SLAC-187
uc-32

A SYSTEM FOR LARGE STRUCTURE GRAPHICS"

BARY WILLIAM POLLACK
STANFORD LINEFAR ACCELERATOR CENTER
STANFORD UNIVERSITY

Stanford, California 94305

PREPARED FOR THE U.S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
UNDER CONTRACT NO. E(04-3)-515

Manuscript Completed August 1975

Printed in the United States of America. Available from National Technical
Information Service, U.S. Department of Commerce, 5285 Port Royal Road,
Springfield, VA 22161. Price: Printed Copy $8.50; Microfiche $2.25.

¥
Ph.D. dissertation.



{c) Copyright 1975

by

Bary William Pollack

ii

e



ABSTRACT

In this thesis we present the design for a system
with the potential for solving feal-vorld large structure
graphics prcblems. Such problems are continually
encountered in industry. Although present-day techniques
for drafting, architectural drawing, airfoil design,
automobile and ship design, and so forth are to some extent
automated, these are mainly areas which are approached with

traditional and mechanical methods.

This research: 1) demonstrates the practicality
and power of using a parallel systems approach to graphical
system design, 2) develops a dual data structure which |is
especially efficient 1in dealing with large structures, and
3) unifies a variety of techniques currently available in

several disciplines.

Tha culmination of this research has been the
implementation of ¢the GRAPL system. Additionally, we have
developed two langrages: the GRAPL iwmplementation language
in thch the GRAPL system is actually implemented, and the
GRAPL command language, which forms the user-systenms

interface.

GRAPL provides a system with vhich one may design a
structure of major complexity. It is readily tailored to
various user requirements while remaining efficient in its
real-time respons=2. And, GRAPL 1is capable of accepti

"advice" on hcw it may improve its performance.

iii

—

e S .



PREFACE

I wish to express my most sincere thanks to
Professor William F. Miller who continually provided
encouragement, guidance, and insight, and who shepherded me
through this arduous task. Without his support I never
could have completed this research. Dr. Alan Kay provided
much of the early rotivation for this project, guided nme
into the 1literature, and has always provided the nmost
stimulating questicns, suggestions, and criticisas. His

hand is evidenced throughout.

I also would like to express my appreciétion for
the advice, support, and friendship given me by the other
membhers of wy reading comnittee =-- Proffessors Forest
Baskett and Ccrdell Green =-- as well as to mny fellow
graduate students and co-workers at the SILAC Computation
Group -- Jim George, Steve Llevine, Jerry Priedman, and

Harriet Canfield.

iv



DEDICATTON

This work is dedicated tc my parents,
Seymour and Evelyn Pollack,
and to my wife,
Kimberly,
withent whose support, confidence,
and understanding I surely would
have given up long ago.



Chapter

Abstract

Praface
List of
List of

1

— b v b
.
F NI N RN

]

L]
- LN E WA

o

NN DN NN NN
¢ 4 = & 4 .

3
- —d
DN -

2.11

[UURRUN I IR UV RN VS O
.
NV E W=

A SYSTEM FOF LARGE STRUCTURE GEKAPHICS

TLoLE

Tables
Illustrations

Introducticn

/}:‘

CONTFENTS

Objrctives of this thesis
Automation of design

rhe user interface
Grachics from a diffarent point of viow

Probl=aas in Sraphics

Display and computation
textures, colors, shadovs

didien surfaces,
visual etfects

Centrol of detail
Context and neighbcrhoods

Curves and surfaces

Tim2-varving displays

Attritutes
Sketching

Defaults and a symnpathetic environment
ilow to represent knowledge

Data structures

A summary of our research

survey of Related Work

Architecture, design, and general philosophy

Graphics systems

Dispnlay algorithms

Simulation approach
Partial application/incremental compilation

Artificial intelligence

Syatax
Semantics

vi

Page
iii
iv

ix

N (W =

11
12
13
16
17
18
19
19
20
20
21
23
24

28

29
30
30
31
31
32
32
33



A SYSTEM FOR LARGE STRUCTURE GRAPHICS

TABLIE COF CONTENTS ({(Continued)

Chapter Paqge
1.9 Data structures 33
.10 Control structures 313
3.1 Ixtensikble langquages 34

4 The GRAPL Approach 35
4.1 A rarallel system design 35
4.2 Duality of data and progranm 38
4.3 The GRAFL data structures 39
L.y Splittirg cubes uy
4.5 Display algorithams 46
4.6 Secondary storage algorithm 48
4.7 Selective incremental compilation 50
4.8 Neightorhonds and constraints 52
4.9 Giving GRAPL advice 53
4.10 Giving results in real time 53
4,11 What is a wall with windows? 56
4.12 Wwhat is a "master™? What is an "instance"? 59

5 Description of the GRAPL Languages 62
5.1 The GRAIL implementation language 63
5.2 Constants 64
5.3 Identifiers 65
S.4 Lists, segments, and S-expressions 66
5.5 Ind=xing 67
5.6 Specitying data structures 68
5.7 Bindirng, function definiticn, and access 68
5.8 Operators 73
5.9 Segquential control T4
5. 10 Backtrack control 78
5.11 Prccesses anhd process control 79
5.12 Exrressions 87
5.13 Progranms 88
5.14 The GEATL evaluator : 89
5.15 The GRATL system command language 91

6 Sevaral Examples 9y
6.1 Walking through a building 95
6.2 A simple operating systen 116

vii



A SYSTEM FOR LARGE STRUCTURE GRAPHICS

TABLF OF CONTENTS (Continued)

Chapter Page
6e3 A simple graphing systen 119
6.4 Ryilding a house 125
6.5 Some additional constructions 150

7 System Performance 159
7.1 GRAPL efficiencies 159
7.2 Ka2rnel systenm 166
7.3 Operating system simulation 167

8 Conclusions and Suggestions for Further Study 168
8.1 GRAPL's successes 168
8.2 GRAPL's shortcomings 170
8.3 Suggestions for further study 172

9 Biblicgraphy 179

viii



LIST OF TABLES

Table Paqe
2.1 GRAPL's most significant features 24
2.2 Additional advantages 25
2.3 What's new in GRAPL 26
2.4 Tmplementation difficulties 27
5.1 The GRAFL evaluator 89
5.2 Command language summary 92



LIST OF ILLUSTRATIONS

Pigure Page
6.1.1 1 kilcreter awvay 98
6.1.2 The 30'th story 99
6.1.3 The 30'th story 100
6. 1.4 The 30'th story, still closer , 101
6.1.5 Increasing the level of detail 102
6.1.6 Just inside the building 103
6.1.7 Approaching the desk and chair 108
6. 1.8 A lateral view 105
6.1.9 Tha file, desk, and chair 106
6.1.10 The desk and chair alone 107
6.1.11 Zooming in on the left 108
6.1.12 The three drawers 109
6.1.13 Increasing the level of detail : 110
6. 1. 14 Closer still 111
6.1.15 The pyramid apgears 112
6.1.16 Within the drawer 113
6.1.17 <Closer again 114
6.1.18 "GRAPL" appears within the pyramid 115
h. 3.1 y = (x+30) (x-6)} (x=-30) 121
6.3.2 y = (ats(x) + ab) / (x*x + b*b) 122
f.3.3 y = (x mod 24) (x mod 24 + a - 12) 123
6.3.4 vy = (x+35) (x+%5) (x-5) (x-35) 124
6.4.1 Floorplan #1 - a simple house 139
6.4.2 Floorplan #2 140
6.4.3 Floorplan #3 LR

L Floorplan ¥4 142
6.U4.5 Floorplan #5 143
6.l4.6 Floorplan #6 144
6.4.7 Ploorplan #4 modified 145
6.4.8 Floorplan #4 in perspective 146
6.4.9 Floorplan #4 in perspective 147
6.4.10 Floorrlan #4 with interior from the top 148
6.4.11 Floorplan #4 with interior in perspective 149
£a5.1 Automolile side view 151
FeHa2 Autcmobile front view 152
6.5.3 Th2 entire automobile 153
6.5. 4 Automokile in perspective 154
6.5.5 A ccntemporary building 155
h.5.6 A tit closer 156
6.5.7 Th2 huilding in perspective 157
6.5.8 The buildirg in a "tract home” setting 158



A 3YSTFM FOR LARGFE STRUCTURE GRAPHICS PAGE 1

CHAPTER 1 02:38:08 08,/04/75

1 Introduction

Which virtues of a computer-based graphics systen
are attractive tc¢ an architect or an urban planner? Why
should a Adesigner use such a system? Obviously, the savings
made in the automation of the drafting process alone are
inadsquate reasons for choosing a computer-based svstem.
Computer graphics has the potential fcr offering designers
the following: a drawing medium better than paper -- more
flaxible, of higher resolution, more easily edited; a
display medium superior to pvaper =~- dynamic perspective,
three-dimensicnal representation, translation, rotation,
scale, etc; an assistant who "understands® and "remewhers"
the class of problens under consideration; instant
accessibility, permanent storage of notes and designs; the
ability to pecform design-related calculations
éimultaneously with the design process; the possibility of
trying out several alternative designs at small additional
cost; seeing how these look, their exrpense, length of +time

for constructinn: ard much more,

1.1 Objiectives of this thesis



A SYSTEM FOR LARGF STRUCTURE GRAPHICS PAGE 2

This thesis demonstrates tﬁe utility and power of
two concepts: 1) a system design which is essentially
parallel admitting recursion, backtracking, coroutines and
parallel routines; and 2) a dual data structure especially
suited for the design of extremely large structures -- these
are structures so large that perhaps only 5% to 10% of the

data can resid2 in core at any one tirme.

In addition, this thesis provides the basis for a
class of °‘systems with the following characteristics: the
systems are capable of handling large data structures, are
interactive, are capahble of dealing with incompletely
specified problems, have easily rodified syntax and
semantics, ar2 easily and naturally extendible, and are

portable.

Research generally progresses in two directions:
in tﬁe development of new techniques, and in the
application, simplification, and unification of existing
techniques. This thesis is primarily a study‘in the second

direction.

We view graphics primarily as a problem in systea
design. Althcugh many advances recently have been made in
this field, our research offers a clean synthesis of many of

the techniques which have Pbeen develcped.



A SYSTEM FOF LARGE STRUCTURE GRAPHICS PAGE 3

1.2 RAutomation of dasign

} distinction may be made between the terms "design
automation"” and "the automation of design." The former
usually means the attemprt to replace the designer by a
computer system cagable of performing some subset of the
usual design tasks. “The automation of desiqgn,"™ on the
othar hand, is an attempt ¢0 bring +to  the designer the
advantages of ccrputer techniques. Oour goals lie in the
latter domain. #®e are not trying to solve the problems of
the vprofessicnal designer or partially raplace him; rather,
we are offering hinm tools which Bay enhance his

problem~-solving ability.

1.3 Th2 user interface

The application of new techniques to a discipline
is governed larqgely by bhow readily these techniques lend
themselves to the specific problems which arise and by how
readily these problems may be formulated within the scope of
the new methods. It 1is for this reason that the user
intarface 1is of greatest importance. If it is too
Aifficult, reguires too much effort, demands too much time
t0 use a new approach, traditional methods will continue to

be used, evan thcugh they may be less powarful, less concise



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 4
or less =sthatic.

Any computer design svstem which attempts to be
useful to the desigr profession at large should meet most of

the following criteria:

1) The system should offz2r a medinm significantly
better than gaper. Tt should he more flexible, natural and
easier to use, anl more efficient for the designer to use
the compntér thar to use traditional drawing and drafting

techniques. The GRAPL svstem meets these criteria.

2) Problems which are easy to solve should be
stated simply. Commands to dgenerate the usual kinds of
drawings should be readily accessible. The GRAPL systenm

meets this critericn.

3) More complicated prcblens should grow
corresponding to their complexity. A complicatad design
might well tak: a significant amount of time to create, but
it should in no event take longer or cost more tovproduce a
complicated .design with the computer systenm than by

traditional methods. The GRAPL system meets this criterion.

4) Th= basic concepts and primitives in the design

system should be natural and appropriate +to the design



A SYSTEM FOR LARGE STPUCTURY GRAPHICS PAGE 5

process. An archi*tectural designer should not have to learn
concepts which are not part of his prefession. Rather, the
computer systam designer should tailor his system to the
needs and requirements of the architect. To the extent of
the commands we have implemented, the GRAPL system meets

this criterion.

5) The system should he relatively casy to modify,
not only by the system programmer but also by the user. He
should be able to define his own constructs and give their
semantics; he shculd be able to create macros in order to
abbreviate, he should be able to <change the meanings of
already defined constructs. The GFAPL system meets this

criterion.

6) The syster should be sufficiently powerful so
that problems of similar types may be solved essentially bhy
analogy to already solved problems. The GRAPL system does
not meet this criterion. Very serious questions arise when
one attempts to be precise about what one intuitively means
by "solving hy analogy." The GRAPL system has the potential
power and floxibility to implement analogy-solving systems
at least as ccmplex as those already in existence (the
high=school wcrd problem system of Robrow, for example). We
have not <chosen tc pursue this avenue of research although

we realize that it is especially important if we intend to



A SYSTEM FOR LAFGE STRUCTURE GRAPHICS PAGE 6
intarface to the ncn~-compiuter professsional.

7) The system should facilitate control of the
deqree of Aetail to be used at all levels. The user should
be able to show all details, eliminate extraneous details
from a picture, compute gross costs, computs precise or
approximate ra2sults, and so forth. The decision as to the
amount of datail and precision to be used should rest with

the user. The GRAFL system meets this criterion.

8) The system should perform in real time. The
GRAPL system only rartially meets this criterion, primarily
due to limitations inherent in the particular
hardware-software environment in which we have implemented
it. Given a dedicated machine, GRAPL would meet this

criterion.
1.4 Graphics from a different point of view

There are several ways in which our approach to
graphics differs from the traditional. Perhaps.of greatest
importance is the fact that wve viewv graphics as a systenm
design problen. This means that we are not bound by any
specific language, data structure, control structure, or
even hardware. Rather, vwe allow the requirements of the

graphical design process to impose themselves and ve present




A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 7

a systen which reflects these requirements. In particular,
these requirements are reflected in: 1) the overall systen
design, 2) ihe types of data structures, 3) the format in
which knowladge 1is represented -- as progranm, and 4y the
maintenance of programs in interpreted rather +han in

compiled fornm.

Many attempts in graphics primarily have been
concerned with which primitives to include in the command
langnage, which primitive data structures to implement, and
which primitivas to irclude in tha base language. Such
decisinns are important, but these decisions need not have
the major emphasis. Graphics 1is essentially a modeling
problem -- we shculd he most concerned with which properties
form a good model of the world for the purposes of compnter
graphics. Tt is important to note that we were led to the
development c¢f our particular model by the reanirements of
tha real world (not, say, by the a priori decision that ring
structures are tetter suited for graphics than list

structures) .

The traditioral desidn of graphics syst2ms assumes
that a 1larje amcunt of numerical calculation is necessary
both to produce the pictures reauired and to conmplete the
calculations requested. As a result, most graphics systems

have been implemented in either a computationallv oriented



A SYSTFM FOR TARGE STRUCTURE GRAPHICS PAGE 8

algorithmic 1language (such as Fortran or PL/1) or in a
machine language. DBecause we view graphics as a modeling
rather than as a computational problem, our choice of
lanqguage has been one which includes general simulation
capabilities. Rather than attempting to modify a language
éuch as STIMILA or GPSS to include the general data structure
facilities and control structures, which we find useful in
graphics, va2 have elected to design and implement our own
language. A description of the GRAPL language may be found

in Chapter 5.

After rather exhaustive search we have found that
few graphics systems have used many of the techniques
currently available in the field of artificial intelligence.
The closest application has been the work of Terry bﬂinograd
-- but his work 1is primafily in linguistics; he used
graphics solely as a way to observe his simulated computer
arm. The use of modifiable strategies for display and
computation, the use of heuristics for control of detail,
the representation of knowledge in the form of programs are
all new tc graphics. These approaches represent a
significant advance both in providing the kind of generality
necessary for +the design of usable graphics systems and in
providing the capahiliﬁy for the 1imrlementation of truly

responsive systems.



A SYSTEM FOR LARGE STRUCTURE GRAPHICS ?AGE 9

A command language which may be fitted to a user's
requirements is an attribute of any syster which attempts to
communicate with the non-computer specialist. Towards this
end graphics systems have usually allowed the user to define
macros in an effort to have a more flexible and concise user
inﬁerface. A few graphics systems have gone further -- they
have allowed the system programmer to specify the command
language at system generation time ard then run the systen
description through a pre-processing stage. We have gone
5till further -~ the design of the ccmmand language has been
brought to the user so that i+ may best be designed to
satisfy his particular neads. The system ve present has all

the necessary tools available for such an endeavor.

Open-ended interpretive systems such as ours
usually suffer great run-time inefficiency. This is in part
due to the inherent overhead in interpretation and in part
due to our great svstem generality. We have been able to
keep this in2fficiency to a wminimum through the use of
selactive and 1incremental compilation. That 1is, those
highly utilized pcrtions of the system which are inefficient
may be ccmpiled by the user (or the system designer) to gain
greater execution speed and more compact storage
utilization. If at some time the user wishes to alter a
compiled part of the system, he need only supply an updated

interpretive versicn of it. Then at his convenience he may



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 10

compile his new version if he finds it satisfactory.
Alternatively, he may try another version of his own or
return to the original version. By using selective and
incremental compilation we retain the system's generality
and open-2ndedness without yielding to the inefficiencies of

interpreted coie.



A SYSTEM FOER LARGE STFUCTURE GRAPHICS PAGE 11

CHAPTER 2 02:38:08 0B/04/75

2 Problems in Graphics

In this chapter we discuss the problzms which are
oncounterad in graphics and point cut that subset which wve
have attacked. ¥e describe éome of the kinds of
capabilities required by a sophisticated user of a computer
design system. All current systems incorporate some subset
of the <capabilities we list here, but to our knowledge no

system (including curs) currently incorporates all of then.

2.1 Display and computation

Two general requirements are placed on graphics
systems. These are: they must provide for the calculations
necessary to renresent the structures being mwodeled =--
structural analysis, population density, heating
requirements, traffic flow, what have yon; and they must
allow for +the efficient display of th= objects being
desiqhed. Although thes2 two requirements are independent,
they are linked at the data structure level. A set of data
structures . must be availatle which lends itself to both the
requiremants cf interactive display and to the calculation

of the many parameters invclved in the simulation proper.



A SYSTEM FOR LAKGE STRUCTURE GRAPHICS PAGE 12

Two basic approadhes are available: represent the

graphics information with one data structure and the

compuational information with ancther, providing a wmapping
betwean the two; or, represent the information for both in a
data

3ingle structure, including the appropriate selection

mechanisms. The fcrmer anproach leads to a proliferation of
lata structures and large amounts of duplicated information;

the latter approach does not. To obtain information from

data structures ¢f the former approach does not usually
involve traversing the topology of the wmodel, whereas
obtaining infcocrmaticn from data structures of the latter

approiach usually does. This situation reflects one of the

btasic trade-offs between storage and speed. The greater

flexibility of the single data structure approach has led to

our adoption c¢f it in GRAPL.

2.2 Hidden surfaces, textures, colors, shadowvs

The suppression of
of the obvious requirements

designer must not be

information which cannot be

other hand, it should be

information if he

GRAPL docs not give the user the ability to

so desires.

hidden lines and surfaces is one

of usable graphics systenas. A

encumbered by the display 6f

seen in the real world. On the

possible for him to request such
The current implementation of

remove hidden



A SY3TE™ FOR LARGE STRUCTURE GFAPHICS PAGE 13

lines and surfaces interactively. However, the addition of
this capabilitv as w211l as the addition of textures, colors,
shadows, etc., would be straightforward and is discussed in

Chapter 8.

Ir many applications it is important to see the
actual textures c¢f surfaces, how a wall siding appears in
full sunlight, or in diffuse light, etc. The design process
should proceed in full color if the designer so requests.
Color displays are currently on the market and will be
relatively inexéensive in th2 nrear future, Primarily
because of cost, design is don=2 currently either in black on
white or in wvhite on blue. Computer graphics will make

color design less expensive.

In architectural design it is occasionally
important to dstermine the effect of shadows on the
anvironmeant. This 1is especially a consideration in
designing buildings adjacent to other structures. The
display of shadows and the calculation of their effects on
the heating and ventilation requirements of a building 1is

currently available.
2.13 Visunal effects

During the design process one frequently needs to



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 14

view the obiject being designed from various angles and from
several points of view. If the obdect is a building, this
may mean viewing it from fifty feet, or one hundred feet, or
a quarter of a mile away. It may be advantageous to get a
"bird's eye view" ¢f the building. Cne should be able to
describe these vantage points in a simple manner, save their
descriptions, and then s2e one's building from each vantage
point at will. Better vet, one should be able to view the

building from several positions simultaneously.

Also, onre should have the ability +to project the
object onto any given plane. This would allowv the creation
of the normal orthographic projections which sompe designers

find useful.

Stereoscofric views also are feasible, Various
techniques exist fcr the «creation and viewing of stereo
information; these should be available to the designer if he

wishes to use then.

The generation of perspective views of objeéts
should be the normal display mode. But one should allow for
the normal mode to be changed to elevation, one~, two-, and
three-point parspective, in addition to any other views the

designer may reguest.



A SYSTEM FOR LARGFE STRUCTURE GRAPHICS PAGE 15

In scme applications the generation of exploded
view picturas will be important. Techriques are currently
available for their generation and this capability should be

available to the designer.

It may be very important at some time in the design
process to be able to zoom in dynamically on the obijects
being designed. Alternatively, one may find it important to
be able to visualize walking down the corridors of a modeled
office building, 1looking through a doorwav into an office,
looking out a window, traveling down a str=et, and so forth.

These capabilities should Lte possiltle.

