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ABSTRACT 

This paper reports on work in a neu branch of research in statisti- 

cal methods: applications of interactive computer graphics. I 

describe several programs uritten for the Orion I workstation, an 
-- 

experimental computer graphics system built at the Stanford Linear 

Accelerator Center in 1980-81. These programs demonstrate new methods 

for data analysis made possible by advances in microprocessor and com- 

puter graphics technology. These methods make extensive use of color, 

real-time motion, and interaction to discover structure in many-dimen- 

sional data. Two approaches to graphical analysis of many-dimensional 

data are discussed in detail: interactive projection pursuit and 

simultaneous, mu1 tiple views. 
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Chapter 1 

INTRODUCTION 

This paper reports on work in a new branch of research in statisti- 
cal methods: applications of interactive computer graphics. The con- 
crete result of--this research is several programs written for the 
Orion I workstation, an experimental computer graphics system built at 
the Stanford Linear Accelerator Center in 1980-81. These programs are 
examples of some new methods for data analysis made possible by 
advances in microprocessor and computer graphics technology. These 
methods can be used on relatively inexpensive and soon to be widely 
available machinery (comparable to the next generation of personal 
computers). 

I discuss my programs and the machinery in the Orion I workstation 
(which is not my work) in some detail. These details are not impor- 
tant in themselves, but they should illustrate how interactive graph- 
ics can contribute to statistics. The collection of hardware and 
software in Orion I is not a complete or definitive answer to any- 
thing. It is an example that, if successful, should suggest direc- 
tions for future work. 

In the course of this paper, it should become clear that there are 
differences between research on graphical methods and other, more 
mathematical branches of statistical research. Because the goal of 
research in graphical methods is to invent new ways of looking at 
data, the problems to be solved are more primitive than those 
addressed in some other parts of research in statistics. 

In Chapter II, I suggest some general principles for applications 
of interactive graphics in statistics. 

In Chapter III, I describe the Orion I workstation. Though I have 
made no significant contribution to the design or construction of the 
hardware in Orion I, I discuss it in some detail. I do this because, 
in this branch of statistical research, unlike most others, the physi- 
cal machinery has a critical influence on what methods are possible or 
impossible, on what methods work well or poorly. 

Chapter IV describes a "user model" for my programs and some basic 
operations for exploring many-dimensional data. 
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Chapter V discusses interactive projection pursuit methods, specif- 
ically projection pursuit regression. 

Chapter VI describes a method for looking at many-dimensional data 
called 'Multiple Views'. 

Chapter VII lists a number of areas for future research. 

Because it is impossible to do justice to an interactive graphics 
system with a verbal description, we are making two films, which dem- 
onstrate some parts of the programs discussed below. The first film, 
called "Exploring Data with the Orion I Workstation", shows how some 
of the more basic operations can be used to do clustering. It corre- 
sponds very roughly to chapters IV and VI. The second film, called 
"Projection Pursuit Regression with the Orion I Workstation", corre- 
sponds to chapter V. 



Chapter 2 

GENERAL PRINCIPLES 

In this chapter I relate some principles about applications of com- 
puter graphics to statistics. Because this is a fairly new field of 
statistical research, I feel it is worthwhile to discuss it in general 
terms, before getting to the details of my own work. To begin with, I 
will describe the kind of statistical problems that computer graphics 
can help solve. Then I give some examples of graphical methods. The 
first are simple examples for one-dimensional data; then I outline 
three approaches to many-dimensional data. 

2.1 DESCRIPTION 

Using graphical methods in statistics means looking at pictures of 
data. So it is no surprise that the purpose of graphical methods is 
primarily descriptive. Graphical methods are most useful for illumi- 
nating features of a particular data set; they are less useful for 
making formal generalizations. Graphical methods are subjective; the 
results of a graphical method depend on an individual's perception and 
interpretation. 

The basic goal of statistical 
and see what is going on". Descr 

1. Exploration 

Good description should 

description is to "look at the data 
iption has two parts: 

reveal any interesting features of a 
data set. We especially want to be able to discover unantici- 
pated kinds of structure in data. 

2. Summary 

We need to report to others what we discover through explo- 
ration. It is often important to have concise summaries of 
particular aspects of data. It is also often important for 
summaries to be objective; in contrast, useful techniques for 
exploration tend to be subjective. 
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Since the time of R.A. Fisher, most statistical research has 
concentrated on inference. An inference is a generalization from a 
given data set to some larger population (real or hypothetical) from 
which the data set is presumed to be a sample. Statistical inference 
makes generalizations based on a model. Models used in inference usu- 
ally have a deterministic part* that models structure in the popula- 
tion, and a probabilistic part, that models the way the data se.t is 
sampled from the larger population. 

Inference is most powerful at answering specific questions about 
the relationship of a data set to a particular model. If prior knowl- 
edge about the data is limited, it may be difficult to construct a 
reasonable model-or to choose the right questions to ask. 

Desbription solves more primitive, and fundamental problems than 
inference. Exploration and summary may be ends in themselves; some 
other goals are: 

1. Informal Generalization. 

Description concentrates on features of the particular data , 
set at hand; we do not draw (formal) conclusions about larger 
populations. Sometimes informal generalizations, based on com- 
mon sense8 are either good enough or the best we can hope to 
do. 

2. Constructing models. 

Inference relies on models; good modeling requires looking 
at data. 

3. Checking models. 

Even when we think we have sufficient prior knowledge about 
our data for inference to be appropriate, it is necessary to 
check the data for deviations from our assumptions. It is 
especially important to be able to detect unexpected kinds of 
deviations. 

Methods for description can be sorted out into numerical methods, 
passive graphical methods, and interactive graphical methods. To 
illustrate the nature of these methods, I take a simple example from 
Efron C183: 

Consider two sets of one-dimensional data: A = { 94, 197, 16, 38, 
99, 141, 23 1 and l3 = 1 52, 104, 14t, 10, 50, 31, 40, 27, 46 1. These 
numbers are counts from an experiment on mice; set A is the treatment 
group; set B is.the control group. I next consider ways to compare 
these two groups of numbers. 
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A traditional approach would be to model each set as a collection 
-. of independent, identically distributed observations from some under- 

lying distribution. Comparing the two sets of numbers would be done 
by making inferences about the two underlying distributions. For 
example, if the two distributions are assumed to be Gaussian, a two- 
sample t-test would be an appropriate comparison. 

With the limited information presented here, we cannot chosse rea- 
sonable,distributions to model the two samples. In fact, we cannot 
even assume that the numbers represent independent observations. 

However, we can still ask for comparisons and other. descriptions of 
the two sets of.numbers. 'For example, we might be using this small 
data set to help construct a model for inference in later experiments. 

2.1.1 Numerical methods 

Numerical methods are particularly appropriate as concise and 
objective summaries of particular aspects of data. The quantities 
used are often closely related to methods for inference, so numerical 
methods have a natural connection to both formal and informal general- 
izations. Numerical descriptions are also useful for detecting 
expected types of deviation from a model. 

A traditional way of comparing the two sets of numbers is: Compute 
the mean and the standard deviation for each. The mean and the stan- 
dard deviation are numerical summaries of the location and the spread 
of each set of data. The mean of set A is 87; the standard deviation 
is 62. The mean of set B is 56; the standard deviation is 40. So set 
A seems to be larger and more spread out than set 8. 

Arguments for this recipe appeal to notions of optimality when the 
numbers in the data sets are realizations of independent, identically 
distributed Gaussian random variables. These arguments are unconvinc- 
ing when i.i.d. Gaussian is not a reasonable model. 

An alternative recipe takes the median as a typical value for each 
sample and the median absolute deviation from the median (MAD) as a 
measure of variability. The median of set A is 94; the MAD is 56. 
The median of set B is 46; the MAD is 15. Again, A seems larger and 
more spread out than B. This recipe has advantages when we expect 
certain kinds of deviation from the Gaussian model. 
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For a particular probability model and a particular notion of 
optimality there will usually be a best summary. No summary will be 
best for all models and all notions of optimality, though some may do 
well enough in a large number of cases. 

For the purposes of description, the performance of summary under 
any particular model is not the most important issue. If we’ are 
interested in illuminating features of a single data set, then notions 
of optimality based on probabilty models for the origin of the data 
may not be so important. The two recipes mentioned above are very 
useful, even when we know that the appropriate underlying models do 
not hold. The strongest advantage that the mean or the median have 
over more "robusP alternatives is that they are very simple. We can 
understand what the mean and the median tell us about the data easi.ly. 
It is often difficult to understand more complicated, though more 
"robust" and "efficient" alternatives. 

2.1.2 A qraohical method: the histosram 

An old graphical tool for description of univariate data is the 
histogram C71. The histogram is an excellent tool for both explora- 
tion and summary. Looking at a histogram, we easily see many features 
of the data set, such as skewness, multiple modes, or outliers. For 
any single feature, there is usually be good numerical summary, such 
as the third moment of the sample for skewness. However, many numer'l- 
cal summaries would be required to capture some small fraction of the 
information present in the histogram. In addition, the histogram cap- 
tures the "big picture" in a way that cannot be reproduced by any num- 
ber of numerical summaries. 

Looking at the two histograms in fig. 1 tells us the same thing 
that the numerical descriptions did: set A seems larger and more 
spread out than B. We also immediately see several other things that 
were not captured by the numerical summaries. Both sets of numbers 
are skewed (which is not surprising, since they are counts). Also set 
A seems to be bimodal. 

Of courser with data sets of size 7 and 9, we do not take these 
indications of shape very seriously. If we had, say, 70 and 90 obser- 
vations instead, it might be worth trying to interpret and understand 
the indication of bimodality in set A, the treatment group. 

Numerical and graphical methods are not competitive; they are com- 
plementary. Graphical methods are not tied closely to any assumptions 
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Figure 1: Comparing two samples with histograms 
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or underlying model of the data. They expose data to human 
perception, which makes it possible to detect unexpected kinds of pat- 
terns. Interpretation of a graphical description is subjective. In 
contrast, numerical descriptions can be very efficient at summarizing 
the relationship of data to a model, when that model is appropriate. 
Numerical methods are objective; the mean is the mean for anyone. 

The distinction between subjective and objective methods for data 
analysis is important. Each has its place. In scientific research, 
subjective methods are essential for discovering and interpreting 
unexpected features of data. On the other hand, if, for example, the 
results of analysis are used to determine public policy, it is neces- 
sary to have methods which are free from personal bias and can be 
agreed to by individuals with conflicting interests. 

2.1.3 Interactive sraphics 

Our research with Orion I emphasizes interaction and real-time 
motion graphics. These are particularly useful for the exploratory 
part of description. We are developing methods for discovery, under- 
standing, and summary of "structure" in many-dimensional data. Since, 
in general, we have little reliable prior knowledge about our data, we 
are especially interested in methods that allow us to discover unanti- 
cipated kinds of structure in data. 

This is where interactive graphics has much to contribute. First 
of all, computer graphics can quickly expose many different views of 
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data to human perception, so that the data analyst can detect many 
kinds of patterns in the data. The analyst can interpret apparent 
patterns using his knowledge of the context of the problem in which 
the data arose. Also, the analyst can select directions for further 
exploration using results obtained so far. Problems- that are 
extremely difficult to solve by automatic and objective methods often 
become trivial with interactive methods -- because of the addition of 
human intelligence. Interactive graphics combines human talents for 
perception of patterns and judgement using the full context of a piob- 
lem with a machine's ability to do rapid and accurate computation. 

I next give some examples of how interactive graphics can be 
applied to one-dimensional data, using the histogram. Unfortunately, 
the histogram is such a good tool that the methods I suggest are,. at 
best, only slight improvements. However, they should indicate the 
general nature of interaction. 

