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ABSTRACT 

In this thesis we present the design for a system 

with the Fotential for solving .real-world large structure 

graphics prcblems, Such problems are continually 

encountered in industry. Although present-day techniques 

for drafting, architectural drawing, airfoil design, 

automobile and ship design, and so forth are to some extent 

automated, these are mainly areas which are approached with 

traditional and mechanical methods. 

This research: 1) demonstrates the practicality 

and power of using a parallel systems approach to graphical 

system design, 2) develops a dual data structure which is 

especially efficient in dealing with large structures, and 

3) unifies a variety of techniques currently available in 

several disciplines. 

Tha culmination of this research has been the 

implementation of the GPAPL system. Additionally, we have 

developed two languagc?s: the GRAPL implementation language 

in which the GRAPL system is actually implemented, and the 

GRAPL command language, which forms the user-system 

interface. 

GRAPL provides a system with vhich one may design a 

structure of major complexity. It is readily tailored to i i 
various user requirements while remaining efficient in its f 

real-time rn.3pons+2. And, GRAPL is capable of acceptj I E I 
"advice* on hcu it mtty improve its performance. 
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CriAPTER 1 02:38:08 08/04/75 

Which virtues of a computer-based graphics system 

are attractive tc an architect 31: an urban planner? why 

should a designer use such a system? Obviously, the savings 

made in the au+omation of the drafting process alone are 

inad+q!late rdasons for choosing a computer-based svstsm. 

Computer graphics has th.5 potential fcr offering designers 

t he following: a drawing medium better than paper -- more 

flexible, 0 f higher resolution, more easily edited; a 

display medium superior to paper -- dynamic perspective, 

three-dimsnsicnal rt?presentation, translation, rotation, 

scale, etc; an assistant who "understands" and t~remenhersm 

the class of problems under consideration; instant 

accsssibilitp, Permanent storage of notes and designs: the 

ability t0 perform design-related calculations 

simultaneously with the design process: the possibility of 

tryinq out several alternative designs at small additional 

cost; seeing hc>w t.hese look, their expense, length of ?ime 

for construction: acd much more. 

1.1 Objtzc tivos of this thesis 
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This thesis demonstrates the utility and pouer of 

two concepts: 1) a system design which is essentially 

parallel admitting recursion, backtracking, coroutines and 

parallel routines; and 2) a dual data structure especially 

suited for the design of extremely large structures -- these 

are structures so large that perhaps only 5% to 10% of the 

data can resida in core at any one time, 

In addition, this thesis provides the basis for a 

class of 'systems with the following characteristics: the 

systems are capable of handling large data structures, are 

interactive, are capable of dealing with incompletely 

specified problems, have easily modified syntax and 

semantics, ar3 easily and naturally extendible, and are 

portable. 

Research generally progresses in tuo directions: 

in the development of new techniques, and in the 

application, simplification, and unification of existing 

techniques, This thesis is primarily a study in the second 

direction. 

We viev graphics primarily as a problem in system 

design. Althsugh many advances recently have been made in 

this field, our research offers a clean synthesis of many of 

the techniques which have beon developed, 
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1.2 Automation of assign 

A distinction may be madt? between the terms "design 

automation" and "the automation of design.81 The former 

usually means the at.temFt t0 replace the designer by a 

computer systeia capable Of peEfOrUIing some sr1h.set of the 

usual design tasks. '*The automation of desiqn," on the 

othsr hand, is an attempt to bring to the designer the 

advantages cf ccaputer techniqubzs. Our goals lie in the 

latter domain. We are not trying to solve the problems of 

the professicnal desiqner or partially replace him: rather, 

W8 are offering him tools which may enhance his 

problem-solving ability. 

I.3 Thsz user interface 

The application of new techniques to a discipline 

is governed largely by how readily these techniques lend 

themselves to the specific problems which arise and by how 

readily these problems may be formulated within the scope of 

the new methods. It is for this reason that the user 

interface is Of greatest importance, If it is too 

difficult, rs:Iuires too much effort, demands too much time 

to use a new approach, traditional methods will continue to 

be used, ev+n thcugh they may be less powerful, less concise 
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or less +fit.h-2t.i.c. 

Iny computer design system which attempts to be 

‘1 SC? f U 1 t 0 t h f? df? S i gr. profession at large should meet most of 

the followiny criteria: 

1) Thr system should offar a merlin m significantly 

bt?ttclr than pper. It should he more flexible, natural and 

easier to use, an1 more efficient for the designer to use 

the COitlp~ltf2lI thar to use traditional drawing and drafting 

techniques. Ihe GPAPL svstem meets these criteria. 

2) Problems which are easy to solve should be 

stated simply. Commands to generate the usual kinds of 

drawings should be readily accessible. The GRAPL system 

meets this critericn. 

3) More complicated problems should grow 

corresponfling to their complexity. A complicated design 

might well tak.2 a significant amount of time to create, but 

it should in no event take longer or cost more to produce a 

complicated design with the computer system than by 

traditional methods. The GRAPL system meets this criterion. 

4) Th:2 basic concepts and primitives in the design 

system should be natural and appropriate to the design 
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process. An archi+ectural dasiqner shouk? not have to learn 

concepts which are not part of his profession, pather, the 

computer system designer should tailor his system t.0 the 

needs and requirements of the architect. To the extent of 

the commands we have implemented, the GRAPL system meets 

this criterion. 

5) The s yst "!u should be relatively easy to modify, 

not only by the system programmer but also by the user. HD 

should be able to define his own constructs and give their 

semantics; he shculd be able to create macros in order to 

abbreviate, he should be able to change the meanings of 

already defined constructs. The GFAPL system meets this 

criterion. 

5) The system should be sufficiently powerful so 

that problems of similar types may be solved essentially by 

analogy to already solved problems. The GRAPT, system does 

not meet this criterion. Very serious questions arise when 

one attempts to be precise about what one intuitively means 

by "solving hy analogy." ?he GRAPL system has the potential 

power and fl??xibility to implement analogy-solving systems 

at least as ccmplex as those already in existence (the 

high-school wcrd problem system of Pobrow, for example). We 

have not chosen tc pursue this avenue of research although 

we realize that it is especially important if we intend to 
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intorfac2 to thn ncn-computer professsional. 

7) The system should facilitate control of the 

degree of detail to be used at all levels. The user should 

be able to show all details, eliminate extraneous details 

from a picture, compute gross costs, compute precise or / 

approximate results, an.1 so forth. The decision as to the 

amount of dstail and precision to be used should rest with 

the user. The GRAEL system meets this criterion. 

R) The system should perform in real time. The 

GRAPL system only partially meets this criterion, primarily 

due to limitations inherent in the particular I 
hardware-software environment in which we have implemented 

it. Given a dedicated machine, GRAPL would meet this 

criterion. 

1.4 Graphics from a different point of view 

There are several ways in which our approach to 

graphics differs from the traditional. Perhaps of greatest 

importance is the fact that we view graphics as a system 

design problem. This means that we are not bound by any 

specific language, data structure, control structure, or 

even hardware. Rather, we allow the requirements of the 

graphical design process to impose themselves and we present 
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a system which reflects these requirements. In particular, 

these requirements are reflected in: 1) the overall system 

design, 2) the types of data structures, 3) the format in 

which knowledge is represented -- as program, and 4) the 

maintenance of proqrams i n interpreted rather than in 

compiled form. 

Many attempts in graphics primarily have been 

concerned with which primitives to include in the command 

language, which primitive data struct.ures to implement, and 

which primitives to include in the base lang !Iage. Such 

decisions are important, but these decisions need not have 

the major emphasis, Graphics is essentially a modnlinq 

problem -- we :;hculd he most concerned with which pcoperti':Ps 

form 3 (3aod model of the world for the purposes of computer 

graphics. It is iaportant to note that we were led t.0 the 

development cf our particular model by the renuirements of 

th? resl world (not, say, by the a priori decision that ring 

structures ;irIo tetter s u it e d fOK graphics than list 

structures). 

The traditional design of graphics systems assumes 

that a lar3e amcunt of numerical calculation is necessary 

t,oth to [:todllce the pictures reauired and t. 0 complete t hc? 

calcnlati.ons requested. AS a Ti?SUlt, most graphics systems 

have been implemented in either a computationallv oriented 
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algorithmic language (such as Fortran or PL/l) or in a 

machine language, Decause we view graphics as a modeling 

rather than as a computational problem, OUIY choice of 

I.anguage has been one which includes general simulation 

capabilities. Rather than attempting to modify a language 

such as SLMDLA or GPSS to include the general data structure 

facilities and control structures, which we find useful in 

graphics, ua havs elected to design and implement our oun 

language. A dascription of the GRAPL language may be found 

in Chapter 5, 

After rather exhaustive search we have found that 

few graphics systems have used many of the techn iqnes 

currently available in the field of artificial intelligence. 

