]	5.6	2.8	. 1.4_	2.8
Particles per bunch [10 ¹⁰]	1.75	1.11	0.65	2.0
Bunches per train	55	72	90	20
Repetition rate [Hz]	50	150	150	25
Normalized emittance of				
injected beam / with Pre-DR		$1.0 \times 10^{-4} / 2.7 \times 10^{-4}$	0 ⁻²	3.0x10 ⁻⁴
[radm] (r.m.svalu	e)			
Energy spread $\Delta P/P$ (F	iul to:	tch 99%)	<1%	
Bunch Length (Fel			<10psec	
Polarization		90%/non		
Requirements for Energy Co	ompensati	on in Linac		
Intensity Jitter				
Pulse to Pulse	± 0	.5% for Pre	cise Physics Ex	periment
Bunch to Bunc	± 1	.0%		

Requirements to the Damping Ring for the JLC-1

Emittance

$$\gamma \varepsilon_x < 3x 10^{-6}$$

 $\gamma \varepsilon_y < 3x 10^{-8}$
 $\sigma_z < 5mm$ ----->80 μ m (after BC)
 $\Delta P/P < 0.1\%$

SLAC/KEK Collaboration

5

*Energy Compensation in Linac

*Momentum Acceptance in BC, Linac and F.F.

*Requirement of energy spread at IP

by "beat method" and precise active alignment 58 technique

HANNIN . racetrack shape long wiggler sections Ser. Figure 4.20: Schematic layout of the JLC damping ring. e dampin time reducti

Figure 4.21: Lattice parameters of half of the damping ring.

Parameters of damping rings on three options

Items	S-band	C-band	X-band
Synchrotron Radiation per turn	0.367MeV	0.986MeV	0.71MeV
Harmonic Number	530	764	660
Total Current	410mA	478mA	405mA
Circumference	222.5m	320.8m	277.1m
Number of Trains	2	4	4
Number of Bunches per Train	55	72	90
Number of Particles per Bunch	1.73E10	1.11E10	0.65E10
Longitudinal Impedance Threshold	0.145Ω	0.316Ω	0.594Ω
Repetition Rate	50Hz	150Hz	150Hz
Momentum Compaction	0.00098	0.00126	0.00140
Natural Emittance	0.512nradm	0.569nradm	0.618nradm
Horizontal Damping Time	6.13msec	3.54msec	4.04msec
Vertical Damping Time	8.01msec	4.30msec	5.20msec
Bunch Length	4.51mm (4.80mm)	4.90mm (4.98mm)	4.93mm (4.99mm)
RF Voltage (0.714GHz)	1.1MV	2.1MV	1.9MV
Energy Spread	0.086%(0.0909%)	0.091%(0.0929%)	0.0914%(0.0924%)
Touschek Lifetime	41sec	70sec	130sec
Emittance with Intra-beam	6.73E-10	6.41E-10	6.18E-10
Horizontal Phase Advance per Cell	120degree	90degree	92degree
K2 values of SF and SD	33.4,-45.9	25.9,-33.4	26.3,-33.6
Necessary Total Power	5MVA	9MVA	7MVA

Normalized emittance of injected beam

1.0x10⁻⁴ radm

Challenging scheme is Bettler for Linear Collider. Kikuch proposed 'at 5mittance 93

Schematic View of BC system

Estimated tolerances

item		tolerance
Linac Cavity	Δγ	100 µm
Quads	Δу	10 µm
	Δφ	0.2 mrad
Chicane Bends	Δφ	1 µrad
	K ₂ LB	110 m-2
	Δy	10 µm
	Δθ/θ	1 x 10-5
	ΔL/L	1 x 10-4
Compressor RF	Δφ	0.8°

Problems to be considered

- 1. Supression of position shifts in DR
- 2. Detailed correction technique:
- · alignment of quads in linac
- dispersion correction
- beta match
- 3. Design of diagnosis section.

Simple is not easy

to compress the beam ATA DR until Boum

by M. Kikuchi

Table 1: Parameters of Bunch-Compressor

		1
Unicane Bends	:	$\ell_{\rm B} = 1.27 \text{ m}, \theta_{\rm B} = 9.8^{\circ}, \eta_{max} = 0.3 \text{ m}$
Compressor Cavities	:	$V_{\text{main}} = 473 \text{ MV}, f_{\text{RF}} = 2.856 \text{ GHz}, \phi = 22.7^{\circ}$
		$V_{\rm aux} = 76.2 \text{ MV}, f_{\rm RF} = 5.712 \text{ GHz}, \phi = 0^{\circ}$
Compensation Cavities		$V = 2 \times 50.4$ MV, $f_{\rm RF} = 2.856$ GHz
for Beam-loading	•	$\Delta f_{\rm RF} = \pm 10 { m MHz}$