And, it may be helpful to an architect to bhe able
to pass a sectior plane through his structure. He could
then view an arbitrary cross-section of his building, see

. the floors, halls, beams, conduits, and so forth.

The production of hardcopy output is a requirement
of any wusable graphics sytem. This hardcopy mav be in the
form of microfilm, plotter outprut, Flueprint, a2tc. GRAPL
aives the user ccntrol over point of view, zoom, perspective
and secticn rlane. We have not inplemented stereoscopic
vision or exgplnded views. Our current hardcopy output is
obtained via 35mm rhotographs or via a vost-processor to the

Yerox Graphics Printer. Rll the illustrations in this



A SYSTEM FOR LAPGE STRUCTURE GRAPHICS PAGE 16

document were rroduced on the XGP.

2.4 Control of detail

The contrcl of detail is one of the most iamportant
capabilities a design system can offer. The designer should
be able to suppress unneccessary detail at all levels. This
means he should be able not only to suppress background,
foreground or midground information and suppress the
generation_ of subpictures, but also to suppress any objects
satisfying criteria which he gives the system. Por exaample,
when designing a room, it may be irrelevant to the designer
that the wall panelling has a rough texture or that the
ceiling soundproofing has randomly sized and shaped holes.
If the display of these features interferes with the design
process, the d2signer should te able to eliminate that type

of displav quickly and easily.

Morzover, most often it will ba.the case that the
designer will be monitoring the cost of a structure, its
area, volume, cube foot cost, and other attributas. In most
cases it will not e necessary to know the exact values for
these calculaticns, a rouqgh estimate will suffice. The
designer shonll he able to specify that he needs a vprecise
answer when he wishes one, bhut otherwise not burden the

system with detailed calculation {and incidently, most



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 17
likely degrade the system response time).

If the user needs to make use of this kind of
generality, h2 must supply the system with not only the
3electional <criteria involved, tut also the gross
description c¢r aprroximation algorithms to be used in place
of the exact calculation., The ability to control detail is

one of the mcst important features which GRAPL includes.
2.5 Context and neighborhoods

Perhaps cne of the most distressing attributes of
most design systems 1is the fact that at the beginning of
each session the designer must ask the question, "Where am I
now?" Moreover, when designing sevaral objects in parallel
he may be fcrced to ask this question again and aqgain with
each change of object. One should be able to define a
context and then return to it at will. & context must
contain the totalitv of the information which represents the
current "state of the world." This information includes not
only the current objects being designed and the vpoints of
view, but also tha states of all system variahles at that

+ime.

A design system should provide for the easy and

natural description of neighborhoods of discourse. A



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 18

neighborhood is cne kind of context. A neighborhood might
be defined as the objects currently being displayed; in that
case we speak of a display neighborhood. Or, a neighborhood
may be defined as those objects in the model relating to
heating, power, ventilation, etc.; in that case we speak of
a computational nelghborhood. A neighborhood may be
considered a logical grouping of information which may be
referenced by name, may b2 displayed, computed with, stored,
and retrieved. The efficient retrieval of various
neighborhoods is one of the most difficult tasks facing the

designer of a graphics systen.

Neighborhoods occur within toth the GRAPL systen
and the GRAPL language. In the GRAPL systeama we have
implemented display and computational neighborhoods. 1In the
GRAPL language we allow access variables which correspond to
the kind of neighborhood called "state" or mcontext" in

process-oriented environments.
2.6 Curves and surfaces

nften designers are concerned with the creation of
new shapes and the ability to déscribe arhitrary curves angd
surfaces in a natural way. A good design system should
facilitate the drawing of the standard engineering curves

and surfaces as well as the freehand generaticn of fores and



A SYSTEM FOF LARGE STRUCTURE GRAPHICSE PAGE 19

their later least squares, polynomial, spline, or other fit.
We have not irplemented the ability to «c¢reat2 arbitrary
curves and surfaces; a descriotion of how it might be added
to the GRAPL syster using current techniques is presented in

Chapter 8.

2.7 Time-varying displays

One important advantage a computer based design
system may offer 1is the ability to generate time-varying
displays. We include in this category computer anrimation
and computer art, modeling of dynamic structures, monitoring
the time-varying inputs and outputs of a model, and the
Aisplay of histograms, graphs, and wave-forms representing
accounting or other information about the mod=l. This
capability has been one of the least exploited in the design
field, yet it offers, perhaps, the greatest potential. we
have not implemented time-varying displays primarily as a
result of the already slow response of our time-sharead

PDP-10 environment,

2.8 Attributes

To be useful, a design system pust be more +than

merely a drawing or drafting tool. It must be able to

create objects and then give these objects various



A 3YSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 20

attributes such as <cost, weight, delivery date, tensile
strength, and sc forth. It is in this mwmanner that the
designer may put into the data base ¢the information
necessary to run the various application programs wﬁich
comput2 total cost, beam loadings, power requirements, etc.
GRAPL has complaete g2nerality for the specification of

attributes.
2.9 Sketching

One important activity of a designer 1is making
"thunbnail sketches." Sketches of various types, views, and
complexities are dgenerated throughout the design process.
These sketches may lack most of the detail of engineering
drawings, may be extremely rough or moderately neat, but
they always allow the designer to plan, to try different
ideas, *+o experisent with very small cost. A sketching
capability is crucial to any good design s}steu. ¥e naust
not force the designer or architect to be explicit or
rigorous in his expression. He must have the freedom of
creativity. Therefore, our system gives him the means by
which he mavy refire his ideas incrementally and slowly

evolve his final glan.

2.10 Defaults and a sympathetic environment



A SYSTEM FOR LARGE STIRUCTUFE GEAPHICS FAGF 21

Interactirg in a "syhpathetic" environmznt 1is one
nf the more important capabkilities of an interactive svsten.
Tt is significant that little research has been done in this
area of human factors and that computer systems have
remained correspondingly hard to wuse by the novice or
non-computer professional. One should be able to design a
system according the user's specific requirements, establish
default conditions which vremain in effect, and define an
environment suited to the requirements of the project at
hand. The user should bte able to give advice to the system
as to what +things are important and wunimportant, which
conditions must Le enforced rigidly, which (at least

temporarily) may te ignored, and so forth.

The user should not be burdened with having to
learn the whole repertoire of system commands nor learn all
the features the system provides in order to mak2 good use
of it. He should be able to interact with as little or as

much of the system as he wishes.

2.11 How to regresent knowledge

The rapresentation problem 1is one of the most
Aifficult facing the designer of any system. How are the
various features of the problem to be represented? What

representation will vield the most economical solutions for



A SYSTEM FPOR LARGE STRUCTURE GRAPHICS PAGE 22
most problems?

There are at least four aspects to the
representation problenm. First, there 1is the question of
representing th=2 problen itself. This includes modeling the
various paramzters of the situaticn, the interactions
between them, the specifications of size, position, cost,

and so forth.

Second, there is the representation of the systen's
knowledge. This include what the system knovs and what it
knows how to do. The system requires such a self-model in
ordar to bhe able to respond "The following information is
requirad before calculations may bte completed: ..."; or,
“This calculation will cost approximately $..., and take N

hours. Are ycu prepared to wait?2"

Third, there_ is the rélationship of local and
global knowledge in the system. Local knowledge consists of
various details specific to particular aspects of the
problen. For example, it 1includes the arrangement ~of
furniture in a given office or in an apartment building.
Global knowledge, by contrast, is information which |is
significant to the whole building. It mright include overall
cost, dimensicns cf the structure, type of foundation, etc.

A major obstacle in all large modular systems is ensuring



A SYSTEM FOR LARGE STRUCTURE GEAPHICS PAGE 23

that the local information does not become global and

thereby slow down the overall computation.

Fourth, there is the question of the form the
knowledge may take. It may be representéd ir some s2t of
data structures, or it may be represented in the
interactions of a set of programs, or by some combination of

the twvo.
2.12 Data structures

The question of which data structure to wuse to
mod21 the various aspvects of a computer system 1is an
extrem2ly important one. Various special-purpose structures
hava baen developed or extendad esnecially for graphics.
These include special forms of tress, rings, lists, graphs,
and heirarchichal versions of all of these. It is
significant that no one structure has been found which
satisfies all protlems. Rather, it is always a saot of data
structures which are implemented, <each data structure
modeling a particular set of features. One of +the main
contributions of this research has been the d=valopment of

some new data structures. These are describad in Chapter 4.



A SYSTEM FOR LARGE STRUCTURE GRAPHICS

2.13 A summary of our research

PAGE 24

This section presents a summary of our research in

tabular form.

the GRAPL system.

Table 2.1 shows tha most significant parts of

Table 2.1 -~ GRAPL's most significant features

Problen

Accessing
very large
data

structures

Modular
system; no
interference

Controlling
the detail of
computation

Give advice
to systen

Monitor
constraints,
functions,
variables,

{e.g. cost, cube-footage, etc.)

Previous Solns

spheres,
linked lists...

Very careful
system design

NOT DONE

NOT LONE

NOT L[ONE, or with
great difficulty

our Solution

Cubes

Parallel
system

Specifying
approximate
calculations

Accept advice
as strategies

A parallel
process

Our payoff

Very fast;
especially
for
architecture

Great
simplicity
and ease of
implementation

Speed

Ability

to modify
behavior-
dvnamically

Can easily
give user the
information
he requests



A SYSTEM FOR LARGE STRUCTURE GRAPHICS

Oour approach has several additional advantages,

shown in Table 2.2

Tabl=s 2.2 - Additional advantages

Problam

Control the
amount of
detail
displayed

Move around
quickly
within sone
neighborhood
in the data
structure

Representation

of objects

Define a
context, a
neighborhood

Fast hidden
line and
sur face
ramoval

Saveral
points of
view

Previous Solns

Clipping after
2xamining objects

No faster than
most othar
moticns

Data

NOT™ DONE

Warnock,
2tc,

Wa+tkins,

Difficult

simultaneously

Flexible
system,
command
language,
etc.

Syntax~-driven

+ranslator

Qur Solution

Jse the
cuboid data
structure

Compile the
neighborhood

Program

Save state
var's of the
system

Preclip with
cuhes

Start a couple
nore display
processes
running

Interpreter
with
compiler

PAGE 25

as

Our payoff
Speed, do not
need to
traverse the
whole data
structure

Speed

Flexibility,
power

Accessibility

Speed
Speed

Greater
flexibility
without loss
nf efficiency



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 26

The GRAFL systen

approaches and techniques.

2. 3.

demonstrates several new

These are summarized in Table

Table 2.3 - What'!s new in GRAPL

Using a DUAL data structure

Using a PARALLEL system design

Giving ADVICE to the systenm

COMPILING a picture

EXECUTING an obiect

SELF-MODIFYING data structure

Cubes and master-instances

Yielding modularity,
flexibility, and ease of
modification

As strategies for display,
computation, etc.

Providing speed and
extremely concise
representation for a
neighborhood

To produce a picture, its
electrical or cost
characteristics, etc.

The cubes automatically
partition themselves into
sutcubes when they become
too complex



A SYSTEM FOR LARGE STRUCTURE GRAPRICS PAGFE 27

We have encountered difficulties in developing
several aspects of the GRAPL system. These are surparizad

in Table 2.4.

Table 2.4 - Difficulties encountered

What strategies to provide iritially for splitting
cubas. How many levels of cubes to have.

How to access uniquely and efficiently the
appropriate cubes given a position in space
pyramid c¢f vision (visual neighborhood).

How to access sacondary storage efficiently.
Datermining how much information of what kind to
include in the masters and instances for most

efficient use of storage and time.

How to maintain good response time in a heavily
loaded time-shared environment.



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 28

CHAPTER 3 02:28:08 08/04/75

3 Survey of R=2lated Work

This chapter has two objectives. First, we wish to
qive the reader a certain perspective with which to view our
rasearch by presenting some tackground. Second, we wish to
acknowladge the sources of many of the technigues and

concepts which we have used.

The basic philosophy behind the design of the GRAPL
system has been one of striving for consistency, nuniformity,
and power. Whenever possible we chose the more general path
rather than the mcre restrictive. Thus, the system has heen
implement2d in a specially constructed lanquage based on a
high-level interpreter. The implepentor may deal with the
system on any of several levels: the user level, ﬁhe GRAPL
language lavel, the MLISP2 1level, or the LISP 1.6 level.
This capability is not hidden from the user. The
sophisticated designer might well avail himself of some of

the facilities present at one or all of the levels.

Much research in grathics has been devoted to the

selection of data structures both for the representation of

graphical entities and the representation of the elements of



A SYSTFEM FOR LARGF STRUCTURE GRAPHICS PAGE 29

the model. It is in this area that graphics systems nsually
either succeed or fail. If the choice of data structures is
not large enough, if thevy do not have enough
representational pcwer, or if they can be accessed only very
slowly, the system must ultimately fail, Or, rather, it
will succeed only for th2 smallest of structures (log cabins
ani the 1like). In GRAPL we have provided not only an
sxtremely efficient and powerful set of data structures, but
we hava provided the mechanisms for easily and quickly
altering thes: data structures *to meet a user's particular

requirements.

The remainder of this chapter acknowledges those
sources which have been most helpful in the development of
GRAPL. A comprehensive bibliography on interactive computer

graphics may be found in <Po 72a>.
3.1 Architecture, design, and general philosophy

The basic architectural concepts and ideas have
come from a variety of sources. Tha most important of these
were Alexander's fine bock, "Notes on the Synthesis of Fora"
<Al 64>, and Koestler's "The Act of Creation" <Ko 67>. oOur
system reflects much of the same philosophy as Negroponte

<Ne 70> and Frankel <Fr 70>,



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 30

Much of the basic system design philosophy is due

to Dennis <De 68>, Farley <Fa 71>, and Huffman <Hu 71>.
3.2 Graphics systems

A variety of graphics lanquages and systems vere
exaained prior to and during the development of GRAPL. This
suirvey included the works of Carr <Ca 69>, Garwick <Ga 69>,
George <Ge 71>, Johnson <Jo 63>, Kulsrud <Ku 68a>,
Negroponte <Ne 68>, Newman. <Ne 71>, Prince <Pr 71>,
sutherland <Su 63>, and Wehrli, et al. <WS 70>. The result
of a literature survey in the field of graphics is reported

in pPollack <Po 72>.
3.3 Display algorithms

A large number of people have made contributions in
the field of disgplay algorithms. These include algorithas
for the manipulation c¢f data structures, hidden line and
surface removal, the mathematical representation ’of curves
and surfaces, and the generation of pictures of objeéts

illuminated from one or more light sources.

App2l, at IBMN, has been active in the first two
areas for many years, <Ap 66, 67, 68, 72>. More recently,

at the University of Utah, Bouknight <Bo 69, 70>, Kelley <BK



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 31

70>, Carr <Ca 49>, Gouraud <Go 71>, Warnock <Wa 68, 69>, and
Watkins <Wa 70> have made major contributions. In the area
of mathematical representation of curves and surfaces, Coons
«Co 67> and Forrest <Fo 68> have developei the most

sophisticated representations.

Hidden lire and surface algorithms for specific
classes of obhjects have been developed by Galimberty and
Montanari <GM 69>, Loutrel <Lo 67b, 67¢, 70>, Mahl <Ma 72>,
Matsshita <Ma 69>, as wvwell as Warnock <Wa 68, 69> and

Wwatkins <Wa 70>, and others at the University of Utah.

An excellent summary of state-of-the-art technignes
for hidden line and surface removal may be found in a recént
Computar Surveys article by Sutherland, Snroull, and
- Schumacker <3S 74>.

3.4 Simulation approach

The simulation aspects of GEAPL have bheen most
influenced by the SIMULA language <DN 66>, <DM 70>, <IM £9>,
as well as long and fruitfnll conversations with Alan Kav.

3.5 Fartial application/incremental compilation

The bisic ideas behind ovartial application and



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 32

incremental compilation have been around for a long time.
The most pertinent works include those of Lombardi <Lo 67a>,
Lombardi and Raphael <LR 64>, HMitchell <Mi 70>, and
sandewall <Sa 68>. Much of the groundwork was laid by
McCarthy, et al., in the development of the LISP programming

language.

3.6 Artificial intelligence

The artificial intelligence features of GRAPL were
most influencad by the 1L1ISP, PLANNER, OQA-4, and LISP70
languages. LISP is best described by Berkeley and Bobrow,
<BB 64>. PLANNER was and is being developed by Carl Hewit
at MIT, and is described in <He 71>. The QA-4 language was
developed at Stanford Research Institute by Rulifson, et al.
<Ru 70, 71>, <3iW 70>, <RD 72>. The LISP70 language is under
development at the Stanford Artificial TIntelligence Project
and is not yet well documented. The related languages MLISP
and MLISP2 are described in Smith <Sm 70> and Smith and Enea
¢SE 73>. Th=2 work of Terry Winograd' <Wwi 70> also wvas

influential.

3.7 Syntax

Th2 syntax of GRAPL was most influenced by the vork

of Smith, Tessler, and Enea in their development of the



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 133

MLISP, MLISP?2, and LISP70 langunages. MLISP is described by
Smpith in <Sm 70>. Smith and Enea describe MLISP2 in <SE
73>, LISP70 1is currently under development and has yet to

be describhed in the literature.
3.8 Semantics

The s2mantic ideas incorporated in GRAPL cowme from
a wvariety of sources including Balzer <Ba 67>, Dennis and
van Horn <DV 66>, Hewit <He 71>, Reynolds <Re 70>, Rovner
and Feldman <RF 67>, Strachey <St 66>, Teitelman <Te 66>,

and Winograd <Wi 71>.
3.9 Data structures

A variety of data structuring ideas were valuable
including thos2 described by Abrams <Ab 71>, Balzer <Ba 67>,
tarley <®a 69, 71>, Rulifson, a2t al. <Ru 70, 71>, <R% ﬁo>,
<BRD 72>, Standish <St 67>, Tou and Wegner <TW 71>, van Dam
<¥D 71>, Wagner <We 71>, and Winograd <Wi 71>, our
algorithm for datecting the proximity of obhjects is similar
in some respec*s to tha interpen2tration algorithm of Carr

<Ca 69>.

3.10 Contrnl structures



A SYSTEM FOR LARGE 3TRUCTURE GRAPHICS PAGE 34

Control structures have becone increasingly
important in the design of lanquages and systems. The most
- pertinent refarences ara Fisher <«Fi 70>, Hewit <He 71>,
Reynolds <Re 70>, and Rulifson, et al. <ga 70, 71, 7T3.
The (ps2udo-~-) parallel portions of the system were
influenced primarily by the SIMULA language. (See Section

3.4 above.)

3. 11 Extensible languages

The extensible lanquage features included in GRAPL
were most influenced by Berry <Be 71>, Cheatham <Ch 69>,
' Christensen and Shaw <CS 69>, Jorrand <Jo 69>, and Perlis

{Pe 6£9>.



A SYSTEM FOR LARGE STRUCTURE GPFAPHICS PAGFE 35

CHAPTER 4 - 02:38:08 08/04/75

4 The GRAPL Aprroach

In this chapter we present a description of the
GRAPL system. This discussion includes a description of the
igplementation of the various data and control structures.
B discussion of the philosophy explaining why certain design
criteria were estahlished may be found in Chapter 2. This
chapter discusses the details of how these criteria have
been met. In Chapter 5 we offer the details of the GRAPL
implementaticr language and a description of the GHAPL

command language.

This disussion proceeds from the particulars of the

irplementation to more philosophical considerations.
4.1 A parallel system design

GRAPL is implemented as a set of simulated parallel
processes running under a scheduler within the MLISP2
environment. Chapter 5 contains more information on MLISP
and MLISP2. The great ease with which GRAPL may be
modified, and ccmmands altered, or added to is largely due

to this fact. Also, it is only within such an environment



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 36

that one may irgplement such commdnds as Monitor and Notify
(see the description of the GRAPL command language below).
This approach yields a sophisticated system without the
usual corresponding system complexity. Fach GRAPL command
is implemented as a process, each body or object is a
nrocess, evan the 1 Km cube representing the world and all

its subcubes are implemented as processes.
4.1.1 A concise modular systen

Two advantages of parallel system design are: it
provides an 2xtremely concise manner in which to implement
the system, and it affords the opportunity to design an

extremely modular systen.

The conciseness of GRAPL yields a system which is
easily aldad to and readily modified. Almost all commands
are implemented in less thaﬁ a single page of code. The
kernal system 1s just over 10 pages long:; the simulation

routines occupy only 6 pages of code.

System modularity has three direct benefits: 1)
independence of ccmmands from one another; 2) flexibility in
command format, alternate forms of a command may coexist,
and commands are quickly and easily updated; and, 3) the

system may be segmented with a demand overlay scheme =- only



A SYSTEY FOR LARGE STRUCTURE GPAPHICS PAGE 37

those parts of the system which are currently active need be

in core.
4.1.2 A small system

When the size of the GRAPL system 1is compared to
most conventional graphics systems which commonly have
thousands of 1lines of code, the advantages of our approach

become even mor= apparent.

In additien, the GRAPL svstem with all commands
resident in core {a highly unlikely circumstance!) occupies
less then 60K PDP~10 words. This fiqure includes 34K MLISP2

system overhead -- GRAPL itself only occupies 26K.
4.1.3 A powerful and flexitle systenm

The parallel systém approach enables us to
implement options such as multiple viewports as multiple
instances of the viewport process. It also enables us to
utilize semi-continuously avaluating exrressions (see
Fischer <Pi 70>) tc implement commands such as Monitor and

Notify.

Additionally, the existence of a scheduler provides

the capability for deferring actions until a more propitious



A 5YSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 38

time. For example, if the cube data structure needs garbage
collection or some other "housekeeping™ chores to be
performed, one may schedule this event now for activation at

some future time, and thereafter cease to be concerned.
4.2 Duality of data and progran

One of the most powerful concepts in computer
sciance 1is the duality of program and data. One may view
all computations as sets of programs interacting with one
another with no data whatsoever <Ba 67>, or as a vast data
structure with a single access mechanisma and no other

programs at all.

