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ABSTRACT

This report analyzes the semi-classical dynamics of the field theory model
of hadron structure proposed by Bardeen, Chanowitz, Drell, Weinstein, and Yan
(BCIWY). The BCDWY model is based on a field theory of quarks interacting via
the Yukaws coupling with a quartically self-coupled scalar field which acquires
a non-zero vacuum expectation value. BCIWY have shown that in & strong coupling
limit, though the quark acguires a large dynamically generated bare mass, low
mass particle-like bound states containing quarks ("oubbles") can form.

We show that, in the infinitely strong coupling limit, the semi-classical
field equations of the BCIWY theory admit finite energy bound state solutions
which correspond, in general, to bubbles whose surfaces are time dependent and
upon which quarks are trapped. The dynamics of such states can be completely
characterized in terms of the geometric variables which define the bubble surface
and a set of quark fields localized on this surface. There remains but a single
finite coupling constant, which sets the scale of masses in the theory, and which
may be taken to bé a constant energy density associated with the bubble surface.
The equations of motion can be derived from an action principle, involving only
the reduced set of variables, which is strikingly similar to that which generates
the MIT bag model.

bubble dynamics is demonstrated.

Poincaré invariance of the resulting semi-classical theory of

The geometric formalism we develop is used to discuss the excited state
spectrum of the BCIWY model. Though the levels cannot be computed exactly, a
clear physical picture of bubble dynamics is developed. The most important
qualitative feature of the bubble is its softness to deformations. Excited
bubble states are highly deformed from sphericity. The equations of motion
for a simple radial surface excitation of the spherical bubble are solved
exactly. We estimate a méss ratio between the first radial excitation and the
ground state that is very close to that of the Roper resonance to the nucleon.

The classical bubble theory is exactly and completely solvable in three
space-time dimensions. The three-dimensional bubble is a closed string upon
which quarks are bound. We discuss the physical properties of these solutions,
paying particular attention to the way in which the softness of the bubble is re-
flected dynamically. The three-dimensional theory is quantized explicitly by intro-
dueing commutation relations among the normal mode amplitudes which define the
classical solutions. We show that the operator algebra of this theory is Poincaré

invariant and discuss the spectrum of states.
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Chapter 1

Over the past decade and a half, much evidence
supporting the plcture of quarks as the fundamental building
blocks of the observed hadrons has accumulated,

The strongest suggestijons of a possible quark
substructure to the hadrons arise from the successes of the

! and

SU(3) symmetry scheme first proposed by Gell=-Mann
developed and extended by many others, In this scheme,
baryons or mesons of the same spin and parity are grouped
into multiplets, each of which corresponds to an irreducible
representation of SU(3). Hadrons within a given multipiet
are distinguished only by "internal" quantum numbers which
label the vectors in the corresponding representation of
SU(3).

0f course, for such a classification to be ~ physically
sensible at ail, It must be respected by the hadronic
interactions. That is: the strongest hadronic interactions
should be SU(3) symmetric, with only weaker hadronic,
electromagnetic, and weak Interactions distinguishing the
riembers within a multiplet. As is now well known, this

seems to be the case in nature., The relatively small mass

splittings within multiplets and the success of the

Geli=-Mann Okubo formulaa' in describing these splittings
attests to the approximate SU(3) symmetry of strong
interaction Hamiltonian. The  SU(3) structure of
electromagnetic and weak currents has been classiflied. The
relations resulting from an application of the Su(3)
Wligner-Eckhart theorem to the low energy weak and
electromagnetic transitions of the hadrons have been
verified experimentallyg. Observed strong interaction
scattering processes are consistent with the assumption of
approximate SU(3) symmetry of the strong interactions.

fn what sense does the success of SU(3) suggest the
existence of quarks? All observed SU(3) hadron mulitiplets
are octets (8) or decouplets (10). The fundamental
representation of SU{(3) 1is a triplet; hence all higher
representations can be obtained as tensor products of a
tundamental triplet. Perhaps the simplest way of
understanding the SU(3) symmetry of hadrons theoretically
is, then, to suppose that hadrons are bound states of SU(3)
triplet '"quarks" from which they derive their aquantum
numbers,

indeed, there are Indications from phenomenological
work that quarks have an gxlstence more substantlal than
that as mere group theoretic abstractions from SU(3). The
parton picture of scaling in deep Inelastic lepton

scattering* suggests that, to a high energy electromagnetic



or weak current probe, nucleons appear to be for the most
part bound states of a few nearly free polnt-like objects of
charges consistent with the required SU(3) quarks. The
successful quark recombination rules {(such as the so-called
“"Zweig's rule") in dual theorless’ picture hadrons as
composed of quark-like constituents carryling SU(3) quantum
numbers which are exchanged in inelastic strong scattering
processes. Finally, the recently proposed theorles of large
transverse momentum hadron scatteringb rely on a quark
constituent Interchange picture: In order to predlct
asymptotic power-law behaviour of cross-sections from the
dimensions of underlying fundamental quark field operators7.

However attractive models based on quark constituents
may be, there remaln several outstanding problems that must
be resolved before a real understanding of hadron dynamics
in terms of quark constituents can be attained. First, at
present energlies, free quarks have never been observed or
directly inferred to be present in any scattering process,
No states with quark quantum numbers (fractional charge or
braryon number) have been observed. Apparently, only states
of three quarks (baryons) or quark-antiquark (mesons) can
exlst, tvidence from form factors and froﬁ the spin,
parity, and SU(3) assignment of states indicates that quarks
have splin 1/2 but that the wave functions of the ground

state baryons and mesons are symmetric under quark

interchange. This is a violation of the spin-statistics
theorem it there are but three distinct quarks,

Some of these ditficulities have been resolved., Others
remain puzzles, In particular the apparently anomolous
statistics and the exclusion of all states with quark
gquantum numbers can be acheived by adoptlng the ‘color

n 8 that there 1Is a hidden SU(3) of "color"

hypothesis
under which each quark transforms as a triplet; but that the
dynamics are such that only color singlet states can be
bound to form hadrons, The implications of this hypothesis
and alternatives to it have been discussed at length in the
literature, Further discussion will not be presented here,
We merely note that, as it has been stated here, the color
hypothesis does not itself provide any dynamical explanation
of quark binding. It simply asserts that the dynamics of
the theory should be such as to insure only the binding of
color singlets.

Perhaps the problem whose resolution will afford us
the greatest Insight into the internal dynamics of hadrons
is the problem of the non-observation of quarks, That 1Is:
how <can it be that quarks form low mass bound states, while
free quarks, if they exlist at all, must have masses at least
a factor ten higher than the observed hadrons?

In the following discussion and throughout this

thesis, we adopt the point of view that a field theoretic



description of quark dynamics 1Is appropriate. We will
assume that quark fields are among the fundamental flelds of
the theory. This s certainly not the only approach that
could be taken , but It does have the advantage that Lorentz
invariance and causal space-time structure are made manitfest
trom the outset. Further, the sense 1in which quarks are
“"eonstituents'" of the hadrons is also clear, even in the
absence of asymptotic quark states : hadronfc currents and
interactions are written in terms of the elementary quark
tields of the theory.

Within a conventional field-theoretic framework, quark
binding and confinement are quite difficult to understand.
Most techniques that have been developed to analyze field
theories are based on perturbatlion expansions, As we shall
see presently, quark confinement cannot be understood as a
perturbative phenomenon. Perturbation theory begins with a
structureless vacuum and the Fock space of free quark states
created from it by the action of the interactlion picture
fleld operators. The true physical states are then expanded
in this basis In a power series in the coupling constants,
in order to describe the observed spectrum of hadronic
states, we must find that the true spectrum of the theory
consists of many low-lying quark bound states very far below
the free quark threshold. This necessitates that elther:

(1) free quark states do not exist at all; or, (2) that free

quark states are much more massive, with this farge "bare"
mass being almost perfectly cancelled by binding energy in
the hadronic bound states. Iin elther case, perturbation
theory gives no reasonable approximation.

The possibility that the fundamental fields do not
create asymptotic states was first proposed by Schwinger
based on his studies of quantum electrodynamics in two
dlmenslons? This idea is actively being investigated by
many researchers using the techniques of the renormalization
group, The idea upon which thls approach is based is that,
when perturbation theory 1is summed to all orders, the
infrared singularities of Green's functions involving bare
quark lines may become so severe as to prevent the existence
of asymptotic quark states. Whether or not this "Schwinger
Mechanism" occurs in any fieid theory in four dimensions is
very difficult to determine, No calculable model of hadron
structure based on it has ever been proposed.

in this thesis , we will be concerned with a field
theory model of hadronic structure proposed by Bardeen,
Chanowitz, Drell, Weinstein, and Yan'o("BCDWY") which takes
the second approach. It considers a strongly coupled field
theory in which a large, dynamically generated, quark mass
is cancelled In hadronic bound states by a large binding
energy. In two respects, a perturbative approach is an

inadequate tool to develop an understanding of such a



theory. First, because the coupling 1is strong, the
perturbation expansion is not manifestly convergent order by
order -~ it is an expansion in powers of a 1large number,
Further, since one must look at all terms in the
pertgrbation expansion, the physics of strong bfndlng is
obscured. It Is generally difficult to understand how a
state which is a sum over many orders of perturbation
theory, containing ever higher numbers of bare quarks, can
be regarded effectively as a bound state of a few quarks; or
how, in the Bjorken limit, the nucleon <can appear to be
composed of a few quasi-free partons. A non-perturbative
approach to the problem of quark binding is essentlal,

The BCD¥Y model is one of several recently proposed
"bag"  models, Bag models generally provide a clear
intuitive, if not mathematical, picture of how guark binding
occurs, The fundamental idea is that the interactions are
such that the vacuum is highly polarized in the presence of
quarks, Quarks, which may have an extremely 1large bare
mass, bind very strongly to extended, coherent, neutral,
vacuum excitations ("bags"), A non-abelian colored gauge
interactlén is introduced, after Nambu'ﬂ in such a way that
this binding occurs only In color singlet quark states.
These 1low mass, color singlet bound states are taken to be
the hadrons.

Over a region of size on the order of that of the

vacuum excitation, quarks move as very nearly free
quasi-particles. They cannot, however, be asymptotically
separated as there Is an energy associated with the size of
the bag that confains them. This provides a clear plicture
ot how quark binding and confinement can be made consistent
vith the idea of guasi-free parton constituents at short
distances. Indeed, quarks are free partlicles over a region
the size of a hadron compton wavelength.

Because quark interactions within the bag are taken to
be small, hadrons are seen to be predominantly bound states
of a few quasi-particles from which they derive their SU(3)
quantum numbers, In bag theories, the masses, magnetic
rnoments, charge radii, and static electromagnetic transition
matrix elements of the hadrons are determined in terms of a
single parameter in the exact SU(3) symmetry 1limit. Thus,
these models are highly constrained in their ability to fit
the data, That they give numbers for these quantities that
are consistent with experiment is, perhaps, something of a
triumph,

The picture of a bag described above (s essentially
classical. The outstanding problem in the present bag
theories is to construct a systematlic, calculable, and
complete quantum theory of bags. The various bag theories
differ in their approach to this question, as well as in

many significant details of their models, The theory



proposed by Chodos, Jaffe, Johnson, Thorn, and Weisskop
("MIT Bag") begins with a classical field theory of aquarks
which are confined to tour dimensional bounded domains In
space-time by flat. There is no dynamics of confinement
postulated to antecede the formation of bags In this
approach, The vacuum structure |s taken to be such that
gquarks exist only in confined bag states which have a
constant energy density associated with them, The problem
here is to identify the lndependént classical degrees of
freedom and then quantize the theory, This has been
accomplished only in two dimensions. The numerical
predictions of this theory derive from a semi-classical
approximation which treats the quark fields as first
gquantized wave functions and the degrees of freedom
corresponding to the bag surface as c-number functions.
Creutz and Soh'® have shown that there is a classical local
fleld theory whose strong coupling 1imit has low energy
states corresponding to MIT bags. Whether this Is also true
in the quantum theory Is unknown, We shail return to a
similar question In the context of the BCDWY theory.

The BCDWY theory starts from a quite different point
of view, The Hami 1 tonian of a strongly coupled,
renormalizable interacting quantum field theory 1i{s shown,
via a variational calculation over a class of trial states,

to possess low energy bound states of quarks and coherent

fla

excltations of a field with vacuum quantum numbers, The
variational equations for the functional parameters defining
the trial states gre the equations of motion of the
corresponding semi-classical field theory. The bound state
solutions of the BCDWY theory in n space-time dimensions are
n-1 dimensional thin shells, which will be referred to here
as "bubbles." BCDWY solve the semi-classical equations for
the case of a static spherical bubble, and thereby obtaln
estimates of the maSses and electromagnetic matrix elements
of the ground state mesons and baryons,

A striking feature of this theory, at least seml=-
classically, 1is that, although the original field theory is
characterized by three coupling constants, the bubble states
are characterized by a single coupling, C, which, in analogy
with the case of the MIT bag, can be taken to be aﬁ energy
per unit area, Unlike the MIT theory, the BCDWY approach
does admit bare quark states., However the bare quark .mass
is determined by a combination of the coupling constants
that is independent of C., Thus, the threshold for quark
production may be set arbitrarily high without affecting low
energy hadron dynamics. In this sense, there are no free
quarks in this model. A most intriguing question !s whether
this decoupling of the bare quark states from hadron
dynamics in the strong coupling limit can be made as an

operator statement in the Hilbert space of physical states.
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The answer to this question is unknown,

ln this thesis, we study the semi-classical BCDWY
theory in detall, We discover that the only particle-like
bound states whose mass remains finite In the strong
coupling limit have tield configurations corresponding to a
thin shell, or "bubble." In the limit of infinite coupling,
the bubble becomes a closed surface 1in space-time upon
which gquarks are trapped. We show that, in the strong
coupling limit, the dynamics of such states may be expressed
completely in terms of geometric variables which describe
the bubble surtace and quark fields defined on this surface,
lle derive the equations of motion of the bubble In this set
of variables, and show that they are identical to tlose
derived ftrom én action principle that is strikingly similar
to that which generates the MIT bag. The classical BCDWY
field theory 1is antecedent to this "bubble theory" in
precisely the same way that the Creutz-Soh theory Is to the
MIT bag.

The geometric formalism we develop Is used to discuss
the semi-classical excited state spectrum of the BCDWY model
in four space-time dimensions, Though we cannot compute the
levels exactly, we develop a clear physical picture of the
dynamics of the theory, The most important gqualitative
feature of the bubble is its "softness"-~ a bubble may

suffer large deformations of shape at little cost In energy.

11

This has far-reaching physical consequences. The semi-
classical excited states of the bubble are found to be
highly non-spherical., Further, we expect that In a quantum
theory of the bubble, the zero point motion of its surface
will be large, smearing the sharp energy and charge
distributions of the classical state over a finite volume of
space. Surface excitations of the bubble 1lead to
non-trivial excited states in the model, We solve the
semi~classical equations for a radial surface exclitation of
the ground state. The ratio of the mass of this radial mode
to the mass of the ground state is very close to the mass
ratio ot the Roper resonance -and the nucleon,

The classical bubble theory is exactly and completely
solvable in three space-time dimensions, The bubble surface
is a spacially closed two dimensional hypersurface. The
three dimensional bubble might be described as a closed
string wupon which a fermion is bound. We find that, with
the proper cholce of Lorentz frame and surface coordinates,
all solutions to the classical three dimensional bubble
theory can be expressed in terms of a countable number of
normal mode amplitudes, The theory may be quantized
explicitly by imposing commutation relations on these
anmplitudes. We exhibit such a quantization, and show that
it leads to a Poincare invariant quantum theory of the

bubble. The operator structure of this theory is very

12



similar to that of the Neveu-Schwartz model in three
dimensions. We discuss the spectrum of the quantum theory,
and find it is that of a single particle with many possible
internal excitatlons, The guantum theory in three
dimensions will be seen to be consistent with our general

picture of the bubble as a soft object.

13

In this chapter, we review the work of Bardeen,
Chanowitz, Drell, Weinsteln and Yan, with particular
emphasis on those ldeas which will be needed for subsequent
developments, The discussion here is intended to be a
summary; the reader is encouraged to refer to their paper
(Ref 10) tor a more complete and detalled analysis.

The BCDWY model for the binding of a single quark
species is developed from the field theory detined by the

Lagrangian:

L= S0 -2 (%) + P({F-60)Y

whose Hamiltonian is
H= Jax L)+ 4 (T a0 + YH-i2P o) Y

This is a theory of a Dirac field 3” interacting, via the
Yukawa coupling, with a neutral, quartically self-coupled
scalar field, O , The theory is characterized by three
coupling constants: G, )—, and f. In four space-time
dimensions, G and ‘A are dimensionless, while f has
dimensions of energy.

This Lagrangian is symmetric under the discrete

transformation:

14



T —p — O
4 — qu})

In the quantum field theory defined by H and the canonical
commutation relations ot the fields, this J% reflection
symmetry [s spontaneousiy broken. The «classical potential
of the @ tield has minima at ¥ = +f, and we expect that
the vacuum of the quantum theory will be such that the
expectation value of O is +f. As a convention, we choose
that the expectation value of & be +f,

By shifting to a new field , @', whose vacuum

expectation value is zero,
o=ag’/+Ff

vie put the Lagrangian in a form that 1is suitable for

perturbative analysis:

L=4%00)*-4a¢3g® — 450 -} o4
+ P ((PF-GF-Go)YV

in a perturbative approach, we woufd conclude that this
Lagrangian describes the interaction of a & meson of bhare
rass Mq-=.ra_i? with a Dirac particle of bare mass
Mg= GfF . Ye will consider a limit of couplings such that
these masses are "large" (>>1 gev,).

hs observed by BCDWY, there wmay be particle-like

15

excitations of the interacting theory with energies much
lower than Mg and Mg . That this 1Is possible may be
seen from a simple heuristic arguement, A state of one
quark at rest has energy Gf In perturbation theory because
the o= field has value f in the vacuum, It is only In
zero'th order perturbation theory, however, that the ¢~
tield Is not free to respond to the presence of the quark In
such a way as to lower the total energy of the state, £
simple picture of such a lower energy state might be one
where the O fileld is depressed to zero in a region of
flniteisize . R, where the quark is trapped (Fig 1). Inside
this region, the quark is massless and wlll have only a
kinetic energy of order 1/R, However, it will cost a
potential energy of order /‘FqR-B to depress the O

field from f. In addition, there 1[Is a surface energy
associated with the gradient of the @ field 1In the
transition region, which we take to be negligible here. The

total energy of the state can then be estimated to be
U~ § +AHR
Minimizing over R, we find
R~ TWF
!
U~ ATF

it )ﬁ<g G , this Is a state of energy much lower than

16



the bare quark mass,

{n tact, such bag-like states are not the lowest quark
states of the theory., {t is energetically even more
tavourable for the O field to go to the ‘“wrong" vacuum
expectation value, -f, inside a region of size R, makfng a
transition back to f in a narrow region of thickness D (Fig
2)., The quark can then be trapped in this thin transition
region with an energy of order 1/R ~- an effect that will be
discussed in more detail below. The estimate for the total

energy Iis:

U~-L el (§) 4260
Minimizing over R and D, we find
D~ f R~ okt
0~ X5

In order for this estimate to be sensible, R>>D, which
requires /\ >>1. Then if Ay" «<G ., this shell state , or
"bubble", is a lower energy 1 quark state than either the
bare quark or the bag-like state, In the strong coupling
limit == G, A large, f small, A“'«G R )y‘{—«v | gev

== BCDWY use this mechanism of quark trappling in bubbles to
build a model of hadron structure,

The equations which BCDWY use to describe the dynamics

17

of the theory are the static, semi-classical equations of
motion, These equations are derived by BCDWY via an
appro*imate variational calculation of the energy In a trial
state of the quantum theory. This variational calculation
will not be reproduced here. The reader 1is encouraged to
consult Ref 10 for a detailed presentation and discussion,
The semi-classical equations of motion consist of the
(one~particle) Dirac equation for Y in the presence of a

classical & field:

(17 - Go)W=0
where the wave function must be normalized to unit charge

Q=fdx Yryp =\
and of the classical equation for the O field 1in the

presence of a fermion source:
Co a —
20 +4{ro (F~a®) = GHP Y

Y -
in the "static" case, Q"=<r(§‘)) VY=vix)e R

these reduce to to:

(i3 T +651) PR = EPER)

V3 + YA0(e20? =GT¥

These differential equations are the classical

138



tuler-Lagrange equations of the theory. The system is
"semi-classical” in the sense that ¥ is interpreted as If
it were a single-particie Dirac wave function: it is
normalized to unit charge and negative energy fermion states
are to be given the Dirac interpretation as positive energy
anti-fermions. We note that the Dirac equation is one with
8 scalar potential, so that no Klein paradox arises -- the
distinction between positive and negative energy states 1Is
always unambiguous,

In the BCDWY variational analysis of the static case,
these semi-classical constraints arise naturally, The b 4
and @ "tields" above are actually functional parameters
that define a class of trial states over which the variation
is carried out. The constraint Q=1 and the interpretation
of the negative energy solutions as anti-quarks reflect the
requirements that the trial state be normalized and have a
definite charge.

The solution of the static semi-classical equations
upon which the BCDWY model is based Is an approximate one,
valid in the strong coupling limit. An intuitive plcture of
this solution can be obtained from the examination of an
exact solution to the system of coupled, non=linear
equations in one space dlmensﬂonli

Taking the representation of the gamma matrices:

19

¥°= (‘o 3) o= (7 c'>)

this solution is

T(x)= ¥ Lanh {3 £ (x—x0)
- &
P(xX)= N[ coch{Tne (x=x)] T8> (
Va

)

where N is a normalization constant that insures Q=1, and

~ —

Xp =constant,

One finds:
E=0
7] z
u= i f
¥y=0
There are several aspects of this one dimensional
solution which point toward more general features of the
theory. First, because i;1P vanishes, the ¢ field
equation 1is actually Independent of #’. The above solution
for o is the well-known "kink" solution of the spon-
taneocusly broken quartic scalar theory in one dimenslonfs
The dynamics of the scalar field is determined primarily by
its self-coupling, rather than by Its coupling to fermion
sources., This will remain true in higher dlImensions, The
width of the transition region of the @ field is on the

order of the O~ compton wavelength, which will always be

20



small compared to (’3&#)‘|.

