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Chapter 1 

Inkroduction 

Figure (1.1) contains 100 data pairs along with the least squares lie summarizing the 

relationship of a response (say Y) and a covariate (X). In Figure (1.2) , the least squares 

liie ha4 been replaced by a =scatterplot smooth.” This smooth was computed by a me 

of local averaging- around each X value a window of 20 points was formed and a least 

squares line was fit to the points in the window. The value of the smooth at X is given by 

the value of the =loc~J line” at X. As we can see, the smooth captures the trend of the data 

better than the least squares line. The reason is simple- the smooth doesn’t make a rigid 

assumption about the form of :he relationship between Y and X. 

In recent years, there has been a great deal of interest in scatterplot smoothing by 

local averaging (see for example Cleveland(l979) and l+iedman and Stuetzle(l981)) and 

the availability of fast computers has been essential in this development. These smooths 

are useful ad a descriptive tool (an we have seen above) and also as building blocks for 

non-parametric regression models. Important developments in the latter area can be found 

in Ricdnan and Stuet& (1981) and Brieman and Friedman(1982). 

In this dissertation we explore an application of smoothing idem to other kiida of 

data. In particular, we consider (X,Y) d t a a whose relationship is expressible through a 

likelihood function. Take for example the situation in which Y is a O-1 response and X is a 

covariate. For such a data set, Figure (1.3) h I ows the logistic regression line, estimated by 

maximum likelihood. On tbe same plot, the observed logits are shown. [Since we can’t take 

the logit of 0 or 1, the Y’s were grouped first). In Figure (1.4) , the lie hss been replaced 

by a smooth. As was the case in the scatterplot example, the smooth does a better job of 

zapturing the relationship between Y and X than the line does. In Figures (1.5) and (1.6) , 

ne see another example. Here our data is survival data and hence Y is a (possibly censored) 

lifetime. Figure (1.5) shows the estimated log relative risk line given by Coxk proportional 

hazards model. In Figure (1.6) , the line has been replaced by a =log relative risk smooth”. 

The smooths in Figures (1.4) and (1.G) were obtained from a procedure we call ‘local 

liielibood” estimation. The basic idea is simple extension of the local averaging technique 

used in scatterplot smoothing. Given a global method for eatimsting a linear response (e.g. 

maximum likelihood estimation in the linear logistic model), we apply it locally, estimating 

a separate line in a window around each z value. The value of the estimated lie at z is 

the estimate of the smooth response function at z. 

By varying the window size, we can control the smoothness of the estimated f&unction. 

The larger the windows, the smoother the estimated function. When each window contains 

100% of the data, the local likelihood procedure corresponds exactly to the global linear 

method. Hence local likelihood generalizes linear likelihood estimation. 

This dissertation is devoted to the study of local likelihood. We describe the method 

in general, showing how smooths like those in Figures (1.4) and (1.6) are obtained, and we 

will study some of its theoretical proper&s. In the exponential family, the local likelihood 

method extends the class of gcnerdized linear m&la (Nelder and Wedderbum (1972)) by 

allowing covariates to enter the Iti function in a non-linear fashion. We investigate the 

linear logistic model, a member of this class, and its extension. We also explore in depth 

the application of the method to the proportional hazards model. This model was the 

motivating example behind local likelihood. 

The chaptera are organized aa follows. Chapter 2 de&es the local likelihood method 

and discusses the estimation procedure. Both the exponential and non-exponential family 

set-ups are described; included is a short discussion of the application to the Cm model. We 

also discuss a forward stepwise algorithm for building mu!tiple covnriate models. Chapter 

3 describes in detail the application of the local liielibood procedure to Cox’s proportional 

hazards model. We discuss a number of topics: bootstrapping the models, robustifyiog 

the fit, and assessing goodness of fit. We also present a number of simulationsdesigned to 

study the bias properties of the procedure, and linndly, some real data examples are given. 

Chapter 4 contains a short description of the application of local likelihood to the logistic 
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Chapter 2: Local Likelihood- A dercription 9 Chapter 8: Lx-xl Likelihmd- A description 10 

2.3. Local Gaussian Smoothing. 

wince least squuares estimation corresponds to maximum likelihood when the data are 

Gaussian, it is not surprising that the turning lines smoother can be describedas a ‘running 

maximum Erlibood” method fog Gaussian data. Aswme M before that 

yi = s( 2;) + ‘i (2.6) 

and in addition that the (i - i.i.d U(O,u*). Then for z in a neighborhood N; of z;, II 

reasonable approximation to a(z) is 

44 M hi + t&P (2.7) 

Considering only the points in Ni, the maximum likelihood estimates of flo+ and hi are 

given by (2.5) Based on (2.7) , this gives as an estimate of a(~;): 

i(q) = ac#; + a,izi (2.8) 

Hence running lines smoothlug corresponds to &nding approximate maximum likelihood 

estimates in a neighborhood around each data point. 

We call this type of estimation “LOCAL LIKELIHOOD ESTIMATION” or “LOCAL 

LIKELIHOOD ” for short. In this dissertation, re extend the idea of Ioal likelihood to- 

~on.Gaussian likelihoods. It can be applied in principal to any situation in which the effect 

of a covariate is mod&d through a likelihood. In fact, aa will see in the proportional 

hazards model. the ‘likrliiood” doesn’t even have to be a liieliiood in the strict LWI.W. 

2.4. Local Likelihood: General Definition. 

Suppose we have n data tuples of the form (vi, zi, ei), where y is a response variable, z 

in a covariate or predictor variable, and e in s vector containing any additional information. 

