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Abstract

Given zcatterplot data {{X,,1;),{X:,Yz2),...(X,,,Y.)}), Y being s responze and X a pre-
dictor, a scatterplot smoother uses local averaging to estimat : the dependence of ¥ on X. A
simple example is the running lines smoother, which fits a least squares line to the the ¥ values
falling in a window around each X value. A smoother generalizes the least squares line, which
assumes the dependence of Y on X is linear.

In this work, we extend the idea of local averaging to likelihood-based regression models.
One application is in the class of generalized linear models (Nelder and Wedderburn (1972)) We
enlarge this class by replacing the covariate form zg8 with an unspecified smooth function s(z).
This function is estimated from the data by a technique we call “Local Likelihood Estimation” —
a type of local averaging. Multiple covariates are incorporated through a forward stepwise
algorithm.

We also apply the local likelihood technique to the proportional hazards model of Cox
(1972), for censored data. The proportional hazards assumption A{t [z} = Ao(t) exp(zf) is
replaced by Mt |z) = Ao(t) exp{s{z}), and the function s{z) iz estimated from the data by
jocal likelihood estimation.

In a number of real data examples, the local likelihood technique proves to be effective in
uncovering pon-linear dependencies.

Finally, we give some asymptotic results for local likelihood estimates and provide some

methods for inference.

‘Work supported by the Department of Energy under contracts DE-ACO03-T8SF00515
and DE-AT03-81-ER10843, and by the Office of Naval Research under contract ONR
NOD014-81-K-0340, and by the U.S. Army Research Ofice under contract DAAG2%-82-
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Chapter 1

Introduction

Figure (1.1) contains 100 data pairs along with the least squares line summarizing the
relationship of a response (say Y) and a covariate (X). In Figure {1.2}, the least squares
line has been replaced by a “seatterplot smooth.” This smoothk was computed by a type
of local averaging— around each X value a window of 20 points was formed and a least
squares line was fit to the points in the window. The value of the smooth at X is given by
the value of the “local line” at X. As we can see, the smooth captures the trend of the data
better than the least aquares line. The reason is simple— the smooth doesn’t make a rigid

assymption about the form of the relationship between Y and X.

In tecent years, there has been a great deal of interest in scatterplot smoothing by
local averaging (see for example Cleveland{1979}) and Friedman and Stuetzle{198})) and
the availability of fast computers has been essential in this development. These smooths
are useful as a descriptive tool (as we have seen sbove) and also as building blocks for
non-parametric regression models. Important developments in the latter area can be found

in Friedman and Stuetzle (1981) and Brieman and Friedman(1982).

In this dissertation we explore an application of smoothing ideas to other kinds of
data. In particular, we consider (X,Y) data whose relationship is expressible through a
likelthood function. Take for example the situation in which Y is a 0-1 response and X is a
covariate. For such a data set, Figure {1.3) shows the logistic regressicn line, estimated by
maximum likelihood. On the same plot, the observed logits are shown. (Since we can’t take
the logit of 0 or 1, the Y’s were grouped first}. In Figure {14}, the line haa been replaced
by a smooth. As was the case in the scatterplot example, the smooth does a better job of
:apturing the relationship between ¥ and X then the line does. In Figures (1.5) and {1.6) ,

we see another example. Here our data is survival data and hence Y is a (possibly censored)
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lifetime. Figure (1.5} shows the estimated log relative risk line given by Cox’s proportional

hazards model. In Figure (1.6) , the line has been replaced by a “log relative risk smooth”.

The smooths in Figures {1.4} and (1.6) were obtained from a procedure we call “local
likelihood” estimation. The basie idea is simple extension of the local averaging technique
used in scatterplot smoothing. Given a global method for estimating a linear response (e.g.
maximum likelikood estimation in the linear logistic model), we apply it locally, estimating
a separate line in a window around each z value. The value of the estimated line at z is

the estimate of the smooth response function at z.

By varying the window size, we can control the smoothness of the estimated function.
The larger the windows, the smoother the estimated function. When each window contains
100% of the data, the local likelthood procedure corresponds exactly to the global linear

method. Hence local likelihood generalizes linear likelihood estimation.

This dissertation is devoted to the study of local likelihood. We describe the method
in general, showing how smooths like those in Figures (1.4} and (1.6) are obtained, and we
will study some of its theoretical properties. In the exponential family, the local likelihood
method extends the class of generalized linear models (Nelder and Wedderburn {1972)) by
allowing covariates to enter the link function in a non-linear fashion. We investigate the
linear logistic model, a member of this class, and its extension. We also explore in depth
the application of the method to the proportional hazards model. This model was the
motivating example behind local likelihood.

The chapters are organized as follows. Chapter 2 defines the local likelihood method
and discusses the estimation procedure. Both the exponential and non-expenential family
get-ups are described; included is a short discussion of the application to the Cox model. We
alzo discuss a forward stepwise algorithm for building muitiple covariate models. Chapter
3 describes in detail the application of the local likelihood procedure to Cox’s proportional
bazards model. We discuss a number of topics: bootstrapping the models, robustifying
the Bt, and assessing gooduness of fit. We also present & number of simulations designed to
study the bias properties of the procedure, and finally, some real data examples are given.

Chapter 4 contains a short description of the application of local likelihood to the logistic




Chapter 1: Introduction 8

regressicn model for binary data. The discussion is brief, referring the reader to Hastie and
Tibshirani {1984) for further details,

Chapter 5 provides some asymptotic results for local likelihood estimates in the ex-
ponential family. Consistency and efliciency of the estimates are discussed. We conjecture

(without proof) similar results for the proportional harards model.

In the last chapter (6), we address two important questions: 1) how many parameters
are used up by alocal likelthood smooth? and 2) is it rensonable to use Akaike’s Information
Criterion to choose the window size? We give approximate answers to these questions,

backing up our claims with a simulation study.

25
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Figure (1.1)
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Figure (1.8)
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Figure (1.6)

Local Likelihood Relative Risk Smooth
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Chapter 2

Local Likelihood— A description

2.1. Introduction.

In this chapter we introduce the local likelihood idea. Since local likelihood estimation

is a generalization of scatterplot smoothing, we begin with & review of the latter.

2.2. A Review of Scatterplot Smoothing.

Given independent data pairs {(z;,¢1),-.(Zn,¥a)}, 2ssumed to be realizations of =
response variable Y and a predictor X, a scatterplot smoother produces a decomposition of
the form

yi = o(z) + & (2.1

Here (-} is a “smooth” function and ¢, i¢ a residual error. We won’t define exactly what
“smooth” means here; vaguely speaking, we're thinking of () as & function less smooth

than a straight lie but smoother than an interpolating polynomial.

There are many ways to estimate a(-)— we’ll concentrate here on the method of “local
averaging”. It is ‘motivated as follows. ¥ we knew the joint distribution of ¥ and X, a
reasonable way to find #{)) would be to minimize E(Y — a(X})?, where the expectation
is taken over this joint distribution. Conditioning on X = z, this has solution i(z} =
E(Y | X = z) for each z. In practice, we don’t know this joint distribution but have only a
sample from it. The idea, then, is to estimate E(Y |X = z) from the data. This leads to

the class of local average estimates for a(-):

#(zi) = Avejen,y; (2.2)
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where “Ave” represents some averaging operator like mean or median, and N; is a "neigh-
borhood” of z; (a set of indices of points whose z values are “close” to ;). The only type
of neighborhoods we'll consider in this dissertation are symmetric nearest neighborhoods.

Assuming that the data points are sorted by increasing z value, these are defined by:

N; = {maali - "%‘ 1), i = 1,66 + 1, omin{i + "2;‘,.)} (2.3)

The parameter k is called the span of the smoother and controls the smoothness of the

resulting estimate. The value of & must be chosen in some way from the data.

H Ave stands for arithmetic mean, then 4(-) is the running mean, the simplest possible
scatterplot smoother. The running mean is not a satisfactory smoother because it creates
large biasses at the endpoints and doesn’t reproduce straight lines (i.e. if the data lie exactly
along a straight line, the smcoth of the data will not be a straight line). A slight refinement
of the running average, the running lines smoother alleviates these problems. The running
lines estimate is defined by

3(2)) = Boi + Buizi (2.4)
where flo; and f1i nre the least squares estimates for the data points in Ni:

Pien(Ei — 2ivi
Eien (2 — )? (2.5)
Boi = §i — Prizi

bii =

and 2 = } Ejen, 2> i = a Ljen, Vi-

The running lines smooth is the most obvious generalization of the least squares line.
When every neighborhood contains 100% of the data points, the smooth agrees exactly
with the least equares line. For smaller spans, it produces less smooth estimates. Although
very simple it nature, the running lines smoother produces reasonable results and has the
advantage that the estimates can be updated. That is, to find (z;y,) from &{z;), only a
0{1) operation is needed. This reduces the overall algorithm from O(n?) to O{n).

Interpolation cax: be used to provide an estimate of #(-) at X values not occurring in

the sample.
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2.3. Local Gaussian Smoothing.

Since Jeast squares estimation corresponds to maximum likelihood when the data are
Gaussian, it is not surprising that the running lines smoother can be described as a “running

maximum litelihood” method for Gaussian data. Assume as before that
vi = o(z) + e (2-6)

and in addition that the ¢; ~ 3.14.d ¥{0,r?). Then for z in a neighborhood N; of z;, a

reasonable approximation to #{z) is
#(z) r Boi -+ Briz (2.7)

Considering only the points in Ny, the maximum likelihood estimates of fy; and §;; are

given by {2.5) . Based on (2.7), this gives as an estimate of #(2,):
#{zi) = Boi + Brz: (2.8)

Hence running lines smoocthing corresponds to Bnding approximate maximum likelihood

estimates in a neighborhood around each data point.

We call this type of estimation “LOCAL LIKELIHOOD ESTIMATION” or “LOCAL
LIKELIHOOGD " for short. In this disssrtation, we extend the idea of local likelihood to”
non-Gaussian likelihoods. It can be applied in principal to any situation in which the effect
of a covariate is modelied through a likelihood. In fact, as will see in the proportional

hazards model, the “likelihood” doesn’t even have to be a likelihood in the strict sense.

2.4. Local Likelihood: General Definition.

Suppose we have n data tuples of the form (y;, z;, ¢;), where y is a response variable, z
is a covariate or predictor variable, and e is a vector containing any additional information.
{In censored data problems, ¢ would indicate whether y is censored. In many problers {like
tegression), ¢ is empty.) Supposze that modelling considerations lead to maximization of a

function of the form

Lifo, B} = oy, w2, n. 81,02, By 01,02, . . 20) (2.9)

Chapter £2: Local Likelihood— A description 10

where 8; = fo + B12;. For example, L{f, 1) could be a likelihood function and the
estimates maximizing L(fg, 1) would be the maximum likelihood estimates. The LOCAL

LIKELIHOOD method replaces fp + f12; with an arbitrary smooth function s(z;):
L(a(z;),a(zz), v O(Zn)) = g(ylr Yz, - ¥m al: 621 vee ’l'h €1.€2,.. 'cn) (2-10)

with 8; = s(z;). The problem is to estimate a(-) at the points {2y, z,...7,}. Maximization
of L{s{z1), #{(zz2),...#{zn)) results in an unsatisfactory estimate due to overfitting. In many
situations, it simply reproduces the data. As an alternative, we define the local Iikelihood
estimate of s(z;) as

#(zs) = Boi + Prizi (2.11)

where ‘ég.‘ and f;; maximize the local Hkelihood:
Li(Boi. B1i) = ¢{{yj, Boi + Puezj, ¢}, 7 € Ny) {2.12)

The local likelihood procedure produces s smooth estimate of the curve a(-) at the
points {£;,z2,...Tn}. It avoids overfitting by averaging over neighborhoods. The width of
the neighborhoods {the span} controls the smoothness of the resulting estimate— larger

spans will tend to produce smoother curves.

The function L{fy, £1) need not be a likelihood, (in Cex’s model it is a “partial likeli-

hood™), but in any case, we call this procedure “Local Likelihood” estimation.

