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ABSTRACT 

Lattice quantum field theories containing fennions can be formu- 

lated in a chirally invariant way provided long-range interactions are 

introduced. I establish that in weak-coupling perturbation theory such 

a lattice theory is renormalizable when the corresponding continuum 

theory is, and that the continuum theory is indeed recovered in the 

perturbative continuum limit. In the strong-coupling limit of these 

theories one is led to study an effective Hamiltonian describing a 

Heisenberg antiferromagnet with long-range interactions. Using block- 

spin renormalization group methods I find a critical rate of falloff 

of the interactions, approximately as inverse distance squared, which 

separates a nearest-neighbor-antiferromagnetic phase from a phase 

displaying identifiable long-range effects. I point out a duality-type 

symmetry which is present in some block-spin calculations. 
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CHAPTER I 

INTRODUCTION 

The outstanding development in high energy physics during the past 

decade has been the re-emergence of relativistic quantum field theory 

as the unified theoretical framework for understanding the fundamental 

interactions. On the one hand, our command of perturbative field theory 

has been dramatically strengthened by the understanding of non-Abelian 

gauge theories and spontaneous symmetry breakdown, resulting in the 

unprecedented construction of unified, renormalizable theories of 

strong, weak, and electromagnetic interactions. On the other, real 

progress is finally being made in understanding nonperturbative phenomena 

in field theory. 

It is no exaggeration to say that most of the results in nonpertur- 

bative field theory have come from lattice techniques. The lattice 

provides a regularization scheme which works independent of perturbation 

theory; many "continuum" calculations implicitly assume the presence of 

such a regularization. The very powerful renormalization group concepts -. 

of Wilson1 give meaning to the renormalized continuum limit of a lattice 

theory, again without reference to perturbation theory. And lattice 

theories admit treatment by many approximation methods not available in 

the continuum: strong-coupling expansions,2. block-spin renormalization 

group calculations,3-8 Monte Carlo simulations,q variational methods,lO 

and so forth. Experience derived from problems in solid-state physics 

is also very useful. 



-2- 

It is often pointed out that no regularization scheme can preserve 

all the desirable properties of relativistic quantum field theory: if 

it could we would take the finite regularized theory itself as a funda- 

mental description of nature and throw away the unregulated, ill-defined 

field theory we started-with. Thus dimensional regularization encounters 

difficulty with operators involving y5. For a similar reason (the axial 

current anomaly) there are difficulties in formulating Dirac fermions in 

the lattice regularization (in addition to the obvious loss of Lorentz 

invariance). This is discussed in Chapter II where I show that a simple 

lattice formulation of the Dirac equation with chiral symmetry requires 

long-range couplings on the lattice which fall off no faster than 

l/distance. This thesis discusses various issues arising from the 

existence of such long-range interactions in lattice theories. 

In most discussions of lattice theories, long-range interactions 

are summarily excluded from the universe of discourse. This leads to 

a welcome reduction in the size of the space of all possible couplings, 

which is the appropriate setting for discussing the renormalization 

group. It also allows cavalier treatment of problems such as integration 

by parts, boundary conditions, and infinite-volume limits. Such issues -. 

will be important for the systems with long-range interactions discussed 

herein. 

Chapter II of this thesis deals directly with the renormalization 

problem in lattice field theories where the long-range interactions 

arise from a chirally symmetric treatment of lattice fermions. If the 

lattice is to be a useful regulator for continuum field theory in 

general, it should in particular be a satisfactory perturbative regulator. 
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This means that it must be possible to define an order-by-order pertur- 

bative renormalization program such that the renormalized S-matrix 

elements have finite limits when the lattice spacing goes to zero, and 

these finite values agree with those obtained using any other regulator. 

It has been shown that this is possible for lattice theories with 

nearest-neighbor interactions, l1 but the proof does not go through in 

the presence of long-range interactions, due in part to the infinite- 

volume limit problem alluded to above. This circumstance has led some 

authors to conclude that the chirally symmetric lattice fermion theories 

are nonrenormalizable.12 This is not so, and Chapter II generalizes 

the existing renormalizability proofs to handle these theories. 

Chapters III and IV are devoted to nonperturbative studies of one- 

dimensional lattice spin systems using block-spin renormalization group 

techniques developed at SLAC. These spin systems, generalized Heisenberg 

antiferromagnets with interactions falling off as (distanceImP, arise 

naturally as effective Hamiltonians for the strong-coupling limit of the 

chirally symmetric fermion theories of Chapter II. The principal result 

is the identification of a critical rate of falloff of the interaction, 

px 1.85, separating two phases of the theory. A faster falloff gives 

the same qualitative behavior as a nearest-neighbor interaction, long- 

range effects becoming important only with a slower falloff. In the 

course of carrying out the block-spin calculations a new type of duality 

transformation is encountered: it is a symmetry of the system after one 

blocking operation which is induced by the translation symmetry of the 

original spin system. 
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CHAPTER II 

PERTURBATION THEORY FOR SIX LATTICE FERMIONS 

1. Introduction 

Rigorous formulation of a continuum quantum field theory normally 

involves defining the theory as a singular limit of a cutoff or regu- 

larized theory. In perturbation theory many satisfactory regularization 

schemes exist, including Pauli-Villars, dimensional regularization, and 

others. However, for nonperturbative studies of gauge theories, interest 

has focused on the lattice regularization, which has the virtue of pre- 

serving exact local gauge invariance. Block-spin renormalization group, 

Monte Carlo, strong-coupling, and rigorous mathematical methods2-10,13 

have provided a great deal of information concerning the phase structure 

and continuum limit of pure gauge theories on a lattice. 

The extension of lattice techniques to realistic theories such as 

QCD has been hindered by uncertainty regarding the proper treatment of 

lattice fermions. Straightforward transcription of the Dirac equation 

to the lattice by replacing derivatives by nearest-neighbor differences 
-. 

leads to the so-called spectrum-doubling problem: the continuum limit 

of the latticized Dirac equation describes 2 d fermions rather than just 

one, where d is the number of dimensions of space-time which are lattic- 

ized. Of the many proposed solutions for this problem, two will be 

discussed here. Wilsonl" adds a term with no y-matrix structure to the 

lattice Dirac equation. This term functions as a momentum dependent 

"mass", giving the extra fermions masses on the order of the cutoff and 

removing them from the spectrum in the continuum limit. As an additional 
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mass term, it also destroys the global chiral symmetry of the Dirac theory 

at m=O. The SLAC group4,15 obtains the correct fermion spectrum and 

preserves chiral symmetry by transcribing the continuum derivative as 

a nonlocal lattice difference operator. The definition is such that in 

momentum space the lattice derivative acts as multiplication by ipu. 

Clearly, if the spectrum-doubling problem is connected with chiral 

symmetry, then it must be fully understood before 1,attice methods can 

give reliable information about the symmetry structure of QCD. Indeed, 

an important issue connected with chiral symmetry in any gauge theory is 

the axial anomaly. Any lattice gauge theory with continuous chiral sym- 

metry must answer the following question. In consequence of the contin- 

uous symmetry, there will be a conserved axial current on the lattice. 

The naive manipulations leading to a non-anomalous Ward identity for this 

current are valid in the presence of the lattice regularization. Does 

the continuum limit of this current exist? If so, doesn't that yield a 

continuum axial current with no anomaly, and isn't that impossible? 

The straightforward transcription of the Dirac equation answers this 

question by doubling the spectrum: the anomaly is cancelled between the 

different fermion species.16 The Wilson formulation answers by explicitly 
-. 

breaking the lattice chiral symmetry. An extra term appears in the Ward 

identity and becomes the anomaly in the continuum limit.16'17 In this 

chapter I will show that the SLAC theory encounters infrared divergences 

in perturbation theory which need careful treatment. Order by order the 

continuum limit of the conserved axial current does not exist due to 

these infrared divergences. 

It is becoming generally recognized that an undoubled spectrum, 

continuous chiral symmetry, and locality of interactions are incompatible 
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though desirable properties of a lattice fermion scheme. Indeed, in the 

literature one can find the claim 16918 that a lattice fermion theory with 

undoubled spectrum and continuous chiral symmetry is itself impossible, 

although the arguments in support of these claims involve additional as- 

sumptions. One purpose of the present work is to clarify the relations 

between these three properties of lattice fermion schemes. 

Before using a particular.regularization scheme for nonperturbative 

investigations, one would like to have confidence that it yields accept- 

able results in the familiar context of perturbation theory. Sharat- 

chandrall has shown that Wilson's formulation of QED on a four-dimensional 

Euclidean lattice passes this test. He showed that in perturbation 

theory a multiplicative renormalization of fields and parameters suffices 

to remove all divergences in the a + 0 limit of the S-matrix, which then 

agrees with the S-matrix of continuum QED. My objective in this chapter 

is to give the corresponding analysis for the SLAC version of QED. In 

this case multiplicative renormalization does not suffice: additional 

counterterms are required. This is to be expected, since once long-range 

interactions are admitted the SLAC Lagrangian is by no means the most 

general one consistent with its symmetries. The analysis, like 

Sharatchandra's, should extend to QCD as well. 

Perturbation theory with SLAC lattice fermions has been studied by 

Grsten and Smit in the four-dimensional Euclidean lattice formula- 

tion.12'16p1g They computed both the one-loop vacuum polarization and 

the WA triangle diagrams. They concluded that the axial current did not 

develop an anomaly in the continuum limit. Its matrix elements, along 

with the vacuum polarization, were nonlocal, not Lorentz covariant, and 



-7- 

infrared singular in the continuum limit. Furthermore, the theory ap- 

peared nonrenormalizable in that infinitely many Green's functions were 

superficially divergent. NakawakiPo reached similar conclusions from a 

study of the SLAC theory in Hamiltonian form. In the present work I show 

that the perturbation expansion of Karsten and Smit breaks down owing to 

the infrared singularities. I describe a resummation of the perturbation 

series which removes these divergences, and carry out a renormalization 

program to all orders of the modified expansion. The renormalized 

Green's functions at each'order in this expansion go over, for a + 0, to 

those of continuum QED to the same order. 

The discussion is organized as follows. Section 2 reviews the fermi- 

on doubling problem and explores the reasons it occurs. The SLAC group's 

solution to the problem is discussed, and the "topological" connection 

between spectrum doubling, chiral symmetry, and the range of interactions 

is explained. In Sect. 3 I summarize Sharatchandra's arguments for the 

renormalizability of Wilson's lattice QED, which form the basis for the 

arguments I subsequently apply to the SLAC theory. In Sect. 4 I show 

how continuum QED in a fixed gauge can be faithfully transcribed onto a 

lattice. The SLAC derivative and long-range interactions appear auto- 

matically. Although this is not the SLAC lattice gauge theory which has - 

been discussed in the literature, it provides a simple counterexample to 

the claim that no lattice version of QED with undoubled spectrum and 

continuous chiral symmetry is possible. Section 5 begins the discus- 

sion of the SLAC lattice gauge theory studied by Karsten and Smit. I 

derive the Feynman rules, check the classical continuum limit of the 

Lagrangian, and exhibit the conserved currents and Ward identities. The 
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theory appears nonrenormalizable by power counting. However, the per- 

turbation expansion is shown to be invalid due to infrared divergences 

which arise as a direct consequence of having an undoubled fermion spec- 

trum. The summation of tadpole diagrams is shown to remove both the 

infrared divergences and the problems with power counting. Section 6 

begins the discussion of renormalization. The obstacle to direct appli- 

cation of Sharatchandra's methods is the inability to expand integrands 

in powers of external momenta. I divide the integrals into subregions, 

in each of which the Taylor expansion in external momenta is possible. 

I then give the prescription for order-by-order construction of counter- 

terms, and show that in the presence of the counterterms the a + 0 limit 

gives ordinary continuum QED. Section 7 supplements this rather ab- 

stract discussion by applying the renormalization prescription to one- 

and two-loop examples. Although detailed calculations are not carried 

out, the form of the necessary counterterms is clarified. I consider to 

what extent the counterterms can be generated by resealing fields and 

parameters. Finally, I show that in the renormalized perturbation ex- 

pansion the conserved axial current still has divergent matrix elements. 

These can be made finite by redefining the currenci at the cost of in- 

troducing the usual anomaly. Section 8 summarizes the conclusions and 

points out remaining problems. In particular I consider whether the 

properties of the SLAC lattice gauge theory established in perturbation 

theory will persist in the exact nonperturbative solution. 

Notation: The Einstein summation convention is not used in this 

chapter. Summations will be indicated explicitly. 
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2. Lattice Fermions 

This section reviews the spectrum-doubling problem of lattice fermi- 

ons and motivates its solution via the "SLAC derivative". 

Consider the Klein-Gordon equation for a scalar field, 

(2.1) 

The problem of transcribing this equation onto a three-dimensional lat- 

tice with continuous time is solved by making 0 a function on lattice 

sites indexed by 2 and replacing V2 by an appropriate difference opera- 

tor. Plausible choices are f, Vf, VI, and ?-*?+, where 

vf f(Z) = a f(t + Z') - 
[ 

f(Z) 1 , 

v' f(g) = +:, - f(;: - d'> 'I 5 

(2.2a) 

(2.2b) 

vi f(Z) =&f(;:+zi) - f<z-ti, 
[ 1 . (2.2c) 

-. 

(In this chapter the variable % indexing lattice sites will always carry 

dimensions: x. =nia where a is the lattice spacing and ni is an integer. 
1 

2' is a vector of length a in the i direction.) The spectrum of the 

lattice Klein-Gordon equation is found by seeking solutions of the form 

@G,t) - e -iEt eii&t 
, 
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leading to the dispersion relations 

v: : 

v2 : 

v; : 

;;_.;;, : 

E2 = Axe 
ik a 

a2 i 
i sin2 gia + m2 , 

E2=& 
-ik a 

a2 c 
e i sin2 %c 2i 

a + m2 , 

E2 = $Csin2 kia + m2 , 
a i 

E2 = %xsin2 +&ia + m2 
a i 

(2.3a) 

(2.3b) 

(2.3~) 

(2.3d) 

(On an infinite lattice k. is a continuous variable which can be chosen 
1 

to run from -s/a to %/a. The notation A = r/a will sometimes be used.) 

All these expressions reduce to the usual continuum dispersion re- 

lation when a + 0 with 2 fixed. However, ", and ?- are not Hermitian: 

the energy in Eqs. (2.3a) and (2.3b) is not real. The remaining possi- 

bilities differ only in the period of the sine functions. Equation 

(2.3d) has the 2r/a periodicity of the lattice while Eq. (2.3~) has 

period r/a. This signals spectrum doubling. For an acceptable spectrum 
-. 

only the spatially constant (z = 0) solution should minimize the energy. 

For Eq. (2.3~) this solution is degenerate with seven others having 

k. = n/a for some.values of i (4 alternates sign in some lattice di- 1 

rections). About each of these solutions there is a band of long-wave- 

length excitations, resulting in eight low-lying particle states in the 

continuum limit compared to one for Eq. (2.3d). 

It is not coincidental that Eq. (2.3d) alone is satisfactory. The 

gradient of a function f(@ on lattice sites is naturally defined as the 
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function on links which is the sum (with sign changes for the orientation 

of the link) of the values of f at the sites bounding a given link. 

This is VGf. The divergence of a function f,(z) on links is a function on 

sites given by the sum (with sign changes for orientation) of the values 

of fi on links impinging on a given site. This is c Vtf,. Hence the 

Laplacian is naturally given by 3-a?+. 
i 

The different derivatives repre- 

sent the lattice boundary and coboundary operators,13 which are not equal. 

From a more abstract point of view, what is happening is the fol- 

lowing. Associated with a scalar, vector, or antisymmetric tensor field 

there is a differential O-form, l-form, or 2-form. A rotationally co- 

variant differential operator acting on the field can be expressed in 

terms of the exterior differential operators d and 6 acting on the form. 

A natural latticization is available by associating n-forms with 

n-cochains (functions on sites, links, or plaquettes for n = 0,1,2) and 

d and 6 with the boundary and coboundary operators represented here by 

Viandd*. The problems with fermions arise because they fall into 

spinor, rather than tensor representations of the rotation group and SO 

have no associated n-forms. -. 

Consider now the Dirac equation, 

(h-a -m)+=O 9 (2.4) 

which is seen to have the same dispersion relation as the Klein-Gordon 

equation by applying iy.3 + m to both sides. Assume this equation is t0 

be latticized by substituting a difference operator for the spatial de- 

rivatives, J, being defined at lattice sites. This assumption is by no 

means necessary, but it does guarantee that the lattice Dirac equation 
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will have the usual chiral invariance when m = 0. The fermion dispersion 

relation will be that of the Klein-Gordon equation whose Laplacian is the 

The acceptable dispersion re- square of the Dirac difference operator. 

lation (2.3d) cannot be-obtained! 

The Dirac equation requires a Hermitian difference operator whose 

square is an acceptable Laplacian. The SLAC group4'15 achieves this in 

terms of the Fourier transform of a lattice function f(z), 

1 A 
f& , f(Z) = (2r)3 s 

d3p e 
i&T ?(;) 

, (2.5) 
+ 
X -A 

by defining Vj f(z) as the inverse transform of ip This leads to 

the exact relativistic spectrum E2 = p2 +m2 on the lattice. In coordi- 

nate space the definition is 

vjf& = 2 (-tl,"+l [f(z + nZj) - f(t - nzj)] . (2.6) 
n=l 

The nonlocality of this operator is essential for avoiding the 

spectrum doubling. Indeed, a general derivative operator may be written 

-. 

Vjf& =;Dj(= - ;) f (f) , 

Y 

with Fourier transform 

Vj?($) = iEj(b) f” (3 , 

(2.7a) 

where the factor i has been extracted for convenience. The fermion dis- 

persion relation will be 
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, (2.8) 

and spectrum doubling occurs if xi?(c) = 0 has solutions other than 

+ 
p = 2&Ja. Usually Ej(& = E(pj) 

jJ 

is a function of p 
1 

alone, but in any 

case one can fix pi = 0, i # j, and study the function E(pj) = Ej(p) 

alone. Hermiticity requires i? to be real, a satisfactory continuum limit 

requires D(p,) + pj as a + 0 with p 
J j 

fixed, and on general grounds 5 has 

period 2a/a. It is evident from Fig. 1 that if E is continuous, it has 

at least one zero for 0 < p. 
3 

< 2n/a, with a band of low-lying states 

around this zero to become an extra fermion in the continuum limit. The 

SLAC derivative (Fig. 2) escapes this conclusion due to its disconti- 

nuity at p. = a/a. One recalls that the Fourier coefficients of a dis- 
3 

continuous function fall off as l/n or slower, so D 
cl 

(g - $) is neces- 

sarily nonlocal. This argument, which also appears in Ref. 16, is a 

simple and intuitive case of the more general topological theorem of 

Ref. 18. 

It is amusing to note that, because a Fourier series converges to 

the mean at a point of discontinuity, the SLAC function 'ij(pj) = pj for 
-. 

pjE(-v/a,n/a), extended periodically, does have a zero at p. = s/a. 
J 

However, there is no band of low-lying states surrounding this point. 

It is quite possible for ??(pj) to have more than two zeroes. The 

choice 

Vjf& = $ 
[ 

f(;: + 25) - f<d - 2Zj) , 1 
for example, leads to "spectrum quadrupling". 
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-\ 
// \ 

I \ I 
7r/a \ y47r/a *‘j 

2-81 I 403ZAl 

Fig. 1. General behavior of a continuous function E(pj> appearing 
in the fermion dispersion relation, illustrating the 
necessity of spectrum doubling. 