Many systems have striven to divorce programs from
the data upon which +they operate. But the most powerful
(and intelligent) frograms tend to operate not only upon
data but upon themselves as well. The utility of a single
form of representation for both program and data is
apparent. One may view an expression either as a data
structure having scme value, or as a prograa vwhich conpufes

the same value.

In GRAPL, all entities are represented in the fors
of programs. This means that all bodies, objects, cubes,

even the visual naighborhood and the world mocdel, all are



A SYSI’FM FOR LARGE STRUCTURE GRAPHICS PAGE 39

programs. We interact with these programs in different ways
to achieve different effects (e.g., display, computation of

cost, retrieval of attributes, and sc forth).
4.3 The GRAPI data structures

GRAPL utilizes two dual data structures
simultaneously. These are the cube data structure, which is
usadl to repr>sent the physical modeling space; and the
body-object data struc*ture, which is used to represent the
elemants to ke dinserted 1into this space., The cube data
structure provides an extremely =2fficient way in which to
represent ard access large physical struc*tures. The
bodv-object data structure is composed of two parts: the
class of bodies and the <class of obijects. Bodies and
objects are the primitive elements used in the construction

of any structure.
4.3.1 Tha cube éata structure

The data structure ve vresent for modeling large
structures is *he following: We define the working space as
a cube on= kilometer cn a side. We divide this cube into 64
subcubes, Tach sutcube wmay bte referred tc by name or by
relative locaticen.  (This partitioning of space is not

generally availatle to +*he wuser for he has no need to



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 40

reference it. To the user, space is essentially
continuous.) W2 compartmentalize the data structure
representing our structure into these subcubes. Whehever a
given subcube becomes too complexv {has too amuch data
structure), ve subdivide it into smaller cubes and

recompartmentalize its data structure.

Now, to modify a structure, it is only necessary to
change those subcutes containing information which have been
modified. To lock down a corridor and display what is seen,
it is only necessary to examine those cubes along the
pycramid of vision for visible surfaces. As advice to speed
up the display, wvwe may ask the system to reject
automatically all cubes of size smaller than some given
volume. (One system default for display is to reject fron
conéideration all cubes +whose sizes are more than three
ordars of magnitude smaller than the current cube. This
jefault also displays a dot if the cube contained visible

informafion, otherwise it displays nothing.)

The data structure within each of the smallest
subcubas 1is the true modeling information for the structure
being modaled, This data structure includes structural
information, information as to the electrical systen,
mechanical system, ventilation system, etc. Larger cubes

may contain some amount of information which is considered



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 41

to be the default data structure if the subcubes are too

small to be considered for a given calculation.

The choice of a one kilometer cube as the largest
representabl2s space is entirely arbitrary, but we feel it is
reasonable in terms of using the system for architectural
design. Should one wish to do urban planning, a cube 10 or
20 kilometers on a side would be more reasonable. The
choice of vpartitioning the cute into 64 subcubes is
motivated bhy the following considerations: 1) A small
number of lavels of heirarchy is 2ssential for fast access
of data -- 1if one must continually traverse an extremely
deep structure one will spend too much time in the process,
2) We feel that the resolution for ar architectural design
system should 2xterd down to about 1 millimeter. Thesz2 two
considerations vield a scale factor of one million hetween
the 1largest and the smallest representable objects.
Partitioning each cube into A4 subcubes achieves this
scaling in 10 levels. We have experimented a little with
alterrnative partitionings but have nc conclusive results as
to optimality. In Chapter 8 we discuss cther partitioning

schemes with which it would be interesting to experiment.

It shculd be noted that the data structure
presented h2ere is essentially the three-dimensional analog

of the Warnock algcrithm. Moreover, both are instances of



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 42

the more general "Divide and Conquet Algorithm™ which is in
use throughout the field of computer science. The' Warnock
algorithm 1is performed "on the fly," resulting in a picture
on a display device, whereas our analcg 1is continually in

operation and results in a speedily accessed data structure.

The term "data structure® as wvwe have used it here
should not b2 taken too literally. What we are really
talking about is a dynamic process structure reflecting the
current organization of the @model. 1In more conventional

systems this corresponds to a data structure.

The cubes are actually realized as instantiations
of the class CUBE, the definition of which ve row give.
(Refer to Section 5.11.4 for a description of the CLASS
declaration.)

CLASS ('CUBE,'(SIZE,BASELOC,DETAIL,GROSS)),
' (PROG () ()),NL}3

where,
SIZE - is the size of the cube (a powver of 4)
RASELOC - 1is the coordinates of the hottom-most
corner of the cube
DETAIL - is the detail flag; if on, subcubes of

this cube exist:; if off, the complete
description is contained in GROSS
GROSS - the gross description of the contents
of this cube (a list of pairs:
‘ (object, positioning matrix)
PROG - is a dummy program
NL - means no process is GLOBAL to CUBE



A SYSTEM FOR LARGE STPUCTURE GRAPHICS PAGE 43
4.3.2 The body-chject data structure

Bodies are the most primitive obijects which wmay be
repressnted in GRAPL. They need have no physical
significanca. Bodies ar= generally collections of points,
lines, surfacas, and attributes which are to b2 dealt with
as a single entity. Rodies cannot be decomposed in any way.

However, they may be altered or redefined.

Obj2cts are collections of instances of bodies.
Nbjects tharefore have subs*ructure. This substructure may
be examined and modified. An object may be thought of as a
collection of tcdies and other‘ objects which, while not
primitive, may be ranipulated in a uniform manner affecting
all constituents equally. For example, one might define a
hlock-1lik=s structure as a hody, and then use sevéral of
these blocks to construct a table. Alternatively, one might

describe a table from the outset; then one would have a

body-table instead of an object~-table.

Bodies and objects are both implemented as CLASSes
in GRAPL. This provides the flexikility to modify GRAPL'S

basic data structure at the definiticral level.

We give the CLASS definitions for BODY and OBJECT

below:



A 3YSTEM FOR LARGE STRUCTURF GRAPHICS PAGE U4

CLASS ('BCDY,'(BOX,DATUM,NV,NE,NF,V,E,F),
'(PEOG () 0) ,NL):

CLASS ('OBJECT,* (0BOX,0DATUM,DETATL,GROSS),
' (PROG ) ()),NL);

where,

BOX - an enclosing cube specifying the
space spanned by the body

DATIHY - 1is a 4 x 4 positioning matrix

NV, NF, NP - the number of vertices, edges, and
faces iun the body, respectively

v - a list of all vertices of the body

E - a list of all edges in the body

‘ (a list of pairs of vertices)

F - a list of all faces of the body

gnrox - as BOX

ODATUM - as DATUM

DETAIL - a list of pairs
(entity name,datum) which comprise
the detailed description of the
obiject

GRNSS - similar to DETAIL, but for the
gross description instead

4.4 Splitting cubes

The cube splitting algorithm is used whenever the
structure of a cube's gross description becomes so complex
that it is worthwhile to partition the cube into subcubes.
The algorithh which we have implemented is known not to be
optimal. However, it does perform ‘sétisfactorily. Other

possihle algorithms are discussed in Section B8.3.

The algorithm proceeds as follows:

1) We are given a cube to be split (the base cube)



A SYSTEM ¥OR LARGE STRUCTURE GRAPHICS

PAGE 45

2) Measure the cube's complexity

3) If the complexity is less than SPLT (arn integer
variable set by the user), return

4) For each object in the base cube's gross
descripticn, intzarsect the obhject's envelope
with all subcubes of the base cube

5) Into each subcube where there is a non-null
intersection, insert a description of the object

6) Set the fkase cubat's detail flag to True

Note that so long as the same measure

is used at each subkcube 1level, we need not

complexities of the generated sutcutes.

Moreover,

of complexity
examine the

once a

cube is split, it never need te split again if the algorithm

for object ins2rticn guarantees 1insertion at the lowest

possible level cule. An alternative method would be always

to insert objects at the highest cube; then split it, and

let the splitting algorithm recursively force the object

into the correct subcubes.

Tke ccrplexity measure vwe have inmplemented 1is
simply a count of the number c¢f c¢bjects in the gross
jescription. If all objects are of roughly egqual
complaxitv, thon this 1is a good measure of the total

complexity. Since one commonly constructs relatively simple

aggregates of objects at any one time, this rather crude

approximation is usually reasonable. Alternative measures

of complexity, =such as the total number of points in the



A SYSTEM FOP LARGE STRUCTURE GRAPHICS PAGE 86

object or the numker of points plus the number of 1lines,
atc., 2asily may be incorporated into the system if the user
wishes. Other measures of complexity are discussed in

Section 8. 3.
4.5 Display algorithas

The display algorithm consists of two
sub-algorithns: cne for the display of bodies and obijects,
and another for the display of worlds. The simpler of the
two algorithms 1is the one for bodies and objects, and it

will bhe described first.
4.5.1 Algorithm for hodies and objects

Bodies atre displayed by generating a set of CRT
conmands from their internal descriptions. Rather than
creating and saving this display file of coummands, théy are
sent to the CRT immediately. This necessitates the
recomputation of the commands each time d body is shown, but
saves ‘considerahble memory. In addition, if one | is

interestad in "walking through™ a body, the display file

would have to be regenerated for each picture regardless.

Orientaticn, perspective, point of view

transformations, etc. are all computed using the usual set



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 47

of matrix transformations. Homogeneous U~-by-4 coordinates

are used to represent positioning information.

Objects are displayed by recursive expansion of the
bodies and obijects in their descripti&ns. Positioning
informaticn at each 1level of the expansion is used to
properly orient each subpart of the object. Recursive
expansion proceeds until either the most primitive level

(bodies) is reached or level of detail cutoff occurs.
4.5.2 Algorithm for worlds

Display of worlds is based upon GRAPL's cube data
structure. The current visual neighborhood is intersected
with top-most worlc¢ cube. Tf a non-null intersection is
obtained, the intersection proceduré racursively descends
into the <cubs structure oktaining those cubes with a
non-null intersection. When level of detail cutoff occurs,
the body/object display algorithm is invoked with the
description of all entities within the visual n2ighborhood

as data.

Display of world information 1is slightly nmore
complicated than for bodies and objects alone because
entities may reside within several cubes. This occurs

whenever an antity 1is physically larger than the smallest



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 48

cubes used to represent it. The world display algorithm
keeps track of the status of each entity sent to the
body/object algorithm so as to avoid displaying the sasme

entity several times.

Algorithms for «c¢lipping and hidden 1line/surface
removal ware not implemented for two reasons: the
techniques for accomplishing both procedures are now
vell-known, and doing either or both procedures would use up
valuable core as well as slow down the display process. The
addition of both facilities in the form of special commands
would be a reasonable approach if one were interested 1in

pursuing it.
4.6 Secondary storage algorithm

GRAPL secondary storage consists of a two-level
heirarchy: the usual PDP-10 disk file systeﬁ and a magnetic
tape backup system. The implementation of a more efficient
spacial purpose disk filing sysiem was considered, but it
quickly became apparent that the PDP-10 system was adequate

for our nzeds.
4.6.1 Disk storage

GRAPL files are of five types: system commands,



A SYSTEM FOR LARGE STRUCTURE GEAPHICS PAGE 49

catalogs, bodies, objects, and worlds. 1In each case the
file name extension describes a file's contents. The user

requests files by specifying its prefix name alone.

System commands normally reside on the disk. When
a command is executed by the user, a check to see if the
processing rcutines for the selected command currently
reside in ccre. If they are not, they are loaded
inmediately from the apnpropriate system command files.
whenever a CLEAR comnmand is executed, all extraneous system
commands automaticélly are purged from memory. This yields
the maximum amount of storage for display of pictures (at
the expense of a ssall amount of added processing time the

first time the user selects a command).

Catalog files contain the names of all currently
defined and accessible bodies, objects, and worlds.
Entities are described by their textual names.‘ Each time a
body, object, or wcrld is created or deleted these files are

modified appropriately.
Rody files contain the explicit description in
terms of lines drawn on vertices of the visual properties of

the body plus all asscciated attribute information.

Object files contain the structural description of



4
A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 50

the components of the object, positioning information, and

attribute infcrmation.

World files contain the complete structural
description of an entire world. The description is in terns
of the names of objects paired with positioning information.
The actual object and body descriptions are not part of this
file. Rather, they are loaded automatically when a vorld

(or part of on2) is loaded for display.
4.6.2 Tape storage

Tape storage 1is used primarily for backup
supplementing the normal system file backup systea.
Additionally, it may be used to store arbitrary files of any
typa. Loading files from tape rather than from disk |is

relatively automatic.
4.7 Selective incremental compilation

Selactive incremental compilation is the ability to
select certain entities, compile them, later retrieve their

ancompiled form, modify them, and then recompile then.

A common trade-off in computer science is the one

between time and space. Incremental compilation is a



A SYSTEM FOR LAEGE STRUCTURE GRAPHICS PAGE 51

mechanism for trading decreased execution time for increased

storage requirements.

In GRAPL one may compile any object into a body.
The new body's displav and computational characteristics
will be the same as the object's, but the internal structure
of the obiject will be lost. The old {unconpiled)
description of ttke obiject always is available for later
modification. The actual compilation is invoked through use
of the infinity key. One loads or instantiates one or more
obj2cts, compiles them, and then has the option of saving

them under a name cf one's choice.

The cube data structure may be compiled as well.
This will greatly increase the prccessing speed but will
sacrifice details cf the given cube's substructure. One
loads the cube, compiles it, and then uses its compiled form
as the new gross description. The detail flag is then

turned off.

If one wishes, one may compile the contents of the
visual neiqhborhood as well. This is particularly useful if
one wishes to examine a specific neighborhood in great

detail.

The compilation process consists of recursive



A 5YSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 52

expansion into primitive descriptions of each element of the

object's sutructure.
4.8 Neighborhceds and constraints

A neighborhood is a collection of access paths. We
can poke a neighborhond or some element vithin a
neighborhood and either store or retrieve information. For
instanca, to access we might sav (line, fetch, type) and vwe

would get back "A to B, type T."

From this point of view 1t makes no difference
vhether "line"™ refers to a data structure for a line or to a

routine to generate the line.

A constraint 1is a neighborhood with special
attributes which are interpreted in a particular way. For
instance, "parallel (line A, line B)" defines a neighborhood
and additionally attaches the attribute "parallel"” to it. A
processor continually runs around checking to see if it can
satisfy thé constraints on the current neighborhood or all

neighborhoods.

Neighborhoods {(constraints) may be sepall or large,
local or globhal. The most global neighborhood is WORLD:

the largest cube in the data structure. Local neighborhoods



A SYSTEM FOR LAEGE STRUCTURE GRAPHICS - PAGE 53

may be tha current subcube, the current visual neighborhood,

or any computational naightorhood.
4.9 Giving GRAPL advice

The user may give GRAPL various forms of advice.
He may give an objesct both a gross and detailed‘description.
This will greatly speed display, especially if the objact is

used many times in the current picture.

The user may advise the system not to display
objects below scme threshold size. And, the user nay
restrict display to only those objects satisfying some

criteria which the user supplies.

Anothar fcrm of advice the user may supply 1is in
the form of a constraint. He may tell the sys*tem to perform
(or not +to perform) some set of actions only wvhen a

constraint is satisfied (not satisfied).

4.10 Giving results in real time

One important thing we can do for a user is to give
him results in real time. Por example, if an architect is
designing a building and he asks, "What is the cost of the

structure as it stands now?" the resulting computation could



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 54

well take several seconds. Yet, he  might easily be
satisfied with an approximate answer, if he were allowed the

option.
4.10.1 Approximating calculations

We have as the default wmannrer of operation an
estimator which will approximate the cost of performing each
user rtequest. If the cost is high, the system will attempt
to approximate the answer quickly, inform the user of its
actions, and queue the computation for background
avaluation. It is the responsibility of the user to specify
how to approximate those things which the systema does not

already know how to calculate.

" A sisilar approach is used for display. If the
user requests a particularly complex structure to Dbe
displ#yed, the system takes the fcllowing actions. It
estimates the cost of generating the display. Since in this
example the cost is assumed to be high, it appréximates the
display as best it can by presenting the superficial details
and outlines of the structure involved. It informs the user

that complete detail will take some amount of time and it

puts the display generation task into the background queue.

For any task the system may request advice on how



A SYSTEM FOR LARGE STRUCTURF GRAPHICS PAGE 55

to upqgrade its ©performance. This advice might bhe of the
form, "To compute the gross cost, sum the costs for each
major moduie. A wmajor module is one occupying over 2000
square feet." Or, it might be something 1like "For this
window, only the outermost structural details are nacessary.

Delete the intarior entirely."

The system continuwally evaluates the cost of
displaying structures when the  user is in the process of
examining them by 2zoom, moving down the halls, sectioning,
2tc. TIf it finds it more econorical to do so, the systenm

compiles the appropriat2 portions of the structure.
4.10.2 Speeding up display

One orption the usser has which will <enable him to
speed up the display of obiects is teo advise the system of
the default arrearance of things when viewed from far away.
For -instanca, ohkjects of small prciject2d cross-s-=ctional
area will autcmatically he clipped, but a long I-beam will
not. The structure of this T-beam will be unnecessarily
complex. It will save processing time if the user advises
the syster that I-reams, whan viewad from greater distances
or when scme cther <conditions hold, 1look 1like straight
lines. The system includes default appearances for all

catalog«d objects which may ke modified by the wuser if he



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 56

vishes.
4,10.3 Compiling pictures

Obviousiy the cost of compiling a picture depends
on the complzaxity cf the picture. But if vwe were to do very
much zooming or wandering around within a building, it would
clearly be cheaper to compile the entire building than
delving d=2eply intc the substructure of each wing, f£floor,

room, etc.

Any object in the system may be compiled into a
body at th2 user's request. He then may replace the old
definition of the object with its compiled form or retain

the old definiticn.
4.11 What is a wall with windows?

The gquestion of how to represent a wall with
windows or doors is one which has plagued every designer bf
a graphic syst2m. Is a wall a solid? If so, tha2n how do we
represent windows within the wall? Do we intersect this
so0lid wall with some "negative" space in order to allow roon

for the window?

T a wall a space within which we may specify an



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 57

interior? This interior may be solid, hollow, partially

solid, and may include the specification of a window.

Is a wall a tree structure, with the properties of
"wvallness"™ hanging off the +top node, and substructure

specified as a subtree?

The ahove approaches all have merit, but they have
too many disadvantages to be properly useful in a graphics
system. After all, what is our obijective? To model the
real world? Or, to create a system which reflects eunouqgh of
the <characteristics of the real vworld so as to be useful?
We claim that the first statement 1is emphaticly NOT our
objective, The concepts of solid versus non-solid, space
versus non-space, €tc. do not have to be modeled in order
to arrive at a useful system. We therefore compose our
model_of three parts: 1) What the real world looks like --
how it appears to our eyes, 2) What the real world is made
of -- what are the components of these obij2cts we see: a
wall, a door, 1 plate glass window from PPG costing $ 13.95,
etc., 3) How space is partitioned -- which areas are
considered enclosurss, which are rooms, which are

stairwells, etc.

Th2 question of what the r2al world looks like is

purely a display question. It is independent of the model



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 58

of the (possibly '~ dynamic) physical systena ve are
constructing. The display process should, therefore, occur
simultaneously or in parallel with all other portions of the
graphics systenm. The display process corresponds to the

visual semantics of the object we are modeling.

The question of what the world is nade of
corresponds to the rest of the semantics of our object. It
includes how the cbject reacts to heating, cooling, vwind,
etc.; what are the object's requirements for power, cost,
heating, etc.; what physical lavs the object must obey, and
so forth. This set of semantics is contained within the

attributes of zach of the subparts of our model.

The question of how space is partitioned is handled
in two vafs. Pirst, in some cases it may be by attaching a
name (or sone other attribute) to some neighbhorhood which is
important to us in a spacial sense. Secondly, it is'héndled
by the cubing process which partitions our whole model

space.

So what then is a wall with a window? A wall with
a window 1is a structure vithih some cube (s} with boundary
points, lines (edges) defined on these'points, possibly wvith
the addition of surface attritutes to some of the resulting

surfaces. Thare is no specific modeling of the property of



A S5YSTEM ¥OL LAEGE STRUCTURE GRAPHICS PAGE 59

"solidness."™ The rnon-intersection of "solid" bodies is a
constraint which may te locally or glocbally imposed, but the
system will dynamicly determine which structures are solidly
intersa2cting with one-another. This model handles the
problaem of holes quite aasily. (Holes are the
generalization of spaces for windcows, doors, conduits,
passag2s, etc.) For each hole, we ijust increase the nuaber
of boundary noints and the number-of edges. And, this model
trivially aliows us to extend a tvwo-dimensicpal struactnure
into three-dimensions. We Just double the number of
houndary points, dcuble the number of edges, and connect all
old-new houndary rairs with a new edge as our first attempt

at interpretation cf this 2-D to 3-D extension.
4,12 What is a "master™®? What is an "instance"?

A significant problem in graphic systems design is
the definition of masters and instances. The general
approach we take is that masters should be viewed as
templates which generate instances of a specific form. The
structure of an instance is not frozen; it may be altered at
will after it has been instantiated. The structure of a
master, however, is partially but generally not completely
frozen. Masters wmay be altered only in their unfrozen

dimensions.



A SYSTIM FOR LARGE STRUCTURE GRAPHICS PAGE 60

One creates an instance from a master in the
obvious way -- hy creating a copy with new variables in each
appfopriate slot. This 1is essentially an unfreezing
opera*tior: instances have more dimensions of freedom than

their defining masters.

Craating a master from an instance is the converse
operation -- that of freezing in spacific relations into the
defining forrm. For example, if we have created an obiject
which we wish to define as a master wall, doing so freezes
in the relations which correspond semantically to
"yallness."” Having instantiated a specific wall from this
master, we @may wish to add doors, vwindows, conduits,

~lectrical wiring, and so forth.