Table 2: Tolerances of Bunch-Compressor

Beam line quads	:	$\Delta y = 10 \ \mu \text{m}, \ \Delta \phi_{\text{rot}} = 0.2 \ \text{mrad}$
Chicane Bends	:	$\Delta y = 10 \ \mu \text{m}, \ \Delta \phi_{\text{rot}} = 1 \ \mu \text{rad}, \ \Delta \theta_{\text{B}} / \theta_{\text{B}} = 1 \cdot 10^{-5}$
		$\Delta \ell_{\rm B} / \ell_{\rm B} = 1 \cdot 10^{-4}, \ \Delta K_2 \ell_{\rm B} = 100 \ {\rm m}^{-2}$
Compressor rf	:	$\Delta \phi_{ m RF} = 0.8^{\circ}$
	_	

diagnosis section. The beta functions at the diagnosis section were made as large as possible, otherwise the wire monitors cannot stand the tremendous heating power of beams.

Figure 1: Layout of the Bunch-Compressor beam line

Bunch-Compressor Test Facility

ATF Damping Ring

Target

Multi-bunch and Multi-train Operation
 bunches/train, 5 train----> Total Current 600mA

2. Very Flat Beam

Horizontal Normalized Emittance= 5×10^{-6} radm

Vertical Normalized Emittance= 3×10^{-8} radm

3. Very Stable Operation ----->Extraction Stability=10⁻⁴

R&D Status

High Intensity, Low Emittace, Multi-bunch and very Flat Beam Low Emittace and very Flat Beam-----> Damping Ring Low Emittance Ring-----> Combined-Function FODO Fast Damping-----> Conventional Electric Wiggler Extraction Stability----->Double Kicker System Design is almost completed. and many components are already ordered.

Now we need many low cost reliable accelerator components. Low Impedance Vacuum Chamber < 0.2Ω ----->No Bunch Lengthening Alignment Error < $30\mu m(r.m.s.)$ ----->Very Flat Beam Field Error<0.1% and No Instatbility----->Stable Beam Operation

Alignment Control Good Magnets System Damped Cavity Precise Monitor System

by Junji Urakawa and ATF DR Group

Schedule of ATF Construction

Date	Milestone
1993.8	We succeeded the beam acceleration up to 80MeV in the ATF Injector
	Linac by using one 3m S-band structure.
1993.12	Generation of High Accelerating Gradient with SLED
	(51MeV/m maximum; 33MeV/m average)
1993.12	Completion of the Shielding Hall for the Damping Ring.
1994.7	We accelerated the multi-bunch beam up to 80MeV including
	0.5-meter S-band Test Structure for Choke-Mode Damped-Cavity.
1994.8	We succeeded the bunch by bunch measurements of beam emittance,
	energy and energy spread.
1994.12	The Control System for the 1.54GeV S-band Linac will be completed.
1995.2	Test of Hot Model of Damped Cavity will be started.
1995.3	1.54GeV S-band Linac will be completed.
1995.6	Beam Transport Line will be completed.
1995.7	Beam Tuning of 1.54GeV S-band Linac will be started.
1995.11	Alignment System including the supporting tables with active movers
	will be completed.
1995.12	Vacuum System for the Damping Ring will be completed.
1996.2	Control System for the ATF will be completed.
1996.1	Magnet System for the Damping Ring will be completed.
1996.9	RF System for the Damping Ring will be completed.
1996.10	Extraction Line, Emittance and Bunch Length Measurement System
	will be completed.
1996.11	ATF Damping Ring will be completed.
1996.12	Beam Operation of ATF Damping Ring will be started.

by Junji Urakawa 1994.5.7

Delayed one year because of lack of budget Juon the table at LC'93.

Initial Alignment

- Theodolites
- Laser Tracker
- Water Hydrostatic Level

• etc. Tolerance : 60 μm (H), 50 μm (V) Magnets of Arc Sections Target accuracy = 30 μm Magnets of Arc Sections

• 5 magnets on one support table

• Alignment of these magnets on the table

 \rightarrow in an alignment hut

• Movement from the hut to the installation place \rightarrow by "Air Pallet"

.

.

On-line Monitoring

• Resolution (desired) $\leq 1 \ \mu m$

* Vertical position • Level

Water Hydrostatic Level { filled (HLS)
 half-filled (LSHF)

* Horizontal position

• Relative Position (arc sections)

Laser Diode + { PSD (Position Sensitive Detector)
 QPD (Quadrant Photo Diode)

• Wire Alignment system ? (straight sections)

<u>Relative movement</u> <u>between tables</u>

Diode laser + PSD or QPD

2 sensors for each gap

 $\Delta x, \Delta y$ $\Delta z, \text{ and roll}$

Reconfiguration Active Support Table (Funahashi et al.)