2.1.3.1 Variable bin size 

To draw a conventional histogram, we must choose a bin size. This 
is usually done by trial and error. On an interactive graphics 
machine we can provide a dial whose setting determines the bin size. 
Then we can choose the bin size by turning the dial and watching the 
histogram change as the bin size changes. The presence of the dial 
makes it easy to choose a pleasing value of the bin size. More impor- 
tantly, watching the histogram change in a continuous way as we turn 
the dial lets us see aspects of the data set that are not captured by 
any single histogram. 

2.1.3.2 Re-expression 

An issue that arises in description of univariate data is re-ex- 
pression [9,46,421. Put very simply, we may want to look at histo- 
grams of simple functions, or re-expressions, of the original data. 
An interactive graphics system can help us choose a re-expression. 

A convenient and widely discussed class of re-expressions is by 
powers. That is, if our original data set-is {xi), then we look at a 
histogram of {x ia} for some real number, a. (It is standard practice 
to replace xi' by log(Xi) when a = 0.1 

On a graphics machine we can provide a dial that controls the valtie 
of a. We can then watch the histogram change in a continuous way as 
we turn the dial and change the value of a. As with the variable bin 
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size, this not only provides a way of choosing a value of at but also 
shows us more about the data than any single, static view. 

2.2 GRAPHICAL METHODS m EUCLIDEAN OATA 

We look at univariate data with histograms. 

We look at two-dimensional data with conventional scatterplots. In 
conventional sea-tierplots, observations are represented by points, 
which are plotted at horizontal and vertical positions corresponding 
to the values of two variables. 

To look at three-dimensional data, we draw a three-dimensional ver- 
sion of the scatterplot. Real-time motion graphics makes it possible 
to draw pictures that appear three-dimensional. We subject the data 
to repeated small rotations and display the projection of the rotated 
data as points on the two-dimensional screen. If we can compute and 
display rotations fast enough 010 per second) then we get an illusion 
of continous motion. Apparent parallax in the motion of the points 
lets us see the point cloud as a three-dimensional object. 

There is no completely satisfactory method that lets us look at 
more than three variables at a time. Three basic approaches to view- 
ing many-dimensional structure are being studied with Orion I. They 
are: 

1. Higher-dimensional views 

2. Projection Pursuit 

3. Multiple Views 

2.2.1 Hither-dimensional views 

The idea here is to represent as many variables as possible in a 
single picture. 

A simple way to add dimension to a picture is to use color. We 
start with a three-dimensional scatterplot. We add a fourth variable 
to the picture by giving each point in the scatterplot a color that 
depends on the value of a fourth variable. With an appropriately cho- 
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sen color spectrum, we easily see simple relationships between the 
fourth variable and position in the three-dimensional space. Our 
ability to perceive distinctions in color is not as precise as our 
ability to perceive position in space; we should expect to miss subtle 
or complicated relationships between a color variable and three posi- 
tion variables. Color works best for a discrete variable that has on 
a small number of possible values. 

Other tricks let us increase the dimension of a picture. For exam- 
ple, we can represent each observation in the scatterplot by a circle, 
rather than by a simple point. Then the radius of the circle can rep- 
resent the value of a additional variable. 

In a simple scatterplot, observations are represented by feature- 
less points. We add dimension to the picture by replacing points with 
objects that have features, such as color, size, and shape. These 
features represent variables in addition to those represented by a 
point's position in the scatterplot. These "featurefull" objects are 
sometimes called slyphs C32,471. 

With each additional dimension, the picture becomes more compli- 
cated and difficult to interpret. We need experience to determine 
successful ways of adding dimension and to understand the limitations 
of each method. 

2.2.2 Projection Pursuit 

The basic problem with adding dimension to a single picture is that 
the picture quickly becomes impossible to understand. The alternative 
is to restrict our picture to a few (<= 3) dimensions and then select 
low-dimensional pictures that capture interesting aspects of the mul- 
tivariate structure in our data. This is the basic idea of projection 
pursuit. 

Projection pursuit is discussed in detail in chapter V. 
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2.2.3 Multiple Views 

Usually no single low-dimensional view will capture everything that 
is interesting about a many-dimensional data set. Therefore we will 
need to look at several views of the data. It may be possible to 
understand more about the many-dimensiona 
look at several views simultaneously and 
views in some way. 

For example, draw two two-dimensiona 
Then connect points corresponding to the 

structure in the data if we 
connect the contents of-the 

scatterplots side by side. 
same observation by drawing 

them in the same--color. With a good choice of a coloring scheme, we 
can see how structure in one scatterplot maps into the other scatter- 
plot. The coloring scheme is best determined interactively. 

Multiple views are discussed in more detail in chapter VI. 

2.3 STRUCTUREI AND SHAPE 

The principal goal of the methods discussed above to discover and 
understand structure in many-dimensional data. What we mean by struc- 
ture is any apparent pattern or interesting feature in a graphical (or 
numerical) description of data. Structure is a subjective perception. 
Quantitative measures of specific aspects of structure can be very 
useful, but a small number of quantitative measures cannot capture all 
important aspects of structure. It is also very difficult to choose 
quantitative measures of structure that respond appropriately in unex- 
pected circumstances, 

Suppose all the variables in our data set are reasonably repre- 
sented by real numbers. We call this type of data eyclidean. This 
type of data characterizes classical multivariate analysis. For 
euclidean data, structure usually refers to the "shape" of the data 
set in the many-dimensional data space. 

In classical multivariate analysis, data is usually summarized by 
the mean vector and the covariance matrix. The mean vector and covar- 
iance matrix completely describe the position, orientation, and eccen- 
tricity of ellipsoidal shapes. However, they cannot describe or 
detect any more complicated shapes. In our experience with Orion I, 
we have seen no data sets whose shape is well described by ellipsoids. 
In fact, a data set whose shape can be accurately summarized by a mean 
vector and a covariance matrix is one that shows little interesting 
structure. 
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Two simple examples of non-ellipsoidal shape are: 1) the observa- 
_ tions are clustered and 2) the observations lie close to a lower-di- 

mensional surface or manifold. It is, in addition, easy to imagine 
non-ellipsoidal shapes that cannot be classified as either clusters or 
manifolds. 

2.3.1 '& example .a 

The following--simple type of structbre is illustrated in our films: 
"Explaring data with Orion I" and "Interactive projection pursuit 
regression with Orion I". 

A typical thing that we would like to know about a data set is the 
Does the data set separate 'in a natural way into distinct 

is is not exactly the same thing as clustering.1 
following: 
groups? (Th 

In our fi lnrs, we look at a data set presented by D. Harrison and 
D.L. Rubinfeld C35,61. They measured 14 variables for each of 506 
census tracts in the Boston Standard Metropolitan Statistical Area. 
Harrison and Rubinfeld were concerned with the dependence of housing 
value (represented by the median value of owner-occupied houses) on 
air pollution (represented by nitrogen oxide concentration). The 
remaining 12 variables measured other quantities thought to influence 
housing value, such as crime rate, average number of rooms, etc. 

In the exploration film, we partition the data set into a few natu- 
ral subsets, based on observed structure. In our second film, on pro- 
jection pursuit regression, we look at the dependence of housing value 
on the other thirteen variables. The regression film builds on the 
results of the explore film. 

To study the dependence of housing value, we fit a model that pre- 
dicts housing value as a function of the thirteen predictors. Before 
fitting any model, we must consider whether it is appropriate to fit 
one model for all the data. If the data set separated in a natural 
way into distinct and internally homogeneous groups then we would want 
to consider fitting different regression models for each group. 

Most clustering algorithms rely on a notion of distance in the data 
space to partition a data set into isolated clumps. Observations are 
considered similar if they are close together and dissimilar if they 
are far apart. A cluster is a group of points that are close to each 
other and far from any other points. 
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With Orion I, we can use other criteria besides separation in a 
distance measure to partition a data set. In particular, we can use 
subjective perception of patterns to define natural groupings. A data 
set may divide into two groups, which follow clearly distinct pat- 
terns. Yet the difference between the groups may not be easily summa- 
rized by a measure of distance. 

In the explore film, we show how the Harrison-Rubinfeld data can be 
divided into several groups. The major division turns out to be 
between urban and suburban-rural census tracts. However, the urban 
and suburban tracts do not form isolated clumps. Instead, in certain 
views, they lie close to two intersecting, perpendicular planes. 
Because the plane's intersect, the groups are not isolated in most dis- 
tance measures. But the separation in the two groups is obvious when 
seen. 
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Chapter 3 

ORION I 

In this chapter I describe the Orion I system. I describe the 
hardware and aspects of programming the system in detail. I do this 
for two reasons:.-first, to give a concrete reference for the applica- 
tions of the system described in the following chapters and second,. to 
give an indication of the skills that are required to do research in 
new graphical methods for statistics. This chapter is based largely 
on Friedman and Stuetzle C26l which is a detailed description of the 
hardware and the decisions taken in its design. 

3.1 REQUIREMENTS m MOTION GRAPHICS 

Real time motion graphics requires hardware with the ability to 
compute and draw new pictures fast enough to give the illusion of con- 
tinuous motion. Five pictures per second is a barely acceptable rate. 
Ten to thirty times per second gives smoother motion and more natural 
response for interaction with a user. 

Orion I uses real time motion to display three-dimensional scatter- 
plots. We can view three-dimensional objects on a two-dimensional 
display by continuously rotating the objects in the three-dimensional 
space and displaying the moving projection of the object onto the 
screen. In a scatterplot, the object we want to look at is a cloud of 
points. A typical point cloud will contain from 100 to 1000 points. 
So our hardware must be able to execute the viewing transformation, 
which is basically a multiplication by a 3x3 rotation matrix, on up to 
1000 3-vectors ten times per second. The system must also be able to 
erase and draw 1000 points ten times per second. 
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3.2 HISTORY 

Orion I is the youngest descendant of a graphics system call ed 
Prim-f), which was built at SLAC in 1972 c211. Prim-9 was used to 
explore up to nine-dimensional data. It used real time motion to dis- 
play three-dimensional scatterplots. Through a combination of pictur- 
a and rotation, a user of Prim-9 could view an arbitrary three-di- 
mensional subspace of the g-dimensional data. Isolation and maskinq 
were used to divide a data set into subsets. 

The computing for Prim-9 uas done in a large mainframe computer (an 
IBM 3CO/91) and.&sed a significant part of the mainframe's capacity. 
A Varian minicomputer was kept busy transferring data to an IDlIOM 
vector drawing display. The whole system, including the 3G0/91, cost 
millions of dollars. The part devoted exclusively to graphics cost 
several hundreds of thousands of dollars in 1965. 

Successors to Prim-9 were built at the Swiss Federal Institute of 
Technology in 1978 (Prim-S) and at Harvard in 1979-80 (Prim-H) t161. 

Prim-S used a DEC-10, a PDP-11134, and an Evans and Sutherland Pic- 
ture System 2 as analogs of the IBM 360191, the Varian, and the 
IDIIOM. 

Prim-H is based on a VAX 111780 computer and an Evans and Suther- 
land Picture System 2. It incorporates a flexible statistical package 
(ISP). The system costs several hundreds of thousands of dollars. 
Computation for rotation is done by hardware in the Evans and Suther- 
land. The VAX is shared with perhaps two dozen other users and has 
limited capacity for intensive real time computation. 

3.3 ORION I HARDWARE 

The Orion I workstation was designed and built in 1980-81 by Jerry 
Friedman and Werner Stuetzle with help from the members of the Compu- 
tation Research Group at the Stanford Linear Accelerator Center. 

