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ABSTRACT 

In this report the weak nonleptonic decays of kaons and hyperons 

are examined with the hope of gaining insight into a recently proposed 

mechanism for the AI = l/2 rule. The effective Hamiltonian for AS=1 

weak nonleptonic decays and that for K"- ii0 mixing are calculated in 

the six-quark model using the leading logarithmic approximation. These 

are used to examine the CP violation parameters of the kaon system. 

It is found that if Penguin-type diagrams make important contributions 

to K+aa decay amplitudes then upcoming experiments may be able to 

distinguish the six-quark model for CP violation from the superweak 

model. The weak radiative decays of hyperons are discussed with an 

emphasis on what they can teach us about hyperon nonleptonic decays 

and the AI = l/2 rule. 
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CHARTER I 

INTRODUCTION 

One of the prominent features of the nonleptonic weak decays of 

kaons and hyperons is the AI = l/2 rule. The effective Hamiltonian for 

AS=1 weak nonleptonic decays can be written as the sum of isospin l/2 

and 312 pieces. Experimentally it is observed that those decays which 

proceed through the isospin l/2 part of the effective Hamiltonian are 

enhanced by roughly a factor of 20 in amplitude over those which proceed 

through the isospin 312 part of the effective Hamiltonian. This is 

known as the AI = l/2 rule. As an example consider kaon decay into two 

pions. The decay Kc+n+ro proceeds only through the I = 312 part of the 

effective Hamiltonian since the two-pion state is charged and therefore 

must have I= 2. The decay K~-+IT+IT-, on the other hand, can proceed 

through both the I = l/2 and I = 3/2 parts of the effective Hamiltonian. 

Experimentally' 

+- ‘RK 
r K+ + =+a0 ( 

(1.1) 

In the standard 4-quark Weinberg-Salam* model for weak and electro- 

magnetic interactions the quarks are assigned to right-handed singlets 

c-d, ; (d, 

and left-handed doublets 

; WR ; (SIR (1.2a) 

P\ , I - I I C 

\ 4, ’ \ SdL * 
(1.2b) 

The fields di and si are weak eigenstates and related to the mass 
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eigenstates by a unitary transformation. With an appropriate choice 

for the quark field phases this transformation can be written in the 

following form 

d' 0 i co.553 sin0 
C C = 

s' L -sin0 case 
C C 

(1.3) 

Bc is called the Cabibbo angle. In the absence of strong interactions 

an effective Hamiltonian for AS=1 weak nonleptonic decays can be 

derived in this model by treating the W-boson mass as very large and 

neglecting the momentum transfer in the W-boson propagator. This is 

illustrated in Fig. 1. The resulting effective Hamiltonian is the 

familiar local four-fermion (V-A) @ (V-A) current-current interaction 

cosec(S V~(l-Y5)u~)(;BY~(1-Y5)ds) a 

- Lu+cl + h.c. f (1.4) 

where GF is the Fermi constant and a and B are color indices which are 

summed over {1,2,3) when repeated. It is convenient to decompose this 

Hamiltonian into a sum of color symmetric and color antisymmetric pieces 

in the following manner 

Yd AS 
eff 

'=l _ GF - -sineccost? 
2J2 C [{ ("aYu(1-Y5)ua)(;8Y~(l-Yg)dg) 

wY5hB)($Yp-Y5 Ma)} + { ( “aY~(1-Y5)ua)(~eY~(1-y5)d8) 

- ("ur"(l-y5)uB)(;By~(l-y5)da,,l - [u+cl + h.c. . 

+ (Z,Y 

(1.5) 
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Fig. 1. Tree level diagram which gives rise to effective 
Hamiltonian for AS = 1 weak nonleptonic decays In 
the absence of strong interactions. 
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The first set of brace brackets contains a piece which is symme- 

trized on the color indices of the u and d fields while the second set 

of brace brackets contains a color antisymmetrized piece. The color 

antisymmetric piece is pure I = l/2 while the color symmetric piece has 

an I = l/2 portion and an I = 312 portion. Of course all the terms with 

charm and anti-charm quark fields are I = l/2 since the charm quark has 

no isospin. 

It was originally conjectured by Wilson3 that strong interaction 

corrections would enhance the I = l/2 portion of the effective 

Hamiltonian thus providing an explanation for the AI = l/2 rule. With 

the advent of Quantum Chromodynamics (QCD) as a theory for the strong 

interactions4 such corrections became calculable. Consider, for example, 

the correction in Fig. 2a. If the momentum transfer in the W-boson 

propagator could be neglected this diagram would just give the order 

g2 (where g is the strong coupling) correction, shown in Fig. 2b, to 

the matrix elements of the local 4-quark operators in the effective 

Hamiltonian of Eq.(1.5), However, since Fig. 2b is ultravioletly 

divergent the convergence of the loop integral in Fig. 2a is not good 

enough for such an approximation. If one differentiates the amplitude, 

represented by Fig. 2a, with respect to an external momentum the ultra- 

violet convergence is improved enough so that the momentum transfer can 

be neglected in the W-boson propagator. This means that Figs. 2a and 

2b differ (to leading order in the large W-boson mass) by a constant 

independent of the external momenta which is thus proportional to the 

tree approximation for the matrix elements of a local 4-quark operator. 

The constant of proportionality A(MW/n,g) is also independent of the 



-5- 

_- S d d 

(0) 

Fig. 2. (a) Higher order diagram contributing to weak 
AS=1 nonleptonic decays. 

(b) Higher order diagram contributing to the 
matrix elements of local four-quark operators 
in the effective Hamiltonian for AS= 1 non- 
leptonic weak decays. 
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quark masses since the above argument can be repeated differentiating 

now with respect to quark masses. Other diagrams can be accommodated 

in a similar fashion the net result being that the effective Hamiltonian 

is a sum of color symmetric and color antisymmetric pieces, but with 

coefficients differing from their free quark values. That is 

+ (s,y~(l-y5)uB)(;BY~(l-Yg)d~)~ + A_(M7,'l",g){(;,u"(l-u5)ua) 

x (;Byu(l-u5)"B) - ( s~y~(l-y5)uB)(;8y~(1-Yg)da)}] - cu+cl + h.c. . 

(1.6) 

The functions A+(MW/u,g) depend on the renormalization scheme. Of 

course, renormalization scheme dependence in the matrix elements of the 

operators must cancel this so that physical processes do not depend on 

choice of regularization scheme. u is the renormalization point mass 

and dependence of the Wilson coefficients A, on it is likewise cancelled 

by the dependence of the matrix elements on n. The coefficients A+ and 

A- have been calculated in the leading logarithmic approximation by 

Gaillard and Lee5 and Altarelli and Maiani.' They found, for typical 

values of the QCD parameters, that A- was enhanced (compared with its 

free quark value) by roughly a factor of 2 and A- was reduced (compared 

with its free quark value) by roughly the factor .7. While this result 

is in the correct direction to explain the AI = l/2 rule it is much too 

small in magnitude. 

The W-boson mass is not the only large mass scale in the problem. 

The charm quark mass is also "large" when compared with typical light 
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hadronic masses. Thus one can imagine treating the charm quark as a 

very heavy particle and removing its field from explicitly appearing 

in the theory. When this is done local 4-quark operators with a chiral 

structure (V-A) @ (V+A) will enter the Hamiltonian. Consider, for 

example, the diagram shown in Fig. 3 (sometimes called a Penguin diagram). 

Calculation reveals that in the approximation of treating the W-boson 

and charm quark as very heavy the loop integral gives a factor of k2 

which cancels the pole in the gluon propagator. As a result the ampli- 

tude corresponding to Fig. 3 can be reproduced by the tree approximation 

to the matrix elements of a local 4-quark operator involving only light 

u, d and s quark fields. It is natural to wonder whether this local 

four-fermion result is an artifact of the lowest order calculation or 

will persist to higher orders.7 In Fig. 4a the factor of k2 from the 

upper loop integral cancels the gluon propagator (when the masses of 

the light strange and down quarks are zero). This, however, does not 

lead to a local 4-quark structure but instead to a structure shown 

schematically in Fig. 4b. Another class of diagrams that might seem 

to show that the local four-fermion result of Fig. 3 is an artifact is 

shown in Fig. 5. Again diagrams of this type do not admit an inter- 

pretation in terms of a local four-fermion structure. Moreover they 

are no smaller than the lowest-order diagram even in the limit of large 

charm quark and W-boson masses. The diagrams of Fig. 5 would, taken by 

themselves, ruin the lowest-order local four-fermion result. However, 

when the contributions of Figs. 4a and 5 are added together a cancel- 

lation of soft-gluon effects occurs between these diagrams so that their 

sum is included in the matrix elements of a local four-fermion operator 
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Fig. 3. Lowest order Penguin-type diagram. 
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(a) 

4- 80 lb) 3811A4 

Fig. 4. (a) A two-loop Penguin-type diagram. 
(b) Symbolic representation of (a) 

illustrating the cancellation of 
a gluon propagator by the upper 
loop integration. 
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4 - 80 3811A5 

Fig. 5. Two-loop Penguin-type diagrams which are not 
included in the matrix elements of a local 
four-fennion operator composed only of light 
u, d and s quark fields. 



constructed out of light-quark fields. This cancellation is a result 

of gauge invariance. It occurs because (for soft gluons) the amplitudes 

corresponding to the diagrams in Fig. 6 which contribute to the process 

s + d + gluons are reproduced (apart from constant pieces which will 

cancel by the GIM mechanism) by the tree approximation to the matrix 

elements of the operator 

-11- 

BPengZn G 2 

= 2 sineccosO 
m 

Ll?.n ' 
Jz c 121r2 ( ) 7 

sayV(1-Y5)T~~ds)[DUFp"la + h-c. t (1.7) 

to leading order in the large masses. In Eq. (1.7) g is the strong 

coupling, Ta, a~ {1,2 ,...,81, are SU(3) color matrices normalized by 

Tr(TaTb) = Sab/2, FEY is the gluon field strength tensor and D denotes 
lJ 

a covariant derivative. Diagrams with more than three gluons attached 

to the quark loop are not important since they cannot produce a large 

logarithm in the c-quark mass. Using the equations of motion for QCD 

+ +,TEgdS + s Y Ta s a v a8 B (1.8) 

B 
Penguin becomes a local four-fermion operator. From this discussion 

it is clear that cancellations similar to that between the diagrams in 

Figs. 4a and 5 will occur between other higher order diagrams so that 

the local four-fermion structure of the lowest order Penguin diagram in 

Fig. 3 will be preserved in the sense that the sum of all Penguin-type 

diagrams, with arbitrary gluon insertions, equals a sum of Wilson 

coefficients times matrix elements of local 4-quark operators. Some 

of the operators induced by the Penguin-type diagrams will have a chiral 
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-- 

4 -80 

Fig. 6. One particle-irreducible diagrams contributing to the 
transition s -+ d + gluons at the one-loop level. In 
the absence of strong interactions there is a one-loop 
diagram that gives a s + d transition however to leading 
order in the W-boson mass it can be absorbed into mass 
renormalization. 
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structure (V-A) @I (V+A) due to the vector coupling of the gluons to 

quarks. Note also that all the Penguin-type diagrams are pure I = l/2 

since the gluon carries no isospin. 

The effective Hamiltonian for weak AS=1 nonleptonic decays, which 

results from successively treating the W-boson and charm quark as heavy 

fields and removing them from explicitly appearing in the theory, has 

been calculated.jn the leading logarithmic approximation by Shifman, 

Vainshtein and Zakharov.8 They found that the operators induced by the 

Penguin-type diagrams have small Wilson coefficients and at first glance 

appear to make only an insignificant contribution to the weak nonleptonic 

decays of kaons and hyperons- However, the matrix elements of these 

operators with a (V-A) 8 (V+A) chiral structure may be greatly enhanced 

over those of operators with the usual (V-A) @ (V-A) chiral structure.' 

Such an enhancement occurs, for example, when the matrix elements are 

evaluated by saturating the matrix element of a product of quark bilinears 

with the vacuum intermediate state. Since the (V-A) @ (V+A) operators 

are pure I = l/2, combining the enhancement of their matrix elements 

with the enhancement of the Wilson coefficients of the I = l/2 combina- 

tion of the familiar (V-A) @ (V-A) operators may provide a qualitative 

explanation for the AI = l/2 rule. Much of this report will be devoted 

to examining the consequences of this possible mechanism for the AI = l/2 

rule and to testing its validity. 

The nonleptonic weak decays of the neutral kaons have another 

feature which is even more striking that the AI = l/2 rule. They violate 

CP invariance. If CP was conserved the physical neutral kaon eigenstates 

Kg and c would be the CP eigenstates 



and 

,K2> = IK"> - IF'> 
v5 

, 

(1.9a) 

(1.9b) 

with CP = +l and -1 respectively. Since a neutral two pion s-wave 

state has even CP a K2 cannot decay into two pions when CP is conserved. 
_- 

However, experimentally it is observed that' 

In+-1 f 
<lr+r-\H;$;'='Iq> 

<~+,-lH;;;l=~lK;> 
= (2.274+ .022) ~10-~ (l.lOa) 

and 

ho(Jl E 
<n"noIH$;I='l~> 

<r"rolHh;;l='\K;> 
= (2.32& .09) ~10-~ . (l.lOb) 

The difference of n+ and no0 from zero is a measure of CP violation. 

In the 4-quark Weinberg-Salam model with the minimal Higgs sector 

(i.e., one Higgs doublet) CP is conserved.g However, as was pointed 

out by Kobayashi and Naskawa, lo in the six quark model with right handed 

singlets 

(u>, ; (4 R ; WR ; Cd) R ; (SIR ; blR 

and left handed doublets 

C 

; ( 1 s' L 

1 \ 
t 

; \ I b' L 

(l.lla) 

(l.llb) 

there is enough freedom for CP violation to occur. This model has 

become popular because of the discovery of a fifth lepton," r, and 
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a fifth quark, b.12 A sixth quark t is expected,13 being necessary for 

the (generalized) GIM mechanism14 as well as the cancellation of 

anomalies.15 The primed fields in Eq. (l.llb) are not mass eigenstates 

but are related to the mass eigenstates sL, dL and bL by a unitary trans- 

formation, U, which for the standard choice of phases for the quark 

fields islo 

d’ --cl 

0 i 
-s1c3 -s1s3 

s' = id 
slc2 c1c2c3 - s2s3e c1c2s3 + s2c3e , (1.12) 

b' L 
i6 

s1s2 c1s2c3 + c2s3e '1'2'3 - C2C3e 

where ci = cosei and si = sinei. The signs of the quark fields may be 

adjusted so that the three Cabibbo-type angles e j, j s{1,2,3/, all lie 

in the first quadrant.16 Then the quadrant of 6 has physical signi- 

ficance and cannot be chosen by convention. 

In this model weak interactions involving the charged hadronic 

current follow from the interaction term in the Hamiltonian density 

XI = -& Ju+W; + h.c. (1.13) 

where Wi is the charged W-boson field, Jz is the charged weak current 

defined by 

J; = $(l-y5)d; + :ay,,(l-y5)s; + tayu(l-y5)b' a 
(1.14) 

and g is the gauge coupling of the weak SU(2) subgroup. Since the CP 

operator takes a (mass eigenstate) quark field into an antiquark field 

and a W' boson into a WF boson CP will be violated by this interaction 

Hamiltonian if the phase 6 is nonzero. Actually there are arbitrary 
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phases in the definition of the CP operator corresponding to the 

arbitrariness of the choice of phases for the quark fields. The 

correct statement is that there will be CP violation if it is impossible 

by readjusting the phases of the quark fields to find a parametrization 

of the unitary matrix U (that relates weak and mass eigenstates) which 

is purely real. In the 4-quark model where U is a 2x 2 unitary matrix 

it is possible by readjusting the phases of the quark fields to find the 

real parametrization given in Eq. (1.3). However, in the six-quark 

model readjusting the phases of the quark fields will just move the 

phase 6 from one place in U to another, but it can never be completely 

removed from appearing in Eq. (1.12). 

The phenomenological consequences of the Kobayashi-Maskawa six- 

quark model for CP violation have been worked out by Ellis, Gaillard 

and Nanopoulos,17 with strong interactions neglected, and were found 

to be consistent with experimental data on K decays. Part of this 

report is devoted to a study of the effects that strong interactions 

have on the predictions which the six-quark model makes for various CP 

violation parameters. In particular, the Penguin-type diagrams, with 

heavy c and t quarks in the loop have an imaginary CP violating part 

and their CP violating contributions to K -+ ~lr decay amplitudes are 

discussed. 

In Chapter II the effective Hamiltonian for AS=1 weak nonleptonic 

decays is computed in the six-quark model using the leading logarithmic 

approximation. In the following chapter the effects of QCD corrections 

on the K" -go mass matrix are calculated. Chapter IV uses the results 

of these two calculations to make predictions for the CP violation 
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parameters n+ and nOO and in particular for the deviation of n+-/no0 

from unity. It is shown that this deviation may be measurable if the 

Penguin-type diagrams make important contributions to the nonleptonic 

decays of kaons. Chapter V contains a brief discussion of weak radiative 

hyperon decays. The weak radiative decays of the negatively charged 

hyperons d and E- are particularly interesting since they may proceed 

mostly through Penguin-type diagrams. Finally, Chapter VI contains a -- 

brief summary of results and some general conclusions are drawn. 
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CHAPTER II 

EFFECTIVE HAMILTONIAN FOR AS=1 WEAK NONLEPTONIC 

DECAYS IN THE SIX-QUARK MODELls 

In the standard six-quark model with charge +2/3 quarks u,c, and t 

and charge -l/3 quarks d,s, and b the left-handed quarks are assigned 

to weak isospin doublets and the right-handed quarks to weak isospin 
.- 

singlets of the SU(2) @U(l) gauge group of weak and electromagnetic 

interactions. The mixing between quarks in doublets characterized, say, 

by their charge +2/3 members, is describable by three Cabibbo-like angles 

el, B2, and 03, and by a single phase, 6, which results in CP violation. 