2.5, Local Likelihood— Definition in the i.i.d. Case.

In the ii.d case, we observe n independent data pairs {(z),1),..(Zs,¥n)} and we

assume that given X = z, ¥ has density
Y {z~ f(V.0) (2.13)
where # = #(z). The likelihood is given by:
L{a{z1), 8{z2), ... o{2n)) = ]_!:I Ily;. 8) (2.14)

where #; = s(z;).
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The local likelihood estimate of s{x;) ia
§{z) = Poi + Brizi {2.15)
where fo; and fi; maximize the local likelihood:

Li= T f(wj Boi + Buizj) (2.16)

FEN;

2.8. Asymptotic Properties of Local Likelihood Estimates.

Other than the fact that it produces smooth estimates, why is the Jocal likelihood
procedure reasonable? On a heuristic level, it’s easy to see that for well behav;ed o)
functions, 4(-} will be consistent for s(-}. Consider a fixed point 2;,. As n — oo and the
neighborhoods shrink in such a way that k,, the span for sample size n, goes to infinity,
while the width of the neighborhood goes to zero, we have fo; — Bois B -+ f1i, (Boi and
B1i being the true slope and intercept} and the error in approximation (2.7} goes to zero.
Hence a{z;) will converge to s(z;). In addition to consistency, local likelihood estimates
enjoy (in a weak sense} the optimality properties of maximum likelihood estimates. They
are asymptotically normal and first order efficient with respect to sample size k.. These

properties are established in Chapter §.

2.7. The Bias—Variance Tradeoff.

The span parameter controls the smoothness of the estimated function. Larger spans
will tend to produce smoother, less variable estimates, but these estimates will tend to be
biassed if the underlying function is non-linear. Conversely, smaller spans will produce less
biassed but more variable estimates. A data-based criterion is therefore needed to select
the apan that best trades off these two factors for s given data set. We describe such a

criterion in Section 2.13.
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2.8. Computation of Local Likelihood Estimates.

To find each 8; = {Bui, f1;) we use a Newton-Raphson search. Let U;{#%) be the 2 by

I score vector with jth entry

dlegL;
UA8%) = ( ) 2.17
aﬂit’ A=p0 ( )
and [;(8y) be the 2 by 2 cbserved information matsix with jkth entry
a’!ogL.-)
I; == 2.18
#) (aﬁjiﬂﬂ p=p (2.18)

for the ith local likelihood both evaluated at some point 8% Then given an initial guess

&::""‘ , the Newton-Raphson method produces the new trial value:
e = B 4 1B U (i) (2.19)

This procedure is iterated until convergence. It is used to find A; (and hence §(z;)) for
each neighborhood, geing in order as { runs from 1 to n. The local likelihood estimate B
is used as a starting value for the maximation of L;4,; because the estimates don’t tend to
differ much from one neighborhood to the next, convergenee is typically achieved in 1 or 2

iterations.

2.9. Exponential Family Case.

A special case of the above occurs when f is a member of the exponential family. Then

the log likelihood has the form
log L = 3~ {{v;%; - b(#;) - c(y;.2)}/o") (2.20)
1

where #; = a(z;) and o is & scale parameter. If # is unknown, (2.20) is not generally an
exponential family but the estimation procedure we will describe is unchanged because the

score function for @ doesn’t involve o.

The local log likelihood is:

log Li = 3_ {{yjtij - b(8;;} = clyj,0)} [o®} (2.21)

JEN;
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where #;; = Poi + F1iZ;. Letting X represent the n by 2 design matrix with first column
(1,1,...1)* and second column (z;, 22, ...2,)", and letting W = diag{I{5 € N;}}, the local

score function has the simple form
UiB) = X'W(y - ¥'(XB)) (2.22)
The observed information is I{8;) = X*W " (X ;)X and the Newton-Raphson step is:
Brew = B4 B X'W (y - B (XA™) (2.23).

In the above, we bave modelled the natural parameter #. We could just as well model
some other parameter (like E(y)); in any specific problem, there may be reasons to prefer
one parametrization to ancther. For example, in the binary respo;ne problem, it is more
convenient to model the natural parameter log i’_—’ then the expectation p because the latter

would require that the estimated smooth stay between 0 and 1.

2.10. Relationship to Generalized Linear Models.

Model (2.20) can be viewed a3 a extension of the class of generalized linear models
(Nelder and Wedderburn (1972}). A generalized linear model is defined by ¥ |z ~ f(Y,#)
and E{Y) = g(Bo+$12), where [ has the exponential form (2.20}. If g (the “link function”)
is invertible, this corresponds to g"!(E(Y)} = fo + Aiz. In the local likelihood set-up, we

bave generalized fp + f1z to a(z).

2.11. Number of Parameters— “Degrees of Freedom”.

In Chapter 6, we discuss an approximate method for determining how many inde-
pendent parameters a local likelihood smooth is really fitting. Since the local likelihood
estimate produces a function smoother than the data, we would expect that it uses less
than n independent parameters. This is the case. Consider a scatterplot smoother ﬁith
span ». Such a smoother is linear in that the fit § can be written as P(s)y where P(s) is
a smoother matriz. P(2) will depend on the set of z values observed, as well as the span.

In traditional linear least squares estimation, P({s) is the hat matrix X{X'X)71 X" We

Chapter 2: Local Likelihood— A description 14

show in Chapter 6 that for a scatterplot smoother with span s, the number of degrees of
freedom used up is trace(P{a}). (This result and related results are also given in Cleveland
(1975)). We also show that for any local likelihood fit (in the exponential family), with span
s, the number of degrees of freedom is sbout treee(P(a)). Thus, although the matrix P{s)
is only used in the estimation process of the Gaussian local likelihood model, (and not in
the estimation of other local likelihood models), the trace of this matrix turns cut to be the
relevant quantity nonetheless. Note that this generalizes the result in linear estimation, in
which P(s) is an idempotent projection matrix and hence trace{P(s)} = rank{P(s)) = p,

the rank of the column space of X.
The quantity trace(P{s)) turns out to be significantly less than n. In an example given
in Chapter 6 with 100 data points and s = .5, trace(P(s)) is 3.65. Thus we are really fitting

only 3.65 “parameters”.

2.12. Application to Censored Data ahd the Cox Model.

In the censored data problem we observe data teiples (y;, i, &),4 = 1,2,..n where §;
indicates whether or not the response y; is censored. The preportional hazards model of
Cox{1972) models the relationship between y and z by assuming that z acts on the hazard

function in a multiplicative way:
Ay |2) = doly)e™ (2.24)

where Ag(y) is an unspecified function. This assumption allows § to be estimated indepen-
dently of Ag{y) by maximizing the partial kkelihood:
. ef=i

PL= H) SR (2.25)

where D is the set of indices of the uncensored y’s and R; is the risk set prior to y;. The

local likelihood generalization of (2.24) is
My [z) = do{p)e? (2.26)

and the loca! likelihood estimate of s(z;) is given by a(z;) = Boi+ Priz; where ,é,.- maximizes
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the Local Partial Likelthood

ebhin

PL;, = (2.27)

eDNN; EiERlnN.' ePuiss
The estimation of Boi is a little trickier— we’ll be discussing this in detail in Chapter 3.

Az mentioned earlier, the Cox model was the motivating example behind the local
likelihood idea. It is a good example of a situation in which the response enters into the
model in an implicit way. Because of this, it would be difficult to smooth the responses
explicitly; the local likelihood technique produces smooth estimates while staying within

the likelihood framework.

2.13. Span Selection.

The estimation of a local likelihood smooth requires the choice of a span size. In
scatterplot smoothing, one popular method for choosing the span size is cross-validation.
For a number a trial spans, smooths are estimated leaving out each data point one by one.
A crogs-validation sum of squares is calculated and the span having the emallest value is

selected. This is detailed in Friedman and Stuetzle {1981).

In the local likelihood problem, eross-validation turns out to be very computationally
expensive. As an alternative, we explore in this dissertion the use of Akaike'’s Information
Criterion (AIC). In fitting a generalized linear model with maximized likelihood L and p
independent parameters, the AIC is defined by:

AIC = ~2log L + 2p (2.28)

The first term measures the goodness of fit of the model, while the second term penalizes

the number of parameters used. Hence the AIC attempts to tradeoff variability and bias.

We make use of the AIC eriterion for selecting the span of the local likelihood smooth.
Using trace(P(2)) as an approximate number of degrees of freedom, the span size s is
selected to minimize AJC based on the value of the global likelikood (2.10} . In a number
of examples, we'll see that this procedure chooses rensonable span sizes, producing estimates

that aren’t too jagged nor toc biassed. We justify this use of AIC is Chapter 6.
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2.14. Weight Functions.

The local likelihood procedure implicitly attachs weights to the observations: a weight
of 1 for the observations in the current window and O otherwise. The weight function or
kerne! is therefore rectangular. In principle, one ¢ould use a more smoothly descending
weight function— this would require specification of a weighted likelihood. While we don’t
discuss this problem in general, we consider it in the context of the proportional harards

moedel (Chapter 3).

2.15. Multiple Covariates and Backfitting.

The above discussion shows how the local likelihood idea can be used to estimate the
smooth for a single covariate. If more than one covariate is available, the model takes the
form # = 37_, 3;(-). Toestimate the 2;(-)’s, a forward stepwise algorithm is used, analogous
to a forward stepwise regression algorithm. The algorithm proceeds by smoothing on each
variable, and selecting the smooth that most improves the fit. When one smooth is selected,
the remaining variables are smoothed and the one that most improves the fit is chosen. The

process is repeated until no new variable can significantly improve the fit.

Now suppose that this procedure selects a smooth §,(:) at the first step and a smooth
é3(-) at the second step. Then the smooth 4,(-) may not be “optimal” given that &(-) is
in the model. Hence it is desirable to re-estimate 4,(-} to accomodate #2(-). Now given the
adjusted estimate #}(-), we can adjust #>(-) and o on, iterating until convergence. This
process is called “backfitting”, {Friedman and Stuetzle(1982}). In general, (with more than
2 smooths), whenever a new smooth is entered into the model, the smooths already in
the model are adjusted to accommodate the new smooth. Specifically, all but one of the
smooths are held constant and the remaining smooth is re-estimated. This is done for each
smooth in turn until the fit no longer improves by a significant amount. As an example,
puppose & new smooth #,44(-) is added to a model containing smooths &,(-), ... &{-). Then
the backfitting procedure would consist of estimating 4;(-} in the model

e=3"a()+4() (2.29)

Py
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treating Z,‘# 4¢(-) »s a constant. This is done for 5 running from 1 to r+ 1.

We have no proof of convergence for the backfitting algorithm, although it has con-
verged in all the examples that we’ve tried. In a simple linear regression framework, with P
{possibly non-orthogonal) covariates z;, z., . . -Zp, one can show that backfitting converges
to the correct answer (Stuetzle {1983), personal communication). That is, if we project
the current residual vector onto each covariate in turn, the residual vector converges to
the correct residual vector i.e. the response minus the projection of the response onto the

column space of z;,1;,... Zp.

2.18. How do we select covariates for the model?.

This question can be addressed through examination of <2 log L(§), but it is customary

in generalized linear modelling to work with an equivalent measure, the “deviance”. The

deviance ia 2log(L{y)/L(§)) which equals to —2log L(g) + constant. At each stage, then, .

we find the smooth that decreases the deviance the most. This smooth is then added to

the model if the decrease in the deviance is large compared to the number of “parameters”

used up by the smooth.

2.17. The Scale Parameter in the Exponential Family case.

The exponential form (2.20) may or may not contain an unknown scale parameter,
but in any case, the likelihood estimation procedure is unchanged because the score doesn’t
involve the scale. An estimate of scale is needed, however, if the deviance is to be used to
assess importance of model terms. As is true for standard generalized linear models, we
would fit some maximal model and use the mean deviance as our estimate of scale, This
sould be used to form a “scaled deviance”, proceeding thereafter as if the scale were known.

In the only exponential family model we discuss (the logistic model) the scale is a

uaction of the mean, so this issue deesn’t arise. Hence we will not go into scale eatimation
y b4

n this dissertation.
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2.18. Generalizations of Local Likelihood.

