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PARITY VIOLATING ASYMMETRIES AND 

WEAKNEUTRAL CURRENTS 

Thomas Tsao, Ph.D. 
Stanford University, 1980 

The vector and axial couplings of leptons and quarks to the weak 

neutral current are studied by focusing on the parity violating asym- 

metries which arise in the following scattering processes: polarized- 

electron nucleon elastic collisions, dilepton production in polarized- 

proton proton scattering, polarized-electron positron annihilation into 

fermion pairs, and polarized-electron electron collisions. Numerical 

results are presented for the Weinberg-Salam model of electroweak 

interactions. It is found that at q 2=1 GeV2, the parity violating 

asymmetries for elastic electron nucleon collisions are typically @(10s5) 

for proton, neutron, and deuteron targets. For dilepton production at 

presently available energies of s=103 GeV2, the parity violating asym- 

metries are @(10s2) while at much higher energies s = 6.4~10~ GeV2, the 

asymmetries are @(lo-l). Electron positron annihilation into u'u-, q< 

and e+e- give parity violating asymmetries that are typically &(10-l 
-. 

to 1) for s near the Z" pole. Polarized-electron electron scattering 
- 

yields parity violating asymmetries of @(10-2) at s Ed lo4 GeV2. 

The restrictions imposed on the parameters of the six-quark model 

by the neutral kaon system are discussed - with QCD effects included in 

the leading logarithmic approximation. The dependence of the CP via- 

lation parameter e', the b-quark lifetime, and the ratio of decay widths 

I'(b+ux)/T(b+cx) on the six-quark model parameters is also discussed. 
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CHAPTER I 

INTRODUCTION 

A research area of considerable interest to high energy physicists 

during the past decade has been the subject of neutral current inter- 

actions. This new type of weak interaction was first discovered1 in 

1973 in the particle reaction vp + vx. Unlike the familiar weak beta 

decay in which the charge Q of the nucleon in the system undergoes a 

change of one unit (AQ = +l), this new interaction does not change the 

charge of the hadronic system (AQ=O). The ordinary beta decay with 

AQ # 0 is a charged current weak interaction, which proceeds via the 

exchange of a very massive charged intermediate vector boson W. This 

newly discovered weak interaction with AQ = 0 has come to be called the 

neutral current interaction, since it is mediated by a massive neutral 

intermediate vector boson (known as the Z'). As a matter of fact, the 

carrier of this new force had been conjectured by Weinberg and Salam' 

in their gauge theory of electroweak interactions, prior to 1973. 

As with charged current interactions, the investigation into the 

structure of neutral current interactions has been rewarding for both 

experimental and theoretical workers. The experimentalists have con; 'Y 

ducted precise and beautiful measurements confirming the existence of 

the weak neutral current in a wide variety of particle reactions.3 

These range from the initial discovery of the neutral current in the 

pioneering neutrino scattering experiment done at Gargamelle, to the 

recent results from the SLAC polarized-electron experiment -- which 

eliminated most of the competing gauge models. Spurred on by the 
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experimental discoveries, the theorists have gained deeper understanding 

of the structure of non-abelian gauge theories, spontaneous symmetry 

breaking, renormalization, etc. By combining the electromagnetic and 

weak forces into a single electroweak force, the theorists have attained 

partial success in the unification of the four fundamental interactions. 

Of the many possible gauge models of the electroweak interaction,the 

Weinberg-Salam (WS)theory is the simplest.At present, it can successfully 

account for all the phenomenology of neutral current processes. Indeed, 

it has become the 'standard' model with which theoretical analyses of 

available experimental information on neutral current processes are based. 

Two methods of analysis of experimental data are currently in vogue. 

The first approach is to view the neutral current as a totally new phe- 

nomenon, with the goal being the determination of the unknown effective 

couplings of the new interaction. The second method is to assume that 

the WS theory gives the correct description of nature. Theoretical 

predictions based on the WS model are calculated in lowest-order pertur- 

bation theory, and then compared with the experimental data. These 

comparisons have verified the consistency of the WS model to within some 

minor discrepancies, which are assumed to be due to-additional, higher- 

order corrections to the lowest-order results. 

A combination of these two points of view is taken in this report. 

However, the purpose here is not to analyze experimental data. Rather, 

new reactions which involve the neutral current are proposed and analyzed 

with the aim of providing alternate measurements of the effective couplings 

of fermions to the weak neutral current. For the purpose of predicting 

actual numbers for cross sections and asyrmnetries, the WS model is 

- 
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applied -- with the latest experimental 

sin2eW being used as input. 

value for the weak mixing angle 

At present laboratory energies, the effects of the weak neutral 

current in most physical processes are largely overshadowed by the ever- 

present electromagnetic current. One way of overcoming the effects of 

the competing electromagnetic interaction is to look for explicitly 

parity violating quantities. Since the electromagnetic coupling of the 

photon to matter is parity conserving, observation of parity violation 

is a direct way of eliminating the bothersome electromagnetic background. 

In Chapter II the parity violating difference in the elastic scat- 

tering of right-handed and left-handed longitudinally polarized electrons 

with a nucleon is studied. It is found that neutron targets yield larger 

parity violating asymmetries (by about a factor of three for sin2SW = at> 

than proton targets -- mainly because the d quark has a larger vector 

coupling to the Z" than the u quark. The parity violating asymmetry for 

polarized-electron deuteron scattering is also derived. All electron- 

nucleon asymmetries are @(10m5) at SLAC energies. In Chapter III, the 

parity violating asymmetries in dilepton production by polarized protons 

are examined. Because larger collision energies are accessible in pp 

collisions, and also because the vector coupling of quarks to the Z"-is - 

much larger in magnitude than the electron vector coupling, the dilepton 

asymmetries (@(10-2) at present laboratory energies of s=104 GeV2) are 

much larger than the previously considered electron-nucleon asymmetries. 

In addition, asynnnetries for very energetic collisions (energies large 

compared to the Z" mass) are considered. In the following chapter, the 

cross sections, parity violating and angular asymmetries for polarized- 
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+- electron positron annihilation into u p , q< and e+e- are studied. For 

completeness, the reaction e-e- + e-e- is also discussed in Chapter IV. 

In Chapter V, we turn to a somewhat different topic -- that of 

determining the angular parameters of the six-quark model. The K"-Eo 

system has traditionally been used to derive constraints on the six-quark 

model parameters. The transformation of the K" into a f" is a second- 

order weak effect which occurs through a box diagram involving the ex- 

change of two charged W's inside a loop. There is no first-order diagram 

since the single Z" cannot make the required change in quark flavors. 

Nevertheless, the second-order box diagram with the two W's may be 

considered an effective neutral current interaction. 

Two measurable quantities of the K"-Eo system are the mass difference 

and the CP violation parameter. These two quantities are related to the 

real and imaginary parts, respectively, of the effective Hamiltonian for 

K"-Eo transition. The two equations have a complicated dependence on 

the six-quark model angular parameters. Experimental values for the 

mass difference and CP violation parameter consequently impose constraints 

on the values that can be taken on by these six-quark parameters. In 

Chapter V we consider the effects of quantum chromedynamic (QCD) correc- 

tions (calculated in the leading logarithmic approximation) on the con- 

strained parameters. Since there are three unknown parameters -- the two 

Cabibbo-like mixing angles B2, B3 and the single phase angle 6 -- but 

only two coupled equations relating these parameters, the two QCD- 

modified constraining equations can at best only be "solved" for two 

angles as functions of a third angle. Here sine3 has been chosen as 

the independent parameter, and sine2 and sin6 are expressed in terms 

- 
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of this parameter. We conclude Chapter V by using our results for the 

six-quark model parameters to calculate the dependence on sine3 of the 

CP violation parameter E', the b-quark lifetime, and the ratio of decay 

widths T(b-+ux)/T(b+cx). 

-. 

- 
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CHAPTER II 

POLARIZED-ELECTRON ELASTIC SCATTERING ASYMMETRIES 

IN SU(2) x U(l)* 

1. Introduction 

An interference between the weak and electromagnetic interactions 

can give rise to a difference between the cross sections for scattering 

of right- and left-handed electrons on either leptonic or hadronic 

targets. The measurement1 of deep inelastic asymmetries to the required 

level of accuracy increases the interest in the theoretical predictions 

for both elastic and inelastic electron-nucleon scattering asyrmnetries. 

The consequences of weak-electromagnetic interference for electron 

scattering experiments have been explored over the last several years 

since gauge theories in general, and the Weinberg-Salsm SU(2) xU(1) model2 

in particular, have become central to understanding the weak interactions. 

The asymmetry expected in polarized electron elastic scattering has been 

calculated in severalpapers.3s4,5 Recently predictions for elastic 

electron-proton scattering, A electroproduction, and deep inelastic 

scattering were brought up-to-date in terms of gauge theories of present 

interest.6 - 

However, in the case of elastic scattering Ref. 6 was restricted in 

that only elastic electron-proton scattering was considered, certain 

approximations were made which are relevant to high energy (Ebeam kl 

20 GeV) experiments done at SLAC, and results were presented only for 

sinLo W = l/3. Here we remove these restrictions. In Sect. 2 we calculate 

both electron-proton and electron-neutron elastic scattering for a range 
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of values of sin28 W' Furthermore, we calculate the terms neglected in 

Ref. 6 within an SU(2) xU(1) gauge theory and show their quantitative 

effect. While at low energy they turn out to be of considerable 

importance, ' we show they truly are negligible for most SLAC energies 

when the right-handed electron is a singlet under the gauge group, as 

in the original Weinberg-Salam model. When the electron is assigned to 

a right-handed doublet the previously neglected terms give the whole 

asyrmnetry , and it is an order of magnitude smaller. Elastic electron- 

neutron scattering turns out to give an asymmetry many times bigger than 

that for elastic electron-proton scattering for typical values of the 

kinematic and SU(2) xU(1) model parameters. 

With some quite general assumptions about the gauge theory trans- 

formation properties of the quarks making up the neutron and proton in 

the deuteron, we rederive in Sect. 3 a very simple form5 for the asymmetry 

in elastic electron-deuteron scattering. It is relatively large in 

magnitude and opposite in sign to that predicted for elastic or inelastic 

scattering on protons and neutrons separately. Finally in Sect. 4 we 

present a discussion of our results. 

-. 
2. Polarized-Electron Nucleon Elastic Scattering Asymmetries 

As noted above, the asymmetry between the cross sections for elastic- 

scattering of right- and left-handed electrons on nucleons expected 

because of the interference between exchange of a photon and a weak 

neutral boson, Z ', has been calculated previously.3-6 Taking the 

couplings at the nucleon vertex to be the usual Dirac (eFT(q*)) and 

Pauli (eF:(q2)/2HN) ones for the photon, and correspondingly, F;(q*) 
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and F;(q2) as well as Gi(q2) (the coefficient of yny5) for the Z", one 

finds the asymmetry:8rg 

A 
doR- doL 

eN+eN = doR+da L 
= (-@(-gA[$(F:'":)(F:+F") 

+ 2EE'-92 ( 

2 

)( 
FYFZ + $ F>Z,)] - gvGi(F;+F;)(E2 -E'*)i 11 

x -$(R~+F:)' + (21~1 - $)[(R:,2 + -$(F:"]T' . (2.1) 

Here E and E' are the initial and final electron energies and gv and gA 

are the vector and axial-vector couplings of the Z" with mass MZ to the 

(assumed) point-like electron. 

In Ref. 6 the limit qL/2MWE + 0, or equivalently E+m, was taken 

in Eq. (2.1). In that limit, argued in Ref. 6 to be a good approximation 

in the SLAC experimental regime, Eq. (2.1) simplifies dramatically tog 

2 
%F:F; 1 

A zs - 4% 
eN+eN 

$F;)' * 

0.2) 

-. 

We now wish to examine this high energy approximation in some detail. 

Specifically, we investigate quantitatively how big the terms propor-' 

tional to the axial-vector coupling of the nucleon can be in various 

- 

cases. Of course, when gA of the electron vanishes, these previously 

neglected terms are the only contributions to the asymmetry in lowest 

order. To investigate this, and to calculate asymmetries with neutron 

as well as proton targets, we need the couplings of the Z" to the nucleon. 
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For the sake of completeness, we review here the usual procedurelO for 

obtaining these couplings. 

We first recall that FT and F:, or equivalently Gi and Gi are 

dependent on the particular gauge theory. Their magnitude is most 

directly obtained by considering the coupling of the y and Z" to quarks. 

In terms of quark fields the electromagnetic current is 

2e - 
- UYpU 3 - 5 $d - 5 Sy,,s + $ Cypc . 

Neglecting the contribution of strange and charmed quarks to the nucleon's 

electromagnetic properties, we havell 

(p IF ;ynu - 5 ay,d(p> = eGi 

(2.3a) 

and 

= <P 1% &nd - 5 ;y,uIp> , 
(2.3b) 

where an isospin rotation has been used to obtain the last equalities in 

Eqs. (2.3a) and (2.3b). Thus, 

<pI;y,~Ip> = (“I&,dj”) = 2Gi+Gi-- Y (2.4a) 

and 

<pIayndIp> = <nI;y,uIn) = G2*Gz . (2.4b) 

Now in terms of right- and left-handed weak charges, Q, and Q,, of 

the quarks, which are determined by the gauge theory model, the weak 

vector current is 

1 ‘z Qi,U+ QE u , );Y,U -k +(Q;,, + ‘?;,d)aYlld - 
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Combining this with Eq. (2.4) we have, 

G;,=+(Q; +Qfu)(2G;p+G;n) t ¶U , , , 

' 

(2.5a) 

(2.5b) 

and similar equations for the vector couplings of the Z" to the neutron. 