The nonleptonic weak interaction that can result in a net change in quark 

flavors is given to lowest order in weak interactions, and zeroeth order 

in strong interactions, by the product of a weak current of left-handed 

quarks, a charged W-boson propagator, and another weak current of left- 

handed quarks. Neglecting the momentum transfer dependence of the W- 

boson propagator, one has the usual local (V-A) @ (V-A) structure of 

a current-current weak nonleptonic Hamiltonian. 

With the introduction of strong interactions, in the form of 

quantum chromodynamics (QCD), things become more complicated. Consider, 

for example, that part of the nonleptonic Hamiltonian responsible for 

decay of kaons and hyperons which we write in terms of the "light" quarks 

u,d, and s. As the strong interactions are turned on, not only is the 

lowest order (V-A) @ (V-A) term involving u,d, and s quarks modified by 

gluon exchanges between the quarks, but there are diagrams involving 

virtual "heavy" quarks in loops which contribute to the strangeness 

changing nonleptonic Hamiltonian. These alter the strength of the 



-19- 

(V-A) 0, (V-A) terms and introduce new terms with different chiral 

structure, e.g., (V-A) @I (Vi-A). 

It is the purpose of this chapter to calculate the effective 

nonleptonic Hamiltonian for strangeness changing decays in the six-quark 

model. The W-boson, t-quark, b-quark, and c-quark are successively 

considered as very heavy, and renormalization group techniques used to 

calculate (in the leading logarithmic approximation) the resulting 

effective Hamiltonian remaining at each stage. 

The basic techniques for carrying out such calculations have been 

laid out previously.5,6,8,1gs20 They were even applied in the four- 

quark model to get the effective Hamiltonian for strangeness changing 

decays with the charm quark (and W-boson) taken as heavy.* However, 

there is only one Cabibbo angle in the four-quark model and no CP 

violating phase. It is the CP violating pieces of the effective 

nonleptonic Hamiltonian which are of special interest in this chapter. 

In the next section the method by which the effective Hamiltonian 

for nonleptonic strangeness changing decays is to be calculated in the 

six-quark model is described. The approach is pedagogical and emphasizes 

the underlying assumptions and the conditions necessary for the validity 

of the leading log approximation. In Section 2, numerical results are 

given. As expected, CP violating terms appear in the resulting effective 

Hamiltonian, both in the old terms of (V-A) @ (V-A) form and in the new 

"Penguin''-type terms. In the former they are quite small, but in the 

latter are large. Many of the details concerning the matrices of 

anomalous dimensions and their eigenvectors and eigenvalues are relegated 

to an appendix. 
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1. Derivation of the Effective Nonleptonic Weak Hamiltonian 

Recall that in the standard model2y10 where the gauge group of 

weak and electromagnetic interactions is SU(2) @U(l), the six quarks, 

u,c, and t with charge +2/3 and d,s, and b, with charge -l/3, are 

assigned to left-handed doublets and right-handed singlets: 

(:I, ; ( :jL ;--( ;.), ; Cd, ; GOR ; (cl, ; (dR ; WR ; WR . 

As was mentioned in Chapter I, the standard choice of quark fields is 

such that 

=1 -s1c3 -s1s3 
i& 

YC2 '1'2'3 - s2s3e '1'2'3 + s2c3e ' (2.1) 

c1s2c3 + c2s3e 
i6 

s1s2 '1'2'3 - c2c3e 

where c i =cos@ i' 'i =sin9 i' is {1,2,3/. Equation (2.1) defines the 

three Cabibbo-like mixing angles Bi and the CP violating phase, 6. 

Weak interactions involving the charged hadronic current follow 

from the interaction term in the Hamiltonian density 

q(x) = 22. J'+(x) W;(x) + h.c. 
2v5 

, (2.2) 

where $ is the charge W boson field, J: the charged weak current 

defined by 

J;(O) = ;(O)yn(l-y5)d'(0) + :(O)yu(l-y+'(O) + :(O)y,,(l-yS)b'(O) 

= (:d')V-A + (CS')~-~ + (:b')v-A , (2.3) 

and g is the gauge coupling constant of the weak SU(2) subgroup. With 



no strong interactions the lowest order weak current-current interaction 

-21- 

at zero momentum transfer is described by the effective Hami .tonian 

density 

2 + 
zJgeff(0) = 5 5' (0) J--(O) + h.c. 

8% 
, (2.4) 

so that the Fermi coupling G,/fi = g2/(8M$. In particular the strange- 

ness changing piece of Eq. (2.4) is 

-c s c (S u ) 1 1 3 a a V-A ('~~s)v-A 

+ s1c2(c1c2c3 - s2s3e -? ("aCa)v-A('sds)v-A 

+ s~s~(c~s~c~ + c2s3e -is) (“ata)v-&d&,-A \ ’ (2.5) 

where the color indices a and B on the quarks (which when repeated are 

summed from 1 to 3) have been made explicit in preparation for the 

inclusion of the strong interactions. It is convenient to rewrite 

Eq. (2.5) as 

&AS = 1) = GF f 
eff 

- z I Ac(O;)+O;-)) + At(Or)+Ot (-)) 1 , (2.6) 

where 

v-A(~Bds>v-A * ("ada)v-A~~r&&,-A 
3 

- [u-l], (2.7) 

and 

AC = ( 
-i6 

s1c2 clc2c3 - s2s3e > 

At = ( 
-16 

s1s2 c1s2c3 + c2s3e ) 

(2.8a) 

(2.8b) 
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Normal ordering of the four-fermion operators is understood. The space- 

time coordinates of all operators are suppressed. 

Now introduce the strong interactions in the form of quantum 

chromodynamics (QCD), the gauge theory based on the color SU(3) gauge 

group involving vector gluons interacting with quarks? The strong 

interactions modify the lowest order weak effective Hamiltonian from 

the form in Eqs. -t2.4) and (2.5). We now proceed to derive in leading 

logarithmic approximation the form of the effective weak Hamiltonian 

in the presence of strong interactions with heavy W-bosons and heavy 

t,b, and c quarks. 

First, the W-boson is taken as much heavier than any other mass 

scale in the problem and the S-matrix elements of the weak interaction 

between low momentum hadron states composed of light quarks and differing 

in strangeness by one unit are considered. This is just the calculation 

performed in Refs. 5 and 6. Using the operator product expansion3 

(noting that the operators 06') and 0:') are multiplicatively renormalized 

and do not mix with other operators at the one loop level) it follows 

that to leading order in the heavy W-boson mass 

( )/ 
-- ; d4x <(T(T(x),+C))I> = - #p(t) g) <lOb+)(O)l> 

<loyml> 9 (2.9) 
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where p is the renormalization point of the strong interactions. The 

matrix elements of the right-hand side are to be evaluated to all orders 

in the strong interactions (since perturbation theory is probably not 

valid) and to zeroeth order in the weak interactions. 

The Wilson coefficients At (')(MW/u,g) and AI')(MW/p,g) depend on the 

choice of renormalization scheme. Of course, matrix elements of the 

(2) renormalized operztors Ot and 0:') also depend on the renormalization 

scheme in such a way that physical quantities are rendered scheme 

independent. We use the mass independent E subtraction scheme*l 

where the renormalization group equations** are 

lJ &))A;+) (2, g) = 0 - (2.10) 

The y(‘) characterize the anomalous dimension of the operators 0 (9 with 
q 

q=c or t. The function B(g) has the perturbation expansion:23 

B(g) = -(33- 2N$ R3 + @(g5> 
4an2 

, (2.11) 

where N f (which equals 6 here) is the number of quark flavors. A 

standard one loop calculation5s6 shows that y c*> (g) has the perturbation 

expansion: 

y(+)(g) = 82 + 6(g4> 
4712 

y(-)(g) = - g2 
2s2 

+ 6(g4) . 

With the running coupling constant g(y,g) defined by 

H(Y,d 

Lny = J- 6% 

(2.12a) 

(2.12b) 

(2.13) 
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and g(l,g)=g, Eq. (2.10) has the solution 

In a leading log calculation the coefficients A i')(l,i(Mw/v,g)) can be 

replaced by their free field values A given in Eq. (2.8) because the 
9 

running fine structure constant o = g2/4r is small at the mass scale of 

the W and because the value of their first dependent variable being 

unity implies no other large logarithms can be generated by higher order 

strong interactions. Using Eqs. (2.11) and (2.12) 

p)(x) = 2a(+) 
6 (4 

-I- terms finite at x=0 
X 

with 

a(+) I 6 
33-2Nf 

a(-) = -12 
33-2Nf ’ 

(2.15) 
9 

(2.16a) 

(2.16b) 

Choosing p above the onset of scaling, Eq. (2.15) may be substituted 

back into Eq. (2.14) to obtain the result:24 

Ae,(;, g) = ,$&ir"Aq 

2 ,(*I 
a O$) 

= 

[ 1 a(u2> 
A . 

q 

(2.17) 

At this stage our effective weak Hamiltonian density is 
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2s=1) 
eff = 

a (+I 
AcOp) + AtO!+)) 

( 
AcOi-) + AtO;-) . (2.18) 

The matrix elements of the above effective weak Hamiltonian density are 

to be evaluated to all orders in the strong interactions and to zeroeth 

order in the weak interactions. Note that Xeff does not explicitly 

involve the W boson field. We want to derive an effective Hamiltonian 

without explicit dependence on the heavy W-boson, t-quark, b-quark and 

c-quark fields. Equation (2.18) is the first step towards this goal. 

The next step is to consider the t-quark as very heavy and eliminate 

it from explicitly appearing in the effective weak Hamiltonian for 

strangeness changing processes. (2) What happens to the operator Oc and 

(+I Ot- is different, (k> and the more complicated case of Ot is considered 

first. 

We assume that mt is much greater than all other quark masses, the 

momenta of the.external states, and the renormalization point mass, n. 

2 
The work of Appelquist and Carrazone25 implies that to order l/mt all 

the dependence of amplitudes on the heavy t-quark mass can be absorbed 

into renormalization effects and hence into a redefinition of the 

coupling constant, mass parameters, and scale of operators. This 

suggests the following factorization: 

<joy) I> = c By (;, g)<lO,l>’ + 6 + , 
i ( 1 mt 

(2.19) 
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where the primed matrix elements are evaluated to all orders in an 

effective theory of strong interactions26 with 5-quark flavors, coupling 

g'(mt/u,g) and mass parameters mL,md,...,%. Thus, 

<IOil>’ = <lO,l>(g’ , u ,m: ,..., n$) . 

To carry out the expansion of Eq. (2.19) in leading log approximation 

six linearly independent operators Oi are sufficient. They are choosen 

as follows: 

01 = (zada)V-A (U,&"-A 

O2 = (Sad6)v-n (;6~a)v-A 

O3 = (:ada)v-a 
[ 
(;&&A + . . . + (66bg)v-A] 

O4 = (;adg)v-A 
[ 
(;g'~~)~-~ + . . . + (6Bba)v-A] 

O5 = (zada)v-A 
I 
(;Bu6)v+n + . . - + (66b6)v+A 1 

'6 = (iads)v-n + . .- + (66ba'V+A] (2.20) - 
These operators are sufficient since they close under renormali- 

zation at the one loop level. The operators O1 and O2 already occur to 

zeroeth order in strong interactions: it follows from Eq. (2.7) that 

.q) _ p) l (1,O) = +_l 

p _ By (1,O) = +1 . (2.21a) 

The operators 03, 04, 05, and O6 are generated by the strong interactions 

through "Penguin''-type diagrams, so that in free field theory 
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B3 
(+) = By = ,(+I = $9 = 0 

5 
. (2.21b) 

However, the operators Oi are not multiplicatively renormalized at 

the one loop level, i.e., they mix among themselves. As shown in the 

appendix, the renormalization group equation their coefficients 

Bic)(mt/n,g) satisfy is 

-- 
c [i II 

v 5 + 6(g) $ + y,(g) mt & + Y 
t 

(+I (d) 6ij - Y$g’)] 

. ,(+I mt j ,,s =o * ( 1 (2.22) 

Here Y' T is the transpose of the anomalous dimension matrix of the 

operators Oi in the effective theory of strong interactions with 5 

quarks and coupling g'. It is the eigenvectors of Y ,T that correspond 

to operators which are multiplicatively renormalized. The coefficient 

functions gf') (mt/u,g) of these multiplicatively renormalized operators 

are written as 

$"(2> g) = c V;f Bi(?) (;, g) , 
j 

(2.23) 

and the eigenvalues of y ,T are denoted by yi. The matrix y' is found 

in Appendix A along with its eigenvalues and the matrix V. For the 

E(+)(m /n g) i t ' 
, the renormalization group equation corresponding to 

Eq. (2.22) is 

( 
u & + B(g) ag a + yt(g) m,$- + Y("W 

t 
- y;(g'))afq$, 9) = 0 . 

(2.24) 
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The solution to this equation may be found with the aid of the running 

coupling constant g(y,g) defined byly 

ln y = 'sg) [I,-;;z)]dx , 

g 

(2.25) 

with &l,g)=g. Note that this is not the usual definition of the 

running coupling constant (Eq. (2.13)), but the integrand in Eq. (2.25) 

for small x has the same leading behavior given by l/$(x) as the 

integrand in Eq. (2.13). Setting y = mt/u, it is now easily shown 

that the solution of Eq. (2.24) is 

[ 
g(mt/~‘g)y(+) (x) J- g’ (l,i) -y’ (x) exp B(x) dx exp I[ $ &x) dx g g’ (m,h ,d ’ 1 

. p (1 9) 
i , ’ 

S' is the beta function in the effective 

coupling g'. This beta function has the 

7 

(2.26) 

theory with 5-quarks and 

perturbation expansion 

B’(~‘) e -(33- 2Nf) g” + 6(gr5) 
4an2 

with Nf=5, and we write 

Y;(x) 2a! 
-- = 1 + finite terms at x-0 . 

B'(x) X 

(2.27) 

(2.28) 

Choosing u as before, above the onset of scaling, Eqs. (2.15) and (2.28) 

may be used to get 
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We have used g'(l,g) * g(m,/u,g), which is valid in a leading log 

calculation since the running fine structure constant is small at the 

t-quark mass. Finally, using the linear relationship between the eigen- 

vectors B, w and the B, 

+)(;; g) = [$]-a"' z Vkj[;,$;)lai V;: B$')(l,e;) . 

, 

(2.30) 
-a(*> 

Notice that the factor [a(m:)/a(n2)] out in front of the summation 

' in Eq. (2.30) 
2 a(+> 

combines with the earlier factor [c~(M$/a(~ )] in 
2 a(*> 

Eq. (2.16) to give [a(M$/a(m,)] . In leading log approximation the 

coefficients Bi')(l,g) can be replaced by their free field values as 

given in Eq. (2.21), since no large logarithms can be generated from 

QCD loop integrals with the first argument of Bf')(m,/u,g) set equal to 

unity and because we assume the running fine structure constant is small 

at the t-quark mass. 

(2) The case of the operators Oc is much simpler. The charm quark 

field which appears explicitly in these operators is of course not directly 

affected at this stage of considering the t-quark as very heavy and the 

Or?) are just multiplicatively renormalized: 

<lo(‘)]> = ,(‘) . 
C 

(2.31) 

Note that the matrix elements on the right-hand side are again to be 
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evaluated in the effective five-quark theory with coupling g'(mt/u,g). 

The coefficients B (*)(m,/u,g) satisfy 

( 
p $ + B(g) &+ y,k)m,$-+ Y qg) _ y’(+) 

t 
(g+(~)(~, g) = 0. 

(2.32) 

The anomalous dimension Y , (+-) (g') is that of OLt) and is a function of 

(+I 
the coupling g' in the effective five-quark theory, while Y (g) depends 

on g, the coupling in the six-quark theory. 

solving Bq. (2.32) in the same manner as Eq. (2.24), gives 

-,w . 
a(+ a Cm:) 

= 

H [’ a(p2) a' (~~1 I +)(l,g) . (2.33) 

In leading log approximation B (')(l,g(mt/u,g)) can be replaced by its 

free field value of +l. 

The effective weak Hamiltonian density is now free of explicit 

dependence on the heavy t-quark field and has the form: 
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,&Ag=l) = 
eff 

(2.34) 

All operators on the right-hand side are to have their matrix elements 

evaluated in the effective theory with five quarks, coupling g'(m,/u,g> 

and masses m' u,mA, . ...%. 

The next step of considering the b-quark as very heavy is similar 

to what was just accomplished for the t-quark, with the addition of some 

indices. This time the matrix elements of the operators Oi of Eq. (2.20) 

evaluated in the effective five-quark theory are to be expressed in terms 

of matrix elements of 

p1 = (:ada)v-A (;BuB)v-A 

p2 = (Sads)v-A (iBUa)v-A 

p3 = ('ada)V-A [ ('&,)v-A + . . . + (;BCB)v-A 
I 

p4 = (Sad&-A C (GBua)v-~ + . . . + (;BCa)V-A I 
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p5 = (iada)V-A [ 
(tpB)v+A + . . . + (CBcB)v+A 1 

'6 = (:ads)v-A + *-* + $fa)v+n 
I 

(2.35) 

evaluated in an effective theory with four quark flavors (u,d,s, and c). 