The local likelihood models described here can be generalized to multiparameter mod-
els. Each parameter would be modelled in the form s(z) and separate smooths would be
estimates for each.

The additive model could also be generalized by a model of the form
8 = f(zf;:l 2;{(2:;)) and estimated by expanding f in a one term Taylor series. This
is the idea used in the Predictive ACE procedure {Friedman and Owen (1984)).

This generalizations wili not be pursued in this dissertation but in subsequent research.



Chapter 3

Application to the Cox Model

In this chapter we describe the application of the local likelihood technique to Cox’s
proportional hazards model for survival data. We begin with a general description of the

problem.

3.1. Introduction.

In the past twelve years a number of methods have been suggested for the analysis of re-
gression datain which the response variable is subject to right censoring. The most common
application is in the study of survival in clinical trials. Patients in such trials often survive
to the end of the study period or are lost to followup— their survival time is said to be
“censored”. Formally, we cannot observe their survival time 7', but instead we observe only
Y = min(T, C), where C is the patient’s censoring time. A set of measurements(covariates)
z is available for each patient and the goal is to investigate the relationship between T'
and z. Typically, 'a large proportion of the responses are censored, so standard regression

techniques cannot be used.

D.R. Cox (1972) proposed an elegant solution to the problem, introducing what is
now known as the proportional hazards model. This model assumes that the hazards of

individuals with different covariates are related in a multiplicative way, that is

At |2) = do(t) 8(s, B) (3.1)
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where A(t |2) is the hazard function at covariate level z defined by

Pi<T<t+ At|T >t z)
At '

Mtlz)= AIEEO (3.2)

#(z,B) is a parametric function and Xg(t) is an unspecified function. Since the ratio of
A(t |z,) and A(¢t |22) is the relative risk between the coveriate levels 2; and zz, we see
that assumption (3.1) is equivalent to an assumption that the relative risk between two

covariate levels does pot vary with time.
To ensure that A(t |#) remains non-negative, Cox suggested the parameterization
6(2,8) = exp (z - 8) where z - B denotes inner product. Thiz gives the most widely used

proportional hazards model

At |2) = o(t)exp (= - §) (33)

The advantage of assumption (3.1) is that 8 can be estimated without specification

of Ag(t) by maximizing the “partial likelihood”

z; -
PL= ; Zje:(‘:)(exp (ﬂz)i -8) (34)
where R(t;) is the risk set at time t; —0. As the name implies, (3.4) is not a true likelihood,
but work by Cox(1975), Efron(1977), and Oakes(1977) has shown that the estimate B from
(3.4) is consistent and nearly fully efficient. Estimation of 8 from the partial likelihood
depends only on the ranks of the survival times; this non-parametric aspect along with the

free form of Ao(t) are the main reasons for the model’s popularity.

The proportional hazards model as defined above makes two important assumptions:
proportionality of hazards, and the parametric form exp(z - 8) for 8(z, 8). Using the local
likelihood technique described in Chapter 2, we will develop au algorithm for estimating a
proportional hazards model which does not require the specification of a parametric form
for #(2,8). The hazard is modelled as

P
Mt l2) = do(t) exp (D #(=;)) (35)
=1

where the s;(-)’s are general smooth functions that are estimated from the data.
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We will first discuss in detail the estimate for one covariate; later on we’ll describe a

forward stepwise algorithm for the full model (3.5).

3.2. Estimation of a Single Relative Risk Function.

Suppose n items are placed on test and give rise to (possibly censored) observation
times {y1,y2,...yn} With associated (fixed) covariates {z; < z;... < z,}. (The y;’s are in

order of increasing z;). Assume for now that the y;’s are distinct- the case of ties will be

discussed later. Let D be the set of indices of the failures among the y,’s, let §; be 1 if item

1 fails and O otherwise. To facilitate construction of a partial likelihood, we will make the

usual assumption of non-informative censoring (see Kalbfleisch and Prentice(1980)).

The model we assume for the hazard is
At |z) = Ao(t) exp (s(z)) (3.6)

where #(z) is some smooth function of z. Clearly we have no information about s(z) at
z-values not occurring in the sample, s0 estimation of #{z) involves estimation of the n

parameters {s(z,), 8(z,),...8(z.)}.

The partial likelihood of the data is

T et
Pi= -E; 2ier, exp (s(})) 3.7

where R; = {7 |yj 2 y;}, the risk set at time y; — 0. Notice that the terms in the product

are in order of increasing z;. The partial likelihood is usually written with terms ordered

by t; (see Cox(1972)); the z order will make the notation simpler for our purposes. '

To estimate #(z1),#(22),...8(zn), we apply the local likelihood technique introduced
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in Chapter 2. As before, let N; be a symmetric neighborhood around z;:
. - . .. ... k=1
N; = {maz(s - k-1 3 l),1),...: -1,4i+1,...min(1 + — ,n)} (3.8)

For z € N; we assume #(z) ~ a; + zf;, and the local partial likelihood for the data in N; is

exp (a; + zi8;) (3.9)

PL; =
I leDny; Yiemin, exp (ai + 2;B:)

To estimate a; and §;, we maximize PL;. Note, however, that a; is not estimable from
FPL; since the ezp(a;) terms cancel one another giving

€xp (zlﬂi) (310)

PL; =
' 1eDNN; Yierinw, exp (2;8:)

Let f; maximize L;(-). Although a; (thus s(z;)) is not estimable locally, we can use the slope
estimates {1, ... 02} to estimate {s(z;),...#(zn)}, as follows. We have s(z;) = I o(t)at
and ¢'(z) = B for z € N;, bence to estimate #(z;) we can use any estimate of [ s'(t)dt
based on (z1,$1),...(2n, Bn). Before discussing some particular integral estimators, it is
important to note that the choice of ¢ is arbritrary, reflecting the fact that s(z) is only
determined up to an additive constant. Substitution of s(z) + ¢ for #(z) in (3.6) doesn’t
change the model because the factor e® can be absorbed into the arbritrary function Ag(t).
For simplicity, then, we define ¢ = z,, so that s(z;) = 0.
To estimate [, #'(t)dt, we can use the simple rectangular rule defined by
i

§(z) =Y (zj—zj_1) * Bi (3.11)

1

fori>1and 4(z;) = 0. This could also be written as &(z;) = (z; — zi—;) Bi, 8o that the

rectangular rule constructs the estimate 3(-) by joining each line segment to the previous

one, with prescribed slope B

For greater accuracy, we instead use the trapezoidal rule defined by
R : di + Bi-
8(2-‘) - ;(z’_ - zj—l) . (ﬂl 2ﬁl l) (3_12)

for ¢ > 1 and é(z,) = 0.

The procedure is summarized in the following algorithm:
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Relative Risk Smoother

Fori=lton
Find A; that maximizes PL;(")

End For

#z:})=0
For i=2ton

§z) = itz — 20+ !—15'+f"'

End For

Output {5(z1),4(22), ... #(za))

3.2.1. Selection of the Span

The span is chosen to minimize an approximate AIC {“Akaike’s Information Criterion”}
given by

AIC = ~2log PL + 2trace(P(s)) (3.13)

PL is the value of the overall partial likelihood (expression (3.7) )} and P(s) is the local

linear smoothing matrix of span (), based on the observed z values. The first term measures

fit of the model, ;nd the second term penalizes model complexity. AIC is minimized over

spans .3,.4,.5,.6,and .7 of n. The use of AIC is discussed in Chapter 6.

3.2.2. Significance of a Smooth and “Degrees of Freedom”

In proportional hazard modelling, the “deviance” has no obvious analogue, so one
works directly with ~2log PL to assess significance of a smooth. The “degrees of freedom”

of the smooth are more difficult to obtain, however. The simulation study in section 5 shows
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that the formula trace(P) is biassed downward for the Cox model. Therefore we find the
mean deviance decrease by the simulation technique described in that section. The trace
formula is still adequate for span selection, however, since biasses will tend to cancel out in
comparing two spans.

Before illustrating the technigue with real data example, we first make a few remarks.

Remarks

e For data with tied t; values, we use the approximation suggested by Peto(1972) and

Breslow(1974) for the partial likelihood

exp(z; - B)
” i (Ljerp) =P (2 - B))di (3.14)

where d; equals the number of failures at ¢; and % equals the sum of 2,’s for items

PL

failing at ¢;. This approximation is used for each of the partial likelihoods PL,(-).

o For data with tied z values, two things are done. First, each neighborhood is expanded
(if necessary) to ensure that if a point y is in a given neighborhood, so is any other
point k having z; = z;. This makes the estimation procedure invariant to the incoming
order of the data points. Secondly, the smooths for each of the tied values are averaged
and each smooth value is assigned the average. That is, if z; = 2;(;... = 2;;m, then

for each j S 1 < 7+ m, 3(z;) is assigned the value I+ 5(z,)/(m + 1).

e When the span size is expressed as a fraction f, the actual span used is the largest

odd integer less than or equal to fn.

3.2.3. Example 1: The Stanford Heart Transplant Data

The first example that we will use for illustration of this technique is the Stanford Heart
Transplant Data, ss reported by Miller and Halpern(1983). There are 157 observations

consisting of survival time after transplant and two covariates: age {in years) at time of
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transplant and T5 mismatch score. Figure (3.1) shows a plot of survival time vs age, with
squares representing failures and plusses representing censored times. The procedure chose
a span size of .7 and produced the smooth shown in Figure (3.2) . The actual estimate of
relative risk (exp(4(-))) is shown in Figure (3.3) . A summary of the results is shown in
Table 3.1.

Table 3.1. Stanford Hesrt Transplant Data
Analysis of Age

Model ~2 Log Likelthood Number of Parameters
Null 902 .40 0

Age {linear) 894.82 1

Age + Age? 886.24 2

Age (smooth, span .7) 884.65 2.95
Piecewise linear 885.40 2

The smooth reduced —2log PL from a null value of 902.40 to 884.65. For comparison,
a standard proportional hazards model with a single term for age produced a value of
894.52 for —2log PL and the addition of a quadratic term for age reduced it to £86.24.
The resulting quadratic function is shown in Figure (3.2) (broken line). The smooth in
Figure (3.2) suggests that the relative risk before age 45 is approximately constant, while
the quadratic curve, perhaps misleadingly, indicates a decrease in risk before age 45. We
note that the smooth produces a smaller value of —2log PL (by 1.6) but uses .95 more

“parameters”.

Based on Figure (3.2) , we tried to summarize 4(-) by a piecewise linear covariate
r = —.2 for age < 44 and z = .12-age — 5.5 for age > 44. Using z as a covariate in a model
of the form Ao(t) exp(83(z)), a standard computer program for fitting proportional hazards
nodels produced a value of 835.40 for —2log PL. This provides further evidence that the

[uadiatic shape for the relative risk may not be realistic.
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3.3. A Forward Stepwise Algorithm.

In this section we describe a forward stepwise algorithm for the case of more than one

covariate, using the relative risk smoother of Section 3.2.

The algorithm proceeds by smoothing on each variable, and selecting the smooth that
most improves the fit. When one smooth is selected, the remaining variables are smoothed
and the one that most improves the fit is chosen. The process is repeated until no new

variable can significantly improve the fit.

The only “non-standard” aspect of the algorithm is the process of “backfitting”, as used
by Friedman and Stuetzle(1982). Whenever a new smooth is entered into the model, the
smooths already in the model are adjusted to accommodate the new smooth. Specifically,
all but one of the smooths are held constant and the remaining smooth is re-estimated. This
is done for each smooth in turn until the fit no longer improves by a significant amount.
As an example, suppose a new smooth 3,41{2,41) is added to a model containing smooths
41(z1),...3,(2,). Then the backfitting procedure would consist of estimating s;(z;) in the

model

Mt =) = do(t) exp (Y dulza) + #j(=))) (3.15)
ks
treating 3 4. 4k(zs) as a constant. This is done for j running from 1 to r + 1.