The closest application has been the work of Terry Uinograd 

-- hut his uork is primarily in lingui sties; he used 

graphics solely as a way to observe his simulated computer 

arm. The use of modifiable strategies for display and 

computation, the use of heuristics for control of detail, 

the representation of knowledge in the form of programs are 

all new to graphics. These approaches represent a 

significant advance both in providing the kind of generality 

necessary for the design of usable graphics systems and in 

providing tha capatility for the imFlement.ation OF truly 

responsive systems. 
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A command language which may be fitted to a user's 

requirements is an attribute of any system which attempts to 

communicate with the non-computer specialist. Towards this 

end graphics systems have usually allowed the user to define 

macros in an effort to have a wore flexible and concise user 

interface. A few graphics systems have gone further -- they 

have allowed the system progransler to specify the command 

language at system generation time ard then run the system 

description through a pre-processing stage, We have gone 

still further -- the dzsiqn of the command language has been 

brought to the USeIT SO that it may best be designed to 

satisfy his particular needs. The system we present has all 

the necessary tools available for such an endeavor. 

Open-ended interpretive systems such as ours 

usually suffsr great run-time inefficiency. This is in part 

due to the inherent. overhead in interpretation and in part. 

due to our great system generality. We have been able to 

keep this in,?fficiency to a minimum through the use of 

selective an d incremental compilation. That is, those 

highly utilized portions of the system which art- inefficient 

may be ccmpile4 by the user (OK the systt-?m dosigner) to gain 

greater ex5cut.ion speed and more compact storaqe 

utilization. ;f at some time the user wishes to alter a 

compiled part of the system, he need only supply an updated 

interpretive version of it. Then at. his convenience he may 
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compile his new versi,on if he finds it satisfactory. 

Alternatiwely, he may try another version of his own or 

return to the original version. BY using selective and 

incremental compilation we retain the system's generality 

and open -mdednass without yielding to the inefficiencies of 

interpreted co3e. 
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C!IAP%EF 2 02:38:08 Of3/04/75 

Ptoblzms in Graphics 

Tn this chapter we discuss the problems which are 

c:ncountered in graphics and point cut that subset which we 

have attacked. He dt.scribe son-l2 of the kinds of 

capabilities required by a sophisticated user of a computer 

design system. All current systems incorporate som;? subset 

of t he capabilities we list here, but to our knowledge no 

system (inclodinq curs) currently incorporates all of them. 

2.1 Display and computation 

Two general requirements are placed on graphics 

systems, These are: they must provide for the calculations 

necessary to represent the structures being modeled -- 

structural analysis, population density, heating 

requirements, traffic flow, wbat have yo11; and they must 

allow for the efficient display of the objects being 

designed. Although thes2 two requirements are independent, 

they are linked at the data structure level. A set of data 

structures. must be availaklo which lends itself to both the 

requirements cf interactive display and to the mlculation 

of the many parameters involved in the simulation proper. 
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Two basic approaches are available: represent the 

araphics information with one data structure and the 

compuational information with ancther, providing a mapping 

betwesn %he twa; or, represent the information for both in a 

;i.ngl? d at .I :;tructore, including t.he appropriate selection 

flechanisms. Thn fcrmer approach leads to a proliferation of 

3ata srruct~ires and large amounts of duplicated information: 

the latter 3FFKOaCti dOe.5 not.. To obtain information from 

datct structurfzs cf the former approach does not usually 

involve traversing t he topo1oqy of the model, whereas 

obtaining information from data structures of the latter 

approxh IlSU3 lly does, This situation reflects one of the 

basic trade-offs between storage and speed. The greater 

flexibility of the single data structure approach has led to 

our adoption of it in GRAPL. 

2.2 Hidden surfaces, textures, colors, shadows 

'The Suppression of hidden lines and surfaces is one 

of the obvious requirements of usable graphics systems. A 

dssiqner must not be encumbered by the display of 

information which cannot be seen in the real world. On the 

other hand, it should be possible for him to request such 

information if he so desires. The current implementation Of 

GRAPL does not give the user the ability to remove hidden 
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lines an4 surfaces interactively, Howevc I:, the addition of 

this capabilitv as w+ll as the addition of textures, colors, 

shadows, etc., would be straightforward and i.E discussed in 

Chapter 8. 

Ir. many 3Fplications it is important to see the 

actual textures cf surfaces, how a wall siding appears in 

full sunlight, or in diffuse light, etc. The design process 

should proceed in full color if the designer so requests. 

Color displays are currently on the market and vi11 be 

relatively inexpensive in th~3 near future. Primarily 

hecause of cost, 3esiqn is done currently either in black on 

white or in white on blue. Computer graphics will make 

color design less expensive. 

In architectural design it is occasionally 

important to daterm ine the effect of shadows 011 the 

environman%. This is especially a consideration in 

designing buildings adjacent to ot.her s true turcs. The 

display of shadows and the calculation of their effects on 

the heating an4 ventilation requirements of a building is 

currently available. 

2.3 Visual effects 

During the design process one frequently needs to 
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view the object being designed from various angles and from 

several points of vieu. If the obiect is a building, this 

may mean vieuing it from fifty feet, or one hundred feet, or 

a quarter of a mile away, It may he advantageous to get a 

"bird's eye view" cf the building. Cne should be able to 

describe these vantage points in a simple manner, save their 

descriptions, and then s3e oners building from each vantage 

point at. will. Better yet, one should be ahle to view the 

building from several positions simultaneously. 

Also, one should have the ability to project the 

object onto any given plane. This uould allow the creation 

of the normal orthographic projections vhich some des.igners 

find useful. 

Stereoscopic views also are feasible. Various 

techniques exist fcr the creation and viewing of stereo 

information; these should he available to the designer if he 

wishes to use them. 

The generation of perspective views of objects 

should be the normal display mode. But one'should allow for 

the normal mode to be changed to elevation, one-, two-, and 

three-point parspective, in addition to any other vieus the 

designer may request. 
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In some applications the generation af exploded 

view pictures will be important. Techniques are currently 

available for their generation and this capability should be 

available to the desiqner. 

It may be very important at some time in the design 

process to be able to zoom in dynamically on the objects 

being designed. Alternatively, one may find it important to 

be able to visualize walking down the corridors of a modeled 

office buildinq, looking through a doorway into an office, 

looking out 3 window, traveling down a str.?et, an? so forth, 

Thlse capabilities should be possible, 

And, it may be helpful to an architect to be able 

to pass a section plane through his structure. He could 

then view an arbitrary cross-section of his buildinq, see 

the floors, halls, beams, conduits, and so forth, 

Th+ production of hardcopy output is a royuirement 

of any usable graphics sytem, This hardcopy mav be in the 

form of microfilm, plotter output, blueprint, +tc. GRAPL 

qives the user ccntrol over point of view, zoom, perspective 

and secticn tlane, We have not implemented stereoscopic 

vision or exploded views. Our current hardcopy output is 

obtained via 35mm photoqraphs or via a post-nrocessor to the 

Xerox Graphics Printer. All. t.he illustrations in this 
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document were produced on the XGP. 

2.4 Control of detail 

The contrcl of detail is one of the most important 

capabilities a design system can offer. The designer should 

be able to suppress unneccessary detail at a.11 levels, This 

means he should be able not only to suppress background, 

foreground or midground information and suppress the 

generation of subpictures, but also to suppress any objects 

sa%isfying criteria which he gives the system. For example, 

when designing a room, it may be irrelevant to the designer 

that the vail panelling has a rough texture or that the 

ceiling soundproofing has randomly sized and shaped holes. 

If the display of these features interferes with the design 

process, the designer should te able to eliminate that t YPe 

of display quickly and easily. 

Moreover, most often it will hs.the case that the 

designer will be monitoring the cost of a structure, its 

area, volume, cube foot cost, and other attributes. In most 

cases it will not te necessary to know the exact values for 

these calculations, a rough estimate will suffice, The 

designer shoul:I he able to specify that he needs a precise 

answer when he wishes one, hut otherwise not burden the 

system with detailed calculation (and incidently, saost 
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likely degrade the system response time), 

If the user needs to aake use of this kind of 

generality, h ~2 must SUPPlY the system with not only the 

selectional criteria involved, but. also the gross 

description cc approximation algorithms to be used in place 

of the exact calculation. The ability to control detail is 

one of the mcst important features which CRAPL includes, 

2.5 Context and neighborhoods 

Perhaps cne of the most distressing attributes of 

most design systems is the fact that at the beginning of 

aach session the designer must ask the question, “Where am I 

now?" Moreover, when designing sev+aral objects in parallel 

he may be fcrced to ask this question aqain and again with 

each change of object. One should be able to define a 

context and then return to it at will. A context must 

contain the totality of the information which represent? the 

current "state of the world." This information includes not 

only the cur rent objects being dnsiqned and the Doints of 

view, but also th+ ztates of all system variables at that 

time. 