- 15 - 

2 -81 

Fig. 2. The SLAC derivative Ej(p), which avoids spectrum doubling 
by virtue of discontinuities at +nr/a. 
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It should be evident from this discussion that there are interesting 

geometric and topological issues connected with latticizing fermions. 

Further research along these lines is in progress. 

3. Wilson's Lattice QFD 

This section reviews Wilson's l4 lattice formulation of QED and 

Sharatchandra'sll conclusions concerning its perturbative renormaliza- 

bility. The method of Sharatchandra's proof is summarized in some 

detail since it provides a canonical set of arguments for establishing 

the perturbative equivalence of lattice and continuum theories. The 

analysis of the SLAC lattice QED formulation to follow will be based 

heavily on these arguments. 

In this chapter, detailed discussions of lattice perturbation 

theory will be carried out in the four-dimensional Euclidean, rather than 

the Hamiltonian, formalism. This makes available the technical conve- 

niences of the straightforward path-integral quantization and manifest 

symmetry between time and space coordinates characteristic of this 

formalism. 
-. 
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Wilson's lattice QED action is: 

I = a4 x,T,, i Ffv(x) + a4 C $[~>~b)]~ 
X,FL 

C 
$(x + aJe 

ieaAP(x) 
- $(x - ap)e 

-ieaAU(x-au) 1 
- a4 C S(x) & 

X,U [ 
JICx + a-)eieaAP(X) + J,(x _ a je-ieaAp(x-alJ) - 2$(x) 

II v I 

- a4 C mJ(x>ll(x> , 
X 

(2.9) 

where F,,,,(x) = V>"(x) - VzAu(x). (The y-matrix convention is 

EYu’YJ = -26& 

For e = 0, the free fermion action is constructed using the deri- 

vative V: and would therefore yield a doubled spectrum if not for the 

additional terms in the third line of Eq. (2.9). In momentum space these 

terms read 

-( 2 
a sin2 3 Pus 

) 
S(P)?(P)-- , 

and they vanish for p + 0 or for a + 0 with p fixed. However, they give 

"masses" of order A to the extra fermions with p 
lJ 

= nfa, removing them 

from the spectrum in the continuum limit. They also explicitly break 

chiral symmetry, as is appropriate for a "mass" term. 

The coupling to the gauge field is introduced in a manner consistent 

with invariance under the local gauge transformations 
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$(x1 + e -iex(d Jl(x) , 

A,, (xl + Ap(x> + V;xW . (2.10) 

The second term in Eq. (2.9) serves to fix a "covariant" gauge. The form 

of the photon kinetic energy (not periodic in An) identifies this as the 

noncompact formulatibn of QED; the compact formulation would replace 

F;Jx) by 

iea2Fuv(x) 

Finally, note that the lattice derivatives in Eqs. (2.9) and (2.10) are 

used "naturally" in the sense of Sect. 2: V: is used to create the 

plaquette variable F 
VW 

from the link variable Au while Vi forms the 

scalar divergence of the vector A . 
lJ 

Expanding the exponentials in Eq. (2.9) and introducing the Fourier- 

transformed fields permits one to read off the Feynman rules from the 

coefficients of the terms in the action, ,For the photon field it is 

convenient to define the Fourier transform by 

J * 4 
Au(x)= _d_E;i;e 

ip*(x++au)l- 

-* (2*) 
Au(p) , (2.11) ^ 

so as to get real expressions for propagators and vertex functions. For 

example, the Fourier transform of -iv>,(x) will be (2/a) sin(+pua)xu(p) 

rather than (l/ia)(l-e 
-Qua 

> ii,(P). Some of the resulting Feynman rules 

are given in Fig. 3. 
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Fig. 3. Some of the Feynman rules for Wilson's lattice QED. There 
are n-photon vertices for all n> 0. Sll(p) 5 (2/a) sin %pUa. 
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Strictly speaking, the Feynman rules require an integration over 

the momentum of each internal line. In the continuum theory, many of 

these integrations are trivial because of the momentum-conserving delta 

functions. On the lattice, however, one has at each vertex a factor 

a: g exp i(xk)*x = (2~)~ Gzer(xk) , 

where 

6 per(q) I 2 6(q + 2nN . 
no-0 

(2.12) 

It is shown in Appendix A that because the Feynman integrands are 

themselves periodic functions of momenta, the trivial integrations can 

still be done. Thus even on the lattice one can label Feynman graph 

lines with exactly conserved momenta and perform nontrivial integrations 

only over a set of loop momenta. 

Sharatchandra showed that this set of Feynman rules defines a mul- 

tiplicatively renormalizable lattice QED: fields and parameters can be 

resealed so that when a + 0 the Green's functions are finite and iden- 

tical to those of ordinary QED. (In fact, SharatEhandra considered com- 

pact QED, which is technically more complicated.) This is demonstrated 

in four steps. 

1. The Feynman rules reduce to the continuum Feynman rules when a + 0 

with momenta fixed. Since the Feynman rules reflect the momentum- 

space coefficients in the action, this merely means that the action 

has the correct classical continuum limit. However, it does imply 
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that if a normal diagram (one containing no multiphoton vertices) 

converges as a + 0, it agrees with the continuum result for the 

diagram. 

2. The list of primitively divergent diagrams and their superficial 

degrees of divergence (for a + 0) coincides with the list for con- 

tinuum QED. For normal diagrams this can be shown by bounding 

lattice quantities by continuum quantities. For example, for the 

photon propagator, 

implies 

1 
;;T'p ,:,2 $ ppa $ f f ' 

21 IPI+ l.l 

u a2 

Now imagine shrinking some internal fermion propagator to a point 

in a normal diagram. The loss of this propagator increases D by 

one unit, but a two-photon vertex is created which carries an ex- 

plicit factor a according to Fig. 3. Hence D-&s unchanged. This 

argument generalizes to show that the presence of multiphoton 

vertices does not interfere with power counting. 

3. All Feynman integrands possess Taylor expansions in powers of their 

external momenta. Ignoring infrared problems, e.g., by assuming 

a photon mass, this means that the BPH procedure of subtracting 

the first D+l terms in the Taylor expansions of divergent sub- 

graphs, with combinatorics handled by a forest formula, can be 
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implemented. It follows from point (1) that normal diagrams take 

on their continuum values when a + 0 after the subtractions are 

done. If a divergent subgraph contains a multiphoton vertex then 

it has the form aN times an integral of @(l/aN+D), Nzl. After 

~+l subtractions this becomes aNB(l/a N-l >, so all such diagrams 

vanish when a +.O. 

4. It remains to enumerate the counterterms which are required to im- 

plement the BPH subtractions. As in the continuum theory, the 

Ward identities are useful here. They are derived, as usual, by 

making a change of variables corresponding to an infinitesimal 

gauge transformation in the path integral for the vacuum functional 

in the presence of sources. The action proper is invariant under 

such a transformation but the gauge-fixing and source terms are 

not. The Ward identities state that the contribution of these 

terms does not affect the vacuum functional. It should be evident 

from Eqs. (2.9) and (2.10) that the Ward identities differ from 

their continuum versions only in the replacement of a by Vi. 
?J They 

read, in momentum space, 
-. 

CSn(k)pp(p + k,p) = S,'(p + k) - S,'(P) , 
lJ 

(2.13) - 

c Sv(k) fl,,Jk) = 0 , lJ 

; Su(kl)I~v~n(kl,k2,k3’kq) = 0 3 

(2.14) 

(2.15) 

where S,,(k) E 1 sinakua and I uvXr is the photon-photon scattering 
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amplitude. By substituting the Taylor expansions of the amplitudes 

into the Ward identities and using the lattice cubic symmetries one 

can show that I 
!,NX* 

is not divergent, the divergent terms are at worst 

logarithmic, and the momentum dependence and tensor structure of 

these terms is exactly as in continuum QED. Because the action 

differs by terms of order a from the continuum QED action, it fol- 

lows that multiplicative~renonnalization of fields and parameters 

generates precisely the needed counterterms, plus additional terms 

of order a Iln a which have no effect when a + 0. 

These arguments have been reviewed in detail so that the reader will 

understand exactly what ingredients go into a proof of perturbative 

equivalence of lattice and continuum field theories. In Sect. 5 I will 

discuss the problems that arise in applying the same arguments to the 

SIAC version of lattice QED. 

4. Faithful Lattice Transcription of QED 

In Sect. 2 it was pointed out that with the SLAC derivative one can 

construct a lattice free fermion theory with continuous chiral symmetry 

and a sensible spectrum. I now give an "existence proof", showing that 

in fact a lattice QED can be formulated which continues to enjoy these 

properties and makes sense in weak-coupling perturbation theory. This 

serves as a simple counterexample to statements in the literature that 

no such formulation is possible.16s1* 

The idea here is to make contact between continuum and lattice field 

theories via a momentum-space formulation which both share. This tech- 
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nique has been used by the SLAC group4 and by othere?] and in fact moti- 

vates the introduction of the SLAC gradient. 

The Euclidean action for ordinary continuum QED reads: 

I = c i fV - c?(x) $ ~[a~ + ieAy(x)]$(x) 
W IJ 

- m?(x)$(x) - . 
t 

(2.16) 

The first step is to fix the Coulomb gauge and eliminate the dependent 

variable A 0 by means of its equation of motion: 

I = (aoIl + 3 (3~ Xl2 -X$(X> + y,au14x) 

u 

- 4(x)$(x) - F e$(x)yjAj(x)JI(x) (2.17) 

+ e2 
J 

d4x' s(t - t')- $+(x)$(x)$+(x')$(x') . 
8x1;: - ;' 1 1 

It is to be emphasized that I is manifestly gauge-invariant because it is 

-written in terms of gauge-invariant fields: ';t is now the transverse 
-. 

photon field and $ is the Coulomb gauge (physical) electron field. All 

gauge degrees of freedom have been removed. These degrees of freedom are 

-not true quantum variables and should not be included in the transcription. 

to the lattice. The action (2.17) is now written in momentum space: 
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L k%(k)*:(-k) - ;(k)y*k;(k) - m;(k)i%d 

-e d4p d4q %(W;-%p)h) S4(p + q - k) (2.18) 
(2n)4 - 

+ 1 d4pd4qd4P. 1 
2 e2 

J (2*)8 11 - ill2 
$?k);(a)$(p);(q)64(k+p-J1-q) . 

I 

Next, impose a cutoff A on the magnitude of each component of momentum 

in Eq. (2.18). (This is why it was necessary to write I in terms of 

explicitly gauge-invariant variables. Had that not been done, gauge 

invariance would have been lost at this point.) The resulting action 

could equally well be interpreted as the momentum-space action of a lat- 

tice field theory, namely: 

I lattice = a8 c 3 d(x- y)b(x)*~(y) - a8 c 5(x> t yuDu(x- Y)$(Y) 
XYY X,Y,U 

- a4CmG(x)$(x) - al2 c ef(x.y,z)?(x)yjAj(y)$(s) 
X x,y,z,j 

+ al6 C + e2g(x,x’,y,y’)~+(x)W(~i)~+(Y)~(Y’) 3 c2*lg) 
x,x’ ,Y,Y’ 

where 

d(x-y) = 

Dub y> 
ik.(x-y) 

, 
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A 
f(X,Y,d = J d4kd4pd4q ei(k*x - p-y - q-2) s4tp + q -k) , 

-A w8 

P(X,X’,Y,Y’) = 
s 

Ad4kd4pd4qd4& 
,t-$ e 

i(k*x+p*y- 

(2nj12 
L-x’ -q*~‘)~4(~+~- II- qj . 

-A 

The nonlocal coefficient functions here are all translation-invariant and, 

except for g(x,x',y,y') which-contains the noncovariance associated with 

the Coulomb interaction, invariant under the lattice cubic symmetries. 

Du(x-y) is just the SEAC derivative operator. Note also that in this 

formulation there is no possibility of assigning the photon field Aj(x) 

to the links of the lattice: all fields are treated on an equal footing 

and may as well be situated on the sites. 

The lattice theory (2.19) may be quantized by the path-integral 

technique provided one integrates only over transverse gauge fields with 

Z.&k) = 0. It is evident that in all respects - including perturbation 

theory - the theory is equivalent to Coulomb gauge continuum QED regular- 

ized by a momentum cutoff. To each continuum operator there corresponds 

a lattice operator, obtained by a double Fourier transform, with the same 
-. 

regularized matrix elements. The fermion spectrum is sensible and there 

is chiral symmetry for m = 0. Also, there are no umklapp processes: 

momentum conservation in Feynman diagrams is exact rather than periodic, 

and propagators and vertex functions are identical to those of continuum 

QED. The theory can be given a finite a + 0 limit by including in the 

momentum-space action the counterterms needed to renormalize continuum 

QED. Because of the momentum-cutoff regularization, photon mass counter- 

terms will be needed. For $4 theory in l+l dimensions all necessary 
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counterterms are known exactly and this program has been carried out 

explicitly by Bronzan. 21 

Although this procedure provides a lattice theory which faithfully 

represents continuum QED, it is not a lattice gauge theory. A lattice 

gauge theory possesses a local gauge group on the lattice under which the 

action is invariant but the fields transform nontrivially. The above 

theory does not qualify because the gauge freedom in the fields was re- 

moved before transcription to the lattice. In the next section I dis- 

cuss the lattice gauge theory constructed using the SLAC derivative. 

The lattice theory constructed above possesses neither a local gauge 

symmetry nor periodic momentum conservation. It is easy to understand 

qualitatively why these properties are connected. At a technical level, 

perturbative proofs of Ward identities require shifts of integration 

variables which are made possible by periodicity. Mare generally, con- 

sider a term in the lattice action 

F(x1,x2,... Xn> 0 (x,> $ (x,> - * * $ (x,) , 

where 4 is a generic field. Assuming that F is translation invariant its 
-. 

Fourier transform F(pl,p2... p,) can have support only when c pi = fJ 

mod 2nla. To obtain exact momentum conservation F must be so chosen that 

its support lies in the subregion c pi = 0: not all momenta can be al- 

lowed to become large simultaneously. This is the case for the coeffi- 

cient functions in Eq. (2.19). However, a gauge symmetry which is local 

in coordinate space will affect the high-momentum components of fields. 

A gauge-invariant coupling term will couple high-momentum components of 
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fields, so that in general the support of F cannot be restricted to 

CPi = 0. 

5. SLAC Lattice Gauge Theory 

A. Introduction 

This section begins the discussion of the lattice gauge theory with 

action 

I = a4 c L F2 (x) + a4 
x,p,v 4 lJv 

Y 

-a "C q(x)v,, $ D,,(x- y)J,(y) exp iea c Au(z) 
X,Y¶U z=x 

-a "C mJ,W$W , 
x 

(2.20) 

where FuV(x) = V>v(x) - VtAu(x) , 

A 4 
and Du(x) = 

.I- 
+ ikue ik*x 

-A (277) 
-. 

= (-1) 
xpla 4 

la x if xII # 0 but xv = 0 for all v # u - 
IJ 

= 0 otherwise, (2.21) 

and the-notation E AU(z) means the following. Owing to the presence 
z=x 

in Eq.(2.20) of the SLAC derivative function Du(x-y), the summation 

need only be defined in case x ~ ic Y,, but xv = y, for all v # u (x and y 

are separated in the u direction only). In that case it means the sum 
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of the values of AP on the oriented links between x and y: 

Y 

c 
z=x 

An(z) means 

(yU-xP-4/a (xp-yu-a) /a 

fJ (Y, - XJ c c 
n=O 

Ai(x+nau) - ecxu - Y,) 
n=O 

Ap(y+nap) . 

For e = 0 the fermion action is that of the SLAC formulation, with un- 

doubled spectrum and continuous chiral symmetry for m = 0. The action 

is invariant under the gauge transformations of Eq. (2.10). Since the 

photon action is exactly as in the Wilson formulation it should be clear 

that the Ward identities are still given by Eqs. (2.13) -(2.15). In 

particular, the nearest-neighbor derivative, not the SLAC derivative, 

appears in Ward identities. (Nakawaki*O has considered a lattice theory 

in which all derivatives are taken to be ik ~ in momentum space. This 

simply replaces Su(k) by kP everywhere without affecting the arguments 

to follow.) However, the consequences of the Ward identities are vastly 

different for the theories (2.9) and (2.20) due to the different fermion 

spectra. This will emerge shortly. 

The theory (2.20) possesses a conserved electromagnetic current which 

can be identified by considering the coupling to an external field:- 

jp(4 = 4 
61 

a 6A rt(z) Aext = o 
!-I 

(2.22) 

a -ea 5 gy $(x)y,,Du(x-y)JI(y) exp iea 5 A,,(w) + h.c. . 

x cz <y 
w=x 

P lJ P 
zv=xv ,v#FI 
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There is also an axial current, conserved for m = 0: 

C V;j:(z) = 2im$(z)y5J)(z) , 
lJ 

(2.23) 

j:(z) = a5 xFy ~(x)Y~Y~D~(x-Y)~J(Y) exP iea 5 Au(w) + h-c. 
W=X 

x IZ dy 
1! !J !J 

Zy'Xv ,v#lJ 

Both these currents are gauge invariant. 

By expanding the exponential in the action and introducing Fourier 

transforms, one derives what I shall call the naive Feynman rules. 

These are given in Fig. 4. Momentum conservation in this theory is once 

again module 2n/a. The first point to observe is that the continuum 

Feynman rules are indeed recovered when a + 0 with all momenta fixed. 

This verifies that the action has the correct classical continuum limit, 

a fact which is not immediately apparent from Eq. (2.20). The most 

striking feature of the naive Feynman rules, however, is the presence of 

infrared singularities in the vertex functions. The one-photon vertex, 

for example, 

E (p) -E (p+k) -- 
ey u S,,(k) , 

behaves as -2rreyulaku as k + O+ with p + r/a from below and 
!J lJ 

P; + k,, -+ x/a from above. This is a consequence of the discontinuity in 

gp(p) at Pp = r/a, and thus, indirectly, of the Ward identity (2.13) re- 
* 

lating the vertex to the fermion propagator. These singularities have 

important consequences for the renormalization program a la Sharatchandra. 

Due to the singularities and discontinuities in the vertices, naive 
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------$ A,&P)= BP -(I-X) 
S,(p) S,(P) 

P P S2( p) I 

P [ 1 
-I .sF(p) = 5 yp$ (PI +m 

-e'$ 
y 

9 P S,Jk)S,(Q, p 
(p)-~~(p+k)-~~(p+P)+~~(p+k+P) 

I 

l$+'(p;k ,,... k,+,)=-$(p;k ,,... k;)+$(p+k,+,;k ,,... k,) 

Fig. 4. Naive Feynman rules for SLAC lattice QED. 
SU(p) : (2/a) sin +pUa. 
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Feynman integrands do not possess Taylor expansions in powers of external 

momenta. Furthermore, the singularities alter the results of naive power 

counting. A diagram with F external fermion lines and B external boson 

lines would normally have superficial degree of divergence D = 4-(3/2)F-B. 