Perhaps the most striking feature of the solution |Is
that the Dirac energy 1is small even though the Dirac
wiave-function is very sharply peaked., Intuition based on
the quantum mechanlics of bosons would suggest that the
energy should be comparable to the dominant Fourier
components ot the wave-function -~ on the order of the bare
quark mass, ' .

Formally, this 1Intuition need not be correct for
fermions because the Hamiltonlan 1is 1linear, rather than
quadratic, In the momentum operator: .

H= «p +G6o%° , pP= -t %%z
Mathematically, the zero energy of this bound state
wave-function arises because the relative phase between its
upper and lower components Is such that their high momentum
contributions to the energy exactly cancel, That such a
cancellation s possible is evident from symmetry
considerations: Except in tHe region near the kink, the
Dirac equation is that of a free particle of mass +Gf on the
right, and -Gf on the left, The solutions of the free Dirac
equation are such that under M—> — M , positive energy
solutions of momentum p are mapped Into negative energy
solutions of momentum -p. Then, as simple algebra shows,

under M—>—M :

21

pP—-p
%K —P A
whence pat—> —p
Thus one might expect that, for the symmetrlc ground state
wave-function, the energy should be zero, since, in the

sense described above, the Hamiltonian is 'odd". This s

indeed the case.

BCDWY solve the semi-classical equations approximately -

for a spherically symmetric state in three dimensions.
Thelr arguement proceeds as follows, Assume that the

solution will be a bubble of some radius R:
< R- L

~¢ rsR-%

O'(P)N P

+ ¢ X

Then the Dlirac equation is approximately that for a quark of
Ymass'" -Gf inside the sphere and of "mass" +Gf outside, For
;& <<Gf, there are bound state solutions with energy much

less than Gf, For ™R , the wave function has the general

form:
{
= F(v LA
.A‘? 2 . + 0 R )éFR
{ e ?JM( ,‘f)
vihere Qg'is the Paull two-component spinor of angular
am

22



L
momentum (j,m) and parity (-1 . F(r) decreases

- —~R
exponentially near r~® : fF~e éeir-R . The detalled

shape of F depends on fhe behaviour of o In the transition
region. However, the energy of such a state is ihdependent
of these detalls in the strong coupling limit,

" L
% 14 J=-€+§

Ex T S
- ,!;a E oget

‘.'—/'_\P is small near R:

— Ir-R} . -
TP~ FoR1gh 1 SR s 0( %) GFR)

i;yp is spherically symmetric only if j=1/2, Thus, as In
the one dimensional case, the behaviour of the o field is
determined primarily by its quartic self couplings rather

than by the fermion source term,
T ()= F Tanh JDf (r-R)

The energy of this field configuration is

Ee= Jdx Lo ey e
> £z £

= C4nR> where Cz -3‘-55;?3

S0 that for j=1/2, the total energy is
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Uz & +C 4pR?

BCDWY show in the case of spherical symmetry that, If
E Is chosen to minimize the above expression for U, further
corrections to the wave functions contribute to the energy

terms of order %%, 3&?{ . The minimization gives:

-3
R= (8nc)

3 1.
v= ji'(?ﬂCJ 3

In Chapter 111, we give a general scheme for the calculation
of bubble states in the strong coupling 1imit, which has the
BCDWY solution as a special case. We therefore defer the
proof of the accuracy of these estimates until] then,

The picture of quark binding developed so far |Is
exactly that whose general features were discussed In the
introduction. The vacuum Is highly polarizable, Even in
the absence of quarks, bubble-like domains within which
O'=-f, though unstable against collapse, can form with
excitation energies that are small on the scale of the bare
(v mass'i We have seen that quarks can bind strongly to the
boundary surface of such a domain and stabilize the bubble,

So far, what we have is a model of quark binding only.
In order to have a viable model of hadrons, we must account

for the confinement of quark quantum numbers and the
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anomolous statistics of aquark wave functions. This 1Is
accomplished by BCDWY through the introduction of color
degrees ot freedom. They assume that there are nine quarks
which provide the fundamental representation of SU(3)xSU(3)'
(color). These are all coupled to the field with the
same Yukawa coupling discussed above for a slhgle quark
specles., A set of strongly coupled color gauge fields are
introduced. These gauge fields acquire a large mass in the
vacuum via a Higgs mechanism. BCDWY then show that the set
of coupling constants can be chosen so that this color gauge
interaction unbinds aill color non-singlets, These
additional interactions do not affect the energy calculated
for color singlets (at least In the semi-classical
approximation). The reader is reterred to Ref 10 for a full
exposition of these ideas.

in practice, then, hadronic levels can be computed as
it there Is only the usual SU(3) of non-interacting quarks.
The effect of the color fnteraction is that only states with
zero triality and completely symmetric quark wave-functlons
do, in fact, correspond to physical hadrons,

The BCDWY spherlically symmetric solution provides a
rodel of the ground state baryons and mesons, For a
rulti-quark or quark-antiquark bubble, each particle's
wave-function obeys the Dirac eguation separately, while the

source for the o fleld Is the sum of G®Y¥ over individual
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particles. Thus, in the spherical state, the energy of an n

particle system results ftrom the minimization of:

u= & + CHR?

s0 we have:

4
R= n3(g1c)” %

2 3 3
U= n3 2(snd

fFor mesons, n=2; for baryuns, n=3. Each quark state
in the bubble has j=1/2 and can be assigned m=1/2 or -1/2
independently, Therefore, the ground state mesons and
baryons reproduce the SU(6) 35 and 56, respectively, with
the expected combinations of spin, parity and charge
conjugation. We observe that SU(6) 1Is an essentially
non-relativistic symmetry, but is reproduced here in a mode)
vhere quarks are ultra-relativistic. This will be true only
in the ground state ot the BCDWY model, where the
independent quarks each have j=1/2.

C is the only parameter that need be specified to
determine the ground state properties of baryons and hesons
in the model. Of course, we are still working in the exact
SU(3) limit, so that numerical comparisons can be subject to
ambiguities. C may be determined from the central mass of
the baryon 356.

It we take: Mg, = [150.8 mev
26



then C=512 Mev/Em®

Rg(,z' :77 FM
The model gives %: (-;2:)3'3, or Mye= £78 mev, This s
not lInconsistent with the observed spectrum, but My¢ is
quite ambiguous due to SU(3) breaking.

The electromagnetic current, 170- Xﬂ"l) , Is con-
served in this model, so that magnetic moments and M1l
transition matrix elements can be coniputed. Because SU(6)
is exact, all the SU(6) relations between electromagnetic
natrix elements of ground state hadrons. in . the same
rultiplet foliow trivially., The non-trivial predictions of
the model relate magnetic moments to masses and baryon
rioments to meson moments, The content of these non-trivial
predictions can be written in terms of the more well

rieasured matrix elements:

re _ Mp
/UP== 3[5—%“—;0] UL VIR Y 1] B 3(m:6)

—

M(a—en =

Mm%

Though, again, it is hard to take these numbers serlously
betore understanding the mass splittings, we note that they
are In good agreement with experiment.

There is no partially conserved axlal current in this
rmodel. This is a fundamental phenomenological element that
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is absent in all bag models, There Is no sense in which the
pion is difterent (e.g. a goldstone boson) from the other
riembers of the 35. One can, however, write down a
pseudo~vector current conposed of quark flelds: ?st’pngf:
The matrix elements of thlis current between ground state
baryons at rest corresponds to 9',}:5/‘7 . Experimentally,
3&"['1’5 . The signiticance of this large discrepancy Is
unclear,

This is as far as the BCDWY model goes 1In Its
predictions of the hadron spectrum, In order to
characterize higher states, one must understand non-
spherical "bubbles. To compute form factors and non-static
properties, one must at least understand the motion and
quantum dynamics of bubbles, There are two avenues of
approach to the question of quantum corrections, One is to
€0 back to the full field theory and to try to Invent new
techniques of anaiysis more powerful than the variational
calculation of BCDWY. The hope would then be that the
strong coupling 1limit of the full quantum theory will
pbrovide us with as simple and understandable a picture as
the semi-classical theory does. Perhaps a more modest
approach is to develop the semi-classical theory of hubbles
to its fullest extent, with the hope that, by understanding
the dynamics of bubbles, one may be 1led to the quantum
strong coupling 1imit through the back door . This thesls
is a first attempt in this direction.
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Chapter 111

In this chapter, we consider the problem of finding
all bubble solutions to the BCDWY semi~classlical theory, In

the strong coupling limit,

G —» o0

A —> 00

¢ >0 C= }Jfﬁ 6 fixed
V)n<¢G

we show that a bubble can be plctured as an infinitely thin
shell-- a spaclally closed hypertube in space~time~-- upon
which free quark #fields are defined. The dynamics of
bubbles, including their equations of motion, can be
expressed completely in terms of these surface Dirac flelds
and the geometric variables describing the hypertube. What
energes is a simple and elegant picture of the

semi-classical physics ot bubbles,

Section A : The Static Bubhle

We begin by considering the problem of extendling the
static solution of BCDWY from spherically symmetrlic bubbles
to bubbles of a more general shape. We expect that, to the

extent they can be pictured as static, higher baryon and
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meson resonances must be described by such non-spherical
bqbbles. in the following discussion, we consider only the
binding ot a single quark species. The extension to the
multi-quark case is trivial.

The static semi-classical equations are:

) V¢ + Ne (-0t = ¥ ¥

@) (~L&-$ r Ge¥) ¥=€¥

We proceed to solve these equations approximately,
using a straightforward extension of the BCDWY technique for
the sphere:

(i) We assume the solution will be a bubble of some as
yet undetermined shape, We solve the 9 fleld equation
approximately for such a configuration,

(i1) We then find an approximate solution to the Dirac
equation in the presence of this O field, This gives the
Dirac energy up to corrections which vanish In the strong
coupling limit.

(111) We show that if the shape of the bubble surface
is chosen to minimize the total energy, all further
corrections to the fields give vanishingly small correctlons
to the total energy in the strong coupling limit.

The approximations we use throughout this discussion

glve physical quantities to "lowest order" iIn a small
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parameter, Thfs small parameter will be written
schematically as "D/R'", where

D ~ bare quark or méson compton wavelength

R ~ size of bubble

%
D/R will, in fact, turn out to be on the order of AT3 o

A
We begin with the assumption that the solution of
interest will turn out to be a bubblé. There will be a
region of space inslide of which 00 =-f, and outslide of which
O =+t, The O flield will make a sharp translition between
these values over a distance of order D at the boundary. Ve
denote the boundary surface of the bubble by giving 1{ts

points as functions of two "internal" coordinates, whur
syrface: o
R (™) L=,
To be mathematically precise: we define the surface, R, as
that closed surtace in space at which the O fleld goes
through zero.
Because all fields will have a non-trivial! spacial
dependence only In a very thin shell about this surface, it
Is convenient to use a set of {(non-cartestan) spacial

coordinates centered about it:
-, A
X (ux, $)= R(u+g ntus)

Au)= unit normal to surface at point fu*™},
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The coordinates (“'..“"J;)are well defined only within
a distance on the order of one radius of curvature away from
the surface. We assume that the radii of curvature of the
bubble surface are always large compared to D, This
assumption has no effect whatsoever on the spectrum of
low=lying excitations of the theory In the strong coupling
Timit, By increasing G and A . D may be made arbitrarily
small without affecting either the spectrum or the surface
geometry, |t may be, however, that with this assumption the
dynamics of bubbie-bubble scatterling, which is determined by
the detailed dynamics of the overlap of two bubble surfaces
in the full field theory, becomes indeterminant in the limit
vhere the surface becomes Infinitely thln, We shall return
to this and related questions in Chapter VI,

In the new coordinate system, we can write the

- A ji
i”‘ Vh +n o€

gradient:

vhere E% is the "tangential" gradlent which, though it
depends on ,9 . Involves only differentiations with respect
to the LL“', and is tangent, as a vector, to the surface.
Consider the field equation for 9", We wlll choose,
as our first approximation to 97, a function that satisfies
the "largest" part of equation (1) near the surface,

Because O makes its transition from -f to +f In a distance
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b , we expect:

3“’

ey ~D

g

while
WO ~ T‘z'g'
We also anticipate that, as in the case of the spherical
solution, the fermion source term will be relatlively
unimportant In (1) -- an assertion which must be verified
iater to Insure self-consistency. Thus our first
approximation to (1) in the neighborhood of the surface lIs:
%;}‘_’; rUAc(¢*a) =0

This is the same as the equation for the kink of the

one-dimenslonal theory. The solution of this equation which

satisfies the boundary conditions and vanishes on the

surface Is unique:
O (x)= a(§)= £ Gmh 32 F§

Next, we solve the Dirac equation (2) In the presence

of this T field.

[-iRT,-ih g +3°Ghtanh s ] ¥=EY

\le construct an approximate solution valld as G"‘"’, using
a technique similar to one invented by A, Chodos for use In

1
a different context . We expect that the Dirac wave
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function will fall of exponentially as away
from the surface. It is clear that such a ¥ is not an
analytic function of 1/G as yG-_’o . However, we can
attempt to factor out the essential singularity in 1/6 and
then expand its coefticient In 1/G.

We write:

+6F(»

)
1}’((,@'35)-:. Ne 5 [ Bss) + 2‘;“‘[‘.(“‘;5)1

E=FE, r éel
where: F, ¥y , Eo are independent of G
N Is a normalization constant
%, %, are tinite near § =0 as G —»%*

E,, & are finite as G —» %@

75"'3_'-",‘ is the beginning of an expansion of the fleld in
powers of 1/G. As will become evident, only the properties
of the first term will be important, so we have not written
out the corrections in full,

Substituting this form in the Dirac equation (1), we
G- h-2 j;,’f + ¥ tGanhiax £ §] %,(w‘,g)‘.
B + :-ca.az%aaa.v‘.\lmutg)
r LFtanh i@ £ —ih2 S5 ] %)

= Eo ¥Hluis) + o(g’-)

have:
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This equation must be satisfied order by order In 1/G, The

equation for the coefficient of G Is
[-i 0.3 45 3% Tawhia) £§1 T2 (U g)=0

In order for there to be any solution of this matrix
equation such that ¥ #06 , we must have
F
e + ¢ Tanh JaX £
ag
The requirement that F decrease with lé;l neccesitates that

ve take the "-'" sjign above. We have:

(I)  ( 7°+iA2) %h=0

_&
et FO [cuhimig] B

The equation between the terms of order unity 1In (3)

becomes:

[2:3,~ i A2 2T %us)

+ EGmhdin £S5 (R°+ih-3 ) F(uy)
= Eo¥ (Utf)

Multiplying by (JD*CA'é‘), using (1) and the fact that

(¥°+i%.3)*=0 ., and rearranging, we find

o% _
5e -k

where: = A

k

M
-
<
5

The quantity k depends on the geometry alone, and has a
simple geometric Iinterpretation which will be discussed
later. At § =0, where the term invoiving ¥ vanishes, we

have

() [T, + i kAT Wk 0) = B0t (Ut o)

This is an eigenvalue equation for Eg involving only
the Dirac tield on the surface, Thus, given only the
geometry of the bubble surface, the Dirac energy can be
computed, up to terms that vanish in the strong coupling
iimit, by solving (1) and (iI1I).

Finally, we must see how the Dirac field feeds back
through the equations of motion to determine the shape of
the surface. We assert that If the bubble shape 1Is such
that the total energy Is stationary under all local
variations of surtace geometry, then further corrections to
the 9 and ¥ tields obtained above Induce corrections to
the energy which vanish in the strong coupling limlt. Thus,
if the total energy is minimized over bubble configurations,
we have a full solution to the coupled field equations
within our scheme of approximations,

The formal proof of this assertion relies on methods
of differential geometry which have not yet been developed
at this point In the exposition, A summary of these methods

is contained in Appendix A; the full proof is presented In

36



hppendix B, Here, we simply sketch the main ideas of the
proof.
We have obtained an approximate solution to the field

equation for @,
M) o) = F Gnhiar £

The effects of corrections to Up may be investigated in
perturbation theory. For a scalar fileld which differs
slightly from Ja, T=Ta+80 the shift In the total energy

.

is, to second order in 80",

sH =fdx L (95000 + N300 % £3) (Soea)®

+4 fdxdy K(xy) 8o Satg)— [dx TR (x)

vhere

T V3600 +4A T () (§20G W) - G P Y
S*E
K(Y,”)'—_‘-: gw()dS‘v-(g)

The expression for AH includes the first and second order
shifts In the exact Dirac energy, E, due to the perturbation
of the scalar field. The first order shift is contained In
the term -G#¥ in J(x), while the second order shift Is
represented by the integral over the non-local kernal,
Kix,y),

The lteading corrections to T, can be estimated by
minimizing aH over all possible So- . The "current,"

J(x), represents the deviation of the approximate solution
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U, from an exact solution of the coupled equations and acts
as a source term for So . The solutions to the
fninimization problem for the quadratic functional, aH , may
he ‘expressed in terms of the solutions to an assoclated
1inear eigenvalue problem, Let the quantities,

Ag, Sp(X) , be detined by
(- 722>~ ¢%]) EP (x) + j‘da K(ng)éptg)-‘— A?Ze&)
Jax s zg= Sgp

vhere P runs over an index set which may bhave both

continuous and discrete parts. Then we have:

= "'La_ 3-2(
(5) S T (x) fs(' Ag Jpze x)

_ A <
AH=-3 2 A;'WSI

vhere
Jp= fo\x St (HT )

The spectrum of /\p consists of a continuun, with
threshold JES‘F , and of possible low A "bound states." In
appendix B, we show that the contribution of the contitnuum
states to ‘AFi vanishes in the strong coupling limit. Thus,
finite corrections to the total energy can arise only from
the coupling of J(x) to very small A , bound state, eigen-
functions., These bound state eigenfunctions must be very
sharply peaked in the neighborhood of the bubble surface,

As with the Dirac field and the original scalar fleld, o5,
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they must satisty the "large," § dependent, parts ot the
wave equation near the surtace, Independent of the eigen-

value AP'
21
(352 +9AB%w>-¢*)] Zgta=0

This is precisely the equation for the translation

mode of the one dimensional kink ln_g . The solution is:

Zp(x) = 3@‘(&'*) 3% 0'0(5)
where ékuEQ is determined by the remaining terms in the
eigenvalue equation, which are not so sharply dependent on
‘S. Any 30‘ which is a superposition of such eigen=-
tunctions corresponds to an infinitesimal variation of the
pousition ot the bubble surface in space.

So= Sy 535

corresponds to
SRwwy = 53(«4‘*) w9

Thus we have the result that the only corrections to the
form of the scalar field, Jg, that lead to corrections to
the energy which are finite in the strong coupling 1limit
correspond to motions of the surface itself, rather than to
changes in the shape of the O fleld near the surface. Our
calculation of the total energy Is accurate in the strong
coupling limit, then, if and only if the total energy we

compute {s stationary under all local variations of the
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bubble surface.

The total field energy is the sum of the Dirac energy,
E, and the energy associated with the o field
configuration, To lowest order 1in D/R, the 9 energy is

given by
Eo = [d% $(v0) +2(r2-¢2)?
= fda [ d$ (52 a9

= Ca

where C = g-"‘;a £3

and . =area of bubble
Thus, the ¢ field energy is simply proportional to the area

of the bubble surface, with the comblination of the couplings

— 3
C= $axr f

playing the role of a constant energy density per unit area,

Let us summarijze what we have found. We have siown
that, In the strong coupling limit, the low-lylng statle
bubble solutions of the BCDWY theory can be described in
terms of a highly reduced set of dynamic variables. This
reduction can be easily understood intuftively, Iin the
lﬁmlt of very large coupliing constants, only a very special
class of solutions exist which retaln 1low energlies. The

requirement that the energy be small forces these solutions
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to mimic, locally, the one dimenslonal kink, The only
degrees of freedom that remaln are those that describe how
these local one dimensional kinks are patched together
continuously 1in three dimensions, These degrees of freedom
can be taken to be the surface geometry, which locates the
kinks 1In space, and the surface Dirac fleld, which defines
how the quark is apportioned among kinks,

We have seen that the static fleld equations can be
written in terms of this reduced set of variables as

follows:

(x)  (¥°+¢cA.3) Pluy=0

.

(D) (- 29, +iRA3) Y= £ Pay

()  8yeomerry (E+ Ca)=0

Although 1t 1is still a compilicated system of coupled
non-linear partial differential equations, this system is a
considerable improvement over the original field equations.
in Chapter 1V, we will discuss some exact and approximate
solutions of these equations and their implications for the

physics of excited states in the BCDWY model.

b1

Section B: Bubble Dynamics

We now turn to the general gquestion of non-static
bubbles. Given oﬁr geometric picture of the low-lying
static solutions of the BCDWY fleld equations as closed
surfaces In space, we certainly expect that there should be
similar bubble solutions of the general time dependent
theory. Indeed, if the theory is to be Lorentz Invariant,
it must admit moving bubbles which correspond to bhoosted
static bubbles, In addition, it is reasonable to suspect
that there may exist bubble states of the theory which can
be pictured as rotating and vibrating.