In GRAPL we have realized masters and instances
using classes. Both the cube data structure and the
hody-object data structures are classes. Each subcube wvhich
is generated is an instance of the class CUBF. Likewise,
each body which the user creates is instantiated as a BODY;
and each object which he creates is an instance of OBJECT.
The class structures serve as templates (or masters);

physical bodies are instances.

The approach we have taken corresponds to the

incremental compiler and partial evaluation concepts



A S3YSTEM POR LARGE STRUCTURT GRAPHICS PAGE 61

originated by Lcmbardi and Raphael <LR 64>, It additionally
reflects the prorerties of parameter specification and
reparameterization of subprograms as applied to 1lanquages
such as AL30L. Parentheticly, no "algorithmic lanquage" to
our knowledge alldws reparameterization of subprograms. One
must go to a simulation language such as STMUILA before one
can find =aven static reparameterization (via class, class
orefix, and virtual declarations). Or on2 must go to a
truly general 1lanquag2 such as LISP, which does allow the

full gencerallity of dynamic raeparameterization.



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 62

CHAPTER 5 02:38:08 08/04/75

(03]

Descripticn of the GRAPL languages

The design of a new computer language should always
be approéched vith some caution. One should ask whether the
new language will in fact give the user greater flexibility,
more expressive pcuer, more freedom, retain some amount of
portability, and ke bhetter suited to his particular
problems. We have designed the GRAPL languages with these

requirements in mind.

We have implemented two languages: the GRAPL
isplenmentation language and the GRAPL systen conmand
language. The implementation language was developed for the
design and implementation of interactive systems for
computing with large data structures. It is relatively
general-purpose, and a wide variety of systems may be
designed and implemented with it. The command language,
which forms the user-system interface, was developed.to
facilitate intaractive use of the system. The bulk of this
chapter is concerned with a description of the

isplementaticr language.

The semantics of the GRAPL system and of the systen



A SYSTEM FOR LARGE STRUCTURF GRAPHICS PAGE 63

command language are implementéd in the GRAPL implementation
lanquagje. The <cemantics of the GRAPL implementation
language afe currently irplemented in MLISP2 -- a language
which has all cof the virtues of LIISF f(and a few of its
drawbacks) in addition to some poverful féatures vhich lie

heyond the scope of most current LISE systeas.

MLISP2 is an extension of MLISP -- a 1language
developed by David Canfield Swith <Sm 70> at the Starford
Artificial Int2lligence Laktoratory as a pre-procassor to
Stanford LISP 1.6 <QD 72>. MLISP is well documented, and
the interested reader is referz:d to Smith's description.
The MLISP2 extensions just recently have been described by

Smith and “nea <SE 73>.

In this <chapter we will  9present a complete
description of the GPAPL lanquaqge in addition to the

relavant portinns of the MLISP2 and MLISP languages.
Sl The GRAPL implementation language

GRAPL emtodies features from sevzaral different
classes of lanquagas. It 1includes: parallal process
facilities scmewhat more qgeneral than those available in
languaqges such as SIMULA and SIMSCRIPT; complete generality

>f control structure as specified by Fisher <Fi 70>; the



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 64

flexibility of being interpretive vhile retaipning efficiency
through incremental (re-) compilation; and it represents all
knowledge in a com;ietely uniform way ~- in the form of

programs.

GRAPL is tied together via a multiprocess recursive
and backtrack control structure. Backtracking 1is more or
lass a la PLANNER <He 71> and LISP70. States and control
points are established with each decision. Backtracking is
much more general than pure recursion but should not be used
in place of recursion or iteration. Sussman <Su 72> has

more to say on this point.

More than one portion of GRAPL may be executing at
any one tihe. We admit coroutires and parallel routines.
Sequential control is implicit within a given process.
Parallz2lism is iEplicit among the several processes which
may be activated, passivated, terminated, and so forth.
Sub-processes are frocesses whose execution is monitored by

a parent process.
5.2 Constants

GFAPL includes three forms of constants; numbers,

quoted expressions, and strings.



A SYSTTEM FOR LARGE STRUCTURE GRAPHICS PAGE 65

5¢02.1 Numbers

Numbetrs may be of two types =-- integer or real.
Integers are either signed or unsigned and must lie in the

range: 0 <= K <= 2*¥16,

Real numbers are either an integer followed by a
decimal which is followed by an inteqger, an integer followed
by an exponent, or some combination of the two. Both the
number and the exponent may be sign=d. Reals must lie in

the range: 0 <= ABS (K) <= +/- 2%x35,

5.2.2 Quoted exrressions

A quctz2d exprassion is a4 single quote (') followed

by an S-expression. This is exactly the same as in LISP.

5.2.3 Strings

A string is a double-quot: (") followed by any
sequence of charactars except % ("); these are followed by a
double-quand ote. Strings ara primarily used in
input/output operations. GRAPL 1is not designed to be a

string processing lanquage (as is, say, SNOROL 4).

5.3 Identifiers



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 66

Identifiers are names for objects of all types.
They may be of arbitrary length. Identifiers must begin
with an alphabetic character (upper or lower case). The

following characters may bhe alphabetic or numeric.
5.4 Lists, segments, and S-expressions

Lists are formed in the same manner as in LISP and
MLISP2, either as ' (THIS Is A LIST) oT as
<'THIS,'IS,'ALSO,'A,'LIST>. The forser method creates a
list constant; the latter constructs a list each time it is

referenced.

Segments are formed by use of the segment operator,
slash (/). For example, /'(THIS IS 1A SEGMENT) and
/<'50,'1I5,'THIS> Loth yield segnments. Segments are most

useful in pattern matching.

The rules for forming S-expressions are similar to
those in LISF. An S—expréssion is either an atom or a list
of sub-lists, cach of which is an S-expression. The 1lists
may be formed either as conétants (a left parenthesis,
followed bty the 1list elements, followed by a right
parenthesis) or by use of the list operators (left and right

angle brackets).



A SYSTEM FOR LARGT STRUCTURE GRAPHICS PAGE 67

5.5 Indexing

Ind=2xing is handled in a corplately uniform way:
the functicn GET ('(A B C),2) yvields B, GET (': ((A) (B)
(C)),1) vyvields (A), and so forth. GET is defined for lists,
tuples, bags, and sets. Its valune on sets 1is the 1i'th

component of the set expressed in cannonical order.

Moreover, GBT and PUT allow extended access in the

following way, if

X =%(A (B C (D) E) F G)

GET (Y,2) yields (B C (D) E)

GET (X,2,1) P

GFT (X,2,3,M) D

PUT (X,3,'H) (A (B C (D) E) E G
PUT (X,2,3,'H) (A (BCHE) F G)

POT (X,%1.,4,'H) {(A NIL NIL H) (B C (D) E) F G)



A SYSTEM FOR LAR3FE STRUCTURE GRAPHICS PAGE 68

5.6 Specifving data structurss:

In GRAPL we specify data structures in the

folloving ways:

function call returning element value
function call returning segment value
lists

tuples

bags

sets

e wam o
o~~~ o~
it d L TR ]

A prafixed "/" will force a function to return a
segmant value rather than an element value, A prefixed "|"

will force parallel execution of a function call.
5.7 Binding, function definition, and access

In GFAPL we view binding, assignment, and function
jefinition in a completely uniform and consistent manner. A
function is ﬁieued as a value which 1is a list of the
following form: It has the symbol LAMBDA, followed by a
list of argurents, followed by the expressions foraing the

function body. Thrs the expression:
(SET 'FN ' (LAMBDA (X) (CAR (CDR X))}))

sets the value of the atom FN to the list * (LAMBDA
(X) (CAR (CDR X))). Whenever EVAL encounters the atom FN,

its value will be c¢htained: and as its value is a Lasbhda



A SYSTEM FOR LARGE STRUCTURE GRAPHICS FAGE 69

expression, arqument binding and function evaluation will
commence. The LISP functions DEFINFE and DEFLIST are both

replaced by simple assignment in GRAPL .

3indiag and assignment are vieved as two
syntactically different mechanisms for achieving the same

semantic result. For exanmple,

(LAMPDA (X)) 0O)) 'FOO

(LAMEDA (X) (SET 'X 'TF00)) ()

both give X the value *¥00, the first by binding X
to 'FOO, the second by assigning X the value 'FOO. (The
second exampl2 is not quite fair, X is first bound to NIL,

then assiqgned the value 'F0O0.)



A SYSTEM PFOR LARGF STRUCTURE GRAPHICS PAGE 70
S5¢7Te1 Rules for function definition
The rules for function definition are similar to

those for defining Lambda expressiors in LISP, but differ

importantly in the area of argument tinding.

Arquzent binding is done in the following way:

1 Argument atoms are paired with their
corresponding expressions
2) Expressions and segments are elevated if

their corresponding arqument atom is
prefixed with an exclamation point (!)

E)) Argument atoms are bound to their svaluated
or unevaluated corresponding expressions
according to whether they appear unquoted or
quoted in the argument list

Function definition itself is accomplished by

assignment rather than by declaration.



A SYSTEM FOP LARGE STRUCTURF GRAPHICS PAGE 71
5.7.2 Examples of function definition and evaluation

Assume U is bound to 3 and V is bound to * (U U).
The expression Yields

(S®T 'IDENTITY * (LAMBDA (X) X)) makes IDENTITY
‘the identity
function of one
argument

(SET 'IDENT *(LAMBDA (!X} /X)) makes IDENT the
identity function
of indefinitely
many arguments

(SET 'FCN makes FCN the
' (LAMBDA (X} (TIMES X X))) function:
: P(X) = Y*X
(LAMBDA (X ¥) (LIST X Y)) 'A 'R (A R)
(LAMBCA (*X *'Y) (LTST X Y)) *A 'R (A ')
(LAMBDA (X) X) V (U u)
{LAMBDA ('X) X) V (o w
/{LAMBDA {X) Xy V -0 U-
/ (LAMBDA ('X) Xy V -QUOTE (U W -
(LAMBDA (!'X) X) V (U m)
(LAMEDA (X 'Y 2) (A (B CYy D)
(LIST X Y 2)) 'A *B 'C *D
{LAMBDA (*'X) X) A B COD (A 3 C D)
(LAMBDA (!X) X3 0 v O vV (3 (7 Uy 3 (U )Y
Dela3 Access

Tn GRAPL the concepts of normal variable access,
local and global variables, and free and bound variables
have been extended slightly to include values obtainable by

4CCeSsS.

Accags  variables correspond somaewhat to OWN

variables in ALGCL, but they ara process-orientad rather



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 72

+han procedure-oriented. That 1is, access variables are
those local (0OWN) variables which are declared at process
instantiation time. They retain their values so 1long as
their process exists within the systenm; thej are
incaccessibla by any means after their process disappears
from the systen. Borebver, access variables follov a
separate rtule for global {or free) reference: Whenever a
process 1is generated, an access variable whose name is
GLOBAL is declared. 1Its value is generally set to the name
of the generating process. It may be explicitly set if the
user vishes. Then, any reference to an access variable of

the form (<alpha> variable) will automatically reference:

Il

1 the current process' OWN variables i

2) the CWN variables of the process pointed to
by GIOBAL

3) if the variable still has not been found,

step (2) is repeated until either the variable
is found or the topmost process is reached
(in which case an error is reported)

Access veriables have characteristics both = of
static local and global (bound and free) variables such as
found in ALGOL, PIL/1, and LISP, and of dynamic state
variables in a process such as found in SIMULA or SIMSCRIPT.

Moreover, in GRAFL the <chains of access 1links may be

modified during execution.



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 73

¥}

.8 Operators

The GRAPL operators include all MLISP - and MLISP2
operators in addition to <alpha>, the access operator. For

complztaness, we present the following table:

Abbreviaticn Function
* TIMES
/ QUOTIENT
+ PLUS {ok as a prefix)
- CIFFERFENCE (MINUS if a prefix)
<up Arrow> PRELIST (a generalized CAR)
<down arrow> SUFLIST (a generalized CDR)
D APPEND
= EQUAL
<not equal sign> NEQUAL
<less/equal sign> LEQUAL
<great/2qual sign> GECUAL
<ersilen> MEMBER
& AND
<invartel V> AND
{ OR
v OR
- NOT
<ilpha> ACCESS (as a prefix only)

Parentheses mav be us2d to force the order of
evaluation. In addition, all binary LISP functions (such as

CAR, CDR, etc.) may he used as infix operators.

A precedence system is used in parsing expressions;
the reader is referred to the MLISP marual <Sm 70> for a

fuller discussion.

The access operator, <alpha>, was discussed in the

previous section.



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 74

5.9 " Sequential control

Six segquential control expressions exist in GRAPL:

G0, IF, FOR, WHILE, UNTIL, and CASE.
5.9.1 GO—-axpressions

A G0-expression forces an unconditional transfer of
control. A GO-expression is the word GO followed by an
expression which must evaluate to an atom. This atom must
be a label on one of the expressions within the current
procedure. Global lables (such as are possible ih ALGOL and

P1L/1) are not allowed.

GO LABL;

GO IF A=B THEN 11 EISE 12;

5.9.2 IP-expressions

The IFP-axpression is the conditional expression in
GRAPL. Tt is formed by the word IF followed by an
expression, followed by the word THEN, followed by another
expression. Optionally, this sequence may be followed by
the wvord ELSE and another expression. One Or nore
ALSO-clauses consisting of sequences of the word ALSO and an

axpresion may fcllow the THEN-expression and/or the



A SYSTEM FOR LARSE STRUCTURE GRAPHICS PAGE 75

ZLSI-expression. 1he semantics of the IF-expression are the

sam2 as in MLISP.

TF A=B THEN C <= C#+1g

TF FINISHED THEN FINALFONCTION(RESULTS)
ELSE GO LOOP;

IF PRED THEN I <- I+1 ALSO L <- CDR L
FELST I <- 0 AISO 1 <= OLDL ALSO GO LOOP;

5.9.3 FOR-expressions

The FOR-a2xpression is one of the most powerful
expressions in GFRAPL (and MLISP). Rather than duplicating
t he exce]lent.descxiptinn found in the MLISP wmanual, we
present a list of the capabilities of this expression and
give some exatples. FOP-expressiorns allow one to:

1) Increment (decrement) through a numerical range
with arbitrary step size

2) Sequence through a list using the first, second,
third, ... element

3) Sequence through a list using the whole 1list,
the list minus th>? first element, minus the first and second
elements, etc.

4) Force the For-variables to be local to the
FOR-expression or use variables global to the FOR-expression

5) Ccntrol the manner in which the results of the
FOR-expressicn are accumulated

6) Terminate execution of the FOR-expression at any
time

7) Run any number of POR-variables in parallel
and/or nest FOR-exrressions.



A SYSIEM FOR LARGE STRUCTUGRE GRAPHICS PAGE 76

The following examples 1illustrate some possible
constructions and the results of their execution.

let L = '(A (B} Q)

TOR NEW I <= 7 TO 10 BY 2 DO PRINT TI;

prints 1
3
5
7
9
9

returns
uses a local I

FOR J <= 1 TO 999 DO PRINT <I> UNTIL J EQ 4;

prints (n

(2)

(3)

4)
returns (s)
lzaves J set to 4

FOR NEW K IN L £O PRINT Kj

prints A
(B)
Cc

returns Cc
uses a local K

FOR K CN L DO PRINT K;

prints (A (B) C)
((BYy ©)
{C)

returns (c)

leaves K SET to NIL
FOR NZW I IN L DO COLLECT PRINT <I>;

prints (1)

{(B))

(C)
returns (A (B) Q)
uses a local I

FOR J ON L DO COLLECT PRINT J;



A SYSTILM TOR LARGE STRUCTURE GRAPHICS PAGE 77

prints (A (BY C)

((B) C)

(C)
returns (A (BY C (B C O
l3aves J SET TO NIL

FOR I <- 1 T0 5 FOR J IN L DO PRINT <I,J>:

prints (v
(2 {(B))
(3 C)

returns {3 O

leaves I set to 3 and J set to C

Further examples may be found in the WMLISP manual.
5.9.4 WHILE-2xpressions and INTIL-expressions

These twc forms allow one to form iterative
expressions with arbitrary or no specific sequencing
control. The WHILE-expression is formed by the word WHILE,
followed by an expression, followed by the word DO or
COLLECT, followed by another expression. S50 long as the
first expr2ssion evaluates to a non-NIL valuwe, the seqond
axpression is repeatedly evaluated. The UNTIL-expression is
formed by tha2 word DO or COLLECT, followed by an expression,
followed by th: uord UNTIL, followed hy another expression.
Its execution is similar to that cof the WHILE-expression
except that th2 bodv of tha expression in guaranteed to be

evaluated once befor2 termination.

WHILE NEQUAL (A,B) DO A <= A+1;

WHILE CAR L = 'A DO
BEGIN



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 78

L <- CDR 1I:
I <~ I+1
END;

DO A <~ A+1 UNTIL A=B;

DO BEGIN
L <~ CDR L
I <= I+1
END

UNTIL NEQUAL(CAR L,'A);

5.9.5 CASE~expressions

The CASE-expression 1is similar to the CASE
statement of ALGOL. It is formed by the word CASE, folloved
by an expression, followed by the words OF BEGIN, followed
by a sequence of expressions, followed by a <closing END.
The value of the first expression must be an integer greater
than zero and nc larger than the number of_expressions
following the BEGIN. If the value of the expression 1is
outside these 1limits, an error occurs. If the value is N,
(and is within the 1limits) then the Nth expression is
avaluated and is the value of the CASE—expreséion.

CASE N OF
BEGIN

PRINTSTR "N IS ONE";
PRINTSTR "N IS TWO";

BEGIN
PRINTSTR N IS THREE"™;
TERPRI ()
END;
PRINTSTR "N IS FOUR"™
END:

5.10 Backtrack control



A SYSTEM FOR LARGE STRUCTURE GRAPHICS FAGE 79

Backtracking 1is accomplished through use of
MLISP2's SELECT function. The syntax of the SELECT function

is:

SELECT <value-€expression>
PROM <identifier> : <domain expression>
NEXT <successor-expression>
TNLFESS <tarminator-expression>
IN WHICH CASE <final-expression>

where, if the phrases are omitted, the defaults
are:

{value-cxpression>
<{successor-expression>
{terminator-exoression>
<final-expression>

CAR

CDR

NULL
FAILURR ()

nou

oo

A simole exampl: of the use c¢f the SELFCT function
is Floyd's CHCICE function:
EXPR CHOICE (N);

SELECT I FROM TI: 1 NEXT I+#1
ONLESS T GREATERP N;

5.11 Processes and process control
GFTAPT processes are named collections of state
variables amcng which are EXPR (the furctionil body), PC

{the program counter), and GLOBAL (a pointer to the

next-most glebal prccess).

5.11.1 The GRAPL queues: CUEUE and PQUEREUW



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 80

TEFAPYT hag +wn hniltein
LANS WY iy Al -~ “ - - e B

Y 19 s/ L

i

QUEUE contains the "active" process
of the gqueue), and several "passive"

the

-
[=%

ead of the gueune). A "pagsive"

on PQUEUE rather than on QUEUE. A

one whose PC is 'TERMINAT®D:; it will

after the scheduler has examined it.

5.11.2 Scheduler functions

A qu wu

nA DPOINEF IR
1501 SV UL e

(the process at the head
processes {(those not at

process is one which

(=
n

"terminated™ process is

be on neither queue

GRAPL includes three types of scheduler functions:

scheduler ex2cution functions, s

functions, and user queue control fu

There are four scheduler execut

INITSCHED (RUNP)

cheduler queue control

nctions.

ion functions:

Initializes the scheduler. If RUNP is NIL,
sets QUEOE and PQUEUE to NIL. If RUNP is

non-null, the schedule
INITSCHEDS (RUNP)
Initializes the schedu
and sets QURUE to 'SYS3
non-null, the schedule

SCHZDILER ()

The actual scheduler:
until QUEODFR becom=s en

SHALT ()

flalts the scheduler.

r is called.

ler, sets POUEUZ= to NIL
TENM. If RUNP 1is
r is then called.

Tuns processes on QURUE
ptye.

The scheduler may be

continued hy invoking SCHEDULFR directly.



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 81

There are six scheduler queue control functions:

SINITIATE (PROCESS,STATE)

Binds the state variables given in STATF, then
inserts PROCESS at the tail of QUEUE.

SINITIATEE (PROCESS,STATE)

As SINITIATE, but inserts PROCESS at the tail
af PCUEUE instead.

SACTIVATE (PROCESS)

Puts PROCESS at the head of QUEUF regardless of
whether it was suspended or passive.

SSUSPEND (EROCIESS)

Puts FROCESS at the tail of QUEUE if it was
on QUEUE.

SPASSIVATE(PFOCESS)

removes PFCCESS from OUEUE if it was there,
and puts it at the tail of DPQUEUE.

STERMTNATE (PROCFSS)
Removes PROCESS from QUEUE if it was there, and

;ats its PC to '"TPRUINATED. If it was
not found in (Q'IFUE, then PQUPHE is searched.

There are five user queue control functions:

UINIT (FROCESS)

dindes the PC of process FROCESS to *'SYS0 and
puts PROCESS at the +ail of QUEUE.

UTNTTP (PRCCTESS)

As UINIT, but ins=rts FROCESS at the tail
of PCUFRUE.

UACTIV (PRCCESS)

If process PROCFSS is in QUEUE or PQUEUE, it



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 82

makes PROCESS the next process to be run.
UPASSIV(PEOCESS)

Removes PROCESS from QUFUE if it was there,
and puts it at the tail of PQUEUE.

UT ER]M (PRCCESS)
Sets the PC of process PROCESS to *TERMINATED

and removes it from QUEUE if it was there, or
from PQUEUE if it was there.

