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ABSTRACT

Lattice quantum field theories containing fermions can be formu-~
lated in a chirally invariant way provided long-range interactions are
introduced. T establish that in weak-coupling perturbation theory such
a lattice theory is renormalizable when the corresponding continuum |
theory is, and that the continuum theory is indeed recovered in the
perturbative continuum limit. In the strong-coupling limit of these
theories one is led to study an effective Hamiltonian describing a
Heisenberg antiferromagnet with long-range interactioms. Using block-
spin renormalization group methods I find a critical rate of falloff
of the interactions, approximately as inverse distance squared, which
separates a nearest-neighbor-antiferromagnetic phase from a phase
displaying identifiable long-range effects. I point out a duality-type

symmetry which is present in some block-spin calculations.
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CHAPTER 1

INTRODUCTION

The outstanding development in high energy physics during the past
decade has been the re-emergence of relativistic quantum field theory
as the unified theore£ical framework for understanding the fundamental
interactions. On the one hand; our command of perturbative field theory
has been dramatically strengthened by the understanding of non~Abelian
gauge theories and spontaneous symmetry breakdown, resulting in the
unprecedented construction of unified, renormalizable theories of
strong, weak, and electromagnetic interactions., On the other, real
progress is finally being made in understanding nonperturbative phenomena
in field theory.

It is no exaggeration to say that most of the results in nonpertur-
bative field theory have come from lattice techniques. The lattice
provides a regularization scheme which works independent of perturbation
theory; many "continuum" calculations implicitly assume the presence of
such a regularization. The very powerful renormal}?ation group concepts

of Wilson!

give meaning to the remormalized continuum limit of a lattice
theory, again without reference to perturbation theory. And lattice |
theories admit treatment by many approximation methods not avajlable in
tﬁe continuum: strong-coupling expansions,z.block—spin renormalization
group calculations, 3 8 Monte Carlo simulatipns,9 variational methods,!?

and so forth. Experience derived from problems in solid-state physics

is also very useful.



It is often pointed out that no regularization scheme can preserve
all the desirable properties of relativistic quantum field theory: if
it could we would take the finite regularized theory itself as a funda-
mental description of nature and throw away the unregulated, ill-defined
field theory we started with. Thus dimensional regularization encounters
difficulty with operators involving 75. For a similar reason (the axial
current anomaly) theée are difficulties in formulating Dirac fermions in
the lattice regularization (iﬂraddition to the obvious loss of Lorentz
invariance). This is discussed in Chapter II where I show that a simple
lattice formulation of the Dirac equation with chiral symmetry requires
long-range couplings on the lattice which fall off no faster than
l1/distance. This thesis discusses various issues arising from the
existence of such long-range interactions in lattice theories.

In most discussions of lattice theories, long-range interactions
are summarily excluded from the universe of discourse. This leads to
a welcome reduction in the size of the space of all possible couplings,
which is the appropriate setting for discussing the remormalization
group. It also allows cavalier treatment of problems such as integration
by parts, boundary conditions, and infinite-volume limits. Such issues
will be important for the systems with long-range interactions discussed
herein.

Chapter II of this thesis deals directly with the renormalization
pfoblem in lattice field theories where the long-range interactions
arise from a chirally symmetric treatment qf lattice fermions. If the
lattice is to be a useful regulator for continuum field theory in

general, it should in particular be a satisfactory perturbative regulator.



This means that it must be possible to define an order-by-order pertur-
bative renormalization program such that the renormalized S-matrix
elements have finite limits when the lattice spacing goes to zero, and
these finite values agree with those obtained using any other regulator.
It has been shown that this is possible for lattice theories with
nearest-neighbor interactions,!! but the proof does not go through in
the presence of 1ong;range inFeractions, due in part to the infinite-
volume limit problem alluded to above. This circumstance has led some
authors to conclude that the chirally symmetric lattice fermion theories
are nonrenormalizable.!? This is not so, and Chapter II generalizes
the existing renormalizability proofs to handle these theories.

Chapters III and IV are devoted to nomperturbative studies of one-
dimensional lattice spin systems using block-spin renormalization group
techniques developed at SLAC. These spin systems, generalized Heisenberg
antiferromagnets with interactions falling off as (distance)-P, arise
naturally as effective Hamiltonians for the strong-coupling limit of the
chirally symmetric fermion theories of Chapter 1II. The principal result
is the identification of a critical rate of falloff of the interaction,
p = 1.85, separating two phases of the theory. A faster falloff gives
the same qualitative behavior as a nearest-neighbor interaction, long-
range effects becoming important only with a slower falloff. In the
course of carrying out the block-spin calculations a new type of duality
tfansformation is encountered: it is a symmetry of the system after one
blocking operation which is induced by the translation symmetry of the

original spin system.



CHAPTER II

PERTURBATION THEORY FOR SLAC LATTICE FERMICNS

1. Introduction

Rigorous formulation of a continuum quantum field theory normally
involves defining the theory as a singular limit of a cutoff or regu-
larized theory. 1In perturbation theory many satisfactory regularization
schemes exist, including Pauli~Villars, dimensional regularization, and
others. However, for nonperturbative studies of gauge theories, interest
has focused on the lattice regularization, which has the virtue of pre-
serving exact local gauge invariance. Block-spin renormalization group,
Monte Carlo, strong-coupling, and rigorous mathematical methods2~10,13
have provided a great deal of information concerning the phase structure
and continuum limit of pure gauge theories on a lattice.

The extension of lattice techniques to realistic theories such as
QCD has been hindered by uncertaipty regarding the proper treatment of
lattice fermions. Straightforward transcription of the Dirac equation
to the lattice by replacing derivatives by nearest-neighbor differences
leads to the so-called spectrum-doubling problem: -fhe continuum limit
of the latticized Dirac equation describes 2d fermions rather than just
one, where d is the number of dimensions of space-~time which are lattic-
ized. Of the many proposed solutions for this problem, two will be
discussed here. Wilsonl" adds a term with no y-matrix structure to the
lattice Dirac equation. This term functions as a momentum dependent
"mass", giving the extra fermions masses on the order of the cutoff and

removing them from the spectrum in the continuum limit. As an additional
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mass term, it also destroys the global chiral symmetry of the Dirac theory
at m=0. The SLAC group”*1% obtains the correct fermion spectrum and
preserves chirai symmetry by transcribing the continuum derivative as
a nonlocal lattice difference operator. The definition is such that in
momentum space the lattice derivative acts as multiplication by ipu.

Clearly, if the spectrum-doubling problem is connected with chiral
symmetry, then it must be fully understood before lattice methods can
give reliable information about the symmetry structure of QCD. Indeed,
an important issue connected with chiral symmetry in any gauge theory is
the axial anomaly. Any lattice gauge theory with continuous chiral sym-
metry must answer the following question. In consequence of the contin-
uous symmetry, there will be a conserved axial current on the lattice.
The naive manipulations leading to a non-anomalous Ward identity for this
current are valid in the presence of the lattice regularization. Does
the continuum limit of this current exist? If so, doesn't that yield a
continuum axial current with no anomaly, and isn't that impossible?

The straightforward transcription of the Dirac equation answers this
question by doubling the spectrum: the anomaly is cancelled between the

16

different fermion species. The Wilson formulation answers by explicitly

breaking the iattice chiral symmetry. An extra te;ﬁ appears in the Ward
identity and becomes the anomaly in the continuum limit.16517 In this
chapter I will show that the SLAC theory encounters infrared divergences
in perturbation theory which need careful treatment. Order by order the
continuum limit of the conserved axial current does not exist due to
these infrared divergences.

It is becoming generally recognized that an undoubled spectrum,

continuous chiral symmetry, and locality of interactions are incompatible



though desirable properties of a lattice fermion scheme. Indeed, in the
literature one can find the claim!®»!® that a lattice fermion theory with
undoubled spectrum and continuous chiral symmetry is itself impossible,
although the arguments in support of these claims involve additional as-
sumptions. One purpose ;f the present work is to clarify the relatioms
between these three properties of lattice fermion schemes.

Before using a particular regularization scheme for nonperturbative
investigations, one would like to have confidence that it yields accept-
able results in the familiar context of perturbation theory. Sharat-
chal'ndra11 has shown that Wilson's formulation of QED on a four-dimensional
Euclidean lattice passes this test. He showed that in perturbation
theory a multiplicative renormalization of fields and parameters suffices
to remove all divergences in the a » 0 limit of the S-matrix, which then
agrees with the S-matrix of continuum QED. My objective in this chapter
is to give the corresponding analysis for the SLAC version of QED. In
this case multiplicative renormalization does not suffice: additional
counterterms are required. This is to be expected, since once long-range
interactions are admitted the SLAC Lagrangian is by no means the most
general one consistent with its symmetries. The amalysis, like
Sharatchandra's, should extend to QCD as well.

Perturbation theory with SLAC lattice fermions has been studied by
Kéfsten and Smit iﬁ the four-dimensional Euclidean lattice formula-

tion.12,16,19

They computed both the one-loop vacuum polarization and
the VVA triangle diagrams. They concluded that the axial current did not

develop an anomaly in the continuum limit. Its matrix elements, along

with the vacuum polarization, were nonlocal, not Lorentz covariant, and



infrared singular in the continuum limit. Furthermore, the theory ap-
peared nonrenormalizable in that infinitely many Green's functions were
superficially divergent. Nakawaki20 reached similar conclusions from a
study of the SLAC theory in Hamiltonian form. In the present work I show
that the perturbation eipansion of Karsten and Smit breaks down owing to
the infrared‘singularities. 1 describe a resummation of the perturbation
series which removesythese divergences, and carry out a renormalization
program to all orders of the modified expansion. The renormalized
Green's functions at each order in this expansion go over, for a + 0, to
those of continuum QED to the same order.

The discussion is organized as follows. Section 2 reviews the fermi-
on doubling problem and explores the reasons it oCCurs. The SLAC gropp's
solution to the problem is discussed, and the "topological" connection
between spectrum doubling, chiral symmetry, and the range of interactions
is explained. 1In Sect. 3 I summarize Sharatchandra's arguments for the
renormalizability of Wilson's lattice QED, which form the basis for the
arguments I subsequently apply to the SLAC theory. 1In Sect. 4 I show
how continuum QED in a fixed gauge can be faithfully transcribed onto a
iattice. The SLAC derivative and long-range interactions appear auto-
matically. Although this is not the SLAC lattice gauge theory which has
been discussed in the literature, it provides a simple counterexample to
the claim that no'lattice version of QED with undoubled spectrum and
continuous chiral symmetry is possible. Section 5 begins the discus-
sion of the SLAC lattice gauge theory studied by Karsten and Smit. I
derive the Feynman rules, check the classical continuum limit of the

Lagrangian, and exhibit the conserved currents and Ward identities. The



theory appears nonrenormalizable by power counting. However, the per-
turbation expansion is shown to be invalid due to infrared divergences
which arise as a direct consequence of having an undoubled fermion spec~
trum. The summation of tadpole diagrams is shown to remove both the
infrared divergences and the problems with power counting. Section 6
begins the discussion of renormalization. The obstacle to direct appli-
cation of Sharatchandra's methods is the inability to expand integrands
in powers of external momenfa. I divide the integrals into subregiomns,
in each of which the Taylor expansion in external momenta is possible.
I then give the preécription for order-by-order construction of counter-
terms, and show that in the presence of the counterterms the a + 0 limit
gives ordinary continuum QED. Section 7 supplements this rather ab-
stract discussion by applying the rencrmalization prescription to one-
and two-loop examples. Although detailed calculations are not carried
out, the form of the necessary counterterms is clarified. I consider to
what extent the counterterms can be generated by rescaling fields and
parameters. Finally, I show that in the renormalized perturbation ex-
pansion the conserved axial current still has divergent matrix elements.
These can be made finite by redefining the curreng; at the cost of in-
troducing the usual anomaly. Section 8 summarizes the conclusions énd
points out remaining problems, In particular I consider whether the
éroperties of the SLAC lattice gauge theory established in perturbation
theory will persist in the exact nonperturbative solution.

Notation: The Einstein summation convention is not used in this

chapter. Summations will be indicated explicitly.



2. Lattice Fermions

This section reviews the spectrum—doubling problem of lattice fermi-
ons and motivates its solution via the "SLAC derivative".

Consider the Klein-Gordon equation for a scalar field,

2
(—32 -V 4 mz)q) (x,t) = 0 . (2.1)
at

The problem of transcribing this equation onto a three-dimensional lat-
tice with continuous time is solved by making ¢ a function on lattice
sites indexed by X and replacing V2 by an appropriate difference opera-

. , 2 2 2 > 2
tor. Plausible choices are V+, v, Vt’ and V_-V+, where

vi £(x) = if(? + 34 - f(%)] , (2.2a)
Vi f(+ _ 1l .+ > >

Lew - i@ - £G - 3D , (2.2b)
e = -l—[f(SE + 25 @ - Zi)] (2.2¢)
E 2a - ' ’

(In this chapter the variable x indexing lattice sites will always Earrf
@imensions: x;=n;a where a is the lattice spacing and n, is an integer.
gi is a vector of length a in the i direction.) The spectrum of the
lattice Klein-Gordon equation is found by seeking solutions of the form

> >
¢(;,t) - e-iEt eik-x
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leading to the dispersion relations

ik . a
2 2 _ 4 * .21 2
V+ : E™ = —-EZe sin Ekia +m s (2.3a)
i
7 -ik.a
2. 2 4 * 21 2
v E° = 5 :;:e sin Ekia + m . (2.3b)
a
2. 2 1 2 2
vi: E° = ZZsin ka+m , (2.3¢)
a i
3_’-6_'_ : E2 = ?Zsinz —;—kia + m2 . (2.34)
i

(On an infinite lattice ki is a continuous variable which can be chosen
to run from -n/a to +m/a. The notation A = 7/a will sometimes be used.)

All these expressions reduce to the usual continuum dispersion re-
lation when a + 0 with E fixed. However, 3; and 3; are not Hermitian:
the energy in Egs. (2.3a) and (2.3b) is not real. The remaining possi-
bilities differ only in the period of the sine functions. Equation
(2.3d) has the 2m/a periodicity of the lattice while Eq. (2.3c) has
period m/a. This signals spectrum doubling. For an acceptable spectrum
only the spatially constant (ﬁ = 0} solution shouI& minimize the energy.
For Eq. (2.3c¢c) this solution is degenerate with seven others having .
Fi = m/a for some. values of i (¢ alternates sign in some lattice di-
rections). About each of these solutions there is a band of long-wave-
length excitations, resulting in eight low-lying particle states in the
continuum limit compared to one for Eq. (2.3d).

It is not ccincidental that Eq. (2.3d) alone is satisfactory. The

gradient of a functiom f(?) on lattice sites is naturally defined as the
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function on links which is the sum (with sign changes for the orientation
of the link) of the values of f at the sites bounding a given link,
This is Vif. The divergence of a function fi(;) on links is a function on
sites given by the sum (with sign changes for orientation) of the values
of fi on links impinging on a given site. This is %E Vifi. Hence the
Laplacian is naturaliy given by 3;-3;. The different derivatives repre-
sent the lattice boundary and‘coboundary operators,13 wh;ch are not equal.
From a more abstract point of view, what is happening is the fol-
lowing. Associated with a scalar, vector, or antisymmetric tensor field
there is a differential O-form, l-form, or 2-form. A rotationally co-
variant differential operator acting on the field can be expressed in
terms of the exterior differential operators d and &8 acting on the form.
A natural latticization 1s available by associating n-forms with
n~cochains (functions on sites, links, or plaquettes for n = 0,1,2) and
d and § with the boundary and coboundary operators represented here by
Vi and 6_-. The problems with fermions arise because they fall into
spinor, rather than tensor representations of the rotation group and so

have no associated n-forms.

Consider now the Dirac equation,
({y*3 -~ myp =0 s (2.4)

which is seen to have the same dispersion relation as the Klein-Gordon
equation by applying iy*3 + m to both sides. Assume this equation is to
be latticized by substituting a difference operator for the spatial de-
rivatives, ¢ being defined at lattice sites. This assumption is by no

means necessary, but it does guarantee that the lattice Dirac equation
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will have the usual chiral invariance when m = 0. The fermion dispersion
relation will be that of the Klein-Gordon equation whose Laplacian is the
square of the Dirac difference operator. The acceptable dispersion re-
lation (2.3d) cannot be-obtained!

The Dirac equation requires a Hermitian difference operator whose
square is an acceptable Laplacian. The SLAC group”’15 achieves this in

- -
terms of the Fourier transform of a lattice function £(x),

> > 3 —ipeX =+ > —=— "3 APX oo

@ =2 L e PF @, R = 53) dret IR L, (2.5
>
X

by defining Vj f(g) as the inverse transform of ipj ?(;). This leads to

f s 2 2 2 .
the exact relativistic spectrum E- = p~ + m on the lattice. In coordi-

nate space the definition is

> d (.-..jL)n'*‘1 > > ~ > _ -
v,£G) El LD [5G+ a3 - £G naj)] . (2.6)

The nonlocality of this operator is essential for avoiding the

spectrum doubling. Indeed, a general derivative operator may be written

V.EE® =D, (x - Q) , (2.7a)
Y
with Fourier transform
vj?@ - iﬁjc'p?) £@ . (2.7b)

where the factor i has been extracted for convenience. The fermion dis-

persion relation will be
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B2 = 3 53?“(3) + n , (2.8)
h|

and spectrum doubling occurs 1if 2; 5;(3) = 0 has solutions other than

; = ZKw/a. Usually ﬁj(35 = 5(pj)Jis a function of pj alone, but in any
case one can fix Py = 0, L1 # j, and study the function 3(pj) = Bj(p)
alone. Herm;ticity féquire; D to be real, a satisfactory continuum limit
requires E(pj) - pj as a > 0 with pj fixed, and on general grounds D has
perioed 2n/a. It is evident from Fig. 1l that if D is continuous, it has
at least one zero for 0 < pj < 2n/a, with a band of low-lying states
around this zero to become an extra fermion in the continuum limit. The
SLAC derivative (Fig. 2) escapes this conclusion due to its disconti-
nuity at Pj = w/a. One recalls that the Fourier coefficients of a dis-

> -
continuous function fall off as 1l/n or slower, so D ,(x - y) is neces-

h|
sarily nonlocal. This argument, which also appears in Ref. 16, is a
simple and intuitive case of the more general topological theorem of
Ref. 18.

It is amusing to note that, because a Fourier series converges to
the mean at a point of discontinuity, the SLAC funEFion B(pj) = pj for
pjeg(-v/a,ﬂ/a), extended periodically, does have a zeroc at pj = ':r/a.~
However, there is no band of low-lying states surrounding this point.

It is quite possible for B(pj) to have more than two zeroes. The
choice

> 1 - > - -
ij(x) =% [f(x + Zaj} - f(x ~ 2aj)] ,

a

for example, leads to "spectrum quadrupling"”.
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Fig. 1. General behavior of a continuous function B(Pj) appearing
in the fermion dispersion relation, illustrating the
necessity of spectrum doubling.
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}D;(p)

} } s
/—'277‘/0 —Tr/a T7/Q 27/a :

2 -8 40372 A2

Fig. 2. The SLAC derivative ﬁj (p), which avoids spectrum doubling
by virtue of discontinuities at #u/a.
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It should be evident from this discussion that there are interesting
geometric and topological issues connected with latticizing fermions.

Further research along these lines is in progress.

3. Wilson's Lattice QED

This section reviews Wilson's!" lattice formulation of QED and
Sharatchandra's!! conclusionsgconcerning its perturbative renormaliza-
bility. The method of Sharatchandra's proof is summarized in some
detail since it provides a canonical set of arguments for establishing
the perturbative equivalence of lattice and continuum theories. The
analysis of the SLAC lattice QED formulation to follow will be based
heavily on these arguments.

