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ABSTRACT 

A minimal self-consistent set of covariant and unitary three- 
_- 

particle equations is presented. Numerical results are obtained for 

three-particle bound states, elastic scattering and rearrangement of 

bound pairs with a third particle, and amplitudes for breakup into 

states of three free particles. 

The mathematical form of the three-particle bound state equations 

is explored; constraints are set upon the range of eigenvalues and 

number of eigenstates of these one parameter equations. The behavior 

of the number of eigenstates as the two-body binding energy decreases 

to zero in a covariant context generalizes results previously obtained 

non-relativistically by V. Efimov. 

ii 



ACKNOWLEDGEMENT 

I would like to acknowledge a few special persons for their support 

of this work. I would like to express appreciation to Lenita Williamson 

for her aid in the preparation of the figures and support as a friend. 

Also, I wish to thank Dawn Herrell for her support during the period of 

research and writing. Without the administrative and personal support 
-- 

of Fannie Van Buren my stay at Stanford would.not have been as pleasant. 

I would like to express a special thanks to Professor Richard R. 

Blankenbecler, whose patience and scientific brilliance has done much to 

enhance my career. Most of all, I would like to give my sincerest 

gratitude to Professor H. Pierre Noyes, whose dedication, insight, advice, 

and friendship made this work possible, and who must have been the best 

advisor a grad student could have. 

iii 



TABLE OF CONTENTS 

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . .' 

Page 

1 

II. FORMULATION OF BASIC EQUATIONS ............... 

A. General Development of Three-Particle Equations .... 

1. CovXriant States .................. 

2. Properties of Resolvants .............. 

3. Amplitudes and Channel Decomposition ........ 

B. Physical Observables .................. 

1. Interacting Eigenstates .............. 

2. Primary Singularities of Amplitudes ........ 

3. Cross Sections ................... 

C. Minimal Three-Particle Model .............. 

1. Equations for Separable Two-Body Input ....... 

2. Model Assumptions ................. 

III. RESULTS .......................... 

A. Three-Particle Bound States. .............. 

1. Form of Equations .................. 

2. Mathematical Constraints and Predictions ...... 

3. Numerical Bound State Solutions .......... 

B. Elastic and Rearrangement Scattering .......... 

1. Form of Equation .................. 

2. Numerical Results ................. 

4 

4 

4 

7 

10 

15 

15 

20 

22 

23 

25 

27 

iv 

29 

29 

31 

32 

37 

37 

40 

44 



Page 

C. Break-up Scattering .................. 45 

1. Form of Equations .................. 49 

2. Numerical Results ................. 50 

IV. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . 53 
-- 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 

V 



CHAPTER I 

INTRODUCTION 

In the study of three-particle scattering theory, many subtleties 

of quantum mechanics require careful attention for calculations. Through 

the understanding of the three-particle scattering problem, one can gain 

insight into the foundations of quantum mechanics as a predictive science. 

The three-particle problem probes the properties of two-particle systems, 

as well as serves as a guide to the understanding of N-particle problems. 

A description of certain physical systems often described as three- 

particle bound states (for instance baryons, the triton, etc.) could 

extend theoretical insight into some of the fundamental symmetries of 

nature. 

The formulation of a consistent three-body quantum mechanics was 

achieved in a non-relativistic context by Faddeevl with considerable 

mathematical rigor. Faddeev defined a specific channel decomposition of 

the system through which physical observables could be extracted, within 

a Hamiltonian scattering theory. Thus, given the Faddeev equations, 

with specific two-body scattering input, one in principle obtains self 

consistent three-body scattering amplitudes. 

As numerical and analytic techniques developed to study the 

three-particle problem, the differences between two and three particle 

dynamics became more apparent. Through an analysis of the configuration 

space equations for the wave function, H. P. Noyes ' noted that long 

range effects occur in the three-body system even if all pairwise inter- 

actions are short range. This effect, called by Noyes "the eternal 
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triangle," changes the interaction between a given pair, if a third 

(interacting) particle is brought into the system anywhere, regardless 

of the range of the forces involved. By examining the scaling behavior 

of the Hamiltonian eigenstates in the case of resonantly interacting 

particles, Efimov3'4 determined that the actual number N of three body 

bound state solutions can become large as the magnitude of the scatter- 
-- 

ing length la] for a pair becomes large relative to the scale of 

forces rO; 

N = $ log ([al/r,) (1.1) 
for EN << l/r:, low three-body binding energy. This effect would 

result in a logarithmic growth in the number of three-body bound 

states as the two-body pairwise binding energy decreases to zero. 

Efimov5 subsequently demonstrated that effectively there is a long 

range (l/R2) potential which is responsible for the effect. The range 

of the bound states is large compared to r 0' These results are con- 

sistent with the eternal triangle effect discussed by Noyes, within 

the context of the kinematics. These effects appear in the low 

energy limits, and thus should be consistently reproduced in a 

covariant formalism. A rigorous treatment of this effect will be 

presented within the model to be examined in Section III-A. 

The development of a relativistically covariant formalism 

requires that additional sets of constraints be satisfied, as well 

as introducing the complicated analytic structure of relativistic 

kinematics into the theory. An important question is the choice of 

the covariant propagator which reduces correctly to the non-relativistic 



-3- 

situation. Often calculations have been done using the Blankenbecler- 

Sugar prescription.6 Brayshaw7 used a propagator which involved a 

linear difference in the four-momentum variables, such that the form 

of the equations satisfy certain clustering properties. A propagator 

similar to that of Brayshaw is used in the development of Section II-A. 

What will be presented is a general formulation of a consistent 

relativistic quantum mechanics, along with an investigation into the 

properties of a particular model involving separable, zero-range two- 

body interactions. The formulation of the relativistic problem in 

terms similar to those presented by Faddeev will be the topic of 

Sections II-A and II-B. Section II-C will present the particular 

development of the model being explored. The numerical and analytical 

results of the model will be examined in Section III. 
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CHAPTER II 

FORMULATION OF BASIC EQUAIIONS 

A. General Development of Covariant Three-Particle Equations 

The system to be considered will consist of three distinguishable 

particles specified by momentum variables and a mass shell condition. 