An outline of this algorithm is:

Forward Stepwise Algorithm

While (not all variables have been selected)
Find the smooth that decreases —2log PL the most
- If decrease < threshold1 ezit
. If current model conteina more than ons smooth
Backfit smooths uniil decreaze in —2log PL < threshold2

End While
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The output of the algorithm is {311,...81n},...... {3n1,...8nn} where h is the number

of smooths selected.

8.3.1. Stanford Heart Transplant Data: Age and T56

The forward stepwise algorithm was run on the Stanford Heart Transplant data de-
scribed in Example 1. A plot of log survival time versus T5 mismatch score is shown in
Figure (3.4) . The smooths for each variable separately are shown in Figures (3.2) and
(3.5) . Thresholdl was set to gero to allow both variables to enter. Threshold2 was .01.

The results are summarized in Table 3.2.

Table 8.2. Stanford Heart Transplant Data
Analysis of Age and T$

Model —2Log Likelshood Number of Parameters
Null 902.40 0

T5 (smooth, span= .7) 899.99 2.68

Age + TS ' 882.53 2.95 + 2.68

Age + T5 (backfit) 882.52 2.05 + 2.68

Age was entered first, then T5 mismatch score. The smooth for T5 is shown in Figure
(3.6) . Backfitting had only a negligible effect, so the smooth for age was virtually identical
to Figure (3.2) . The results indicate that the effect of T5, after adjusting for age, is very
slight.

8.3.2. Example 2: Mouse Leukemia Data

Kalbfleisch and Prentice (1980) analyzed the results of a study designed to examine
the genetic and viral factors that may influence the developement of spontaneous leukemia

in AKR mice. The original data set contains 204 observations, with six covariates and 2
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causes of death(cancerous and non-cancerous) measured. Kalbfleisch and Prentice perform
a number of analyses; we will follow one of them here, using any death as the endpoint and

the four covariates:

z;: antibody level (%)
z2: Gpd-1 phenotype
z3: sex(l=male, 2=female)

z4: coat colour

Antibody level took on continuous values, although about half of the mice had a value
of 0. The other three covariates were binary. Of the 204 observations, 4 had missing values

and were discarded.

Table 3.3 shows the results of forward stepwise local likelihood estimation applied to

these data.

Table 3.3. Mouse Leukemia Data

Multivariate Analysis

Model —2Log Likelihood Number of Parameters
Null 1189.06 0
Antibody (smooth, span= .5) 1173.98 1.85
Antibody+Gpd-1 1170.90 185+1
Antibody (linear) 1183.16 1
Antibody (linear + gquadratic) 1183.07 -2
Piecewise linear 1177.34 2

Each of GPD-1, sex and coat color were modelled with a single parameter. Antibody
was the most important factor, reducing —2log PL by 15.08. Gpd-1 was next in importance
but not significant at 95%. A graph of the estimated smooth for antibody in shown in Figure
(3.7) (the sm‘ooth v:;lues were not joined so that the distribution of antibody levels could
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be seen). It is markedly non-linear, changing slope at antibody level =7.5%. Also included
in Table 3.3 are linear and quadratic terms for antibody. Even with a quadratic term, the

fit of the parametric Cox model is significantly worse than the local likelihood smooth.

Based on Figure {3.7), a piecewise linear covariate was created by joining each of the
left and rightmost smooth values to the bending point by straight lines. —2log PL for this
covariate was 1177.34, still significantly worse than the smooth model. This indicates that
the bowed shape of the smooth between antibody levels 7.5% and 80% is supported by the

data.

3.4. Further Topics.

3.4.1. Computational Considerations

A Newton-Raphson search is used to find the slope estimate f; for each neighborhood.
This means that an O{k,) operation is required for e¢ach neighborhood, making the entire
procedure O(r?) (assuming k, ~ n). This is not a problem for moderate n (say n ~ 200)
because the final estimate for the sth neighborhood is an excellent starting value for the
£ + 1st neighborhood. Typically, convergence is obtained in 2-3 iterations. As an example,

the smooth in Example 1 required .67 sec on an IBM 3081.

For larger data sets, we speed up the procedure by calculating the fit only every mth
point; this reduces the running time by about a factor of m. The smooths for the remaining

z-values are obtained by interpolation.

The scatterplot smoother of Friedman and Stuetzle (1981) uses updating formula to
achieve an O(n) algorithm. We have been unable to obtain such formulae for this problem

because of the non-linear nature of the estimation.
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8.4.2. Categorical Variables

Since it doesn’t make sense to estimate a smooth for a covariate taking on unordered
discrete values, such variables are treated in the standard way. If the covariate takes on J
values, J —1 dummy variables are created and a slope parameter is estimated for each. Hence
in analyzing a data set containing both continuous and categorical variables, a smooth is es-
timated for each continuous covariate and slope parameters are estimated for the categorical

variables.

3.4.3. Examining Goodness of Fit

In fitting a standard (linear) proportional hazards model to a set of data, the goodness
of fit of the model should be examined. The overall question is: does the model fit? If
not, it might be because a) the covariate effects are non-linear, b) additional covariates
are required, or c) the proportional hazards assumption is unrealistic. The local likelihood
extension of the model solves (a). The algorithm automatically finds the best functional

form for each covariate effect.

Problems (b) and (¢) are difficult to answer for the local likelihood medel, just as they
are for the standard proportional hazards model. For assessing the appropiateness of the
proportional hazards assumption, a number of approaches are available. If the covariates
are discrete, an estimate of the log hazard can be plotted for each subgroup; these should
be approximately parallel if the proportional hazards assumption holds. For continuous
covariates (clearly of interest here), matters are more difficult. A number of methods have
been suggested, but none, in our opinion, are very effective. Kay(1977) utilizes residuals
of the form Ag(y;) exp(z;8;), which have a censored exponential distribution (with mean
1) if the model is correct. The value of these residuals is extremely questionable, however.
Crowley and Hu(1977) point out that if a null model (8 = 0) is fit, (and there is no censoring)
the residuals will have ezactly an exponential(1) distribution, no matter what the true r..qodel'

is. In a later discussion, Crowley and Stormer (1983) confirm this by simulation but do
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suggest that a plot of the residuals versus a new covariate may still be of use in assessing

the importance of the covariate.

Another way to check the proportional hazards assumption is by partitioning the
covariate and time space, and comparing the observed to expected number of failures in

each cell. The expected number of failures can be computed using the estimated survivor

function
$(t|z) = So(t)=PlileD
where
So(t) = exp(=Aq(t))
and
Aoft) = .-f.\.:« ze—:;_ﬂ%m (3.16)

This is by direct analogy to the estimator for the standard proportional hazards model (see
Kalbfleisch and Prentice (1980), pg 116). Schoenfield(1982) suggests a-more complicated
version of this procedure, and he provides a chi-square type statistic for testing goodness

of fit.

For multiple covariates, this type of goodness of fit procedure would be ineffective
because many of the cells would be empty or near empty. A more promising idea would be
to insert a term like zlogt and check if the fit is substantially improved. This was suggested
by Cox(1972). Unfortunately, time-dependent covariates haven’t been implemented in our

procedure because of the additional computational cost (see section 3.4.8.)

As a final comment, it is important to mention the paradoxical nature of this problem.
It is the non-parametric element of the proportional hazards mode! (the arbitrary baseline
hazard) that makes the goodness of fit difficult to assess. In a sense, goodness of fit should

not be as big a concern as it i3 in other regression models.
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3.4.4. Bootstrapping the models

To assess the variability of an estimated relative risk curve, the bootstrap (Efron
(1979)) can be applied. As in the regression modelling, there are (at least) two ways to
bootstrap: we can resample the triples (y;, 2;, §;) or the resample the residuals (r;, §;) (where
ri = Ao(y;) exp(3(z;))) and add them back to the fitted model. As in the regression case,

the second method assumes that the fitted model is correct.

The results for these two bootstrap methods applied to Example 1 are shown in Figures
(3.8) and (3.9) . 20 bootstraps were computed for each method. In Figure (3.8), the
curves have considerable variability in the low and high age groups; in Figure (3.9), there is
less overall variability. The use of the bootstrap for the proportional hazard model requires
further study; Efron(1980) looks at the bootstrap for the Kaplan-Meier curve.

8.4.5. Case Control Data and a Comparison to Thomas’ Method

Thomas (1983) provides a method of finding the maximum likelihood estimate of r(z)
in the proportional hazards model A(t |z) = Aq(t)r(z) subject to #(z) monotone in z. The
algorithm is extremely complex and not fully understood by this author. It produces a step

function #(-} with steps occurring only at some of the failures.

Thomas applied his algorithm to a data set consisting of 215 lung cancer cases, each
matched with 5 controls, sampled from a large cohort of Quebec chrysotile miners and
millers (see Liddell, McDonald and Thomas). The covariate of interest was total dust
exposure. The effect of various levels of dust exposure was desired so that industry standards

could be established.

In order to handle case control data of this type, only a small change is required in the
local likelihood procedure. The local partial likelihood simply becomes a partial likelihood
for case-control data. This, in turn, is the same as the partial likelihood for prospective
data, except that each risk set consists of a case and its associated controls (see Prentice

and Breslow (1978) for details). It turns out that in the modified local likelihood procedure,
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a case-control set only enters into the partial likelihood for a given neighborhood if the case

and at least one control exist in the neighborhood.

Figure (3.10) shows the results of the various estimation procedures applied to the lung
cancer data.* The solid line is the local likelihood smoocth ezp(i(-)), and the step function
(dashed line) is Thomas monotone m.l.e. The functions are in qualitative agreement, with

the monotone m.l.e suffering from its jagged shape.

The advantages of the local likelithood procedure over Thomas’ method are clear. The
monotone m.l.e is not smooth and is forced to be monotone. As well, Thomas’ procedure
can handle only one covariate. The local likelihood procedure suffers from none of these

problems.

3.4.6. A Bias Study

In this section we discuss a number of simulations designed investigatz how well the
procedure estimates the true underlying function. In particular, we want to find out how

much it underestimates curvature for larger spans, especially at the endpoints.

A sample of 200 X values were gene;-ated from U(—1,1), and survival times T were
generated from the model log T = 5 + 422 + ¢ where ¢ had the extreme value distribution
ezp(e — ezp(e)). This corresponds to the hazard model A(t |z) = ezp(—5 — 42?). Censoring
times C were then generated from U(0, 11), and the observed response was Y = min(T,C).
This resulte& in an average censoring rate of 51 percent. Figure (3.11) shows one sample
generated in this way, and and Figures (3.12) - (3.16) show the local likelihood estimated
smooths for spans .3 to .7 along with the true function (broken line). Since the functions are
determined only up to an additive constant, they were translated to have the same mean

over the range of 2. Our aim here was to found out how well the procedure reproduces

* Unfortunately, we could only obtain a slightly smaller data set from Thomas, consisting of 188 of the
215 case-control groups. The local likelihood procedure was applied to this reduced data set, while

"homas’ procedure was applied to the full data set
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curvature in the middle of the covariate range (so that endpoint effects don’t enter in). We
see that the estimates are quite jagged for smaller spans, fairly accurate for medium spans,
but underestimate the curvature for span .7. gets to .7. Figure (3.17) shows the average of
20 replications (with the same set of z values) allowing the procedure to choose the span by
the AJIC criterion. The average smooth captures the shape of the true function remarkably

well.

Next, we investigated the effect of endpoint bias. We generated data from the same
model as above, except that X was U(—1,.5) (We cut off the X range so that the true
function would be non-linear near an endpoint.) The local likelihood smooths for spans
.3 to .7 are shown in Figures (3.18) to (3.22) , along with the true underlying function
(broken line). We see severe biasses for the smaller spans, with a span of .7 performing the
best. Figure .{3.23) shows the average of 20 replications, allowing the procedure to choose
the span. The average smooth underestimates the curvature, but reproduces the function

quite well.

We conclude from this modest study that the local likelihood procedure may have
low bias, with a tendency to underestimate curvature slightly at the endpoints. A more
ambitious study would investigate the effects of sample size, censoring rate and covariate

distribution.

