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ABSTRACT 

Friedman and Stuetzle (JASA, 1981) developed a methodology for modeling a 

response surface by the sum of general smooth functions of linear combinations of 

the predictor variables. Here multiplicative models for regression and categorical 

regression are explored. The construction of these models and their performance 

relative to additive models are examined. 



CHAPTER 0 

INTRODUCTION 

In recent work, Jerome H. Friedman and Werner Stuetzle have developed a 

methodology of additive projection pursuit modelling. This dissertation examines 

the question for multiplicative modelling-how to accomplish it and when it is 

superior to additive modelling. Two general statistical problems are explored: 

categorical regression and classification, and regression. 

Chapters 1 through 3 deal with categorical regression and classification. The 

first introduces the problem and briefly reviews the method of Friedman and 

Stuetzle. The second describes the multiplicative model and gives several ex- 

amples of its application. Finally, Chapter 3 discusses four related topics: the 

generalization to multiple classes, use of a multiplicative model as an extension 

to discriminant analysis, the choice of minimization criterion, and the relative 

performance of the additive and multiplicative models. 

Chapter 4 discusses the building of multiplicative models in regression and 

gives examples of their use. The appendix explains the numerical optimization 

techniques used by these procedures. 

Routines implementing all of these procedures have been written and have 

been integrated into the framework designed by Friedman, Stuetzle and Roger 

Chaffee for additive projection pursuit. 



CHAPTER ONE 

CATEGORICAL REGRESSION AND PROJECTION PURSUIT 

$1.1. The Categorical Regression and Classification Framework 

The first situation to be considered here is that of categorical regression and 

classification. A training sample 

wl, Xl), mr x2), . . . , (YN, xiv), (14 

is observed, where xn is a p-dimensional vector of predictor variables associated 

with the rrth observation. Y, is a discrete variable indicating to which of K 

mutually exclusive classes the observation belongs (labelled 1 through K for 

convenience). The sample could be completely random or stratified on x. If the 

marginal distribution of Y is known, it could instead be stratified on Y. 

Categorical regression seeks to estimate the probability of the response Y 

falling into each class conditional on the value of x: 

pk(x)=Pr{Y=IcIx} l<k<K. (1.2) 

For example, in a business application, class 1 might represent those loan ap- 

plicants who would default if granted a loan, while class 2 denoted those who 

would repay it in full. The vector x might include income, job stability and other 

personal factors that could affect repayment. The function fik (x) would indicate 

the probability of default given salary and other characteristics. 

Many applications require a decision rule that will identify the response class 

Y based on the predictors x. In the example such a rule would divide loan 

applications into “good credit risks” and “bad”, hopefully protecting the bank 

from unwise loans and loss of money. Since any decision rule would not be 

completely accurate, classification errors would result in various losses. Labelling 

a good risk as bad deprives the bank of a profitable loan opportunity. Identifying 
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a bad prospect as good may cost the sum loaned. A good decision rule seeks to 

minimize the probability and magnitude of such a loss. Let L( i ) k ) denote the 

loss incurred by classifying an observation of class ) as class i. Then the risk 

associated with the assignment of an observation with predictor x as class i is 

Ni I 4 = kEl L(i I k) p/c(x). (1.3) 

Were the conditional probabilities pk(x) known, the risk could be minimized by 

the Bayes’ rule, which chooses that value i that minimizes (1.3). Since they 

are not known, the empirical Bayes’ rule replaces them with the estimates & 

obtained in the categorical regression. The rule becomes: choose that value i 

which minimizes 

ii ti 1 x, = k$l Yi 1 k, i’k (x)* (1.4 

$1.2. Methods of Categorical Regression and Classification 

Various methods have been used to estimate the conditional probabilities. 

Most common are linear discriminant analysis, quadratic discriminant analysis 

and logistic regression. 

Linear discriminant analysis assumes that the distribution of x given Y is 

multivariate normal and that the covariance structure is the same for each class. 

The class means are estimated by the class sample mean xk and the common 

covariance matrix by the pooled sample covariance 3. The conditional probabil- 

ities are taken to be 

lik (x) = 
nke-;(x-x~yB-l(x-x~) 

Cfc(=l”je 2 -‘(X-XiyA-‘(X-Xi) ’ 
(1.5) 

where zi is the marginal probability of class i. The estimates can depend heavily 

on the assumptions of normality and equal covariances. Deviations from these 

can distort the estimates. 
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Quadratic discriminant analysis also assumes multivariate normality, but al- 

lows the covariance structure to vary from class to class. The means and covari- 

antes for each class are estimated by the corresponding class sample means and 

covariances, and the probability estimate is 

ik (x) = 
frkl >,I-: e-:(X-wmX--Ik) 

@‘=, Til $. 1-i e-:wiYmx-x;)~ 
W-4 

Since individual class covariance matrics are estimated, many more observations 

are necessary. While freed from the assumption of equal covariances, deviations 

from normality can still greatly affect the perceived probabilities. Also, since 

frequently at least one predictor is binary, the assumption of normality is usually 

incorrect. 

In the two class case, an attempt to generalize linear discriminant analysis 

brings about logistic regression. Rather than concentrating on estimating prop- 

erties of the distribution of x given the class Y, logistic regression conditions on 

the observed combined sample predictor distribution and models the conditional 

probability more directly: 

The maximum likelihood estimates of b and a are obtained numerically. 

Logistic regression also makes several important assumptions. First, it as- 

sumes that PI(X) depends only on one linear combination of the predictors, a’x. 

All relevant information is assumed to be in that one projection. No other linear 

combination adds any further information. Second, it assumes that the depen- 

dency is through a member of one particular parametric family. If the true 

relationship is not logistic, the procedure may fail. For example, this could hap- 

pen if the distributions of x given Y are normal with equal means and different 

variances. 
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$1.3. Projection Pursuit Categorical Regression 

When samples are small, assumptions like the previous ones may be neces- 

sary. However, when larger data sets are available, it is desirable to seek methods 

that impose fewer restrictions and allow the data to reveal the structure. 

To generalize (1.7), Friedman and Stuetzle (1980) replace the logistic curve 

by an unknown smooth function: 

n(x) = f(a’4. (14 

Here both a and f are unknown, with the only restriction being the smoothness 

of f. That choice of a and f is sought that will minimize the distance between 

the observed data and the fit: 

S(a) = & vtt(K - f(a’xd2. (1.9) 

Here the {v,} are weights that take into account the disparity between the sample 

and population distributions: 

vn = {p rior probability of class Yn} 
{number in class Yn} ’ 

(1.10) 

If the priors are not specified, they are assumed to be those of the sample. In 

that case v,, is set equal to h.) 

To obtain estimates of a and f, suppose first that the linear combination a 

has been chosen and the smooth function f for that combination is desired. Then 

Y can be compared to the single variable a’x. The estimate off is now obtained 

by applying a weighted local linear smoother to the scatterplot of (Y,, a’x,)z=l. 
I At each abscissa value axn, consider a window containing that observation and 

the h values on each side of it. Weighting each of these 2h + 1 observations by 

its weight Vi and ignoring all the other points, calculate the weighted regression 

line and define the function value to be the fitted value of the regression line at 

the point. Repeat the procedure for each value a’xn, using only the observation 

and its h neighbors on each side. For observations near an end, where there are 
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not h available on one side, use an asymmetrical window with h on one side and 

as many as are available on the other. In this way a smooth function is fit for 

the range of observations for this projection. 

Such a smoother provides an estimate of f for this particular combination 

a. The criterion (1.9) can be used as a measure of the fit for this combination 

(a,!). The optimal linear combination a can then be selected by numerical 

optimization over all possible combinations. (The numerical method used is 

discussed in the appendix.) The name projection pursuit is derived from this 

procedure of searching for (pursuing) the optimal linear combination (projection). 