The static bubble is a closed surface 1in space. A
bubble, in general, may be thought of as a hypertube in
space-time. Such a hypertube would be infinitely extended
in time and a closed surface In space., (Fig 3)., The
hypertube corresponding to a static bubble would be a time-
iike cylinder generated by a fixed spacial surface. The
generalization of equations (l), (It), and (11t) should be
a system of '>60uations that relate the local geometric
structure of such a surface to the quark fields defined on
it.

The general equations of motion of bubbles may be
derived from the time dependent BCOWY field equations in
mmuch the same way as in the static case. Starting with the
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assumption that the low-lying states wl|l1 correspond to
bubbles of some shape, one can solve the field equations
abproximately and derive the restrictions imposed by the
requirement that further corrections be small, It fis
simpler, however, to generalize (l), (i1}, and ot
directly from the static case, keeping clearly in mind our
geometric picture of the bubble as a hypertube imbedded In
space-tine, We can then readily verify, a posteriori, that
the bubbles so obtalned generate self-consistent approximate
solutions to the original field equations {in the strong
coupling timit,

We expect the general equétions to be Lorentz
invariant and local on the hypertube. They should give the
static equations as a special case. Equations (1) and (i)
have immediate and natural generalizations to the non-static
case which satlsfy these requirements. At each polnt, the
bubble surface has a space-like unit outwardAnormal vector,

hp. In the static case, ﬂp'-'-(o, /Y\!) . Equation (1) is :
(T) tpw=7

\ie take this equation over, in the same form, to the generat?
case. kquation (11) tor the static bubble can be

re-written:

(¢ +ehw) [ vwde "8l =0

L3

where:
-
(b“))’: (?’t) Vu) = tangential gradlient to

static hypertube

/h- = f;‘f Uu‘)p (Y‘P)

and

In the general case, we write:
r) (i +Ru)¥P=0

where
(%l),; =tangential gradient to
hypertube
and
k?' 'éL (310,)!\})
On the moving bubble, of course, the Dirac field no Jlonger
need have only a simple exponential phase dependence on
time,

We must generalize (I11), Equation (Ill) is presently
stated as a variational principle: that the total energy be
stationary under arbitrary variations of the static surface
geometry, The natural extension of such a variational
principle for the static energy Is to an action principle iIn
the more general case, The static bubble has a constant
energy denslty, C, associated with Its surface. We take the

seneralization of this to be that the general bubble have a
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constant action density, ~-C, associated with its
hypersurface, The contribution of the Dirac fleld to the
action should be such that the Dirac equation (i1} follows
from the variation of the action with respect to ¥ . Thus,

we are led to the following system:
) () (n¥=-y
A . |
( (m), (or) Sja‘a ['7/3((,)"‘+£kﬂ)1}’—c]:.o

where
Aa.« =invariant element of "area"
on the hypertube
The variation in (6) is to be carried out over both v and
the geometric variables which detine the bubble surface.

In order to proceed further with the analysis of these
equations and the physics they represent, we must develop a
rore economical and mathematically precise language with
which to describe the geometry of hypersurfaces. The
required language is that of differential geometry; |in
particular, that of the difterential geometry of a time-like
surface imbedded in a Minkowski space of one higher
dimension. In the tollowing brief discussion, we give the
basic mathematical definitlions and geometric concepts that
will be needed. Proofs ot some of the results and a more

detailed mathematical discussion have been relegated to
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Appendix A,

The surfaces whose geometry Is of iInterest are n-1
dimensional hypertubes imbedded in n dimensional Minkowski
space. Our initial physical model has assumed n=4, but as
we shall see, the theory is sensible for other values of n,
The internal geometry of such a surface is induced by Its
imbedding in Minkowski space. We can represent the surface
by giving the coordinates of its points as functlons of n-1
"internal" coordinates, {aq§:

Surface:

x’= R¥(uY

Uur notation will be such that the greek letters
«, 6,7, 3 run from 0,...,n=2 while A4V, A, 0 run from
0,ees,n-1, The choice of internal coordinates is arbitrary.
The geometric quantities we will be most concerned with will
therefore be tensors whose Indices correspond to these
internal coordinates, The equations we will write will be
tensor equations that are manifestly ‘'covariant" under
general coordinate transformations,

The fundamental tensors which describe the surface are
as follows:

Tapzent Vectors: »
r."= $%
ol o L=

nduced Metrjc:
Jue™ TurTp=Ta” Tpp
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Outward Unit Normal:
Puy: NnTy=0, nd=-\

Coeftficients of Curvatyre:

vhere we use the notation:
2R
for any quantity, A.

g

The induced metric tensor <9°(€and its inverse g.‘ will

be wused, in the usual way, to transform between the
covariant and contravariant forms of tensors, This metric
is M"induced" in the following sense: if V”!s a tangent
vector,

vP= vz, ”
the tength of Vp in Minkowski space can be written In terms

of its components
v¥ Vy = (V¥ VE Tgp) = Jop vvE \/“Vu
The invariant element of "area" on thebs_urface is
da= d"'w 1ol , 3= det(gap)

The n vectors {T.v.'b, n”} form a local "n-bien"™ in terms

of which any Minkowski vector can be expanded:

TP (T =P 272 = Minkowski  Metric
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The tensor /Ad( . sometimes called the '"second
fundamental tform," describes the local curvature of the
surtace. At any point, the principal values of Awﬁ

are the reciprocal radii of curvature of the surface,
For a time~llke direction, this reciprocal radius of
curvature 1|is proportional to the normal acceleration of the
corresponding spacial surface at the point. The quantity k,

which we have introduced already, Is:
R=FGun? =L (%) aun®= 2 L%,

Thus, k Is proportional to the mean curvature of the surface

at each point,

The flat Mlinkowski space induces natural laws of
parallel transport along the surface for both vectors and
spinors, For a coordinate shift Sud. these are:

Vectors:

sv= ~ {pa} vPsu’

vhere the."Christoffel symbol" is:

{;a’}= 3 348 [ 981y +94o¥ig- gpa’ts_]

SY= - £ ™V nymvy ¥ su?

The parallel transport law for spinors Is just such that the

quan'tlty, ’PZ’ V, parallel transports as a vector. These
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give corresponding '"covariant derivatives" for vectors and

spinors:

Vd“@: Vd\@.*' f;;a’}vx
Du¥ = [du* £ Nl ¥

A little algebra gives the followlng relations, which

vill1l be of sone use to us later:
P=3"(z%0) D= Zythkn
Pa=-p¥
Tuip= {g@}ZJf/{‘d@n
Tunp= hapn
Ve ﬁ (Vigi Ve , for any V¥

lie are now equipped to continue our analysis of the

equations ot motion (6).

We re-write the equations of motion:
(T) (w¥="
D (¥¥=o0
@) Sgeametey [dudigi L=0
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vhere: —
L= Pi¥YP-—C

The Dirac equation (ll) has a clear interpretation as
that of a free massless fermion confined to a curved
surface. The equation of constraint (l) on the Dirac fieild
is consistent with the equation of motion (I1) by virtue of
relation (7).,

The equation of motion that arises from the varfation
in (i1l) is now straightforward to derive, The calculation
is somewhat long, however, and is presented in Appendix C,

The result is that, under the variation
R¥(u%) — R (LY + 8 R (Y

after using (1) and (11),

J%?f S;(JQ% L) = - "T'°‘a (Z}g'g‘?laJ

where

T = Cg“@-—Im Pz

as we shall see presently, T“S is the canonlcal

energy-momentum tensor of the bubble.

The corresponding equation of motion is

g 8 L B
O""ﬁ?{(@ T= zpp)liz T ™ ZP f,{,d@Td n*
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The tangential component of this equation, T&pu,,_"'—'o, Is
trivial and follows from (il). This slmply reflects the
fact that an infinitesimal tangential variation of Fyu(uq)
is equivalent to an infinitesimal coordinate transformation
-=- the surface itself Is unchanged. The non-trivial normal
component of this equation provides us with the third

equation of motion in local form:

(III) ,Llctg'-r;a(ezzf)

ag
Accepting, for the moment, that 7T is the energy-
momentum tensor of the theory, this equation has a simple

physical Interpretation. Schematically, (1l1) is

T)
°= % [0

where (i) runs over the principal directions of curvature,
R(i) is a radius of curvature, and T(i) Is the corresponding
diagonal element of the stress tensor., For each (1) that
corresponds to a spacial component, T(i)/R(i) 1is just the
contrlbution of that component of surface stress to the
normal force density of the spactal surface. For the
time-1llke component, T(i)/R(1) 1is proportional to the
product of the energy density and the normal acceleration of
the surface, Thus, (I11) is nothing more than Newton's
Second Law for the case of a relativistic hypersurface,

The proof that a solution to (1), (11), and (II1l)
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generates an approximate solution to the field equations
proceeds in the same fashion as in the static case, Ve
introduce a space-time coordinate system in a nelghborhood

of the hypertube:

X, g) =R’ () + §n*(u)

In terms of these coordinates, the fields can be written

T(x) = QCZm)\ JEXGf; &
Y= N{wdiBDis] T Plurs)

where: 55 Pt g)= —kWuig)
Puy §=D) = Yud) = sorface ¢ield

We recall from the static theory that there are
essent!ally two conditions that must be satisfied in order
for a bubble to give a good approximate sclution of the
tield equations, The first is that the normal dependence of
the fields be exactly that In equation (8). This Insures
that the state is a low-lying one relative to the bare
particle masses, The second Is that the geometry of the
bubble surtface be so chosen that the correction terms
generated from the flelds of (8) decouple locally from the
normal transliation modes of the fields. That this second
condition is satisfied for the solutlions of the general

theory follows, almost trivially, from the following
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observation: The second condition 1is equivalent to the
requlrement that the action be stationary up to terms of

order D/R for the flelds (8), The original action,
5‘-‘-,‘ ax[ PleF-6a)¥ + L (2m)*~ 2(0-3-(-?-)’~J

can be computed approximately iﬁ terms of the surface
fields, The Lagrangian 1is very strongly peaked near the
bubble surface. The integral over S In the action can be
carried out to lowest order in the D/R (see Appendix D),
Une finds

5= [aufigi [#ipy-c)

hypertobe

This is precisely the surtace action functional used to
generate the equations of motion (1), (i1), and (111),
Thus, the condition |Is automatically the satisfied for
solutions of the bubble equations ot motion derived from
this action principle.

In the static theory, we showed that the energles of
bubbles could be computed in terms of surface field
variables alone, It should come as no suprise that, in the
general case, all conserved currents and thelr charges can
be expressed completely in terms of these variables in the
strong coupling 1imit. There are two ways this can be

demonstrated. One is by going back to the expressions for
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the momentum,vangular momentum, and charge of the system as
integrals over the fields. We note that the densities of
these quantities are strongly peaked in the neighborhood of
the bubble surface. The integrals over g{ can be done to
jowest order in D/R. The remaining expressions glive the
conserved charges in terms of integrals over the hypertube,
These calculations are presented in Appendix D,

Another approach is to derive the conserved charges

directly from the action via Noether's theorem. We take

this approach in the following discussion, | f the
Lagrangian density, ‘hal l. , is invariant under some

transformation

RY — Rr¥+ SR
Y — 1p*-$‘“f

then the current,

SK*= - [ (Migit) 54 EWL) S+ 9“"‘5‘” 8:@]
‘g 0 Wi

is conserved:

o= \n—g-'(d_ Y )hL ™

nfter some algebra, we find that this current can be written
o o [ 75 % U 7
SK*=T 78R, -4 [ PZSP- ¥ 2~ Y]

The tollowing are the symmetries, currents, and
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charges of the theory:

Eermion Number: SR¥=0 , S¥=~180¥
S =TS8 = ¥Z*56
I*= ¥ |
Q= [4s«Vigi T~

Energy-momentum: SRp: Sapz comstant ) é‘w':o
SK =z T "3ap= T (75)” S0,
’T‘“P= po pr
PP = fdse i Tz
L t i : SR»: SprRv ) é?: -z‘;'-Sw”v %V(P
SK* = 4§
= 4 S [RYT= s 1 F 7% Y Y]
MY QPRI R & B o

hAAJv :L‘f;i:Zel JTé] ’qulﬁ}v

The integrals above are to be taken over any closed

space-like submanifold ("space~like cut") of the hypertube
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(Fig &). The differential, a\E.x is the oriented element

of area defined by:

dffd)/\da(d)'—* A" (ne sum on )

The theory we have developed 1Is manifestly Lorentz
invariant and generally covarfant, Mathematically, thils is
a trivial conseqguence of the fact that all quantities are
represented as tensors under Lorentz transformations and
under internal coordinate transformations., We note that the
spinor qf Is a spinor only iIn Minkowski space; it s a
scalar with respect to surface coordinate transtormations.
Une immediate consequence of Lorentz invariance 1is that
statlic solutions, which have zero spacial momentum,
correspond to particles of mass equal to their energy.

We observe that the conserved currents are tangential
to the surface at each point, This is a physically and
nathematically sensible result., If a current had a normal
component, one would hardly expect that its charge could be
conserved on the surface., Mathematically, only a tangential
current can be integrated over a space-like cut to produce a
coordinate invariant result, The condition which Insures
that the conserved currents are tangential is equation (1).
This equation of constraint on the Dirac field severely
restricts the possible fermionic currents that can be

constructed. kssentially, we have a two~component fermion,
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From (1) and the relation {iﬂ,f‘?=0, we have
a . .
Y7 .LEY =0 if n is even

 rpgi - ¢ o] .
YFI . " EY=0 1¢ n 15 odd
Thus (1) guarantees that the usual fermion current agrees

with the Noether current derived above:
- — of M
FP*v= [T -an]V= T T

in contrast, the "axial current" Va"’a’g"l’ is purely

normal:

B =F[20 —an*] % ¥= LB 0¥

This axial current cannot be "conserved" 1in any sense 1in
this theory, nor can a Lorentz and coordinate invariant
integral over it even be detined., Every current constructed
from the Dirac field can be expressed in terms of the vector
and pseudo-scalar currents. These expfesslons are given for
the standard currents in Table |.

The generalization of the bubble equations to the case
of several quark species is completely straightforward,

tach quark field appears in the actlon separately.

S=fduligi ( 2 F.iF ¥.—C)

Therefore, each quark field obeys the equations of motion

(1) and (r1), while the fermlon contribution to the stress
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tensor in (1tl1) is the sum over all specles. As in the
static case, there are no direct quark-quark interactions in

the low-lying color singlet states,

We have now developed a complete semni-classical theory
of bubble dynamics. The strong coupling 1imit of the BCDWY
field theory has been taken, leaving a theory of extended
geonetric objects wupon which quarks are permanently
confined, =~ The theory has been shown to be Lorentz
invariant, and all conserved currents and charges have been
constructed. The Lagrangian of this theory looks exactly
iike that ot the MIT bag model, The crucial difterence |is
that our action arlses as an integral over a hypertube
imbedded in a higher dimensional space. Such an Imbedding
is non-trivial, so that the geometric degrees of freedom of
the surface are dynamic variables, In the following
chapters, two principal questions will concern us, First,
Qhat can we learn from this theory about the spectrum of
states in the four dimensional BCDWY model? This question
vill not be answered in a general way, but we will develop a
clearer physical picture of the properties of the states.,
The second question is how can ve go beyond the
semi-classical theory to a true quantum theory of bubbies?

Vle discuss general teatures we might expect in the quantized
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Further, -1t will be shown that the

expllicitly gquantized in three space-time dimensions,

quantum theory will prove instructive

quantum mechanical

Chapter 1V

In the preceding chapters, we have developed a simple
and elegant geometric formulation of the BCDWY theory Iin the
strong coupling limit, ‘This formulation Is, however, of
Tittle practical value unless it facilitates our
understanding the physical properties of the model. In this
chapter, we use the formalism we have developed to dlscuss
the spectrum of hadronic states predicted by the BCDWY
model, The problem of computing the exact spectrum of the
theory in four space-time dimensions Is a formldable one and
remains unsolved. In the following analysis, we make use of
varlous "approximations" in order to render the probliem
tractable. What emerges |Is not a numerical tabulation of
hadronic masses, but rather, we hope, a clearer picture of
the physical characteristics of hadronic states.

We shall see that the most striking property of
bubblies is their softness: a bubble can suffer extreme
deformations of shape at very little cost In energy. This
fact has far reaching Implications in our model, Not least
among these 1Is that hadronic states, though pictured
classically as thin shells, must necessartly bhe very smeared
out by the quantum fluctuations of their surfaces. Thus,

for example, the thin shell plcture does not requlre that

60



hadronic form factors be oscillatory as are the fourier
transforms of rigid thin shells, Further, the softness of
bubbles affords us some Iinsight into how scaling might occur
in this model. From the equations of motion, It Is clear
that quarks move freely within the surface. Because the
bubble surface may easily be deformed, a quark trapped on it
is nearly free to move short distances in the normal
direction by dragging the surface along with |it. The
"softness'" of the bubble is simply the statement that the
energy required to deform the bubble surface is on the order
of a few tenths of the total bubble energy., Thus, it need
not be suprising that quarks can appear to be nearly free
particles at momentum transfers on the order of a few hadron
rasses. One might expect that this would be reflected 1In
deep inelastic lepton scattering as 'precocious" scaling.

In Section A, we dlscuss the vrelationship of the
semi-classical and quantum spectra of the theory. In
Section B, we discuss the semi-ciassical spectrum of static
single quark states in two and three dimensions. We
discover that, though excited bubble states are highly
non-spherical, their energies are not very different than
the energles estimated for corresponding states on a rigid
sphere, In Section C, we consider multi-quark bubbles and
discuss qualitatively the excited hadronic states expected

in the model. Section D Is devoted to the analysis of a
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three dimensional spherically sysmetric surface excitatlon
of the ground state bubble. This radial mode is found to

have a mass enticingly close to that of the Roper resonance.

Section A: The Semi~Classical Approximation

The calculations presented In this chapter are based
on the semi-classical theory of bubbles derived in Chapter
11i, Before proceeding, it is essential to understand, as
best as we can, the relatlionship of the semi-classical and
quantum theories,

What we should be computing is the spectrum of states
in a quantum theory of bubbles which corresponds to the
classical theory defined by the action 111.(6)., At present,
we have given no prescription for constructing such a theory
canonlcally, though in the next chapter we shall see that
such a quantum theory can be constructed explicitly in three
space-time dimensions., We assume in this discussion that a
full quantum theory does, In fact, exist, The states of
this quantum theory will, presumably, transform as particle
representations of the Poincaré group, The mass spectrum of

particles will be discrete. The particlie elgenstates willl
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be states of definite momentum which. are completely
delocalized in space.

In the full quantum theory, both the Dirac fleld and
the surface varliables, R"(ufh will be "quantized," But, In
the semi-classical theory, only the quantum nature of the
Dirac field s taken 1into account; the hubble surface Is
treated purely classically, An immedliate consequence Is
that semi-classical states of definite energy and momentum
are completely locallzed surfaces in space, A potentially
more troubling aspect of the seml-classical "approximation"
is that, because the surface variables are «classlical, the
spectrum of surface excltations 1Is continuous. A third
quantum effect that is neglected semi-classically 1Is the
effect on ‘the spectrum of quantum fluctuations (zero-point
motion) of the surface and of the +tilled negative energy
Dirac sea., |In order to use the semi-classical approximation
to discuss the spectrum, all these effects must be
understood, or at least appreciated,

The zero-point energy and sum over the negative energy
Dirac sea will each have a divergent term proportional to
the area of the bubble., Because they are proportional to
the area, these terms can be considered as a renormalization
of the bubble constant C., There may be finite corrections
vhich remain after this divergent term Is removed, Such

corrections will not be taken Into account numerically In
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the analysis of this chapter.

The states of the semi-classical theory are 1localized
in space. We expect quantum fluctuations to smear them out,
We might guess that this smearing would be significant only
over states of nearby classical energies. That such is the
case |Is suggested, for exampie, by the path Iintegral
formulation of quantum mechanics, The paths that will be
most important are those along which the actlon does not
ditfer greatly from the action along a closed classical
urbit, Thus, In the case of a very soft object 1ike the
bubble, we can expect that the true quantum states will bear
iittle or no resemblance to any single classical surface we
night compute. Can we, then, reasonably expect that a
semi-classical estimate of the energy be realistic? The
answer is both ves and no. We cannot suppose that a
semi~classical approximation Includes all the terms which
contribute to the energy. But, because the bubble Is soft,
ve may hope that the effects of quantum fluctuations, though
large, are nearly the same for semi~classlical states of
similar shapes. In this case, the seml-classical
approximation may qualitatively refiect the relative
differences between energy levels.

In order to obtain a realistlc estimate of the
particle masses from the semi-classical theory, we must

decide ‘what to do with the continuous spectrum of surface
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exclitations. In the spirit of the preceding discussion, we
ighore them in the flrst part of our analysis, fixling our
attention on static bubbles. {In the last section of this
chapter, we find a spherically symmetric, time-dependent
solution to the equations of motion corresponding to a
“"breathing" mode ‘of the ground state, We quantize thls
simple surface excitation In the WKB approximation. We see
that, indeed, the magnitude of the surface fluctuation Is
iarge. The ratio of the mass of this state to that of the
ground state bubble is within 3% of the ratio of the mass of

hoper resonance to that of the nucleon.