3.4.7. A Robust Fit

There are two types of influential points that can create problems in regression mod-
elling: outliers in time space and outliers in covariate space. The first type are not as much
of a problem here because the partial likelihood depends only on the ranks of the survival
times. Still, Cain and Lange (1983) give an example in which a few large survival times

have a large effect on the regression coefficient.

Outliers in covariate space are potentially more dangerous. Because of the local nature
of the fitting, it will not be as much a problem in the local likelihood model as it is in the

linear proportional hazards model, but with spans as large a2 .7n, it is still & concern.

A simple modification of the fitting procedure can help reduce the effect of covariate
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outliers in both the standard and local likelihood proportional hazard models. The idea is
to downweight observations based on their distance from the “center” of the data. This idea
is exploited in the bounded influence regression literature (see Krasker and Welch (1973)
and the references therein). In order to define a “weighted™ partial likelihood estimate, we
need to define the partial likelihood for a sample with weights w; on (y;,2;,6;),i=1,2,...n.
(37 wi = n). It is natural to require that when the w;’s are integers, the weighted partial
likelihood should exactly coincide with the partial likelihood for a sample with w; copies of

point i. A form suggested by Cain and Lange almost satisfies this requirement:

v _ ezp(2:f) wi
o -LI: (Zien.» Wm(qﬂ)) . (3.17)

When the weights are integers, this reduces not to the exact partial likelihood for the
corresponding sample, but to the standard approximation for tied data given in Section
3.2. As long as each w; is small compared to E;‘ea; v, (as it will be in our case) this

approximation is adequate. When the original data contains ties, we can modify (3.17) :

digoon.
pre - [ —=2(&i """ﬂ%:,‘ (3.18)
€D [E,‘en, wiezp(z;f)]<as ©!
where d; is the number of failures at y;. Expression (3.18) reduces the correct (approximate)

partial likelihood when the weights are integers.

Maximation of (3.18) with appropriate weights provides a more robust fitting proce-
dure. Let 2° be some “center” of the covariate space and let v; be some scaled measure of
distance of z; from 2°. Then a reasonable choice of weights is w; ~ ¢~%. For the linear

proportional hazards model, it would be natural to choose 2° = 2 and
= (¥ Y)-1
v = 2;(X"X) '2; (3.19)

In the univariate case, this reduces to

_ (zj-2? 1

v; = ———ET(ZJ' — 2)2 + ; (3'20)

For the local likelihood extension of the model, we can use partial likelihood form
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(3.18) in each neighborhood, and weights proportional e~ where

. — )2
Y= St b ©21

Note that z; is used as the center of the neighborhood instead of the mean— this ensures

that points near the ends receive large weights in their own neighborhoods.

Figure (3.24) shows the robust version of the local likelihood procedure applied to age
variable (solid line). The smooth looks very similar to the unweighted (0-1 weights) smooth
{broken line); this is not surprising since there are no outlying ages in the sample. Figure
(3.25) shows the unweighted smooth (broken line) applied to the sample after having moved
a failure at the highest age (62) to 92 (only the portion of the the smooth from ages 12 to 62
is shown). The weighted smooth (dotted line) looks much like the weighted smooth applied
to the original data (solid line, same as solid line in Figure (3.24) ). The downweighting
has successfully reduced the effect of the outlying point on the overall smooth. Of course,
the weighting scheme described here could be applied within the paré.metric setting, but
we haven’t pursued this. -

The “robustifying” scheme discussed here is important if the local partial likelihood
procedure is to be used in “auto-pilot” mode; alternatively, since each covariate is fit sep-
arately, a simple scatterplot of y versus each covariate should reveal any large outliers in
covariate space.

In the theoretical investigations of the following chapters we’ll restrict attention (for

simplicity) to unweighted smoothing procedures.

8.4.8. Extending the Model

There are (at least) two ways that the model could be extended. The first way would
be to allow time-dependent covariates. In principle, this would be straightforward; as in
the standard proportional hazards model, one would simply insert the “current” covariate

values when constructing each term of the partial likelthood. There may be computational
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problems with this, however. With fixed covariates, the risk sets can be computed by
“stripping off” each failure or censoring as they occur. With time-dependent covariates,
however, the risk sets must be recomputed for each failure time. This would increase the
cost by about a factor of n. We haven’t tried implementing time-dependent covariates; this

may be pursued in subsequent research.

Another way to generalize the model is to allow linear combinations of covariates to

enter into the model. The form of the model would be

Mt |2) = Xo(¢) exp(Y_(a(a; - ))) (3.22)

The vectors a, could be found by a numerical search. Thisis the “Projection Pursuit Regres-
sion” idea introduced by Friedman and Stuetzle(1981). Besides the obvious computational

cost, this model would suffer from a lack of interpretability.
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Figure (2) Figure (8)
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Figure (4)
T5 Mismatch Score

Diamond: uncensored, Plus: censored
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Figure (6) Figure (7)
TS5 smooth with age in the model Mouse Leukemia Data: Smooth for Antibody

s(antibody)
&
o

1 2 3
t5 mismatch score

0 20 40 60 80
antibody

44



46

45
Figure (9)

Figure (8)
Bootstrap smooths (Resampling residuals)
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Figure (10)
Estimates of Relative Risk for Lung Cancer Data

Solid line: L.L smooth, Broken line: Monotone m.l.e
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Quadratic data
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Figure (12)
Local likelihood fit: span .3
Solid line: L.L fit, Broken line: true quadratic function
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Figure (13)
Local likelthood fit: span .4

Solid line: L.L fit, Broken kine: true quadratic function
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Figure (15)
Local likelihood fit: span .6

Figure (14)
Solid line: L.L fit, Broken line: true quadratic function

Local likelihood fit: span .5

Solid line: L.L fit, Broken line: true quadratic function
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Figure (16)
Local likelihood fit: span .7
Solid line: L.L fit, Broken line: true quadratic function
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Figure (17)
Average of 20 Local likelihood fits, varying span
Solid line: L.L fit, Broken line: true quadratic function
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Figure (18)
Local likelihood fit: span .3
Solid line: L.L fit, Broken line: true quadratic function
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Figure (19)
Local likelihood fit: span .4

Solsd line: L.L fit, Broken line: true guadratic function
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Figure (21)
Local likelihood fit: span .6

Figure (20)
Solid line: L.L fit, Broken line: true quadratic function

Local likelihood fit: span .5

Solid line: L.L fit, Broken line: true quadratic function
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Figure (28)

Average of 20 Local likelihood fits; varying span

Figure (22)
Local likelihood fit: span .7
Solid line: L.L fit, Broken line: true quadratic funétion

Solid line: L.L fit, Broken line: true quadratic function




Figure (24)
Solid line: Weighted smooth: no outlier

Broken Line: Unweighted smooth, no outlier
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Chapter 4

Application to the Logistic Model

4.1. Introduction.

In Chapter 2, we discussed how the local likelihood technique could be applied to

any generalized linear model. Probably the most commonly used such model (besides the

normal regression model) is the linear logistic model for binary data. In this chapter, we’ll

illustrate the local likelihood procedure in this setting. Further discussion can be found in
Hastie (1983) and Hastie and Tibshirani(1984).

4.2. The Problem and a Review of the Linear Logistic Model.

We have data of the form {(y1,21), (y2,22),...(¥n, Zn)} where the response y is 0 or 1
and z is an explanatory variable. The observations are assumed to be independent. The

problem is to investigate the dependence of y on z.
Let 2 = (1,z) and let p(z) = P(y = 1 |2). The log likelihood of the data is
n
log L =) {yilogp; + (1 - y;)log(1 - p;)} (4)
J=1
where p; = p(z;). Letting X represent the matrix with jth row equal to (1,z;), the score

equation has the form
X'(y~-p)=0 (4.2)

The linear logistic model assumes that

logit p(z) = ='p (4.3)
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Written as a function of 8, the log likelihood is

log L(B) = Y _{viziB — log(1+ ¢*:)} (¢4)

=1
A Newton-Raphson procedure is typically used to ind §. The expected information matrix
is
I(B) = X'Diag{p;(1 — p;)} X (4.5)

and the Newton-Raphson iteration has the form

Brcw = Bota + I} (Bota) X*(y — Potd) (4.6}

4.3. The Local Likelihood Generalization.

The formulation of section 2.3 for generalized linear models can be applied directly.

Instead of assuming a linear ferm for logit p(z), we assume

logit p(z) = o(x) (4.7)
The local likelihood for z; is
log Li(8:) = 3 {vjz}: = log(1 + %3} (438)
JEN;

Letting A; maximize log L;(8;), the local likelihood estimate of a(z;) is #(z;) = zfﬁ;.

4.3.1. Span Selection and Multiple Covariates

As discussed in Section 2.3, the span k is chosen to minimize an approximate AIC

criterion:

AIC = —2log L + 2 trace(P(s)) (4.9)

With multiple covariates, the model takes the form
?

logit p(z) = Y a(") (4.10)

1

A forward stepwise algorithm is used to select covariates, and backfitting is performed

whenever two or more smooths have entered the model. The significance of a smooth can
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be judged by comparing of the decrease in —2log L {“the deviance”) to the pumber of

degrees of freedom trace{P(s)).

4.4. An Example: Breast Cancer Data.

A study conducted between 1958 and 1970 at the University of Chicago’s Billings
Hospita! concerned the survival of patients who had undergone surgery for breast cancer

(Haberman (1976)). There are 306 observations on 4 variables.

y=1 if patient survived > 5 years, 0 otherwise
z;=age of patient at time of operation
z,=year of operation

zg=number of positive axillary nodes detected

The local likelihood procedure applied to all three covariates produced the smooths
shown in Figures (4.1), (4.2), and (4.3) . Table 1 shows the decrease in deviance due to

each variable.

Table 4.1. Analysis of Breast Cancer Data

Model Deviance Number of Parameters
Constant 353.67 1

# of nodes(span=.5) 319.8 24

# of nodes + Age(span = .6) 310.45 24+24

# of nodes + Age + Yr of oper (span=.5) 307.67

24+25+424

Age and number of nodes are important, year of operation is not. The final model has

» deviance of 307.74 on (306-2.41-2.54-2.41)=298.54 degrees of freedom.

Landwehr et al (1984) analyzed this data set to explore the usefulness of partial residual

slots in identifying parametric forms of covariate effects. Their final mode] was

logit p(z) = fo + 2181 + 232 + 23 B3 + 2284 + 212285 + (log(1 + 23))Ps (4.11)
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The deviance of this model is 302.3 on 299 degrees of freedom. The fitted terms for each
covariate are super-imposed on Figures (4.1) , (4.2), and (4.3) (broken lines). The
functions for z; and z3 are very similar; they differ for z2, but the overall effect of this

variable is very small.

Hastie (1984) and Hastie and Tibshirani(1984) discuss the relative merits of the local
jikelihood and partial residual plot procedures. They give two reasons to suggest why the
local likelihood procedure is preferable:

o The partial residual technique, in suggesting the parametric form for a covariate effect,
relies on the assumption that the covariate forms for other effects are correct. Indeed
these effects are usually assumed to be linear. The local likelihood procedure finds the

best functional form for all covariates simultaneously.

o The partial residual technique requires quite a bit of ingenuity in identifying the various

4.5. Comparison to the Scatterplot Smoothing Approach.

The local likelihbood method extends the linear logistic model through a type of local
averaging within the likelibood framework. Computationally, it would seem simpler to
ignore the fact that the y’s are 0’s and 1’s and apply scatterplot smoothing techniques
directly. This works fine for a single covariate: a scatterplot smooth of y on z; is shown
in Figure (4.4) . On the same figure, the estimated local likelihood probability smooth
exp(é(z1)/(1 + exp(é(z,)) is shown (broken line). Not surprisingly, the two smooths are
similar.