This approach eliminates the assumption of a specific parametric family of 

probability curves. It still retains the restriction that the relationship depends 

only on one linear combination a. When larger data sets are available, better 

modelling of the true underlying probability surface can be obtained by elimi- 

nating this. In analogy with a similar method in projection pursuit regression, 

Friedman and Stuetzle (1980) suggest repeating the above procedure on the resid- 

uals Y, - f(a’xa) to obtain further modifying projections until no appreciable 

decrease in squared distance is observed. In this manner a model 

PI(X) = f fdh4 
m=l 

(1.10) 

is constructed recursively. One problem that arises, however, is that fik (x) need 

not lie between zero and one. When this occurs, $k (x) is set to zero or one. 

While natural in projection pursuit regression procedures, such an additive 

model does not seem to be the most natural extension in the case of categorical 

regression. The next chapter discusses an alternative approach using a multi- 

plicative model. 
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CHAPTER TWO 

THE MULTIPLICATIVE MODEL FOR CATEGORICAL REGRESSION 

$2.1. Description of the Model 

Since probabilities must lie between zero and one, the most natural way of 

modelling them is through the odds ratio. This approach models the odds ratio 

as the product of smooth functions 

(2.1) 

The unknowns {am}fC1 and {hm}EC1 must be estimated. Algebraic manipu- 

lation shows that this is equivalent to 

II,M=l Ma’4 
‘ltx) = 1 + fl,M=, hm(dX) ’ (2.2) 

Two approaches to estimating the parameters are now possible. Both are 

stepwise procedures. In the first, at step M, {am},Mi and {hm},Mi have 

previously been selected. Wanted are aM and hi so as to minimize 

N 
2 = 

c ( ‘71 
ll,M=l hm(a’xn) 

n=l r, - 1 + l&=, hm(a’Xn) 1 

(2.3) 

(2.4) 

subject to the previously chosen am’s and hm’s. 

Suppose first that the projection aM has been chosen, and that the function 

hi is sought. For brevity, let gn = nfii hm(ahxn) (the previous step’s model 

for the odds ratio at x,). Then (2.4) can be reexpressed as 

N 

= ( vn 
Sn 2 

n=l 1 + gnhMM( a’Mxn) H 

Yn(l + th&hf(&pd) 

Sn 
- hd&pn) 

1 

2 

. (2.5) 



This reduces the problem to the estimation of a smooth function hM so as 

to minimize its weighted distance from a set of points {Zn}: 

N 
C Wn (Zn - hhfM(&xn))2. 

n=l 
(2.6) 

If the unknown function appeared only in the rightmost term and not in the 

weights, it could be estimated by applying a weighted local linear smoother to 

the points {Zn}. In the present situation, however, both the weights w, and the 

{Za} depend on the unknown hM. Hence the function can not be immediately 

estimated. Instead an iterative procedure with successive reweighting is neces- 
(0) sary. An initial function hM(z) s 1 is chosen and used to define the weights 

wa. These are then used to compute a weighted smooth h(d. New weights are 

calculated using hy, and a new estimate ht2) . M is obtained. This continues until 

a convergence criterion is satisfied, such as 

sup I h$+‘)(s) - h($s) I 2 T. 
5 (2.7) 

In this way an estimate of hM is obtained for the given linear combination aM. 

A criterion of fit for this choice of aM can then be calculated: 

SM(aM) = E Vn Yn - 
gnhMM(a'Mxn) 

1 + &&&-+n) ’ n=l 
(24 

and the best choice of aM can be determined by numerical optimization. 

This approach can be quite expensive computationally. While the conver- 

gence is usually quite fast, it need not be. Also, the use of iteration within a 

numerical optimization (which also uses iteration) greatly increases the computer 

time required compared with a noniterative smooth. Hence an alternate noniter- 

ative one is preferred. Using an approximation, this other method comes close to 

the exact iterative method with a considerable reduction in computation expense. 

This second method reparametrizes the model. For each m 5 M, define the 

functions frm and fum such that 

flrn(z) = hm(z)forn(z) (2.9) 
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and 

E 6 fim(&x) + E fom(a’,x) = 1 l<m’<M. (2.10) 
m=l m=l 

Now 

II,M=l flm(&x) 

‘ltx) = Il,M=, flm( a',X) + ll,M=l fom(49)' 
(2.11) 

This procedure is also stepwise. At the Mth step, the algorithm has already 

estimated {a,}$?: and {fkm}&=zifM-r. Being sought are ii&j, fn~ and fl&j 

so as to minimize 

s&f= E 

2 

vn ’ 
(2.12) 

n=l 

For brevity, designate tn = nf=, fim(ahxn) + I’f,M=, fom(a’,Xn) and en = 

ll,Mi flm(&xn). Then 

s&f= 5 vn(F) 2 
n=l n 

( F - flM(a&))’ . (2.13) 

Again, the weights vn ($)2 depend on the unknown fi&j and f2M. To avoid 

having to iterate, the following approximation will be used. Since the constraint 

(2.10) states the E(tn) = 1, tn shall be approximated by 1 in the weights, leaving 

S mM E 82,Vn (2 - fiM(Gf~n))2~ 
n=l 

A noniterative local linear smooth of $J with weights Vasi gives the estimate 

of fiM. An estimate of fnM can be obtained from the constraint (2.10). For 

simplicity and to offset any bias introduced by the approximation, a procedure 

similar to that for fiM will be used. Since SM can also be expressed as 

sM= 5 
n=l 

rI,M=, fOMb’MXd 2 
t 7 (2.15) 
n 
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the same procedure can be used as was used to determine frM. A local linear 

with weights va(n5.i fum(a’mxa))2 gives the esti- 

gain, the optimal projection aM is found through numerical 

optimization. 

The method just described can be viewed in another way. By reparametrizing 

and approximating, it becomes equivalent to the following procedure: 

1.) Model both PI(X) and PO(X) simultaneously as products of smooth func- 

tions of linear combinations 

131(x) = fi hm(&X) 
m=l 

(2.16) 

(2.17) 

with the same a, at each step in both models and ignoring the dependence of 

the two (PI(X) + PO(X) = 1). 

2.) In the resulting model, fir and io will not sum identically to one over 

the full range of x. Hence they are not probabilities, although they do conform 

quite closely to pl and PO. Therefore they are normalized to obtain probability 

estimates 

81 (x) = 
i+(x) 

Pl(4 + PO (4 

fio(4 = I?0 (x) 
h(x) + PO (4. 

(2.18) 

(2.19) 

From a practical point of view, this method gives results quite close to the 

iterative method. Because it is so much faster, it is the one adopted. It also 

has the advantage that the functions for the first projection (frl and fol) agree 

exactly with those obtained from the one projection procedure of Friedman and 

Stuetzle described in chapter 1. 
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$2.2 Numerical Examples 

To see how the procedure operates, several examples are now given. The first 

consists of 500 four-dimensional observations. Half of these were generated from 

a multivariate Gaussian distribution with mean (O,O, 0,O) and identity covariance 

matrix (group 1). The group 0 observations were generated from a Gaussian with 

mean (1.5, 0, 0,O) and covariance matrix 

1 0 0 0 

C= i 0 4 0 0 
. 0040 

0 0 0 4 1 
There is a location shift in the first variable and a dispersion difference in the 

remaining three. The data was analyzed by various methods, with the results 

summarized in Table 2.1. Since the observations are Gaussian, it is not surprising 

that quadratic discriminant analysis does the best. It misclassifies only 13.2% 

of the training sample, and obtains a squared distance of .096. The Bayes’ rule 

values (where the parameters are known and not estimated) are 14.3% and .lOl. 