The axial-vector couplings of the Z" to the nucleon are determined 

in a similar manner. We first recall that the isovector axial-vector 

current is measured in weak neutron beta decays: 

<PIcYpY5u - &,,Y5d 1 

= -+liiypy5u - huY5d 1, 

p> 

n> = G,(q2> , (2.6) 

where GA(O)= +1.24. The isoscalar portion of the axial-vector current 

is determined by demanding that the ratio of isoscalar and isovector 

matrix elements be the same as that for total magnetic moments:" 
-_ 

where 

z 
3(up + !J,) 

up - 'n 
<PI~Y,,Y~u - ay,y5dIp> > 

- 

(2.7) 

up= , Gi p(O) = 2.79 and p, = Gg .(O) = -1.91 . 
, 
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This is supported by the F/D ratio in W(3) being nearly the same for 

the weak axial-vector current and the total magnetic moment. Such an 

equality is predicted by the quark model,12 where F/D = 213; and indeed, 

the factor 3(up + nn)/(up - n,) in Eq. (2.7) could be replaced to high 

accuracy by its quark model value of 315. 

Putting together the results for matrix elements of the axial-vector 

current yields: 

<PI;Y,,Y~~IP> = ~I~YnY5d/n> 

and 

<pIaYnY5dIp> = <nI%,,Y5uIn> 

( ) up + 2nn 
= G,(s2> p _ lJ . 

P n 

(2.8a) 

(2.8b) 

The axial-vector couplings of the Z" in a particular gauge theory are 

then related back to the quark charges: Since the axial-vector quark 

current is 

we have 

(2.9a) 
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and 

(2.9b) 

All that remains is to specify the weak quark charges. We concen- 

trate on SU(2)xU(l), where 

Q; u = 
e 

, 2 sinew cosRw 

Q; u = 
e 

, 2 sinew cosew ( 1 - + sin2eW 1 , 

(2.10) 

Q; d = 
e 

, 2 sinew CO&~ ( 2T3R d + 5 sin2eW 1 , 

Q; d = 
e 

2 sinew cOsew ( -1 + f sin2RW , 
, 1 

for the quarks, and 

Q; e = 
e 

, 2 sinew cOsew ( 2T?R + 4 sin2eW 
j 

, 

(2.11) 

9; e = 
e 

, 2 sinew cOsew ( 
-1 + 4 sin2eW 7 

, 
- 

for the electron. Here Bw is the Weinberg angle; recent neutrino experi- 

ments13 determine sin2eW to be in the neighborhood of 0.25. TiR is the 

value of the third component of weak isospin for a right-handed fermion 

i, which is zero in the original Weinberg-Salam model. The most popular 

alternative is to put fermions in right-handed doublets, so that T;R'fi. 
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However, an analysisI of a combination of neutrino induced neutral 

current processes (as well as results of Ref. 1) are inconsistent with 

1 d 1 either TYR = ? or T3R = -7. Henceforth we take TYR = T:R = 0, but 

leave open the two possibilities, T;R = 0 or --$. 

We now employ Eqs. (2.5), (2.9), (2.10), and (2.11) to calculate the 

asymmetry in Eq. (2.1). For this purpose we assume that all the vector 

current form factors Gy Gy ' E' M' GE' and $, have the same dipole q2 

dependence: 

G(q2> = G(O) 1+k 1 0.71 GeV2 
. (2.12) 

Similarly, we take the axial-vector form factors to be of the fonn1°,15 

GA(s2) = cA(o)/[l+ 5-j . (2.13) 

For the Weinberg-Salam model with sin2s= $ we display in Fig. 2.1 

the asymmetry in electron-proton and electron-neutron elastic scattering 

when the incident beam energy is 3.23 GeV, 19.38 GeV, and infinity. The 

first two values of beam energy are of particular relevance to SLAC, 

where the spin of the electron precesses by an additional 180' between 

the linear accelerator and the end station for each-3.23 GeV of beam 

In the limit of infinite energy Eq. (2.1) reduces to Eq. (2;2); 
- 

energy. 

the latter being the equation used in Ref. 6 to predict the elastic 

asymmetry. In fact, the curve in Fig. 2.1 for the elastic electron- 

proton scattering asymmetry at E=m is precisely the Weinberg-Salam model 

curve in Fig. 3 of Ref. 6. 
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IO5 A 

6-78 

E= 3.23Ge\ 

19.38 

0.5 1.0 1.5 

q2 (GeV2) 34141 - 

Fig. 2.1. The asymmetry in polarized electron-proton and electron- 
neutron elastic scattering for electron beam energies of 
3.23 GeV, 19.38 GeV, and infinity. All predictions are 
for the Weinberg-Salam model with sin20W = l/3. 
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We see that the approximation used in Ref. 6 to compute the elastic 

asymmetry at high energies is very good. Only at the lowest SLAC energies 

does there appear to be a noticeable, and perhaps measurable, deviation. 

Since most of the difference between the exact Eq. (2.1) and the approxi- 

mate Eq. (2.2) comes from dropping the term proportional to gvGi, we see 

that the actual value of gvGi has little effect on the predicted magnitude 

of the asymmetry in the original Weinberg-Salam model at high energies. 

However, at low energies, particularly below 1 GeV, the asymmetry generally 

does depend quite strongly on the term proportional to gvGt, as shown in 

recent calculations.4,7 It is in this way that lower energy elastic 

scattering experiments are of special importance. 

On the other hand, if the electron is in a right-handed doublet 

( 
1 T:R = -T 

> 
then gA= 0 and the dominant contribution to the high energy 

elastic asymmetry vanishes. Everything now comes from the term propor- 

tional to gvGi. Using the exact Eq. (2.1), the resulting elastic electron- 

proton scattering asymmetry is a factor of about three to ten smaller than 

when T;R=O. This can be seen by direct comparison of Figs. 2.2 and 2.3 

in which the elastic scattering asymmetry is computed for sin2eW = 0.20, 

1 I6 0.25, and 0.30 and T;R=O and -2, respectively. _ 

Figures 2.1, 2.2, and 2.3 also contain predictions for polarized - 

electron-neutron elastic scattering asymmetries for the same range of 

parameters in SU(2)xU(l) as above. The most dramatic and important 

difference between a neutron and a proton target is the magnitude of the 

predicted asymmetries. The neutron asymmetries are much larger. For 

sin 2 1 ew= - 3 and T;R =O there is an order of magnitude difference at 

q2=1 GeV2. For sin28W = i it is factor of about three at the same q2. 
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sin29w = 0.3 
A 

- 

0 0.5 

6-78 q2 (GeV2) ,,I./\2 

I .o 1.5 

Fig. 2.2. The asymmetry in polarized electron-proton, electron- 
neutron, and electron-deuteron elastic scattering at 
a beam energy of 19.38 GeV for the Weinberg-Salam model 

(T5R = 0) and sin2ew = 0.20, 0.25, and 0.30. 



105A 

- 2.0 
0 

b-78 

0.5 I .o 1.5 

q2 (GeV2) ,.,.A3 

Fig. 2.3. The asymmetry in polarized electron-proton and electron- 
neutron elastic scattering at a beam energy of 19.38 GeV 
in SU(2)x U(1) with the right-handed electron in a doublet 
(T2R = -l/2) and sin2eW = 0.20, 0.25, and 0.30. 



- 19 - 

1 Even when T:R = -2 and both the neutron and proton asymmetries are much 

smaller in magnitude, the neutron asymmetries are still a factor of two 

or so bigger. This difference originates in SU(2) xU(1) primarily 

because the d quark has a larger vector coupling to the Z" than the 

u quark, and shows up more dramatically in elastic than in inelastic 

scattering. 

3. Polarized Electron-Deuteron Elastic Scattering Asymmetries 

Since elastic electron-neutron scattering will be accomplished by 

measuring the quasi-elastic scattering on the neutron (and proton) in 

deuterium, the question comes to mind as to what true elastic electron- 

deuteron scattering will yield. The asymmetry for polarized electron 

scattering on isospin zero nuclei has been considered previously.5 

We review the argument briefly here. 

If we neglect the strange and charmed quarks in the nucleon, and 

hence in the deuteron, the up and down quarks (or antiquarks) in a 

deuteron together have net third component of weak isospin equal to zero 

in SU(2) xU(1). This holds for the right- and left-handed quarks sepa- 

rate1y.l' The weak charges, Qi and SE, of the deuteron then only get 

contributions in SU(2) xU(1) from the term proportional to QYsin2ew. 
- 

More generally, the local current Jt to which the Z" couples, when taken 

between deuteron states is proportional to that for the photon: 

<DIJ~ID> = - 
e sin2eW<DIJ$D> 

sinewcosew 
(2.14) 

As a result there are no axial-vector couplings of the Z" to the 

deuteron and the vector couplings, being proportional to the electron- 
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magnetic ones, exactly cancel between the numerator and denominator in 

the expression for the asymmetry. The final result5 for the elastic 

electron-deuteron asymmetry in SU(2) xv(l) is then: 

A eD+eD = +(&)(l+2T&J(2sin2BW) . (2.15) 

Values of this asymmetry when T;k=O are shown in Fig. 2.2, along 

with those for elastic electron-proton and electron-neutron scattering. 

The magnitude is relatively large, and very importantly, positive. With 

sin20 w 5 0.3 this is the only elastic or inelastic electron scattering 

asymmetry in SU(2) xU(1) which is expected to be positive at high energies. 

Furthermore it gives a very clean measurement of sin2BW. Unfortunately, 

the rapid fall-off of the deuteron form factor makes it problematic as 

to whether this will prove to be a practical way of extracting sin2eW 

with high accuracy. 

4. Discussion 

We have calculated elastic electron-proton, electron-neutron, and 

electron-deuteron scattering asymmetries in detail within the context of 

the SU(2)xU(l) gauge theory of weak and electromagnetic interactions. 
-. 

Asymmetries of the same magnitude as in deep inelastic scattering are 

generally found. 

The terms in the elastic electron-proton (or neutron) asymmetry 

proportional to Gi, the axial-vector coupling of the Z" to the nucleon, 

are found quantitatively to give negligible contributions at beam energies 

of -20 GeV. Only low energy (below a few GeV) experiments are sensitive 

to such tern-s and can be used to determine their value in the original 

Weinberg-Salam model. 

- 
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The asymmetries for elastic electron-neutron scattering for 

sin20 W < 0.3 are of the same sign, but much larger in magnitude, when 

compared to those for electron-proton elastic scattering. Electron- 

deuteron scattering, however, gives asynnnetries of similar magnitude but 

opposite sign to other predicted elastic or inelastic asymmetries within 

SU(2) XU(1). 

In contrast to deep inelastic polarized electron scattering asymmetry 

measurements, elastic scattering offers two advantages in testing the 

underlying gauge theory of weak and electromagnetic interactions. First, 

one does not need to depend on the applicability of the quark-parton model 

in general, or knowledge of quark flavor distributions in the nucleon in 

particular, in order to interpret the results. One only needs to relate 

mostly measured elastic form factors of the nucleon, often at small values 

of q2, to the quark couplings of the y and Z". While some theoretical 

assumptions are necessary to carry this out, they seem relatively well 

founded and, importantly, different from those required to interpret deep 

inelastic scattering. 

Second, at SLAC energies elastic scattering is very much like doing 

a measurement at y = (E-E')/E R 0 for deep inelastic scattering. In fact, 

for a given scattering angle as y decreases one passes from the deep-in- 

elastic region, to that of resonance electroproduction, and finally to 

elastic scattering. We recall6 that in deep inelastic scattering the 

asymmetry is proportional to gA of the electron at y=O; if gA vanishes 

so does the asymmetry. Contrasting Figs. 2.2 and 2.3 we see a similar 

1 
effect in elastic scattering; if gA vanishes (T& = -2, as in Fig. 2.3), 

then the asymmetry in elastic scattering at SUC energies drops by roughly 
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an order of magnitude. Polarized electron-nucleon elastic scattering 

is then an alternative, or at least complementary, method to measuring 

a y distribution in true deep inelastic scattering in order to determine 

the singlet or doublet assignment of the right-handed electron in 

W(2) XU(1). 

-. 

- 
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CHAPTER III 

PARITY VIOLATING ASYMMETRIES IN DILEPTON PRODUCTION BY 

POLARIZED PROTONS* 

1. Introduction 

The Drell-Yan model1 for production of high invariant mass lepton 

pairs in hadron-hadron collisions has become the standard with which 

continuum dilepton data is compared.* Basic features of the model such 

as the predicted scaling behavior of the cross section are in agreement 

with the results of experiments with proton beams. Other features such 

as the angular distribution of the pair and the ratio of r + to TI- induced 

cross sections are found to follow theoretical predictions as well. 

While the transverse momentum distribution of the dilepton pair and the 

absolute magnitude of the cross section point to possible higher order 

quantum chromodynamic (QCD) corrections to the model,* we shall use it 

as a lowest order mechanism in order to see what the size of weak- 

electromagnetic interference effects will be. 

These effects arise in lowest order from interference between 

diagrams with a virtual photon, y, and that with a-neutral weak vector 

boson, Z". Such is the case for the asymmetry in the angular distribu- - 

tion of the lepton (or antilepton) with respect to the beam direction in 

dilepton production by hadrons.3 This may arise from interference 

between the amplitude for qz + y + aji and for qq + Z" + az with axial- 

vector coupling of the Z" to both quarks and leptons. Such an asymmetry 

-+ 
is completely analogous to that predicted in e e + u-u+, which is 

expected to be observed at PEP and PETRA. It has the disadvantage that 



- 27 - 

an asymmetry of this type also occurs from higher order electromagnetic 

effects. These latter must be subtracted from the observed asymmetry to 

isolate the part due to weak-electromagnetic interference and thence 

permit extraction of Z" couplings. 