With multiple covariates, the local likelihood approach is more attractive for precisely
the same reasons that the linear logistic model has gained popularity. In fitting a model of
the form y = 3_% s(z;), one would bave to ensure that the fitted probabilities lie between
0 and 1. This would require some sort of truncation of the smooths. On the other hand,
the local likelihood approach models logst p so the fitted probabilities are always between
0 and 1. Secondly, the local likelihood approach produces an additive model on the jogit
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scale. A large body of literature suggests that for many types of data, effects are more
likeiy to be additive on the logit scale than on the probability scale. One could try to adapt
the regression approach by grouping the y's then using the logit of the grouped values as
responses. This would likely produce similar results to the local likelihood approach if the
information loss due to grouping wasn’t too large. More details can be found in Hastie and

Tibshirani(1984).

s(age)

Figure (1)
Estimates for Age

Solid line: L.L smooth, Broken line: parametric function
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Figure (2) Figure (8)
Estimates for Year of operation : Estimates for # of nodes
Solid line: L.L smooth, Broken line: parametric function

Solid line: L.L smooth, Broken line: parametric function
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Figure (4)
Estimates for Age

Solid line: L.L smooth, Broken line: Scatterplot smooth
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Chapter 5

Asymptotic Theory For Local Likelihood Estimates

5.1. Introduction.

In this chapter we show that, in a sense to be made precise, local likelihood estimates
possess the asymptotic optimality properties of maximum lLkelihood estimates. We’ll con-
sider only the exponential family case; with appropriate conditions, the results should be
generalizable to any regular family. At the end of the chapter, we conjecture (without

proof) a result for the proportional hazards model.

5.2. Local Likelihood Estimates in the Exponential Family.

Since LLE’s are just maximum likelihood estimates calculated locally, we can derive
results for LLE’s by modifying standard MLE theory to account for the local nature of
the estimation. We begin with the MLE theory for generalized linear models provided by
McCullagh (1983) and modify it appropriately.

5.2.1. A Review of Results for Generalised Linear Models

A special case of McCullagh’s results is the following. Suppose Y},...Y, are indepexdent

random variables with density
Y; ~ exp{{yi; - b(8:) - c(wi,0)}/0*} (5.1)

We assume that @, the parameter of interest, is expressible in the form # = X3 where X is

a fixed n by p design matrix and 8 is a p-dimensional parameter. Letting u(8) = E(Y) =
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'(9), the score function has the form
Up = X'(¥ - u(8))/o? (52)

Let ig = Var(Ug) = 0> X'V X where Vo? = cov(Y) = b"(#)0?, and denote by ug(8,y) =
X*(y — u(B))/c? the score equat.on used to determine B. We make the following regularity

assumptions: )
i

_n@ —~C>0 (A1)

BV PsM <o Vi (A2)

|z} < My < 00 Vi, 5 (A3)

y.p(ﬂ, ¥) has a continuous 2nd derivative (A4)

With these assumptions, the following results can be derived:

n"2Ug ~ N,(0,0%g/n) + Op(n~/?) (5.3)
E(f-p)=0(n"") (5-4)

and
n'/2(B — B) ~ Xp(0,no”ig") + Op(n™*?) (55)

The proof of these results follow the standard proofs for MLE’s. The score Ugisasum
of independent random variables with mean 0 and covariance §5. Assumptions (A1)—(A3)
ensure that Liaponouv’s condition is eatisfied and the central limit theorem implies (5.3) .

Expanding uﬁ(ﬁ,') =0 around A gives
0=ug(8,y) - Is.(8- B) (56)

where Ig. is minus the second derivative matrix evaluated at a point #° lying on the line
segment joining # and . Now Ig = 0,(n'/?), ig=0(n) and Ig—ig = 0,(n*/?) with
E(Ig) = ig. Since Ug = Op(n‘/’), we see from (5.6) that there exists a root B satisfying
B - B =0,(n7'/?) and

B-8=1Up= i5:Up +0p(n7") = i;‘U‘ +0p(n~Y) (5.7)
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—1

(assuming g = O(n~!) Taking expectations in (5.7) gives (5.4) ; (5.5) follows by
combining (5.3} and (5.7) , and applying Slutsky’s theorem.

5.3. Some Remarks.

o McCullagh starts with the more general score equation D'V~ (Y — u(8)) = 0 where
‘D = du/dB and V = Couv{¥)o?. (This reduces to the form X' (¥ — «(8)) when the
link function is such that # = X8). From this he proves consistency and asymptotic
normality of the estimate B. Also, he notes that to obtain the asymptotic results, it
is not necessary to assume a form for the likelihood: one need only assume that the
score equation has the form D'V (¥ — u(8)). Since this equation only depeads on
the first two moments of ¥, there can be more than one likelihood giving the same
score equation. McCullagh calls any likelihood giving this score function a “quasi-
likelthood”. I Y is in the exponential family and the log-likelihood is linear in y,
then the likelihood and quasi-likelihood correspond. In other eases, there can be more
than one likelihood resulting in the same quasi-likelihood. Im this event, the quasi-
likelizood estimate may not equal the MLE, but it is still consistently and efficiently
estimates the true parameter. According to McCullagh, “quasi-likelihood” estimation
could be useful in a situation in which one isn’t willing to assume a specific form for

the likelihood, but is willing to specify a relationship between the mean and variance.

e McCullagh’s results as stated in their full generality seem to be wrong; he doesn’t
assume that the Y;’s are independent and allows a general covariance structure V. In
this case, the score function Ug is 10 longer a sum of independent random variables

and asymptotic normality doesn’t necessarily hold.

5.8.1. Local Likelihood Estimation

Consider initially & sample of size n containing an observation at a point z. We
shall establish asymptotic properties of the LLE at z;. We assume that ¥; is distributed
acccording to the exponential family (5.1) , with §; = #(z;). Let k, be the number of points

in the neighborhood NJ used for estimating 8{zg). Assume that as n — co, k, — oo, but
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the neighborhood shrinks so that maz(; jeny) |#i — 2;| = o(lc;l/2

). We argue below that for
estimation of the slope and intercept of the line tangent to #(-) at zo, the LLE is consistent
and asymptotically normal, and has the efficiency of a MLE based on sample size k,. This
implies + “+*, for estimation of s(zo), the LLE bhas minimum asymptotic mean squared error

among all estimates based an k, observations.
In this set-up, p = 2 and X = (1,z). The score function for the local likelihood at z,
is
Ug=X'W(Y - u(B)/o? (5.8)
where u(8) = ¥'(XB), and W = Diag{I(i € N{')}nsn-

Let 8 = (8, A2) be the coefficents of the line tangent to #{) st z; i.e. f2 = #'(z0) and

B = 8(z0) — B22o. We make assumptions (A1)—(A4) as well as the following:

ls(-)| € M3 < 0 | (45)
#'() ezists with |¢'(-)] S My < o0 (Aﬁ).
b"() ezists with |s"(-)| <M; < oo (A7)

Under these conditions, the following results obtain:

kMM Ug ~ My(0,0%i g ka) + Op(k7*/?) (59)
E(B-8)=0(k") (5.10)

and |
KB~ B) ~ M0, kno?i') + Op(k711%) (5.11)

These imply the following results for the local likelihood estimate 4(zg) = B+ Pazo:
E(5(z0) - 8(z0)) = O(k;") (5.12)

and
kY3 (3(zo) — 8(20)) ~ N (0, kno®A) + O, (k;¥/?) (5.13)

where A = (1 zo)o';(l zg)'.
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To prove (5.9) — (5.11) , we note that by Liaponouv’s theorem kn ’/2X'W(Y -
E(Y)) — N3(0,0% g/kn) + Op(kn*/*). Hence, we need only show that

ETV2X'W(E(Y) — w(B8)) — O (5.14)

Equation (5.14) implies that k,Tl/zX'W(Y — u(B)) has the same limiting distribution as
12 xtw (Y — E(Y)) and the results (5.9) — (5.11) then follow from those of the previous
section, with n replaced by k.
To establish relation (5.14) , we expand each term of E(Y;) — ui(8) = ¥'(s(zi)) —-
b(B1 + B22:) in a one term Taylor series as follows:
b'(a(2:)) = 8(s(z0) + (2 — zo)e'(h1))

. (5.15)
= b'(a(z0)) + (2; — 20)s' (hy)b" (h2)

V(B + Bazi) = V'(By + Bazo + Ba(zi — 20))
= §'(B1 + B2za) + Ba(zi — zo)b" (hs) (5.16)

= ¥'(s(20)) + Bafzi — o)¥" (hs)
In the above, |hy—=zo] < |zi—zo), |h2—a(z)]l < lzi—2zo)e' (1)l
and |hs — 8(20)] < |A2(zi — zo)|.- Combining (5.15) and (5.16) we have

b (a(z:)) - 8'(By + B2z) = (2i — zo) o' (m)b" (ha) + Bab’ (hs)} (5.17)

1/2

Now |z; — zo| = o(kn/*) (by assumption) and the remaining terms are bounded. Hence

(5.14) is established.

5.3.2. Some Remarks

e As in the global case studied by McCullagh, the preceding results don’t require the
" assumption that ¥ has distribution of the exponential family (5.1) . We can make
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the weaker assumption that the score function has the form Ug = X*W (Y -~ u(8))/0?
with E(Y) = u(8) = b'(s(z)).

o The results above assumed that the maximum distance between any two points a
ncighborhood goes down at the rate o(k'l/ 2) In the local likelihood procedure, the
span is chosen to minimize an Alkaike-type criterion. In principle, then, one should
show that selecting the span in this way results in the correct order of shrinkage of the

neighborhood. We haven’t pursued this, however,

o We have established convergence results for the estimate of a single value of the smooth
function. With more work, one could presumably show convergence of the entire

estimated function to a Gaussian process. Again, we have decided not to go into this.

4. Asymptotics for the Proportional Hazards Model.

In this section, we comectme an asymptotic result for the local likelihood procedure

in the proportlonal hazards model

Suppose n items are placed on test and give rise to (possibly censored) observation
times {y1,y2,...yn} with associated (fixed) covariates {z1,z;...,2n}. Let 6‘, =0if y; is
cenéoi-ed and 1 if y; is uncensored, and following Tsiafis(lQSO), we assume that the triples
(i, zi, 6;) are i.id. Let 'D the set of indices of the failures among the y;’s. To facilitate
construction of a partial likeliho(.;»d, we will make the usual assumption that the censoring

mechanism is non-informative (see Kalbfleisch and Prentice(1980)).

Under the model

At |z) = Ao(t) exp (2B) (5.18)
the partial likelihood is
ePn
PL= T (5.19)
JE[I) E:ER: !
and the score function is
- ! . z;eP% '
u(f) = Z (ﬂ - ELGA‘%.—") (5.20)
leD EiEﬂ.' e

Chapter 5: Asymptotic Theory For Local Likelihood Estimates T8

Tsiatis shows that there exist a consistent root # of the score equation with the following
asymptotic behaviour:

n2(§ - ) — N(0,v) (5.21)
where v = [T° ~dQVar(z | R(t)), Q(t) = P(t > ¢,6 = 1), and T, is an upper bound on ¥.

In the local likelihood framework, we assume that the harard has the form
At |z) = Ao(t) exp (s(z)) (5.22)

where #(z} is some smooth function of z. The derivative &'(zo) at some fixed point zg is
estimated by A maximizing the local partial likelihood

eBont

PLy = (5.23)

-
1eDON Ljeninng €%
The local score equation is

’ E 3 ’ .eBo3;
uo(fo) = Z (z; - 2——’€Rm~3 i ) (5.24)

N eBox
leDnNy z::emﬂl\{&'

As in the exponential family cas2, we assume that as n — oo, kn — oo and

-1/2

maz(ijeny) 12 — 2] = o(ka™'7). A reasonable conjecture, under regularity conditions on

s(-), is that the local score equation has a consistent root f,, and asymptotically
BBy~ 8(z0) = NO0) (5.25)

where v is defined above. Fixing #(z') = #(z) = 0 for some z', a result like (5.21)
could alsc be obtained for #(zp). This would require a convergence proof for the integral
estimator a(zo) = [’ #'(t)dt, and hence consideration of the simultaneous estimation of
s() at z;,22,...2, We will not attempt to prove these results; the simpler case treated by
Tsiatis is quite ihvolved; Recently, more general results for the proportional hazards model
(not requiring that the triples (y;, 2;,6;) be i.i.d) have been obtained using a martingale
approach by Anderson and Gill (1982). A modification of those results to local likelihood
estimation should also be possible.



