SLAC~-227
UC-34d

(T/E)

%
STRONG EFFECTS IN WEAK NONLEPTONIC DECAYS

Mark B. Wise
Stanford Linear Accelerator Center

Stanford University
Stanford, California 94305

April 1980

Prepared for the Department of Energy

under contract number DE-AC03-76SF00515

Printed in the United States of America. Available from the National
Technical Information Service, U.S. Department of Commerce, 5285 Port
Royal Road, Springfield, VA 22161. NTIS Price Code: Printed Copy:
AQ7, Microfiche: AO1.

* Ph.D. Dissertation.



-ii-

ABSTRACT

In this report the weak nonleptonic decays of kaons and hyperons
are examined with the hope of gaining insight into a recently proposed
mechanism for the AT = 1/2 rule. The effective Hamiltonian for AS=1
weak nonleptonic decays and that for K°- K° mixing are calculated in
the six~quark model using the leading logarithmic approximation. These
are used to examine the CP violation parameters of the kaon gystem.

It is found that if Penguin-type diagrams make important contributions
to X+7r decay amplitudes then upcoming experiments may be able to
distinguish the six-quark model for CP violation from the superweak
model. The weak radiative decays of hyperons are discussed with an
emphasis on what they can teach us about hyperon nonleptonic decays

and the AT = 1/2 rule.



ACKNOWLEDGEMENTS

I thank my-wife Jacqueline whose understanding and encouragement
made this report possible. Most of the work discussed here was done
in collaboration with F. J. Gilman and I am grateful to him for sharing
some of his enormous wealth of knowledge on high energy physics with
me. I have also benefited from collaborations with L. F. Abbott,

P. Sikivie and E. Witten. Finally I would like to thank my colleagues
at SLAC for many useful discussions and for helping toc make the study

of high energy physics enjoyable.



—-fv—

TABLE OF CONTENTS

ABSTRACT v & v &« v 4 o o o o o o o o & o o = . e
ACKNOWLEDGEMENTS '+ + ¢ & & & & & o o o o o o o o o o o o« &
TABLE OF CONTENTS . . + ¢ o ¢« ¢ ¢ o o o o o s + =

Chapter

I. INTRODUCTIQN B
II. EFFECTIVE HAMILTONIAN FOR AS =1 WEAK NONLEPTONIC
DECAYS IN THE SIX-QUARK MODEL . + ¢ « « « &+ « o« &
1. Derivation of the Effective Nonleptonic Weak
Hamiltonian . . + « &+ + ¢ ¢ s o o o « & &
2, Numerical Results for the Effective Nonleptonic
Hamiltonian . . « « + + &« & & & s & & o s »
III. EFFECTIVE HAMILTONIAN FOR K-K° MIXING IN THE
SIX-QUARK MOBEL . . . « + + « + + &
1. Derivation of the Effective Hamiltonian for
KO-R® MAXINE + « v o v v v e e e e e e e e e
2. Numerical Results . . . « + & ¢ o ¢« &+ o o o « &
IV. CP VIOLATION PARAMETERS OF THE K°-K° SYSTEM
1. Predictions for e'/e . « + « ¢« & v v v v v v 4.

V. WEAK RADIATIVE HYPERON DECAYS . . . . . .

1. The £/d Ratio in Nonleptonic Weak Hyperon Decays .

VI. CONCLUDING REMARKS . . + +« « « & o & o & & o o

APPENDIX A . . . & & v & 2 & o o o = a o o s 5 s o v »
APPENDIX B . . & ¢ v ¢ ¢ & o ¢ s o o « » =
APPENDIX C . . &+ & ¢ o &« o o o« o o s s s o & o

REFERENCES & & v + o o« s o s o & o s o a4 o« o o o« » s o 4

Page
ii
iid

iv

18

20

38

46

46
64
69
75
84
90

94

96
105
116

118




CHAPTER I

INTRODUCTION

One of the prominent features of the mnonleptonic weak decays of
kaons and hyperons is the AL = 1/2 rule. The effective Hamiltonian for
AS = 1 weak nonleptonic decays can be written as the sum of isospin 1/2
and 3/2 pieces. Experimentally it is observed that those decays which
proceed through_;he isospin 1/2 part of the effective Hamiltonian are
enhanced by roughly a factor of 20 in amplitude over those which proceed
through the isospin 3/2 part of the effective Hamiltonian. This is
known as the AT = 1/2 rule. As an example consider kaon decay into two
pions. The decay K+—+ﬂ+ﬁo proceeds only through the I = 3/2 part of the
effective Hamiltonian since the two-pion state is charged and therefore
must have I=2. The decay Kg‘*ﬂ+ﬂ—, on the other hand, can proceed
through both the I = 1/2 and I = 3/2 parts of the effective Hamiltonian.
Experimentallyl

F(Kg > ﬂ+ﬂ—)

F(K+ +»ﬂ+ﬂ°)

® 450 . (1.1)

In the standard 4-quark Weinberg-Salam? model for weak and electro-

magnetic interactions the quarks are assigned to right-handed singlets
(Wp 5 (g 5 @y 5 (s)g (1.2a)
and left-handed doublets

u C
; . {1.2b)

1 1]
d'/q, Sy

The fields di and si are weak eigenstates and related to the mass
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eigenstates by a unitary transformation. With an appropriate choice
for the quark field phases this transformation can be written in the

foilowing form

a’ cosec sinGc d
. (1.3

s i -sinb cos® s
c c

L

ec is called the Cabibbo angle. 1In the absence of strong interactions

amd m A mersm ma b
Lrac Ucbd-yb Lall ue
derived in this model by treating the W-boson mass as very large and
neglecting the momentum transfer in the W-boson propagator. This is

illustrated in Fig. 1. The resulting effective Hamiltonian is the

familiar local four-fermion (V-A) ® (V-A) current-current interaction

las|=1 = -EEsinB cosb (5 YH1-vu )(G (1-v5)d
Hootg / c e\ a Y5/ Uy SYP Ts B)

- Tu->¢] + h.c. . (1.4)

where GF is the Fermi constant and o and B are color indices which are
summed over {1,2,3} when repeated. It is convenient to decompose this
Hamiltonian into a sum of color symmetric and color antisymmetric pieces

in the following manner

|as}=1 Gy

I = e = _
H orf = 2J251naccosec [{(SuY (1 YS)ua)(uBYu(l YS)dB)

+ (Eavu(1—Y5)u8)(EBYu(1-Y5)dQ)} + {(EGY“(I-YS}ua)(EBYu(1~Y5)d8)

- (an“u—YS)uB)(aByu(1-Y5)du)}] - [uscl + hec. . (1.5)
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Tree level diagram which gives rise to effective
Hamiltonian for AS = 1 weak nonleptonic decays in

the absence of strong interactions.

Fig. 1.
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The first set of brace brackets contains a piece which is symme-
trized on the color indices of the u and d fields while the second set
of brace brackets contains a color antisymmetrized piece. The color
antisymmetric piece is pure I = 1/2 while the color symmetric piece has
an I = 1/2 portion and an I = 3/2 portion. Of course all the terms with
charm and anti-charm quark fields are I = 1/2 since the charm quark has
no isospin.

It was originally conjectured by Wilson3 that strong interaction
corrections would enhance the I = 1/2 portion of the effective
Hamiltonian thus providing an explanation for the AL = 1/2 rule. With
the advent of Quantum Chromodynamics (QCD) as a theory for the strong
interactions”® such corrections became calculable. Consider, for example,
the correction in Fig. 2a. If the momentum transfer in the W-boson
propagator could be neglected this diagram would just give the order
gz (where g is the strong coupling) correction, shown in Fig. 2b, to
the matrix elements of the local 4-quark operators in the effective
Hamiltonian of Eq. (1.5), However, since Fig. 2b is ultravioletly
divergent the convergence of the loop integral in Fig. 2a is not good
enough for such an approximation. If one differentiates the amplitude,
represented by Fig. 2a, with respect to an external momentum the ultra-
viclet convergence is improved enough so that the momentum transfer can
be neglected in the W-boson propagator. This means that Figs. 2a and
2b differ (to leading order in the large W-boson mass) by a constant
independent of the external momenta which is thus proportional to the
tree approximation for the matrix elements of a local 4-quark operator.

The constant of proportionality A(Mw/u,g) is also independent of the
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Fig. 2. (a) Higher order diagram contributing to weak
' AS = 1 nonleptonic decays.

(b) Higher order diagram contributing to the
matrix elements of local four-quark operators
in the effective Hamiltonian for AS=1 non-
leptonic weak decays.
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quark masses since the above argument can be repeated differentiating
now with respect to quark masses. Other diagrams can be accommodated
in a similar fashion the net result being that the effective Hamiltonian
is a sum of color symmetric and color antisymmetric pieces, but with

coefficients differing from their free quark values. That. is

|as|=1 Cp

‘ytﬂeff = _—'*2—/—_'2 sinﬁccosﬂc[A+(Mw/li,g) {(guYu(1—Ys)ua)(GBYu(1_Y5)dB)

+ (37 Qovgug) (57, (1-vd, )} + A Ot/ (5,7 (v, )

X (GBYU(I—YS)dB) - (anu(1~Y5)u8)(ﬁevu(l—75)du)}] -~ [u+cl + h.c. .
(1.6)
The functions Ai(Mw[u,g) depend on the renormalization scheme. Of
course, renormalization scheme dependence in the matrix elements of the
operators must cancel this so that physical processes do not depend on
choice of regularization scheme. u is the renormalization point mass
and dependence of the Wilson coefficients At on it is likewise cancelled
by the dependence of the matrix elements on u. The coefficients A+ and
A_ have been calculated in the leading logarithmic approximation by
Gaillard and LeeS and Altarelli and Maiani.® They found, for typical
valﬁes of the QCD parameters, that A_ was enhanced (compared with its
free quark value) by roughly a factor of 2 and A_ was reduced (compared
with its free quark wvalue) by roughly the factor .7. While this result
is in the correct direction to explain the AI = 1/2 rule it is much too
small in magnitude.
The W-boson mass is not the only large mass scale in the problem,

The charm quark mass is also "large" when compared with typical light
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hadronic masses. Thus one can imagine treating the charm quark as a
very heavy particle and removing its field from explicitly appearing

in the theory. When this is done local 4-quark operators with a chiral
structure (V-A) & (V4+A) will enter the Hamiltonian. Consider, for
example, the diagram shown in Fig. 3 (sometimes called a Penguin diagram).
Calculation reveals that in the approximation of treating the W-boson
and charm quark as very heavy the loop integral gives a factor of kz
which cancels the pole in the gluon propagator. As a result the ampli-
tude corresponding to Fig. 3 can be reproduced by the tree approximation
to the matrix elements of a local 4-quark operator involving only light
u, d and s quark fields. It is natural to wonder whether this local
four-fermion result is an artifact of the lowest order calculation or
will persist to higher orders.’ 1In Fig. 4a the factor of k2 from the
upper loop integral cancels the gluon propagator (when the masses of

the light strange and down quarks are zero). This, however, does not
lead to a local 4-quark structure but instead to a structure shown
schematically in Fig. 4b. Another class of diagrams that might seem

to show that the local four-fermion result of Fig. 3 is an artifact is
shown in Fig. 5. Again diagrams of this type do not admit an inter-
pretation in terms of a local four-fermion structure. Moreover they

are no smaller than the lowest-order diagram even in the limit of large
charm quark and W-boson masses. The diagréms of Fig. 5 would, taken by
themselves, ruin the lowest-order local four-fermion result. However,
when the contributions of Figs. 4a and 5 are added together a cancel-~
lation of soft-gluon effects occurs between these diagrams so that their

sum is included in the matrix elements of a local four—fermion operator
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Fig. 3. Lowest order Penguin-type diagram.
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Fig. 4. (a) A two-loop Penguin-type diagram.
(b) Symbolic representation of (a)
illustrating the cancellation of
a gluon propagator by the upper
loop integration.
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4—-80 3811A5

Fig. 5. Two-loop Penguin-type diagrams which are not

included in the matrix elements of a local
four-fermion operatox composed only of light
u, d and s quark fields.
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constructed out of light-quark fields. This cancellation is a result
of gauge invariance. It occurs because (for soft gluons) the amplitudes
corresponding to the diagrams in Fig. 6 which contribute to the process
s + d + gluons are reproduced (apart from constant pieces which will
cancel by the GIM mechanism) by the tree approximation to the matrix

elements of the operator

| B
N0 N

Penguin GF g
7 guin -—-sineccosec 5 n
V2 12w u

a
- Vo a u ]

X(saY (1 YS)TaBdB)[D P the (1.7)
to leading order in the large masses. In Eq. (1.7) g is the strong
coupling, Ta, ae{l,2,...,8}, are SU(3) color matrices normalized by

a_b ab a | . ,
Te(T°T ) = 6% /2, Fuv is the gluon field strength tensor and Du denotes
a covariant derivative. Diagrams with more than three gluons attached

to the quark loop are not important since they cannot produce a large

logarithm in the c—quark mass. Using the equations of motion for QCD

o N _ .. [ a = a - a )
(D Fuu) = Jv g(ﬁavauBuB + daYvTaBdB + SaYvTaBSB (1.8)

Penguin

0 becomes a local four-fermion operator. From this discussion
it is clear that cancellations similar to that between the diagrams in
Figs. 4a and 5 will occur between other higher order diagrams so that
the local four-fermion structure of the lowest order Penguin diagram in
Fig. 3 will be preserved in the sense that the sum of all Penguin-type
diagrams, with arbitrary gluon insertions, equals a sum of Wilson

coefficients times matrix elements of local 4~quark operators. Some

of the operators induced by the Penguin-type diagrams will have a chiral
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Fig. 6. One particle-irreducible diagrams contributing to the
transition s + d + gluons at the one-loop level. 1In
the absence of strong interactions there is a one-loop
diagram that gives a s - d transition however to leading

order in the W-boson mass it can be absorbed into mass
renormalization.
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structure (V-A) ® (V+A) due to the vector coupling of the gluons to
quarks. Note also that all the Penguin-type diagrams are pure I = 1/2
since the gluon carries no isospin.

The effective Hamiltonian for weak AS=1 nonleptonic decays, which
results from successively treating the W-boson and charm quark as heavy
fields and removing them from explicitly appearing in the theory, has
been calculated_in the leading logarithmic approximation by Shifman,

Vainshtein and Zakharov.®

They found that the operators induced by the
Penguin-type diagrams have small Wilson coefficients and at first glance
appear to make only an insignificant contribution to the weak nonleptonic
decays of kaons and hyperons- However, the matrix elements of these
operators with a (V-A) ® (V+A) chiral structure may be greatly enhanced
over those of operators with the usual (V-A) @)(V—A) chiral structure.®
Such an enhancement occurs, for example, when the matrix elements are
evaluated by saturating the matrix element of a product of quark bilinears
with the vacuum intermediate state. Since the (V-A) ® (V4+A) operators
are pure I = 1/2, combining the enhancement of their matrix elements
with the enhancement of the Wilson coefficients of the I = 1/2 combina-
tion of the familiar (V-A) ® (V-A) operators may provide a qualitative
explanation for the AI = 1/2 rule. Much of this report will be devoted
to examining the consequences of this possible mechanism for the AL = 1/2
rule and to testing its validity.

The nonleptonic weak decays of the neutral kaons have another
feature which is even more striking that the AI = 1/2 rule. They violate
CP invariance. If CP was conserved the physical neutral kaon eigenstates

Kg and KZ would be the CP eigenstates
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o =0
k> = K'>J£ KD (1.9a)
and
I 0 =0

with CP = +1 and ~1 respectively. Since a mneutral two pion s-wave

state has even CP a K2 cannot decay into two pions when CP is conserved.

However, experimentally it is observed that!

<rim ‘AS‘ > 3
[n+_[ = — IASI 7 = (2,274t .022) x 10 (1.10a)
[H IKS>
and
I | o IASl % (2.32%.09) x 1077 (1.10b)
n = = . . x .
00 IHlAS le>

The difference of n and nOO from zero is a measure of CP violation.

4

In the 4-quark Weinberg-Salam model with the minimal Higgs sector

(i.e., one Higgs doublet) CP is conserved.? However, as was pointed

out by Kobayashi and Maskawa, !0 in the six quark model with right handed

singlets

Wy 3 (dg 5 (B)p s (g 5 (g 3 (®g (1.11a)

and left handed doublets

u c t
: 5 (1.11b)
d L s'/1, b' L

there is enough freedom for CP violation to occur. This model has

become popular because of the discovery of a fifth lepton,ll T, and
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a fifth quark, b.}2 A sixth quark t is expected,13 being necessary for
the (generalized) GIM mechanism!" as well as the cancellation of

anomalies. >

The primed fields in Eq. (1.11b) are not mass eigenstates
but are related to the mass eigenstates 81 dL and bL by a unitary trans-
formation, U, which for the standard choice of phases for the quark

fields isl?

d' ¢y -8,Cq =S;S3 d
ié is

5! = SICZ c1c2c3-5233e clczs3+-szc3e 8 , (1.12)
i8 i§

bt I 5{8, c152c3+-c253e CySpS3 = CyCqe b L

where c; T cosei and 8y = sinei. The signs of the quark fields may be
adjusted so that the three Cabibbo-type angles Oj, 3 5{1,2,3}, all lie
in the first quadrant.l® Then the quadrant of § has physical signi-
ficance and cannot be chosen by convention.