These last problems-may be avoided by considering an explicitly 

parity violating asymmetry which is forbidden to arise from electro- 

magnetic effects in any order. Here we consider such asymmetries in 

dilepton production by polarized protons incident on nucleon targets. 

These are directly analogous to the asymmetry seen4 in deep inelastic 

scattering of polarized electrons. Because of the large dilepton mass 

accessible in proton-nucleon collisions, however, one might expect 

asymmetries of order 10 -2 or more, rather than those of order 10 -4 

measured4 at SLAC in deep inelastic electron scattering. 

In the next section, assuming the Drell-Yan mechanism, we calculate 

the form of the expected effects and show that there are two different 

cross section asymmetry terms. The relation of each to the quark dis- 

tributions in a polarized proton and to the Z" couplings to quarks and 

leptons is given. In Sect. 3 we use these formulae together with known 

quark-parton distributions and 2' couplings in the Weinberg-Salam model -. 

to give numerical predictions of the asymmetries for present laboratory - 

energies s = lo3 GeV2, and also for Isabelle energies s = 6.4x lo5 GeG2. 

We conclude in Sect. 4 with a discussions of our results and their 

experimental implications. 
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2. Polarized Beam Asymmetries in Dilepton Production 

It is most convenient in deriving the polarization asymmetry to work 

first at the quark level. We assume that the dileptons are generated via 

the Drell-Yan mechanism 1 of quark-antiquark annihilation through a 

virtual y or Z". The vector or axial-vector nature of y and Z" couplings, 

together with neglect of quark masses, implies that right-handed and 

left-handed quarks annihilate with left-handed and right-handed antiquarks, 

respectively. Similarly, with neglect of lepton masses right-handed (left- 

handed) leptons are produced only with left-handed (right-handed) anti- 

leptons. The cross sections for qi + ll!i may then be labeled by just the 

initial quark and final lepton helicities, Xq and A%, respectively, the 

antiquark and anitlepton helicities being implied. 

The derivation then proceeds in a manner which is in direct analogy 

to that for the asymmetry in polarized electron scattering.5 With cross 

sections aAq,hQ written in terms of couplings of the y and Z" to right- 

handed (left-handed) quarks and leptons, QR q and QR R 
, , (QL,, and QL,, ), 

and the rotation group d functions, we have: 6 

Right-handed quark, right-handed lepton, 

%R a 

Right-handed quark, left-handed lepton, 

%La , Qi q +Q~,+Q:,~ ' ' 
4 ' 

2 QL,, 
q2 +MZ 

-. 
2jd:,l(e) I2 ; (3Cla) - 

l(e)12 ; (3.lb) 
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Left-handed quark, right-handed lepton, 

'LR = QY -ie Qy 
Z 

L,q q2 R,k + QLq 
1 

2 Q;,e 21d’,,l(e)/2 
q2+MZ 

; (3.lc) 

Left-handed quark, left-handed lepton, 

oLL = QLs 
2 1 

-12 Ql,!z + Qt,q q2:M2 QE.al Id-1,-l@) 
9 Z 

The angle 0 is that between the incoming quark and outgoing 1 

2. (3.ld) 

pton in the 

q4 (or C,) center-of-mass system. The right- and left-handed couplings 

of the photon are equal and are just the charges 2e/3, -e/3, and -e/3 

for the u,d, and s quarks, respectively. Similarly, Qi II = Qz R = -e 
3 , 

for the charged leptons. 

If we form the parity-violating asymmetry from the difference of 

cross sections for initial quarks with positive and negative helicities 

(and summed over final lepton helicities), we have 

A = 
'RR + 'Rz, - 'LR - 'LL 

up + "RL + 'LR + 'LL 
(3.2) 

For the present, we consider the low energy case I%/41 <( 1. Thus, 

expanding to first order in q2/g, the y-Z interference terms give the 

leading contribution to the numerator while the square of the photon 

amplitudes gives the leading contribution to the denominator: 

- 
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1q2/M;l <cl 

A 4 htl 
2M; 

x Q;Q; Qz 9’ + Qz 
Z 

R,q R,R R,qQL,I - Q;,,Q;,, - Q;,qQ;,&+ cos2e) 

+ Q:,qQi R , - Q;,,Q;,, + Q;,,Q;,, - Qf,qQ;,Q)(2cos~) 1 
x 

1 

-1 
. (3.3) 

This formula takes on a somewhat neater appearance in terms of vector 

and axial-vector coupling constants, 

Q; = gv + gA 

Z 
Q, = gv - gA a (3.4) 

for both the Z" couplings to quarks and leptons. The formula for the 

asymmetry then becomes 

lq2/M;l c-c 1 
Q;Q;I[gA,qgV,L (l+e0s2e) + gv 

A % 
,qgA,$(2cose)] . 

2(1 + cos2t!j 

(3.5) 

Notice that there are two distinct terms which are coefficients of 

different angular factors. Averaging over center-of-mass angles just 

- 

leaves a term proportional to gA qgv R. , , 

The asymmetry to be obseirved in hadron-hadron collisions may now be 

obtained by folding the quark level cross sections and resulting asymmetry 

in Eq. (3.5) with the quark and antiquark distributions in the initial 
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hadrons. We consider in particular collisions of longitudinally polarized 

protons with unpolarized nucleons. The probability of finding a quark of 

type i in the incident longitudinally polarized proton with spin parallel 

(antiparallel) to that of the proton and with momentum fraction x1 is 

defined to be f+ i,p(~l) (fTlp(xl)). Clearly f:lp(xl) + fT,p(Xl) = fi/p(xl)' 

the probability of finding a quark of type i with any spin direction. 

A quark of type i in the proton annihilates with its corresponding anti- 

quark, 7, in the nucleon target, which occurs7 with momentum fraction x 2 

with probability f- i/NCx2)' 

Defining the asymmetry in polarized proton + nucleon -+ La + ..# 

collisions as the difference over the sum of cross section for proton 

helicity +1/2 and -l/2, we then find' 

jq2/M;1 << 1 

A(x1,x28) % (3.6) 

x 
i/p(x1)]f?/N(X2)[gA,igV,LtgV,igA,L l~~~~2e]' i-i 

c(Q:Q;)2 f 
i 

i,p(xl> fi,N(X2) + i++i 

The sum over i includes all types of quarks u,d,s,cz-... . For all leptons 

Q', = -e. In terms of 6, the square of the center-of-mass energy of the 

p-N system, we have the kinematic relation lq2( -= x1x26. We then rewrite 

Eq. (3.6) as 
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A(X1’X2Jo 
lq2@ I << 1 x1x2s 

x 
2iTaI4 

(3.7) 

~(Q~/e)[fl,p(xl) -fi/p(xl) 
] i/N 2 [ f- (X ) 

x i 
gA,igV,R+gV,igA,t l~~~~20]+i"i 

cm(Ql/e)2 f 
i 

i,p(xl) fi,N(x2) + i-7 

The numerator of Eq. (3.7) is composed of pieces containing gA igV a 
, 9 

and g V,igA,!Z which have different angular properties. The asymmetry which 

survives integration over e is 

ln2/M;I c-c 1 

A1 (7 ,x2> &z x1x2s 

21104 
(3.8) 

C(Q:/e)gA,igV,a.~~,p(Xl) - f;,p(Xl)]fi/N(X2) + i*i 
i x 

2 

i 
fi,p(X1) f;,N(z2) + iMZ 

Isolating the term which 

lepton angualr asymmetry 

independent asymmetry: 

is odd in case (by forming a forward-backward 

on top of the polarization asymmetry) gives the 

A2(x1 4,) 

lq2@ I << 1 x1x2s 
x 

2mM; 
(3.9j - 

~(Q~/e)gV,igA,~[f~,p(xl)-f~/p(Xl~]fi/N(X2) + '*' 
i x 2 

fi,p(xl) fi,N(x2) + iWi 
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The decomposition 

A(x1,x2,W = A1(x1,x2) + 
2c06e 

1 + c0s2e 
A2b1 ,x2) , (3.10) 

into 8 independent and 0 dependent terms is in complete analogy to the 

situation5 in polarized electron deep inelastic scattering where the 

asymmetry has y independent and y dependent terms. Tn fact, since the y 

variable is directly related to the angle of scattering in the electron- 

quark center-of-mass, it is more than just an analogy. There is, however, 

an important difference. Because in the present case the asymmetry is 

based on the difference of quark polarizations rather thanlepton 

polarizations, the positions of gA,qgv,L and gv,qgA,c are flipped. Thee 

independent term here involves g A,qgV,I1' while the y independent term in 

the asymmetry for deep inelastic polarized electron scattering involves 

pv,qgA,&' and vice versa for the 0 and y dependent terms. This is of 

major importance for the predicted magnitude at low energies of A1 rela- 

tive to that of A2 which is calculated in the next section. 

However, before proceeding to the numerical results for A1 and A2 at 

low energies, we also consider the other extreme case of very high 

energies -- when lq2/Mg\ >> 1. Since at very high mergies the weak force 

becomes comparable in strength to the electromagnetic force, this means I 

that that Z 02 terms in the polarized cross sections (3.1) can no longer 

be neglected. Rather, Z 02 terms must now be included in both the numera- 

tor and denominator terms of the asymmetry A. Because it involves little 

extra work, and for the sake of completeness, we first present the exact, 

lowest-order results for the asymmetries near the Z" pole c-q2 n 41, and 

then consider the limiting high energy case ( ki21$l ” 1). 
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The derivation proceeds in analogy to before, except that all Z 
02 

terms are kept, and the propagator replacement 

1 1 

q2 + g 
-f 

q2 + M; + iMzT 

is made to account for the finite decay width T of the Z" when -q2 = 4. 

The exact lowest order result for the parity violating asymmetry is then 

- f;,p(xl))f&X2) 

x 
[( 

2-2 gV,igA,i V e IQI s 
cg2, +'i,e) _ (Q;/e)Re 17 ; gAyi%iye) 

4 e e2 

+ 2-2 gv,egA,e V i+gA i InI s 
cg2, 

e4 

2, > gQy, )R ~ ; gV,igA,e 
i e e 2 e 

2c06e x 
l+ c0s2e 3 +i*i 

I 

fi,phl> fllN(x2) (Qr/e)2 + In12S2 
(' 

?( " 
i+gi,i)(G,e+gi,e) 

4 e 

2-2 gV,igV,egA,igA,e * gA,egA,i 
- 2(Ql/e) e4 -~Q;,e)Re~ s e2 

x 2c06e 

i+ c0s2e 

(3.11) - 

In Eq. (3.11) we have defined for convenience 

1 
rl = 

q2+M+l$ 
, (3.12) 

(3.13) 

and 

z = lqj2 . 
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If we integrate over 8 as before, we find 

A1 = 2 c (f;,p(X1) - f;,p(Xl))f;,N(X2) 
i 

2-2 gV,igA,i(gt,e+gi,e) _ (Qy,e)Rerl; gA,igV,e 
4 i e e2 

x Cf i i 
i,p (x1) fi,N(X2) 

[ 

(QI,e)y + lr112;2 (gG,i+i,;$gG,e+gi9e) 

(3.14) 

As before, we also define A2 by forming a forward-backward asymmetry on 

top of the polarization asymmetry: 

A2 = 
i 
2x (f;,p(xl) - f;,p(X1))fi/N(X2) 

i 

x InI s 2-2 gV,egA,e(6,i+gi,i) -(Q~le)R 
4 i e ,,; gV,igA,e 

2 e e 1 1. +i++i 

+ ln12G2 pv’i (’ +gi,i)(6,e+gi,e) 4 
e 

- 2(Ql/e)Reqi gVyiF'e 
e 

]+i.++i 1-l . (3.15) 

- 

Note that the previously simple decomposition (3.10) is now no longer 

true. 
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In the high energy regime lq2/McI >> 1, we can drop r,/M,. We also 

have 
1 q-k--= 

q2 
-1171 3 (3.16) 

and 

Re II g , 11112S2 -f 1 . (3.17) 

ThUs Eqs. (3.11), (3.14) and (3.15) become in the high energy limit 

jq2/M$ >> 1 

A = 
t ( 

2c 
i 

f;,p(xl) - f;,p(Xl))fI,N(X2) 

I 
( 

2 2 
> x %,igA,i %,e+gA,e 

4 e 

-(Qy,,e) 'A,;F,e) 

4 e 
> -(Q;,e) gV,;2,e)lc..:s;e]+ i++~i 

x 
ix 

f 
i 

i,p (Xl> fQN(X2> K (Q;,e)2 + ( G,i+g~,~4~gG.e+g~,e ) ) 

- 2(Qr/e) gV,egA,igA,e _ (Qpe) 2 gA,egA,i 

e4 e 
-. 
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A1 f;,p(xl) - f;,p(x,))fI/N(x2) 

x gV,igA,i _ (Qy,e) gA,igV,e 
4 i e e2 

2 

x Cf 
t i 

i,p(xl)fl,N(x2) gV'i+g'yi'~'etg"e' 
e 

- 2(Ql/e) “iF’e 1 1 -1 
+i++i 

e 
(3.19) 

1 q21M; 1 >> 1 

A2 
M f&xl) -f;,p(Xl))f~,N(X2) 

x gV,egA,e gi,i+gi,i) -(QY,e) gV,igA,e 
4 i e e2 

- 2(QT/e) “y~~ye 1 1 -1 
+it+i -. (3.20) 

3. Numerical Results 

We now proceed to numerical evaluation of the low energy asymmetries 

given in Eqs. (3.8) and (3.9) within the context of the Weinberg-Salam 

model9 for weak and electromagnetic interactions. We defer the high 

energy asymmetries (3.19) and (3.20) till later. With the standard 

assignment of right-handed quarks and leptons to singlets and left-handed 
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quarks and leptons to doublets of weak isospin, the couplings of the Z" 

are given by 

e 

gv,f, = 4sin ew cos ew (- WI 1 + 4sin28 

e 
gA,il = 4sin ew cos Bw , 

e QY 
gV,i = 4sin ew CDS ew 2T3,i -4$ 2w sin e , 

e 
gA,i = 4sin ew cos ew (-2T3,i) 

(3.21) 

The third component of weak isospin, T3 i, is +1/2 for i=u,c,... and , 

-l/2 for i=d,s,... . The mass of the neutral weak boson is related to 

GF = 1.02 x 1O-5/< by 

1 
fi GF sin2eW cos20w 

g= 
(3.22) 

na 
Z 

We may now rewrite the low energy asymmetries (3.8) and (3.9) in the 

specific case of the Weinberg-Salam model: 

lq2/M;l << 1 
A1 (x,,x,> M x1X2SGF 

4Jz na 
(3.23) -. 