In this chapter, detailed discussions of lattice perturbation
theory will be carried out in the four-dimensional Euclidean, rather than
the Hamiltonian, formalism. This makes available the technical conve-
niences of the straightforward path-integral quantization and manifest
symmetry between time and space coordinates characteristic of this

‘formalism.
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Wilson's lattice QED action is:

I-=a 3 %Fiv(x) +a” 2 %[V;Au(x)]z

Kyl,V X, U
_ - ieaA (%) -ieaA (x-a )
- 34 2: P(x) %‘Yu %Z‘[w(x + au)e H - v(x - au)e u H ]
Xy U
4 = 1 - deaA (x) -ieaA (x-a )
- @ izi v(x) 2a [w(x + au)e o + P(x - au)e o o 2w(x)]

a* Y g () v (x) , (2.9)
X

+ + . .
where Fuv(x) = VuAv(x) - vah(x)' (The y-matrix convention is
For e = 0, the free fermion action is constructed using the deri-
+
vative V; and would therefore yield a doubled spectrum if not for the

additional terms in the third line of Eq. (2.9). In momentum space these

terms read

- (ji- sin® -;- pua) vV,

and they vanish for p - 0 or for a + 0 with p fixed. However, they givé
?masses" of order A to the extra fermiomns with pu = 7/a, removing them
from the spectrum in the.continuum limit. They also explicitly break
chiral symmetry, as is appropriate for a ''mass" term.

The coupling to the gauge field is introduced in a manner consistent

with invariance under the local gauge transformations
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by » e T ,

a,00 >4 GO+ V:x(x) i (2.10)

The second term in Eq. -(2.9) serves to fix a "covariant" gauge. The form
of the photon kinetic energy (not periodic in Ap) identifies this as the

noncompact formulation of QED; the compact formulation would replace

2
2 (eiea Fuv(x) ) 1)
e2a4

2
Fuv(x) by

Finally, note that the lattice derivatives in Egs. (2.9) and (2.10) are
used "naturally" in the sense of Sect. 2: V: is used to create the
plaquette variable Fuv from the link variable Au while V; forms the
scalar divergence of the vector Au.

Expanding the exponentials in Eq. (2.9) and introducing the Fourier-
transformed fields permits one to read off the Feynman rules from the
coefficients of the terms in the action. For the photon field it is

convenient to define the Fourier transform by

A d4 ip-(x+5§a):_
A (x) =f <P e YE® o, €2.11)
u (2“)4 "
-A

so as to get real expressions for propagators and vertex functions. For

‘example, the Fourier transform of —iv;Au(x) will be (2/a) sin(%pua)3$(p)
-ip a

rather than (1/ia)(l-e ") Ap(p). Some of the resulting Feynman rules

are given in Fig. 3.
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Fig. 3. Some of the Feynman rules for Wilson's lattice QED. There
are n-photon vertices for all n>0. Su(p) = (2/a) sin 1/213“3-
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Strictly speaking, the Feynman rules require an integration over
the momentum of each internal line. In the continuum theory, many of
these integrations are trivial because of the momentum-conserving delta

functions. On the lattice, however, one has at each vertex a factor
4 4 4
a z; exp i(z:k)-x = (2m) Gper(z:k) ,

where

o

aper(q) z ng_jw 8(q + 2nA) . (2.12)
It is shown in Appendix A that because the Feynmaﬁ integrands are
themselves periodic functions of momenta, the trivial integrations can
still be done. Thus even on the lattice one can label Feynman graph
lines with exactly conserved momenta and perform nontrivial integrations
only over a set of loop momenta.

Sharatchandra showed that this set of Feynman rules defines a mul-
tiplicatively renormalizable lattice QED: fields and parameters can be
‘rescaled so that when a + 0 the Green's functions are finite and iden-
tical to those of ordinary QED. (In fact, Sharatchandra considered com-
pact QED, which is technically more complicated.) This is demonstfated'
in four steps.

1 1. The Feynman rules reduce to the continuum Feynman rules when a + 0
with momenta fixed. Since the Feynman rules reflect the momentum-
space coefficients in the action, this merely means that the action

has the correct classical continuum limit. However, it does imply
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that if a normal diagram (one containing no multiphoton vertices)
converges as a * (0, it agrees with the continuum result for the
diagram.

The list of primitively divergent diagraﬁs and their superficial
degrees of divergence (for a + 0) coincides with the list for con-
tinuum QED. For normal diagrams this can be shown by bounding
lattice quantities by continuum quantities. For example, for the

photon propagator,

2 s<g sin 1 ac< 0 < 5'1
- pu a 2 Pu = PU ’ = Pu 2 ?
implies
2 - 4 21 4 2 n a
p %; a2 sin 2 P8 p

Now imagine shrinking some internal fermion propagator to a point
in a normal diagram. The loss of this propagator increases D by
one unit, but a two-photon vertex is created which carries an ex-
plicit factor a according to Fig. 3. Hence D-is unchanged. This
argument generalizes to show that the presence of multiphoton
vertices does not interfere with power counting.

All Feynman iﬁtegrands possess Taylor expansions in powers of their
external momenta. Ignoring infrared problems, e.g., by assuming

a phbton mass, this means that the BPH procedure of subtracting

the first D+ 1 terms in the Taylor expansions of divergent sub-

graphs, with combinatorics handled by a forest formula, can be
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implemented. It follows from point (1) that normal diagrams take
on their continuum values when a + 0 after the subtractions are
done. If a divergent subgraph contains a multiphoton vertex then

it has the form aN times an integral of d?(llaN+D

), N21. After
IH1l subtractions this becomes aN67(l/aN*1), so all such diagrams
vanish when a + .0,

It remains to enumerate the counterterms which are required to im-
plement the BPH subtractions. As in the continuum theory; the
Ward identities are useful here. They are derived, as usual, by
making a change of variables corresponding to an infinitesimal
gauge transformation in the path integral for the vacuum functional
in the presence of sources. The action proper is invariant under
such a transformation but the gauge-fixing and source terms are
not. The Ward identities state that the contribution of these
terms does not affect the vacuum functional. It should be evident
from Egqs. (2.9) and (2.10) that the Ward identities differ from

their continuum versions only in the replacement of au by V;. They

read, in momentum space,

Y5,007 (6 + k,p) = S;,l(p 1 - sHe) (2.13) -
u
}: Su(k) IIW(k) =0 , (2.14)
1§
Z su(kl)IwM(kl,kz,k3,k4) =0 , (2.15)
u

= 2 i1 :
where Su(k) : 2 51n«1kua and Iuv T is the photon-photon scattering

A
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amplitude. By substituting the Taylor expansions of the amplitudes
into the Ward identities and using the lattice cubic symmetries one
can show that IuvAn is not divergent, the divergent terms are at worst
logarithmic, and the momentum dependence and tensor structure of

these terms is exactly as in continuum QED. Because the action
differs by terms of order a from the continuum QED action, it fol-
lows that multiplicativé_renormalization of fields and parameters
generates precisely the needed counterterms, plus additional terms

of order a fn a which have no effect when a + 0.

These arguments have been reviewed in detail so that the reader will
understand exactly what ingredients go into a proof of perturbative
equivalence of lattice and continuum field theories. In Sect. 5 I will
discuss the problems that arise in applying the same arguments to the

SLAC version of lattice QED.

4. Faithful Lattice Transcription of QED

In Sect. 2 it was pointed out that with the SLAC derivative ome can
construct a lattice free fermion theory with continuous chiral symmetry
and a sensible spectrum. I now give an "existence proof', showing that .
in fact a lattice QED can be formulated which continues to enjoy these
ﬂ;bperties and makes sense in weak-coupling perturbation theory. This
serves as a simple counterexample to statements in the literature that
no suchAformulation is possible.16518

The idea here is to make contact between continuum and lattice field

theories via a momentum-space formulation which both share. This tech-
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! and in fact moti-

nique has been used by the SLAC group® and by others?
vates the introduction of the SLAC gradient.
The Euclidean action for ordinary continuum QED reads:

- fi{ T, - DI v sea,0]ucn
1)

Hv
-m@(x}w(x}} - . (2.16)

The first step is to fix the Coulomb gauge and eliminate the dependent

variable AO by means of 1ts equation of motion:

4 1 2 1 + 2 - 1
I =fd X [7 (QOK) + 5 @Fx5” - Zulb(iﬂ 1 Yuaull»'(x)

- o ()Y () - Zewx)x«jAj(x)w(x) (2.17)
J

8n|x ~ <!

+ ezfd"x' —“‘ﬁ—‘—t—)l ¢*<x>¢<x)¢*<x'>¢<x'>] :

It is to be emphasized that I is manifestly gauge-invariant because it is
‘written in terms of gauge-invariant fields: K is now the transverse
photon field and ¢ is the Coulomb gauge (physicai} electron field. All
gauge degrees of freedom have been removed. These degrees of freedom afe
‘not true quantum -variables and should not be included in the transcription .

to the lattice. The action (2.17) is now written in momentum space:
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ae 1123 03 = ~ =0T
I =~/:————- = KTA(K) *A(-k) - P(R)y ki(k) - mp(k)y(k)
(2m’ 12

- e _IE_"ZQ VOOY-A(@U() §'(p +q - K (2.18)
2m) )

& 4 4
1 21 4 d 2 1 o PPN PN ¢ 4
+ie pd g V0TI @@ k+p-t-a)| .
2 8 > o2
(2m) |2 - k|

Next, impose a cutoff A on the magnitude of each component of momentum
in Eq. (2.18). (This is why it was necessary to write I in terms of
explicitly gauge-invariant variables. Had that not been done, gauge
invariance would have been lost at this point.) The resulting action
could equally well be interpreted as the momentum-space action of a lat-

tice field theory, namely:

Hattice ~ 2 T %d(x"Y)K(x)'K(Y) - T W) %YUDH(X-YN(Y)
X,y Xy¥, M

ST v -2t L efny, DBy A @)
X

X,¥>2,5]

val® T 1y e oo o 219

x,x',y,y’
where
_ b 2 ik
d(x-—y) =f—_1£l:k el (x-Y) ,
) 2y 2m
a*e fke (x - )
D (x-y) =f — ik e



- 26 -

A
4 4 4
£(x,¥,2) =fd——k-d-ml—9 eLlkrx =Py = at2) by o g

»
—A (Zﬁ)s
A
& 4 & 4
d i (] . - R e |
g(x,x',y,y") =f kd Pc_llczld 4 -~ 1+ 5 ptlkextpry=Lox’ =ay) by o oy,
A (27) | -k|

The nonlocal coefficient functions here are all translation-invariant and,
except for g(x,x',y,y') which contains the noncovariance associated with
the Coulomb interaction, invariant under the lattice cubic symmetries.
Du(x-y) is just the.SLAC derivative operator. Note also that in this
formulation there is no possibility of assigning the photon field Aj(x)
to the links of the lattice: all fields are treated on an equal footing
and may as well be situated on the sites.

The lattice theory (2.19) may be quantized by the path-integral
technique provided one integrates only over transverse gauge filelds with
i-ikk) = 0. It is evident that in all respects - including perturbation
theory - the theory is equivalent to Coulomb gauge continuum QED regular-
ized by a momentum cutoff. To each continuum operator there corresponds
a lattice operator, obtained by a double Fourier transform, with the same
regularized matrix elementé. The fermion spectru&his sensible and there
is chiral symmetry for m = 0. Also, there are no umklapp processes:
momentum conservation in Feynman diagrams is exact rather than periodic,
and propagators and vertex functions are identical to those of continuum
QED. The theory can be given a finite a + 0 limit by including in the
momentum~space action the counterterms needed tc renormalize continuum
QED. Because of the momentum-cutoff regularization, photon mass counter-

terms will be needed. For ¢4 theory in 1+ 1 dimensions all necessary
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counterterms are known exactly and this program has been carried out
explicitly by Bronzan.?2!
Although this procedure provides a lattice theory which faithfully

represents continuum QED, it is not a lattice gauge theory. A lattice

gauge theory possesses a local gauge group on the lattice under which the
action is invariant but the flelds transform nontrivially. The above
theory does not qualify because the gauge freedom in the fields was re~-
moved before transcriptién to the lattice. In the next section I dis-
cuss the lattice gauge theory constructed using the SLAC derivative.

The lattice theory constructed above possesses neither a local gauge
symmetry nor periodic momentum conservation. It 1s easy to understand
qualitatively why these properties are connected. At a technical level,
perturbative proofs of Ward identities require shifts of integration
variables which are made possible by periodicity. More generally, con-

sider a term in the lattice action

F(xl,xz,...xn)¢(xl)¢(x2)---¢(xn) )

where ¢ is a generic field. Assuming that F is translation invariant its
Fourier transform F(Pl’pZ"‘pn) can have support only when 2: p; = 0

mod 2n/a. Tc obtain exact momentum conservation F must be so chosen that
its support lies in the subregion 2: pi = 0: not all momenta can be al-
lowed to become large simultaneously. This is the case for the coeffi-
cient functions in Eq. (2.19). However, a gauge symmetry which is local

in coordinate space will affect the high-momentum components of fields.

A gauge-invariant coupling term will couple high-momentum components of
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fields, so that in general the support of F cannct be restricted to

z:pi = Q.

5. SLAC Lattice Gauge Theory

'y o SO E. JRPRS S
He JLONLIOoducLioll

This section begins the discussion of the lattice gauge theory with

action

_ 4 1.2 4 1§~ 2
I=a Z A Fuv(x) + a 73 [VuAu(x)]
XyU,yV X,u

y
~a® D TG0y D -y)v(y) exp tea D A (2)
piou 1

X,¥5H =X

Cat D mpee@ (2.20)
X

+ +
where Fuv(x) VuAv(x) - VvAu(x) ,

A 4
and Du(x) =‘l. —Q—EZ ikuelk.x
. A (2m)
x /a

It

(-1) * /ahxu if x # 0 but X = 0 for all v # u

0 otherwise, (2.21)

Yy
and the notation :E: An(z) means the following. Owing to the presence
z=x
in Eq. (2.20) of the SLAC derivative function Du(x-y), the summation
need only be defined in case xu # yu but X, =7, for all v # u (x and y

are separated in the p direction only). In that case it means the sum
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of the values of Au on the oriented links between x and y:

Yy
:E: A (z) means
z=x ¥

(yu—xu—aﬂa (xu-yu-a)/a
e(yu - Xu) nz-__o Au (x+ nau) - B(xi1 - yu) IZ% Au (y+ nau) .

For e = 0 the fermioﬁ action ig that of the SLAC formulation, with un-
doubled spectrum and continuous chiral symmetry for m = 0. The action
is invariant under the gauge transformations of Eq. (2.10). Since the
photon action is exactly as in the Wilson formulation it should be clear
that the Ward identities are still given by Eqs. (2.13) - (2.15). 1In
particular, the nearest-neighbor derivative, not the SLAC derivative,
appears in Ward identities. (Nakawaki?? has considered a lattice theory
in which all derivatives are taken to be iku in momentum space. This
simply replaces Su(k) by ku everywhere without affecting the arguments

to follow.) However, the consequences of the Ward identities are vastly

different for the theories (2.9) and (2.20) due to the different fermion
spectra. This will emerge shortly.
The theory (2.20) possesses a conserved electromagnetic current which

can be identified by considering the coupling to an external field:.

_gvujucz) =0,

S1

j (z) =
i 346A§Xt(z)

(2.22)

¥y
= —ea5 z: v(x)y D {(x-y)p(y) exp iea E: A(w) +hee. .
%Y H u W= u
X €2 <y
H u"p

zv=xv,v#u
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There is also an axial current, conserved for m = 0:

z ENORE-ETONTONES (2.23)

'S(Z) = a5 2: v(x) D (x-y)V¥(y) exp iea g& A (w) + h.c
iy Y, Y5D, (x=7)¥(y) exp y .C.

Xy w=X
X £z <y
H U

Zy =Xy, V¥U

Both these currents are gauge invariant.

By expanding the exponential in the action and introducing Fourier
transforms, one derives what I shall call the naive Feynman rules.
These are given in Fig. 4. Momentum conservation in this theory is once
again modulo 2m/a. The first point to observe is that the continuum
Feynman rules are indeed recovered when a - 0 with all momenta fixed.
This verifies that the action has the correct classical continuum limit,
a fact which is not immediately apparent from Eq. (2.20). The most
striking feature of the naive Feynman rules, however, is the presence of
infrared singularities in the vertex func;ions. The one-photon vertex,
for example,

D (p) -D (p+k) -
B H
Yy 5,00 ,

behaves as —Zneyulaku as ku + 0+ with pu + n/a from below and

pﬁ + ku + n/a from above. This is a consequence of the discontinuity in
Bu(p) at Pu = t/a, and thus, indirectly, of the Ward identity (2.13) re-
lating the vertex to the fermion propagagor. These singularities have

important consequences for the renormalization program a la Sharatchandra.

Due to the singularities and discontinuities in the vertices, naive
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Fig. 4. WNaive Feynman rules for SLAC lattice QED.
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Feynman integrands do not possess Taylor expansions in powers of external
momenta. Furthermore, the singularities alter the results of naive power
counting., A diagram with F external fermion lines and B extermal boson
lines would normally have superficial degree of divergence D = 4-(3/2)F-B.
Here, however, for each external photon line there is a factor l/Su(k)
which sits outside the integration and does not help to converge it. The
integral is left with D = 4 - %-F. The infinite class of diagrams with

F =0 or 2 is superficially divergent! Due to the infrared singularities,
then, the crucial steps 2 and 3 in the renormalization program of Sect. 3
do not go through for SLAC fermions, and the theory indeed appears non-
renormalizable.

Karsten and Smit base their objections to the SLAC lattice gauge
theory on the above points, which they have explicitly verified in the
example of the one~loop vacuum polarization.!? They found that Huu(k)
had D = 2 even after the cancellations due to gauge invariance. 1In the
continuum limit there are infrared singular terms with unacceptable
(nonlocal) tensor structure in both the divergent and finite terms, a

typical structure being

§
~ -—-Ey—— — T . .
L~ el % k,| - sien k sign k (2.28)
i

+ other singular terms.

(Note that the Ward identity z:kuﬂuv = 0 is satisfied!)
n
Furthermore, since the necessary Taylor expansions do not exist, there

is no natural way to make the separation into divergent terms and finite
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remainders which defines the counterterms required. Since the Green's
functions are not differentiable, the conventional normalization condi-
tions do not make sense.

It is important to understand clearly the origin of the infrared

singularities in the vertex functions. They come from the term in the

action

y
(x-y)¥(y) exp iea 3 Au(z) . (2.25)

Z=X

8 - 1 -
-2 30 Uy 7D
x,y,u 40

The exponential factor, in momentum space, involves a geometric sum:

A
Yy f dl#k eik’Z ikpa/Z ~

exp iea e A (k)
z=x (2-rr)4 H
Mo Jtkex | tkey ikal2
= exp ieaf Z = —_£ e ¥ A (k)
ik a U
_A (2“) 1 -e H
A 4 ikex ik-y
= exp -ef d kz. € 3 Ek;- IO (2.26)
—p @m u s

The singular factors 1/Su(k) enter the vertices via the expansion of this
exponential in powers of e. However, consider the behavior of the inte-
grand in the infrared region k - 0; it is proportional to i|x - Yulf
Since x and y are summed over all lattice sites in (2.25), the distance
bétween them is unbounded. This means that the expansion of the expo-
nential to any finite order m in e cannot be a uniformly valid approxi-
mation over the entire range of values of Ix - yul. If the expansion

1n—1

is attempted anyway, its nth term will behave as [xu - yu . Since
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the function Du(x-y) in (2.25) falls off only as [xu-yu|_1, the indi-
vidual terms in the perturbation expansion will be divergent in the in-
frared. The conclusion is that the infrared singularities in the naive
Feynman rules are symptamatic of an invalid perturbation expansion which
does not accurately represent the infrared behavior of the theory. I
emphasize that the fault lies with the perturbative expansion rather than
with any inconsistency in the theory. If the expansion in powers of e is
avoided then the exponential enters the sum (2.25) as a rapidly oscillating
phase when |xu - yu| is large. Such a phase factor actually improves
convergence of the sum, Finally, note that perturbation theory can fail
even when the fermion spectrum is doubled. If Du(x-y) has a power-law
falloff faster than le_l - yul_l then as pointed out in Sect. 2 the spec-
trum is doubled, but singularities will still appear at sufficiently high
order in perturbation theory. The equivalent momentum-space statement is
that even if BH(P) is continuous, a discontinuity in its nth derivative
induces a singularity in the (n+1) - photon vertex function. This fol-
lows from the recursion relation for the vertices in Fig. 4. A nonsingu-
lar perturbation expansion is obtained only if Du(x-y) falls faster than
any power of ‘xu - yu]. Such a Du(x-y) strongly-;uppresses the coqtri—
butions from the region of large Ixu - yul where the expansion of the
gxponential is invalid.