Here, however, for each external photon line there is a factor l/Su(k) 

which sits outside the integration and does not help to converge it. The 

integral is left with D = 4 - $ F. The infinite class of diagrams with 

F = 0 or 2 is superficially divergent! Due to the infrared singularities, 

then, the crucial steps 2 and 3 in the renormalization program of Sect. 3 

do not go through for SLAC fermions, and the theory indeed appears non- 

renormalizable. 

Karsten and Smit base their objections to the SLAC lattice gauge 

theory on the above points, which they have explicitly verified in the 

example of the one-loop vacuum polarization.l* They found that II 
PV (k) 

had D = 2 even after the cancellations due to gauge invariance. In the 

continuum limit there are infrared singular terms with unacceptable 

(nonlocal) tensor structure in both the divergent and finite terms, a 

typical structure being 
- 

n,,,,(k) - L c lk,\ - sign ku sign k 
IkJ 1 

V 

+ other singular terms. 

(2.24). - 

(Note that the Ward identity xk II = 0 is satisfied!) 
u lJ w 

Furthermore, since the necessary Taylor expansions do not exist, there 

is no natural way to make the separation into divergent terms and finite 
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remainders which defines the counterterms required. Since the Green's 

functions are not differentiable, the conventional normalization condi- 

tions do not make sense. 

It is important to understand clearly the origin of the infrared 

singularities in the vertex functions. They come from the term in the 

action 

-a* C $(x)-f 
X,Y¶!J u 

The exponential factor, in 

+ np - Y)GJ(Y) exp iea t AU(z) . (2.25) 
z=x 

momentum space, involves a geometric sum: 

Y A 4 
exp iea C 

/ 
dke ikaz ikpa'2 

e ;i 04 
z=x (2*) 4 

P 

-A 

A 

s 
d4k e ik*x 

= exp iea 
_ eik*Y 

- 
-* (W4 l _ eikPa 

elkpat XV(k) 

A 

= exp -e 
/ 

d4k 
.ik*x _ eik'y u 

- 
-A (W4 

S,, 04 A,,(k) . (2.26) 

The singular factors l/Su(k) enter the vertices via the expansion of this 

exponential in powers of e. However, consider the behavior of the inte- 

grand in the infrared region ku + 0; it is proportional to i(xu - yJ: 

Since x and y are-summed over all lattice sites in (2.25), the distance 

between them is unbounded. This means that the expansion of the expo- 

nential-to any finite order n in e cannot be a uniformly valid approxi- 

mation over the entire range of values of lxu - ~~1. If the expansion 

is attempted anyway, its nth term will behave as Ix 
IJ 

- yul 
n-l . Since 
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the function Du(x-y) in (2.25) falls off only as Ixu-yu\ -1 , the indi- 

vidual terms in the perturbation expansion will be divergent in the in- 

frared. The conclusion is that the infrared singularities in the naive 

Feynman rules are symptomatic of an invalid perturbation expansion which 

does not accurately represent the infrared behavior of the theory. I 

emphasize that the fault lies with the perturbative expansion rather than 

with any inconsistency in the theory. If the expansion in powers of e is 

avoided then the exponential enters the sum (2.25) as a rapidly oscillating 

phase when Ixu - yul is large. Such a phase factor actually improves 

convergence of the sum. Finally, note that perturbation theory can fail 

even when the fermion spectrum is doubled. If Du(x-y) has a power-law 

falloff faster than Ix - yPI -1 
IJ 

then as pointed out in Sect. 2 the spec- 

trum is doubled, but singularities will still appear at sufficiently high 

order in perturbation theory. The equivalent momentum-space statement is 

that even if E,(p) is continuous, a discontinuity in its nth derivative 

induces a singularity in the (n+l> - photon vertex function. This fol- 

lows from the recursion relation for the vertices in Fig. 4. A nonsingu- 

lar perturbation expansion is obtained only if Du(x-y) falls faster than 
-. 

any power of Ix 
u 

- yuj. Such a Dn(x-y) strongly suppresses the contri- 

butions from the region of large Ix, - yul where the expansion of the 

exponential is inualid. 

The failure of naive perturbation theory discussed above becomes 

evident-from the structure of II TV in Eq. (2.24). Consider a diagram in 

which the one-loop IIuv(k) appears as a subgraph. The integration over 

k encounters a llkusingularity. Such a singularity is not integrable, in 

contrast to the usual infrared singularities which often are, e.g., 
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J d4k/k2. Since the singularity arises from a vertex function rather 

than a propagator, it also is not regularized by a photon mass, and 

simply leads to a divergent amplitude indicating the breakdown of per- 

turbation theory. 

B. Removal of the Infrared Problem 

Now that the origin of the infrared problems which plague naive 

perturbation theory is clear, how can they be circumvented? The most 

obvious approach is simply to impose a cutoff on Ix,-y,,( in the nonlocal 

interaction Lagrangian: 
Y 

c 
X,Y,lJ 

$(x> Y,,* D,,(x-y)$(y) expieax Au(s) 
z=x 

-c 3;(x) Y 
X,Y,P 

~ + Dp (x-y) J, (Y> 

Y 
+ c SW Y ~ $ D,, (X-Y) JI (Y) iea c Au(z)-1 . 

X,Ys!J 2=x I 

I x,,-Y; 1 < Na 

The cutoff permits a nonsingular expansion in powers of e but destroys 

manifest gauge invariance. Therefore the cutoff must be imposed in the 

fixed gauge in which quantization is performed. This should be a physical - 

gauge, since otherwise the loss of the Ward identities will jeopardize 

unitarity. 

I now show that in fact an ad hoc cutoff is unnecessary since the 

theory generates its own cutoff. Consider for example the bare one-photon 

vertex function, and add to it all diagrams in which additional photons 

are emitted and absorbed at the same vertex (Fig. 5). The sum gives the 

vertex function computed to lowest order in the interaction Lagrangian 
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+ + . . . 

Fig. 5. A class of diagrams whose summation removes the infrared 
singularity from the vertex function and permits a non- 
singular perturbation expansion. 
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rather than lowest order in e. The diagrams are most easily surmned in 

coordinate space, where they yield 

c 5 
X’ rY' ,Fc a' ax' 

iea SF(x-x')ynDu(x' -y')SF(y' -y)Auv(z- z') 

[ 

Y’ Y’ 
x 1 - 3 e2a2 C C 

w =x' w =x' A?ql(wl - w2) + . . . 

1 2 

+g (2 

Y’ 
n-1>(2n-3)...l(ea)2n C A (wl-w2)... 

W1""W2n=X 
I iJlJ 

Li (w up 2n-1 - W2n) + . . . 1 , (2.27) 

where the combinatorial factor (2n-1) (2n-3)...1 is the number of ways 

of pairing the points w 
1 

,...w 
2n in the photon propagators. The sum in 

brackets exponentiates, giving 

exp - 1. .2,2 
2 5 

w1,w2=x’ 
AJw1:w2) 

A 
12 = exp - - e 

/ 
d4k e iksx' ik.y' 2 

- 2 
-A m4 

+; 
AJk) . (2.28) 

A similar calculation applies to the multiphoton vertex functions. The 

inclusion of these photon tadpole contributions to the vertex functions 

thus generates effective Feynman vertices which differ from the naive 
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ones of Fig. 4 only in the replacement 

A 
12 

D,,(x-Y) + a,(~-y) : Du(x-y)exp-me 
d4k eik*x-eik*y 2 

- 
J I -* (2d4 S,,(k) A,,,,(k) 

= Dub-y) exp 2 - 1 e2 -a 
2 sin2 4 ku(x-y) 

sin2 JI kua 
' A,,,,(k) . (2.29) 

At issue is the large-distance behavior of gnu(x). Sincez2 

sin2 4 nx 
2 - 2ad 

nsin 4x n-+m per(x) ' 

one has 

g,,(X) x Du(x) exp - re2 
/ 

h 4 
+ Ap,,(k)~(k,,)xu , (2.30) 

IJ -* (2s) 

and G@,(x) falls off exponentially fast. It follows that the Fourier 

transformgu(p) and all its derivatives are continuous, and that there 

are no infrared singularities in any of the modified vertices. Although 

DU(p) as a function of pu has unit slope at pu=O, there is no reason for 
-.v 
gu(p) to share this property. This means that ultimately a finite re- 

normalization will be required to express the theory in terms of a-charge - 

defined by the static limit of the electron-photon vertex rather than the 

parameter e. This is discussed more fully below. Figure 6 shows the 

expected behavior of gu(p). 

In general, the summation of a selected class of diagrams is not a 

gauge-invariant procedure. This is reflected in the explicit appearance 

of the photon propagator in Eq. (2.29). gu(x-y) is thus a gauge-dependent 
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2-a2 

Fig. 6. Qualitative behavior of the function$(p) appearing in 
the effective Feynman rules. 

-_ 
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function. It will be shown, however, that the S-matrix has a gauge- 

invariant continuum limit order by order in the modified perturbation 

expansion. 

Summing the diagrams of Fig. 7 effects the replacement DP(x-y) + 

Ql (x-y) in the fermion propagator, resulting in a doubled spectrum 
u 

according to the analysis in Sect. 2. Since we wish to develop a 

perturbation expansion about the free field theory with undoubled fermion 

spectrum, this replacement must be undone by the addition of a counterterm 

c q(x) yu $ [Dub-y) - G@,,(x-y) Q(y) 3 , 
X,Y,U 

(2.31) 

again in the fixed, physical, quantization gauge. Of course this amounts 

to an assumption that the interacting theory (2.20) has the same qualitative 

spectrum as the noninteracting e=O theory. The validity of this assump- 

tion is discussed further in Sect. 8. 

The resummation of perturbation theory discussed above is most clearly 

understood in the Hamiltonian formulation of the theory in the physical 

Coulomb gauge.23 The Hamiltonian (now on a three-dimensional lattice) is 

H = a3&[iEf(z) + iB2(z) + m?(z) q(z)1 

X 

jr 
+ a6 c G(xf ujiDj(&;)$(;) expieaz A;(z) 9 

-b-b -b-b 
X,Ysj z-x 

+ 
v .;j& = -6 

S,O 
, G(C) = l/Z2(i$ , 

The summation of photon tadpole diagrams simply corresponds to normal- 

-c 
v.ZT=o . (2.32) 
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+fs+ Q + . . . 
2 -81 4032*7 

Fig. 7. A class of diagrams whose summation would double the 
fermion spectrum. 
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ordering the exponential in Eq. (2.32). Including the counterterm 

analogous to (2.31) the Hamiltonian becomes: 

H = a3F[$ E;(z) + $ B2(z) + m&) &)] 

+ a6 Yj + Dj (z-;)J,(;) 

5: 
: expieax A:(z) - 1 : , 

++ 
Z'X I 

A 
12 

gj(z-G) = Dj(z-G) exp -ye J d3k 

-* (2s) 32 IX, I 
2 6) 

X1-J . [ I z2 (iL> 
(2.33) 

H is gauge invariant because the fields appearing in it are, but Ward 

identities which state that Su(k) terms in the photon propagator do not 

contribute to physical quantities do not hold. This may be understood 

as follows. In a more general gauge, related to the Coulomb gauge by a 

time-independent gauge transformation, a structzre T(t) D,(z-T) JI(;) in 

Eq. (2.33) appears as $(z)Dj(z-;) $(G>expiea E A;(t). Thus "4. is 
;zg 

coupled to the conserved current 
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ji(Z) = -ea4 

c[ 

i(z) yi D,(g-;)& 
*+ 
XSY 

Xi-<Zi<Yi 

Xj'Zj, j#i 

;; 
+ $6) Y,~~(~-~)$(~) :expieax A:(z)-1 : + h.c. 

S=?i 1 
(in Coulomb gauge) as required by gauge invariance, while & couples to 

the nonconserved 

+ 
Y 

j;(Z) = -ea4 C i%> up@ J, (3 :expiea c A; 6 : + h.c. 
-L-k 
XSY Z=?i 

xi'zi'Yi 

xj=zj,j#i 

L jo(3 = - + + -e$(z)$(z) in either case. ] In continuum QED 4 and 4 enter 

the action only through the local field it, so both couple to the same 

current; 

The effective vertices possess all the properties required for a 

proof of renormalizability as in Sect. 3. The functions involved are 

Cm and possess the required Taylor expansions. Furthermore, naive power 

counting now works properly. A diagram with F external fermions and B 

external photons is 1/Sc(kl)SS(k2)... SU(kB) times an integral with super- 

ficial D = 4 - $ F. But the absence of infrared singularities requires 

that the Taylor expansions of the vertex functions in the integrand be- 

3F-B. gin with the term of order klak2B...kBu, reducing D to 4 - 5 

Similarly the numerator of an n-photon vertex must go as kluk2u...knu 

n-l when the k's are small, and this must be accompanied by a factor a on 
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dimensional grounds. Hence multiphoton vertices are accompanied by 

factors of a as required in the arguments of Sect. 3. However, one 

obstacle remains to the application of Sharatchandra's arguments to the 

SLAC lattice gauge theory: the presence in the fermion propagator of 

the discontinuous function Eu(p). This problem is addressed next. 

6. Proof of Renormalizability 

So far it has been established that in the modified perturbation 

expansion for the STAC lattice gauge theory, the vertices are infinitely 

differentiable functions of momenta and naive power counting correctly 

gives the degree of divergence of Feynman integrals. In general, dia- 

grams will actually have their full superficial degrees of divergence 

since the Ward identities which normally reduce D do not hold order by 

order in this expansion. However, Feynman integrands still do not pos- 

sess Taylor expansions because the fennion propagators contain the dis- 

continuous function Xu(p). This difficulty may exist in any lattice field 

theory in which there is (a) periodic momentum conservation, and (b) 

fermions with undoubled spectrum. In-this section I explain how to carry 

out a subtractive renormalization program for such theories. The next 

section considers the form of the counterterms required to implement the 

subtractions. 

Consider an arbitrary Feynman diagram. The corresponding amplitude 

takes the form 

A(k) = [lFes [-$-] I(L,k) LeJces (2s)4 6zer (xmomenta)] (2-34) 
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where k denotes 

rules. At this 

because for lil 
!J 

the external momenta and I is written using the Feynman 

point I(ll,k) possesses an expansion in powers of k 

,I<As n"u(1) = IIu which is perfectly continuous. A(k) does 

not have an expansion, though, because the periodic &functions contain 

additional dependence on k. 

Choose now a subset iq) of the momenta {!L) to act as independent 

loop momenta. According to Appendix A the trivial integrations over 

IL1 - (9) may be done provided I(ll,k) is a periodic function; provided, 

in other words, the fermion propagators are written in terms of the 

discontinuous au(P.) instead of simply II . 
P 

The integrations then result 

in a discontinuous integrand I(q,k). However, since zu(L) is piecewise 

continuous, the domain of integration can be divided into subregions with 

I(q,k) continuous in each. 

An efficient way to do this is to return to Eq. (2.34) and to sub- 

stitute for the periodic &functions 

6zer(p) = v C &(pu + 2nuN . 

nu= - p, 

(2.35) 

<A, only finitely many terms in the sum can lines are restricted by leu 

actually contribute. Doing trivial integrations then yields 

Since only finitely many lines enter each vertex of the graph, and all 

A(k) = c j [ ~~~*A~] Ij(q,k) t,,n,u ‘[n- ,‘;,,,k),]} ’ (2.36) 
1.e., a sum of integrals indexed by j. The integrands Ij(q,k) are 
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generally all different, as are the functions Ily(q,k) which give the uth 

component of the momentum in line 11 in terms of q and k. In writing 

Ij(q,k), Eu(r) is to be replaced by Ilu as is permitted by the e-functions. 

Each integrand I 
j 

(q,k) thus has a Taylor expansion in the variables k. 

Let j = 0 label the integral with no umklapps - nu = 0 in Eq. (2.35) for 

every periodic d-function in Eq. (2.34). The terms j #O are diagrams in 

which momentum components in multiples of 2A enter vertices "from no- 

where" in all possible ways. 

Consider one particular integral labelled by j. The integral will 

be made finite in the limit a + 0 by replacing Ij(q,k) by a renormalized 

integrand Rj(q,k) via the following prescription. As in ordinary BPH 

renormalization, lay down forests of nonoverlapping boxes on the diagram, 

each box surrounding a renormalization part - a 2-, 3-, or O-point 

function. Make the usual subtractions of the first D+l terms of the 

Taylor expansions of the boxed subgraphs, with the following exception. 

If a box contains an umklapp process (if the external momenta of the 

boxed subgraph do not sum to zero, but to a multiple of 212, which can 

happen only for 3- and O-point functions) then no subtractions need be 

made for that box. The reason for this excepti,on is the following. 

According to the usual criterion a Feynman integral converges if all 

subintegrations have D<O, a subintegrationbeing an integral over a 

subset of the q's with all other momenta held fixed as a + 0. The in- 

tegration over the internal momenta of a boxed umklapp process does not 

count as a subintegration because the external momenta cannot be held 

fixed when a + 0. Renormalized Green's functions are not required to be 

finite when their external momenta approach infinity! 
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After the subtractions are made, the jth integral is guaranteed to 

be finite when a -+ 0, even ignoring the B-function constraints in Eq. 

(2.36). The &functions impose additional restrictions on the region of 

integration, so including them does not make a formerly finite integral 

diverge. As in Sect. 3, if the diagram under consideration includes a 

multiphoton vertex then the explicit factors of a in such a vertex cause 

the renormalized diagram to vanish as a + 0. For a normal diagram,. the 

integrand Io(q,k) of the no-umklapp term in Eq. (2.36) becomes the con- 

tinuum Feynman integrand for the same diagram when a + 0 (provided the 

continuum parameter e is identified as the coefficient of y in the zero- 
LJ 

momentum limit of the lattice one-photon vertex). The B-functions make 

a negligible contribution in the limit a + 0, so the renormalized j = 0 

integral at a = 0 equals the corresponding renormalized continuum inte- 

gral. Finally, consider the j # 0 contributions to a normal diagram. 

The integral of Rj(q,k) is finite. Now consider the effect of the 8- 

functions. There is a vertex of the graph at which some components of the 

three entering momenta sum to 2nA, n # 0. Since no momentum exceeds A 

(e-functions!), at least two momenta are large on the scale A (and in- 

cidentally n = f. 1). These large momenta may be traced through the graph; 

eventually a large momentum must flow through a line carrying one of the 

integration momenta q. But if one has an integral from -A to +A, finite 

when A + m, and adds a &function requiring the integration variable to 

be of order A, the result vanishes for A + *. Hence all j # 0 terms 

vanish for a + 0. 

It has now been shown that in the modified perturbation expansion 

for the SLAC lattice gauge theory the subtracted Feynman integrals yield 
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the usual results of continuum QED order by order when a + 0. It follows 

trivially that the a + 0 limit of the S-matrix is in fact gauge-invariant 

despite the gauge dependence of the lattice expansion due to the summa- 

tion of photon tadpoles. It is clear that the subtractions described 

above can be implemented by counterterms in the action, but the structure 

of these counterterms is not as simple as in the case of Wilson's QED. 

This is discussed next. 

7. Structure of Counterterms 

A. Examples 

This section presents some examples of the renormalization program 

just discussed for lattice theories with undoubled fermion spectra, with 

the purpose of exhibiting the types of counterterms to be expected. 