A design system should provide for this easy and 

natural description of neighborhoods of discourse. A 



A SYSTEN FOR LARGE STRUCTURE GRAPHICS PAGE 18 

neighborhood is one kind of context, A neighborhood might 

be defined as the objects currently being displayed; in that 

case we speak of a display neighborhood. Or, a neighborhood 

may be defined as those objects in the model relating to 

heating, power, ventilation, etc.; in that case ve speak of 

a computational neighborhood. A neighborhood may be 

considered a logical grouping of information which may be 

referenced by name, say be displayed, computed with, stored, 

and retrieved, The efficient retrieval of various 

neighborhoods is one of the most difficult tasks facing the 

designer of a graphics system. 

Neighborhoods occur within both the GRAPL system 

and the GRAPL language. In the GRAPL systea we have 

implemented display and computational neighborhoods. In the 

GRAPL language we allow access variables which correspond to 

the kind of neighborhood called "state" or "context@* in 

process-oriented environments. 

2.6 Curves and surfaces 

Often designers are concerned with the creation of 

new shapes .and the ability to describe arbitrary curves and 

surfaces in a natural way. A good design system should 

facilitate the drawing of the standard engineering curves 

and surfaces as well as the freehand generation of forms and 
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their later least squares, polynomial, spline, or other fit. 

We have r.ot i.u~lenent?d the atlility to treat 2 arbitrary 

curves and surfaces: a dsscription of how it miqht. be added 

to the GP.A!?L systea using current techniques is presented in 

Chapter 8. 

2.7 Time-varying displays 

One important advantage a computer based design 

system map offer is the ability to generate time-varying 

displays. We include in this category computer animation 

and computer art, modeling of dynamic structures, monitoring 

the time-varying inputs and outputs of a model, and the 
I display of histograms, graphs, and wave-forms representing 

accounting or other information about the model, This 

capability has been one of the least exploited in the d?sign 

fil?ld, yet it offers, perhaps, the greatest potential, We 

have ri 0 t. imrlementad time-varying displays primarily as a 

result of the already slow response of our time-shared 

PDP-10 environment. 

2.R Attributes 

To be useful, a design system rust be more than 

merely a drawing or drafting tool, It must be able to 

create objects and then give these objects various 
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attributes such as cr)st, weight, delivery date, tensile 

strength, and so forth. It is in this manner that the 

designer may Fut into the data base the information 

necessary t.0 run the various application programs which 

cornput? total cost, beam loadings, power requirements, etc. 

GRAPL has complete q,znerality for the specification of 

attributes. 

2.9 Sketching 

3na important activity of 3 designer is making 

"thumbnail sketches," Sketches of various types, views, and 

complexities are generated throughout the design process. 

These sketches may lack most of the detail of engineering 

drawinqs, may be extremely rough or moderately neat, but 

they always allow the designer to plan, to try different 

ideas, to experiment with very small cost. A sketching 

capability is crucial to any good design system, We aust 

not force this! designer or archi%ect t. 0 be explicit or 

rigorous in hi,s expression- He must have the freedom of 

creativity, Therefore, our system gives him the means by 

which he may refice his ideas incrementally and slouly 

evolve his final Flan. 

2.10 Defaults and a sympathetic environment 
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Tnteractirq in a **sympathetic" environment is one 

of the more important capabilities of an interactive system. 

Tt is significant that little research has been ,lone in this 

area of humall factors and that computer systems have 

remained corri?sponilinqly hard to use by the novice or 

non-computer professional. One should he able to design a 

system according the user's specific requirements, establish 

default conditions which remain in effect, and define an 

environment suited to the requirements of the project at 

hand. The user should be able to qive advice to the system 

as to what things ax"\ important and unimportant, which 

conditions must be enforced rigidly, which (at least 

temporarily) may be ignored, and so forth. 

The user should not be burdened with having to 

learn the whole repertoire of system commands nor learn all 

the fnaturss the system provides in order to mak.? qood use 

of it. He should be able to interact with as little or as 

much of the sy:;tem as he wishes. 

2.11 How to represent knouledqe 

The represent.ation problem is one Of the most 

difficult facing the designer of any system. How are the 

various features of the problem to be represented? What 

representation will yield the most economical solutions for 
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most problems? 

There are at least four aspects to the 

representation problem. First, there is the question of 

representing tha problem itself. This includes modeling the 

various parsmaters of the situaticn, the interactions 

between them, the specifications of size, position, cost, 

and so forth. 

Second, there is the representation of the system's 

knowledge, This include what the system knovs and what it 

knows how to do. The system requires such a self-model in 

order to be able to respond *'The following information is 

required before calculations may be completed: ,.,**; or. 

"This calculation will cost approximately S..., and take N 

hours. Are ycu prepared to wait?" 

Third, there is the relationship of local and 

global knowledge in the system. Local knovledge consists of 

various details specific to particular aspects of the , 

problem, FOK example, it includes the arrangement of 

furniture in a given office or in an apartaent building. 

Global knowledge, by contrast, is information which is 

significant to the whole building, It might include overall 

cost, dimensicns cf the structure, type of foundation, etc. 

A major obstacle in all large modular systems is ensuring 
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that the local information does not become 

thereby slow down the overall computation. 

Fourth, there is the question of the 

global and 

form the 

knowledge may take. It may be represented in some set of 

data structures, or it may be represented in the 

interactions of a set of programs, or by some combination of 

the two. 

2.12 Da tn Structures 

The question of which data structure to use to 

mod31 the various aspects of a computer system is an 

axtrem-3ly important on?. Various special-purpose structures 

hav2 b?en developed or extendr?d esnecially for qraphics, 

These inclrlda special forms of trc,?s, rings, li.;ts, graphs, 

and heirarchichal versions of all of these. It is 

significant that no one structure has been forlnd which 

satisfies all proklams. Father, it iii alvays a set of data 

structures which are implemented, each data structure 

modeling a particular set of features. One of t he main 

contributions of this research has been the d+v?lop~?nt of 

some new (lat.3 structures. These arc? descri.bsd in Chapter 4. 
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2.13 A summary of our research 

This section presents a summary of our research in 

tabular form. Table 2.1 shows the most significant parts of 

the GRAPL system. 
. 

Table 2.1 - GRAPL's most significant 

Problem Previous Solns 

Accessing Trees, spheres, 
very large linked lists,.. 
data 
structures 

Hodular Very careful 
system: no system design 
interference 

Controlling NOT DONE Specifying 
the detail of approxixiate 
computation calculations 

Giva advice NOT CONE 
to system 

Accept advice Abilitv 
as strategies to modify 

behavior. 
dynamically 

Our Solution 

Cubes 

Parallel 
system 

features 

Our payoff 

Very fast; 
especially 
for 
architecture 

Great 
simplicity 
and ease of 
implementation 

Speed 

IYonitor NOT LONE, or with A parallel Can easily 
constraints, 'Ireat difficulty process give user the 
functions, information 
variables, he requests 
(e.g. cost, cube-footage, etc,) 
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Our approach has several additional advantaqes, as 

shovn in Table 2.2 

Tabla 2.2 - Additional advantages 

Problem Previous Solns 

Control the Clipping after 
aaount of ,?xamining objects 
detail 
displayed 

Our Solution 

JJsa the 
cuboid data 
structure 

Move around No faster than 
quickly most oth3r 
within some moticns 
neighborhood 
in the data 
structure 

Compile the 
neighborhood 

Representation Data 
of objects 

Program 

Define a NO? DONE Save state 
context, a var's of the 
neighborhood system 

Fast hiddrln Warnock, Watkins, 
line and 2tCZ. 
surface 
removal 

Preclip with 
cubes 

Several Difficult 
points of 
view 
simultaneously 

Start a couple 
more display 
processes 
running 

Flexible Syntax-driven 
system, translator 
command 
language, 
etc. 

Interpreter Greater 
with flexibility 
compiler without loss 

of efficiencv 

Our payoff 

Speed, do not 
need to 
traverse the 
whole data 
structure 

Speed 

Flexibility, 
power 

Accessibility 

Speed 
Speed 
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The GRAFL system demonstrates several new 

approaches and techniques. These are summarized in Table 

2.3. 

Table 2.3 - Vhnt's new 

Using a DUAL data structure 

Using a PARALLEL system design 

Giving ADVICE to the system 

COMPILING a picture 

EXECUTING an object 

SELF-HODIPYXNG data structure 

in GRAPL 

Cubes and master-instances 

Yielding modularity, 
flexibility, and ease of 
modification 

As strategies for display, 
computation, etc. 

Providing speed and 
extremely concise 
representation for a 
neighborhood 

To produce a picture, its 
electrical or cost 
characteristics, etc. 