" In this model weak interactions involving the charged hadronic

current follow from the interaction term in the Hamiltonian density

+
Ay = £ ' ¥ + n.e. (1.13)
2/2 H

where W; is the charged W~boson field, J: is the charged weak current

defined by
+ bl T - 1 e 1
= - + - 1- 1.1
Ju uaYu(l YS)da cayu(l ys)sa + tuyu( yS)bOL ( 4)

and g is the gauge coupling of the weak SU(2) subgroup. Since the CP
operator takes a (mass eigenstate) quark field into an antiquark field
and a Wi boson into a W' boson CP will be violated by this interaction

Hamiltonian if the phase § is nonzero. Actually there are arbitrary
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phases in the definition of the CP operator corresponding to the
arbitrariness of the choice of phases for the quark fields. The

correct statement is that there will be CP violation if it is impossible
by readjusting the phases of the quark fields to find a parametrization
of the unitary matrix U (that relates weak and mass eigenstates) which
is purely real. 1In the 4-quark model where U is a 2 x 2 unitary matrix
it is possible by readjusting the phases of the quark fields to find the
real parametrization given in Eq. (1.3). However, in the six-quark
model readjusting the phases of the quark fields will just move the
phase § from one place in U to another, but it can never be completely
removed from appearing in Eq. (1.12).

The phenomenological consequences of the Kobayashi~Maskawa six~
quark model for CP violation have been worked out by Ellis, Gaillard
and Nanopoulos,17 with strong interactions neglected, and were found
to be consistent with experimental data on K decays. Part of this
report is devoted to a study of the effects that strong interactions
have on the predictions which the six-quark model makes for various CP
violation parameters. In particular, the Penguin-type diagrams, with
heavy c and t quarks in the loop have an imaginary CP violating part
and their CP violating contributions to K -+ nn decay amplitudes are
discussed.

In Chapter II the effective Hamiltonian for AS =1 weak nonleptonic
decays is computed in tﬁe six—quark model using the leading logarithmic
approximation. In the following chapter the effects of QCD corrections
on the K°-K® mass matrix are calculated. Chapter IV uses the results

of these two calculations to make predictions for the CP violation
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parameters n, and Moo and in particular for the deviation of n+_/n00
from unity. It is shown that this deviation may be measurable if the
Penguin-type diagrams make important contributions to the nonleptonic
decays of kaons. Chapter V contains a brief discussion of weak radiative
hyperon decays. The weak radiative decays of the negatively charged
hyperons Q and ¥ are particularly interesting since they may proceed
mostly through ?anuin-type diagrams. Finally, Chapter VI contains a

brief summary of results and some general conclusions are drawn.
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CHAPTER II .
EFFECTIVE HAMILTONIAN FOR AS =1 WEAK NONLEPTCNIC

DECAYS IN THE SIX-QUARK MODEL!®

In the standard six-quark model with charge +2/3 quarks u,c, and t
and charge -1/3 quarks d,s, and b the left-handed quarks are assigned
to weak isospin doublets and the right-handed quarks to weak isospin
singlets of the gh(Z) ® U(1l) gauge group of weak and electromagnetic
interactions. The mixing between quarks in doublets characterized, say,
by their charge +2/3 members, is describable by three Cabibbo-like angles
81, 82, and 63, and by a single phase, §, which results in CP violation.
The nonleptonic weak interaction that can result in a net change in quark
flavors is given to lowest order in weak interactions, and zeroeth order
in strong interactions, by the product of a weak current of left-handed
quarks, a charged Wboson propagator, and another weak current of left-
handed quarks. Neglecting the momentum transfer dependence of the W-
boson propagator, one has the usual local (V-A) ® (V-A) structure of
a current-current weak nonleptonic Hamiltonian.

With the introduction of strong interactions, in the form of
gquantum chromodynamics (QCD), things become more complicated. Consider,
for example, that part of the nonleptonic Hamiltonian responsible for
decay of kaons and hyperons which we write in terms of the "light" quarks
u,d, and s. As the strong interactions are turned on, not only is the
lowest order (V-4) ® (V-A) term involving u,d, and s quarks modified by
gluon exchanges between the quarks, but there are diagrams involving
virtual "heavy" quarks in loops which contribute to the strangeness

changing nonleptonic Hamiltonian. These alter the strength of the
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(V-A) ® (V-A) terms and introduce new terms with different chiral
structure, e.g., (V-A) @ (V4A),

It is the purpose of this chapter to calculate the effective
nonleptonic Hamiltonian for strangeness changing decays in the six~quark
model. The W-boson, t—quark, b—quark, and c—quark are successively
considered as very heavy, and renormalization group techniques used to
calculate (in the leading logarithmic approximation) the resulting
effective Hamiltonian remaining at each stage.

The basic techniques for carrying out such calculations have been
laid out previously.5s6s8’19s2O They were even applied in the four-
quark model to get the effective Hamiltonian for strangeness changing
decays with the charm quark (and W-boson) taken as heavy.8 However,
there is only one Cabibbeo angle in the four-quark model and no CP
violating phase. It is the CP violating pieces of the effective
nonleptonic Hamiltonian which are of special interest in this chapter.

In the next section the method by which the effective Hamiltonian
for nonleptonic strangeness changing decays is to be calculated in the
six-quark model is described. The approach is pedagogical and emphasizes
the underlying assumptions and the conditions necessary for the validity
of the leading log approximation. 1In Section 2, numerical results are
given. As expected, CP violating terms appear in the resulting effective
Hamiltonian, both in the ocld terms of (V-A) ® (V-A) form and in the new
"Penguin''-type terms. In the former they are quite small, but in the
latter are large. Many of the details concerning the matrices of
anomalous dimensions and their eigenvectors and eigenvalues are relegated

to an appendix.
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1. Derivation of the Effective Nonleptonic Weak Hamiltonian

Recall that in the standard model?>!0 where the gauge group of
weak and electromagnetic interactions is SU(2) ® U(l), the six quarks,
u,c, and t with charge +2/3 and d,s, and b, with charge -1/3, are

assigned to left-handed doublets and right-handed singlets:

u c t
') ; ') =l ] 3 (g @g s (edp 5 (g 5 (g s (b)g -
/sy APy

As was mentioned in Chapter I, the standard choice of quark fields is

such that
| 4 - -
d c1 §1C4 8184 d
g'] = ;G € CyCq = 3253e15 C1C,S, + szc3e16 s s (2.1)
' ié is
b L sls2 €189C4 + cySq€ c13253 - c2c3e b L

where ci==cos6i, si==sinai, ie {1,2,3}. Equation (2.1) defines the
three Cabibbo-like mixing angles Gi and the CP violating phase, 6.
Weak interactions involving the charged hadronic current follow

from the interaction term in the Hamiltonian density

+
H(x) = - " )W (x) + h.c. , (2.2)
2/2 U

where W; is the charge W boson field, J: the charged weak current

defined by

TT(0) = B0y, (1-y)d" (0) + E(O)y, (1-yg)s" (0) + E(O)y, (1=y5)b" (O)

i

(ﬁd')v_A + (c—:s‘)v_A + (Eb‘)V_A ) (2.3)

and g is the gauge coupling constant of the weak SU(2) subgroup. With
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no strong interactions the lowest order weak current-current interaction
at zero momentum transfer is described by the effective Hamiltonian

density

+

2
- B _ -
eff(0) = 5 J° (0) JU(O) + h.c. s (2.4)

8y

so that the Fermi coupling GF//i = gz/(SMé). In particular the strange-—

ness changing piége of Eq. (2.4) is

(as = 1) Cr = =
Hors = -epsye5(s u )y, (ugdgdy s

—i8. .~ -
+ slcz(clczc3 - Sp8q€ )(Saca)V—A(cgdB)V—A
+ s sz(cls2 3 + c253e )(sata)V—A(thB)V-A , (2.5)

where the color indices o and 8 on the quarks (which when repeated are
summed from 1 to 3) have been made explicit in preparation for the

inclusion of the strong interactions. It is convenient to rewrite

Eq. (2.5) as
G ‘
=1 F + (- ) !
Jfégi - -.;;5: }Ac(oé )-+0c )) * At(ot +0¢ )5 ’ (2.6)
where

(i) _ - - - >
o) - [(Sa“a)-v~A(“eds)v-A 2 (5,4 )y, (Bguedy. A] [u>q), 2.7
and

A = slcz(c c.,c szsae-is)

162¢3 (2.8a)

—15)

¢ = s185(cysycy * cp8ge (2.8Db)
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Normal ordering of the four-fermion operators is understood. The space-
time coordinates of all operators are suppressed.

Now introduce the strong interactions in the form of quantum
chromodynamics (QCD), the gauge theory based on the color SU(3) gauge
group involving vector gluons interacting with quarks? The strong
interactions modify the lowest order weak effective Hamiltonian from
the form in Egs. €2.4) and (2.5). We now proceed to derive in leading
logarithmic approximation the form of the effective weak Hamiltonian
in the presence of strong interactions with heavy W-bosons and heavy
t,b, and ¢ quarks.

First, the W-boson is taken as much heavier than any other mass
scale in the problem and the S-matrix elements of the weak interaction
between low momentum hadron states composed of light quarks and differing
in strangeness by one unit are considered. This is just the calculation
performed in Refs. 5 and 6. Using the operator product expansion3
(noting that the operators Ogi) and Ogi) are multiplicatively renormalized
and do not mix with other operators at the one loop level) it follows

that to leading order in the heavy W-boson mass

't

(__;.)fd4x<[T(a¢;<x),§q<0>>l> I {A§+>(—?~,g)<l0§+)<°”>

2v2
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where 1 is the renormalization point of the strong interactions. The
matrix elements of the right-hand side are to be evaluated to all ofders
in the strong interactions (since perturbation theory is probably not
valid) and to zeroeth order in the weak interactions.

+ +
The Wilson coefficients AE—)(Mw/u,g) and Ag_)(Mw/u,g) depend on the

choice of renormalization scheme. Of course, matrix elements of the

(£)

+
renormalized operators Oé“) and Oc

also depend on the renormalization
scheme in such a way that physical quantities are rendered scheme
independent. We use the mass independent MS subtraction scheme?!

where thé renormalization group equation522 are

3 I PRARSY bl ) )
(u_-a;+8(g) g " Y (g))Aq (u,g o . (2.10)

+ + .
The Y(F) characterize the anomalous dimension of the operators Oé ) with

g=c or t. The function B(g) has the perturbation expansion:?3
3

B(g) = -(33-2Np) Zz_z + 6(g”) , (2.11)
w

where Nf (which equals 6 here) is the number of quark flavors. A

+
standard one loop caleculation®:® shows that Y(_)(g) has the perturbation

expansion:
2
Y(+)(g) = —3—5 + eﬁ(g“) (2.12a)
4m ,
(=) _gz_ 4
Yy (g = -F5 + €@1) . (2.12b)
27

With the running coupling constant g(y,g) defined by

g(y,g)
_ dx .
ny = f ) _ (2.13)
g
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and g(1,8) =g, Eq. (2.10) has the solution

g/, 8)
() |
Aé«:)(ﬁ,g) - [exp [ dx] A(t)(l’é(Mw g)) (2.14)
g

u 8 (x) q e
In a leading log calculation the coefficients Agi)(l,é(MW/u,g)) can be
replaced by their free field values Aq given in Eq. (2.8) because the
running fine structure constant a = §2/4w is small at the mass scale of
the W and because the value of their first dependent variable being

unity implies no other large logarithms can be generated by higher order

strong interactioms. Using Egs. (2.11) and (2.12)

() (£) 2.1
_xy—(x) _ 2a + terms finite at x=0 s (212
B(x) x :
with
(2.16a)
G R - N
33- 2N,
() =12 (2.16b)
33 - 2N )

Choosing p above the onset of scaling, Eq. (2.15) may be substituted

back into Eq. (2.14) to obtain the result:2Y

_ +)
M Ezg—nﬂg g! )
A(i)(——! g) = - A

-2
L 8“1, ) - 4

- *)
G(Ms) a | (2.17)
2) Aq )

[a(u

At this stage our effective weak Hamiltonian demsity is



—25~

(as=1) 6 ([aCf) a®
AS=1 G o
b4 o __F W A0(+)+A0(+)
eff "3 IL(UZ)] ( e e tot )
(=)
2.qa
a (M)
S o)
a{u”)

The matrix elements of the above effective weak Hamiltonian density are
to be evaluated to all orders in the strong interactions and to zeroeth
order in the weak interactions. Note that J%gff does not explicitly
involve the W boson field. We want to derive an effective Hamiltonian
without explicit dependence on the heavy W-boson, t-quark, b-quark and
c~quark fields. Equation (2.18) is the first step towards this goal.

The next step is to consider the t-quark as very heavy and eliminate
it from explicitly appearing in the effective weak Hamiltonian for

+
strangeness changing processes. What happens to the operator 0(") and

(o4
() (+)
Ot

is different, and the more complicated case of Ot

is considered
first.

We assume that m, is much greater than all other quark masses, the
momenta of the external states, and the renormalization point mass, u.
The work of Appelquist and Carrazone?® implies that to order 1/mi all
the dependence of amplitudes on the heavy t—quark mass can be absorbed
into renormalization effects and hence into a redefinition of the
coupling constant, mass parameters, and scale of operators. This
suggests the following factorization:

<|01(::)‘> = ; Bit) (.n:ul:.,g)qoip' + ﬁ(iz) . (2.19)

m
t
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where the primed matrix elements are evaluated to all orders in an
effective theory of strong interactions?® with 5~-quark flavors, coupling

g'(mt/u,g) and mass parameters m&,mé,...,mﬂ. Thus,
<|Oil>‘ = <|Ol|>(g' ,u,m&,---,ﬂ%)

To carry out the expansion of Eq. (2.19) in leading log approximation
six linearly independent operators Oi are sufficient. They are choosen

as follows:

0, = (5,d)y s (@udy,
0 = (s,80y_y (u)y s
03 = (s d )VﬁA [(uBUB)V‘A ces + (b b )

0, = Gy, [(‘_‘s“a)v-A +d By,

(=]

(2.20)

CI

(=]
|

4]

)

05 = Gy [( g v T e T (Bgb) V+A]
R

6 = Gd)us [( Dysa t e F BB
These operators are sufficient since they close under renormali-

zation at the one loop level. The operators 01 and O2 already occur to

zeroeth order in strong interactions: it follows from Eq. (2.7) that

(£) - L(2) _

B]. = B]. (1,0) = 1

() _ () _

B, ' = B, (1,0) = +1 . (2.21a)

The operators 03, 04, 05, and O6 are generated by the strong interactions

through "Penguin'-type diagrams, so that in free field theory
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. (2.21b)

However, the operators Oi are not multiplicatively renormalized at
the one loop level, i.e., they mix among themselves. As shown in the
appendix, the renormalization group equation their coefficients

() : .
B (mt/u,g) satisfy is

2l &+ B(e) 2+ v () m, PR ®)8,; - viTe)]

h|
m
Bf)(f,g) = 0 . (2.22)

Here Y'T is the transpose of the anomalous dimension matrix of the
operators 0i in the effective theory of strong interactions with 5
quarks and coupling g'. It is the eigenvectors of Y'T that correspond
to operators which are multiplicatively renormalized. The coefficient

~{+
functions Bi_)(mt/u,g) of these multiplicatively renormalized operators

are written as

m m
Bit)(—at-,g) = Y vile® (Tt,g) , (2.23)

and the eigenvalues of y'T are denoted by Yi' The matrix v' is found
in Appendix A along with its eigenvalues and the matrix V. For the

i_)(mt/u,g), the renormalization group equation corresponding to

Eq. (2.22) is

m
(u o+ () 3t V@) m F1® @) - i) (-)(—:—,g) - 0.