Since the Ward identities are not maintained order by order in the modi- 

fied perturbation expansion for lattice QED, there is no formal differ- 

ence between the renormalization program for lattice theories with and 

without local gauge invariance. Therefore, to save indices, the examples 

here are taken from a theory of SLAC fermions interacting with scalar 

mesons via a gG(x>$(x)e(x) coupling. 
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1. Scalar Self-Enerpv 

The one-loop scalar self-energy (Fig. 8) is given by 

A 

II = g2Tr 
/ 

d4qd4Q SF(q)SF(ll) g4 per(P+k-q) 6Zer(q.- II-p’) 

-A 
A 

= g2Tr 
c/ 

d4qd4Q SF(q)SF(L)64(p+~-q+2nA)64(q-%-p'+2mA) 
n,m -A -- 

A 

= g2Tr 
zl- 

d4L SF(p+II+2nA)SF(R) n B(A - (pu+LV+2npAI) 
n,m -A IJ 

x s4cp - p' + 2(m + n)Al 9 (2.37) 

where m and n are four-vectors with integer components. The fact that 

all momentum components are bounded in magnitude by A imposes the re- 

strictions m = - n and n 
!J 

= 0, f 1. Extracting the overall momentum 

conserving B-function gives 

A 

II(p) = g2Tr d4L sF(p+9,+2nA)SF(L) fl 0(*- lpu+tu+2n,,*/) 9 
IJ 

(2.38) 

where SF(q) now means (y-q + m) 
-1 

, E,(q) no longer appearing. 

Consider first the no-umklapp (n = 0) contribution: 

A-P,, 

e(~u) 
s 

d$, + et-pJ Tr SF(p+ll)SF(L).(2.3q) 

-A 
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Fig. 8. The scalar self-energy in the lattice $I@$ theory. 
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It is clear that apart from the e-functions the integrals have expansions 

in powers of pu of which the terms up to @(p2) may be divergent, while 

subsequent terms must give the continuum results when a + 0 with p.fixed. 

The discontinuous behavior of the integrand has been isolated in the 8- 

functions which appear because one must know the sign of pu to tell 

whether pu + 11u > A or p 
u 

+ &u < -A is possible for 111u1 < A. The 

required counterterms will have the form 

e(+po)e(+pl)e(rp2)e(+P3) (A +C tutu + C Cuv~U~v)~(~)~(-~)~ (2.40) 
u U,V 

with A,B ,C 
lJ uv 

divergent constants. Indeed, one can say more: since 

II(p) has definite symmetry under p e -p, 8(pu) must appear in the even 

and odd combinations e(pu> + e(-pu) = 1 and e(pu) - 8(-pu) = sign pu, 

giving counterterms 

C,,P,P, + c D IP 1 IP,~);(P);(-P) , (2.41) 
WV pv u 

which may'be further restricted by the lattice cubic symmetries. These 

counterterms will be nonlocal when expressed in position space, but this 

is to be expected since the bare action was nonlocal as well. It would 

be wrong to conclude from this nonlocality that infinitely many counter- 

terms are required (counting separately the nearest-neighbor, next- 

nearest-neighbor, etc. terms) since in momentum space there are clearly 

finitely many divergent constants. 

Next, examine a typical contribution to n(p) containing an 
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umklapp (no = 1, z = 0): 

1 Tr SF(po+to+2A,~ +it)s,(a~- c2m 

Evidently counterterms of the form (2.40) will suffice to make this finite 

for a -+ 0. After-the removal of the terms up to 0(p2) in the expansion 

of the above integral, the remaining terms vanish because the umklapp 

restricts the !Zo integration to a small region near -A, as expected from 

the arguments of Sec. VI. All umklapp contributions vanish similarly and 

when a + 0 the continuum result is recovered from the no-umklapp term. 

2. Vertex Function 

The one-loop vertex correction (Fig. 9) reads: 

A 

r = g3 G(q) 
/ 

d4kd4k'd4P. SF(k)SF(k')A(L) 6;er(p+k' -k) 

-A 

x 6 :per(k - 9. - q) 6zer (L-k' -q'> v(-q') , (2.43) 

where A(X) = l/S2(!2). This becomes 

r = g3 G(q) 
A 

d4kd4k'd4P, S (k)S (k')A(ll) 
F F. 

x 64(p+k' - k+2nA)64(k-II-q+2n'A>~4(L-k'-q'+2n"A)~(-q') 
A 

= g3 ad d4L SF(&+q-2n'A)SF(9,-q'+2n"A)A(ll) (2.44) 

x n ec*- IPy+qp- 2n;AI)e(A- I%u-q;+2n~AI)64Cp-q-q'+2(n+n1+n")*lv(-q') . 
!J 



- 53 : 

.- 

P 
-- 3- 

9’ 

2-8, 

4032A9 

Fig. 9. Vertex correction in $&$ theory. 
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According to Sect. 6 subtractions are only required in the case of 

overall momentum conservation n + n' + n" = 0. Consider the no-umklapp 

f-em n = n' = n' ' = 0: 

1 SF(~+q)SF(~-q')A(~)64(p-q-q')v(-q'). 

(2.45) 

The conditions on the range of integration can be expressed using 

B-functions, but this is not necessary: since the integral is only 

logarithmically divergent, the limits of integration can be taken as 

-A to A with vanishing error as A + m. The integrand requires only a 

subtraction of its value at q = q' = 0, which can evidently be effected 

by a counterterm of the same form as in the cutoff continuum theory. 

For a typical umklapp term, no = 0, nb = -1, n'd = +l, z = ~'=~'= 0, 

g3 G (4) e q> e C-9,) 
/ 

min(-A-qo,-A+q'o) 

"/ 

min(A,A+q;,A-qi) dLO dgi 
-A i max(-A,-A+q;,-A-qi) 1 

x SF(llo+qo+2A,ji+;;)SF(Lo-q~+2A,ii';;)A(~)~4(p-q-q')v(-q') , (2.46) 

the situation is even better. Since the integrand has D = 0, the limited 

range of the Lo integral causes it to vanish as a + 0 and no counterterm 

is needed. 

3. Two-Loop Scalar Self-Energy 

This is included as an example of the vanishing of umklapp contri- 

butions beyond one-loop order. The only diagram which is not simply an 
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insertion of the one-loop fermion propagator gives (Fig. 10): 

A 
n(4) = g4w -4 Tr 

s 
d4kd4k'd4!Zd4!L'd4q SF(k)SF(k') (2.47) 

-A 

x SF(n’)SF(e)A(q)6~er(p+k’ -k) 6zer(k- II- q)S4 per(e-V-p')6;er(~'+q-k') . 

A 
n(4) (P) = g4Tr 

=.I- m,m',n 
d4kd4!2SF(k)SF(k-p-2mA)SF(e-p+2nA)S,(e) 

-A 
(2.48) x A(k-1+2m'A) n e(A- (ku-pP-2muAI)e(A-\&u-pll+2nuAj)8 (A-(k,,-Lp+2~~*() . 

u 

In addition to the overall D = 2 integration there are various subinte- 

grals having D = 0. The overlapping divergences in the no-umklapp term 

are handled exactly as in the continuum theory: the overall subtractions 

plus the inclusion of the vertex counterterms discussed above yield a 

finite result. Consider now the umklapp contribution 

-+t m = n = 0, m' = -1, m 5 0: 
0 

g4 
n/ 

min(A,A+pU) 

dk, de,, 

I 
Tr S,(~)S~(~-P)S~(L-~)S~(~)A(~~-~~- 2A&3 

' max(-A,-A+pu) 

x 8(k -II 0 0 -A) n e(A-lki-'lij) . 
i 

(2.49) 

Here the explicitly indicated range of integration is not particularly 

small. However, there is the e-function restriction k 
0 

- a0 > A. The 

subintegral over k at fixed II is therefore restricted to a small region 

near k 
0 

= A, which causes it to vanish as A + m since it had D = 0. 
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Fig. 10. A contribution to the two-loop scalar 
self-energy in T$g theory. 
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Similarly for the L-subintegral at fixed k. Finally, a subintegral over 

k + II at fixed k - g vanishes as A + m since a fixed k - II will fail to 

satisfy k0 - LO > A. Then, after counterterms of the form (2.40) have 

removed the terms up to @(p2) in the integrand's Taylor expansion the 

result must vanish since k. - co > A requires the integration variables 

-to be large. 

B. Summary 

From these examples it appears that in lattice theories with un- 

doubled fermions one must expect momentum-space counterterms which are 

polynomials in the momenta, plus sign p 
u 

functions times such polynomials. 

The dependence on sign pu reflects the fact that although the lattice 

Green's functions do not have Taylor expansions about pu = 0, they do 

possess "one-sided" Taylor expansions valid when p 
II 

>Oorp x0. The 
!J 

counterterms thus serve to impose appropriate normalization conditions 

on the left and right limits and derivatives of the Green's functions at 

PlJ 
= 0. Only finitely many types of counterterms arise although they are 

nonlocal in position space. Some of the counterterms which are simple 

polynomials and only logarithmically divergent can be generated by re- - 

scaling fields and parameters, as in Wilson's QED, but others must be 

added by hand. 

For SLAC lattice QED, Eq. (2.20), the prescription is as follows. 

First rescale fields and parameters in Eq. (2.20), writing it as a renor- 

malized action plus counterterms. Next sum the photon tadpole diagrams 

to produce an infrared finite set of Feynman rules. Third, execute the 

renormalization program of this and the preceding sections. This both 
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determines the logarithmically divergent multiplicative renormalization 

constants and requires additional counterterms. In particular, photon 

mass and photon-photon scattering counterterms will be needed due to the 

absence of Ward identities. Finally, to make contact with continuum QED 

a finite charge renormalization is needed to express the theory in terms 

.of a charge defined by the static limit of the effective one-photon 

vertex: ephysica; = 5; (0) e. This prescription is straightforward in 

the covariant gauge of Eq. (2.20) in which%;(O) is independent of u. 

However, the normal-ordering procedure for removing infrared problems 

violates unitarity unless carried out in a physical gauge, and physical 

gauges are never covariant. Then one must admit the possibility of non- 

covariant counterterms; in particular the bare coupling constant e lJ 

associated with A,, can depend on u. (For example, in the Hamiltonian 

Coulomb gauge formulation the parameter e in the instantaneous Coulomb 

interaction must be allowed to renormalize independently of the coupling 

to the transverse photons.) After the resealings 

(2.50) 

and the summation of photon tadpole diagrams, it is the parameter eR,, 

which appears in the definition of gu(x-y), -Eq. (2.29). The final 

finite charge renormalization is then 

ephysical = b;(O) eRu , (2.51) 

which implicitly determines e R!J 
in terms of the measured e physical' 
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C. The Axial Current 

The fate of the axial current and the axial-vector Ward-identity, 

Eq. (2.23), in the present treatment are easy to see. The axial current 

couples to vertices exactly like the photon, but with an extra factor 

Y5’ In naive perturbation theory its matrix elements, like most Green's 

'functions, are infrared divergent. After the summation of photon tadpole 

diagrams, matrix elements of the normal-ordered current 

Y 
j:(z) = a5 c SW Y~Y~$(x-Y)$(Y) : exp lea C A,, (w> : +h.c. 

XYY W=X 
xu 2 ill < yu 
zy= xu, v#!.l 

are guaranteed to be infrared-finite. However, in the resummed pertur- 

bation expansion the vector Ward identities are not available to reduce 

the degrees of divergence of graphs. This means that the WA triangle 

diagrams involving this axial current (or any other) will be at least 

logarithmically divergent. As yet no renormalization prescription has 

been given for these diagrams. At this point one must decide which Ward 

identity is to be satisfied in the continuum limit and renormalize 

accordingly. To obtain a finite continuum limit obeying Lorentz and 

Bose symmetries and the vector Ward identity, certain counterterms must 

be added to the current and by the Adler-Bardeen theorem they cannot be 

chosen such that the axial Ward identity is also satisfied. 

The important point to abstract from perturbation theory is that 

there is no reason to expect a nonlocal operator such as the conserved 

axial current (2.23) to have a finite continuum limit. In view of the 

anomaly there is every reason not to. 



- 60 - 

8. Concluding Remarks 

A. Summary 

This chapter has considered various formulations of lattice QED with 

fermions, with particular emphasis on the SIX lattice gauge theory (2.20). 

I have shown that-if lattice QED is constructed from the free Dirac action 

by replacing derivatives by difference operators and then coupling to the 

photon in a locally gauge invariant way, an undoubled fermion spectrum 

implies that naive perturbation theory breaks down due to infrared di- 

vergences. Under the assumption that the full gauge theory continues to 

have an undoubled spectrum, a resummation of the perturbation series was 

carried out which removed the infrared problems. A renormalization pro- 

gram, applicable to any lattice fermion theory with undoubled spectrum, 

was carried out such that ordinary continuum QED was recovered order by 

order as a + 0. In this scheme the lattice axial current which obeys a 

non-anomalous Ward identity had no finite continuum limit order by order. 

In view of the anomaly this must also be true to all orders. 

B. Beyond Perturbation Theory 

The results of this chapter are rather formal in that they show what 

can be done with SLAC lattice QED in perturbation theory and what coun- 

terterms are needed to do it. Continuum QED at this time is defined by 

its renormalized perturbation series, but a lattice theory presumably 

has a meaning even beyond the region of validity of perturbation theory. 
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As remarked earlier, perturbation theory cannot predict a qualitative 

spectrum, but must instead be constructed around a zeroth order approxi- 

mation which already has the correct qualitative spectrum. It is im- 

portant to ask whether the perturbation theory constructed in this chapter 

-accurately reflects the exact solution to the theory (2.20). In principle 

this should be determined by an exact renormalization-group treatment and 

analysis of the fixed points. The renormalization-group critical surface 

should determine an action containing the counterterms required in per- 

turbation theory. What can be said in the absence of such information? 

There seem to be two possible scenarios based on the Ward identity 

~Su(k)r,,(p + k,p) = S;'(p + k) - S,'(p) , (2.52) 

which is an exact property of the theory. If the exact fermion propagator 

describes an undoubled spectrum then SF1 has a discontinuity at some point 

PO' Letting p + p. and k + 0 in Eq. (2.52) shows that r must have a 
u 

singularity there. This in itself is not a disaster since p. is normally 

of order l/a. A disaster occurs only if this singularity propagates down 

into the low-momentum (continuum) limit of some Green's function. This 

happens in naive perturbation theory where loop‘s of high-momentum parti- 

cles contribute to the low-momentum behavior of, for example, BP"(p). 

If it happens in general then the theory is sick. If it does not happen, 

so that singularities are confined to high momenta, then the continuum 

limit may be as described perturbatively above. The high-momentum 

singularities would be generated from the sum to all orders of the order 

by order nonsingular effective theory of Sect. 5.B. The conserved lattice 
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axial current has no continuum limit due probably to singular contribu- 

tions to its matrix elements. 

If no infrared singularities arise at any momentum, then SF1 must 

be continuous and the fermion spectrum doubles. This happens nonper- 

-turbatively since the spectrum is undoubled at e = 0. This scenario is 

suggested by the summation of the photon tadpole contributions to SF 

(Fig 7). Summing perturbation theory to all orders would not introduce 

any singularities but would merely restore gauge invariance, which was 

lost order by order. The axial current could have a non-anomalous con- 

tinuum limit, the anomaly being cancelled between the doubled fermion 

species. It is even possible that both these scenarios could occur, 

each characterizing a different phase of the lattice theory. The SLAC 

lattice gauge theory (2.20) could thus have an extremely rich and inte- 

resting structure beyond perturbation theory. In my opinion it is ex- 

tremely important, though difficult, to learn which of these cases 

occurs. The possibility that the fermion spectrum multiplicity is de- 

termined dynamically does not seem to have been previously suggested, 

and would add a new dimension to our understanding of the realization of 

chiral symmetry in lattice theories. 
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CHAPTER III 

READ-SPACE RENORMLIZATION GROUP METHODS24 

1. Introduction 

This chapter and the next are concerned with nonperturbative studies 

of lattice theories with long-range interactions. The method used is the 

real-space renormalization-group (RG) technique introduced by Drell.et al. 

and subsequently applied to a variety of lattice field theories and spin 

systems.3-a It has been shown to yield accurate results for correlation 

functions and low-lying energy levels, and to locate phase transitions 

reliably. Furthermore, calculations using this technique can be systema- 

tically improved to provide accuracy limited only by the available 

computer time. 

The goal is to use the RG method to study an antiferromagnetic 

Heisenberg spin chain with long-range interactions on a one-dimensional 

lattice at zero temperature: 

Hz+ It (-1) 
i-j+1 1 

Z(i) *X(j) , 
i,j=l li-jl' 

i#j 

3 
where S(i) denotes a spin- ,112 operator acting at the ith lattice site. 

to one-dimensional fermion field theories The relation of this model 

(3.1) 

formulated with the long-range ST&Z derivative is discussed in Chapter IV. 

The model is also of independent interest owing to rigorous results 

obtained by Dysonz5 and Ruelle26 for the analogous Ising model S + Ss. 

These results are also summarized in Chapter IV. In this chapter, I 

introduce the RG method and show that it successfully reveals the known 
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properties of the nearest-neighbor Heisenberg chain which is the p + m 

limit of Eq. (3.1). Although both two- and three-site blocking techniques 

are successful for the nearest-neighbor chain, it will emerge that the 

three-site method is more reliable for studying the long-range model 

(3.1). That study is taken up in Chapter IV. 

This chapter is organized as follows. In Sect. 2 the three-site 

blocking procedure is described and applied to the anisotropic nearest- 

neighbor spin chain (Heisenberg-Ising model). This is done to facilitate 

comparison with the calculation of Sect. 3: it will be useful to have 

studied the isotropic model of interest as a fixed point (in the RG sense) 

of a more general model. I find that the three-site calculation correctly 

reproduces the qualitative physics of the model and gives the ground state 

energy density to within 12%. Section 3 describes a two-site blocking 

calculation for the isotropic nearest-neighbor chain. After the first 

blocking the model has been embedded as an unstable fixed point in a more 

general model with integer-spin degrees of freedom. A naive application 

of the blocking procedure leads to entirely incorrect physics for the 

isotropic model due to the instability of the fixed point and the approxi- 

mate nature of the calculation. The correct results emerge from a study 

of the RG trajectories. Although the problem is easily understood in 

this context, it makes the two-site calculation unsuitable for studying 

the long-range model (3.1) with its infinite-dimensional parameter space. 

The situation is further clarified by introducing a duality transformation 

for the integer-spin model. It is suggested that such duality trans- 

formations may be useful in other block-spin calculations as well. 

Section 4 describes ways to improve the three-site calculation of Sect. 2, 
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in particular by developing it into an approximate nine-site calculation. 

Section 5 contains concluding remarks. 