The cubes automatically 
partition themselves into 
suhcubes when they become 
too complex 
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w C’ have encountered difficulties in developing 

several aspects of the GRAPL system. Those are sulcmariz3d 

in Table 2.4, 

Table 2.4 - Difficulties encountered 

What strategies to provide initially for splitting 
cubes, How many levels of cubes to have, 

HOW to access uniquely an!1 efficiently the 
appropriate cubes given a position in space 
Dvramid cf vision (visual neighborhood), - - 

How to access secondary storage efficiently. 

Determining how much information of what kind to 
include in the masters and instances for most 
efficient use of storage and time. 

How to maintain good response time in a heavily 
loaded time-shared environment.. 
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CHAPTER 3 02:38:08 OW/OU/75 

survey of a?lated Work 

This chapter has two objectives, First, we wish to 

qive th? reader a certain perspective with which to view our 

rssearch by presenting some tackcJround, Second, we wish to 

acknowledge the sources of many of the techniques and 

concepts which we have used. 

The basic philosophy behind the desiqn of the GRAPL 

system has been one of striving for consistency, uniformity, 

and pouer. Yhenever possible we chose the more qeneral path 

rather than the more restrictive. Thus, the system has been 

implementsd in a specially constructed language based on a 

high-level interpreter. The implementor may deal with the 

system on any of several levels: the user level, the GRAPL 

language level, the MLISP2 level, or the LISP 1.6 level, 

This capability is not hidden from the user. The 

sophisticate? designer might well avail himself of some of 

the facilities present at one or all of the levels. 

Much research in graphics has been devoted to the 

selection of data structures both for the representation of 

graphical entities and the representation of the elements of 
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the model. It is in this area that graphics systems usually 

either succeed or fail. If the choice of data structures is 

not large ep.ough, if they do not. have enouqh 

representational pcwer, or if they can be accessed only very 

slouly, the system must ultimately fail, Or, rather, it 

will succeed only for the smallest of structures (log cabins 

and the like). In GRAPL we have provided not only an 

tixtremely efficient and powerful set. of data structures, but 

we have providd?d the mechanisms for easily and quickly 

altering thes? data structures t.0 meet a user's particular 

requirements. 

Ths remainder of this chapter acknowledges those 

sources uhich have been most helpful in the development of 

GRAPLL, A comprehensive bibliography on interactive computer 

graphics may he found in <PO 72a>. 

3.1 Architecture, design, and general philosophv 

The basic architectural concep-ts and ideas have 

come from a variety of sources. Th;! most important of these 

uere Alexander's fine bock, "Notes on the Synthesis of Pormt* 

<Al 64>, and Koestler's **The Act of Creation" <Ko 67). Our 

system reflects much of the same philosophy as Negroponte 

<Ne 7O> and Franked <Fr 70). 
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Kuch of the basic system dosign philosophy is due 

to Dennis <De tjS>, Fnrley <Fa 71>, and Ruffman <Hu 71>, 

3.2 Graphics systems 

A variety of graphics languages and systems Vefe 

exairined prior to and during the development of GRAPL. This 

survey included the works of Cnrr <Ca 69>, Garuick <Ga 69>, 

George <Ge 71>, Johnson <Jo 63, Rulsrud <Ku 68a>, 

Negroponte <Ne 68>, Newman. <!+e 71>, Prince <Pr 71>, 

Sutherland <Su 63>, and Rehrli, et al. <us 70). The result 

of 3 literature survey in the field of graphics is reported 

in Pollack <PO 72). 

3.3 Display algorithms 

A large number of people have made contributions in 

the field of display algorithms. These include algorithms 

for the manipulation cf data structures, hidden line and 

surface removal, the mathematical representation of curves 

and surfaces, and the generation of pictures of objects 

illuminated from one or more light sources. 

Appsl, at IBII, has been active in the first tvo 

areas for many years, <Ap 66, 67, 68, 72). Plore recently, 

at the University of Utah, Bouknight <Bo 69, 70>, Kelley <BK 
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7O>, Carr <Ca 59>, Gouraud <Go 71>, Warnock <Wa 68, 69>, and 

Watkins <Ya 70, have malIe major contributions. In the ama 

of mathematical representation Qf curves and surfecos, Coons 

<co 67> and Forrest <Fo 60 have developel the most 

sophisticated representations. 

Hidden line and surface algorit.hms for speci Eic 

classes of objects have been developed by Galiaberty and 

fiontanari <G!l 69>, Loutrel <Lo 67b, 67c, 70>, Mahl <?!a 72). 

tiatsshita <Ma 69b, as well as Warnock cWa 68, 69) and 

Watkins <Wa 70). and others at the IJniversity of Utah. 

An excellent summary of state-of-the-art techniques 

for hidden line and surface removal may be found in a recent 

Computer Surveys article. by S~~therland, Snroull, and 

Schumscker <SS 711). 

3.4 Simulation aPproach 

The simulation aspects of GEAPL have teen most 

influenced by the CIVULA lanquage <DN 66>, <DR 70>, <IN h9>, 

as well as long and frllitfrlll conversations with Alan Kav. 

3.5 Fartiil application/incremental compilation 

The b-tsic ideas behin.4 Darti. application and 
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incremental compilation have been around for a long time. 

The most pertinent works include those of Loahardi <Lo 67a>, 

Lombardi and Raphael <LR 64>, Hitchell <Hi 70>, and 

Sandewall <Sa 68>, Huch of the groundwork was laid by 

HcCarthy, et al., in the development of the LISP programming 

language. 

3.6 Artificial intelligence 

The artificial intelligence features of GRAPL were 

most inflUdnC%d by the LISP, PLANNER, QA-4, and LxsP70 

languages. LISP is best described by Berkeley and Bobrow, 

<BR 64). PLANNER was and is being developed by Carl Bevit 

at HI?!, and is described in <He 71). The Q&-4 language was 

deQ8lOped at Stanford Research Institute by Rulifson, et al. 

<Ru 70, 71). <3W 70>, <Rn 72). The LISP70 language is under 

development at. the Stanford Artificial Intelliqence Project 

and is not yet well dOCUm8nt2d. The related languages HLISP 

and MLISP2 are described in Smith <Sm 70) and Smith and Enea 

<SE 73). Tha work of Terry Winograd <Wi 70) also was 

influential. 

3.7 Syntax 

Thz syntax of GRAPL was most influenced by the work 

of Smith, Tesslr3r, and Pnea in their deV8lOpfWtnt of the 
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MLISP, IlLISP2, and LISP70 languages. nLISP is described by 

Smith in <Sm 70). Smith and Enea describe HLISPZ in <SE 

73). LISP70 is currently under development and has yet to 

be described in the literature. 

3.8 Semantics 

The semantic ideas incorporated in GRAPL come from 

a variety of sources including Balzer <Ba 67>, Dennis and 

van Horn <DV 66>, Hswit <He 71>, Reynolds <Re 70>, Rovner 

and Feldman <PF G7>, Strachey <St 66>, Teitelnan <Te 66>, 

and Winograd <vi 71>. 

3.9 Data structures 

A variety of data structuring ideas vere valuable 

including thos? described tzy Abrams <Ab 71>, Falzer <Ra 67>, 

Zarley <Fa 69, 71>, Rulifson, at al. <Ru 70, 71>, <RW 70>, 

<RD 72). St.andish <St 67>, Tou an? Uegner <TU 71>, van Dam 

<VD 71>, Uegqer <Wf? 71>, and Winoqrad tUi 71). OUL- 

algorithm for d+>tcc+.i.ng the proximity of objects is similar 

in some respec+..3 to tha interpenetration algorithm of Carr 

<Ca 63>. 

3.10 Contr.71 structures 
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Control structures have become increasingly , 

important in the design of languages and systems. The most 

pertinent rL3fxences are Fisher <Pi 70>, Heuit <He 71>, 

Beynolds <Be 70>, and Rnlifson, et al. <Bu 70, 71, 73). 

The (pssudo-) parallel portions of the system were 

influenced primarily by the SIPIULA language. [See Section 

3.4 above.) 

3.11 Extensible languages 

The extensible language festures included in GRAPL 

nere most influenced by Berry <Be 71>, Cheatham tCh 69>, 

Christensen and Shau <CS 69>, Jorrand <Jo 69>, and Perlis 

<Pe 69). 
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CflAPTER 4 02:38:08 09./04/75 

The GAAPL Approach 

Xn this chapter we present a description of the 

GRAF'L system. This discussion includes a description of the 

inplementation of the various data and control structures. 

A discussion of the philosophy explaining why certain design 

criteria were estahlished may he found in Chapter 2. This 

chapter discusses the details of how these criteria have 

been met. In Chapter 5 we offer the details of the GRAPL 

implementation language and a description of the GtiAPL 

command language. 

This ,disnssio.n proceeds from the particulars of the 

iaplementation to more philosophical considerations. 