(In censored data problems, c would indicate whether y is eeusored. In many problems (lie 

regression), L is empty.) Suppose that modelliig considerations lead to maximization of a 

function of the form 

L(s%,b%)=~(n,e* ,... Y”,@,,42 ,... @.,%%...4 w 

where 8; = flo + plzi. For example, L(flo,,9,) could be a Iii&hood function and the 

estimates maximizing L(fio,h) would be the ruaximum likelihood estimates. The LOCAL 

JXKELIIIOOD method rephxes Do + /&r; with an arbitrary smooth function a(~;): 

L(a(~‘),s(~2),...~(~“))=9(91,92,...,P”,~l,~2,...~.,~l,~?,...~.) (2.10) 

with Bi = a(q). The problem is to estimate a(.) at the points {zl, 22, . ..z.). Maximization 

of L(a(z,), s(z~),...n(zn)) results in an unsatisfactory estimate due to overfitting. IO many 

situations, it simply reproduces the data. An an alternative, we de&x the local likelihood 

estimate of a(zi) a.9 

i(z;) = aoi + j&i (2.11) 

where ,&,; and 6,; maximize the local likelihood: 

Li(BOi,Bli) =P({YjrAli +BliZjvcj},iE Ni) (2.12) 

The local likelihood procedure produces a smooth estimate of the curve a(.) at tbe 

points {z,, 12, . ..z~}. It avoids owrfitting by aversging over neighborhoods. The width of 

the neighborhoods (the span) controls the amootbness of the resulting estimate- larger 

spans will tend to produce smoother curvet~. 

The timction L(Bo,&) need not be a liielihood, (in Co& model it is a ‘+tial likeli- 

hood”), but in any case, we call this procedure ‘Local Likelihood” estimation. 

2.5. Local Likelihood- Definition in the i.i.d. Case. 

In the i.i.d case, we obsene n independent data pairs {(z,,~~),..,(z~,~~)} and we 

awune that given X = 2, Y haa density 

yt=-w,q 

where 8 = B(Z). The liieliiood is given by: 

(2.13) 

(2.14) 

Where 8j = d(Zj). 
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Chapter P: Local Likelihood- A description 13 Chapter P: Local Likelihood- A description 14 

where #ii = & + Bl<Zj. Letting X represent the n by 2 design matrix with fyst column 

(&I, . ..I)’ and second column (z~,zz, . ..z.)‘. and letting @’ = diag{l(j E NJ}, the locd 

score function hru the simple form 

U;(A) = X’W(v - b’(XP)) (2.22) 

The obsemed information is I(/&) = X%‘I”(X@i)X and the Newton-Raphson step is: 

&Cl = b’“” + rl(b”“)x’w(r _ a’(xpn”)) (2.23). 

In the above, we have mod&d the natural parameter 8. We could just a, well model 

some other parameter (lie E(r)); m any specific problem, there may be reasons to prefer 

one parametrieation to another. For example, in the binary response problem, it is more 

convenient to model the natural parameter log & then the expectation p because the latter 

would require that the estimated smooth stay between 0 and 1. 

2.10. Relationship to Generalized Linear Models. 

Model (2.20) can be viewed aa a extension of the cls~s of generalized bear modela 

(Nelder and Wedderburn (1972)). A 6 eneralieed linear model is delbxd by Y Iz - j(Y,#) 

and E(Y) = g&+/&z), where f has the exponential form (2.20). If g (the “link function”) 

is invertible, this corresponds to g-‘(E(Y)) = flo + hz. In the local Iteliiood set-up, we 

have generalized & + /31z to a(z). 

2.11. Number of Parameters- “Degrees of Freedom”. 

In Chapter 6, ne discuss an approximate method for determining how many inde- 

pendent parameters a local likelihood smooth is really fitting. Since the local liieliiood 

estimate produces a function smoother than the data, we would expect that it uses less 

than n independent parameters. This is the c-e. Consider a scatterplot smoother with 

span 0. Such a smoother is linear in that the fit 0 can be written M P(e)v where P(s) is 

a rmoothcr matrir P(a) will depend on the set of z rdues observed, w well cu the span. 

In traditional linear least squarea estimation, P(r) is the hat matrix X(X1X)-‘X’. We 

show in Chapter 6 that for a scatterplot smoother with span a, the number of degrees of 

freedom used up is trace(P(s)). (This result and related results are also given in Cleveland 

(1979)). We also show that for any local liieliiood fit (in the exponential family), with span 

0, the number of degrees of freedom is about trcec(P(s)). Thus, although the matrix P(a) 

is only used in the estimation process of the Gaussian local likelihood model, (and not in 

the estimation of other local likelihood models), the trace of this matrix turns out to be the 

relevant quantity nonetheless. Note that this generakes the result in linear estimation, in 

which P(a) is an idempotent projection matrix and hence traee(P(a)) = ronk(P(s)) = p, 

the rank of the column space of X. 

The quantity tmce(P(a)) turns out to be significantly less than n. In an example given 

in Chapter 6 with 100 data points and a = S, trace(P(s)) is 3.65. Thus we are really fitting 

only 3.65 Yparameted. 

2.12. Application to Censored Data and the Cox Model. 

In the censored data problem we obsewe data triples (vi, zd, ai), i = 1,2, . ..n where 6, 

indicate8 whether or not the response yi is censored. The proportional hazards model of 
Cox(l972) models the relationship between y and z by assuming that z acts on the hraard 

function in a multiplicative nay: 

NV I4 = ~o(d~g’ (2.24) 

where Ao(v) is an unspecified function. This assumption allows ,9 to be estimated indepen- 

dently of A&) by maximizing the porticl Melihoood: 

(2.25) 

where D is the set of indices of the uncensored y’n and R+ is the risk set prior to vi. The 

local likelihood generalization of (2.24) is 

X(y 12) = Ao(y)e+) (2.26) 

nnd the locd likeliiood estimate of a(ti) is&n by a(zi) = ~oi+~liz: where 81i maximizes 
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We will first discuss in detail the estimate for one covariate; later on we’ll describe a 

forward stepwise algorithm for the full model (3.5) . 