The coupling and masses in the effective four-quark theory are denoted by 

g"(%/u,g') and rnc, . . . ,mi, respectively. To leading order in the 

b-quark mass 

<lo& = cc$$g') <P,>M , 
n 

(2.36) 

where the prime (double prime) denotes evaluation in the effective five 

(four) quark theory. The C~(m.,'/u,g') can be shown to obey an equation 

of the form 

(2.37) 

with y' and y" being anomalous dimension matrices of the operators 

op..., O6 and P1,...,P6, respectively. 

Defining the linear combinations of coefficient functions 

(2.38) 

as corresponding to operators which are multiplicatively renormalized, 

i.e., do not mix with other operators, the renormalization group equations 

diagonalize into the form 
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( 
v &+ B(g’) ++ Y’ b%+ + Yak'> - Yp”) 

l p($,g’)vjk = 0 . (2.39) 

The matrites W and y" together with the eigenvalues of the latter are 

found in Appendix A. 

With the aid of a new running coupling defined by 

ii’(Y,g’) 1 _ y’(x) 

Ilny = 
/ 

b 
dx , 

g' 
B' (xl 

(2.40) 

these equations may be solved very analogously to Eq. (2.24). Leaving 

out some of the details, the solution in the leading logarithmic 

approximation is 

. (2.41) 

For reasons stated before, in a leading log calculation the coefficients 

Ct(l,i') can be replaced by their free field values:' 

c; E C$l,O) = 6ill . (2.42) 

The operators OL+) are multiplicatively renormalized and the expansion of 

their matrix elements gives results like those in Eq. (2.33) with 

appropriate changes. 
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The effective Hamiltonian now takes the following form at the 

four-quark level: 

&AS = 1) = 
eff 

+ 

l (I(+' [sf+)At i- B;-' [%f-'At))Pn 1 (2.43) 

The final step of considering the charm quark as very heavy is 

more questionable from the phenomenological viewpoint. It also involves 

a technical point which is easy to miss. When the matrix elements of 

the operators PI,..., P6 evaluated in the effective four-quark theory 

are expanded in terms of matrix elements of operators evaluated in an 

effective three-quark theory, it is natural to define 

Ql = (:ada)i-A (5 u ) 
B 8 V-A 

Q2 = (~ads)v-A (;,JJ~)V-~ 

Q3 = (iada)v-A [ $+j)v-A + ($ds)v-A + (+&..A 1 
Q4 = (:ads)v-A (GBua)v-A + ($,da)V-A + (S8sa)v-A I 
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95 = (:ada>v-A ('&V+A + ($ds)v+A + (+',&+A I 
Q6 = (:ad8)v, ($Ua>v+A + (;igda)v+A + &JSa)V+A 1 (2.44) 

These operators close under renormalization at the one-loop level, but 

they are linearly dependent: 

Q, = -Q, + 9, + Q3 (2.45) 

Hence only the 5 operators Q,, Q,, Q,, Q, and Q, are necessary. 

Expressing matrix elements of the operators evaluated in the 

effective four-quark theory in terms of matrix elements of operators 

evaluated in the effective three-quark theory, 

<IPnl>" = c <[Q,l>"' +@ , (2.46) 
r=1,2,3,5,6 

with g"' and rnr , my , rni representing the coupling constant and quark 

masses in the effective three quark theory. The linear combinations 

(2.47) 

are the coefficients of multiplicatively renormalized operators. The 

diagonalized renormalization group equations are 

E 
u & + B”(g”) jgl + y" m" c .5s + Yp"> - YF' (g"') 

C 
1 

, (2.48) 

and have the solution in leading logarithmic approximation after re- 
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expressing the 5's in terms of D's, 

In leading log approximation the Di(l,i") can be replaced by their free 

field values, Di. These are 6np, except when n=4, in which case Di=-1, 

Di=l, Dz=l, and Di=Dg=O. 

Because the charm quark is being considered as heavy, the operators 

(+) Oc- are no longer just multiplicatively renormalized at the one loop 

level. It is also necessary to expand 

<IO(‘)/>” 
C 

= CD:*) (z, g") <lQ,I>"' . 
r 

(2.50) 

The renormalization group equations obeyed by the Dr (*)(ml/u,g") are 

CK r 
v& + B"(d') &! + y',:(g") m: & + y"(+) 

C 
(9"))6pr - YbJkT k"' I] 

. Dw 2, g” = o 

r ( 1 IJ 
. (2.51) 

The coefficients corresponding to multiplicatively renormalized operators 

are just as in Eq. (2.47), and the solution to Eq. (2.51) with the usual 

approximations is 

(2.52) 
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The free field values, Dif) E D(p')(l,O), are D1(') = 1, I);') = +l, and 

all others zero. 

Finally, collecting all the results the previously advertised 

effective Hamiltonian in the "light" three-quark sector can be written. 

It is the following sum of Wilson coefficients times local four-fermion 

operators which do not explicitly involve the heavy W-boson, top, bottom, 

and charm quark fyelds: 

,&AS = 1) = 
eff 

ai' 
x-1 D(+) 

4P P 1 

cl’(%2) a 11 C-1 
. 

[ I u"(my 2, 

I 
a (+I 

*c Q r 

a"' 
q 

X-l Dp 
w n 
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All summations are from 1 through 6, except those over p, q and r which 

run through 1,2,3,5 and 6. 

2. Numerical Results for the Effective Nonleptonic Hamiltonian 

It is now possible to perform the arithmetic operations made 

explicit in Eq. (2.53) and to examine the resulting Wilson coefficients 

of the operators.Q1,Q2,Q3,Q5 and Q, in the effective Hamiltonian for 

nonleptonic, strangeness changing interactions. Since the matrices, 

V,W and X, as given in the appendix, are composed of irrational numbers 

and since various fractional powers of a(M2) with M2 = 4, m:, etc. are 

rampant, quantitatively rather little is transparent about these co- 

efficients in general. We then are forced to proceed by choosing a 

parametrization for a(M*) and values for the W and quark masses, sub- 

stituting in Eq. (2.53), and reading off the coefficients of the Qi for 

that particular set of choices. 

Moreover, the outlook is basically qualitative. The QCD effects 

have been calculated in the leading log approximation. While we have 

some confidence that at the first step MW is a large enough mass for 

this to be a credible procedure, by the last step of considering mc a 

heavy mass this approximation has been used beyond the region where it 

can be reasonably justified. 

On the positive side, what is carried out here is well defined and 

systematic. The degree of accuracy is obviously no worse than any of 

the earlier calculations* which involve only the "heavy" charm quark 

(and W boson) in leading log approximation. Not only is the accuracy 

of the calculation expected to be better for the b and t-quarks, but 
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their effect was not taken into account previously. With regard to CP 

violation they play a dominant role. 

To investigate the effective nonleptonic Hamiltonian numerically 

we first of all need to decide on the running QCD fine structure constant 

dQ2>, the values of the heavy quark masses, and u2 or alternately c((u2>. 

In leading log approximation 

a(Q2) = ‘2~ 
1 

33-2Nf an (Q2/A2) 
, (2.54) 

where we take A2 = 0.1 GeV2 and A2 = 0.01 GeV2 , values consistent with 

recent data when QCD is used to parametrize the breakdown of scale 

invariance in deep inelastic neutrino scattering.27 When the leading 

log approximation is valid, the calculation is insensitive to the precise 

value of A and the difference between A's in the various effective field 

theories can be neglected. The number of quark flavors is Nf= 6 for the 

fine structure constant we have called u(Q2), while u'(Q2), a"(Q2), and 

2 c("'(Q > have Nf=5,4 and 3 respectively, as they pertain to effective 

theories with those corresponding numbers of quark flavors. 

m is taken to be 1.5 GeV and mb to be 4.5 GeV on the basis of J, 

and T Spectroscopy." The t-quark mass is unknown at this time, and 

values of 15 GeV and 30 GeV are used to get an idea of the sensitivity 

of the results to this quantity. For MW the value 85 GeV is taken. 

In evaluating Eq. (2.53), m;, and mb, rnz and me, are not distinguished 

between, again consistent with the leading log approximation philosophy. 

Finally a value is required for u(u2) (or more exactly a"'(u2)). 

We want to choose u to be a typical "light" hadron mass scale or inverse 

size, where a(u2> is of order unity. We let cr(u2) = 0.75, 1.0 and 1.25 
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to check the variation of the resulting effective nonleptonic Hamiltonian 

to this choice. In fact, the values of S-matrix elements of the weak 

interaction cannot depend on the choice of the renormalization point u, 

or equivalently a(u2). The matrix elements of the four-fermion operators, 

Q i, also have an implicit !J dependence which exactly compensates that of 

their coefficients (at least when the coefficients are computed exactly). 

We are left to make a choice of u, hopefully close to the typical light 

hadron mass scale of the problem, so that "hard" gluon effects are 

contained as much as possible in the Wilson coefficients and not the 

matrix elements of Qi, but high enough that their calculation in leading 

log approximation makes some sense.2g 

In terms of the operators, Q,, Q,, Q,, Q, and Q, defined previously 

in Eq. (2.44), the nonleptonic Hamiltonian involving u,d and s quark 

fields has the form: 

&s=l) = -3s c c I(-, 87 + 0.036~19 
eff fi 1131 * 1 

+ (1.51 - 6.036~)~~ 

+ (-0.021 - 0.012~) Q, 

+ (0.011 + O.O07r)Q5 

+ (-0.047 - O.O72t)Q6 1 

when mt=15 GeV and a(u2) = 1 and where 

, (2.55) 

2 
T = 

s2 + s2c2s3e -16 
/c1c3 , 

along with the other masses specified previously. Values of the co- 

efficients for all six cases corresponding to a(~~> = 0.75, 1.0 and 1.25 
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and m,=15 GeV and 30 GeV are found in Table I for A2= .1 GeV2 and 

Table II for A2= .Ol GeV2. 

Referring back to Eq. (2.5), it is apparent that before accounting 

for the effects of QCD, the coefficients of the usual four-fermion 

operator Q,, as well as the "Penguin" induced operators Q,, Q, and Q, 

were all zero. In the sector involving u,d and s quarks the strangeness 

changing weak Haniiltonian then just involves Q, with unit coefficient. 

Thus the presence of strong interaction QCD corrections has brought in 

the operators Q,, Q,, Q, and Q,, changed the coefficient of Q,, and given 

all coefficients an imaginary (CP violating) part through the quantity 

r, which enters through "Penguin"- type diagrams involving a heavy quark 

loop. 

The portion of the nonleptonic Hamiltonian involving only the 

operators Q, and Q, is the traditionally calculated (V-A)@(V-A) four- 

fermion piece with neglect of all "Penguin" effects. The sum of co- 

efficients of Q, and Q, is proportional to the coefficient of an operator 

transforming purely as 1=3/2, which cannot mix under strong interaction 

renormalization with "Penguin" contributions which are pure 1~112. As 

a consequence, one simple check of the calculation is to note that the 

quantity T, arising from "Penguin" contributions, always has the same 

magnitude and opposite sign in its contribution to the coefficients of 

Q, and Q,. 

The combination of operators Q,-Q, transforms purely as I= l/2, 

while the combination Q,+Q, has an 1=3/2 piece. The ratio of co- 

efficients of Q,-Q, and Q,+Ql is a measure of AI= l/2 or octet 

enhancement by QCD, as first calculated in Refs. 5 and 6. The inclusion 
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Coefficients of the operators 

in the effective Hamiltonian, 

TABLE I 

Q,,Q,,Q,,Q, and Q6 defined in Eq. (46) 

Jv eff = (-GF slc1c3/fi > ( c CiQi) , for 
i 

strangeness changing, 
-i6 

nonleptonic weak decays. T sg+s2c2s3e /c1c3. 

A2 = .1 GeV2. ._ 

Parameters 

a(p2) = 0.75 

mt = 15 GeV 

a(*2) = 1.00 

mt = 15 GeV 

a(~*) = 1.25 

mt = 15 GeV 

a(v2) = 0.75 

mt = 30 GeV 

a(p2) = 1.00 

mt = 30 GeV 

a(p2) = 1.25 

mt = 30 GeV 

c1 

-0.72 
+O.o35r 

-0.87 
+O.O36T 

-1.00 
+O.O36r 

-0.71 
+0.042~ 

-0.86 
+o.o43r 

-0.99 
+o.o43T 

c2 c3 c5 '6 

+1.40 -0.013 +0.007 -0.025 
-0.0357 -0.015T +0.008~ -0.059-c 

+1.51 
-0.036~ 

-0.021 +O.Oll -0.047 
-0.0127: +o.o07T -0.072~ 

+1.61 
-0.036~ 

-0.028 +0.015 -0.069 
-O.OlOT +O.O06r -0.085~ 

+1.39 
-0.042~ 

-0.013 
-0.017r 

+0.007 -0.025 
+o. 009T -0.076~ 

+1.50 -0.021 co.011 
-0.043T -0.013T +0.008~ 

+1.60 -0.027 - +0.014 
-0.043T -0.Ollr +o.o07T 

-0.047 
-0.093T 

-0.068 
-0.109T 
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Table II 

Same as Table I but with A2 = 0.01 GeV2 

Parameters 

a(u2> = 0.75 
m = 1.5 GeV 

t 

a(p2> = 1.00 

mt = 15 GeV 

a(~~) = 1.25 

mt = 15 GeV 

a(p2> = 0.75 

mt = 30 GeV 

a(L12) = 1.00 
m 

t = 30 GeV 

a(~~) = 1.25 

mt = 30 GeV 

5 

- 0.77 
+ 0.021r 

- 0.93 
+ 0.021r 

- 1.06 
+ 0.021r 

- 0.76 
+ 0.026T 

- 0.92 
+ 0.027~ 

- 1.05 
= 0.027-r 

c2 

+ 1.43 
- 0.021T 

+ 1.55 
- 0.021T 

i- 1.65 
- 0.021r 

+ 1.42 
- 0.026T 

+ 1.54 
- 0.027-c 

+ 1.65 
- 0.027T 

c3 

- 0.026 
- 0.006-r 

- 0.032 
- 0.005T 

- 0.037 
- 0.003T 

- 0.025 
- 0.008~ 

- 0.032 
- 0.006T 

- 0.037 
- 0.004T 

c5 

t 0.013 
t 0.004T 

t 0.017 
t 0.003T 

t 0.020 
t 0.002T 

t 0.013 
t 0.005T 

+ 0.017 
+ 0.004T 

t 0.020 
+ 0.003T 

'6 

- 0.065 
- 0.0451 

- 0.097 
- 0.0551 

- 0.128 
- 0.0651 

- 0.065 
- 0.060~ 

- 0.097 
- 0.075. 

- 0.127 
- 0.088* 



-44- 

of "Penguin" operators and their mixing makes little numerical 

difference for the coefficients of Q, and Q,. Slightly more important 

in comparison with earlier work is taking into account not only the 

heavy W-boson, but each heavy quark successively in computing the 

leading log QCD effects. As a result the earlier [a(~$/a(n 
2 a(?> 

)] 

is replaced by 

even if all "Penguin" effects are neglected. Numerically the coefficient 

of Q,- Q, is enhanced by a factor of 2 to 3 and that of Q2+Q1 suppressed 

by 0.6 to 0.7 for our choice of masses. In agreement with all earlier 

results this is in the correct direction, but much too small to explain 

the high degree of accuracy of the AI= l/2 rule in nonleptonic decays 

of strange particles. 

The "Penguin" terms Q,, Q, and Q6 transform as purely I= l/2 on the 

other hand. Tables I and II indicate that their coefficients are 

smaller than those of Q, and Q,, typically by an order of magnitude 

for Q,. However, arguments can be made that the (V-A)@(V+A) structure 

of Q 6 may lead to enhanced matrix elements,30 by one order of magnitude 

or more, for the nonleptonic decays of kaons and hyperons. 

As already noted, through strong interaction effects each operator 

in the effective Hamiltonian has a coefficient with an imaginary as well 

as real part. This imaginary part, which in each case enters through 

Imr and is then proportional to s2c2s3sin6, leads to CP violation in 

decay amplitudes. 
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When s2c2s3sin6 # 0 and CP is violated, an inspection of the 

coefficients of the operators Q, and Q, inrnediately shows that the 

ratio of their imaginary to real parts is -10B2s2c2s3sin6. This is 

not true for the Penguin-type operators Q,, Q, and Q, where the corres- 

ponding ratio is -s2c2s3sin6. If these later operators contribute at 

all significantly to K" decay, clearly they will yield the largest CP 

violating effects-in these amplitudes.16 Recall in particular that 

the matrix elements of Q, are supposed to be especially large and 

important in decays like K'+ITIT. This is in addition to CP violating 

effects which occur in the kaon mass matrix in the six-quark model. 

These latter CP violating effects are considered in the following 

chapter. 
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CHAPTER III 

EFFECTIVE HAMILTONIAN FOR K"-Ro MIXING 

IN THE SIX-QUARK MODEL31 

The K"-i?' mass matrix has played an important role in particle 

physics over the past decade. The small value of the real part of the 

off diagonal elements found an explanation in the GIM mechanism14 which 

conjectured the existence of a fourth quark flavor (charm). Later 

calculations of the magnitude of these matrix elements led to a quanti- 

tative estimate for the charm quark mass.32 While these four-quark model 

computations were originally done without strong interaction corrections, 

with the development of quantum chromodynamics (QCD) the short distance 

effects due to strong interaction were soon computed33y34 and found to 

change the answer rather little. 