The particles will be labeled by Latin indices a,b,c,... which will 

take on values from 1 to 3. Four-vectors will be denoted with arrows 

and three-vectors wiil be underscripted 

i-l = (E a k 1 a' -a 

ii where a l Za=m2 , a -A l 3 = A"Bo - + l ,B (2.1) 

1. Covariant States 

The non-interacting eigenstates, which can be represented as a 

direct product of single particle states, will be denoted 

Ikl&li 52s2; k3"3) and will satisfy the following conditions: 

$11 kl’l; 92; k3E3) = 

( kpp 57 k3E3 
3 

I &-jy); k205); 53830) = l-l a=1 
Ea(ka,m,)63(k 

(2.2) 

-a -kao) 

l= J 
d3kld3k d3k a 

3 
5 E2 E3 

is the mass shell condition. 
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The physical problem will be examined in terms of boundary states 

which satisfy the asymptotic conditions. Without loss of generality in 

the formalism, it will be assumed that only one bound state can exist 

for each of the pairs. The results will be easily generalizable to 

include the entire discrete finite spectrum of each of the subsystems 

in the case this condition does not hold. The possible asymptotic 
-- 

situations consist of bound pairs with a third non-interacting particle, 

or three non-interacting particles. These boundary states will be 

represented as follows: 

- ka,E a 

where $J, represents the bound state of the two particles other than a; 

these particles will be labeled a- and a+. The energy of the bound 

state is E = Pa + IL: , where kz is the three-momentum of the 

pair state. The total four-momentum in the-state I'Po) is represented 

by $o). The boundary states satisfy the following conditions: 
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3 
(,kp1; kp2; k3E31 @() : &fl(y !&f20; &3$30) 9 s 

(0)) = a=l Ea63(ka-"ao) TI 

(kly $25; ,k34Qa: gaOEaO; $,(ka& ,I> = 
a 

(2.3) 

EaoS3(k -a - kao)&u 063(ka+ + ka - a - ka;)$a(ka+,-k -a- ; 11,) 

where IJ~(~~+, k,-; 11,) is the pair bound-state covariant wave function. 

The fully interacting scattering states will be representable in. 

terms of these boundary states. The fully interacting states will be 

eigenstates of the total four-momentum operator: 

I? Id’): (k 
FI o -loclo; k20E20i k30E30)40) 

= $o) If : (klo’lo; k20&20; k30E30) ,$o) ) 

i$ Id'): k E FI a -a0 a0 ; i,(k;oE,,aO) = ~aol@;+): &aOEaO; ~a(&;oEuao)) (2.4) 

where $(,) = 
c 'a0 and 60 = (Eao + &paO,kaO + Co). 

a 

The difference between the interacting four-momentum and the non-interacting 

four-momentum will define a quantity which determines the nature of the 

interactions 

+I -f 
IP = PFI - SNI = (HI,:') + (H';(J) 

for eigenstates of three momentum. In the three-particle center of momentum 

system (3-CMS), the states take on the following form: 

lea 
FI Id+)* (k 0 * mlEl; k2E2; k3E3>, (Kg)) = Mid+): (klEl; k2~2; k3~3), (MJJ)) 

(2.5) 

lP" FI I'+)- kaca; Q a l 

(k ‘E )) a-a 1-1 a 
= (Ea + Ep a) [ YF’ : lcaEaj 
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In the case of only pairwise interactions the term H' can be decomposed 

into pairwise functions as follows: 

3 
H' = c Ha' 

0 0 

a=1 = pFI - lpNI 

where 

(PiI+ Hi) I@,: tag%; $,(-$,Ep 1) a 
)) = ka + EU 

a ) 19,: kaEa; $a(-$a'Eu 
a 

(2.6) 
2. Properties of Resolvants 

To study the relationships between the eigenstates, use will be 

made of the resolvants of the four-momentum operators defined as 

follows: 

GN16 f  t-6 l (h,, - 6)]-1QoS3(ENI - Q) 

Ga6 z  [h l ‘s, - a)]-1Q063(P?a - $1 

GFI(6) z  [d ’ d,, - di]Q”&3@FI - Q) 

where 3 a 

which will be well defined equations for Im Q" # 0. In the three- 

particle CMS, these can be expressed: 

GNIW) = [P& - Z] -163(TpNI) : R. (Z> S3($,,) 

Ga(Z,O) = [IPi1 + HA - Z]-h3(sA) = Ra(Z)63(1pa) 

GFI(Z,O) = [PiI - Z]-163'(IpFI) - RF(Z)63@FI) 

(2.7) 

(2.8) 
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As previously mentioned, since all systems of covariant states are three- 

momentum eigenstates, the following holds 

P -NI 
= pa = pFI - p 

Using these relations, the fully interacting eigenstates which satisfy 

the asymptotic boundary conditions can be expressed formally as follows: 

.~ 
lYo(')-(M,g)) = limlYo: M + in)) 

W-0 
(2.9a) 

pP (+)(& + E a a va,CJ)) = limlYa: ~~ + ~~~ f in) 
WO 

where 

IYo: Z)= lQO: M)- Ro(Z)H'IYO: Z) 

IY,: z) = 1 Qa: Ea + Eva) - R,(z) c ‘abH;, II,: z, [ 1 (2.9b) 

b 

Xab = 1 - CSab , bo: M) E 1 Qo(M,_O)) 

and momentum arguments in the states have been suppressed. These 

equations can be reexpressed in the form 

IY('): (k E 
0 .ul 1; !S2E2; k3c3>, @LO)) 

= lim(+in)RF(M t in)/Qo: (lclcl; E >,(M,O)) 
WO 

k2E2; 53 3 

z U(+)(M O)l@ 0 3, o: &El; k2E2; k3E3), (M,$)) 

I'd'): (k a -aEa; Qa(-kacpa)) = lim(Tiri)s(Ea + &pa 2 id I Qa: ka~a; ~J~(-&~E~~>) 

r1+0 

- d+)(& + a a E,,a’O) 1 oa: kaEa; $a(-kaE,,a)) 

(2.10) 



-9- 

It is advantageous to examine some properties of the resolvants, 

since these will have direct relevance to the properties of-the system. 

Suppose that only one pair interacts, and the third particle a0 acts 

only as a "spectator." One's physical intuition would suspect that 

this particular three-body system should behave just as though the 

spectator were not present, and that in the mathematical expressions 

describing the process the parameters involving the spectator should 

not alter the two-particle observables. The behavior of any of the 

resolvants is 

G(6) = [?j l (iha + 'i'k - &J-l Q"rS3(P + k - 9) 
aO -a0 -a 0 

(2.11) 

where $ 
aO 

is the four-momentum operator of the (aof, ao-) pair 

subsystem. In the case being described (which will be called 

"clustering") the momentum ka 
0 

will remain unchanged. The center 

of momentum system for the pair (2 
aO 

-CMS) will be described by the 

four-vector 6 
2a0 

-CMS with components 

? 2-CMS = ('a0 + eaoy kao) 

and thus the resolvants can be denoted 

+ 
G(Q2-CMS )-G 

(2ao) 
(Zao) = rP~o- Lao]-l &Pa ) 

0 

(2.12) 

(2.13) 

where ? 
aO 

operates only in the two-particle space. Examining this 

expression it appears that the form of this resolvant is identical to 

what would appear in a purely two-particle space. Since the scattering 
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eigenstates of the full system depend through the resolvant upon the 

boundary states, then if the boundary states satisfy these cluster 

conditions so will the full scattering states. 

The operators $RI and $ NI are self adjoint if they are to be 

physical observables. This property reflects itself in the following 

properties of the resolvants (Hilbert's identity): 
-- 

R(Zl) - R(Z2) = (Zl - Z2> R (Z,) R (Z,) 
(2.14) 

G(Zl, P --(0)) - 'X2, P "(())) = q - Z2) R (Z,> R (z,> 63 (I$ - Q,) > 
Other properties also follow directly from the definition: 

R+(Z) = R(Z*) star denotes complex conjugate 

RF(Z) = ROW - R&Z) H'%(Z) = RO(Z) - RR(Z) H'RO(Z) 

(2.15) 

R,(Z) = R. (Z> - R. (Z> H;Ra(Z) 

These relations will be useful in determining amplitudes for the 

various physical processes. 