1

(2.24)
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The solution to this equation may be found with the aid of the running

coupling constant g(y,g) defined byld

g(y,g) [1"Yt(x)]
ny = f —=ldx |, (2.25)
. - B(x)

with g(l,g) =g. Note that this is not the usual definition of the

(2.13)), but the i

,
, but the integrand in Eq. (2.25)

for small x has the same leading behavior given by 1/B(x) as the

integrand in Eq. (2.13). Setting y = mt/u, it is now easily shown

that the solution of Eq. (2.,24) is

5 m E(mt/u’g) (%) g'(lag) ""Yz(X)
Brg_i)(-u—t s g) exp f Y—S(}(g)— dx|{exp f —73"——— dx
B'(x)

g g'(m /u,g)

- 3™ ap ' (2.26)

B' is the beta function in the effective theory with 5-~quarks and

coupling g'. This beta function has the perturbation expansion

'3 5
B'(g") = -(33-:Np) B + 0™ (2.27)
481
with Nf= 5, and we write
‘ Y:'L(x) 2a]'._
- = —— <+ finite terms at x=0 .
8" (x) % (2.28)

Choosing p as before, above the onset of scaling, Eqs. (2.15) and (2.28)

may be used to get
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() .
2) -a (2) a,
(m a{m
"'(.'t)(mt )_ e t 3 ()
5 g) - : ®LD . (2.29
B a(u) aud]

We have used g'(l,g) ® é(mt/u,g), which is valid in a leading log
calculation since the running fine structure constant is small at the
t-quark mass. Finally, using the linear relationship between the eigen-

vectors B, and the B,
i i

()

2,y-a ' 2, qa!
e )( ) } a(m) alm’) {73 A ()
i » 8 [ 2 Z ij 2. V_']i (1,8)

a{u™) i,j a'(u’)

(2.30)

+
Notice that the factor [u(m Y/alu )] out in front of the summation
in Eq. (2.30) combines with the earller factor [a(MW)/u(u )] al*) in
Eq. (2.16) to give [a(Mw)/a(mt)] ). In leading log approximation the
coefficients B( )(1,g) can be replaced by their free field values as
given in Eq. (2.21), since no large logarithms can be generated from
QCD loop integrals with the first argument of Bgi)(mt/u,g) set equal to
unity and because we assume the running fine structure constant is small
at the t—-quark mass.

The case of the operators 0£i) is much simpler. The charm quark

field which appears explicitly in these operators is of course not directly
affected at this stage of considering the t-quark as very heavy and the

c

are just multiplicatively renormalized:

m
Joi)> = B (jf',g) Jo )y . (2.31)

Note that the matrix elements on the right-hand side are again to be
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evaluated in the effective five—quark theory with coupling g‘(mt/u,g).

The coefficients B(i)(mt/u,g) gsatisfy
m
(u G R R ROLE i Y - “*’(g'))a(*’(f—, g) - 0.

(2.32)

()

+
The anomalous dimension Y'(F)(g') is that of Oc and is a function of
4
the coupling g' im the effective five-quark theory, while Y(’)(g) depends
on g, the coupling in the six-quark theory.

Solving Eq. (2.32) in the same manner as Eq. (2.24), gives

: ) m B E(mt/U,g) (+) g (1 8) ( "
+)_t - y oo (x) y' T (x)
B (u s g) exp f (%) dx | jexp f 5 (D) dx|B (1,2)
g
(£)  (2)
- ~a a
a@d) | | @) © 5
= —_— ¥ (1,2) .

In leading log approximation B( )(1 g(m./u,g)) can be replaced by its
free field value of +1.
The effective weak Hamiltonian demsity is now free of explicit

dependence on the heavy t-quark field and has the form:
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(P (+
2,1a 2
% {[ “(mt)] [a(MW)Ja A of®
27 (La'w? @ (n?) ¢ °
r(') (')
a@d) 1* a0 ]? -
" o' (u?) a (m2) fe %
t (2.34)
' +)
T 2 a. - 2 q1a
a(m’) { ] G(MW)
+ 2 Z v [ £ ] v'13§+)) A O
k(i,j laredhl 372 Nlewd]  °F
: (=)
2, qa 2.7a
a(m) 173 [ (M )]
+ (2 [——t—] v'.IB(")) A O
- (i,j k3 | o1 n2) jii _a(mi)i t %k

All operators on the right—-hand side are to have their matrix elements

evaluated in the effective theory with five quarks, coupling g‘(mt/u,g)

and masses m&, m&, ...,mé.

The next step of considering the b~quark as very heavy is similar

to what was just accomplished for the t-quark, with the addition of some

indices. This time the matrix elements of the operators 0i of Eq. (2.20)

evaluated in the effective five-quark theory are tq be expressed in terms

of matrix elements of

]

u )

(5,4 0v-a (Ug%)y 4

(wu)

(s,45) B o

a 8°V-A V-A
(Sadu)V—A [(uBuB)V‘A +

(Eadﬂ) V-A [(GBUQ)V—A *

)

cee + (chB VoA

]

ees + (EBCG)V—A]
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d
I

5 = (s d )V A [:usus)V+A vee + (EBCB)V+A]

s
|

6 = (s dB)V A [Fu u )V+A oo F (EBca)V+A] (2.35)

evaluated in an effective theory with four quark flavors (u,d,s, and c).
The coupling and masses in the effective four-quark theory are denoted by
c

g"(mﬁ/u,g') and m;J ... ,m", Tespectively. To leading order in the

b-quark mass

tlcﬁ_

n
<Jo l>r = gck(

: g') B >" , (2.36)

where the prime (double prime) denotes evaluation in the effective five

(four) quark theory. The Cﬁ(mé/u,g') can be shown to obey an equation

of the form

Z[(“au+8(g) +mebm.|;) *ik %mn

k,n

+ ij(g') Gmn - Jk 1‘1'1:.;(8") ] (i,gr) =0 , (2.37)

with y' and y" being anomalous dimension matrices of the operators
01""’06 and Pl""’PB’ respectively.

Defining the linear combinations of coefficient functions

o .) ~ -1 z(mt': ,)
ck(—;,g -);,wmck 2.8 (2.38)

as corresponding to operators which are multiplicatively renormalized,

3

i.e., do not mix with other operators, the renormalization group equations

diagonalize into the form
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__a_ |,3 e M
(a+ﬁ(g)g mebamb Yk(g)—v(g))
SR
~n
. c.|\—, ') v, = 0 . 2,
; J(u &/ Y5k (2.39)
The matrices W and y" together with the eigenvalues of the latter are

found in Appendix A.

"With the aid of a new running coupling defined by

g'(y,8") | _ v ()
iny = f — b " ax (2.40)
g B'(x)

these equations may be solved very analogously to Eq. (2.24). Leaving
out some of the details, the solution in the leading logarithmic

appreximation is

23 - EEn [ )

Cl'(m‘;2) a;;l m];
(e[l )
( - an {G"(Uz) ] wmg, ) Ci(lgg (Li y & . (2.41)

For reasons stated before, in a leading log calculation the coefficients

Ci(l,é') can be replaced by their free field values:

L -
¢;(1,0) = &, . (2.42)

o)
t

(x)

The operators OC are multiplicatively remormalized and the expansion of
their matrix elements gives results like those in Eq. (2.33) with

appropriate changes.
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The effective Hamiltonian now takes the following form at the

four-quark level:

| " (P () )
ws=1 _ _ S ““'- m't'>2>r [ a(mp) r [“(“%)r -+
o = — A O
eff 272 (L a"aH a'(m{)z) a(m,z:) € ¢
"(-) € )
[a' mgz>]a [ a(ad) ]a [am;’;)r o
+ A O
a" (u?) a' (m?) a@h] ¢

+

(T o e ek
W — 1Y ECk ij 5 V..

k,n f‘:m o o' (uz) o i,j

+) ) . ,
aeiH]? o [c0D]?
2 Ay + By 2 Al Pa( (2.43)
a(mt) a(mt)

The final step of considering the charm quark as very heavy is

—
Hmf'\
+
S

more questionable from the phenomenological viewpoint. It also involves
a technical point which is easy to miss. When the matrix elements of
the operétors Pl,...,P6 evaluated in the effective four-quark theory
are expanded in terms of matrix elements of operators evaluated in an
effective three-quark theory, it is natural to defimne

Q = (s,d)y , (gudy y

0, = Gydyy Gy,

Q = (s d)y s [(Gsue)v-A +@d)y, * (E’BSB)V—A]

oL
B~
i

(3,dg)y_a [(‘_’sua)v—.a * @)y (gssa)V—A]
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Q5 = (s,d )v -A [(“6“8 vea * (Ggdgdypy * (EBSB)\HA]
% = Gydgdya [(“ Sy (dgdydypp * (g V+A] (2.44)

These operators close under renormalization at the one-loop level, but

they are linearly dependent:
— Q, = —Q; +Q, +0Q, . (2.45)

Hence only the 5 operators Ql’ Q2’ Q3, Q5 and Q6 are necessary.

Expressing matrix elements of the operators evaluated in the
effective four-quark theory in terms of matrix elements of operators
evaluated in the effective three—quark theory,

1 m" " LiL 1
<Je b = 2 D;(—f,g)dqrb +@(;§), (2.46)
c

r=1,2,3,5,6

with g"' and mh » my' s ms representing the coupling constant and quark

masses in the effective three quark theory. The linear combinations

% (%) - L) 2an

are the coefficients of multiplicatively renormalized operators. The

diagonalized renormalization group equations are

___a_ 1 1" a a 1" ’" - 1t T8 ]
&+ 87" o + vamlgie o+ Tl - V(e

:E: ~r (B¢
. Dm(—,g)w = 0 , (2.48)

and have the solution in leading logarithmic approximation after re-
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expressing the D's in terms of D's,

. 2 _all

a" (mu ) m
:E: ( wnm [ (Z ] w;i )
n,p\ m o (u)

a" (m'lz) a"'
(ZX,_- {———‘:2—} 1)1)1’(1 ML (2.49)
q q. u'"(u) qp

In leading log approximation the Dz(l,é") can be replaced by their free

(=]
> H
——
1"'IraE’::
m—
—~——
[}

-

field values, DE. These are an, except when n=4, in which case Di==—1,

2 5_,6

- 3. =pf=
DA-I, Dh"l’ and D4 D4 0.
Because the charm quark is being considered as heavy, the operators
+
Oé—) are no longer just multiplicatively renormalized at the one loop

level- It is also necessary to expand
( ) (+) m"
x "o X ( c n) e
<o > Zr:D,_. - 8") <l . (2.50)

+
The renormalization group equations obeyed by the Dﬁ')(mg/u,g") are

+ 'Y"( *) (g"))

P

Z[( ‘Bu BT 5 3g7 + Ye(E g "'T(g"')]

m'
r c

. n(+) ( " ,g") = 0 . (2.51)

The coefficients corresponding to multiplicatively renormalized operators
are just as in Eq. (2.47), and the solution to Eq. (2.51) with the usual

approximations is

n( "2) "a"(i) ( 2) a''

o o' (m "em"

D],(:t) ( c , gn) - [ C2 :| E Xr |: ] —1 ( )(l ) .
U au (u ) Pyq q 0.'"(11 ) qp P

(2.52)
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(£)

The free field wvalues, Dp

()

= D;i)(l,O), are D1

= 1, D = 41, and
all others zero.

Finally, collecting all the results the previously advertised
effective Hamiltonian in the "light" three~quark sector can be written.
It is the following sum of Wilson coefficients times local four—fermion

operators which do not explicitly involve the heavy W-boson, top, bottom,

and charm quark fields:

(as=1) Cp a" (%) % -1 (4
Hots T s Z(Z Xea | 7] X ®

2/2 {"x \r,q arqhl WP
n(+) 1 () (+)
2 @A T a@d 1P Taedh)?
: 11 ne 1 '2 2 AC Qr
a (mc ) o (mb ) a(mt)
2 al'l
a" (m‘| ) q
+ 2 X [————‘5—-] XL D(+))
Zr(p’q I PN ap P
n("‘) v("') (‘)
o' @D T e@d P [ead]?
' " n2 ] '2 2 Ac Qr
o' (m ) ' (m ) a(mt)

- R,
+ Z (Z Xq [——9——] x 1 DP)

k,n,r \ p,q a'"(uz)

! @HPn 5 [ e 5,
( ,;n Pom | ey e Ck)(i : ijL N BT
c L]

"(m!™)
) =)
YART: 2. 1a
(+) c"(MW) ' (=) G(MW)
(Bi [a(mf‘:) Ae ¥ By 2 A b)Q.p - (2.53)

a(mt)
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All summations are from 1 through 6, except'those over p, q and r which

run through 1,2,3,5 and 6.

2. Numerical Results for the Effective Nonleptonic Hamiltonian

It is now possible to perform the arithmetic operations made
explicit in Eq. (2.53) and to examine the resulting Wilson coefficients
of the operators_ql,Qz,QB,Q5 and Q6 in the effective Hamiltonian for
nonleptonic, strangeness changing interactions. Since the matrices,
V,W and X, as given in the appendix, are composed of irrational numbers

2 2 2
= Mw, m, etc. are

and since various fractional powers of u(Mz) with M
rampant, quantitatively rather little is tramsparent about these co-
efficients in general., We then are forced to proceed by choosing a
parametrization for a(MZ) and values for the W and quark masses, sub-
stituting in Eq. (2.53), and reading off the coefficients of the Qi for
that particular set of choices.

Moreover, the outlook is basically qualitative. The QCD effects
have been calculated in the leading log approximation. While we have
some confidence that at the first step MW is a large enough mass for
this to be a credible procedure, by the last step of considering m, a
heavy mass this approximation has been used beyond the region where it
can be reasonably justified.

On the positive side, what is carried out here is well defined and
systematic. The degree of accuracy is obviously no worse than any of
the earlier calculations® which involve only the "heavy" charm quark
(and W boson} in leading log approximation. Not only is the accuracy

of the calculation expected to be better for the b and t-quarks, but
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their effect was not taken into account previously. With regard to CP
violation they play a dominant role.

To investigate the effective nonleptonic Hamiltonian numerically
we first of all need to decide on the running QCD fine structure constant
a(Qz), the values of the heavy quark masses, and uz or alternately a(uz).

In leading log approximation

a(QZ)_ = Lom L , (2.54)

33 - Zva en (QZ/AZ)
where we take A2 = 0.1 GeV2 and AZ = 0.01 GeVz, values consistent with
recent data when QCD is used to parametrize the breakdown of scale
invariance in deep inelastic neutrino scattering.27 When the leading
log approximation is valid, the calculation is insensitive to the precise
value of A and the difference between A's in the various effective field
theories can be neglected. The number of quark flavors is Nf==6 for the
fine structure constant we have called u(QZ), while u'(Qz), u”(Qz), and
a"'(Qz) have Nf==5,4 and 3 respectively, as they pertain to effective
theories with those corresponding numbers of quark flavors.

m, is taken to be 1.5 GeV and m to be 4.5 GeV on the basis of P
and T spectroscopy.2® The t-quark mass is unknown at this time, and
values of 15 GeV and 30 GeV are used to get an idea of the sensitivity
of the results to this quantity. For MW the value 85 GeV is taken.

In evaluating Eq. (2.53), mﬁ and m mg and m,, are mot distinguished
between, again consistent with the leading log approximation philosophy.
Finally a value is required for a(uz) (or more exactly a“%uz)).

We want to choose u to be a typical "light" hadron mass scale or inverse

size, where a(uz) is of order unity. We let a(uz) = 0.75, 1.0 and 1.25
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to check the variation of fhe resulting effective nonleptonic Hamiltonian
to this choice. 1In fact, the values of S-matrix elements of the weak
interaction cannot depend on the choice of the renormalization point u,
or equivalently a(uz). The matrix elements of the four-fermion operators,
Qi’ alsoc have an implicit M dependence which exactly compensates that of
their coefficients (at least when the coefficients are computed exactly).
We are left to make a choice of p, hopefully close to the typical light
hadron mass scale of the problem, so that "hard" gluon effects are
contained as much as possible in the Wilson coefficients and not the
matrix elements of Qi’ but high enough that their calculation in leading
log approximation makes some sense.?2?

In terms of the operators, Ql’ Q2, Q3, Q5 and Q6 defined previously
in Eq. (2.44), the nonleptonic Hamiltonian involving u,d and s quark

fields has the form:

G
(AS$=1) _ _ F f
Evy f v 51¢,¢3 l(-0.87 + 0.036T)Q1

+ (1.51 - 0.0361)Q,
+ (-0.021 - 0.0127) Q,
+ (0.011 + 0.0077)Qg

+ (-0.047 - 0.0721)Q ; - (2.55)

when m_= 15 GeV and a(uz) =1 and where

2 T . .
T = SZ+52°253E /<:l<:3 s (2.56)

along with the other masses specified previously. Values of the co-

efficients for all six cases corresponding to a(uz) = 0.75, 1.0 and 1.25
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and mt==15 GeV and 30 GeV are found in Table I for A2= .1 GeV2 and

Table II for A2= .01 GeVZ.

Referring back to Eq. (2.5}, it is apparent that before accounting
for the effects of QCD, the coefficients of the usual four-fermion
operator Q;, as well as the "Penguin" induced operators Q35 Qs and Qg
were all zero. In the sector involving u,d and s quarks the strangeness
changing weak HamIltonian then just involves Q2 with unit coefficient.
Thus the presence of strong interaction QCD corrections has brought in
the operators Ql’ Q3, Q5 and Q6’ changed the coefficient of Q2, and given
all coefficients an imaginary (CP violating) part through the quantity
T, which enters through "Penguin'-type diagrams involving a heavy quark
loop.