With the standard phase conventions (see Chapter IV) an imagninary 

part of the off diagonal kaon mass matrix elements is an expression of 

CP violation and leads to the kaon eigenstates g and Ki not being CP 

eigenstates. With four quark flavors there is no imaginary part9 but, 

as was mentioned in the introduction, the six-quark model has a phase 

in the heavy quark couplings to the weak vector bosons which leads to 

CP violation and an imaginary part in the mass matrix. In this chapter 

the QCD corrections to the K"-Eo mass matrix are calculated in the six- 

quark Kobayashi-Maskawal' model. 

1. Derivation of the Effective Hamiltonian for K"-Eo Mixing 

Using the trigonometric identities 
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22 
c3c1 = 

ci(clc2c3 - s2s3esisf + s~(c1s2c3 + c2s3emi6) 

+ 2s2c2(c1c2c3-s2s3e -is)(c1s2c3+ c2s3esi6) , 

c1c2c3 c1c2c3-s2s3e ( 
-i”) = cg(c1c2c3 - s2s3emi6) 

and 

+ s2c2(clc2c3 - -i")( c1s2c3 + c2s3e -is 
s2S3e > ' 

-- 

c1s2c3 cls2c3+c2s3e ( 
-i") = s?j (c1s2c3 + c2s3esi6) 

+ S2C2 (c1c2c3 - -T 
-iA 

s2S3e c1s2c3 + c2s3e > ' 

(3.la) 

(3. lb) 

(3.lc) 

the effective Hamiltonian density, which contributes to K"-Eo mixing in 

the six-quark model, can be written uniquely as 

skill=’ = s!fc~(c1c2c3 - s2s3e-i’)2xl 

22 + s1s2 c1s2c3+c2s3e ( 
-iA 2x 

) 2 

+ 2sis2c2 (cIc2c3 - s2s3emi6)(c1s2c3 + c2s3eTi6)T + h-c- - 

In Eqs. (3.1) and (3.2), si=sinBi, ci=cosBi, ie(1,2,3). The Cabibbo- 

type angles 01, 02, e3 and the phase 6 are defined in Eq. (1.12) of 

Chapter I as well as in Eqs. (2.1) of Chapter II. The components, xl, 

Z2, and X3 of the complete Hamiltonian have-relatively complicated 

expressions in terms of time ordered products of four weak charged 

currents contracted with W-boson fields corresponding in the free-quark 

model to forming the box diagram, shown in Fig. 7, with virtual W-bosons 

and quarks in the loop. In the absence of strong interactions treating 

the W-boson as very heavy and keeping only leading contribution in l/g 
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Fig. 7. Box diagram giving a K"-go transition. 
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yields the following expressions forXl, x2, and X3: 

iG 2 

Xl(O) = -$ 
J [{ 

d4x T (sa(x)yll(l-y5)u~!x))(;B(x)y~(l-y5)dB(x)) 

x (~~(o)y"(l-y5)u,~O~)(us(0~y~~~-Y5~ds(0~)} - 2T{(~a(x)y,(l-y5)u,(x)) 

x (~g(x)y~(l-y5)ds(x))(sX(O)yyoc,(o))(~~~~~~v~~-~5~~~~~~)} 
-- 

+ T ($xh$l-~g) 
-I 

c (x))(~g(x)v~~l-v5)dgO)(~~~~~~~~l-yg)cx~~~) c1 

x (~6(0)uw(1-v5)d,(o))) - { 2T (~a(x)yu(l-y5)u~(x))(~B(x)yi-l(l-y5)ds(x)) 

x (s,~o~y~~1-y5~c,~o~)(~,~O~y,~~-Y5~d~~O~)}] ' (3.3a) 

iG 2 

x2(o) = --$ 
s [I 

d4x T (sa(x)yil(1-y5)u~(x))(;B(x)yu(l-y5)dS(x)) 

x (~,(o)~“(l-u5)u,(o))(us(o)u,(l-v,)a,(o))~ - 2T{(~a(x)V,(l-Y5)u,(x)) 

x (;B(x)Y~(l-y5)d~~x~)(SX~O~yv~~-y5~t~~O~)(fG~O~yV~~-y~~dg~O~)} 

+ T{(~~(x)yu(l-y5)ta(x))(~~(x)yU(1-Yg)ds(x))(~~(O)Yv(~-y5)t~(O)) 

x (~,(0)y"~l-y,)d,(O))} - 2T{(,a(x)~~(l-~5)u,(x))(fs(x)y"(l-yg)ds(x)) 

x (sh(o)vv(l-u5)t,(o))(;g(0)y~(l-~5)ds(D))}] 9 (3.3b) 

and 



-5o- 

. 2 

*3(o) = 2 
s [I 

d4x T ($x)Y,(l-Y5)u,(x))(;8(x)yu(l-y5)dg(x)) 

x (S,(o)y”(l-y5)u,~O~)(;,~o~yw~l-y5~~,~o~)} - T((aa(x)u,(l-v5)u,(x)) 

x (;B(x)y~(l-Y5)ds(x))(~h(O)yy(l-y5)ch(O))(~~(O)yY(l-Y5)ds(O))) 

- T ($x)Y$~-Y~) -i 
u (x))(~~(x)yli(l-Yg)dg(x))(~X(0)Yv(l-Y5)th(O)) a 

x (E*(0)Y~(1-Y5)dg(O))} - ((- T s,(x)v,(l-v,)u,(x))(~g(x)y~(l-vs)dso) 

x (S,(o)yv~1-v5)c,(0))(;6[0)YVod,(o))} - T{(~a(x)~,(l-Y5)u,(x)) 

x (fg(x)y'1(1-Y5)dg(x))(Sh(O)y,(l-Y5)tX(O))(;G(O)yV(1-Y5)dg(O))} 

+ T 
1 

($dY,,(1-Y5) c (x))(tB(x)v~(l-r5)dg(x))(~~(0)~"(~-~5)t~(~)) a 

x (c,(O)u,(l-v,)d,(o))} {(- + T sa(x)y,(l-v5)c,(x))(~g(x)y~(l-y5)d~(x)) 

x (~~(o)v,(l-y5)th(0))(E6(0)y”(l-y5)dg(0))}] . (3.3c) 

~1, $, X and 6 are color indices which are summed over {1,2,33 when 

repeated. Normal ordering of the local 4-quark operators is understood. 

It is convenient to decompose these operators into pieces that will not 

mix under renormalization when the strong interactions are introduced. 

We write for j E (1,2,3) (in the absence of strong interactions) 

+ ye:'-' + 3zy) + A+--)] , (3.4) 

where 
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+*) (0) f isd4x [T{O~')(x)O~')(O)} - 2T{((z,(x)yU(l-Y5)ua(x)) 

x ($(x)y'(l-y5)ds(x)) +(sa(x)yll(l-~5)da(x))(SB(x)yFI(l-Y5)ug(x))) 

X ((~,(0)yv(l-Y5)~X(O))(~B(O)Y,(l-Y5)ds(O)) 

+ (s,(0)y"~l-y5~d,~O~)(;G~O~yv~l-y5~~,~O~)~}] 9 
-- 

(3.5a) 

x7&+) (0) z isd4x [T{Oi') (x)0:+) (0)) - 2T{((~a(x)Y~(l-Y5)u~(X)) 

x (~B(x)yU(l-y5)ds(x))+(~,(x)Yl,(l-Y5)d~(x))(fa(x)y~(l-Y5)ug(x))) 

X ((s,(o)yy(l-y5)tX(0))(;6(0)Y~(l-Y5)ds(o)) 

+ (~A(o)yv(l-y5~d,~O~)(~6(0)yv~l-y5)t6(O)))}] 9 

and 

(3.5b) 

ri93 
(f+->(o) _= iJd4x[T{Ozt) bdO~'hO) - T } { ((~,(x)Yl,(1-v5)u,(x)) 

x (~~(x)y'(l-Y5)dB(x))~(~a(x)y~(l-y5)da(x))(~B(x)y'(l-Y5)uB(x))) 

X ((s,(o)y"(l-r,)c,(O)) (;@u,(l-v5)d6(0)) + ($Ovv(1-v5)dX(0)) 

x (;,(0)uv(l-u5)cs(O)))} - T{(( ;,(x)y,(l-y,)u,(x))(?+x)y'(l-y5)dg(x)) 

_+ (scl(x)yU(l-y5)da(x))(fs(x)~~(l-~g)ug (x)))((s,(o)vv(l-u5)th(0)) 

x (;,(O)y'(l-y5)d6(0)) +(~,(0)yv(1-y5)dA(O))(~6(O)yv~l-y5)t, (O)))} 

+ T ($x)Y~(~-Y~) c( c (~))(~~(x)v~(l-v~)dB(x)) * ($)Y~(~-Y~)~~(x)) 
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. 

oy) and ,e> 
t are defined in Eq. (2.7) of Chapter II. 

Now introduce strong interactions in the form of quantum chromo- 

dynamics (QCD). -_ The pieces of the effective Hamiltonian .Xj defined by 

Eq. (3.2) are modified from this free field expressions given in Eqs. 

(3.3) and (3.4). Treating the W-boson as heavy in the presence of strong 

interactions yields the following expression 

a( 2) 

;;cej = [ 1 A- 2a(+' 2 a(+>+ .(-) 

ah2> ,(*) + “‘V j [ 1 x(+-l a(u2> j (3.6) 

in the leading logarithmic approximation. a is the strong interaction 

fine structure constant, and n the renormalization point. The matrix 

elements of the Xj are,to be evaluated to all orders (since perturbation 

theory is probably not valid) in the six-quark theory of strong inter- 

actions using the E subtraction scheme. Finally a c+> = 6/21 and a(-)= 

-12121. The derivation of Eq. (3.6) is very similar to the removal of 

the W-boson field from the effective Hamiltonian for AS=1 weak non- 

leptonic decays discussed in Chapter II. 

The next step is to successively treat the t-quark, b-quark and 

c-quark as heavy and remove their fields from explicitly appearing in 

the theory. For xl this is particularly simple since the t and b-quark 
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fields do not appear explicitly in it. The effect of removing the t 

and b-quark fields from the theory of strong interactions is to change 

the strong coupling g and masses mu,...,mt in the six-quark theory to a 

coupling g', and masses m:,..., m;, in an effective 5-quark theory and then 

to a coupling g" and masses m",...,m)d in an effective 4-quark theory of 

the strong interactions. Also the exponents a(+)(,(-)) change from 6/21 

(-12/21) to 6/23 (=12/23) and then to 6/25 (-12/25) as one goes from the 

six-quark theory to the effective 5-quark theory and then to the effective 

4-quark theory of strong interactions. Thus the effective Hamiltonian 

density Xl becomes 

+ [d]-“‘” [a4;,l-24’23 [:%;I -24’2;j--) . (3.7) 

The matrix elements of the effective Hamiltonian density Xl are now to 

be evaluated in an effective 4-quark theory of strong interactions. It 

only remains to treat the charm quark as heavy and remove it from ex- 

plicitly appearing in Xl. To leading order in the c-quark mass the 

matrix elements of *Ii-') can be expanded in the following fashion 
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<I,~~")I>" = L(ii)(s,g")mz2 <I (zd)V-A(zd)V-AI >I" . 
!J (3.8) 

The double primed matrix elements are evaluated in an effective four- 

quark theory of strong interactions while the triple primed matrix 

elements are to be evaluated in an effective three-quark theory of 

strong interactions with coupling g"' and masses rnr , rn'd' and ml'. 

The operator (Ed) ,,(sd) V-A is a color symmetric four fermion operator 

with the usual anomalous dimension 

y”’ (+I 
2 

(g”‘) = g"' + @(g"'4) 
4x2 

. (3.9) 

The mass parameter rn: depends on the renormalization point n and its 

anomalous dimension is 

2 
Y'dW> = g" + @(gf14> 

2a2 

The components X'!*), xy-), A?:-+) and Xi--) are composed of a sum 

of time ordered products of two local four-quark operators with color 

indices respectively symmetrized in both operators, synnnetrized in the 

first operator and antisymmetrized in the second operator, antisymmetrized 

in the first operator and symmetrized in the second operator and finally 

antisymmetrized in both operators. They have the familiar anomalous 

dimensions,5*6 g112/2r2 + @(g"4>, -g"2/4x2 + @(g"4), -gtj2/4x2 + @(gu4), 

and -g1'2/x2 -t @(g"4) respectively. It follows that the Wilson coeffi- 

cients L(f')(m"/n,g") obey the renormalization group equations 



-55- 

(3.11a) 

i 
1-1 T& + B”k”) -%i + yams & - ag c 

(3.11b) 

+ yz(g")m" 
c ail 

--~~$)L”pgll)~o, 

C 

(3.11c) 

i 1-I j$ + B”(g”) &! + yams $7 - C 
z$LJ)LG-)($,gl) = o . 

(3.11d) 

These may be solved in the standard fashion, introducing a running coupling 

constant g"(y,g") defined by 

F<Y ,g”> 

an y = J dx 
1 -Y;(x) 

B"(X) ' 
F(l,g"> = g" , (3.12) 

g" 

and noting that the coefficients L ('")(l,~(m,/n,g")) may be replaced by 

their free field values L ('*)(l,o) since the running fine structure 

constant is taken as small at the scale of the charm quark mass and 

because no large logarithms can be generated from higher order QCD loop 

integrals when m"/u = 1. A straightforward computation yields 

and 

L(+Q(l,O) = - -+ [$I , 
1T 

,c+-> (1,O) = L(-+)(l,o) = - + [-+I ’ 
71 

(3.13b) 

L(-)(q) = - L L [II T12 2 
(3.13c) 
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The factors in the square brackets stem from color summations. Solving 

the renormalization group Eqs. (3.11) using the leading logarithmic 

approximation then gives 

(3.14a) 

and 

-a” ( u2) 

.a,.(mz2)j-6’25[ ::L5F)7a’27 1 
24'25 

1 [ 1 -- 
a"(u2> 

2' 

(3.14b) 

Using these results the effective Hamiltonian density Ml becomes 

3y; = - 2 rn: 
1611 

2(~ayU(l-Y5)dc,)(~BY~(l-Y5)ds) 

(3.15) 
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* 
where m is the running charm quark mass evaluated at m" 2 . 

C c ' i.e., 

* 12'25 
m al(mF2) /a:(~~) 1 . 

C 

The Hamiltonian Xl already occurs in the four-quark model and our results 

agree with some of the previous results33 for the QCD corrected Xl, when 

the appropriate simplifications are made. 

The deviation of the effective Hamiltonian density X'2 proceeds along 

similar lines except that already at the step of removing the t-quark 

(*I field from explicitly appearing each of the x2 , Xp-), x$-') and 

,,G-) 
2 

collapses to a Wilson coefficient times m :(~aY,,(l-Y5)da)x 

(k$-by5)d8) t o leading order in the t-quark mass. From that point on 

the successive steps are marked by renormalization of this latter color 

index symmetric four-fermion operator. The final result is 

2 *2 

"y; = GFmt 
- --y- saY~(1-Y5)da)(sgYU(1-Yg)ds) 

16x (- 

* 
where m t is the running t-quark mass evaluated at rn:, i.e., 

* 
mt =m ,[a(mt) I a(v2)] 

12121 
. 

The computation of the effective Hamiltonian density M3 in the 

presence of strong interactions is somewhat more complex. At the step 
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(+2) 
of removing the t-quark from X3 eight operators are generated even 

with the condition of keeping only those whose matrix elements can yield 

a contribution of order m" 
2 

C 
or mix under renormalization with operators 

whose matrix elements can. 
(k+-) 

Expanding the matrix elements of X3 in 

terms of matrix elements of these operators gives 

(3.17) 

to leading order in the t-quark mass. The primed matrix elements are 

evaluated in an effective 5-quark theory with strong coupling g'. Six 

of the operators 

i/d4x T { 0:‘) (x) (~ada)V-n($u8)vwA) , (3.18a) 

0:") = iJd4x T jObi)(x)(~ads)v-A(;8ua)v-A) , (3.18b) 

c+*> = i 
O3 O:f)(x)(Sada)V-A[(iBuB)V-A+...+ ($b&A]} , 

(3.18~) 

(3.18e) 

iJd4x T jO~')(x)(sadS)v_A[(;gua)v+n+...+(6gba)v+Al} , 

(3.18f) 

(kk) 
originate from the portion of .X3 , 

iJd4x T (O:')(X) o:')\ , (3.19) 
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which is an integral of a time ordered product of two pieces of the 

effective C,S=l weak nonleptonic Hamiltonian, one containing a t-quark 

and the other a c-quark. Note that Oj")=Oj") for j E {l,... ,6}. 

The two additional operators needed are 

(3.20) 

and 

The factor of 1/gV2 is inserted into the definition of O8 so that to 

, (+*I lowest order the anomalous dimension matrix yij (g') has all its 

entries proportional to g ,2 . If O8 did not contain the factor of l/g12 

then the elements yi8 1 c*+> (g') would be (to lowest order) constants 

independent of g' for is {1,...,7). Then in solving the renormalization 

(3) group equations L8 would have to be treated in a different fashion 

from the L:"), j ~{1,...,7). On the other hand, with our definition35 

of 0 8 it can be treated on the same footing as all the other operators. 