3. Amplitudes and Channel Decomposition 

The covariant probability amplitude for scattering from asymptotic 

initial to final states is given by 

( Y;+) 6, > 1 Y;-) &,) = 

(2.16) 

( Qa Gsf 1 I UC+)+ i+psf NJ;-) dsi) I QB ($si,) a 
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where Greek indices a, 13, . . . will take on values from 0 to 3, and 

momentum arguments of the states have been suppressed. Here, ?s refers 

to the four-momentum of the particular system examined. The scattering 

operator will be related to the transition operator in the following way 

Sip(())) = 1 + 21Ti&4(?s - $(,))A($(,)) (2.17) 

The components of--the scattering operator between boundary states can 

be obtained from Eq. (2.16) as 

Sas($ = u(+)+ (5 UB a (-I 6 

From Eq. (2.15), the following identities can be shown 

[I - $(Z)C”ab$] [ 1 
b 

+ R,(Z)x gab%] = 1 
b 

(2.18) 

(2.19) 

[I - RF(Z) H'][l + Ro(Z)X'] = ' 

Using these identities with Eqs. (2.9b) it follows that 

[Ya: zl)- IY,: z2) = -[RF(Z1) - s(z2> lT6ab$/@a : Ea + Eva) 
(2.20) 

Iyo : zl)- IY, : z2) = -[$(Z,) - %(Z2)l -13’ IQ6 : M) 

The overlap amplitude can now be expressed: 

( ‘a : qY’fj : z2) = (Y, : ZllYB : z,) + 
(2.21) 

( ‘a : Zll [%(Z$ - RF(Z21 [$t - ~;]I @,$ +o, 

where the operator $ 
-+ 

o E PNI . The physical overlap amplitudes are: 
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(,(+I :P;/Y;-) :PYo)) = (Y(+) :PZiYg(f) :P&)) -t a a 

(2.22) 

2?l-i6(P;-P;4Y (+) : 
a $1 $I - $1 I og: qo) 

Thus, the covariant probability amplitude into boundary states can be 

written as follows: 

(y(++$ ,Iy’-y$ 
a s B (0) 

)) = (y(+) +- a (P,) IY;+h$o))) + 

(2.23) 

where the amplitude (@a/AaBI@8) represents the transition amplitude, 

and is expressed: 

(2.24) 

(Y(+)(s- ,I$ 
a S (0) l I’,, - 

The states ]Y, (+I &)> will shortly be shown to be covariantly ortho- 

normal, and thus the amplitudes involving AaB represent the physical 

transition amplitudes. 

To develop equations for the amplitudes, consider the Lippman- 

Schwinger equation for the operator T in the 3-CMS: 

“3(p - Q)T(% = H’ - H' Ro(Qo) 63(p - Q)T(;) 

(j=o 

(2.25) 
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The channel decomposition proposed by Faddeevl for a system with only 

pairwise interactions, 

3 
H' = c Hi 

a=1 

involves the definition of T as: 

3 
T(Qoso) = c Tab(Qo,o) 

a,b=l 

These components satisfy the sets of equations 

S3(P- - 9) Tab (;> = 6abH; - H&(Q’)H;, 

which can be reexpressed using Eq. (2.15) as: 

.(2.26) ” 

(2.27) 

(2.28) 

(2.29) 

Operators ta can be defined for the subsystems which satisfy 

63(p - 9) t,(;) = H; - H;Ra(QO)H; 
(2.30) 

These equations can be rewritten 

11.+H~RO(Q0)163(f,-~)~ab(~) = H~[~,-R~(Q~)~~ iac~3(~-~)Tcb(~)] 
C 

11 + H>,(Q”lS3(p- (J)t,(;) = HA 
(2.31) 
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and the equations for Tab can be cast into a form dependent only on the 

quantity ta 

Tab(d) = Babta(;) - ta(if)GNI(& c iacT=, 
C 

(2.32) 

& = c Tab& a,b 
-- 

Using Eqs. (2.25) and (2.15), the fully interacting resolvant can 

be expressed in terms of the operator T 

s(Q") = R,(Q') - R,(Q') Cj3 (p - 9) Ubo(Qo) 
(2.33a) 

Similarly, the "channel" resolvant can be expressed in terms of t a 

Ra (Q”> = R. (9’) - R. (Q”) 63 (p - a> ta iq)Ro (9’) 
(2.33b) 

or G,6) = GN16) - GN16) ta (6) GNI 6) 

The relations (2.14) imply conditions on the operators Tab through 

Eq. (2.29). Using the easily verifiable relations (for Q = (1) 

R. (Q”> c 63(r - 9) Tab c”s, = Rp(Q’) H; 
C 

(2.34) 

c 
C’ 

T,,($ tj3 (P - S> R. (Q") = HiRF (Q") 

the form of the Hilbert identity in relation to the operators Tab 

becomes 



S3(E)Tab(Z,$j) - ~3(~)Tab(z2,~) 

. 
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= (Z2 - Zl) c T,,, (Zl,o)a3(~)R,(Z,)R (Z2)63,,,&j(z2,9) 

C’ C 

Likewise 

s3wt c+y - a - s3(Nta(Z2,“) _ 

(2.35) 

(2.36) 

= (Z2 - zl)ta(zl,~)~3(~)Ro(z1)Ro(z2)~3(~)ta(z2,~) -- 

B. Physical Observables 

1. Interacting Eigenstates 

Once the singularity structure of the operators is determined, the 

relationship of the operators with the physical observables of the system 

can be extracted. Examining Eq. (2.32) the expressions for Tab can be 

diagrammatically represented: 

T ab = Gabta - 
c ta'acGNITcb 

C 

b 

The structure of the fully (three-particle) connected piece will be 

examined. 

',,(is) ' Tab6) - 6abtai& 

A formal relationship between operators and observables can be 

established using Eq. (2.10) expressed in the form 

1~':~): M) = lim RP(M f in) 
c PiI - 

W-0 
M T in]lDo: M) 

(2.37) 

(2.38) 
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Iy('): E= + e,,)= lim RP(E + sFcc+in) 
e C 

PE -- s - EFIC T in 
C 1 I@=: E + EpC) 

C O-+0 
(2.39) 

The resolvant can be expressed, using Eq. (2.33a): 

R-p) = Ro(Z) - Ro(Z) c ~3(P)Tab(z,o)Ro(z) (2.40) 

ab 

Using these expressions, the fully interacting eigenstate which asymptoti- 

cally represents three non-interacting particles can directly be represented 

jY(+)(k 
0 21; k2E2; Ic~E~),(M,CJ)) = [I - lim RO(M +_ in) 

V-0 
(2.41) 

X f in,O) .- 1 1~~: (kl~l; k2~2; k3c3),(M,g)) 

ab 

To determine formal expressions for fully interacting eigenstates 

which asymptotically represent a bound pair with a third particle, use will 

be made of the full resolvant expressed in terms of the "channel" resolvants 

$(Z) = ROW + CL R,(Z) - ROW-j - ~o(~)~~3(~)~ab(z.o)~o(~) (2.42) 

a ab 

The actions of the resolvants R. and Ra on the boundary states can be 

determined 

lim R (Ed + E,,= + in) in 
1 . IQ 

v-0 O 
- Ed - sic T 

C 
: cc + E,,~ = 0 > (2.43) 

limR,(c 
C 

n-+0 (2.44) 