4-l A parallel system design 

GRAPL is implemented as a set of simulated parallel 

processes running under a scheduler within the MLISP2 

environment. Chapter 5 contains more information on ALISP 

and IILISP2. The great ease vith which GAAPL may be 

modified, and ccmmands altered, or added to is largely due 

to this fact. Also, it is only within such an environment 
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t.tlnt one may ix&lement such commands as PIonitor and Notify 

(see the description of the GFAPL command language below). 

This approach yiel<Is a sophisticated system without the 

usual corresponding system complexity. Each GRAPL command 

is implnmented as a process, each body or object is a 

process, ev+n the 1 Km cube representing the world and all 

its subcub?:; are inplomcnted as processes. 

4.1.1 A concise modular system 

Two a;lvantaqas of parallel system design are: it 

provides an -?xtreeelv concise manner in which to implement 

the system, an3 it affords the opportunity to design an 

extremely modular systenr. 

The conciseness of GRAPL yields a system which is 

easily ald+d to and readily modified, Almost all commands 

ar* implemented in less than a single page of code. The 

kernal system is just over 10 pages long; the simulation 

routines occupy only 6 pages of code. 

System modularity has three direct benefits: 1) 

independence of ccamands from one another: 2) flexibility in 

command format, alternate forms of a command may coexist, 

and commands are quickly and easily updated: and, 3) the 

system may be segmented with a demand overlay scheme -- only 
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those parts of the system which are currently active need he 

in core. 

4.1.2 A small system 

When the size of the GRAPL system is compared to 

most conventional graphics systems which commonly have 

thousands of lines of code, the advantages of our approach 

become even mar-: apparent. 

In addition, the GRAPL system with all commands 

resident in core (a highly unlikely circumstance!) occupies 

less then 60K ?DP-10 words. This figure includes 34K MLISP2 

system overhead -- GRAPL itself only occupies 26K. 

4.1.3 A powerful and flexible system 

The parallel system approach enables us to 

implement options such as multiple vieuports as multiple 

instances of the viewport process. It also enables us to 

utilize semi-continuously evaluating expressions (SW 

Fischer <Pi 70>) tc implement commands such as Monitor and 

Notify. 

Additionally, the existence of A scheduler provides 

the capability for deferrinq actions until a more propitious 
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time. For example, if the cube data structure needs garbage 

collection or some other *ehousekeepingt9 chores to be 

oerformed, one may schedule this event now for activation at 

some future time, and thereafter cease to be concerned. 

4.2 Duali.ty of data and program 

One of the most powerful concepts in computer 

scilncf is the duality of program  and data. One may vieu 

all computations as sets of programs interacting with one 

another with no data whatsoever <Ba 67>, or as a vast data 

structure with a single access mechanism and no other 

programs at all. 

Elany systems have striven to divorce programs from  

the data upon which they operate. But the most powerful 

(and intelligent) programs tend to operate not only upon 
I 

data but upon themselves as well. The utility of a single 

form  of representation for both program  and data is , 

apparent. one w view an expression either as a data 

structure haring scme value, or as a program  which computes 

the sane value. 

In GRAPL, all entities are represented in the forr 

of prograpis. This means that all bodies, objects, cubes, 

even the visual neighborhood and the world mOdeI, all are 
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programs. We interact with these programs in different ways 

to achieve different effects (e-g., display, computation of 

cost, retrieval of attributes, and YC forth). 

4.3 The GRAPL data structures 

GRAPL utilizes two dual data structures 

simultaneously. These are the cube data structure, which is 

used to repr=sent the physical modeling sI~?ice; and the 

body-object data structure, which is used to represent the 

elemants to hr inser%ed into this space. The cube data 

structure provides an extremely efficient way in vhich t-0 

represent ard access large physical struc?ures. The 

body-object data structure is composed of tuo parts: the 

class of bodies and the class of objects, Bodies and 

objects are thp primitive elements used in the construct ion 

of any structure. 

4.3.1 Thl cube data structure 

The data structure we present for model iny large 

structures is *htl following: k'e define the working space as 

a cube on+ ki.l~,meter cn a side. We divid? this cube into 64 

suhcut)~s, ?a?h Sll tcu bs may be referred to by n,ame or by 

relative location. (This partitioning of space is not 

generally availatl+ t. 0 +. hc; User for he has no need to 
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reference it. To the user, space is essentially 

continuous.) WC) compartmentalize the data structure 

representing our structnre into these subcubes. Whenever a 

given subcuhe becomes too complex (has too much data 

structure), ve subdivide it into smaller cubes and 

recompartmentalize its data structure, 

NOW, to modify a structure, it is only necessary to 

change those subcutes containing information which have been 

modified. To lock down a corridor and display what is seen, 

it is only necessary to examine those cubes along the 

pyramid of vision for visible surfaces. As advice to speed 

up the display, we may ask the system to reject 

automatically all cubes of size smaller than some given 

volume, (One system defaul +- for display is to reject from 

consideration all cubes Y hose sizes are more than three 

orders of magnitude smaller than the current cube, This 

default also displays a dot if the cube contained visible 

information, otherwise it displays nothing.) 

The data structure within each of the smallest 

subcubes is the true modeling information for the structure 

being modaled. This data structure includes structural 

information, information .3 s to the electrical system, 

mechanical system, ventilation system, etc. Larger cubes 

may contain some amount of information which is considered 
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to be the default data structure if the subcuhes are too 

small to be considered for a given calculation. 

The choice of a one kilometer cube as the largest 

representable ;pacc is entirely arbitrary, but ue feel it is 

reasonable in terms of using the system for architectural 

design, Should one wish to do urban planning, a cube 10 or 

20 kilometers on a side wollld be more reasonable, The 

choice of partitioning the cubs into 64 subcubes is 

motivated hy the following considerations: 1) A small 

number of levels of heirarchy is lsssential for fast access 

of data -- if one must continually traverse an extremely 

deep structure one will spend too much time in the process, 

2) We feel that the resolution for an architectural design 

system should ;xterd down to about 1 millimeter, TheS? two 

considerations yield a scale factor of one million between 

the largest 3nd the smallest representable objects. 

Partitioning each c ube into 64 suhcuhes achieves this 

scaling in 10 levels. We have experimented a little with 

alternative partitionings but have no conclusive results as 

to optimality. In Chapter 8 VE: discuss other partitioning 

schemes uith which it would be interesting to experiment. 

It shculrj he noted that the data structure 

presented hare is essentially the three-dimensional analog 

of the Warnock algcritha. Noreover, both are instances of 
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the more general *VDivide and Conquer Algorithm" which is in 

use throughout the field of computer science, The Warnock 

algorithm is performed "on the fly, " resulting in a picture 

.on a display device, whereas our analcg is continually in 

operation and results in a speedily accessed data structure- 

The term @ 'data structure" as we have used it here 

should not hz taken t.30 literally. What we are really 

talking about is a dynamic process structure reflecting the 

current organization of the ~0aei. In more conventional 

systems this corresponds to a data structure. 

The cubes are actually realized as instantiations 

of the class &BE, the definition of which ve COY give. 

(Refer to Section 5.11.4 for a description of the CLASS 

declaration.) 

CLASS ('CUBE,' (SIZE,BASELOC,DETAIL,GROSS)), 
' (PROG () ()),NL); 

where, 

SIZE 
RASEL3C - 

DETAIL - 

GROSS - 

PRO5 
NL 

is the size of the cube (a power of 4) 
is the coordinates of the bottom-most 
corner of the cube 
is the detail flag: if on, subcubes of 
this cube exist; if off, the complete 
description is contained in GROSS 
the gross description of the contents 
of this cube (a list of pairs: 
(object, positioning matrix) 

is a dummy program 
means no process is GLORAL to CURE 
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4.3.2 The body-cbject data structure 

EMdie are the most primitive objects which may be 

represented in G,?APL. They need have no physical 

significanca. sodies are generally collections of points, 

lines, surfac5s, and attributes which are to hs dealt with 

as A single entity. Bodies cannot be decomposed in any way. 

However, they may be altered or redefined. 

Objects are collections of instsnces of bodies. 

objects tharefort! have subs+ructurz. This substructure may 

be exaained and modified. An object utay be thought of as a 

collectio'n of bcdies and oth+r objects which, while not 

primitive, may be manipulated in a uniform manner af fs2cting 

all constituents equally. For example, one might define a 

block-like structure as a body, and then use several of 

these blocks to construct a table. Alternatively, one might 

describe a t.sble from the outset: then one would have a 

body-table instead of an object-table. 

Bodies and objects are both implemented as CLASSes 

in GRAPL. This provides the flexibility to modify GRAPL's 

basic data structure at the definiticnal level. 