Of course in calculating its renormalization we must now be careful to 

include the coupling constant renormalization. The matrix elements of 

(kk) 
the operators Ol and 0;") cannot produce a factor of mz2, however, 

they must in principle be included since under renormalization they mix 

(i?) 
with the operators O3 , Ol"), etc. whose matrix elements can produce 
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a factor of mF2. 1 e+> The anomalous dimension matrices y . (g') for these 

eight operators are given in Appendix B. The coeffitients Ljf')(mt/u,g) 

satisfy renormalization group equations which can be solved in the 

standard way. In this solution values are needed for the coefficients 

Lj’f)(l,E(mtl~,d), where g is the running coupling in the six-quark 

theory defined in Eq. (2.13) of Chapter II. These are found by noting 

that in the leading logarithmic approximation the L 
3 l,i(mtlu,d) 

can be replaced by their free field values L :+)(l,O) for j ~(1,...,7). 

L;++)(l,o) = +1 , (3.22a) 

L;ff)(l,O) = 1 , (3.22b) 

(1,O) = L;+l,o) = Li+f)(l,O) = 0 , (3.22~) 

and 

L(f+)(l,O) = -1 . 
7 

(3.22d) 

For the coefficient Li")(l,i(mt/n,g)) the situation is somewhat more 

12 subtle since the operator O8 contains a factor of l/g . Explicit 

calculation gives that in the s regularization scheme 

Lif+)(mt/p = l,g) a g2 !2n(m:/p2)/p=m = 0 . 
t 

(3.23) 

The last step follows, not because the factor of g2 is small, but rather 

because the logarithm vanishes at u=mt. The final aim is to derive an 

effective Hamiltonian independent of the heavy W-boson, t-quark, b-quark 

and c-quark fields. To do this the b-quark and c-quark must still be 

considered as heavy and removed from explicitly appearing in the theory. 

Removal of the b-quark is similar to the previous step. There are still 
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eight operators whose renormalization is characterized by the anomalous 

dimension matrices y ,,(+k> (g") g. iven in Appendix B. Finally at the step 

of removing the charm quark only one operator mF2(,oyu(l-y5)da) x 

("8YuU-Y5)ds) appears and its anomalous dimension follows from mass 

renormalization and the renormalization of the color symmetric local 

four-fermion operator (sd)V-A (&V-A. This program for deriving 

the effective Hamiltonian X3 in the presence of strong interactions is 

a straightforward generalization of that used in Chapter II to derive 

the effective Hamiltonian for weak nonleptonic decays. Its complexity 

is such that, unlike the case of xl and x3, we cannot write a simple 

analytic expression for .X3. However there are some further approxi- 

mations, beyond the leading logarithmic approximation, which make the 

derivation of a simple analytic expression for X3 possible. As can be 

(+I c+> seen from Eqs. (3.22) the operators O3 ,...,06- are induced through 

strong interactions and thus their contribution is less important than 

OY) whi ch has a non-zero coefficient even in the absence of the strong 

interactions. It follows since 01 and O2 do not mix directly with O7 

and O8 that to a good approximation, at the stage of removing the t- 

quark, the set of eight operators can be truncated to the two operators 

0;“) and 0 8’ These two operators then have the 2 X2 anomalous dimension 

matrices 

+ @.(g’4) , (3.24a) 

yt (+-I (g’> = Y 
lG+>(g’) = + t!w4> 9 (3.24b) 
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and 

y1 (--I (g”) = g”2 -8 -8 
( ) 8x2 0 

+ U(gT4) . (3.24~) 
7'3 

On removing the b-quark there are again two operators which enter. They 

(kk) have the same form as O7 and O8 defined in Eqs. (3.20) and (3.21) 

except that in O8 the factor of mk2/g' 2 is replaced by mF2/g112. The 

corresponding anomalous dimension matrices for these operators are 

+ @(g4) , (3.25a) 

y” (+-I 
,,2 -2 8 

(g") = ,,++) (g") = L$ 
( ) 

+ a(grt4> , (3.25b) 
0 5'3 

and 

y,,G-) (g”) = g”2 
-8 -8 

8x2 0 5'3 ) 
+ @(gVV4) . (3.25~) 

These are the same matrices as in Eqs. (3.24) except that the 8-8 entry 

has changed from 7'3 to 5'3 corresponding to the change of the number 

of flavors from 5 to 4 in the coupling constant renormalization (i.e., 

B-function). Finally on removing the charm quark only an operator 

proportional to O8 appears. Carrying through the steps of successively 

treating the t, b and c quarks as heavy and removing them from explicitly 

appearing in the theory using the 2 x2 anomalous dimension matrices 

above yields the following analytic approximation for x3: 



I 5125 

(3.26) 

The matrix elements of the three parts of the effective Hamiltonian 

for K"-ii" mixing in Eqs. (3.15), (3.16) and (3.26) are to be evaluated 

using the mass independent 5 subtraction scheme in an effective theory 

of strong interactions with three light quark flavors u, d and s. The 

effects of QCD can be ascertained by comparing Xl, X2 and x3 given by 

Eqs. (3.15), (3.16) and (3.26) with their free quark values 



-64- 

G2m2 

x; = - ~(~aY,((l-Y5)da)(~8yu(l-y5)dg) 

22 
GFmt 

*2=-- 16~~ 
( Tav,(l-u5)da)(sgY~(1-Yg)dg) 

(3.27) 

, (3.28) 

and 

("av,(l-v5)da)(sBy~(l-Yg)dg) . (3.29) 

These are derived by integrating the heavy t and c-quark fields out of 

the expressions given in Eqs. (3.3) and keeping only the leading contri- 

bution in the large quark masses mt and m . c 

2. Numerical Results 

It is now possible to calculate (for given values of the parameters) 

the coefficient of (sd)V-A(zd)V-A in the pieces xl, x2 and x3 of the 

effective AS=2 Hamiltonian for K"-Eo mixing and determine the magnitude 

of the QCD effects by comparing these results with their free quark 

values. Unlike the case of the effective Hamiltonian for AS=1 weak 

nonleptonic decays, we have simple analytic expressions for the pieces 

"Y., X' 2 and x 3 of the effective Hamiltonian. In order to derive an 

analytic expression for X3 new approximations beyond the leading 

logarithmic approximation were introduced. However these are not expected 

to significantly alter the numerical results. (The skeptical reader can 

verify this by using the results given in Appendix B to perform the 

calculation keeping all eight operators.) 
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Again the outlook is basically qualitative. The QCD effects have 

been computed in the leading logarithmic approximation and the c-quark 

mass was treated as a large quantity. For example, dispersive pieces 

which arise when the two u quarks in the loop of the box diagram shown 

in Fig. 7 bind to form a low mass hadronic state, have been neglected 

in comparison with pieces that contain explicit factors of the heavy 

c-quark mass. This is certainly a crude approximation, but it has the 

advantage of being a systematic expansion and other contributions are 

not expected to be larger than the ones computed. 

The effective Hamiltonian for K"-Eo mixing differs from that for 

the AS=1 weak nonleptonic decays in that at the final stage only one 

operator ("d>v-A("d)v-A appears. Since any renormalization point 

dependence in the Wilson coefficients is cancelled by renormalization 

point dependence of the matrix elements of this operator (at least if 

the Wilson coefficients are computed exactly) the Wilson coefficients 

of this operator in xl, x2 and .ti3 all have the same n dependence. 

Unfortunately, the matrix elements cannot be calculated exactly so that 

some final predictions may not appear renormalization point independent. 

However the quantity Im <K'\H,~~ ~As~=2~~o>/Re <K~IH~~~I=~/E~>, which will be 

of interest, is independent of the matrix elements of (a~)~-~(as),-, 

and so predictions for it will also be free of renormalization point 

dependence. 

To investigate the effective Hamiltonian for K"-K" mixing values 

for the QCD running fine structure constant a(Q2>, the values of the 

heavy masses and n2, or alternatively a"'(u2), are required. For a(Q2) 
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we again use 

a(Q2) = 
12r 1 

33-2Nf log (Q2'A2) 
(3.30) 

and take A2=0.1 GeV2 and A2=0.01 GeV2. The number of quark flavors 

is Nf=6 for the fine structure constant in the six-quark theory a(Q2), 

while a'(Q2), a"(Q2) and o"'(Q2) have Nf=5, 4 and 3 respectively, as 

they pertain to effective theories of strong interactions with those 

corresponding number of quark flavors. 

The quantity rn:, unlike rn:, is free of renormalization point 

dependence and hence more appropriately associated with the mass scale 

characterized by charmonium spectroscopy than m" is. 
C 

Thus for mf the 

value 1.5 GeV is taken on the basis of J, spectroscopy.28 The difference 

between rn: and rnz can be neglected in the argument of the running fine 

structure constant in the leading logarithmic approximation but this is 

not the case for the explicit factor of the heavy c-quark mass squared 

which appears multiplying the operator ("d)v-A("d)v-A in Xl and .X3. 

Similar remarks hold for the bottom and top quark masses. For % the 

value 4.5 GeV is taken on the basis of T spectroscopy.28 Again for rn: 

values of 15 GeV and 30 GeV are used since the t-quark mass is unknown 

at the present time. 

with the quantity Im <?/=H8' GeV* 

Since we shall be primarily concerned 

' $~IZ21Eo>/Re <IC~/H~~~/=~/~~> which is independent 

of n, only the value a"'(uL)=l is used. Values for the quantities nl, 

n2 and n3, which are defined respectively as the ratios of the coeffi- 

cients of ("d)v-A("d>v-A in Xl, X2 and X' 3 with strong interactions 

included, to those in the free quark model, are presented for the above 
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choices of parameters in Table III. The free quark values of the co- 

efficients were determined from Eqs. (3.27), (3.28) and (3.29) with 

m =1.5 GeV, and m,=15 GeV and 30 GeV. Note that the QCD corrections 
C 

tend to reduce the magnitude of Xl, 5p2 and X3, Xl being effected the 

least and X3 the most. The QCD corrections to X'2 and x3 are quite 

stable against variations of the parameters mt and A. However *l 
-- 

changes by roughly a factor of 0.6 on going from A2 =0 1 GeV2 to A*= . 

0.01 GeV2. 

The results of this chapter can be combined with those of the 

previous one to make predictions for CP violation parameters in the 

kaon system. This is done in the following chapter. 



-68- 

Table III 

QCD correction factors nl, r) 2 , and q 3 to the 

pieces 3iYl, X2, and Y? 3 of the effective 

Hamiltonian for K" - z" mixing. 

Parameters 

A2 = 0.1 GeV* 

mt = 15 GeV 

A2 = 0.1 Gev2 

mt = 30 GeV 

A2 = 0.01 GeV2 

mt = 15 GeV 

A* = 0.01 GeV2 

mt = 30 GeV 

? n2 ll3 

0.93 0.61 0.37 

0.92 0.62 0.34 

0.67 0.59 0.33 

0.67 0.60 0.33 
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CHAPTER IV 

CP VIOLATION PARAMETERS OF THE K"-zo SYSTEM 

The K"-K" system may be treated as a closed two-state system. 

Since the kaons decay, probability is not conserved for this system 

and the time development is described by a 2 x 2 Hamiltonian matrix 

which is the sum of mass and width matrices, 

H = M-F . 

In the K"-zo basis H is given by 

H= 

M - iFI2 M 
12 - ir12/2 

* 
Ml2 

- WY212 M - iTI2 1 

(4.1) 

(4.2) 

where 

M12 = <KoIHkdfSfl=*/Ko> + . . . (4.3) 

and 

r12 = 28 c PF<KoIHeff lASIzlj~> <~\~iiSfl=l/jp> + . . . (4.4) 
F 

with pF the density of final states F. The effective Hamiltonians 

&;I=' and HiAsI=2 
eff were calculated in Chapters II and III treating 

the strong interactions in the leading logarithmic approximation. The 

physical eigenstates for the system are 
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K; = ~2(1+,:/2)1112 [(l+dK’ + (l-.)F’] 

and 

q = &2)11,2 [(l+dK’ - (l-dK”] 

with mass and width eigenvalues 

T- MS-2= 

and 

ML 
-2 = M+#2 2$(M12 q" . 

(4.5a) 

(4.5b) 

(4.6a) 

(4.6b) 

The quantity E is given by 

iImM12+ImT12/2 
E = 

-ipy2/2 
112 

+ReM12 - iReP12 12 

MT2-ir;2 /2)(M12- iP12/2) 1 1'2-ReM12+iRer12/2 = 
-iImM12- Imr12/2 (4.7) 

Since CP K" = E" and CP K" = K", 
Imr12 and ImM 12 are zero when CP is 

conserved and hence E is also zero. Note that the states Kg and $ 

are not in general orthogonal since probability is not conserved in 

the kaon system. In fact 

<KLIKS> = 2Ree 

(I+ lE12> 
(4.8) 
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so that E is pure imaginary when the width matrix vanishes. E is not 

a physical quantity and its value depends on the phase convention one 

adopts for the kaon states or equivalently for the quark fields. The 

standard phase convention is to have the K" + rr(I= 0) amplitude, Ao, 

real. A0 is defined by 

-- <as(I=O)jHeff lAsl=llKo> = Aoeiso (4.9) 

where 6 o is the li~l isospin zero phase shift. If Cl?, or equivalently 

T, is conserved then A0 is automatically real since then 

i6 
Age ' = <nx(I= O)@'='lK"> 

out in 

= <~rs(I= O)jT -1 lASI=lTIKo> H 
out in 

= <K"jH~$;l=l/~n(I=O)> . 
out in 

(4.10) 

The kaon in state equals its out state36 (here in and out refer to 

strong interactions) while for the two pion state below inelastic 

threshold isospin conservation of the strong interactions implies that 

Iaa(I=O)> = IlTa(I= o>> <?&I= O>Ia+(I= o>> 
in out out in 

2iSo 
= e Irs(I=O)> , (4.11) 

out 
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which when put into Eq. (4.10) gives 

i6 
0 Aoe = <K"/H~~~l=llnn(I=O)> e 

2iAo 

in out 

* 2i6 
0 i.6 0 e =A:e . (4.12) 

-- 

In the six-quark Kobayashi-Maskawa model, where CP is violated, one 

can always make A0 real by judiciously choosing how the phase 6 enters 

the matrix U (which relates mass and weak eigenstates). The choice of 

U we have made puts the phase only in the couplings of the heavy 

quarks (see Eq. (1.12) of Chapter I and Eq. (2.1) of Chapter II). 

AS=1 Thus the CP violating couplings enter the effective Hamiltonian Heff 

only through Penguin-type diagrams which are pure I = l/2. Therefore 

the phase convention defined by the choice of quark fields in 

Eq. (1.12) of Chapter I and Eq. (2.1) of Chapter II corresponds to 

making the isospin two amplitude AZ, defined by 

<rr(1=2)I~~$Sfl=ll~O) = A2eis2 , (4.13) 

real. 62 is the as(I= 2) phase shift. It will therefore be necessary 

to transform results calculated on the basis of this form of the weak 

couplings to that which corresponds to making A0 real. 

As was mentioned in the introduction, non-zero values for the 

physical quantities n+ and no0 defined by 



and 

(4.14a) 

(4.14b) 

is a measure of CP violation. The quantities n+ and no0 can be 

expressed in terms of the isospin amplitudes A o and A2 using the 

following decompositions for s-wave two-pion states: 

\lr+lT-> = i IlrlT(I=2)> +&(I=O)> I 

llTOaO> = J- + Isa(I=Z)> -1 
v5 Ias(l=o)> * 

(4.15a) 

(4.15b) 

Since the experimental values of n+ and no0 are small (see 

Eq. (1.10) of Chapter I) we will drop terms like ~1mA~ and EImAO which 

are doubly CP violating. To leading order in CP violating quantities 

n+- = 
+iImA2e 

i(S2-60) 
(4.16a) 

and 

fi iImA2e 
i(62-60) 

+&ReA2e 
i(62-60) 

-iImAo-G&A0 

noo = 

I 

. (4,16b) 

fi ReA2e i(62-60) -ReA 0 

Within the convention A0 real these simplify to 
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n+ = E + E’ 

noo = E - 2E' 

when terms of order s'(ReA2/Ao) are dropped (experimentally 

ReA2/Ao = +1/20). The quantity E' is defined by 

E' = Le 
i(d2-Ao) ImA 

v!i Ao ' 

(4.17a) 

(4.17b) 

(4.18) 

and the experimental values of n +- and no0 imply that 

E’/E = -0.003 2 0.014 . (4.19) 

To leading non-trivial order in CP violating quantities Eqs. (4.6) 

and (4.7) become 

iT 

MS 2 
S iReP12 

-- = M++ReM12- 2 

ir iRep 
M - F- ReM12 + 12 2 

(4.20a) 

(4.20b) 

and 

iOx12 
E 

-I-iImM12) 
= 

$r, - . 
(4.21) 

rL) + i(MS - 3) 

Since experimentally l -(M-M s L ) = (JYs- PL)/2 and within the convention37 

A0 real (ImI12/ImM12> 5 l/10, it follows that when A 
0 

is chosen real 

1 
E z-----e ia/ ImY2 

2Jz ReMl2 
(4.22) 
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1. Predictions for E’/E 

In Chapter II it was noted that if the matrix elements of the 

operator Q,, in the effective Hamiltonian for AS=1 weak nonleptonic 

decays, contribute significantly in K+IT~ decays then they will give 

the largest imaginary CP violating parts to the K+ITII amplitude.16 

Recall also that Q, arose from Penguin-type diagrams and has a 

(V-A)@(V+A) chiTa structure which may lead to enhanced matrix ele- 

ments. Let f be the fraction of the K+rn(l= 0) amplitude due to 

matrix elements of Q6 when the CP violating phase 6 is set to zero. 