The failure of naive perturbation theory discussed above becomes
evident -from the structure of Huv in Eq. (2.24). Consider a diagram in
which the one-loop Huv(k) appears as a subgraph. The integration over
k encounters a l/kusingularity. Such a singularity is not integrable, in

contrast to the usual infrared singularities which often are, e.g.,
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drdak/kz. Since the singularity arises from a vertex function rather
than a propagator, it also is not regularized by a photon mass, and
simply leads to a divergent amplitude indicating the breakdown of per-

turbation theory.

B. Removal of tﬁe Infrared Problem

Now that the origin of the infrared problems which plague naive
perturbation theory is clear, how can they be circumvented? The most
obvious approach is simply to impose a cutoff on |xu-yu| in the nonlocal

. interaction Lagrangian:

y
Z ¥ (x) Yu% D, (x-y)¥(y) exp ieaz A (2)
X,¥5H zZ=x
- 1

— y(x) v, T D (x-y)¥(y)

xg:u Wi w

. y

+ 2 V(=) YT Du(x—y)w(y) [exp ieaz Au(z) -1] .

X,¥,U Z=X

|x,-y,| <¥a

The cutoff permits a nonsingular expansion in powers of e but destroys
ménifest gauge invariance. Therefore the cutoff must be imposed in the
fixed gauge in which quantization is performed. This should be a physical
gauge, since otherwise the loss of the Ward identities will jeopardize
unitarity.

I now show that in fact an ad hoc cutoff is unnecessary since the
theory génerates its own cutoff. Consider for example the bare one-photon
vertex function, and add to it all diagrams in which additiomal photons
are emitted and absorbed at the same vertex (Fig. 5). The sum gives the

vertex function computed to lowest order in the interaction Lagrangian
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Fig. 5. A class of diagrams whose summation removes the infrared
singularity from the vertex function and permits a non-
singular perturbation expansion.
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rather than lowest order in e. The diagrams are most easily summed in

coordinate space, where they yield

Z Z lea 5.(x- X)YD(X -ySL 0T -Y)A Lz=2z"
’y =x'

yl '

y
1 22
x|1- 7 e aW o ng' A}m(w1 -wz) + ...
1 2
yl
(1) 2n
+ T (2n-1)(2n-3)...1(ea) > R
wl,...wzn-x' H

(w2n 1 - ?.n) to...

(2.27)

where the combinatorial factor (2n-1) (2n-3)...1 is the number of ways

of pairing the points wl""WZn in the photon propagators.

The sum in
brackets exponentiates, giving

¥y
exp—%eza2 Z A (w, -w))

= 1 HH 1. 2
W W, =X
y' A e (v -
1 22 Z dh Ikl -wy)
=exp -5 ea ' 7 e Auu(k)
WpsW,y =X i (27)
oo g |Jtkext _ _tkey' |2
=exp -5 e f 7 3 (k;a Auu(k) . (2.28)
~p (2m) u

A similar calculation applies to the multiphoton vertex functions. The

inclusion of these photon tadpole contributions to the vertex functions

thus generates effective Feynman vertices which differ from the naive
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ones of Fig. 4 only in the replacement

A .
4 ikex dkey |2
- 1 2 dk le -e
D(x—y)-r@(x-y):D(x-y)exp-—ef A (k)
U u u 2 ) en® Su(k) uu
A 2 |
4 sin” ¥ k (x-vy)
=D (x-y) exp --lz-ezf d k4 a2 5 E Ea (k) . (2.29
H ZA (27m) sin” % kua Hu

At issue is the large-distance behavior of @u(x). Since?2

2
Sl = nx

—~ 21 & (xy
nsinz%x n=e per

one has
A

4
@u(x) ?—m* Du(x) exp - wezf ﬁz Auu(k)é(ku)xu R (2.30)
-A

and @u (x) falls off exponentially fast. It follows that the Fourier
transform Qiu(p) and all its derivatives are continuous, and that there
are no infrared singularities in any of the modified vertices. Although
.511 {(p) as a function of pu has unit slope at P, =0, there is no reason for
éu(p) to share this property. This means that ultimately a finite re-
normalization will be required to express the theory in terms of a charge
defined by the static limit of the electron-photon vertex rather than the
_parameter e. Thi-s is discussed more fully below. Figure 6 shows the
expected behavior of éu (p).

InA general, the summation of a selected class of diagrams is not a

gauge—invariant procedure. This is reflected in the explicit appearance

of the photon propagator in Eq. (2.29). @u(x-y) is thus a gauge-dependent
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Fig. 6. Qualitative behavior of the function .,522““ (p) appearing in
the effective Feynman rules.
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function. It will be shown, however, that the S-matrix has a gauge-
invariant continuum limit order by order in the modified perturbation
expansion.

Summing the diagrams of Fig. 7 effects the replacement Du(x-y) >
Q%(x—y) in the fermion propagator, resulting in a doubled spectrum
according to the analysis in Sect. 2. Since we wish to develop a
perturbation expansion about the free field theory with undoubled fermion

spectrum, this replacement must be undone by the addition of a counterterm

PIETCIE A LNCS I- R eee) [TC N (2.31)

1
X,¥sU

again in the fixed, physical, quantization gauge. Of course this amounts
to an assumption that the interacting theory (2.20) has the same qualitative
spectrum as the noninteracting e=0 theory. The validity of this assump-
tion is discussed further in Sect. 8.

The resummation of perturbation theory discussed above is most clearly
understood in the Hamiltonian formulation of the theory in the physical

23

Coulomb gauge. The Hamiltonian (now on a three-dimensional lattice) is

e8]
[}

a3z: [%E%(SZ) + 282G + 0l lp(}‘)l
X

a8 Y L o@EN V@@ V@ B

5> >
X,y
¥
6 - 1 > > T . *>
+ a P(x) v. 5D, (x-y)P(y) exp iea A.(z)
+Z 105 GDVD exp1ea ) 4y :
X,Y,j Z=X
> ~ -+ - i o
VY, 0@ =5, L B0 =USPE . VoAT=0 . 2.3

The summation of photon tadpole diagrams simply corresponds to normal-
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Fig., 7. A class of diagrams whose summation would double the
fermion spectrum.
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ordering the exponential in Eq. (2.32). Including the counterterm

analogous to (2.31) the Hamiltonian becomes:

o
]

S [L e + 12 + b vo)]

+a® Y L2 eG @YD VG v
> +

X,y
+a® 20 [T vy Dy GV
X,¥,]
-
- 1 b T >
+ P(x) ¥ 14 (x—y)ll)(y) exp ieaz A (z) - 1: .
i =7
z=x
A >+ 0
- - N 3 ikex __ike+y
@j (x-y) = Dj (-;—y) exp---—;-e:2 f ; 11 £ +e
5 @ 2130 | S, (k)
2 >
s (k)
x 1~ :;%—_,— . (2.33)
S (k)

H is gauge invariant because the fields appearing in it are, but Ward
identities which state that Su(k) terms in the photon propagator do not
contribute to physical quantities do not hold. This may be understood
as follows. 1In a more general gauge, related to the Coulomb gauge by a
. -, +> &> -
time-independent gauge transformation, 2 structure w(x)DJ(x-y)¢(y) in

Eq. (2.33) appears as Q)(x) D (x-y) w(y) exp iea iA (z) Thus A'L is

- =
Z=X
coupled to the conserved current
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1@ = - Y |5y, 0, GE®

->

+ E(SZ) yi@i(;-}:)w(;) : exp iea 2 Ai(;) -1:} + h.c.
=%

(in Coulomb gauge) as required by gauge invariance, while K& coupleé to

the nonconserved

+
j;(;) = -334 2 IPCX) Yy .03 (x-y)w(y) exp 1eaz A (z) : + h.c.
ﬂ*:; Z—X
X,S2,%y;
xj=zj,j#1

> - > . . > +
[j (z) = -e¥(z)¥P(z) in either case.) In continuum QED AL and AT enter
0
-5
the action only through the local field A, so both couple to the same
current.
The effective vertices possess all the properties required for a

proof of renormalizability as in Sect. 3. The functions involved are

C°° and possess the required Taylor expansions. Furthermore, naive power
counting now works properly. A diagram with F external fermions and B
external photons is l/S (k )SB(k ). 'su(kB) times an integral with super-

ficial D = 4 - %-F. But the absence of infrared singularities requires

that the Taylor expansions of the vertex functions in the integrand be-

gin with the term of order k k 28" B , reducing D to &4 -~ %-F - B.

Similarly the numerator of an n-photon vertex must go as k, k, ...k
1l 2y nu

when the k's are small, and this must be accompanied by a factor a” " on
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dimensional grounds. Hence multiphoton vertices are accompanied by
factors of a as required in the arguments of Sect. 3. However, one
obstacle remains to the application of Sharatchandra's arguments tg the
SLAC lattice gauge theory: the presence in the fermion propagator of

the discontinuous function Bu(p). This problem is addressed next.

6. Proof of Renormalizability

So far it has been established that in the modified perturbation
expansion for the SLAC lattice gauge theory, the vertices are infinitely
differentiable functions of momenta and naive power counting correctly
gives the degree of divergence of Feynman integrals. In general, dia-
grams will actually have their full superficial degrees of divergence
since the Ward identities which normally reduce D do not hold order by
order in this expansion. However, Feynman integrands still do not pos-—
sess Taylor expansions because the fermion propagators contain the dis~
continuous function Bu(p). This difficulty may exist in any lattice field
theory in which there is (a) periodic momentum conservation, and (b)
fermions with undoubled spectrum. In"this section I explain how to carry
out a subtractive renormalization program for such theories. The next
section considers the form of the counterterms required to implement the
subtractions.

Consider an arbitrary Feynman diagram. The corresponding amplitude

takes the form

A

4
A(k) = H f d 2'4 I(R,k) ﬂ (217)4 64 (zmomenta) (2.34)
lines _, (2m) vertices per
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where k denotes the external momenta and I is written using the Feynman
rules. At this point I(L,k) possesses an expansion in powers of k
because for |£u|<A, Bu(ﬁ) = ﬂu which is perfectly continuous. A(k) does
not have an expansion, though, because the pericdic d-functions contain
additional dependence on k.

Choose now a subset {q} of the momenta {2} to act as independent
loop momenta. According to Appendix A the trivial integrations over
{2} - {q} may be done provided I(%,k) is a periodic function; provided,
in other words, the fermion propagators are written in terms of the
discontinuous Bu(z) instead of simply Eu. The integrations then result
in a discontinuous integrand I(q,k). However, since Su(l) is piecewise
continuous, the domain of integration can be divided into subregions with
I(q,k) continuous in each.

An efficient way to do this is to return to Eq. {2.34) and to sub-

stitute for the periodic &-functions

4
6 ar (P) =l;l Z S(p, + 20 M) . (2.35)

2 -

K

Since only finitely many lines enter each vertex of the graph, and all
lines are restricted by |2u|<A, only finitely many terms in the sum can

actually contribute. Doing trivial integrations then yields

A
4
AK) = 2 [ —d—gz I,(q,k) N e[A-lk‘.‘(q,k)I] , (2.36)
h| {q} “A (27m) J lines,p J

i.e., a sum of infegrals indexed by j. The integrands Ij(q,k) are
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generally all different, as are the functions Rg(q,k) which give the uth
component of the momentum in line £ in terms of q and k. In writing
Ij(q,k), Bu(l) is to be replaced by zu as is permitted by the 8-functions.

Each integrand I,(q,k) thus has a Taylor expansion in the variables k.

3
Let j = 0 label the integral with no umklapps - o, = 0 in Eq. (2.35) for
évery periodic §-function in Eq. (2.34). The terms j #0 are diagrams in
which momentum cA;ponents in multiples of 2A enter vertices "from no-
where'" in all possible ways.

Consider one particular integral labelled by j. The integral will
be made finite in the limit a + 0 by replacing Ij(q,k) by a renormalized
integrand Rj(q,k) via the following prescription. As in ordinary BPH
renormalization, lay down forests of nonoverlapping boxes on the diagram,
each box surrounding a renormalization part - a 2-, 3-, or 4-point
function. Make the usual subtractions of the first D+ 1 terms of the
Taylor expansions of the boxed subgraphs, with the following exception.
If a box contains an umklapp process (if the external momenta of the
boxed subgraph do not sum to zero, but to a multiple of 2A, which can
happen only for 3- and 4-point functions) then no subtractions need be
made for that box. The reason for this except{pn is the following.
According to the usual criterion a Feynman integral converges if all
subintegrations have D<(, a subintegration being an integral over a
subset of the q's with all othér momenta held fixed as a -+ 0. The in-
tegration over the internal momenta of a boxed umklapp process does mnot
count as a subintegration because the external momenta cannot be held

fixed when a -~ 0. Renormalized Green's functions are not required to be

finite when their external momenta approach infinity!
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After the subtractions are made, the jth integral is guaranteed to

be finite when a + 0, even ignoring the 8-function constraints in Eq.
(2.36). The 6-functions impose additional restrictions on the region of
integration, so including them does not make a fofmerly finite intégral
diverge. As in Sect. 3, 1if the diagram under consideration includes a
multiphoton vertex then the explicit factors of a in such a vertex cause
the renormalized diagram to vanish as a + 0. For a normal diagram, the
integrand Io(q,k) of the no-umklapp term in Eq. (2.36) becomes the con-
tinuum Feynman integrand for the same diagram when a + 0 (provided the
continuum parameter e is identified as the coefficient of ¥y in the zero-
momentum limit of the lattice one-photon vertex). The 6-functions make
a negligible contribution in the limit a + 0, so the renormalized j = O
integral at a = 0 equals the corresponding renormalized continuum inte-
gral. Finally, consider the j # 0 contributions to a normal diagram.
The integral of Rj(q,k) is finite. Now consider the effect of the 8-
functions. There is a vertex of the graph at which some components of the
three entering momenta sum. to 2nA, n # 0. Since no momentum exceeds A
(6-functions!), at least two momenﬁa are large on the scale A (and in-~
cidentally n = # 1). These large momenta may be traced through the graph;
eventually a large momentum must flow through a line carrying one of the
integration momenta ¢. But if one has an iﬁtegral from -A to +A, finite
when A + », and adds a 6-function requiring the integration variable to
be of order A, the result vanishes for A + =. Hence all j # 0 terms
vanish for a + O.

It has now been shown that in the modified perturbation expansion

for the SLAC lattice gauge theory the subtracted Feynman integrals yield
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the usual results of continuum QED order by order whem a + 0. It follows
trivially that the a + 0 limit of the S-matrix is in fact gauge-invariant
despite the gauge dependence of the lattice expansion due to the symma-
tion of photon tadpoles. It is clear that the subtractions described
above can be implemented by counterterms in the action, but the structure
éf these counterterms is not as simple as in the case of Wilson's QED.

This is discussed next.

7. Structure of Counterterms

A. Examples

This section presents some examples of the renormalization program
just discussed for lattice theories with undoubled fermibn spectra, with
the purpose of exhibiting the types of counterterms to be expected.

Since the Ward identities are not maintained order by order in the modi-
fied perturbation expansion for lattice QED, there is no formal differ-
ence between the renormalization program for lattice theories with and
without local gauge invariance. Therefore, to save indices, the examples

here are taken from a theory of SLAC fermions interacting with scalar

mesons via a g&(x)w(x)¢(x) coupling.
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1. Scalar Self-Energy

The one-loop scalar self-energy (Fig. 8) is given by

A
2 b 4 4 L o
=g Trf dqd 2 SF(q)SF(l) 6per(p+z qQ) aper(q- £-p")
=-A
A
- gzrrz:fd"qd‘*z sF(q)sF(z)a“(pH-q+2nA)s“(q- % p' +2mh)
n,m
-A -

A
2 4
g Ter d'e s (p+ 2+'2nA)SF(£) ];] 8(A - [pu+ £u+2nuﬁl)

x 6%[p - p' + 2(m + AT , (2.37)

where m and n are four-vectors with integer components. The fact that
all momentum components are bounded in magnitude by A imposes the re-~
strictions m = - n and nu = 0, £ 1. Extracting the overall momentum

conserving é-function gives

A
Iip) = g Tr E f d42 S (p+9,+2nA)S (L) n 8(A- Ip +R. +2n A|) s
—O,il —A

(2.38)

where SF(q) now means (y-q + m)-l, ﬁu(q) no longer appearing.
Consider first the no-umklapp (n = 0} contribution:

min(A,A—pu)

gzg f as, Tr S (p + £)S(%)

-A.=A-
max (-4, pu)

gz[;[ 8(p )f e+ 6(-p )f dlu Tr SF(p+£)SF(£).(2,39)
—A-p




Fig. 8.
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The scalar self-energy in the lattice Ew¢

theory.
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It is clear that apart from the 8-functions the integrals have expansions
in powers of pu of which the terms up to @(pz) may be divergént, while
subsequent terms must give the continuum results when a + QO with p fixed.
The discontinuous behavior of the integrand has been isolated in th; g-
ﬁunctions which appear because one must know the sign of pu to Fell
whether pu + lu > A or pu + lu < -A is possible for |2u| < A. The

required counterterms will have the form

0(2p )8 (2p )8 (sp)0(py) (& + E a2, T 6p0) i3, @0

with A,Bu,Cuv divergent constants. Indeed, one can say more: since

I (p) has definite symmetry under p -+ -p, 6(pu) must appear in the even

]

and odd combinations e(pu) + B(~pu) 1 and e(pu) - B(-pu) = sign pu,

giving counterterms
(a+ 2 Blol+ T po + 0 lplle )i@Een . @b

w WEY

which may be further restricted by the lattice cubic symmetries. These
counterterms will be nonlocal when expressed in position space, but this
is to be expected since the bare action was nonlocal as well. It would
be wrong to conclude from this nonlocality that infinitely many counter-—
terms are required (counting separately theLnearest—neighbor, next-
nearest-neighbqr, etc. terms) since in momentum space there are clearly
finitely many divergent constants.

Next, examine a typical contribution to 0 (p) containing an
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umklapp (n0 =1, = 0):

-A-p min(A,A-p.)
20¢p) [ dz. 11 ar,  |1rs.p 42 +20,3 D5 () - (2.42)
& Py oy i L optPy ™y °P F T
-A max(—A,—A—pi) :

Evidently counterterms of the form (2.40) will suffice to make this finite
for a -+ 0. After the removal of the terms up to Csz) in the expansion

of the above integral, the remaining terms vanish because the umklapp
restricts the 20 integration to a small region near -A, as expected from
the arguments of Sec. VI. All umklapp contributions vanish similarly and

when a + 0 the continuum result is recovered from the no-umklapp term.