The portion of the nonleptonic Hamiltonian involving only the
operators Q1 and Q2 is the traditionally calculated (V-A)® (V-A) four-
fermion piece with neglect of all "Penguin'" effects. The sum of co-
efficients of Ql and Q2 is proportional to the coefficient of an operator
transforming purely as I=3/2, which cannot mix under strong interaction
renormalization with "Penguin" contributions which are pure I=1/2. As
a consequence, one simple check of the caleculation is to note that the
quantity 1, arising from "Penguin" contributions, always has the same
magnitude and opposite sign in its contribution to the coefficients of
Q1 and QZ'

The combination of operators Qz—-Ql transforms purely as I1=1/2,
while the combination Ql-l-Q2 has an I=3/2 piece. The ratio of co-
efficients of Q2--Ql and Q2+Ql is a measure of Al =1/2 or octet

enhancement by QCD, as first calculated in Refs. 5 and 6. The inclusion
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TABLE I

Coefficients of the operators QI’QZ’QB’QS and Q6 defined in Eq. (46)

in the effective Hamiltonian, ‘#eff = (—GF slc1c3/ﬁ)(§;ciQi), for

strangéness changing, nonleptonic weak decays. 1= s§+ 52c253e_16/c1c3.
A% = .1 Geve.
Parameters Cl 02 _ C3 Cyg Ce
e @?) = 0.75 -0.72 +1.40 -0.013 +0.007 -0.025
m_ = 15 GeV +0.0351 ~0.0351 -0.015t +0. 0087 ~0.0591
a@?) = 1.00 ~0.87 +1.51 ~0.021 +0.011 ~0.047
m_ = 15 GeV +0.0361 ~0.0361 -0.0121 +0.007T -0.0727
am?) = 1.25 -1.00 +1.61 -0.028 +0.015 ~0.069
m, = 15 Gey +0.0367 -0. 0367 -0.010t +0.0067 -0.085t
a@?) = 0.75 ~0.71 +1.39 ~0.013 +0.007 -0.025
m_ = 30 GeV +0. 0427 -0.0427 ~0.017t +0.0097 -0.0761
a@?) = 1.00 -0.86 +1.50 -0.021 +0.011 -0.047
m, = 30 GeV +0.043T -0.043T -0.0137 +0.0087 -0.093T
a@?) = 1.25 -0.99 +1.60 -0.027 +0.014 -0.068
m. = 30 GeV +0.0437 ~0.0437 -0.0111 +0.007t ~0.1091
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Table II
Same as Table I but with A2 = 0.01 GeV’

Parameters Cl C2 C3 C5 C6
a(uz) = (0,75 0.77 + 1.43 - 0.026 |+ 0.013 0.065

mt = 15 GeV 0.021t - 0.021t - 0.0067 |+ 0.004T 0.0457
u(uz) = 1.00 0.93 + 1.55 - 0.032 |+ 0.017 0.097

m = 15 GeV 0.021<x - 0.021< - 0.005t |+ 0.003T1 0.0557
u(uz) = 1,25 1.06 + 1.65 - 0.037 |+ 0.020 0.128

mt = 15 GeV 0.0217 - 0.021 -~ 0.0031 |+ 0.0021 0.0651
u(uz) = 0,75 0.76 + 1.42 ~ 0.025 |+ 0.013 0.065

m, = 30 GeV 0.0267 -~ 0.02671 - 0.008t |+ 0.0057 0.0607t
u(uz) = 1.00 0.92 + 1.54 ~ 0.032 |+ 0.017 0.097

mt = 30 GeV 0.0271 - 0.027t ~ 0.006t |+ 0.0041 0.0751
a(uz) =1.25 - 1.05 + 1.65 ~ 0.037 |+ 0.020 0.127

m = 30 GeV = 0.027% - 0.0271 ~ 0.004T [+ 0.0031 0.0881
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of "Penguin" operators and their mixing makes little numerical
difference for the coefficients of Ql and QZ' Slightly more important
in comparison with earlier work is taking into account not only the
heavy W-boson, but each heavy quark successively in computing the

2 2 a(-t)
leading log QCD effects. As a result the earlier [a(Mw)/a(u )]

is replaced by

-‘(i) ' (i’.) " (i)
0 /e@]® [ead/a @b o @b /e @h)?

' m(i)
- [a@) /e eh]® :

even if all "Penguin" effects are neglected. Numerically the coefficient
of Q2—~Q1 is enhanced by a factor of 2 to 3 and that of Q24-Q1 suppressed
by 0.6 to 0.7 for our choice of masses. In agreement with all earlier
results this is in the correct direction, but much too small to explain
the high degree of accuracy of the AL=1/2 rule in nonleptonic decays

of strange particles.

The "Penguin' terms Qs Q5 and Qg transform as purely I= 1/2 on the
other hand. Tables I and II indicate that their coefficients are
smaller than those of Q1 and Q2, typically by an order of magnitude
for Qg+ However, arguments can be made that the (V-A)® (V+A) structure
of Q6 may lead to enhanced matrix elements,30 by one order of magnitude
or more, for the nonleptonic decays of kaons and hyperons.

As already noted, through strong interaction effects each operator
in the effective Hamiltonian has a coefficient with an imaginary as well
as real part. This imaginary part, which in each case enters through
Imt and is then proportional to szc293sin6, leads to CP violation in

decay amplitudes.
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When szc23351n6 # 0 and CP 1is violated, an inspection of the
coefficients of the operators Ql and Q2 immediately shows that the
ratio of their imaginary to real parts is ~10_252c2535in6. This is
not true for the Penguin-type operators Q3, Q5 and Q6 where the corres-
ponding ratio is ~52c2535in5. If these later operators contribute at
all significantly to K° decay, clearly they will yield the largest CP
violating effects™in these amplitudes.16 Recall in particular that
the matrix elements of Q6 are supposed to be especially large and
important in decays like K°+mm. This is in addition to CP violating
effects which occur in the kaon mass matrix in the six—quark model.
These latter CP violating effects are consldered in the following

chapter.
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CHAPTER III
EFFECTIVE HAMILTONIAN FOR K°-K° MIXING

IN THE SIX-QUARK MODEL3!

The K°-K° mass matrix has played an important role in particle
physics over the past decade. The small value of the real part of the
off diagonal elements found an explanation in the GIM mechanism!* which
conjectured the existence of a fourth quark flavor (charm), Later
calculations of the magnitude of these matrix elements led to a quanti-
tative estimate for the charm quark mass.?? While these four-quark model
computations were originally done without strong interaction correctiomns,
with the development of quantum chromodynamics (QCD) the short distance
effects due to strong interaction were soon computed33’3” and found to
change the answer rather little.

With the standard phase conventions (see Chapter IV) an imagninary

part of the off diagonal kaon mass matrix elements is an expression of

o
S

eigenstates. With four quark flavors there is no imaginary part® but,

CP violation and leads to the kaon eigenstates K; and K., not being CP
as was mentioned in the introduction, the six-quark model has a phase
in the heavy quark couplings to the weak vector bosons which leads to
CP violation and an imaginary part in the mass matrix. In this chapter
the QCD corrections to the KP_RO mass matrix are calculated in the six-

quark Kobayashi—Maskawa10 model.

1. Derivation of the Effective Hamiltonian for - Mixing

Using the trigonometric identities
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e 2 Lol 2
22 _ 2 _ ) 2 -id
c3c1 = cz(c1c2c3 szs3e ) + sz(cls2c34—c2536 )
-1i8 ~-i8
+ Zszcz(c1c2c3-szs3e )(c152c3+-c253e ) s (3.1a)
caCa(CiCaCq 8,8 e_ia) = 2 - -i6)2
€12 3( 162637 5293 2(°1°2C3 S283¢
-ié -i8
+ szcz(c1c2c3-szs3e )(clszc34-c253e ) . (3.1b)
and -
-i8y _ 2 -i8y2
e18ye3(eysye3tepsqe ) = sylepsyegteysse )
-i8 ~id
+i szcz(clc2c3-szs3e ) clszc34-czs3e ) , {3.1c)

the effective Hamiltonian density, which contributes to xk°-&° mixing in

the six-quark model, can be written uniquely as

2

las|=2 _ 22 ~18\ yp
Hees T N G PLIC ) 1
2 9 ~16Y2,p

+ slsz(clszc34-czs3e ) 9 (3.2)

2 -ié -id
+ Zslszcz(clc2c3-—szs3e )(c152c34-czs3e )J€§+-h.c. .

In Eqs. (3.1) and (3.2), si==sinai, c  =cosb,, ie{1,2,3}. The Cabibbo-

i
type angles 61, 62, 63 and the phase § are defined in Eq. (1.12) of
Chapter I as well as in Egs. (2.1) of Chapter II. The components, Jﬁl,
Gﬁa, and 3%3 of the complete Hamiltonian have relatively complicated
expressions in terms of time ordered products of four weak charged
currents contracted with W-boson fields corresponding in the free-quark
model to forming the box diagram, shown in Fig. 7, with virtual W-bosons

and quarks in the loop. In the absence of strong interactions treating

the W-boson as very heavy and keeping only leading contribution in l/M%
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Fig. 7. Box diagram giving a K°-K° transition.
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vields the following expressions forzﬁq} J%E, and J%E:

iG2

H(0) = 7= [ dx [ (3,00, (1mvgdu, (0) (5, 0" (L-vg)dg (0)
x (EA(O)Yv(1—Y5)Uk(0))(65(O)Yv(l-YS)ds(O))} - zT{(5a<x>Yu<1—Y5)ua(x))
x (GB(X)YU(1-Y5)dB(X))(EA(O)Yv(l-YS)CA(O))(Ea(O)Yv(l-YS)dS(O))}

+ (5, v, (g e, ) (E, 0 (1194, () ) (5, @)1, (1-v5) e, ()

x (EG(O)y“(1—75>d5(o>)} - zr{(ga(x>Yu(1—y5)ua(x>)(EB(x)y“cl-y5)dB<x))

x (Ek(o>yv(1—75>cx(o>)(aa<0)vv(1-75)d6<o>)}] : (3.32)
i6p [ 4
Hy(0) = =~ Jdx [T{("éa(x)Yu(l—YS)uu(x))(GB(x)Y“(1~v5)as(x))

« (3,007 (=15)u, ) (55 O, -y a5 @)} - 22{(5, (07, A=y pu, ()
« (07" (1-15) 8, ()5, O, (=15, (@) (E5 @1 (1-v5) ¢ @)}

+ (3, G0, (v e, () (E, (7 (-r9) g ) (5, (O, (Lv5) &, (09)

< (B 07 (1=19)d, @) } - 21{(5, (O, (1-vg)u, () (Fg (07" (=) d ()

x (5,07, (1-vg)t, () (35 (07 (=r5)d; ()] ] , (3.3b)

and
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2
iG
#y00) = —F Ja= [1{(5, 07, (1570, 00) (350" ov 4, )

x (5,07 A=19)u, @) (557" 1=y, @) } - T4(5, GO, (1=v5u, ()
« (S07" (1158, G0) (5, (07, 1=y, (0) (5007 (1-v5) 4 (O))}

- 2§(3, 60, (1), 00) (37" (=¥, () (5, (O, (1-vg) e, (0)

x (EG(O)vv(l—v5>é;(o>)} - (5,07, (=vg)u, () (Z " (1154, ()
x (5,0 (1-7) e, (0) (35 01, (115 a5 @)} = T{(5, (I, (1=¥5)u, ()
# (EB(X)Y“(I—Y5)dB(X))(EA(O)Yv(l—vs)tA(O))(GS(O)Yv(l—YS)da(0))}

+ T{(EG(X)YU(1-Y5)Cu(x))(EB(X)Yu(1-Y5)dB(X))(§A(0)Yv(1-Y5)tA(O))

< (25007, (1-15)d5@)} + (5,6, (1-v5)e, G0) (5, GOv" (1-v5)8,(0)

< (5,7, (17r) £, () (£ (07 1y 4, @)} ] : (3.30)

o, B, A and 6 are color indices which are summed over {1,2,3} when
repeated. Normal ordering of the local 4-quark operators is understood.
It is convenient to decompose these operators into pieces that will not
mix under renormalization when the strong interactions are introduced.

We write for je {1,2,3} (in the absence of strong interactions)

) :
G
- _El. 0D (+) (—+) (——)}
H Te [%”j TH Ry A , (3.4)

where
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#0021 fats [10® ol oof - 2r{(5, v, A-vu, )
x (8,007 (119 a5 ) * (5, (v, (1-v5)d, () (S ()7 (1-v5)uy ()
x (5, 7" (=vg)e, () (F5 (017, (1-v5)d, (0))

£ (5,7’ 19, ) (550, (=15 5 @)} , (3.52)

w50 = fd x (1ol ol @} - 21{((5, v, (L-vg)u, )
x (B, 007" (1mvg)dg () £ (3,00, (1-v5)d, (0 )(E, ¥ (1=v5)ug ()
x (5, @, (1-v5) £, @) (55007 (1=15)a(0))
+ (5,0, 118, @) (5507 Gmye O] (3.5b)

and

i

25 fd x[ {082 o Y ©@f - {5,007, (1158, @)
¢ (2,07 (=194, (0 ) £ (3,007, (1-v9)d_(0) (347" (115w, (0))
(55, 0)7° (1-15) ¢, (@) (75007, (1-15)8,4(0)) = (5, (0" (1-¥5)6;,(©)
x (ﬁsm)y\,(l—vS)ca(m))} - T{((Ea(x)Yu(l—Ys)ua(X))(EB(X)YU(I-YS)dB(X))
: (5,007, (v d, () (F, 07" (=vg)u, @))((5, (@7, (=15, (0)

x (3507 (1-v5)d () * (51(0)%(1'\(5)%(0))(55 (0)y" (L-y5)t, (o)))}

* T{((Ea (9, (1= ) ¢ ) (E, GV (1) dg () = (5, GOy (1-v5)d ()
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« (£, G007 (=vg)e, @)((5, @71, U-v9)t, (5, (O (1-vs)a,(0))

: (5, (0)y, (I-vg)d, <o>)(55(o)v"(l-v5>t6<0)))}] | : (3.5¢)
Oéi) and Ogi) are defined in Eq. (2.7} of Chapter II.

Now introduce strong interactions in the form of quantum chromo-
dynamics (QCD). The pieces of the effective Hamiltonian 5#3 defined by
Eq. (3.2) are modified from this free field expressions given in Eqs.
(3.3) and (3.4). Treating.the W-boson as heavy in the presence of strong

interactions yields the following expression

) COMNG
— 2.~2a 2.=a +a
R O =)
ﬁj = 2 J?Fj + 5 p
L a(p™)] a(u™) (3.6)
=), . (=)
— 2.~a" ‘+a 2. 2a
a (M) o (M)
+ Mg L [ M‘; w7
| a(u) ] J a(u”) J

in the leading logarithmic approximation. « is the strong interaction
fine structure constant, and p the renormalization point. The matrix
elements of the é%g are to be evaluated to all orders (since perturbation
theory is probably not valid) in the six-quark theory of strong inter-
actions using the MS subtraction scheme. Finally a(+)==6/21 and a(_)=
-12/21. The derivation of Eq. (3.6) is very similar to the removal of
the W-boson field from the effective Hamiltoﬁian for AS=1 weak non-
leptonic decays discussed in Chapter II.

The next step is to successively treat the t-quark, b-quark and
c~quark as heavy and remove tﬁeir fields from explicitly appearing in

the theory. For 3%1 this is particularly simple since the t and b-quark
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fields do not appear explicitly in it. The effect of removing the t
and b-quark fields from the theory of strong interactions is to change

the strong coupling g and masses M sees,i in the six-quark theory to a

t

coupling g', and masses m&,...,mﬁ in an effective 5-quark theory and then

to a coupling g" and masses mu,...,mg in an effective 4-quark theory of
the strong interactions. Also the exponents a(+)(a(—)) change from 6/21
(-12/21) to 6/23 (=12/23) and then to 6/25 (-12/25) as one goes from the
six—-quark theory to the effective 5-quark theory and then to the effective
4—quark theory of strong interactions. Thus the effective Hamiltonian

density JV1 becomes

9.q12/21F , 2. ~12/23¢ ,. ,2.12/25
o [0 ] e P @D VR
! (%) 't %) " (u?) !
| a(m] | o' (g ] La u |
,a(Mé) -6/21 “(mi) 7-6/23 -a,(ml,)z)“-slzs o
* 2 T2 w2 b
_u(mt) | o' (m )_ [ o' (1) _f
FQ(M%)~ -6/21 u(mi) -6/23 ﬁu'(méz)q._G/ZS (o)
* 2 1 |2 " 2 "(1
| a(my) | o' (m'") [a" (™)
. 2.7-24/21 2. 1-24/23 2.7 -24/25
M) o(m) Y(m' )
+ >ty i S o b 7 () . (3.7
2 Y we 2 1
| a(m) | a'(m' ) a' (u7)

The matrix elements of the effective Hamiltonian density Jﬁa are now to
be evaluated in an effective 4-quark theory of strong interactions. It
only remains to treat the charm quark as heavy and remove it from ex-
plicitly appearing in Jf&. To leading order in the c—quark mass the

)

+
matrix elements of:]?ii” can be expanded in the following fashion
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<o) om - L(—i)(Tc,g") w2 <| (Bd)y_, Ba)y_, 1> . (3.8)

The double primed matrix elements are evaluated in an effective four-
quark theory of strong interactions while the triple primed matrix

elements are to be evaluated in an effective three-quark theory of

strong interactions with coupling g"' and masses m:', mH' and m;'.