L

600

1000

1400

Deviation from Linear Fit at Point [A]

Frequency (Hz)

Displacemant (m/Hz^0.5)

18 Vocumen chambers were completed No photon marks

connected each other by shielded stainless bellows

Baam sees only small slits on the surface of 24\$ duct.

	$ Z/n /$ umit (m Ω)	Number of units	$ Z/n /\mathrm{ring}~(\mathrm{m}\Omega)$	
Rf cavities	40	5	200	
Vacuum pump slots	6×10^{-4}	3600	2	
Monitor electrodes	0.02	4 × 100	8	
Bellows	0.4	80	32	
Septum chamber	0.7	2	1	
Rf quadrupoles	6.4	2	13	
Tapered transitions	1.5	4	6	
Clamp flanges	0.04	60	2	
Gate valves	0.8	6	5	
Photon masks	0.5	20	10	
Kicker chambers	2.1	2	4	
Rf absorbers			≈ 50	
Total			331	

Calculated impedance is 0.3312

6. Multi-bunch Instabilities

The thresholds of longitudinal and transverse coupled-bunch instability caused by a higher-order resonance with impedance R_{\parallel} and R_{\perp} at the resonant frequency f_r are roughly estimated by the formulae

$$R_{\parallel,\text{th}} = \frac{E\nu_z}{I\tau_z \alpha_p f_r}$$

$$R_{\perp,\text{th}} = \frac{ET_0}{I\tau_s \beta},$$
(2)

where β is the beta function at cavities. Equation (2) assumes a uniform distribution of the bunches and the worst case the coupled-mode hits the resonance exactly. In the case of the ATF damping ring, this threshold becomes

$$R_{\parallel,\text{th}} = 1.4 \left(\frac{1 \text{ GHz}}{f_r}\right) k\Omega , \qquad (3)$$
$$R_{\perp,\text{th}} = 16 \text{ k}\Omega/\text{m}$$

where we have used $\beta = 8$ m and $\tau_{\beta} = \tau_y = 9.2$ ms. The longitudinal threshold

is satisfied by the damped cavity in the longitudinal direction as discussed later. The transverse is cured by the damped cavity together with **bunch-to-bunch tune** spread $\Delta \nu_{\beta} \sim 10^{-3}$ introduced by an rf quadrupole. According to the tune-spread, the transverse threshold is effectively increased N_b times bigger than Eq. (3).

The actual threshold with the real bunch/batch distribution including transient phenomena has been studied by multi-rigid-bunch simulations. The results show the condition (2) and (3) are all right for the threshold.

Resistive wake of the vacuum chamber is another source of the coupled-bunch

Figure 4.22: Lattice parameters of a single normal cell.

Summary

The technical R&D for the damping ring is enough and gradually approved for the application to the bunch comprovers and the main linac.

In the minorpoint of beam tuning, we need to operate very flat and short multi-bunch beam in the damping ming and bunch compressor as the total total system test.

We need the precise mover system with the accuracy of Jurod for single-stage bunch compression Single-stage bunch compressor is very challeging and attractive.

Simple is beit but not easy. We must be challenging to develop new idea and technology.

$$\frac{\text{Damping Rings}}{\text{Tinjected beams}}$$

= $\text{Terms} = 1 \times 10^{-9}$ $|\text{Sp/pl} < 170$
e⁺ $\text{YEedge} = 6 \times 10^{2}$ $|\text{Sp/pl} < 2\%$
Repetition Rate ≤ 180 Hz
Nounch ≤ 90 $\text{ST} = 1.4\text{ms} \Rightarrow \text{Termin} \leq 130\text{ms}$
 $\text{plus } 60^{+}\text{ms} \text{ for}$
 Kickers
 $\text{YEext} = \text{YEinj} e^{24/2} + (1 - e^{24/2}) \text{YEag}$
 $\frac{\text{YEag}}{(1)} \frac{\text{YEinj}}{2.7 \times 10^{8}} \frac{24/2}{3 \times 10^{9}} \frac{\text{Nath e^{+}}}{8.4} \frac{\text{Nathe^{+}}}{5.2}$
 $\Rightarrow (2) 2 \times 10^{8}$ 1×10^{8} $\text{Sr} e^{+}$
Main ving with 15 h6 bade \Rightarrow $\frac{1}{8}$ damping
 $\text{Use wigglans for the other } \frac{1}{2}$.