3.2. Estimation of a Single Relative Risk Function. 

Suppose n items are placed on test and give rise to (possibly censored) observation 

times {yi. yz, . . . y,} with associated (fixed) covariates (zr 5 22.. . 5 2,). (The yi’s are in 

order of increasing Zi). Assume for now that the ui’s are distinct- the case of ties will be 

discussed later. Let D be the set of indices of the failures among the vi’s, let ai be 1 if item 

i fails and 0 otherwise. To facilitate construction of a partial likelihood, we will make the 

usual assumption of non-informative censoring (see Kalbfleisch and Prentice( 1980)). 

The model we assume for the hazard is 

Aft I4 = x0(t) exp (44) (3.6) 

where s(z) is some smooth function of z. Clearly we have no information about a(z) at 

z-values not occurring in the sample, so estimation of d(z) involves estimation of the n 

parameters {d(q), d(q), . . . 8(zn)). 

The partial likelihood of the data is 

(3.7) 

where & = {j fvj 1 vi}, the risk set at time vi - 0. Notice that the terms in the product 

are in order of increasing xi. The partial likelihood is usually written with terms ordered 

b ti (s= Ca(l972)); th e z order will make the notation simpler for our purposes. . 

To estimate s(zr),r(zz) , . . . a(~,,), we apply the local likelihood technique introduced 

in Chapter 2. As before, let Ni be a symmetric neighborhood around 2i: 

Ni = {ma~(i - $J),l) ,... i- l,i,i+l,... min(i+T,n)} (3.8) 

For z E Ni we assume d(Z) M ai + xpi, and the IOC~ partial likelihood for the data in Ni is 

PLi= n m+i+ ZIPi) 

IEDW, c jER,m,eXP tai+ zj8i) 
(3.9) 

To estimate Qi and pi, we maximize PLi. Note, however, that ai is not estimable from 

PLi since the exp(Q;) terms cancel one another giving 

(3.10) 

Let fii maximize L;(e). Although ai (thus S(Zi)) is not estimable locally, we can use the slope 

estimates {jr;. . . 82) to estimate {8(21) , . . . 8(zn)}, a9 follows. we have b(Zi) = lezi b’(t)dt 

and d’(Z) = fii f or z E Ni, hence to estimate 8(Zi) we can use any estimate of lezi d’(t)dt 

based on (zr,/&), . . . (z”,b”). Before di scussing some particular integral estimators, it is 

important to note that the choice of c is arbritrary, reflecting the fact that s(z) is only 

determined up to an additive constant. Substitution of s(z) + e for u(z) in (3.6) doesn’t 

change the model because the factor ec can be absorbed into the arbritrary function Ao(t). 

For simplicity, then, we define c = 21, so that 421) = 0. 

To estimate Jf: a’(t)dt, we can use the simple rectangular rule deEned by 

S(Zi) = &Zj - Zj-1) * $i (3.11) 
1 

for i > 1 and i(zr) = 0. This could also be written 89 ;(zi) = (zi - zi-1) * Bi, SO that the 

rectangular rule constructs the estimate 4(-) by joiniig each line segment to the previous 

one, with prescribed slope ji 

For greater accuracy, we instead use the trapezoidal rule defined by 

. I 

i(zi) = ~(=j - Zj-1) * (ai +B;-l) 

I 

for i > 1 and i(z1) = 0. 

The procedure is summarized in the following algorithm: 

(3.12) 
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transplant and T5 mismatch score. Figure (3.1) shows a plot of survival time vs age, with 

squares representing failures and plusses representing censored times. The procedure chose 

a span size of .? and produced the smooth shown in Figure (3.2) . The actual estimate of 

relative risk (erp(s(.))) is shown in Figure (3.3) . A summary of the results is shown in 

Table 3.1. 

Table 3.1. Stanford Heart Transplant 

Analysis of Age 

Model -2 &Likelihood Number of Paranetera 

Null 902 .a0 0 

Age (linear) 894.82 1 

Age + Age2 886.24 a 

Age (smooth, span .?) 884.65 2.95 

Piecewise linear 885.40 2 

The smooth reduced -2 log P& from a null value of 902.40 to 884.65. For comparison, 

a standard proportional hazards model with a single term for age prodaxed a value of 

B94S2 for -2 log PL and the addition of a quadratic term for age reduced it to 886.24. 

The resulting quadratic function is show0 in Figure (3.2) (broken line), The smooth in 

Figure (3.2) suggests that the relative risk before age 45 is approximately constant, while 

the quadratic curve, perhaps misleadingly, indicates a decrease in risk before age 45. We 

note that the smooth produces a smaller value of -21og PL (by 1.6) but uses .95 more 

Pparametersn. 

Based on Figure (3.2) , we tried to summarize i(m) by a piecewise lhear covariate 

z = -.2 for age < 44 and z = .lZ -age - 5.5 for age > 44. Using t as a co&ate in a model 

If the form X0(t) expfjIi(z)), a standard computer program for fitting proportional hazards 

nod& produced a value of 885.40 far -2 log PL. This providea f&rther evidmce that the 

3.3. A Forward Stepdse Algorithm, 

In this section we describe a forward stepwise algorithm for the case of more than one 

eovariate, using the relative risk smoother of Section 3.2. 

The algorithm proceeds by smoothing on each variable, and selecting the smooth that 

most improves the fit. When one smooth is selected, the remaining variables are smoothed 

ar;d the one that most improves the fit is chosen. The process is repeated until PO new 

variable can significantly improve the fit. 

The only %on-standard’ aspect of the algorithm is the process of %ackfitting”, as used 

by Friedman and Stuetzle(l982). Whenever a new smooth is entered into the model, the 

smooths already in the model are adjusted to accommodate the new smooth. Sprcificaily, 

all but one of the smooths are held eonstant and the remaining smooth is re-estimated. This 

is done for each smooth in turn until the fit no longer improves by a significant amount. 

As an example, suppose a new smooth &+l(zf+t) is added to a model containing smootba 

s^l(Zd, -. .&(zc). Then the backfitting procedure would con&t of estimating aj(xjj in the 

model 

(3.15) 

treating Z=r~j ik(Z&) 85 a constant. This is done for i ruxming from 1 to r + 1. 