Ue give the CLASS definitions for BODY and OEJECT 

below: 
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CLASS flBCDY,' (aOX,DATUfl,NV,NE,!+F,V,E,P), 
' (PFOG 0 0) ,NL) : 

CLASS ('OBJECT,' (OBOX,ODAT17M,DETATL.GROSS~, 
' (PROG 0 O),NL): 

where, 

BOX - an enclosing cube specifying the 
space spanned by the body 

DATUM - is a 4 x 4 positioning matrix 
NV, NE, NP - the number of vertices, edges, and 

V 
E 

F 
0970X 
ODATUM - 
DETAIL - 

faces in the body, respectiveiy 
a list of all vertices of t.he body 
a' list of all edges in the body 
(a list of pairs of vertices) 

a list of all faces of the body 
as BOX 
as DATUY 

GROSS 

a list of pairs 
(entity name,datum) which comprise 

the detailed description of the 
object 
similar to DETAIL, but for the 
gross description instead 

4.4 Splitt.ing cubes 

The cube sPlitting algorithm is used whenever the 

structure of a cube's gross description becomes so complex 

that it is worthwhile to partition the cube into suhcubes. 

The algorithm which we have implemented is known not to be 

optimal, Houever, it does perform satisfactorily. Other 

possible algorithms are discussed in Section 8.3. 

The algorithm proceeds as follows: 

1) We are given a cube to be split (the base cube) 
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2) Yeasure the cube's complexity 

3) If the complexity is less thaII SPLT (an integer 
variable set by the user), return 

4) For each objact in the base cube's gross 
descriFticn, int?rse,ct the oh ject’s envelope 
with all subcubes of the base cube 

5) Tn?o each suhcube where there is a non-null 
intersection, insert a description of the object 

6) Set the taso cub?* s detail flag to True 

Note that so long as the same measure of complexitv 

is used at each suhcube level, ne need not examine the 

complexities of the cpxeraterl. subcubes. Moreowr, once a 

cube is split, it never need be split again if the algorithm 

for object insertion guarantees insertion at thn lowest 

possible level cute. An alternative method would be always 

to insert objects at the highest cube: then split it, and 

let the splitting algorithm recursively force the object 

into the correct subcubes. 

The ccmrlexity measure UC? have implemented is 

simply a count of the number cf objects in the gross 

,description. If all objects are of rough Y.p equal 

complexity, thsn this is a good measure of the total 

complexity. Since one commonly constructs relatively simple 

aggregates of objects at any one time, this rather crude 

approximation is usually reasonable. Alternative measures 

of complexity, such as the total number of points in the 
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object or the numtfr of points plus the number of lines, 

etc., aasily may be incorporated into the system if the user 

wishes. Other measures of complexity are discussed in 

Section 8.3. 

4.5 Display algorithms 

The display algorithm consists of two 

sub-algorithms: cne for ths display of bodies and objects, 

and another fo.r the display of worlds. The simpler of the 

two algorithms is the one for bodies and objects, and it 

will be described first.. 

4.5.1 Algorithm for bodies and objects 

Bodies are displayed by generating a set of CRT 

commands from their internal descriptions. Rather than 

creating and saving this display file of commands, they are 

sent to the CRT immediately. This necessitates the 

recomputation of the commands each time a body is shown, but 

saves considerable memory. In addition, if one is 

interestad in "walking through" a body. the display file 

would have to be regenerated for each picture regardless. 

Orientaticn, perspective, point of view 

transformations, etc. are all computed using the usual set 
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of matrix transformati,ons, Homogeneous 4-by-4 coordinates 

are used to represent positioning information. 

Objects are displayed by recursive expansion of the 

bodies and objects in their descriptions, Positioning 

informaticn at each level of the expansion is used to 

properly orient each subpart of the object. Recursive 

expansion proceeds until either the most primitive level 

(bodies) is reached or level of detail cutoff occurs. 

4.5.2 Algorithm for worlds 

Display of worlds is based upon GRAPL's cube data 

structure. 'Ihe current visual neighborhood is intersected 

with top-most world cube. If a non-null intersection is 

obtained, the intersection procedure recursively descends 

into the cllba structure obtaining those cubes vith, a 

non-null intersection. Uhen level of detail cutoff occurs, 

the body/object display algorithm is invoked with the 

description of all entities within the visual neighborhood 

as data. 

Display of world information is slightly more 

complicated than for bodies and objects alone because 

entities may reside within several CUk.5, This occurs 

WheAeVer an Jntity is physically Larger than the smallest 
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cubes used to represent it. The world display algorithm 

keeps track of the status of each entity sent to the 

body/object algorithm so as to avoid displaying the same 

entity several times. 

Algorithms for clipping and hidden line/surface 

removal w2re not implemented for tvo reasons: the 

techniques fcr accomplishing both procedures are now 

veil-known, and doing either or both procedures would use up 

valuable core as well as slow down the display process. The , 

addition of both facilities in the form of special commands 

would be a reasonable approach if one were interested in 

pursuing it. 

4.6 Secondary storage algorithm 
. 

GRAPL secondary storage consists of a two-level 

heirarchy: the usual PDF10 disk file system and a magnetic 

tape backup system. The implementation of a more efficient 

special piirpos* disk filing system vas considered, but it 

quickly became apparent that the PDP-IO system was adequate 

for our needs. 

4.6.1 Disk storage 

t;DAPL files are of five types: system commands, 
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catalogs, bodies, objects, and worlds, In each case the 

file name extension describes a file's contents. The user 

requests files by specifying its prefix name alone. 

System commands noraally reside on the disk, When 

a command is executed by the user, a check to see if the 

processing rcutines for the selected command currently 

reside in core. If they are not, they are loaded 

immediately from the anpropriate system command files. 

Whenever a CLEAR command is executed, all extraneous system 

commands automatically are purged from memory. This yields 

the maximum amount of storage for display of pictures (at 

the expense of a small amount of added processing time the 

first time the user selects a command). 

Catalog files contain the names of all currently 

defined and accessible bodies, objects, and worlds. 

Entities are described by their textual names. Each time a 

body, object, or wcrld is created or deleted these files are 

modified appropriately. 

Rody files cant ain the axplicit description in 

terms of lines drawn on vertices of the visual properties of 

the body plus all associated attribute information, 

Object files contain the structural description of 
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the components of the object, positioning information, and 

attribute infcraation. 

iforld files contain the complete structural 

description of an entire world. The description is in terms 

of the names of objects paired with positioning information. 

The actual object and body descriptions are not part of this 

file. Rather, they are loaded automatically when a world 

(or part of on?) is loaded for display. 

4.6.2 Tape storage 

Tape storage is used primarily for backup 

supplementing the normal system file backup system. 

Additionally, it may be used to store arbitrary files of any 

type. Loading files from tape rather than from disk is 

relatively automatic, 

4.7 Selective incremental compilation 

Sel+ctivd incremental compilation is the ability to 

select certain entities, compile them, later retrieve their 

uncompilad form, modify them, and then recompile them, 

A common trade-off in computer science iS the one 

between timd an3 space. Incremental compilation is a 



A SYSTZM FOI? LAFGE STPJJCTURE GSAPHICS PAGE 51 

mechanism for trading decreased executi.on time for increased 

storage requirements. 

In GSAPI. one may compile any object into a body. 

The new body's display and computational characteristics 

vi11 be the same as the object*s, but the internal structure 

of the ah ject will be lost, The old (uncompiled) 

description of tte object always is available for later 

modification. The actual compilation is invoked through use 

of the infinity key, One loads or instantiates one or more 

objects, compiles them, and then has the option of saving 

them under a name of one's choice. 

The cube data structure may be compiled as well, 

This will greatly increase the prccessing speed but will 

sacrifice details cf the given cube's substructure. One 

loads the cube, compiles it, and then uses its compiled form 

as the new gross description. The detail flag is then 

turned off. 

Tf one nishes, one may compile the contents of the 

visual neighborhood as well. This is particularly useful if 

one wishes to examine a specific neighborhood in great 

detail. 

The compilation process consists of recursive 
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expansion into primitive descriptions of each element of the 

object's sutructure. 

‘4 . R Veighborhcods and constraints 

A neiqhborhood is a collection of access paths. We 

can poke a geiqhborhood or some element within a 

neighborhood *nd either store or retrieve information. For 

instant?, to access we might say [line, fetch, type) and we 

would get back '*A to T!, type T." 

From this point. of view it makes no difference 

vhcther "line" refers to a data structure for a line or to a 

routine to generate the line. 

A constraint is a neighborhood with special 

attrihutss which are interpreted in a particular way. For 

instance; 'lparallel (line A, line B)" defines a neighborhood 

and additionally attaches the attribute *'parallel@' to it, A 

processor cont.inually runs around checking to see if it can 

satisfy the constraints on the current neighborhood or all 

neighborhoods. 

Neighborhoods (constraints) may be small or large, 

local or global. The most global neighborhood is WORLD: 

the largest cube in the data structure. Local neighborhoods 
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. . may be thz current subcube, the current visual neighborhood, 

or any computational naighborhood. 