5.11.3 Local, OWN, and global variatles

There are three types of variables a process nay
reference. LOCAL variables are those variabtles which have
no value upon process activation and whose values are
discarded upon prccess suspension. OWN variables are those
which reside within the "state™ of a process. The PC
(program counter) is one example of an OWN variable. GLOBAL
variables are those which reside within the state of some
other process. Access to GLOBAL variables 1is actually
unrestricted: any process's variables may be read or
written. Howéver, the usual case is only to reference those
variables in processes superior to one's own. This is done
via a link contained in the state variable "GLOBAL"™ (and by

use of the access cperator, <alphad).

Changas are made to LOCAL variables wusing the
normal EVAL access functions (SET, SETQ, and GET). Changes

are made to OWN variablas and GLOBAL variables through use



A SYSIZM FOR LARGE STRUCTURE GRAPHICS PAGYE 83

of the functions G6RBT and PUT. These functions are called
automatically when variables are referencsd in th-: following

manner:

OWN Variatles:

PROCESS.VARIABLE <~ VALUE®, or
VALUE <~ PROCESS.VARIABLF

GLOBAL Variakles:
(ACCESS VARIABLE) .VARIABLE <~ VALUE, or
VALUE <~ (ACCESS VARIABLE).VARIABLE
The svstem function ACCESS may be abbreviated by
the special symbol <alpha>, yielding:
{<alpha> VARTABLE) .VARIABLE <- VALUE, or
VALUE <~ {(<alpha> VARIABLE).VARIABLE
Access to arrays may be made in the following
mannerc: Assuming ARXRAY(BETA, ... ) is arn array, and BETA
is global to the current process,

EVAL <(ACCESS BETA) .BETA,I>, or
EVAL <{<alpha> BETA).BETA,I>

both nf which yield BETA (I).



A SYSTEM FOR2 LARGE STHKUCTUERE GRAPHICS PAGE 84

5.1T71.4 Process definition and instantiation

GRAPL allows one to define processes through use of
the CLA33 exrcression, which <corresponds to ‘the CLASS
statement of SIMULA but is not so restrictive. The syntax

of the CLASS exgression is:

CLASS5 (NAME,STATE,BODY,GLOBAL)

NAME = the name of the class

STATE = "the names of the process's OWN
variatles, or NL

BODY = the functional body, or NL

5LORBAL = +tha name of the process global

+o the current one, or NL

Final arguments whose valua2s are to be NL may
be omitted.

CLASSQ (NAME,STATS,BODY,GLOBAL)
CLASSC is similarly defined, but quotes all its
arqunnts.
Processes may be instantiated by use of the NEW

expression. Its syntax is:

NEW (INST-NAME,MAST-NAME,STATE)

INST-NAME = the name of the instance
MAST~-NAME = +the name of the master (class)
STATE = the initial values for the

instance's OWN variables, or NL

Instances may be made of other instances or of
classes.

Final arquments whose values are to be NL may
be oaitted.

NEWQ (INST-NAME,MAST-NAME,STATE)

NEWQ is similarly de=fined, but gquotes all its



A SYSTEM FOPR LARGE STRUCTURE GRAPHICS PAGE 85
arguments.
We give scme exanmples:

CLASS ('PATIENT, ' (NAMF AGE WEIGH™ HEIGHT),
' (BEGIN
the semantics for a patient
END)) :
CLASS ('CCMPLEXNUMBER,' (REALTART IMAGINARYPAFT));
NEW (NEWNAME,'PATIVNT,<'SMTTH,46,165,68>);

NFW (NL,'COMPLEXNIMBER,<5,3>);

The first exanmple establishes the class PATIENT and
declares that the four characteristcs of rname, age, weight,
and height are to te state variables. It then schematically

continues with the definition of how a patient is to behave.

The sacond example sets up a "data"™ class called
COMPLEXNUMBER, having two Ffparts: a real part and an

imaginary part.

The third example instantiates one patient. It
assumes that NYWNAME will vield the name for this particular
patient. It then also associates the pairs: (NAME SMITH),

(AGE 46), (WEIGHT 165), and (HEIGHT 68).

The last example instantiates one complex number of

value 5+3i.



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 86

5115 Process centrol functions

GRAPL provides tvo special process control
functions, 4YOLD and WHEN. HOLD is a special case of WHEN,
but it is especially useful for doing simulations as it |is

time-oriented. Their descriptions are:

HOLD (LAREL,AWAKE)
Ssuspends (passivates) the current process until.
tim= AWAKE (or later), then activates it with
PC set to LABEL.

WHEN (PREDICATE,ACTION,PREDICATE,ACTION, ... )
WHRN takes a series of predicates and actions.
When the assnciated predicate becomes true,
the action will be performed. There are no
particular restrictions on either the predicates
or actions. Note that WHEN will only perfornm
the action once; if it is desired to have an
action always performed when a particular
predicate is true, the action should issue
the appropriate WHEN.

WHENQ (PREDICATE,ACTION,PREDICATE,ACTION, ... )

WHRNQ is similarly defined but quotes all its
argumants.

The WHEN expression is a straightforwvard
application c¢f the concept of "semi-continuously evaluating

expression” due to Fisher <Fi 70>.

We give some examples:

HOLD ('LBL1,CURRENT+EVENTTIME) ;

WHEN (*CONDITION,' (BEGIN ... END));



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 87

WHEN (PRED1( ... } ACTICNI{ ... ),
PRED2( s+ )} ,ACTION2( 2aue ),

PREDK({ ««. ) ,ACTICEK( ... )):

The first example suspends the current process
until the amount of time EVENTTIME has passed; then it is

reactivated.

The seccnd example schematically illustrates a
simple use of WHEN. After the predicate CONDITION becoumes

true, the code in the DBRGIN~END block will be exacuted.

The last example schematically illustrates the use
of several predicates and actions. The PREDs are taken to
be various predicates and the ACTIONS ars arbitrary

expressions or function calls.
5.12 Exrressicns

An expression may be eithar a simple expression or

two or more simpl2 expressions separated hy infix operators.

A simple expression may bhe a hlock, Lambia
axpression, IF-expression, FOR-expression, WHILF-exnression,
UNTIL-expression, assignment expression, CASE-expression,
etc. The GRAPL svntax for expression and simple expression

is the sawme as is found in MLISP.



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 88

Blocks are formed by the word BEGIN, followed by

any number c¢f declarations, followed by any number of

expressions, followed by the word END.

BEGIR
NEW X,Y3:
NEW Z;
X <= CAR (Y <- READ());
Z <= SUBST ('A,X,Y):
PRINT <X,Y,2>

END;

5.13 Programs

A GRAPL program is an expression folloved by a
period. Usually the program is a sequence of expressions

enclosed in a block, but single expression programs are

allovwed.

PRINT "THIS IS AN EXTREMELY SHORT PROGRAM."

BEGIN
NEW I;
I <- '(THIS IS ANOTHER SHORT PROGRAM);
PRINT I

END.



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 89

5«14 The GRAPL evaluator

The GRAPL evaluator, EVAL, is similar in nmost

respects to the LISP function of the same name, but it

differs significantly in several important ways.

Table 5.1 -

GEAPL EVAL

Atoms only may have one value

Atoms may have a property
list of indefinite length,
with repeated indicators

Function call cccurs
wvherever a Lambda expression
is encountered

Has a consistent method for
the Lambda exprassion of an
atcm bound to sanme

Has a uniform method for
function definition and
argqument binding

Has a means for elevation to
lists

Incorporates backtrack control

Incorporates parallel and
coroutine cecntrol

The GRAPL evaluator

LISP EVAL

Atoms may have an arbitrary
number of values

Same

Function call can occur
only just after a left
parenthesis

No direct method for
obtaining such a valu=

is available

Has EXPR's, FEYPR's, etc.;
a ncn-uniform argument
binding mechanism

No such mechanism exists

Has only recursive control

No such mechanism exists



R SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 90

We present some examples of the evaluation of GRAPL

expressions.
The GRAPL Expression Yields the following

(SET 'B ' (LAMBDA ... )) binds B to (LAMBDA ... )
ie. gives to B the value
(LAMBDA ... )

(SET 'A 'B) gives A the value *B

(SET *'aA B) gives A the value of the
evaluation of
EVAL (LAMBDA ... )

(SET *A .B) ‘ gives A the value
{LAMBDA ... )

{(SET 'F ' {LaAMBDA (X 'Y) gives P the value

(LIST X Y))) {LAMBDA ... )

{(SET '2 F "aA "B *'C 'D) gives Z the value of F
applied to *A 'B *'C 'D
which is (A (B C D))

(SET 'Z {(® *A 'B 'C D)) gives Z the same value

{(SET *Z F *'(A B) *'C *D) gives Z the value
((da B) (C D))

(SET "Z F 'A *B 'C F 'D 'E 'F) gives Z the value

(A (B C (D (E F))))

(SET 'Z F 'A 'B 'C (F 'D 'E) 'F) gives Z the value
(A BC (D (E)) F))



A SYSTEM FOYK LARGE STRUCTURE GRAPHICS PAGE 91

5.15 The 3RAPL svystem command lanqguage

The GRAF1L system has facilities both for the
creation of new objects and for the «collection of old
objects into structures which we may then save as now

obijects.

The GRAPL system includes commands for the
construction of primitive entitias (bcdies), the combination
of thess primitives into mor2 complax forms (objects), and

the incorporation of these entities into a world model.

Commands fall naturally into several categories:

1) Control Commands - those d=aling with
general control
functions

2) Drawing Cormands - those dealing with
the actual drawing
process; the creation
and manipulation of
bodizs and objects

3) Attribute Commands - those dealing with
attributes given to
bodies and objects

4) Monitcr Commands - those dealing with
the monitoring
facilities

5) World Commands - those dealing with

the creation and
manipulation of world
rodels



A SYSTF¥ FOR LARGE STEUCTURE GRAPHICS PAGE 92

Tabl2 5.2 - Cormand language summary

CONTROL COMMANDS

Command Action
o - {(top level) Continue GRAPL systenm
G -  (top level) dcad start GRAPL system
C - (Clear screen, etc.
H - reset window to normal viewpoint
| - =set Mode to
D - Dilate
R - Rotate
S - _Scale
T - Translate
N abc - sets Name to tabc
WORLD PEN BODY abc (abc . #%)
p - set system Parameters
A - DAz Angular constant
N ~ FVN: auto-Number vertices
0 - ORM: oOrder of magnitude
Q - FQN: Query status
S - DS: Scale factor
T - DT: Translation constant
W - FQW: World query status
Q - QCuery system status
L - List catalog of bodies and obijects,
Q - Query system variables
W - query World variables
X - eXecute a LISP expression
Z - 2ap! Terminate run

¢ - reset name to PEN
<infinity> abc - compile obiject t*abc

ALTMODE - restart numeric input
* - escape =-- terminate with no action
<alpha> - output picture to XGP printer

DRAWING COMMANDS

Command Action
D - [elete commands :
E & & - Edge joining vertices # and #°'
P & &' &n - Face bounded by vertices %, #' and #"
0 # - Object %
V # - Vertex #
E - new vertex at pen; new Edge
I abc {x vy 2) - Instantiate object 'abc at (x y z)

J ¥ # - Join vertex # to #'; pen at vertex #



abc
abc

{(x v 2

- O < =3 U

LA ¥

— —

Command

abc
abc at

mon o>

abc at

Command

M
M nan
N expr
J nam

Command

W

abc
abc
abc
abc
abc

cnttHo

A SYSTEM

) -

FOR LARGE STRUCTURE GRAPHICS PAGE 93

Ioad object 'abkc for edit

faves current obiect unider name tabc
move pen To (X Y 2)

new Vertex at pen

r2nup; pen to (0 0 0); pendown
penup; pen to vertex #; pendown
rame for the last vertex created
rotate about the X, Y, 7Z axis by DA
translate on the X, Y, 72 axis by DT

ATTRIBUTE COMMANDS (side effect: perform a load)

tr -

abc attr val -

tr -
MONITOR
expr -

Action

show Attributes of object 'abc

Lelete Attribute attr from obiject 'abc
Give attr value val for object tabc
Retrieve attr's value, object 'abc

COMMANLS

Action

Monitor commands

Monitor expression using name 'nam

Notify (once) when expression expr is true
Unmonitor expression ‘'nam

WORLD CCMMANDS

(x y 2)

Action

World commands: all refer to current world
Delete object 'ahc in current visual nbhd
- Instantiate object tabc at (X Y 2)

toad world tabc and initialize

Ssave current world under name 'abc

Opdate object 'abc



A SYSTEM PFOR LARGE STRUCTURE GRAPHICS PAGE 94

CHAPTER 6 02:38:08 -08/04/75

6 Several Examples

In orier to demonstrate the power and flexibility
of the GRAPL system we present four examples. The first
example demonstrates power of GRAPL data structures. We
have created a world composed of a set of buildings. As ve
slowly decend intc the first structure by decreasing the
siza of the display neighborhood, more and more detail
becomes apparent until we reach the (current) limits of the
resolution of the systen. The ease of representation of
highly complex structures, control of the level of detail,
and the efficient access and display of large structures are
due largaly to the manner in which GRAPL stores information

about the real world.

The second example demonstrates the power of our.
parallel approach to the design of interactive systenms. We
have simulated a s®mall operating system and display
graphically various parameters of the model. The user may
examine the queues which arise, podify the  model's
parameters, completely change the structure of the model,
and display his results. Some of the systea's

characteristics are displayed using histogranms which



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 95

dynamically reflect the current status.

The third example demonstrates the addition of a
small package for the display of algebraic functions of the
form y = f(x). The graphing package generates a body which
contains rnot only the representation of the function, bhut
the coordinate axes as well. The form of the =quation,
scale, and varicus other parameters may be set by the user

interactively.

Dur fourth example is a oprojection of how GRAPL
might be wused by an architect and his client in the design
of a house. The GRAPL system in its current form could be
nsed in the d:sign; however, it most probahlv would he more
economrical for a few modifications (additions mostly) to ba
made first so as to "tailor" GRAPL to the requirements of

the architect ard his client.
6.1 Wwalking ttrough a building

As our first example, w2 present a demonstration of
"the power of control over the level of detail in the

presentation of pictures which vary over a wide range of

magnitudes.

In Figure 6.1.1, we se2 the gross description of a



A SYSTEM FOR LARGF STRUCTURE GRAPHICS PAGE 96

skyscraper modeled after the Transamerica Building in San
Francisco. We are about 1 km away from the building, at
about 250 meters elevation. The level of detail is set at

one.

Figure 6.1.2 shows us zooming in on the 30°%'th
storye. The visual neighborhood has been set so that only
the front faces of the building are retrieved. Detail

remains set at one.

Figur=s 6.1.3 and 6.1.4 show use =zooming still
closer. In PFiqure 6.1.5, we modify the level of detail to
two. Thus, the interior room closest to use now becomes
visible. Not all of the contents of the room are visible,
however, because the visual neighborhood currently extends

only just bevond the desk and chair.

Pigura 6.1.6 shows us Jjust inside the physical
houndaries of the room with all contents visible. We begin

to approach the desk in chair in Figure 6.1.7.

Getting closer still, Piqures 6.1.8 - 6.1.10 show

us concentrating our attention on the desk.

Figures 6.1.11 and 6.1.12 zoom in on the seacond

drawer on the left side of the desk. In Figura 6.1.13, wve



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 97

increase the level of detail again, and discover that the

second drawer has a cube within it.

Fiqure 6.1.14 shows us closer still, and in Figure
6.1.15 we discover a pyramid within the cube. The cube is

6cm on a side. The pyramid is 2cm on a side.

Figures 6.1.16 and 6.1.17 show us getting closer
still. At this point the visual neighborhood is a 10 cm
cube. Increasing the level of detail again, we see the word

"GRAPL® within the pyramid.

We have traveled over the range 1 Km - 10 cm, four
ordars of magnitude. It is important to realize that all of
the data would have been accessed and displayed if the level
of detail vere tc have been increased at any time. Due to
the physical size cf the objects involved, however, most of
the time the cube, its pyramid, and the word "GPAPL"™ would
have been disgplayed as a single point (although all of their

internal structure would have been there).



Figure 6.1.1 - Y kilometer away Page 98

NAKE 10 HODE TRARSLAIL
. HOR D NIL NiL. DT 0.7%0~1 M TERS
G P A oroR 3 SPLY 12 PR 17 DLGRLLS
. DS 2.0




Tigure 6.1.2 The 30'th story Page 99

HAaMl g RODL tEaNSLNIT

/] WO D WTL NIL DT A.LT 1 BETIPS
= ‘/[\ arpit 3 5rLi g2 D 12 DEGPELS
'/ . \ bS5 2.0




. Tipure 6.1.3

CRAPL

.

The 30'th story

RODE YEANGSE At
DI A.5LE-Y HEOMEPS

A/




Figure G.l.4 The 30'th story, still closer Page 101

. LLLINRT RODE 19aNst rot
4 N N g - N
'I I ‘U’) MO HIL N1t DT ASE-1 MRS
l _/[ = ornR ) SPLY 2 0n 172 DEGRELS
DS 2.a




Figure 6.1.5 Increasing the level of detail Page 102

M . ot 111 HOOE TRARSE N1
G ]R {]—\ }]l:) L HORLD WL L DY @.50 -1 nElies
A oens sPLY 17 DA 17 DGR FG
: D5 2.0

T




Figure 6.1.6 Just inside the building Page 103

Homt 1012 KODT TPNNGE AL

ps 7.0

ROPLD NIt Kil D1 .4l -1 My
oree 3 sPe1 2 On 17 DILEELY




TEARSEATE

HoDtL

1013
HORLD NIL
orpR 3

Nahi

D1 Q.50 -1 AHILRS
DO 12 DEGRELS

03 2.8

NiL

501 12

GRAPIL




Figure 6.1.8 A lateral view

Page 105

Karl Poom)

KOELD NIt NIt
oroR 3 St 12

HODE TEANSE 0
Bl 1.af-2 neirry
DN 12 HIGRLES
05 2.0

1

;

f

|

i

| - _

'i

| — — - [__:_1 |
| — — e - |
‘; - - _ ‘ ‘ i
} g L e ted —— — = -
| —

-

|\




Figure 6.1.9 The file, desk, and chair Page 106

1

NANE TAt4 HODL  YRANSE ALC
: HORLD NIL NIL DI O.YE-1 MRS
\ ©oRDR 3 SPLT 12 DA 12 OIGRILS
) . b5 7.0
Y




Figure 6.1.10 The desk and chuir alone Page 107

Nanl talh ROOL IPANSL AT
DT 0.9 -1 KiTees

GRAPL A

OB (A AN S N
DS 7.0




Figure O.1.1L Zooming in on the left Pape 100
Nt TG BOUDE 1RANSLUAL
/7 D [ [ERVIT NIl DY 0L Y MOIIRS
/ ; i orpe 1 SPE1 12 DA AT MGt
AL L — ‘
by 2.6




Figure 6.1.12

The three drawvers

Page 109

Wl INg? HODU  THVRGE L
NOPED KL N1l DL D.GE -y MRS
[HAVTLR] IR i 0N 17 DEGREE S
DS 2.0
—cl
[
sl
[
3
/?




Figure €.1.13  Increasing the level of detail Page 110

. Kot 1@ NODE TEANSE Al
i [' KO D KL KL D1 MBI -1 HITTERS
A bk 3 Sy 12 DN 172 DEGREES
05 7.9
-
o /
——
)
/Z
__7,5___.__. x
L]




Figure 6.1.1k

GRAPL

Closer still

Page 111

NanL IN1Y
HOPRLD NI

oror

3

LA
w7

BODE WANSLATE
BT 0.0 -7 marhks
LI FaR I RN RN

ps 2.0




Figure 6.1.15 The pyramid appears Page 112

Y

NANE TATH KODE  YEANSENTE

D‘[ HORLD NIL NIL DT 0.4 -1 Kl TEPS
il iR 3 SPLT 12 DA 12 DELEIES

DS 2.4




Figure 6.,1.16. Within the drawer

GRAPL

Page 113

RANE 1A2Y
HORLD NIt
oenR 3

NiL
SPLY 12

nOll IRANSLATE
DT a.50-1 nLILes
ON 17 DLGRELS
05 2.0

\ |

——
- ———




Figure 6.1.17

‘GRAPL

Closer again

Page 114

AL 1002
wort D NIL
nepe 3

N1t
sritl 12

noot  INnlLLAYY
DY 0.% -1 nilrs
DN 12 DEGRELS
bs 2.6

N
<




Figure 6.1.18

GRAPL

"GRAPL" appears within the pyramid Page

115

T NAKL TR23

HORLD WL
[1130) 1A }

HIL
SPLY 12

ROCE  TRANSE ALY
DY a.LL-1 HETLRS
DA 12 DLEREES
05 2.9




A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 116

6.2 A simple cperating system>

To demonstrate the use of the GRAPL system in a
more applicitions oriented environment we decided to model a
simple operating system. The CALIDOSCOPY Operating System
<gc 72> for tha CIC 6400 running at the University of
California at Berkeley was chosen as a basis for our model
both for its simplicity and because w2 are reasonably
familiar with its characteristics. The CALIDOSCOPE system
supports a multiprogramring environment consisting of at
most five execution tasks plus miscellaneous input/output

functions.
HaZo Hardware environment

Cal's CDC 6400 includes the standard ten peripheral
processors plus a main cpu. The system supports 65K of
central memory plus 133K extended core storage. Users have
access to at most three tape units, although several
additional units usually are on-line. Two IBM 1403 printers
ind a CDC 501-printer serve as the primary output devices.
Additionally, there are a card punch, operator's console,

and high-speed card reader.

The 6400 also supports a remote computer systen

(RCS), primarily designed for the attachment of small



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 117

computers driving driving card readers, line printers, and
other input/output devices; and a remote terminal systea
(RTS), used for raz2mote job entry and retrieval. No true

time-sharing system is implemented.