Linear discriminant analysis detects the location shift, but it misses the dispersion 

difference. It misclassifies 22.4% of the training sample, with a criterion of .152. 

This is identical with the results of logistic regression, which also misclassifies 

22.4%, with criterion .152. Its best linear combination is (1.59, -0.4, .03, .115). 

The first (location shift) variable dominates the linear combination. 

A multiplicative projection pursuit model was applied with a smoother us- 

ing a window containing 30% of the observations. At the first step it finds the 

direction (.999, -.03,0, .04), with the criterion .1524. It now seeks to simplify 

the model by removing unnecessary components in the direction vector. Each 

nonzero component is individually set to zero, and the criterion with that com- 

ponent deleted is calculated. The component that causes the criterion to increase 

the least is temporarily removed from the model. The best direction only involv- 

ing the remaining components is obtained numerically, and its criterion calcu- 

lated. If the difference between this value and that obtained using all components 
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is below a threshold, the component is permanently eliminated. This continues 

until no component can be eliminated without increasing the criterion beyond 

the threshold. Here the direction is reduced to (l.O,O, O,O), only increasing the 

criterion to .1526. The optimal function for the first class is plotted in Figure 2.1. 

The algorithm now examines the reduction in criterion from the initial variance 

to the first step. Since it is larger than the user-defined threshold of 5% of the 

initial variance, the projection is accepted and the procedure continues. 

Having captured the effect of the shift variable in the first projection, it now 

deals with the dispersion variables. As the best second projection it chooses 

(.04, .97, .12, .21). As described above, it now eliminates the first and third vari- 

ables to leave (0, .9&O, .21). The function is plotted in Figure 2.2. From this it 

can be seen that observations in the tails (larger dispersion) are inclined to belong 

to group 0, since the value of fr2 is close to zero there. Again the reduction in 

criterion is sufficient to allow the procedure to continue. 

The third and fourth steps reduce the criterion to .105. At the fifth step 

the reduction is below 5%. The algorithm then makes several attempts to find 

a larger reduction by varying the starting location in its numerical search for 

the best projection. Since still no sufficiently large reduction is obtained, the 

procedure rejects the fifth step and terminates with a four projection model. 

As Table 2.1 indicates, multiplicative projection pursuit’s final model has 

criterion that is not far from the optimal parametric procedure. Its apparent 

risk also compares well. The slightly larger values are the result of having to 

estimate the functional forms for each projection, rather than simply estimating 

parameters for a specified parametric family. Since the smoother locally fits 

weighted least squares lines to obtain the function, there is some linearization of 

the true underlying exponential. Varying the proportion of observations utilized 

by the smoother will vary the degree of linearization. Had a smaller proportion 

been used, the linear effect would have been lessened. However, the resulting 

functions would have been less smooth, with increased variance. These two 

factors must be balanced in setting the proportion to be used. 
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To validate the previous estimates of misclassification risk and criterion, five 

thousand new observations from each distribution were classified using the models 

obtained above. The results, also in Table 2.1, support the previous results. No 

overfitting is evident here. Multiplicative projection pursuit retains its position 

relative to the other methods. 

Also of interest is the relative performance of the multiplicative and additive 

models. The results with one projection are the same, since the procedures are 

identical at the first step. At the second and succeeding steps, the additive model 

falls behind, finishing with a squared distance approximately 10% higher than 

that of the multiplicative model. (The sampling variation due to the generation 

of the normal sample appears to be small. To examine its effect, ten addi- 

tional training and validation samples were generated, and the performances of 

the models compared. The average validated difference in criterion between the 

multiplicative and additive models was -9061, with standard deviation .0060. 

The difference in misclassification rates was -1.4%. (standard deviation .36%). 

Comparing the multiplicative model with quadratic discriminant analysis, the 

difference in criterion was .014 (standard deviation .005). For misclassification 

rates, the difference was 1.6% (standard deviation 1.1%). So the performance of 

the multiplicative model relative to the optimal procedure (quadratic discrimi- 

nant analysis) appears to be real, and not a result of sampling variation.) 

The second example is data from Delury (1973, see Press and Wilson, 1978, 

for a logistic regression analysis). The 1970 census data are used to attempt to 

classify each of the fifty U.S. states according to its population growth between 

1960 and 1970. States whose growth was below the median change among all 

states are classified as 0, with the others classified as 1. The predictor variables 

are per capita income (in thousands of dollars), birth rate (percent), death rate 

(percent), urbanization (1 if more than 70% of the population was urban), and 

presence of ocean coastline (1 if present). 

Discriminant and logistic results are summarized in Tables 2.2 and 2.3. Birth 

rates were higher and death rates lower among the high-growth states. Higher 

income, coastline and a less urban environment were also associated with those 
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states. 

The data was also analyzed using multiplicative projection pursuit. Because 

of the smaller size of the training sample here, a smoother using 40% of the 

observations was employed. Also, the number of projections was limited to two. 

(The small sample size wuld allow a large degree of overfitting otherwise.) To 

enhance the effectiveness of the numerical optimizer, the predictor variables were 

standardized so that each variable had zero median and unit interquartile range. 

(While the procedure is equivariant under location and scale changes, the numer- 

ical optimizer behaves best when the relative scales of the variables do not vary 

greatly.) 

At the first step, the algorithm selects the projection (-.45,0,&&O, -.30): 

concentrating heavily on the death rate with negative coefficients for income 

and coastline. The corresponding function for the higher growth group is shown 

in Figure 2.5. For low values of its argument (corresponding to high income, 

coastline, low death rate) the function takes large values, indicating higher growth 

states. It descends sharply as the argument increases, with an unusual rise at 

the end. (This end effect is caused by two outliers. After the minimum of the 

function, there are only two observations. These influential observations are 

isolated near the value 2, one from each group. Because they are separated from 

the other points, they have large leverage, pulling the function up toward .5. 

Such end effects are common to techniques using smoothing.) 

The second projection concentrates on income along with coastline and a 

small birth rate coefficient (66, .14,0,0, .49). Increasing values of these variables 

tend to increase the probability of large growth, as seen in Figure 2.6. End effects 

are apparent after .5. 

As Table 2.4 indicates, multiplicative projection pursuit with two projections 

performed better on the training sample than linear discriminant analysis or logis- 

tic regression, but slightly worse than quadratic discriminant analysis. However, 

this was based on the training sample. Since projection pursuit and quadratic 
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discriminant analysis estimate more parameters, they would be expected to ap- 

pear to perform better. To better evaluate the performance of the methods, the 

data was randomly divided into five groups (Table 2.5). Each group was then 

classified according to the model generated by the other four groups combined. 