4.9 Givinq GRAPL advice 

The user say qivo GRAPL various forms of advice. 

Ye may give an object both a gross and detailed'description, 

This will greatly spe$d display, especially if the objact is 

used many times in the current picture, 

The user may advise the system not to display 

objects below SCDe threshold size. And, the user may 

restrict display to only those objects satisfying some 

criteria which the user supplies. 

Another fcrm of advice the user may supply is in 

the form of a constraint. He may tell the sys+.em to perform 

(or not to perform) some set of actions only when a 

constraint is satisfied (not satisfied). 

4.10 Giving results in rsal time 

One important thing we can do for a user is to give 

him results in real time. For example, if an architect is 

designing a building and he asks, "what is the cost of the 

structure as it stands now?" the resulting computation could 
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well take several seconds. Yet, he' might easily be 

satisfied with an approximate answer, if he were allowed the 

opt ion. 

4.10-l Approximating calculations 

Ye have as the default manner of operation an 

estimator which will approximate the cost of performing each 

user request.. If the cost is high, the system will attempt 

to approximate the answer quickly, inform the user of its 

actions, and queue the computation for background , 

evaluation. It is the responsibility of the user to specify 

how to approximate those things which the system does not 

already know how to calculate. 

A similar approach is used for display. If the 

user requests a particularly complex structure to be 

displayed, the system takes the fcllowing actions. It 

estimates the cost of generating the display. Since in this 

example the cost is assumed to be bigh, it approximates the 

display as best it can by presenting the superficial details 

and outlines of the structure involved. It informs the user 

that complete detail will take some amount of time and it 

puts the display generation task into the background queue. 

POT any task the system may request advice on how 
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to upgrade its performance. This advice might he of the 

form, "To compute the grass cost, sum i.he costs for each 

major module. A major module is one occupying over 2000 

square feet.," Or, it might be something like "For this 

vindov, only the outtlrmost structural details are necessary, 

Delete th;: interior entirely." 

Ihe system continually evaluates the cost of 

displaying structures when the user is in tht? process of 

examining them by zoom, moving dovn the halls, sectioning, 

2tc. If it finds it more economical to do so, the system 

compiles the appropriate portions of the structure. 

4.10.2 Speeding up display 

Ona option th? user has which vi.11 nnahl? him to 

speed up the display !~t objects is to advise the system of 

the default aFF;earance of things vhen vievnd from far away. 

For instant?, objects of small projectz,d cross-s-xtional 

area will autcmatically he clipped, but a long K-bclam will 

not. The structure of this T-beam will he unnecessarily 

complex. It vi11 save processing time if the USt?T advises 

the systw that I-kt!am?r, when viewed from greater distances 

ar when some ether conditions hold, look li+cA straight 

Lines. The .;yStem includes dofault. appc3ra7ces for all 

caealogc?? ohlects which may he modified by the usf?r if he 
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4.10-3 CornFiling pictures 

Obviously the cost of compiling a picture depends 

on the compl.?xity of the picture. But if we were to do very 

much zoominq or wandering around within a building, it would 

clearly he cheaper to compile the entire building than 

delving deeFly into the substructure of each wing, floor, 

room, etc. 

Any object in the systea may be compiled into a 

body at t h? user's request. He then may replace the old 

definition of the object vith its compiled form or retain 

the old definiticn. 

4.11 what is a wall with windows? 

'Ihe q'lestion Of how to represent a wall with 

vindovs or :Ioors is one which has plagued every designer of 

a graphic system. Is a wall a solid? If so, th+n how do we 

represent windows within the wall? Do ve intersect this 

solid wall with some "neqative8' space in order to allov room 

for the winriow? 

7.r a wall a space vithin which we may specify an 
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interior? This interior may be solid, hollow, partially 

solin, and may include the specification of a window. 

Is a wall 3 tree structure, with the properties of 

lVwallnassw hanging Off the top node, and substructure 

specified as a subtree? 

The above approaches all have merit, but they have 

too many disadvantages to be properly useful in a graphics 

system. After all, what is our objective? To model the 

real world? Or, to create a system which reflects enough of 

the characteristics of the real vorl.d so as to be useful? 

We claim that the first statement is emphaticly NOT our 

objective, The concepts of solid versus non-solid, space 

versus non-space, etc. do not have to he rno,Ieled j.n order 

to arrive at a useful system, We therefore compose our 

model of three parts: 1) What the real world looks like -- 

how it appears ?o our eyes, 2) What the real uorl~l is made 

of -- what are the components of these objects we SF?@: a 

wall, a door* 3 plate glass windov from PPG costing $ 13.95, 

etc., 3) HOW space is partitioned -- which areas are 

considered enclosures, which are r3oms, which are 

stairwells, etc. 

Th,? question of what the real world looks like is 

purely a display question, It is independent of the mod21 
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of the (possibly dynamic) physical system we are 

constructing. The display process should, therefore, occur 

simultaneously or in parallel with all other portions of the 

graphics system. The display process corresponds to the 

visual semantics of the object ve are modeling. 

'Ihe question of vhat the world is made of 

corresponds to the rest of the semantics of our object, It 

includes how the cbject reacts to heating, cooling, wind, 

etc. ; what are the object's requirements for power, cost, 

heating, etc.; what physical lavs the object aust obey, and 

so forth. This set of semantics is contained within the 

attributes of each of the subparts of our model. 

The question of how space is partitioned is handled 

in two ways. First, in some cases it may be by attaching a 

name (or SOIUPB other attribute) to some neighborhood which is 

important to us in a spatial sense. Secondly, it is handled 

by the cubing process which part itions our -whole model 

space. 

So what then is a wall with a window? A wall with 

a windou is a structure within some cube(s) with boundary 

points, lines (edges) defined on these points, possibly with 

the addition of surface attributes to some of the resulting 

surfaces, There is no specific modeling of the property of 



**solidness." The Len-intersection of t*solidV' bodies is a 

const.raint which may be locally or globally imposed, but the 

system will dynamicly determine which structures are solidly 

intersxtinq with one-another. This Rode1 handles the 

problem of holes quite rasily. (IIOlc3S arc! the 

generalization of spaces for windcvs, doors, conduits, 

passagss, etc. ) For each hole, we just increase the number 

of boundary noints and tht! number of edges. And, this modal 

trivially allows GE to extend a two-dimensicnal strnctilre 

into three-dimensions. Ue just double the number of 

boundary points, dcuble the IIUlatJef of edges, and connect all 

old-new houndary Fairs with a new edge as our first attempt 

at interpretation cf this 2-D to 3-D extension. 

4.12 What is a q4masterB4? What is an l*instancelq? 

A significant problem in graphic systems design is 

the definition of masters and instances. The general 

approach we take is that masters should be viewed as 

templates which generate instances of a specific form, The 

structure of an instance is not frozen; it may be altered at 

vi11 after it has been instantiated. The structure of a 

master, however, is partially but generally not completely 

frozen. Sasters may be altered only in their unfrozen 

dimensions. 
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One creates an instance from a master in the 

obvious w*y -- by creating a copv with nev variables in each 

appropriate slot. This is essentially an unfreezing 

opera+.ion: instances have more dimeusions of freedom than 

their defininq masters, 

Cr;lating a naster from an instance is the converse 

operation -- that of freezing in specific relations into the 

Jefining fora. For example, if we have created art oblect 

which we wish to define as a master wall, doinq so freezes 

in the relations which correspond semantically to 

VVwallness,*' Having instantiated a specific wall from this 

master, we inay wish to add doors, windovs, conduits, 

electrical wiring, and so forth. 

In SRAPL we have realized masters and instances 

using classes. Both the cube data structure and the 

hody-object data structures are classes. Each subcuhe which 

is generated is an instance of the class CUB%. Likewise, 

each bo*ly which the user creates is instantiated as a BODY, 

and each object which he creates is an instance of OBJECT. 

The class structures serve as templates (or masters); 

physical bodies are instances. 

The approach we have taken corresponds to the 

incremental compiler and partial evaluation concepts 
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originated by Lcmhardi and Raphael <LR 64,. It additionally 

reflects the properties of parameter specification and 

reparnmeterization of subprograms as applied to languages 

such as ALSOL. Parentheticly, no "algorithmic Lanquagetl to 

our knovledqe allows reparameterization of subproqrams, One 

must go to a simulation language such as S1YTJI.A before 0 fi e 

can find Yven static reparameterizatioc (via class, class 

prefix, and virtual declarations). Or one must go to a 

truly general languag.2 such as LISP, vhich does allow the 

full g2narallity of dynamic roparamcterization. 
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5 

CYAPTER 5 02:3$:08 08/04/75 

Descripticn of the GRAPL Languages 

l!he dssiqn of a new computer language should always 

be approached with some caution, One should ask whether the 

new language will in fact give the user qreater flexibility, 

more expressive power, more freedom, retain some amount of 

portability, and be better suited to his particular 

problems. Ue have designed the GRAPL languages with these 

requirements in mind. 