C(Q:le) (-2T3,i)(- 1+4sin26W)[f~lp(x1) - filp (x,)] fQN(X2) + i-+-+7- 

i 
Y 

(xl) filN(x2> + i-i 

- 
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and 

lq2/M;l <-c 1 

A2 (7 a,> z xIx2sGF 

4d 7ra 
(3.24) 

., 

x(QI/e)(2T3,i- 4 $ sin2Sw)[f:ip(x1) - f~,p(xl)]fi,N(x2) + i++i 
x i 

2 
filp(xl> f- (x ) + i-7 i/N 2 

The only quantities remaining unspecified are the quark distributions, 

and in particular the correlation between the spin direction of the proton 

and its quark partons, which is contained in the functions f :lp(x,) and 

f- i/pCxl)' Here we make the additional assumption that to a good approxi- 

mation only the valence quarks in the nucleon correlate their spins with 

the overall nucleon spin direction. The "ocean" is assumed unpolarized. 

Numerical results for low energy asymmetries are presented here for two 

cases. First, the W(6) wave function for the proton gives 

f;, (x) 5 = 
f+ u,p(x) + f;,p(x) 

6 

(3.25) 

f;, (x) 1 -. 
= - 

filp(X) + f,lp(x) 3 * 

Second, the x dependent formlo 

f+ u/pCX) 

f+ u,p(x) + f;lp(x) 

= + (1 +xo.3g) 

- 

(3.26) 

f& (x) 

filp(X) + f;,p(x) 
3 
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will be used. In the latter case, the u quark spin is completely aligned 

with that of the proton at x=1, while both the u and d quarks are com- 

pletely uncorrelated at x=0. Both sets of polarized quark distributions 

yield spin dependent structure functions which are in adequate agreement 

with the polarized electron-polarized proton deep inelastic scattering 

experiment6.l' Of course the second set is somewhat better in this 

regard, having been fit in part to these data. For the unpolarized quark 

parton distributions themselves we use the parametrization of Field and 

Feynman,12 but with the "ocean" as modified by Berger.13 This gives a 

good description of the muon pair production data in 400 GeV pN collisions. 

Before examining the predicted low energy asymmetries in detail, 

let us discuss the expected sign of the effect. In the limit where 

sin20 W is very small, only left-handed leptons and quarks interact with 

the Z". For u; + !LZ the product of quark and lepton couplings is negative 

for both the photon and Z". However for dilepton masses less than MZ, 

the photon and Z" propagators are of opposite sign, so the amplitudes 

for,the intermediate y and Z" interfere destructively (the same holds 

for dz + !Lx) and decrease the cross section from what it would be from 

photon exchange alone. Consequently the asynnaetryr-defined as right- 

handed minus left-handed quark cross sections divided by their sum, is - 

positive for all values of c06e. The known value of sin2BW is small 

enough that this positive sign holds for the low energy A1 and A2 cal- 

culated below. 

In Fig. 3.1 the predictions for A1(x1,x2) and A2(x1,x2) at low 

energies are shown for scattering of polarized protons on unpolarized 

protons with SU(~) spin wave functions for the valence quarks in the 
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Fig. 3.1. The low energy parity violating asyrmnetries A1(xl,x2) and 
A2(xl,x2) for production of dileptons by longitudinally 
polarized protons on a proton target using the N(6) spin 
wave function for the valence quarks in the roton. The 
center-of-mass energy squared is s=lOOO GeV 3 , and 
sin2SW = 0.225. 



- 42 - 

proton. The variables x = x1-x2, the fractional momentum of the lepton 

pair along the polarized proton beam direction, and r = lq21/s = x1x2 

have been used. A value of sinfeW = 0.225, representative of the results 

of recent experiments,14 is employed in all graphs. An s value of 1000 

GeV2 has been chosen, with the asymmetries at other energies obtainable 

by scaling linearly in s. 

The most obvious difference between the results for Al and A2 at 

low energies is that the former is roughly an order of mangitude smaller. 

This is a consequence of the value of sin20W: for sin2eW = l/4 there is 

an exact vanishing of gv,I1 and hence of Al at low energies. The experi- 

mental value of sin'0 w is close enough to 0.25 to severely suppress Al. 

For a given value of 'I = x1x2 the values of x = xl -x2 lie between 

-r-l and l-T. For negative values of x (x2 > xl) the dominant process is 

annihilation of valence quarks in the target with "ocean" antiquarks in 

the polarized proton. Since these antiquarks are unpolarized by assump- 

tion, the asymmetries are very small for x < 0. 

At the opposite extreme, when x is near the maximum value of l-r, 

x1 is near 1. In this regime, the cross section is dominated by valence 

u quarks in the polarized proton annihilating with-antiquarks in the 

target. Since these u quarks are mostly aligned with the proton's spin, 

a maximum of the asymmetry is found. 

In Figs: 3.2 and 3.3 we show low energy Al and A2 for proton and 

neutron targets using the x dependent polarized quark distributions of 

Eq. (3.16). The results for proton targets are quite similar to those 

in Fig. 3.1, but are somewhat larger in magnitude, especially near x-1. 

Using a neutron target (Fig. 3.3) rather than a proton target makes little 

difference in the asymmetries. 
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Fig. 3.3. Same as Fig. 3.1, but with x-dependent polarized quark 
distributions and a neutron target. 
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We next present numerical results for the high energy asymmetries 

Al and A2 (cf. Eqs. (3.19) and (3.20)), also within the context of the 

Weinberg-Salam theory of electroweak interactions. Using the couplings 

of the quarks and leptons to the go as given in Eq. (3.12), and param- 

etrizing the quark structure functions as before, we show in Fig. 3.4 

the parity violating asymmetries Al and A2 for pp + u'u-X. The x- 

dependent polarized quark distirbutions of Cheng and Fischbach have been 

used, and the s value is taken to be 6.4~ lo5 GeV2 (Isabelle energy). 

Figure 3.4 shows that the asymmetries Al and A2 at high energies 

become comparable to one another, and are of order 10 -1 in magnitude. 

Note that the high energy asymmetries display different profiles in the 

r-contours -- mainly because Al and A2 in the high energy limit are no 

longer directly proportional to T = x1x2s (see Eqs. (3.19) and (3.20)). 

The sign of the asymmetries is now opposite from the previous low-energy 

results. 

4. Discussion 

As shown in Sect. 2, the structure of the expression for the parity 

violating asymmetry for polarized proton production of lepton pairs is 
-. 

very similar to that for the asymmetry in polarized electron deep in- 
- 

elastic scattering. The asymmetry Al, being independent of 8, is the- 

analogue of the y independent term in the deep inelastic asymmetry. 

A2, which has a coefficient 2cos0/(1+cos28), is correspondingly the 

analogue of the coefficient of [1-(1-y)21/C1+(l-y)21 in deep inelastic 

scattering. 

Numerically, A2 at low energies is at the hoped for 10 
-2 level in 

the Weinberg-Salam model for lq21 = 200 GeV2 (T = lq21/s = 0.2 at 
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Fig. 3.4. The high energy parity violating asymmetries A1(xl,x 
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) 
and A~(xI,x~) for production of dileptons by longitu inally 
polarized protons on a proton target using the x-dependent 
polarized quark distributions. The center-of-mass energy 
squared is ~~6.4~10~ GeV2, and sin2eW = 0.225. 
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s = 1000 GeV'). However, because of the value of the weak mixing angle 

ew, at low energies Al is much smaller than A2. Note that the low energy 

result [AlI << iA21 is the reverse of the case in polarized electron deep 

inelastic scattering where the y independent term in the asynunetry (and 

analogue of Al) is the dominant term. This comes about because the low 

energy result for Al involves the vector coupling of the Z" to leptons 

times the axial coupling to quarks, whereas its deep inelastic analogue 

involves axial coupling to leptons times vector coupling to quarks. The 

experimental value of sin20 W z 0.225 makes gV,R, which is proportional 

to (l- 4sin2eW), especially small. 

Unfortunately, this situation makes the already difficult experi- 

mental measurement of these asymmetries doubly so. The asymmetry A2 has 

a coefficient 2cos6/(1+cos2~), and must be separated from the isotropic 

but much smaller (at low energies) asymmetry Al by measuring an angular 

distribution on top of the difference of beam polarizations required for 

isolating a parity violating effect. (At high (Isabelle) energies the 

asymmetries Al and A2 are of comparable sizes. However , it is doubtful 

that polarized colliding proton beams will be available at Isabelle.) 

Added to this is the question of whether the lowest order qi -+ a? 

diagram is to be trusted quantitatively as th.e mechanism for dilepton 

production in hadron collisions. The size of the experimental <pl> 

values for the produced dileptons points toward higher order QCD effects 

being important,2 e.g., q< + gluon + !LF and gluon + q + !Lz + q. The 

disagreement between the predicted Drell-Yan total cross section and 

that observed may also indicate quantitative problems for the lowest 

order model.2 Thus, while measurement of a parity violating asymmetry 
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in dilepton production with polarized proton beams is of interest as 

another check of basic ideas on weak and electromagnetic interactions, 

the extraction therefrom of couplings of the 2' to quarks and leptons 

has quantitative uncertainties which correspond to those in the detailed 

theoretical understanding of dilepton production. 

- 



- 49 - 

REFERENCES AND FOOTNOTES FOR CHAPTER III 

* Most of the material in this chapter can be found in F. .I. Gilman 

and T. Tsao, Phys. Rev. g, 159 (1980). 

1. S. D. Drell and T. M. Yan, Phys. Rev. Lett. 25, 316 (1970); 

ibid., 5, 902 (1970); and Ann. Phys. (N.Y.) 66, 578 (1971). 

2. See the reviews of E. Berger, talk at the Orbis Scientiae, Coral 

Gables, January 1979 and SLAC-PUB-2314, 1979 (unpublished); and 

R. Stroynowski, in Proceedings of the SLAC Summer Institute on 

Particle Physics, edited by A. Mosher, SLAC, Stanford, California 

(1980). 

3. R. W. Brown, K. 0. Mikaelian and M. K. Gaillard, Nucl. Phys. x, 

112 (1974). See also R. Gustafson et al - -- 3 Fermilab Proposal No. 

583, 1978 (unpublished). 

4. C. Prescott et al., Phys. Lett. B, 347 (1978); x, 524 (1979). 

5. R. N. Cahn and F. J. Gilman, Phys. Rev. w, 1313 (1978). 

6. Our metric is such that q2 is negative for the time-like virtual 

y and 2' four-momenta of relevance here; CI = e2/4r w l/137. 

7. Since a quark with given helicity only annihilates with an antiquark 
-. 

of the opposite helicity, the proper antiquark actually occurs in 
- 

the unpolarized target with probability ei.ff,N(~2). The factor. of. 

one-half cancels out in the ratio of cross sections that forms the 

asymmetry. 

8. Although we have analyzed the asymmetry at the quark level by 

labeling in terms of the initial quark, the same formulae hold 

using the initial antiquark with appropriate changes in y and 2' 



- 50 - 

couplings. Thus the terms in Eq. (3.6) and thereafter involving 

antiquarks in place of quarks and vice versa (i-i) have the same 

form. 

9. S. Weinberg, Phys. Rev. Lett. l9, 1264 (1967); A. Salam in 

Elementary Particle- Theory: Relativistic Groups and Analyticity 

(Nobel Symposium No. 8), edited by N. Svartholm (Almqvist and 

Wisksell, Stockholm, 1968), p. 367. 

10. H.-Y. Cheng and E. Fischbach, Phys. Rev. 2, 860 (1979). 

11. M. J. Alguard et al., Phys. Rev. Lett. 2, 1261 (1976); 41, 70 (1978). 

12. R. D. Field and R. P. Feynman, Phys. Rev. E, 2590 (1977). 

13. E. Berger, Ref. 2 and private communication. 

14. C. Prescott et al., Ref. 4 and C. Baltay in Proceedings of the 19th 

International Conference on High Energy Physics, Tokyo, 1978, 

edited by S. Homma, M. Kawaguchi and H. Miyazawa (Physical Society 

of Japan, Tokyo, 1979), p. 882. 