Use will be made of the operator Kab formally defined by 

(2.45) 

With these relations, the fully interacting eigenstates are 
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Iye) 
b : l&&b; $b(-fib~ub)) = [ 1 - $I R. (cb + Eub k in> (2.46) 

X + E,,b ' i&o,) lob: $j'b; ib(-$,E,,b)) 
a 1 

Thus the operators which transform the boundary states into fully inter- 

acting eigenstates can be expressed 

' in'~(o))~ Tab(PTo) ' iq'P(O)) 
ab 

(2.47) 

= 1 -1im G (E rljo NI b + 'pb t in+,, + g) c Ka@b + E,,,, ' in?,& + $ 

a 

Next, formal expressions will be developed for operators which directly 

yield physical amplitudes. These amplitudes will be extracted from operators 

&a8 
defined by 

GFIdl)GFI(62) g G,td,,JQ,&; 62Wg(62) (2.48) 

Expectation values ofd crB 
between boundary states contain information on 

physical observables through Eqs. (2.10) and (2.16). The following formal 

definitions will be made: 

GNI (6, Wab (6) GNI (6) - GNI (6) Kab (6) Gb (6) 

= - Ga (6 kab (6) GNI (6, (2.49) 

f G,(d) ypab (‘6) Gb (6) 

Using expressions (2.40) and (2.42), the following sets of equations can be 

shown valid 
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s(Zl>RF(Z2) = Ra(Zl)daB(Zl,$ Z2.9RB(Z2) 

1 

zl-z2 
- Ro(Z2) 1 630W(Z2,9 . - ~3(WT(z,,$) 

1 
X 

zl - z2 
+ Ro(Zl) I} R. (Z,) 

= Ro(Zl>Ro(Z2> + C[ Ra(Zl>Ra(Z2) - Ro(Zl)Ro(Z2)] + Ro(Zl) 
a 

c {[ 

1 
X - Ro(Z2) 

ab zl - z2 1 - &3(P)Kab(Z2,0) - s3(p)Ka,(z,,o) 

= Ro(Zl>Ro(z2)~+ C[ Ra(Zl>Ra(Z2) - Ro(Zl)Ro(Z2)] + c Ra(Zl) 

a ab 

1 
X 

I1 - z2 
- Ra(Z2) S3(P)Eab(Z2,0) - 63(p)Kab(z1.“) 

zl 2 
- z + Ro(zl) R. (Z,> 

= Ro(Zl)Ro(Z2) + ~[Ra(Zl)Ra(Z2) - Ro(Zl)Ro(Z2)] 
a 

+ C Ra(Z1){[ZlYZ2 - Ra(Z2) 63(z> ~;b(z2'~) - s3(p) tia,,('l'!j) 

ab 
] 

+ %(zl> )Rb(z2) 1 (2.50) 

With these relations, by cleverly choosing the limits on the parameters 

Zl and Z2, the amplitudes in Eq. (2.23) can be determined 
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=- ~~lOEIO;- 520E20; k30E30) - 
I ab 

where 

where 

where 

c 
il, = s 09 = c k0 free asymptotic states 

a b 

= - 
%l'l' k2E2' -3 3 ab k E IK(+)($,))l@b: k&bo; 'b&jE~bO)) 

a 

c ga=it = CBj $O + 4, breakup 

a 

( Q a: 5aEa; +a(&c.& Pa) lALi’( ‘(C) 1 ~@o:(kloE1O; k20E20; k30"30&)) 

=- 
C( 

@ a: kaEa; )~R:)(~(,))~kloEIO; k20E20; k30"30) 
b 

s cc> = c coalescence 

b 

where za + iIp = it 
a (E) 

= icbO + iyo elastic and rearrangement scattering 

(2.51) 



- 20 - 

2. Primary Singularities of the Amplitudes 

The singularity structure of these amplitudes remains to be examined. 

Consider first the operator ta. From expression (2.30), the behavior of 

ta in the vicinity of a bound pair can be determined 

d3k1d3kF' a a - klEl; 
=- 

/ 
f k2E2; k3~31H3’a: k;E;; “,‘kp’E;la)) a 

- E’E’ a pa &A + &Ga - z - 

. 
( oa: !$A; +a(kz’$a) IH&flo; k&2(+ k30E3()) 

(2.52a) 

+ (term non-singular for z -f Ea + Eua) 

Using the expressions (2.3), this can be written 

lim 
Z+EaO+E~aO 

(Z - Eao - EuaO) 

X 91; k2E2; k3E3163(p)ta(zy”)1k10E10; 620~20; 530”30) 
(2.52b) 

= E a063 (k -a - kaO)EJJa063(ka+ + !a- - !a+0 - ka-0' 

' (EaO [ + &pa01 - (El + &2 + ‘3)]Jia(5a+Ea-; va)+~(ka+O~a-O) LcEaO + EIJaO) 

- (E10 + E20 + E30)l 

where Ik wa+O +k 2 2 
-a-O 1 +IJ a 

A normalization condition can be determined foL the bound state wave 

functions. By considering the expression 

lim lim 

Zl+Ea+EIJa Z2+EaO+EVa0 
(Zl - Ea - Epa> (Z2 - EaO - ED,()) 

x ( yl; k2c2; ~3~3~Ro(Zl)63(~~ta(Zl,~~~o~~l~ 

X Ro(z2)63(P)ta(z2,0)R,(Z2) /klOEIO; 520~20; !$30"30) 
(2.53a) 
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and recalling the relation (2.36), the following normalization condition 

can be determined 

d3k a+ d3k a- 
E’E’ a+ a- 

&La paNa(E;+k;-; v,> = 1 

(2.53b) 

where 

To examine the-singularity structure of Wab, the equation satisfied by 

W ab can be determined using Eq. (2.32) to be 

',,(6) = -zabta(d)GNI(6)tbd) -c ;facta(~)GNI(&Wcb($ (2.54) 

C 

As can be seen by the driving term, the singularities in ta and tb will 

occur to all orders of iteration of Eq. (2.54). These singularities of Wab 

which appear in all orders of iteration are called "primary singularities." 