2 GeV SLC DR et Pre DR 110 meters Train = 90 times 3. $VE_{edge} = 6 \times 10^2$ $\Delta E/E \leq \pm 2\%$ bunches of Vacuum Aperture 4×3cm < 1.5×1010 YEx, y < 104 Coupled / separated 2 Trains separated by 60ms / by 1.4ns 714 MH2 RF Achromatic Extraction 714 MH2 RF 2 GeV Main ring 220 meters injection: YEx, y < 104 extraction: $76x = 3 \times 10^6$ $7Ey = 3 \times 10^8$ equilibrium: VEx = 2×10° VEy = 2×10° 5 damping times @ 180 Hz => ty < 4.5ms 4 Trains of bunches separated by 60 ns Combined function "TME" lattice 20 m Wiggler

Damping Rings

Enengy	2 GeV			
Circ.	114 m			
Current *	1 Amp			
ν_z, ν_y	10.18, 5.18			
γε _{z,y} [↓]	27 mm-mrad			
σι	0.1%			
σ	5.4 mm			
τ _{ε,y} ^b	3.5 ms			
Jz	1.34			
a	0.005			
V _{RF}	2.5 MV			
f rf	714 MHz			
$\Delta E/E_{RF}$ ^c	2%			
Lattice	30 FOOF Cells			
Vacuum Aperture ^c	4.0 cm by 3.2 cm			
Dynamic Aperture ^d	$> 0.1 \text{ m-rad}$ at $\pm 2\%$			

Parameters for Pre-Damping Ring

-> 1.5 MV wl energy comp.

a Assuming two trains of 75 bunches of 1.5×10^{10} — the maximum train length is 90 bunches with a 1.4-ns-spacing (126 ns) leaving 60 ns for the kickers.

b Assuming the ring is coupled.

c Full aperture — this provides room for a hard edge emittance and energy spread of 0.06 m-rad and $\pm 2\%$ with a 3 \pm mm clearance.

d Aperture defined as $\gamma \hat{x}^2/2\beta$.

 β_{χ} and β_{γ} [m]

delta = 1%

-2

0

X

2

Pre-DR Inject/Extract

Energy	2 GeV			
Circ.	220 m			
Current •	1 Amp			
ν_z, ν_y	23 .81, 8 .62			
γε _z , γεy ^{b,c}	2.3 mm-mrad, 0.02 mm-mrad			
σε ^c	0.09%			
σ_z^c	3.5 mm			
τ_z, τ_y^c	4.2 ms, 4.8 ms			
Jz	1.15			
α	0.0005			
V _{RF}	1.5 MV			
<i>f</i> rf	714 MIIz			
$\Delta E/E_{RF}$	3%			
Lattice	40 TME Cells			
Vacuum Aperture	2 cm?			
Vacuum Pressure	1 nTorr?			
Dynamic Aperture ^e	$> 0.009 \text{ m-rad at } \pm 1\%$			
Lbend	68.4 cm			
Bobend	15.3 kG			
B _{1 bend}	133 kG/m			
Luigglet	20 m			
Beff	15.6 kG			
Bpeak	22 kG			

Parameters for Main Damping Ring

- b Before IBS has been included.
- c With 20 meters of wiggler.

a Assuming four trains of 75 bunches of 1.5×10^{10} — the maximum train length is 90 bunches with a 1.4 ns spacing (126 ns) leaving 60 ns for the kickers.

d Full aperture — this needs to be determined by the transverse and longitudinal dynamics and the vacuum pressure.

e Aperture defined as $\gamma \hat{x}^2/2\beta$ — this is without a proper injection/extraction region.

η μχ αιια μγ μι

 $\eta_{X} \text{ [mm]}$

MIRTX4 - OPTIMIZE POLE w/ WIDER BUMP, 11/29/94 15:59: 0 11/30/1994

Injection έ ωo I ranspirat (one inside 5 hickens 009 °0P S kicker 360° 5 (septim Ker mai g tas オア ,80° 12 kich Inj ١'n and apart system and from extraction 250 06 ob dipole) the set outside ring extractio 180° apar k. Kulo