- 



- 51 - 

CHAPTER IV 

POLARIZED-ELECTRON POSITRON ANNIHILATION NEAR THE 2' MASS 

ANTI 

1. Introduction 

POLARIZED-ELECTRON ELECTRON SCATTERING 

In this chapter, we study the cross sections and parity violating 

and angular asymmetries that arise in polarized-electron positron 

annihilation when the center-of-mass collision energy is near the Z"-pole. 

At such values of the collision energy, the Z" can be physically produced 

(no longer virtual) and the reaction cross sections -- now overwhelmingly 

favored by Z" exchange over y exchange -- exhibit a typical Breit-Wigner 

resonance. Recall that at low energies,the parity violating asymmetries 

are given by the y-Z interference term in the parity violating numerator, 

and dominated by the term in the parity conserving denominator. This 

situation changes dramatically when we do polarization experiments near 

the Z"-pole. Both the numerator and denominator terms of the asymmetry 

are dominated by the Z 02 parts of the cross section. As a result, the 

asymmetries are of order 10 -1 to 1. This provides an ideal setting for 

studying Z" physics. (It should also be emphasized-that electron-positron 

annihilation provides a much cleaner probe into the detailed structure of - 

the Z" than any other process.) 

In Sect. 2 we present and tabulate results for the decay width, and 

branching ratios of the Z". Also listed are the couplings of the Z" to 

matter in the Weinberg-Salam the0ry.l These are used in Sect. 3 to give 

predictions for cross sections and asymmetries in the reactions 

-+ -+ -+ ee +uu,ee 
-+ 

+ ui and e e -+ da. In Sect. 4 we consider the process 
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-+ -+ ee +ee, which is separate from the previous cases because of 

additional y and Z" exchange in the t-channel. We conclude in Sect. 5 

with an examination of the reaction e-e- + e-e-. 

2. Decay Width and Branching Ratios of the Z" 

The lowest order diagram for the decay of the 2' into matter is 

shown in Fig. 4.1. Let gv and gA be the vector and axial couplings, 

respectively, of the Z O to a given fermion f. Then 

i-(ZO + fQ 
NC*Z =-( ). 
128 g; + 9; (4.1) 

The color factor NC is equal to three for decay into a quark pair and is 

one for a lepton pair. We have treated the fennions as massless. 

In the Weinberg-Salam model, 

gV,e = a(-1 + 4sin2RW) 'A,e 
= +a (4.2a) 

gv," 
= +a 

gv,u = a(1 - 5 sin2eW) 

&v,d = a(-1 + $ sin2ew) 

gA,v = -a 

gA,u = -a 

gA,d 
= +a 

-. 

(4.2b) 

(4.2~) 

(4.2d) 

- 
e 

a ' 4 sineWcOseW 
. 

If we sum over the leptons and quarks in one 'generation,' we find 

for the Z" width in the Weinberg-Salsm model2 
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Fig. 4.1. Lowest order Feynman diagram for decay of 2' into a 
fermion pair f-i. 

-. 

- 



- 54 - 

T(Z" + e+e-+veqe+u;+dd) = 
aM 2 

3sin2eWc0s2eW 
(1-2sin28w+!&in48W). 

(4.3) 

The mass of the Z" is related to GF = 1.02 X 10m5/g by 

GFsin26,cos2ew 
. 

710 
(4.4) 

For three 'generations' of leptons and quarks, we multiply by three to 

get 

I(Z" -f all) = 
aZ 

sin2eWcos2ew 
( l- 2sin2ew+ +sin4eW) . (4.5) 

Numerically, when sin2tJw = 0.225, MZ = 89.6 GeV and l'(ZO+all) = 2.57 GeV. 

These numbers are used as input in the sections that follow. In Table 4.1 

+- 
we list the branching ratios of Z" into e e , ve;e, u;, and da in the 

Weinberg-Salam model. 

3. Cross Sections and Asymm etries 
-+ -+ - 

for e e +uu,qq 

In this section we discuss the reaction e-e+ + fiTi, with fi = u,u,d. 

The relevant Feynman diagram for this process is shown3 in Fig. 4.2. In -. 

units of the point cross section u Pt 
= 4aa2/3s (where s is the center-of- - 

mass energy squared), the spin average and summed cross section for 

-+ 
ee -+fF i i is 

(4.6) 

= NC (ei/e12 + 

(<,e+gi,e)(gG,i+gi,i) 

1 r\ 12 s 2- 
4 

2(e 
i 

,ej e gV,egV,iRens 1 
2 , 

e 
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The branching 

v; u;,and e e' 

TABLE 4.1 

ratios ri/r(Zo+all) for i = e+e-, 

da in the Weinberg-Salam model with 

three 'generations' of leptons and quarks and 

sin28 W = 0.225. 

Decay Mode 

+- ee 

V3 ee 

uu 

Branching Ratio 

3.1% 

6.1% 

10.6% 

13.6% 

- 
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Fig. 4.2. Lowest order Feynman diagrams for e-e+ +fT i i. 
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where 

1 q 3 
s - Mz - iMzr 

, (4.7) 

and fi is a particular fermion of charge ei, with vector and axial 

couplings gV i and gA i, respectively, to the 2'. The 2' mass and width 
, , 

is M2, and r, respectively. The cross section in Eq. (4.6) contains a 

color factor NC equal to three for fi = quark and equal to one for 

fi = lepton. The masses of all fermion have been neglected. 

In Fig. 4.3(a),(b),(c) we plot Ri for e-e+ -+ -++u; 
+uFt,ee , and 

-+ ee -t dz as a function of the total energy E = &. These numerical 
n 

results are all for the Weinberg-Salam model when sinLoW = 0.225, and 

are representative of cross sections for any charged lepton, charge 

+2e/3 quark, and charge -e/3 quark, respectively, with conventional 

SU(2) XV(l) assignments. We see that, on resonance (E 0 89.6 GeV), the 

quark cross sections are larger than the lepton cross section by roughly 

the color factor NC = 3. 

We now turn our attention to the differential scattering cross 

-+ section for e e -f f.7 1 i' For the annihilation of a longitudinally 

polarized electron (helicity A/2) and the creation-of a fermion (helicity 

X'(2) the differential cross section is 

a2N 
2 h,h'(e-e++fiFi)= -$ 

i[ 
(ei/e) 2 

+ c g~,e+g~,e+2hgV,eg*,e)(<,i+g~,i+2h'gV,ig*,i) 1~12~2 
4 e 

- 

(4.8) 

- 2(ei/e) CgV,e+ gA,e)(gV,i+x'gA,i) Ren s 

e2 3 

[(l+cos26) +x11 



Fig. 4.3. 

60 80 100 120 

IO-80 E (GeV) 3PblC2 

Cross sections as a function of beam energy E for 
(a) e-e+ + p-p+, (b) e-e+ + 1.6, and (c) e-e+ + dz, 
in units of u 
sin2eW = 0.22c 

for the Weinberg-Salam model with 

- 
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where 

+1 right-handed electron, fermion 
)I A' = , . (4.9) 

-1 left-handed electron, fermion 

As usual, the fermion mass terms have been neglected. The angle 6 is 

the scattering angle between the incoming electron and outgoing fermion 

(lepton or quark). 

Even with unpolarized beams there is a forward-backward asymmetry 

-+ (2cos.B term) in e e +fii 
i i' If we define do(e) as the spin-averaged 

and summed differential cross section, the forward-backward asymmetry 

is defined as 

AFB q 
da(B=O) - do(B=a) = coefficient of 2c0se 

du(B=O) + du(8=a) coefficient of l+c0s2e 

$B = 
(ei,e)2+ 

e 

(4.11) 

This forward-backward asymmetry is plotted in Fig. -4.4(a),(b),(c) for 

-+ -+ -+ ee -+vu ,ee + UC, and e-e+ + da -- all for-the Weinberg-Salam 
- 

theory. The total center-of-mass energy E has been taken from 0 to 

125 GeV. Note that in all three cases the angular asymmetry is of order 

-1 when E is 60 to 75 GeV, i.e., below the mass of the Z", and is very 

small at the Z" mass. This is because gv e in the Weinberg-Salam model 
, 

is proportional to (-1+4sinLBW), and the value of 0.225 that we use 

for sin2ew makes gv e close to vanishing. 
J 
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Fig. 4.4. Forward-backward asymmetry AFB as a function of-tcpal 
center-zf-mass energy E for the-reactions (a) e e + p-p+, 
(b) e-e + uii, and (c) e-e+ + dd, in the Weinberg-Salam 
model with sin20 W = 0.225. 
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Since the forward-backward asymmetry is not a parity violating 

quantity, it need not arise solely from the presence of the Z". However, 

the angular asymmetry induced electromagnetically by two y exchange is 

only a few percent and rises logarithmically with energy. Thus these two 

y background effects will not be important around 60 to 75 GeV. Of course, 

the quarks can only be observed through their hadron fragments. Un- 

scrambling the jets due to different quarks may be very difficult 

experimentally. 

We can sum over quark helicities4 in Eq. (4.8) and form a parity 

violating asymmetry for a polarized electron beam by taking the difference 

of positive and negative helicity cross sections divided by their sum: 

A = 
do++- dUA,- 
da ,I=+ + da A= - 

This has the angular decomposition 

Al + A2 
2c0se 

Ar if c0s2e . 

l+AFB 
2c0se 

1+ c0s2e 

(4.12) 

(4.13) 

At low energies (E I 25 GeV), the forward-backward asymmetry ARB is small -. 

(cf., Fig. 4.4(a),(b),(c)), and the second term in the denominator may - 

be neglected relative to the first term. In terms of Z" couplings, the 

parity violating asymmetries Al and A2 are given by 



A2 = 

- 62 - 

e 
Re n s 

e 1 
(4.15) 

Notice that Al = A2 for final states fi = u- or r-. In Fig. 4.5 we pre- 

sent the asymmetry for this case for the Weinberg-Salam model, while 

Fig. 4.6(a),(b) show Al for fi = u and d, and Fig. 4.7(a),(b) do the 

same for A 2' 

For both Al and A2 their largest magnitude generally occurs at an 

energy near the Z" pole, in distinction to the previous forward-backward 

asymmetry sB. The parity violating asymmetries are negative at the Z"- 

pole and generally substantial (< -0.2), but are not quite as large as 

the non-parity violating forward-backward asymmetry at its maximum below 

the Z" mass. In the case of quark final states, we again must face the 

problem of sorting out different flavors by observation of their hadron 

fragments. Otherwise, we must observe a particular hadron and average 

over the quark flavors being produced. 

-_ 

4. Polarization Asymmetry for e+e- 
+- 

-tee - 

In this section we give the differential cross section and parity 

violating asymmetry for polarized-electron positron elastic scattering. 

The lowest order Feynman diagrams which contribute to this process iS 

shown in Fig. 4.8. The formulae are now slightly more complicated 

because of t-channel diagrams in addition to the usual s-channel 

annihilation diagrams. The differential cross section for a longitudinally 
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Fig. 4.5. Parity violating asymmetry as-a function of total - 
center-of-mass energy E for e-e% p-p+ in the 
Weinberg-Salam model with sin2ew = 0.225. 
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polarized e- beam is5 

+2 (e+e- -+ e+e-) = 2s2[$ + p2(a2 - 132)+ +(<,e+gi,e)] 
a ch 

+ (l - co&) 2 

2 1 + 1171 2s2(a2- i32) + Re ns(G,,-8: e)] , 

+ (1+yse)2 [(I- $+ jn-p,%2(a2+f32)] 
+ x(i+c0.9e)2 ~TI-P~~S~CG~ (4.16) 

where TJ here differs slightly from its previous definition by a factor 

of e2: 

1 1 
0 = 

2 s -Mi - i%r 
. (4.17) 

We also have 

1 1 
P = 

2 t2 + M; 
, (4.18) 

t 
= s(i-c0se) 

2 , (4.19) 

2 
0. = 

gV,e + gi,e , (4.20) 

B = 2gv e g* e L. (4.21) 
, 3 

- 
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arity violating asymmetry6 is 

I I-- 

125 
3961~8 

dab, + - dah, - 
da A= + + da& - 

(4.22) 

(I+ co.581 
2 

In-PI 
22 

s a6 

t [ 

2s2 L+p2(a2-B2)+ ?(<,,-gi e 
t2 , 

)1 

(1 - c0se) 
2 

2 [1 1 + ln'2s2(a2 - B2> + Re ns(&,, - gi,e)] 

_ (i+c0se) 
2 "[(I- f)" + ln-p12s2(a2+B2)]/ (4.23) 

Fig. 4.9 we show A<e+e- + - + e e ) as a function of the total center- 

energy E in the Weinberg-Salam model (sin2ew = 0.225) for center- 

scattering angle 8 = x/2. The maximal asymmetry occurs near the 

and is about -0.2. 

.arization Asymmetry for e-e- -f e-e- 

J conclude this chapter we present results for the differential 

section and polarization asymmetry in e-e- + e-e-. This reaction 

be studied at an electron-positron machine such as LEP. Rather, 

luires a machine such as the proposed SLAC Single Pass Collider 

electrons in both beams. 
-~ 

There are four diagrams (Fig. 4.10) for this reaction -- two 

!annel) direct graphs and two (u-channel) cross graphs which are 

ired by the Pauli exclusion principle. The differential scattering 

s section7 for a polarized-electron beam is 

- 
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Parity violating asymmeEry_as a function of tot51 
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center-of-mass scattering angle is n/2. 
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+-2 (e-e- + e-e-) = 2s[*+ + +(13~+p~)($r,~+ gA,e)2]2 
a ch 

2 

+ s(i+c0.5e) 

2 
2 

2 
r. 6 + 1 PI@:, , e- 

gA,e ,I 

+ s(l-- c0.58) 
2 

2 + p2(gi,e-gi,e )I 

2 

’ 

Here we have defined 

t1 = ~(i- c0se) 
2 

t2 = 
s(i+ c0.58) 

2 

1 1 
PI = 

tl+M; 2 
, 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 1 1 
P2 = 

t2+ M; e2 
. 