Section B: Static Single Quark Bubhles

We begin, then, by looking for solutions of the static
bubble equations. Consider first the case where the bhubble

contains only a single quark. The statlc equations are:
(I) {mxYP==

@) (2 Py +kc AR)V=EY

D) S[E+CA1=0 or haeT =0
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For a static surface, the geometric formalism introduced in
Chapter (] simplifies considerably, Taking Internal

coordinates u?=1;¢ﬂ/u?, we have

R (z ue) = (T, R1W) , T°=(b3) , TM=(0, Ta)

| 0 o .
Je= \ o . _g,\ aab= T %
o

= (0, %)

(@) o @) L)
Jld¢5== :; _.Jqélt, s *a:: ;_/L a

We adopt the notation that a,b,c,d,... refer to. space-1lke
indices (1,2), while 1i,j,k,1... refer to the indices In
kuclidean space (1,2,3)., The geometric objects which we
defined in Chapter il for a time-like surface are defined
in the same Qay, up to a sign, for the spacltal surface,
ﬁ(u.a). in partlcular, 3~b is the spacial metrlc tensor
and will be used to ralse and lower Indices on tensors,

By virtue of equation (1) we can write the Dirac field

in terms of a two component spinor, 2: H

X
\
Y= =T \ifex
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where we have used the Dirac representation of the gamma

matrices. In terms ot X, the Dirac equation is
HX=EX

vhere the two component Hamiltonian Is
.A A
H= R-10+(AAY)

The conserved currents of the theory can be written In terms

of X :
Jo=x*x , JT%=x"a.(haTYX
T°°= C +EX'X
T Im (XT3%X) + % At T
T~ _gye
T —Cg%® + & A2 xrx

+ Tm X3 (RAT) abx

The normalization of X is
Q= [duiig X"x=|
s0 the total energy is
U= [daiigi T= £+ ca
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As we expect, the total spacial monentum can be shown to be

zero:
Pa=foluJ|_§\ o0
o= (M)
=2 [ TTo RT3 P20 o Y]
+ MMG“Q |

= T4 M2, =T+ g (Vigr M**J1a

bu+:

Thus; ?£=V{da (—V1g Ma“',)ua,:‘o

Finally, we can write the local form of the energy variation

condition

ck= & ( A% %Aal) XX + Aoy T X & a2 X

The system of coupled equations (11), (11l) 1is very
difficult to solve exactly or approximately 1in three
dimensions. Before attacking the three dimenslonal problem,
it is instructive to consider the two dimensional case,
vhere we find an exact general solution is available,

In two space dimensions, the bubble is a closed curve

in the x-y plane (Fig 5J). We can choose the single
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parameter describing this curve as its length
R=2)
A a
e= 3—} = umt vector nAC =2
The curvature Is then
I A
k= 3230 =43
where f is the angle of the normal with respect to some

fixed direction in the plane (Fig 6).

The Dirac equation is

S
+48 g g Tx-EX

which may be integrated immediately to yield

(B = em;[ez—g@m-—é‘m)] Xco)

X must be single valued, so we have
X(LW)= Xto) wheve L= total lengﬂ»\
or

ann=EL- 5{¢)-Z)]= EL-W

where n is an integer., The Dirac energy is

= ZIm L
E= = ; MENvZ

and the normalized Dirac wave-function can be written
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Y= L % (B2~ 2 5(9))
_.‘{-—-__: e .
vihere u is a fixed unit spinor,

The Dirac energy depends only on the perimeter of the
bubble, L, not on Its shape., There are paired positive and
negative energy levels of the same magnitude, There 1is no
zero energy mode, These results can be readily understood
geometrically, The static Dirac equation on the two
dimensional bubble 1is just the equation for a spinor which
is parallgl transported around a closed curve, up to a
phase, éBLq;E;f . On a one dimensional manifold, there can
be no intrinsic curvature, From the point of view of a
quark trapped on a one dimensional curve, the geometry In
the neighborhood of any one point 1is equivalent to the
geometry in the neighborhood of any other point. This leads
to a "translation" invariance along the curve. For spinors,
this translation 1is realized by parallel transport, under
which the spinor changes only in phase, Because the quark
has spin 1/2, transport around a closed path Iinduces a phase
change of [r , which must be compensated by the factor EL.
Hence, the energy cannot vanish,

We interpret negative energy quark states as positive

energy anti-quarks, The total bubble energy is, then,

amiml

L +CL

U=
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Minimlzing over L, we have

L= ‘-:Ln\rnl a-
Ya y
v= (&wc)™1m "2

it is straightforward to check that, If L [Is chosen to
minimize U as above, equation (I111) Is satisfled at each
point on the bubble surface.

The two dimensional bubble is, then, extremely soft,
Statlc bubble states occur only with perimeters fixed by the
Dirac quantum number m; but bubbles of all shapes with this
perimeter are degenerate classically. In Chapter V, we will
see that the spectrum of the full quantum theory does not
have such an infinite degeneracy. The reflection of the
bubble's softness there lies in the large quaritum
fluctuations of the surface. We shall see that the three
dimensional bubble is also soft, but not so soft that all
shapes are degenerate.

We note that there is one quantity which does depend

on the bubble shape. This Is the angular momentum, 3;,
a2 0(a) a om]
T=m=[de [R' T -R'T
where (1) and (2) refer to a spaclal Index, 1.

T Im[& isE-K) 2]+ £@Rusu

"

rim

<> ; where (B>= uwtizw
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Then

3;: %<055de [-aA€]3= %405) A

where A |s the total area of the bubble, and, of course,
depends on its shape, Using the expression for E, we can

re-write this result:

A

Jz = Im\ 03> ["T-."a

3 3 "(an)
of

7. = (85) " V? o> L A {

3= 3 "(:-'T)a
The ratio ﬂ/[ﬂ (%?)?1 is the ratio of the area of the
bubble to the maximum area it could have, glven perimeter L.
The state of maximum area 1is a circle, which is unique.

Thus, the maximum possible angular momentum of a state of

energy U is

T3 mpx (V)= (gnc)™ o
in a Regge picture, this Is the statement that the leading
Regge trajectory Is non-degenerate, and linear In (mass)a
with slope (QTI'C)_' .

Unfortunately, the static bubble equations 1in three
dimensions are not so easlily solved, The only known exact

solution is a spherically symmetric one corresponding to the
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approximate solution ot the field equations found by BCDWY,.
it is simply a very difficult technical problem to
slmultaneously solve the Dirac equation and satisfy the
condition that the total energy be minimal under local
variations of the surface, In principle, however, we can
find all solutions to the static equations as follows: (1)
Solve the Dirac equation exactly on a general closed spacial
surface, is (Uf9 . Because the surface Is compact, the Dirac
spectrum Is discrete and the energy levels can be labelled
by two discrete parameters, ﬂﬂ\Jﬂﬂa . These Dirac energies
will be continuous functionals of the surface variables:
Em.m;‘-at“dﬂ « (2) Choose which levels are to be o;:cupled
by quarks or anti-quarks. (3) Minimize the total energy

functional,

D) [Ti(u«)] = Ca[Riu)) a—“ czu:v;“\ Emyma [ﬁ. (u“)')
\evals

~
in the space of functions R (u9Y.

Such a procedure is much too difficult to be carried
out In practice. It suggests, however, a practical scheme
for finding the energy 1levels approximately. Namely, we
attempt to carry out the above procedure, not on a general
surface, but over a class of surfaces sufficiently 1limited
that the Dirac equation is tractable. Ve will choose a form

for the bubble surface that depends on several real
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parameters, solve for the Dirac energy as a function of
these parameters, then minimize the total energy over the
parameters that detine the surface., Because the total
energy functional s positive detinite, this variational
estimate of the enérgy Is always an upper bound on the
energy of the Jlowest bhubble state with the assumed Dirac
quantum numbers M,,lM-,, . The accuracy of such a
variational estimate depends entirely on whether the trial

surfaces we consider are sufficiently 'near" the true

"solution., " This in turn depends, as a practical matter, on

how well we understand the character ot the distortions of
the excited states of the theory,

We begin by considering the simplest possible trial
surface-- a sphere, We re-derive the resuits of the BCDWY
approximate solution of the static field equatlons, now
expressed in the geometric language of bubble theory. Let
the sphere have radius R and be coordinatized by the usual

polar angles @/‘9 . Then we have

| (o]
@:xb:: R 6 sin ﬂ:zil(q,49
]
/Aa¥F= jé:‘%«xL ‘*Z:: R
A
S ) ¢

%=t(F + e )

The two component Dirac Hamiltonian Is
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=
H= E— c a\—' (?‘Av"): ‘!i(\‘ft‘a-\')

its normalized eigentunctions and elgenvalues are

1 b J
X= & G
T
B et
E=
54—%; . -__2_\
- T \g' 3= é—

Wle interpret states with £+Y2 as quarks, those with

J=,Q—}Q_ as anti-quarks. The total energy is :
L P X
+32
U= —‘)—F—i— + C 4nR=

Minimizing over the parameter R, we have
4 v
-3 /. 3——
R=(8nc) Z(j+%) "=Ro (j’ré{)y?

.
= = (j*%)%
This gives the best approximation to the energy of single
quark states with the quantum numbers (j,m) over spherical
surfaces.
The local equation for the minimization of the total

energy is
0= ~haeT“P=ba T™=F

F = o00twaed wormal ferce deng]fy
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but

ab
F= —acR + £ (A" o)X x
, b
+ 4\4\, Tm X7 (0 AT "X
22 Rt 2., R
__ac 1 Iél{)"‘\ ""!iilz’a«I’"(g"' oL (ﬁ,,.

R

“) F=— g‘% ¥+ —§-3~ \“?j%n \Q
This vanishes locally only if j=1/2 so that “e’f‘\a':#;‘ is
independent of Q)L? . For j=1/2, the solution obtained by
varying over spherical trial surfaces Is exact. In the
hubble with j=1/2, the net surface tension vanishes locally.
Physically, this reflects the exact balance of the uniform
surface tension C and the fermi pressure due to the quark
fleid. -
For j>1/2, the surface tenslion and ferml pressure
balance only on the average; there Is a tension Induced
normal force that will tend to distort the surface from
sphericity, From (1), we see that thls force tends to push
the surface out where the quark density Is high, and allows
the surface to collapse where the quark density is low (Fig
7). A particularly simple example is the case of a quark of
maximal z-compunent angular momentum, m=j=1+1/2, The normal

force density lis:
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L
— 5[ 3c)3 (£+) (24+)} 2 _
F’a[.cﬂ] C[ﬁ-—(nﬂ)-!! (48" —1]

This is a torce which is axially symmetric and has a single
peak In the equatorial plane., It wil]l tend to stretch the
sphere at the equator and depress It at the poles, The
force densities associated with quark states with [m|<j have
one or more azimuthal nodes, and tend to distort the sphere
to rather more complicated shapes. (Fig 8)

The angular dependence of these force densities on the
sphere suggests the shapes we should use for trlal surfaces
in a variational estimate of excited state energies. We
note that, because the force densities differ for spherical
quark states of the same j but different m, the surfaces
which actually minimize the total energy will presumably be
of different shapes. Thus, it appears, the semi-classical
spectrum will not necessarily consist of (2j+1)-fold
degenerate levels corresponding to particle states of the
same j but different m. This result, though disturbing, s
not terribly surprising. It s again a consequence of the
semi-classical treatment of the surface degrees of freedom,
in the full quantum theory, the surfaces corresponding to
states of the same j but different m will, because thelr
shapes ditfer, have slightly different energles associated

with their quantum fluctuations. This relative shift will
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precisely cancei the semi-classical splitting, and restore
rotational invariance to the spectrum,

We will sidestep this problem by conslidering only
quark states corresponding to Imi=j, and Interpreting the
resulting energies as estimates of the energy of the quantum
multiplet of spin j. Ve can adduce several arguements for
this interpretation, The surfaces corresponding to Imi=j
states are simple and smooth. Those corresponding to other
values of m will be complicated and "bumpy." As a practical
matter, it is extremely difficult to do the required
variational calculations for surfaces of very compllicated
shapes, It takes many variational parameters and
correspondingly many hours of computer time, Further,
because these surfaces are "bumpy," we expect the effects of
thelr quantum fluctuations to be relatively more Important
than they are for smooth surtaces like the sphere or the
imi=j surfaces. Thus, the most relatively consistent way of
neglecting quantum fluctuations is to estimate the energles
using states which have smooth surfaces. Finally, as we
shall see, the effects of distortions of the surface are
numerically small for the low-lying excited states., In no
case wl1l our variational estimate of the energy be more
than 10% 1lower than the value estimated from the sphere,
Thus, whatever approximation we make, we commit no gross

numerical error,
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As a simple trial surtace that Is smooth and flattened

at the poles, we use the oblate spheroid:

ﬁ(&,t{)f-: R{A&.&w% 2n8enlf vi—42 006 ]
where o< d<|
This surface depends on two parameters: R which determines
its overall size, and d which determines its shape. For
d=0, the surface is a sphere. As d Increases from zero, the
spheroid becomes flatter and flatter, until, at d=1, It s

an infinitely thin "pancake." The area of the spheroid is

- 41+ 587 4] e

The Hamiltonian of the surface Is

He e 1R (1 ia)

R l—d‘

« AN D, 2
i 2 i cotd (b - aints) - V) 53
Because the surface 1is axially symmetric, the

z~component of angular momentum Is conserved.

.2
[H Bl=0 where J3= —e 3¢ +10

Thus, we can choose our Dlrac elgenstates to be states of

detinite J5 .

The remaining diagonalization of the Hamiltonlan must

be done numerically, The level on the spherolid which
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corresponds to j=m on the sphere 1Is simply the 1lowest
positive energy state in the sector J§==n4 . We compute the
total energy, U, of a spheroidal bubble occupled by a single
quark of spin m, and minimize it over R at flixed d. The
ratio of this energy to the corresponding energy estimate on

the sphere,
u(d)
a) =
f%n( ) ‘aRo (nrr'L)§§

is plotted as a function of d for m=3/2 and m=5/2 in Fig 9.

We see immedlately that, in both cases, the total
energy decreases monotonically as a function of d. I[ndeed,
these calculations show that the energy of the spherﬁtd is
lowest in the 1imit where it becomes a completely flattened
disk. Despite the fact that such a disk has very large
curvature at its edge, the Dirac energy remains small, This
result is actually quite general-- the statlc Dirac equation
can be solved on surfaces with sharp edges, In the 1imit
that an edge becomes Infinitely sharp, the Dirac equation
glves a boundary condition at the edge. This point, and its
possible application to the numerical study of more general
surfaces, Is discussed more fully in Appendix E.

The oblate spherold is not an adequate trial surface,
it takes into account the tendency of the surface to spread

at the equator, but does not allow for sufficlent depression

80



at the poles. We note, however, that although the energy
decreases uniformly as the spheroid flattens, the numerical
slze ot the decrease is rather small. Even the completely
flattened disk has energy down by less than 10% from that
estimated on the sphere,

We want to find a trial surface which is both sﬁread
at the equator and dips inward at the poles. We could begin
to consider surfaces that are defined by three or more
parameters, but it is computationally more stralghtforward
to continue to work with two parameter surfaces as long as
possible. A simple two parameter surface 1In which the
region near the poles is completely depressed is the torus
(Fig 10)., This surface may be regarded as one where the
poles have dipped in so far as to create a hole through the
center. |

We coordinatize the torus as follows:
R(6,4)=b [ (¥+mn6) cool, (¥ +omp) senll, o0
2 ) /

whece: 0<£6<an b=
O £L@L2y
b s the radius of the circular vertical cross~-sections of
the torus; X[) ls the radius of the torus In the x-y

plane, The area of the torus is

a = "lwab’ba
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The surface Hamiltonlian is

s : , A Lt sk
where!

@= (—om ¥, o4, 0)
A
6 =

(w6t coaainf, —4in6)

As betore, 33: g3 commutes with H, and we can

_.532‘_9,5_.
vork in a sector of definite J; , J';zm . The state
corresponding to j=m on the sphere 1is again the Jlovest
positive energy state in thls sector,

This Hami I tonian mus t also be dlagonalized
numerically., We compute the total energy, U, of single

quark states with m=3/2 and m=5/2, and minimize over b at

fixed ¥ . The ratio
Um(3)
R”,(X)rz Ag%z(rno h)73

is plotted versus Y in Fig 11, The minima of the total

energy in Y are:

X b
m=3/2 2,09 <973
m=5/2 4,04 910

The energy estimate of the m=5/2 state here Is Jlower  than
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the correspondling estimate on a flattened disk and suggests
that single quark bubbles of spin 5/2 and larger will have a
toroidal shape, The energy estimate for the spin 3/2 bubble
on the torus (s larger than the estimate on the flattened
disk., Presumably, the m=3/2 state Is extremely depressed at
the poles, but still connected.

Despite the radlcal differences In thelr shape and
topology, we see that the energles of low-lying single guark
states on spheres and on toruses are not very different. We
interpret this as a reflection of the "softness" of the
three dimensional bubble, Thls three dimensional result |Is
analogous to the complete shape degeneracy of the two
dimenslional bubble. |In order to estimate static energles
more accurately, we should consider trial surfaces defined
by more than two adjustable parameters, As a practical
matter, as long as we are interested in only the energies of
jow-lying states, the computational difficulties involved In
such calculations are not justified by the results we would
hope to obtain. For single quark states of spin less than
5/2, we have seen that the correctfon to the energy due to
distortions is less than 10%, Three quarks of spin 5/2
could combine to form baryonic states of maximum spin 15/2,
There are not yet observed hadrons of such high spin, nor
are the experimental masses of the higher resonances known

to within 10%, Also, we have neglected the effects of SU(3)
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breaking, which must be slzeable In the higher multiplets,
Further, as we shall see In the case of the radial mode,
quantum fluctuations may be expected to glve corrections to
the energy levels at least as large as those due to static

distortions of the bubble shape.

Section C: The Hadronic Spectrum

So far, we have conslidered onily bubbles containing
single gquarks, The baryons and mesons in the BCDWY model
contain three quarks and gquark-antiquark, respectively, in
color singlet states. We discuss briefly the physlics of
these multi-quark bubbles in the statlc picture, noting the
differences between the multiplet structure predicted by
this model and that given from SU(6)x0(3) symmétry.

wWe have seen in Chapter (! that the ground state
baryons and mesons occur in this nodel in the same SU(3),
spin, and parity combinations as predicted from SU(6). This
is a trivial result, The'ground state baryons, for example,
are formed by all possible symmetric combinations of three,
independent, SU(3) triplet, j=1/2 quarks on the sphere,

Schematically,
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ground state baryons=(3,1/2)x(3,1/2)x(3,1/2) (symmetric)
=(10,3/2)+(8,1/2)
=56 L=0 of SU(6)x0(3)
vhere the notation (A,B) refers to
A= SU(3) representation

B= spin

Each quark is in an 1=0 state on the sphere, and therefore
has positive parity. Thus the ground state baryons are all
of positive parity.
Simllarly, the ground state mesons are tormed from all
possible combinations of a j=1/2 quark and antiquark,
ground state mesons=(3,1/2)x(3,1/2)
=(8,1)+(1,1)+(8,0)+(1,0)
=35 L=0 + 1 L=0 of SU(6)x0(3)

The quark and anti-quark wavefunctions have opposite parity
on the bubble, so all these are negative parity states. The
neutral members of these multiplets have charge conjugation
determined by thelr spin, C= ("‘)S.

Iin the static picture, the lowest excited baryon
states are formed by promotlng one of the quarks to a higher
orbital excitation, for example, j=3/2. Thls, of course,
will tend to distort the bubble from sphericity. But,

because the other occupled quark states tend to make the
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surface remain spherically symmetric, this distortion Is not
50 large as in the case of the single quark bubble. Indeed,
the energy shifts due to distortions <can be estimated
variationally as was done in the single quark case., It Is
found that the corrections to the energy are typlcally on
the order of 3% for mesons and 1% for baryons in the first
excited state. These shifts are negliglble relative to
other corrections that we are neglectling, We will,
therefore, treat the excited states as {if they were
spherical for the purpose of counting the possible SU(3) and
spin multiplets.

For the baryons, then, the first excited states in
this model will consist of two quarks with j=1/2, and a
third with j=3/2 with an overall wavefunction that Is
symmetric under quark interchange. The mass of these states
is predicted on the sphere to be

U= = Ln’/a__ _13%] (4/)"7’3

_-aRo( - [aR" 3

It is a straightforward exercise In group theory to show

that there are 252 possible states:

first excited states=(3,1/2)x(3,1/2)x(3,3/2) (symmetric)
=(10,5/2)+(8,5/2)
+(10,3/2)+2(8,3/2)+(1,3/2)

+(10,1/2)+(8,1/2)
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= 252 states.

Because the quark with j=3/2 has 1=1, these are all negative
parity states.
The corresponding odd parlity first orbital excitatlion

in the SU(6)x0(3) scheme Is the 70 L=1:

70 t=1 = (8,5/2)+(10,3/2)+2(8,3/2)+(1,3/2)
+(10,1/2)+2(8,1/2)+(1,1/2)

= 210 states,

Relative to this structure, our spectrum contains an
additional (10,5/2) and iIs missing the (1,1/2) and one
(8,1/2). Table Il summarizes these results, along with the
conventional particle assignments to the 70 L=1, We see
that the degeneracy of these levels in the SU(6)x0(3) scheme
or In our model must be badiy broken. Without understanding
this breaking, it is difficult to decide which, 1if etther,
of the two pictures fits the data more closely,

Like the baryon states, the first exclted meson states
will consist of a quark antiquark palr with one particle 1in

the j=3/2 state. The possible mesons that can be formed are

(3,1/2)x(3,3/2)=(3,3/2)x(3,1/2)
=(8,2)+(1,2)+(8,1)+(1,1)
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= 72 states

These are all states of positlve parity. The corresponding
$U(6)x0(3) level Is 35 L=1 which contains
35 L=1 =(8,2)+(1,2)+2(8,1)+(1,1)+(8,0)+(1,0)

Relative to the prediction of SU(6)x0(3), we are
missing (8,1), (8,0) and (1,0), This 1is not terribly
significant, as this meson multiplet 1{is even more badly
broken than 1{s the first exclited baryon multiplet, A much
more disturbing feature of the predicted meson spectrum is
that, because the quark and anti-quark are treated as
independent particles, states exist in which either the
quark or the antiquark 1Is promoted to j=3/2, Thus the

states

—

lq3=% ;7 j=2>« 1q=%35§ j=3>

are independent states of the same SU(3) and 'spln quantum
numbers, but whose neutral members have opposite charge
conjugation., A completely satisfactory resolution of this
problem is presently unavailable.