NLC DR: SR POWER FOR VARIOUS MACHINES

10/12/94 BDS

	NLC DR		PEP II HER	PEP II LER	SLC DR	PEP	SPEAR
E(GeV)	2.0	2.0	9.0	3.1	1.2	15.0	3.0
I(mA)	1000.0	1000.0	3000.0	3000.0	136.2	200.0	200.0
RAD(M)	4.4	8.7	165.0	30.6	2.0	165.5	12.7
CIRCUMFERENCE TOTAL M)	220.0	220.0	2,200.0	2,200.0	35.3	2.200.0	234.0
ARCS (M)	156.4	156.4	1,459.0	1,459.0	30.9	1,497.5	189.0
TOTAL BEND MAGNETS	40	40	192	192	40	192	36
POWER BEAM (KW)	325	162	10,557	802	13	5,414	113
BEND MAGNET (KW)	8.1	4.1	55.0	4.2	0.3	28.2	3.1
METER CIRC (KW)	1.5	0.7	4.8	0.4	0.4	2.5	0.5
N(gamma)=7.08E17^E*I (TOT. PHOTON/SEC)	1.6E+21	1 6E+21	2.2E+22	7.5E+21	1.3E+20	2.4E+21	4.8E+20
N(flux) (MOL/PHOTON)	2.0E-06	2.0E-06	2.0E-06	2.08-06	2.05-06	1.0E-05	2.0E-06
	5.0E+15	1.0E+16 2.0E+10	2.1E+15 4.1E+09	9.4E+15	1.0++16	4.5E+14	4.3E+15
Q (TL/S/WATT)	3.0E-10	6.0E-10	1.2E-10	5.6E-10	6.3E-10	2.7E-10	2.6E-09
Qtotal = 3E-20*N(g)*N(f) for ring (TL/S)	9.7E-05	9.7E-05	1.3E-03	4.5E-04	8.0E-06	1.5E-03	2.9E-04
DESIGN PRESSURE (TORR)	1.0E-09	1.0E-09	1.0E-08	1.0E-08	1.0E-09	2.0E-08	1.0E-08
CALC PUMP SPEED IN ARCS (L/S)	96,960	96,960	130,896	45,086	7,990	72,720	29,088
ACTUAL SPEED IN ARCS (L/S)	\smile		173,760	42,240		165,000	29,520
CALC. SPEED PER METER OF ARC	620	620	90	31	259	49	154
PER BEND MAG.	2,424	2,424	682	235	200	379	808

103

ŧ

ŧ

Ions in Linacs of Fiture LC Future linear colliders have long trains of bunches and/or very danse bunches ⇒ Significant ion densities thru Tunnelling concertion Collisional ionization and trapping E Stects Non-uniform distribution (1) ⇒ skew fields and p-coupling Focusing variation between bunches \rightarrow (2) = filamentation of E dilutions Bunch-to-bunch coupling → (3) > two stream instability (4) Y-2 correlation => kicks to beam tail Generation of beam halo (5) > Similar to intense ion beams

Damping Rings

• Optics

Finish the optics design Design injection and extraction systems Physical layout and Verify magnet specs.

Kickers

• RF system design

Large beam loading $I \sim 1Amp$ Damped cavities for multiple bunches

 Vacuum chamber design Bunch lengthening / Sawtooth??
 10⁻⁹ Torr / SR power Multibunch effects

Impedance Instabilities

Ims

• Transfer lines

Energy compressors Emittance and train diagnostics

- Tuning techniques and feedback
 Diagnostic requirements
 Dynamic aperture and vertical emittance
 Intensity feedforward / collimation
 Coupling correction
 Extraction position
- Tolerances and stability

RF system Jitter

Alignment Supports

Table 1 Parameters of

the low energy compressor

V_{RF}	67 MV	130 MV
f _{RF}	2.8 GHz	1.4 GH2
R_{56}	0.5 m	
Bunch Length	$5 \mathrm{mm} \rightarrow 500 \mu\mathrm{m}$	
Energy Spread	0.1% ightarrow 1%	

Table 2Parameters of

the high energy compressor

		_
Pre-linac V_{RF}	8.3 GV	
Pre-linac f_{RF}	2.8 GHz	2.86Hz
180° arc R ₅₆	- 0.5 m	-0.25
2nd V_{RF}	1.3 GV	4 6V
2nd f_{RF}	2.8 GHz	2.8GHz
Chicane R_{56}	0.1 m	0.036
$\Delta\epsilon_{SR}/\epsilon$ @ 10 GeV	0.2%	
Bunch Length	$500\mu\mathrm{m} \rightarrow 100\mu\mathrm{m}$	
Energy Spread	0.2% ightarrow 1%	

S (m)

Bunch Compressors
Two stage system Componente ± 20ps in DR
90° votation from DR
360° rotation @ 10 GeV
Reduces energy spread
space charge
wake fields
Problem Non linearity in long. optics Tsee
Solutions (1) optically - strong sextupoles
(2) RF - add compensating
Voltage Vc= 3
$$\frac{V^2}{E} (\frac{Ac}{A})^2$$

(3) Compensate SE in pre-linac
(4) Single stage system with
higher damping ring energy.

-

Figure 3: Beam energy at the end of the main linac as a function of initial phase error for $N_e = 1.5 \cdot 10^{10}$; a) full-width-half-maximum energy spread; b) rms-energy spread; c) mean energy.