It is important to realize that the value of f is strongly renormaliza- 

tion point dependent. In fact, in the leading logarithmic approxima- 

tion, f would be almost zero if the renormalization point was equal to 

the charm quark mass. This may seem somewhat paradoxical since the 

Penguin-type diagrams are supposed to be the source of the AI=112 

rule which is a physical effect independent of p. However, one should 

keep in mind that a given diagram in perturbation theory contributes, 

in general, to the Wilson coefficients and matrix elements of many of - 

the operators in the effective Hamiltonian. Consider for example the 

lowest order Penguin-type diagram with u and c quarks in the loop. 

This diagram not only gives a contribution to the Wilson coefficient 

of Q,, it also gives a higher order contribution to the matrix ele- 

ments of Q, and Q,. How much goes into matrix elements of Q, and Q, 

depends (within the z regularization scheme) on the value of the 

renormalization point mass. In order to make predictions one chooses 

n to be at the typical light hadronic mass scale for the problem. It 

is then hoped that enough of the features of the strong interactions 



-76- 

have been included in the Wilson coeff icients so that a simp le esti- 

mate (for example using the naive quark model or bag model) of the 

matrix elements will lead to a qualitative understanding of the prob- 

lem. We shall assume that there exists some p (near the typical light 

hadronic mass scale) where the fraction f is large. Then at this 

renormalization point the total amplitude for K+~IT(I=O), Ao, is given 

by 

AO 
~ A(6=o) 

0 
+ ifAh6=')ImC6/ReC6 (4.23) 

where Ah6=') is the K'+s.rr(I=O) amplitude when the CP violation param- 

eter 6 is set to zero. That is 

<271(I=0)/Hh$=1(6=0)lKo> = 

(S=O) 
As was remarked previously, A0 is real. 

(6=0) ei60 . 
AO 

(4.24) 

C6 denotes the Wilson 

coefficient of the operator Q, in the effective Hamiltonian for AS=1 

weak nonleptonic decays. C6 was computed in Chapter III and values 

are presented in Tables I and II for various choices of QCD parameters. 

In addition there is CP violation in the kaon mass matrix. From 

Chapter III it follows that 
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I52 
E z-z 

m - ReMl2 
+ s2c2s3cos6 

+ n2m: ( c1sfjc3 + s2c2s3cos6 
) 

+ n3mzLn m:/m2, 
( > 

2 2 22 2 
x 

'1'2'3 - =ls2=3 - 2s2c2s3cosb 
!I[ I( 

nlmcc2 c1c2c3 - s2s3cos6 

- s~s~sin26) Z n2m~s~((cls2c3+c2s3cos~)2- cis:sin26 ) 

+ 2n3m~5k(m~im~)c2s2((clc2c3 - s2s3cos6)(cls2c3 + c2s3cos6) 

)I -1 
+ c2s2s:sin26 . 

This expression is quite complicated; however, in the limit where 

s1 and s 3 are treated as small quantities it simplifies to 

E m = 2s2c2s3sin6 . (4.26) 

nl, n2, and n3 are the QCD corrections to the three portions of the 

effective AS=2 Hamiltonian xl, x2, and s3 respectively. The quanti- 

ties r, 
j 

, jc{1,2,3), were computed in Chapter III and values of "1, n2, 

and n3 for typical QCD parameters are presented in Table III. Note 

that all renormalization point dependence drops out of the expression 

for E m' If f were zero then the amplitude A0 given in Eq. (4.23) 
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would be real and it follows from Eq. (4.22) that ~~ would then be 

proportional to the CP violation parameter e. However, we are inter- 

ested in the case where f is a large fraction. Then 

A = A(6=O)eiS 
0 0 

(4.27) 

where 5 = fImC6/BeC6. The standard phase convention, A0 real, may be 

accomplished by readjusting the phase of the strange quark field 

s + eiSs (4.28) 

so that 

]K">+e-iSIKo> , (4.29a) 

IK">-+e+iSIito> , (4.29b) 

At the same time 

Im%2 
- -t (Em + 20 
ReM12 

, (4.30) 

where ~~ is given by Eq. (4.25). It follows from Eq. (4.22) that the 

CP violation parameter E is given by 

1 
E = - ein’4(Em + 25) . 

26 
(4.31) 

E m and 25 give, in general, comparable contributions to E. The phase 

angle of r/4 originates from the q and Ki mass and width values and 

has the precise value of 43.8' + 0.2' just as in the superweak model. 

In general no prediction can be made for E since the angles e2, B3, 

and 6 can be adjusted to fit the experimental value of E. The other 
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CP violation parameter is E' defined in Eq. (4.18). CP violation from 

the Penguin-type operator Q, (with 1= l/2) cannot enter the A2 ampli- 

tude which involves a AI=312 transition. However through the read- 

justment of the kaon phases to make A0 real A2 picks up an imaginary 

part proportional to 5 and 

(4.32) 

where the experimental value of the 'TIB phase shifts 60 and h2 together 

with ReA2/A0 = -+-l/20 have been used. The experimental value of the 

phase angle which we have approximated by n/4 is 37' * 6'. Combining 

Eqs. (4.31) and (4.32) gives 

(4.33) 

In general E'/E like 6m is a complicated function of the Cabibbo type 

angles el, 82, e3 and the phase 6. Examination of this function using 

results presented in Tables I, II, and III reveals that values of E'/E 

at the fraction of a percent level are typical.38 For example, when 

s1 and s 3 are treated as small quantities both em and 5 are propor- 

tional to s2c2s3sinS and all dependence on R3, and 6 drops out of 

Eq. (4.33). Values of the quantities c/s2c2s3sin6, sm/s2c2s3sin6, and 

s'/e for this case are listed in Tables IV and V. e2 = 15' and 

f = 0.75 were used for the tables. Inspection of the results indicate 

that values from 3 x 10 
-3 to 3 x 10 -2 are typical for E'/E when s 3 is 

a small quantity. Smaller values of A or f can give smaller values 

for E'/E. The quadrant of the phase 6 can be adjusted to fit the 
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Table IV 

Values of the quantity 5, which leads to CP 

violation in decay amplitudes; Ed, the contribution 

to CP violation from the kaon mass matrix and the 

resulting ratio of CP violation parameters E'/E. 

These are calculated with s3, sl treated as small 

quantities, e2 = 15', f = .75, and A2 = 0.1 GeV2. 

Parameters S/fs2c2s3sin6 sm/s2c2s3sin6 E'IE 

dlJ2) - 0.42 t- s; 
t 

-1 
= 0.75, mt = 15 GeV 

) 
7.2 l/27 

a(p2) = 1.00, mt = 15 GeV - (0.65 + s;)-' 7.2 l/49 

ah21 = 1.25, mt = 15 GeV - (0.81 + s;)-' 7.2 l/64 

&!J2> = 0.75, mt = 30 GeV - (0.33 + s$' 16 l/65 

a(~~) = 1.00, mt = 30 GeV - (0.51+ s$-' 16 l/l03 

a(v2) - (0.62 -I- s;)-' IA 
l/l27 

= 1.25, mt = 30 GeV 
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Table V 

Same as Table IV but with A2 = 0.01 GeV2 

Parameters E/fs2c2s3sid Emjs c s 223 sin& E'/E 

a(p2) = 0.75, m;-= 15 GeV - (1.46 + s;)-' 8.9 11161 

a(p2) = 1.00, mt = 15 GeV - (1.76 + s;)-' 8.9 11197 

a(p2) = 1.25, mt = 15 Gev - 1.96+s; 
(, 

-1 

) 
8.9 l/220 

a(p2) = 0.75, mt = 30 GeV -(LO8 + s;)-l 18 l/255 

a(p2) = 1.00, mt = 30 GeV - (1.30 + s;)-' 18 l/308 

a(~~) = 1.25, mt = 30 GeV q1.44 + q1 IL8 
l/342 
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measured phase of E. When sl and s2 are treated as small quantities, 

we find that 6 should be in the upper half plane.16 Then e'fe is 

almost real and positive. For some larger values of s3 it is possible 

to fit the measured phase of E with 6 in the lower half plane3g and in 

this case E'/E is almost real and negative. The predictions for E'/E 

presented in Table IV are renormalization point dependent. As was 
-- 

mentioned before, our approach is to assume that a value of u exists 

for which f is large. Since we do not know exactly what p this is, 
n 

E'/E is calculated for several different choices of a"'(uL). Several 

authors have adopted a different approach.40 Since the real part of 

the Wilson coefficient C 6 
depends on integrations over virtual momenta 

primarily in the range p2 
2 

LP 5 rnz whereas the imaginary part of C6 

depends on integrations over virtual momenta primarily in the range 

2 2 2 m ,ZP 5m t a leading log calculation of the real part of the Wilson 

coefficient for Q, is more uncertain than that of the imaginary part. 

Thus to calculate 5 they take the real part of the K -f ITIT (1~0) 

amplitude from the experimental width and rely on either a vacuum 

insertion or bag model estimate for the matrix elements of Q, to cal- 

culate the imaginary part of Ao. This approach also involves an 

implicit choice of p, namely that which makes the matrix element com- 

putation correct, and tends to give somewhat smaller values for the 

ratio E'IE. 

The present experimental value is E'/E = -0.003 + 0.014 hut 

experiments are now planned41 which should be capable of measuring 

E'/E to the fraction of a percent level. As such they might be capa- 

ble of distinguishing the six-quark model, with important contributions 
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to K-tZn decay from Penguin-type diagrams, from the superweak mode142 

where al.1 CP violation originates from the kaon mass matrix and 

E' = 0. 

-- 
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CHAPTER V 

WEAR RADIATIVE HYPERON DECAYS43 

The strangeness changing radiative decays of hyperons have 

received considerable attention by theorists.44*45 Many of the recent 

theoretical analyses have attempted to view these decays as arising 

from a local s + dy magnetic moment type transition.45 Then the -- 

effective Hamiltonian for weak radiative decays is 

se eff 
= ieGF"ouv(a+by5)dFuV + h-c. 9 (5.1) 

where GF is the Fermi constant, e the electromagnetic charge of the 

electron, s and d are strange and down quark fields, and F lJV is the 

electromagnetic field strength tensor. 

The matrix elements of the effective Hamiltonian in Eq. (5.1) can 

be calculated reliably in the SU(6) quark mode1.46 The decays Bl + B2y 

where B 1 and B 2 are baryons differing in strangeness by one unit are 

conveniently described in terms of helicity amplitudes47 gh A 
2’ Y 

labeled by the helicities of the outgoing baryon and photon. 
gP! h 

2’ Y 
is just the Feynman amplitude in the situation where the initial bar- 

yon has spin component Xl = X2 - Ay along the direction of the final 

baryon three-momentum. When Bl has spin component Xl along a given 

axis the resulting decay angular distribution is 

dT f-f213 
- = 
dcose c 

49 h x 
IQ 

2’ Y 

(5.2) 
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so that 

1b2 

r(B1 + B2Y) = 2s(2Jl+l)Ml c h A h2,hy12 ' (5.3) 

2’ Y 

where 6 is the angle between the given axis and the direction of the 

out-going baryon,- The helicity amplitudes gh x are easily calcu- 
2’ Y 

lated from the effective Hamiltonian in Eq. (5.1) using W(6) wave 

functions for the initial and final baryons. The helicity amplitude 

contains several factors: first, a function which depends on the 

overlap of the initial and final wave functions (when they are "SePa- 

rated" in momentum space by the photons momentum G) F(G); second, a 

spin dependent factor CA x which is essentially a Clebsch-Gordon 
2’ Y 

coefficient arising from the spin part of the baryon wave functions; 

and third, a factor linear in the constants a and b of Eq. (5.1). 

This last factor is proportional to GFe(a-b)l<l when hy = +l (in 

which case the initial s quark spin is parallel to the photon three 

momentum) and proportional to GFe(a+b)l<l when Xy = - 1 (in which 

case the initial quark spin is antiparallel to the photon three momen- 

tum). Therefore 

gh2,+1 = 2fi GFe I<1 (a - b)F(;;)CA2,+l 

gx2,-1 = 2fi GFeI$I(a+b)F($CA 
2'-1 

(5.4a) 

(5.4b) 

, 

The spin dependent factor from the quark model wave functions of the 

baryons is the same when all helicities are reversed in sign, i.e., 
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ch2,+1 = CSX -l. The overlap function F(;) is normalized so in the 
, 

nonrelativis:ic quark model F(s) = 1. Inserting Eqs. (5.4) into 

Eq. (5.3) gives 

3 

r(Bl+B2~) = 
8G~e*l~l M2 

a(2Jl+1)Ml Id) l*(bl*+ I"!')~ jcA2,+112 

(5.5) 

The only observed radiative hyperon decay is C+-+py with a 

branching ratiolof (1.24 + 0.18) x 10W3. For the other weak radiative 

hyperon decays only upper limits exist at the present time. Normaliz- 

ing the observed C++py width, predictions for the other baryon decays 

can be made provided F(G) is slowly varying with G. In this case the 

factor (]a!'+ lb]')\F(&1* is determined from the observed C++py 

width and the branching ratios for the other hyperon decays follow 

from this and the values of ~~/3M2/[(2Jl+l)Mll and CA x . Predic- 
2’ Y 

tions for the weak radiative hyperon decays are presented in Table VI. 

There is a large disagreement between the predicted rates for E-+C-y 

and Ll--tZ- y and the experimental upper limits on these decay modes.48 

Thus it appears that the weak radiative decays of all the hyperons 

cannot arise from a local magnetic moment type transition. 

So far no dynamical assumptions on the origin of the effective 

Hamiltonian in Eq. (5.1) have been made. In the b-quark Weinberg- 

Salam model the coefficients a and b can be calculated since diagrams 

like Fig. 8, with gluon corrections, are short distance dominated to 

the extent that the W-boson and the charm quark are very massive. 
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Table VI 

Predictions for weak radiative decays of hyperons 

based on the local magnetic moment transition. 

5 x 
-- 2’ Y 

Predicted Measured 
branching branching 

ratio ratio (a) 

%, 1 
= l/3 

%,l 
= &I2 

C 4,l = 5fi16 

C&l = -l/A 

%1 
= 513 

C 4,1 = -&I3 

C -%,I 
= fi 

$,I = 1 

Cl ,531 
= z/J5 

C -4,l = 1 

1.24~10 -3 

(input) 

2.2xlo-2 

9.1x 10-3 

4xlo-3 

1.1x10 -2 

4.1xlo-2 

4.5xlo-3 

<7x10 -2 

(5 ?5) xlo-3 

cl.2 x10-3 

c3.1 x10 -3 

(a) The branching ratio for R" +A"y is given as (2.32 0.7) ~10~~ in 
Ref. 37. 
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-- 

4-80 3811A8 

Fig. 8. Diagram which gives rise to a local magnetic 
moment transition in the absence of strong 
interactions. 



-89- 

2 

Coefficients a and b which are not suppressed by a factor of L 
( ) 5 

first arise from diagrams at the two loop level and hence the values 

of a and b are quite small. These coefficients have been calculated 

in the standard 4-quark model by Shifman, Vainshtein and Zakhavov.49 

They found 

where 

sinBccosO 
a = 

&16x2 
' R(ms+md) 

sine c0se 

b = C 

fi16x2 
' R(md-ms) 

(5.6a) 

(5.6b) 

(5.7) 

Putting this into Eq. (5.5) yields predictions for branching ratios of 

weak radiative hyperon decays of order 10 
-5 (or less). 

If the local magnetic moment transition given by the effective 

Hamiltonian in Eq. (5.1) is not the mechanism for weak radiative 

decays then what is? Other possible contributions come from the 

matrix elements of the effective Hamiltonian for AS = 1 weak nonlep- 

tonic decays evaluated to order e in the electromagnetic interactions. 

Within the context of the pole model, where the weak radiative decays 

are viewed as a weak nonleptonic transition followed by the radiation 
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of a photon or vice versa, the rates for weak radiative decays are 

related to those of the nonleptonic decays. It is noteworthy that 

when the local magnetic moment transition is neglected the weak radi- 

ative decays of negatively charged baryons can only proceed through 

Penguin-type diagrams (with a photon radiated off one of the quark 

legs in the Penguin diagram or off a "spectator" quark leg). A meas- 

urement of branching ratios for the decays P- +C y and Q-+:-y of order 

1o-3 would be strong evidence that the Penguin-type diagrams are 

important in the weak radiative decays of hyperons and qualitative 

evidence that Penguin-type diagrams, which have been proposed as an 

explanation of the AI = l/2 rule, are important in the weak nonlep- 

tonic decays of hyperons. 

The special role of Penguin-type diagrams (with a photon radiated 

off one of the quark legs in the Penguin diagram or off a "spectator" 

quark leg) in the weak radiative decays of negatively charged hyperons 

leads one to believe that a similar effect should exist for the nonlep- 

tonic hyperon decays. This is examined in the next section. 

1. The f/d Patio in Nonleptonic Weak Hyperon Decays 

AS=l,8 
Let Heff be the portion of the effective Hamiltonian for weak 

nonleptonic decays that transforms like the sixth component of an 

octet under SU(3) flavor. Let Bi, i E Cl,... 83 denote the spin l/2 

positive parity baryon states in the octet. The s-wave nonleptonic 

hyperon decay amplitudes are related through PCAC5' to the matrix ele- 

ments of the parity conserving part of the effective nonleptonic Ham- 

iltonian between baryon states differing in strangeness by one unit. 
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The p-wave nonleptonic baryon decay amplitudes are not directly 

related through PCAC to matrix elements of the parity violating part 

of the effective nonleptonic Hamiltonian due to the presence of pole 

terms. Hence we shall focus our attention on the s-wave amplitudes. 