2. Nearest-Neighbor Heisenberg-Ising Antiferromagnet 

In this section the three-site blocking algorithm is described and 

applied to the nearest-neighbor model with Hamiltonian 
.- 

N-l 
Hz sx(i) Sx(i+l) + Sy(i) Sy(i+ 1) + ySs(i) Ss(i+ 1) 1 , 

YZO , (3.2) 

where the infinite volume limit N +UJ will generally be assumed. The 

lattice sites may be grouped into blocks of three and labelled by 

ordered pairs (k,a) where k=1,2,..., N/3 specifies the block and a=1,2,3 

labels sites within that block. Thus the ith lattice site may be 

relabelled (k,a) where i=3k- 3+a. Three-site blocks are convenient 

because the block states will have half-integer spin as do the original 

degrees of freedom. The Hamiltonian may now be decomposed into two 

pieces, Hin and Hout, where Hin couples sites within a single block 

and Hout couples sites in adjacent blocks: 

H = Hin + Hout , 

H = 
in 

+ Sy(k,2)Sy(k,3)+ySs(k,l)SZ(k,2)+ySZ(k,2)SZ(k,3) 1 , 

(3.3) 

H = . out 
k 
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To diagonalize Hin, it suffices to consider a single block: 

H = in c 52 lock(k) , 
k 

lock = z(l) l $2) + z(2).;(3) + E 

= $ 
li 

8(1)+x(2)+8(3) 1' - [Z(1)+5(3)]2 - +) 

+ E 
[ 
~~(1)~~(2)+S~(2)Ss(3) 1 (3.4) 

where s=y - 1. 

For E=O, Eb lock 
is rotationally invariant and its eigenstates are 

found by combining 8(l) and z(3) to give a total spin 0 or 1, which is 

then coupled to z(2). Th ese states form a spin-312 multiplet and two 

spin-$ doublets and are (notation is IS,Ss>): 

I+,+>o = 1 (t4+>- I+++> 
43 ( > , energy = 0 , 

I+,+>, = i (zl+++> - (Ct4> - I+++>), energy = -1 3 (3.5) 

plus the four corresponding states with all spins flipped and negative 

total Ss. 
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For E f 0, Hblock is invariant only under rotations about the x-axis 

(plus the discrete symmetry z + --z which keeps the energy independent of 

the sign of Ss) so that states of different total spin but equal Ss.can 

mix. 33 One finds that lr,~> is still an eigenstate, with energy +y, Ii,i>o 

11 
is still an eigenstate with energy 0, but that I$,$) and I~,Y>~ do mix. 

By diagonalizing a 2x 2 matrix, one finds that the lowest-energy 

eigenstate is 

I+$> z (1+2x2)-% (If,+, + fix~~,~) , 

energy = -+(y+Ju2+8) , 

X z 2 (y-l) (8+y+3m)-l . 

Thus far the state of the lattice has been described in terms of the 

state-spin up or spin down-of the spin-% particle at each site. 

Since the eight eigenstates of Hblock form a complete set, an equally 

good description (corresponding to a different basis in the Hilbert 

space of states) is obtained by specifying the eigenstate of each block. 

However, it is physically reasonable to expect.the low-lying states of 

the lattice to be predominantly formed from the low-lying eigenstates 

of H 
block' 

I therefore make the approximation of restricting attention 

to the sector of states built from the block states I++> and 1 -$> only, 

I -4> being obtained from I+$> under z + --z. The next step is to write 

an effective Hamiltonian which has the same matrix elements as the 

original Hamiltonian within this sector of states. 
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More explicitly, the lowest-lying states of Hblock are 

I++> = (1+2x2)-%% I+++> (2x+2) + Ittc> (2x-l) + Isit> (2x-l)], 

I-+> = -(r+ 2x2)-4 -L 
C 

IfSC) (2x+2) + I+st> (2x- 1) + It++> (2x; 1) 1 . 
6 

(3.7) 

The overall sign difference between the states reflects Condon-Shortley .- 

phase conventions. The effective Hamiltonian is constructed from new 

I-+>= -4, etc. 

block 

spin operators 3' defined by <+$(Si1+)5>=%, <-%lSi 

With this definition it is easy to check that in each 

<Sx(l)> = <Sx(3)> = 2(1+x)(1;2x) 
3(1+2x ) 

ts;> ) 

<Sy(l)> = <Sy(3)> = 2(;;l:);;;)2x) <s;> , 

2 
<Sx(l)> = <Sx(3)> = 2(1+x)2 cs;> , 

3(1+2x > 
(3.8) 

where the notation < > indicates any one of the four matrix elements 

involving the states I+%>, and the equality <2(l)> = <z(3)> follows 

from the even parity of these states. Using the relations (3.8) to 

eliminate the 3 operators from Hout, and remembering that Hin has been 

diagonalized, the effective Hamiltonian can be written: 

9 

(3.9) 

al= -T; '(y+G) , bl= 
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Because this Hamiltonian has the same form as the original one, apart 

from the energy shift al and the scale factor bl, the blocks of the 

original lattice may be viewed as sites of a new lattice and an identical 

blocking procedure applied to H (1) . In this way one generates a sequence 

of Hamiltonians H(m) describing the physics of ever larger length scales 

(block sizes) and obeying the following renormalization group equations: 

Sx(k)Sx(k+l)+Sy(k)Sy(k+ l)+ymS,(k)Sz(k+l) 1 3 

"m4-1 

' 

a0 = 0, b. = 1, y. = Y, 

where 

(3.10) 

X m I 2(ym-1)(8+ym+3@)-1 - 
-. 

(The primes on the block spin operators in H h> have been dropped for 

simplicity.) Here am is a c-number contribution to the energy which 

after sufficiently many iterations of the blocking procedure becomes 

the dominant contribution. In fact, on the finite lattice of length N, 

after roughly m= log3N iterations the whole lattice has been reduced to 

a single block and am is the only contribution to the energy. Since at 
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each iteration the number of lattice sites drops by a factor l/3, the 

energy per original lattice site is to be computed as am I 3mE c;" m' 

Returning to an infinite lattice by letting N -t= one obtains an energy 

density given by lim Em where 8, satisfies 
m-t- 

(3.11) 

Since the whole RG procedure may be viewed as a variational 

calculation in which the set of variational trial states is "thinned out" 

or "truncated" with each iteration, the energy density computed from 

(3.11) will always be an upper bound on the true energy density. 

The RG equations have three fixed points in the region y> 0: y= 0 

(isotropic XY model), y= 1 (isotropic Heisenberg model), and y==~ 

(Ising model). I now proceed to discuss them. 

A) y= 0. Near this point the RG equations become: 

ymtl =4v, % 

bmtl = p+ @(ym)] bm 3 - 

-%+l 
= grn- ' 

12x3m 
2&m) . 

(3.12a) 

(3.12b) 

(3.12~) 

Equation (3.12a) implies that if Iyl is small the system will be driven 

to the isotropic XY form: the y= 0 fixed point is stable. According to 

Eq. (3.12b), i$mm b =O which implies that the isotropic Xy model is a m 

massless theory: after sufficiently many iterations it is possible to 
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construct variational trial states with arbitrarily small excitation 

energy. It is also possible to compute the energy density at the point 

y=O: (3.12b) and (3.12~) imply &Ptil= Em - (fi / 6m+1). This leads to 

a geometric series for $- whose sum is tQ = -fi /5 = -0.2828, to be 

compared with the exact resultz7 &=-l/v = -0.3183. The error is 11%. 

B) y=l. Near this point y= l+ E with 1~1 << 1, and the RG 

equations become: 

5 
Em+l=3Em 

b 4b (l-$:3 ut+l=V m 

8 mtl = 8 m -+('+'m) 

Equation (3.13a) shows that this fixed point 

(3.13a) 

(3.13b) 

. (3.13c) 

.s unstable: however small 

co -Y be, after many iterations one will have ~~-1 and Eqs. (3.13) will 

cease to hold. According to (3.13b), bm+O at c= 0 so that, the isotropic 

Heisenberg model is massless. Finally, using (3.13b,c) to compute the 

energy density at E= 0 gives EM1 = 6",- (l/3)(4/27) 
m , a geometric series 

whose sum is em=-g/23=-0.3913. This differs bp.l2% from the exact 

result,z8 8=-0.4431. 

c> y= -. In the limit y>>l the RG equations become: 

X =- 
m ; l-1 

( ) m 

,L 3 1-2 
ym+1 4 'rn -y, ' ( ) 

(3.14a) 

(3.14b) 



- 72 - 

b 

8 m+l 
=&Ll,y 

m 6~3~ m m 

, 

. 

(3.14c) 

(3.14d) 

Equation (3.14b) demonstrates the stability of the Y=- fixed point: 

once y, becomes large, it essentially cubes itself with each iteration. 

Equations (3.14b) and (3.14~) imply that for y sufficiently large, 

b el ye1 = bm Y, = b. y. = Y , (3.15) 

so that (3.14d) gives the energy density as c",= -y m=o f?, (1/(6x 3m)) = 

= -(u/4). This is the exact result for the Ising model y + m, which is 

easily understood since the block states 1 +%> become in this limit: 

I-+> = - (w> + +4> + +w 

, 

(3.16) 

-. 
so that the RG algorithm constructs the exact Ising ground state. 

The fact that bm+O in this case is not sufficient to give a massless 

theory because ym-+ m. The mass gap for any Y> 1 is in fact given by 

bOD Y,, which is the gap at the stable Ising fixed point. This quantity 

is shown to be nonzero in the discussion of end-to-end order given below. 

The picture that emerges from this analysis is that for 0 iY< 1 

the system is driven to the massless isotropic Xy form, while for Y > 1 

it is driven to the massive Ising form. The unstable fixed point y=l 
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separates the two regimes. This is precisely the known behavior of this 

mode1.2g One might ask how this approximate calculation is able to locate 

the correct phase transition exactly, at y= 1. This is guaranteed by a 

symmetry: at y= 1 the system becomes rotationally invariant, and the RG 

transformation has been defined so as to preserve rotational invariance 

if it is initially present. This point will be important in Sect. 3. 

It is also possible to calculate the end-to-end order in the ground 

state, defined as 1<3(1) l %(N)>I. This is done, in direct analogy to 

the treatment of H, by replacing the operator x(l). x(N) with an effective 

operator having the same matrix elements in the sector of states retained 

at each iteration. Since the first and last spins on the lattice are also 

the first spin in the first block and the third spin in the last block, 

Eqs. (3.8) and (3.10) show that after m iterations the appropriate 

effective operator is: 

p(1) l h'O]$; = bm[Sx(l)Sx(~)+Sy(l)sy(~)] ++bmymS,(l)S@. (3.17) 

Since bm+O in all cases, the end-to-end order may be computed as: 
-. 

(<$'(l) -?i(~)>l = I<Sz(l)Sz(last)>l i b-y, , ($18). - 

where the expectation value on the right side is evaluated in the ground 

state of the fixed point Hamiltonian I-I (-1 . Clearly this predicts no 

end-to-end order for 0s~~ 1. The vanishing of the order for y= 1 may 

also be obtained as a consequence of the rotational symmetry of the 

lirn theory and the cluster property N~m [<x(l) - z(N)>- <z(l)> * d(N)>] = 0 . 
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For y> 1 the system is driven to the Ising model for which 

I<Ss(l)Ss(last)>l = +. Using Eqs.(3.10) one has for y > 1 

I<z(l) *g(N)>1 = f (3.19) 

This infinite product is in fact convergent and nonzero. For m 

sufficiently large that y,>> 1 one finds from (3.14a) that (4/9) x 

((l+xm)4/ (1+2x;)2) = l- @(y,2). The product (3.19) is finite and 

nonzero if and only if the sum c n>m log l [ - a(Y,2)] a- nFm 6(Y,2) converges. 

Since Y,+~*Y~ for n>m, the sum is highly convergent. It is important to 

note that the end-to-end order depends not only on which fixed point is 

ultimately reached, but also on the rapidity with which it is approached. 

It is also easy to obtain the limiting behavior of the end-to-end 

order as y+l + using Eq. (3.19). Set y= l+s with IsI << 1. According 

to Eq. (3.13a) one iteration of the RG equations changes E into (5/3)s. 

Since xn i 0 for y L 1, it follows from Eq. (3.19) that 

Order(s) = (3.20a) 

a functional equation which is solved by 

1.6 log(4/9) 
Order(s) m E , O<s<<l, where 1.6 = . (3.20b) 

log(3/5) 

Figures 11 and 12 show the results of numerical iteration of the RG 

equations. Figure 11 compares the ground state energy density computed 

from (3.11) with the exact solution of Orbach, while Fig. 12 displays 
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the results of the present calculation for the end-to-end order and the 

mass gap. Note that the energy density and mass gap both refer to the 

Hamiltonian used by Orbach, which differs slightly from that used here: 

%rbach=Cf (l- > sx(ij Sx(i+l)+Sy(i)Sy(i+l) +Sa(i)Ss(i+l) i a [ 1 
Sx(i)Sx(i+ 1): Sy(i)Sy(i+l)+yS,(i)Sz(i+ 1) 1 , (3.21) 

with 

so that the region l<yso. corresponds to 0~~s 1. Due to the factor 

l/y in Eq. (3.21), the RG results for the order and the mass gap for 

this Hamiltonian differ only by a factor of 4, as shown in Fig. 12. 

The greatest error in the energy density is the 12% error at a= 0, and 

the general shape of the curve is correct. According to Eq. (3.20b) the 

curve in Fig. 12 behaves as cx 1.6 for c( near zero, whereas in fact both 

the gap2g 
+ 

and the order30 are known to vanish exponentially as a + 0 . 

This substitution of power-law for exponential behavior is a cowon 

feature of simple block-spin calculations of this-type and can be 

corrected by improving the calculation using variational techniques;' : - 

Except for this feature, the results of the simple RG calculation given 

here are completely consistent with the known properties of this model. 

3. Two-Site Calculation for the Isotropic Heisenberg Model 

A rule of thumb for block-spin calculations states that theories 

involving half-integral spins or fermionic degrees of freedom should be 
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treated using an odd number of sites per block to preserve these features. 

The consequences of ignoring this good advice will now be examined by 

applying a two-site blocking procedure to the isotropic Heisenberg model: 

N-l 
H =- 

c 
3(i) * -6(i+l) . (3.22) 

i-l 

Decomposing the Hamiltonian into pieces which do and do not connect 

different two-site blocks yields: 

Anticipating that tensor operators will be useful in the description of 

H = Hin + Hout , 

H = in c 
z(k,l) . &k,2) , 

k 

H = 
c 

x(k,2> l &k+ 1,l) * (3.23) 
out 

k 

the integer spin block states, I write the operators appearing here in 

terms of raising and lowering operators: 

(3..24) - 

where S o 2 Sx and-S+15 7 (l/fi) (Sx+ iSy). 

The block Hamiltonian is introduced by 

H = 
in c 

H 
block (k) ' 

k 

% lock 
= Z(1) *S(2) (3.25) 
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The eigenstates of slack form the familiar singlet and triplet which 

will be labelled as follows: 

I+> = 144) 

1 0 > = * (I+;> + I++>) 

I-1 = Jc+i 

(1 t+> - l+4>) 

1 

I 
energy = + 7 , 

3 
, energy '-5 . (3.26) 

The Hamiltonian must now be rewritten in terms of block spin 

operators which act on the states (3.26). To keep rotational invariance 

explicit, it is useful to define spherical tensor operators of rank 1, 

Qi and Ti, i=-1, 0, +l, by: 

Q, = Sz' Q,, = a 7 -!- (Sx 2 iSy) , 

<OITOIx> = 1, <xITOjO> = 1, 

<+jT1(x> = 1, <x(T1l-> = -1 

<-ITelI~> = 1, <x(T-~[+> = -1 

f 

L 

(3.27) 

, 

all other matrix elements of Ti= 0 , (3.28) 

where Sx, S 
Y 

, Ss are the usual spin operators for a spin-l particle 

whose states are I+>, IO >, I - >; these operators annihilate the 

spinless state I x >. Qi thus acts only within the spin-l subspace while 

Ti connects the spin-0 state to the spin-l states. It is easy to check 
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that the following relations between matrix elements of the spin-% 

operators appearing in Hblock and of the operators introduced in (3.27) 

and (3.28) hold between any pair of the states I +>, IO>, I ->, I x > : 

<Si(l)> = + <Qi+Ti> , <Si(2)> = + <Qi-Ti> . (3.29) 

These relations may be inverted: 

<Q,> = <Si(1)+Si(2)> , <Ti> = <Si(l) - Si(2)> . (3.30) 

Thus, for example, z(k,2)*$(k+l,l) may be replaced by the scalar 

operator 

)Lc (-l)i[Qi(k)-Ti(k)lCQ-i (k+l)+T-i(k+l)lZ kCQ(k)-T(k)lCQ(k+l)+T(k+l)l. 

i 

It is also possible to record the diagonalization of slack in the form: 

<z(k,l) l %(k,2)> = - + + ;<Q2(k)> , (3.31) 

since Q2 =2 in the spin-l subspace and Q2=0 in the spin-0 subspace. 

Using (3.29) and (3.31), the effective Hamiltonian-after the first 

blocking may be written: 

N/2 (N/2)-1 &o= c CEo+~oAoQ 
2 

(k) I+ 
c 

c,CQ(k)-gOT(k)lCQ(k+1)+goT(k+1)l,(3.32) 

k=l k=l 

where Eo=-314, co=1/4, Ao=2, go= 1. It is important to realize that 

no approximation has been made yet because I+>, IO >, I - > and I x > 

form a complete set of block states. A new basis in Hilbert space has 
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simply been chosen, so that the Hamiltonian (3.32) now describes a 

lattice of length N/2 with a spin-l triplet state and a spin-0 singlet 

state at each site. The change of basis and its inverse are described 

by Eqs. (3.29) - (3.31). 

Since the sum of two integer spins is again an integer, it will be 

possible to implement a two-site RG transformation under which (3.32) 

retains its form. In fact, restricting H(O) to a particular two-site 

block produces a block Hamiltonian: 

(0) % lock = 2EO+cOAOCQ2(1)+Q2(2)1+~OCQ(1) -gOT(1)1CQ(2)+goT(2)1. (3.33) 

According to the general rules for combining spins, Hblock will have 

sixteen eigenstates: two spin-0 singlets, three spin-l triplets, and 

a spin-2 quintet. In order to preserve the form of (3.32) an effective 

Hamiltonian will be written for the subspace of states built from the 

lowest-lying singlet and triplet eigenstates of (3.33). These states 

are readily found to be: 

~o,o> = (3+$ j” (rOlxxl + loo> - I+-> - I-+>>, energy=E1 , (3.34a) 

-. 

11,1> =(2+2s; )-~~o(l+x> + lx+>)+ (pm - I+o>)] 9 . . - 

j&O> =(2+ 2s; -+ 
) [ ( 

so lox> + /x0>)+ (1-a - I+->)] ’ 

/1,-l>= 2+2so -( 'j"~o(l -x> + Ix->)+ (I-o> - lo-,)] ’ 

energy=Ei , (3.34b) 
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where: 

+ 
2Ao- 1 

2 
g0 

, (3.34c) 

, 

(3.34d) 

El = 2EO+c0 

Ei = 

(3.34e) 

. (3.34f) 

The next step is to define new tensor operators Q; and T; which act on 

the states (3.34a,b) exactly as Qi and Ti acted on the states (3.26): 

<O,O/TbIl,O> = 1, etc. The resulting relationships between matrix 

elements are: 

<Qi(k,a)> = u,<Q;(k)> + va<T;(k)) 

<Ti(k,a)> = wa<Qi(k)> + sa<Ti(k)> 

1 
u1 = u2 = 7 , 

v1 = -v2 = 2(2+2s;j4 (3+r$-' 

sO 
w1 = -w2 = 1+s2 , 

0 

z1 = 22 = 
so(l+r0)(2+2s~)-' (3trir4 . (3.35) 
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The Hamiltonian (3.32) has the decomposition as Hin+Hout: 

N/4 (N/4)-1 
H(O), 

c % (;;ck(k) + c co [Q(k,2)-goT(k,2)~~Q(k+l,l)+goT(k+l,l)l, 

k=l k=l 

and use of (3.34e,f) and (3.35) leads to a new, approximate, effective 

Hamiltonian of the same form as (3.32). In fact, the general RG 

equations are readily seen to be: 

H(m)=~{Em+~m ( AmQ2(k)+cQ(k)-gmT(k)I[Q(k+l)+gmT(k+l)3)) , (3.36a) 

where 

k 

- 
, 

gmt1 
, 

C m 
Am+1=2cm+l , 

Emtl = 2Em+ cm 4Am-2-rmgi , 

r 

S = 
m 

, 

E. =-a, 
1 

co-~', A0 '2, go=l. 