The results are in Table 2.4. The criterion increases for all methods, with that 

of quadratic discriminant analysis increasing most markedly. The multiplicative 

projection pursuit model obtains the lowest values for both the criterion and 

misclassification error. Of particular interest here is the cross-validated risk for 

projection pursuit with one projection. Because the larger window of observa- 

tions (40% ) was used to compensate for the relative sparseness of the data, it 

could not perform as well as the logistic, which it generalizes. The ability to add 

a second direction, however, allowed this to be overcome and a much better fit to 

be obtained. This is an example where, even for an only moderately sized data 

set, multiplicative projection pursuit is able to model the underlying structure 

more effectively. 
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Table 2.1. Criterion and Misclassification Rates 

for Training and Validation Samples 

Example 1 (Gaussian) 

Method 

Linear Discriminant Analysis 

Logistic Regression 

Additive Projection Pursuit 

One Projection 

Two Projections 

Three Projections 

Four Projections 

Multiplicative Projection Pursuit 

One Projection 

Two Projections 

Three Projections 

Four Projections 

Quadratic Discriminant Analyis 

Criterion Misclassification Rate (%) 

Training Validation Training Validation 

.152 .156 22.4 22.9 

.152 .156 22.4 22.9 

.152 .155 22.2 22.7 

.133 .140 19.8 20.6 

.118 .128 18.0 18.8 

.llO .123 17.4 17.9 

.152 .155 22.2 22.7 

.130 .136 19.0 20.0 

.120 .122 17.8 17.7 

.105 .llO 14.8 15.5 

.096 .lOO 13.2 14.1 

Table 2.2 Discriminant and Logistic Coefficients 

Example 2 (Population Growth) 

Procedure Constant Income Births Coast Urban Deaths 

Logistic Regression -13.45 3.04 4.92 1.63 -1.03 -7.87 

Linear Discriminant -7.62 1.86 3.06 1.33 -0.26 -5.96 
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Table 2.3. Quadratic Discriminant Estimates 

Example 2 (Population Growth) 

Group Income Births 

Low Growth Mean 3.52 1.83 

High Growth Mean 3.95 1.92 

Coast Urban Deaths 

.32 .28 .99 

.64 .56 .88 

Covariance Matrices 

.297 -.048 ,029 .194 .009 .268 -.056 ,050 .129 -.029 

-.048 ,025 .003 -.025 -.008 -.056 .092 -.009 -.020 .006 

.029 .003 .227 .073 .008 .050 -.009 ,240 .017 .006 

.194 -.025 ,073 .210 ,012 .129 -.020 ,017 ,257 -.032 

.009 -.008 ,008 .012 .011 -.029 ,006 .006 -.032 ,021 

Low Growth High Growth 

Table 2.4 Criterion and Misclassification Rates 

for Training Sample and Crossvalidation 

Example 2 (Population Growth) 

Criterion Misclassification Rate (‘36) 

Method Training Crossval. Training Crossval. 

Linear Discriminant Analysis .153 .210 28 34 

Logistic Regression .148 .211 20 28 

Additive Projection Pursuit 

One Projection .148 .238 16 36 

Two Projections .122 .166 16 22 

Multiplicative Projection Pursuit 

One Projection .148 .238 16 36 

Two Projections .112 .151 16 16 

Quadratic Discriminant Analysis .120 .186 14 26 
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State 

Table 2.5 Raw Data for Example 2 

Class Income Births Coast 

Arkansas 
Colorado 
Delaware 
Georgia 
Idaho 
Iowa 
Mississippi 
New Jersey 
Vermont 
Washington 

Kentucky 
Louisiana 
Minnesota 
New Hampshire 
North Dakota 
Ohio 
Oklahoma 
Rhode Island 
South Carolina 
West Virginia 

Connecticut 
Maine 
Maryland 
Massachusetts 
Michigan 
Missouri 
Oregon 
Pennsylvania 
Texas 
Utah 

0 
1 
1 
1 
0 
0 
0 
1 
1 
1 

0 
1 
1 
1 
0 
0 
0 
0 
0 
0 

1 
0 
1 
0 
1 
0 
1 
0 
1 
1 

Set 1 
2.878 
3.855 
4.524 
3.354 
3.290 
3.751 
2.626 
4.701 
3.468 
4.053 

Set 2 
3.112 
3.090 
3.859 
3.737 
3.086 
4.020 
3.387 
3.959 
2.990 
3.061 

Set 3 
4.917 
3.302 
4.309 
4.340 
4.180 
3.781 
3.719 
3.971 
3.606 
3.227 
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1.8 
1.9 
1.9 
2.1 
1.9 
1.7 
2.2 
1.6 
1.8 
1.8 

1.9 
2.7 
1.8 
1.7 
1.9 
1.9 
1.7 
1.7 
2.0 
1.7 

1.6 
1.8 
1.5 
1.7 
1.9 
1.8 
1.7 
1.6 
2.0 
2.6 

0 
0 
1 
1 
0 
0 
1 
1 
0 
1 

0 
1 
0 
1 
0 
0 
0 
1 
1 
0 

1 
1 
1 
1 
0 
0 
1 
1 
1 
0 

Urban Deaths 

0 
1 
1 
0 
0 
0 
0 
1 
0 
1 

0 
0 
0 
0 
0 
1 
0 
1 
0 
0 

1 
0 
1 
1 
1 
1 
0 
1 
1 
1 

1.1 
0.8 
0.9 
0.9 
0.8 
1.0 
1.0 
0.9 
1.0 
0.9 

1.0 
1.3 
0.9 
1.0 
0.9 
1.0 
1.0 
1.0 
0.9 
1.2 

0.8 
1.1 
0.8 
1.0 
0.9 
1.1 
0.9 
1.1 
0.8 
0.7 



Table 2.5 (cont.) 

State Class Income Births Coast Urban Deaths 

Alabama 0 
Alaska 1 
Arizona 1 
California 1 
Florida 1 
Nevada 1 
New York 0 
South Dakota 0 
Wisconsin 1 
Wyoming 0 

Hawaii 1 
Illinois 0 
Indiana 1 
Kansas 0 
Montana 0 
Nebraska 0 
New Mexico 0 
North Carolina 1 
Tennessee 0 
Virginia 1 

Set 4 
2.948 
4.644 
3.665 
4.493 
3.738 
4.563 
4.712 
3.123 
3.812 
3.815 

set 5 
4.623 
4.507 
3.772 
3.853 
3.500 
3.789 
3.077 
3.252 
3.119 
3.712 

2.0 1 0 1.0 
2.5 1 0 1.0 
2.1 0 1 0.9 
1.8 1 1 0.8 
1.7 1 1 1.1 
1.8 0 1 0.8 
1.7 1 1 1.0 
1.7 0 0 0.9 
1.7 0 0 0.9 
1.9 0 0 0.9 

2.2 1 1 0.5 
1.8 0 1 1.0 
1.9 0 0 0.9 
1.6 0 0 1.0 
1.8 0 0 0.9 
1.8 0 0 1.1 
2.2 0 0 0.7 
1.9 1 0 0.9 
1.9 0 0 1.0 
1.8 1 0 0.8 
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CHAPTERTHREE 

REMARKS ON THE MULTIPLICATIVEl MODEL 

$3.1 Generalization to Multiple Classes 

The procedure discussed in Chapter 2 can be generalized to the case of more 

than two classes. Let there be K classes, denoted 1 through K. The model then 

becomes 

l<i<K-1 (3.1) 

As previously, it can be reparametrized by defining {fkm}kz& such that 

fkm(d = hkm(dfKndrh l<k<K-l,l<m<M (3.2) 

and 

Then 

E kglmiil fkm&X) 
( 1 

= 1, 15 m’ 5 M. 

PAxI = 
I-K, fkmMl4 

CfEl ll,M=l fkrn(aLx)~ 
(3.4 

The N variables {Y,} are now replaced by the NK binary variables 

if Y,=k 
otherwise 

l<k<K, l<n<N. (3.4) 

The categorical regression will be applied to these NK variables rather than to 

the Yn’s. 

The criterion that must be minimized is the analog to (2.4): 

lK N so = 37 c c Vn 
k-1 n-l 

)2. (3.6) 
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(The argument of fkm(almxn) has been suppressed.) 

The procedure is again stepwise. At the Mth step, the procedure has already 

chosen {a,}:.; and {fkm}~~$M-l. The approximation & n$==, fi, a 

1 now gives 

. (3.7) 

Each term in k is then minimized separately: 

Ikn - i fk 
m=l 

m)‘=$lvn (>~fkm)‘(,~-{fkm-fkM,’ (3.8) 

The estimate of fkM is found by taking a local linear smooth of Ikn 

with weights v~( nfzi fkm (a),x,))‘. 