We make several observations on this point. Flrst, as
compared with SU(6)x0(3), the BCDWY theory tends to predict
larger degenerate hadron super-multiplets at each level,
The reason can be traced to the extra degrees of freedom

associated with the bubble surface. In non-relativistic
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SU(6)x0(3), the center of mass of a hadron state |s
determined as the center of mass of the quarks which
constitute it., The quark wave functions are the wave
functlions of the quarks relative to this center of mass,
Thus, for example, mesons are characterlzed by a single
quark=antiquark relative wave function, and there 1Is no
charge conjugation doubling,. lh contrast, the center of
nass In the static BCDWY theory Is determined as the rest
frame of the bubblie surface, relative to which each quark is
described by a independent wave function, This 1s the
source of the additlonal states In the baryon spectrum, and
of the doubling of the meson spectrum, One might expect
that, when the guantum nature of the surface and the effects
of the negative energy ferml sea are properly taken Iinto
account, the complete Independence of the quark and the
antiquark on the bubble surface will disappear, and along
with 1it, the charge conjugation degeneracy of the meson
spectrum, No calculational method which takes {nto account
such quantum effects presently exists,

A more practically useful observatlon is that, as long
as all physical operators have definite transformation
properties under charge conjugation, It is consistent to
slmply delete one set of states from the theory., The only
operators of physical Iinterest whlich do not have this

property are the weak currents, As we have seen in Chapter
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iil, the axlal current and PCAC are not adequately
represented In the semi-classical BCDWY theory in any case.

We note that, though we have removed most exotics
through the introduction of the color interaction, there
still remains one iclass ot stable exotics, These are
di-baryons (6 quarks 1in a color singlet state), di-mesons
{(two quark-antiquark pairs), and tri-mesons (three quark-
antiquark palrs). For example, the estimated mass of the
dibaryon is

_ 2 (¥ -3
Mpiearvon = 3Re @?=2a {9‘ Mf(']

Thus, the di-baryon appears to be bound relative to two free
baryons. Similarly, di- and tri-mesons seem bound, Our
contldence in these simple energy estimates decreases as the
estimated energy increases. We note two as yet unaccourited
for mechanisms which may serve to unbind these states. One,
suggested by K, Johnson in the context of the MIT model, Is
that the finite effects of the surface zero-point motion and
the negatlive energy Dirac sea may provide an additional
relative energy to the exotics and cause them to be
unstable, A second possibility is that, because di-baryons
and di-mesons have different SU(3) quantum numbers than do
the wusual ground state hadrons, SU(3) breaking forces that

account for mass splittings may also unbind these states.
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The order of magnitude of the necessary mass shift of the
exotics (20%) Iis not inconsistent with the observed slze of
SU(3) breaking. However, no theory that exploits this
possibllity has yet been devised.

The ratio of the energy of the first excited baryon
rultiplet to the ground state energy Is estimated from the
sphere to be lg)yﬁ = LR . From Table Ii, we see that
the experimental ratio, though rather uncertain, seems to be
a bit 1larger., We have seen that the distortions of the
bubble have only a small effect on its energy,
Gualitatively, however, we expect that the quantum
fluctuations of the more highly curved exclted state
surfaces will increase the energy of this ﬁultlplet relatlive
to the ground state., Indeed, we might hope that it would be
possible to compute the splittings induced between states of
different j within the degenerate super-mulitiplets of the
model, Unfortunately, no techniques presently exist which

can account for these effects guantitatively.
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Sectijon D: The Radial Mode

We now consider another kind of excitation of the
bubble: one in which the surface as a whole Is excited,

rather than just the quark, The general problem of

" estimating the spectrum of surface excltatlons |Is

technically beyond us, in three space dimensions. In this
section, we discuss only the simplest possible such
excitation-- a spherically symmetric 'breathing' mode.

We begin with the semi-classical time dependent
equations.of motion. Let us assume that there is a solution
of these equations whose surface is a sphere of time

dependent radius R(t):

R*LT,8,9)= (T, RO E©6,9)

Defining - AR
R = % =Tanh we)
we have
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— R2%enp
—_—R =
g(*@ v R o ) Jgﬁ ¢59J\LD
o & R’



cohw W o o

of
/‘\p:' o 4,@%.&’ ©
comh W
o (7] R

We take a torm tor the Dirac fleld that has '"1=0" and

automatically satifies (1),
F(z)

L (i
Y= \ri(uwx)( O)

where F(t) is sorne two component spinor, The Dirac equation

becomes:

—

E (D)= - c:’;?&_) (L +4nhw) F(T)

vhose integral is fzdt »k(é*' - ‘w)
— TR
Fio)= e ~° conh w0 F(0)

. ft T R
RiNeahwwte) ~~Je ™ ol )
R (B Jeomhuw (T)

The normalization condition,
_ R 4ind 7 o
1= (dode K- d=mé oy
allows the wave~function .to be written

- i f o [Ree4d]

Ve

F(z)=

V 4nR@*covh w(t)

where u is a fixed two component unit spinor,
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We see that the Dirac equation Is solvable exactly for
an arbitrary R(t), Equation (111) will determline which of
these surfaces are acfually allowed dynamical states,

Putting the solution for ¥ into equation (111), we have
0= 1—RW-8wC R3 (“”‘iR“:’)

This equation can be more simply expressed In rescaled

varlables.

_ 1
R,= (€nc) 3= 3raona| state radivs

T =7k,
R(D)= PIYIR,
we have:
dw _ VP> 40 _ 5

this can be integrated once to give

2 = _—_L__ _Eﬁ_ 1. o=
(2) € W(Be-r-s(’)

where is a constant, A straightforward Integration of

the energy density shows that
2
total enerqy = U= ¢ 2Ro

Thus € Is the total energy of the radial mode measured In
units of the static ground state energy.

If € =1, we recover the statlc solution, p=1, #=0O |
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For € <1, there are no solutions. There exlsts a unique
solution for each € >1 in whlch F is periodlc, with turning

points determined by

The equation for P is similar to that for a relativistlec

particle in a scalar potential

vipr= 15+ et

shown in Fig 12,
e E

We note that the total energy Is continuous, As
emphaslzed Iin Section A, this Is an effect due to the
classical treatment of the surface degrees of freedom, In
order to get some idea of the level structure of the radial
riodes, we will ‘guantize" this excitation In the WKB
approximation,

We treat the equation for P as If It were, Indeed,
the equation of motlon of a relativistic particle In a
potential. We take the expression for the total energy (2)
to be the Hamiltonian

! 2 a)
f{:»éﬁii;r (39'* é'?
The most general Lagrangian from which this H could have

heen derived is
Ligp)= — ,‘_..Pa."' L%""Slf’a] + £
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where f(pP) Is some undetermined function,

The canonical momentum conjugate to @ Is

p=25= r————-“f;‘ [ 55+ 567 +50)

=55

The WKB approximation glves the discrete energy levels from

the quantizatlion condlition

FmM
anor )= ¢ Bdo =2 dp - [-3p]"
ormt Prmin
n = l.n“‘ejn.(‘

Thls equation can be easily solved numerically, The flrst
few values of €n and the corresponding turning points
are given in Table (11,

in the lowest state, n=0, we see that the effects of
its zero-point motion are very large, The radlius fluctuates
by a factor of two about its static value, The energy in
the surface excitation 1Is 60% of the static ground state
energy. This 1Is a qulite dramatic 1llustration of the
softness of the bubble dynamically and suggests that if
fluctuations are properly accounted for, the bubble will be
qulte smeared out In space.

The n=1 state is the lowest radlal excitation of the
bubble. Its energy is a factor é‘/go =1,.60 higher than that

of the ground state, It is easy to convince oneself that,
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in the case of several quarks in the bubble, all the
energlies ot the radlial mode simply rescale, Thus, the model

predicts radlal excltations of baryons and mesons with

energy 1.6 times higher than the groﬁﬁd state energles.

No radially excited meson candldates have been
confirmed experimentally, There 1is, however, a presumed
radial excitation of the nucleon-- the Roper resonance-- of
mass 1470 mev. We note that 1470/940=1,56 ., In the face of
our 1nabillty to derive many solid numerlical predictions of

excited state masses, this s a pleasing numerical

coinclidence.

In this chapter, we have tried to 1learn as much as
possible about the spectrum of the BCDWY model in the
semi=-classical approximation. We “have developed a clear
intuitive picture of the dynamics of bubbles, The most
important feature of this picture is the softness of bubbles
to deformation, We have seen that, although the excited
states are expected to correspond to highly distorted
surfaces, thelr spectrum can be estimated and 1Is In
qualitative agreement with SU(6)x0(3) and with the data for
the baryons, In the example of the radial mode, we have
seen that gquantum fluctuations of the surface are large, and

that dynamical surface excitations of the bubble are
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important in determining the full spectrum of exclted
states,

We believe that when quantum corrections are taken
into account, the theory may provide a natural framework
vithin which scaling, the behaviour of form factors, and
perhaps even hadronic Interactions can be understood. At
present, however, no calculational methods adequate to
handle the quantum theory of the surface in four space-time
dimensions exists, We are therefore unable to
systematically analyze elther the corrections to the

spectrum, form factors, or the question of scallng,
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{n Chapter |V, we discovered that the -equations for
static bubbles can be solved exactly In two space
dimensions. The shape degeneracy of these solutions
provided the flirst Indications of the softness of the
bubble. In this chapter, we examine the bubble theory Iin
two space and one time dimensions., We will see that all
classical solutions to the general, time dependent theory
can be constructed explicitly. Iin the general case, the
bubble executes a cumplicated, but periodic, osclllation In
time, The quarks trapped on it are massless and move along
tight-1ike lines imbedded In the surface. As In the static
case, there 1is a degeneracy over an Infinite class of
“shapes'" of the bubble. By choosing a special coordlinate
system and a particular Lorentz frame, we can represent all
possible solutions to the theory Iin terms of a countable
number of.lndependent "normal mode" amplitudes., We exhlblt
a set of commutation relations among these ampllitudes which
provide a Poincare invarlant quantum theory of the single
bubble. The operator algebra of this quantum theory |Is
similar to that ot the Neveu-Schwartz modefv. indeed, the
bubble In three space-time dimensions Is a two dimensional

object that closely resembles a closed string upon which a
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fermion is trapped.

The spectrum of the quantum theory 1is not unlquely
determined by the operator algebra alone, As Is the case
vith other dual theories in three dimenslons, the spectrum
depends critically on how the infinite normal ordering terms
which arise in the theory are handled. We discuss the
possibie spectra of the theory, We find that the bubble has
a discrete mass spectrum, with states corresponding to
"mesons" (even termion number) or to "baryons" (odd fermion
number), but not both, We discover that the classical
infinite degeneracy of all levels disappears in the quantum
theory. The softness of the bubble is reflected in the size
of the quantum tluctuations of 1its surface and 1in |Its
exponentially growing density of states,

A1l of the work described in this chapter was done in
collaboration with Dr. Henry Tye of SLAC, without whose
insight into the string-like nature of the thrée dimensional

bubble no solution of the theory would have been possible.

We begin by finding all solutions to the classical
bubble equations in three space-time dimensions. We
consider only the case of a single quark specles. The
extension to many species is completely stralghtforward.

These equations are:
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(D ixY=
(N @) (JyrKRew) P=0
Lﬂ) »Lq‘gTqP—_-.o

In three space~-time dimensions, both the geometry of
the bubble and the gamma matrix algebra can be simplifled
tremendously. The bubble surface is two dimenslonal, Our

notation will be:

R (us )= R¥(1; o) wezy | u'z o

v
3

\

- 2
with A?ﬁ'a% R A’

L]
LY
q

for any quantity A

We choose the orientation of the internal coordinates such

that

(@ P — L e @y (),

|
In three dimensions, we need only three matrices

satisfying the anti-commutation relations
»rPooyV v
{3 )3' }‘—"—- & ’)l'u ) M=0,0,2

Vle choose these to be 2x2 matrices rather than the usual 4xh

ganmma matrices,
@) =0 =i Y= -in
whose algebra is
v . VA
Y= - e
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That such a choice is possible is obvious mathematlically.
Its significance In the theory becomes clear 1f we begin

with a 4xld representation of the usual gamma matrices.,
¥ (0.' 0) 2!‘:(“’5 ° s -G o
'o) ...407 ) o —003 J Cgl

o |
o 1
63: (__‘ o) J '&5: (L O

v- ()

In this representation, the Dirac equation Involves only

()

a‘gx"x"‘ . Thus, the two component spinors % and ¥-
decouple from each other, Because the fermion moves In a
single plane, there 1Is an extra conserved "charge" whose
natrix is 33)% . To choose a two component representation
of the gamma matrices is to Impose the condition that the
Dirac field be an eigenstate of Xa&g with elgenvalue +1,
The theory we obtain by making this cholce 1Is a
consistent and complete theory of a fermion trapped on the
bubble surface. That this is so is not completely obvious.
In a three dimensional theory where the fermion is free to
move throughout space-time, charge conjugation and
time-reversal invariance cannot be realized In the two
component representation, For example, charge conjugation

rnust be represented by a matrix C with the property
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5) < ¥Tct=¥"

in the representation (i), we must take C= 336“ . Thus, ¢
does not commute wlth 3353 « Because the fermion In the
bubble theory is confined to the two dimensional bubble
surface, however, the requirement (5) need be satisftied only

by the tangential components of the gamma matrices:

C Zletvcn-\ g__z‘*

Thls condition can be realized In the two component
representation by c= Lv&?f‘ . The two component
representation is "complete" for the bubble theory In the
sense that P,C, and T can all be realized for the fermi
fleld,

We must also emphasize that a bubble theory based on a
four component Dirac spinor Is not an altogether trivial
extension of the two component theory, It may be viewed as
a theory of two Independent two component quark fields! 1&,
and 1&., trapped on the bubble surface, However, the two
component version of equation (|) Is different for these two

.spinors:

(: W"f.'..: ‘!fi-

o)
( pA=—"t-

Though the Dirac equations for these two spinors separate
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complietely, both interact with the surface through equation
(111)., Because of the difference in sign in equation (6),
the eftects on the surface of the two splinor fields do not
add in a simple way., At this time, the general solution to
the four component theory has not been obtalned,

The equations of motion (1) are a rather complicated
system of coupled non-linear partial differential equatlions,
They are quite difficult to solve directly., The procedure
by which the general solution wlll be obtained 1is rather
intricate. Our goal 1In the following discusslion Is to
reduce the equations of motion by partial integratfions as
far as possible to algebraic equations relating functions
vhich describe the surface and Dirac degrees of freedom, We
proceed as follows: First, exploiting some special
geometric properties of two dimensional surfaces and rather
general properties of the equatlions of motion, we show that
coordinates may be chosen in which the bubble surface has a
particularly simple form, Using this result, we find that
the Dlrac equation can be Integrated to give the Dirac fleld
everywhere on the surface explicitly 1In terms of the
varjables describing the surface geometry and Independent
"initial" values of the Dirac fleld along a curve in the
surface, Finally, we show that the surface equation (t11})
gives an algebraic relation between the fnitlal data for the

Dirac tield and the surface variables,
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Because the system 1Is [Invariant under arbitrary

coordinate transformatlions
at
u*— £ (uf)

we are at liberty to choose a system of coordinates which
simplify the equations, Further, as we shall see below, the
requirement that a solution to the equations of motion
exists at all places very strong constraints on the
geometric structure of the surface, These constraints
arlse, essentlally, from the causal structure of ‘the free,
nassless Dirac fleld on the surface.

We wil1l show that a coordinate system can be chosen
such that

(7 R'ym=0
and

) R'he*s=o
Some parts of the proof invoive rather tedious and
uniliuminating algebra. These are relegated to Appendix F,.
Below, we sketch the main ldeas of the derivation,

A special property of two dimensional manifolds which
we rely on to choose coordlinates 1Is that any symmetric
tensor of signature (1,-1) can be brought into off-diagonal
form by a coordinate transformation, This would, for
example, allow us to choose the metric to be off-diagonal.

it 1s more useful, however, to work -In coordinates where the
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stress tensor is of a simple form,
It can eastly be shown (see Appendix F) that the

stress tensor,
TP = Cg P - Tm P ZTPY
(9) |
= C3<3+ 2 Bl

is symmetric and has signature (1,-1), The symmetry of

'T“g reflects the absence of spin in two dimensions, In
general, a spin-dependent divergence must be added to the
canonical .stress tensor to form the symmetric "improved"
stress tensor. In two dimensions, however, the canonlical
fermion stress tensor Is already "improved."

We choose coordinates such that
« c (9o

(9 TF= “F(l O)
vithere 'T'ftOﬂ depends on the details of the solution, The
coordinate system Is not wuniquely determined by the
condlition (10), We still have "conformal" invariance: (10)
is Invariant under coordinate transformatlons of the form

Y — (D)

(n) o-—> 9(T)
So far, we have used nothing but the coordinate
invariance of our desription of the bubble surface., We now

show that a necessary condition for the fileld equations to

be solvable is that R”(T.O') satisfy (7) and (8).

106



We begin by considering the  algebralc relations
‘.
between the fermion current 3_ and the stress tensor
«p : |
T . A trivial result which follows from the two
component representation of the gamma matrices lIs:
it ¥ is any spinor satistying ¥%¥=p ,
then (P¥°%) ¥, ¥=0

This has the immediate consequences:
ta)  J " Ju=0
(12) g, 7%= c7*®

(14) J’;J‘PTdP==O
where JT*=¥ zvv¢

Assuming that J’“ is not zero, these relatlions allow us to
determine " some components of the metric tensor In terms of
7.

With the stress tensor of the form (10), equation (1b4)
implies JeJy=0 . We shall see below that the choice of
orientation (2) and the condition L W %¥=% require that

J=0. Putting this result in (13) and comparing both

sides, we tind:
L

So the metric has the form
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Jue™

0 J—) AT® T
T o

/=T

vihere A Is not determined by this analysis, We note that

o =9gy= R(msnH>

This Is condition (8).

The stress tensor is divergenceless,
1 ' e 38
o= T™ya= = (73 T Dtee "'Zars}T

J
_ (T ue») + 23S e
- T T = T L O}

g
gut TTY isa constant, so we have

{oﬁ}:O , B=ol

The equation of motion (i!l1) of the surtface is
~p
,Ad@T =0 J oY hou"o
The condition (7) now follows Immediately:

él= Topy = 4\01" + {oﬁ tﬁ =0

We now turn the problem around, Starting with a
coordinate system satisfying (7) and (8), we derive the

solutions to the bubble equations., Equation (7) Impllies the
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the surface is of the form

(15)  RP(n0) = QP +$°19)

. y
de Cinmgz M= To’= 4% , 4= Y= s
we have:

® 4lwP=o )
(9 q.4) we, [ ° 94

{(16) 30(6— (q A ol s 3 6‘!‘,‘_ (q'i,z_
- 1__ 2 et

= et , T=zia- gt

>
0 = - g7 g

In the following discussion, we assume that qa 0. In fact,
vie shall see that the equations of motion Imply that ‘]a is
proportional to the fermion energy density, which, as a
classical function, 1is not positive definite, We wlll
proceed as [If the energy density Is positive, and we will
find that our solutions are self-consistent in the quantum
theory after normal ordering Is taken into account,

So far, our analysls of the surface geometry has bLeen
jocal, The global condition that ;he surface R'u("f}"‘) be a

closed hypertube in space-time places further constraints on

Q}) and Sp . Geometrically, -equation (15) asserts
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that the hypertube is a surface that is swept out by moving
a rigld 1light-like curve, SMT) , along some time-like
curve, QP(’r). At each point on the two dimensional
surtace, there are but two light-llke directions, Because
the hypertube Is closed, the 1light-like curve ¥ )
contained in it must spiral up the tube, intersecting Q"l’?’)
infinitely many times (Fig 13), It is clear that, If the
surface Is to be swept out by the motion of S*(T) along
a*’(ﬁ, each of these points of intersection must be
equivalent geometrically, except for an overall time-like
translation, /\p. After choosing appropriate coordinates
T and G from one interval to the next, we clearly have
the result that @MP and 5”(0") are "semi-perfodic"
functions: QP(')-+%)—_-. Q""(')—).‘.A)’

SP(T+G)= P (T)+A”

where

&

7o,
AP

From this analysis, it Is clear that the coordinates (1, o)

fixed periods

#

a constant time~like translation

and (’h")’., o—-o0p) correspond- to the same polnt on the
hypertube, Later, we will choose ranges for T and O so
as to bring the coordinates into one~to-one correspondence
with the points of the surface,

" We proceed to solve the surface Dirac equation In
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terms of the coordinates (15), The two component Dlrac
fleld has only one complex degree of freedom by virtue of

equation (1), Using (2) and (17) we find

(18) &A=ZZ = Ged- (14 LX)

We can rewrite (1) in the equivalent form
(14) K (o)¥(pal)=0
The Dirac equation becomes
o= 7, (£Z'°9o+ lfldén""k)v
or o= (1+iv) ¥’

or ) . 2
() V'=£p0/¥= & Emag’me (ruacv) g
[qtrata)]

Because { is independent of 0= , this may be Integrated

directly:

. 0.
£ ) Ao
(1) ¥ro= "”P"f[ _L 4o; pvxL'ig o 02;] i) ;{m—)] Y50

Given "initial" data, ?’(‘Co), equatlion (21) propagates

v away from the curve U=0 , along a family of parallel
light-like lines, The initlal data is not entirely free of

constraints, First, equation (19) must be satistled:

A) P(ro)=0
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Also, because the points (% T%) and {T+Ys, 0} are the same,

¥(ro) must satisfy the "periodicity" condltion:
l .