6.2.2 Software environament

The CALIDCSCOPE Operating System <UC 72> is a
nodification of the CDC Scope 3.0 system tailored for
Berkeley's particular requirements. The system is modular
and consists of several essentially independent parts, the
most important of which is HYDRA which handles input/output

tasks and spooling.

The scheduler selects tasks for execution using a
simple first in first out algorithm subject toc the following

restricticns. Users may give jobs one of five priorities:

Priority F - Express ~ Highest priority
Priority J - Job - Usual priority
Priority S - short job - Similar to J jobs
Priority L - Deferred - PRun after all J jobs
Priority 1 - Idle - PBun only if idle

Users must indicate the maxiwmum allowed running
time for their jobs as well as the maximum allowed number of
pages of output. The scheduler then subsorts the job queues

into the following classes:

Class 0 -~ 0 - 20 (octal) seconds CPU time



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 118

Class - 21 - 100
Class 101 - 400
Class 3 - 40V - ...

[ S Y
1

Print jobs fall into two classes, those under 25
pages and those over, with priority generally being given to

the shorter jchs.

Additional features of the system handle HYDRA RTS
(remote terminal systam, priority P) jobs, ensuring that
deferred jobs 4o nct persist in the system forever, and so

forth.
6.2.3 The GRAPL model

Because of the ready availability of data on the
operational characteristics of CALIDOSCOPE through use of
the QURUETEST program, it was decided to model the external
performance of CALIDOSCOPE rather than to construct a
totally accurate .model of its internal behavior. (After
all, CALIDOSCOPE models itself perfectly; our goal 1is not

duplication; rather, our goal is to demonstrate GRAPL.)

The mcdel is based upon the following:

The priority queues: E, J, D, I

The scheduling algorithm

Physical considerations such as core size, etc.
Nbserved input rates as a function of time

Output from the model consists of wmost of the



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 119

essential information reported by QUEUETBST including:

Number of jobs in each gqueue

Total number of jobs processed so far

Jobh tacklecgs in terms of CPU tinme

Average turnaround

Additional information regarding any portion of the
simulation is easily obtainable through use of GRAPL's

Monitor commands.
6.2. 4 Performance

Perfcrmance of the wmodel (called SCOPE within the
GRAPL system) has bteen more than satisfactory. A wide range
of systam characteristics may be observed including the
infinite deferral of Idle jobs when the system is heavily
loaded, a midday backlog of jobs ip all classes due to the
high submissicn rate, excellent turnaround during the late

evening and early morning hours, etc.
6.3 A simple graphing systenm

We'implenented a system for graphing functions of
the form vy = f(x). As is mentioned in Chapter 7, the code
for this system fits easily inside less than a page.  To
extend the system tn two dimensions, add automatic scaling,
change the form cf plot to bar graphs, and other such

extensions and modifications would be the work of an



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 120

afternoon.

In sach Figure, the x=-axis ranges from ~40 to +40;
the y-axis has the same range, but has been scaled by an
arbitrary amount so as to fit the entire graph within the

visual frama.

Figure 6.3.1 shows the graph of a typical cubic

aquation, y = (x+30) {x-6) {x-30).

In Figure 6.3.2, we show the graph of one of the
arrival functions used in the operating systew simulation of
section 6.2: y = (abs(x) + ab) /(x*x + b*b), with a=15, and

b=5.

Figure 6.3.3 shows another arrival function, y = (x

mod 24)*(x mod 24 + a ~ 12), with a=24.

In Pigure 6.3.4, we show a typical symmetric

guartic equation, y = (x+35) (x+5) (x-5) (x-35).



Figure 6.3.1 y'= (x+30)(x-6)(x-30)

LOL I A

GRAPL

Mm Wlm Jm

o aw

<




~ GRAPL

- llHHlllll'H[H”H“HHH“

mwnmm |

~




Figﬁre 6.343 y = (x mod 24)(x mod 24 +a - 12) Page 123

i LG LU AN g HODE IRANGI AT
WOPLD HIL L1k 0T @.60-1 Ki Iy
G }R A P ]L‘ oroi 3 SPLY 12 |10 P TN SH A A
0% 7.0

o ,...l..m.mnm!{”H | IHHMnm.l.“...,,.... .........

‘\




Figure L3

GREAP

2.0

NS

(x+35) (x+5) (22=5) (x~35)

e oy
> e 1o

|

nll”

I {ll

|

l”

2

R

|

<




A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 125

6.4 Building a house

In this section we present an example of bhow an
architect npight vvse a system such as ours to construct a
house. We illustrate both his interactions with the systenm

and the system's responses to these interactions.

The GRAPL system as currently implemented could be
used to design a housé. Most of the commands described
below already exist. However, to be easily usable by the
untrained architect a redesign of the command language (such

as is mentioned in Chapter 8) should be done.
6.4.1 Overview of the architectural design process

Architectural design usually proceeds in several
phases some of which are dependent upon the results of
previous phases and some of which are not. In general, we
may break down the design process into three major steps:
planning, preliminary design, and final design; although the
actual distinctions among these are usually rather loose.
In some firms this distinction may be made by observing in
vhich department the design currently resides. In otﬁers,
and especially in the case of designing a house, the

distinction will be even more difficult to make.



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 126

The planning phase involves the generation of a
stateament of requiremants. This statement should include
most of the im?ortant requirements the structure must meet.
In particular, this statement would include the number of
rooms, general partitioning of space, access from one part
of the structure to another, access to the street, and so
forth. To this statement is added the building code
requirements for the particular site and type of structure.
A ﬁev docunment is generated, sometimes called the
"architectural program," which contains the specifications
of all spaces and their corresponding functions, utilities,

square footage, mechanical systems, and so forth.

The preliminary design phase begins at this point.
Decisions must be made as to the general design philosophy:
Should the building.be oren or closed? How important |is
height? Is the structure to be essentially a shell housing
its occupants, or is it to be a showplace? Hov important is
and what are the limitations of cost? Following this, the
general location of spaces and their functions are made.
This yields the building shell. A "schematic" is generated
which tells how the building works; and the preliminary
specification of the structural, mechanical, electrical,

atility, and coammunication systeas is made.

At this point final design begins. In this phase



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 127

the preliminary design is further resolved until it is
realized in its final form as blueprints to be used in

construction.

In any architectural design project the architect
wvill be <concerned with the so-called "Object Systems of

Design."® These are:

Site
Earthvork
Grading
Compacting
Faving
Landscaping
Crientation
Structures
Foundations
Footings
Superstructure
Enclosures
Floors
Walls
Ceilings
Roofs
Space-Use :
Roomrs
Wings
Suites
Storys
Complexes
Porches
Balconies
Fireplaces
Patios
Lanais
Garages
Mechanical
Heat ing
Ventilation
Air Conditioning
Flumbing
Electrical
Power
Lighting
Communications



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 128

Telephone, telegraph, etc.

Interconm

Couputer

Radio, television
Appurtenances

Furniture

Fixtures

Equipment

In addition, the architect will consider the

fcllowing "Attribute Systems":

Shape
Area
Volume
Weight
Cost
Initial
Maintenance
Building useful life
Mataerials
Visual
Color
Reflectance
Light (intensity, distribution)
Texture (visual)
Acoustics
Sound transmission
Sound diminution
Reverberation time
Reinforcement
Therral
Heat transmission
Expansion-contraction
5afety
Fire resistance
Falloat radiation protection
Tactile
Texture
Vibration
Rigidity
Miscellaneocus
Use flexitility
Aesthetics
Ecology
Social aspects

As an example of the types of analyses the



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 129

architect may | require, ve list here some of the
considerations he may encoun ter in determnining the
structural design of the building. In each case, a

corresponding software package could be invoked:

Calculaticn
Input data General tables
Tension Compression Torsion
Shear Deformation Displacement
Bending Buckling Stability
Mohility Collapse etc.

Members
Beamns Colusns Struts
Connectors #alls Footings
Complex structures etc.

Structures
Trusses Frames Shells
Tension Composite

structures structures

etc.

Materials
Concrete Wood Plastic
Steel Reinforced resins
Structural foams Brick
Aluminun Rock etc.

The architect also will have at his disposal a wvide
variety of standard forms. These are currently found in

various catalogs, such as:

The Architect's and Builder's Handbook
Architectural Specifications
Architectural Standards, etc.

These catalogs include not cnly the specifications

of standard building materials but also various kinds of

furnishings, fixtures, office equipsment, etc.



6.4.2

A SYSTEM FOR LARGE STRUCTURE GRAPHICS

Specifics for design of a house

PAGE 130

An architect might make himself the following 1list

(program) to guide him in the construction of a house:

Thumknail sketches
Preliminary drawings
Structure

Site, landscaping, foliage
Foundation
Superstructure
Outside walls

Roofs

Windows, skylights
Partitions

Wall sections

Doors, stairs, stairwells, etc.

Room plans
Attic
Bathroons
Halls
Bedrooms
Work rooms
Den
Dining roonm
Libkrary
Living room
Closets
Ritchen
Garage

- etc.

Plumking

Electrical

Gas

Heating & ventilation

Comaunications (interconr)

Mechanical (dumb waiters, etc.)

Details

Windows, skylights

Ccornice
Stairs
Fireplace
Wall section
Doors
Interior decorating
Furnishings



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 131

Before any design can begin, the architect should
have a 1list of requirements for the structure. This list

might include:

Approximate cost
Style
Numker of rooms of specific types
Lighting
Special requirements for adjacency of rooms
Particular requirements of the
prospective tenants
etc.

We will assume that our list of requirements is:

Cost $ 20,000 - $ 25,000
Style California modarn
ROORS tiving room, dining alcove,
bathroonm, kitchen, bedroonm
Square~footage 1500
Special req's None
6.4.3 The architect's actions

We now suggest the steps an architect might take in
the design of a house to meet the above requirements. It
probably will be helpful to refer to the fdllowing section
(Section 6.4.4) as it explains point-by-point the systenm's

responses to the architect's actions.

(1) Log into the GRAPL systen.

(2) We identify ourselves to the system, specify
our client's pame and the project's name.

(3) We request sketching mode, so we mav deal with
the CRT as if it vere a highly sophisticated type of paper.

(4) We begin to create a thumbnail sketch of the
floor plan. Ve are assuming that this will be a
single~floor dwelling.



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 132

(5) We sketch in walls, doorways, entrances, and
label the various enclosures. (eq. "BR,"™ "LR," "BA," etc.)
We insert closets and cabinets, etc.

{6) Not satisfied with this first sketch, we
indicate to th2 system that we wish toc move the hedroom and
its neighbhorirg bathroom to a different place in the sketch.

(7Y This is a more pleasing configuration; so we
give it a rame: PLAN1, and then erase our drawving.

{(8) This sequence is repeated several times; we try
several variations sometimes using the current sketch,
sometimes cr2ating naw ones.

{9) W= ask that each of our floor plans be
displayed on different parts of the screen so that we may
compars them simultaneouslv. At this point we decide that
PLAN3 is inferior to the others, as is PLANS5, so we delete
them. We present the remaining floor plans to our client
and come to an agreement that a slight modification of PLANY
will best suit his needs.

(10) We now give the name FLOORPLANSKETCH to PLANU
50 that we «can identify it more easily. Incidently, each
time we <cr=ate an obij2ct or access one, the systen
automatically retains the date of creation, the creator, and
the last timas it was referred to.

{(11) de begin to firm up the sketch. We indicate
vhich 1lines to =traighten, possibly also indicating that
this one is a standard interior wall of type "SIW3u4" and
that one 1is an exterior wall which will be finished with
redwood siding, etc.

{12) We ask for the square-footage of the bedroon,
and  th2 system responds that we have yet to give sufficient
specifications as to the 1lengths of the valls, So
rectifying our mistake, we begin to give dimensions where
required. As we do so, the picture on the CRT changes to
reflect the proper sizes. Now we ask for the area of the
bedroom; think better of it, and ask for the square-footage
in all the rocns.

(13) At this point we should probably confer with
our client to be certain that the current floor plan still
reflects his wishes and that the sizes of the various rooms
are ad2quata. He indicates that the living room should be
somevwhat longer, perhaps by 5 feet, and that the bedroonm
should alsoc be enlarged slightly. We remind hie that this
will increase the cost of his house as well as its size.



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 133

{14) We therefore 1lengthen the 1living room by
asking the system to move the wall 5 feet and to move the
bedroor walls around slightly as well.

(15) This now is a firm floor plan and for easy
reference we give it the name FLOORPLAN.

(16) We now ask the system to rotate the floor plan
so that we can see it in perspective.

(17) Now we ask the system to extend all of the
walls 9 feet vertically.

(18) Everyplace that we had specified a window on
the floor plan is now a pair of "tic marks" in the walls.
In each case, we novw specify a window opening, perhaps
giving additional details such as sliding, louvered, etc.

(19) We go on to specify each of the doors in the
house and each of the passagevways.

(20 At this point it may be advantageous to
examine ¢the house in more detail. For instance, ve may
rotate it to see what it looks like from each side, obtain
perspective vievs, and "walk" through the house, getting an
idea of what each of the rooms will look like.

(21) Now we add a roof; the client has decided upon
a crushed rock and tar paper roof, flat, with a moderate
amount of overhang on the southern exposure to provide shade
in the sunmmer.

(22) We are now ready to begin specifying the
structural aspects of the house: the exact type of
structure for each wall, the ceiling, the 71roof, etc. He
must occasionally move studs or other supporting members
slightly in order to ensure structural integrity. Fron
axperience we know that there will be no undue loading on
any part of the house, but we ask that the structural
analysis routine be run to verify this.

(23) So long as we are running analysis routines,
we may wish to ccmpute the cost of the dwelling on a cubic
foot basis, the cost of the structural wvwood used, and so
forth. This will help to give us a feeling of how close we
will be to the specified dollar limit.

(24) We next specify the foundation and footings, a
poured concrete slab; and we may also specify the driveway,
sidewalks, curbing, and proximity to the street.



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 134

(25) We are now ready to install the major plumbing
systems. The water main on the street is at a given
location. We indicate a main running to the house, decide
where the water heater will be (in a closet in the kitchen),
and route the main there. We also give the sewage pipe
routing informaticn.

(26) YNext we indicate where the plumbing should go
to service the kitchen and bathroon. We may also make
modifications to meet certain building code requirements.

(27) We must also specifv where sinks, shower,
bathtub, lavatory, dishwasher, and vashing machine
facilities are to be placed.

(28) Having completed the plumbing systems, we now
begin to specify the electrical system. Power comes from
underground at a given location; we specify a conduit near
the plumbing lines running to the house.

(29) We next bring the power limnes up to a circuit
box, then run main lines to each of the roonms.

(30) We insert electrical outlets at convenient
places. Now we specify what kind of lighting fixtures will
be in each room and run pover lines to them.

{(31) We indicate where the refrigerator, the
electric range, and electric heating unit will be. We give
the wiring necassary for then.

{(32) At this point we may again wish to examine the
house from several points of view, perhaps wandering through
the various rooams.

(33) We continue the design, specifying the phons
line into the house and the extensions the client wishes in
the kitchen and bedroon.

(34) Next we indicate where the heating ducts will
be. The house will have a forced-air electric heater,
centrally controlled, with outlets in each room excepting
the kitchen. The control box will be in the living roon.
So we must specify some additional wiring for it.

(35) At this point we <could ask the system for
detailed blueprints which may be given directly to the
various <contractors and sub=-contractors for use in
construction.

{36) Althcugh our client will furnish +the house
himself, it is a small matter to insert beds, dressers,



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 135

couches, etc. in crder to show him how his house will
appear upon completion. Together, we now examine the
finished plans. Obtaining his final approval, comstruction
can begin.

6.U4.4 The system's responses

The architect may wish to include his 1list of
requirements in the system so that he may readily refer to
them as the design proceeds. He may do this by entering
them as a (text) file to which bhe might give the name

REQUIREMENTS.

(1) The lcg-in process will reinitialize the GEAPL
system to the version which the architect last used. The
architects's system is viewed as a continuing process which
is suspended whenever he 1logs out and is resumed when he
logs in.

(2) Identification of the rfroject!'s and client's
names serve tc establish a primary context for future
actions in ths system. The architect may change this
context at will. For instance, if he is doing several
designs at the same time.

(3) Rather than forcing the architect to learn the
system in its entirety, we construct several subsystems wvith
which he may learn to interact. One such subsysten is
#“sketch mode," in which he may deal with the CRT as if it
were essentially a piece of paper. This mode is somevhat
similar to the normal wode of interaction of SKETCHPAD, bhut
does not force all the automatic line straightening and line
connecting features =-- these are options the designer may
choose to use or nct as he prefers.

(4) This sketch will look as if it were made on
papar with a charcoal pencil.

(5) Each line he sketches is retained as an "analog
patch."” The architect may refer to each by giving it a name
or by pointing at it with the stylus, mouse, etc.
Enclosures are likewise given names at the option of the
architect for easy reference. Enclosures are represented by
trees in the data structure.



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 136

(6) Movement of an enclosure is reflacted by a
change in the tree structure which represents the current
state of the house.

(7) Naming the sketch corresponds to giving the
tree a nanme. It may already partially exist in secondary
storage, but the naming operation will most probably have as
a side effect the cutputing of the structure. Erasing the
drawing probably will force the outputing of same to
saecondary storage. If the structure does not already have
an external name, the system will ask for one. The name for
an unnamed object is CURRENT.

(8) Renaming is obvious. Creating a data structure
similar to another is a tree copy, followed by updates on
the new copy.

(9) At any time we may specify portions of the
screen as windows. In each window we may request objects to
be displayed. =~ This display does not affect the data
structure in any way. Each window is handled by another
instantiation of the "window demon." The contents of each
window may alsc be manipulated. If this manipulation
results in a change in the actual structure of the object,
then it will b2 reflected Aas a change in the object's
representation in the data structure.

(10) This multiple mnaming permits us to access
objects (drawings) by name, by date, by time of last use,
etc. In addition, we may always look at the current
dictionarvy of otjects 1in the system (selected by client,
architect, date, etc.) if we forgqet what we have already
stored away and what its name is.

(11) This straightening process is actually one of
redefinition. Fach analog patch is replaced by the data
structure reflectirg its new definition. The additional
informatiorn as to what kind of wall, cost, structure, and so
forth goes in as attributes of the structure.

(12) Asking for the floor area of the bedroon
corresponds to running an attribute system routine. These
mav be run at any time. If the current information in the
da+a structure is insufficient to calculate an exact ansver,
ths system will request that the missing information be
supplied.

13

(14) rhis requast to tha system is effected by
changing the length of the walls of the livingroom and



A SYSTEM POR LARGE STRUCTURE GRAPHICS PAGE 137

bedroom. The system vill automatically adjust the display
reflecting the new dimensions. An alternate manner in which
this may be done is by selecting the appropriate wall and
asking the system to move it following the stylus, mouse,
etc. The current dimensions of the vall are displavyed.

{15) We rename the data structure.

(16) Rotation as well as all other affine and
perspective transformations are handled as attribute system
routines which are supervised by the display demons. They
do not cause any change in the data structure.

(17 This important action changes our
tvo-dimensional gplan into a three-dimensional object. It
forces a redefinition of each wall, closet, opening, or
enclosure.

(18) Specifying the windows is a matter of
replacing the definitions of the appropriate walls by the
new data structure which has the selected window inserted in
it at the spacified position. The type of window, wall, and
so forth are simply attributes of each, respectively.

(19) Doors are special in that we may ask the
system to show the space swept. {This is not the usual mode
of display.) Passageways are reflected by the attribute
"access."

{20) Again, these operations are handled by the
display demons as attribute system routines. No data
structure changes are made.

(21) Addition of the roof inserts the appropriate
objects into the data structure, complete with attributes as
to type, size, and other pertinent data.

(22) This operation is essentially an elaboration
of the attributes already in the data structure. Specific
types, number nof studs, kind of wood, and so forth are all
inserted as attributes. Additionally, we may examine walls
now in much greater detail, seeing cross-sections if ve
wish.

(23) Here we are running attribute system routines.
If wve request a computation with which ¢the system is
unfamiliar, we may specify how to compute it and give it an
appropriate name. The nevw routine will henceforth be
available to the architect at all future sessions.

(24) These operations are elaborations of the data
structure and the addition of attributes.



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 138

{25) The addition of plumbing 1is similar to the
specification of the structural details of the building.
additional data structure is created, attributes added; now
the wall cross-sections will have plumbing shown as well as
structural members.

(26)

(27)

(28) The electrical system goes in similarly to the
plumbing.

(29)
{30) There are additional details in each roon.

{31) Additional d=tails within each roon are
additions to the data structures corresponding to same.

(32)
(33) The communication system goes in similarly.
(34) Heating and ventillation, similarly.

(35) Blueprints go out from the CRT on film or onto
a plotter. This is handled by the display demons.

(36) Additional modifications to the house may be
made at any time and new blueprints produced.



Tipur: 6.4.1  TFloorplan #1 - a simple house Page 139

’ NOME PLANY FOUE TRANGL ATE
) WORLD NWIL NIt DT 8.5C-1 KLYERS
G R A IPL ORDR 3 SPLY 12 - OA 12 DOGHLELS
' s z.¢ |




Iigure 6.4.2 Floorplan 2 : Tuge 140

KARED PLAN2 PODE IRANSLATE
WORLD NIL KiL 07 6.5E-1 fLIEwsS
G B /&l IP L . anbe 3 SPLY 12 DA 12 DEGREES
} . . .o DS 2.8




Figure 6.4.3

 GRAPL

Floorplan 33

Paje 141

KAKE PLAKI
LORED NIL NiL
ospR 3 SPLY 12

HODE TRARSLATC
BT 8.50-1 KEILPRS
DA 12 DLLRILS
05 2.8




TFigure G.bh.b Floorplan #% . Page 1k2

KAKT PLANA MODE TRANSLATE
| woeto WL KIL D1 B.5E-1 METERS
[; ]R A ]P L ORDR 3 SPLY 12 DA 12 DEGREES
] s z.0




Figure 6.4.5  Floorplan #5

GRAPL

Page 143

NAME PLANS
KORLD NIt NIL
OFDR 3 sPLY iz

KODE TRANSLATE
DY ©.5C-1 NFIERS
BR 12 DUGRILY

bs 2.0

\

e S




Figure 6.4.6

GRAPL

Floorplan #6

Page 1k

NAKE PLANG
HORLD HiL HIL
OFDR 3 SPLY 12

MODE TRANSLATE
DT 6.5E-1 MEICRS
DA 12 DEGREES

bs z.8




Figure 6.4.7  Floorplan #4 modified - . Page 145 |

NRARE PLANYY HODE YRANSLATE
X WORLD NIL NIt DY B.5E~-1 NLILRS
G RA ]PL . OPOR 3 SPLT 32 DR 1Z DEGREES
. . . 05 2.8




Figure 6.4.8°  Floorplan #4 in perspective Page 146

.