2. Vertex Function

The one-loop vertex correction (Fig. 9) reads:

A
_ 3- b b, b \ 4 .
=g v(q)f d kd k'd 2 SF(k)SF(k YA(R) 6per(p+k k)
-A
x 8% (k-g-q) & _(2-k'-q") v(-q") (2.43)
per per i )
where A(R) = 1/52(2). This becomes

2T 2 fd4kd4k'd41 5,008 (k) (%)

n’nl’nll /A

—
1

x 54(p+k’ -k + ZnA)Ga(k— £—q+2n'A)64(2—k' -q"+2n''A) v {(~q")

n,n',n

A
8> 3(q) Z fd“z Sp(2+a-20"NS (2-q'+2n' ") a(L) (2.44)
-A

x n 8(A- |2u+ q," ZnLAI)G(A - IQ,U— qL'1+ Zn;;Al)ﬁa[p—q-q'+ 2(n+n"+n")AJv(-q")
M
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Fig. 9. Vertex correction in yy¢ theory.
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According to Sect. 6 subtractions are only required in the case of
overall momentum conservation n + n' + n'' = 0. Consider the no-umklapp
termn =n' =n'' = 0:

min(A,A+q',A-q )

3" u u 4 [}
g v@ | ] f ay, S+ DS (2-q)AE (P-a-g)v(~g").
. u '

-A,=A+q',~A-

max {-A, qu! qu)

—_ (2.45)

The conditions on the range of integration can be expressed using
8-functions, but this is not necessary: since the integral is only
logarithmically divergent, tﬂe limits of integration can be taken as

-A to A with vanishing error as A + ». The integrand requires only a
subtraction of its value at ¢ = q' = 0, which can evidently be effected

by a counterterm of the same form as in the cutoff continuum theory.

-> -+ gl

For a typical umklapp term, n, = 0, né = -1, n'd =+l, n=n"'"=n"= 0,
-— - — ' 1 ' —
5. min(-A q,» A+qo) m1n(A,A+qi,A qi)
g v (2)8(q")8(-q ) f a [ a
0 o o n i
-A max (-A,~Aq},=A-q,)

> - o T 4__‘_'
x SF(Eoﬁ-qo4-2A,£+-q)SF(£o q04-2A,2 DAR)S (p-q-q")v{-q") , (2.46)

the situation is even better. Since the integrand has D = 0, the limited

range of the £, integral causes it to vanish as a - 0 and no counterterm

0

is needed.

3. Two-Loop Scalar Self-Energy

This is included as an example of the vanishing of umklapp contri-

butions beyond one-loop order. The only diagram which is not simply an
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insertion of the one-loop fermion propagator gives (Fig. 10):
A -

n(#) . g'(2m™ 1r f d*ka*kra*eateray Sp(k)S (k") (2.47)

-A
x S_(2)S_ (R A(Q) S (p+k'-K) & (k-2-q)8% (2-2"=p")6} (2" +q-k")
: F F per per per P/ %er :

— A

1) = g 2 f d“kd"st(k)sF(k - p- 2uM)S (L - p+ 20) S (£)
m,m',n “A

(2.48)
x A(k=2+2m'A 8(A-lk —p -2m Al)B(A-|L ~p +2n AD)B(A-|k =2 +2m'A .
( )l}(lupu ul)(lupu ul)(luu u‘)
In addition to the overall D = 2 integration there are various subinte-
grals having D = 0. The overlapping divergences in the no-umklapp term
are handled exactly as in the continuum theory: the overall subtractions
plus the inclusion of the vertex counterterms discussed above yield a

finite result. Consider now the umklapp contribution

m=n =0, mb = -1, n' = 0:
min(A,A+p )
4 | - -4 + >
g | [ | ax,an, Tr S ()8 (k= p)S (2 = p)S (R)A (K = %= 24,%-1)
s max (-A,-A+p, ) ’
x 8k =2 - 1) ]:l oh-lk, -2.) . (2.49)

Here the explicitly indicated range of integration is not particularly
small. However, there is the 6-function restriction ko - £0 > A. The
subintegral over k at fixed 2 is therefore restricted to a small region

near kD = A, which causes it to vanish as A + = since it had D = 0.
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Fig. 10. A contribution to the two-loop scalar
self-energy in YPP¢ theory.
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Similarly for the f-subintegral at fixed k. Finally, a subintegral over
k + 2 at fixed k - £ vanishes as A + « since a fixed k - % will fail to
satisfy ko -2 A. Then, after counterterms of the form (2.40) have
removed the terms up to 6Kp2) in the integrand's Taylor expansion the

_ result must vanish since kO - 20 > A requires the integration variables

“to be large.

B. Summary

From these examples it appears that in lattice theories with un-
doubled fermions one must expect momentum-space counterterms which are
polyﬁomials in the momenta, plus sign pu functions times such polynomials.
The dependence on sign pu reflects the fact that although the lattice
Green's functions do not have Taylor expansions about pu = 0, they do
possess ''one-sided" Taylor expansions valid when P, >0 or P, < 0. The
counterterms thus serve to impose appropriate normalization conditions
on the left and right limits and derivatives of the Green's functions at
p. = 0. Only finitely many types of counterterms arise although they are

u

nonlocal in position space. Some of the counterterms which are simple
polynomials and only logarithmically'aivergent can be generated by re-
scaling fields and parameters, as in Wilson's QED, but others must be
added by hand.

For SLAC lattice QED, Eq. (2.20), the prescription is as follows.
First rescale fields and parameters in Eq. (2.20), writing it as a renor-
malized action plus counterterms. Next sum the photon tadpole diagrams

to produce an infrared finite set of Feynman rules. Third, execute the

renormalization program of this and the preceding sections.. This both
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determines the logarithmically divergent multiplicative renormalization
constants and requires additional counterterms. In particular, photon

mass and photon-photon scattering counterterms will be needed due to the
absence of Ward identities. Finally, to make contact with continuum QED
- a finite charge renormalization is needed to express the theory in terms

0of a charge defined by the static limit of the effective one-photon

vertex: ephysical

= é%:(O)e. This prescription is straightforward in
the covariant gauge of Eq. (2.20) in thﬂlé%(O) is independent of u.
However, the normal-ordering procedure for removing infrared problems
violates unitarity unless carried out in a physical gauge, and physical
gauges are never covariant. Then one must ;dmit the possibility of non-
covariant counterterms; in particular the bare coupling constant eu
associated with Au can depend on p. (For example, in the Hamiltonian
Coulomb gauge formulation the parameter e in the instantaneous Coulomb

interaction must be allowed to renormalize independently of the coupling

to the transverse photons.) After the rescalings

]

% > Y
L AL Z3 Ay e, * eRuzlu/zzz?ﬂ1 ,

(2.50)

and the summation of photon tadpole diagrams, it is the parameter eRu

which appears in the definition ofSEu(x—y), Eq. (2.29). The final

finite charge renormalization is then

= onl
ephysical QDU(O) ®Ru ? (2.51)

which implicitly determines eRu in terms of the measured ephysical'
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C. The Axial Current

The fate of the axial current and the axial-vector Ward identity,
Eq. (2.23), in the present treatment are easy to see. The axial current
couples to vertices exactly like the photon, but with an extra factor
Yg- In naive perturbation theory its matrix elements, like most Green's
4functions, are infrared divergent. After the summation of photon tadpole

diagrams, matrix elements of the normal-ordered current

y
jS(Z) = a5 2 v(x) YuYSQZ {(x-y)¥(y) : exp ieaZA (w) : +h.c.
H X,y u W= u
X, €2, <y,

z3= X, vy

are guaranteed to be infrared-finite. However, in the resummed pertur~-
bation expansion the vector Ward identities are not available to reduce
the degrees of divergence of graphs. This means that the VVA triangle
diagrams involving this axial current (or any other) will be at least
logarithmically divergent. As yet no renormalization prescription has
been given for these diagrams., At this point one must decide which Ward
identity is to be satisfied in the continuum limit and renormalize
accordingly. To obtain a finite continuum limit obeying Lorentz and
Bose symmetries and the vector Ward identity, certain counterterms must
be added to the current and by the Adler-Bardeen theorem they cannot be
chosen such that the axial Ward identity is also satisfied.

The important point to abstract from perturbation theory is that
there is no reason to expect a nonlocal operator such as the conserved

axial current (2.23) to have a finite continuum limit. In view of the

anomaly there is every reason mot to.
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8. Concluding Remarks

A. Summary

This chapter has considered various formulatibns of lattice QED with
'fermions, with particular empﬁasis on the SLAC lattice gauge theory (2.20).
I have shown that_if lattice QED is constructed from the free Dirac action
by replacing derivatives by difference operators and then coupling to the
photon in a locally gauge invariant way, an undoubled fermion spectrum
implies that naive perturbation theory breaks down due to infrared di-
vergences. Under the assumption that the full gauge theory continues to
have an undoubled spectrum, a resummation of the perturbation series was
carried out which removed the infrared problems. A renormalization pro-
gram, applicable to any lattice fermion theory with undoubled spectrum,
was carried out such that ordinary continuum QED was recovered order by
order as a -+ 0. In this scheme the lattice axial current which obeys a
non-anomalous Ward identity had no finite continuum limit order by order.
In view of the anomaly this must alsc be true to all orders.

B. Beyond Perturbation Theory

The results of this chapter are rather formal in that they show what
can be done with SLAC lattice QED in perturbation theory and what coun-
terterms are needed to do it. Continuum QED at this time is defined by
its renormalized perturbation series, but a lattice theory presumably

has a meaning even beyond the region of validity of perturbation theory.
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As remarked earlier, perturbation theory cannot predict a qualitative
spectrum, but must instead be constructed around a zeroth order approxi-
mation which already has the correct qualitative spectrum. It is im-
portant to ask whether the perturbation theory constructed in this chapter
.accurately reflects the exact solution to the theory (2.20). 1In principle

this should be determined by an exact rencrmalization-group treatment and

analysis of the fixed points. The renormalization-group critical surface

should determine an action containing the counterterms required in per-
turbation theory. What can be said in the absence of such information?

There seem to be two possible scenarios based on the Ward identity

Ss,M0r e+ =sle 4k - s)e) ,  (2.52)

K

which is an exact property of the theory. I1f the exact fermion propagator
describes an undoubled spectrum then S;I has a discontinuity at some point
Py Letting p Py and k + 0 in Eq. (2.52) shows that Pu must have a
singularity there. This in itself is not a disaster since P is normally
of order l/a. A disaster occurs only if this singularity propagates down
into the low-momentum {(continuum) limit of some Green's function. This
happens in naive perturbation theory where 100p§ of high-momentum parti-
cles contribute to the low-momentum behavior of, for example, Huv(p)'

1f it happens in general then the theory is éick. If it does not happen,
so that singularities are confined to high momenta, then the continuum
limit may be as described perturbatively above. The high-momentum
singularities would be generated from the sum to all orders of the order

by order nonsingular effective theory of Sect. 5.B. The conserved lattice



- 62 -

axial current has no continuum limit due probably to singular contribu-
tions to its matrix elements. -

If no infrared singularities arise at any momentum, then S;l must
be continuous and the fermion spectrum doubles. This happens nonper-
“turbatively since the spectrum is undoubled at e = 0. This scenario is
éuggested by the Egmmation of the photon tadpole contributions to SF
(Fig 7). Summing perturbation theory to all orders would not introduce
any singularities but would merely restore gauge invariance, which was
lost order by order. The axial current could have a non-ancmalous con-
tinuum limit, the anomaly being cancelled between the doubled fermion
species, It is even possible that both these scenarios could occur,
each characterizing a different phase of the lattice theory. The SLAC
lattice gauge theory (2.20) could thus have an extremely rich and inte-
resting structure beyond perturbation theory., In my opinion it is ex-
tremely important, though difficult, to learn which of these cases
occurs. The possibility that the fermion spectrum multiplicity is de-
termined dynamically does not seem to have been previously suggested,

and would add a new dimension to our understanding of the realization of

chiral symmetry in lattice theories.
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CHAPTER III

REAL-SPACE RENORMALIZATION GROUP METHODS2Y

1. TIntroduction

This chapter and the next are concerned with nonperturbative studies
of lattice theories with long-range interactions. The method used is the
real-space renormalization-group (RG) technique introduced by Drell et al.
and subsequently applied to a variety of lattice field theories and spin
systems.3 8 Tt has been shown to yield accurate results for correlation
functions and low-lying energy levels, and to locate phase transitions
reliably. Furthermore, calculations using this technique can be systema-
tically improved to provide accuracy limited only by the available
computer time.

The goal is to use the RG method to study an antiferromagnetic
Heisenberg spin chain with long-range interactions on a one-dimensional

lattice at zero temperature:

N N
H = % 2 (ni=itt L 2y L3y (3.1)
153=1 li-3|P
i#j

where g(i) denotes a spin~1/2 operator acting at the ith lattice site.
The relation of this model to one—dimensionél fermion field theories
formulated with the long-range SLAC derivative is discussed in Chapter IV.
The model is also of independent interest owing to rigorous results
obtained by Dyson25 and Ruelle?® for the analogous Ising model g -+ Sz.
These results are also summarized in Chapter IV, In this chapter, I

introduce the RG method and show that it successfully reveals the known
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properties of the nearest-neighbor Heisenbefg chain which is the p > =
limit of Eq. (3.1). Although both two- and three-site blocking techniques
are successful for the nearest-neighbor chain, it will emerge that the
three~site method is more reliable for studying the long-range modél
~(3.1). That study is taken up in Chapter IV.

This chapter is organized as follows. In Sect. 2 the three-site
blocking procedure is described and applied to the anisotropic nearest-
neighbor spin chain (Heisenberg~Ising model). This is done to facilitate
comparison with the calculation of Sect. 3: it will be useful to have
studied the isotropic model of interest as a fixed point (in the RG sense)
of a more general model. I find that the three-site calculation correctly
reproduces the qualitative physics of the model and gives the ground state
energy density to within 12%. Section 3 describes a two-site blocking
calculation for the isotropic nearest-neighbor chain. After the first
blocking the model has been embedded as an unstable fixed point in a more
general model with integer-spin degrees of freedom. A naive application
of the blocking procedure leads to entirely incorrect physics for the
isotropic model due to the instability of the fixed point and the approxi-
mate nature of the calculation. The ;orrect results emerge from a study
of the RG trajectories. Although the problem is easily understood in
this context, it makes the two-site calculation unsuitable for studying
the long-range model (3.1) with its infinite-dimensional parameter space.
The situation is further clarified by introducing a duality transformation
for the integer—spin model. It is.suggested that such duality trans-
formations may be useful in other block-spin calculations as well.

Section 4 describes ways to improve the three-site calculation of Sect. 2,



- 65 -

in particular by developing it into an approximate nine-site calculation.

Section 5 contains concluding remarks.

2. Nearest-Neighbor Heisenberg-Ising Antiferromagnet

In this section the three-site blocking algorithm is described and

applied to the nearest-neighbor model withVHamiltonian

N-1
H = :): [Sx(i) S (1+1) + 8. (1) S (i+1) + ys (i) 8, (i+ 1)] »

i=1
Y 2 0 [ (3‘2)

where the infinite volume limit N+ = will generally be assumed. The
lattice sites may be grouped into blocks of three and labelled by
ordered pairs (k,a) where k=1,2,...,N/3 specifies the block and a=1,2,3
labels sites within that block. Thus the ith lattice site may be
relabelled (k,a) where i=3k-3+a. Three-site blocks are convenient
because the block states will have half-integer spin as do the original
degrees of freedom. The Hamiltonian may now be decomposed into two

pieces, H, and H where H, couples sites within a single block
in ou in

t’

and Hou couples sites in adjacent blocks:

t

H:H, + H
in out

(3.3)
H =§ [Sx(k,l)sx(k,2)+Sx(k,2)5x(k»3)+Sy(k’l)sy(kfz)

in
k

+ Sy(k,Z)Sy(k,3) + YSz(k.l)Sz(k,Z)+Ysz(k,2)sz(k,3)] s

Hout

E [Sx(k,3)3x(k+1,1) + Sy(k,B)Sy(k—!—l,l) + YSz(k,3)Sz(k+1,1)]
k
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To diagonalize Hin' it suffices to consider a single block:

H'_ln = Z Hblock(k) ,
k

Hblock

ST +35@)-303) + e[Sz(l)Sz(Z)+Sz(2)Sz(3)]

%{[§(1)+§(2)+'§<3)]2 - [§(1)+§(3)]2 - %}

+ s[Sz(l)SZ(Z)-FSZ(Z)SZ(B)] (3.4)

where e=vy - 1.

For €= 0, H'block is rotationally invariant and its eigenstates are
found by combining g(l) and §(3) to give a total spin 0 or 1, which is
then coupled to %(2). These states form a spin-3/2 multiplet and two

spin-} doublets and are (notation is ‘S,Sz>):

i—;’—,%> = |4+44> )
energy =+ Fl ’
|§_1_> _ l(|+++>+|+++>+|+++>)
2’ %]
11 1
= => = = (|+++>- HH)) , energy =0 )
11 1 | -
P2 =5 = = (2]444> = [#44> = [4#44>),  energy = -1 , (3.5)
2’21

plus the four corresponding states with all spins flipped and negative

total S .
z
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For € # 0, Hblock is invariant only under rotatioms abogt the z-axis
(plus the discrete symmetry z -+ -z which keeps the energy independent of
the sign of Sz) so that states of different total spin but equal S;_can
‘mix. One finds that |%3§> is still an eigenstate, with energy %y, |2,2>0
is still an eigenstate with energy 0, but that l%y%) and I%;%)l do mix.

By diagonalizing a 2x 2 matrix, one finds that the lowest-energy

eigenstate is

1, - =% (111 31
l+-2—> = (1+ 2x ) (l‘i‘,i‘>1 + /?.-X!E',—2->) s
energy = —-ll-; (Y + VyZ +8) >
x = 2(y-1) (8+y+3/Y§+8]_1 . (3.6)

Thus far the state of the lattice has been described in terms of the
state— spin up or spin down—of the spin-!% particle at each site.
Since the eight eigenstates of Hblock form a complete set, an equally
good description (corresponding to a different basis in the Hilbert
space of states) is obtained by specifying the eigenstate of each block.
However, it is physically reasonable to expect-the low-lying states of
the lattice to be predominantly formed from the low-lying eigenstates

of I therefore make the approximation of restricting attention

Hblock'
to the sector of states built from the block states |+%> and |-%> only,
| =%> being obtained from |+}> under z + -z. The next step is to write

an effective Hamiltonian which has the same matrix elements as the

original Hamiltonian within this sector of states.
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More explicitly, the lowest-lying states of H'block are

=1 -
| +35> (1+-zx2] & [|+++> (2x+2) + [+44> (2x-1) + |+44> (2x-1)],

[-%> =-(1+ 21{2).—15

Sl -

[|+++> (2x+2) + |++4> (2x=1) + |t+4> (Zx:-lj].

(3.7)
The overall sign difference between the states reflects Condon-Shortley
phase conventions. The effective Hamiltonian is constructed from new
spin operators 3" defined by <+¥5|8;l+15>=1§, <—15|S;| -%>= %, etc.