There are two ways in which Orion I is a substantial improvement 
over previous Prim systems: price and computing power. The total 
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cost for hardware in Orion I in 1981-82 is less than $60,000.' The 
computing power in Orion I is equivalent to that of a large mainframe 
computer (say one half of' an IBM 3701168 or three times the VAX 111780 
used in Prim-H) and is devoted to a single user.Z The hardware and 
important considerations in its design are described in-detail by 
Friedman and Stuetzle in C261. The important parts of Orion I are: 

1. the master processor. 

2. the graphics device. 

3. the arithmetic processor. 

4. the input--device(s). 

' A preliminary version of Orion I, with a lower resolution graphics 
device, cost less than $30,000. Black and white graphics systems, 
with all the capabilities of the earlier Prim systems, can be bought 
for about 88,000 C41. 

2 For comparison, it was common about five years ago for all of the 
computing in a typical university computer center to be done on a 
single 3701168. 
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Figure 2: A diagram of the Orion I workstation 
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3.3.1 The master processor 

The master processor controls the action of the other parts of the 
system (except the host) and handles the interaction with the user. 

The master processor is a SUN microcomputer, based on the Motorola 
68000 microprocessor. The SUN is a single (MULTIBUS) board computer 
developed by the Stanford Computer Science Department for the Stanford 
University Network. The SUN has 256k bytes of RAM (random access mem- 
ory). It has two RS232 serial IO ports that connect to a terminal and 
to a host computer (slow link). It communicates with the other parts 
of the system through 16 bit parallel interfaces, designed and built 
by Werner Stuetzle, that plug into the MULTIBUS. 

The SUN is programmed mostly in Pascal. A few critical routines 
for picture drawing are written in MC68000 assembly language and some 
system programs (monitor/debugger) are written in C. 

The SUN board costs about $3,500. 

3.3.2 The oraphics device 

The graphics device is a Lexidata 3400 raster scan display. The 
Lexidata contains: 

1. A frame buffer 

The frame buffer is memory-that stores the current picture 
122,431. It has eight bits of memory (one byte) for each pixel 
in a raster of 1280x1024. Each pixel in memory corresponds to 
a dot on the screen; so the screen has a resolution of 
1280x1024. 

2. A display processor 

The Lexidata 3400 contains a display processor that is used 
for drawing vectors, circles, and characters. The 3400 display 
processor can be (micro)programmed in its own (microcode) 
assembly language. So far, we use the 100s system of graphics 
routines provided by Lexidata. 

3. Color look up tables 
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The byte of memory for each pixel determines its color, 
indirectly, through a look-up table. There are three look-up 
tables, one each for the red, green, and blue guns in the moni- 
tor. Each look-up table has slots with addresses from 0 to 
255. Each slot contains a value from 0 to 255 that-determines 
the intensity of the corresponding gun. The color of a pixel 
is determined by the settings contained in entries in. the 
look-up tables corresponding to the value of its byte. Thus, 
at any time, there may be 256 different colors on the screen, 

'from a potential palette of Z2'. 
.> 

4. A monitor 
-- I 

The pictures stored in the frame buffer are displayed on a 
19 inch color monitor. A monitor for the high resolution frame 
buffer costs about $6,000 and for the low resolution (640x480) 
frame buffer about $2,500 (in June 1982). 

Color raster graphics devices like the Lexidata are cheaper and 
more flexible than the black and white line drawing displays used in 
earlier Prim systems. For more details on the differences between 
line drawing and raster displays see Foley and VanDam [22l. 

When purchased in January 1982, the 1280x1024 pixel frame buffer 
and display processor cost about 940,000. An earlier version of Orion 
used a 640x480 frame buffer, which provides more than adequate resolu- 
tion for statistical applications and costs about $10,000. Memory 
and, therefore, frame buffer prices are falling rapidly. Recently 
(June 19821, a raster scan device with a 1024x780 frame buffer and a 
faster display processor than the Lexidata has been announced that 
costs about $15,000. 

3.3.3 The arithmetic processor 

The arithmetic processor executes demanding numerical computations 
rapidly. 

In an early version of Orion I, all computations were done by the 
master processor, the SUN computer. This system had all the capabili- 
ties of earlier Prim systems. In particular, the MC68000 microproces- 
sor has sufficient computing power to rotate 1000 points smoothly. 

In the current system, we use a processing unit called a 168/E 
c39,401. The 168/E was developed by SLAC engineers for the processing 
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of particle physics data and has about half the speed of the true 
3701168. It emulates an IBM 370/168 central processing unit without 
channels and interrupt capabilities. Because it has no input/output 
facilities, it is strictly a slave processor; its action is controlled 
by the master SUN computer. Our version of the 168/E has 96k bytes of 
data memory and 48k bytes of program memory. 

The 168/E can execute our most demanding real time computation, a 
sophisticated smoothing algorithm, on large data sets (more than 500 
observations), more than ten times a second. This smoothing algorithm 
C271 is much more demanding than simple rotation. 

.- 

The 168/E is programmed in FORTRAN. The FORTRAN programs are com- 
piled with standard IBM FORTRAN compilers on an IBM 3081 host com- 
puter. The object code is then translated into 168/E microcode. 

The 168/E costs about $5,000 (in June 1982). Unfortunately, it is 
not commercially available. 

3.3.4 The input device(s). 

My programs are controlled through a device called a trackerball 
C22.431, which is a hard plastic ball about 3 inches in diameter set 
into a metal box so that the top of the ball sticks out. The ball can 
be easily rotated by hand. The position of the ball determines the 
values of two coordinates. The two coordinates are used for input 
quantities that need to be varied continuously. For example, the 
trackerball often determines the angles of a rotation; the apparent 
motion of an object on the screen mimics the motion of the trackerball 
under a user's hand. The trackerball also has six switches, which are 
used for discrete input to programs. 

The Lexidata trackerball costs about $2,000. Less precise tracker- 
balls are available for less than $1,000. 
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3.4 PROGRAMMING ORION I 

There are, at last count, five processors in the Orion I system: 
the master processor, the arithmetic processor, the display processor 
in the graphics device, a microprocesser in the trackerball, and a 
microprocessor in a high speed (* 1 megabaud) serial interface between 
Orion I and the IBM 3081 host computer. Each of these processors-has 
its own programs. To develop new methods on Orion I, it is necessary 
to program the host computer as well. 

Orion I makes use of programs written in 14 languages: The SUN 
computer is pro.frammed in C, Motorola Pascal, and Motorola 68000 
assembly language. The arithmetic processor, the 168/E, is programmed 
FORTRAN, MORTRAN, IBM 370 assembly language, and its own microcode. 
The display processor is programmed in its own (microcode) assembly 
language. The microprocessors in the trackerball and the high speed 
serial interface are programmed in their own assembly languages. The 
host computer is programmed in IBM Pascal/VS, MORTRAN, FORTRAN, and 
assembly language. 

The programs I describe in the following chapters are written 'n 
Motorola Pascal and Motorola 68000 assembly language for the master 
processor, the SUN, and in MORTRAN and FORTRAN for the arithmetic pro- 
cessor, the 168/E. These programs are edited and then cross-compiled 
or cross-assembled on the hosta the IBM 3081. Data sets are also 
prepared on the 3081. Programs and data are downloaded to the SUN 
computer and the 168/E through the high speed serial interface that 
connects the MULTIBUS and the 3081. 

3 A host is not an essential part of the system. The SUN computer 
could be made completely independent of the host for about 810,000 
in peripherals, such as a disk drive, printer, etc. 
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Chapter 4 

ELEMENTARY APPLICATIONS 

The programs described in this chapter reproduce most of the func- 
tions of the Prim-9 system CZll, with the addition of some elementary 
uses of color. ._ 

In the next few sections, I begin to describe a user model for some 
of the programs written for Orion I that are described in this and the 
following chapters. "User model" [43,221 refers to a set of abstract 
concepts that let a user think about what a program is doing, without 
having to understand details internal to the program. The user model 
defines the kinds of objects that a program acts on and the actions or 
commands that affect objects. 

4.1 USING ORION I 

4.1.1 Input 

Foley and VanDam C22, p. 1831 distinguish five classes of logical 
input devices. In our system, the trackerball serves as a locatort 
which indicates position and/or orie-ntation, and a valuator, which 
chooses a single value in the space of real numbers. The switches on 
the trackerball serve as buttons, which select from a set of possible 
aternatives. The ball and a particular switch, called the enter 
switch, combine to be a pick device, which selects a entity displayed 
on the screen. Our system also includes a keyboard, the fifth logical 
input device, which is used to input a character string. My programs 
do not use the keyboard. 

A user of my programs executes commands either by using a switch 
(button) that is identified with a particular command, or by picking 
an item from a menu of choices listed on the screen. 
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4.1.2 output 

In my programs, the screen is divided into three regions (see Plate 
1). A strip on the bottom of the screen, one character high, shows 
six labels that indicate the current functions of the six switches on 
the trackerball. A region approximately 16 characters or 200 pixels 
wide on the right side of the screen is reserved for the display of 
assorted information about the current state of the program. The 
remaining area, approximately 1000x1000 pixels, is used for the dis- 
play of pictures of data. Occasionally, the pictures of data will be 
temporarily overwritten with a menu of commands or of options for a 
particular command. 

A data set is a collection of pieces of information, represented by 
numbers. Simple data sets are structured as a two-dimensional arrays 
of observations versus variables. 

In these programs, I distinguish two types of variables: euclidean 
and categorical. 

Euclidean variables take on continuous, ordered values which can be 
reasonably represented by real numbers. Examples are variables such 
height, weight, blood pressure, etc. 

Cateqorical variables take on discrete values, called categories. 
For example, the variable, “make of car", might have categories: 
Ford, Chevrolet, Chrysler, Toyota, Datsun, Mercedes. In the programs 
described below, categorical variables are arbitrarily restricted to 
have no more than seven categories. Usually the values of a categor- 
ical variable are assumed to have no natural ordering. It will be 
convenient for us to be able to treat ordered, discrete variables as 
either euclidean or categorical. 

The explicit consideration of non-euclidean data is a conscioc:s 
extension of previous Prim systems. There are, at present, few gocd 
graphical tools for exploring categorical and other types of non-eu- 
clidean data. This is an important area for research. Real data sets 
often include many different types of data; we need graphical tools 
that let us look at structure involving combinations of euclidean, 
categorical, and other non-euclidean types of data. 
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Suppose a data set contains pe euclidean variables and pc 
categorical variables. The pe euclidean variables may be thought of 
as a the canonical orthogonal basis of a p,-dimensional real inner 
product space C341, called the euclidean data space. The pc categor- 
ical variables form the cateqorical data space, which is not a famil- 
iar mathematical object. 

We call the Cartesian product of the p,-dimensional euclidean data 
space and p,-dimensional categorical data space the An data space. 
observation is an element of the data space. A data & is simply a 
set of observations. 

.- 

4.3 THREE-DIMENSIONAL SCATTERPLOTS 

Notion graphics makes it possible to draw a three-dimensional ana- 
log of the two-dimensional scatterplot. In the following, scatter- 
plots are assumed to be three-dimensional unless otherwise noted. 

The picture we see in a three-dimensional scatterplot is drawn in 
the view space. The view space is spanned by three (basis) vectors: 
screen-x, screen-y, and screen-z. Screen-x is horizontal in the plane 
of the display screen; screen-y is vertical in the plane of the dis- 
play screen; screen-z is perpendicular to the plane of the screen, 
pointing out. 