(3.36b) 

As usual, the energy per original lattice site is to be computed as 

lim Em / 2&l. 
m+- 
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Numerical iteration of Eqs. (3.36) leads to a ground state energy 

density of -0.4210, only 5% higher than the exact result -0.4431. Because 

the isotropic Heisenberg model is massless, one would expect to find c,+O. 

In fact, one finds that g,+l, Am+O, but cm-+a nonzero constant! This 

limiting theory with A-= 0 can be solved exactly by using Eqs. (3.30) and 

(3.31) to rewrite it on an underlying spin-k lattice (recall that this 

transformation is exact). The condition Am= 0 means that the two sites ~_ 

within any one block on the spin-% lattice are uncoupled. The spin-% 

couplings are therefore as shown in Fig. 13. This theory has a four- 

fold degenerate ground state in which each coupled pair of sites has 

total spin 0 while the uncoupled sites at the ends of the lattice have 

total spin 0 or 1. There is a finite mass gap to the highly degenerate 

first excited state in which some pair of coupled spins have total spin 

1, and additional mass gaps separate the higher excited states. Clearly 

this bears no resemblance to the physics of the isotropic Heisenberg 

model with its massless spin wave excitations. What went wrong? 

Recalling the.calculation of Sect. 2, suppose that here also the 

Heisenberg model A= 2, g=l is an unstable fixed point of the more general 

model of Eqs. (3.36). The RG calculation should find this fixed point, 

but being an approximate calculation it need not locate it precisely at. 

A=2, g-l. In such a case the RG equations with Heisenberg model initial 

conditions will iterate away from the unstable fixed point, toward a stable 

fixed point with totally different physics. 

Figure 14 shows the qualitative behavior of the RG trajectories 

resulting from Eqs. (3.36) near the Heisenberg point A=2, g=l and 

Supports the picture just sketched. The unstable fixed point is quite 

close, at A~1.7, g=O.84, but the Heisenberg model iterates to the stable 
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Fig. 13. Couplings for the spin-112 theory equivalent to the m + w 
integer-spin theory (3.36). 

-_ 
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Fig. 14. Qualitative behavior of RG trajectories in the two-site 
calculation. The point SC is the Heisenberg model point 
and + is the unstable fixed point. 
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fixed point A=O. There is also a stable fixed point at A=m. At the 

unstable fixed point the Hamiltonian just rescales by a factor less than 

1 at each iteration, leading to the correct massless behavior. 

The result that the nearest-neighbor Heisenberg chain and the.fully 

dimerized chain of Fig. 13 correspond respectively to unstable and stable 

-fixed points of a model with more free parameters is familiar in solid- 

state physics. One-dimensional chains of atoms with nearest-neighbor 

spring forces as well as Heisenberg spin interactions are unstable against 

spontaneous distortion into a chain of atom pairs, paired atoms being 

closer together than atoms in adjacent pairs. An RG treatment of this 

Peierls distortion, which is related to the Peierls instability in one- 

dimensional conductors, has been given by Caspers6 using three-site 

blocking and obtaining the same fixed-point structure. 

Recalling that the y= 1 unstable fixed point of the three-site 

calculation was located correctly as a consequence of rotational in- 

variance, it is natural to ask whether the model (3.36a) possesses some 

symmetry at the Heisenberg point which is not preserved by the RG trans- 

formation. Intuitively this symmetry is just the translational symmetry 

of the spin-l/2 form of the Heisenberg model, Eq. (3.22). I now show 

that such a symmetry can be defined as invariance under a duality 

transformation. 

To define the duality transformation it is convenient to rewrite 

the Hamiltonian (3.36a) in the generic form: 

H= E+GQ2(k) +AQ(k)Q(k+l) +BT(k)T(k+l) 

+D[Q(k)T(k+l) -T(k)QW)]} , (3.37) 
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where G= CA, A=c, B= -cg2, D= cg. 

The change in notation is necessary because the duality transformation 

will not preserve the form of the nearest-neighbor couplings in the 

Hamiltonian (3.36a) except for special values of the parameters. 

The first step is to use Eqs. (3.30) and (3.31) to write a spin-l/2 

Hamiltonian equivalent to (3.37). This is the same trick used to solve 

exactly the fixed point Hamiltonian. It yields a spin-)5 Hamiltonian 

which, if blocked using two-site blocks, would reproduce (3.37). The 

spin-$ Hamiltonian is: 

B= C-t E+~W-2G;f(k,l).~(k,Z)+(A+B)~(k,l)*~(k+l,l)+(A+B)~(k,2).~(k+1,2) 

k 

+ (A-B-2D)8(k,l)&k+1,2)+(A-B+2D)$(k,2).S(k+l,l) . (3.38) 

The spin-s lattice is now shifted one unit to the right by letting 

(k,l)+ (k,2) and (k,2)+ (k+l,l) (P eriodic boundary conditions are useful 

here). This shift interchanges interblock couplings with intrablock 

couplings. Finally, blocking the Hamiltonian back to the integer spin 

form using Eqs.(3.29) and (3.31) produces the dual Hamiltonian: 
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& 
cf 

E+:Q2(k)+;iQ(k)Q(k+l)+ET(k)T(k+l 

k 

.)+%Q(k)T(k+l)-T(k)Q(k+l)l 

+ %Q(k)-T(k)lCQ(k+2)+T(k+2)1 
f 

where 

, 

is = E++G -; (A-B+2D) 

5 = 3 (A-B+2D) , 

li = +(A+B+G) , 

g 5: +(A+B-G) , 

D" = +G > 

F = + (A-B-2D) . 

(3.39) 

Notice that the dual gap parameter F depends on the original couplings 

A, B, and D while the original gap parameter contributes to the dual 

couplings. Next-nearest-neighbor couplings have also appeared. H and E 

clearly describe the same system in different ways and have the same 

spectrum and other properties. A system is self-dual in the sense that 

H=% if its spin-% form is translationally invariant. The self-duality 

condition reduces to A-B= 2D=G which implies A= 2, g= 1. Only multiples 

of the Heisenberg Hamiltonian are self-dual. Therefore, a calculation 

which respected translational invariance would lead to the correct physics 

for the Heisenberg model. 

The RG transformation will not preserve self-duality (translational 

invariance). Indeed, RG calculations of this type treat intrablock and 
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interblock couplings quite differently. The former are diagonalized and 

contribute to the gap parameter at the next iteration, while the latter 

contribute to the new couplings. In the present calculation the initial 

Hamiltonian was self-dual while the A=0 fixed point which was finally 

reached was not. This fixed point corresponds to A-B= 2D# 0, G= 0. It 

'is dual to the point A= B= 2D= 0, G# 0 which is the A== fixed point of 

Fig. 14. The A=-- fixed point corresponds to Fig. 13 with the coupling 

pattern shifted one unit to the right. 

Several remarks should be made regarding the problem with this 

calculation and its resolution as discussed above. 

(1) Although the RG equations, naively applied, lead to the wrong 

fixed point, a glance at the trajectories of Fig. 14 is sufficient to 

reveal the problem and indicate the correct physics. Unfortunately, 

models with long-range interactions such as (3.1) involve an infinite 

number of different couplings, so that RG trajectories cannot be mapped 

out. Without the trajectories there is no way to locate unstable fixed 

points. Thus, the two-site calculation of this section cannot be reliably 

used to study the phases of the model (3.1) even though it may well yield 

a good ground state energy density. '. 

(2) The problem encountered in the two-site calculation is clearly 

very general: it may occur in any theory when the first RG blocking 

embeds the theory at or near an unstable fixed point of a more general 

model. However, the following considerations suggest a rule for 

determining which of several possible calculations may be most seriously 

affected by the failure of the RG technique to preserve self-duality. 

In the two-site calculation, the ground state in a block was a singlet. 
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In order to get the correct massless physics it would have been necessary 

for both the gap parameter G and the couplings A, B, D to iterate to zero. 

This did not happen because the RG calculation treats gaps and couplings 

asymmetrically. In the three-site calculation the-ground state in a block 

.was a doublet, and the subspace of lattice states formed from these doublet 

block states was isomorphic to the space of states of the original 

Heisenberg model.-- This would remain true even in a three-site calculation 

using all eight block states. As long as all couplings iterate to zero 

in such a calculation, this subspace contains massless excitations 

yielding the correct spectrum even if nonzero gaps separate the lowest 

doublet from the other states in one block. This suggests the following 

rule of thumb: given a choice, one should prefer that calculation for 

which the ground state in a block has the highest multiplicity. This 

maximizes the number of lattice states that can be constructed from the 

block ground states alone. Physics which depends on this sector of 

lattice states only will be independent of gaps between block states, 

and therefore independent of asymmetrical treatment of gaps and couplings. 

(3) The duality transformation introduced here has applications 

beyond this particular model. Such a transformation can be defined in 

any calculation in which all the block states are kept at the first 

blocking, so that the blocking is "reversible". In a two-site calculation 

the square of the duality transformation is unity; in a calculation using 

m-site blocks the duality transformation generates a Zm symmetry group. 

The relation of this transformation to the existing complex of "duality" 

ideas in the literature is under investigation. 
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(4) In addition to its utility in classifying fixed points, the 

duality tranformation may be used to increase the accuracy of the RG 

calculation itself. Consider the following scheme. Beginning with the 

Hamiltonian H(')of Eq. (3.32) , one blocks as usual to obtain H (1) *. 

Hm is obtained by blocking the dual Hamiltonian H( "; ) (note that this 

blocking removes the next-nearest-neighbor couplings introduced by the 

duality transformstion) and one continues by alternately applying the 

duality transformation and the blocking procedure. Since the underlying 

spin-% lattice is shifted to the right at each iteration of this scheme, 

one might hope that more translationally invariant states than usual are 

being constructed and that edge effects due to the walls of the blocks 

are being "smeared out". This scheme does in fact improve the energy 

density found in the two-site calculation very slightly. 

4. Improving the Three-Site Calculation 

One might try to improve the three-site calculation for the isotropic 

Heisenberg model (y=l in the notation of Sect. 2) in a variety of ways. 

One method is to keep more than two of the block states (3.5). One might 

keep both spin-% doublets, or even all eight states in which case a 

duality transformation could be employed. Alternatively one might try 

to select a better pair of states to keep, which need not be eigenstates 

Of Kblock' In this problem, symmetry considerations make this impossible: 

rotational symmetry forbids mixing spin-312 with spin-% states, and parity 

rules out a linear combination of the two spin-% multiplets. A third 

course is to use larger blocks. In this section, I describe a way to 

improve the three-site calculation by using it to approximate a nine-site 

calculation. 
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Consider performing a nine-site calculation by keeping only the 

lowest-lying spin-4 doublet of eigenstates on a block at each iteration. 

Such a calculation can only be done with the aid of a computer. However, 

two iterations of the three-site calculation have the effect of constructing 

.a pair of spin-% states on a nine-site block. The Sa=$ member of this 

pair is (cf., Eq. (3.5)): 
-- 

where Ii,i>l = A- dz 2It+t> - I+++>- I-) , 

and Ii,-*>l = $(-21+++> + I+++> + I+++>) . (3.40) 

If the Hamiltonian on a nine-site block is written in the form: 

% lock =Ho+V , 

Ho = ~(1)*~(2)+8(2).~(3)+~(4)*8(5)+~(5).8(6)+~(7)~8(8)+8(8)*~(9) , 

V = ?(3)&4)+3(6)&7) i (3.41) 

then IQ> is an eigenstate of Ho with eigenvalue -3. To the extent that 

. V can be regarded as "small", I$> w roximates an exact nine-site 

eigenstate. In actuality V will mix (e> with the additional states 

VI+>, v21a etc., of which the most important will be v($> if V is 

"small". It is then reasonable to do a nine-site blocking calculation 

using as the Ss=% state the lower-lying state obtained by diagonaliaing 

the matrix of % lock in the subspace spanned by I$> and VI+> only. This 

is a 2x 2 matrix and the calculation is not difficult. It yields a 
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ground-state energy density in error by 5.4% as compared to 11.7% for the 

three-site and 5.0% for the two-site calculation. Like the three-site 

calculation, it also yields the correct massless spectrum. Although 

perturbative in spirit, this method is not a consistent expansion to some 

-particular order in V as is the method of Ref. 7. However, it can 

easily be improved further by diagonalizing the matrix of 
% lock in a 

larger subspace spanned by more of the states I$>, vl$>, v21$>, . . . , 

and choosing the lowest-lying state. Eventually these states will span 

the entire spin-%, Ss =4, even parity subspace on nine sites and one is 

back .to the exact nine-site calculation. This technique should also be 

suitable for studying the model (3.1) with long-range interactions. 

5. Concluding Remarks 

In this chapter block-spin calculations for the isotropic Heisenberg 

model employing both two-site and three-site blocks have been discussed 

in great detail. The three-site calculation and its nine-site generali- 

zation gave good results and will be suitable for studying the model 

(3.1) with long-range interactions. The two-site calculation is not 

reliable for this purpose. The duality transformation introduced in 

Sect. 3 can be defined for models other than the one studied here, and 

it is hoped that it will be useful in other calculations of this type. 

After this work was completed, I learned from Marvin Weinstein that 

improving the two-site calculation by variational techniques suffices to 

obtain the correct massless spectrum. In such an improved calculation, 
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the block states are allowed to depend on one or more variational 

parameters. These parameters are adjusted to minimize the ground state 

energy computed after many RG iterations, rather than to diagonalize 

the block Hamiltonian. This "feedback" mechanism allows the physics 

.at scales much larger than the block size to influence the selection 

of block states.--This very powerful generalization of the real-space 

RG technique is not used in the calculations reported in this thesis. 

See, however, Refs. 5 and 8. 



- 96 - 

CHAPTER IV 

THE LONG-RANGE HEISENBERG ANTIFERROMAGNET31 

1. Introduction 

In this chapter I take up the study of the one-dimensional Heisenberg 

antiferromagnetic-chain, 

Hz+ C-1) i-j+1 1 
Z(i) l S(j) , 

i,j=l li-jl’ 
if j 

(4.1) 

using the zero-temperature, real-space RG methods illustrated in Chapter 

III. The infinite-volume limit N+m will generally be implied. 

Chapter III established that the simple three-site blocking scheme 

correctly predicts the qualitative behavior of this model in the p+m 

limit and is quantitatively accurate at about the 15% level. The nine- 

site calculation improves this to the 5% level. 

Models such as (4.1) arise naturally as effective Hamiltonians 

describing particular sectors of states in the strong-coupling limit 

of lattice field theories with fermions, provided that the fermions are 

treated by the SLAC method described in Chapter'II.8p15 Consider for 

example the Schwinger model (massless QED in l+l dimensions): 

H=a CT ' E2(x> + a2~q+(x) + aDby) Q(Y) U(X,Y) , 
X XYY 

Y 
lJ(x,y) = exp iea c A(z) . (4.2) 
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Resealing E + eE and A + A/e and changing to dimensionless variables 

gives: 

g'c E2b> f x$t(~) t aD(x-y)$(y)U(x,y) , 
X X,Y I 

l.J(x,y> = exp i A(z) , [A(x),E(x')] = i6x,x, , 
z=x 

D(x) = (-l>x/x . (4.3) 

Here the fields, the coupling constant g=ea, and the lattice coordinates 

x,y,z are all dimensionless. U(x,y> creates one unit of electric flux 

on each link between x and y, oriented from x to y. -- 

At strong coupling the first term in H is taken as the unperturbed 

Hamiltonian and the second as the perturbation V. The unperturbed ground 

states are those with no charge and no flux links. In second-order 

perturbation theory their energies are 

8, = o+ c <nlVlk><k]V]n> 

k#n 
(4.4) 

The perturbation connects the ground states to states with flux running 

from x to y, with energy 8: = (1/2a)g21x-y[ $ 0. An effective Hamiltonian 

for the fluxless sector can now be defined by 
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dTn = <njHeff(n> , H c ' Vlk><klV eff = -Y k 'k 

, 

H eff = $c c D(x-Y) D(x’-Y’) g2;avy, 
k x,Y,x',Y' X 

x ~t(x)aJl(x)U(x,y)Ik><kI~+(x~) o$(y') U(x',y') . (4.5) 

The only terms in-Heff which take fluxless states into fluxless states 

are those with x=y' and x' =y. Introducing also the representation 

a= , 

gives 

H eff = -$2& ,x-y 
b?x)b(x) [1 - d+(y)d(y)] 

XiY 

+ d+(x)d(x)[l-b+(y)b(y)] + . 

In the fluxless sector only two states can appear on any site: either 

the vacuum 10) or the fermion-antifermion pair I-I> = btdt\O>. Thus in 

this sector b+(x)b(x) = d*(x)d(x) s N(x), and a convenient spin repre- 

sentation is introduced by 

s+(x) = (-l)Xb+(x) d+(x) , S-(x) = (-l)Xd(x) b(x) , 

Sz(x) = N(x) - $ , 

in terms of which, up to a constant, 

H eff = -$ sy ,x-ly,3 b-l) 
x-~l,+(x)s~(,) + Sz(X)Sz(Y)] - (4*7) 
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The nearest-neighbor piece of Heff is now the isotropic Heisenberg 

antiferromagnet considered in Chapter III; the full Heff is similar to 

the model (4.1) for p=3 but has a staggered anisotropy in the z- 

direction. A similar analysis for the Q=O sector of the Thirring 

modelI leads again to Eq. (4.7) with Ix-y/ 3 replaced by Ix-y12 (no 

-factor Ix-y/ appears in the energy denominator). And l+l dimensional 

QCD leads to an S6(4) generalization of the O(3) antiferromagnet (4.7).8 

To obtain agreement with known properties of the continuum Thirring 

model, it was argued (but not proved) in Ref. 15 that the corresponding 

H eff has a massless excitation spectrum like the nearest-neighbor 

Heisenberg antiferromagnet. This suggests that the model (4.1) is in 

a single phase from p=m at least down to p=2. Other results along 

these lines are those of Dyson25 and Ruelle26 showing that the Ising 

model obtained from (4.1) by z + S z is disordered at all finite tempera- 

tures for all p> 2 but is ordered below a critical temperature if p < 2. 

The result of the RG calculations in this chapter is that the model (4.1) 

is in a single phase from p= m down to approximately p= 1.85. The exact 

value is probably ~'2. 

The discussion in this chapter is organized as follows. Section 2 

presents some exact results for the cases p=O and p-+-. Section 3 

reviews the simple three-site blocking calculation used in Chapter III 

and applies it to the model (4.1). Renormalization group equations are 

derived which are sufficiently simple to be studied analytically. In 

particular, it can be seen explicitly how the non-nearest-neighbor 

interactions in (4.1) disappear as the RG equations are iterated when 

p exceeds a certain critical value. Section 4 shows that the results 
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of the three-site calculation do not change qualitatively when one goes 

to a more accurate calculation using nine-site blocks. The latter 

calculation, unfortunately, must be carried out numerically. Section 5 

contains the conclusions. 