The operator (Ed)V_A(Ed)V_A is a color symmetric four fermion operator

with the usual anomalous dimension

m2
Ym(""') (g") = g +@-(g||14)

4ﬂ2

. (3.9)

The mass parameter mz depends on the renormalization point p and its

anomalous dimension is

g

"

5

vo(g") = + 0" . (3.10)

N

27

The components J?§++), JV§+_), Jf§-+) and Jfé__) are composed of a sum

of time ordered products of two local four-quark operators with color
indices respectively symmetrized in both operators, symmetrized in the
first operator and antisymmetrized in the second operator, antisymmetrized
in the first operator and symmetrized in the second operator and finally
antisymmetrized in both operators. They have the familiar anomalous
dimensions,5'6 g"%/21% + 0", -g"2 /4 + ("), —g"2/4n? + O("Y),

and —g"z/w2'+ 6Kg"4) respectively. It follows that the Wilson coeffi-

(

++
cients L _")(mglu,g”) obey the renormalization group equations
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n2 | n2 m'!
u 3 + B"(g") -+ y"(g")m" 3” _E _ 2 L('H') _E_’ gl =0 ,
Bu om 2 2 u
c 27 4w
(3.11a)
2 2 m'
1 1 1 1 3 " " e "
(u 2t (") o+ (e o - 2B - B z)L(+ ’(—C,g ) =0,
H c 4n 4w Lo
(3.11b)
| 2 2 "
3 " 3 " 0 58" E'“ () e
u g+ 8" gow + v (" Im] o - - L —»8']=0,
( 3y ‘-3¢ c c Bmc 4n2 4,ﬁ2 U
(3.11c)
2 2 m''
3 weon Mooyt 0 2g" - g" (-=) _c )
(Uau B(g) +Y(g)m 3" ) 2L u’g =0 -
c i b
(3.114d)

These may be solved in the standard fashion, introducing a running coupling

constant gﬁ(y,g") defined by

g"(y,g" Loy ()
o= _jr dx R_E“fif‘_‘ , g"(1,g") =g" , (3.12)

g

+ —_
and noting that the coefficients L(“i)(l,g"(m /u,g")) may be replaced by
(++

their free field values L )(1 0) since the running fine structure
constant is taken as small at the scale of the charm quark mass and
because no large logarithms can be generated from higher order QCD loop

integrals when mg/u = 1. A straightforward computation yields

1,0 = -4 [%] , (3.13a)
i

I

L(+—)(1,0) = L(—+)(1,0) - _15 [_%.] ] (3.l3b)

™
and

(--) 11
LVT(L,0) = - 55 . (3.13¢)
2 [2]
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The factors in the square brackets stem from color summations. Solving

the renormalization group Eqs. (3.11) using the leading logarithmic

approximation then gives

(++)( é ) . {%"(pz) 12/25 a"(mgz) 6/27 a"(mvz) 24/25[3]
— 5 8 - T PR R
s FZ u"(m:z) a"'(uz) G"(Uz) 2

— (3.14a)

Y (e N ET

ol o

. m"(u2> -6/25 a"<m22) 6/27 a"(mzz) 24/25[ 1]
n? Lo () " (%) a (u) =

(3.14b)

|

and

R Y 51
H “2 0‘u(mnz) 0,'”(].12) Ol”(l.lz) 2

Using these results the effective Hamiltonian density J*i becomes

2

i Tl 16F2 me (5,1 (11524, ) (3, (1-15)4g)
s

™ 12721
) Rl R A e ) B TG T a(Mé) /
areh ]\ [ erah a' (%) @ (m,)
—a'(mtz)ﬂ -6/25 a(m%) -6/23 (Mw) -6/21
o' (%) a(nd)

, a,(méz) —24/25f “(“‘:2:) -24/23 ra(szq) ~24/21
ty 5 > (3.15)
2 an (m22) Luv (rﬂ-l; ) u(mt)
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* ‘ 2
whetre mc is the running charm quark mass evaluated at mg y L.€.,

12/25

* P " [ " TI2 L} ] 2
m, o= m | ol(m) [ag(u®)
The Hamiltonian J¢1 already occurs in the four-quark model and our results
agree with some of the previous results33 for the QCD corrected ¥¢,, when
the appropriate simplifications are made,

The deviation of the effective Hamiltonian density . 2 proceeds along
similar lines except that already at the step of removing the t-quark
field from explicitly appearing each of the J?(++) J?1+—), Jfé +)

(--) . . : _
Jfé collapses to a Wilson coefficient times mt(SuYu(l YS)da) X
(Esyu(l—y5)d8) to leading order in the t-quark mass. From that point on

the successive steps are marked by renormalization of this latter celor

index symmetric four-fermion operator. The final result is

G L
H, = - o2 SaYu(l-YS)da)(SBY (1-v5)d, )
m
R R Ll e el
X | —s— —_— (3.16)
w2 neonl ' ,2
™ (u™) o (ml7) o' (mp ")
2.~12/21 2.~4-6/21 9. Y -24/21
a(Mw) a(MW) ] a(Mw)
x V3 ) | ead t 3 D) ’
allby alm, : t

%
where m, is the running t-quark mass evaluated at mi, i.e.,
% 12/21

me = m famd) /o)

The computation of the effective Hamiltonian demsity Jfé in the

presence of strong interactions is somewhat more complex. At the step
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+ .
of removing the t—quark from Jfé *) eight operators are generated even
with the condition of keeping only those whose matrix elements can yield
a contribution of order mgz or mix under renormalization with operators
. . ; (1) |
whose matrix elements can. Expanding the matrix elements of ¥ in

3

terms of matrix elements of these operators gives

7
<= ) Lgti)<|0§ii)|>' + L

+

Y<logl>” (3.17)

to leading order in the t-quark mass. The primed matrix elements are
evaluated in an effective 5-quark theory with strong coupling g'. Six

of the operators

o) = fd“x T{ éi)(x) (3,4 y-n Fgiig V_A} , (3.182)

+

e ey A(“eua)v—A} , (3.18b)

(3.18c)

o{™) - ifa“x 1 {0 )(x) (380 yn [(Bgughy-a® -+ Bgbgdya]} -

( ) = ,
() 58y p [Egidyoa oo+ Bgbadyoa ]} -
(3.18d)
oé = ifd4x T {off) (x) (s,d,)y_a [(GBuB vaa oot (EBbB)V+A]} ,
(3.18e)

o =ifde{()(x)(sd) [(u .+ (b ) ]}
6 B'V-A BocV+A Bra'V+A |(
(3.18£)

++
originate from the portion of J?g""),

j;/;Ax T {Oii)(x) ogi)} , (3.19)
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which is an integral of a time ordered product of two pieces of the
effective AS =1 weak nonleptonic Hamiltonian, one containing a t—quark

and the other a c—-quark. Note that Ogii)==0§i;) for je{l,...,6}.

o) = 1 [a'x 1{[(5, G0, (o5, ) (B v (1ovg)ay (0)
£ (3,09, (1), 60) (Eg Ov¥ (1-y )y ()|

x[(EAYv(l"YS)CA)(EsV“(l'YS)da)

* (lev(l—Yf))d}\)(aaYv<1‘Y5)C6)]} (3.20)
and
o2
Og = ;%5'(guyu(l‘Y5)da)(ngu(l‘YS)dB) ' 3-21)

The factor of I/g'2 is inserted into the definition of 08 so that to

£+
lowest order the anomalous dimension matrix Yig'")(g') has all its

3
entries proportional to g‘z. If Og did not contain the factor of 1/g'2

(

+t
then the elements Yis_")(g') would be (to lowest order) constants

independent of g' for ie{l,...,7}. Then in solving the renormalization

(£2)
8

group equations L would have to be treated in a different fashion

4+
from the L§_"), je{l,...,7}. On the other hand, with our definition3®
of 08 it can be treated on the same footing as all the other operators.

Of course in calculating its renormalization we must now be careful to

include the coupling constant renormalization. The matrix elements of

the operators O§tt) gii)

2
and O cannot produce a factor of mg , however,
they must in principle be included since under renormalization they mix

++ ++
with the operators O§"), OE'F), etc. whose matrix elements can produce
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;it)(g') for these

a factor of mgz. The anomalous dimension matrices yi.
eight operators are given in Appendix B, The coefficients L§ii)(mt/p,g)
satisfy renormalization group equations which can be solved in the
standard way. In this solution values are needed for the coefficients
Ljii)(l,g(mt/u,g)), where g is the running coupling in the six—quark
theory defined in Eq. (2.13) of Chapter II. These are found by noting
that in the leading logarithmic approximation the Lgii)(l,é(mt/u,g))

can be replaced by their free field values Lgi)(l,O) for je{l,...,7}.

Liii)(l,o) -1, (3.22a)

Léii)(l,o) =1, (3.22b)

L& 1,0y = 1 (1,00 = L& 1,0 = 15,0 =0, (32220
and

Lgii)(l,o) - -1 (3.22d)

For the coefficient Lg (l,é(mt/p,g)) the situation is somewhat more
subtle since the operator O8 contains a factor of l/g'z. Explicit
calculation gives that in the MS regularization scheme

’ Lgii)(mt/p = 19§) < éz in (mi/uz)luzmt =0 ) (3.23)

The last step follows, not because the factor of §2 is small, but rather

because the logarithm vanishes at y=m The final aim is to derive an

"
effective Hamiltonian independent of the heavy W-boson, t-quark, b-quark
and c-quark fields. To do this the b-quark and c-quark must still be

considered as heavy and removed from explicitly appearing in the theory.

Removal of the b-quark is similar to the previous step. There are still
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eight operators whose renormalization is characterized by the anomalous

++
("')(g") given in Appendix B. Finally at the step

dimension matrices y"
. n2 =

of removing the charm quark only ome operator m] (SaYu(l Ys)da) x

(Esyu(l—ys)dg) appears and its anomalous dimension follows from mass

renormalization and the renormalization of the color symmetric local

four-fermion operator (sd) This program for deriving

y-ptsDy_p

the effective Hamiltonian J?é in the presence of strong interactions is
a straightforward generalization of that used in Chapter II to derive
the effective Hamiltonian for weak nonleptonic decays. Its complexity
is such that, unlike the case of JEE and 6*3, we cannot write a simple
analytic expression for JE}. However there are some further approxi-
mations, beyond the leading logarithmic approximation, which make the
derivation of a simple analytic expression for Jf% possible. As can be
+ +
..o

seen from Eqs. (3.22) the operators O are induced through

seees

strong interactions and thus their contribution is less important than
(1) . o .

O7 which has a non-zero coefficient even in the absence of the strong

interactions. It follows since O1 and 02 do not mix directly with 07

and 08 that to a good approximation, at the stage of removing the t-

quark, the set of eight operators can be truncated to the two operators
(%) ' . .

0 and 08' These two operators then have the 2 x2 anomalous dimension

7

matrices

2[4 24
.Y|(++) (gl) = LZ( ) + ﬁ(g'[‘) , (3.24a)
87" \0 7/3

| 2 /-2 8
,Y!(+_) (g') - Yt(""') (gl) = .g_z( ) + @‘(g'h) > (3.241))
87 0 7/3
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and

=),y g2 (8B 4
v M = B +0(g'") . (3.240)
81 0 7/3

On removing the b-quark there are again two operators which enter. They
have the same form as Ogii) and 08 defined in Eqs. (3.20) and (3.21)
except that in 08 the factor of m(':zlg'2 is replaced by mgzlg"z. The
corresponding anomalous dimension matrices for these operators are

w2 /4 =24
Y"(++)(g") = ﬁ_§.< ) + 6ﬂg"4) R (3.25a)
8r 0 5/3

n2 (=2 8
gy = g - 'g"f( ) +o@™ . (3.25)
8 0 5/3

and

w2 /-8 -8
,Yn("'_) (gn) = _g_z ( ) + @‘(g”l") . (3.25¢)
8w 0 5/3

- These are the same matrices as in Eqs. (3.24) except that the 8-8 entry
has changed from 7/3 to 5/3 corresponding to the change of the number

of flavors from 5 to 4 in the coupling constant renormalization (i.e.,
g-function). Finally on removing the charm quark only an operator
proportional to 08 appears. Carrying through the steps of successively
treating the t, b and ¢ quarks as heavy and removing them from explicitly
appearing in the theory using the 2 x 2 anomalous dimension matrices

above yields the following analytic approximation for Qfé:
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GI%,m"‘2 .
H, = ——— (5. v (1-v.)d, )(5aY, (1-Y:)d
3 64m"(m"2) (54 5)dq)(5g u(1=Y5) B)
) qn(mnz) 6/27 2, a'(n%z) 12/25 a(mi) 12/23
RN R e N PR « )
z(a,(méz)-slzs{ “(mi) ]12/23 l'u,(ml;z)-]s/zsl' ) -]7/23\
+ 2| —— T - |—
Lan(mzz)-‘ La'(ml;z)J Laii(mzz)-] |_°'- ( ,2 _] /
2, q12/21 e 12,~6/25 2, 1-6/23 2,75/25
aM) e’ (m' ™) a(m)) o' (@m'")
* Mv:zJ 73 (13 mbz — -2 _m%__
a(mt) u"(mg ) a'(mé ) a"(m" )
“(mi) -6/23 . cl.(m{):z) 5/25 “(“‘12;) 7/23 G(qu) -6/21
x —— —_ —_——— —_—
a' (m' %) " (1) o’ (m'?) o (m?)
L ro124-24/25 2, -24/23 e 12.715/25
L 2 _310L(mb) a(m) +2°ﬁ(mb)
99\ 7 e a’ m'%) a" (@"%)
a(m%) ~24/23 ( 12y75/25 u( ) 7/23 “(Mé) -24/21
L al(méz) ll(m" ) a ( 1 ) a(mtz:)
(3.26)

The matrix elements of the three parts of the effective Hamiltomian
for K>-&° mixing in Egs. (3.15), (3.16) and (3.26) are to be evaluated
using the mass independent MS subtraction scheme in an effective theory
of strong interactions with three light quark flavors u, d and s. The
effects of QCD can be ascertained by comparing Jfa, Jfé and Jfg given by

Egqs. (3.15), (3.16) and (3.26) with their free quark values
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G]:Z*mczz - - _u

T 1672 (SaYu(l‘Ys)da)(seY (1-yg)dg ) ’ (3.27)
ey .

JYE - 16n2 (SuYu(l_Y5)da)(SBY (1-Y5>d3) ’ (3.28)

and

e ety iy

J*E T 16ﬂ2 MJ<;§- (saYucl*YS)du)(SBY (IHY5>dB) ) (3.29)

c

These are derived by integrating the heavy t and c—quark fields out of
the expressions given in Eqs. (3.3) and keeping only the leading contri-

bution in the large quark masses m, and m,.

2. Numerical Results

It is now possible to calculate (for given values of the parameters)
the coefficient of (§d)v_A(§d)V_A in the pieces in, Jfa and JV} of the
effective AS=2 Hamiltonian for K°-&° mixing and determine the magnitude
of the QCD effects by comparing these results with their free quark
values. Unlike the case of the effective Hamiltonian for AS =1 weak
nonleptonic decays, we have simple analytic expressions for the pieces
Jfa, Jf& and Jf} of the effective Hamiltonian. In order to derive ap
analytic expression for Jf% new approximations beyond the leading
logarithmic approximation were introduced. ﬁowever these are not expected
to significantly alter the numerical results. (The skeptical reader can

verify this by using the results given in Appendix B to perform the

calculation keeping all eight operators.)
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Again the outlook is basically qualitaﬁive. The QCD effects have
been computed in the leading logarithmic approximation and the c-quark
mass was treated as a large quantity. For example, dispersive pieces
which arise when the two u quarks in the loop of the box diagram shown
in Fig. 7 bind to form a low mass hadronic state, have been neglected
in comparison with pieces that contain explicit factors of the heavy
c—quark mass. Thi; is certainly a crude approximation, but it has the
advantage of being a systematic expansion and other contributions are
not expected to be larger than the ones computed.

The effective Hamiltonian for K°-K° mixing differs from that for
the AS =1 weak nonleptonic decays in that at the final stage only one
operator (Ed)v_A(Ed)v_A appears. Since any renormalization point
dependence in the Wilson coefficients is cancelled by renormalization
point dependence of the matrix elements of this operator (at least if
the Wilson coefficients are computed exactly) the Wilson coefficients
of this operator in JY&, Jfb and 3?5 all have the same pu dependence.
Unfortunately, the matrix elements cannot be calculated exactly so that
some final predictions may not appear renormalization point independent.
However the quantity Im <K0|Hi?§|=2 l??l

of interest, is independent of the matrix elements of (ES)V_A(ES)V_A

IR%> [ Re <K°|H!23172|R®>, which will be
and so predictions for it will also be free of renormalization point
dependence.