There are two steps in mapping the data space to the view space. 
First, the data space is mapped onto a three-dimensional space called 
the world space, by a projection. Second, the world space is mapped 
onto the view space by the viewinq transformation. Rapid, repeated 
applications of a slightly modified viewing transformation give an 
illusion of continuous motion; parallax in this motion lets us see 
three dimensions. . 

4.3.1 The projection 

The projection can conceivably be any mapping from the many-dimen- 
sional data space to the three-dimensional world space. It could be a 
function of both euclidean and categorical variables. Some methods 
for data analysis may require non-linear mappings (such as "twists", 
in Tukey 14811. However, in the programs I am discussing below, the 
projections are restricted to orthogonal projections from the eucli- 
dean data space to the world space. 
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Two commands allow us to determine the projection onto the world 
space. 

1. We can get a new projection. 

To do this, we choose three of the euclidean variables. The 
new projection maps the data onto their linear span. 

Mechanically, this is accomplished by using x, y, and z 
switches on the trackerball to step the index of the x, y, and 
z variables that determine the projection. 

2. We can update the projection. 
-- 

We choose one euclidean variable by picking an item from a 
menu of the labels of the euclidean variables. 

The screen plane (screen-x vs. screen-y) corresponds at any 
, moment to some two-dimensional linear subspace of the euclidean 

data space. The updated projection maps the euclidean data 
space onto the linear span of this plane and the basis vector 
corresponding to the chosen variable. This process can be 
thought of as throwing away the one-dimensional subspace of the 
world space corresponding to screen-z and replacing it by one 
of the euclidean variables. 

The update command is designed this way, which may seem 
unnatural at first, to let us mimic the search strategy of a 
Rosenbrock method for numerical optimization C44l. The update 
command is used for interactive projection pursuit, which is 
discussed in chapter V. 

Updating the projection allows us to see three-dimensional 
subspaces of the euclidean data space which are not simply the 
linear span of three variables. This method of updating does 
not allow us to select any three-dimensional subspace, but it 
does allow us to display any two-dimensional subspace on the 
screen. For the projection pursuit applications considered so 
far an arbitrary two-dimensional subspace is good enough. 

4.3.2 J& viewing transformation 

In general, a viewing transformation is composed from translation, 
scaling, rotation, the perspective transformation, clipping, and hid- 
den object elimination C22,431. 

In the programs discussed here, only translation, scaling, and 
rotation are performed. Only the rotation can be controlled by the 
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user. The translation and scaling are determined so that the point 
.I, 

cloud fits on the screen, no matter what the angle of rotation. 

:. 

The trackerball provides the angles of the rotation. If -the track- 
erball is moved, the viewing transformation is changed and the points 
on the screen appear to rotate. The user also has the option of auto- 
matic rotation. Then the effect of the last motion of the trackerball 
is repeated, which gives smoother motion than can be achieved by hand. 

,. 

Eventually, the full viewing transformation will be under user con- 
trol. 

.- 

Control of translation and scaling will permit the user to "zoom" 
and "pan", to examine parts of the point cloud more closely. Once we 
allow arbitrary translation and scaling it is necessary to "c 1 i p" 
points that would be drawn off the screen. 

When the points are colored, or have other distinctive features, 
and the point cloud is dense, it is necessary to do hidden object 
elimination. Otherwise, there are disturbing artifacts in rotation. 
For example, if one side of the point cloud is red and the other side 
is blue, then the red points should obscure the blue points when the 
red side of the point cloud is in front. If we draw the picture in a 
naive way, we see the color of whichever points happen to be drawn 
last. For point clouds, hidden object elimination can be done simply 
by sorting the points by depth before drawing them on the screen. 

When we are looking at clouds of featureless points, perspective 
does not seem to add much to the perception of three-dimensional 
structure. Also, some applications, such as projection pursuit, 
require the mapping of the data onto the two-dimensional space 
(screen-x,screen-y) to be orthogonal. 

4.3.3 Coordinate Axes 

We need to be able to tell which three-dimensional subspace of the 
euclidean data space we are looking at. We also need to see how the 
point cloud is oriented in that space. To satisfy these needs we 
draw, in a corner of the screen, an object called the coordinate axes 
or just the m.' 

4 This object was called the dreibein (German for tripod) in previous 
Prim systems C211, and is sometimes refered to as the the qnomon in 
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If we are looking at a world space (see Plate 21, spanned by three 
variables, then we see the three coordinate axes as projected on the 
plane of the screen in the current rotation: As we rotate the data, 
the coordinate axes rotate also, but about a point in the corner 
rather than about the point in the center of the screen used by tt,.s 

the motion of the point cloud to the motion 
ine the orientation of the point cloud in 

point c 
of the 
three d 

loud. By comparing 
axes we can determ 

imensions. 

When the world space is a more general three-dimensional subspace 
of the euclidean--data space Isee Plate 31, we will see a collection of 
vectors radiating from a common origin, each labeled with the index of 
the variable it represents. Each vector is the projection of a unit 
vector in the direction of the corresponding variable onto the world 
space. 

In the case of the more general three-dimensional subspace, it is 
not easy to interpret the picture. These complex views arise and are 
most useful in the context of projection pursuit, discussed in the 
next chapter. 

4.4 IDENTIFY 

The Identify command (see Plate 4) lets us find out which observa- 
tion is represented by a given point on the screen. The viewing 
transformation is frozen in Identify so that we see a two-dimensional 
picture. A cursor is positioned on the screen with the trackerball. 
The point on the screen nearest the cursor is highlighted by changing 
its color and drawing a circle ar0un.d it. The index of the corre- 
sponding observation is then written on the screen near the point. 

The highlighted point can also be temporarily deleted from the data 
set by moving the delete switch. Deleted points take no part in any 
actions and are unaffected by them, until restored. This feature is 
used, for example, in the regression program discussed in chapter V. 
Unusual observations can be deleted from the data set temporarily, so 
that they do not interfere with the construction of a regression 
model. 

the computer graphics literature C221. 
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4.5 COLOR 

As I have noted above, adding color is a simple way to increase the 
number of dimensions represented in a picture. 

4.5.1 A color model 

A color model is a parametrization of the set of colors that can be 
distinguished by-the human eye. Color models are usually three-dimen- 
sional. Many different color models are used in computer graphics 
c223; a convenient model for statistical applications is the HSV 
model, for Hue, Saturation, and Value. Hue denotes the distinction 
between red, yellow, green, cyan, blue, and magenta. Saturaticn 
refers to the purity of the color; a vivid red is highly saturatrd 
while a pale pink is not. Value measures the overall brightness. The 
HSV model represents colors as points in an inverted hexcone (a 
point-down "cone" that is hexagonal in cross section). The Hue coor- 
dinate is the angle of rotation about the axis of the cone. Satura- 
tion corresponds to the radial distance from the axis. The Value 
coordinate corresponds to height. 

The point of the cone, at the bottom, corresponds to black. The 
center of the hexagonal top face of the cone is white. The six ver- 
tices of top face are the brightest and most saturated red, yellow, 
green, cyan, blue, magenta. 

We use color to represent the values of an additional variable in a 
two- or three-dimensional scatterplot. All points in the scatterplot 
should appear equally bright, so when we choose a spectrum of colors 
to represent the values of a variabie, we take colors with the same 
Value. Thus a variable is represented in color by varying Hue and/or 
Saturation. Varying Hue alone seems to work better than varying Satu- 
ration alone. Varying Hue and Saturation together may increase 
slightly the number of different colors that can be distinguished. 

4.5.2 Representinq catesorical variables by color 

We represent a categorical variable in a scatterplot by the Hue of 
the points -- a different Hue for each category. Thus, in the sim- 
plest picture, we see three euclidean variables, represented by the 
position and motion of the points of the screen, and one categorical 
variable, represented by the colors of the points. The categorical 
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variable that determines the color of the points at any instant is 
called the color variable. 

The Choose Color Variable command lets the user choose- the color 
variable by selecting one of the categorical variables from a menu. 

The user has the option of two coloring schemes. One scheme is 
designed for variables with unordered discrete values. Points take on 
one Hue out of seven: red, yellow, green, cyan, blue, magenta, or 
white. The other scheme is intended for ordered variables; points can 
have colors in a perceptually continuous range of Hues, from blue 
through magenta -%o red. 

When we use a continuous range of Hues, three steps can be per- 
ceived easily. With carefully chosen Hues and some concentration by 
the user, from five to seven Hues can be distinguished. More than 
seven steps in Hue does not change the appearance of the picture. It 
is easier to perceive distinctions in Hue if we represent observations 
by larger objects than points, such as circles or crosses. 

4.5.3 Representins euclidean variables 

We represent euclidean variables by color using the acretize com- 
mand (see Plate 5). Discretize converts a euclidean variable into an 
ordered discrete variable. Because of our limited ability to perceive 
distinctions in a continuous range of Hues, the created discrete vari- 
able takes on values from 1 to 7. Two options are currently availa- 
ble: 

1. Discretize by value. 

The observed range of the euclidean variable is divided into 
seven intervals of equal length. Each observation is given the 
value of the index of the interval into which it falls. 

2. Discretize by ranks. 

The observed values of the euclidean variable are first 
replaced by their ranks, which are then divided into seven 
equal steps. 

Another option for coloring euclidean variables is still to be 
added: 
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3. Boxplot coloring. 

This method of coloring is based on Tukey's boxplots 
146,423. The basic idea is to represent the central values of 
a variable by a continuous range of colors as above.- The neg- 
ative and positive outliers would be given two Hues distinct 
from the range of Hues representing the center of the distr,ibu- 
tion. 

4.5.4 Groupinq 
-- 

The Group command lets us interactively create or modify a categor- 
ical variable, based on the positions of the points on the screen (see 
Plate 6). 

While executing the Group command, no rotation or other change in 
the viewing transformation is permitted, so we see a fixed two-dimen- 
sional scatterplot, which may show any two-dimensional subspace of the 
euclidean data space. The action of the Group command uses only the 
fixed positions of the points on the screen. 

The Group command is used to change the values of one of the cat- 
egorical variables. It can be used either to modify an existing cat- 
egorical variable or to define a new categorical variable. In the 
latter case, a new categorical variable is added to the data set, all 
observations are initialized to category 1, and the values of the new 
variable are modified with the Group command. 

The Group command is used to modify the values of a categoric:1 
variable by repeatedly moving sets of points into one of the (sever) 
categories of the variable. The destination category is chosen by 
using the trackerball and an "enter'? switch to pick one of the catego- 
ries from a list on the side of the screen. Each move is made by 
defining a rectangular region on the screen and moving all the points 
inside the rectangular region into the chosen category. The rectangu- 
lar region is defined using the trackerball and the "enter" switch to 
position a cursor on the screen and to mark the rectangle's two cor- 
ners. 

The ability to modify existing categorical variables is useful 
because it lets us define a categorical variable based on several 
views of the data. We first find a view that shows structure that 
suggests a natural partition of the data set. This structure is sum- 
marized by creating a new categorical variable that records the parti- 
tion. We can then project and rotate to a new view that suggests a 
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refinement or other modification of the partition and modify the 
categorical variable accordingly. This process is illustrated in our 
film: "Exp loring data with the Or ion I workstation". 

4.5.5 SelectCateqory 

We immitate the Isolation and Masking functions of Prim-9 using 
Group and a related command, called Select Cateqory. 

Select Category shows the user a menu of the categories of the cur- 
rent color variable. The user can then select which categories are to 
be active or inactive. Observations in inactive categories are invis- 
ible. They do not affect and are unaffected by any subsequent 
actions. 