. % p vie) &’
o) o= ewp[fan EPERTEC g [sr

The phase Integral in (22) is Lorentz invariant, and may

most easily be evaluated, for a given T , in a Lorentz

frame where 1/’-_-_({71‘5)'6‘) . We find

¢t 9 @) % a3) 1 o
L[ Ve € SOESILNG) g0y = & A (o)
«?-./; [q(M) . acT)]2 d > 71

vhere 4&}"’0!5 the angle through which the spactal part of
A,” has rotated as o  varjes from 0 to O; ., Over a full

period @ , this angle is an , s0 (22) becomes

Y(renh, O = —¥(T,0)

Thus Y(5¢) must be "anti-periodic" with period 7o .
The’physical and geometric interpretation of these
solutions to the Dirac equation Is clear, The Dirac fleld
is parallel transported up the surface along the 1lght-llke
curves S(@). This is simply the motion of a free massless
fermion trapped on a curved surface., On the hypertube,
there are two disconnected tamilies of 1llght~like llines,

which spiral wup the surface in elther the "left-handed" or
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the "right-handed"” sense., The condition (1), In the two
component representation, insures that the orbits of all
quarks in the bubble surface have the same "handedness.” We
note that, by equation (6), a bubble theory based on four
component spinors contains both left- and right-handed
quarks, This is the reason that the structure of the four
component theory 1Is rather more complicated, As in the
static case, paraliel transport once around the tube glves a
phase factor -1.

We can now understand qualitatively how the '"causal
structure™ of the Dirac equation induces the periodiclty of
the surface motion. The Dirac field energy propagates along
tight-1like curves. These curves must wrap around the
surface over and over again., Thus the inftial distribution
of Dirac field energy must be reconstructed after the
light-like curves have come once around the bubble. As we
have seen generally above and shall see explicitly below, to
the extent that the surface is determined by the quark
energy distribution, the surface motion is then forced to be
periodic.

We now consider the explicit form of equatfon (Il1l) in
terms of qM(M,a”(%) and ¥(x0) . From equations (19) and
(20) we find that the only non-zero componeni of the fermion

stress tensor is :

e - ma Im ‘?Fh;ae%(r) Pi0)
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Using (21), we can show after some algebra that this Is the

same as

MNro)= - |
) 4w a]>

Im ¥ m 9150

Then equation (111) is

o= J-.,,T“ = 4y, [Y“" ECT}_%]

Thus equation of motion for the surface Is
C q2=-TIm F(rogr) v

Let us summarize what we have obtalned, The surface
is described by two periodic vector fields, 7*3 4?’ . The
Dirac field 1is specified by the anti-periodic functlon,
%0(y;0) . The conditions these functions must satisfy in

order that they give a solution to the theory are:
qPr+1) = 92(T)
(a)  a”\o+00) = V()
¥ (e, 0) = = ¥l¥ o)
(a2)  Cq*= —Im¥(%0 g ¥ (1,0)
3) AalP=o0
(a4) L O ¥NHo)=o0

: Yo "y |
as) [ dr P = [35 a¥e) SAT
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With the exception of equation (25), this Is a system
of algebralc relations among q“', &Y  and %i1,0) . Before
constructing all solutions to this system expllicitly, we
discuss some of Its general properties, Flrst, we count the
number of independent functional degrees of freedom of the
system. tach of the vectors 7”(?‘) and AT pas  three
real components of which two are Independent by (22) and
(23).  W10) has one complex degree of freedom by (24),
Apparently the system 1is described by four real and one
complex degrees of freedom, However, because the equations
are invariant under conformal transformatlons, there are two
real degrees of freedom which correspond merely to changes
of internal coordinates rather than to physically different
states. Thus, all physically distinguishable solutions to
the bubble equations are described by two real and one
complex functions., These may be taken to be: one reatl
function to specify each of 7'” and A-V » and one complex
function that determines (%9 .,

The charge and momentum can be simply. expressed in
terms of 1" , A, and ¥(%0) . These quantitles are
computed . as integrals over any closed space~like curve in
the surface. Along such a curve, as “y varies from ¥ to

™Y , & goes from ¢ to —0p . We have
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F§ A45..3%= AT %50 g(W¥(1,0)

% —
(aw) Q= fd'r ¥y 0 4(7) ¥(1;,2)
\=y az TP gl = Cl q%dr- ¢¥de]

spacs-like
cvi

The result which is analogous to the shape degeneracy
of the static bubble in three dimensions is now apparent,
The energy and charge are Independent of A.ﬂ. a* s
functionally independent of 7"’ and V(vy,8) , being
constralned only bty the "Inltial" condition (24) and through
its integral (25). Thus, the moving bubble states are
degenerate over all "shapes" of A-». As In the static case,
the angular momentum will depend on A.)) through its first
moment,

We proceed to construct the independent solutions of
the algebraic equations (21-24), 1In order to eliminate the
conformal degrees of freedom, we must specify a 'conformal
gauge" by choosing one component of q" and AY to have a
definite functional dependence on v and L*
Unfortunately, any such choice also destroys the manifest

Lorentz invariance of the theory. We use the notation

+

X = x? -t'Xa X7 = x%-x2
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for any vector, x, In Minkowski space, We specify the

conformal gauge by the choice
¥
(ag) RY (v = JTEC.- (tea)

+
so 1"'=‘-4-+= a‘%_‘

where p¥ = constant

and T =29 =|
A Lorentz frame and conformal gauge can always be found such
that (28) holds.

Next, we make use of their periodicity to expand 4!
and 4' In Fourler series:
So .
(2a)  qy= & I ane”mny

-2ning

[ 2}
(20 o= ] S cne

N= —aD

The coefficients QAn and Cp must satisfy

(31) ant= a-n , Cd'=cC-n

Condition (24) Implies that ¥(%o) must be of the form

! )
-4/
3a) VYiyo)= [‘*;9,—, q-L] acc | FOV)
| 2

where the overall factor which multiplies the spinor has

been chosen for convenience, We expand F in a Fourler
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series:
/ —aAwimY
(33) F(r) = é bm €

The sum in (33) is over half-odd integral m, so that F s
anti-periodic.
We can now use (22) and (23) to compute 4~ and 4™ In

terms of QAn,Cn, by « We find
- 4 —2nnY
(34) q~ = —-r-"-'-; %In €
- —nind
35) A= 1L % In €
whece;

/ 1
(36)  Lnz Z" (m* D) babmnt T2 A-klicen

B7) Ln= 12 CoCian
The representation given in (28-37) satisfles all of
the algebralc constraints (21-2k), There remalins the
integral constraint (25). The + component of (25) s
satisfied trivially, The 1 component of (25) requires
Co= Qe » an identification which we assume henceforth,

The - component of the integrals In (25) gives:

(39) Lo :f;

This is a constraint which Involves all of the normal mode

amplitudes and reduces the total number of degrees of
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freedom by 1. We will not use this condition to eliminate
any one of the normal mode amplltudes, In the quantum
theory, (38) cannot be lmposed as an operator condltion, but
rather, must be Imposed as a "weak!" constraint on the
physical states,

We can express the coordinate functions and the
conserved charges of the bubble in terms of the normal mode
amplitudes Qn,Cn, bm . Before dolng so, it Is useful to
first specify the range over which T and O can vary. We
make this choice as follows:

let T ET+T
& = ja_l'(’)'—-cr-')

we choose
—0 & T < oo

A
_—é 4(‘0-5%

——

This choice is useful because t acts as a "time," or evo-
lution parameter, along the bubble, Unlike curves of
constant ¥ , the curves t=constant are closed space-like
curves in the bubble surface.

We may write the momentum as follows:
T = et

(39) F =2¥mca
- _ lnc "y
= 5 (Lo 2)
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so the mass of the bubble is
7 = unc( Lo+ Lo ~al)

The coordinates of the surface are:

R (Y, )= XH(Z)

L "zn""r nn
(40) RUT, @) = X1(B) + J% 50—“—',_“ [ane +Cn€ "‘°‘_]
“ ~2mnY  F o -inno
R(r,0) = x~(T) + ‘%I:,. g:‘“ 3,-."[ dn® +Lnte _]
where;
¥ - Pt
X*t(tr) = e
1N T+¥!

("”) x! (r)= ac
X=T) = Egc.: T+X~

and X!, X" are constants of integration

The angular momenta are:
M"",_: X*P""x.P*
+ - -
(42) M7= x'pT-xTpr

M~ = X' P —x"pl _
+ % Jw<e 3?01%7'[anim+fm4n +Cnf—n"’i—n Cn] :

And the ftermion number is:

(43 Q= % bm*Lm
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We now have an explicit representation of all
solutions to the classical bubble theory in three space-time
dimenslons. In thls representation, a bubble state Is
compietely defined by glving the classical normal mode
anplitudes, &n,Cn, bm » and the quantities P"',

xl, ) S The amplitudes which appear In m* --

QAn, Cn ,N#0 jand by - describe the internal
excitations of the bubble. P¥, P! , and the initlal
values of X'J X~ glve the momentum and position of the
bubble.

The static states described In Chapter IV can now
easily be recovered. For these states, the “T coordinate
can be taken to be the time in the rest frame of the bubble,
Then, In order for the bubble to be statlc) we must take

Anm0 for all n. A (=1 positive energy state of the
quark fleld corresponds to bm=! tor some value of m>0,
Chn can be chosen arbitrarily, subject only to the
constraint (38), P* must be chosen to be M so that

the bubble will be at rest. The mass of such a state is
> = 4nc[fosol= 87Cm

in agreement with the calculations of Chapter 1V,
Because all classical solutions of the theory are
available to us, we may construct a quantum theory of the

three dimensional bubble explicitly. ThHe quantizatlion of
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the bubble which we present is neither canonical or gauge
invariant. Whether a general scheme for quantizing the
bubble theory s possible In three and especlally in higher
dimensions is currently under investigation. The spectrum
of states of theb quantum theory s plagued with normal
ordering ahbiguities similar to those which arise In dual
theories In three space-time dimensions. Despl te these, we
find that the quantization 1is revealing as to how the
physical properties of the bubble, which we have discussed
at length classically, are reflected In a true quantum
theory.

We would expect any quantum theory of the bubble to
induce simple commutation relations between the normal mode
amplitudes of the classical theory, In the following
discussion, we will "quantize'" the bubble by introducing a
set of fundamental commutation relations among the normal
rode amplitudes., Our guide in choosing these. commutatlon
relations will be the requirement that the canonical
Poincare and charge operators have the correct algebra,

We observe that the structure of the Polncar€
generators of the bubble in terms of the normal mode
amplitudes is quite similar to the corresponding structure
in the Neveu-Schwartz model. The gquantum theory which we
develop, desplite the differences 1in its Interpretation,

looks quite similar to the Neveu-Schwartz theory In three
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space-time dimensions, We will discuss these similarities with all other commutators vanishing. Equatlon (b45) gives
and differences in more detail later. the correct charge commutator Immediately.
We requlre speciflically that the commutation ' + +
I ’ LQ’ hm - bm
relations guarantee:

(1) That the guark have fermion number 1, From (44) and (45), we have, Formally,

[QJ br:-_‘: b': (,‘fb) [ofn,fm" = (r\-m) ufn-q-m

(2) That the canonical momentum  and - - 2_
= (h-m
angular momentum operators , (39) and Qﬁ) [rn) im] (h ) n+m

(42), satisfy the correct Polncare The relations (46) and (47) do not, however, survive normal
algebra, ordering. i{f we choose to normal order all operators with
(3) That the constraint (38) imposed respect to the "vacuum," V10>, defined by
weakly on states 1is consistent with .
Anlo>=0 } n
Poincar€ invariance. That 1is that 20
— ‘ Cnlo> =0
Io"io commute with all the Polincar®@ (qg)
generators.

bmioy=0 -g m>0
dmi& =0

Rather than outline the derivation of the correct +
where am‘é b-m

commutation relations from the requirements (1), (2), and

(3), we will begin with the fundamental commutation Then we find
relations and sketch the verification of the operator v‘cfn: - fn"ASmO
algebra. Q{q — — ~—
L ) v &nt T fn —Asnlo
We take the commutation relations of the normal mode ’
amplitudes to be: "~ where /\, A are the (infinite) constants:
Law agl= n8n-k A= 7 4n- = m
(44) ) n>e m>o
[Ch) CK]= N dn-k
— In
N A= 2 2
("’5) {_ b”‘) by E‘ Smyn n»o
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The conmutation relations of the normal ordered operators

are

(46)  [idni,idmi]= (n-miid i + &8n-m(n®-n)

(n7) 1 f;\:,: fm:)= (n-m): Lrvm! e Sn,-mN>-n)
\le also have

Lfn, ax) =~ K Gren
(50) C In, Cyl=—K Cirn

‘. Iﬂ) bm')—"" - (M+ ‘2‘) bm'r'\
L in, bal= (m-2) boon

We must also define commutators Involving the momenta
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Pp and coordinates Xu(t) . These are determined by the
requirement that Pp generate translations of the bubble,

The comnutation relations must be such that
- * P
(52) L 86,rY]=18R

where 0G = P)’Sap is the generator of the infinltesimal
transiation 5a%, and  §R* s the Infinitesimal shift In
Rp. The representation of the bubble surface we have
chosen is not Poincar®& invariant, |In order to maintain the

gauge condition

g =xt D)= =
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vie must perform a conformal transformation along with the

translation:

a
T— T f—;cj, dat

Thus, the total shift ORY s

ac 2R*
SR = 3a’— = '5%5 fa

Through (52) this gives the commutation relations of the

rmomenta P*’ and the coordinates variables x""(zj « The
non-vanishing commutators are:
t
[ P, X']= -t

- _ 2ipl

[ P }x']— pr

In deriving (53), we note that the reiations (50), (51) have

been used., For example,

321._ (%“" 6"1""“7)‘5 aw [ Lo, T dn e‘Z"‘“TJ

We take the classical expressions (42) as the
definition of the Lorentz generators, with the additional
assumption that products of non-commuting operators in (42)

are to be hermitean symmetrized., For example, we take
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MY = x*p~ - L[ »x7pr +etxT]

It Is straightforward to show that the Polncar& é]gebra is
satisftied, both tormally and for the normal ordered
operators, We note that In the case of dual theories, whose
quantization is virtually indentical to the bubble
quantization we have described, it is well known that normal
ordering can lead to anomolies In the Lorentz algebra,
These anomolies occur In the commutators between the various
“transverse" Lorentz generators of the string, ﬂﬂz_— .
For a string-like object imbedded in only three space-time
dimensions, however, there is but one transverse mode (i=1),
and no such anomolies can arlse,

From the commutation relations (L6) and (47), it can
easily be verified that 13"i: commutes with the charge
and with all of the Poincaré generators. Thus, the

constraint that physical states obey

(54) (Lo-%0) 194> =0

is consistent with Poincaré invariance of the theory.
We may also introduce an operator which corresponds to
the spin of the bubble:

w= '%:éiuq} ‘yurhV)

.

= —4nfuc 2 1—:';1[«“{‘" +£ondn "'C"'i"“*i'"c"]
n#*o
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Classically, in the rest trame of the bubble,

w= M =7 T,
W commutes with both Q and m2 , and 1Is unchanged by
normal orderling.

We have now exhibited a self-consistent quantized
operator algebra corresponding to the bubble theory in three
space~time dimensions. There Is a conserved fermlon number,
i, and the theory has been shown to be Poincarg invarlant,

1t remains for us to analyze the physical states of
the theory, At thls point, we run Into rather unpleasant,
and unavoidable, ambiguities associated with the normal
ordering of operators. In terms of the infinite constants

A and A , the normal ordered operators are:
(5¢) 2= dnc [ Lot Tor ~a2 ¢A+A]
(57 fo-Fo= fo-dot +A-A

Lot = nZ) anan + gad+z m (it by + ey dine)

(58)

a
L= S ctent 2 as
oiF 2 nt 2

(SQ) JQ: =12%0 (birbnﬂ'dhdydwn
o) TWE =W

States of definite particle number are clearly elgenstates
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of 1@ L%, and :fol.

The Hilbert space of the theory becomes well defined

only after we have assigned finite values to the constants
A= A+A

@) AE
The actual values we choose for )‘ and A5 are completely
arblitrary~- they are unconstrained by the operator algebra.
Further, no matter what the value of )1 . the condition
(54) will place severe restrictions on the spectrum, We see
from (58) that :ﬂ-,aé‘: has only integral elgenvalues,
while } Ko- -}{aoa: has Integral eigenvalues if Q is even and
half-odd integral eigenvalues if Q is odd, Therefore, |if

A is an integer, we can form only states of even fermion
number ("mesons'). |If Aa is a half-odd Integer, all
states must have odd fermion number ("baryons"). Whether or
not such ambiguities remain In other possible variants of
the theory, such as the four-component theory, is presently
unknown.

We will discuss only two of the Infinite numbher of
pussibie choices of )\| and )-,_ . Our guide 1in the
selection of )‘ and )z will be the <classical theory.
The operators :(o and I;, appear on an equal footing In
the mass operator, s Is the contribution of the fermlon
and the ™"a" surface excitations to the bubble energy, J?;

is the contribution of the "c" surface excitations, In the
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classical theory, Io and xa contribute equally to the

mass, and we can write:
3= s Lo

In the case of the static classical bubble, there are no "a"
excitatjons, and the "c" excltations are forced to be
non-vanishing In the presence of any fermions to satisfy

(38). Ve maintain these features in any quantum theory

defined by choosing A, =-A3 <0, We will consider the
spectrum of the simplest such cases,
(63) A=—Ar= -‘%: % baryong!
%) h=—AL= O Ymesons’
In the case of 'baryons", A, =- ), =1/2, the mass

levels of the Q=1 states are exactly those of the classical

static theory:
M3= gnch

where fp = eigenvalue of :I,-.;{-a&g, a positive half-odd
integer, We see that the degeneracy of each of these levels
is finite., Table IV 1ists the degenerate states comprising
the first few levels,

The breaking of the semi-class{cal degeneracy of
jevels over all bubble shabes is an easlly understood
quantum effect., Classically, the only constraint on {c,& is

(38). Because each classical normal mode coefflicient can
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take on a continuum of- values, this constraint can be
satisfied by an uncountably infinite number of combinations
uf {Cha. In the quantum theory, however, the energy
assoclated with each mode becomes discrete, so there are
only a tinite number of combinations of occupation numbers
which sum to any given finite energy, ,fo +1/2, In the
quantum theory, the softness of the bubble becomes apparent
in two ways., First, the size of the fluctuations In the
surface coordinates Is always comparable to the size of the
bubble itself; a result which follows from the absence of
any dimensionless parameters which might serve to set an
independent scale for the size of fluctuations, Also, as
simple combinatorics Indicates, as the excitation energy
increases, the degene{acy of the levels Increases
exponentially as €{”14?lc) .

The spin  operator, W, can be dliagonallzed
simultaneously with Q and 7”Ui. Table IV also indicates the
the eigenstates and elgenvalues of W among the three lowest
ievels ot the Q=1 "baryon" spectrum, Because of the normal
ordering ambiguities, we have not been able to relate the
elgenvalues of W directly to a '"physical” spin of the
bubble, The source of the difficulty Is precisely the same
as that which leaves Al and A undetermined, There are

no non-trivial commutation relations between W and other

uoperators of the theory which might serve to fix the scale
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of W when the theory 1is made finite by normal ordering.
More concretely, we observe that classically the spln can be

written

in the normal ordered quantum theory, we have no analogous
result,
Next, we consider the spectrum of 'mesons," taking

A, == A; =0, The mass levels are:

7M1= gncle

10 = 0,1,2,,..
The states corresponding to the first three meson levels are

given in Table V, along with the corresponding elgenvalues
and eigenstates of W, The "meson" spectrum has many of the
qualjtative features of the "baryon” spectrum, We remark
upon only two special aspects of it. First, the lowest
state is the state that we have called the ‘'vacuum," This
"vacuum" is not, then, the usual vacuum state of a
multi-particlie theory, It 1is, rather, the lowest lying
state In the spectrum of a single particle with many
possible internal excltations. With the choice of normal
vrdering parameters we have made, the "vacuum" is a massless
bubble state, and has no classical analog. Second, we note
that the meson spectrum contains states which correspond to

bubbles containing no quarks at all, These are purely
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surface excitations, and are analogous to the excitatlons of
a closed dual string in three dimensions,

Because the normal ordering ambiguities are so severe,
we learn little more of use from an examination of further
details of the spectrum, We turn Instead to a discussion of
several qualitative features of the quantum theory which are
suggestive, perhaps, of features a quantum theory of the
four dlmensltonal bubble might possess,

The quantum theory we have constructed is the theory
of a single '"particle," which has many possible Internal
excltations, In a theory which 1Is to reflect more
accurately the properties of the real world, we must have
riechani sms by which these particles scatter and are created
and destroyed. One might hope that, In analogy with the
string theory, such mechanisms are already Implicit in the
formulation of the classical bubble theory.

An attractive classical plcture of bubble-bubble
interactions 1{is that bubbles interact with each other by
fusing or fissioning when thelr surfaces touch, (Flg 14)
Such 2 plicture s the analogy in bubble thecry of the
fiss!»~ and fusion of MIT bags or of dual strings,
Generally, string, bubble, and bag theories have classical
solutions which correspond to such processes, For the
bubble, such a solution would be characterized by the

exlstence of surface singularities at which the evolution of
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the classical bubble becomes indeterminate, Of the possible

_solutions for the evolution of the system Is one in which a

single bubble state emerges and others which correspond to
the formation of new bubbles,

Mandelstam has shown, In the string theory, that
string=string scattering amplitudes ‘can be computed via a
path integral which Includes paths corresponding to the
classical flission and fuslion of strlngs‘g It seems evident
that such a procedure mlght be formulated for the bubble in
three space-time dimensions,

In principle at least, we are In a position to compute
the form factor of the bubble in three dimensions. The

operator whose matrix elements give the form factor Is the

fourler transform of the current denslty:
- 2R "
J’p (‘\)’—" N fa'u\j:j e » ‘F(u)l $lu) )

The normal ordering ditficuities which arise In any attempt
to evaluate a finite matrix element of this operator are
sevefe, and have not been resolved‘?