JLC Instrumentation ('94 update)

H. Hayano (KEK) Dec./94 KEK/SLAC mini workshop

1. Instrumentation R&D Goal/achievement

2. JLC(ATF) Instrumentation R&D this year

· • ·

JLC Instrumentation Table Update Nov. '94

by H. Hayano 11/30/94

Меав.		location	resolution	accuracy	bunch train	# of unit	possible candidates
X,Y	Beam Position	Injector /Pre-Linac	<1µm	<50µm	average	150	strip line BPM
		Damping Ring	<1µm	<50µm	av.	300	button BPM
		Bunch Compressor	<1µm	<10µm	av./each	100	strip line BPM
		Main Linac	<1µm	<10µm	av./each	3000	strip line BPM
		Final Focus	<10nm	<10nm	av.	40	cavity BPM
Z	Bunch Spacing	Bunch Compressor	0.01mm(0.03ps)	0.03mm(0.1ps)	each	2	streak camera
		Main Linac	0.01mm(0.03ps)	0.03mm(0.1ps)	each	10	streak camera
σx , σy	Transverse Spread	Injector /Pre-Linac	50µm		av./each	30	wire scanner
		Damping Ring	20µm for T		av./each	3	synchrotron radiation
			2μm for σ y				
		Bunch Compressor	1µm		av./each	20	wire scan/synchrotron
		Main Linac	1µm		av./each	100	wire scanner
		Final Focus	1µm		av./each	20	wire scanner
		Final Focus	3-30nm		each.	2	Compton scattering
		Final Focus	<1nm		each	1	Compton scattering
σz	Bunch Length	Injector /Pre-Linac	0.5mm(1.7ps)		each	4	streak camera
		Damping Ring	0.5 mm(1.7 ps)		each	3	streak camera
		Bunch Compressor	0.01 mm(0.03 ps)		av.	8	synch. rad. spectrum
		Main Linac	0.01 mm(0.03 ps)		av .	10	synch. rad. spectrum
		Final Focus	0.01 mm (0.03 ps)		av .	2	synch. rad. spectrum
Nb	Number of Charge	Injector /Pre-Linac	0.1%	1%	each	40	wall current
		Damping Ring	0.1%	1%	each	12	wall current
		Bunch Compressor	0.1%	1%	each	16	wall current
		Main Linac	0.1%	1%	each	250	wall current
		Final Focus	0.1%	1%	each	10	wall current

1. Transverse Beam Position

Meas.		location	resolution	accuracy	bunch train	# of unit	possible candidates
X,Y	Beam Position	Injector /Pre-Linac Damping Ring Bunch Compressor Main Linac Final Focus	<1µm <1µm <1µm <1µm <10nm	<50µm <50µm <10µm <10µm <10nm	average av. av. av./each av.	150 300 100 3000 40	strip line BPM button BPM strip line BPM strip line BPM cavity BPM

Achievement

Strip Line BPM : FFTB Cavity BPM (in laboratory) : VLEPP , CLIC (JLC, TESLA) Button BPM (in laboratory) : JLC-ATF

R&D

Cavity BPM (in laboratory):	JLC, TESLA
Cavity BPM beam test	:	FFTB
multi-bunch BPM	:	NLC, JLC

2. Bunch Spacing

Meas.		location	resolution	accuracy	bunch train	# of unit	possible candidates
Z	Bunch Spacing	Bunch Compressor Main Linac	0.01mm(0.03ps) 0.01mm(0.03ps)	0.03mm(0.1ps) 0.03mm(0.1ps)	each each	2 10	streak camera streak camera

Achievement

(0.2ps resolution streak camera by Hamamatsu July '93)

R&D waiting very fast streak camera

3. Transverse Spread

Meas.		location	resolution	accuracy	bunch train	# of unit	possible candidates
στ,σγ	Transverse Spread	Injector /Pre-Linac	50µm		av./each	30	wire scanner
		Damping Ring	20µm for T x	· · ·	av./each	3	synchrotron radiation
			2μm for T y				
		Bunch Compressor	1µm		av./each	20	wire scan/synchrotron
		Main Linac	1µm		av./each	100	wire scanner
		Final Focus	1µm		av./each	20	wire scanner
		Final Focus	3~30nm		each.	2	Compton scattering
		Final Focus	<1nm		each	1	Compton scattering

Achievement

Wire scanner	:	SLC, FFTB, JLC-ATF
Synchrotron Monitor(20µm)	:	SLC-DR, JLC-ES
Compton Scatter Monitor	:	FFTB

R&D

Carbon wire scanner	: JLC-Kyoto
Laser Wire Scanner	: SLC
Synchrotron Monitor(2µm)	: KEK-PF

4. Bunch Length

Meas.		location	resolution	accuracy	bunch train	# of unit	possible candidates
σz	Bunch Length	Injector /Pre-Linac	0.5 mm(1.7 ps)		each	4	streak camera
2	_	Damping Ring	0.5 mm(1.7 ps)		each	3	streak camera
		Bunch Compressor	0.01mm(0.03ps)		av.	8	synch. rad. spectrum
		Main Linac	0.01mm $(0.03$ ps $)$		av .	10	synch. rad. spectrum
		Final Focus	0.01mm $(0.03$ ps $)$		av	2	synch. rad. spectrum

Achievement

Streak Camera (0.2-0.5ps)

: SLC, JLC-ATF (Hamamatsu co.)