The parity violating asymmetry is 

da 
A= 

X=-f- - da+ - (4.29) 

da x=+ + d"+ - -. 

-J ,egA,e (Pl+P2) -;1; + ++ (P1+~P2~(g~,e+g~,e 
[ 

- 
= 

$+++ (Pl+P2)(g~,e+g~,e 1 
V+ 4(p1+p2)2gG,eg~,e] 

+ (I+ c0sej2 
2 [+ + Pl(g~,e-g~,ej12 

+ (I- cosl3) 
2 2 [$+ p2(&,e-gi,e)12} . 

(4.30) 

- 
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In Fig. 4.11 we exhibit the asymmetry A(e-e- + e-e-) as a function 

of total center-of-mass energy E for the Weinberg-Salam model with 

sin29 W = 0.225. The center-of-mass scattering angle has been chosen 

to be 0 = r/2. Note that the asymmetry is negative and only at the 4% 

level even when E M Mz- This is a consequence of the fact that the Z" 

is not resonantly produced in the t-channel and hence the large effects 

of the Z"-pole are never realized. 

6. Summary 

In this chapter we have presented formulae for cross sections, and 

for parity violating and angular asymmetries for e-e+ -+ -++uu; 
+uFc,ee , 

-+ and e e + da near the Z" mass. Numerical results were given in the 

Weinberg-Salam model. As expected, all asymmetries are large and are 

of order 10 -1 to 1 in magnitude. The polarization asymmetry for 

+- +- 
ee - -tee was also studied and is approximately -0.2 at the Z"-pole 

for sin2BW = 0.225 and Bc m = s/2. Finally, the polarization asymmetry _ . . 

for the reaction e-e- + e-e- is much smaller than the previously con- 

sidered s-channel annihilation polarization asymmetries. 

-. 
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the case fi = e- separately in Sect. 3 of this chapter. 

4. An equivalent parity violating quantity may be formed by taking 

an unpolarized e- beam and measuring the helicity of the final 

state f i (e.g., forming the polarization asymmetry for the fi>. 

If instead the helicity of the final state ii is detected then 

there is an overall sign change. This possibility is studied in 

the article by Field and Richter, in CERN Yellow Report No. 76-18, 

Physics with Very High Energy e+e- Colliding Beams. 

5. The case for unpolarized beams is presented in the reference in 
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CHAPTER V 

PARAMETERS OF THE SIX-QUARK MODEL* 

1. Introduction 

The neutral kaon system has played an important role in elementary 

particle physics. The small measured value of the KL-KS mass difference 

and the near absence of a strangeness changing neutral current in kaon 

decays led Glashow, Iliopoulos and Maiani to propose a fourth charmed 

quark.I Later Gaillard and Lee estimated the mass of the charm quark2 by 

comparing the experimental value of the KL-KS mass difference with the 

value calculated in the four-quark Weinberg-Salam model.3 This estimate 

gave a value for the charm quark mass close to the value later obtained 

from charmonium spectroscopy. 

The K"-Ko system is the only place where CP violation has been 

observed. In the Weinberg-Salam model with four quark flavors and one 

Higgs doublet there is no CP violation.4 However, as was first pointed - 

out by Kobayashi and Maskawa,' CP violation is possible in the six-quark 

model. At present there is experimental evidence for five quark flavors, 

the fifth b-quark, with charge -l/3, and its antiparticle are the con- -. 

stituents of the T family of particles. A sixth quark t, with charge -- - 

213, is required in the Weinberg-Salam model if the left-handed fields 

are to be assigned to the standard weak SU(2) doublets 

(5.1) 
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The right-handed fields are assigned to SU(2) singlets. The primed 

fields in Eq. (5.1) are not mass eigenstates but are related to them 

by a unitary transformation. With the standard choice of quark fields 

this transformation has the form5 

r 

d" 

S’ 

b' 
i 

=1 -s1c3 -s1s3 

i6 is 
s1c2 '1'2'3 - s2S3e '1'2'3 + s2c3e 

iB i6 
YS2 '1'2'3 - C2S3e '1'2'3 - c2c3e 

(5.2) 

Here si = sinei and c. = cosei where ic (1,2,3}. By adjusting the phases 1 

of the quark fields, the phase 6 can be moved from one location in the 

matrix to another; however, d cannot be completely eliminated from the 

matrix. It follows that a non-zero value for the phase 6 will result in 

CP violation. The Cabibbo-type angles 01, e2 and B3 are chosen to lie in 

the first quadrant. With this convention the quadrant of the phase 6 has 

physical significance and cannot be specified by convention. Experimental 

information from beta decay give s 
2 
1 =+ 0.05. This combined with measure- 

ments of hyperon decays give the limit s < 0.5 on violations of uni- 
3- 

versality.697 

The phenomenological implications of the six--quark model for CP vio- 

lation in the neutral kaon system and elsewhere have been studied by Ellis, 7 

Gaillard and Nanopoulos8 and were found to be compatible with experiments. 

The constraints imposed by the measured value of the KI-KS mass difference 

and the CP violation parameter E on the parameters 8 2, B3 and 6 of the six- 

quark model have also been studied.g,10 In these calculations the K'--k) 

mass matrix is derived from the lowest order box diagram in Fig. 5.1, 

neglecting strong interaction corrections. 



-.77 - 

u,c,t 
6-80 3848.41 

Fig. 5.1. Box diagram contributing to K"-Fo mixing in the six-quark 
model. 
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The effective Hamiltonian for AS = 1 weak nonleptonic decays is 

computed in the six-quark model by successively treating the W-boson, 

t, b and c quarks as heavy and removing their fields from explicitly 

appearing in the theory.11y12 Strong interaction effects, as described 

by quantum chromodynamics (QCD), are taken into account by summing the 

leading logarithms in these large masses using renormalization group13 

techniques. The resulting effective Hamiltonian is a sum of Wilson 

coefficients14 multiplied by renormalized local four-quark operators. 

Diagrams with heavy quark loops, so-called Penguin-type diagrams, induce 

local four-quark operators with a chiral structure (V-A)@(V+A) into the 

effective Hamiltonian.15 Although the magnitude of the coefficients of 

these operators is small compared with those of the (V-A)@(V-A) opera- 

tors, it has been suggested that these operators have matrix elements 

for nonleptonic decays of kaons and hyperons which are greatly enhanced 

and that these (V-A)@(V+A) matrix elements make important contributions 

to nonleptonic decay amplitudes.15 If this is the case, then an under- 

stnading of the AI = 4 rule is possible because the (V-A)@(V+A) opera- 

tors are purely isospin one half. The phase 6 enters the weak current 

through couplings of the heavy quarks. Consequently if the (V-A)@(V+A) -. 

operators are important for the AI = g rule they can contribute signi- - 

ficantly to CP violating K + xx decay amplitudes.16 In fact, if most of 

the magnitude of the K -+ ITII (I=O) amplitude is due to the contribution 

of the (V-A)@(V+A) operators, then through a redefinition of kaon phases 

to comply with the phase convention that the K + HIT (I=O) amplitude be 

real, these operators make a contribution to the CP violation parameter 

E' which may behrge enough.for upcoming experiments to detect.17 In 
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addition, through the redefinition of the kaon phases, the (V-A)@(V+A) 

operators can make a contribution to the CP violation parameter which 

is somewhat smaller, but still comparable to that coming from the box 

diagram of Fig. 5.1. Strong interaction corrections to the box diagram 

have recently been calculatedl* in the six-quark model using similar 

techniques. These corrections are significant for both the real and 

the imaginary parts of the kaon mass matrix. 

In this chapter we discuss the restrictions the neutral kaon system 

imposes on the parameters of the six-quark model, including the recently 

calculated strong interaction corrections to the effective Hamiltonian 

for AS = 1 weak nonleptonic decays and the effective AS = 2 Hamiltonian 

for K"-9' mixing. Particular attention is given to the effects of the 

strong interaction corrections. We review the uncertainties associated 

with the theoretical predictions for E and the %-KS mass difference. 

The effects of these uncertainties on the angular constraints are also 

discussed. In addition, we examine how the CP violation parameter E' 

and the b-quark lifetime depend on the six-quark model parameters. 

Upcoming experiments will attempt to measure these quantities and are 

likely to play an important role in testing the six-quark model as well -_ 

as determining the values of its parameters. - .- 

2. The Neutral Kaon System in the Six-Quark Model 

To leading order in the large W-boson t-quark, b-quark and c-quark 

masses the effective IASl = 2 Hamiltonian for K"-K" mixing has the form" 
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x * 22(ccc -i6 
rllmc YC2 123 - s2S3e 

222 2 

+ n2mtsls2 (c1s2c3 + c2s3= 
-is 

) 

%c2c3 
-iS>( -i6 

- s2S3e '1'2'3 + c2s3e > 
I 

+ h.c. . (5.3) 

The coefficients nl, n2 and n3 have been calculatedl' in the leading 

logarithmic approximation and depend on the running strong interaction 

coupling constant a 
S 

evaluated at the heavy mass scales and at the renor- 

malization point mass. The matrix elements of this effective Hamiltonian 

are evaluated in an effective theory of strong interactions" with three 

light quark flavors u, d and s. The t, b and c quarks have been treated 

as heavy and their fields removed from explicitly appearing in the theory. 

The kaon mass matrix element is 

(5.4) 
- 
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The real part of this matrix element is 

-GF2 
ReM12 = - 

167~' 
<K"] (dclsJVwA 

222 
+ n2mts1s2 k1s2c3 + c2s3cs) 

2 222 
- '2'3'6 > 

+ 2n3m~~n($-)s~c2s2 { (c1c2c3 - s2s3c6)(c1s2c3 + c2s3cb) 

C 

22 + C2S2S3S6 . 
}I 

(5.5) 

This is related to the difference between the KS and 5 masses by 

mS - “L - 2ReM12 . (5.6) 

The experimental value of this mass difference,20 mg - mb = -3.52 x 10 -12 

MeV, imposes a constraint on the six-quark model parameters through Eqs. 

(5.5) and (5.6). To proceed further we must evaluate the matrix element 

of the renormalized local four-quark operator (zo~o)~-~ (d8~8)V-~ between 

K" and To states. This matrix element has a dependence on the renor- 
- 

malization point mass n which is cancelled by the n dependence of the 

coefficients n 1, n2 and n3 (at least when they are computed exactly). 

We wish to pick 1-1 near the typical light hadronic mass scale, where 

simple quark-model-type estimates of the K"-iT" matrix element may have 

some validity. But we also want n large enough so that a leading 

logarithmic computation of the coefficients nl, n2 and n3 is sensible. 
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It is instructive to note that the relation 

= c 
complete 

cKoI (~asa)V-Aln><nl (~pB)v~A(Ko> (5.7) 

set {n} 

is invalid because the operator (~,(x)s~(x))~-A (ds(x)sg(~))V-A -- where 

the space-time dependence has been made explicit -- requires additional 

subtractions to make its matrix elements finite, while 

(JaWsa 1 V-A (db(y)~b(y))~-A, with x # y, does not.21 At order as 

in the strong interactions these additional subtractions arise because 

of diagrams like that in Fig. 5.2. However, there does exist a systematic 

approximation procedure for the matrix element (K"I(aa~a)V-A (ag~g)~-A/E'> 

within which Eq. (5.7) has some significance. In the large NC limit,22 

where N 
C 

is the number of colors, the diagram in Fig. 5.2 is suppressed by 

a factor of (1/N,)2 compared to the free field (no strong interactions) 

diagram shown in Fig. 5.3. Generalizing this to an arbitrary order in as 

we find that Eq. (5.7) is valid for the leading term in the l/NC expansion 

for the matrix element <K"I(jasa)V-A (iBsg)V-AIKo>. Each of the matrix 

elements <n/(;igsB)V-AIKo> appearing on the right-hand side of Eq. (5.7), -. 

can be written as the sum of two terms. One arises from connected _ - 

diagrams and the other arises from possible disconnected diagrams. TO 

leading order in l/NC the connected piece only gets a contribution from 

the vacuum state In> = IO>, while the disconnected piece only gets a 

contribution from the two particle state In> = IK"Eo>. Therefore, to 

leading order in l/NC, the sum on the right-hand side of Eq. (5.7) 

truncates to just two terms 
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6-80 3848A2 

Fig. 5.2. Order-a, correction to the matrix element 
<K"l(dasa)V_A(~~s~)V-~l~o>, which vanishes 
in the large N, limit. The black box denotes 
the action of the local four-quark operator 

- 

- 
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b-80 a P 3848A3 

Fig. 5.3. Lowest order contribution to the matrix element 
<K"I(~asa)v-A(;i s&,-~I~?~>. 

It 
The black box denotes 

the action of t e local four-quark operator 
(WV-*(WV-,. Here a and f3 denote the color 
quantum number carried by a quark line, where 
a,B E (1,2,31. 