. 
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Chapter 5 

INTERACTIVE PROJECTION PURSUIT 

5.1 PROJECTION--PURSUIT METHODS 

The basic idea of projection pursuit is to choose low-dimensional 
views of a data set that capture aspects of its many-dimensional 
structure C38,21,30,27,28,25,36,37,101. By temporarily reducing the 
dimension of the data, we can sometimes replace a problem that is dif- 
ficult or impossible to solve with one or several "smaller" problems 
that are more manageable. This is especially true for graphics. It 
is hard to understand pictures that show many variables at once; it is 
easy to understand one-, two-, and three-dimensional pictures, that 
is, histograms and two- or three-dimensional scatterplots. 

To reduce dimension we project the data from the many-dimensional 
data space to a low-dimensional view. In general, the projection 
could be any mapping from the many-dimensional data space to a low-di- 
mensional view. The projection pursuit methods that have been devel- 
oped so far restrict the mappings considered to orthogonal projections 
of the data onto one-, two-, or three-dimensional subspaces of the 
euclidean data space. 

Until recently, work on projection pursuit has concentrated on 
automatic algorithms. In automatic projection pursuit, a numerical 
measure of interesting structure is chosen. Then an optimization 
algorithm chooses a projection to maximize this numerical criterion. 

The first projection pursuit algorithm C301 used a numerical opti- 
mizer to search for a one- or two-dimensional projection that maxim- 
ized a "clottedness" index, which was intended as a numerical measure 
of interesting structure. 

Automatic projection pursuit methods have been developed for more 
well defined problems: regression C27,281, classification C281, and 
density esti(nation C28,25,371. In these problems, we construct a 
model that summarizes the apparent dependence in our data set of a 
response on some predictors. In regression the response is one of the 
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euclidean variables; in classification the response is a categorical _. 
variable; in density estimation, the response is the "mass" of the 
observations. 

These projection pursuit models are aimed at a particular kind of 
structure: the nature of the dependence of the "response" on the .pre- 
dictors. The model ,is constructed not only to summarize this depen- 
dence, but also to discover it. In other words; projection pursuit 
models'are used for exploration, as well as summary. d 

Projection pursuit models describe data following the idea 
expressed in Tukey's "Data = Fit + Residuals" C46,421. The idea is to 
first explore to discover some structure, model the structure to sum- 
marize it, subtract (in some sense) the model from the'data to get a 
set of residuals, and then repeat the process on the residuals to dis- 
cover and summarize and remove further structure. In projection pur- 
suit, this results in a model that is built up from several low-dimen- 
sional views of the data. The process is summarized by the proiection 
pursuit paradiqm 1281: 

I 
I 
I 
I 
I 
I 
I 
I 
I 
i 
I 
I 
I 
I 
I 
I 

1. Choose an initial model. 

2. Repeat 

a) Find a projection that shows deviation from the cur- 
rent model, indicating previously undetected structure 
(Projection Pursuit). 

b) Change the model to incorporate the structure found in 
a) (Model Update). 

3. Until the current model is a sufficiently accurate sum- 
mary in all projections. 

1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Projection pursuit methods have a natural connection to interactive 
graphics. As long as we project on a subspace of dimension no greater 
than three, we can look at a picture of the result. An interactive 
graphics system, like Orion I, lets a data analyst modify or take over 
some functions performed by machine in the automatic versions of pro- 
jection pursuit. 

For example, the Update Projection command discussed in chapter III 
allows a user to search for an interesting projection, manually immi- 
tating the Rosenbrock search strategy C441 used by the numerical opti- 
mizer in the automatic versions. However, a human being can search to 
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improve a subjective impression, using perception, judgement,and a 
knowledge of the context of the probelm, instead of relying on a sin- 
gle, numerical measure of what constitutes an interesting view. 

5.2 PROJECTION PURSUIT REGRESSION 

In this section I discuss projection pursuit regression. 
describe the original, "batch" version. In this version, all dec 
sions are made automatically, by machine, on objective, numerical cr 
teria. In the rrext section, I will describe how projection pursu 
regression can benefit from human interaction. 

I 
i- 
i- 
it 

5.2.1 Regression 

In the context of regression, we distinguish one of the pe eucli- 
dean variables as the response variable. The remaining pe - 1 eucli- 
dean variables are called the predictor var.iables. We refer to the 
value of the response variable for the ith observation as yi. The 
values of the predictor variables for the ith observation form a vec- 
tor, j;i. 

One way of looking at the regression problem is to say that we are 
looking for a function or model, f(s), that summarizes the apparent 
dependence, in the data set at hand, of the responses, fyi3 on the 
predictors, {Zi1. We have: 

Yi = f(si) + ri 

{ri) are residuals from the model. There are two things that we want 
from a regression model: 

\ 1. The model, f(e), should be "nice" or "simple". 

2. The residuals, {ri}, should be "small". 

These two goals are usually conflicting. 

In parametric resression we assume that the form of the model, 
f(e), is known and f(a) is completely determined by a small number of 
parameters, which are to be estimated.5 Our model is "nice" because we 

5 Unfortunately, the word "parametric" is used to refer to two dis- 
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constrain it to be a member of a "nice" parametric family of models. 
We make the residuals small by choosing values of the parameters to 
minimize some measure of the size of the residuals. One common cri- 
terion for small residuals is least squares, that is, f(e) is chosen 
to make Ii ri* small. 

Non-parametric resression makes no (parametric) assumptions about 
the functional form of the dependence. To make.the regression modtl 
"nice", we require it to be "smooth". "Smooth" is taken to mean that 
observations that are close in the predictor space have similar values 
of f(b). The function, f(s), should vary slowly relative to the spac- 
ing of the observations in the predictor space. 

-- 

Most methods for non-parametric regression are "local averages". 
That is: 

fCjti) = AVE { yj : Zj E N(Zi) 1 

These methods differ in the sense in which the local neighborhood, 
N(Gi)p is defined and in the notion of average, AVE, that is applied 
to observations in the local neighborhood. Two examples of local 
average regression are k-nearest neighbor regression 1451 and recur- 
sive partitioning regression1231. 

The difficulty that many local average algoirthms run into is the 
"curse of dimensionality" C51. This phrase refers to the fact that in 
many-dimensional spaces the data are inherently sparse. Either the 
local neighborhoods are very large or they contain very few points. 
One of the principal motivations for projection pursuit methods, 
regression included, is to avoid the curse of dimensionality. 

5.2.2 Linear reqression 

Projection pursuit regression can be described from first princi- 
ples. However, it seems to be most easily accepted by statisticians 
if it is introduced as a generalization of the familiar linear model. 
In linear models, f(s) is restricted to be a linear (actually affine) 
functional of the predictors. In non-standard notation: 

tinct sorts of parametric assumptions about regression models. I 
use "parametric" to refer to assumptions about the form of the 
regression model -- linear, logistic, exponential, polyno- 
mial,sinusoidal, or whatever. "Parametric- also commonly refers to 
assumptions about a probability model for errors from a hypothetical 
true deterministic regression model. 
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f(Zi) = a + <ij,i;i> = a + Cj Wj'Xij. 

Traditionally, the parameters of the linear model, a and 3, are chosen 
by least squares? that is, to minimize 

RSS = xi ( Yi - a - <E;,3i> 1' 

Note that f(-1 depends on Zi only through its inner product with GI 

5.2.3 Another w of linear reqression 

To connect linear regression to projection pursuit regression, it 
is convenient to re-write the linear model: 

fC;ti) = a + <3,jti> 

= a + IGII . < ii/lliJII t jti > 

= a + b * <if,Zi>, 

where a and b are real numbers and G is a unit vector, that is, 

Gill = 1 . 

As above, a, b, and ii are determined by least squares, subject to 
ll~ll=l. 

Note that this model depends on the gi only through the inner prod- 
UCt <ii,jii>. In other words, the model depends on the predictors only 
through their projection on the direction, "u. 

This formulation suggests a way to look at a picture of a linear 
regression. Consider a two-dimensional scatterplot of Iyipzi} where 
Zi = <ii,Zi>. This is a picture of the data as projected on the two- 
dimensional plane spanned by the response variable and the direction, 
ii, in the space of the predictor variables. The model is: 

f(s) = a + b * <ri,;i> = a + b-z 

so, in this projection, the values of the model lie on the line, 

Y = a + b-z. 
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5.2.4 Smooth to qeneralize straiqht line 

By comparing the cloud of points, (yipzi)r to the line, a + b-z, we 
can judge, graphically, how appropriate the linear model is. If the 
line fails to capture the dependence of yi on zi, then we need to gen- 
eralize the linear model. 

For the moment, suppose we hold t fixed. Then the question is how 
to summarize the dependence of the responses, yip on a one-dimensional 
predictor, in this case, Zi=<ii,ii i>. This is just a one-dimensional 
version of the general non-parametric regression problem described 
above. We want Yo summarize the response by a non-linear function and 
we do not want to make parametric assumptions about the form of-the 
non-linear function. With a one-dimensional predictor space there is 
no problem with the curse of dimensionality. So we are free to use 
some form of local averaging. In one-dimensional problems, methods 
based on local averages are refered to as smoothers. The non-paramet- 
ric regression problem with a one-dimensional predictor space is some- 
times refered to as smoothinq scatterplots 1291. 

Existing versions of projection pursuit regression use a running 
linear fit as a smoother 111,293. The running linear fit has a param- 
eter called the m, which is the number of observations in the local 
neighborhood. The smoothed value is determined by fitting a linear 
model to the local neighborhood. The smoothing algorithm we use $s 
described in detail by Friedman and Stuetzle in [27,293. 

5.2.5 Choosinq a direction 

Given a smoothing algorithm, we choose the direction ii, so that the 
smooth along 5 minimizes some objective criterion, for example, least 
squares. That is, we choose if to minimize 

RSS = Ci ( Yi - g(<Gtjfi>) I21 

where g(e) is the function chosen by the smoothing algorithm. 

To find the t that minimizes RSS, we use a modified Rosenbrock 
method for optimization 1441. The Rosenbrock method is an old (1960) 
and fairly naive method. The basic idea is to minimize a function of 
several variables by optimizing over one variables, while holding all 
others fixed. The method we actually use is slightly simpler in some 
respects than Rosenbrock's original proposal and is modified to 
restrict the search to the unit sphere. To minimize a function, 
R(uI,u~,...,u~): 
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1 

i 
1. Choose a starting value for i I 

I 
2. Repeat I 

I 
a) For i = 1 to p do I 

I 
i1 Minimize R(u~,u~~...,u,,) by varying uir renor- I 

malizing to keep G a unit vector, I 
I 

3. Until the reduction in R(if) meets some convergence cri- 1 
terion. I 

.- 
I 

More sophisticated optimization algorithms may increase the compu- 
tational efficiency of automatic versions of projection pursuit. How- 
ever, because the Rosenbrock method varies only one parameter at a 
time, it can be executed manually in a natural way, which may not be 
true for more sophisticated optimizers. 

5.2.6 More complicated models 

Once the optimizer has chosen a direction, t, our model is: 

The model depends on the predictor variables only through their pro- 
jection on t. In a sense, the model varies only in the direction, b, 
because the model is constant along all directions orthogonal to i.!. 

To model more general regression surfaces, we iterate the above 
procedure. That is, following the projection pursuit paradigm [281, 
we subtract the current model from the responses to get a set of resi- 
duals. We then search for a direction and smooth function to fit the 
residuals. To summarize: 
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1 
I 
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1. Choose an initial model: 

f"'(~i) = (l/n) 1 yi. 

2. Repeat 

a) Form residuals: 

rick) = Yi - f(k-')(si). 

b) Choose G to minimize: 

RSS(kl = Ci (ri(k) - CJ' k)(<;tr k)*jti>) I2 

c) Update the model: 

f(k)(jfi> q f’k’l)(jti) +  CJ’ k)(<ii’ k)tjri>) 

d) Increment k = k + 1; 

3. Until the percentage reduction in RSSfk) is below some 
threshold. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I am ignoring many details of the automatic procedure, such as 
"backfitting". For a complete description see Friedman and Stuetzle 
C27,281. 