With this definition it is easy to check that in each block

2(1+x)(1 - 2x)

¢s (1)) = <8 (3)> = sty
x x 3(1+ 2%%) x> !
¢S (13> = <5 (3)> = 2<1*'x)(1£'2x) sty
y y 3(1+2x7) y
201+ x)2
¢S (1)> =<8 (3)> = =X (g , (3.8)
z z 3(1+ 2x%) z

where the notation < > indicates any one of the four matrix elements
involving the states | t%>, and the equality Sy = <-§(3)> follows

from the even parity of these states. Using the relations (3.8) to

x

eliminate the S operators from Hout’ and remembering that Hin has been

diagonalized, the effective Hamiltonian can be written:

N/3 N/3)-1

A Za1+ }: bl[S}‘{(k)S}'{(k+1)+S;(k)sgr(k'*‘l)+Y15;(k)8;(k+1)] ,
k=1 k=1
(3.9)

2

2
- 1 TR J2a+x) - 2%) (l+x
a],_ _Q(Y'I' Y +8) ’ bl"[ 2 ] s 'Yl_ 1-2x)Y
3(1+2x7)
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Because this Hamiltonian has the same form as the original one, apart
from the energy shift a, and the scale factor by the blocks of the

original lattice may be viewed as sites of a new lattice and an identical

(1)

blocking procedure applied to H . In this way one generates a sequence

(m)

of Hamiltonians H describing the physics of ever larger length scales

(block sizes) and obeying the following renormalization group equations:

N/3® @/3M)-1

g™ Z a + Z: b [Sx(k)sx(k+1)+sy(k)sy(k+ l)+ymSz(k)Sz(k+1)] ,
k=1 k=1

m
|

1 2
ml 3am- hbm (Ym+\}ym+ 8 ) ?

2(1+ %) (1- 2x ) 2

bm—i—l = bm 5 s (3.10)
3(1+2x7)
m
1+x )2
= __m
Ym-l-l Y111(1--2}: ?
pu

a0=0, b0=19 Y0=.Y)

b
[11]

-1 -
2
- Z(Ym— 1) (8+ Ym+3 j‘ym+ 8) _ .

(m)

(The primes on the block spin operators in H have been dropped fof
simplicity.) Heré an is a c-number contribution to the energy which
after sufficiently many iterations of the blocking procedure becomes
the dominant contribution. In fact, on the finite lattice of length N,

after roughly m= log3N iterations the whole lattice has been reduced to

a single block and a is the only contribution to the energy. Since at
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each iteration the number of lattice sites drops by a factor 1/3, the
energy per original lattice site is to be computed as an /3mE é”m.
Returning to an infinite lattice by letting N- « one obtains an energy

density given by lim é“m where é?m satisfies
m>®

- RS T (2 -
é‘mﬂ = é“m - bm ym+ Ym+8 . é‘o- 0o . (3.11)
12x3 -

Since the whole RG procedure may be viewed as a variational
calculation in which the set of variational trial states is "thioned out"
or "truncated" with each iteration, the energy density computed from
(3.11) will always be an upper bound on the true energy density.

The RG equations have three fixed points in the region ¥20:v=0
(isotropic XY model), y=1 (isotropic Heisenberg model), and y==
(Ising model). I now proceed to discuss them.

A) y=0. Near this point the RG equations become:

=} .
Yo = HY, o (3.12a)
by = [15+ ﬁ(‘fm)] b s - (3.12b)
5 = 1
éﬂﬂ'l = éam - W bm( 2/5"’ Tm) . (3.12(1)

Equation (3.12a) implies that if lyl is small the system will be driven
to the isotropic XY form: the y=0 fixed point is stable. According to
Eq. (3.12p), 1M b =0 which implies that the isotropic XY model is a

m-+

massless theory: after sufficiently many iterations it is possible to
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construct variational trial states with arbitrarily small excitation

energy. It is also possible to compute the energy density at the point

y=0: (3.12b) and (3.12¢) imply ébm+1= gm - (@/6“1). This leads to

a geometric series for & whose sum is &, =-/2 /5 = -(.2828, to be

compared with the exact result?? &=-1/n =-0.3183, The error is 11%.
B) y=1. Near this point y=1+¢ with |e| << 1, and the RG

equations become:

23
e 153 € . (3.13a)
S (1--e (3.13b)
o+l 9 g9 ?
bm
& 1 = (f;bm - -———--3 1 (1+ Em) . (3.13(‘:)

Equation (3.13a) shows that this fixed point 1s unstable: however small
€, may be, after many iterations one will have ep~ 1 and Egs. (3.13) will
cease to hold. According to (3.13b), bma-O at €= 0 so that the isotropic
Heisenberg model is massless. Finally, using (3.13b,c) to compute the
energy density at e=0 gives é;+1 = éﬁ-(l/B)(&/Z?)m , a geometric series
Qhose sum is & =-9/23=-0.3913. This differs by.12%Z from the exact
result,?‘8 &=-0.4431.

c) y=, In the limit y>> 1 the RG equations become:

1 3
x =+ (1-Y ) i (3.14a)
m
1.3 2
Yoo =ty (1_Ym) , (3.14b)
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4 6

b =5b (1+Y ) , (3.14c)
Y m/
m

& = 6 - — b Y, . (3.14d)

Equation (3.14b) demonstrates the stability of the y= e fixed point:
once v, becomes large, it essentially cubes itself with each iteratiom.

Equations (3.14b) and (3.14c) imply that for y sufficiently large,

b (3.15)

ol Yol - PnYm T PopYo T Y ,

[

so that (3.14d) gives the energy density as & = -y é;% (1/ (6 x 3m))=
= -(y/4). This is the exact result for the Ising model y + =, which is

easily understood since the block states | %> become in this limit:

1]

b +%> | 444> - $l+++> - %l 44D s

(3.16)

[}

[-4> = - |+44> + %1+++> + $l+w> .

so that the RG algorithm constructs the exact Isiﬂé ground state.

The fact that bmﬂ-O in this case is not sufficient to give a massleés

theory because Yo+ The mass gap for amy y> 1 is in fact given by

b_ Y., which is the gap at the stable Ising fixed point. This quantity

is shown to be nonzero in the discussion of end-to-end order given below.
The picture that emerges from this analysis is that for 0 <y<1

the system is driven to fhe massless isotropic XY form, while for y > 1

it is driven to the massive Ising form. The unstable fixed point y=1
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separates the two regimes. This 1s precisely the known behavior of this
model.2? One might ask how this approximate calculation is able to locate
the correct phase transition exactly, at y=1. This is guaranteed by a
symmetry: at y=1 the system becomes rotationally invariant, and the RG
transformation has been defined so as to preserve rotational invariance
if it is initially present. This point will be important in Sect. 3.

It is also possible to.calculate the end-to-end order in the ground
state, defined as |<§(1)- g(N))l. This is done, in direct analogy to
the treatment of H, by replacing the operator §(l)- g(N) with an effective
operator having the éame matrix elements in the sector of states retained
at each iteration. Since the first and last spins on the lattice are also
the first spin in the first block and the third spin in the last block,
Eqs. (3.8) and (3.10) show that after m iterations the appropriate

effective operator is:

[§(1) §(N)] (m) _ m[sxcl)SX(%)'*— sycl)sy(—%)] +$bmymsz(1)s (—%) (3.17)

3 3

Since bm*-O in all cases, the end-to-end order may be computed as:

(3.18)’

»

18 - 3| = [<s, ()s, (Last)y| %bmym

ﬁhere the expectation value on the right side is evaluated in the ground

=)

state of the fixed point Hamiltonian H Clearly this predicts no
end-to-end order for O<ys1l. The vanishing of the order for y=1 may
also be obtained as a consequence of the rotational symmetry of the

theory and the cluster property y 1im [<§(1) S(N)) <S(1)> <§(N)>] 0.
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For y > 1 the system is driven to the Ising model for which

|<Sz(1)Sz(last)>i = Y%, VUsing Eqs.(3.10) one has for vy > 1

= 1+
|<§<1)-'§(n>_>|=-}; I % ( x“) . (3.19)

L 5 (2l

This infinite producf is in fact convergent and nonzero. For m

sufficiently large that Ym>> 1 one finds from (3.14a) that (4/9) x

((l+xm)4/ (1+ 2x§1)2) =1- ﬁ(‘y-z). The product (3.19) is finite and

nonzero if and only if the sum Z log|l~ 0‘(7 )] =- Z 0(7-2) converges.
n>m n>m n

Since ¥ "'Yg for n>m, the sum is highly convergent. It is important to

ntl
note that the end-to-end order depends not only on which fixed point is
ultimately reached, but also on the rapidity with which it is approached.
It is also easy to obtain the limiting behavior of the end-to-end
order as y+ 11 using Eq. (3.19). Set y=1l+g with |e| << 1. According

to Eq. (3.13a) one iteration of the RG equations changes £ into (5/3)e.

Since X = 0 for Y = 1, it follows from Eq. (3.19) that

Order(g) = g-Order (g—é), (3.20a)

a functional equation which is solved by

1.6 log(4/9)
Order(e) ~e '~ , 0<e<{1l, where 1.6 8 —— . (3.20b)

log(3/5)
Fiéures 11 and 12 show the results of numerical iteration of the RG
equations. Figure 1l compares the ground state energy density computed

from (3.11) with the exact solution of Orbach,2® while Fig. 12 displays
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Fig. 11. Comparison of the exact ground state energy density for
) Horbach (lower curve) with the result of the renormalization
group calculation (upper curve).



- 76 —

MASS GAP

0.25 I | | | | | | = .00
o - 7
kgOZOE- — 0.80
o — m
© — _
2 0.15 = 0.60
L] [ ]
| = ]
S 0.10 & 3 0.40
n — -
S 0.05 = = 0.20
L — _
= I N TN N N R =g
O 0.2 04 06 0.8 .0
9—79 Q 368142

Fig. 12. Results of the renoymalization group calculation of the
end-to-end order [<S(1)-S(N)>| and the mass gap for Hp.poon-
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the results of the present calculation for the end-~to-end order and the
mass gap. Note that the energy density and mass gap both refer to the

Hamiltonian used by Orbach, which differs slightly from that used here:

HOrbaC;Z{(l - a)[Sx(i)- s (i+ 1)+ Sy(i)Sy(i+ 1)] +5,(1)s, (i+ 1)}
i .

=$ [Sx(i)sx(i+ 1)-5 Sy(i)Sy(i+ 1)+YSz(i)Sz(i+ 1)] » (3.21)
i

with

so that the region 1<y <= corresponds to O<a<1l. Due to the factorr
1/y in Eq. (3.21), the RG results for the order and the mass gap for
this Hamiltonian differ only by a factor of 4, as shown in Fig. 12.

The greatest error in the energy density is the 12% error at a=0, and
the general shape of the curve is correct. According to Eq. (3.20b) the
curve in Fig. 12 behaves as u1'6 for o near zero, whereas in fact both
the gap?? and the order3? are known to vaniéh exponentially as o =+ 0+.
This substitution of power-law for exponential behavior is a common
feature of simple block-spin calculations of this type and can be
corrected by improving the calculation using variational techniquesl5

Except for this feature, the results of the simple RG calculation given

here are completely consistent with the known properties of this model.

3. Two-Site Calculation for the Isotropic Heisenberg Model

A rule of thumb for block-spin calcﬁlations states that theories

involving half-integral spins or fermionic degrees of freedom should be
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treated using an odd number of sites per block to preserve these features.
The consequences of ignoring this good advice will now be examined by

applying a two-site blocking procedure to the isotropic Heisenberg model:

H = - Sy -fu+n . (3.22)

N-1
i=1

Decomposing the Hamiltonian into pieces which do and do not connect

different two-site blocks yields:

H =H, +H
in out

- <>
H, = Z S(k,1) - S(k,2) s
k
_ b d .+ . .
Hout = 2 S(k,2) » S(k+1,1) (3.23)
k

Anticipating that tensor operators will be useful in the description of
the integer spin block states, I write the operators appearing here in

terms of raising and lowering operators:

;S’.(ksa) 'g(k' sa')=so (k,a)SO(k' ’a' )"Sl(k:a) S—l (k' sa')-._s_l (k,a)sl(k' sa') L]

(3.24) -
where Sg %8, and/Stlﬁ F (1/V7) (Sxt iSy)‘
The block Hamiltonian is introduced by

H =

in Z Hb].ock () ?
k

- ] - .2
H 1ok HOEXIA) (3.25)
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The eigenstates of Hblock form the familiar singlet and triplet which

will be labelled as follows:

7
|+> = [+4>
1 i 1

o> = —— (|++> + |$+>) energy = + - R

= ¢ 4
[=> = |+>

- Y

1 3 |
x> = = (|++> - |++>) , energy =-3 . (3-26)

75 A

The Hamiltonian must now be rewritten in terms of block spin
operators which act on the states (3.26). To keep rotational invariance
explicit, it is useful to define spherical tensor operaters of rank 1,

Qi and Ti’ i=-1, 0, +1, by:

Qp = 5,0 Q=7 e (5, * iSy) , - (3.27)
OjTylx> =1, <xlTglo> = 1- ,

<+|T1|x> =1, <X[T1[-> = -1 .
Ty o =1, <><|T_1|+> = -1 ;

all other matrix elements of Ti='0 > (3.28)

where Si’ S Sz are the usual spin operators for a spin-1 particle

y’
whose states are |+>, | 0>, |->; these operators annihilate the
spinless state Ix > Qi thus acts only within the spin-l1 subspace while

Ti connects the spin-0 state to the spin~l states. It is easy to check
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that the following relations between matrix elements of the spin—¥
operators appearing in Hblock and of the operators introduced in (3.27)

and (3.28) hold between any pair of the states |-+>, | 0>, ]-—), ]X >
< > 1l f =L -
8,{1)? =5 <Q;+T>, €8;(2)> =5 <Q;-T;> . (3.29)

These relations may be inverted:

<Qi> = <Si(1)+-Si(2)> ) <Ti> = <Si(1)— Si(2)> . (3.30)

Thus, for example, g(k,2)°§(k+1,l) may be replaced by the scalar

operator

Y (11TQ (0T, () T0_y (kHDHT_ (ob) 12 4QEO-T ) QM) (et ).

i
It is also possible to record the diagonalizatiom of Hblock in the form:

S, 8k, 2)> = -%+%m%m> , (3.31)

since Q2==2 in the spin-1 subspace and Q2==0 in the spin-0 subspace.
Using (3.29) and (3.31), the effective Hamiltoniam-after the first

blocking may be written:

_ N/2 : (N/2)-1
,H(°)=Z [EgtegboQ” () 1+ Z e[ -8 T (1) Qi+ )+g, T (k1) 1, (3.32)

k=1 k=1

where E0=-3/4, o= 1/4, 4. =2, g~=1. 1t is important to realize that

0 0

no approximation has been made yet because |+->, |0 >, l- > and IX >

form a complete set of block states. A new basis in Hilbert space has
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simply been chosen, so that the Hamiltonian (3.32) now describes a
lattice of length N/2 with a spin-l triplet state and a spin-0 singlet
state at each site. The change of basis and its inverse are described
T T~ £ o0\ £ A1
DY EgS. \J.47) = (J3.31},

Since the sum of two integer spins is again an integer, it will be
possible to implement a two-site RG transformation under which (3.32)

retains its form. In fact, restricting H(O) to a particular two-site

block produces a block Hamiltonian:

2
ngck = 2E;+cys,lQ (1)+—Q2(2)]4-c0[Q(1)-gOT(l)][Q(2)+-gOT(2)]_ (3.33)

According to the general rules for combining spinms, Hblock will have

sixteen eigenstates: two spin-0 singlets, three spin-1l triplets, and

Hamiltonian will be written for the subspace of states built from the
lowest-lying singlet and triplet eigenstates of (3.33). These states

are readily found to be:

s
jo,0> =(3+rg) (1'0]’”‘> + 00> - {+-> ~ 1-+>), energy=E; , (3.34a)

_li - -
(1,15 =(2+ zsg) Lso([+x> + )+ (Jor - [403)f

- R SR ] -]
l1,0> =(2+ 253) ? Lso(]o><> + |x03)+ (|- - l+>){

_ e
|1,-1>=(z+zsg) so(l- + =)+ (]-0> - |o—>)-1 .

energy==Ei , (3.34b)
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where:
28 -1 \2 28 -1
B PR Tl
Lo 2 )
80 g
2A -1+g2 28 - 1+ g2
_ 0 0 0 0
s = [L+\— 75— +
&0 &g
E. = 2E +c (4A -2 2
1 0 °o( 0~ 7 Todo
E! =

1 2E04-c0(§A0— 1- ZSOgO)

(3.34¢c)

(3.34d)

(3.34e)

(3.341)

The next step is to define new tensor operators Qi and Ti which act on

the states (3.34a,b) exactly as Qi and Ti acted on the states (3.26):

<0,0]T6|1,0> = 1, etc. The resulting relationships between matrix

elements are:

<Qi(k,a)> =

<Ti(k,a)>

u = Uz

Vl = "'VZ
z 1 = 22

ua<Qi(k)> + va<T£(k)>

wa(Qi(k)> + za<Ti(k)>

1 1
- 2y ¢ 2)'i
= 2(2+ 250) (3+ T
S

0

14-53

- 1
2

]

2 % 2)
= so(1+ ro)(Z-l- 230) (3+ r,

-1

(3;35)
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The Hamiltonian (3.32) has the decomposition as Hin4-H :

out”’
N/&4 (N/4)-1
H(O)=Z (glck(k)+ Z o [Q(k,z)-gOT(k,Z)][Q(k+1,1)+goT(k+l,1)3,
k=1

and use of (3.34e,f) and (3.35) leads to a new, approximate, effective
Hamiltonian of the same form as (3.32). In fact, the general RG

equations are readily seen to be:

H(m)=Z{Em+ e (AmQ2 ()+LQ (k) g, T () JLQUIe+L) + ng(1<+1)])} ., (3.36a)

2
c 1+2gmsm+s:J T
m+1 m 2 3
2+-Zsm
L
i __( c ) 2+gmsm(l+rm)
okl \c : i 3
\mrkl (2-!— 2531) (3+ ri)
A = 2¢ 8+ ng
m+1 Em°m m m ? '
> (3.36b)
E = 2E 4A -2 2
ml m T cm( m _rmgm) ?
where
23 -1 TS
I‘m = + 2 ’
8
2A -1+g 2 9p —1+g§l
g = + A ’
m By
3 1
= =2 - — = = 1-
B=% S "%r %% g

As usual, the energy per original lattice site is to be computed as

lim E / 2

m- =
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Numerical iteration of Eqs. (3.36) leads to a ground state energy
density of -0.4210, only 5% higher than the exact result -0.443l. Because
the isotropic Heisenberg model is massless, ome would expect to find c 0.
In fact, one finds that gma-l, Am;+o, but ¢ —* a nonzero constant! This
limiting theory with Aw;=0 can be solved exactly by using Eqs. (3.30) and
(3.31) to rewrite it,on an underlying spin-% lattice (recall that this
transformation is exact). Thg_condition A =0 means that the two sites
within any one block on the spin-% lattice are uncoupled. The spin-k
couplings are therefore as shown in Fig. 13. This theory has a four-
fold degenerate ground state in which each coupled pair of sites has
total spin 0 while the uncoupled sites at the ends of the lattice have
total spin 0 or 1. There is a finite mass gap to the highly degenerate
first excited state in which some pair of coupled spins have total spin
1, and additional mass gaps separate the higher excited states. Clearly
this bears no resemblaﬁce to the physics of the isotropic Heisenberg
model with its massless spin wave excitations. What went wrong?

Récalling the_ calculation of Sect. 2, suppose that here also the
Heisenberg model A=2, g=1 is an unstable fixed point of the more general
ﬁodel of Eqs. (3.36). The RG calculation should f£ind this fixed point,
but being an approximate calculation it need not locate it precisely at
A=2, g=1. 1In such a case the RG equations with Heisenberg model iﬁitial
épnditions will iierate away from the unstable fixed point, toward a stable
fixed point with totally different physics.