Chapter 6

Degrees of Freedom and AIC approximations

6.1, Introduction.

In the chapter, we provide justifications for 1) the formula degrees of freedom =
trace(2moother matriz) and 2) the use of AIC, in the local likelihood procedure. We also
provide a number of simulations to support our claims. As in chapter 4, we concentrate on
the exponenti-al family case, although our simulations suggest that similar results are true

in the proportional hazards model as well.

The actual result that we derive is the following. Consider two local likelihood fits
# and j; with corresponding smoother matrices P; and P,. (By “corresponding smoother
matrix” P, we mean that if § is based on a set of X value 2 and span s, then P is the
matrix producing locally linear least squares fits of span s, based on 2.) If on the average,
the two smoothers produce the same fit, then the difference in deviance between the two fits
has expected value [trace(P;) — trace(P,)]. Thus we can think of trace(P) as the number
of degrees of freedom used up by the smoother based on P. This generalizes the standard
hypothesis testing set-up of linear estimation, in which we have two nested fits and we

consider the difference in deviance when the smaller model is correct.

We will discuss the scatterplot (Gaussian Likelihood) case first, for which this result is
exact. Then we will show that the result holds approximately for local likelihood estimation

in the exponential family.

With these results, we then provide a justification for using the AIC procedure for

span selection.

Before starting, we will review some results on the distribution of quadratic forms.
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6.2. The Distribution of Quadratic Forms.

Suppose y is a random n vector with mean n and variance V. Then if 4 is an n by n

real symmetric matrix, it can be shown that
E(y' Ay) = n' An + trace(AV) (6.1}
If in addition y has a multivariate normal distribution, then
(y-n)Aly—n) ~ 2..: dd (6.2)
1

where the A,’s are the eigenvalues of AV. In particular, this implies

Varll! - m)Aly - n)] =234 (63)

1 ogE

These results can be found in many boeks; see for example Guttman (1983). G

Now suppose A is not symmetric. Then we can replace A by a symmetric matrix s
follows:
V' An = S A+ Ay} = v Ay (6.4
where A* = {A + A'}. From this, we see that (6.1) holds for non-symmetric A’s smce
n'A*n = n'An and trace{(A*V) = trace(AV). And corresponding to (6.2) we have

tr—n)Aly—n) ~ Yo ©5)
1 B

where @; are the eigenvalues of A°. Finally, 10 a? = trace(A'?) = trace(A?) = 3°7 A%

Hence (6.3) is true for non-symmetric matrices as well.

8.3. The Decrease in Residual Sum of Squares.

6.3.1. Linear Regression

Here we review a familiar set-up. Suppose we have a response vector y with Ey = f
and Var(y) = I. A matrix of covariate values X is available (assumed to have 1’s in the

first column) and we postulate two models for Ey: M; and M. The two models are such -
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that the linear space £; specified by M; is a linear subspace of the space L, specified by
M;. A example of this set-up is M; : Ey = al aud M; : Ey = X B respectively. Let
R{y.§) = (v — #)'(y — #) be the residual sum of squares associated with a fit §. We are
interested in the following problem. If £ € £;, what is the distribution of R{y, §:)—R(w, #2)’

Let P, and P, be the matrices that project onto the spaces £; and £ respectively.

In order to analyze R(y, §1)—R(p, #2), we need the following pythagorean type relation:

This is easily established by writing (y — f)' (g~ f) as (y — 61 + 1 — Ny-n+in-f
and expanding. The corresponding result is also true for R(y,#2) and combining these, we
obtain

R(y,#1) - Ry, #2) = R(#2. f) - R(§1,]) (6.7)

This has expected value
E(R(y,in) - R(y, ) = trace(P,) — trace(Py) (6.8)

If the rank of P; is pq, this is simply pz — pi, a familiar result. Hence the expected de-
crease in residual sum of squares equals the excess number of parameters fit. Note also
that E(R(f2,f)) = trace(Var(§:)) = trace(P;), and similarly for §#,. Hence the expected
decrease in residual sum of squares also equals the increase in total variance of the fitted

values.

The pythagorean relation (6.6) is a special case of an information decomposition valid
in any exponential family. The general result is known as Simon’s theorem (Simon (1973)).
Note also that (6.6) holds for any f € £;, not just f = Ey. We will use relations similar

to (6.6) in analyzing the scatterplot and local likelihood procedures in the next sections.

Finally, if we assume further that y ~ N(f,I), then

R(’l il) - R('a ﬁz) ~ X;,-,, (69)
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6.3.2. Scatterplot Smoothers

Consider now the case where we have a single covariate £ = (2,22, ...25), and the
global least squares fits are replaced by a scatterplot smoothing fits. We will restrict our
attention to linear smoothers, 8o that the output § can be written as § = Py, where P is 8
“smoother matrix”. An example of such a P, and the one we have in mind, is the matrix
that produces local least squares fits, as discussed in Chapter 2. This matrix will depend on
the set of covariate values z), Zz,...Z, and on the span of the smoother. Given z3,22,...Zn
and a smoothing algorithm, it is easy to produce P: the sth row of P is the output of
the smoother applied to the ith unit vector. Such a P is not idempotent and hence not a
projection matrix. We will call a matrix P producing local least squares fits a “local linear

smoother matrix”.

Given two smoothers P, and P,, producing fit vectors #, and j;, we ask the same
question as in the previous section: what is the distribution of R(y,#:) — R(y.¥2)? Here
we are thinking of a situation in which the smoother P; is more complex than the smoother
P,. For example, we might have P,y = §1 and Poy = smocth of y. Then the quantity
R(y,#1) — R(y, §2) would be of interest in assessing the importance of the smooth P;. In
the previous section, we assumed that the smaller model was correct, i.e. f € £;. Here
we have not assumed any “models”; the appropriate assumption is: Ef1 ~ Ejz, so that
P,f = P,f. This says that the smoother P, produces the same fit on the average as P.

First, we require a pythagorean relation like (6.6) . Letting, b = P1f = P2, it is easy
to show that

E(R(y,#)) = E(R(y, b)) - E(R(#1, b)) (6.10)

: E(R(y,#2)) = E(R(y, b)) — E(R(i:2, b)) (6.11)
the cross-product term in each case being E(y(I - P)(Py-b)=1'(I-P)Pf-1(I-
P;)h = 0. Combining (6.10) and (6.11) , and using the fact that for local linear smoother
matrices P, trace( P'P) = trace(P), we obtain

E(R(y,#) — R(y,#:)) =E(R(j2, b)) - E(R(§1,4))
=trace(P;) — trace(Py)

(6.12)

the same as in the least squares setting.
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If we assume that y ~ N(f,I), we can find (approximately) the distribution of
R(y.#1) — R(y. i2). It’s easier to work directly with R(y, #:) — R(y, #.) as follows:
R(y.#) ~ R(p.52) =¢'(I- P)'(I- P)y - y'(I- P,)'(I - Pa)y
=(y- 1)'Aly - 1) + 2(f - B)'(PL = Pa)y
where A = {P!P, ~ P! — P, = (PLP, = P!~ P)}. If we ignore the second term in (6.13)
(it is zero in expectation) and let {};} and {a;} be the eigenvalues of A and 1(4 + A')

(6.13)

respectively, then

n
R(y.#) - R(v.#2) ~ ) aix} (approzimately) (6.14)
1

and

Var(R(y.1) - R(y. i2)) 5 2 ) M} (6.15)
1

6.4. The Decrease in Deviance.

In the previous section, we derived the exact result E(R(y,#,)—~R(y, §2)) = trace(P;)—
trace(Fy) for local linear scatterplot smoothing. In this section, we show that an analogous
result is approximately true for local likelihood procedures in the exponential family. In
this more general setting, the deviance takes the place of the residual sum of squares. The
scatterplot smoothing case, of course, corresponds to local likelihood fitting with a Gaussian

likelihood, and the residual sum of squares is the deviance for a Gaussian Likelihood.

In order to derive a deviance spproximation, we will first obtain a relation similar to
(6.10) and (6.11) for exponential families.
6.4.1. Pythagorean Relations for the Devience
We assume that the Y;’s are independent with density of the exponential family form
96,(vi) = exp{{vi8i — b(8;) — c(v,0)}/0®} (6.16)

with respect to some carrier measure. The scale parameter o plays no special role and is

assumed to be 1.
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Let kg(y) = I1T 90,(vi), and let (#) = (b(4,),5(83), ...5(6,)). The density kg(y) can
be indexed by the natural parameter # or the expectation parameter g = Egy = V' (#). We
will write 8~ (p) as 84, and let Ty be the (diagonal) covariance matrix of the Y;’s. The

queantity (twice) Kullback-Leibler distance between p; and p; is defined by

kp,(y)
I{py, #t2) = 2By, log 22 6.17)
(”l Pz) 4, 108 k“,(') (

We will call this the “deviance”— a short aside will clarify why we are allowed to cdo
this. The deviance is defined in the generalized linear model literature as D(y,p) =
—2log[ku(y)/ky(y)]. Hoeflding’s theorem (sce Efron (1977)) states that in the exponential
family I(y, p) = D(y, p). Note that I(ss, p2) is not in general equal to D(p;, p2). They are
equal when p; = y (as above) and also when p; and g, represent nested fits (see Simon’s
theorem in Efron (1977)). In other cases, D(p, #2) is an estimate of I(p;, p2). Since the
result that we seek to establish involves quantities of the form I(p,p) in the exponential

family, we shall use the term “deviance”.

Let § be some fit vector and let & be such that E(#;) = &;. Then we have

Lp,b) = 208y - 03y - 2 'z:“,(b(o,.-) ~b(0n.) (6.18)
15,h) = 2005 - )5~ 23 (6(0;) — B(88) (6.19)

and '
Lp.5) = 200y — 0;)'5 — 23 (6(0,,) — (0;.). (6.20)

Hence '
Iy, b)= Iy, §)+ I{§,8) + A (6.21)

where A = 2(0; — #03)" (v — #)-

What czn we say about A? We’ll examine the global and local cases separately.
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A for the Global (linear) model

If # is modelled as # = X8, #y C L.,i(X) (say #) = XPy) and § is the m le., then the
score equation is
X'y-9) =0 (6.22)
Hence
A=2(0;-04) (y-#)
=2(B - Bo)' X'(y - ) (6.23)
=0

Thus for linear models, the pythagorean relationship
Iy, b) = I{y,#) + I, b) (6.24)

bolds exactiy. As mentioned in the previous section, this result is a special case of Simon’s

theorem (see also Efron (1975)).

A for the Local Likelihood Model

If instead # is estimated by local likelihood, we no longer have A = 0. We assume
that as before that E(¢y) = #;. Consider first the Gaussian case, for which g = #. Then

§ = Py where P is a local linear smoother matrix, and
A =2(Py - h)'(y - Py) (6.25)

This is exactly the cross product term discussed below (6.11) , which we proved has
expectation 0. Since in the Gaussian case, I(s;, p2) = R(p;, p2), this re-verifies- (6.10) and
(6.11) .

When the link function 4(#) is non-linear, E(A) # 0. But we can see that it will be
small, for the following reason. The local score equation to determine §; is X*(y; — #) =0
where Xj; is the design matrix for the ith neighborhood and y; and §; are the response and
fit vectors for the ith neighborhood. We also have the local approximations b = XiB w
05 = Xfo (say). Hence each element of A = 2(#; — 03)'(y - §) is approximately 0. In the

deviance approximations of the next section, we will therefore assume E(A) = 0.
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6.4.2. The Deviance Approximsations

The Global (Linear] Model

We postulate two nested linear models for #, M; : @ = X;8 and M, : # = X8, with
L.u(X1) € Lea(X2). Let §, and §; be the m.l.e.’s under M; and M, and let # € £.4(X,).
Let rank(X,) = py, rank(X;) = p2.