To investigate the effective Hamiltonian for K°-K° nmixing values
for the QCD running fine structure constant u(Qz), the values of the

heavy masses and uz, or alternatively a"'(uz), are required. For a(Qz)
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we again use

129 1
33 - 2N
£ log (Q%/1%)

Q%) (3.30)

and take A2==0.1 GeV2 and A2==0.01 GeVZ. The number of quark flavors
is Nf==6 for the fine structure constant in the six—-quark theory a(Qz),
while a'(QZ), u"(Qz) and w”(Qz) have Nf==5, 4 and 3 respectively, as
they pertain to effective theories of strong interactions with those
corresponding numbetr of quark flavors.

The quantity m:, unlike m:, is free of renormalization point
dependence and hence more appropriately associated with the mass scale
characterized by charmonium spectroscopy than mg is. Thus for mz the
value 1,5 GeV is taken on the basis of ¢ spectroscopy.28 The difference
between mg and mz can be neglected in the argument of the running fine
structure constant in the leading logarithmic approximation but this is
not the case for the explicit factor of the heavy c-quark mass squared
which appears multiplying the operator (Ed)v_A(gd)v_A in Jf1 and Jfb.
Similar remarks hold for the bottom and top quark masses. For mé the
value 4.5 GeV is taken on the basis of T spectroscopy.2® Again for mt
values of 15 GeV and 30 GeV are used since the t-quark mass is unknown
at the present time. Mw==85 GeV. Since we shall be primarily concerned
with the quantity Im <K°]Higg|=2]§9>'/Re (KOIHL§§]=2|EO> which is independent
of py, only the value u"'(uz) =1 is used. Values for the quantities nys
Ny and UED which are defined respectively as the ratios of the coeffi-
cients of (Ed)V_A(Ed)V_A in JY&, Jfé and JYB with strong interactions

included, to those in the free quark model, are presented for the above
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choices of parameters in Table IIL. The frée quark values of the co-
efficients were determined from Eqs. (3.27), (3.28) and (3.29) with

m, = 1.5 GeV, and mt==15 GeV and 30 GeV. Note that the QCD corrections
tend to reduce the magnitude of Jfa, J?b and Jfa, Jfa being effected the
least and Jﬂg the most. The QCD corrections to J@b and JES are quite
stable against variations of the parameters m_ and A. However JE}

t
2 to A2=

changes by roughly a factor of 0.6 on going from A2==0.1 GeV
0.01 GevZ.
The results of this chapter can be combined with those of the

previous one to make predictions for CP viclation parameters in the

kaon system. This is done in the following chapter,
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Table III

QCD correction factors nl, nz, and n3 to the

pieces 3%1, J%E, and J%B of the effective

Hamiltonian for K° - K° mixing.

Parameters nl n2 n3
= 0.1 GeV2 0.93 0.61 0.37
= 15 GeV
= (0.1 GeV2 0.92 0.62 0.34
= 30 GeV
= 0.01 GeV? 0.67 0.59 0.33
= 15 GeV
= 0.01 GeV2 0.67 0.60 0.33
= 30 GeV
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CHAPTER IV
CP VIOLATION PARAMETERS OF THE K°-K° SYSTEM

The K°-K° system may be treated as a closed two-state system.
Since the kaons decay, probability is not conserved for this system
and the time development is described by a 2 x 2 Hamiltonian matrix

which is the sum of mass and ﬁidth matrices,
H = M-—/— . (4.1}

In the K°-K° basis H is given by

M- il/2 Ml2 - 1F12/2
H = (4.2)
* *
MlZ - 1P12/2 M - iT/2
where
_ oy |88]|=2|z0
My, = <KHZZUO{RD + L (4.3)
and

AS|=1

Too=am P pF<KO|HL$§I=1|F> <F|Hlff IR + ... (4.4)

12 T

with Pp the density of final states F. The effective Hamiltonians
Hi?§l=1 and Hié§|=2 were calculated in Chapters IT and III treating
the strong interactions in the leading logarithmic approximation. The

physical eigenstates for the system are
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1 o} =0
kS = (1+e)R° + (1-¢e)K (4.5a)
S [2(1"'[812)]1/2 [ ]
and
o _ 1 o =0
K - [a+ex° - (1- )R] (4.5b)

[2(1+|E’2)]1/2

with mass and width eigenvalues

% 1/2
iro- ir ir
i *
M -w-§§= w - il (M - lz)(mlz ——12—) (4.6a)

and

The quantity & is given by

1ImM12 + ImI‘12/2

* * 1/2
-1 2\(M.,, -ir. /2 +ReM, ., — iRel, . /2
My, = 1T, /2) My, - 1Ty, 12 12

£ =

1/2
* & . ~ ReM, , + iRel' /2
[( My, - 11"12/2) (e, - 1?12/2)] 12 12

- i (4.7)
~iTmM,, - ImI‘lZ/Z

. 0o _ so -0
Since CP K = K and CP K = KO, ImI‘12 and Ili2 are zero when CP is

conserved and hence £ is also zero. Note that the states KO

g and KE

are not in general orthogonal since probability is not conserved in

the kaon system. In fact

2Ree
& |R> = —=Ree (4.8)
KL S (1+'l€12)
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so that e is pure imaginary when the width matrix vanishes. € is not
a physical quantity and its value depends on the phase convention one
adopts for the kaon states or equivalently for the quark fields. The
standard phase convention is to have the &K° + 7r(I=0) amplitude, AO,

real. AO is defined by

is

8511 = ae (4.9)

£
4L 1

— Kam(1=0) ]H,l_

where §, is the =7 isospin zero phase shift. If CP, or equivalently

0
T, is conserved then AO is automatically real since then
i8
o _ |AS|=1 o
Age <ﬂﬂ(I-—0)lHeff |k >.
out in
= <om=o0) [Tl 88171 g0y
out in
- <K0[H1AS‘=l’mr(I=O)> ) (4.10)
eff .
out in

The kaon in state equals its out state3® (here in and out refer to
strong interactions) while for the two pion state below inelastic

threshold isospin conservation of the strong interactions implies that

|mn(I=0)> = |mn(I=0)> <w}r(1=o)jw(1=0)>
in out out in
218,
= e | (T=0)> , (4.11)

out
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which when put into Eq. (4.10) gives

id 2ié8
0] o] AS =1 0
Aoe = .<K IHlffl [vv(I==0)> e
in out
id \* 2i6 ié
*
- (Aoe 0) e 0 - ae 0. (4.12)

In the six—quark Kobayashi-Maskawa model, where CP is violated, one
can always make AO real by judiciously choosing how the phase & enters
the matrix U (which relates mass and weak eigenstates). The choice of
U we have made puts the phase only in the couplings of the heavy
quarks (see Eq. (1.12) of Chapter I and Eq. (2.1) of Chapter II).

Thus the CP violating couplings enter the effective Hamiltonian Hgi;l
only through Penguin-type diagrams which are pure I = 1/2, Therefore
the phase convention defined by the choice of quark fields in

Eq. (1.12) of Chapter I and Eq. (2.1) of Chapter II corresponds to
making the isospin two amplitude A,, defined by

is

2

|48]=1)goy . Aje , (4.13)

<mr(I=2)|Heff

real. 52 is the mw(I=2) phase shift. Tt will therefore be necessary
to transform results calculated on the basis of this form of the weak
couplings to that which corresponds to making AO real.

As was mentioned in the introduction, non-zerc values for the

physical quantities n,_ and Moo defined by
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|AS1—1 o
H >
n. = [ |KL (4.14a)
+- iH—[ASl l‘Kg>
and |AS|
H - >
N = L bt (4.14b)
00 IHIASI 1|KS>

is a measure of pP vicolation. The quantities n,_ and nOQ can be
expressed in terms of the isospin amplitudes AO and A2 using the

following decompositions for s-wave two-pion states:

ln Ty = -51 IWﬂ(I==2)>-+\fg—iww(I= 0> , (4.15a)
3

11%0% = % |mr(@=2)> - = |m(r=0)> . (4.15b)
3 73

Since the experimental values of n,_ and nOO are small (see

Eq. (1.10) of Chapter I) we will drop terms like (—:ImA2 and sImAD which

are doubly CP violating. To leading order in CP violating quantities

: 1(8,-8) 1(8,-8,)
V2 cReA + iv2 ImA.+ eReA.e +iImA, e
. o 0 2 2 (4.16a)
n,_ - i(6,-6,) )
V2 ReA_+ReA.e
0 &%
and
1(6.,-6) 1(8,.-8 )
/7 itmAe 2 O 4esd ReA,e 2 0" _iTmA_ - eReA
_ 2 0 0
n = N . (_l"vlah),
00 1(6 60)
/2 ReA, e - Red,

Within the convention AO real these simplify to
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L e+ e’ (4.17a)

=3
n

It

00 € - 2¢' (4.17b)

when terms of order e'(ReAZ/AO) are dropped (experimentally

ReAz/A0 ~ +1/20). The quantity &' is defined by

- i(8,-6,) ImA

et = Y e 20 '—A—z' , (4.18)
V2 0
and the experimental values of Ny and 50 imply that
ge'/Je = -0.003 + 0.014 . (4.19)

To leading non~trivial order in CP violating quantities Egs. (4.6)

and (4.7) become

ir iReTl
s ir 12
Mg -~ = M- Lirar,- —12 (4.20a)
ir iRel
_L _ _ il _ 12
M- — M- 35 ReMy, + — (4.20b)
and
i(ImT. .+ 1iTmM. )
e = 12 12 ) (4.21)

1 .
FUg=Tp) +iMg- M)

Since experimentally! —Gﬁg-ML) = (FS— FL)/Z and within the convention3”

AO real (ImTlZ/Iliz) < 1/10, it follows that when AU is chosen real

1 eiﬂ/4 IliZ

(4.22)
2/2 ReMy
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1. Predictions for e'/e

In Chapter II it was noted that if the matrix elements of the
operator Q6’ in the effective Hamiltonian for AS=1 weak nonleptonic
decays, contribute significantly in K-+ 17 decays then they will give
the largest imaginary CP violating parts to the K-m7w amplitude.16
Recall also that Q6 arose from Penguin-type diagrams and has a
(V-4) ® (V+A) chi;él structure which may lead to enhanced matrix ele-
ments. Let f be the fraction of the K-+1w(l=0) amplitude due to
matrix elements of Q6 when the CP viclating phase § is set to zero.

It is important to realize that the value of £ is strongly renormaliza-
tion point dependent. In fact, in the leading logarithmic approxima-
tion, f would be almost zerc if the renormalization point was equal to
the charm quark mass. This may seem somewhat paradoxical since the
Penguin-type diagrams are supposed to be the source of the AI=1/2

rule which is a physical effect independent of u. However, one should
keep in mind that a given diagram in perturbation theory contributes,
in general, to the Wilson coefficients and matrix elements of many of
the operators in the effective Hamiltonian. Consider for example the
lowest order Penguin-type diagram with u and c¢ quarks in the loop.
This diagram not only gives a contribution to the Wilson coefficient
of Q6’ it also gives a higher order contribution to the matrix ele-
ments of Ql and QZ' Bow much goes into matrix elements of Ql and Q2
depends (within the MS regularization scheme) on the value of the
rencrmalization point mass. In order to make predictions one chooses
U to be at the typical light hadronic mass scale for the problem. It

is then hoped that enough of the features of the strong interactions
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have been included in the Wilson coefficieﬁts so that a simple esti-
mate (for example using the naive quark model or bag model) of the
matrix elements will lead to a gualitative understanding of the prob-
lem. We shall assume that there exists some i (near the typical light
hadronic mass scale) where the fraction f is large. Then at this

renormalization point the total amplitude for K-»>mn(I=0), A,, is given

by

o (6=0) o, (8=0)
Ay = A + 1on ImC6/ReC

0 (4.23)

6

where Aéﬁ=0) is the Ko—*ww(I=0) amplitude when the CP violation param-—

eter & is set to zero. That is

|as|=1

i6
(6=0) %0
eff A e

2n(I=0)|m 5

(5 =0) "> . (4.24)

As was remarked previously, Aéa=0) is real. C6 denctes the Wilson

coefficient of the operator Q6 in the effective Hamiltonian for AS=1

weak nonleptonic decays. C, was computed in Chapter III and values

6
are presented in Tables I and II for various choices of QCD parameters.

In addition there is CP violation in the kaon mass matrix. From

Chapter III it follows that
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Imi, 2 2
m - ReM . - 2876,838ind|nm, ( cCpcq * s?.C?_‘°’3‘:°““5)

[2¢ =
12
2 2,2
+ (Fl 5C3 + s 2CpS3 cosa) + ngm En( thnc)

2
xie c2c - c szc - 28,C,S cosﬁ) n m2c2 c.c.C. — 5,8,.c0s88
17273 1273 27273 lc 17273 273
- 2.2 26 + m232 s.c,+ § ’ 2 2sin26

525351n Ny, 85 116715,5C4 c s cos = C,8,

+

2n3mi2n(mt2__/mi) [(clc2c3 - szs3cosé§)( 15,3 + C,8 cosd)

-1
+ czszsgsinzél] . (4.25)

This expression is quite complicated; however, in the limit where

sy and s, are treated as small gquantities it simplifies to

. m2 )
czm nl + sgminz + (C§ - 52)1n n -%— Ny
e = 2szczsssin6< - : mz g: L L (4.26)
\ cgminl + séminz + ngcgmizn ;% Ng
c /

I nz, and n3 are the QCD corrections to the three portions of the

effective AS=2 Hamiltonian Hps Hys and 3%3 respectively.: The quanti-

ties n
h|

and ng for typical QCD parameters are presented in Table III. Note

, je{1,2,3}, were computed in Chapter III and values of Nys Nys

that all renormalization point dependence drops out of the expression

for € If f were zero then the amplitude A given in Eq. (4.23)

0



-78—-

would be real and it follows from Eq. (4.22) that € would then be
proportional to the CP violation parameter e. However, we are inter-
ested in the case where £ is a large fraction. Then

A = pL8700 18

0 0 (4.27)

where & = fImCe/BgCS. The standard phase convention, AO

accomplished by readjusting the phase of the strange quark field

real, may be

5 + eigs (4.28)
so that
IKO> > e 15 K% | (4.292)
|RO> > e ROy, (4.29b)
At the same time
TmM,
R, T (o T 20 (4.30)

where € is given by Eq. (4.25). It follows from Eq. (4.22) that the

CP violation parameter £ is given by

_g;_eiw/4
2v2

£ = (Em,+ 28) . (4.31)

em_and 2t give, in general, comparable contributions to e. The phase

angle of w/4& originates from the K; and Kg mass and width values and

has the precise value of 43.8° + 0.2° just as in the superweak model.

In general no prediction can be made for e since the angles 92, 63,

and § can be adjusted to fit the experimental value of . The other
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CP violation parameter is e' defined in Eq. (4.18). CP violation from

the Penguin-type operator Q6 (with 1=1/2) cannot enter the AZ ampli-

tude which involves a AI=3/2 transition. However through the read-

justment of the kaon phases to make AO real A2 picks up an imaginary

part proportional to § and

1 eiw/4
20V2

— g' =

(-8 (4.32)

where the experimental value of the 17 phase shifts 60 and 62 together

with ReAZ/A0 = +1/20 have been used. The experimental value of the

phase angle which we have approximated by 7/4 is 37° + 6°, Combining

Egs. (4.31) and (4.32) gives

1 _-2¢

In general e'/e like €n is a complicated function of the Cabibbo type

angles 81, 92, 63 and the phase 8. Examination of this function using

results presented in Tables I, II, and III reveals that values of e'/e
at therfraction of a percent level are typica1.38 For example, when

s, and sy are treated as small quantities both am and § are propor-

tional to szczs3sin6 and all dependence on 8 and § drops out of

3!
Eq. (4.33). Values of the quantities 5/52c28351n6, em/szc25351nd, and
£'/e for this case are listed in Tables IV and V. 6, = 15° and

2

f = 0.75 were used for the tables. Inspection of the results indicate
that values from 3 x lO_3 to 3 x 10_2 are typical for e'/e when Sq is
a small quantity. Smaller values of A or f can give smaller values

for £'/e. The guadrant of the phase § can be adjusted to fit the
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Table IV

Values of the quantity £, which leads to CP
violation in decay amplitudes; e the contribution
to CP violation from the kaon mass matrix and the

resulting ratio of CP violation parameters e'/e.