An outline of this algorithm is: 

Forward Stepwise Algorithm 

While (not all variable8 have been selected) 

Find the rmooth that decreased -2 log PL the most 

If deerewe < threshold1 ezit 

If current model eomtairaa snore than one moodi 

Backfit smooths until decrease in -2 !og PL < threshold!? 

~a&atic shape for the relative risk may not be realistic. Eprd While 
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be seen). It is markedly non-linear, changing slope at antibody level =7.5%. Also included 

in Table 3.3 are linear and quadratic terms for antibody. Even with a quadratic term, the 

fit of the parametric Cox model is significantly worse than the local likelihood smooth. 

Based on Figure (3.7), a piecewise linear covariate was created by joining each of the 

left and rightmost smooth values to the bending point by straight lines. -2 log PL for this 

covariate was 1177.34, still significantly worse than the smooth model. This indicates that 

the bowed shape of the smooth between antibody levels 7.5% and 80% is supported by the 

data. 

3.4. Further Topics. 

3.4.1. Computational Coneiderationa 

A Newton-Raphson search is used to find the slope estimate ai for each neighborhood. 

This means that an 00,) operation is required for each neighborhood, making the entire 

procedure O(r.*) (assuming A, - n). This is not a problem for moderate n (say n N 200) 

because the final estimate for the ith neighborhood is an excellent starting value for the 

i + 1st neighborhood. Typically, convergence is obtained in 2-3 iterations. As an example, 

the smooth in Example 1 required .67 set on an IBM 3081, 

For larger data sets, we speed up the procedure by calculating the fit only every mth 

point; this reduces the running time by about a factor of m. The smooths for the remaining 

z-valuea are obtained by interpolation. 

The scatter-plot smoother of Friedman and Stuetzle (1981) uses updating formula to 

achieve an O(n) algorithm. We have been unable to obtain such form&e for this problem 

because of the non-linear nature of the estimation. 

5.4.2. Categorical Variables 

Since it doesn’t make sense to estimate a smooth for a covariate taking on unordered 

discrete values, such variables are treated in the standard way. If the covariate takes on J 

values, J-l dummy variables are created and a slope parameter is estimated for each. Hence 

in analyzing a data set containing both continuous and categorical variables, a smooth is es- 

timated for each continuous coy&ate and slope parameters are estimated for the categorical 

variables. 

5.43. Examining Goodness of Fit 

In fitting a standard (linear) proportional hazards model to a set of data, the goodness 

of fit of the model should be examined. The overall question is: does the model fit? If 

not, it might be because a) the covariate effects are non-linear, b) additional covariates 

are required, or c) the proportional hazards assumption is unrealistic. The local likelihood 

extension of the model solves (a). The algorithm automatically 6nds the best functional 

form for each covariate effect. 

Problems (b) and ( c ) are difficult to answer for the local likelihood modeT just as they 

are for the standard proportional hazards model. For assessing the appropiateness of the 

proportional hazards assumption, a number of approaches are available. If the covariates 

are discrete, an estimate of the log hacard can be plotted for each subgroup; these should 

be approximately parallel if the proportional hazards assumption holds. For continuous 

covariates (clearly of interest here), matters are more difficult. A number of methods have 

been suggested, but none, in our opinion, are very effective. Kay(1977) utilizes residuals 

of the form &(ui)exp(ziji), which h ave a censored exponential distribution (with mean 

1) if the model is correct. The value of these residuals is extremely questionable, however. 

Crowley and Hu(1977) point out that if anull model (a = 0) is fit, (and there is no censoring) 

the residuals will have era& an exponential(l) distribution, no matter what the true modei 

is. In a later discussion, Crowley and Stormer (1983) confirm this by simulation but do 
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a case-control set only enters into the partial likelihood for a given neighborhood if the case 

and at least one control exist in the neighborhood. 

Figure (3.10) shows the results of the various estimation procedures applied to the lung 

cancer data.* The solid line is the local likelihood smooth ezp(i(e)), and the step fuuction 

(dashed line) is Th omss monotone m.1.e. The functions are in qualitative agreement, with 

the monotone m.1.e suffering from its jagged shape. 

The advantages of the local likelihood procedure over Thomas’ method are clear. The 

monotone m.1.e is not smooth and is forced to be monotone. As well, Thomas’ procedure 

can handle only one covariate. The local liielihood procedure suffers from none of these 

problems. 

3.4.6. A Biae Study 

In this section we discuss a number of simulations designed investigate how well the 

procedure estimates the true underlying function. in particular, we want to Snd out how 

much it underestimates curvature for larger spans, especially at the endpoints. 

A sample of 200 X values were generated from U(--1, l), and survival times T were 

generated from the model 1ogT = 5 + 42* + e where e had the extreme value distribution 

ezp(e - ezp(c)). This corresponds to the hazard model A(t 12) = czp(-5 - 42*). Censoring 

times C were then generated from U(0, ll), and the observed response was Y = min(T,C). 

This resulted in an average censoring rate of 51 percent. Figure (3.11) shows one sample 

generated in this way, and and Figures (3.12) - (3.16) show the local likelihood estimated 

smooths for spans .3 to .7 along with the true function (broken line). Since the fnnctions are 

determined only up to an additive constant, they were translated to have the same mean 

over the range of P. Our aim here was to found out how well the procedure reproduces 

l Unfortanately, we corrtd only obtain a slightly s~urIler data set from Thomas, consirrting of 188 of the 

215 case-control groups. The locd likelihood proceda:e applied set, while 
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cumture in the middle of the covariate range (so that endpoint effects don’t enter in). We 

see that the estimates are quite jagged for smaller spans, fairly accurate for medium spans, 

but underestimate the curvature for span .7. gets to .7. Figure (3.17) shows the average of 

20 replications (with the same set of z values) allowing the procedure to choose the span by 

the AIC criterion. The average smooth captures the shape of the true function remarkably 

well. 