~:~:/kmb%nXn) 

As before, this procedure can be viewed as modelling each probability indi- 

vidually as a product of smooth functions 

t?i(x) = i fkm 
m=l 

W-J) 

and then normalizing to account for the small discrepancies from summing to 

one: 

(3.10) 

$3.2. Projection Pursuit as an Extension to Discriminant Analysis 

As mentioned in Chapter 1, the classical method of discrimination is linear 

discriminant analysis. This method is motivated by the assumption that the 

observations come from multivariate normal populations with means differing 
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among groups but with identical covariance matrices. For each class k the mean 

vector is estimated by the group mean xk and the pooled sample covariance 

matrix 3 is calculated. The conditional probability of class k given x is then 

estimated by 

i’k b) = 
,ke-~~-x~)%-‘(x-x~) 

.$c, ,i,-~x-x;rs-l(x-x;) ’ 
(3.11) 

where zi is the prior probability of class i. 

The projection pursuit algorithm can also be applied after a linear discrim- 

inant analysis. Let Fk (x) denote the linear discriminant estimate (3.11) of the 

conditional probability of class k. Projection pursuit could build upon this model 

just as it added projections in the model described before. It would first seek the 

projection al and functions {fkl}fk(=l that minimize 

lK N 
s(ad = r g 5 Vn (Ikn - ik (Xn)fkl(4Xn)12 (3.12) 

k-l n-l 

=~k~~n~~vn(Pk(.,)12(~- > 

2 

fkltaixtt) (3.13) 

So the estimate of fkl would be the local linear smooth of & with weights 
n 

vn(pk (x,))~. If no choice of al reduces S(ar) below a threshhold, the linear dis- 

criminant model is judged adequate for the data. Otherwise, the new projection 

is added to the model, and the procedure continues. At the Mth step it seeks 

aM and {fkM}fzl that minimize 

lK N M-l 2 

SM(aM) = r c c vn zkn - @k (xn) mgl fkm (&xn) fkMta’MXn) . 
k=l n=l 

(3.14) 
Then fkM is taken to be the local linear smooth of _ Ikn 

Pkfxn) n~zijkm(a!,&) 
with 

weights vn(pk (Xn) n:z: fkm ( a’mxn))2, and aM is optimized numerically. The 

estimates ii(x) are then taken to be 

rii tx) = 
Pi(x)II,Ml fim(47+) 

M CL, Pk (XI IIm=l fkmfa’mx) 
(3.15) 
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If the data do come from a Gaussian distribution with equal covariances, the 

procedure will usually not find any projection that would noticeably improve the 

fit. The linear discriminant estimates would be left intact. If major discrepancies 

were present, the procedure would attempt to find projections that would correct 

for these differences. Thus the procedure could be used as an extension and 

safeguard to discriminant analysis, correcting for discrepancies from normality. 

This could also be applied in the same manner to quadratic discriminant analysis. 

As an example of this, consider the first example from chapter 2. Half of the 

500 observations were from a standard four dimensional Gaussian, and the rest 

were from a Gaussian with mean (1.5,0,0,0) and covariance matrix 

1 0 0 0 

C= i 0 4 0 0 
. 0040 

0 0 0 4 I 
The linear discriminant analysis correctly found the shift in the first variable, 

but did not detect the dispersion difference. Its squared distance was .152, with 

misclassification risk of 22.4%. 

Applying projection pursuit after this analysis, the procedure selects as its 

first correcting projection (0, l,O, 0). The function fll is shown in Figure 3.1. It 

takes high values in the center, adjusting the class 1 probability upward there. 

In the tails it lowers the probability, essentially to zero in the extremes. The 

squared distance is reduced to .131 and the misclassification risk to 18.6%. A 

second projection, (O,O,O,l), reduces the distance to .120 and the risk to 17.4%. 

A third, (0,0,&O) brings them down to .llO and 14.4%. The functions are shown 

in Figures 3.2 and 3.3. 

When applied to a quadratic discriminant analysis (the correct model), no 

projection was found that would decrease sufficently the squared distance. Hence 

the quadratic discriminant model would be judged adequate, and no correction 

would be necessary. 
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$3.3. Choice of Minimization Criterion 

In determining which projection best fits the data, a mean squared criterion 

was utilized 

with the weights depending only on the priors rk and the number in each class. 

This is an estimate of the quantity 

/ (Pi(X) - fil (XII2 w4 + / Pl(X)(l - PlbN dJw. (3.16) 

Since the second term in (3.16) does not depend on the estimate br, minimizing 

S minimizes the estimated weighted L2 distance between p1 and fir. 

There are several other possible criteria. Most notable among these is a 

variance-weighted squared distance. Since VUljYn) = pl(Xn)(l-ppl(Xn)), it 

might seem reasonable to instead minimize 

(3.17) 

Such a criterion, however, gives too much weight to areas of very high or 

low probability. If a projection can be found in which a small section of the 

smoothed function is near zero or one, the weight assigned to the observations in 

that section can completely dominate the contributions from other parts. As an 

extreme example, suppose that in one projection, a small region of the range has 

fil (x) = 0. Th en the observations there would receive infinite weight, causing 

all other observations to be ignored, no matter how well or poorly they fit. In 

classification applications, it is much more important for the estimate to differ- 

entiate well in regions of overlap than in areas of extreme probabilities. These 

are the sections where there is the greatest doubt as to the best classification. 

Whether an observation has $1 = .Ol or .OOl will usually not affect its classifi- 

cation; whether it is .45 or .55 is much more likely to. Yet a variance-weighted 
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criterion weights the observation in the first situation much heavier than one in 

the second, increasing the prospect that that projection would be selected. 

As an example, consider Figures 3.4 and 3.5, representing two possible se- 

lections as the first projection in a model. Assume that the observations are 

uniformly spaced between zero and one. The first projection gives quite good 

separation of the groups over most of the range. The second offers excellent dis- 

crimination near one edge, but hardly any elsewhere. Yet the variance-weighted 

criterion would prefer the second, despite its failure on most of the data. (The 

unweighted distances are .156 and .210, while the variance-weighted ones are 

.142 and .120.) This reason is more compelling when using smoothing algorithms 

than when fitting parametric families. The smoother must fit the data locally, 

and not globally as in most parametric models. So it has much more potential 

of finding projections where the function fits very well in small regions. Heavily 

weighting these regions can give poor overall results. 

$3.4. Comparison of the Additive and Multiplicative Models. 

In comparing the additive and multiplicative models over a large number of 

real and simulated data sets, a general pattern developed. When the degree of 

discrimination between groups was small or moderate, both methods performed 

roughly the same. Frequently the multiplicative model fit slightly better, but 

only marginally so. As the separation increased, however, the discrimination of 

the multiplicative model improved much more markedly than did that of the 

additive. 

As an example consider Table 3.2. It contains the validated squared dis- 

tances and risks provided by various simulated Gaussians for each model. The 

first group consisted of 250 four-dimensional Gaussians with mean (O,O,O,O) and 
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identity covariance matrix. The second group of 250 has mean (o,O,O,O) and 

covariance Q 0 0 0 C= 0 x 0 0 i 1 00x0. 0 0 0 x 
As the separation between groups sharpens (larger a and X), the multiplicative 

model improves its discrimination much faster than the additive. 