These are calculated with 835 Sy treated as small
quantities, 0, = 15°, £ = .75, and A® = 0.1 GeVZ.
Parameters E/fSZCZSBSin6 em/52c23351n6 e'/e
2 2\t
a(u™) = 0.75, m = 15 GeV - (0.42 + Sy 7.2 1/27
2 A
alp™) = 1,00, m, = 15 GeV - (0.65 + 52) 7.2 1/49
2 2\71
a(p”) = 1.25, m = 15 GeV - (0.81 + 52) 7.2 1/64
- 2 -1
a{u™) = 0.75, mt =. 30 GeV - (0.33 + SZ) 16 1/65
2 2\t
au®) = 1.00, m = 30 GeV - (0.51 + sz) 16 1/103
9 9 -1 16 1/127
a{u’) = 1.25, mt = 30 GeV - (O.62 + 52)
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Table V

Same as Table IV but with Az = 0,01 GeV2

Parameters E/fSZCZS3SimS Em/SZCZSBSimS e'fe
2 ) 2\™1
alp”) = 0.75, w = 15 GeV -1.46 + s, 8.9 1/161
2 2\71
a(u®) = 1.00, m_= 15 GeV - (1.76 + sz) 8.9 1/197
2 2\1
a(u’) = 1.25, m_= 15 GeV - (1.96 + sz) 8.9 1/220
2 2\"L
a(u’) = 0.75, m_ = 30 GeV - <1.08 + sz> 18 1/255
2 : 2\t
a(u) = 1.00, m_= 30 GeV - (1.30 + sz> 18 1/308
2 2\1 18 1/342
elu’) = 1.25, m, = 30 GeV - (1.44 + 32)
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measured phase of e. When g and s, are treated as small quantities,

we find that § should be in the upper half plane.!® Then e'/e is

almost real and positive. For some larger values of Sy it is possible

to fit the measured phase of ¢ with & in the lower half plane3? and in
this case €'/e is almost real and negative. The predictions for ¢'/¢
presented in Table IV are renormalization point dependent. As was
mentioned beforé: our approach is to assume that a value of u exists
for which f is large. Since we do not know exactly what u this is,
e'/e is calculated for several different choices of a"'(pz}. Several
authors have adopted a different approach.”o Since the real part of
the Wilson coefficient C6 depends on integrations over virtual momenta
< mi whereas the imaginary part of C6
depends on integrations over virtual momenta primarily in the range

mi < p2 < mi a leading log calculation of the real part of the Wilson

- 3 > 2
primarily in the range u < p

coefficient for Q6 is more uncertain than that of the imaginary part.
Thus to calculate £ they take the real part of the K » 71 (I=0)
amplitude from the experimental width and rely on either a vacuum
ingertion or bag model estimate for the matrix elements of Q6 to cal-
culate the imaginary part of AO. This apptroach also involves an
implicit choice of u, namely that which makes the matrix element com-
putation correct, and tends to give somewhat smaller values for the
ratio £'/e.

The present experimental value is e¢'/e = =0.003 + 0,014 but
experiments are now plannedL+1 which should be capable of measuring
€'/e to the fraction of a percent level. As such they might be capa-

ble of distinguishing the six-quark model, with important contributions
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to K+ 27 decay from Penguin-type diagrams, from the superweak model2

where all CP violation originates from the kaon mass matrix and
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CHAPTER V

WEAK RADIATIVE HYPERON DECAYSH3

The strangeness changing radiative decays of hyperons have

received considerable attention by theorists.%%»45 Many of the recent

theoretical analyses have attempted to view these decays as arising
from a local s + dy magnetic moment type transition.*® Then the

effective Hamiltonian for weak radiative decays is

s - HV
Qﬁgff 1eGFsouv(a:+bY5)dF + h.c. ’ (5.1)

where GF is the Fermi constant, e the electromagnetic charge of the

electron, s and d are strange and down quark fields, and Y is the
electromagnetic field strength tensor.
The matrix elements of the effective Hamiltonian in Eq. (5.1) can

be calculated reliably in the SU(6) quark model.“® The decays B1 > BZY

where B1 and B2 are baryons differing in strangeness by one unit are

conveniently described in terms of helicity amplitudes'? By 3
227y
labeled by the helicities of the outgoing baryon and photon. gy a
2y
is just the Feynman amplitude in the situation where the initial bar-

yon has spin component Al = AZ - AY along the direction of the final

baryon three-momentum. When B, has spin component A, along a given

1

axis the resulting decay angular distribution is

1

-5
M, |q z J
dr 2 2 1 2
= g |“]d (@] (5.2)
dcosé 4WM1 Az’ky AZ,AY AI’AZ AY
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so that

( ) i, Z | ; )
r'(s, ~ B,y) = g , (5.3
1 2 21r(2J1+1)M1 'AZ’AY AZ,AY

where 6 is the angle between the given axis and the direction of the

out-going baryon._ The helicity amplitudes gy are easily calcu-

sA
lated from the effective Hamiltonian in Eq. (g.l¥ using SU(6) wave
functions for the initial and final baryons. The helicity amplitude
contains several factors: first, a function which depends on the
overlap of the initial and final wave functions (when they are "sepa-
rated" in momentum space by the photons momentum E) F(a); second, a
spin dependent factor CAZ,A which is essentially a Clebsch-Gordon
coefficient arising from thl spin part of the baryon wave functions;
and third, a factor linear in the constants a and b of Eq. (5.1).
This last factor is proportional to GFe(a-b)igl when AY = +1 (in
which case the initial s quark spin is parallel to the photon three
momentum) and proportional to GFe(a+-b)|E| when XY = -1 (in which

case the initial quark spin is antiparallel to the photon three momen-

tum). Therefore

2/2 Gelq|(a-bIF(DC (5.4a)

A2,+1

272 GFe|g|(a+b)F(3)CA (5.4b)

gs~t

The spin dependent factor from the quark model wave functions of the

baryons is the same when all helicities are reversed in sign, i.e.,
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CA2,+l =C_, -1 The overlap function F(E) is normalized so in the
2’

nonrelativistic quark model F(3) = 1. Inserting Eqs. (5.4) into

Eq. (5.3) gives

3
2 2
8GFe iEI Mé 2

N 2 2 2
F(Bl+BzY) = m |F(q)| ([a[ + ]bl )Z ]C)\ ,+l‘
AZ 2

(5.5)

The only observed radiative hyperon decay is Z+i>py with a
branching ratio! of (1.24 * 0.18) x 10w3. For the other weak radiative
hyperon decays only upper limits exist at the present time. Normaliz-
ing the observed Z+—+py width, predictions for the other baryon decays
can be made provided F(E) is slowly varying with E. In this case the
factor (13[24-|b]2)1F(€)12 is determined from the observed Z+3+py
width and the branching ratios for the other hyperon decays follow

from this and the values of \313M2/[(2J14-1)Ml] and C Predic-

AZ,AY'
tions for the weak radiative hyperon decays are presented in Table VI.

There is a large disagreement between the predicted rates for & +% vy
and @ +E y and the experimental upper limits on these decay modes."“®
Thus it appears that the weak radiative decays of all the hyperons
cannot arise from a local magnetic moment type transition.

So far no dynamical assumptions on the origin of the effective
Hamiltonian in Eq. (5.1) have been made. In the 4-quark Weinberg-
Salam model the coefficients a and b can be calculated since diagrams
like Fig. 8, with gluon corrections, are short distance dominated to

the extent that the W-boson and the charm quark are very massive.
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Table VI

Predictions for weak radiative decays of hyperons

based on the local magnetic moment transition.

N Predicted Measured
lq| C, branching branching
Decay MeV | ._ 2%y ratio ratio (a)
+ -3 -3
T+ py 225 C ., = 1/3 1.24 x 10 (1.24+0.18) x 10
’ (input)
A >y 162 Cyy = v6/2 5 2% 10°2
0 o -3 -2
A ALY 117 C, 1 = 5/2/6 9,1x10 <7x10
-0 -3 -3
E- Ay 184 ¢, =-1/76 4 %10 (5+5) x10
2y
- - -2 -3
5 >3y 118 ¢ ., = 5/3 1.1 x10 <1.2 %10
- - -2 -3
Q >E vy 314 C,q = -vY6/3 4.1x10 <3.1x10
3
C, ,= V2
....,i’
- -% -
aax Ty | 132 | ¢y, = 1 4.5%1073
2y
Cyy = 2/V3
Cy = 1

(a) The branching ratio for & ATy

Ref, 37.

o]

o]

is given as (2.3x0.7) % lO-3 in
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Y

4— 80 3811A8

Fig. 8. Diagram which gives rise to a local magnetic
moment transition in the absence of strong

interactions.
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m
Coefficients a and b which are not suppressed by a factor cﬁf(sﬁi>
first arise from diagrams at the two loop level and hence the wvalues

of a and b are quite small, These coefficients have been calculated

in the standard 4-quark model by Shifman, Vainshtein and Zakhavov.49

They found
- sineccosec
a = ——— ¢(m +m.) ' {5.6a)
V2 1672 s - d
sineccosec
b = —m—(m,-m ) (5.6b)
/516ﬂ2 d S
where
16/27 — 2 -28/27 2 -12/25
a(m’) a(m’) a (M)
— c c W
L N AN N -t 2
ot () Lo () a(m_)
5 -10/27 - 2 6/25
a{m’) a (M)
+f*. - -1 Mw (5.7)
5 v, 2 2
Lo ] L a(m )

Putting this into Eq. (5.5) yields predictions for branching ratios of
weak radiative hyperon decays of order .'LO“5 (or less).

AIf the local magnetic moment transition given by the effective
Hamiltonian in Eq. (5.1) is not the mechanism for weak radiative
decays then what is? Other possible contrigutions come from the
matrix elements of the effective Hamiltonian for AS = 1 weak nonlep-
tonic decays evaluated to order e in the electromagnetic interactions.
Within the context of the pole model, where the weak radiative decays

are viewed as a weak nonleptonic transition followed by the radiation
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of a photon or vice versa, the rates for weak radiative decays are
related to those of the nonleptonic decays. It is noteworthy that
when the local magnetic moment transition is neglected the weak radi-
ative decays of negatively charged baryons can only proceed through
Penguin-type diagrams (with a photon radiated off one of the quark
legs in the Penguin diagram or off a "spectator" quark leg). A meas-
urement of branching ratios for the decays @ - I v and § ~+ 5 y of order
10-3 would be strong evidence that the Penguin~type diagrams are
important in the weak radiative decays of hyperons and qualitative
evidence that Penguin-type diagrams, which have been proposed as an
explanation of the Al = 1/2 rule, are important in the weak nonlep-
tonic decays of hyperons.

The special role of Penguin-type diagrams (with a photon radiated
off one of the quark legs in the Penguin diagram or off a "spectator"
quark leg) in the weak radiative decays of negatively charged hyperons
leads one to believe that a similar effect should exist for the nonlep-

tonic hyperon decays. This is examined in the next section.

1. The_f/d Ratio in Nonleptonic Weak Hyperon Decays

AS=1,8
eff

‘Let B be the portion of the effective Hamiltonian for weak
nonleptonic decays that transforms like the sixth component of an
octet under SU(3) flavor. Let Bi’ i e {1,...8} denote the spin 1/2
positive parity baryon states in the octet. The s-wave nonleptonic
hyperon decay amplitudes are related through PCAC®Y to the matrix ele-

ments of the parity conserving part of the effective nonleptonic Ham-

iltonian between baryon states differing in strangeness by one unit.
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The p-wave monleptonic baryon decay amplitudes are not directly
related through PCAC to matrix elements of the parity violating part

of the effective nonleptonic Hamiltonian due to the presence of pole

terms. Hence we shall focus our attention on the s—wave amplitudes.
Define
AS=1,8 e %
Bl g lBj> = %% (5.8)

parity conserving

where uy and uj are Dirac spinors for the spin 1/2 baryon states Bi
and Bj {see Appendix C). Assuming that SU(3) is a good symmetry the
above matrix elements can be characterized by two reduced matrix ele-

ments®! £ and d and Clebsch-Gordon coefficients fi.

ik and d:.ij in the

following manner

15 _
o e, ifg £+ dggd (5.9)

where fijk and dijk are defined by the commutators and anticommutators

of the SU(3) Gell Mann matrices Ai {(normalized by Tr(xikj) = 26,.,):

ij
== i 5.10
[y Aj] Zlfijk A , (5.10a)
and
1y Aj} = 24,5 N A3 8y . (5.10b)

Since the negatively charged hyperon transition matrix element can
only proceed through Penguin-type diagrams (W exchange cannot occur

between all Q = - 1/3 quarks) and the contribution of the part of the
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Hamiltonian that is not octet (i.e., the 27) is known from experiment

to be small,>? cz °  must approximately wvanish in the absence of Penguin-
type diagrams. Using the results in Appendix C and the values of the

coefficients fi'

3k and dijk’ given in Table VII,

I %[f-i—d] X (5.12)

Thus we conclude that, in the absence of Penguin-type contributions to
the baryon-baryon transition matrix element f/d =~ ~ 1. This is not to
say that if the coefficients of the operators Q3""’Q6 in the effec-
tive Hamiltonian for AS = 1 weak nonleptonic decays were set to zero
then f£/d is necessarily equal to minus one. As was mentioned previ-
ously the Penguin-type diagrams also give higher order contributions
to the matrix elements of Ql and Q2. However, it is usually assumed
that these are small when p is chosen to be at the typiecal light had-
ronic mass scale which characterizes the decay. Experimentally a good
fit to s-wave hyperon decay amplitudes occurs for f = - 2d. This is
evidence that Penguin-type diagrams do play a significant role in weak

nonleptonic hyperon decays.
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Table VII

Non zero fi' Non zero elements not listed

ik k’

in the table below can be derived by noting that fijk

and d.,
1]

is completely antisymmetric and di’ is completely

jk
symmetric
ijk fijk 1jk P
123 1 118 1/v3
147 1/2 146 1/2
156 -1/2 157 1/2
246 1/2 228 1/V3
257 1/2 247 -1/2
345 1/2 256 1/2
367 ~1/2 338 1/v3
458 V372 344 1/2
678 vV3/2 366 -1/2
377 ~1/2
448 -1/2/3
558 -1/2/3
668- -1/243
778 -1/2¥3
888 -1/¥3
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CHAPTER VI

CONCLUDING REMARKS

In this report some of the implications of a possible mechanism
for the AT = 1/2 rule, based on a prominent role for Penguin-type dia-
grams, were discussed. It was found that within the six-quark model
for CP violation_an important role for Penguin-type diagrams in K > 17w
decays leads to values of €'/e¢ of order a fraction of a percent. Thus
the Kobayashi-Maskawa six—quark model for CP violation may be distin-
guishable from the superweak model where €' = 0. In addition to gain-
ing insight into the relationship between CP violation and the AT = 1/2
rule it was found that weak radiative hyperon decays may play a role
in ascertaining the significance of Penguin-type diagrams in the weak
nonleptonic decays of hyperons.

In order to calculate e'/e the effective Hamiltonians for AS = 1
weak nonleptonic decays and AS = 2 x° - &° mixing were derived by suc-
cessively treating the W-boson, t—quark, b-quark, and c-quark as heavy
and removing their fields from explicitly appearing the theory.

Strong interaction effects were taken into account in the leading log-
arithmic approximation. It is hoped that the method for performing
such calculations may prove useful to workers in other areas (e.g.,

19253 and grand unified theories®*) where the

deep inelastic scattering
effective field theory formalism can be applied.
Most of the results derived in this report, while quantitative in

principle, have been qualitative in their applciation to strange parti-

cle decays. This is partly because the treatment of the charm quark
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mass as large and using it as an expansion.parameter is suspect.55
However, the greatest limitation on our ability to make quantitative
predictions comes from difficulties in calculating the matrix elements
of the operators which enter the effective Hamiltonian for AS = 1 weak
nonleptonic decays. These are renormalized local four—-quark operators
and any serious attempt to calculate their matrix elements must deal
with the depende;;e of these matrix elements on the renormalization
point mass. In the vacuum insertion approximation, which is commonly
used to evaluate these matrix elements, a renormalized local four-
quark operator is split into a product of renormalized quark bilin-
ears. This completely destroys the renormalization point dependence

of the matrix elements (note that <|(¢l¢2¢3w4)R|> # 2: <| )R[n> x
n

1%2
<n|(¢3w4)R|>), and therefore if this approximation is ever wvalid it
can only be at one particular value of the renormalization point mass.
This value is usually taken to be the typical light hadronic mass
scale which characterizes the decay. Similar remarks hold for bag-
model estimates of the matriz elements.®® Much further work is needed

on this problem before it can be claimed that we have a quantitative

understanding of the weak nonleptonic decays of kaons and hyperons.
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APPENDIX A

In this appendix we outline the derivation of the equations and
give numerical results for the quantities which appear in Section 1 of
Chapter II. In Section ! of Chapter II z rather fundamental role was
played by the renormalization group Egs. (2.22), (2.32), (2.37) and
(2.48). To get Eq. (2.22), for example, one merely applies p é%— to

both sides of Eq. (2.18) using

u%qogﬂp (uva%+8(g) ;’ z:y (g)m qam)l 01>

= (e <|0éi)|> , (A.1)
d . ‘
u-‘ﬁ<| i1? =( +8'(8") 5o Zv(g)qam)<|0|>
= - ?ng(g') ogb>r (A.2)
and
m m
" %Bgi)(-it.’g) ) (u B8 g T (e m, o )B§i)(Tt’g) :

(A.3)
In Eqs. (A.1) and (A.3) the partial derivative with respect to p is at
constant g and mq, where q ¢ {u,d,...,t}, while in Eq. (A.2) it is at

constant g' and mé, where q € {u,d,...,b}.

+
The Y( )(g) and the matrix Yk (g') arise because the operators O( )

and 0; are local four-fermion operators and require renormalizatiom.