These singularities are due only to the factors from ta and tb. Using 

Eq. (2.52b) with the definitions (2.49), expressions obtained for the 

operators K ab and H ab will be free of primary singularities 

lim 
Z+-Ebo+EMbo?iO 

(' - 'b. - ',,bO) 

X klEl’;‘ t2E2 3 ’ ~3E31Wab(z~“)l”loElo’ k20E20’ k30E30) (2.55a) 

=- Qo: oyl; b2E2’ - k3E3> ,(p;ol ,~)I$’ c&b0 + E,bO+ I$,: &oEbO; $,(-“bOyE~bo)) 

x +*k(k b wb+Okb-0; pb) [E1o + '20 + E30 - Ebo - %bO 1 
where &l + E2 + E3 = PO (0) = 'b0 + 'L'b" 
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lim 
Z+ca+Epa+iO 

(z - Ea - Ella) 

k3&31Wab(Zt")l"loElo' k20E20; k30E30)(Z - Ebo - 'l-lb') 

= 
El +E2+~ -E 3 a - Eua I qa(ka+ka-; 'a) 

x 0 ( a; baEa; $a(-ka"pa) It%;;' cEa + Eua'$)) 1 'b: kboEbO; Q&!&EVbo)) 

x ';;(kb+&&-o; 'b) [ E10 + E20 + '30 - 'bo - 'UbO 1 (2.55b) 
-- 

for Ea + Ev = 
a 'b + El& 

The discrete spectrum {Mj] of PET will correspond to poles in the full 

resolvant RP(Mj). Thus, the solutions to the homogeneous equation will 

correspond to the discrete eigenvalues of PiI 

(2.56) 

The projector onto the discrete spectrum of SF1 will be denoted gdiscrete. 

To end the discussion of the fully-interacting system, it should be 

noted that the relations (2.47) or (2.50) can be used to examine on shell 

orthogonality and completeness relations. The operator expressions obtained 

are 

,p+p = 6 
8 

, 
a8 a 

(2.57) - 

where lcl is the unit operator of boundary state IQ,) 

3 
c 

p>p f- 
a tt = ' - 9discrete ' 

a=0 

3. Cross Sections 

A final connection will be made with the amplitudes examined and the 

standard cross section. The probability flux into a subset of final states 

can be written 
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A(probability flux) = @Aa (2.58) 

where g is the incoming probability flux per unit area, and Aa is the 

apparent cross sectional area. This expression can be rewritten 

Aa = 
c 

('i~'f)(yf~pi) 

*('il"i) 
(2.59) 

YfEAYf 

With the given state normalization and covariant flux, the standard co- 

variant differentia-i cross section is 

N d3k 
(2n)464p(f) 

- 
da= n-5 '(i)).IAfi 

I 2 
a=1 a 2 

(1) 0 

l 2 l z )( r: 0% )I 1,2 (2.60) 

(2) 0 (1) 0 (1) 0 (2) 0 (2) 0 

where k(jIo is the four momentum of the incoming subsystem j. 

c. Minimal Three-Particle Model 

Given the analytic structure of the matrix elements of the operator ta, 

one can in principal use Eq. (2.54) to determine a set of equations for the 

matrix elements of the operators W ab, from which physical observables can 

be extracted. The equations for Tab and Wab will be recalled for the 

present discussion Tab (6) = 6abta(6, - c ~acta(bN16Tcb6) 
C 

Wab (6) = -zabta(d) GN1 (6 tb (6) - c xactad) GNI 6wcb (6) 
C 

(2.61) 

The input from the two-particle subsystems is through the scattering 

operators T a which occur in the two-particle space, and from which the 

operators t a are obtained as follows 
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= E aOS3(ka - kao)(ka+Ea+; ka-'aBITa(' - 'aO)Ika+OEa+O' kaLOEa-0) 

- Ea053(lca - kaO)ra(ka+ka-Ika+Oka-0' ' - 'ao) (2.62) 

The operators ra are the scattering operators which would occur in a purely 

two-particle theory. The resolvant will have matrix elements 

( * kfl; k2E2' k3E3 I c,,(a) I kl(pl(); 3(-J 30 ; k30"3O) 
(2.63) 

63(klo + 520 + 530 - Q) 3 = 

El 
+ ~~ + E - Q" 

- l-l 
3 a-l 

Ea063 (k -a - ka0’ 

These equations will be examined in the three-particle center of 

momentum system. In the 3-CMS the parameter 6 will have the on-shell 

behavior indicated 

6 3-CMS = (M + iO,O) = $(oj 

The behavior of the matrix elements of the operator Wz' in the free (non- 

interacting) particle basis with this parametrization is as follows: 

I+> ““(~,+ka-lka+gka-o; CM - Eag’-kao’)Tb (L+\-‘!&+Okb-0’ (M - EbO'%O)) a 
X 

Eab('a +Eb+E ab - M --ii> 

“‘zd”: c Xac~;)( ka+kas- 1 k;+$; --- CM - cas +,)) 
C 

(2.64) 

A3(lcc+ + k' -a- + ka' . - 
tza + E:+ + E:- - M - i0 @Lf)) 
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where k -12 - $3 

2 
%2 E pcl + k212 + rn: etc., for 1, 2, 3 cyclic. - 

1. Equations for Separable Two-Body Input - 

Equation (2.64) represents a general integral relationship of the 

elements of W ab to the elements of 'c . a The equation involves an integration 

over three componen‘fs of momentum, which could produce numerical complica- 

tions. To simplify the numerical problem, it will be assumed that the two- 

body input can be written in a separable form: 

T;’ ‘ka+Fa- I !A+!;-; 6a) = ga(ka+k,->gz(kJ++kA-) 
DC+) (6 a a l ?j > a 

(2.65) 

The parameter qa will be written in terms of the two-particle on-shell 

invariant rest energy 

6, l ;a = (b(o) - z,> l (SCO) - Ca) - sa (2.66) 

From Eq. (2.64) it directly follows that the elements of Wab can be written 

in terms of a reduced amplitude Gab 

(2.67) 

= gap,+!,-’ I\ ” gb(%+o!b-o) - 
Daba> Wab(kaI!&O' M) Dbb,,) 

The equation satisfied by the reduced amplitudes is 

fia,,(ka/&; Ml = -zab E 
gz(ka+o'ka-O)gb(kb+'kb-) __--I__ 
ab (Ed + ~~ + ~~~ - M - i0) 

-= / 

3 
d3k; 

(2.68) 
g; (5; 9 -lc,-$> gc (5 a' -pa1 

ac E'E ---i- a ac 
(Ea + co + E; ij (k'lk ; M) 

C 
- M - iO)Dc(sr) cb -c -bO 
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where 
E’ ac 2 = Ilc, + PI2 + m2 L ac 

It is now advantageous to perform an angular momentum decomposition 

to reduce the number of integration variables. The reduced amplitudes can 

be written in terms of angular momentum components 

fjab($al&bo; M) = c y PJ(ca l $,o)fi;b(kalkbO; M) (2.69) 

J 

Using some of the properties of the functions PJ(S) 

/ -1 1 PJ, K)PJ(S)dS = 
26J'J 

25 + 1 

P,(E;, l i;bo) = 41T c YJM(~a)yM(~o) 25 + 1 

(2.70) 

M 

The equation for the angular momentum components of the reduced amplitudes 

becomes: 

fjJab(katkbo' M, = -2'6ab 
/ 

1 g;(ka>kbo; ~a&+,(ka,~o; tab)PJ(cab) 

-1 
dSab cab(cab)[c a + ~~ -I- ~~~(6~~) - M - i.0) + 

-2l-r c I 'ac 

ki2dk; ?b(k;\k,o; M) 