Consider the difference in deviance between the two ftted models I{y, ;) — I{y,#2)

Using the result of the previous section, we have

Iy, 9:) — Iy, §2) =Xy, &) - I(§1, b) — {(Z(w, ) — I (52, B)]

(6.26)
=I(p2, b) - I(§:, h)
A taylor series expansion gives
I(j2,b) ~ (52 — RS (52~ B) (6.27)
Also
Var(X2f) s Xo( X8 X2) "1 X5 (6.28)
8o that
Var(f2) & SpXa( X553 X2) 1 XiT,, (6.29)
Thus N ) —1rs
E(I(§2, b)) NE(§2 — B)Z3" (42 - b)
=trace(T; Ly Xo(X3Ea X2) " X5T0) {6.30)
=trace(l,,) = p2
In exactly the same way we get E(I(#:, A)) ~ p; and hence
E(I(y.1) — Iy, #2)) s p2—p: (6.31)

This is not surprising, of course, since Wald’s theorem tells us that Iy, ) — I(y,{2) —

2
Xp3-p1-
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The Local Likelihood Model

Now consider the case where §§; and §; represent local likelihood fits. We have a single
covariate z),73,...Z,, and let z; = (1 z;)*. We assume E(03,) = E(0;,) = 8. Letting

v; = Var(ith element of §;) and g; = sith entry of T, we have

E(I(§2, b)) ~ E(j2 — B)Ty' (92 - b) = zn:"-'ﬂ.-" (6.32)
1

using the fact that E(j,) ~ h. Now
Y] a;X;(X,?EiX.-)“X,?a; (6.33)
where X; and 2;" are the design and covariance matrices for the sth neighborhood. Hence
" .
E(I(§2, b)) » Y oizi( XIT} X;) " 2loo?
1

! : (6.34)
= Z: a.-z.-(X,?Eix;)“zﬁ
1

Now in a given neighborhood, o; can be taken as appraximately constant, so we have
n
E(I(j2, B)) & 3 2 XIX)) "2l = trace(Py) (6:35)
1
Similarly,
E(I(y1,R)) ~ trace(P1) : (6.26)

Hence for local likelihocd smoothers we have

E(I(y,#) ~ Iy, §2)) w~ trace(P;) — trace(Py) (6.37)

In the preceding “derivation”, we have made a number of approximations, and it's
important to find out how accurate the formula trace(P;) — trace(P;) really is. In the next

section, we describe a simulation study to investigate this.
Firally, we note that the actual distribution of the decrease is more difficult to obtain.

Even in the simple scatterplot case, we have seen that this distribution is NOT chi-squared -

but a weighted linear combination of x3’s. In the general local likelihood case, we have

not succeeded in obtaining a workable approximation for tkis distribution. The simulations .
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of the next section show that, at least for small samples, the distribution of the deviance

decrease is quite a bit more spread out that the corresponding chi-squared distribution.

6.5. Degrees of Freedom Simulations.

Table 1 shows the results of a modest simulation study designed to check the accuracy
of the formula E(I(y,#:1) ~ I{y, §2)) = trace(P;) — trace(P;).

Table 1. Results cf Degrees of Freedom Simulation

Entries are mean(variance) of deviance decrease

Span
Soxrce 3 A -1 ] vi
(1) Trace(P) - 1 €.00(10.14)  8.32(8.07) 2.65(6.15) 2.34(5.09) 2.16(4.27)
(2) Scatterplot Smooth(y normal) 4.14(10.00)  3:39(7.75) 2.61(6.03) 2.31(5.08) 2.09(4.32)
(3) Scatterplot Smooth(y wniform) 4.19(10.06) 3.45(8.50) 2.77(6.52) 2.41(5.79) 2.21(4.99)

(4) Logistic Model(constant ve smooth) 4.34(13.47) 3.40(11.62) 2.72(9.12) 2.28(7.51) 2.17(6.28)
(5) Logistic Model(linear ve smooth)  $.29(11.71)  2.25(8.25) 1.63(6.21) 1.25(4.58) 1.12(2.89)
(6) Coz Model(no censoring) 5.58(13.37) 4.24(8.99) 8.63(7.52) 3.12(6.25) 2.71(5.48)
{T) Cox Moddl (40°% censoring) 5.36(13.54) 4.16(9.04) 3.62(6.98) 3.13(5.86) 2.73(5.20)

The numbers in the table were obtained as follows. 100 z values were generated from
X(0,1) and fixed for the entire table. Given these z values, we constructed the local linear
smoother matrices for the indicated spans, and the trace of each matrix (minus 1) is shown

in line (1). The numbers in parentheses are variance estimates based on formula (6.15) .

Consider for example the entry 4.09 in the top left hand corner. According to the
preceding dcrivation, this should be an estimate of the expected decrease in deviance due

to fitting a local likelihood model with that span .3 versus a model with only a constant.

To obtain line (2), we generated 100 y;’s from ¥ (0,1) and computed R(y,71) - R(y, #),
# being the fit from a scatterplot smoother (§ = Py) with span as shown. Line(2) shows

the mean and variance from 500 such repetitions of this process.
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Lize (3) was obtained in same way as line (2), except that the y;’s were generated from

wniform (-v/3,V3), the range chosen so that Var(y;) = 1.

To obtain line{4), we generated 100 y;’s from binomial(1,1/2) and fit a smooth logistic
model with spans of .3 to .7. The numbers show the mean aud variance of I{y,§1) — I(y, §)

over 500 repetitions.

Line (5) was generated in a similar fashion as line (4), showing instead the mean and
variance of I{g, §1) — I(g,§), #: being the linear logistic fit, with y; generated from a linear

logistic model, P(y; = 1]z) = e2* /(1 + 7).

Lines {(6) and (7) show simulation results for the Cox model. 100 y values were gen-
erated according to y = ezp(l + ¢), where ¢ had an extreme value distribution. This
corresponds to a constant hazard {exponential) model. For line (6), no censoring was ap-
plied. For line (7), censoring variables ¢; were generated from €%, u ~ ¥(0,1). This
produced a censoring rate of about 40%. A smooth Cox model was fit and the quantity
~2log L{null model) — (-2 log L{smooth)) was computed. Lines (6) and (7) show the mean

and variance of this quantity over 500 repetitions.

The results give fairly strong support to the approximation E(I{y,#:1) — I{y,§2)) =
trace(Pz) — trace(P;). Lines (2) and (3) agree well with (1), not surprising since the ap-
proximation is exact for scatterplot smoothers. Line (4) also is in good agreement, with
a small upward bias for smaller spans. Line (5) should be 1 less than line (1), (since the
global linear fit uses 2 degrees of freedom) and the results indicate that. In examining the
Cox results, we must remember that there is no constant in the model, so lines (6) and (7)
should be 1 greater than line (1). This is roughly the case, with a downward trend in the
higher spans.

The variance results are a little unsettling. In general, the variances will depend on
the higher ( > 2) moments of the distribution of y; the variance in line (1) was derived
assuming y; was N(0,1). The variances in line {2) of course are in agreement with line (1),
but those in line (3) and especially line (4) are higher. The variances in lines (4)— (6).
are not comparable to line (1), since they are based on different model comparisons. We

can see, however, that the variance to mean ratio is often greater than 2 {the ratio for a
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chi-square variate).

We conclude from these simulations that the approximation E(I(y,#) —~ I(y, #2)) =
trace(P;) — trace(P,) is satisfactory as a rough rule of thumb. We do note, however, that
the distribution of this decrease is more spread out than a chi-square variate with the
corresponding degrees of freedom, 8o that tests based on the percentile points will be too
liberal.

Finally, it is important to mention that the above simulations were relatively inexpen-
sive on a large computer. Hence for a given data set it may be feasible to get “exactly” the

distribution of the decrease by simulation.

6.6. Akaike’s Information Criterion{(AIC) For Span Selec-
tion.

Using the results of the previcus section, we show in this section that it’s reasonable

to use an AIC criterion to choose the span in the local likelihood estimation procedure.

Let’s briefly review the AIC for a parametric model. Given a model ky, suppose we
can choose among maximum likelihood estimates f#y, fiz,...8; based on p;,p2,...px degrees
of freedom respectively. Suppose also that each model can be considered a sub-model of a
true model ky,. Then Akaike’s information criterion (AIC) (Akaike 1973) specifies that we

should choose the model that minimizes
AIC = ~2log k,-,'.(i) + 2p; (6.38)

where log k; (#) is the value of the likelihood at ;.

Akaike derived the AIC by showing that E(AIC) ~ E(I(po, ji;)) + constant. Hence
the model that minimizes AIC app‘roximately minimizes the expected Kullback-Leibler
distance from the true model.

From the form of the AIC, it is clear that it attempts to trade-off goodness of fit of the
model with model complexity. Not surprisingly, it turns out to be identical to Mallow’s C, in
the linear regression setting and asymptotically equivalent to the cross-validated likelihood
technique in geperal (see Stone (1977} for these resuits).
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In the local likelthood procedure, we propose choice of the span parameter s to minimize
AIC = —2log kg (¥) + 2 trace P(w)) (6.39)

where P{w) denotes the smoother matrix producing local linear fits with span w, and
#(w) denotes the corresponding fitted values. This makes sense intuitively: as the span v
increases, —2 log k{j(,)(#) will increase but the degrees of freedom trace P(w) will decrease.
Hence the AIC will trade off lack of fit with complexity of the smooth.

In what follows, we will show that the AIC is reasonable in the local likelihood setting,
in that it approximately equals a measure of expected distance to the true model. The logic
of the derivation follows that of Akaike (1973). Consider the exponential family set-up of
section 6.4.1. Using the notation of that section, we let P be a local linear smoother matrix
corresponding to some span and § be the estimated fit vector (dropping the argument (w)
for convenience). Let b be such that E(Oi) = §,, and further let gy be the “true model”
in that Ey = po. We require an estimate of the Kullback-Leibler distance I{pmo,§). The

following pythagorean relation is easy to derive from the results of section 6.4.1

E(I(po,#)) = E(I(po, b)) + E(I(,#)), (6.40)

the cross-product term being (#p — 'j)'(llo — &), with expectation 0. The second term is
the sum of the variance of the §j;’s and equals approximately trace(P). To get an estimate
of the first term, we expand E(I(y, §)) as
E(I(y,#)) =E(I(y, b)) - E(I(#, H))
=[E(I(y, po) + E(I(po, b)} - E(I(§, h))
Thus E(I(y, §)) & (n+ E(I(po, b))] — trace(P), or E(I{po, b)) ~ E(I(y,§)) —n+trace(P).
Combining this with (6.14) we obtain

(6.41)

E(I(po,#)) =~ E(I(y,§)) — n+ 2 trace(P) (6.42)
Noting that I{y,§)) = —2log kj(s)(§) + constant is constant for all spans, we arrive at the
AIC criterion (6.39) .

Finally, we display in Figure 6.1 the idea behind this derivation. The distance I{po, )
iz estimated by I(§, B) plus an estimate of I{so, h) derived from I{y, #).

Figure 6.1.
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The AIC Picture



Chapter 7

Closing Remarks

In this dissertation, we have introduced and studied a non-parametric procedure that
generalizes likelihood-based regression models. This procedure is potentially useful as a tool

for exploratory data analysis as well as for building non-parametric regression models.

The algorithms are computationally expensive but with the tremendous increase in
the speed of computers, this should become less and less of a problem. In a few years, in
fact, the local likelihood procedure could very well run comfortably on a personal desktop

computer.

The local likelihood approach is quite different from “quasi-linear” methods like partial
residuals. These latter methods start with a linear model, then look for systematic devi-
ations from it. The local likelihood approach, on the other hand, is fully non-pmmetric;
in a sense, it abandons the linear model completely. Further research and experience will

determine under what circumstances each of the approaches is more effective.

We plan to continue tkis research in a number of other areas. Graphical display is one
such area. The local likelihood procedure could form part of a motion graphics package to
display and analyze multivariate data. This could be especially useful for binary or censored
data. Another area of interest is the application of the bootstrap to the procedure. The
problem of obtaining confidence bands is closely tied in with this.

Finally, and perhaps most importantly, we plan to use the the local likelihood proce-

dure in our data analyses. This should help point to ways in which the procedure can be

improved, and ultimately, determine its value.
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