5.2.7 The final model 

‘*t 
To summarize, projection pursuit regress-ion models a response vari- 

able as the sum of general smooth functions of linear combinations of 
the predictor variables: 

fG;, = Ck gck' ( < Gtk' P Sii > 1. 
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5.3 INTERACTIVE PROJECTION PURSUIT REGRESSION 

5.3.1 Whv interactive? 

The original projection pursuit regression algorithm was designed 
for computational efficiency, accurate estimation, and adaptability to 
a wide variety of circumstances. Since these desirable qualities'are 
usually antagonistic, the design is a compromise. 

.- 

The motivation for writing an interactive version of projection 
pursuit regression is to overcome limitations imposed by unavoidable 
design compromises in the non-interactive projection pursuit regres- 
sion. In addition, we learn.much more about data by watching and 
actively participating in the construction of the regression model. 

5.3.2 What to modify manual Iv? 

mits a human being to modify or completely take over fun 
by automatic procedures in the original projection pursu 
I describe two important functions in detail: 

The interactive projection pursuit regression program (IPPR) per- 
ctions han dled 
it regress ion. 

1. searching for the next direction in the predictor 
which to update the model. 

2. choosing the smooth function on that direction. 

spacer a long 

5.3.3 Searchinq for a direction 

In IPPR, the projection and the viewing transformation are 
restricted so that screen-y (vertical) always corresponds to the 
response variable. The screen shows, at each instant, a scatterplot 
of the response variable, yir versus the data projected on the current 
direction in the space of predictor variables, -,. = <G,Zi> (see Plate 
7). We may choose to display the curve of th:' automatic smoother, 
which smooths yi as a function of Zi. Also at our option, a vertical 
bar, whose height indicates the value of an objective criterion may be 
drawn on the bottom of the screen. The objective criterion that we 
use is the percentage of variance in the response explained by the 
smooth. 
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When we move the trackerball, the point cloud rotates about the 
y-axis (the response variable). The display then shows a three-dimen- 
sional scatterplot. The three-dimensional space is that spanned by 
the response variable and a two-dimensional subspace of the predictor 
variables. 

As we rotate, the direction, "u, corresponding to screen-x changes. 
The curve of the smoother is continuously updated, in real-time. This 
is an example of an intensive real-time computation that is made pos- 
sible by our arithmetic processor, the 168/E, and was not possible on 
earlier Prim systems. Orion I can compute the rotation, erase and 
redraw the points, compute the new smooth, and erase and redraw the 
curve of the smoother at about 5 times a second for a data set with 
500 observations.6 This is fast enough for interactive searching. 

The vertical bar indicating the value of the objective criterion is 
drawn at a horizontal position depending on the angle of rotation. As 
the data is rotated, the vertical bar traces out a bar-graph of the 
value of the objective criterion as a function of the angle of rota- 
tion. This makes it easy for us to manually rotate to the best 
direction in the current predictor plane. We can now update the pro- 
jection to choose a new plane in the predictor variables. 

The above suggests a manual search strategy that imitates the 
Rosenbrock method of numerical optimization used by the original pro- 
jection pursuit regression: 

I 
I ; 
I 1. Repeat I 
I I 
I a) Replace screen-z by one of the variables, so that the I 
I screen-x -- screen-z plane corresponds to a new plane I 
I in the predictor space, that spanned by G  and the cho- I 
I sen variable. I 
I I 
I b) Rotate to find the "best" direction in the current I 
I plane. I 
1 I 
I 2. there Until is no significant improvement in perceived I 
I goodness of fit. I 
I I 

I 

6 The time limiting part of the current system is the graphics device 
and not the speed of computation. Computing a new rotation and res- 
moothing takes about l/4 of the time to draw a new picture. 
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Two aspects of the searching function can benefit from hurnz.9 
judgment. First, we can sometimes shortcut the numerical optimizer'. 
Prior knowledge of the data may suggest good starting values of the 
direction. Prior knowledge may also suggest which directions of 
search may be most useful. Second, the automatic search is-limited by 
the need for a numerical objective criterion to optimize. We can 
search for a direction that is "good" in a subjective sense. 

No single objective criterion is correct in all circumstances. The 
original projection pursuit regression uses the sum of squared residu- 
als from the smooth as the objective criterion to optimize. This is 
not resistant to the effects of a few "bad" observations. There are 
many candidates for more resistant alternatives; most try to identify 
observations that have unusual or extreme values and give those obser- 
vations less weight. It is usually not clear beforehand exactly what 
criterion is best. For example, a more resistant criterion may be 
desirable in choosing the first terms of the model and a less resis- 
tant criterion may be appropriate later. 

Subjective aspects of the relationship between the current direc- 
tion and the response variable can influence our choice of a direction 
for the next term in the model. For example, a direction involving a 
small number of variables may be preferred because it is easier to 
interpret, even though it has a slightly higher sum of squared residu- 
als. In another case, a certain sub-optimal direction may be prefer- 
red because the shape of the smooth is simple. A combination of a 
"simple" direction with a "nicely" shaped smooth may be especially 
interesting because it suggests a parametric model for the dependence 
of the response variable on the predictors. 

5.3.4 Choosinq a smooth function 

Given a direction in the predictor space, we have several ways of 
choosing the smooth function used in the next term in the model. 

1. Accept the curve produced by the automatic smoothing procedure. 

2. Adjust parameters in the automatic smoothing procedure, such as 
span, with commands that use the trackerball for input. By 
watching the curve change as, for example, the span is changed, 
we can see how the shape of the curve depends on the parameters 
in the automatic smoothing procedure. 

3. Choose a particular smoothing algorithm from from a menu of 
alternatives. 
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4. Manually adjust the parameters in some parametric family of 
curves, such as Chebyshev polynomjals. 

5. Position, with the trackerball, several "knots" on the screen* 
which are joined by splines. The spline curve can be continu- 
ously updated, as knots are added, deleted. or moved. (This is 
another example of a parametric family of curves.) 

6. Draw a curve freehand through the data, using the trackerball 
or, more naturally, a digitizing pen and tablet. 

Only methods 1 and 2 are available at present. 
.- 

5.3.5 Connection to Groupinq 

Another way in which IPPR benefits from interaction is by combining 
IPPR with the Group and Select Category commands discussed in chapter 
III. The Group command allows us to partition the data set into sub- 
sets. We may set some subsets inactive with the Select Category com- 
mand and proceed to fit the regression model to the remaining, active 
observations. This provides a convenient way to compare models fit on 
all the data to models fit on various subsets. 

5.3.6 Assessinq the variability of the smoother 

When we search manually for a direction, we often sacrifice some 
amount of the objective, numerical criterion of "goodness of fit" to 
improve some subjective impression. For example, we may prefer a 
direction that has non-zero coefficients of as few predictor variables 
as possible. To achieve a parsimonious model, we may be willing to 
sacrifice a few percent of variance explained. 

To judge how important a few percent of variance is, we need some 
indication of the natural variability of our regression model. In a 
non-interactive setting, it would be appropriate to try to assess the 
variability of the full projection pursuit algorithm. This could be 
done by bootstrapping C17,18,19,201 the procedure (see Plate 8). 

In an interactive program, we need a way of assessing variability 
that can be done rapidly, in real time, and that has a natural graphi- 
cal representation. A reasonable solution is to bootstrap the 
smoother only. That is, we hold the direction, G, fixed so that have 
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a two-dimensional scatterplot of Yi VS. Zi = <Et,gi>. We then 
bootstrap the smooth of yi as a function of Zi. 

We may be willing to give up a little "goodness of fit" in our 
interactive choice of the direction, z, if the difference in "goodness 
of fit" between a parsimonious model and the "best" direction is small 
compared to a natural measure of the variability in "goodness of fit" 
associated with the smoothing process. 

There are two alternatives for bootstrapping a smoothing algorithm: 
resampling observations and resampling residuals. 

.- 

We resample observations by choosing observations uniformly at ran- 
dom from our data set, with replacement, to construct a bootstrap sam- 
ple, f.(Yi*Zi)*l- The bootstap sample may also be viewed as a set of 
random weights for each observation in the data set. The smoothing 
algorithm is then applied to the bootstrap sample. Choosing repeated, 
independent bootstrap samples and looking at the variation in the 
smooths over the collection of bootstrap samples provides a natural 
indication of the variability of the smoothing algorithm. 

To resample residuals, we subtract the smooth, g(Zi), from the 
responses, yip to get a set of residuals, E ri = yi - g(Zi) 3. Then, 
for each observation, we choose at random, uniformly, with replace- 
ment, one of the residuals, ri", to add to the smoothed response, 
g(Zi)> for that observation to get a pseudo-response value: 

Yi * = CJ(Zil + ri*. 

We then smooth the resulting set {(yi*,Zi)}. We repeatedly construct 
sets of pseudo-responses by sampling from the original residuals, rip 
and adding them to the original smooths, g(Zi)# to create a collection 
of bootstrapped smooths, g*(Zi). 

If there is greater variation about the smooth in one region than 
in others (heteroscedasticity), resampling residuals uniformly will 
smear out the variation over all the observations. For some purposes 
it may be important to know accurately the local variability of the 
smooth. To allow this, we provide an option for local resampling of 
residuals. In local resampling, a residual is chosen from those cor- 
responding to observations that fall in a window about the observation 
whose smoothed response the resampled residual is to'be added to. We 
take the window to be the same as the span of the smoothing algorithm. 

IPPR provides two options for viewing the results of bootstrapping: 
fill and wiggle. When the bootstrap command is chosen, the program 
resamples, computes, and draws new smooths in real time. This pro- 
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cess is executed about 5 times a second for a data set with 500 
observations. Thus 100 bootstrap replications will be seen in about 
20 seconds. 

In the fill option, the curves of all replications of the smooth 
accumulate on the screen. The original smooth is redrawn each time in 
a distinct color, so that it can be compared with the bootstrap repli- 
cations. The smooths of the bootstrap samples soon fill in a "confi- 
dence band" about the original curve, and give an indication of.the 
variability of the smoothed value for any value of z. 

In the wigglV option, only the last replication of the curve is 
drawn. This makes it possible to assess the variability of feattires 
of the curve, such as sharp bends, which are obscured in the band of 
color produced by the fill option. 

Both options also accumulate on the screen a histogram of the val- 
ues of the objective criterion for the collection of bootstrap repli- 
cations. The value of the objective criterion for the original curve 
is marked on the histogram, so that it may be compared to the varia- 
tion under resampling. If the spread in the histogram is large, we 
are unlikely to worry much about sacrificing a small amount of "good- 
ness of fit" to achieve a parsimonious model. 
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Chapter 6 

MULTIPLE VIEWS 

In projection pursuit, we develop a model of many-dimensional 
structure from a.- sequence of low-dimensional views. To interpret a 
projection pursuit model, we need to understand the relationships 
between the contents of two or more views in the sequence. The meth- 
ods described in this section allow us to do this. 

This approach is inspired by the M-and-N-plots of Diaconis and 
Friedman C141. 

6.1 M-AND-N-PLOTS 

A two-and-two-plot is one kind of M-and-N-plot. Two-and-two-plots 
are used to display four-dimensional data. To make a two-and-two- 
plot, we draw two two-dimensional scatterplots side by side. The two 
scatterplots show different pairs of variables. For each observation, 
there is one point in each of the two scatterplots. We then connect 
corresponding points in the two scatterplots by lines. To get a pic- 
ture that is not confusing, only a subset of all possible lines is 
actually drawn. Diaconis and Friedman give an algorithm based on min- 
imal spanning trees for deciding which lines to draw. 
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Figure 3: An II and N plot from C141. 