E' 
C 

Dc(s;) 
C 

(2.71) 

dS 
g; (ka ,k; ; Sackc(ka,k;; s,,>P,(E,,) 

ac ~~~~~~~~ [Ea + Ei + E~C(~ac) - M - io] 1 
If the kernels Rib are defined 

Rib(ka,kb; M) = 
/ 

1 
dS 

g;(ka,s; ~ab)gb(ka,+,; tab)'J(ca,,) 

ab 
-1 

cab(Sab) pa + cb + cab(Sab) - M - io] 
(2.72a) 
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then Eq. (2.71) can be expressed 

i;Jab(kalkbO; M) = -2nsabR;b(ka,k,,; M) + (2.72b) 

-HIT 
k;2Ric(ka,k;; M) 

E;D~‘) (s;) 

<b(k;/kbO; M) 

2. Model Assumptions 

The specific model for the two-body input to be explored reduces .in 

the non-relativistic limit to the case in which the pair can interact at 

zero range only through zero relative angular momentum (s-waves). The 

covariant model can be represented by amplitudes ra given by 

,(+I k,+k, I$+k; ; ($,, - (2.73) 
a - - - - 

The variable I_q,j represents the pair center-of-mass momentum and the 

parameter aa reduces to the inverse scattering length: 

+!a 
0 w 

m ii a- a+ 

Isa 12 =-'a - (ma+ + -a-)lssa - (ma+ [ I[ - ma-j21 
a 

[ u2 a - (ma+ + miw)2][ut - (ma+- ma-l21 
"a(l-la> = sign Cm,+ + ma- - pa) 

4!Ji 

w -l/as scattering length. 

112 

ua 2 Ima+ - ma-l , Q(s,) = 

1 Sa>O I 

0 s<o a 

(2.74) 
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The model has two-body bound state poles when the invariant on-shell pair 

rest energy sa is equal to the rest mass of the bound state ua. The 

coupling constants ga are not arbitrary, since restrictions are placed 

upon them by Eq. (2.62) through Eq. (2.36). This restriction can be. 

expressed 

‘(+I _ka+k,-Ika+oFa-0; ‘(0) - gaO a ( J[ ( 

* 
- ‘r’ ka+ka-Ika+oka-O; scoj - gao )I 

= -2Ri 
d3k;+d3k;_-- 
-----7 Ta E’ a+Ea- 

(2.75) 

For this model, the only integration involved.is the two-particle phase 

space 

P,(S,) = 4lT 
l,4a(sa) I 

5 
(2.76) 

From this, it is easily determined that the functions required for Eq. (2.71) 

have the form 

Igal = (l/2V)2 
(2.77) 

1 50 (sa) 
-- = 
Dr)(sa) QJ,) - Al I -- 4,csa + i0) I 2 

Equations (2.72b) will be explored in this model for the case J = 0 in the 

next chapter. 
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CHAPTER III 

RESULTS 

To begin the investigation of this model, the kinematics of .the 

equations will be examined. Without sacrificing the formal generality, 

the case of three kinematically and dynamically identical, but distin- 

guishable, particles will be considered in what follows. With the 

identification m = m and a u a = u for all a, the structure of equations 

(2.74) simplifies: 

I_P,(s,)~~ = 2 - m2 
(3.1) 

a,(d = a(v) u2 = sign(2m-y)14 - m214 

For this system, the dynamic parameters of the model are u and M, which 

represent the bound/virtual state mass of the two-particle subsystems 

and the three-particle center of mass energy, respectively. The dynam- 

ical regions are schematically represented in Fig. III-l. The line 

M = 3m indicates the minimal kinematic situation with which to have 

three asymptotically non-interacting particles. The vertical line 

u = 2m indicates the kinematic threshold below which asymptotic two- 

particle bound states may exist. The regions will be explored for which 

the particle states m represent the lowest energy states, and for which 

pair creation will not occur. 

A. Three-Particle Bound States 

The first situation to be investigated will involve the three 

particles fully bound in a J = 0 state. The kinematic region for bound 
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states is below three-body scattering threshold (M 5 3m) and bound 

pair + spectator threshold (M 5 u + m). 

1. Form of Bound State Equations 

The discrete spectrum of the fully interacting system will corre- 

spond to eigenstates which satisfy the homogeneous scattering equations. 

The bound state equations for the amplitude <;o for three equal masses 
-- 

will reduce to three identical equations. The kernel Rii" can be cal- 

culated from Eq. (2.72a), and after a simple integration becomes 

R;;'(ka,%; M) E R(k,,\; M) = R(kb,ka; M) 

= @og 
m2+(ka+k,)2+Ea+Eb-M (3.2) 

m2 + (ka - kb,2 + ca + Eb - M 

Thus, the relation for the reduced amplitudes (2.72b) can be expressed 

as a single variable homogeneous integral equation 

<;'(ka/kbo; M) - WB(ka; M,u) 

WB(k; M,u) = -HIT 
/ 

0 

M2-m2 
2M 

dk' 
kT2g R(k,k"; M) 

(3.3) 

WB(k '; M,P) 

E'= 12 k +m 2 
, S ' = M2 + m2 - ~ME' 

where the If: represents the sign of 2m - U. The analytic form of this 

equation will be examined in the next subsection, and numerical solu- 

tions will be presented in the subsection following. 
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2. Mathematical Constraints and Predictions 

The solutions of Eq. (3.3) will consist of a discrete set of non- 

degenerate values {Mjj for a given two-body bound state mass p. Alter- 

natively, one may obtain a discrete set of two-body bound state masses 

(~~1 which produce a three-body bound state of mass M. There will be a 

maximum value for the two-body bound state mass urn,, above which there 

will be no three-body bound state solutions (this value will be shown 

to be finite). As has been mentioned, the minimum value for the mass 

1-I min is determined by the threshold for elastic scattering u+m + U+I 

which occurs at M = u min + m* 

a(lJ min 00) = aOf - m) = + J'(3m - M)(m + M) 

(3.4) 

The form of the Eqs. (3.3) all ow all paramfiers to be scaled rela- 

tive to the finite mass m. In studying the analytic form of the equa- 

tions, it is convenient to use this scale freedom, along with the 

symmetry of the equation, to define th.e following: 

k zz- 
g - 1. 

m , GEM , 
m K(M) 5 

2% 

Xr(ti) = 
a(u,(M)) - aCUmin( 

a(v max(M) > - a Cumin(M) > ’ o<x s1 r 

$ WB(k; M,v,) f V(z; k hr> 
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h(z; r;i> - - 
drf - 3 d (3m - M)(m + M) 

a(P max Of) > - a ( urnin (Ml ) 
I 

20 

U(z,z’ ; 2) = lJ(z’,z; ii) = - a(p 4nlglJm 
max(M)) - u(umin(M)) 

(3.5) 

finite for Fl 5 3 

With these definitions, Eq. (3.3) can be expressed 

xr V(z; %,A,) = 
/ 

K 6) 
dz' U(z,z'; $V(z'; %,A,) - h(z; $V(z; MJ,) 

0 (3.6) 

The form (3.6) is particularly useful, since the following relation is 

seen to be valid 

/ 

K 6) 
('r - XJ dz V(z; M,hr)V(z; ti,Xs) = 0 (3.7) 

-0 

This condition amounts (for non-degenerate eigenvalues) to an orthogo- 

nality condition for the functions V(z; MJ,) l These functions can be 

normalized to satisfy the condition 

I- 
K 6, 

dz V(z; M,Ar)V(z; G,Xs) = Qs r,s = l,...,N(M) (3.8) 

0 

where N(M) is the number of three-body bound states of energy M. 
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Since the system generates a denumerable set of orthogonal func- 

tions, the parameters of the equations can be explored more readily than 

might otherwise have been the case. To obtain relationships between the 

parameters, it is advantageous to define functions-which sum over the 

dynamical parameter Ar 

N(g) A<Z,Z ; ii, 5 c V(z; i?,Xr)V(z’; M,X,) 
r=l 

N(G) 
A(z,z'; ti) 5 

c 
Ap>V(z; G,hr)V(z'; ii,hJ 

r=l 

N(g) r(z,z’; i?, f c V(z; M,Ap(z’; ii+ 
r=l 'r 

(3.9) 

Tr U2($ : jK(') dz I'(') dz' U'(z,z'; $ 

0 0 

These functions are easily related through the integral equation (3.6). 