As we have observed, the bubble 1In three space-time
dimensions s a two dimensjonal object closely resembling a
closed string, The only conventional dual model which
includes fermion~-1lke degrees of freedom is the

7 '

lleveu~Schwartz model ’, The Heveu-Schwartz model, when

0
interpreted geometrlcallya, is the theory of an open string
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with which a Majorana spinor field s associated, The
quanta of such a Majorana field are not fermicns., The
states of the Neveu-Schwartz theory are all '"mesons." The
bubble, as we have seen, Is analogous to a closéd string
upon which a fermion 1Is trapped, There 1Is a conserved
charge, and bubbie theories exist whose states are
"baryons.," |

For both the string and the bubble, the thiree
dlmensional case lacks sutficient resemblance to the real
world, Because there 1Is but one component of angular
riomentum, and hence no algebraic constraints on the normal
ordering terms, the spectrum of states remains ambiguous,
String models are extended to higher dimensions In the most
obvious way. That Is, the string in higher dimensions |Is
regarded as a two dimensional hypersurface imbedded in some
higher dimensional Minkowski space, One then finds that the
gquantum theory Is anomoly free only In peculiar space~time
dimensions. { 10 for the Neveu-Schwartz model, 26 for the
conventional dual string).

The physical picture of the bubble, which becomes a
closed string in three dimensions, suggests that perhaps the
proper generalization of the string from three to four
dimensions Is the BCDWY theory. Whether a quantum theory of
the four dimenslional BCDWY model can be constructed which
might make this observation useful |Is presently an open
guestion.
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Chapter Vi

This chapter brlefly summarizes the principal ldeas of
this thesis and discusses some possible extensions of the
results and technliques developed here.

We have shown that the classical BCDWY field theory
reduces to the theory of bubbles for low mass states In the
strong coupling limit, This bubble theory Is very different
in appearance from conventional field theorfes. As a theory
of hadrons as extended objects, It clearly belongs to the
same "family" as do the theories of the string and the bag.
The string, bubble, and bag theorles plicture hadrons,
respectively, as two, three, and four dimensional objects
imbedded In four dimensional Minkowsk! space, Our geometric
tormulation of the bubble theory shares with general
relativity the qualltative feature of being a theory of
non-interacting matter (quarks) moving in a curved space-
time whose geometry is determined by the distribution of
energy-momentum,

We have used the bubble theory to characterlze the
hadronic spectrum predicted In the BCDWY model, The
“approximatlons" used for these computations largely ignored
the quantum mechanical nature of the surface degrees of

freedom of the bubble., Interactions responsible for SU(3)
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breaking, electromagnetic interactions, and possible
residual color interactions (e.z;, color charge‘ fluctuation
energles) were also neglected. Nevertheless, the resulting
level spaclng Is largely consistent with the data, Our sole
attempt to take Into account the quantum effects of the
surface In four dimensions resulted in an estimate of the
mass of the flrst radial exclitatlion of the spherical bubble,
vihich, for the baryons, agrees with the mass of the Roper
resonance to a few percent, Though the spectrum we have
estimated Is not Inconsistent with the data, the
calculations we have presented here hardly constitute
compelling evidence that the bubble theory provides the
“true" plicture of low=-lylng single hadron states,

We demonstrated that, classlically, the bubble 1{s a
very "soft" dynamical system. We discussed gualltatively
how we might expect this softness to be manifested In a
fully quantized bubble theory in four dimenslions, We argued
that form factors of hadrons need not show a dip structure
that reflects the thin shell nature of thelr quark densities
In the static picture, and that structure functions might
well exhiblt scaling Iin deep Inelastic lepton scattering,
Because the four dimensional quantum problem ls unsolved, we
have been unable to back up these guesses with a formal
mathematical analysis, We mentlon these ldeas only to show

that the thin shell picture of the BCOWY theory Is not, a
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priori, Inconsistent with well known experimental results.

We discovered that the field equations of the bubble
theory can be solved exactly and completely tor the single
bubble fn three space-time dimensions, The Integrabllity of
the equations follows from the speclial simplicity of thev
geometry of two dimensional surfaces, That the buhble
theory is solvable In three dimensions Js analogous to the
result that the MIT bag 1Is exactly solvablie 1In two
dimensions, where if too becomes a two dimensional object,
From the -set of all classical solutions to the theory, a
Poincar€ invarlant quantum theory of the three dimenslional
bubble was explicitly constructed, Though the spectrum of
this theory is not uniquely determined by 1Its operator
algebra alone, the spectrum becomes well-defined after two
arbitrary normal ordering parameters are specified, The
normal ordered theory 1is free of ghosts and divergences,
However, the theory we have constructed 1is the quantum
theory of only a singie bubble., [t apparently does not
allow for bubble-bubble interactions. VWhether a ghost-free
quantum theory of iInteracting bubbles can be constructed |s
not yet known,

The states of the three dimensional quantum theory
have the character anticipated for the quantum states of a
"soft" object: the quantum fluctuations of the bubble

surface are of the same order of magnitude as the size of
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the bubble, and the density of states grows exponentially.
In principle, form factors can be expressed in terms of the
rnatrix elements of the operators of thls quantun theory.
However, 1t is not clear whether the calculation |s free of
dlvergences,

The work described in this thesis leaves many
interesting and important questions about the BCDWY model
unanswered, There are also, evidently, many dangling loose
ends which it might be profitable to pursue, In the
following brief discussion, we will identify a few of these,
vilth the hope that we can at least understand what might be
needed to resolve these questions and what we might learn
from the answers.

First, we stll1l have not determined whether the BCDWY
rodel provides a numerically accurate phenomenological
description of low-lying hadronic states. VWhat Is required
Is a better approximation to the bubble theory than used In
this thesls., One must take Into account quantum effects due
to surface motion and the filled Ferml sea and alsoc allow
for SuU{3) breaking quark-quark Interactions within the
bubble, A first step toward understanding the effects of
surtace fluctuations on bubble energies might be to treat
the surface motion In perturbation theory about static
solutlions to the theory., Any such treatment would be, at

best, a crude approximation, as there is actually no small
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parameter avallable In which to expand. However, such a
procedure has the advantages that It can be done, with
sutficient patience, on a computer, and It should take Into
account, at least qualltatively, the effects of surface
fluctuations,

The calculation of form factors and structure
functions in the four dimensional theory requires a more
complete and detailed understanding of the quantum mechanics
of bubbles than Is presently available. {(t has been argued
In the case of the MIT bag theory that the ‘cavity
approximation,”" In which the bag 1Is treated as a rigid
object, Is adeguate for the approximate calculation of
structure functions of the hadron bag states, It Is qulte
clear, In the case of the bubble, that surface motion cannot
hbe neglected in such a fashion -- the bubble Is not at all
rigid.

As discussed In this thesls, the geometric formulation
ot the bubble theory arises from the conslderation of the
strong coupling 1imit of the BCDWY fleld theory, However,
the bubble theory can obviously be formulated, at least
classically, without reference to the BCOWY model or the
interpretation of the bubble surface as a domain boundary,
Once freed of this Interpretation, it 1s clear that we can
write down many possible theories of flelds defined on

surfaces which are analogous to the bubble theory. The
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simplest cases which nmight be of interest are those of
bubbies with scalar or vector fields defined on them, The
rnotivation for discussing such possibilities is twofold,
Flrst, we may be able to construct more sophlsticated models
of quark binding in which there are non-trivial quark-quark
Interactions medliated by surface vector flelds, An
interaction mediated by a surface field has a technical
advantage over one mediated by fields vwhich extend away from
the bubble surface in that it can still be discussed in the
intrinsic surface coordinates of the original bubble theory.
A second reason to consider such theories s that It is
possible that they may be more easily analyzed, in four
dimensions, than is the bubble containing quarks. We may be
able to get some insight into the effects of surface motion
and its relation to the surface fleld energy distribtution in
such a simpler version of the bubble theory.

Perhaps the most Intriguing question suggested by this
vork arises from the original observation that the classical
tield theory which detines the BCDWY model becomes
equivalent to the bubble theory for low-lying states In the
strong coupling limit, Superficially, these seem to be
theories of quite a different sort., The BCDWY field theory
is a conventional theory of interacting ‘Yquarks" and
"mesons.'" A quantized version of the theory exlsts and is

perturbatively renormaitizable, The quantum theory
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presumably mani]fests the features usually assoclated with a
renormailzable fleld theory: torentz Invariance, local
causality, analyticity and crossing symmetry of scatterlng
ampli tudes, As dlscussed in the Introduction, though
renormallizable quantum flield theories have such desirable
features, it has remained a very difficult problem to
construct a calculable field theoretic model of hadron
structure. The strong coupling bound state problem appears
very complex when analyzed using conventional fleld
theoretic techniques. Indeed, this observation would appear
to hold, at first glance, In the case of the BCDWY model,
The low energy bound states which are to be interpreted as
hadrons are very complicated superpositions of the bare
quark and meson states. However, as we have seen In this
thesis, the bubble theory provides an equivalent classical
description, 1in the strong coupling 1Iimit, In which these
bound states are seen to be "simple."

In and of [tself, the classical bubble theory,
describes the dynamics of an extended geometric object upon
which quark fields are defined. Whether a canonical quantum
theory of the bubble can be defined, free of ghosts and
dlvergences, 1is not clear, a prlori. Because the bubble
theory Is a ‘gauge" theory and Involves non-polynomial
interactions among the fundamental fields defining the

geometry, nalve canonlical quantization procedures fall to
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insure a sensible quantum theory, Further, it is not «clear
how bubble-bubble interactions are to be treated In the
quantized theory. In the three dimensional example, where
vie have been able to sidestep the problems associated with
canonical quantization, the quantum theory we derived s
that of a single bubble., That there are no interactions In
this theory can be traced, 1in part at least, to our
pervasive assumption that all bubble states have the
topology of a single hypertube, Classical scattering
solutions must correspond to more complicated topologles,
One expects that a gquantum bubble theory whose currents are
*local” in Minkowski space must 1Include non-trivial
bubble-bubble interactions. VWe do not vyet have such a
gquantum theory in hand.

An obvious question is whether the classical
equivalence of the bubble theory and the BCDWY field theory
carries over to the quantum case, That 1s, 1Is there a
strong coupling 1limit of the BCDWY field theory which
corresponds to a fully quantized, (Interacting theory of
bubbles? We do not know the answer to thls question, though
the tools we need to investigate It may be in hand, If such
an equivalence could be demonstrated, it would represent, we
believe, a definite step forward In our understanding of
strong coupling field theory, the quantum dynamics of
extended objects, and their relation to the problems of
hadronic structure.
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Appendix A

In this appendix, the differential geometry of
hypersurfaces wlll be discussed In more detail, The ldeas
presented here are quite standard. The reader is urged to
consult any of the references cited at the end of this
thesis for more exhaustive analyses,

The surfaces of interest to us are n-1 dimensional
time-like hypertubes imbedded iIn an n dimensional Minkowskl
space, We represent sﬁch a hypersurface by gliving 1Its

polnts as functlons of n-1 independent “"Internal

coordinates," w*™
surface: x”= R¥(u%) Y= 0y, n—\

®=d). )y -2
The Internal coordinates are quite arbitrary, except that we
require that the functions Ft”(uﬁ) be differentiable,
Implicilty, we assume that the surface Is suffliciently
Ysmooth'" that such coordinate systems can always be found,
The geometric description of the surface must be '"covariant"

under general coordinate transformatlons:
W=t (vl ;5 RUuY — R (V)= RY (= (vP))

vhere the functlons wxV®) are differentiable,
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Such a hypersurface is a Riemannian manifold whose
intrinsic geometry may be characterized by a metric tensor
and the assoclated affine connection and curvature tensor,
Vle assume that the reader has some familiarity with the
basic concepts of Riemannlan geometry. The discussion of
this appendix wlil focus on the relation of the Riemannian
description of the internal geometry of the surface and the
nature of its Imbedding in Minkowskl space.

A basis for the local description of the imbedding of

the hypersurface is the set of '""tangent vectors':

2>R*
m r) = soa= RPN

Pl

vihere we adopt the notation WFSIF , for any quantity, A,
The n~1 vectors, t."-.- 'L'.:a_, form a linearly independent set
of vectors in Minkowskl space which span the tangent space
to the surface at the point R“w) . The quantities T2
also constitute a mixed tensor ("n~1 bien") which transforms
as a vector under Lorentz transformations, and independently
as a vector under general coordinate transformations.,

The metric in Minkowskl space, (P a Induces a

netric on the hypersurface,
— d‘
(2) Jug = 7wv Z.'.") Te = TuTp

g&P Is so defined that for any two tangent vectors,
» »
vl= U* Ty and V":: Vprp , the dot product U can be
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written in terms of the components In the tangent basis as
o oL
U‘V"z U Vp ta'tpz vV Vpgdp

The Riemannian geometry of the hypersurface derives from the
Induced metric, Jup . Jape and its Inverse qu will
be wused, 1n the usual way, to transform between covarlant
and contravarliant tensors (in the Indices “JPIXJX'“ ). We

note that the invariant element of surface area Is
-}
(3)  da= Vi A" w,

vihere g=det( 313 ).
The imbedding of the surface In Minkowski space Is

also characterized by the unit normal vector, N*(u%),

(a) nTy=0 fer all <«

)
(b) n*=-|

That " is space~1ike may be taken as the definition of a
"time-1ike" hypertube., Equations (4) determine n'donly up
to an overall sign, Because the surfaces we are concerned
viith are closed spacially, we can speclfy n"' uniquely by
choosing it to be the outward unit normal to the surface at
each  polnt, The n vectors, ZZ'_“’,Y)"}, are linearly
Independent and therefore constltute a basis for all

Minkowsk! vectors at the polint M‘c.
%
() (TYP(TL)V-nP Y =97
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Because " is a unit vector, its derivatives with
respect to u" must be tangent vectors.

nYia= /‘l o g ZF #
vihere

@) /{!dﬁ = Mo Tp= ~n-tp|&=—n-t‘|p=1\po¢
The elgenvalues of /quare the Inverse principal radlit of
curvature of the surface, In the time~llke principal
direction of curvature, the inverse radius Is the normal
spaclal acceleration of a given polnt on the surface in its
local rest frame. The quantity k,- which appears in the
surface Dirac equation, 1Is proportional to the mean

curvature of the surface:

o
k= 42 0"= 3T Mia=4 4"

The tensor, jpa(@, gives a representation of the 1local
Imbedding of the surface in flat space In terms of the
internal coordln_ates. ggp and /Le\ﬁ are sometimes
referred to, respectively, as the first and second
fundamental forms of the surface.

0n a Riemannian manifold with metric =R . there s
a natural law of parallel transport which leaves inner

products invarijant,
sve=- { gl vEsu

for an (Infinitesimal translation, A\U\.x , of a vector
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V™ . The "Christoffel Symbol™ Is:

(7) {5‘»’} =% 3“8 [ e sy + 36318~ ‘#arw]

For a hypersurface imbedded In flat space, thls law has a
simple geometric Interpretation, Let V'u be a tangent
vector at the polnt U . 1f we slide v* along the
surface to the polnt w*+fu* , V¥ Is shifted
Iinfinitesimaily in the normal directlon so as to remain a

tangent vector at the new polnt.

vF  —» vy gV
so that

(0o + Snw) (V= sV =0

whence; SVP= n¥ (EnwV)
in terms of the components of V'u in the tangent basis,

vie have,
= Z'd]x‘rﬁ VF SLL”
So we identlfy,

- 8
(8) {;zl§= ~T%y Te= T Tew

It Is stralghtforward to check that (18) follows from (2)

and (7). Using (G) and (8), we have the useful ldentity,

(P Tap= {«i@ Ty +hogh
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He also note from (7) that

(10) = fupy= nVig)yp

Given the law of parallel transport, we can define
covarlant derivatives of tensor flelds 1In the standard

fashlon:
Ve (ursw) = VW + LV 0 — £ @¥BvT] dus
or
() Vie= Ve *f:a’}vx
We note, from (9),
Tang = Toarp ~ {fp}‘r*: qu n

The Rlemann curvature tensor of the surface describes
its "intrinsic" curvature, It arises from the commutator of

covariant derlivatives., For example:

1)
V¥anz- V<ure= R spy V

vhere

(1) R* prs={dhs-Leshy * IHH - fmiipdt

A stralghttorward calculatlon using (8) and (9) glves

(13)  Rogss= har hps— has hpr
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Because Muy\g< Mgia , we also have the relation

(14) //upua"—‘ /A«-Yn(s‘

it can be shown that, If /Adﬁ is any tensor satisfying
(13) and (14) on a Riemannian manifold with metric gug .
then there exists a hypersurface (unique up to Llorentz
transformations) whose fundamental forins are é?dﬁ- and
A«xa . This result 1is the Gauss-Codazz! theorem, It
allows us to discuss the geometry of the Iimbedded
hypersurface purely in terms of tensor flelds In the
Internal coordinate space.

We also conslder the properties of spinor fields
defined on the hypersurface., The splnor fields of Interest
are taken to be spinors in Minkowski space only. They are
scalars under general coordinate transformatlons, We
represent the gamma matrices on the surface by the

quantities:

<)ﬁd-= db Z;l)
R =y
vie have
{ n, 211}==0
(15)

§ P, Z8}= 2 Jus

There exists a natural parallel transport of spinors
along the surface, defined In such a way that the quantity

R
' % transports as a vector when the spinor Y s
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parallel transported. This is:
L oduv
(6) oW = - = Ny Sny Y

The matrix |- %O"Nﬂpsnvls just the lnﬂnlteslmal Lorentz
rotation matrix corresponding to the rotation of the normal
vector under the translatlion, S(A’ , along the surface.

We can form a “covarlant derivative" for splnors using

this law of parallel transport:
lr’) D.(*P - [ Dd. "'—% V"Uvnpn\ﬂq] \ 4

The surface operator corresponding to the free Dlrac

operator, 9( +» In Minkowski space, Is:

- — % e T
18 P= 27 =2%+5Z " iy
Hith some algebralc manipulation, this can be re-wrlitten,

() P= 2 +Rn

We note that, from (6),(15), and (19),

Pr=—np

Thus, the free surface Dirac equation, ( P%=0, is
consistent with the constraint ¢ R¥P=Y .
Finally, we note the structure of conservation laws

ol
for currents defined on the surface, I f K Is any
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dlivergenceless current,
1
o= KQHQL - Kd\d. +’£:P} kﬁ_—:. 0:"-"5‘ (W kﬂ)'u

then we have

0= id“ﬂ‘u@ kqn.g:a!ftds.g lgl K“

vhere SL Is any reglon of the surface, or s 1Its
oriented boundary, and dia is, for each o , the n=-2 form

defined by

d Seg? du®= 4™
(no sum on o¢ )

On a time-like hypertube, this result Implies that the

"eharge"
Q= fa\zet.\h(’\ Kd
C

vihere C= any closed space~llke n-2 dimensfonal sub~surface,

Is "conserved" -- that is, independent of C.
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Appendix B

This appendix presents the detalls of the proof,
sketched In Chapter 1ll, that further corrections to the
surface flelds of the static bubble theory correct the
energy by terms which vanish in the strong coupling limit
("scL").

it was shown In Chapter 111 that, In the presence of

the scalar fleld,
() G = § Gah (V2 €£)

the leading finite term in the Dlrac energy, E, can be
computed by solving the surface Dlrac equation. The
equation for the O field follows from the requirement that

the total energy,

() H=[dx £+« AT + Epnc [

be stationary under all variations of 0. In this appendix,
we show that, in the neighborhood of an arbitrary o~ field
of the form (1), the only local varlatlons,sa', which result
In finite corrections to H In the SCL correspond to changes
itn the geometry of the bubble, It follows that, If the
bubble shape Is chosen to minimize H, any further

corrections to the U fleld Induce c¢orrections to H which
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vanish 1n the SCL, For convenience, we work In four
space-time dimensions. In other dimensions, the power
counting In some of our estimates will change, but the form
ot the érguement is exactly the same.

We adopt the notatlon Introduced In Chapter 1!l and
Appendix A, The region of space near the bubble surface

will be coordinatized by {u!,u" u3:-z§};
) -~ N [ 2
X (W) =R (us,u?) + ¢ A (W, uy)

This coordinatization is characterized by the triplet of

vectors,
-
T= 22 S
“:: faud- ] - 1) =)

These vectors are analogous to the tangent vectors of an

imbedded surface. We have

RN 2
Ta= .-zxeg"' §A..p z6 =12

(2 L
T=n

The kuclidean metric in the new coordinates Is:
-]
G'ALE Ta,'Tb
(") 653‘.‘—‘ ’ 6'3,,,_::0

(]
G’dp" Jd@"'agitdﬁ +§=l Aa.b’"‘ £
For the calculatlons of this appendix, we need only consider

the 1lowest order expansion of physical and geometric
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guantities in g . Because the denslties of physical
quantities are exponentially cut-off for g?,D , an ex-=
pansion In g becomes, effectively, an expanslion in D/R. To
tirst order in §/R, we have:
ol
G’BB: \ ) 6'3 =0
of
¢=<f = 3"3—' agl‘ £
—
=3 A =3 ol o T
P30, FTY=T™ 54" T
Let To be the exact solution to the Dirac equation in
the presence of the kink fleld (1). Let Eo be the exact

Dirac energy. From Chapter !l we have:
%= NL sk im FST% [%+ s]
€D= Eo *-GL: E|+n\
(¢) uof.: Aa) B=0
%(u ;3’)‘: "’k%(u g)
_a.. -2 &R
JAE [ cooh i3 §§]

3 . « »
(—i weR, + R N ) Bt o (¥O4 i ) P, = Eo Yo
For a small perturbation of the ¢~ fleld, T=0do+ So ’

the change In the total energy Is, to second order In >,
oH= [P £ (V8- 7705 S0

+HAT (TR €3) SO + AN TA-GN3T)*

+ o0€o
The shift In the Dirac energy may be computed In

(7)

perturbation theory:
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@ 2E,=[ax T, §, +LfARa3 Kixy) SewoSowy)
where!