-- 
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<K”I (Aa~a>v-A (;i 6 8 V-AIKo’ Nf s ) <K”I (~aSa)V-A(O><oI (;i8~8)v-Al~o> 
co 

C 

+ (01 (~,s~)~-~I~~><K~/ (dgsg)V-AIO> 

= *<K” 1 (aasa>v-A o><o 1 (LpB)V-*IKO> 

It is convenient to parameterize the K"-zo matrix element in terms of 

a quantity B, in the following fashion: 

'K"I(~asa)V-A ($~~)~-~lii~> = B (5.9) 

We have just seen that in the large NC limit B is independent of u and 

has the value B = 314. If the naive valence quark model or the vacuum 

insertion approximation is used to evaluate the matrix element 

<K” ( (aasa)v-A (2 B B V-ali?o>, then B = 1. s > Shrock and Treiman performed 

a bag model computation of the matrix element and found B = 0.4.23 

All the above approximations neglect the renormalization point dependence 

of the matrix element. However, if one of these approximations for the 

matrix element is used in Eq. (5.5), the resulting--expression for the 
- 

%-KS mass difference will not be very sensitive to the value of the- 

renormalization point, u.24 This is because nl, n2 and n3 are propor- 

tional, in the leading logarithmic approximation,18 to [as(u 2 
)I 

-219 and 

thus depend only weakly on the value of the renormalization point m&sS. 
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The imaginary part of the mass matrix element is 

-GF2 
ImM12 =- 

16a2 
(K" 1 (a~a)V-A (T&sB)V-AI~> (2aj3 2S2C2S3S6 

x nlmzs: (-c1cic3 + s2c2s3c6) + n2m:s: 2 (c s c 123 + S2C2S3C6) 

(c c 2 c 2 - 123 '1'2'3 - 2S2C2S3C6) 1 . (5.10) 

Let 

ImM12 E =iz--' 
(5.11) 

m 12 

with ReM12 given by Eq. (5.5) and ImM12 by Eq. (5.10). Note that ~~ is 

independent of the matrix element< fl (a~e)V-A (;i6sB)v-A/Ko> because 

it is cancelled in the ratio given by Eq. (5.11). Within the standard 

phase convention, where the K + 271 (I=O) amplitude is chosen to be real 

(apart from final state xr interactions), the imaginary part of the width 

transition matrix element, ImP 12' is negligible compared with ImM12.25 

The CP violation parameter E, defined by26 -_ 

-- 

iImP - Iti 

E ' (Ts - rL)Yi + i(mS - ?) 
' 

then simplifies to 

IT2 E%- - 
2; ReM12 ( 1 

$T/4 . 

(5:12) 

(5.13) 
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The phase, n/4, originates from the experimental relationzO between the 

mass and width differences m s-y = -(rS-rL)/2. Equation (5.6) has been 

used to relate the mass difference between kaon eigenstates to ReM12. 

In Eq. (5.13) ImM12/ReM12 cannot simply be replaced by em because the 

choice of quark fields in Eq. (5.2) does not give a real K -+ 2n (I=O) 

amplitude. The effective Hamiltonian for AS = 1 weak nonleptonic decays 

has been calculatedl'*l' in the six-quark model by successively treating 

the W-boson, t-quark, b-quark and c-quark as heavy and removing their 

fields from explicitly appearing in the theory. The resulting effective 

"=I. Hamiltonian density,Xeff =F' iQ,, C _ is a sum of Wilson coefficients. 

Ci times local four quark operators Qi constructed out of the light u, d 

and s quark fields. The leading logarithms of the W-boson and heavy 

quark masses were summed using renormalization group techniques and 

contribute to the Wilson coefficients Ci. The isospin $ operator Q, 

arises from Penguin-type diagrams and has the (V-A)@(V+A) chiral 

structure which may lead to enhanced matrix elements." Let f be the 

fraction of the K + 2n (I=O) amplitude that comes from the matrix ele- 

ments of Q,. If f is large, then the K + 2a (I=O) amplitude has a non- 

negligible CP violating phase, e 15 , where I1 -. 

5' 
f ImC6 

ReC6 ' 
(5114) 

The K + 2n (I=O) amplitude would be real if the strange quark field is 

redefined by s + e is s, in Eq. (5.2). At the same time 

-- 

192 -'E +25 , 
ReM12 m 

(5.15) 
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so thatll 

E I -L- (Ed + 25) ein14 . 
2fi 

(5.16) 

The experimental valuezOc == (2.3 x 10W3) e ia/ places a further con- 

straint on the values of the parameters e2, 83 and 6 of the six-quark 

model. This constraint, unlike that imposed by the Kh-KS mass differ- 

ence, does not depend on the value of the matrix element 

<K”I (asa)V-A GBSB)V-A/Ko > . 

The CP violation parameter E' is defined byz6 

E’ 5 ie i (62-60) ImA 
*o ’ (5.17) fi 

where A 0 and A are the isospin zero and isospin two K + 2n amplitudes 2 

respectively; 62 and 6. are the I = 2 and I = 0 nn phase shifts. The 

matrix elements of the I = S operator Q6 cannot contribute to the I = 2 

amplitude A2. However, by redefining the phase of the strange quark field 

to make the amplitude A0 real, A2 picks up an imaginary part. The experi- 

mental values25 for the phase shifts A0 and 62 along with ReA2/A0 z l/20 

yields'1 - 

1 E’ Y- ein14 (-5) . (5.18) 
zoxf 

Experimentallyz5 lE’/E 

capable of detecting a 

percent level. 

1 ( l/50; however, upcoming experimentsI should be 

non--zero value for E'/E at the fraction of a 
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In principle the experimental value of the KI-KS mass difference 

can be used in Eqs. (5.6) and (5.7) to determine the angle a2 as a 

function of 6 and 03. The measured value of E can then be used (cf., 

Eqs. (5.16), (5.14), (5.11), (5.10) and (5.5)) to determine 6 as a 

function of f13. The net result is that the angles e2 and 6 can be 

expressed as functions (perhaps multivalued) of the angle e3. In practice, 

there are a number of uncertainties introduced by the dependence of the 

theoretical expressions for ms-y and E on additional parameters besides 

the angles el, e2, e3 and 6. We need the neavy W-boson, t-quark, b-quark 

and c-quark masses. For the c-quark and b-quark masses2? we use the values 

1.5 GeV and 4.5 GeV derived from charmonium and upsilon spectroscopy. 

Since the value of the t-quark mass is presently unknown, it is treated 

as an additional parameter. The mass of the W-boson is taken to be 78 

The QCD corrections depend on the strong interaction running coupling 

constant evaluated at the large W-boson, t-quark, b-quark and c-quark 

masses. In the leading logarithmic approxiamtion 

as(Q2) = 33 
12n 1 
- 2Nf p.n(Q2/fi2) ’ 

GeV. 

(5.19) 

We use A2 = 0.1 GeV2 and A2 = 0.01 GeV2, which are-consistent with 

results from deep inelastic scattering. 28 When the leading logarithmic - --I 

approximation is valid, the results should not be very sensitive to the 

precise value of A2. In Eq. (5.19), Nf is the number of quark flavors 

being equal to 6, 5 and 4 at the mass scales of the t, b and c-quarks 

respectively. The constraints imposed by the KI-KS mass difference 

depend on the value of the matrix element (K" I(~o~c)~-~ (~g~B)V-AIXo> 

or equivalently, if Eq. (5.9) is used, on the parameter B. 29 
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In Fig. 5.4, ~2, s6 and E'/E are plotted as functions of s3 for 

S6 > 0. Solutions for s6 i 0 also exist30 and will be discussed later. 

For Fig. 5.4 we use mt = 30 GeV, B=l and f=O.75. The values of the 

quantities nl, n2, n3 and Cl6 are taken from Refs. 18 and 11 of Chapter V,31 

with the renormalization point chosen so that os(v2) = 1. Some features 

of these graphs can be understood from the expressions for ReM12 and ImM12 

given in Eqs. (5.5) and (5.10). While Eqs. (5.5) and (5.10) are quite 

complicated, a considerable simplification occurs for s3 near zero. 

Treating s3 and s1 as small quantities we have 

ReM12 o 2 22 22 
+ *n3mc&n (mt/mc) c2s2 , (5.20a) ' 

and 

I*12 a 2s2c2s3s6 
22 

-nlmcc2 + n2mts2 * * + n,m:in($)(c: - s:)) . (5.*Ob) 

The constant of proportionality in Eq. (5.20) is independent of R2, 83 and 

6. For small s3 the constraints imposed by the Kl,-KS mass difference 

and E depend on 6 only through its sine. Thus the-sign of c6 is irrele- 

vant at small s 3' Note also that the Et- s 
K mass difference constraint -: 

gives a simple quadratic equation for sf. This quadratic equation has 

at most one positive solution for si. Therefore, s6 is a single valued 

hyperbolic function of s3 in the region of small ~3. The measured value 

of the phase of E implies that s6 is positive16 for small 53. Away from 

s3 
z 0 the solutions for sb and s2 become double valued and depend on the 

sign of c 6' For c6 < 0, there is a cancellation between the terms which 
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Fig. 5.4. Graphs of (a) 52, (b) s6 and (c) E'/E as functions of s3 
when 6 lies in the upper half plane. The parameters 
mt = 30 GeV, B=l and f = 0.75 are used. Dashed lines 
are for A* = 0.1 GeV* and solid lines are for A2 = 0.01 
GeV*. E'/E has almost the same value (to within 10%) 
for c6 <Oandc ~0. 6 
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form the coefficient of rn: in Eq. (5.5). The mass difference constraint 

then implies that for fixed 53, s2 should be larger for the case c 6 < 0 

thanforc >O. 
6 From Eq. (5.10) we see that ImM12 is proportional to 

s2s2s6. The E constraint gives rise to the opposite behavior for s6, 

i.e., larger values of s6 occurring for c6 > 0. 

The general dependence of s2 and s6 on A* can also be inferred from 

the expressions for ReM12 and ImM12 (cf., Eqs. (5.5) and (5.10)). Recall 

from Ref. 18 of Chapter V that n2 and n3 do not depend significantly on 

A*; however, nl becomes smaller as A* decreases from 0.1 GeV' to 0.01 GeV*. 

Thus the smaller value of A2 widens the gap between the four-quark model 

prediction for m8-mb and its experimental value. This results in larger 

values of 52. Therefore, at a given value of s 3' s2 increases while s6 

decreases as A* is changed from 0.1 GeV* to 0.01 GeV*. 

The quantity s'/s plotted in Fig. 5.4(c) does not depend strongly on 

s3' This is because both E' and s are proportional to s s s 236 so this 

factor cancels out in their ratio. The principal A* dependence of E'/E 

arises from the A* dependence of ReC6. The Wilson coefficient ReC6 

increases significantlyll (i.e., by more than a factor of two) when A* 

decreases from 0.1 GeV* to 0.01 GeV*. This results in a corresponding 

decrease in s'/e. Note that s'/s is virtually independent of the sign 

of c 6' This is because both E and E' are proportional to the factor 

The plots in Fig. 5.4 were calculated using B=l, which corresponds 

to the valence quark model or the vacuum insertion approximation for the 

matrix element <K'l(ao~o)V-~ (dR~~)~-~li?'>. In Fig. 5.5 we show s2, s6 

and E'/E as functions of s 3 for the same parameters as used.in Fig. 5.4. 

-- 
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except that here B = 0.4. This B value corresponds to a bag model 

evaluation23 of the matrix element <K"l(~usa)V-A (dBsB)V-A\~o>. The 

smaller value of B increases the discrepancy between the four-quark 

model prediction and the measured value of mg-mE. This leads to 

generally larger values of s2 and a diminished sensitivity to A*. 

Results" from PETRA indicate that the t-quark mass must be greater 

than 15 GeV. For t-quark masses less than 30 GeV, larger values of s2 

than those shown in Figs. 5.4 and 5.6 will be needed to fulfill the mass 

difference constraint. In turn, the measured value of E then gives 

smaller values for s 6' If the mass of the t-quark is much larger than 

30 GeV, it will be necessary to include higher order terms in rn:/G 

which have been neglected in our analysis. 

In Fig. 5.6 we plot s2, Is61 and s'/e as a function of s3 for 6 in 

the lower half plane. These solutions exist if the expression within the 

square brackets of Eq. (5.10) is ngeative. This occurs only for c6 < 0, 
n 

when s 3 is so large that the term proportional to m 
L . t is negative and 

dominates the square brackets in Eq. (5.10). Note that s2 and s6 are 

double valued functions of 53. At fixed 53, the larger value of s2 in 

Fig. 5.6(a) corresponds to the smaller value of 1~~1 in Fig. 5.6(b). 

This is in consonance with being proportional to s2s3s6. 

Allowed regions of s2 and s6 are confined to a limited range in s3 

whens ~0. 6 The size of this region depends on A*. Decreasing A2 will 

increase the magnitude of the terms not proportional to m* t in the 

expression for ImM12 (cf., Eq. (5.10)) and will also decrease the magni- 

tude of the corresponding terms in the expression for ReM12 (cf., Eq. 

(5.5)). This causes the allowed region to begin at larger values of s3. 

- 
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The size of the allowed range of angles also depends on B and mt. In 

order that the mass difference constraint be satisfied, a smaller value 

for B will require that the coefficient of rn: in the square brackets of 

Eq. (5.5) be larger. Hence, regions with 6 in the lower half plane will 

be moved to larger values of s3 as B is decreased. For B=0.4, there are 

no regions with s 6 < 0 that are compatible with the universality bound, 

s3 5 0.5. Similarly, smaller values of mt result in smaller allowed 

regions than those shown in Fig. 5.6. This is because the coefficient 

of rnt in the square brackets of Eqs. (5.5) and (5.10) must increase as 

mt decreases, pushing these regions to larger values of s 3' 

When 6 lies in the upper half plane, E'/E is positive. As shown in 

Fig. 5.6(c), E'/E is negative when 6 lies in the lower half plane. In- 

formation on the quadrant of 6 will thus be obtained if upcoming experi- 

ments measure E'/E. For 6 in the lower half plane, only a small region 

of allowed values of s2 and s 6 exists. The measurement of a negative 

value for E'/E would be extremely fortuitous , providing very stringent 

constraints on the parameters of the six-quark model. 