6.2 COLOR M-AND-N-PLOTS 

My idea is a modification of the above. Instead of connecting cor- 
responding points by lines, I draw corresponding points in the same 
color (see Plate 9). The coloring is determined interactively. 

A simple version of the program works as follows: 

On the screen there are two scatterplots, side by side,showing four 
variables. There is a cursor on the screen in one of the two scatter- 
plots. The scatterplot that the cursor is in is the active scatter- 
p)Ot. We position the cursor in the active scatterplo by moving the 
trackerball. Points near the cursor in the active scatterplot are 
red. Points at an intermediate distance from the cursor are purple. 
Points far from the cursor are blue. A point in the non-active scat- 
terplot are given the same color as the corresponding point in the 
active scatterplot. The colors are continuously updated as the cursor 
is moved. We can also move the cursor from one scatterplot to the 
other, changing which scatterplot is active. 
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Using color instead of line segments to connect points has a disad- 
vantage; it is not as precise at showing us the connection between a 
pair of points representing the same observation. However, we are not 
usually very interested in single observations. More often, we want 
to see how a region in one scatterplot maps into the other scatter- 
plot; the combination of local coloring and the moveable cursor is a 
good way of seeing regional relationships between the two scat'ter- 
plots. 

Using color instead of lines makes it is possible to look at more 
than two scatterplots at once. Connecting corresponding points with 
line segments in more than two scatterplots at a time would produce a 
hopelessly confu&?ng picture. With color, on the other hand, it is no 
more difficult to look at three or more scatterplots at once than it 
is to look at two. 

6.3 OTHER COLORING SCHEMES 

It is useful to have other options for determining the colors in 
the active scatterplot. For example, instead of determining color by 
distance from the cursor, the colors can be determined by the vertical 
(or horizontal) position of the cursor. Points above the cursor will 
be in one continuous range of hues, from blue through magenta to red. 
At the position of the cursor there is a discrete jump in hue, so that 
points below the cursor have hues from cyan through green to yellow. 

6.4 CONNECTING THREE-DIMENSIONAL SCATTERPLOTS 

So far I have discussed connecting the contents of two or more 
two-dimensional scatterplots. To get the full value of our graphics 
system we would like to connect two or more three-dimensional scatter- 
plots. 

There are two problems that prevent this from being completely 
straightforward. First, it is difficult to position a cursor in three 
dimensions. Second, it is difficult to control rotations and the 
motion of a cursor simultaneously. To get around these problems, I 
will provide two options: 

In the first option, the coloring pattern is fixed and the rotation 
is under user control. The view space of the active plot is divided 
into eight octants: front-upper-right, back-upper-right, front-lower- 
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right, etc. Each octant in the active plot has a distinct color. The 
corresponding point in the other plot(s) take the same color. All 
plots can be rotated together or each plot can be rotated seperately. 
As the points in the active plot rotate they will move from-one octant 
to another, so the colors will change. 

The division into octants is, of course, only one example of many 
possible coloring schemes. 

The other option makes the rotations automatic and lets the color- 
ing be determined by the position of the cursor. Because it is diffi- 
cult to perceive-the three-dimensional position of a cursor, the col- 
oring should be determined by the positions of the points in the prane 
of the screen. Either all plots will rotate together or, possibly, 
only the non-active plots will rotate (it may be desirable for the 
plot that contains the cursor to remain fixed). 

6.5 4 VARIANT m GEOGRAPHICAL IJJTJ 

Color raster graphics devices have seen considerable use in the 
representation of geographical data by colored maps. We can combine 
maps with two- or three-dimensional scatterplots by extending the idea 
of Color M-and-N plots. A map is like a two-dimensional scatterplot; 
a region in the map, like a point in a scatterplot, represents an 
observation. Suppose we have a data set in which observations corre- 
spond to distinct geographical regions (for example, the Harrison-Ru- 
binfeld housing data used in our two films 135, 63). Then if we draw 
a map and a scatterplot side by side, we can connect points in the 
scatterplot with the corresponding regions in the map, using color and 
a cursor, just as we connected corresponding points in the Color 
M-and-N-plots. 

For this to be effective, the colors of the points in the scatter- 
plot and the regions in the map must be changed in real time, as the 
cursor is moved. Most reasonably priced raster graphics devices can- 
not, at present, redraw solid areas fast enough to do this in real 
time. However, we can change the colors of solid regions in real time 
if each region corresponds to a distinct address in the color look up 
tables (see chapter III). In the present Orion I system, this is pos- 
sible only if there are no more than 255 regions in the map. However, 
a simple extension of the hardware, adding more bits per pixel to the 
frame buffer, would make it possible to change the color of 2" regions 
in real-time, where n is the number of bits per pixel in the frame 
buffer. 
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Chapter 7 

FUTURE RESEARCH WITH ORION I 

I include this chapter to offer more evidence of the breadth, vari- 
ety, and potential of new graphical methods in statistics. Also, the 
choice of direct-ions for future research represents much of what we 
have learned in developing and using the programs discussed above. 
Finally, the ideas themselves are results of research; though invent- 
ing new methods is much less time consuming than writing programs to 
test them, much of the creativity in graphics research goes into 
inventing and choosing among new methods to work on. 

7.1 IMPROVED SCATTERPLOTS 

A user of Orion I looks at data by looking at scatterplots. The 
scatterplot, at least in two dimensions, is an old and successful tool 
in data analysis. However, it has some shortcomings when it is used 
to perceive the shape of the density in a point cloud. Scatterplots 
tend to reveal only crude differences in density, distinguishing 
regions of zero density from regions of non-zero density. Rather than 
seeing the shape of the density, we see the shape of something approx- 
imating the convex hull of the point cloud. This corresponds crudely 
to the support of the density, rather than the density itself. Per- 
ception of shape is therefore overly influenced by extreme points. 
Because it is not easy to see the difference between regions of high 
density and regions of low or moderate density, high density regions 
do not always receive the weight they deserve. 

We can attack this problem in several ways with a color raster 
graphics device. We can color each point according to some estimate 
of the local density, so that points in high density regions will be 
bright and points in low density regions will be dim. This exaggera- 
tion may let us easily see finer distinctions than zero density versus 
non-zero density. 

A less obvious alternative is to shade the background (the space 
between the points) according to local density, rather than the points 
themselves. This may let us see where our density estimate does not 
agree with the data. 
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7.2 EDGES 

Another way of enhancing scatterplots is through the addition of 
edges. In other words, we draw line segments connecting some pairs of 
points in the scatterplot. 

There are a few things that we hope to gain from including edges in 
the scatterplot. First, edges may aid our perception of the three-di- 
mensional shape of the point cloudClG1. Second, a picture including 
edges may emphasize aspects of the shape of the point cloud that are 
not as striking in a pure point plot. 

-- 

There are many ways to choose which edges to draw. In Prim-H t161, 
edges are chosen interactively; the user selects pairs of points with 
a cursor. 

There are a number of sets of edges that are associated with a set 
of points in a natural way. One example is the minimal spanning tree 
C241. We will try two versions of the minimal spanning tree: one 
based on distances in the current three space and one based on dis- 
tances in the many-dimensional data space. The first alternative 
should be more useful for revealing the three-dimensional structure of 
the point cloud in the current view. The second alternative may be 
useful in searching for an interesting projection in an interactive 
projection pursuit. The minimal spanning tree based on distance in 
the data space will usually be very tangled when projected on an arbi- 
trary three-dimensional subspace. However, if we find a view that 
untangles the tree, it is reasonable to suppose that this view cap- 
tures at least some of the shape of the point cloud in the many-dimen- 
sional data space. 

7.3 OTHER TYPES OF DATA 

In classical multivariate analysis and in previous Prim systems it 
is assumed that each variable in the data sets to be examined is well 
represented by the real numbers. This is, of course, not always true. 
I have extended this definition to include explicit consideration of 
categorical variables. However, our methods for categorical variables 
are at present quite limited. 

We have a good solution to the problem of looking at one categor- 
ical variable and three euclidean variables; we represent the three 
euclidean variables by the position of points in a three-dimensional 
scatterplot and the categorical variable by the color of the points. 
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For categorical variables with not too many categories, this works 
well. 

We need to be able to look at several categorical variables at 
once. We do not know good methods that are effective for general com- 
binations of categorical and euclidean varaibles. It will be neces- 
sary to understand better what "interesting structure" means for oat- 
egorical variables. People have intuitive notions of what 
"interesting structure" is for euclidean variables, at least in three 
dimensions. But it is not obvious what the analogous ideas are for 
spaces of categorical variables or of mixtures of categorical and 
euclidean variabl_es. 

Work on special cases may give some insight to the general problem. 
For example, it is not to hard to look at the relationships between a 
two by two table (two categorical variables with two categories each) 
and three euclidean variables. We accomplish this by drawing four 
three-dimensional scatterplots, one for each cell of the two by two 
table. The four point clouds are rotated simultaneously, so that we 
can compare the shapes of the point clouds as they depend on the vari- 
ables in the two by two table. 

7.4 MISSING VALUES 

The model of data described in chapter IV assumes that observations 
correspond to single points in the data space. This is often false in 
real data. Real data sets contain observations that have missing or 
censored values. One way of looking at this is to say that each 
observation defines not a single point, but rather a set in the data 
space. 

The simplest way of dealing with missing variables is to delete all 
incomplete observations. One can also disregard variables that are 
unknown for a large number observations. However, especially in many 
dimensional problems, this can result in losing nearly all the data. 

In the present system, we avoid throwing away data. We delete a 
point only while the current picture involves a missing variable. We 
never delete variables. 

This is not completely satisfactory. In programs where we look at 
arbitrary linear combinations of variables, such as interactive PPR, 
we can soon find pictures where almost no points are left. 
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Another approach is to fill in the missing values. This is usually 
called imputation. We do not want to use parametric methods for impu- 
tation, because we do not know enough to build believable parametric 
models. A non-parametric method for imputing missing variables, based 
on recursive partitioning regression, has been developed by J.H. 
Friedman and W. Stuetzle. If we fill in all of the missing variables, 
we can proceed to analyze our data as though it had been complete to 
begin with. 

We are likely to be uncomfortable with simply accepting the results 
of an imputation procedure, whether it is parametric or non-paramet- 
ric. With OrionJ, we can study the performance of an imputation pro- 
cedure and decide if its behavior seems reasonable. 

:. 

A simple way to see what the imputation procedure does is to color 
points'representing imputed observations differently from those repre- 
senting observations that are completely known. We could then explore 
the data and see if the imputed observations seem to follow the pat- 
tern of the known data. 

A good procedure for imputing missing variables will give us not 
only a guess for the missing values, but will also provide an estimate 
of the uncertainty of that guess. This would be useful information to 
have in the picture if we are trying to evaluate an imputation proce- 
dure. 

For example, if an observation were missing a single variable, we 
would like our imputation procedure to give us an interval estima*e 
for the value of the m  
would be represented in 
show a set of reasonab 1 
observation. 

ssing variable. The incomplete observation 
a scatterplot by a line segment that would 
e guesses for the "true!' position of that 

7.5 SHADED SURFACES 

An advantage that raster graphics devices have over vector refresh 
displays is the ability to draw realistic looking solid objects by 
shading surfaces C22,431. We will use shading to display regression 
surfaces to try to learn something about projection pursuit. 