Define 

AS=1,8 
<BylHeff IBj> = ; aiJ i p.~.~j 

parity conserving 

(5.8) 

where u. and u. 
3 

are Dirac spinors for the spin l/2 baryon states Bi 

and B j; see Appendix C). Assuming that SU(3) is a good synnnetry the 

above matrix elements can be characterized by two reduced matrix ele- 

ments51 f and d and Clebsch-Gordon coefficients f ijk and d ijk in the 

following manner 

oij = -if 
6ij f+d p.c. 6ijd ' (5.9) 

where f ijk 
and d ijk 

are defined by the commutators and anticommutators 

of the SU(3) Gel1 Mann matrices Xi (normalized by Tr(XiXj) = 26ij): 

“i, Ajl = 2if ijk 'k , (5.10a) 

and 

jxi7 hj\ = 2dijk Ak + 413 "ij . (5.10b) 

Since the negatively charged hyperon transition matrix element can 

only proceed through Penguin-type diagrams (W exchange cannot occur 

between all Q = -l/3 quarks) and the contribution of the part of the 
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Hamiltonian that is not octet (i.e., the 27) is known from experiment 

to be sma11,52 oCWE- must approximately vanish in the absence of Penguin- 

type diagrams. Using the results in Appendix C and the values of the 

coefficients f 
ijk 

and d ijk' given in Table VII, 

oc-9- = +f+dl . (5.12) 

Thus we conclude that, in the absence of Penguin-type contributions to 

the baryon-baryon transition matrix element f/d z -1. This is not to 

say that if the coefficients of the operators Q,,...,Q, in the effec- 

tive Hamiltonian for AS = 1 weak nonleptonic decays were set to zero 

then f/d is necessarily equal to minus one. As was mentioned previ- 

ously the Penguin-type diagrams also give higher order contributions 

to the matrix elements of Q, and Q,. However, it is usually assumed 

that these are small when p is chosen to be at the typical light had- 

ronic mass scale which characterizes the decay. Experimentally a good 

fit to s-wave hyperon decay amplitudes occurs for f =Z - 2d. This is 

evidence that Penguin-type diagrams do play a significant role in weak 

nonleptonic hyperon decays. 
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Table VII 

Non zero f ijk 
and d ijk' Non zero elements not listed 

in the table below can be derived by noting that f 
ijk 

is completely antisymmetric and d ijk is completely 

symmetric 

ijk 

123 1 

147 1/z 

156 -l/2 

246 112 

257 1/2 

345 l/2 

367 -l/2 

458 VW2 

678 fil2 

f 
ijk 

ijk d ijk 

118 116 

146 112 

157 l/2 

228 116 

247 - 112 

256 l/2 

338 l/A 

344 112 

366 - 112 

377 - II2 

448 - 1125 

558 -1/2J3 

668 -1f2fi 

778 - I.1243 

888 -1/J? 
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CHAPTER VI 

CONCLUDING REMARKS 

In this report some of the implications of a possible mechanism 

for the AI = l/2 rule, based on a prominent role for Penguin-type dia- 

grams, were discussed. It was found that within the six-quark model 

for CP violation-_an important role for Penguin-type diagrams in K + rx 

decays leads to values of E'/E of order a fraction of a percent. Thus 

the Kobayashi-Maskawa six-quark model for CP violation may be distin- 

guishable from the super-weak model where E' = 0. In addition to gain- 

ing insight into the relationship between CP violation and the AI = l/2 

rule it was found that weak radiative hyperon decays may play a role 

in ascertaining the significance of Penguin-type diagrams in the weak 

nonleptonic decays of hyperons. 

In order to calculate E'/E the effective Hamiltonians for AS = 1 

weak nonleptonic decays and AS = 2 K" - z" mixing were derived by suc- 

cessively treating the W-boson, t-quark, b-quark, and c-quark as heavy 

and removing their fields from explicitly appearing the theory. 

Strong interaction effects were taken into account in the leading log- 

arithmic approximation. It is hoped that the method for performing 

such calculations may prove useful to workers in other areas (e.g., 

deep inelastic scattering1g'53 and grand unified theoriess4) where the 

effective field theory formalism can be applied. 

Most of the results derived in this report, while quantitative in 

principle, have been qualitative in their applciation to strange parti- 

cle decays. This is partly because the treatment of the charm quark 



-95- 

mass as large and using it as an expansion parameter is suspect.55 

However, the greatest limitation on our ability to make quantitative 

predictions comes from difficulties in calculating the matrix elements 

of the operators which enter the effective Hamiltonian for AS = 1 weak 

nonleptonic decays. These are renormalized local four-quark operators 

and any serious attempt to calculate their matrix elements must deal 
_- 

with the dependence of these matrix elements on the renormalization 

point mass. In the vacuum insertion approximation, which is commonly 

used to evaluate these matrix elements, a renormalized local four- 

quark operator is split into a product of renormalized quark bilin- 

ears. This completely destroys the renormalization point dependence 

of the matrix elements (note that <I ($l$2$3+4)RI> + G <I ($l$2)Rln> X 

<nl (~J~JI,)~/ >>, and therefore if this approximation is ever valid it 

can only be at one particular value of the renormalization point mass. 

This value is usually taken to be the typical light hadronic mass 

scale which characterizes the decay. Similar remarks hold for bag- 

model estimates of the matrix elements. 56 Much further work is needed 

on this problem before it can be claimed that we have a quantitative 

understanding of the weak nonleptonic decays of kaons and hyperons. 
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APPENDIX A 

In this appendix we outline the derivation of the equations and 

give numerical results for the quantities which appear in Section 1 of 

Chapter II. In Section 1 of Chapter II a rather fundamental role was 

played by the renormalization group Eqs. (2.22), (2.32), (2.37) and 

(2.48). To get E+ (2.22), for example, one merely applies p & to 

both sides of Eq. (2.18) using 

= -4%) <loyl> , (A. 1) 

and 

= - C Y;j(g') 'I"jl" , (A.21 
j 

(A.31 

In Eqs. (A.l) and (A.3) the partial derivative with respect to p is at 

constant g and m 
4' 

where q E (u,d,...,t}, while in Eq. (A.2) it is at 

constant g' and m', where q E {u,d,...,b). 

The u(')(g) znd the matrix yLj(g') e> arise because the operators Ot 

and Oi are local four-fermion operators and require renormalization. 

The renormalization of the operators 0 e> 
9 

at the one-loop level was 
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considered in Refs. 5 and 6 where it was shown that the y (*j(g) are 

given by Eq. (2.12). From Eq. (2.16), with Nf=6, it follows that 

,(+L& , ,(-I = 12 
-TT - (A.4) 

At the one-loop level the operators Oj undergo a renormalization 

-o;= z. c 
k Jk Ok (A.5) 

where a superscript "0" denotes a bare unrenormalized quantity. Zjk is 

the matrix renormalization which arises because of the composite nature 

of the local four-fermion operators 0.. 3 
The renormalized operators are 

defined so that their matrix elements are finite. The matrix yfj(g') is 

defined by 

Yij k’> = c z;; ?J $ Zkj 
k 

. 

Note that the Z 
3 

are a function of the coupling g' since the renoramli- 

zation of the operators Oj is calculated in the effective 5 quark theory 

with that coupling. A straightforward calculation of the "infinite part" 

of the one-particle-irreducible diagrams in Fig. 9, using Landau gauge, 

gives 

8,2 v;jw = & 

-1 3 0 0 0 0 

3 -1 -l/9 l/3 -l/9 l/3 

0 0 -11/g 11/3 -2/9 213 

0 0 2219 213 -S/9 s/3 

00 0 0 1 -3. 

, 0 0 -s/9 513 -519 -19/? 1 
+ @(g’4) . 

(A.7) 



x x 

-9s 

K x 

5. 79 

X 

K 

3629A3 

Fig. 9. Diagrams entering the calculation of the renormalization 
of the local four-fermion operators (represented by the 
black box) through QCD effects. 
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In the calculation of the renormalization of the local four-fermion 

operators, O., 
J 

the masses of the light up, down, and strange quarks was 

set to zero. If this was not done the operators 0. would close under 
J 

renormalization at the one-loop level but at the two loop level a 

transition color magnetic moment term must be added. However, the pre- 

sence of such an operator does not alter the Wilson coefficients of the 

local four-fermioiioperators, O., from their value calculated with the 
J 

light quark masses set to zero. The transition color magnetic moment 

operator itself is explicitly proportional to a light quark mass yielding 

small matrix elements. Also the Wilson coefficient of the magnetic moment 

operator is expected to be small. These facts justify our approximation 

of setting the u,d, and s quark masses to zero. 

The matrix yij 'Tk') can be diagonalized by the transformation 

(A.8) 

where 

"kj = 

and 

’ 
\ 

0 -.69483 0 0 .70576 0 

0 .69483 0 0 .70576 0 

.15042 .23161 -1.253 .16684 -.10082 .42681 

-.2089 -.23161 1.0843 .081196 -.10082 .82414 

.032942 0 .10426 .93924 0 -.3322 

, .61688 0 .21323 7.34513 0 .28045 

(A. 9) 
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(A.lO) 

Combining (A.lO) with the perturbative expansion of B'(g') in Eq. (27) 

yields the a; of Eq. (28): 

a; = 

-.8994 

- 12123 

-.42299 

. 14564 

6123 

-40861 

Note that a; = a'(-) and ai = a'(+) where 

(A.ll) 

_ v’(‘)(x) _ 2,m 

B’(x) - x 
+ terms finite at x=0 (A.12) 

and 

r’(+)(g’) = l2 5 + 6W4) 
4* 

(A.13a) 

yt C-1 ,2 
(g’) = - g + @(g’+) 

2X2 
. (A.13b) 

The case where the bottom quark is treated as very heavy is similar 

to the above and we simply state results: 
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(A.14) 

vL(g") is diagonalized by the transformation 

(A.15) 

where 

Wb = 

and 

0 .67552 0 0 -70598 0 

0 -.67552 0 0 .70598 0 

-.13011 -.33776 -1.2092 .14075 -.11766 .47246 

.18274 .33776 1.1043 .067129 -.11766 .80199 

-.02959 0 .064119 .96326 0 -.30023 

-.65316 0 .14969 -. 34859 0 .23908 

-7.0428 

-4 

-3.501 

1.0974 

2 

2.8909 

. (A.17) 

(A.16) 

It follows from (A.17) and the perturbative expansion of B"(g") that 
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(A.18) a” 1 
-.42012 

. n .13169 

6125 

\ .34691 

Again a'; = a ,I c-1 and a; = ad+> . 

When the heavy charm quark expansion is performed only the five 

-.84514 

- 12125 

operators Ql,Q2,Q3,Q5, and Q, defined in Eq. (44) are required. We find 

that 

-1 3 0 0 0 

813 -213 219 -l/9 l/3 

-1ll3 1113 22/9 -219 2.13 

0 0 0 1 -3 

-1 1 213 -l/3 -7 

The matrix Uif(g"') is diagonalized by the transformation 

c x-l np V$Qp”‘) Xrq = 6nq Y;(g”‘) , 
w 

where 

x = 
w 

and 

.16866 -.71436 .052633 .84853 .69088 

.16866 .71436 - .052633 .56569 - .69088 

.050165 -.030949 - .16552 -.28284 -1.1481 

.028133 .018728 -1.0044 0 .23229 

-78361 .049722 .35726 0 - .17486 

+ d(g"' 4, 

(A.19) 

(A.20) 

, (A.21) 
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+ @(g"' 4, - (A.22) 

Note that these eigenvalues check with those of Ref. 8 where the effec- 

tive Hamiltonian Er strangeness changing nonleptonic decays was calcu- 

lated in the four-quark model using a different operator basis. The 

fourth eigenvalue corresponds to the multiplicatively renormalized 

SU(3) 27 operator 3Q1+2Q2-Q3. This operator has both 1=1/2 and 

I= 312 pieces. 

aY = 

-.a0246 

-.41732 

.11957 

6127 

.29774 

(A.23) 

The octet operators used in Ref. 8 were 

Qi = (S d ) G u > a a V-A B fl V-A - ("aUa)"&~d&"-A (A.24a) 

Q; = (s d > a ~1 V-A (U u > S g V-A + (saUa)"-A('~df&-A 

+ 2(~,da>v-A($dg)V-A + 2(“ada)v4(“r$&7-A 

Q; = 4(~uT;Sds)V-A[(;oT~SUS)V+A 

+ (",T:~d&+A + ('oT:gsS)V+A] 

(A.24b) 

(A.24~) 

Q;, = (Gad,&+ [(‘&“+A + (‘adf&+A + +$“+A] (A.24d) 
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where Ta aE 11 ,...,a) are the SU(3) color matrices normalized to 

Tr(TaTb) = Sab/2. These operators can be written in terms of the 

operators Q,,...,Q, of Chapter II in the following manner 

Q; = -9, + Q, 

9; = -Q, + Q2 + 24, 
-- 

2 

Q; = 9, 

(A.25a) 

(A.25b) 

(A.25~) 

(A.25d) 

Using these relations it can be shown that the anomalous dimension matrix 

in Eq. (A.19) agrees with that used in Ref. 8. 
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APPENDIX B 

In thisappendixvaluesare givenfor thevarious quantitieswhich enter 

the computation of x3 (a portion of the effective Hamiltonian for 

K0 -go mixing) when all eight operators 0 (A*> 
j 

jsI1, . . . . 7) and O8 are 

kept. These operators (defined in Eqs. 18, 20 and 21 of Chapter III) 

close under renormalization of the one loop level and their renormal- 

ization is characterized by the anomalous dimension matrices 

q (--I 12 

ij 62) = L- 
8a2 

1 3 0 0 0 0 0 0 

3 1-i ; -+ + 0 0 

0 0 1 y-5 11 5 g 0 32 

0 og85> - -- 
9 3 9 3 0 16 

0 0 0 0 3 -3 0 -32 

0 0 -5 ; +y 0 -16 

0 0 0 0 0 0 4 -24 

0000000~ 

5 3 0 0 0 0 0 0 

3 -5 + + -$ + 0 0 

0 O-47 IL-$ 2 9 3 7 0 -16 

0 0 .2LLr 5 
9 3 9 7 

~0 0 

0 0 0 0 -3 -3 0 16 

0 0 0 0 0 0 -8 -8 

0000000~ 

, 

+ @G4> (B.1) 

+ a(s’4) (B.2) 



’ (+-I 
'ij 

(g') = g'2 
8a2 

’ (-+I 
Y.. 1J (g') = 5 

- 

. 
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13 0 0 0 0 0 0 

3 1-i f -$ ; 0 0 

7 11 0 0 TT-9 f 0 32 

0 02855 - -- 
9 3 9 ?; 0 16 

0 0 0 0 3-3 0 -32 

0 0 -5 $ +A$ 0 -16 

000000-28 

0000000~ 

5 3 0 0 0 0 0 0 

3-5-i f-f + 0 0 

0 o-kl.g 2 2 
9 3-9 7 

0 -16 

22 10 5 5 0 0 -g--7-q 7j 0 0 

0 0 0 0 -3 -3 0 16 

0 0-g ~-~+ 0 0 

000000-28 

7 
0000000~ 

+ a(s’4> 0.3) 

f a(g'4> (B.4) 

The matrices ~;~")A(gv) can be diagonalized by the transformations 

c v(++)-1 1 (++)T 
ill YRk (g') VEf) = cTij y;(ff)(g') (B.5) 

k,k 
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where 

(*I= 
'kj 

0 .69589 0 0 0 -.70658 0 0 

0 -. 69589 0 0 0 -.70658 0 0 

-.20236 -.23196 .95985 0 .17132 .10094 0 -.40226 

.28103 .23196 -.83058 0 .083375 .10094 0 -.77672 

-.044316 0 -.079869 0 .96445 0 0 .31309 

-. 82989 

0 

-1.7593 

0 0 .69589 0 0 -.70658 0 

0 0 -. 69589 0 0 -.70658 0 

20236 0 -.23196 .95985 .17132 .10094 -.40226 

28103 0 .23196 -.83058 .083375 .I0094 -.77672 

044316 0 0 -. 079869 .96445 0 .31309 

82989 0 0 -.16334 -.35439 0 -.26431 

0 1 0 0 0 0 0 

19115 .77419 -.35917 1.7372 -2.4326 .3727 -3.5761 

0 -.16334 0 -.35439 0 0 -.26431 

0 0 0 0 0 1 0 

.85647 -6.3181 1 -23.46 2.9071 -14.4 -11.106 1 
(I 3. 6) 

03.7) 
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; -.20236 0 0 0 0 0 

.28103 0 
(+-I= 

"kj -.044316 0 
_- 

-.82989 0 

0 1 

.69589 0 0 0 -.70658 0 

-. 69589 0 0 0 -.70658 0 

-.23196 .95985 0 .17132 .10094 -.40226 

.23196 -.83058 0 .083375 .10094 -.77672 

0 -.079869 0 .96445 0 .31309 

0 -.16334 0 -.35439 0 -.26431 

1 -1.7593 -1.8462 .85647 -6.3181 1 -23.46 2.9071 -11.106 1 
-I 

0 .69589 0 0 0 

0 -. 69589 0 0 0 

-.20236 -.23196 .95985 .17132 0 

' .28103 .23196 -.83058 .083375 0 

"kj (-+> = -.044316 0 -.079869 .96445 0 

-. 82989 0 -.16334 -.35439 0 

0 0 0 0 1 

1 -.19115 -.35917 1.7372 -2.4326 -1.8462 .3727 -3.5761 lj 

(B.9) 

(B.8) 

-.70658 0 0 

-.70658 0 0 

.10094 -.40226 0 

.10094 -.77672 0 

0 .31309 0 

0 -.26431 0 

0 0 0 
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and 

’ c-1 ,2 

‘ii k’> = 5 
8a 

12 

‘(--)(g’) = L 

yj 8r2 

,2 ‘(+-) (g’) = L 
‘j 81r~ 

r2 
‘(-+)(g’) = L 

'j ~II~ 

-4.8954 ’ 

-2 

-1.2429 

2.3333 

3.1166 

4 

4 

5.1327 / 

/- 10.895 

-8 

-8 

-7.2429 

-2.8834 

.-.a6725 

2.3333 

+ ac3’4> 

-4.8954 

-2 

-2 

-1.2429 
+ @(s'4> 

2.3333 

3.1166 

4 

5.1327 

I -8 

-7.2429 

I -2.8834 ( :y34 ] + @(914) + @(g’4) 
-2 

-2 -2 

-.86725 -.8672. 