R&D

Synch. rad. Spectrum monitor : Happek, Nakazato

5. Number of Charge

Meas.		location	resolution	accuracy	bunch train	# of unit	possible candidates
Nb	Number of Charge	Injector /Pre-Linac	0.1%	1%	each	40	wall current
	_	Damping Ring	0.1%	1%	each	12	wall current
		Bunch Compressor	0.1%	1%	each	16	wall current
	· · · · ·	Main Linac	0.1%	1%	each	250	wall current
		Final Focus	0.1%	1%	each	10	wall current

Achievement

wall current monitor : every Laboratory

R&D

precise charge meas. by WCM: JLC-ATF

JLC Instrumentation Table Update Nov. '94

by H. Hayano 11/30/94

Meas.		location	resolution	accuracy	bunch train	# of unit	possible candidates
X,Y	Beam Position	Injector /Pre-Linac Damping Ring Bunch Compressor Main Linac	<1µm <1µm <1µm <1µm	<50μm <50μm <10μm <10μm	average av. av.(each) av./each)	150 300 100 3000	strip line BPM button BPM strip line BPM strip line BPM
7	Bunch Specing	Final Focus	<10nm)	<10nm	av.	40	cavity BPM
4	Dunen Spacing	Main Linac	(0.01 mm(0.03 ps))	0.03mm(0.1ps)	each	10	streak camera
στ,σγ	Transverse Spread	Injector /Pre-Linac	50µm		av./each	30	wire scanner
		Damping Ring	20μm for σx		av./each	3	synchrotron radiation
			2µm for Oy				
		Bunch Compressor	1µm		av./each	20	wire scan/synchrotron
		Main Linac	1µm		av./each	100	wire scanner
		Final Focus	1µm		av./each	20	wire scanner
		Final Focus	3~30nm		each.	2	Compton scattering
		Final Focus	<1nm		each	1	Compton scattering
σz	Bunch Length	Injector /Pre-Linac	0.5 mm(1.7 ps)		each	4	streak camera
		Damping Ring	0.5 mm(1.7 ps)		each	3	streak camera
		Bunch Compressor	0.01 mm(0.03 ps)		av.	8	synch. rad. spectrum
		Main Linac	[0.01 mm(0.03 ps)]		av.	10	synch. rad. spectrum
		Final Focus	(0.01 mm(0.03 ps))		av.	2	synch. rad. spectrum
Nb	Number of Charge	Injector /Pre-Linac	0.1%	1%	each	40	wall current
	-	Damping Ring	0.1%	1%	each	12	wall current
		Bunch Compressor	0.1%	1%	each	16	wall current
		Main Linac	0.1%	1%	each	250	wall current
		Final Focus	0.1%	1%	each	10	wall current

· 10 pm Accuracy stripline BPM

- multi bunch BPM

- Cavity BPM

· high resolution streak camera

· 2 µm resolution synch. light monitor

.

10 pm resolution BLM

· Drecise multi hunde work

2. JLC(ATF) Instrumentation R&D this year

ATF

OTR monitors	beam size, emittance energy spread bunch length
Wire scanner	multi-bunch emittance
Button BPM	calibration/beam test

ES-KEK

Synch. rad. monitor gated camera & streak camera

Beam Size & Emittance by OTR monitor

ATF LINAC 80MeV Injector Aug. '94

Energy and Energy Spread by OTR & gated Camera

ATF LINAC 80MeV injector Aug. '94

ATF LINAC 80MeV Injector Aug. '94

ATF LINAC 80MeV Injector Aug. '94

Synchrotron Light Monitor Development

dual time base Streak Camera

Tokyo Univ. Electron Synchrotron(ES)

synchro-scan / single fast scan resolution < 2 ps

NLC Instrumentation

December 5, 1994, M. Ross Define and describe:

NLC feedback systems

both beam-based and non-beam based Centroid (SLC type) Multi-bunch and phase space Special loops