Next, we investigated the effect of endpoint bias. We generated data from the same 

model as above, except that X was Zf(-1, .5) (W e cut off the X range so that the true 

function would be non-linear near an endpoint.) The local likelihood smooths for spans 

.3 to .7 are shown in Figures (3.18) to (3.22) , along with the true underlying function 

(broken line). W e see severe biasses for the smaller spans, with a span of .7 performing the 

best. Figure .(3.23) ch 9 ows the average of 20 replications, allowing the proeedure to choose 

the span. The average smooth underestimates the curvature, but reproduces the fuuction 

quite well. 

We conclude from this modest study that the local likelihood procedure may have 

low bias, with a tendency to underestimate curvature slightly at the endpoints. A more 

ambitious study would investigate the effects of sample size, censoring rate and covariate 

distribution. 

3.4.7. A Robust Fit 

There are two types of influential points that can create problems in regression mod- 

elling: outliers in time space and outliers in covariate space. The first type are not ILL much 

of a problem here because the partial likelihood depends only on the ranks of the survival 

times. Still, Cain and Lange (1983) give an example in which a few large survival times 

have a large effect on the regression coefficient. 

Outliem in covariate space are potentially more dangerous. Because of the local nature 

of the fitting, it will not be as much a problem in the local likelihood model as it is in the 

linear proportional hazards model, but with spans as large as .7n, it is still a concern. 

Thomas’ procedure was applied to the full data set A simple modi&zation of the fitting procedure can he!p reduce the ef&ct of covariate 
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problems with this, however. With fixed covariates, the risk sets can be computed by 

‘stripping off” each failure or censoring as they occur. With time-dependent covariates, 

however, the risk sets must be recomputed for each failure time. This would increase the 

cost by about a factor of n. We haven’t tried implementing time-dependent covariates; this 

may be pursued in subsequent research. 

Another way to generalize the model is to allow linear combinations of covariates to 

enter into the model. The form of the model would be 

Wt 1%) = Aott) exp(~(dW * ~c))) (3.22) 

The vectors Qi could be found by a numerical search. This is the “Projection Pursuit Regres- 

sion” idea introduced by Priedman and Stuetzle(1981). Besides the obvious computational 

cost, this model would suffer from a lack of interpretability. 

Figure (1) 

Heart Translant Data- Age 

Diamond: uncensored, Plus: censored 
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Figure (4) 

T5 Mismatch Score 

Diamond: uncensored, Plus: censored 
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Figure (6) 

Local Likelihood Smooth for T5 Mismatch Score 
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Figure (12) 

Local likelihood fit: span .3 

Solid he: L.L fit, Broken line: true quadratic function 
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Figure (13) 

Local likelihood fit: span .4 

Solid line: L,L fit, Broken line: true quadratic furaction 
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Figure (16) 

Local likelihood fit: span .7 

Solid line: L.L fit, Broken line: true quadratic function 
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Figure (17) 

Average of 20 Local likelihood fits, varying span 

Solid line: L.L fit, Broken line: true quadratic function 
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be judged by comparing of the decrease in -210g L (‘the deviance”) to the number of 

degrees of freedom trace(P(8)). 

The deviance of this model is 302.3 on 299 degrees of freedom. The fitted terms for each 

covariate are super-imposed on Figures (4.1) , (4.2) , and (4.3) (broken lines). The 

functions for zr and 23 are very similar; they differ for 22, but the overall effect of this 

variable is very small. 4.4. An Example: Breast Cancer Data. 

Hastie (1984) and Hastie and Tibshirani(l984) discuss the relative merits of the local 

likelihood and partial residual plot procedures. They give two reasons to suggest why the 

local likelihood procedure is preferable: 

A study conducted between 1958 and 1970 at the University of Chicago’s Billings 

Hospits? concerned the survival of patients who had undergone surgery for breast cancer 

(Haberman (1976)). There are 306 observations on 4 variables. 

e The partial residual technique, in suggesting the parametric form for a covariate effect, 

relies on the assumption that the covariate forms for other effects are correct. Indeed 

these effects are usually assumed to be linear. The local likelihood procedure finds the 

best functional form for all covariates simultaneously. 

y=l if patient survived 1 5 years, 0 otherwise 

zl=age of patient at time of operation 

zz=year of operation 

zs=number of positive axillary nodes detected 

o The partial residual technique requires quite a bit of ingenuity in identifying the various 
The local likelihood procedure applied to all three covariates produced the smooths 

shown in Figures (4.1) , (4.2) , and (4.3) . Table 1 shows the decrease in deviance due to 

each variable. 

covariate effects. The local likelihood procedure, on the other hand, is automatic. 

4.5. Comparison to the Scatterplot Smoothing Approach. 

‘hb!e 4.1. Analysis of Breast Cancer Data 
The local likelihood method extends the linear logistic model through a type of local 

averaging within the likelihood framework. Computationally, it would seem simpler to 

ignore the fact that the y’s are O’s and l’s and apply scatterplot smoothing techniques 

directly. This works tine for a single covariate: a scatterplot smooth of y on zr is shown 

in Figure (4.4) . On the same figure, the estimated local likelihood probability smooth 

exp(i(a)/(l + ew(+d) is shown (broken line). FJot auqxisingly, the two smooths are 

similar. 

Model Deviance Number of Parameters 

Collstant 353.67 

# of nodes(span= .5) 319.8 

1 

2.4 

# of 

# of 

nodes + Age(spau = .6) 310.45 2.4 + 2.4 

2.4 + 2.5 + 2.4 nodes + Age + Yr of oper (span= -5) 307.67 

With multiple covariates, the local likelihood approach is more attractive for precisely 

the same reasons that the linear logistic model has gained popularity. In fitting a model of 

the form v = C!~(Z;), one would have to ensure that the fitted probabiiities lie between 

0 and 1. This would require some eort of truncation of the smooths. On the other hand, 

the local likelihood approach models Qogit p so the fitted probabilities are always between 

0 and 1. Secondly, the local likelihood approach produces au additive model on the iogit 

Age and number of nodes are important, year of operation is not. The final haa 

s deviance of 307.74 on (306-2.41-2.54-2.41)=298.54 degrees of freedom. 