Fiéure 14 shows the qualitative behavior of the RG trajectories
resulting from Egqs. (3.36) near the Heisenberg point A=2, g=1 and
supports the picture just sketched. The unstable fixed point is quite

cloge, at A=1.7, g=0.84, but the Heisenberg model iterates to the stable
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31681A3

Couplings for the spin-1/2 theory equivalent to the m + =
integer-spin theory (3.36).
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0.84

1.O .7 2.0 | 3.0
A 3681 A4

9—79

Fig. l4. Qualitative behavior of RG trajectories in the two-site
: caleulation. The point * is the Heisenberg model point

and + is the unstable fixed point.
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fixed point A=0. There is also a stable fixed point at A=«. At the
unstable fixed point the Hamiltonian just rescales by a factor less than
1 at each iteration, leading to the correct massless behavior.

The result that the nearest-neighbor Heisenberg chain and the'fully
dimerized chain of Fig. 13 correspond respectively to unstable and stable
fixed points of a model with more free parameters is familiar in solid-
state physics. Omne-dimensional chains of atoms with nearest-neighbor
spring forces as well as Heisenberg spin interactions are unstable égainst
spontaneous distortion into a chain of atom pairs, paired atoms being
closer together than atoms in adjacent pairs. An RG treatment of this
Peieils distortion, which is related to the Peierls instability in one-
dimensional conductors, has been given by Caspers6 using three-site
blocking and cobtaining the same fixed-point structure.

Recalling that the y=1 unstable fixed point of the three-site
calculation was located correctly as a consequence of rotational in-
variance, it is natural to ask whether the model (3.36a) possesses some
symmetry at the Heisenberg point which is not preserved by the RG trans-
formation. Intuitively this symmetry is just the translational symmetry
of the spin-1/2 form of the Heisenberg model, Eq. (3.22). I now show
that such a symmetry can be defined as invariaﬂhe under a duality
transformation.

To define the duality transformation it is convenient to rewrite

the Hamiltonian (3.36a) in the generic form:

H= D, {E+GQ2(k) + AQ(K)Q(ictl) + BT (K) T (k+1)
k

+D[Q(K) T (k+1) -T(k)Q(k—l-l)]} , (3.37)
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where G=cA, A=c, B=—cg2, D=cg.

The change in notation is necessary because the duality transformation
will not preserve the form of the nearest-neighbor couplings in the
Hamiltonian (3.36a) except for special values of tﬁe parameters.

The first step is to use Eqs. (3.30) and (3.31) to write a spin-1/2
Hamiltonian equivalent to (3.37). This is the same trick used to solve
exactly the fixed point Hamiltonian. It yields a spin-}% Hamiltonian
which, if blocked using two-site blocks, would reproduce (3.37). The

spin-% Hamiltonian is:

H=Z{E+% 6+263 (k,1) -3 (k, 2)+(a+B) S (k, 1) + B (k+1, 1)+ (A+B) § (K, 2) - S (kt1,2)
k
+ (A-B-zn)'s’(k,n-'§(k+1,2)+(A—B+2D)"s’(k,2)-S(k+1,1)} ) (3.38)

The spin-% lattice is now shifted one unit to the right by letting
(k,1) + (k,2) and (k,2)~> (k+1,1) (periodic boundary conditions are useful
here}. This shift interchanges interblock couplings with intrablock
couplings. Finally, blocking the Hamiltonian back to the integer spin

form using Eqs. (3.29) and (3.31) produces the dual Hamiltonian:
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-

~

-_-Z {E+EQ2 (k)+AQ (k) Q (k+1)+BT (k) T (k+1)+DTQ(K) T (k+1) -T (k) Q(k+1) ]
k
+ E[Q(k)-’f(k)][Q(k+2)+'r(k+2)]} s

where

E = E+%G—%(A—B+2D) ,

g - —%(A—B+2D) ,
»(3.39)

A = %(A+B+G) ,
~ 1
B = 5 (A+B-06) ,
~ 1
D - fG ’
~ 1
F = = (A-B-2D)

4 .

Notice that the dual gap parameter G depends on the original couplings
A, B, and D while the original gap parameter contributes to the dual
couplings. Next-nearest-neighbor couplings have also appeared. H and H
clearly describe the same system in different ways and have the same
spectrum and other properties. A system is self-dual in the sense that
H=H 1if its spin-} form is translationally invariant. The self-duality
condition reduces to A- B=2D=G which impli;as A=2, g=1. Only multiples
of the Heisenberg Hamiltonian are self-dual. Therefore, a calculation
which respected translational invariance would lead to the correct physics
for the Heisenberg model.

The RG transformation will not preserve self-duality (translational

invariance). Indeed, RG calculations of this type treat intrablock and
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interblock couplings quite differently. The former are diagonalized and
contribute to the gap parameter at the next iteration, while the latter
contribute to the new couplings. In the present calculation the initial
Hamiltonian was self-dual while the A=0 fixed point which was finally
. reached was not, This fixed point correspoﬁds to A-B=2D#0, G=0. It
is dual to the point A=B=2D=0, G# 0 which is the A== fixed point of
Fig. 1l4. The A=;; fixed point corresponds to Fig. 13 with the coupling
pattern shifted one unit to the right,

Several remarks should be made regarding the problem with this
calculation and its resolution as discussed above.

(1) Although the RG equations, naively applied, lead tc the wrong
fixed point, a glance at the trajectories of Fig. 14 is sufficient to
reveal the problem and indicate the correct physics. Unfortunately,
models with long-range interactions such as (3.1) involve an infinite
number of different couplings, so that RG trajectories cannot be mapped
out. Without the trajectories there is no way to locate unstable fixed
points. Thus, the two-site calculation of this section cannot be reliably
used to study the phases of the'modelr(B.l) even though-it may well yield
a good ground state energy density.

(2) The problem encountered in the two~gsite calculation is clearly
very general: it may occur in any theory when the first RG blocking
embeds the theory at or near an unstable fixed point of a more general
model. However, the following considerations suggest a rule for
determining which of several possible calculations may be most seriously
affected by the failure of the RG technique to preserve self-duality.

In the two-site calculation, the ground state in a block was a singlet.
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In order to get the correct massless physicé it would have been necessary
for both the gap parameter G and the couplings A, B, D to iterate to zero.
This did not happen because the RG calculation treats gaps and couplings
asymmetrically. In the three-site calculation the ground state in.a bleck
was a doublet, and the subspace of lattice states formed from these doublet
block states was isomorphic to the space of states of ﬁhe original
Heisenberg model."—This would remain true even in a three-site calcglation
using all eight block states. As long as all couplings iterate to zero
in such a caleulation, this subspace contains massless excitations
yielding the correct spectrum even if nonzero gaps separate the lowest
doublet from the other states in one block. This suggests the following
rule of thumb: given a choice, one should prefer that calculation for
which the ground state in a block has the highest multiplicity. This
maximizes the number of lattice states that can be constructed from the
block ground states alone. Physics which depends on this sector of
lattice states only will be independent of gaps between block states,
and therefore independent of asymmetrical treatment of gaps and couplings.
| (3) The duality transformation introduced here has applications
beyond this particular model. Such a”transformation can be defined in
any calculation in which all the block states are kept at the first
blocking, so that the blocking is "reversible". In a two-site calculation
the square of the duality transformation is unity; in a calculation using
m-site blocks the duality transformation generates a Z  symmetry group.
The relation of this transformation to the existing complex of "duality"

ideas in the literature is under investigation.
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(4) 1In addition to its utility in classifying fixed points, the
duality tranformation may be used to increase the accuracy of the RG
calculation itself. Consider the following scheme. Beginﬁing with the

0)

Hamiltonian H' ‘of Eq. (3.32), one blocks as usual to obtain H(l)/

e

is obtained by blocking the gggl_Hamiltonian‘;?T) [note thatrghis
‘blocking removes the next-neafest-neighbor couplings introduced by the
duality transformgtion) and one continues by alternately applying the
duality transformation and the blocking procedure. Since the underlying
spin-% lattice is shifted to the right at each iteration of this scheme,
one might hope that more translationally invariant states than usual are
being constructed and that edge effects due to the walls of the blocks

are being "smeared out'". This scheme does in fact improve the energy

density found in the two-site calculation very slightly.

4. Improving the Three-Site Calculation

One might try to improve the three-site calculation for the isotropic
Heisenberg model (y=1 in the notation of Sect. 2) in a variety of ways.
One method is to keep more than two of the block states (3.5). One might
keep both spin-% doublets, or even all eight states in which case a
duality transformation could be employed. Alteérnatively one might try
to select a better pair of states to keep, which need not be eigenstates
of Hblock' In this preblem, symmetry consiéerations make this impossible:
rotational symmetry forbids mixing spin-3/2 with spin-)s states, and parity
rules out a linear combination of the two spin-% multiplets. A third
course is to use larger blocks. In this section, I describe a way to
improve the three-site calculation by using it to approximate a nine-site

calculation.
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Consider performing a nine-site calculation by keeping only the
lowést—lying spin~% doublet of eigenstates on a block at each iteraticn.
Such a calculation can only be done with the aid of a computer. However,
two iterations of the three-site calculation have the effect of coéstructiug
_a pair of spin-} states on a nine-site block. The §, =% member of this

pair is [cf., Eq. (3.5)):

1 1 1 1 11,11
Sietiiidte 15"?1'5»?1'3’?1] '

1. (11
[Izzllz 21|221 |'2"51'

lp> =

where i%a%ﬁ =ﬁ6(zl+++> - [444> - l+++>) ,

-1—(—2]+++> + 444> + 1+++>) . (3.40)

3

and l-é—,—%) 1

If the Hamiltonian on a nine-site block is written in the form:

+v

B1ock = Ho
=53+ E®M+TW 5B +3G)-Z)+ 51 -3@) +3(8)+3(9) ,

= 333w +36)-3n , » (3.41)

then |Y> is an eigenstate of HO with eigenvalue‘—B. To the extent that
V can be regarded as 'small, |w> approximates an exact nine-site
eigenstate. In actuality V will mix |[¢> with the additional states
V|¢>, V2(w>, etc., of which thé most important will be Viw> if V is
"small”. It is then reasonable to do a nine-site blocking calculaticn
using as the Sz=!§ state the lower-lying state obtained by diagonalizing
the matrix of Hblock in the subspace spanned by |¢> and V|w> only. This

is a 2x 2 matrix and the calculation is not difficult. It yields a
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ground-state energy density in error by 5.4% as compared to 11.7% for the
three-gite and 5.0%Z for the two-site calculation. Like the three-site
calbulation, it also yields the correct massless spectrum. Althouéh
perturbative in spirit, this method is not a consistent expansion to some
particular order in V as is the method of Ref. 7. However, it can
easily be improved further by diagonalizing the matrix of Hblock in_a
larger subspace spanned by more of the states |w>, V|w>, V2|w>, eee s

and choosing the lowest-lying state. Eventually these states will span
the entire spin-%, Sz==%, even parity subspace on nine sites and one is
back to the exact nine-site calculation. This technique should also be

suitable for studying the model (3.1) with long-range interactions.

5. Concluding Remarks

In this chapter block-spin calculations for the isotropic Heisenberg
model employing both two-site and three-site blocks have been discussed
in great detail. The three-site calculation and its nine-~site generali-
zation gave good results and will be suitable for studying the model
(3.1) with long-range interactions, The two-gite calculation is not
reliable for this purpose. The duality transfotmation introduced in
Sect. 3 can be defined for models other than the one studied here, and
it is hoped that it will be useful in other ﬁalculations of this type.

After this work was completed, 1 learned from Marvin Weinstein that
improving the two-site célculation by variational techniques suffices to

obtain the correct massless spectrum. In such an improved calculation,
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the block states are allowed to depend on one or more variational
parameters., These parameters are adjusted to minimize the éround state
energy computed after many RG iterations, rather than to diagonali;e
the block Hamiltonian. This "feedback” mechanism‘allows the physics
.at scales much larger than the block size to influence the selection
of block states.— This very powerful genmeralization of the real-space
RG technique is not used in the calculations reported in this thesis.

See, however, Refs. 5 and 8.
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CHAPTER IV

THE LONG-RANGE HEISENBERG ANTIFERROMAGNET3!

1. Introduction

In this chapter I take up the study of the one-dimensional Heisenberg

antiferromagnetic_chain,

N

H= % Z TS {COREE) : (4.1)

i,j=1 |1-3]

itj
using the zero-~temperature, real-space RG methods illustrated in Chapter
IIT. The infinite-volume limit N+« will generally be implied.
Chapter III established that the simple three-site blocking scheme
correctly predicts the qualitative behavior of this model in the p—+<
limit and is quantitatively accurate at about the 15% level. The nine-
site calculation improves this to the 5% level.

Models such as (4.1) arise naturally as effective Hamiltonians

describing particular sectors of states in the strong-coupling limit
of lattice field theories with fermions, provided that the fermions are
treated by the SLAC method described in Chapter‘II.B’15 Consider for
example the Schwinger model (massless QED in 1+1 dimensions):

H = a_z %EZ(X) + aZZwT(X) %aD(x—y) v(y) U(x,y) ,

X %Y

¥y
U(x,y) = exp ieaz A(z) . (4.2)

Z=X
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Rescaling E + eE and A + A/e and changing to dimensionless variables
gives: ~ -

q = 21{[% gzzx: B2 (x) + }: o (x) ‘}[uD(X"Y) ¥ (y) U(x,y)] )

X,y

L 3

y
UGxy) = exp i), A(x) , [AG),EGN] =16 _
=% b

{w;(x),wg(w} = Sy gt

D(x) = (-D)¥/x - (4.3)

Here the fields, the coupling constant g=ea, and the lattice coordinates
X,¥,2 are all dimensionless. U(x,y) creates one unit of electric flux
on each link between x and y, oriented from x to y.

At strong coupling the first term in H is taken as the unperturbed
Hamiltonian and the second as the perturbation V. The unperturbed ground
states are those with no charge and no flux links. In second-order

perturbation theory their energies are

Z <o} V] <K V] nd

(4.4)
k#n 0 - & ;

é%. = ¢ +
The perturbation connects the ground states to states with flux running
from x to y, with energy 5§ = (1/2a)g2|x—y| # 0. An effective Hamiltonian

for the fluxless sector can now be defined by
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1
g, = <aligln> . B ==j§: _ ;5~V|k><klv ,
. ,
Hogg = %2 2. D(x-y)D(xv...yv)_zZ_a_
1 1 _
a” k X,y.,x ,¥ g |x Yl

x o1 () o) UG, y) [k<K| 9T (x) ap(y") UG',y') - (4.5)

The only terms iri“Heff which take fluxless states into fluxless states

are those with x=y' and x' =y. Introducing also the representation

)0

gives
B =2 Y —L 3{b*(x>b<x> [1-d"mam]
ag” ¥,y |x-y
x#y

(4.6)

+da@ [1-v b ] + 2" (x)d*cx)d(y)bm}.

In the fluxless sector only two states can éppear on any site: either
the vacuum |0> or the fermion-antifermion pair |+> = de+‘O>. Thus in
this sector b+(x)b(x) = df(x)d(x) = N(x), and a convenient spin repre-

sentation is introduced by

]

5,00 = (DB @ d @, 5.6 = (DT b

5,0 = NG - 5

in terms of which, up to a constant,

Hogs = _4_2_ 2 ! 3 [(-1)X_y+18+(x)8_(y)+Sz(x>sz(y)] . (4.7
ag” =ty |x-y|



- 96 o

The nearest-neighbor piece of Heff is now the isotropic Heisenberg
antiferromagnet considered in Chapter III; the full Heff is similar to
the model (4.1) for p=3 but has a staggered anisotropy in the z-
direction. A similar analysis for the Q=0 sector of the Thirring -
_model15 leads again to Eq. (4.7) with lx—y|3 replaced by lx—ylz (no
factor Ix—yl appears in the energy denominator). And 141 dimensional
QCD leads to an SU(4) generalization of the 0(3) antiferromagnet (4,7).8
To obtain agreement with known properties of the continuum Thirring
model, it was argued (but not proved) in Ref. 15 that the corresponding
Heff,has a massless excitation spectrum like the nearest-neighbor
Heisenberg antiferromagnet. This suggests that the model (4.1) is in
a single phase from p== at least down to p=2. Other results along

25

these lines are those of Dyson®® and RuelleZ2® showing that the Ising

-
model obtained from (4.1) by S ~ §, is disordered at all finite tempera-

tures for all p>2 but is ordered below a critical temperature if p < 2.
The result of the RG calculations in this chapter is that the model (4.1)
is in a single phase from p=« down to approximately p= 1.85. The exact
value is probably p=2.

The discussion in this chapter ié crganized as follows. Section 2
presents some exact results for the cases p=0 ;nd p?*>~. Section 3
reviews the simple three-site blocking calculation used in Chapter III
and applies it to the model (4.1). Renormalization group equations are
derived which are sufficiently simple to be studied analytically. In
particular, it can be seen explicitly how the non-nearest-neighbor
interactions in (4.1) disappear as the RG equations are iterated when

p exceeds a certain critical value. Section 4 shows that the results
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of the three-site calculation do not change‘qualitatively when one goes
to a more accurate calculation using nine-site blocks. The latter

calculation, unfortunately, must be carried out numerically. Section 5

contains the conclusions.

2. Exact Results

Although very little is known about the model (4.1) some rigorgus
results can be obtained by considering the limiting cases p=+= and p=20,.
For p+% the model becomes the Heisenberg antiferromagnet with

nearest-neighbor interactions which was discussed by block-spin methods
in Chapter III. This model is exactly soluble32 and for the present work
its relevant properties are as follows. The ground state energy density
is -0.4431 and the low-lying excitations are massless spin waves. The
end-to~end order <§(1) -E(N)> vanishes in the infinite-volume limit and

the cluster property

tinm [<(1) - 30> - Sy - Bws] = o

Na>w
is satisfied.
For p=0 the Hamiltonian (4.1) becomes:

N .
1 i-4+1 2, >
Bo- 1 32 oM im-dm . (4.8)
i3j=1 )
if3
All spins interact with equal strength and the fact that they form a
linear chain becomes irrelevant. This Hamiltonian can also be solved

exactly, by introducing the two sublattices containing respectively only

even~-numbered sites and only odd-numbered sites. N is assumed to be even
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so that each sublattice contains %N sites. The Hamiltonian (4.8) may

be rewritten as:

> - -> > -+ »>
o= 2 3w-3m-1 Y 3w.dw -1 X 3w-sw
i even i,j even . i,j odd )
j odd 1#] 1¢]
> 3 3 - T i) - T ] 2
= S{i) - Z 8(j) - 7l S(1) -3 S(i) + -8"N
i even 7 j odd . i even iodd
T .3 _lga 12 .3
= Seven Sodd 7 2 Seven = 2 Scaa t 8 N
1l g2 g L3
T2 Stotal Seven ~ Soda T g N ’ (4.9)

where I have introduced the total spins on the entire lattice and on the

even and odd sublattices. The ground state evidently has Stota1=0’
= = l .
Seven_sodd 4N, and an energy given by
2
= N~ + N
o = "8 . (4.10)

The energy density diverges linearly with N and the infinite-volume limit
of the theory does not exist. The first excited state has Stota1= 1,

= =1 . :
Seven_sodd- 4N, and the excitation energy is l This contrasts with
the massless excitations in the p+® theory. The end-to-end order

-> >
<¢0!S(1) « S(N) |¢o> in the ground state ]¢O> can be cbtained as follows.

The fact that all spins on a single sublattice are equivalent implies

+ >
that <S(i) - S(j)> depends only on the parities of i and j. Therefore,
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<S(1) « S(N)>

D DRI RIS
N

i odd -
j even
4 - -
) <Sodd. Seven>
N
2 .52 a2 _ a2
_ B NZ <Stotal even odd>
1 1
= -7 -3 s (4.11)

which explicitly shows the breakdown of clustering due to the long-range
interactions.

Additional information can be obtained by using the p=0 ground
state ]¢o> as a variational trial state to study the full theory (4.1).