An extreme case occurs in Table 3.3. Here the two groups are completely 

distinct. Group 1 consists of 250 observations uniformly distributed over the 

four-dimensional sphere 1x1 5 1, and group 2 contains 250 distributed uniformly 

in the annulus 1 2 1x1 5 3. The additive model is unable to lower the misclassi- 

fication rate below 12%, while the multiplicative model is able to do eight times 

better. (The rate does not go to zero in the multiplicative model because the 

smoother blurs somewhat the sharp boundary between the two groups.) 

A closer look at this extreme case may help to explain the performances of 

the two methods. Consider the points A and B in the cross section formed by 

the first two projections (Figure 3.6). In the first step fll(B) = 0, while fil(A) is 

rather large (roughly .7). Both are at the same position in the second projection. 

Considering for the moment only these two points, the multiplicative model’s 

smooth at that position would be 

f12 = 
f&4 &+ fm&q fil(4 

f&V + fi21P-4 = fi21-4 + fi21V3 ’ 
(3.18) 

So the estimated probabilities would be 

f?l(A) 

and 

fi21@) 
ii’ = f:&4 + f;l(B) 

(3.19) 

(3.20) 
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As fil(B) is very small, these approach the correct fiA % 1 and & M 0. Note 

that the effect of B on the second smooth was minimal, because of its light weight. 

Despite its lack of effect on the smooth, its fit is still good, since the small first 

term fil(B) keeps the product near zero regardless of the second term. So, in the 

multiplicative model, if any projection reveals an area of near zero probability, 

the points in that area are downweighted to make little effect on future smooths. 

Also, their already good fit can not be drastically altered by the addition of the 

new projection, since the previous term keeps the product very small. 

In the additive model this downweighting and protection do not occur. Again 

considering only the two points A and B, the local smooth would give the value 

/L2=1-11~)-J11(E). Both points would be equally weighted. The new additive 

fits would be 

Since fll(B) is small, 

$A = 
1 + fil(A) - frl(B) 

2 

liB = 
l+ fu(B) - fu(A) 

2 

fiA” 2 
1+ fll(4 M 35 

liB= 2 
1 - fdA) M .15 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

The fit of A has improved, but that of B has deteriorated substantially. While 

seeking to fit A somewhat better, the procedure was disrupting the good fit of 

B. The multiplicative model avoided disturbing B’s fits, while at the same time 

providing a superior fit for A. When several projections are used (as in this 

example) such effects can accumulate, preventing any net improvement. So in 

data sets where very good discrimination is not possible along more than one 

projection, the two methods yield comparable results. However, when several 

projections provide sharp, complementary distinctions, a multiplicative model 

performs substantially better. No patterns of additive superiority were observed. 
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Table 3.1 Criterion and Misclassification Rates 

for Training and Validation Samples 

Example 1 (Gaussian, Expanded) 

Criterion Misclassification Rate (76) 
Method Training Validation Training Validation 

Linear Discriminant Analysis 

Alone .152 .156 22.4 22.9 

One Projection Added .131 .138 18.6 22.9 

Two Projections Added .120 .122 17.4 17.8 

Three Projections Added .llO .llO 14.4 15.5 

Logistic Regression .152 .156 22.4 22.9 

Additive Projection Pursuit 

One Projection .152 .155 22.2 22.7 

Two Projections .133 .140 19.8 20.6 

Three Projections .118 .128 18.0 18.8 

Four Projections .llO .123 17.4 17.9 

Multiplicative Projection Pursuit 

One Projection .152 .155 22.2 22.7 

Two Projections .130 .136 19.0 20.0 

Three Projections .120 .122 17.8 17.7 

Four Projections .105 .llO 14.8 15.5 

Quadratic Discriminant Analyis .096 .lOO 13.2 14.1 

One Projection Added .094 .lOO 13.0 14.2 

34 



Table 3.2 Validated Squared Distances and Misclassification Rates 

For Additive and Multiplicative Models 

For Various Values of Shift and Dispersion 

Distance Misclassification Rate (%) 

a x Additive Multiplicative Additive Multiplicative 
.5 2 .222 .229 36.4 38.1 

1.0 2 .184 .192 28.1 30.0 

1.0 4 .146 .131 21.1 18.5 

1.5 4 .123 .122 17.9 15.5 

1.5 9 .105 .090 15.1 11.9 

2.0 9 .086 .071 12.2 9.6 

2.0 16 .078 .054 11.2 7.1 

2.5 16 .061 .041 8.2 5.0 

2.5 25 .059 .028 7.8 2.7 

3.0 25 .043 .021 5.4 1.7 

Table 3.3 Validated Squared Distances and Misclassification Rates 

For Additive and Multiplicative Models 

Example 3 (Sphere and Annulus) 

Projection 

0 

1 

2 

3 

4 

5 

6 

7 

Distance Misclassification Rate (%) 

Additive Multiplicative Additive Multiplicative 

.25 .25 50. 50. 

.16 .16 23. 23. 

.12 .09 18. 12. 

.lO .04 15. 5. 

.082 .022 12.4 2.2 

.080 .019 12.2 2.0 

.082 .014 12.2 1.6 

.081 .014 12.2 1.5 

35 



r” 

: 

-T--T-- 



‘1 

37 



- 

38 



I 
I 

II 
I 

I 
II 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I, 
I 

0 4 
c5 

co 
0” 

* d 
n.l 
d 

- 



l-l- 
I 

i 

0 4 

40 



Croatksecfioa Sphere/Annulus 

41 



CHAPTER FOUR 

MULTIPLICATIVE REGRESSION MODELS 

$4.1 Description of the Models. 

The next situation to be considered is that of regression. N random vectors 

are observed: 

(Yl7 Xl), v‘i,x2), . . ., KN, XIV), (4.1) 

where xi is a p-dimensional vector of variables (called predictor variables) and Yn 

is the univariate response. Regression analysis seeks to estimate the conditional 

expectation of Y given x (called the response surface) based on the observed 

sample. 

Various methods of regression are in use. Most assume that the response 

surface is a member of some specified parametric family. The parameters of the 

family are then estimated by the regression procedure, either algebraically or 

numerically. Most common is linear regression, where the conditional expectation 

is modelled as linear in some combination of the predictors: 

E(Y 1 x) = dx + 6. (4.2) 

When correctly specifiying the underlying parametric family, such methods per- 

form very well. When the family is incorrectly chosen, erroneous conclusions can 

result. 

To avoid the dangers caused by misspecifying the parametric family, vari- 

ous nonparametric methods have beeen developed. These techniques relax the 

assumptions about the response surface. One of these methods is projection 

pursuit regression (Friedman and Stuetzle, 1981). It models the conditional ex- 

pectation as the sum of functions of linear combinations of the predictors: 

E(Y I 4 = El f&434. (4.3) 
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The procedure is similar to that described in chapter 1 for categorical regression. 

For any projection a, an unweighted local linear smooth of Y, versus a’x, gives 

the estimate of the smooth function for that projection. A mean squared error 

criterion 

1 N 
(4.4) 

is evaluated. The projection that minimizes S(a) is found numerically. That 

projection and the corresponding function are taken to be al and fl. The resid- 

uals Y, - fl(aix,) are then subjected to the same procedure. In this way a new 

projection a2 and function f2 are found. The new residuals are then processed, 

and the procedure repeats until no substantial decrease in S is obtained. In this 

manner the regression surface is estimated by a sum of smooth functions. 

Such an additive model can work quite effectively for many response surfaces. 

For others, the structure can be better approximated in other ways. In seeking 

to most accurately estimate the surface, various other possible models must be 

explored. 