2. Exact Results 

Although very little is known about the model (4.1) some rigorous 

results can be obtained by considering the limiting cases p-t- and p=O. 

For p-tm the model becomes the Heisenberg antiferromagnet with 

nearest-neighbor interactions which was discussed by block-spin methods 

in Chapter III. This model is exactly soluble32 and for the present work 

its relevant properties are as follows. The ground state energy density 

is -0.4431 and the low-lying excitations are massless spin waves. The 

end-to-end order <z(l) B;(N)> vanishes in the infinite-volume limit and 

the cluster property 

lim [<z(l) * z(N)> - <$(l)>. <S(N)>] = o 
N+m 

is satisfied. 

For p=O the Hamiltonian (4.1) becomes: 

"=$ . 

i,j = 1 
i#j 

(4.8) 

All spins interact with equal strength and the fact that they form a 

linear chain becomes irrelevant. This Hamiltonian can also be solved 

exactly, by introducing the two sublattices containing respectively only 

even-numbered sites and only odd-numbered sites. N is assumed to be even 
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1 so that each sublattice contains -N sites. 2 The Hamiltonian (4.8) may 

be rewritten as: 

H = c Z(i) * g(j) - + c g(i) . 8(j) - + c Z(i) *5(j) 
i even i,j even i,j odd 
j odd i#j i#j 

= c Z(i) l 

i even -- 
j$hdz(J) - $[,zeng(i;i' - ?j[zt(il]' + +N 

I 

'even.'odd - i '&en - $ 'zdd +iN 

= $ 'fatal - 'tven - 'zdd +;N , (4.9) 

where I have introduced the total spins on the entire lattice and on the 

even and odd sublattices. The ground state evidently has Stotal=O, 

S even =Sodd 
= $N, and an energy given by 

N2 + N Eo=- g . 

The energy density diverges linearly with N and the infinite-volume limit 

of the theory does not exist. The first excited state has Stotal=l, _~ 

S = :N, and the excitation energy is 1. This contrasts with even =Sodd 

the massless excitations in the p+m theory. The end-to-end order 

<Po(c(l) e;(N) IQo> in the ground state IQo> can be obtained as follows. 

The fact that all spins on a single sublattice are equivalent implies 

that <z(i) *z(j)> depends only on the parities of i and j. Therefore, 
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<z(l) * Z(N)> = L C 
N2 i odd 

<z(i) m z(j)> 

j even 

t 
$ 'S:otal- &en- $dd' 

, 

which explicitly shows the breakdown of clustering due to the long-range 

interactions. 

Additional information can be obtained by using the p=O ground 

state 10,) as a variational trial state to study the full theory (4.1). 

The variational energy obtained in this way is 

<Q,IHIQ,> = + c C-1) i-j+1 1 
<e,lZ(i) *X(j) IDo> . (4.12) 

i#j Ii-j I’ 

It follows from Eq. (4.11) and the sublattice structure that 

<OolZ(i) . C(j)l@o> = (-,)i-j(+ + +) . 

Therefore, 

<QolHIQo> = 

= L+ (N-2) L+ . . . + ' 
1p 2p (N-1)' 1 
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The exact ground state energy density is therefore bounded above by 

This shows that the infinite-volume limit does not exist for pll. Since 

the spin operators in H have bounded matrix elements there can be no 

divergence in Eo/N for p>l, so the theory does exist in this region. 

In view of the radically different properties of the theory at 

p+m and p=O, two possibilities exist. Either the theory remains in 

the p=m phase all the way down to p=l where the infinite-volume limit 

ceases to exist, or a phase transition occurs for some p >l. In the 

remainder of this paper block-spin techniques are applied to resolve 

this question. 

3. Simple Calculation Using Three-Site Blocks 

A. Derivation of RG Equations 

This section applies the three-site blocking algorithm used in Chap- 

ter III to the model (4.1), which is conveniently rewritten in the form: 

N 

H =+ c C-1) i-j+1 F(i-jj Z(i) . S(j) , 
i,j = 1 

ifj 

F(i-j) E 
Ii-jl' a 

(4.15) 

One begins by dividing the lattice into three-site blocks and 

relabelling each lattice site with an ordered pair (k,a), where k= 1,2,..., 

N/3 labels the blocks and a=1,2,3 labels the sites within a block. The 
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Hamiltonian is separated into the 

the same block, and the remainder 

piece Hin which only couples sites in 

H out : 

H = Hin + Hout , 

H in 

(4.16) 
F(a-a') x(k,a) .z(k,a') , 

H = out 
+ c c (-l)k-k'+a-a'+1 F[3(k-k') +a-a'] z(k,a> * z(k',a') . 

kfk' a,a' 

Singling out a particular block for attention, I write: 

H = in F Hblock(k) ' 

% lock = F(l)[h * z(2) + $2) . z(3)] - F(2):(1) . 53) 

= ;F(l)/ [h +52) +9(3)12- p(1) +53)12- +) 

- +(2) /[f(l) +$3)12- 4 1 . (4.17) 

This shows that the eigenstates of Hllock are just the simultaneous 

eigenstates of the total spin on a block and [Ql) +S3)12. These states 

are C notation is IS,S,>; the subscript, when present, gives the value of 

the spin 8(l) +3(3)]: 
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I+,+> = l44t> 
I$,*> = i (IW> + I+tt> + 1 tt4>1 

= iF(1) - iF(2) , 

l+,+>o = + (IW> - let>) , energy = ;W) , 

.- 

l+,+>l = i (21++4> - litt> - Itt+>> , energy = -F(l) - tF(2) , 

(4.18) 

plus the four corresponding states with all spins flipped and negative 

total Sr. It can be seen that Ii,++ >l have the lowest energy regardless 

of the value of p. One then hopes to get a reasonable picture of the 

low-lying states of the lattice by restricting attention to those lattice 

states which are built from the block states I+,*$>1 only. The next 

step is to write an effective Hamiltonian which has the same matrix 

elements as the original Hamiltonian within this sector of states. For 

this purpose I introduce new spin operators z1 which act on the states 

in the usual manner: 

in fact just the total block spin, and the Wigner-Eckart theorem gives: 

<z(k,a) > = ua <h > , 

2 1 =u ii- U1 3 3s"2=-7 3 

where the notation < > indicates any one of the four matrix elements 
. . 

involving the states I $,i$> 1. Using (4.19) to express Hout in terms 

of the block spin operators 8' and observing that Hin is diagonal in 

the sector of states of interest produces the effective Hamiltonian: 
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H(l) = x[-F(l)- $F(2)] + + kFk,(-l)k-k'+lx (-l)a-a' 
k a,a' 

xuu a a, F[3(k-k') +a- a'] g'(k) . :'(k') 

5 c k E1 +$ k+k,(-l)k-k'+l Fl(k-k') z'(k) * z'(k') c . (4.20) 

Since this Hamiltenian has the same form as the original one, apart from 

the overall energy shift El, the blocks of the original lattice may be 

viewed as sites of a new lattice and the whole blocking procedure 

iterated. This generates a sequence H Cm) of effective Hamiltonians 

obeying the RG equations: 

N/3m N/3m 
Hcrn) = c Em+ + c C-1) k-k'+1 Fm(k-k') g(k) .;(k') , (4.21a) 

k=l k,k' =l 
k#k' 

E mfl = 3E m - F,(l) - +F,W , E,=O , (4.21b) 

3 

Fm+l(j) = c (-l)a-a' uauat 
a,a' = 1 

Fm(3j+a-a') , Fe(j) =F(j) , (4.21~) 

i.e., 

F ,l(j> = Fm(3j) + ip,(3j - 2) + Fm(3j - 1) .+ Fm(3j+1) + F,(3j +2)], 

(4.21d) 

where the primes on the spin operators have been dropped for convenience. 

Note that the formula (4.21d) preserves the symmetry property F,(j)= 

Fm(-j) which was assumed in writing Eqs. (4.17) and (4.18). After roughly 

m=log3N iterations of the blocking procedure the entire lattice will be 

reduced to a single block of energy Em. The energy per original lattice 
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site is therefore em E Em/3m. In the infinite-volume limit the energy 

density is given by 8,, with &, satisfying 

& m+l = 8 m - & 
3 

F,(l) + $Fm(2) 1 , go=0 . (4,21e) 

This will always be a variational upper bound on the exact ground state 

energy density. The problem now is to iterate the RG equations many 
.- 

times to find the Hamiltonian which describes the physics at very large 

length scales. 

B. Analysis of RG Equations 

A procedure for numerically iterating RG equations like (4.21) has 

been given by Drell, Svetitsky, and Weinstein.3 At each iteration a 

finite set of function values, say Fm(l),...,Fm(lOO), are explicitly 

computed and stored in an array. For lj\ > 100, Fm(j) is parametrized 
.- 

' with only even order terms being 

required due to F,(j) = F,(-j). The initial conditions are Ao=l, 

B,=C,=D,=O, and substituting this form for Fm into (4.21d)and applying 

the binomial theorem produces formulas from which A, - Dm can be 

computed recursively. The error introduced by using this asymptotic 

form for F, is comparable to the inherent roundaff error in double 

precision computer arithmetic. I have performed the numerical calcula- 

tion using this procedure, but due to the simplicity of Eq. (4.21d) all 

the important results can be obtained by an analytic study of the RG 

equations. This is done by considering Eq.(4.2ld) in the limit of very 

large j where it simplifies considerably. Physically this corresponds 

to looking at the interaction between very distant spins. Since the RG 

equations by definition relate the physics of different length scales 
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they can be used to extend conclusions valid at large j to smaller and 

smaller values of j, as will now be shown. 

When j is large, F(j) is sufficiently slowly varying that F(3j 21) 

and F(3j? 2) can be approximated by F(3j). Then the first (m=O) 

iteration of Eq. (4.21d) becomes 

Fl(j) = $Fo(3j) = -!- 5 Fe(j) 5 CFo(j) , 
3P g 

for j sufficiently large. 

(4.22) 

To extend this to smaller values of j assume now that j is not "suffi- 

ciently large" but that 3j-2 is, so that Fl(3j-2) =CFo(3j-2). Then the 

next iteration of Eq. (4.21d) looks like this: 

F2(j) = Fl(3j) + $[Fl(3j-2) + Fl(3j-1) + Fl(3j+l) + Fl(3j+2)] 

= C 1 Fo(3j) + $[Fo(3j-2) + Fo(3j-1) + Fo(3j+l) + Fo(3j+2)]/ 

= CFl(j) , (4.23) 

and this is valid for values of j roughly l/3 as large as those for which 

Eq. (4.22) was valid. Continuing to iterate Eq. (4.21d) produces equa- 

tions analogous to (4.23) holding for-smaller and smaller values of j 

until ultimately one obtains simply 

Ftil(j) = CF,(j) for all j >l and all sufficiently large m. (4.24) 

The restriction to j #l comes about because according to Eq. (4.21d), 

Fmtl(l) depends on F,(l); in fact, 

Fmtl(l) = F,(3) + $[F,(l) + F,(2) + F,(4) + F,(5)] . (4.25) 

The reasoning leading to Eq. (4.24) assumed that the smallest argument 
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appearing on the right side of Eq. (4.21d),namely 3j-2, was greater than 

j, and this is only true if j > 1. This fact is crucial physically, 

since it means that the nearest-neighbor coupling F,(l) may behave 

differently under renormalization group transformations than the longer- 

-range couplings. The results (4.24) and (4.25) are sufficient to reveal 

the physical content of the RG equations. 
.- 

Proceeding with the analysis, the definition C = 2513 P+2 shows that 

C > 1 for p < log325- 2 z 0.93, and C < 1 for p > 0.93. By Eq. (4.24) 

this implies that 

0 if p > 0.93 
lim F,(j) = 

m+m - if p < 0.93 . (4.26) 

Actually this follows from Eq. (4.24) only for j > 1, but it holds for 

j=I as well: Eq. (4.25) shows that it is not possible to have F,(j) + 0 

or m for all j > 1 without having F,(l) -+ 0 or m (respectively) also. 

The value p=O.93 is strikingly close to the anticipated p-1; unfor- 

tunately, p=O.93 is not to be identified as the point at which the 

energy density diverges and the theory ceases to exist. It is clear 

from Eq. (4.21e)that the divergence of F,(j) is not sufficient to pro- 

duce a divergence in &'m unless F,(j) grows by a factor of at least 3 

at each iteration. This happens for C 2 3, so that p 5 -0.07 is needed 

before this block-spin approximation can detect the divergence in & m' 

The significance of p=O.93 is that for p > 0.93 this approximate 

calculation predicts that the theory has a massless spectrum: any mass 

gap, if present, must vanish along with the couplings F,(j) as m + m. 

For p < 0.93 no statement can be made without actually solving the theory: 
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Eq. (4.26) does not imply an infinite mass gap because a massless theory 

remains massless even when multiplied by a large scale factor. 

The really interesting question, left open by Eq. (4.26), is how 

F,(l) behaves relative to the other terms in the Hamiltonian. In parti- 

cular, under what conditions will F,(l) + m relative to the other F,(j) 

so that the effective Hamiltonian ultimately contains only nearest- 

neighbor interactions? According to Eq. (4.25), if F,(l) is much greater 

than the other F,(j) then Fmtl(l) = %F,(l). Comparing this with Eq. 

(4.24) requires C < 4/9 if the assumption F,(l) >> F,(j >l) is to be 

maintained as m + m. C < 419 corresponds to p > log 25% 
34 1.67, and 

it is easy to see that p > 1.67 is sufficient as well as necessary for 

H Cm> to approach nearest-neighbor form. On the other hand, for p < 1.67 

it is impossible to have F,(l) -+ m relative to the other F,(j). But 

F,(l) + 0 relative to the other F,(j) is also impossible since by Eq. 

(4.25) F&,(l) > F,(3) = $Ftil(3) for large m; thus F,(l)/F,(3) is 

bounded below by l/C as m + -. Assuming that H (m) does in fact iterate 

to a fixed form, the only possibility for p < 1.67 is that all the ratios 

F,(l)/F,(j) approach finite nonzero values as m * -. The interaction 

thus remains long-range; furthermore, since F,(j) W l/j' for large j, 

the form of the interaction will be different for each p. In this sense 

each p < 1.67 is in the domain of a separate-fixed point. 

The energy density computed numerically from Eq. (4.21e) is displayed 

as the upper curve in Fig. 15. The precise location of the vertical 

asymptote (p=-0.07) is not apparent due to the limited range on the 

vertical axis. As discussed in Chapter III, the curve lies 12% above 

the exact answer in the nearest-neighbor limit p+m. 
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Renormalization group results for the ground state energy 
density of the Heisenberg model with (distance)-p inter- 

'actions. The upper (lower) curve is the three (nine)-site 
calculation of Sect. 3(4). The exact result in the limit 
P+-rn, -0.4431, is marked. 
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C. Discussion 

Several remarks are in order regarding the significance of each of 

the three points p=-0.07, 0.93 and 1.67 at which the character of the 

fixed-point Hamiltonian HCa' changes. (Of course, it is the change in 

the behavior of H (-1 that is significant, rather than the precise numeri- 

cal values found for the critical points. One would not expect the 

critical points te'be very accurately located by the present crude 

calculation.) It should be realized at the outset that there are 

basically two ways to obtain information about a theory from a block- 

spin calculation such as this one. The first way is to solve the fixed- 

point Hamiltonian. In the present case this will not work for p < 1.67 

where the fixed-point Hamiltonian contains long-range interactions and 

is at least as difficult to solve as the original theory. The second 

way is to study the lattice states iteratively constructed by the 

blocking procedure. This is not always practical, and in the present 

case it will not distinguish the phases of the theory because the same 

lattice states are constructed for all values of p. Therefore, the 

conclusions drawn from the present calculation are necessarily rather 

sketchy. 

The present calculation does not detect the energy density 

divergence until p L -0.07, which compares poorly enough with the 

anticipated p < 1 to warrant some discussion. Recall that the ground 

state energy density was identified as lim Em/3m on the basis of an 
m+m 

argument which iterated the blocking procedure until the entire lattice 

was reduced to a single block. Suppose instead that one performs some 

fixed number M of iterations, then takes the infinite-volume limit and 

studies the resulting Hamiltonian H (M) . The energy density may be 
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estimated by 3-M< $(HCM) 101 with some variational trial state I$>. 

In particular, since FM(j) m l/j' asymptotically, the expectation value 

of HtM) in the ordered state IQ,> of Sect. 2 will contain a divergence 

at p=l coming from the operator part of H (Ml . In this way one recovers 

‘the correct result. This illustrates that it is always better, when 

possible, to extract information from the effective Hamiltonian than to 

continue iterating until the lattice is reduced to a single block. The 

point is simply that in any variational approximate calculation better 

trial states exist than the ones being used. In the present case, for p 

near i the state 10~) is better than the states built using the blocking 

procedure. 

As noted above, the significance of the point p=O.93 is that for 

p > 0.93 the theory is expected to be massless based on the RG equations 

alone, while for p < 0.93 the issue cannot be resolved without further 

study of the fixed-point Hamiltonian. The theory may be massless for 

p c 0.93 or a mass gap may exist. It might seem that the mass gap 

would have to be infinite if nonzero because it should diverge with 

the coupling function F,(j), but this is not correct. The proper 

conclusion is that the blocking procedure has identified a class of 

block states whose energies diverge with the block size when p < 0.93. 

These states certainly need not be the lowest-lying excitations in the 

system, although to the extent that they are not, the motivation for 

the blocking scheme as a probe of the low-lying spectrum is weakened. 

Nevertheless, the suppression of this class of excitations at finite 

temperature is useful thermodynamic information. 
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For example, if the Ising model analogous to Eq. (4.15) is treated 

by the block-spin method of this section one finds that lim.F,(j)=m 
rn+a 

for p<2. This discussion is given in Appendix B. The states constructed 

by the blocking procedure in this case are the exact ground states plus 

states formed by flipping blocks of spins. The divergence of F,(j) means 

that at finite temperature flips of large blocks of spins are suppressed. 

This is responsible for the persistence of order in this model up to a 

finite critical temperature when p< 2. Based on this example one may 

conjecture that the Heisenberg antiferromagnet also is ordered at low 

temperatures in some range of p, given as p x 0.93 in this very crude 

calculation. 

The point ~~1.67 represents the approximate location of a true 

phase transition, separating the "nearest-neighbor phase" p > 1.67 from 

the "long-range phase" p < 1.67. The phases may be distinguished, for 

example, by the behavior of the correlation function <3(i) * z(j)> of 

very widely separated spins. The correlation function will be governed 

by the fixed-point Hamiltonian which is quite different in the two phases. 

In practice one may consider the translationally invariant correlation 

function W(k) = ii+rn- i c <z(i) - z(i+k)> so as to average out edge 
i 

effects associated with the block walls in a block-spin calculation. 
* 

Following the treatment of the Hamiltonian, g(i) . z(i+k) is replaced by 

an effective operator at each iteration, using Eq. (4.19). When the 

Hamiltonian achieves its fixed form the required expectation values are 

computed in its ground state. If the fixed-point Hamiltonian is not 

solvable, one has no recourse but to continue iterating until the dot 

products of spins are reduced to squares of single spins with expectation 
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value 314. This yields much poorer results: in the present case it 

leads to correlation functions with no dependence on p, since the block - 

states have none! Indeed, one may be skeptical about the results.of the 

present calculation on the grounds that the same variational trial states 

are used for all values of p. This problem is corrected in the improved 

calculation to be discussed next. 