Landwehr et al (1984) analyzed this data set to explore the usefulncsa of partied 

?lots in identifying parametric forms of covariate effects. Their final model 



a% 

08 O&l 08 08 00 08 



s(
# 

of
 n

od
ea

) 
I w
 

0 
M

 e-
 

/ 

/ / / I / I r 



71 

Figure (4) 

Estimates for Age 

Solid line: L.L rmooth, Broken line: Scatterplot smooth 
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Chapter 5 

Asymptotic Theory For Local Likelihood Estimates 

5.1. Introduction. 

In this chapter we show that, in a sense to be made precise, local likelihood estimates 

possess the Bymptotic sptimality properties of maximum Delihood estimates. We’ll con- 

sider only the exponential family case; with appropriate conditions, the results should be 

generalizable to any regular family. At the end of the chapter, we conjecture (without 

proof) a result for the proportional hazards model. 

5.2. Local Likelihood Estimates in the Exponential Family. 

Since LLE’s are just maximum likeliiood estimates calculated locally, we can derive 

results for LLE’s by modifying standard ‘MLE theory to account for the local nature of 

the estimation. We begin with the MLE theory for generalized linear models provided by 

McCullagh (1983) and modify it appropriately. 

5.2.1. A Review of RemIts for Generalired Linear Modela 

A special case of McCullagh’s results is the following. Suppose Yi, . ..Y. are independent 

random variables with density 

(54 

We assume that 0, the parameter of interest, is expressible in the form 0 = Xfl where X is 

a 6xed n by p design matrix and /J is a p-dimensional parameter. Letting a(a) = E(Y) = 
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the neighborhood &rinks SO that maz(;,,-EN;) IZi - wjl= o(kn -1’2). We argue below that for 

estimation of the slope and intercept of the line tangent to s(s) at zs, the LLE is consistent 

and asymptotically normal, and has the efficiency of a MLE based on sample size k,. This 

implies + :*:, for estimation of s(zo), the LLE has minimum asymptotic mean squared error 

among all estimates based on k, obsemtions. 

In this set-up, p = 2 and X = (1, z). The score function for the local likelihood at 2s 

is 

ua = xW(Y - u(j9jp2 (5.8) 

where rr(@) = b’(X@), and IV = Diag{l(i E No”)),, = ,,. 

Let /3 = @I,&) be the coefficents of the iiie tangent to (I(.) at zg i.e. Bs = s’(zs) and 

#I1 = s(zo) - /3szs. We make assumptions (Al)-(A4) as well as the following: 

l8(-)1 5 M < 00 (As) 

d(s) cziata with l&)1 I A4i < OQ 

b”(m) ezistr with i)“(s)1 I MS < oo (A71 

Under these conditions, the following results obtain: 

k-‘/2U 
n B - &(o, u2i,#n) + o,(k,-“‘1 (5.9) 

E($ - /Y) = O(k,“) (5.10) 

and 

,!;l’() - j9) N N2(0, k,,o’ijfj’) + Op(k;‘/2) (5.11) 
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To prove (5.9) - (5.11) , we note that by Liaponouv’s theorem b -‘I’xqqy - 

E(Y )) -+ &(0,a2i,g/k,) + OP(k,“2). Hence, we need only show that 

k,1~2XcW(E(Y) - r(b)) + 0 (5.14) 

Equation (5.14) implies that k,“sXcW(Y - u(b)) has the same limiting distribution as 

It-‘I’X%V(Y - E(Y)) and n th e results (5.9) - (5.11) then follow from those of the previous 

section, with n replaced by kn. 

TO establish relation (5.14) , we expand each term of E(Y;:) - ui(@) = 6’(8(Zi)) - 

6’(/91 + &Zi) in a one term Taylor series as follows: 

b’(S(Zi)) = b’(S(Z0) + (Zi - Zo)8’(hl)) 

= b’(S(Zo)) + (Zi - to)8’thdb”(hz) 
(5.15) 

b’(B1 + hi) = b’& + &ZO + B2tzi - ~0)) 

= WI + B24 + Bz(z; - ~o)b”tW 

= b’(8(20)) + h(zi - a)b”(h) 

(5.16) 

In the above, Ihr - 201 S Izi - 201, Ihs - a( 5 I(zi - zsV(kt)l, 

and Ihs - 8(zo)( I I/‘32(zi - 20)‘. Combining (5.15) and (5.16) we have 

b’(8(%)) - $‘(@I + hi) = (2; - tO)b’(hdbhj + Bzb”thdl (5.17) 

Now Iz; - zol = o(k;“2) (by as sumption) and the remaining terms are bounded. Hence 

(5.14) is established. 

These imply the following results for the local likelihood estimate i(zs) = a+ bps: 

E(i(zo) - b(Zo)) = O(k,“) (5.12) 

5.5.2. Some Remark6 . 
and 

k;/2(i(zo) - d(Zo)) - J/(0, kna2A) + 0,(k,112) (5.13) 

where A = (1 zs)i”(l zs)I. B 

l As in the global case studied by McCullagh, the preceding results don’t require the 

assumption that Y has distribution of the exponential family (5.1) . We can make 
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Chapter 6 
6.2. The Distribution of Quadratic Forms. 