€3

The renormalization of the operators Oq at the one-loop level was
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considered in Refs. 5 and 6 where it was shown that the Y(i)(g) are

given by Eq. (2.12). From Eq. (2.16), with Ng=6, it follows that

L e : (A.4)

At the one-loop level the operators Oj undergo a renormalization

o]
— 0, = Z.,, 0 A.5

where a superscript "o'" denotes a bare unrenormalized quantity. ij is

the matrix renormalization which arises because of the composite nature
of the local four-fermion operators Oj' The renormalized operators are
defined so that their matrix elements are finite. The matrix yij(g') is

defined by

vieh = szu Lz, : (4.6)

Note that the ij are a function of the coupling g' since the renoramli-
~ zation of the operators 0j is calculated in the effective 5 quark theory
with that coupling. A straightforward calculation of the "infinite part"

of the one-particle-irreducible diagrams in Fig. 9, using Landau gauge,

gives

-1 3 0 0 -0 0

3 1 -1/9 1/3 -1/9 1/3
2
0 - -
Yij(g') _ : 0 11/9 11/3 -2/9 2/3 + 0{3'4)

8w 0 o0 22/9 2/3 -5/9 5/3

0 0 0 0 1 -3
0 0 -5/9 5/3 -5/9 -19/3

(A.7)
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~a XX
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th
~
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3629A13

Fig. 9. Diagrams entering the calculation of the renormalization
of the local four-fermion operators (represented by the
black box) through QCD effects.
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In the calculation of the renormalization of the local four-fermion
operators, Oj’ the masses of the light up, down, and strange quarks was
set to zero. If this was not done the operators Oj would close under
renormalization at the one-loop level but at the two loop level a
transition color magnetic moment term must be added. However, the pre-
sence of such an operator does not alter the Wilson coefficients of the
local four-fermion operators, 0,5 from their value calculated with the
light quérk masses set to zero. The tramsition cclor magnetic moment
operator itself is explicitly proportional to a light quark mass yielding
small matrix elements. Also the Wilson coefficient of the magnetic moment

operator is expected to be small. These facts justify our approximation

of setting the u,d, and s quark masses to zero.

The matrix Yi?(g‘) can be diagonalized by the transformation

-1 T, , = ' v

kZ Vie ng(g ) ij Gij Yj (g") (A.8)

)

where_
0 .69483 O 0 ©.70576 0

v = 15042 .23161 -1.253 16684  ~-.10082  .42681
kj -.2089  -.23161 1.0843  .081196 -.10082 .82414
032942 0 10426 .93924 0 -.3322
.61688 0 .21323 ~.34513 0 . 28045
(A.9)

and
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-6.8954
-4
2'2 | -3.2429 4
yi(g") = 5 + d(g'") . (A.10)
J 81 1.1166
2
3.1327

Combining (A.10)<;ith the perturbative expansion of B'(g') in Eq. (27)

yields the aﬁ of Eq. (28):

- 12/23

a:'] - -.42299 ‘ . (A.11)
. 14564
6/23

.40861

' (=) ()

Note that aé = a and aA =3 where

Y‘ (i) (X) zar(i')

= + ini = .
) " terms finite at x=0 (A.12)

and

|
+
S
o
N

Y'(+)(g') = 5 (A.13a)

|
1
+
5
&
S
~

v ey = - . (A.13b)

The case where the bottom quark is treated as very heavy is similar

to the above and we simply state results:



[

11 " =
Ym(g )

b

Sa

nl

where

0

0
-.13011
.18274
-.02959
-.65316

and

Yo"

-1 3
3 -1
0 0
0o 0
0 O
0 0

wl e

II
Ylk )

.67552
~.67552
-.33776

.33776

0
0

n2

8w2
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(g") is diagonalized by the transformation

Zw

0 0 0 0
-1/9 1/3 -1/9 1/3
-11/9 11/3 -2/9 2/3 +'ﬁ(g"4)
23/9 1/3 -4/9 4/3
0 0 1 -3
-4/9 4/3 -4/9 -20/3
(A.14)
Wep = S Ta(e" (4.15)
0 0 .70598 0
0 0 .70598 0
-1.2092 .14075 -.11766  .47246
1.1043 .067129 -,11766  .80199
.064119  .96326 0 -.30023
.14969  -.34859 0 .23908
(A.16)
-7.0428
-4
-3.501 +_ﬁ{gn4) . (A.17)
. 1.0974 )
2
2.8909

It follows from (A.17) and the perturbative expansion of B"(g") that
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- 12/25

a; - -.42012 . (A.18)
.13169
6/25

.34691

" (") = = al!(+) .

Again ag =g and az

When the heavy charm quark expansion is perfofﬁed only the five

operators Ql’QZ’QB’QS’ and Q6 defined in Eq. (44) are required. We find

that
-1 3 0 0 0
2 8/3 -2/3 2/9 -1/9 1/3
1"t A
Yo "™ - 3-7 -11/3 1173 22/9 -2/9 2/3 ]| + @&(g"™
8 0 0 0 1 -3
-1 1 72/3 -1[3 ~7 (A.19)
The matrix Yggkg"ﬁ is diagonalized by the transformation
X_l Y"'T( ||'l) X - 6 Y"'( l"} (A 20)
np pr & rq nq q g ’ '
P,T¥
where
".16866  -.71436 .052633 .84853 . 69088
-.16866 71436 - .052633 .56569 - .69088
an = -,050165 -.030949 - .16552 -.28284 -1.1481 , (A.21)
.028133 .018728 -1.,0044 0 .23229
.78361 049722 .35726 0 -..17486

and
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Yq(g )

Note
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-7.2221

-3.7559

1.0761
2

2.6797

+ &‘(gll‘l )

4

(A.22)

that these eigenvalues check with those of Ref. 8 where the effec-

tive Hamiltonian For strangeness changing nonleptonic decays was calcu-

lated in the four—quark model using a different operator basis.

The

fourth eigenvalue corresponds to the multiplicatively renormalized

SU(3) 27 operator

T=3/2 pieces.

The octet

1T

3Ql+2Q2 —Q3.

 -.80246
-.41732
.11957
6/27
.29774

operators used in Ref. 8 were

= (sadu)V—A(uBuB)v_A - (Saua)v—A(quB)v—A

(Sada)V-A(uBus)V—A + (s u Yy a(ugdgly s

Z(Suda)V—A(dBdB)V—A + Z(Sada)V—A(SBSB)V—A

- .a
= é(SuTusd

- a

d T

o aBdB)V+A

B)VHA

¢

+ (SaT

SECCRMIY (SRR

- a
uaTuBuB

)

a s
aB "B

+ (dBdB)

V+A

)V+A]

V+A

+ (Ess

8 V+A]

This operator has both I=1/2 and

(A.23)

(A.24a)

(A.24b)

(A.24¢2)

(A.24d)
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where T% ae f1,...,8} are the SU(3) color matrices normalized to

Tr(TaTb) = Gab/Z. These operators can be written in terms of the

operators Ql""’Qé of Chapter II in the following manner
! | J—
Q, = -Q; +Q, +2Q, (A.25b)
Ql - _ZQ + 2Q (A 25C)
5 375 6 .
T
Q6 = Q5 (A.254)

Using these relations it can be shown that the anomalous dimension matrix

in Eq. (A.19) agrees with that used in Ref. 8.
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APPENDIX B
In this appendix values are given for thevarious quantitieswhich enter
the computation of 3?3 (a portion of the effective Hamiltonian for

(%)

k° - g° mixing) when all eight operators 0j je{l, ..., 7} and 08 are
kept. These operators {defined in Eqs. 18, 20 and 21 of Chapter III)
close under renormalization of the one loop level and their renormal-

ization is characterized by the anomalous dimension matrices

1 3 0 0 0 0 0 O
1 1 1 1
3 1l-5 3-5 3 00
7 11 2 2
0 0 § 5-5 5 0 32
o o 22 8.3 35 4 g4
, 12 9 3 "9 3
ij 210 0 0 0 3 -3 0-32]+ ") (B.1)
8t
5 5 5 13
O 0_-9" 5"'3_‘? 0"‘16
0 0 0 0 0 0 4-24
7
_o 0 0 0 0 0 O 7 |
s 3 0 0 0 0 0 0]
1 1 1 1
> 2-g 3-3 3 00
47 11 2 2
0 0-% -5 5 0-16
0o o 2210 5 3 4, 4
N 2 9 3 "9 3 "
v = B + o' (5.2)
1] 81 0 0 0 0 -3-3 0 16
5 5 5 31
0 0-3 3-3-73 0 0
0 0 0 O O O0-8-38
7
_o 0 0 0 0O 0 O 3 ]
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0 0 0
1 1

"9 3 O
2 2

g 3 0
5 5

"5 3 0
3 -3 0
5 13

“g-3 0
0 0 ~2
0 0 0
0] 0 0
1 1

"9 3 O
2 2

g 3 O
5 5

"3 3

-3 -3 0
5 31

g3 O
0O 0 -2
0 0 0

-16

16

W~ oo

+ o™

+ @(g

(B.3)

rhy (B.4)

T
The matrices Yi§ii) (g‘) can be diagonalized by the transformations

(
Y Vi
k,2

++)~1

1 ()T

D) A

Ky =8

i3 73

1 (++

== (8"

(B.5)



where

(+)
Viy =

0

0
-.20236
.28103
-.044316 _

-.82989

0

-1.7593
L

0
0
-.20236
.28103
-.044316
| -.82989

0

.69589

~.69589

.23196
.23196
0
0
0

.85647

0

1

Q

0
. 95985
-.83058
-.079869
-.16334

Q

-6.3181

.69589
-.69589
~.23196

.23196

0
0

0

L-.19115 .77419  -.35917

~-107-

.95
-.83
~-.079

-.16

1.7

0 -.70658 O 0

0 -.70658 0 0
.17132 .10094 0 -.40226
.083375 .10094 O =-.77672
. 96445 0 0 .31309
-.35439 0 0 ~.26431

0 0 1 0
-23.46 2.9071 -14.4 -11,106

(B.6)
0 0 -.70658 0 0]
0 0 -.70658 0 0
985  .17132 .10094 -.40226 O
058 .083375 .10094 =-.77672 O
869  .96445 0 .31309 O
334 -.35439 0 -.26431 0
0 0 0 o 0
372 -2.4326 .3727 -3.5761 1

(B.7)
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0 0 .69589 O o 0 -.70658 0
0 0 -.69589 0O 0 0 ~-.70658 0
_.20236 0  -.23196 .95985 0 .17132  .10094 -.40226
| 28103 0  .23196 -.83058 0 .083375 .10094 -.77672
vég')= -.044316 O 0 -.079869 0 .96445 o .31309
-.82989 - 0 0 -.16334 0 -.35439 o ~.26431
0 1 0 0 0 0 0 0
~1.7593 -1.8462 .85647 -6.3181 1 -23.46 2.9071 -11.106
(B.8)
0 .69580 0 0 0  -.70658 0 o]
0 -.69589 0 0 0  -.70658 o 0
-.20236 -.23196 .95985 .17132 0  .10094 =-.40226 O
ey | (2103 L2319 -.83058 .083375 0 .10094 =-.77672 0
" - _.044316 0 -.079869 .96445 O 0 .31309 0
-.82989 0 -.16334 -.35439 0 0  -.26431 O
0 0 0 0 1 0 0 0:
-.19115 -.35917  1.7372 -2.4326 -1.8462 .3727 -3.5761 1

(B.9)




and

1 gy =§£_
y;(__)(g‘) = ii;
Y;G+_)(g') = i;i

N
vy (8" = or2

~-109-

-4.8954
-2
-1.2429
2.3333
3.1166
4
4
5.1327
~10.895
-8
-7.2429
-2.8834
-2
-2
-.8672
2.3333

-10.895

-1.2429
2.3333
3.1166
4
5.1327

::) o™ (B.10)

9 o' (B.11)
4
25

2.3333

14

+ o't (B.12)
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At the stage of removing the b-quark the same operators enter
except that the factor mézlg'z in the definition of Og is replaced
by m'c‘:z/g"2 and the b-quark field terms in 0,-O. are absent. Again these
operators close under strong interaction renormalization. The calculation
of the anomalous dimension matrix is the same as when the t-quark was
removed except it is calculated in an effective 4-quark theory (instead
of an effective 5-quark theory) of strong interactions with coupling g".

The resulting anomalous dimension matrices are:

1 3 0 0 0 0 0 0]

1 1 1 1

3 1-5 375 3 00
7 11 2 2

0 0 5 §-5 F 0 32
23 7 4 4

w2 o o =2 L -2 2 9o 16

(44 9 1k
i e = B > 2 > roE™ a8

3 8n 0O 0 0 0 3 -3 0-32
A 1

0 0-35 3 -g-53 0-16

0 0 0 0 0 0 &-24

LO 0 0 0 0 0 © %

5 3 0 0 0 0 0 0

1 1 1 1

3-5-5g 3-5 3 0 O
47 11 2 2

0 0-% F-5 5§ 0-16
23 11 4 4

w2 o o =Z-==-2 2 0 o0

v = 238 o™ (3.15)

13 8n 0 0 0 0-3-3 0 16
| o0 Lk 4 4 32

0 0-3 3-3-3 0 0

6 0 0 0 0 0 -8 -8

5

o 0 0 0 0 0 0 3
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0 -16
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0 16
0 0
-2 8
5

0 3
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(B.16)
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where
[ o .6558 0 o O 70643 0 0 ]
0  -.6558 0 0o 0 .70643 0 0
L14452 —,3279 -,78005 0O .l4l4  -,11774 0 -‘.67561
W£;+)= -.20298 .3279 .71236 O .067442 -.11774 0 -1.1468
.032867 = 0  ,041364 0 .96775 0 0 .42931
. 72549 0 .096564 0 -.35021 0 0 ~.34187
0 0 0 0 0 0 1 0
| 1.6816 1.4308 5.1876 1 -13.812 -2.4221 -10.286 ~14.961
(B.19)
[ o 0 .6558 0 0 . 70643 0 0
0 0 -.6558 0 0 . 70643 0 ©
L4452 0 -.3279  -.78005 .1414 ~.11774 -.67561 O
ey -.20298 O 3279 .71236 .067442 ~.11774 -1.1468 O
K| 032867 0 0 .041364  .96775 0 .42931 0
72549 0 0 .096564 ~.35021 0 -.34187 O
0 1 0 0 0 0 0 0
.14055 .82759 -.54273 -1.4336 -2.8936 -.51377 -6.3689 1

(B.20)
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0 0 .6558 0o o0 o0 . 70643 0
0 0 -.6558 0 0 0 .70643 0
14452 0 -.3279 -.78005 0 .1414 ~.11774 -.67561
LG) -.20298 0 3279  .71236 0 .067442 ~,11774 -1.1468
kg .032867 O 0 .041364 0 .96775 0 .42931
.72549 T 0 0 .096564 0 -.35021 0  -.34187
0 1 0 0 0 0 0 0
1.6816 -2.1818 1.4308 5.1876 1 -13.812 -2.4221 -14.961
(B.él)
[0 .6558 0 0 0 .70643 ‘0 0]
0 -.6558 0 0 0 70643 0 0
.14452 -.3279 -.78005  .1414 0 -.11774 -.67561 0
= -.20298  .3279  .71236 .067442 0 -.11774 -1.1468 0
Koo .032867 0  .041364  .96775 0 0 42931 O
72549 0  .096564 —.35021 0 0 -.34187 O
0 0 0 0. 1 0 0 O
.14055 -.54273 -1.4336 -2.8936 -2.1818 -,51377 -6.3689 1

(B.22)
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At the stage of removing the c-quark only the operator mzz(gd)va

(d) pears. It is multiplicatively renormalized (i.e., does not

v-a &P
mix with other operators) and has the anomalous dimension g"zlwz +

g'"2/4ﬂ2 to leading order in the strong coupling.



Here some useful SU(3) relations

ces Ay, ie{1,...8} are

These matrices form the

form as a basis for the
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APPENDIX C

generators of SU(3).

adjoin

are given. The Gell Mann matri-

1 0 0 0 0 1

0-1 01, la =10 0 O

0 0 O 1 0 ¢

0 0 O 1 0 0

0 0-1i ,A8= L1 0 1 0
V3

0 i 0O 0 0 -2

In addition they trans-

t octet representation. The spin 1/2

ground state positive parity baryons also transform as a basis for the

adjoint representation of SU(3). Let lBk> denote the baryon state

with the same SU(3) quantum numbers as Ak.

V2

:/Lz' B, - B
1B3>

= |B, + 1B

V2

2

5

1 .
— lBl + iB,>

>

>

Then
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In > =—Jl—2_ |Bg + iB.>

(2% = %2_ B, - iB,>

27> = Lz |B, - iB.>
- 4% = |B>

The matrix element for an operator 0k which transforms like the k'th

component of an octet (i.e., like Ak) under SU(3) is given by

<Bi|0k|Bj> = dyy5d- if,4,f

The non-zero d.., and f.. are listed in Table VIIL.
ijk ijk
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