Kooz 2 2. E200) 8at) 6 T Tal)
& 0 Eo-En
vihere Zgn)gn Is the complete set of Dirac elgenfunctions

and energy levels in the presence of the Up fleld.

The condition that 4H be minimal over possible So-
provides an estimate of the correction to the O field. So-
must satisfy:

(4) L-v% ‘!RUB(B%'—G")]SQ‘“)«f-fﬁJ K (%y)8rig)= T0)

vihere
T = V3ep +4AG (-0?)- 6 E, T,
The "current" J(x) Is exactly the quantity which appears on
the left side of the g field equation and should be zero
for an exact solution, The deviation of O, from a true
solution induces corrections to the @ flield through (9).
fn principle, we may solve (9) 1in terms of the

solutions to the associated eigenvalue problem:
[-9%s ‘-nc;,laoza-(-‘)]fp(xh- JayKxg) Zg(9)= Ag S8

(10)
Jax 580 Zpt) = Bg,ef

vhere g is an index 1labelling both the discrete and

continuous parts of the spectrum of (10), In terms of

Zzgu), /@}, the solution of (9) can be written

156



@ Jp= fax 3gf(0T)

(ll) ) Sow= g "§‘ Jp S )
© av=-4 3 p \BF
At distances from the bubble surface large compared to

D, the elgenvalue equation becomes
[-v® + 2] Sp0= Ag (¥

\le may identlify two parts to the spectrum: (1) a contlnuous
8 3

spectrum with threshold A= A4 , and (2) a possible

discrete spectrum of 'bound state" elgenfunctions which

s0wm¢

decrease asymptotically like We can estimate
the order of magnitude of the contribution of the continuous
part of the spectrum to aH from (llc). We will see that
this contribution vanishes in the SCL.

First, however, we must compute J(x) near the bubble

surface. Uslng (1) and (2), we find
Vi + fave(s*-v)= akja 2 aech® (Vax £5) = Je®)
From (6)
T =G0, 8= VL onkfBEE] O (BB )
= N*[coat T3 F§1 ‘2% Re % (¥0+ina) %o
= N3 cmbfan 95]'2“% Re &%+ iRi-RiA0Y

WAL mh S L
TS

I hapo 290°%
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vhere we have used the first order expansion of the

tangential gradient near the surface:
-— wd ot — —_
v“ = T ad ~ (Z"‘— ;A"PUF) Qa.

Both Jg- and Jp are peaked sharply in a reglon of
width D ~ ‘/(a%¢) near the bubble surface. If we let R
denote a typical radius of curvature of the bubble, we have
the estimates in this thin reglon:

Jo~ -:3:)%(-

)}

| L
e 030 i) ® CATe
It, as will be seen to be the case presently, R—v ;‘\7:;. ”
both contributions to the current will be of the same order
of magnitude: A%'Z (‘s

The order of magnitude of the contribution of the

continuum eigenfunctions to AW can then be estimated

VoHunpvom\ = 4 (i J} \ JP‘?)L\ z grf?

< e & N3l e Jax IO
~ i (R 55) DBEI a3 f wakf

Thus, the continuum elgenfunctiocns, and indeed any eigen-
i
functions whose eligenvalue is of order A~ )’-?—, contribute

terms to the -energy shift which vanish in the SCL,
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Next, we must conslder the effect of very low A
"hound state" elgenfunctions, As we noted earlier, such
bound state eigenfunctions hust drop off exponentially In a
distance D from the bubble surface. As discussed In the
cases of Yo ltself and of the Dirac fleld, the requirement
that the eligenvalue be small places strong constralnts on
the S dependence of the elgenfunction near the surface.
Specifically, the terms of order A ?2' in (10) must cancel.
it Is easy to see that the kernal K(x,y) contributes no such
terms, Thus, the leading part of the bound state elgen-

function must obey:
2* a_ca -
(13) [ = 552 +4295(3053-¢ )12a=0

Equation (13) is just the equation for the Infinitesimal
translation mode ot a one dimensional kink in § . The bound

state eigenfunctions have the form:

(1) Ialx) = gp(u") 25%‘12

vihere the functions gp ({W%) and the el_genvalues Apz are
determined by the remalning finite terms in (10),

We have shown that the only cofrectlons to the scalar
fleld which induce finlte energy correctlons In the SCL have

the general form:

Sox) = §6 (ux) ‘j’?
J
where : Sy 5 ;:7§%7 gp(ud) :
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Such an Infinitesimal shift does not change the local
kink=1ike conflguration -of the fleld T, Rather, It
corresponds to a shift in the position of the kinks In
space-- In other words, a variation of the surface geometry.
Soix)= S6uY) %?
Is equivalent to
(18) SRW9= S6(u) 7 (u~)

Thus, 1f the bubble surface is such that the total energy lIs
stationary under all local variations of Its geometry (15),
further corrections to the fields change the energy by terms

which vanish in the SCL,
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Appendix C

This appendix presents the details of the derivation
of equation (til) from the varlation of the actlon over
possible bubble surfaces.,

The surface Lagrangian is
L= Fipy —c= PLA+iRa)¥—C
and the action is

5= [dun figi L (iPurikn) ¥=C]

vie take ¥ to be an arbitrary spinor satlisfyling the
constraint (1), (AY¥=Y . It Is convenient, for the
derivation of the -equations of motion, to modify the

tagranglian by the additlion of a divergence:

U= L~ ﬁ-[¢2"‘ﬂ"¢
= L[ FFuY-(WF)E¥]-C
= —Im ("T;u"/’)“c

Adding this dlvergence to L wlll not, of course, change the
equations of motlon, tndeed, In this case, the divergence
we have added Is identically zero for a 1[" which satisfles
the surface Dirac equation,

Under a general infinitesimal varfation
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(@) R —RAUY = R¥wY + SR¥ ()

ve have

STa= SR\oL

894@‘ 'C.‘vSR|§+'L'3'SR\.L

§ g%®- - 7% sRP-ToR"

S hgr = Vigh T% 3Ry

§T = (n SR — (c*. SR‘QK@

&)

Using (3), we find

85= [dufigt { L' TSR~ Tm ¥ 5 7% 2 %]
W)

(3 _
=Jdu@\ [- T T SRjoe = Im Fd™ - SRy) )

where
(5) TPz —L'g*f_1m FZO°Y

The equation of motion follows from an integration by

parts:

0=29 S=falv.ﬁg—\ dRp [ (v ‘pTg‘u)“g + (N’ Tt ﬁbw)nd.]

or

o= (VTG‘@ Z.P»)\\el ¥ ( n*Im¥o )“"f‘)"d

(6) — “p . G » '
= [T Y ‘rabﬂ’] Tg +L A,@T‘Q*Im (Fu 5 ¥a] W
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The tangentlial component of equation (6) Is identically
zero, wsfng the equations of motion (1) and (1l) of

the Dirac field,
T‘(ﬁl\& AL o ¥=0

As mentioned in Chapter !, thls result reflects the fact
‘that a tangential variation, SR”::EV“'&(‘: 1s equlvalent to
a coordinate transformation: U®—=u"=3V% That the action
is 1Invariant under such a transformation Is a trivial
result of {ts coordinate invariance.

The normal component of (6) provides the third

equation of motion:
ol —
(7) /’\de ® T (Fw "Wyt =0

Usling the constraint (1) and the Dirac equation (I1), we

have

T C9"® _xm 72"y
Im (‘Tf. pra""%) =0

Therefore, the surface equation of motion is

as Indicated In Chapter 111,
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Appendix D

fn this appendix, we compute some of the conserved
“"charges" of the bubbie theory, dlrectly from the orlginal
field theoretlic expressions, In the strong coupling 1limit
"scL").

As In Appendlx B, we use a coordinate system for the

region near the bubble surface defined by

1 xtuhg)= R¥(u%) +§nPuw)

In these coordinates, the approximate fields are:
@) (%)= £Gmh (V23 F5)
-

@ T(= N[cmhlarts] ™ puxs)

vith ﬁ%&ti) satisfyling the surface Dirac equation, and
in¥=1
o
se ¥ = ~2 Y

The actlon and all conserved charges of the theory are
expressed as spaclal Integrals of denslitles which are very
sharply peaked near the surface. The Integrals over jf can
be performed explicitly, to lowest order in D/R, in the SCL.
Such calculations are completely stralghtforward. We

i1lustrate them here for the cases of the action, S, and the
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energy momentum, P’J , Only.

The coordinate system (1) is characterlzed by a set of
basls vectors, ‘r;”, and a metric, Gab , as discussed In
Appendix B, As before, we need only work to flrst order In
€. as higher order terms in § represent, effectively, an

expansion in D/R. We have,

P »_
T = 2 rgntia , 3=’

el
Gap= guptas hup , &%= g7P-ash

il = Jigt (1+a.RE)

T%P= (t-(p_gn,ul«.) TB/J___»__n,u
J

= (T du= (TP —5n"") a,‘—n";%
Consider “surface fields" defined by equatlons (2} and
{3), where the surface is taken to be of arbitrary shape and
the Dirac fleld, 4 , satisfles ¥ ¥=0, but not

necessarlly the surface Dirac equatlon, The actlon integral

Is:
s = [ax | T (g~ 6 +2 0012 (e4]

Uslng (3), we have, to leading order In D/R,

Jas et Flig-6n ¥

g._g-
= [ds A N*Lahi@meg] B TN Y
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How,

F¥= (7 +RA) Yo

where Py = Z%a

The support for the Integral over f lies in a region of
width D near the surface, For quantities whose §
dependence Is much slower, this sharp peak merely picks out

the value at § =0. Thus,

Jag i TLiz-6Y
G

x [AsfTa M wehiBEs] P F (O tRaA) Y
= Jigt ¥ oPY
after using the normalization condition,
FICy
L= fds Comhim sl ™

The scalar contribution to the actlon can be treated

similarly,
1 (et —AeE -y o )TN e o0 Flasakiyaes
so
Sdg fafteer=aw-#r] = - 4 [ ¢ Ngi= ~<lig)
Thus, we have the surface form of the action:
sx [an ip [Five-2])

This is exactly the expression for the action 1in terms of
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surface varlables that was derived heuristically In Chapter
111, We clearly have the resultvthat the variation of this
surface actlon over possible surface Dirac flelds and over
possible surface geometries Is equlvalent to the variation
of the fleld theory actlion over field conflguratiéns of t?e
form (2), (3).

The calculation of the energy-momentum, P", follows
similar lines. The energy momentum Is gliven In the fleld
theory by

pP= [ ds, T
v
vthere
T2 oo LoV —Em FrP V¥
and V is any space-like surface In Minkowskl space. 1f we
choose such a spacelike surface to be one evolved from a

space-like cut, W, of the bubble by translation In § , we

have:
dsp= A5 AL (To
and B oV
P= J ds.fdg i (T7) T
How,

T, ™= &), T
= L (T ~Tm FEY
-3 _
= - (TYY =WV mkﬁi%'s‘] ® T Vizpvbhf’
so we have
¥ s
= fas Asiaif-L g 0 n2(uohi@5) ™ T 70 T
W)
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Performing the integrals over § , to lowest order, we have

p'= [ ds, Nig\ [ C gx*- Tm¥F 27 H 7

= § dgiig TF 5

This is the result derived canonlcally in Chapter I11,

The fermion charge and angular-momentum Integrals may
be computed In the same way, and are found to agree with the
results derived from Noether's theorem appllied to the

surface action.
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Appendix E

in this appendix, we briefly dlscuss a mathematical
observation that may facllitate numerical estimation of
energy levels for static bubbles of more combllcéted shapes,
Vie will see that the three dlmensional surface Dlrac
equation may be solved on surtaces which have a one
dimensional sharp edge. Though one of the principal radll
of curvature is slngular along such an edge, the Dlrac
energy remains finlte and the Dirac equation goes over into
a boundary condition relating the flelds on elther side of
it,

The statlc, two component, Dirac equation of Chapter

1V is

() [ k- (AAT)]X =EX

vle consider this equation in the nelighborhood of a very
sharp, but smooth, edge on the surface (Fig 15)., At any
given polnt on the edge, we can establish locally geodesic

internal coordinates which also diagonalize A"p:

_ (l o
Ie=\o1
(a) Jupry =0 at a Cixed powmit; u®
R O
<= (™
¢ ° &
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then 7ﬁ JE; are unlt vectors, whose orientation we define
by ?'A'_C'-\; =W . Ue will suppose that the edge Is such
that 5a ,ﬁ vary rapldly in w! as the edge is crossed.

We consider the Dirac equation In the 1limit as this
edge becomes inflnlitely sharp: & —0O . |f the Dirac
energy Is to remain finite, the terms of order 5’R, on the
left side of (1) must cancel. These terms come from the

YR, contribution to k and from the derivative of Y owitk

respect to U'.

' A a 2 . 2
(.3) oz[é%‘.%\?_‘m(aATQJ%")x=(25%|~‘Wa§.u' Z

vihere I is the angle of the normal aBout 'E;_ (Fig 15).
This i|s the same as the Dirac equation on the surface of the
two dimensional static bubble., The integral of (3) in the
nelghborhood of the edge is

~£ T (B, ud-Fw,u)

("‘) X(‘A\‘, (A«._):' ée X(ul/ uz)

In the 1lmit of an infinitely sharp edge, we Integrate (k)

across the edge and find trlg boundary condition:
N =Yy

L .0
-348,
£) x@)=-¢e oxXn)
vhere (2) and (1) label the two sides of the edge, and
3
a a1 is the vector rotation angle of the normal as the

edge Is crossed from side (1) to side (2),

This result may be used to estimate numerically the
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energlies of bubbles of more complicated shapes than were
discussed in Chapter |V, One may consider surfaces which
consist ot simple surface elements patched together with
sharp edges, The Dirac equation can be solved on each
subsurface Independently, The remaining problem s to
satisfy the boundary condlitlon (5), which can be expressed
as a tinite dimensional algebralc constralnt relating the
parawmeters which detine the solutions on each sub=surface,
Generally, such an algebraic problem Is more eastily handled
numerically than Is the problem of dlagonallzing the Dirac
Haml Vtonlan on a complex surtace, |

{t is clear that surfaces with sharp edges will not
solve the bubble equations exactly. However, because the
Dirac equation is sensible on such surfaces, one might hore
that they will make reasonable trlal surfaces for numerical

approximations,
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Appendix E

We prove miscellaneous results refered to In the
analysls of the bubble In three space~time dimenslions
contained in Chapter V,

First, we show that If ']'“’ Is any symmetric tensor
with signature (1,-1) on a two dimenslonal R1emann man!fold,
then a Jocal coordinate system can be found In which 1‘*ﬂ
Is off-diagonal: T°°=T"=o0 . Ltet §{vov'} be the
desired coordinates, and "T"*'P'the tensor 'T'"P in these
coordinates.

e, —ap 2V 2vF
T =T su= 2uf

We require:

ee. X8 2V 2V
(1) o= T T bus pur

- ) ov!
o=F"= T 2 S

Both v* and V! must have gradlents which satisfy the
homogeneous quadratlc constralint (1), Because T %P has
signature (1,-1) the solutions of (1) are such that the
gradient must lle on a degenerate hyperbola (analogous to
the 1light cone) In the tangent space to the surface at each

polnt. There are two Independent real solutions to the
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quadratic equation at each point. These generate two
functionally independent solutions to the differential
equation, which can be taken to be ve and V! .

Next, we must show that the energy-momentum tensor,
Td# ., satlsfies the conditions for this theorem -= that

T“P is symmetric and has signature (1,-1),

) T%€= qup"' e

whece; T"pSE ‘:Em‘¢'1”xbp1+
The metric tensor is symmetrlc, so the symmetry of
po will follow if we show that 2 ks s symmetric. It
is sufflclent to show that e s symmetric at any glven
point in some coordinate system, A tensor which |Is
symmetric at a point in one coordinate system 1Is symmetric
at that polnt In all coordinate systems. At a glven polnt,

-3

W™, we choose locally geodesic coordlnates:

‘34g5= (L *ﬁ)

Jopiy= 0

(3)

\le want to show that T°2-¥'®=0 at the point W%, We

have:
) rere= —xm¥ (700'- 7)Y
Using the Dirac equatlion,

[ 7% +C 2" +k] V=0
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and the relation, valid in tne two component representation

of the gamma matrices, followlng from (3):

we have

2 %=[lado—~cR 2P
then (&) becomes

O -0 = _Tom F[ ~(Z'+7Ow) Jo + RV Y

But

Foz!i= 1R and ¥ (=) Y=0
Z° = = ~z'

So **-v1° =0 at the point W™ . This is sufficlent to show
that qu is symmetric at all points In all coordinate
systems,
<@
We must show that T has signature (1,-1), 1t 1Is
sufficient to show that det( T"F)<0, for then the
eigenvalues of T=® have opposite sign. Because T“' is

a 2x2 matrix, we have

det ( T*®)=det [ c g*® +v=?]

From the Dirac eguaticn, gd@Yq(s:O . We can also show

that det( "r"’(P )=0. As indicated in Chapter V, and as will
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proven below, the Dirac current, J;L!‘V/'Z.,L‘r, is light=-1ike

and satisfies _
JTF=0
It follows Immediately that TP is of the form
rat= A J--tJ‘P
vhere A is some scalar field, Then
det (YA = A[ (3TN (*TV =0

a -

¢

Finally, we must verify the assertion In Chapter V

that
If “Y%¥=o0,

(o w)yu¥=0

for any two component splnor, ‘P. This result follows from
the observation that, for any two component splnor, WP,

A
there exists a unique real unlit vector, M , such that:
~y
MG Y=o

Using the 2x2 representation of the gamma matrices

Introduced In Chapter Vv,
3= o =i aiq
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vie have
T g= ¥ (1, A, &)
F4= [vry) A, =0

then
Frrv) 0w = vy - g+ cdya] ¥
= (vWoali- Moa-m5] Y
= (%) 07 (1= meo) P

=0
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(o) =f

FIGURE 1

A schematic representation
of a "bag-like" state
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FIGURE 2

A schematic representation

of a bubble state
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The normal force density on a spherical bubble
for quark states with j=m. The dotted line is
the zero of force.
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The normal force density on a spherical

bubble for various quark states.
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FIGURE 10

Coordinates on the torus
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FIGURE 13

A three dimensional bubblé generated
by curves @*tr} and $4(w),
Points P and P’are equivalent.
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Bubble-bubble scattering by

fusion and fission.



SIDE
VIEW

FIGURE 15

A three dimensional static bubble
with a2 sharp edge.

TABLE 1

The Dirac Currents on the Bubble

The condition

the tangent vector and pseudo- scalar currents:
— — ok,
¥w=o0 Fyprv= 37T
¥iovy=rP Pyl Y= ~-Pn”

@' VY= J o ( n# -L-i\l__ nv rd”)
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(I) allows all Dirac currents to be expressed in terms of



TABLE II

The States of the 70, L=1 of SuU()t

SU(3) P Observed States Bubble Model
/0 LN Extra state
10 | %" | Alrroo)  €(1580)
1o | Va© {olieid  3(740)

8 | 5a |NTC6T) 3(1765) A(183D)

g | % [N e L0949 A=)

8 kT IN®()e)) Z(—) Als70) .
4 KT O(NM*US19d Z(~) A=) }one e
2 (%™ [ N*520) $(1660) A (1690)

| 3, A (152 0)

! a A(M05) | missing

TABLE I

Excitation Energies and Turning Points for
the Radial Mode

TFrom: R.J. Cashmore, '""Resonances: Experimental Review, '
Proceedings of the Summer Institute on Particle Physics,
Vol. 1, SLAC Report No. 179 (1974).
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n €n Emin Conax
(o] 1.6IS .Haq 1,456
a.577 20 2,641
=5 3,38 d9¢ 3. 08
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TABLE IV

The Low- Lying "Baryon' States

TABLE V

The Low-Lying '"Meson'" States
of the Three Dimensional Bubble

of the Three Dimensional Bubble
£, = eigenvalue of -zl'o';:.agf
Jo = eigenvalue of !de~ o%: _
&; = eigenvalue of WABnC md =8nclo
_ fo E. w State Vector
+-
Va | i o by, ¢," )
+ vy .
Yo | 2 |-%E |laml bad by,a )L c.-i (61>
+ - <
-2 ;Jﬁf b% +C \n:,;aﬂ[ C;—-'L (c.*)“]lo)
.’_'/ __l_’[lo‘i' 'L’.*][C.’. .(+;
2 ||azl oy, "ty & 2+ (i) ]io>
] + ' .
w3 | 7@l ba, v L oviarll Gl (eSS

Lo Lo w State Vector
fe) 0 o 10>
! \ 0 arctior

by, Ay, c.* 10>
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Cyl & af +gs (o) o b dyr +hs dus bl io>

3 i

2 (Cal-f budyat + W de —g v b 11O
A a + ¢+ 3

1"% Ct[”ﬁi (ad) _,_“__:3__5 Lv;*a;*’ﬁ‘-é di V’;a]‘°>
tE e3 |CalE b dlal + 4 by 43, - 4V, b 110>
B

where:
* .
Crs flcat (@]
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Reterences for Appendix A

There are many good mathematical texts on differential
geometry, at varlous levels of sophisticaton. We mention

but two of them, which we have found useful,

L.P. Elsenhart, Rlemannian. Geormetry, Princeton

University Press, Princeton (1949),

J.D. Strulk, Leqtures on Classical Differential
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