Suppose u is a random n vector with mean q and variance V. Then if A is an n by n 

real symmetric matrix, it can be shown that 

Degrees of Freedom and AIC approximations P(p’Au) = q’Aq + trace(AV) 

If in addition u has a multivariate normal distribution, then 

8.1. Introduction. I 
where the Ai’B are the eigenvalues of AV. III particular, this implies 

In the chapter, we provide justifications for 1) the formula degrees of freedom = 

trace(smoother matriz) and 2) the use of AIC, in the local likelihood procedure. We also 

provide a number of simulations to support our claims. As in chapter 4, we concentrate on These results can be found in many books; see for example Guttman (1983). 
: j .,_ 2. 

ihe exponential family case, although our simulations suggest that similar results are true 

in the proportional hazards model as well. 
How suppose A is not symmetric. Then we can replace A by a symmetric matrix ‘&\I 

follows: 
The actual result that we derive is the following. Consider two local likelihood fits 

fil and #z with corresponding smoother matrices Pr and Pz. (By “corresponding smoother 

matrix” P, we mean that if-i is based on a set of X value z and span 8, then P is the 

matrix producing locally linear least squares fits of span 6, based on 2.) If on the average, 

the two smoothers produce the same fit, then the difference in deviance between the two fits 

has expected value [trace(&) - trace(f’l)]. Th UB we can think of trace(P) as the number 

of degrees of freedom used up by the smoother based on P. This generalizes the standard 

hypothesis testing set-up of linear estimation, in which we have two nested fits and we 

gtAu = f{l’Ag + ~‘A’u} = #A’u (64 
7 

where A’ = :{A + A’}. From this, we see that (6.1) holds for non-symmetric A’s si&e 

q’A*q = #Aq and troce(A*V) = trace(AV). And corresponding to (6.2) we have >,;‘ 

(-I - q)‘A(u - 9) N CQid (6.5) 
1 

where oi are the eigenvalues of A’. Finally, Cz af = traee(A’2) = traee(A2) = c: At- 

Hence (6.3) is true for non-symmetric matrices as well. 

consider the difference in deviance when the smaller model is correct. 
6.3. The Decrease in Residual Sum of Squares. 

We will discuss the scstterplot (Gaussian Likelihood) case first, for which this result is 

exact. Then we will show that the result holds approximately for local likelihood estimation 

in the exponential family. 6.3.1. Linear Regrersion 

With these results, we then provide a justification for using the AIC procedure for Here we review a familiar set-up. Suppose we have a response vector u with Eu = # 

span selection. and Var(u) = I. A matrix of covariate values X is available (assumed to have l’s in the 

Before starting, we will review Borne results on the distribution of quadratic forms. first column) and we postulate two models for Eg: A41 and M2. The two models are such 
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If we assume that I N .U(f,Z), we c8n fmd (approximately) the distribution of 

R(u, bi) - Z?(g, 92). It’s easier to work directly with R(u,#i) - R(u,#z) 8s follows: 

R(u, h) - R(u, 92) =u’V - WetI - PI)U - u’V - Pz)‘(J - Edu 

=(I - J)‘A(u - I) + W- h)‘(P, - P2)u 

(6.13) 

where A = {P,‘Pl - Pi - PI - (PjP2 - P; - Pz)}. If we ignore the second term in (6.13) 

(it is zero in expectation) and let (&) and {oi} be the eigenvalues of A and f (A + A’) 

respectively, then 

R(u, ii) - R(u, i2) - e QiX: (wpr=imateb) 
1 

(6.14) 

and 

Var(W, tl) - R(u, id) m 2 2 A? (6.15) 

6.4. The Decrease in Deviance. 

In the previous section, we derived the exact result E(R(y, bl)-R(r, 02)) = trace(Pz)- 

traces for local linear scatterplot smoothing. In this section, we show that an analogous 

result is approximately true for local likelihood procedures in the exponential family. In 

this more general setting, the deviance takes the place of the residual sum of squares. The 

scatterplot smoothing case, of course, corresponds to local likelihood fitting with a Gaussian 

likelihood, and the residual sum of squares is the deviance for a Gaussian Likelihood. 

In order to derive a deviance approximation, we will first obtain a relation similar to 

(6.10) and (6.11) for exponential families. 

6.4.1. Pythagorean Re!ations for the Deviance where A = 

We assume that the Yi’s are independent with density of the exponential family form 

Lfd k,(Y) = II~Oe,(Vi)c and let B(0) = (b(Ot),S(Sr), . . .b(B,)). The density k,(t) can 

be indexed by the natural parameter $ or the expectation parameter p = E,y = V(0). We 

will write b’-‘(p) as Up, and let C, be the (diagonal) covariance matrix of the Yi’s. The 

quantity (twice) Kullback-Leibler distance between pi and h is defined by 

kP1 (II) 
ah P2) = 244, log - 

b,W 
(6.17) 

We will call this the ‘deviance-- a short aside will clarify why we are allowed to do 

this. The deviance is defined in the generalized linear model literature 8s D(u,c) = 

-2 log[k,(g)/t,(r)). Hoeffding’s theorem (see Efron (1977)) states that in the exponential 

family Z(y, c) = D(y, p). Note that Z(pi, k) is not in general equal to D(pl, ~2). They are 

equal when ~1 = u (aa above) and also when pl and h represent nested fits (see Simon’s 

theorem in Efron (1977)). In other cases, D(pi, h) is 8n estimate of Z(cr, m). Since the 

result that we seek to establish involves quantities of the form Z(r,r) in the exponential 

family, we shall use the term ‘deviance”. 

Let & be some fit vector and let h be such that E($#) = #A. Then we have 

Grs h) = v, - wa - 2 5547;) - W,,)) (6.18) 
1 

I&, h) = 2(0# - #A)‘6 - 2 &,;) - b(8ni)) 
1 

and 

Z(u, i) = v, - q’t# - 2 &,;) - a(#,,)). 
1 

Hence 

What 

24 - 

cm we 

ZW) = lb, C) + Z(C, h) + A 

#A)‘(u - t)- 

say about A? We’ll examine the global and local cases 

(6.19) 

(6.20) 

(6.21) 

*ately. 