The variational energy obtained in this way is

1

: > ittt —1—5 w15 -3 le> . 412

<¢0[H|<1>0> =
i#] |1-3]

It follows from Eq. (4.11) and the sublattice structure that

<o 51 - S Jo > =(4ﬁﬁ&+%)
Therefore,
1 1 1
<o |Hje > = -(z+=
1 1 1 1 1
= Ax+)N-D =+ ¥-2) =+ ...+
(4 N)[ ) ) (N—l)p]
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The exact ground state energy density 1s therefore bounded above by

c N-1 N-1
o _(l.,..l_)( 2 1 1 Z _L_) ) (4.14)
N SN P N T ] .

This shows that the Infinite-volume 1limit does not exist for p<1. Since
the spin operators in H have bounded matrix elements there can be no
divergence in Eofﬁ for p>1, so the theory does exist in this region.

In view of the radically different properties of the theo?y at
p+w and p=0, two possibilities exist. Either the theory remains in
the p=«= phase all the way down to p=1 where the infinite-volume limit
ceaseé to exist, or a phase transition occurs for some p>1. In the
remainder of this paper block-spin techniques are applied to resolve

this question.

3. Simple Calculation Using Three-Site Blocks

A. Derivation of RG Equations

This section applies the three-site blocking algorithm used in Chap-

ter ITI to the model (4.1), which is conveniently rewritten in the form: -

N
H = _]2'. Z (—l)i_j+1 F(i"j) g(i) * g(j) »
i,j=1
1#]
1
F(imi) = ) (4.15)
|1-31P

One begins by dividing the lattice into three-site blocks and
relabelling each lattice site with an ordered pair (k,a), where k=1,2,...,

N/3 labels the blocks and a=1,2,3 labels the sites within a block. The
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Hamiltonian is separated into the piece Hin which only couples sites in

the same block, and the remainder Hout:

H = B tHoue o
(4.16)
1 —a'+ >
Hin = -2-2_2'(-1>“ ' ra-a) $(k,a) +S(k,a)
k—a,a
11 -n!
H -1 D nER el oy Lacar] Fk,a) - SkTLa )
out 2 K7k' g.a'

Singling out

V]

particular block for attention, I write:

o]
I

in - % I-Iblock(k) ’

Hblock

F(l)[g(l) L5(2) + 3 .3(3)] _FE) - 33
- %F(l){[g(l)+§(2)+§(3)]2-[§(1)+§(3)]2_ %%
- %F(Z);[§(1)+§(3)]2— .g-} _ 1

This shows that the eigenstates of Hb are just the simultaneous
lock )
+ +
eigenstates of the total spin on a block and [SQl)-+S(3)] . These states
are [notation is IS,SZ>; the subscript, when present, gives the value of

the spin g(l)-+§(3)]:
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I%.%> R _
1 1

energy =-EF(1) —-ZF(Z) .
3 1 1 )
|5.3> = = (J444> + 444> + [ +44D)
l%’%>0 - L (]444> = |¥44>) , energy = %F(Z) ,

V2

11 1 1
|5:5> = — @4 = 44> = [4493) | energy = -F(1) - 7F(2) ,

(4.18)
plus the four corresponding states with all spins flipped and negative
total Sz. It can be seen that l%, i% >1 have the lowest energy regardless
of the value of p. One then hopes to get a reasonable picture of the
low-lying states of the lattice by restricting attention to those lattice
states which are built from the block states |% ,t% >1 only. The next
step is to write an effective Hamiltonian which has the same matrix
elements as the original Hamiltonian within this sector of states. For
this purpose I introduce new spin operators E' which act on the states
I%,i% >1 in the usual manner: 1 (—%—,%—I S; |%,—12->1 = %, ete. _g' is

in fact just the total block spin, and the Wigner-Eckart theorem gives:

> >
S, > = u <S>,

_ - 2 - _
= uy =3, Uy = s (4.19)

i

where the notation ¢ > indicates any one of the four matrix elements

involving the states |%,¢%> 1- Using (4.19) to express Hout in terms
-

of the block spin operators S' and observing that Hin is diagonal in

the sector of states of interest produces the effective Hamiltonian:



- 106 -

2D

zk: [- F(1) - %—F(Z)] +-;- Z (_,l)k—erZ (_l)a—a'
a,a' )

k#k'

x

u F[B(k—k')*—a-a'] g'(k)- g'(k')

2E 41 2 DM e ey Srao - 3Tan L o)
k k#k'

Since this Hamiltenian has the same form as the original one, apart from
the overall energy shift El’ the blocks of the original lattice may be
viewed as sites of a new lat%ice and the whole blocking procedure

(m)

iterated. This generates a sequence H of effective Hamiltonians

obeying the RG equations:

N/3® N/3™
B™ 2 e+ 2 DM e e S0 LSy, a2ta)
k=1 k,k'=1 o
kKt Kk’
1 -
E . = 3E - F() - 7F( , E =0 (4.21b)
3
Fm+1(j) = . 2£2=1(_1)a—a wu Fm(3j+-a-a') . Fo(j)==F(j) , {(4.21¢c)
i.e.,

F (3 = F_(3)) + %[Fm(f}j-z) +E (33- 1)+ F_(33+1) +F (35+2)],

(4.21d)
where the primes on the spin operators have been dropped for convenience.
Note that the formula (4.21d) preserves the symmetry property F ()=
Fm(-j) which was assumed in writing Eqs. (4.17) and (4.18). After roughly
m==log3N iterations of the blocking procedure the entire lattice will be

reduced to a single block of energy Em’ The energy per original lattice
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site is therefore <§m = Em/3m. In the infinite-volume limit the energy

density is given by &, with éh satisfying

- 1 1 -

o

This will always be a variational upper bound on the exact ground state
energy density. The problem now is to iterate the RG equations many
times to find the Hamiltonian which describes the physics at very large

length scales.

B. Analysis of RG Equations

A procedure for numerically iterating RG equations like (4.21) has
been given by Drell, Svetitsky, and Weinstein.3 At each iteration a
finite set of function values, say Fm(l),...,Fm(loo), are explicitly
computed and stored in an array. For \j‘> 100, Fm(j) is parametrized

C

D
as Fm(j) = T-luﬁ (Am + _‘__rg_ + -J—Il‘: + 3—%) , with only even order terms being
J J

required due to Fm(j) = Fm(-j). The initial conditions are AO==1,
By=C,=D,=0, and substituting this form for Fm into (4.21d) and applying
the binomial theorem produces formulas from which Am —_— Dm can be
computed recursively. The error introduced by using this asymptotic
form for F is comparable to the inherent roundoff error in double
precision computer arithmetic. I have performed the numerical calcula-
tion using this procedure, but due to the simplicity of Eq. (4.21d) all
the important results can be obtained by an analytic study of the RG
equations. This is done by considering Eq. (4.21d) in the limit of very
large j where it simplifies considerably. Physically this corresponds
to looking at the interaction between very distant spins. Since the RG

equations by definition relate the physics of different length scales
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they can be used to extend conclusions valid at large j to smaller and
smaller values of j, as will now be shown.

When j is large, F(j) is sufficiently slowly varying that F(3j 1)
and F(3j+2) can be approximated by F(3j). Then ;he first (m=0) :

iteration of Eq. (4.21d) becomes

25 ey L 1025

CFo(j) , for j sufficiently large.

(4.22)
To extend this to smaller values of j assume now that j is not 'suffi-
ciently large'" but that 3j-2 is, so that Fl(3j—2)==CFO(3j-2). Then the

next iteration of Eq. (4.21d) looks like this:

F,(3) = F (31) + %[Fl(3j-2) + F (35-1) + F{(33+1) + F (35+2)]

c {Fo(3j)-+-%[}0(3j-2) + F (35-1) + F_(35+1) + FO(3j+2ﬂ=

CF,(3) s (4.23)

and this is valid for values of j roughly 1/3 as large as those for which
Eq. (4.22) was valid. Continuing to iterate Eq. (4.21d) produces equa-
tions analogous to (4.23) holding for smaller and smaller values of j

until ultimately one obtains simply

Fm+1(j) = CFm(j) for all j>1 and all sufficiently large m. (4.24)
The restriction to j# 1 comes about because according to Eq. (4.21d),
Fm+l(l) depends on Fm(l); in fact,

F (1) = F (3) + g-[ﬂm(l)'+ F (2) +F_(4) + Fm(S)] i (4.25)

The reasoning leading to Eq. (4.24) assumed that the smallest argument
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appearing on the right side of Eq. (4.21d), namely 33-2, was greater than
j, and this is only true if j > 1. This fact is crucial physically,
since it means that the nearest-neighbor coupling Fm(l) may behave
differently under renormalization group transformations than the longer-
.range gouplings. The results (4.24) and (4.25) are sufficient to reveal
the physical content of the RG equations,

Progeeding w;;h the analysis, the definition C = 25/3p+2 shows . that
C>1 for p < log325-2 = 0.93, and € < 1 for p > 0.93. By Eq. (4.24)
this implies that

0 4if p > 0.93

lim F (3) =
m-> o = if p < 0,93 . (4.26)

Actually this follows from Eq. (4.24) only for j > 1, but it holds for
j=1 as well: Eq. {(4.25) shows that it is not possible to have Fm(j) + 0
or =» for all j > 1l without having Fm(l) + 0 or = (respectively) also.
The value p=0.93 is strikingly close to the anticipated p=1; unfor-
tunately, p=0.93 is not to be identified as the point at which the
energy density diverges and the theory ceases to exist. It is clear
from Eq. (4.21e) that the divergence of—Fm(j) is not sufficient to pro-
duce a divergence in (?m unless Fm(j) grows by a factor of at least 3
at each iteration. This happens for C > 3, so that p < -0.07 is needed
before this block-spin approximation can detect the divergence in (?m.
The significance of p=0.93 is that for p > 0.93 this approximate
calculation predicts that the theory has a massless spectrum: any mass
gap, if present, must vanish along with the couplings Fm(j) as m -+ =,

For p < 0.93 no statement can be made without actually solving the theory:
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Eq. (4.26) does not imply an infinite mass gap because a massless theory
remains massless even when multiplied by a large scale factor.

The really interesting question, left open by Eq. (4.26), is how
Fm(l) behaves relative to the other terms in the Hamiltonian. 1In parti-
cular, under what conditions will F (1) -+ = relative to the other Fm(j)
so that the effective Hamiltonian ultimately contains only nearest-

neighbor interactions? According to Eq. (4.25), if F_ (1) is much greater
than the other Fm(j) then Fm+1(l) ==-%Eh$1). Comparing this with Egq.
(4.24) requires C < 4/9 if the assumption Fm(l) >> Fm(j> 1) is to be
maintained as m + ©. C < 4/9 corresponds to p > logB%? X 1.67, and

it is easy to see that p > 1.67 is sufficient as well as necessary for
H(m) to approach nearest-neighbor form. On the other hand, for p < 1.67
it is impossible to have F (1) -+ = relative to the other Fm(j). But
Fm(l) -+ 0 relative to the other Fm(j) is also impossible since by Eg.

1

(4.25) Fm+l(1) > Fm(3) = Eme+1(3) for large m; thus Fm(l)/Fm(B) is
(m)

bounded below by 1/C as m *~ ®. Assuming that H does in fact iterate
to a fixed form, the only possibility for p < 1.67 is that all the ratios
Fm(l)/Fm(j) approach finite nonzero values as m * ®. The interaction
thus remains long-range; furthermore, since Fm(i) ~ 1/jp for large j,
the form of the interaction will be different for each p. In this sense
each p < 1.67 is in the domain of a separate-fixed point.

The energy density computed numerically from Eq. (4.2le) is displayed
as the upper curve in Fig. 15. The precise location of the vertical
asymptote (p=-0.07) is not apparent due to the limited range on the

vertical axis. As discussed in Chapter III, the curve lies 127 above

the exact answer in the nearest-neighbor limit p > =,
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Fig. 15. Renormalization group results for the ground state energy
density of the Heisenberg model with (distance) P inter-
‘actions. The upper (lower) curve is the three (nine)-site
calculation of Sect. 3(4). The exact result in the limit
p*+o, -0.4431, is marked.
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C. Discussion
Several remarks are in order regarding the significance of each of

the three points p=-0.07, 0.93 and 1.67 at which the character of the
(=) '

fixed-point Hamiltonian H

(=)

changes. (Of course, it is the change in
the behavior of H that is significant, rather than the precise numeri-
4}cal values found for the critical points. One would not expect the
critical points te be very accurately located by the present crude
calculation.) It should be realized at the outset that there are
basically two ways to obtain information about a theory from a block-
spin calculation such as this one. The first way is to solve the fixed-
point Hamiltonian. In the present case this will not work for p < 1.67
where the fixed-point Hamiltonian contains long-range interactions and

is at least as difficult to solve as the original theory. The second
way is to study the lattice states iteratively constructed by the
blocking procedure. This is not always practical, and in the present
case it will not distinguish the phases of the theory because the same
lattice states are constructed for all values of p. Therefore, the
conclusions drawn from the present calculation are necessarily rather
sketchy.

The present calculation does not detect the‘energy density
divergence until p < -0.07, which compares poorly enough with the
anticipated p £ 1 to warrant some discussion. Recall that the ground
state energy density was identified as[:iT:Em/3m on the basis of an
argument which iterated the blocking procedure until the entire lattice
was reduced to a single block. Suppose instead that one performs some
fixed number M of iterations, then takes the infinite-volume limit and

€]

studies the resulting Hamiltonian H . The energy density may be
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-M
estimated by 3 (¢|H(M)|¢> with some variational trial state |¢>.
In particular, since FM(j) ~ I/jp asymptotically, the expectation value
of H(M) in the ordered state ‘¢0> of Sect. 2 will contain a divergence

()

at p=1 coming from the operator part of H . In‘this way one recovers
"the correct result. This illuétrates that it is always better, when
possible, to extract information from the effective Hamiltonian than to
continue iterating until the lattice is reduced to a single block. VThe
point is simply that in any variational approximate calculation better
trial states exist than the ones being used. 1In the present case, for p
near 1 the state |¢0> is better than the states built using the blocking
procedure.

As noted above, the significance of the point p=0.93 is that for
p > 0.93 the theory is expected to be massless based on the RG equations
alone, while for p < 0.93 the issue cannot be resolved without further
study of the fixed-point Hamiltonian. The theory may be massless for
P < 0.93 or a mass gap may exist. It might seem that the mass gap
would have to be infinite if nonzero because it should diverge with
the coupling function F,(j), but this is not correct. The proper
conclusion is that the blocking procedure has identified a class of
block states whose energies diverge with the block size when p < 0.93.
These states certainly need not be the lowesé—lying excitations in the
system, although to the extent that they are not, the motivation for
the blocking scheme as a probe of the low-lying spectrum is weakened.
Nevertheless, the suppression of this class of excitations at finite

temperature is useful thermodynamic information.



- 114 -

For example, if the Ising model analogous to Eq. (4.15) is treated

by the block-spin method of this section one finds that 1im4Fm(j)==n

+ o
for p<2. This discussion is given in Appendix B. Thelltates constructed
by the blocking procedure in this case are the exact ground states plus
.states formed by flipping blocks of gpins. The divergence of Fm(j) means
that at finite temperature flips of large blocks of spins are suppressed.
This is responsible for the persistence of order in this model up to a
finite critical temperature when p<2. Based on this example one may
conjecture that the Heisenberg antiferromagnet also is ordered at low
temperatures in some range of p, given as p < 0.93 in this very crude
calcﬁlation.

The point p=1.67 represents the approximate location of a true
phase transition, separating the '"nearest-neighbor phase" p > 1.67 from
the "long-range phase" p < 1.67. The phases may be distinguished, for
example, by the behavior of the correlation function <§(i)~ §(j)> of
very widely separated spins. The correlation function will be governed
by the fixed-point Hamiltonian which is quite different in the two phases.
In practice one may consider the translationally invariant correlation
function €(k) = 1\%_1)11; %I- z<§(i) . —Sy(i-l:k)> so as to average out edge
effects associated with ;he block walls in a bléckrspin calculation.
Following the treatment of the Hamiltonian, g(i)- §(1+k) is replaced by
an effective operator at each iteration, using Eq. (4.19). When the
Hamiltonian achieves its fixed form the required expectation values are
computed in its ground state. If the fixed-point Hamiltonian is not
solvable, one has no recourse but to continue iterating until the dot

products of spins are reduced to squares of single spins with expectation
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value 3/4. This yields much poorer results: in the present case it
leads to correlation functions with no dependence on p, since the block
states have none! Indeed, one may be skeptical about the results of the
present calculation on the grounds that the same variational trialﬁstates
. are used for all values of p. This problem is corrected in the improved
4calculation to be discussed next.

4, Improved Calculation Using Nine-Site Blocks

Although the three-site calculation definitely indicates the pre-
sence of a phase transition at p = 1.67, one would like some assurance
that the conclusions do not change qualitatively when more accurate
calculations are done. The greatest single drawback of the three-site
calculation is that the block eigenstates are completely determined by
the rotational invariance, rather than the detailed structure, of the
interactions. The nine-site calculation to be discussed now does not
suffer from this problem.

The algorithm employed here is just as in Sect. 3. One restricts
the full Hamiltonian (4.15) to a nine-site block and, by diagonalizing,
determines the lowest-lying spin~1/2 doublet of-eigenstates. Taking
matrix elements between these states produces the relations analogous
to (4.19):

<S(k,a)> = ua<§‘(k)> , a=1,2,...,9, (4.27)

which may be used to construct the effective Hamiltonians. The U
however, will no longer be constants but will change with the value of

p and from iteration to iteration. The RG equations will take the form:
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N/9™ N/9™

g™ Z B+t 2 DF e e S0 LBy, (4.28)
2 0= 1
Ak

9 -
@ = 2 (D™ (g5 hacaty , B ) =FG) ,  (4.280)
a,a'=1

E

1 9Em-& e s E =0 . (4.28¢c)

where e are the "energies" (eigenvalues of the operator part of Hé?ick’
dropping the constant Em) of the doublet of states constructed at
successive iterations. These RG equations must be iterated numerically
using the method of Drell, Svetitsky, and Weinstein described in Sect. 3.
Although there are 512 independent states on a nine-site block, one
does not need to diagonalize 512 x 512 matrices to carry out the above
program. It suffices to determine the §, = 1/2 member of the lowest-
lying spin-1/2 doublet, which will have even parity. Simple combinatorics
shows that there are exactly 22 spin-1/2, S, = 1/2, even parity states on
a nine-site block. One of these states can be constructed by two itera-

tions of the three-site blocking procedure [compare Eq. (4.18)1:

1 1 1 1 1 1 1 71 1 1 1 1 1
lv> = 76[2|7,§>1|5,—5>1|5,5>1-]§,§>1i§,§>1|3s-5>1
1 1 1 1 1 1 -
- |7,-§>1|§,§>1|§,§>1] ,
where I%"%f>1 = —L-(2|+++> - 444> = [44d) ,
V6

and |%,_%>1 - :/lg- (24095 + {Het> + [4e2) LT (4.29)
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The next state is obtained by applying the-block Hamiltonian to lw) and
eliminating the component of the resulting state along |y>, and the
remaining 20 states are constructed by repeatedly applying the blopk
Hamiltonian to the last state constructed and orthonormalizing the whole
. set. The matrix to be diagonalized is then 22 x 22. Some technical
ﬁoints concerning the numerical calculation are discussed in Appendix C.