. NAKE PLANY2 HODE TRANSLATE
HORLD KIL KIL DT 8.5E~1 METERS
G ]RA ]PL OROR 3 - SPLY 12 DA 12 DEGREES
g e DS 2.8




Figure 6.4.9  Tloorplan #4 in perspective Page 147

Ty ) RAHE PLANA3 MODE TRANSLATE
MOPLD K1L RiL DT 8.5E-1 METLRS
ORDR 3 SPLY §2 O 12 DEGREES

0s 2.¢




Figure 6.h.10
“from the top

Tloorplan ;% with interior

148

KAKE PLNANY4

RORLD Wil NiL
J ORDR 3 SPLY 12

KODE TRANSLATE
DY @.SE-1 KCI1ERS
DA 17 DEGREES
05 2.8

I




Figure 6.4.11  Floorplan #4 with interior Page 14
in perspective

. KANE PLK45R nODE IRANSLRTE
WORLD KIL NIL 01 8.50-1 NEYCRS
G]RA P L . ’ DRDR 3 SPLY 12 ONn 12 DIGLRIES
DS z.8




A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 150

6.5 Some additional constructions

This section showus a small selection of

illustrations generated while testing the GRAPL system.

In Pigure 6.5.1 we see the side view of a compact
"GM-type"® automobile. Figure 6.5.2 shows the front view.
In FPigure 6.5.3 we have increased the depth so as to show
the entire automotile; and finally, ip Pigure 6.5.4, we show

the automobile in perspective.

We designed a contemporary building using the
Stanford University Artificial Intelligence Laboratory as a
model, as shown in Figure 6.5.5. In Figure 6.5.6 we brought
the building closer, so as to be able to check some details.
Then in Pigure 6.5.7 we rotated it into a perspective view;
~and in Figure 6.5.8 ve replicated the building six times and

created a "tract hcme" style environment.



Figure 6.5.1 Automobile side view Page 151

Rang Sing MODE  TRANSI AVE
’ HORLD NIL NIL DT 0.5E-1 KIYERS
[3 ]R A IP L ovbe 3 SPLT 12 DA 12 DLGHILS
: i 05 7.0




Tigure 6.5.2  Automobile front view Page 152

R NOME AUTOF HODE TRANSLATE
WORI D NI NIL DT 0.5 -1 HLNIRS
orDR 3 shLY 42 DA 12 DIGRIES

DS 2.0
4 AN

REEN




Figure 6.5.3 The entire automobile

GRAPL

Page 153

Kani auio
HOPLD NIL
oroe 3

NIt
SPLY 12

HOOE VARG ALY
D1 O.%L-1 MRS
DO 12 DLGPELS

0S 2.0




Figure 6.5.4 Automobile in perspective Page 15k

KeE auoR RODE IRANSLALE
’ KORLD NIL NIL DF Q.4 -1 M I(PS
G R A P L oroR 3 1 IR P DA 12 DLLIELS
. | DS 7.0




Figure 6.5.5 A contemporary building Page 155

NANC KODEN HODL TRANSLATE
NORLD NIL Kit 0T 6.50-1 METERS

G RA ]PL ORDR 3 SPLT 12 DA 12 DLGREES
, 05 2.8 ‘




1nj.£§1i1?&f 65 of} n(;

GRAPL

A bit closer

Page 156

NAFL MODPN

WORL D NIL
OFDR 3

NIL
SPLT 12

ROUC 1ENNSLATL

0T 0.68998u9999 METERS
DR 12 DEGREES

DS 2.8




Figux;e G.5.7 The building in perspective -~ Page 157

NANE MDDRNR . HODE TRANSLATE
: 1 woRLD NIL NIt DY 0.5€-1 METCRS
GBA PL oRGR 3 SPLT 52 DN §2 DEGREES
. : DS 2.8
.

..




Figure 6.5.8 The building in a "tract home" Page 158

setling
" ’ KANE KODRNZ MODE YRANSULATE
MORLD NIL NIL DT ©.89939993 METERS
ORDR 3 sPLY 12 DA 12 DEGREES
i . . ps 2.8




A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 159

CHAPTER 7 02:38:08 08/04/75

7 Systen Performance

¥e present a sunmary of GRAPL's observed
performance based on the examples of Chapter 6 and various
other experiments which we have performed. We begin by
discussing those aspects of the GRAPL system which are of
especial interest because of their efficiency. Then we

briefly summarize cther aspects of system performance.

7.1 GRAPL efficiencies

The efficiency of the GEAPL system is noteworthy in
three distinct (but related) areas:
1) Space: the system utilizes an efficient
representation for its data objects.

2) Time: the system includes algorithams for
accessing data efficiently.

3) Human: the system is efficient for the user --
it is easily learned, sim®ply maintained, and
quickly modified.

It is the combination of these factors which makes

GRAPL into such an extremely powerful and versatile systen.

7.1.1 Space efficiency



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 160

GRAPL's data structure is particularly efficieht
for representing objects of the physical world. Remembering
from Chapter 4, the dual data structure consists of a
heirarchy of objects plus a heirarchy of cubes (consisting

of 10 levels, with 64 subtcubes per cube).

The use of heirarchy to represent objects == the
use of masters and instances, templates and usages, etc. -
is ccmmon to most sophisticated graphics systems, and GRAPL
realizes the same savings by its use as do other systenas.
This saving is expcnential in that one trades an exponential
amount of storage for a corresponding amount of processing

time as the depth of the heirarchy increases.

In GRAPL, however, rather than fully paving this
exponential expense, only those cubes within the visual
neighborhood are actually brought intc core, and it is only
those visible obijects within these cubes which take up

BEeBOry space.

For example, let us consider the description of an
8-story building of approximately 500 square meters area and
20 meters height. The following cubes will be required in
order to describe the contents of the entire structure with

the resolution of a single room of ahout 4 cubic maters:



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 161

Cube Order No. Req'd

o010y -~ 1

0 (9) - 1

0 (8) - 1 (the whole building fits here)
o7 - 8 (16 meter cubes)

0(6) - 175 {4 meter cubes)

* To display 1 room will require 5/186 of the total
cube storage, or about 2.69 percent.

* The amount of cube storage is independent of the
complexity within the roos.

* Oonly that portion of the cube data structure
actually would be brought into core for processing.

* This saving is realized before the heirarchy of
objects within the displayed room is investigated.
The numaber of cubes required to represent any
structure is a function of 1), the gross size of the
structure; and 2), the resolution desired. The maximum
number of primary cubes required to represent a structure
which is no more than k meters on a side may be given by:

C = 11-n ] % min O(J) >= Xk
1

The O(m) cubes are the smallest ones which may

properly contain the given structure.

To gain the resolution of an r-meter cube, the C
cubes ahove are adequate. However, if one wishes to make
optimal use of memory, one should partition the O(m) cu bes

down to the r-meter size. This would require no more than



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 162

an additional R cubes, where R is given by:

- 3
R = - [ ks0() ] (vhere [x] = ceil (x))

The total number of cubes in the representation 1is
then no more than C + R, and to examine a single r~meter
substructure with full resolution would require only S cube
accesses, where ¢ = 11-r. The fraction of the total cube
structure actually brought into core would be at nmost

S/(C+R) .

Fach cube represents four words of menmory: three
for the base position vector, and one telling the order of

the cube.

Bodies and objects are represented in more or less
traditional ways, as described in Chapter 4. The number of

words required to describe a structure is given by:

BODY OBJECT
name 1 - name 1
enclosing box 6 enclosing bhox 6
position vector 16 positicn vector 16
V vertices 3%y datail flag 1
E edges 2*E list of L
F faces of D* [ objects

D edges



A SYSTEM FOR LABRGE STRUCTURE GRAPHICS PAGE 163

Bodies grown in size linearly in vertices and
edges, and quadraticly in faces. Objects are linear in

their complexity -- the number of sukobjects.
7.1.2 Time efficiency

GRAPL is especially efficient in processing its

data structure for a variety of reasonms.

Access to objects within the visual neighborhood is
pruned exponentially by the cube data structure, independent
of the complexity of the structures within the cubes. That
is, one realizes the same exponential saving in access time

as one does in memory space.

GRAPL has the ability to coampile both objects and
cubes, thus trading increased menory for decreased
processing time. 1The amount saved is proportional to the
complexity of the object being compiled. This saving also
is exponential, growing with the depth of the heirarchy.
Assume that we wish to display every room of the 8-story
building simultaneously (impossible due to hardware
restrictions). Then the system must access all 186 cubes.
Bouevef,

if we compile to 0(7) - only 11 cubes accessed
if we comgile to 0(8) - only 3 cubes accessed



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 164

if ve compile to 0(9) - only 2 cubes accessed

if we compile to O0(10) - only 1 cube accessed

Additionally, the system permits the user to
control the level of detail displayed. This is reflected in
the amount of data structure -- both cube and heirarchical
-- which actually is accessed. This means that independent
of structural complexity, if the visual neighborhood is of
siza N, access cutoff will occur at N/ (10**C), where C is
tha cutoff factor. Thus, if we vere displaying the entire
8-story building from the outside and N was slightly 1larger
than the 0(10) cube, with C=3, only 3 cubes would be
accessed. In general, as C apptoachés 1, savings increase

by 64**C cubes.
7.1.3 Human efficiency

Articulating the human efficiency 1is extremely
difficult in the abhsence of an actual demonstration.
Several factcrs should be considered: How easy is it to
learn to use the system? How easily may be the system bhe
changed -- thé command language, the command semantics? How
much effort must be expended ¢to implement a graphically
oriented project? How much for a non-graphically oriented
project? How general is the system? How flexible? How
"natural®? It should be clear that the answers to most if

not all of these questions really are subjective; they



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 165

cannot be measured objectively.

Any modification or extension to the GRAPL systenm
requires some understanding of the system's internal
organization. We will attempt to give an impression of the
| mragnitude of effort necessary to accomplish any significant
modification. Assuming that the functional <characteristics
of the modification have been determined, the following must

be done:

Decide upon the syntax to be used by the user to

specify the necessary commands. Implementation

consists of modifying only three lines of code.

Implement the semantics for the extension. This

will be the single major coding effort. Using

the GRAPL uniform naming conventions, demand

loading of all appropriate routines will occur

antomatically, as will garbage collection.

For example, let us consider the implementation of
a package for graphing rational functions of a'single
variable. #We must make decisions regarding placement of
axes, scaling, labeling, how to specify the function and its
domain, what to do about undefined values, and so forth.
Next we must decide how to invoke the package, and what
commands wve wvwill use to specify each of the above itens.
Several alternatives present themselves: the package may be
completely self-contained, using the GRAPL implementation
language suprort alone; the package may be partially

self~contained, using some of the higher-level GRAPL



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 166

functions; or the package might be implemented almost

totally using GRAPL high-level routines.

As an exercise, we implemented such a graphing
package using each of the three approaches (See Chapter 6).
In each case, the display package consisted of less than a
page of code, plus atout half a page of initializationm
routines. Moreover, arhitrary functions of a isingle
variable would be accepted, with no restrictions upon the
function's actual form: an arbitrary GRAPL routine was

acceptible; it just had to return numbers.

If one wished toc implement an animation package,
the procedure would be similar. Most probably the best
approach would be to implement it wusing as wmany of the
predefined high-level GRAPL support routines as possible,
plus the operating system simulation routines. The most
strenuous coding effort would be in specifying how one

wished the displayed objects to change over tiwme.

2 still more ambitious effort would be the
implementation of a circuit analysis package. Here most of
the coding would go into deciding what kinds of circuit

elements to include and how they are to bhe simulated.

7.2 Kernel systen



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 167

In this and the following section we present a

description of various aspects of the systen.

The kernel system requires slightlf over 55K words
of memory plus 50 disk blocks. MNost cosmonly, the systeam is
used in under 75K of core, depending upon the complexity of
the structures being described. True processing time is
extremely difficult to specify due to the nature of the
timesharing environament in which GRAPL is implemented.
Processing tima for most commands is on the order of 0.1
second. The display or compilation of large structures may
take times on the order of 5-10 seconds. Effective
processing time consists of these minimums plus the

timesharing systea load.
7.3 Operating system simulation

The operating systen simulation requires
approximately 1K of memory. When running with no competing
timesharing users a full day's simulation requires
approximately 40 seconds elapsed time. This varies, of
course, depending upon the simulation time interval between
events. The code occupies about three-fourth's the space of

a comparable simulation in a lanquage such as SIMULA.



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 168

CHAPTER 8 02:38:08 08,04,75

8 Conclusions and Suggestions for Further Study

In this chapter we present our conclusions based on
over two years' experience with the GRAPL system and suggest

areas for further study.
8.1 GRAPL's successes

The most notable GRAPL successes include the ease
with which the system may be modified, the dual data
structure representation, the parallel system design, and
the uniformity of implementation. GRAPL demonstrates a
uniform solution cf a set of problems in system design and

implementation.
8.1.1 Simultaneous computations

The design ©process more and more requires the
calculation of various quantities and the deducgion of
performance of a wide variety of interrelated objects
(through simulation, if no other means is available). GRAPL
provides an environment vhere these calculations,

simulations, deductions, and models all may be carried out



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 169

simultaneously with the design process. Moreover, in GRAPL
it is precisely this capability that yields such a

responsive, attractive systen.

8.1.2 Notification and "postaed" actions

Additionally, not only is it possible to calculate
and coampute in parallel with design, but it is possible to
request GRAPL to notify the user when an arbitrary condition
in the design process becomes true, and automatically to
take some specified action. For example, cost overruns
become obvious immediately, therefore; and corrective

actions may be made at the time the error is made.

8.1.3 Variations

Because it is possible to freeze GRAPL's state at
any time it is ©possible to attempt variations of design
approaches, do calculations on feasibility and the like, yet

return to the original plan if it is desired.
B.1.4 Basily modified command language
The command language is quickly and easily

modified. For most changes only a minimal acquaintance with

the GRAPL system 1is required. Extensions may be of any



A SISTEM FOR LABGE STRUCTURE GRAPHICS PAGE 170

nature whatsoever; and one has the advantage of a general

purpose algorithmic language at one's disposal with which to

implement then.
8.1.5 Efficient access into data structures

Although the hidden line problem has been solved
for various classes of structures, it is not necessary to
apply any restrictions to the types of objects displayed in
GRAPL, nor is it necessary to apply hidden line/surface
algorithms to the entire data structure in order to create a

more pleasing view.
8.1.6 Portability

The GRAPL system is completely portable. The basic
requirements for the implementation on any computer system
are the existence of a LISP interpreter or coampiler and a
direct view storage tube type display. If one vere
interested in wutilizing different display devices, plasma
panels for example, the modification of GRAPL to produce

truz display files is minor.
8.2 GRAPL's shortcomings

GRAPL has several shortcomings, as do most large



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 171

systenms. Since hindsight usually is so much better than
forsight,these deficiencies bave become more aand more
apparent with time, and now "haunt" us.

e

8.2.1 Respcnse time

The major shertcoming of the system is in its
extremely slcwv response time. This primarily is due to two
factors: One is the fact that the system is interpretive,
and the particular time-sharing environment in which it wvas
jimplemented. The other shortcoming is the file environment

of the time-sharing systen.

The response problem might be partially solved in
one of two ways. Compilation of the major GRAPL routines
would yield a factor of 5 to 10 in speed. Dedication of a
portion of the system to GRAPL, including locking the GRAPL
system into core to eliminate the necessity for svapping
could yield an additional factor of 5 to 10. Were one able
to implement the system with a dedicated machine with no
time-sharing overhead, the performance of GRAPL vbuld be

comparable to that of most current interactive systems.
8.2.2 System cosmand langquage

The command language was developed as the GRAPL



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 172

system took shape, and thus shows the influence of "growth."
For the most part, it is uniform, deals with constructs in a
copsistent manner, and is relatively natural. Howaver, the
addition of a ligﬁt-pen capability would greatly enhance the
ability to identify parts of objects and parts of
structures. The mcticn commands are adequate, hut should be
implemented with some form of Joy stick (or graphical

equivalent).

The command language is relatively "unforgiving" in
that if a comwmand is ill-formed in any way, the system will
comment to that effect and abort processing. What would be
more desirable is a more sympathetic and helpful facility --
one which attempted to aid the wuser in the correct

formulation of what he is trying to say.
8.3 Suggestions for further study

The process of research never quite ends; there
always is .another approach to be 1investigated, an
altarnative not taken earlier (or not possible earlier), or
new ideas to incorporate. In this section we present sone
possible avenues for further research which wve believe it

would be fruitful to pursue.

8.3.1 - A proposed sketching command language



A SYSTEM FOR LARGFE STRUCTURE GRAPHICS PAGE 173

We wish to accomodate the designer with Ffull
sketching capabilities. Essentially what we propose is to
simulate "ideal paper," but retain the information in a very
different form. The sketching operations are of course
device independent, but there is an explicit assumption that
one would usz some kind of "artistic" input hardware such as
a stylus, light pen, mouse, or Jjoy stick. Purthermore,
corresponding ¢to the operations of erasing, redrawing at a
different scale cr point of view, and so forth, are Sketch

Mode commands achieving the same results.

The Sketch Mode commands we propose initially are:

SKEICH - Track the input device and trail
’ a line

ERASE - Erase along the track with given
width

SURROUND - Enclose the designated lines and
treat them as a unit

COoPY - Copy the designated object to a new
position, orientation, and scale

MOVE - Move the designated object to a new
position, orientation, and scale

SCALE - lengthen or contract lines, scale up

or scale down objects

MOVE DESTRUCTIVE - Move the designated object to a
new position, orientation, scale
replacing what was previously there

EXPAND - Create a hole into which new objects
may be placed
SMOOTH IT = Smooth lines, make them straight,

arcs, or elipses, etc., connect near
vertices, force parallelism,
perpendicularity, angularity, and
so forth., Essentially this is a
map into the SKETCHPAD domain

RUBBER BANL - Rubker band line drawing



A SYSTEM FOR LARGE STRUCTURE GRAPHiCS PAGE 174

It should be noted that with these few commands we
already have a system which is reasénably sophisticated in
comparison to ordinary paper. Yet we have retained the
freeness of expression and the lack of constraint of usual

drafting systeas.

The manner in which we propose to store sietched
information is of some interest. The systenm uses obijects
which we call "analog patches." These are essentially small
matrices of grey-levels which represent the 1lines and
surfaces described. Obviously, the store would overflow
quickly if one attempted to create too large or complex a
structure. But this is precisely the ttadeoff between
generality ard flexibility versus program and data size.
One does not ccmmonly sketch the most detailed objects at
the same tim2 as one blocks in the ovefall size and shape of
a structure; so, we feel relatively secure in providing this
capability. Whenever the system finds that the display tinme
or, in general, the processing cost for much sketched
information becomes too'high, it should begin to smooth
things by itself and might ask the user to do so as well.
And of course, the user would always have the option of
converting his sketch into a more final form, greatly

reducing the processing cost.



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 175

8.3.2 Shadows, grey-scale, color, texture

The addition of shadows using one or more simulated

1ight sources might be very valuable for structural designs

==L -

vhere the affects of the sun play a major role in the
heating and cooling requirements of a building. Research is

currently being pursued in this direction both by the

.
University of Utah and

<
[
v
t

as Skidmore, Owens, and Merrill.

The uses of grey-scale and color have been
investigated in some detail, especially at the University of
Utah. Perhaps the most advanced digital color pictures have
been developed there. Incorporating the results of that

rese2arch might easily be done.

The display of texture 1is a current area of
research in gragphics.. It is a rather difficult problem and

not too much success has heen obtained to date.

8.3.3 Stareo, eiploded vievs, curves, and surfaces

The generation of stereo views for display on some
stereoscopic device is currently available in GRAPL. One
might wish to add ‘the user commands to facilitate this

display.



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 176

Exploded views are. especially useful in the
construction of aggregates of complex parts. The addition
of this capability would necessitate the modification of the
display and drawing routines. The theory behind exploded
view generation is well-known. This addition would present

little difficulty.

Addition of arbitrary curves and surfaces would
involve the creation of some additional data structures. A
careful series of extensions to GRAPL in this direction,
incorporating the most recent works of Coons, Forrest, and

Bezier, might be dcne.

8.3.4 Solution ty analogy

The solution of problems by analogy to already
known soluticns (cr problems) is one of the areas currently
being investigated by workers in Artificial 1Intelligence.
This certainly is a capability one would wish to have in an
interactive environment. The user then «could specify the
computation of his various requiresents and constraints by
either giving their explicit formulas (or programs) or by
referring to already known formulas (or programs) and
specifying how the new computations are similar or different

from the old.



A SYSTEM FOR LARGE STROCTURE GRAPHICS PAGE 177

8.3.5 various other partitioning algorithms

The current cube partitioning algorithm certainly
is not optiral. It was chosen primarily on the basis of
ease of implementation and the fact that it seemed to neet

our requirements at the tinme.