In Figs. 5.4, 5.5 and 5.6 we use the value f=O.75 for the fraction 

of the K -+ 2a (I=O) amplitude arising from the matrix elements of Q,. 

The constraints imposed on the parameters of-the six-quark model by-the --Y 

experimental values of the EL- s K mass difference and the CP violation 

parameter E are not very sensitive to the value of f chosen. However, 

the predicted value of e'/e depends crucially on f, being proportional 

to it.' The parameter f is strongly dependent on the renormalization 

point. This renormalization point dependence arises because the operator 

Q, is induced only through QCD corrections and because its Wilson 
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coefficient receives contributions mainly from integrations over virtual 

momenta in the limited range u2 5 p2 2 (m. 
C 

We use a large value of f 

since this allows an understanding of the AI = Jz rule. We do not know 

exactly what choice of renormalization point, if any, corresponds to this 

value of f. It is, therefore, necessary to examine the sensitivity of 

our results to the value of as(p2) used. As mentioned above, n 1' q2 

and n3 depend weakly on the value of as(u2). However, the quantities ImC6 

and ReC6 both depend on crs(p2) and, for ReC6 the dependence is very strong. 

Since our constraints on the angles Ei2, e3 and 6 do not depend strongly 

on the value of 5, the renormalization point dependence of ReC6 does 

not introduce a great uncertainty in these angles. However E' is pro- 

portional to 5 and so our predictions for E'/E must be interpreted 

very qualitatively. Several authors12'33'34 adopt another approach to 

calculating E'/E which does not use a leading logarithmic calculation of 

ReC6. Rather, they rely on an estimate of the matrix element 

<2s(I=O)1Q61Ko> which is combined with the experimental value of the 

isospin zero amplitude A0 and the calculated value of ImC6 to make a 

prediction for E.35 This approach also involves an implicit choice of p, 

namely that for which the estimate of the matrix elsment (2a(I=O) )Q,IK'> 

is valid. Predictions for E'/E are, however, now not as sensitive to- -. m~l 

the value of as(p2) used to compute C6, since ImC 6 
is much less sensitive 

to variations of crs(p2) than ReC6. This approach generally leads to 

somewhat smaller values of E'/E than we have found. 

Finally, it is instructive to compare the QCD corrected values of 

s2 and s6 (cf., Figs. 5.4 and 5.6) with the uncorrected values. In Figs. 

5.7 and 5.8, s2 and s6 are plotted as functions of s 3 for mt= 30 GeV, 
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B=l, and f=O for the case of no QCD corrections.36 In the absence of 

QCD corrections, the quantities "1, n2 and n3 are all equal to one. 

Since the QCD corrected values of nl, n2 and n3 are smaller than one, 

the mass difference constraint gives rise to smaller values of s2 in 

Fig. 5.7(a) than in Fig. 5.4(a). The E constraint then gives rise to 

generally larger values of s6 in Fig. 5.7(b) than in Fig. 5.4(b). The 

allowed region of angles, for which 6 lies in the lower half plane, are 

shown in Fig. 5.8. This region is about the same size as the negative 

s6 region in Fig. 5.6 corresponding to A2 = 0.1 GeV2 but considerably 

larger than the A2 = 0.01 GeV2 region of negative s6. 

3. B Meson Decays 

The observation of B meson decays should soon be possible at CESR. 

The rates for these weak decays depend on the parameters of the six-quark 

model. If we view inclusive B meson decays as arising from b-quark decay, 

in which the light quark constituent of the meson acts only as a spec- 

tator, then the dependence of the B meson lifetime on the six-quark model 

parameters is easily calculated.37 The total width for b-quark decay can 

be written as the sum of two terms 

'b = I'(b -+ c) + I'(b -f u) (5.21). 

The first term arises from the diagrams in Fig. 5.9 and is given by 
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T(,, -+. =) = G: 
1921T3 

(5.22) 

+ 3n@(mc,mc;mb) s1c2 + (c1c2c3 - s2s3c6)2 
t 

22 222 
+ S2S3S6 . 

0 

The second term in Eq. (5.21) arises from the diagrams in Fig. 5.10 and 

is given by 

T(b +u) = - 

+ 3nf 
m ( I{ < 

2 2 
s1c2 + (c1c2c3 - s2s3c& 

2 222 + S2S3S6 . 
0 

(5.23) 

The kinematical functions f and 4 appearing in Eqs. (5.22) and (5.23) take 

into account the phase space suppression due to the non-negligible masses 

of the c-quark and the r-lepton. 38 The function f(x) is given by 

f(x) = 1 - 8x2 + 8x6 - x8 - 24x4Rnx . (5.24) 

-. 
The other function +(ml,m2;m$ is'quite complicated, but when ml = m2~ 

it simplifies to 
-- 

$(m,m ;rQ = &q 
( > 

where 

g(x) = 1 - ix2 - +x4 - 3x6 (1 -x2)+ ( ) 
+3;(l~$4,Ln~6+~) . (5.26) 
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The factor n which appear in Eqs. (5.22) and (5.23) arises because of 

the strong interaction corrections to the effective Hamiltonian for non- 

leptonic b-quark decays. This Hamiltonian is derived by a two-step 

process in which the W-boson and the t-quark are removed from explicitly 

appearing. The mechanism which gives an enhancement of the matrix 

elements of the (V-A)@(V+A) four-quark operators over the matrix elements 

of the (V-A)@(V-A) operators in the nonleptonic kaon and hyperon decays 

is expected to be absent in B-meson decays.3g Neglecting Penguin-type 

diagrams and using the leading logarithmic approximation we have4' 

11 = +:+-1 
( > f4 + 

where 

(5.28) 

In the preceding section the experimental values for the RI,-KS mass 

difference and the CP violation parameter E were used to write s6 and s2 

as functions of s3. Using these results T(b+u) and F(b+c) can also be 

expressed as functions of s3.41 In Figs. 5.11 a&-5.12 the ratio 

r(b+u)/r(b+c) and the b-quark lifetime ~~ = l/Tb are plotted as a- -: 

function of s3. 

The plots in Fig. 5.11 corresponds to allowed values of 6 in the 

upper half plane. When 6 lies in the lower half plane it is a double- 

valued function of s3. Figure 5.12 exhibits the same plots for this 

case. In Figs. 5.11 and 5.12 we use solutions for s2 and s6 shown in 

Figs. 5.4 and 5.6. Recall that the previous calculation used as parameters 
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Fig. 5.11. Plot of (a) the b-quark lifetime Tb (in seconds) and 
(b) the ratio of u-quark production to c-quark pro- 
duction r(b -+ u)/i"(b + c) for the allowed values of 
the six-quark model parameters shown in Figs. 5.4(a) 
and 5.4(b). Dashed lines are for A2 = .l GeV2 and 
solid lines are for A2 = .Ol GeV2. 
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mt = 30 GeV, B=l and f=0.75. As in Sect. 2, we choose mc and mb to be 

equal to 1.5 GeV and 4.5 GeV respectively. The partial decay widths 

r(b +u) and r(b +c) also depend on the r-lepton mass which has the experi- 

mental value m = 1.8 GeV. T However, we use mT = mc since the kinematical 

function f$(m,,mc;%) simplifies for this case. This approximation has 

no significant effect on any of our predictions. The general features 

of the graphs in Figs. 5.11 and 5.12 are largely determined by the ex- 

pressions in the square brackets of Eqs. (5.22) and (5.23). Taking the 

limit s3 + 0 in these equations reveals that for very small s3 r(b-+u) 

is negligible and r(b+c) is roughly proportional to s 2 
2' The constant 

of proportionality is independent of 8 so that in the small s 3 limit the 

b-quark lifetime is independent of the sign of c6. Since s2 is larger 

for IL2 = 0.01 GeV2 than for A2 = 0.1 GeV2 (see Fig. 5.4(a)) the b-quark 

lifetime is smaller for A2 = 0.01 than for A2 = 0.1, in the region of 

small s 3' Away from small s3 the b-quark lifetime, rb, and the ratio 

r(b+u)/r(b+c) both depend on the quadrant of 6. For c6 > 0 there is 

no 

so 

so 

5. 1 

cancellation between the two termsinthe square brackets of Eq. (5.22) 

r (b+c) grows with 53. Note also that r(b+u) grows as s3 increases 

that the b-quark lifetime decreases as s3 increases. However, Fig. -. 

l(a) shows that for c6 < 0 and 6 in the upper half plane the b-quark 
-_ 

lifetime is not as sensitive to the value of s3. This is because the 

two terms in the square brackets of Eq. (5.22) cancel against each other, 

yielding a smaller r(b-+c) than when cb > 0. Note that r(b+u) still 

grows with s3 and when s3 is near the universality bound 0.5 the ratio 

r(b+u)/r(b+c) becomes larger than one. So far we have been considering 

6 in the upper half plane. The only allowed regions when 6 lies in the 
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lower half plane is for c6 < 0 (cf., Figs. 5.6). Since s2 and s6 are 

double valued functions of s3 in this region, the b-quark lifetime and 

T(b+u)/T(b+c) are also double valued functions of 53. The upper branches 

in Fig. 5.6(a) correspond to the upper branches in Figs. 5.12(a) and 

5.12(b). This is because the values of s2 and s3 are closer to each other 

in the upper branches of Fig. 5.6(a), yielding a stronger cancellation 

between the two terms in the square brackets of Eq. (5.22) and hence 

smaller values for T(b-+c) than the lower branches of Fig. 5.6(a) give. 

In Fig. 5.13 we plot rb and T(b+u)/T(b+c) as functions of s3 for 

the same choice of parameters as in Fig. 5.5 (i.e., mt = 30 GeV, B=0.4, 

f=O.75). For a given s3, s2 is generally larger in Fig. 5.5(a) than in 

Fig. 5.4(a); therefore the b-quark lifetime is smaller in Fig. 5.13(a) 

than in Fig. 5.10(a). The general dependence of the b-quark lifetime on 

the mass of the t-quark can be deduced in a similar fashion. At fixed s3, 

a value of m t smaller than 30 GeV gives rise to a larger value of s2 than 

is shown in Fig. 5.4(a). Therefore, when mt is less than 30 GeV, the 

b-quark lifetime will generally be smaller than shown in Fig. 5.11(a). 

It is interesting to compare the predictions shown in Figs. 5.11(a) 

and 5.12 with those of the free quark model shown in Fig. 5.14 (for 6 in 
-. 

the upper half plane), where strong interaction effects are neglected. 
- 

The parameter n defined in Eq. (5.27) is equal to one in the free quark 

model; the QCD corrections cause n to increase slightly. Most of the 

effects of the QCD corrections on the b-quark lifetime, rb, and the ratio 

of u-quark to c-quark production, T(b+u)/T(b-+c), is due to the QCD 

corrections to the allowed values of the six-quark model parameters e2, 

e3 and 6. For 6 in the upper half plane, the QCD corrections tend to 

-- 
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increase the value of s 2 (at fixed s,) so the b-quark lifetime in Fig. 

5.14(a) is generally larger than in Fig. 5.11(a). When 6 is in the lower 

half plane the b-quark lifetime and the ratio T(b-+u)/I'(b+c) in the free 

quark model (i.e., no strong interactions) resemble those shown in Fig. 

5.12 with A2 = 0.1 GeV2. 

4. Summary 

In this chapter we examined the constraints on parameters of the 

six-quark model imposed by the experimental values of the %-KS mass 

difference and the CP violation parameter E. Unlike previous work in 

which QCD effects were neglected, we have made use of calculationsll~l* 

where strong interaction effects are taken into account by summing the 

large logarithms in the W-boson, t-quark, b-quark and c-quark masses using 

renormalization group techniques. For the W-boson, t-quark and b-quark 

we have confidence in this procedure; however, treating the c-quark mass 

as large and using it as an expansion parameter is dubious at best. For 

example, in calculating the Kb-KS mass difference, dispersive contribu- 

tions were neglected4' because they do not contribute to leading order 

in m 2 
C’ 

Such contributions arise when the two u-quarks in the loop of 
-. 

Fig. 5.1 bind to form a low mass hadronic state. Nevertheless, we have 
- 

included strong interaction effects in a systematic way and in principle 

some of the higher order effects could be calculated. This is an improve- 

ment over the use of the free quark model. 

The presence of many additional parameters (e.g., mt, the matrix 

element <KO\(&)V-A (ZS)~-~IXO>, and A? h w ose values are not pre- 

cisely known introduce further uncertainties in the constraints on the 
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parameters 82, O3 and 6 of the six-quark model. We have explored the 

effects of varying these ancillary parameters. 

Using the allowed values of the six-quark model parameters 82, e3 

and 6 we then calculated the CP violation parameter E', the b-quark 

lifetime and the ratio of u-quark production to c-quark production in 

b-quark decays. There exists a small region of 82-83-6-spate for 

which 6 lies in the lower half plane and E'/E is negative. Since this 

region for s 6 < 0 is much more restrictive than for s > 0, a measured 6 

negative value for E'/E in upcoming experiments would provide very 

stringent limits on the six-quark model parameters.43 Within the picture 

where B meson decay results from a b-quark decaying into free quarks, 

with the final state quarks dressing themselves into hadrons with unit 

probability, the b-quark lifetime is equal to the B meson lifetime. We 

found the b-quark lifetime to be typically from 10 -14 set to 3 x lo-l3 

sec. We also found that when c6 < 0 the ratio of u-quark to c-quark 

production can be greater than one at large s3. 
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