There are a number of open questions about projection pursuit. 
What sorts of functions can be approximated well by a few terms of a 
projection pursuit model? What sort of functions cannot be easily 
approximated? Given the set of directions used by a projection pur- 
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suit model, can we make any statements about where, in the predictor 
space, we expect the approximation to be good? Where should the 

^ approximation be poor? 

These questions are difficult to address analytically. We may gain 
some insight by looking at pictures of a variety of concrete examples. 

If we restrict ourselves to problems with a two-dimensional pre- 
dictor'space, then we can draw a picture of a regression surface by 

.._. ,I. shading. The plane of the screen will corresponds to the two-dimen- 
.~ 

sional predictor.- space. The height of the regression surface per- 
ceived through shading. 

To gain insight into how a complex regression model is built we 
will look at a sequence of pictures. In the first picture we will 
show the result of smoothing along one direction. The second picture 
will show the smooth of the residuals along the second direction. the 
third picture will show the surface resulting from the sum of the 
first two terms. And so on. 

7.6 PERIODIC BEHAVIOR IN TIME SERIES - - es 

In this final section, I describe a method for analyzing periodic 
behavior in time series, 

Suppose we have a time series Xt. We want to summarize Xt with a 
sum of a few (say 3 or 41 periodic functions: 

Xt = Ii #i(t) + rt 

The functions 9; are each periodic with some period hi. As in the 
general regression problem, we want the #i to be "nice", we want tla 
t-t to be small, and we also want there to be as few terms in the sum 
as possible. 

A traditional approach to this problem is to compute the Fourier 
transform of the Xt's and look for peaks in the periodogram CSI. Each 
peak in the periodogram suggests including in the sum a sine with the 
appropriate phase and period. In this approach, the 9i are nice func- 
tions because they are sinusoidal. 
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Fourier analysis has disadvantages. The presence of a few outliers 
can smear out peaks and make them invisible. In other words, "statis- 
tical" noise is not always high frequency. A periodic function which 
is not sinusoidal in shape may contribute many peaks to the-periodgram 
and thus many terms to the sum. Even worse, if the series is the sum 
of only two periodic, but not sinusoidal functions, it may be impossi- 
ble to seperate the effects of the two functions in the periodgram and 
the essentially simple nature of the series may be missed. 

I propose a simple graphical method that should be a valuable com- 
plement to traditional Fourier analysis. 

.- 

Let X be a trial value for the period. We draw on the screen a 
(two-dimensional) scatterplot of Xt versus C t mod X 1. The value of 
X is changed by turning a dial (for us the trackerball). The scatter- 
plot will change smoothly as we change the value of X. If the series 
is indeed well summarized by the sum of a few periodic functions, then 
at a proper value of a, the scatterplot will be closer to smooth 
curve. 

To aid our perception, we will copy the regression program and draw 
a curve over the scatterplot by smoothing Xt as a function of (t mod 
Xl. The curve will also change smoothly as we change X. If we 
include a bar the measures some criterion of fit, such as percentage 
of variance explained, and let the horizontal position of the bar be 
determined by X, then, as we vary X, we will trace out a bar graph 
that is a generalized version of the periodogram. By choosing values 
of X corresponding to peaks in this generalized periodgram, we can 
build up a model of the series. 

We will usually start at large values of X and gradually move to 
smaller ones. It is possible that the first period that fits well is 
in fact an integer multiple of the period we want. We can reduce an 
integer multiple to the true period by providing another way of chang- 
ing X. What we do is decrease X in discrete steps, X, X/2, X/3, s-s. 

Once we have chosen a value of X, we will subtract the smooth from 
the Xt to get a set of residuals Rt'. We will repeat the process on 
the residuals to build up the model. 

The method I am proposing has a similarity to projection pursuit. 
In a vague sense, it is a projection pursuit. For a fixed value of X, 
the smooth is approximately the projection, in an LZ sense? of Xt on 
the space of all functions that are periodic with period X. 

- 55 - 



REFERENCES 

1, Andrews, D.F., "Plots of High Dimensional Data", Biometrics 28, 
1972 

2. Andrews, D.F., "Statistical Applications of Real-Time Interactive 
Graphics", in Interpretinci Multivariate Data V. Barnett, ed., J. 
Wiley and Sons, 1981. 

3. Barnett, V., ed., Interpretinq Multivariate Data, J. Wiley and 
Sons, 1981. 

4. Bechtolsheim, A. and Baskett, F., "High-Performance Raster 
Graphics for Microcomputer Systems", Proceedings 1980 SIGGRAPH 
Conference, published as Computer Graphics 14 (31, July 1980. 

5. Bellman, R.E., Adaptive Control Processes, Princeton University 
Press, 1961. 

6. Belsey, D.A., Kuh, E., and Welsch, R.E., Reqression Diaqnostics 
John Wiley and Sons, 1980. 

7. Beniger, James R. and Robyn, Dorothy L., "Quantitative Graphics 
in Statistics: A Brief History",~ The American Statistician 32 
1978. 

8. Bloomfield, P., Fourier Analysis of Time Series: An Introduction, 
John Wiley and Sons, 1976. 

9. Box, G.E.P. and Cox, D.R., "An Analysis of Transformations", JRSS 
s 26, 1964. 

10. Chen, 1. and Li, G., "Robust Principal Components and Dispersion 
Matrices Via Projection Pursuit", Research Report PJH-8, Dept. of 
Statistics, Harvard University. 

- 56 - 



11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

Cleveland, W.S., "Robust Locally Weighted Regression and 
Smoothing Scatterplots", JASA 74, 1979. 

Cleveland, W.S. and Terpenning, I.J., "Graphical Methods for 
Seasonal Adjustment", JASA 77, 1982. 

Cleveland, W.S., Diaconis, P., and McGill, R. "Variables on 
scatterplots look more highly correlated when the scales are 
increased", Tech. Report 8182, Dept. of Statistics, Stanford 
University, January, 1982. 

.- 

Diaconis, P., and Friedman, J.H. "M and N Plots" , Tech. Report 
8151, Dept. of Statistics, Stanford University, April, 1980. 

Diday, E., et al., eds., Data Analysis and Informatics, North 
Holland, 1980. 

Donoho, D., Huber, P.J., and Thoma, H., "The Use of Kinematic 
Displays to Represent High Dimensional Data", Research Report 
#PJH-5, Dept. of Statistics, Harvard University, March 1981. 

Efron, B., "Bootstrap methods: another look at the jackknife**, 
Ann. &a+&. 1, 1979. 

Efron, B., "Computers and the theory of statistics: thinking the 
unthinkable", Siam Review 21, 1979. 

Efron, B., "Censored data and the bootstrap'*, 3. Amer. Statist. 
Assoc. 76 1981. 

Efron, B., "Nonparametric estimates of standard error: the 
jackknife, the bootstrap, and other res.ampling methodsH, 
Biometrika 1981. 

Fisherkeller, M.A., Friedman, J.H., and Tukey, J.W. "Prim-I), An 
Interactive Multidimensional Data Display and Analysis System", 
m. 4th International Consress for Stereoloqy, 1975. 

Foley, J.D. and Van Dam, A., Fundamentals of Interactive Computer 
Graphics Addison-Wesley, 1982. 

- 57 - 



23. Friedman, J.H., "A tree structured approach to non-parametric 
multiple regression'*, in Smoothinq Techniques for Curve 
Estimation, Gasser, T. and Rosenblatt, M., eds., Springer-Verlag, 
1979. 

24. Friedman, J.H. and Rafsky, L.C., "Multivariate Generalizations of 
the Wald-Wolfowitz and Smirnov Two-sample Tests", Ann. Stat. 7, 
P. 697-717, 1979 

25. Friedman, J-H., Stuetzle, W., and Schroeder, Anne, "Projection 
Pursuit Den$_ity Estimation" Tech. Rep. Orion 002, Dept. of 
Statistics, Stanford University, July, 1981. 

26. Friedman, J.H. and Stuetzle, W. "Hardware for Kinematic 
Statistical Graphics", Tech. Rep. Orion 005, Dept. of Statistics, 
Stanford University, November, 1981. 

27. Friedman, J.H. and Stuetzle, W., "Projection Pursuit Regression", 
JASA v. 76, 1981. 

28. Friedman, J.H. and Stuetzle, W., "Projection Pursuit Methods for 
Data Analysis", in Modern Data Analysis, Launer, Robert L. and 
Siegel, Andrew F., eds., Academic Press, 1982. 

29. Friedman, J.H. and Stuetzle, W. "Smoothing of scatterplots", 
unpublished manuscript, Nay 1982. 

30. Friedman, J.H. and Tukey, J.W. "A projection pursuit algorithm 
for exploratory data analysis", IEEE Trans Comput. c-23 pp. - -- 
881-890, 1974. 

31. Friedman, J.H., Tukey, J.W., and Tukey, P-A., "Approaches to 
analysis of data that concentrate near intermediate-dimensional 
manifolds", in Oata Analysis and Informatics, Oiday, E. et al., 
eds., North Holland, 1980. 

32. Gnanadesikan, R. Methods for Statistical Data Analysis of 
Multivariate Observations, 1977. 

33. Green, P.J. "Peeling Bivariate Data", in Interpretinq 
Multivariate Data, V. Barnett, ed., J.Wiley and Sons, 1981. 

- 58 - 



34. Halmos, P.R., Finite Dimensional Vector Spaces, 2nd ed., Van 
Nostrand, 1958. 

35. Harrison, D. and Rubinfeld, D.L. "Hedonic Prices and the Demand 
for Clean Air", Journal of Environmental Economics and 
Management, 5, 1978. 

36. Huber, P.J., "Projection Pursuit'*, Research Report PJH-6, Dept. 
'of Statistics, Harvard University. 

37. Huber, P.J., "Density estimation and projection pursuit methods", 
Research Report PJH-7, Dept. of Statistics, Harvard University. 

38. Kruskal, J.B., "Toward a practical method which helps uncover the 
structure of a set of multivariate observations by finding a 
linear transformation which optimizes a new 'index of 
condensation"', in Statistical Computation, R.C. Milton and J.A. 
Nelder, eds., Academic Press, 1969. 

39. Kunz, Paul F., "The LASS hardware processor", Nut. Instr. Meth -- 
9, p. 435, 1976. 

40. Kunz, Paul F. et al., "The LASS hardware processor", in "Proc. 
11th Annual Microprogramming workshoptr, SIGMICRD Newsletter 9, p. 
25, 1978. 

41. Launer, Robert L. and Siegel, Andrew F., eds., Modern Data 
Analysis, Academic Press, 1982. 

42. Mosteller, F. and Tukey, J.W. Data Analysis and Recression, 
Addison-Wesley, 1977. 

I_ 

43. Newman, W.M. and Sproull, R.F., Principles of Interactive 
Computer Graphics 2nd ed., McGraw-Hill, 1979. 

44. Rosenbrock H.H., "An automatic method for finding the greatest or 
least value of a function", Comput. 2. 3, 1960. 

45. Stone, Charles J., "Consistant nonparametric regression", Ann. 
Stat 5, 1977. -* 

- 59 - 



46. Tukey, J.W. Exploratory && Analysis, Addison-Wesley, 1977. 

47. Tukey, J.W. and Tukey, P. "Graphical Display of Data Sets in 3 
or more Dimensions", Part III, chapters lo-12 of Interpretinq 
Multivariate Data V. Barnett, ed., J. Wiley and Sons, 1981. 

48. Tukey, J.W. "Control and stash philosophy for two-handed, 
flexible, and immediate control of a graphic display", Technical 
Report No.221, Series 2, Department of Statistics, Princeton 
University, March 1982. 

- 60 - 


	slac-r-253a.pdf
	slac-r-253b.pdf