Instrumentation

Intensity, Centroid, <u>Phase space</u> Other

Machine Protection

Mechanical design Device controller Control system

Controls Architecture

Integration of feedback Timing/scheduling RF Control Non-beam based instrumentation Conventional

Beam based feedback should be considered a possible engineering solution for all tight tolerances in it's bandwidth

NLC beam size monitors - transverse

<u>Wire scanners</u> for $I/\sigma^2 < 10^{10}/2x^2 \ \mu m^2$

May be ok in injector, e+, but probably not anywhere else Multi-bunch possible

Laserwire

Resolution depends on signal strength, background and laser spot aberrations

Best about 1/3 λ for simple (00 and 01) systems 1/20 λ for retro-reflector systems

+

Timing wide dynamic range/thickness other, parasitic, laser uses

cost

systematics from laser spot aberrations High power required

Should be ubiquitous in NLC ring->linac ->FF systems Simple system for DR Laserwire costs for 200nm system:

1994 comparison:

Laser:

cost about 5 completed wire scanners (WSE) RD needed to reduce

Transport:

Geometry UHV required Radiation hardness Profile monitors and steering included may cost about 4 WSE

IP:

cost ~ 1 WSE for two planes Radiation hardness issues Profile monitors/position monitors included

Distribute these costs over sets of scanners; combine diagnostics - 2 to 3 times more expensive than wire scanners. Testing/experience needed to reduce costs.

Key Laserwire parameters:

Angular Divergence (F number) vs. aperture
F2 optics chosen for SLD/SLC 90% transmission Trade off between low angular div. and diffraction fringes
How do fringes change 01mode performance?
Sets Rayleigh range - length of spot (important for extreme aspect ratios)

Optical Damage issues

Vacuum, contamination, dust

:5

Mechanical stability

Optical surface tolerances

impact of aberrations Detection system and count rates Ideal at SLC - may be harder in a linac

Diagnostics

Simplest optics (selected for SLD/SLC) is not transmission optics -> no good post-IP image is possible

TEMOI Laser Spot Profile "Gradient lens" Max/Min ~> 100

OI mode conversion

expected laser or for 01 mode ≈ 640 nm (00 mode ≈ 380 nm)

Longitudinal

Coherent transition radiation/synchrotron radiation

resolution best for $\sigma_z \leq 1$ mm

Needs more careful testing at FFTB Foil survivability

BPM

Broadband transient recorder Narrow band TM110 B-factory comb filter Structure

> BPM's will cost about 40 to 50% of the instrumentation budget (SLC costs) Testing is needed

Machine Protection System

MPS in layers - mechanical, device controller, thermal, ion chamber, toroid. Stress non-beam power related controls.

Reduce the impact of the control system rather than extend it

Use the MPS to produce diagnostic pulses that provide an indication of the failure so that tuning systems can recover.

Provide beam power ramping with more than one technique.

Provide redundant device controller MPS. Redundant -> require <u>more</u> than one <u>sensor</u> before tripping.

Logic to allow partial operation

Feedforward protection.

Done by 'veto' system at SLC that inhibits low I pulses from reaching FF Linac Structure Protection

At typical sizes and train intensities a single pulse targeted on the structure will be catastrophic.

 $5 \times 10^{11} > 0.7 \text{ mm}^2$ to survive(Cu)

for W 10x less (SLC W target $.7 \times 10^{11} > 0.6 \text{mm}^{2}$)

typical at the end of the 0.5 TeV 5 \times 10⁻⁶ mm² 5 orders of magnitude needed

<u>Proposal</u>: Reduce pulse power by reducing train to one bunch and greatly increasing it's emittance.

Design the structure (and other systems) so that serious single pulse damage is not possible

2 prongs: a) sacrificial thick protection near the irises
b) thin spoilers at half the radius (work underway)

Reliably increase emittance at several places along the linac
Implications:

How are high repetition rate and full intensity trains handled?

Make the machine static by limiting bandwidth of 'major' field changes (reduces allowable strength of fast correction systems)

Power density ramp required for any start/re-start No low repetition rate, full I pulses allowed <u>Start up sequence:</u>

0) Operation at low repetition rate; single nominal intensity bunch; high emittance

1) Raise repetition rate

guarantees static machine

2) reduce emittance

check average power limits

3) increase number of bunches in train

Controls Architecture

• Cost

Cost of SLC control system was (is) very high in comparison to other machines with similar numbers of components Specifying as opposed to doing is often paces tasks

Extension to higher level control

'Nuclear' nature of lowest level Experiments with different architectures are expensive and difficult to evaluate

• Integration of feedback systems listed above Feedback is vital for much more than direct stabilizing

Other considerations:

Data acquisition bandwidth

Scheduling system

Pulse oriented sampling

Special architecture for damping ring applications.