4. Improved Calculation Using Nine-Site Blocks 

Although the three-site calculation definitely indicates the pre- 

sence of a phase transition at p e 1.67, one would like some assurance 

that the conclusions do not change qualitatively when more accurate 

calculations are done. The greatest single drawback of the three-site 

calculation is that the block eigenstates are completely determined by 

the rotational invariance, rather than the detailed structure, of the 

interactions. The nine-site calculation to be discussed now does not 

suffer from this problem. 

The algorithm employed here is just as in Sect. 3. One restricts 

the full Hamiltonian (4.15) to a nine-site block and, by diagonalizing, 

determines the lowest-lying spin-112 doublet of.eigenstates. Taking 

matrix elements between these states produces the relations analogous 

to (4.19): 

<z&,4> = ua<zr (k)> , a=1,2 ,-a-, 9, (4.27) 

which may be used to construct the effective Hamiltonians. The ua, 

however, will no longer be constants but will change with the value of 

p and from iteration to iteration. The RG equations will take the form: 
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N/grn N/9" 
,h) = c 

k=l 
Em+ $ c (-l)k-k'+'Fm(k-k') x(k) .s(kJ) , (4.28a) 

k,k'=l 
k#k' 

F ,l(j) = (-l)a-a'u(am)u2)Fm(9j +a- a') , 
a,a'=l 

Fe(j) =F(j) , (4.28b) 

Etil =9Em.+e , m Eo=O , (4.28~) 

-where em are the "energies" (ml (eigenvalues of the operator part of Hllock, 

dropping the constant Em) of the doublet of states constructed at 

successive iterations. These RG equations must be iterated numerically 

using the method of Drell, Svetitsky, and Weinstein described in Sect. 3. 

Although there are 512 independent states on a nine-site block, one 

does not need to diagonalize 512x 512 matrices to carry out the above 

program. It suffices to determine the Sr = l/2 member of the lowest- 

lying spin-112 doublet, which will have even parity. Simple combinatorics 

shows that there are exactly 22 spin-l/2, S, = l/2, even parity states on 

a nine-site block. One of these states can be constructed by two itera- 

tions of the three-site blocking procedure [compare Eq. (4.18)1: _~ 

and 

- 1+,-+>11~,$>11+,~>1] -, 

where I+,+>1 = 

IffS> + Isct> + It++>) . (4.29) 
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The next state is obtained by applying the block Kamfltonian to I$> and 

eliminating the component of the resulting state along I$>, -and the 

remaining 20 states are constructed by repeatedly applying the block 

Hamiltonian to the last state constructed and orthonormalizing the-whole 

set. The matrix to be diagonalized is then 22x 22. Some technical 

points concerning the numerical calculation are discussed in Appendix C. 
-- 

In Chapter III an alternative scheme was suggested, in which only 

the 2 x 2 matrix representing the block Hamiltonian in the subspace spanned 

by Id'> and bloc,& is diagonalized to obtain approximate nine-site 

eigenstates. This is based on the idea that ($> is already a reasonable 

approximation to a nine-site eigenstate and in perturbation theory would 

mix most strongly with the state Hblockl"' Indeed, one finds by 

diagonalizing the 22 x 22 matrices that the exact lowest-lying eigenstate 

typically gets about 90% of its amplitude from the two states I$> and 

% lockl"' ' ince the error in an energy goes as the square of the error 

in a state vector, energies computed by the 2x2 diagonalization typi- 

cally are within 1% of the exact nine-site energies. The approximation 

is thus very good. For definiteness, however, the results to be reported 

in this section come from the exact nine-site diagonalization using 

22x 22 matrices. 

Numerical iteration of the RG equations (4.28) shows that there are 

still three critical values of p with the same qualitative properties 

discussed in Sect. 3. The region in which the energy density diverges 

is found to be p 5 0.18 (as compared to -0.07 from the previous, less 

accurate, calculation), the couplings F,(j) diverge for p 2 1.11 (as 

compared to 0.93), and the transition separating the long-range and 
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nearest-neighbor phases occurs at p z 1.85+0.05 (as compared to 1.67). 

This last value is hard to estimate from numerical data because as the 

transition point is approached from above the long-range couplings 

F,(j >l) decay more and more slowly. Very near the transition it is 

impossible to tell whether the long-range couplings ultimately vanish 

or not. However, it is significant that this critical point moved 3 .- 

from 1.67. Had it moved down one might have suspected that an exact 

calculation would reveal no transition in the "physical region" p > 1. - 

The ground state energy density resulting from this calculation is 

given by the lower curve in Fig. 15. For p + m the energy density is 

-0.4212, 5% above the correct value. 

Since the block states now depend on p, correlation functions 

computed using nine-site blocks will have p-dependence and will dis- 

tinguish the long-range and nearest-neighbor phases. In a simple block- 

spin calculation of the present type (non-variational) one obtains a 

power-law falloff at large distances, where the exponent is a constant 

throughout the nearest-neighbor phase but depends on p once the long- 

range phase is entered. It is worth emphasizing that no evidence will 

be found for the violation of the cluster property known to occur at 

p=o. The effective operator representing the end-to-end order after 

m iterations satisfies the RG equation: 

Ml) 
[;(l, s;(N)] = 

Cm) 

Eff 
u~)u~)[;(l) *c(N)] , 

Eff 
(4.30) 

and since u~~),u~") ~1 [this follows from Eq. (4.27) and the fact that the 

magnitude of the expectation value of S, in a non-eigenstate is less 
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than l/23 one has Ntp- <$(l).;(N)) = 0. This is because a cluster 

property is really built into block-spin calculations: at-any iteration 

correlations between spins in different blocks are ignored. This. is 

also why the calculations locate the energy density divergence poorly. 

The most one could hope for is that if the cluster property is violated, 

-then <z(l) *z(N)> will go to zero more slowly as the accuracy of the 
.- 

calculation is improved. 

5. Concluding Remarks 

The most accurate calculation I have performed indicates that the 

Heisenberg antiferromagnet (4.1) has a phase transition at p e 1.85. 

The phases can be distinguished by the form of the fixed-point Hamiltonian 

and the behavior of correlation functions such as <s(i) *z(j)>. The 

large-p phase has the physics of the nearest-neighbor antiferromagnet 

while for p 5 1.85 there is a line of fixed points. The calculation 

predicts that the model is massless for p ) 1.11. More detailed 

statements cannot be made due to the intractability of the fixed-point 

Hamiltonian for p 5 1.85. 

It is interesting to speculate on how these numbers will change in 

more accurate calculations. As the accuracy increases, the point at 

which the energy density begins to diverge must approach p=l. The 

point at which the couplings begin to diverge must be at a larger value 

of P, since the couplings must grow by a factor L at each iteration to 

get a divergent energy density, with L the number of sites per block. 

The calculations done here suggest that the divergent couplings and the 

divergent energy density are separated by about 1 unit of p. It is 
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tempting to suppose that the onset of the divergent couplings occurs 

at P = 2 and coincides with the nearest-neighbor to long-range phase 

transition. The divergent couplings in the long-range phase then plake 

it possible that there is long-range order at finite temperature in this 

.phase since the excitations whose energies are diverging will not be 

present at finite temperature. 
.- 

It is difficult to recommend reliable ways to improve the present 

calculations. Simply going to bigger blocks soon becomes cumbersome 

due to the size of the matrices to be diagonalized. Another possibility 

is to write effective Hamiltonians valid for more block states than just 

the lowest pair. This method generally gives large increases in numerical 

accuracy because the additional states contain information on energy 

levels and the density of states not present in the lowest-lying pair of 

states alone. For example, the two-site calculation using four states 

per block for the nearest-neighbor Heisenberg model (Chapter III) gives 

almost the same accuracy in the energy density as the nine-site calcula- 

tion discussed here. However, this method will not preserve the form of 

the original Hamiltonian but will embed it in a more general (and more 

complicated) theory after the first iteration. As discussed in Chapter 

III, it is then necessary to study the phases of the more general theory 

and to understand how the original theory has been embedded. Finally, 

variational calculations in which the block states are chosen to minimize 

the ground state energy after many iterations rather than to diagonalize 

the block Hamiltonians can give excellent results,53B but how to choose 

good variational trial states is an open question. 
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APPENDIX A 

I prove that, given a set of Feynman rules periodic in all momenta, 

periodic &functions can be used to do trivial momentum integrations 

just as ordinary &functions are used in continuum theories. 

It suffices to show that if 

A .- 
IE J dkl . . . dkn F(kl 3 * * * ,kn) Gper[kl -G(k2s***kn)] 3 (A. 1) 

-A 

where F is periodic in kl with period 2A, then 

A 

I = 
J 

dk2... dkn F[G(k2 ,...,kn),k2,...,kn] 

-A 

. (A.21 

To do this, write (A.l) as 

co A 

I= 
c/ 

dkl . . . dkn F(kl,..., kn)"[kl-G(k2,...,kn)+2m+ (A.31 

In the mth term change variables from kl to ki = kl+2mA, giving 

I z 2 '2~'Adki~dk2...dkn F(ki'2~,k2,.,~.rkn)S[ki-G(k2,.~.~kn)l 

m=-m (2m-1)A -A 

= pdkip dk2 . . . dkn F(ki,k2,***, kn)6ki 'G(kg,..*,k,)] 

A 

E 
/ 

dk2 . . . dkn F[G(k2 ,...,kn);k2,...,kn] , 

-A 

(A.41 

by periodicity. 
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If the function F is initially defined only for -A < ki < A then 

the above holds if F is extended periodically. 
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APPENDIX B 

Although the Ising model with long-range interactions is quite 

trivially soluble at zero temperature, it is illuminating to study it 

using the three-site RG algorithm of Chapter IV. The RG equations are 

very similar to those for the Heisenberg model, and the interpretation 

of the various critical values of p can be justified by known properties 

-- of the model. 

The Hamiltonian is written as 

N 

Hz+ c C-1) 
ifj 

i-j+1 F(i-j) S,(i) S=(j) , 

F(i-j) = 
Ii-:,' ' 

(B. 1) 

and restricting it to a three-site block leads to a block Hamiltonian: 

% lock = 
F(l)~s(l)Ss(2) + Sz(2)Sz(3)] - F(2)Sa(l) Ss(3) . (B.2) 

The lowest-lying pair of eigenstates of Hblock is clearly 

I++> = I4Ct> , I-$> = I+++> , energies = -iF(l) - tF(2) . (B.3) 

Within the sector of states built from I?$> the. relation between the 

single-site operators and the block spin operators is just [compare 

Eq. (4.19) 1: 

<S,(k,a)> = ua<Si(k)> , 

Y 3 =u =l , u2=-1 . (B.4) 

It is evident that this sector of states contains both of the degenerate 

true ground states of the model: (o1> L I4+t+... > and the state I++++...>. 
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The RG equations analogous to Eqs. (4.21) are: 

H(m) = CE + L c (-l)k-k'+lF (k-k') S (k) S (k') 
km 2k#k' m z z , (B.Sa) 

Ftil(j) = c (-l)a-a'~aual F,(3j+a-a') , Fe(j) =F(j) , (B.5b) 
a,a' 

I.e., 

Fel(j) = 3Fi(3j) + 2Fm(3j-1) + 2Fm(3j+l) + Fm(3j-2) + Fm(3j+2) , 

(B.5c) 

1 -- 
&m+l= 'm 3m+l [$F,(l) + +‘,‘2,] . (B.Sd) 

These equations may be analyzed by exactly the same methods applied 

to Eqs. (4.21). By considering first large values of j one finds that 

Eq. (B.5c) implies: 

Ftil(j) = C'F,(j) , j > 1 and m sufficiently large, 

where C' = $(3+2+2+1+1)= $ , (B.6) 

while the nearest-neighbor coupling obeys: 

F mtl(l) = 3Fm(3) + 2Fm(2) + 2Fm(4-) + F,(l) + F,(S) . (B.7) 

The condition for the energy density to diverge is again C' 2 3, which 

implies p 5 1. This is exactly the correct result (recall that p < -0.07 

was obtained for the Heisenberg model), as it must be since the true 

ground states are in the sector to which the Hamiltonian H Cm> applies. 

The range of p for which the model is in the nearest-neighbor phase is 

found by requiring C' to be less than the coefficient of F,(l) in Eq. 

(B.7): C' < 1 means p > 2. The model is in the long-range phase for 
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l<p<2. Finally, Eqs. (B.6) and (B.7) show that for C' >l or p < 2, 

lim F,(j) = 0). 
m+m 

For C' < 1 however, it is easy to see that Fm(j >l) + 0 

but F,(l) -+ constant > 0. This last fact, that F,(l) + 0 for p > 2, 

squares with the known nonzero mass gap of the nearest-neighbor Ising 

model. The point p=2 is thus analogous to both of the points p=O.93, 

1.67 in the Heisenberg case. 

The significance of the fact that for p > 2 the mass gap is finite 

while for p < 2 it is apparently infinite will now be explained. By 

virtue of the structure of the block states (B-3); after m iterations of 

the RG equations, flipping a single spin in the ground state I@,> 

corresponds to flipping a block of 3m spins on the original lattice. 

The effective Hamiltonian H Cm> therefore describes the true ground 

states plus those excited states formed by flipping blocks of 3m spins. 

(For the remainder of this paragraph, a "spin" always means a spin of 

the original lattice.) For the nearest-neighbor Ising model (p=m) it 

costs the same amount of energy to flip a block of spins of any size. 

For p large but finite the first excited state has exactly one spin 

flipped, and it costs progressively more energy to flip larger blocks. 

However, this energy remains finite as the block size goes to infinity 

provided p > 2. At finite temperatures arbitrarily large blocks can be 

excited and flipped. This will destroy the end-to-end order of the 

ground state, as proved by Ruelle.26 For p < 2 the energy required to 

flip a block of spins diverges with the size of the block. The resulting 

suppression of large-scale fluctuations suggests that the order in the 

ground state may persist at low temperatures at least, although a 

rigorous proof is required and was supplied by Dyson.25 Obviously the 
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first excited state has only a single spin flipped, is not in the 

sector governed by H (ml , and the mass gap to this state is perfectly 

finite down to p=l despite the divergence in F,(j). 

The Ising model differs from the Heisenberg model in that the-zero- 

temperature ground state of the Ising model is the same for all values 

'of p. The long-range and nearest-neighbor phases of the Ising model are 

distinguished only by their finite-temperature properties, which stem 

from the distribution in energy of the excited states. 
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APPENDIX C 

This Appendix describes in more detail the organization of the 

computer program which carries out the nine-site RG calculation of 

Chapt. IV, Sect. 4. At each iteration of the RG equations (4.28) 

the program must: 

1) Find th_e lowest-lying spin-$, Sz=G eigenstate of H Cm> 

restricted to a nine-site block, 4 Cm> , and its energy Emtl. 

2) Compute the parameters up) of Eq. (4.27) from 

<QCrn) 
I I 
S,(a) $(m)> = % up), a = 1, 2, . . . 9. 

3) Compute the new long-range coupling function Ftil(j) 

from Eq. (4.28b). 

To begin with, one needs a convenient and efficient representation 

for the 512 basis states on a nine-site block, They are naturally 

labelled by the integers from 0 to 511 themselves: write each integer 

as a nine-bit binary number and interpret a 0 or 1 in the nth position 

as a spin down or up, respectively, on the nth site in the block. 

Those binary numbers containing exactly five l's represent states 

in the Sz = & sector of interest. There are exactly 126 such states, 

and their binary code numbers are given 1abels“from 1 to 126. Each 

Sz = 4 basis state thus has an essentially arbitrary label, plus 

nonarbitrary binary and decimal code numbers which directly give the 

spin configuration of the state. A series of lookup tables allows any 

of these three numbers to be determined given any other. A state in the 

Sz = 4 sector can now be given as a 126-component vector, each component 

giving the amplitude of a unique basis state. 
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It is very simple to apply an operator ??(a) *z(b) to a basis state 

in binary form. Thus, o+(a) o-(b) + o-(a) o+(b) interchanges the ath 

and bth binary bits if these are different and annihilates the state 

otherwise, while o,(a) us(b) multiplies the state by f 1. A simple 

subroutine can rapidly apply the block Hamiltonian to any Ss = 4 state. 

To find the eigenstate 0 (4 b> , the block Hamiltonian Hblock is 
.- 

written as a 22x 22 matrix in the spin-&, Sz = 4, even parity sector. 

Cm> Numerical accuracy requires that one remove from Hblock its c-number 

piece Em, which,is growing as 9", leaving an operator M. The basis 

states $,, i = 1, 2, . . . 22, in this sector are generated by the 

Lanczos method.33 Taking for $1 the state of Eq. (4.29), $, is taken as 

W1 - <+b,> '4,s normalized to unity, so that <q21J11> = 0. In prin- 

ciple, *n+l can be defined by 3, - <$,IM~$,>+, - <~n-lI~l~nNn-l~ 

normalized to unity. 

One shows inductively that Q,, is automatically orthogonal to $, 

if R < n-l : assuming $, was orthogonal to all previously constructed 

states, one has 

<*,P,I$n+l > = <JIRIMIQn> = <$,IWR> 

= <Qn(combination of $1, $,, . . . JI,-l> = 0 . 

In practice, however, enough numerical error builds up in constructing 

22 126-component states that $n+l must be explicitly orthogonalized to 

all previous states. The matrix of M is automatically tridiagonal in 

this basis: <$,lMl$,> = 0 unless II = n or n+ 1, so relatively few matrix 

elements have to be computed. 
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Another danger introduced by numerical error is that the states Jli 

may have components outside the spin-$ even parity sector of interest. 

Fortunately, as discussed in the text, $I 64 is predominantly composed of 

the first few $i, which are also the most accurate. I explicitly checked 

that $(m) always had spin-% to several decimal places. 

Diagonalizing the 22x 22 matrix of M gives the eigenstate $ Cm> , 

its "energy" em, and the parameters u (4 
a ' Defining the 9x 9 matrix 

,(m) = (-l)a-a' up) u;y) , 
aa' 

the RG equation (4.28b) becomes 

Fm+,(j) = c Rz! Fm(9j+a-a') . 
a,a' 

The remaining problem is how to compute the infinitely many parameters 

FtilCi). 
As mentioned in the text, only the 

are actually stored for each m. For j > 

6 

Fm(j) = F. 41 Smpmk , 

cc.11 

parameters F,(j), j =l, 2,... 100 

100 one writes 

Ap’ = 6k,l , (C.2) 

and stores the seven additional parameters of which three vanish 

because F, is even). Then A:) obeys the recursion relation following 

from Eq. (C.2), 

4, (m+1) = a,$zl g --& Rz! A?’ Be,k-eilb- aTIke’ , (C.3) 

where (a- a') k-8 means 1 if a = a' and k = R, and B is a matrix of 

convenient binomial coefficients: 

(l + ;>-“-” = $ Bk+l,q+l 6q ’ 

The calculation of Fm+I from Fm proceeds using Eqs. (C.l-3). 
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