Using Eq. (3.8) and simple algebra, the following conditionals are 

obtained. 

c Xr (2) c$[Tr U2(%) + l] (3.10) 

r=l 

c X:(M) I Tr U2(%) 

r=l 



- 35 - 

Since Tr U2($ is always finite within the kinematic region being 

studied, these equations set finite bounds on the parameters3 except 

for N(G). In addition, for the specific problem at hand, the following 

is true. 

dXr (fii> 
LO (3.11) 

d% 
-- 

This implies that the bound state trajectories Xr(G) are monotonically 

increasing, and have one end point along the line X = 0, and the other 

along the three-body continuum threshold G = 3, which are the boundaries 

of the kinematic region. To obtain an estimate for the number of bound 

states, the equation for N(G) will be examined. Since A(z,z; G) is a 

positive semi-definite quantity, the following inequality holds: 

5 
N&i) = 

/ 

K(G) 
dz A(z,z; %) 2 

/ 
dz h(z,z; 2) 

0 0 (3.12) 

for any 5 < K(G) 

One of the forms for the expression A(z,z; fi) can be obtained directly 

from Eq. (3.6) 

A(z,z'; %) = 1 

h(z; M) [f 

K (@ 
dz" U(z,z"; ti)A(z',z"; fi) - A(z,z'; 2) 

I 
0 

(3.13) 

A(z,z; fi) E I(‘; M, + 0 
h(z; M) z+o 

The behavior of this expression is particularly interesting near 

the rest energy of the three particles. A binding parameter % will be 

defined to examine this case: 
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e:3m-M , Gz3-ti (3.14) 

The behavior of A{z,z; M) for small z and z relative to unity (but 

otherwise arbitrary) is dominated by the factor h(z; $I 

h(z; $ 
smaZ z 

(3.15) 

small "e 
-- 

For small z, the factor K(G) + h/3. If one sets the parameter 5 to be 

small compared to unity, but arbitrary compared to g, the expressions 

(3.12) and (3.13) indicate a scaling behavior of the number of bound 

states with the parameter g: 

(3.16) 

J 

~I~ 
N1 

0 

If bound state solutions exist, then the function I(c; ci> does not 

identically vanish as a function of 5 or %. Therefore, these equations 

have at least a logarithmic growth in the number of solutions as the 

three-body continuum threshold is approached 

N(e) 2 (slowly varying non-zero fnnction)' X log 

(3.17) 
as:+0 

This result is determined by the non-relativistic kinematics, and is 

consistent with the results obtained by Efimov3 in Eq. (l.l), if one 

relates the scattering length to the two-body binding using Eq. (2.74) 

and associates e as the three-particle binding energy. The actual 
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numerical solutions exhibit the behavior discussed, and will be dis- 

played in the next section. 

3. Numerical Bound State Solutions 

The bound state trajectories have been calculated, and are consis- 

tent with the conditions (3.10), (3.11) and (3.12). The integral equa- 

tion (3.3) was reduced to a discrete matrix equation using Gaussian 
-- 

quadratures,8 with Jacobi polynomials as weight functions. Stable 

solutions for the lowest lying states were obtained using relatively 

low matrix order (about 8 x 8). The lowest lying states are exhibited 

in Figs. III-2a and b. Figure III-2b is an enlargement of the non- 

relativistic region of Fig. III-2a. 

The binding energy of all trajectories remains finite in this model, 

due to the finite kinematics. The kinematics of all states is non- 

relativistic, except for the lowest lying state. Most of the lowest 

lying trajectory Al is within the relativistic domain of the region, 

although it lies very close to the threshold for pair-particle scatter- 

ing (u+m+u+m). The finite binding of all trajectories differs 

from various non-relativistic models (cf. Doddg), for which the lowest 

lying states may become bound indefinitely. This behavior is exhibited 

in Fig. III-2b by the trajectory Xl before the relativistic kinematics 

become manifest. There is an accumulation of essentially non- 

relativistic states in the region 3m - M + 0, (2m - ~1 + 0, consistent 

with 

B. 

(M < 

the condition (3.17) and with non-relativistic models. 

Elastic and Rearrangement Scattering 

The region of Fig. III-1 below three-body breakup threshold 

3m) for which bound pairs scatter with the third particle, will 
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next be examined. With a given initial condition, there are three 

possible outcomes for the final state, as indicated in Fig. III-3. The 

first situation represents elastic scattering, and the others represent 

rearrangement. 

The case of particles with identical kinematic and dynamical param- 

eters will be examined in detail. 

1. Form of Equations 

J=O 
Below three-body breakup threshold, the kernels Rab can be ex- 

pressed in the form given in Eq. (3.2). The scattering equations for 

*J=O the amplitude W ab from Eq. (2.72b) can be expressed 

W A;;0 (ka 1 kbO; M) = -2nEabR(ka,kbo; M) 

(3.18) 

Since the masses m and u are the same for all channels, there will only 

be two amplitudes; a direct (or elastic) amplitude, and a rearrangement 

(or reaction) amplitude: 

~f;“(kalkao; W z WD(ka 1 k,,; Ml 

Ija+a(klkao; M) = ija-a(klkao; M) - WR(k]kao; M) 

(3.19) 

Using these amplitudes, the integral equation (3.18) can be discretized 

into a matrix relation and inverted using elementary linear algebraic 

techniques 
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ijab = ;T,, wL;) + c x K ij ac ac cb 
C 

WD = 2K(l - K - 2K2)-l W(') (3.20) 

WR = (1 - K - 2K2)-1 W(') 

After inversion, the amplitudes WI, and WR can be related to physical 

observables as developed in Sec. II-B. The following relations pertain 

to the specific problem being developed: 

lim (Z - Eao - Ep o) 
Z+eao+& +io a 

'a0 

xkE;kE; / \-1 1 --2 2 ~3E3/63(P)ta(z,o)lk10E~O; 5(-f& k30"30) 

lim (Z - ~~ - E 
Z-+E~+E~ +io 2 

ga (ka+!a-) 
a Daba> = FJ 

a 

(3.21) 

With these relations, one refers to Eq. (2.52b), (2.55b), and (2.51) to 

relate the calculated quantities to observables. 