One possibility is a multiplicative model. Y is assumed to depend not on the 

sum of smooth functions, but on their product: 

y= 6 fm(&x)+t. (4.5) 
m=l 

There are now several approaches. First, logarithms may be taken and additive 

regression applied to logy. This makes the implicit assumption that the magni- 

tude of the error distribution given x is proportional to nz=, fm(&x): 

M 

’ = fl fm(a’,x) 7, 
m=l 

(4.6) 

where the conditional distribution of the variable 7 does not depend on x. Then 

1OgY = E lOgfm(&X) + lOg(l+ 7). 
m=l 

(4.7) 
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So the additive procedure can be applied to estimate am and logf,. The mini- 

mization criterion has become 

SC n-l 
1% Yn - E log fm(ah))2, 

m=l 
(4.8) 

rather than the least squares criterion A& (Yn - Y,)2. This accentuates the 

importance of differences in the smaller values of Y and deflates that of those 

in the larger values. Such an approach is reasonable, however, if the error is 

proportional to Y. 

A second approach retains the least squares criterion. Rather than using 

residuals like the additive model, it employs multiplicative residuals. At the Mth 

step, {am):.: and {fm>f..: h ave been previously determined. For any given 

choice of aM, that fM is sought that will minimize 

The estimate of fM is a local linear smooth of nfzi~ckx,l (the multiplica- 

tive residual-the ratio of Y, to the previous step’s estimate Y,) with weights 

(II:=: fm(a’mxn))2. Again, the choice of aM is determined by numerical opti- 

mization. So the procedure is similar to that used in additive projection pursuit, 

except that the residuals are obtained through division, and the local linear 

smooths are weighted. 

The observed Ya’s must be positive for this approach to be valid. If they take 

on both positive and negative values, the estimate of fm may be zero in places due 

to averaging. In those places, no further improvement would be possible, since 

the model always sets the product to be zero. Hence this approach is restricted 

to positive response values. 

In the modelling of response surfaces, the matter of equivariance arises. The 

additive model is both location and scale equivariant in Y. Altering either or 
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both will not affect the estimates or fit, beyond the appropriate adjustments to 

location and scale. The multiplicative model, however, is not location equivariant. 

Changes in location can drastically alter the function estimates and the fit of 

the model. To take this into account in obtaining the best fit, add a location 

parameter 

Y=C+ i fm(&X)+C. (4.10) 
m=l 

To maintain positivity of the functions f m, c will be restricted to the range 

(--00, min Y,). This model is location and scale equivariant and allows the mod- 

elling of data where the range of Y is not strictly positive. 

The estimation procedure is again stepwise. The first step is the same as 

for additive models: finding the projection al and function fl that minimize 

&CL1 Wn -fi(a~XnH2. At the second step, the best estimate of c is sought 

along with those of a2 and f2. For any chosen values of c and a2, the estimate 

of f2 is obtained. The choice of c and ap are determined through numerical 

optimization, as described in the appendix. 

To obtain the choice of f2, the procedure mimics what would have taken 

place had c been known rather than estimated. Had it been known, the previous 

method (4.9) could have been applied to {Yn - c}. The estimate of fl would 

have been c less than the function fl obtained in the first step here. Then the 

residuals would have been *, and the quantity to be minimized would 

have been 

(4.11) 

So the estimate of f2 would be the local linear smooth of * with weights 

(fi(aiXA -d2. 

At succeding steps (say, the Mth step), aM and fM are estimated, and c is 

reoptimized as explained in the appendix. For specified 8M and c, fM is selected 
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to minimize 

(4.12) 

(The argument of fm(a’,xn) has been omitted.) So fM is estimated by a local 

linear smooth of Y,-c 
(/l(a:x,)-c)n~~~f,(~x,) 

with weights (( fi-c) nfgi fm). The 

estimates of aM and c are selected through numerical optimization. 

$4.2 Numerical Examples. 

As an example, consider the following simulated data set. The four explana- 

tory variables are uniformly distributed on (0,l) and Y = 12 + e5’2 sin 7rr21+ z3 + 

(1 + ~4)~ + c, where 6 is distributed as a normal with mean 0 and variance 4. This 

is a mixture of additive and multiplicative factors, with the multiplicative one 

(e52s sin 7~1) being the dominant factor. 600 observations are generated, and a 

smoother using 30% of them is employed. 

The first projection chosen is (O,l.O,.l,O). The function (Figure 4.1) resembles 

the true underlying exponential (with a constant added), except that the upper 

tail does not rise as quickly as it should. This is the same projection and function 

as found by the additive model. The mean squared error is reduced 75%. 

For the second projection, the procedure selects (l,O,O,O), along with a value 

of c = 9.29. (It does not choose the correct value of 12, since c can not exceed 

minY,, M 9.5.) The function (Figure 4.2) resembles the true sine function that 

it is estimating. It does not approach zero at the extremes due to linearization 

by the smoother. The scale is larger that that of a sine curve, but this does not 

affect the fit. The first term was scaled down by the same factor, making the 

product correct. The present model is 

Y = c + (fl - c)f2. 
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Subtracting c from fl causes it to resemble more closely the true exponential 

than does Figure 4.1. The mean squared error drops drastically, accounting for 

89% of the remaining variance. 

The true multiplicative portion of the data’s structure has now been modelled. 

What remains is essentially additive. Despite this, the procedure is still able to 

improve the fit by adding another multiplicative term. It selects (.24,.10,.96,.11). 

This captures most of the remaining variance due to x3. The additive effect (a 

straight line) is reproduced rather well as a multiplicative effect here (Figure 4.3). 

The value of c is tuned slightly to 8.39. The squared error drops to 14.3, this 

term accounting for 39% of the remaining variance. 

Two additional projections, dealing mainly with xl and 22 reduce the squared 

error to 12.3 and to 8.3 (Figures 4.4 and 4.5). The true variance when the 

underlying structure is exactly known is 4.00. 

Table 4.1 gives the mean squared errors for the multiplicative and additive 

models, and also for a strict multiplicative model with no offset c. The additive 

model never does as well as the multiplicative, with mean squared errors four 

times as large. The strict multiplicative model performs somewhat better than 

the additive. It falls far short of the multiplicative with offset, however. To con- 

firm these results, Table 4.2 provides the mean squared errors for the prediction 

of 10,000 additional observations which were predicted using the model obtained 

above. Results agree quite well with the previous ones. 

The next example comes from the manufacture of semiconductors. Data from 

262 tested chips are being analyzed to determine the effect of various parameters 

on the electrical properties of the semiconductors. The independent variables, 

all rather technical to the field, are: 

x1 - gain measurement for an enhancement device. 

22 - current flow from drain to source in an N-depletion device. 

x3 - gate width (length between the N+ regions on a die). 

x4 - ohm per square area on a four micron device. 
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x5 - ohm per square area on a N+ phosphorous deposition device. 

26 - ohm per square area on a polycrystalline device. 

x7 - threshhold voltage of an enhancement device. 

The response variable is the time required to turn on the chip selectll) . 

The data is initially well fit by by a linear regression, as the first step of 

projection pursuit indicates (Figure 4.6). The mean squared error drops to 4.46 

with this projection, down from 272.78. Somewhat further reductions are pos- 

sible by adding additional projections. In the multiplicative model, a second 

projection (Figure 4.7) reduces the mean squared error to 3.98. The projection 

is (O,O,O,O,O,O,l) with c chosen to be 48.85. When the enhancement device had 

a low threshhold voltage, the function takes smaller values. It climbs sharply as 

the threshhold increases, and then begins a gradual descent. (When observing 

Figure 4.7, it appears as though the variation in f2 is quite small. However, a 

change of .05 in the value of f2 brings about a change of .05( fi - c) or up to 3.5 

in the fit of Y.) 