98, (Vi) = eW{ {yiei - b(fli) - C(lfit@))/~2) (6.16) 

with respect to some carrier measure. The scale parameter u plays no special role and is 

assumed to be 1. 
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The Lo& Likelihood Model 

Now consider the case where $1 and h represent local iikelihood fits. We have a single 

covariate q,z2, . ..z., and let pi = (1 2;)‘. We assume E(@r,) = E(Ofr) = 0~. Letting 

vi = Var(ith element of g2) and ui = iith entry of Ch, we have 

(6.32) 
1 

using the fact that E(b2) M h. Now 

tJi M UiXi(X~C~Xi)“X~ai (6.33) 

where Xi and CL are the design and covariance matrices for the ith neighborhood. Hence 

Mow in a given neighborhood, ai can be taken as apprtimately constant, so we have 

E(I(i2, n)) w 2 t;[xXi)-‘zf = trace(P2) (6.35) 

Similarly, 

(6.36) 

Hence for local likelihood smoothers we have 

In the preceding “derivation”, we have made a number of approximations, and it’s 

important to End out how accurate the formula trace(&) - troce(P1) really is. In the next 

section, we describe a simulation study to investigate this. 

Finally, we note that the actual distribution of the decrease is more difficult to obtam 

Even in the simple scatterplot case, we have seen that this distribution is NOTchi-squ=ed. 

but a weighted linear combination of x$ in the generaI local likelihood case, we have 

not succeeded in obtaining a workable sppmdmation for this distribution. The simulations 

of the next section show that, at least 

decrease is quite a bit more spread out 

for small samples, the distribution 

that the corresponding &-squared 

6.5. Degrees of Freedom Simulations. 

of the deviance 

distribution. 

Table 1 shops the results of a modest simulation study designed to check the accuracy 

of the formula E(I(v, #I) - I(g, 62)) = trace(P2) - traee(P1). 

Table 1. Results cf Degrees of Ekeedom Simulation 

Entries arc meaa(cariance) 01 deoionce decreure 

(1) Truce(P) - 1 

(2) SGa~tcr~or Srnodh(~ normd) 

(3)Scafferpld Smuoth(~rniform) 

(I) Logirtic A~odel(conrfan~ WN rmodh) 

(5) Logirtic .!fodel(lineor WI rmoofh) 

(6) Cot hfodd(no ccnrming) 

(7) Cor hfodd(QO% cenroring) 

Span 

s -6 

4.Q9(10.14) s.az(B.oo)’ 

r.tr(lo.oo) 3.3q7.75) 

4.19(10.06) a.46~8.50) 

4.34(13.47) 3.40(11.62) 

3.29(11.71) 2.%(8.25) 

5.58(13.37) 4.24(8.99) 

S-36(13.54) r.la(9.04) 

3 6 7 

2.65(6.15) 2.34(5.Q9) 2.16(4.27) 

2.61(6.03) 2.31(5.08) 2.09(4.32j 

2.77(6.52) 2.41(5.79) 2.21(4.?9) 

2.72(9.12) 2.28(7.51) 2.17(6.28) 

1.63(6.21) 1.29(4.58) l-12(2.89) 

5.63(7.52) 3.12(6.25) 2.71(5.48) 

3.62(6.98) 3.13(5.86) 2.73(5.20) 

The numbers in the table were obtained 89 follows. 100 z values were generated from 

U(0, 1) and Exed for the entire table. Given these t values, we constructed the local linear 

smoother matrices for the indicated spans, and the trace of each matrix (minus 1) is shown 

in line (1). The numbers in parentheses are variance estimates based on formula (6.15) . 

Consider for example the entry 4.09 in the top left hand comer. According to the 

preceding derivation, this should be an estimate of the expected decrease in deviance due 

to fitting a local likelihood model with that span .3 versus a model with only a constant. 

To obtain line (2), we generated 100 yi’s from U(0, 1) and computed R(v, pl) - R(o, i), 

0 being the fit from a scatter-plot smoother (3 = Pr) with span 83 shown. L&e(2) shows 

the mean and variance from 500 such repetitions of this process. 
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In the local likelihood procedure, we propose choice of the span parameter 8 to minimize 

AIC = -21% Q++(#) + 2 trace P(w)) (6.39) 

where P(w) denotes the smoother matrix producing local linear fits with span w, and 

e(w) denotes the corresponding fitted values. This makes sense intuitively: as the span w 

increases, -2 log W&w)(b) will increase but the degrees of frttedom trace P(w) will decrease. 

Hence the AIC will trade off lack of fit with complexity of the smooth. 

In what follows, we will show that the AIC is reasonable in the local likelihood setting, 

in that it approximately equals a measure of expected distance to the true model. The logic 

of the derivation follows that of Akaike (1973). Consider the exponential family set-up of 

section 6.4.1. Using the notation of that section, we let P be a local linear smoother matrix 

corresponding to some span and f be the estimated fit vector (dropping the argument (tu) 

for convenience). Let b be such that E(ba) = 0~, and further let h be the “true model” 

in that Ep = w. We require an estimate of the Kuilback-Leib!er distance I((lro,b). The 

followbg Pythagorean relation is easy to derive from the results of section 6.4.1 

Who, Cl) = Who, a)) + EW, Cl), (6.40) 

the cross-product term being (0~ - 0b)‘(h - a), with expectation 0. The second term is 

the sum of the variance of the ii’s and equals approximately trace(P). To get an estimate 

of the first term, we expand E(I(#,#)) au 

EV(v, i)) =W(u, J4) - EVW)) 
(6.41) 

=[W(Y, 1r0) + JWOco, WI - Et% JW 

Thus E(I(g, f)) M (n+E(I(m,lb))] - trace(P), or E(I(&,h)) M E(I(p,#))-n+traee(P). 

Combining this with (6.14) we obtain 

(6.42) 

92 

Figure 6.1. The AIC Picture 

Noting that I(r,#)) = -2logt+)(#) + constant is constant for all spans, we arrive at the 

AIC criterion (6.39) . 

Finally, we display in Figure 6.1 the idea behind this derivation. The distance I(h, 8) 

is estimated by I(#, n) plus an estimate of I(h, a) derived from I(r, #). 
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