(3.22) 



In addition, the on-shell unitarity of the operator S in Eq. (2.17) 

and (2.18) allows the amplitudes to be directly related to cross sections. 

Written in terms of AuS, the unitarity condition can be expressed 

By examining the "forward" amplitudes and the expression for the total -- 

cross section (2.60), the "optical theorem" follows immediately: 

(2s)321m(Q8: initial 1 ABS (+)(F(o)) IQ8: initial) 
u = 

total 
4-i 

112 
(3.24) 

(1) 0 (2) (1) 
4 ii 4 

0 0 (210 (2) 0 )I 
In 3-CMS, this can explicitly be expressed: 

ototal = (2a>3 2 
%OM 

’ Irn (Qb: $,oEbo; +, (-&oEpbO) 1 &,(Ebo + Epbo9 0,) 1 ‘b : soEbo ; G,, (-&o”,,,,O)) 

(3.25) 

Consider the angular momentum decomposition of the amplitudes. The 

"partial wave amplitudes" can be related to the calculated quantities 

using 

AL;)(kalso; &bo + E,,~~,v) - c  y  PJ(ca l i;boMfb(kaI+,,o; ~,,~c, + E~~.FI) 

J 

Aib(kal\; cbo + Eubo,lJ) = -4~ m2 - $ izbw(kaIkbo; cbo + Eubo) 
(3.26) 

The condition (3.23) can be expressed in terms of these angular momentum 

components 
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where 

- (1-I + my) 2 M2-(p IC -m) 2 y 1 Y 4M2 

This allows the definition of the standard phase shift and absorption 

parameter in the elastic channel by 

4jb(k,l+; M) = * n$M,ub)e2i6i(M'Pb)- 1 1 z e f;(%ub) (3.28) 

To calculate these parameters, the singularity structure of the two- 

body input Dil(sa) must be properly understood. By taking advantage of 

the relation 

1 x _ irl -g-T+ inS(x> (3.29) 

where the symbol 9 represents the principal value, the function can be 

written as follows 

1 27 . 
Da ( sa> = Daba) - =' a 

- Ka) (3.30) 

where 

Ka = d- - 4m2M2 

The numerical solutions for some of the observables will be examined for 

various values of u and M. 

2. Numerical Results 

The phase shifts and inelasticity parameters consistent with Eq. (3.28) 

have been calculated. The integral equations were discretized using 
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Gaussian quadratures, with Legendre polynomials as weight functions. 

The functions fi=' (M,ub) are plotted (as Argand diagrams) in Fig. 111-4. 

The rest energy of the system corresponds to M = 1-1 + m, so that the rela- 

tive kinetic energy is given by 

eK 
=M- (u + m> (3.31) 

Figure III-5 illustrates the total cross section for J = 0 in units of 

m2 , such that 

c J 
'total = %ot (3.32) 

It can be noted that the lowest resonance is more sharply peaked as the 

peak energy approaches the rest energy of the system (eK = 0). In addition, 

in the regions where the resonance is well defined, it follows a path which 

is a reflection of the lowest energy three-body bound state about the line 

eK = 0. From the diagrams, it is apparent that the resonance structure 

for scattering from the ultra-relativistic bound pairs is influenced con- 

siderably by the inelastic (i.e;, rearrangement) processes. This structure 

will be extended into the breakup region (M > 3m) in Section III-C. 

C. Break-up Scattering 

The process of breakup can occur if the available center-of-momentum 

energy is greater than the sum of the rest masses of the constituent 

particle (M 1. 3m). The initial system will be described by a particle b 

scattering from a bound pair. Figure III-6 depicts the possible asymptotic 

states. 

As viewed from the elastic scattering "channel," the possibility of 

breakup will open an additional inelastic "channel." 
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1. Form of Equations 

The particular equations for this process can be obtained in a 

straightforward way as described in Section III-B. The amplitudes for 

breakup from an initial channel b, as well as for three particle-to-three- _ 

particle scattering, are -summarized below. 

Qo: &El; b2E2; k3E3>, (%,!) I-4:;’ @$.,P~) 1 Q,,:kboE,,o; $,(-&,E~bO)) 
= Da (sa) wa,,(~al$w,o; Mb) 4p m [ dr~]l/~ where MB = Ebo + EPbo 

a 

( Qo: (lyl; t2E2; k3c3) 9 @LO) boo (+)(M,L)lQ,: (kloElo; k20E20; k30E30)'(M+) 

c ga’ka+!Ya-) h 'b(kb+okb-o) 
= 

Daba> Wa,,(kal!$,o; M) Db(sb) 
(3.33) 

ab 

where the function ga and Da are described by Eq. (2.77). 

Above breakup threshold, the singularity structure of the non- 

interacting resolvant must be properly handled. The singularity occurs 

only for M > 3, and within a limited range of the parameters ka and k b . 

This range is given by Eq. (3.34). 

k bmin ' 31' kbmax 

where 

(3.34) - 

k 
bmax 

f 4 ka t (M - Eo) 

min a 

The singularity takes the form of Eq. (3.29). 
J=O 

Thus the kernel Rab in 

Eq. (2.72a) can be expressed 



- 50 - 

g:gb 
Rzi"(ka,$,; M) = k,kb aiO(kamax - ka)O(kbmax - kb)8(kb - kbmin) 

I 

(3.35) 
L dm+~a+&~-M 

+ 9 log - 

mib + (k a - kb)2 + Ed+ cb -M 

The solutions of (2.72b) using the kernel (3.35) will be examined for 

J = 0. 

2. Numerical Solutions 

The numerical treatment of the equations was similar to that developed 

in Section III-B. The solutions smoothly matched those below breakup, and 

required increasing numerical work as the energy increased. 

The behavior of the cross sections beyond the resonance regions is 

demonstrated in Fig. 111-7. The Argard diagrams exhibited minor variance 

beyond the regions covered in Fig. 111-4. 

For completeness, the solution for the moderately relativistically 

bound state u = 1.9m is demonstrated in Fig. 111-g. In this figure the 

region above and below breakup threshold is demonstrated on the single 

graphs. 
-. 
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CHARTER IV 

CONCLUSIONS 

The equations explored define a self-consistent, unitary set of 

scattering equations which give stable solutions in this model. It should 

be noted that the equations in the form given are most suited numerically 

to the relativistic regime, although the non-relativistic limit to the 

equations is well defined. In -the form explored, the equations correctly 

describe results predicted from non-relativistic models if the parameters 

involved are related. 

The formalism explored in Chapter II generates eigenstates of a fully 

interacting three-body system in terms of boundary states in a covariant 

way. These states satisfy a type of cluster form invariance if one of the 

particles does not interact. Internal angular momentum can be included in 

the formalism in a straightforward way. 

Since in the model examined the equations reduce to a single param- 

eter integral equation, the numerical methods involved in this exploration 

were straightforward. Advanced numerical techniques exist in the litera- 

ture which allow exploration of the amplitudes involved in a more complex 

model. However, in order to more reasonably reprod;ce the high energy 

phenomenology, the inclusion of particle-antiparticle symmetries and multi- 

particle processes must be examined in the formalism. 
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