The third projection chosen is x3--the length between N+ regions on the die 

(Figure 4.8). As that length increases, the function climbs, levels out and climbs 

again. The value of c changes slightly to 48.71. The mean squared error drops 

to 3.41, a decline of 13%. 

Table 4.3 gives the training sample mean squared errors for both the addi- 

tive and multiplicative models. It also gives the crossvalidated results when the 

sample was randomly divided into ten groups, with each group’s fit predicted by 

the remaining nine. The multiplicative model performs somewhat better here, 

though not nearly as spectacularly as in the previous example. 

IllBeumer-Browner (1981) 



54.3. Comparison of the Additive and Multiplicative Models 

After comparing the methods on various real and simulated data sets, the 

results are not completely clear. On many data sets, the two methods provide 

comparable results. When they differ, the additive tends more often to be the 

superior. The multiplicative, however, performs better in some of the cases. One 

particular situation where a multiplicative model performs superiorly is when a 

significant portion of the data lies near the minY, (no long lower tail). In that 

case, the multiplicative model will frequently set c to be close to that minimum 

(effectively setting the base to be 0). It can then easily send regions of the data 

to that minimum by setting the function to be zero in that area. (This is similar 

to the case in categorical regression, where the data are restricted to (O,l), with 

areas where PI(X) is close to 0.) Beyond this situation, no patterns have developed 

that delineate when either method performs better than the other. 
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Table 4.1 Training Sample Mean Squared Errors 

For Additive, Multiplicative and Strict Multiplicative Models 

Example 4 

Projection Multiplicative Additive Strict Multiplicative 
0 804.37 804.37 804.37 

1 204.75 204.75 204.75 

2 23.45 125.17 36.97 

3 14.34 59.14 31.30 

4 12.30 52.29 29.06 

5 8.30 38.94 26.92 

Table 4.2 Validated Mean Squared Errors 

For Additive, Multiplicative and Strict Multiplicative Models 

Example 4 

Projection Multiplicative Additive Strict Multiplicative 
1 225.76 225.76 225.76 

2 29.68 148.87 45.08 

3 15.72 71.20 36.58 

4 14.21 62.42 35.15 

5 8.62 46.39 31.98 
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Table 4.3 Training and Crossvalidated Mean Squared Errors 

Example 5 (Semiconductors) 

Projection 
1 

2 

3 

Training Crossvalidated 

Additive Multiplicative Additive Multiplicative 
4.46 4.46 5.47 5.47 

4.00 3.98 5.40 5.02 

3.69 3.41 5.26 4.49 
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FIGURE 4.7. FUNCTI0N F0R SEC0ND PROJECTION. 
EXAMPLE 2, CHAPTER 4 (SEMIC0NDUCTORS) 

PR0JECTI0N = X7 
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FIGURE 4.8. FUNCTI0N F0R THIRD PR0JECTI0N. 
EXAMPLE 2, CHAPTER 4 (SEMICIZNDUCT0RS) 

PR0JECTI0N = X3 



APPENDDL 

NUMERICAL OPTIMIZATION TECHNIQUES 

In this appendix the numerical optimization techniques used in the regression 

and categorical regression are discussed. The method used is a version of the 

Davidon-Fletcher-Powell algorithm. This method is a quasi-Newton method 

and requires the first derivatives of the function being minimized. The procedure 

approximates second derivatives and uses the approximations as in a Newton 

optimization. 

The method is iterative. Let gi denote the gradient vector at the ith step, 

and G; the Hessian matrix at that step. If Gi were known, the Newton method 

would seek the optimal a by iteration, setting 

ai+l = ai - SiGT’gi, (A4 

where si is the step size at step i and ai is the estimate of a at that step. Since Gi 

is not known, the method approximates GT’ by Hi, where the approximations 

improve as the minimum is approached. Then 

ai+l = ai - siHig;e (-4.2) 

Let the starting estimate of Gr’ be IIu = I*, the identity matrix. At each step 

the new estimate a;+1 is obtained using (A.2). If the difference between the cri- 

teria for ai+l and ai is below a threshhold, the procedure halts. Otherwise, new 

first derivatives gi+l are calculated, and an approximation to G$ is obtained 

as 

Hj+l = Hi - SiHigidi Hi(gi+l- gi)(gi+l- gi)‘Hi 
dHi(Bi+l - Bi) - t&+1 - giYHi(&+l - gi) ’ 

(-4.3) 

From these a new estimate ai+ is obtained. This procedures repeats until con- 

vergence is reached. (Additional details can found in the book by Kennedy and 

Gentle( 1980).) 
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For this method the first derivatives of the function to be minimized are re- 

quired. They are not available in exact form, but can be approximated using a 

method similar to that proposed by Buja and Thisted (1982) for additive projec- 

tion pursuit regression. For categorical regression, at the Mth step, the function 

to be minimized over aM is 

lK N 
S(aM) = gk7, n&l “&kn - hnfkM(aM, a’Mx?d)2, (A.41 

where g(x) = @$.~f&amz). 

to emphasize its dependence on 

derivative with respect to aMi is 

as 
- = - ; k$l n.l 2hnvnMm 
daMi 

(Another argument has been added to fkM 
aM directly as well as through a’Mxn.) The 

- hnfkM(&Xn)) 

There is no obvious way of evaluating the term “$r,,,?Yz), which is the change 

in the smooth at a fixed position z as the projection changes. This term will be 

ignored. Its effect will be taken to be negligible compared with that of the second 

term. The second term is the local slope of fkM, which is the slope of the local 

line fit in the neighborhood of the point. So the ith element of the gradient can 

be approximated by 

These approximations are substituted for gi in the procedure. The starting value 

for the iteration to find aM is determined by calculating the criterion s(aM) for 

each major axis (0,. . . ,O, 1,0, . . . ,O). The one with the lowest value is selected 

as the starting point. 

For the multiplicative regression model, both the derivatives $$ and $$ are 

needed. Let h, = I-IFzi fm(ahx,). Then 
* 

s = ; c (m - C - (fl - c)hnfM(aM, ‘2, a’Mxn))2. (A.71 
n-l 
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(The arguments of fM have been expanded to emphasize the dependence on aM 

and c.) The derivative with respect to ai is 

f3S 
-=-an$(fl -c)h,(Y,-c-(fl-C)(h,)fM(aMx,)) C3ai 

afM(e, c, “Mxn) 
ae 

+ afMbM, C, 2) 
az 

Xni a (A.8) 
B=aM z=a),x, 

afM(w&xn) . Again, aB 1s ignored, and afdaM,c,z) 
dt z=dMx, is the slope of the local 

regression line used in the local linear smoother. The derivative with respect to 

c is 

a&S 
ac- 

- - ingl (yn - c - (fi - ChfiM@.@n)) 

fM(a’&n) + C afM(aM, cj “Mxn) 
& (A4 

The factor afdahf&&x”) f 
dc 1s ignored due to computational difficulties. This 

leaves 

dS 

xc= 
-;n’&(~-c-(frc)h f ( n M a’Mxn)) (I- hn fM@Mxd. tA.lO) 

These approximations are used for the slopes in the gradient search. Starting 

values are obtained similarly to the categorical regression case. For the second 

projection, the criterion for each major axis is calculated with each of several 

selected values of c (for example, min Yn - h( interquartile range of Y)). The 

combination that provides the smallest value of the criterion is selected as the 

starting point. For succeeding projections, the starting value of c is taken to be 

the value obtained at the preceding step. This value is used with each major axis 

to find the one that gives the smallest squared distance. 

The initial implementation of projection pursuit procedures utilized a Rosen- 

brock optimization (Rosenbrock, 1960). Methods based on the gradient are con- 

siderably faster computationally. The methods described here reduce the com- 

putational time required by thirty to eighty percent. 
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