\ 2.3333 \ 2.3333 / 

(B.lO) 

(B.ll) 

(B.12) 

(B.13) 
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At the stage of removing the b-quark the same operators enter 

except that the factor mL2/g12 in the definition of O8 is replaced 

by mp2/g"2 and the b-quark field terms in 03-O6 are absent. Again these 

operators close under strong interaction renormalization. The calculation 

of the anomalous dimension matrix is the same as when the t-quark was 

removed except it is calculated in an effective 4-quark theory (instead 

of an effective S--quark theory) of strong interactions with coupling g". 

The resulting anomalous dimension matrices are: 

3 0 0 0 0 

1-i 3-f + 

0 7 - 11 -- 2 2 
5 3 9 3 

0 23 7 4 4 - -- 
9393 

0 0 0 3 -3 

0 0 0 0 0 

0 0 0 0 0 

3 0 0 0 0 

112 0 0 y+-+ 4 yl' (--I 3 = 

ij 

co 3 

0 0 0 0 -3 -3 

0 0 

0 0 

0 32 

0 16 
+ td4> 

0 -32 

0 -16 

4 -24 

0 ; 

0 0 

0 0 

0 -16 

0 0 
+ a(g"4> 

0 16 

0 0 

0 0 0 0 0 0 -8 -8 

5 
oooooooj 

(B.14) 

(B.15) 



Y ;s’-’ (gl’) = b$ 

y" (- +> 
112 

ij 
(g") = L.- 

8s2 

-lll- 

13000'000 

3 

0 0 7 11 2 2 VT-3 ?; 0 32 

0 16 

0 0 0 0 3 -3 0 -32 

0 0 -1.6 

0 0 0 0 0 O-2 8 

0000000~ 

-5 3 0 0 0 0 0 0' 

3 

0 0-z u-1. 2 9 3 9 3 0 -16 

.O 0 2AL-4 4 
9 3 9 7 

0 0 

0 0 0 0 -3 -3 0 16 

000000-28 

0000000~ 

+ a(s”4> (B.16) 

+ a(g"4> (B-17) 

(+*)T(gl') The matrices yij can be diagonalized by the transformations 

c w(kt)-1 ” (2+> iR 'Rk 
(gt,>T w(++) = 6 

W 
ijY; (g"> (B.18) 
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where 

ww= 
k j 

,(--) = 
ki 

0 

0 

.14452 

.20298 

032867 

.72549 

0 

1.6816 

.6558 

-.6558 

-.3279 

. 3279 

-- 0 

0 

0 

1.4308 

0 0 0 .70643 0 0 

0 0 0 .70643 0 0 

-.78005 0 .1414 -.11774 0 -.67561 

.71236 0 .067442 -.I1774 0 -1.1468 

.041364 0 .96775 0 0 -42931 

.096564 0 -.35021 0 0 -.34187 

0 0 0 0 1 0 

5.1876 1 -13.812 -2.4221 -10.286 -14.961 

(B.19) 

0 0 .6558 0 0 .70643 0 0’ 

0 0 -.6558 0 0 .70643 0 0 

.14452 0 -.3279 -.78005 .1414 -.11774 -.67561 0 

-.20298 0 .3279 .71236 .067442 -.11774 -1.1468 0 

.032867 0 0 .041364 .96775 0 .42931 0 

.72549 0 0 .096564 -.35021 0 -.34187 0 

0 1 0 0 0 0 0 0 

1 
.14055 .a2759 -.54273 -1.4336 -2.8936 -.51377 -6.3689 1 

(B.20) 
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(+-)= 
"kj 

c-+1= 
"kj 

0 0 .6558 0 0 0 .70643 0 

0 0 -.6558 0 0 0 .70643 0 

.14452 0 -. 3279 -.78005 0 .1414 -.11774 -.67561 

..20298 0 .3279 .71236 0 .067442 -.11774 -1.1468 

032867 0 0 .041364 0 .96775 0 .42931 

.72549 0 0 .096564 0 -.35021 0 -.34187 

0 1 0 0 0 0 0 0 

1.6816 -2.1818 1.4308 5.1876 1 -13.812 -2.4221 -14.961 

(B.21) 

' 0 .6558 0 0 0 .70643 0 0 

0 -.6558 0 0 0 .70643 0 0 

.14452 -.3279 -.78005 .1414 0 -.11774 -.67561 0 

-.20298 .3279 .71236 .067442 0 -.11774 -1.1468% 0 

.032867 0 .041364 .96775 0 0 .42931 0 

.72549 0 .096564 -.35021 0 0 -.34187 0 

0 0 0 0 0 0 0. 1 

.14055 -.54273 -1.4336 -2.8936 -2.1818 -.5 1377 -6.3689 1 

(B.22) 
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and 

f 

-5.0428 

-2 

-1.501 
112 

y;(-H) (g") = 3 
1.6667 

3.0974 

-- \ 

4 

4 

4.8909 

i 

-8 

-a 

-7.501 

-2.9026 

-1.1091 

1.6667 

/- 5.0428 

i 

-2 

-2 
112 

++-I (g") = 3 -1.501 

1.6667 

3.0974 

1 1 4 

4.8909 

,j(-+I (g”) = Li$ 

i 

-7.501 

-2.9026 

-2 

-2 

-1.3.091 

\ 1.6667 

+ @(g”4> 

+ @(g114) 

+ a(g”4) (B.25) 

(B.23) 

(B.24) 

(B. 26) 
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At the stage of removing the c-quark only the operator mc "2(Sd)V-A. 

WvsA appears. It is multiplicatively renormalized (i.e., does not 

mix with other operators) and has the anomalous dimension g rr2/7T2 + 

g"12/4r2 to leading order in the strong coupling. 
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APPENDIX C 

Here some useful W(3) relations are given. The Gel1 Mann matri- 

ces A i, is:(l,...a) are 

These matrices form the generators of W(3). In addition they trans- 

form as a basis for the adjoint octet representation. The spin l/2 

ground state positive parity baryons also transform as a basis for the 

adjoint representation of SU(3). Let IBk> denote the baryon state 

with the same W(3) quantum numbers as Xk. Then 

IC+> = % IBl + iB2> 

If> = $ IBl - iB2> 

IC"> = (B3> 

IP > = 2 IB4 + iB5> 
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In > = 2 IB6 + iB7> 

I?'> = i IB6 - iB7> 

IS-> = L IB4 - iB5> 
?ii 

-- 
iA'> = IBa> 

The matrix element for an operator Ok which transforms like the k'th 

component of an octet (i.e., like Xk> under SU(3) is given by 

<B~~o~~B~> = dkijd- ifkijf 

The non-zero d ijk and f ijk are listed in Table VII. 



-iia- 

REFERENCES 

1. Particle Data Group, Phys. Lett. 75B, 1, (1978). - 

2. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967); A. Salam, in: 

Elementary Particle Theory: Relativistic Groups and Analyticity 

(Nobel Symposium No. a), edited by N. Svartholm (Almqvist and 

Wiksell, Stockholm, 1968) p. 367. 

3. K. G. Wilson, Phys. Rev. 179, 1499 (1969). 

4. For a review see W. Marciano and H. Pagels, Phys. Reports 3&, 

137 (1978). 

5. M. K. Gaillard and B. W. Lee, Phys. Rev. Lett. 2, 108 (1974). 

6. G. Altarelli and L. Maiani, Phys. Lett. m, 351 (1974). 

7. M. B. Wise and E. Witten, Phys. Rev. D20, 1216 (1979). 

a. A. I. Vainshtein, V. I. Zakharov, and M. A. Shifman, JETP Lett. 

2, 55 (1975); M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, 

Nucl. Phys. B120, 316 (1977); and ITEP-63, 64 (1976) unpublished. 

9. It is possible to add extra Higgs so that CP violation occurs in 

the 4-quark model. See T. D. Lee, Phys. Rev. m, 1226 (1973); 

Phys. Rep. SC, 143 (1974); S. Weinberg, Phys. Rev. Lett. 37, 657 

(1976); P. Sikivie, Phys. Lett. 65B, 141 (1976). 

10. M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49. 652 (1973). 

11. For a review see M. Perl. SLAC-PUB-2446 (1980) unpublished. 

12. The phenomenology of b and t quarks is discussed in J. Ellis, 

M. K. Gaillard, D. V. Nanopoulos and S. Rudaz, Nucl. Phys. w, 

285 (1977). 



-119- 

13. 

14. 

15. 

16. 

17. 

la. 

19. 

20. 

21. 

22. 

23. 

It is not however necessary. For examples of models without a 

t-quark see H. Georgi and S. L. Glashow, Harvard University pre- 

print g/A073 (1979) unpublished. 

S. L. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D2 (1970 - 

1285. 

C. Bouchiat et al., Phys. Lett. 38B, 519 (1972) and D. J. Gross 

and R. JackTw, Phys. Rev. s, 477 (1972). 

F. J. Gilman and M. B. Wise, Phys. Lett. 83B, 83 (1979). 

J. Ellis, M. K. Gaillard, and D. V. Nanopoulos, Nucl. Phys. m, 

213 (1976). 

The results of this chapter appear in: F. J. Gilman and M. B. 

Wise, Phys. Rev. G, 2392 (1979). 

E. Witten, Nucl. Phys. B104, 445 (1976). 

E. Witten, Nucl. Phys. E, 109 (1977). 

S. Weinberg, Phys. Rev. I& 3497 (1973); G. 't Hooft, Nucl. Phys. 

J36J, 445 (1973). 

M. Gell-Mann and F. Low, Phys. Rev. 2, 1300 (1954); E. C. G. 

Stueckelberg and E. Peter-man, Helv. Phys. Acta 3, 499 (1953); 

C.G.Callan, Phys. Rev. E, 1541 (1970); K. Symanzik, Commun. 

Math. Phys. 18, 227 (1970). 

D. J. Gross and F. Wilczek, Phys. Rev. Lett. 2, 1343 (1973); 

H. D. Politzer, ibid. 30, 1316 (1973). 
n 

24. The running fine-structure constants are defined by a(M‘) 

= g(M/p,g)2/4s so that a(u2) = g2/4s. Similarly a' = g'2/4r, 

atl = -11 g 214T, and a"' = g'*'2/4n. 



-120- 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

T. Appelquist and J. Carrazone, Phys. Rev. B, 2856 (1975). 

A detailed discussion of what is meant by an effective theory of 

strong interactions can be found in Sees. 2 and 3 of Ref. 19. 

J. G. H. DeGroot et al., Phys. Lett. g, 292 (1979); 82B, 456 

(1979); Z. Phys. Cl, 142 (1979). 

For a review see: J. D. Jackson, C. Quigg, and J. L. Rosner in 

Proceedings-of the 19th International Conference on High Enerm 

Physics, Tokyo, 1978, edited by S. Homma, M. Kawaguchi, and H. 

Miyazawa (Phys. Sot. Japan, Tokyo, 1979) 391. 

This point has been emphasized in Ref. 5 and in J. Ellis, M. K. 

Gaillard and D. V. Nanopoulos, Nucl. Phys. H, 313 (1975). 

The matrix elements of Q, also have the chiral structure 

(V-A)@(V+A) which leads to enhanced matrix elements. However, 

the Wilson coefficient C5 is much smaller than C6 and in the vac- 

uum insertion approximation the matrix elements of Q, are sup- 

pressed by a factor of l/3 compared to those of Q,. 

This chapter is an expanded version of: F. J. Gilman and M. B. 

Wise, P&AC-PUB-2473 (1980) (to appear in Phys. Lett.). 

M. K. Gaillard and B. W. Lee, Phys. Rev. D16, 897 (1974). 

A. I. Vainshtein, V. I. Zakharov, V. A. Novikov, and M. A.Shif- 

man, Sov. J. Nucl. Phys. 3, 540 (1976); E. Witten, Nucl. Phys. 

s, 109 (1977); V. A. Novikov, M. A. Shifman, A. I. Vainshtein, 

and V. I. Zakharov, Phys. Rev. m, 223 (1977). 

D. V. Nanopoulos and G. G. Ross, Phys. Let. s, 1219 (1975); 

A. I. Vainshtein, V. I. Zakharov, V. A. Novikov, and M. A. Shif- 

man, Phys. Lett. 60B, 71 (1975). 



-121- 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

The advantages of using the definition were discussed in detail 

by F. J. Gilman and M. B. Wise, SLAC-PUB-2439 (1979) to appear in 

Phys. Rev. D. 

R. F. Streater and A. S. Wightman, PCT Spin Statistics and All 

That (Benjamin/Cummings Publishing Co., New York, 1964). 

K. Kleinknecht, in Proceedings of the XVII International Confer- 
-- 

ence on High Energy Physics, London, 1974, edited by J. R. Smith 

(Rutherford Laboratory, Chilton, Didcot, Berkshire, England, 

1974) p. 111-23. 

F. J. Gilman and M. B. Wise, Phys. Rev. G, 2392 (1979); B. D. 

Gaiser, T. Tsao and M. B. Wise, SLAC-PUB-2523 (1980) unpublished. 

J. S. Hagelin, Harvard University Preprint BO/AOlB (1980) 

unpublished. 

V. V. Prokhorov, Yad. Fiz. 30, 1111 (1979); B. Guberina and R. D. 

Peccei, Nucl. Phys. B163, 289 (1980); J. S. Hagelin, Harvard Uni- 

versity Preprint 79/AO81 (1979) unpublished. 

R. Bernstein, J. W. Cronin, B. Winstein, B. Cousins, J. Green- 

halgh, M. Schwartz, D. Hedin, and G. Thomson, Fermilab experiment 

E-617. 

L. Wolfenstein, Phys. Rev. Lett. l& 562 (1964). 

Some of the work presented in this chapter was published in 

F. J. Gilman and M. B. Wise, Phys. Rev. =, 976 (1979). 

M. K. Gaillard, 11 Nuovo Cimento 6& 559 (1971); G. R. Farrar, 

Phys. Rev. D& 212 (1971); K. Gavroglu and H. P. W. Gottleib, 

Nucl. Phys. 2, 168 (1974); 3. 0. Eeg, University of Oslo, 



-122- 

45. 

46. 

47. 

48. 

49. 

50. 

51. 

52. 

53. 

54. 

Institute of Physics Report 79-09 (1979); M. A. Shifman, A. I. 

Vainshtein, and V. I. Zakarov, Phys. Rev. D18, 2583 (1978). 

N. Vasanti, Phys. Rev. D13, 1889 (1976); M. A. Ahmed and G. G. 

Ross, Phys. Lett. 59B (1975). 

For a review see J. J. S. Kokkedee, The Quark Model (W. A. Benja- 

min Inc., New York, 1969). 

M. Jacob and C. C. Wick, Ann. Phys. 7, 404 (1959). 

N. Yeh et al., Phys. Rev. G, 3545 (1974); and M. Bourquin et al., 

Phys. Lett. e, 192 (1979). 

M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Phys. Rev. E, 

2583 (1978) and ITEP preprint ITEP-113 (1976) unpublished. 

For a review see S. B. Treiman in: Lectures on Current Algebra 

and Its Applications (Princeton University Press, Princeton, 1970). 

This follows from the fact that the outer product of two octets 

contains the octet representation twice, i.e., 8 @ 8 = 

ie3a$ac310@10827. 

A contribution from the 27 part of the effective Hamiltonian for 

AS= 1 weak nonleptonic decays implies a violation of the Lee- 

Sugawara relation. See: B. W. Lee, Phys. Rev. Lett. 12, 83 

(1964); H. Sugawara, Prog. Theor. Phys. 2, 213 (1964). 

L. F. Abbott and M. B. Wise, SLAC-PUB-2482 (1980) unpublished. 

For some recent work see S. Weinberg, Harvard University preprint 

BO/AOOl (1980) unpublished; B. Ovrut and H. Schitzer, Brandeis 

University preprint (1980) unpublished; L. Hall, Harvard Univer- 

sity preprint (in preparation); L. F. Abbott and M. B. Wise, 

SLAC-PUB-2487 (1980) unpublished. 



-123- 

55. In principle the accuracy of our treatment can be improved by 

going beyond the leading logarithmic approximation, calculating 

the two loop anomalous dimensions and one loop initial value 

for the Wilson coefficients. 

56. J. F. Donoghue, E. Golowich, W. A. Ponce, and B. R. Holstein, 

Phys. Rev. D21, 186 (1980). 


	slac-r-227a.pdf
	slac-r-227b.pdf