In Chapter ££I an alternative scheme was suggested, in which only
the 2 x 2 matrix representing the block Hamiltonian in the subspace spanned
by |w> and Hblock‘¢> is diagonalized to obtain approximate nine-site
eigenstates. This is based on the idea that |y> is already a reasonable
approximation to a nine-site eigenstate and in perturbation theory would
mix most strongly with the state Hblockl¢>' Indeed, one finds by
diagonalizing the 22 % 22 matrices that the exact lowest-lying eigenstate
typically gets about 90% of its amplitude from the two states lw) and
Hblock|w>' Since the error in an energy goes as the square of the errnr
in a state vector, energies computed by the 2 x 2 diagonalization typi-
cally are within 17 of the exact nine-site energies. The approximation
is thus very good. For definiteness,/however, the results to be reported
in this section come from the exact nine-site d;agonalization using
22 x 22 matrices.

Numerical iteration of the RG equations (4.28) shows that there are
still three critical values of p with the same qualitative properties
discussed in Sect. 3. The region in which the energy density diverges
is found to be p £ 0.18 {as compared to -0.07 from the previous, less
accurate, calculation), the couplings Fm(j) diverge for p < 1.11 (as

compared to 0.93), and the transition separating the long-range and
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nearest-neighbor phases occurs at p ® 1.85%0.05 (as compared to 1.67),
This last value is hard to estimate from numerical data becéuse as the
transition point is approached from above the long-~range couplings
Fm(j >1) decay more and more slowly. Very near the transition it is
" - impossible to tell whether thé long~range couplings ultimately vanish
'or not. Howeveri_it is significant that this critical point moved up
from 1.67. Had it moved down one might have suspected that an exact
calculation would reveal no transition in the "physical region" p > 1.

The ground state energy density resulting from this calculation is
given by»tbe lower curve in Fig. 15, For p + » the energy density is
~0.4212, 5% above the correct value.

Since the block states now depend on p, correlation functions
. computed using nine-site blocks will have p-dependence and will dis-
tinguigh the long-range and nearest-neighbor phases. In a simple block-
spin calculation of the present type (non-variational) one obtains a
power-law falloff at large distances, where the exponent is a constant
throughout the nearest-neighbor phase but aepends on p once the long-
range phase is entered. It is worth emphasizing that no evidence will
be found for the violation of the cluster property known to occur at
p= 0. The effective operator representing the end-to-end order after

m iterations satisfies the RG equation:

(m+1) | (m)
5 -5m] = o™y E - San] , (4.30)
Eff Eff
and since ugm),uéno <1 [this follows from Eq. (4.27) and the fact that the

magnitude of the expectation value of 5, in a non-eigenstate is less
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than 1/2] one has Nl-];n; <§(1) . g(N)) = (0, This is because a cluster
property is really built into block-spin calculations: at -any iteration
correlations between spins in different blocks are ignored. This is
also why the calculations locate the energy density divergence poorly.

. The most one could hope for is that if the cluster property is violated,
‘then <§(1)- g(N)) will go to zero more slowly as the accuracy of the

calculation is iﬁ;roved.

5. Concluding Remarks

.The most accurate calculation I have performed indicates that the
Heisenberg antiferromagnet (4.1) has a phase transition at p ® 1.85.
The phases can be distinguished by the form of the fixed-point Hamiltonian
and the behavior of correlation functions such as (g(i)-'g(j)>. The
large-p phase has the physics of the nearest-neighbor antiferromagnet
while for p < 1.85 there is a line of fixed points. The calculation
predicts that the model is massless for p > 1.11. More detailed
statements cannot be made due to the intractability of the fixed-point
Hamiltonian for p < 1.85.

It is interesting to speculate on how these numbers will change in
more accurate calculations. As the accuracy increases, the point at
which the energy density begins to diverge must approach p=1. The
point at which the couplings begin to diverge must be at a larger value
of p, since the couplings must grow by a factor L at each iteration to
get a divergent energy density, with L the number of sites per block.
The calculations done here suggest that the divergent couplings and the

divergent energy density are separated by about 1 unit of p. It is
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tempting to suppose that the onset of the divergent couplings occurs
at p ® 2 and coincides with the nearest-neighbor to long-range phase
transition. The divergent couplings in the long-range phase then make
it possible that there is long-range order at finite temperature in this
.phase since the excitations whose energies are diverging will not be
present at finite temperature.

It is difficait to recommend reliable ways to improve the present
calculations. Simply going to bigper blocks soon becomes cumbersome
due to the size of the matfices to be diagonalized. Another possibility
is to write effective Hamiltonians valid for more block states than just
the lowest pair. This method genmerally gives large increases in numerical
accuracy because the additional states contain information on energy
levels and the density of states not present in the lowest~lying pair of
states alone. For example, the two~site calculation using four states
per block for the nearest-neighbor Heisenberg model (Chapter III) gives
almost the same accuracy in the emergy density as the nine-site calcula-
tion discussed here. However, this method will not preserve the form of
the original Hamiltonian but will embeg it in a more general (and more
complicated) theory after the first iteration. As discussed in Chapter
TIII, it is then necessary to study the phases of the more general theory
and to understand how the original theory has been embedded. Finally,
variational calculations in which the block states are chosen to minimize
the ground state energy after many iterations rather than to diagonalize
the block Hamiltonians can give excellent results,*® but how to choose

good variational trial states is an open question.
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APPENDIX A

I prove that, given a set of Feynman rules periodic in all momenta,
periodic §-functions can be used to do trivial momentum integratioﬁs
just as ordinary é-functions are used in continuum theories.

It suffices to show that if

A
Iz fdkl coedi Fkpsennsky) Gper[kl-—c(kz,...kn)] , (A.1)
-A
where F is periodic in k1 with period 2A, then

A
1= fdkz e dk F[G(kz,...,kn), k2,...,kn] ) (A.2)
iy

To do this, write (A.1l) as

o0 A

1= Z fdkl voedk F(kl,...,kn)s[kl-G(k?_,...,kn)+2m]. (A.3)

m=-= =A
In the mtB term change variables from k; to ki = k; +2mA, giving

© (2mt+1)A A _

I = Z f dk! fdkz...dkn F(ki- Zm,kz,.“..,kn)é[ki—é(kz,...,kn):l
=—w (2m-1)A -A

o A

- fdk'l fdkz voudk F(ki,kz,...,kn)d[ki —'G(kz,...,kn)]
- ~A .

A
= fdkz condk_ F[G(kz,...,kn);kz,...,kn] , (A.4)
iy}

by periodicity.



- 122 -~

If the function F is initially defined only for -A < ki < A then

the above holds if F is extended periodically.
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APPENDIX B

Although the Ising model with long-range interactions is quite
trivially soluble at zero temperature, it is illuminating to study it
using the three-site RG algorithm of Chapter IV. The RG equations are
very similar to those for the Heisenberg model, and the interpretation
of the various critical values of p can be justified by known properties
of the model.

The Hamiltonian is written as
N
1 i-j+1 . . . .
H = 3 Z#: D7 F-3) s, (1) $,(3)
i43

Fli-3) = —i— , (3.1)

. 1P
l1i-3]
and restricting it to a three-site block leads to a block Hamiltonian:

Bpiock ~ F(1)[32(1)82(2) + SZ(Z)SZ(3)] - F(?')Sz(l) 5,(3) . (B.2)

The lowest-lying pair of eigenstates of Hblock is clearly

|+%> = |+++> , |-%—> = |+Hr> , energies = —%F(l) - %F(Z) . (B.3)

1 :
Within the sector of states built from |i-5> the' relation between the
single-site operators and the block spin operators is just [compare

Eq. (4.19)1:

<8,(k,a)> u_ <8 (k)> ,

u, =u, =1 , u, = -1 . (B.4)

It is evident that this sector of states contains both of the degenerate

true ground states of the model: ‘®I> = |4444...> and the state |¥444. .00,
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The RG equations analogous to Egs. (4.21) are:

_ 1 _yk-k'+1 . ' ’
- ;Em + Zk;iu( 1) F kDS, (08 (k) , (B.58)

Py ) = 2 CD¥ wu F (3+a-a) , B =FG) ,  (B.5b)

a,a'
i.e.,
Fopp(3) = 3F_(35) + 2F (33-1) + 2F_(3341) + F_(3j-2) + F_(33+2) ,
(B.5c)
1 1 1
Empr = € T 3T+ 1RO (5.54)

These equations may be analyzed by exactly the same methods applied
to Eqs. (4.21). By considering first large values of j one finds that

Eg. (B.5c) implies:

. _- ' . . . .
Fm+1(3) = C Fm(J) , 3>1 and m sufficiently large,

where C' = i(3+2+2+1+1) -2 s (B.6)
3P 3P
while the nearest-neighbor coupling obeys:
Fm+l(l) = 3F_(3) + 2F_(2) + 2F (4) + F_(1) + F_(5) . (B.7)

The condition for the energy density to diverge is again C' 2 3, which
implies p < 1. This is exactly the correct result (recall that p < ~0.07
was obtained for the Heisenberg model), as it must be since the true

(m)

ground states are in the sector to which the Hamiltonian H applies.
The range of p for which the model is in the nearest-neighbor phase is
found by requiring C' to be less than the coefficient of Fm(l) in Eq.

(B.7): C' < 1 means p > 2. The model is in the long-range phase for
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1<p<2. TFinally, Eqs. (B.6) and (B.7) show that for C'>1 or p <2,
T&iﬁ; Fm(j) = », For C' <l however, it is easy to see that Fm(j >1) - 0
but Fm(l) -+ constant > 0. This last fact, that Fm(l) + 0 for p > 2,
squares with the known nonzero mass gap of the nearest-neighbor Ising
model. The point p=2 is thus analogous to both of the points p=0.93,
1.67 in the Heisenberg éase.

The signific;;ce of the fact that for p > 2 the mass gap is finite
while for p < 2 it is apparently infinite will now be explained. By
virtue of the structure of the block states (B.3), after m iterations of
the RQ equations, flipping a single spin in the ground state ‘¢I>
corresponds to flipping a block of 3" spins on the original lattice.

(m)

The effective Hamiltonian H therefore describes the true ground
states plus those excited states formed by flipping blocks of 3™ spins.
(For the remainder of this paragraph, a "spin" always means a spin of
the original lattice.) For the nearest-neighbor Ising model (p=«) it
costs the same amount of energy to flip a block of spins of any size.
For p large but finite the first excited state has exactly one spin
flipped, and it costs progressively more energy to flip larger blocks.
However, this energy remains finite as the block size goes to infinity
provided p > 2., At finite temperatures arbitrarily large blocks can be
excited and flipped. This will destroy the end-to-end order of the

ground state, as proved by Ruelle.28

For p < 2 the energy required to
flip a block of spins diverges with the size of the block. The resulting
suppression of large-scale fluctuations suggests that the order in the

ground state may persist at low temperatures at least, although a

rigorous proof is required and was supplied by Dyson.2% Obviously the
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first excited state has only a single spin flipped, is not in the

(m)

sector governed by H , and the mass gap to this state is perfectly
finite down to p=1 despite the divergence in Fm(j).

The Ising model differs from the. Heisenberg mcdel in that the zero-
_ temperature ground state of the Ising model is the same for all values
of p. The long-range and nearest-neighbor phases of the Ising model are

distinguished only by their finite-temperature properties, which stem

from the distribution in energy of the excited states.
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APPENDIX C

This Appendix describes in more detail the organizatioﬂ of the
computer program which carries out the nine-site RG calculation of_
Chapt. IV, Sect. 4. At each iteration of the RG équations (4.28)
-_the program must:

(m)

1) Find the lowest-lying spin-’, SZ=!§ eigenstate of H

restricted to a nine-site block, ¢(m)’ and its energy Em+1.

2) Compute the parameters uém) of Eq. (4.27) from

<¢(m)|sz(a)|¢(m)> =% ue(lm), a=1,2, ... 9.

'3) Compute the new long-range coupling function Fm+l(j)

from Eq. {(4.28Db).

To begin with, one needs a convenient and efficient representation
for the 512 basis states on a nine-site block. They are naturally
labelled by the integers from 0 to 511 themselves: write each integer
as a nine-bit binary number and interpret a 0 or 1 in the nth position
as a spin down or up, respectively, on the nth site in the block.

Those binary numbers containing exactly fiye 1’5 represent states
in the Sz = L sector of interest. There are exactly 126 such states,
and their binary code numbers are given labels from 1 to 126. Each
SZ = 1 basis state thus has an essentially arbitrary label, plus
nonarbitrary binary and decimal code numbers which directly give the
spin configuration of the state. A series of lookup tables allows any
of these three numbers to be determined given any other. A state in the

1

Sz = 1 sector can now be given as a 126-component vector, each component

giving the amplitude of a unique basis state.
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It is very simple to apply an operator g(a)- §(b) to a basis state
in binary form. Thus, q+(a) o_(b) + ¢_(a) G+(b) interchanges the ath
and bth binary bits if these are different and annihilates the state
otherwise, while Gz(a) Uz(b) multiplies the state by *1. A simplé
subroutine can rapidly apply the block Hamiltonian to any Sz = % state.

To find the eigenstate ¢(m)

R . (m) .
, the block Hamiltonian Hblock is
written as a 22x 22 matrix in the spin-%, 5, = %5, even parity sector.

. , (m)

Numerical accuracy requires that one remove from Hblock its c—number
piece E > which is growing as 9m, leaving an operator M. The basis
states wi, i=1, 2, ... 22, in this sector are generated by the
Lanczos method.33 Taking for wl the state of Eq. (4.29), wz is taken as
Myy - <¢1|M|¢1) ¢1’ normalized to unity, so that <¢2|w1> = 0. In prin-
ciple, ¥ _,, can be defined by My - <\pn|M|¢n>wn - <wn_1|M|wn>¢H_1,

normalized to unity.

One shows inductively that wn+1 is automatically orthogonal to wz

if £ < n~1 : assuming wn was orthogonal to all previously constructed

states, one has

<¢2|wn+1> <¢£1M1wn> ="<¢nIM¢2>

|l

<¢n|combination of wl’ Yoo eon ¥ > = 0 .

n-1

In practice, however, enough numerical error builds up in constructing
22 126-component states that ¢n+1 must be explicitly orthogonalized to
all previous states. The matrix of M is automatically tridiagonal in
this basis: <wgtMl¢n> = 0 unless & = n or nt 1, so relatively few matrix

elements have to be computed.
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Another danger introduced by numerical error is that the states wi
may have components outside the spin-% even parity sector of interest.
Fortunately, as discussed in the text, ¢(m) is predominantly composed of

the first few wi, which are alsc the most accurate. 1 explicitly checked

(m)

that ¢ always had spin-’s to several decimal places.

Diagonalizing the 22 x 22 matrix of M gives the eigenstate ¢(m)

3

its "energy" e, and the parameters uém). Defining the 9x 9 matrix

@) _ _pya-a’ @
Ry = (D¥% g

u;?) , the RG equation (4.28b) becomes

F0) = Z R;? F (9i+a-a') . (c.1)

a,a'
The remaining problem is how to compute the infinitely many parameters

As mentioned in the text, only the parameters Fm(j),j =1,2,... 100

are actually stored for each m. For j > 100 one writes

6
F ()= :4:,; Al e a0 S 1 (c.2)

and stores the seven additional parameters Aém) (of which three vanish
because Fm is even). Then Aém) obeys the recursion relation following
from Eq. (C.2),
g k
KEIUED YD DR UG
9R,+p L

\ k-2
aa (a-a") s (C.3)
a,a'=l =1

L, k-2 +1

where (a-a')k_g means 1 if a = a' and k = &, and B is a matrix of

convenient binomial coefficients:

-p-k
s\ P7%
(Hg) -

The calculation of Fm+1 from Fm proceeds using Egs. (C.1-3).

[- -]
q
B 8

=0 k+1,q+1



10.

11.

- 130 -

REFERENCES

K. G. Wilson and J. Kogut, Phys. Reports 12C, 75 (19745 and
references therein.

J. B. Kogut, Rev. Mod. Phys. 51, 659 (1979) and references
therein.

D. Horn and.S. Yankielowicz, Nucl. Phys. BL61, 533 (1979);

S. D. Drell, B, Svetitsky and M. Weinstein, Phys. Rev. D17, 523
(1978); S. D. Drell and M. Weinstein, ibid. D17, 3203 (1978);

R. Jullien, J. N. Fields and S. Doniach, ibid. Bl16, 4889 (1977);

"R, Jullien and P. Pfeuty, ibid. Bl9, 4646 (1979); E. Fradkin

and S. Raby, ibid. D20, 2566 (1979).

S. D. Drell, M. Weinstein and S. Yankielowicz, Phys. Rev. Dl4,

487 (1976).

M. Aelion, Ph. D. thesis, Stanford University (unpublished) (1979).
W. J. Caspers, Phys. Reports 63, 223 (1980) and references

therein.

J. E. Hirsch and G. F. Mazenko, Phys. Rev. B19, 2656 (1979).

B. Svetitsky, S. D. Drell, H. R: Quinn and M. Weinstein, Phys.

Rev. D22, 490 (1980).

M. Creutz, L. Jacobs and C. Rebbi, Phys. Rev. D20, 1915 (1979)

and Phys. Rev. Lett. 42, 1390 (1979);AL. MclLerran and B. Svetitsky,
Phys. Lett. 98B, 195 (1981).

S. D. Drell, H. R. Quinn, B. Svetitsky and M. Weinstein, Phys.

Rev. D19, 619 (1979).

H. S. Sharatchandra, Phys. Rev. D18, 2042 (1978).



12.
13.

14'

15.

16.

17.

18.

19.
20.
21.
22.

23.

24.

25.
26.
27.

28.

- 131 -

L. H. Karsten and J. Smit, Phys. Lett. 85B, 100 (1979).

A. Guth, Phys. Rev. D21, 2291 (1980).

K. G. Wilson, Phys. Rev. D10, 2445 (1974) and in New Phencmena

in Subnuclear Physics, ed. A. Zichichi, Plenum Press, New York,

1977.

S. D. Drell, M. Weinstein and S. Yankielowicz, Phys. Rev. D14,
1627 (1976). Actually the "SLAC derivative" seems to have been
introduced by G. Wentzel, Helv. Phys. Acta. 13, 269 (1940).

L. H. Karsten and J. Smit, Stanford preprint ITP-677,

(September 1980).

W. Kerler, SLAC-PUB-2634 (October 1980).

H, B, Nielsen and M. Ninomiya, Rutherford Laboratory preprint
RL-80-090 (November 1980).

L. H. Karsten and J. Smit, Nucl. Phys. Bl44, 536 (1978).

Y. Nakawaki, Prog. Theor. Phys. 59, 248 (1978) and 61, 1197 (1979).
J. B. Bronzan, Phys. Rev. D21, 2270 (1980).

W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, 1964.

I thank Marvin Weiﬁstein for stressing this point until I finally
understood it.

The results of this chapter have been pubiished in J. M. Rabin,
Phys. Rev. B21, 2027 (1980).

F. J. Dyson, Comm. Math. Phys. 12, 91 (196%).

D. Ruelle, Comm. Math. Phys. 9, 267 (1968).

E. Lieb, T. Schultz and D. Mattis, Ann. Phys. 16, 407 (1961).

R. Orbach, Phys. Rev. 112, 309 (1958).




29.

.30'

31.

32.

33.

J. des Cloizeaux and M. Géudin, J. Math. Phys. ZJm1384 (1966)..
In addition to the massive excitations, these authors erroneously
found a massless state in the Heisenberg-Ising model with vy > 1.
I thank Bill Sutherland for bringing this error to my attention.
R. J. Baxter, J. Stat. Phys. 9, 145 (1973).

Most of the results of this chapter appear in J. M. Rabin, Phys.
Rev. B22, 2420 (1980).

H. Bethe, Z. Phys. 71, 205 (1931); L. Hulthén, Ark. Mat. Astrom.

Fys. 26A, No. 11 (1938); J. des Cloizeaux and J. J. Pearson,

Phys. Rev. 128, 2131 (1962).

C. C. Paige, BIT 10, 183 (1970).



	slac-r-240a.pdf
	slac-r-240b.pdf