We would 1like to do a series of experiments
implementing partitioning algorithms based on:
1) A better measure of the complexity of the
structure of the cube

2) A dynamic complexity measure, rather than
2 static measure

3) 2n algorithm which vas related to the
cube's usage, rather than to its
structure, and a combination of both
vsage and structure

4) An algorithm based on the size of the
display neighborhood

Ba3.6 Other measures of an object's complexity

The co-piexity measure currently used in GRAPL |is
merely a count of the number of subobjects in the enclosing
cube at the first description level. Complexity in the real
world certainly is proportional to ghe structural complexity
of objects, but it would be interesting to investigate

measures based on cost, size, volume, ease of comstruction,



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 178

time for construction, and other objective and subjective

values.
8.3.7 Clipping and hidden line/surface removal

The addition of interactive clipping and hidden
line/surfacsa removal would be of special interest in
producing more pleasing displays, rather than including it

in the post-processor as is currently done.

0f course, the wmost desirable approach 1is to
purchace or build special purpose hardware for these tasks.
However, if one wished to implement these functions in the
display software, the most rewarding route probably would be
to implement special commands for display in clipping,
hidden line/surface mode. Alternatively, it would be
extremely easy to describe the new display algorithms, and
then load them into GRAPL at will. One can conceive of a
collection of display algorithms; GRAPL using the one
specified by the user. An excellent summary of current
software techniques for hidden surface removal may be found
in a recent Computer Surveys article by Sutherland, Sproull,

and Schumacker <SS 74>.



A SYSTEM FOR LARGE STRUCTURBRE GRAPHICS PAGE 179

CHAPTER 9 02:38:08 08/04/75

9 Bibliograthy

This bibliography primarily contains those works
actually cited in the text and those which bear most
directly on our research. A very comprehensive bibliography
on computer graphics (the fruit of a survey of the
literature made prior to and during this research) was

published in 1972 <Po 72ad.

An excellent text on interactive computer graphics
including a good bibliography has been published by Newman

and Sproull <NS 73>.

<Ab 71 Abrams, M.D. '
Data structures for computer graphics.
In <T¥W 71>, 268-286.

<AC 68> Ahuja, D.V., and Coomns, S.A.
Geometry for construction and display.
In <IB 68>, 188-205.

<Al 64> Alexander, C.
Notes on the synthesis of fora. :
Harvard University Press, Cambridge, Mass., (1964).

<Ap 66> Appel, A.
The visibility problea and machine rendering
of solids. '

IRM T. J. Watson Research Center, New York,
Rept. No. RC 1618, (May 1966) .

<Ap 67> Appel, A.
The notion of gquantitative invisibility and the



<Ap

<Ap

<AS

<Ba

<BM

<BB

<Be

<Bo

<Bo

<BK

68a>

68h>

72>

67>

68>

6u>

71>

69>

70>

70>

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 180

machine rendering of solids.
Proc ACM 22nd National Conf. 1967, Thompson
Book Co., Washington, D. C., 387-393,

Appel, A.

Some techniques for shading machine renderings of
solids.

Proc AFPIFS 1968 sSJCC, vol 32, 37-49.

Appel, A.
Modeling in three dimensions,
In <IB 68>, 310-321.

Rprel, A., and Stein, A.

A syster for the interactive design of polyhedra.
IBY T. J. Watson Research Center, New York,

Rept. No. RC 3804, (Apr 1972).

Ralzer, F.

Dataless programeing.

The RAND Corporation, Santa Monica, Calif.,
Memo RM~5290-ARPA, condensed versionm in
Proc AFIPS 1967 PJCC, vol 31, 535-544,

Baskin, H.B., and Morse, S.P.

A multilevel modeling structure for interactive
grarhics design.

In <IB 68>, 218-228.

Berkeley, E.C., and Bobrow, D.G., f{eds.)

The programming languaqge LISP: its operation and
applications.

Information International, Inc., Cambridge, Mass.,
(1964) .

Berry, D.M.
Introduction to Cregeno.
In <TW 71>, 171-190.

Bouknight, W.J.

An improved procedure for generation of half-tone
computer graphics presentations.

Coordinated Science laboratory, University of
Illinois, Urbana, Illinois, Tech. Rept. No. R-432,
(Sep 1969).

Bouknight, W.Jd.

A procedure for generation of three-dimensional
half-toned computer graphics presentations.
Ccmm ACM 13, 9 (Sep 1970), 527-536.

Bouknight, w.J., and Kelley, K.



{Ca

<Ch

<CS

<CL

<Co

<Co

<Co

<Co

<DN

<DHM

69>

69>

69>

69>

68a>

68b>

63>

67>

66>

70>

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 181

An algorithm for producing half-tone computer
graphics presentations with shadows and movable
light sources.

Proc AFIFS 1970 sdacc, vol 36, 1-10.

Carr, C.S.

Geometric modeling.

Computer Science Department, University of Utah,
Salt Lake City, Utah,

Tech. Rept. No. TR 4-13, (Jun 1969).

Cheathan, T.E., Jr.
Motivation for extemnsible languages.
In <CS 69>, 45-49.

Christencsen, C., and Shaw, C.J.
Proceedings of the extensible languages symposiunm.
SIGPLAN Notices 4, 8 (Aug 1969).

Cohen, DeJd., and Lee, T.M.P.
Fast drawing of curves for computer display.
Proc AFIPS 1969 SJCC, vol 34, (1969).

Contka, P.G.

A procedure for detecting intersections of three
dimensional objects.

J ACM 15, 3 (Jul 1968), 354-366, earlier version:
IBM Nevw York Scientific Center, New York, New York,
Rept. No. 39.020, (Jan 1967).

Comka, P.G.
A language for three-dimensional geometry.
In <IB 68>, 292-308.

Coons, S.A.

An outline of the requirements for a computer-aided
design systen.

Proc AFIPS 1963 SJcC, vol 22, (1963), 299-304.

Coons, S.A.

surfaces for computer aided design of space forss.
Project MAC, Massachusetts Institute of Technology,
Cambridge, Mass., Rept. Wo. MAC-TR-41, (Jun 1967).

pahl, 0.J., and Nygaard, K.
SIMULA -- an ALGOL-based simulation language.
Comm ACM 9, 9 (Sep 1969), 671-678.

pahl, 0.J., Myhrhaug, B., and Nygaard, K.
Common base language. (SIMOLA 67)
Norvegian Coaputing Center,

Publication No. S-22, (May 1970).



<De

<DV

<Ea

<Ea

<FN

<Fi

<Fo

<Fo

<Fr

{Fr

<GH

68>

66>

69>

71>

69>

70>

68>

70>

70>

71>

69>

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 182

Dennis, J.B.

Programming generality, parallelism, and computer
architecture.

Proc IFIF 1968 Congress, (1968), ci-c7.

Dennis, J.B., and van Horn, E.C.
Programming semantics for multiprogrammed
computations. .

Comam ACM 9, 3 (Mar 1966), 143-155.

Earley, J.

VERS -- an extensible language with an
implementation facility.

Computer Science Department, University of
California, Berkeley, Calif., (1969).

Farley, J.
Powvard an understanding of data structures.
Comm ACM 14, 10 (Oct 1971), 617-627.

Faiman, E.M., and Nievergelt, J., (eds.)
Pertinent concepts in computer graphics.
University of Illinois Press, (1969).

Fisher, L.A.

Control structures for programming languages.
Doctoral Dissertation, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, (May 1970).

Forrest, A.R.

curves and surfaces for computer aided design.
Cambridge University, England,

CAD Group Ph.D. Thesis, (Jul 1968).

Forrest, A.R.

Interpolation and approximation by Bezier
polynorials.

computer Aided Design Group, Cambridge University,
England, CAD Group Docusment 45, (Oct 1970).

Frankel, A.

¥hat is the design process?

In The Use of Computers in Engineering Design,
Furman, {(Ed.), English Universities Press, (1970).

Praser, Ak.G.
On the meaning of names in programming systeas.
Comm ACM 14, 6 {Jun 1971), u409-u416.

Galiaberty, R.and Montanari, U.
An algorithm for hidden line elimination.



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 183

Ccmm ACM 12, 4 (Apr 1969), 206-211.

<Ga 69> Garwick, J.V.
GPL, a general purpose language.
In <CS 69>, 6-8, an earlier version in
Ccam ACHM 11, 9 (Sep 1968), 634-638.

<Ge 71> George, J.E.
GEMS - A graphical experisental méta systen.
Computer Science Department, Stanford University,
Rept. No. STAN-CS-71-227, {(Aug 1971).

<Go 71> Gouraud, A.
Computer display of curved surfaces.
Computer Science Department, University of Utah,
Salt Lake City, Utah, )
Rept. No. UTEC-CSc-71-113, (Jun 1971).

<He 71> Hewitt, C. .
Description and theoretical analysis (using
schemata) of PLANNER: a language for proving
theocrems and manipulating models in a robot.
Doctoral Dissertation, Massachusetts Institute of
Technclogy, Cambridge, Mass., (Jan 1971).

<Hu 71> Huffman, D.A.
Impossible objects as nonserse sentences.
Machine Intelligence 6, (1971, 295-323.

<IM 69> Ichtiah, J.D., and Morse, S.P.
General concepts of the SIMULA 67 programming
language.
Companie Internationale pour 1l'Informatique,
(Dec 1969).

<IB 68> International Business Machines Corporation.
Interactive graphics in data processing.
IBM Systems Journal 7, 3 & 4 (1968).

<Ir 69> Irons, E.T.
The extension facilities of IMP.
In <CS 69>, 18-19.

<Jo 63> Johnson, T.E.
' SKETCHPAD III: a computer program for drawing in
three dimensions.
Proc AFIFS 1963 SJCC, vol 22, 347-353,

<Jo 69> Jorrand, P.

Scme aspects of BASEL, the base language for an
extensible lanquage facility.
In <CS 69>, 14-17,



<Ka

<Ka

<Ke

<ko

<Ku

<kKu

<Le

<{Lle

<Lo

<LR

<Lo

70>

69>

69>

67>

68a>

68h>

69a>

69b>

67a>

6u>

67b>

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 184

Kaneff, S., (ed.)

Picture language machines.

Proceedings of a conference held at the Australian
National University, Canberra,

on 24-28 February, 1969,

Academic Press, New York, New York, (1970).

Kay, A.C.

The reactive engine.

Doctoral Dissertation, Computer Science Department,
University of Utah, Salt Lake City, Utah, (1969).

Kelley, K.

A ccmputer graphics program for the generation of
half-tone images with shadows.

coordinated Science Llaboratory, University of
Illinois, Urktana, Illinois,

Tech. Rert. No. 444, (Nov 1969).

Koestler, A.
The act of creation.
Dell Puklishing Co., New York, New York, (1967).

Kubert, B.R.

A computer method for perspective representation of
curves and surfaces.

Aerospace Corp., San Bernadlno, calif., (Dec 1968).

Kulsrud, H.E.
A general-purpose graphic language.
Comm ACM 11, 4 (Apr 1968), 2u7-254.

Lee, T.M.P.

Threa-dimensional curves and surfaces for rapid
computer display.

Harvard University, Cambridge, Mass.,

Tech. Rept. No. ESD-TR-69-189, (Apr 1969).

Lea, T.M.P.
A class of surfaces for computer display.
Proc AFIES 1969 SJCC, vol 34, (1969).

Lombardi, L.A.
Incremental computation.
In Advances in Ccmputers, vol 8, (1967), 247-333.

Lcabardi, L.A., and Raphael, B.
LISF as the language for an incremental computer.
MIT Project MAC, Memo MAC-M-142, (Mar 1964).

Loutrel, P.



<Lo

<Ma

<Ma

<MS

<MW

<ni

<MA

67¢>

70>

72>

69>

70>

T

70>

68>

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 185

A solution to the hidden~line problem for computer-
drawn pclyhedra.

Electrical Engineering Department, New York
University, Nevw York, New York,

Tech. Rept. No. 39.020, (Jan 1967), and

Tech. Rept. No. #00-167, (Sep 1967).

Loutrel, P.

Determination of hidden edges in polyhedral figures:
convex case.

Laboratory for Electroscience Research, New York
University, New York, New York,

Tech. Rept. No. #00-145, (Sep 1966).

Loutrel, P.

A solution to the hidden-line problem for computer-
drawn polyhedra.

IBEE Transactions on Computers, C-19,

{Mar 1970), 205.

Mahl, R.

Visible surface algorithms for quadric patches.
IEEE Transactions on Computers, C-21, 1 (Jan 1972,
Farlier version: Computer Science Departnment,
University of Utah, Salt Lake City, Utah,

Rept. No. UTEC-CSc-70-111, (Dec 1970).

Matsushita, Y.A.

A solution to the hidden line problen.

Computer Science Department, University of Illinois,
Urbana, Illinois, Tech. Rept. No. 335, (Jun 1969).

McCallister, S., and Sutherland, I.E.

Final refort on the area Warnock hidden line
algoriths.

Fvans and Suterland Computer Corp., Salt Lake City,
Utah, Internal Document, (Feb 12 1970).

McGowan, C., and Wegner, P.

The equivalence of sequential and associative
structure models.

In <TW 71>, 191-216.

Mitchell, J.G.

The design and construction of flexible and
efficient interactive programming systems.
Doctoral Dissertation, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, (Jun 1970).

MAGI, Mathematical Applications Group, Inc.

3-D simulated graphics.
Damation, 14, 2 (Feb 1968), 69.



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 186

<Ne 70> Negroponte, N.
Tha architecture machine.
The MIT Press, Cambridge, Mass. (1970).

<Ne 68> Newnan, RK.M.
A system for interactive graphical programming.
Proc APIPS 1968 sSJCC, vol 32, 47-54.

<Ne 71> Newnan, k.M.
Display procedures.
Ccnm ACM 10, 14 (Oct 1971, 651-660.

<NS 73> Newman, W.M., and Sgroull, R.F.
Principles of Interactive Computer Graphics.
McGraw-Hill, (1973).

<Pa 68> Pankhurst, R.J.
GULP -- a compiler~compiler for verbal and graphic
langqguages.
Joint Computer Aided Design Project, University of
Cambridge, England, Rept. No. 68-27u4, (1968), also
Proc 23rd ACM National Conference, (1968), 405-421.

<Pe 69> Perlis, A.J.
Introduction to extensible languages.
In <CS 69>, 3-5.

<Po 71> Pollack, B.W.
An annotated bibliography on the construction
of compilers.
Computer Science Department, Stanford University,
Rept. No. STAN-CS5-71-249, (Dec 1971 .

<Po 72a> Pollack, B.¥W.
A bibliography on computer graphics.
Computer Science Department, Stanford University,
Rapt. No. STAN-CS-72-306, {(Aug 1972).

<Po 72b> Pollack, B.W.
Compiler Techniques.
Auverbach Publishers, Inc., {(1972).

<Po 73> Pollack, B.W.
Using the GRAEPL systen.
Computer Science Department, Stanford University,
(forthccming) .

<Pr 71> Prince, M.D.
Interactive graphics for computer aided design.
Addison~-wWesley Publishing Co., (1971).



<0D

<Re

<Ro

<Ro

<RF

<Ru

<Ru

<RW

<RD

<{S5a

12>

70>

63>

70>

67>

70>

71>

70>

12>

68>

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 187

Quam, L.B., and LCiffie, W.

Stanford LISP 1.€ manual.

Computer Science Department, Stanford University,
Rapt. No. SAILON 28.6, (1972).

Reynolds, J.C.

GEDANKEN -- a simple typeless language which permits
functional data structure and coroutines.

Comm ACM 13, 5 (May 1970), 308-319, and as

Argonne National Laboratory,

Tech. Rept. No. ANL-7621, (Sep 1969).

Roberts, l.G.

Machine perception of three-dimensional solids.
Lincoln laboratory, Massachusetts Institute of
Technology, Cambridge, Mass.,

Tech. Rept. No. 315, (May 1963), and as

Ph.D. Thesis, Massachusetts Institute of Technology,
Cambridge, Mass., (Feb 1963).

Romney, G.W.

Computer assisted assembly and rendering of solids.
Computer Science Departsent, University of Utah,
Salt Lake City, Utah, Tech. BRept.

No. TR 4-20, (1970).

Rovner, P.D., and Feldman, J.A.

The LEAP language and data structure.

Lincoln lLaboratory, Massachusetts Institute of
Technology, Cambridge, Mass., (Oct 1967).

Rulifson, J.F.

Preliminary specification of the QA4 language.
Artificial Intelligence Center, Stanford Research
Institute, Tech. Note 50, (Apr 1970).

Rulifson, J.F.

QA4 programming concepts. ,

Artificial Intelligence Center, Stanford Research
Institute, Tech. Note 60, {(Aug 1971).

Rulifson, J.F., Waldinger, R.J., and Derksen, J.A.
QA4 working paper.

Artificial Intelligence Center, Stanford Research
Institute, Tech. Note 42, (Oct 1970).

Raulifson, J.P., Derksen, J.A., and Waldinger, R.J.
OAl4: a procedural calculus for intuitive reasoning.
Artificial Intelligence Center, Stanford Research
Institute, Tech. Note 73, (Nov 1972).

Sandewall, E.J.



A SYSTEM FOR LARGE STRUCTUORE GRAPHICS PAGE 188

LISP A: A LISP~like system for incremental
computing.
Proc AFIFS 1968 SsJCC, vol 32, 375-384,

<3m 70> Smith, D.C.
MLISP.
Compnter Science Departsent, Stanford University,
Rept. No. SAILON 135, CS 179, (Oct 1970).

<SE 73> Smith, D.C., and Enea, H.J.
MLISE2.
Ccmputer Science Department, Stanford University,
Rept. No. STAN-73-CS-356, (May 1973), and as
Stanford Artificial Intelligence Laboratory
Ma2mo. No. AIM 195,

<S5t 67> Standish, T.A.
A data definition facility for programming
languagses.
Doctoral Dissertation, Carnegie-Mellon University,
Pittsburqh, Pennsylvania, (May 1967).

<St 69> Standish, T.A.
Some features of PPL, a polymorphic programming
language.
In <CS 69>, 20-26.

<S5t 66> Strachey, C.
Towards a formal semantics.
In Formal Language Description Languages,
North-Holland Publishing Co., Amsterdam, (1966).

<S1 72> Suseman, G.Jd.
_ Why conniving is better than planning.
Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Memo No. 255, (Feb 1972).

<Su 63> Sutherland, I.E.
SKETCHPAL: a man-~machine graphical coamunication
systenm.
Lincoln lLaboratory, Massachusetts Institute of
Technology, Cambridge, Mass.,
mech. Rept. No. 296, {Jan 1963), condensed version
in Proc AFIPS 1963 SJCC, vol 22, 329-346.

<SS 74> Sutherland, TI.E., Sgroull, R.F., and
Schumacker, R.A.
A Characterization of 10 Hidden-Surface Algorithas.
Comp Surveys 6, 1 (Mar 74).

<Te 66> Teitelman, W.
PILOT: a step tovard man-computer symbiosis.



<THW

<ucC

<VD

<Ha

<Wa

<¥Wa

<He

<¥s

<We

7

72>

71>

68>

69>

70>

70

70>

66>

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 189

Proja2ct MAC, Massachusetts Institute of Technology,
Cambridge, Mass.,
Tech. Rept. No. MAC~-TR=-32, (Sep 1966).

Tou, J.17., and Wegner, P., (eds.)

Proceedings of a symposium on data structures in
programming languages.

SIGPLAN Notices 6, 2 (Feb 1971).

University of California at Berkeley
CALIDOSCOPE Control Statements
University of California at Berkeley, (Nov 1972).

van Dam, A.

Data and storage structures for interactive
grafphics.

In <TW 71>, 237-267.

#¥arnock, J.E.

A hidden line algorithm for half-tone picture
representation.

Computer Science Department, University of Utah,
Salt Lake City, Utah, Tech. Rept.

No. 4~5, (May 1968).

Warnock, J.E.

A hidden surface algorithm for computer generated
halftone pictures.

Computer Science Departsent, University of Utah,
Salt Lake City, Utah, Tech. Rept.

No. 4-15, (Jun 1969).

fatkins, G.S.

A real-time visible surface algoritha.

Computer Science Department, University of Utakh,
Salt Lake City, Utah, .

Rept. No. UTEC=-CSc-70-101, (Jun 1970).

Wegner, F.
Data structure models for programming languages.
In <TR 71>, 1-54.

Wehrli, R., Smith, M.J., and Smith, E.F.

ARCAID: The ARChitect's computer graphics AID.
Computer Science Department, University of Utah,
Salt Lake City, Utah, _

Rept. No. UTEC-CSc-70-102, (Jun 1970).

Weliss, R.A.

BE VISICN, a package of IBM 7090 Fortran programs to
drav orthographic views of combinations of plane and
quadric surfaces.



<WT

<Wi

<Wi

<WR

<WR

71>

71>

70>

71>

67>

A S5YSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 190

Journal ACH 13, 2 (Apr 1966), 194-204.

Weston, E.E., and Taylor, S.M.
CYLINDERS: a relational data structure.
In <TR 71>, 398-416.

Wincgrad, T.

Procedures as a representation for data in a
computer program for understanding natural language.
Projact MAC, Massachusetts Institute of Technology,
Tech. Rept. No. MAC-TR-8H4, (Feb 1971).

Winston, P.H.

Learning structural descriptions from examples.
Project MAC, Massachusetts Institute of Technology,
Tech. Rept. No. MAC-TR~76, (Sep 1970).

Wulf, W.A., Russell, D.B., and Habermann, A.N.
BLISS: a language for systems programaming.
Comm ACM 14, 12 (Dec 1971, 780-790.

#ylie, C., Romney, G., Evans, D.C., and Erdahl, A.
Half-tone perspective drawings by coamputer.
Proc AFIES 1967 FJCC, vol 31, 49-58.



	slac-r-187a.pdf
	slac-r-187b.pdf
	slac-r-187c.pdf
	slac-r-187d.pdf
	slac-r-187e.pdf