We hava implemented two languages: the GRAPL 

implementation language and the GRAPL system command 

language. The implementation language was developed for the 

design and implementation of interactive systems for 

computing with large data structures. It is relatively 

general-purlzose, and a wide variety of systems may be 

designed and implemented with it. The command language, I 

which forms the user-system interface, was developed to 

facilitate intsractive use of the system, The bulk of this 

chapter is concerned with a description of the 

implementation language. 

The semantics of the GRAPL system and of the system 
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command languaqe are implemented in the GRAPL implementation 

1anguaJe. 'Ihe EemanticS of the GRAPL implementation 

language are currently implemented in MLISP2 -- a languaqe 

which has all of the virtues of LISF (and a few of its 

draubacks) in addition to some powerful. features vhich lie 

heyond the scope of most current LISF systems. 

MLISPZ is an extension of f4LISP -- a lanquaqe 

developed by David Canfield Smith <Sm 70) at the StaRford 

Artificial Int3lliqencc Laboratory as a pro-proc.+ssor to 

Stanford LISP 1.6 CyD 72>. ?lLISf? is well documented, and 

the interested reader is rsfer.:d to Smith's fi&scription, 

The MLISP2 extensions iust recently have been described by 

Smith and Enea <SE 73). 

In this chap+et we will present a complete 

3t3scription of t. h e GPA PL lanquaqe in addition to the 

relqv;nt portions of the MLISP2 and MLXSP languages. 

5.1 The 3YAFL implementation lanquaqt? 

r,FiAPL emtodi~s features from several different 

classes of 1inquaq~)s. It includes: parall process 

facilities scsewhat mot'3 general than those available in 

languages such as SIFlrJLA and SIMSCFIPT; complete generality 

Ii control structure 3s specified by Fisher <Fi 70); the 
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,flexibilitp of being interpretive while retaininq efficiency 

through incremental (re-) compilation; and it represents all 

knowledge in a completely uniform way -- in the form of 

programs. 

GFRPL is tied together via a multiprocess recursive 

and backtrack control structure. Backtracking is more or 

less a la PLANSER <He 71) and CISP70. States and control 

points ar* estnblishsd with each decision. Backtracking is 

much more general than pure recursion but should not be used 

in place of recursion or iteration, Sussman <Su 72) has 

more to say on this point. 

Yore than one portion of GRAPL may be executing at 

any one time. W9 a4mi.t coroutines and parallel routines. 

Sequential control is implicit within a given process. 

Parallelism is implicit among the several processes which 

may be activated, passivated, terminated, and so forth. 

Sub-processes are Frocesses whose execution is monitored by 

B parent process. 

5.2 Constants 

GRAPL includes three forms of constants; numbers, 

quoted expressions, and strinqs. 
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5.2.1 Numbers 

Numbers may be of two types -- integer or real, 

Integers are aither signed or unsigned and must lie in the 

range: 0 <= K C= 'i**lfi, 

Real numbers are either an integer followed by a 

decimal which is followed by an integer, an integer followed 

by an exponent, or some combination of the two, Both the 

number and the exponent may be signed. Reals must lie in 

the range: 0 <= ABS(K) <= t/- 2**35. 

5.2.2 Quote:]. expressions 

A quctz? expr.?ssion is d single quote (') followed 

by an S-expression. This is exactly the same as 1'.n LISP. 

5.2.3 St.rinqs 

A string is a double-q uot.2 (I*) followed by any 

sequence of ch?ractsrs except F ("); thes+ are folloued by a 

double-quand ate, Strinqs bra primarily USed in 

input/output operations, GRAPL is not desiqned to be a 

string processing lanquage (as is, :;ay, SNOFSOL I(), 

5.3 Identifiers 
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Identifiers are names for objects of all types. 

They may be of arbitrary length. Identifiers must begin 

with an alphabetic character (upper or lower case). The 

following characters may he alphabetic or numeric. 

5-Y Lists, segments, and S-expressions 

Lists are formed in the same manner as in LISP and 

MLISP2, either as '(THIS IS A LIST) or as 

<'THIS,'IS,'ALSO,'A,'LIST>. The former method creates 'a 

list constant; the latter constructs a list each time it is 

referenced. 

Segments are formed by use of the segment operator, 

slash (/). For example, /'(THIS IS A SEGMENT) and 

/<‘SO,‘IS,‘TYIS> koth yield seqments. Segments are most 

useful in pattern matching. 

The rules for forming S-expressions are similar to 

those in LISP. An S-sxpression is either an atom or a list 

of sub-lists, oath of which is an S-expression. The lists 

may be formed1 either as constants (a left parenthesis, 

f0ii0woa by the list elements, followed by a right 

parenthesis) or by use of the list operators (left and right 

angle brackets), 
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5.5 In3exinq 

Indexinq is handlEd in a cclrpl;?t~? ly uniform uay: 

the functicn GET (' (A 13 C),2) yields D, GET (': ((A) (B) 

(c)),1) yields (A), and so forth. GET is defined for lists, 

tuples, haqs, +nd sets. Its value on sets is the i'th 

component of the set expressed in cannonical order. 

!loreOver, G!Z'I and PlJC allow extended access in the 

following way, if 

X = ' (A (B C (D) E) F.G) 

GET (P,2) yields (B c (W E) 
GET (X,2,1) F 
GFT (x,2,3,1) D 

PUT (X,1,'H) (A (3 C (D) l?) p. G) 
PlJT (X,2,:,‘H) (A (13 C I! E) F C) 
PUT (X,l,LI,‘H) ((A NTL NIL H) (i3 C (D) E) F Gl 
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5.6 Specifying data structures 

In G2APL we specify data structures in the 

following ways: 

function call returning element value 
function call returning segment value 

:I ; 
lists 
tuples 

I( ) bags 
:( 1 sets 

A pr-lfixed I’/” will force a function to return a 

segment value rather than an element. value. A prefixed ltI1@ 

will force parallel anecution of a function call. 

5.7 i3inding, function definition, and access 

In GF9PL we view binding, assignment, and function 

>iefinition in 4 completely uniform and consistent manner. A 

function is viewed as a value which is a list of the 

following form: It has the symbol LAMBDA, followed by a 

list of arguments, followed by the expressions forming the 

function body. Thcs the expression: 

(Si3T 'FN '(LAHBDA (X) (CAR (CDR X)))) 

sets the value of the atom FN to the list '(LAtlBDA 

(Xl (CAR (CDR Xl)). Whenever EVAL encounters the atom PN, 

its value vi11 he obtained: and as its value is a Lambda 
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expression, araument binding and function evaluation will 

coinmence. The LT'SP functions DEFINE and DEFLTST are both 

replaced by simple assignment in GRAPL . 

9indi3g and assignment are viewed as two 

syntactically differznt mechanisms for achieving the same 

semantic result. For example, 

(LAYPDA (Xl 0 1) 'FOO 

(LAMPDA (Xl (SET 'X 'PO011 0 

both qivs X the value 'FOO, the first by binding X 

t0 'FOO, the sticnnd by assigninq X the value *FOCI. (The 

second examp12 is not quite fair, X is first bound to NIL, 

then assigned the value 'FOO.) 
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5.7-l Rules for function definition 

The rules for function definition are similar to 

those for defining Lambda expressions in LISP, but differ 

importantly in the area of argnment binding. 

Argucent binding is done in the following way: 

1) Yrgument atoms are paired with their 
corresponding expressions 

2) Expressions and segments are elevated if 
their corresponding argument atom is 
prefixed with an exclamation point (!) 

3 Argument atoms are bound to their evaluated 
or unevaluated corresponding expressions 
according to whether they appear unquoted or 
quoted in the argument list 

Function definition itself is accomplished by 

assignment rather than by declaration. 
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5.7.2 Examples of function definition and evaluation 

Assume U is bdund to 3 and V is bound to @ fU 0). 

The expression 

(SYT 'IDENTITY ' (LAt!BDA (X) X)) 

(SE?' 'IDZNT '(LA!!BDA (!X) /Xl) 

(SET 'FCN 
'(LARBDA (X) ("IFIES X X))) 

(LA!¶BDA (X Y) (LIST X Y)) ‘A 'F! 
(LA!lECA ('X 'Y) (LTST X Y)) 'A 'F 
(LAPIBDA (X) X) V 
(LA?lBDA ('X) X) V 
/(LArlBDA (X) X) v 
/(LAflRDA ('X) X) V 
(LApl3DA (!X) X) V 
(LAHEDA (X !Y 2) 

(LISI X Y 2)) 'A 'B 'C 'I-J 
fLA?lB?A ['!X) X) A 9 C D 
(LAMBDA (?X) X) IJ V U V 

5.7.3 Access 

Tn GRAL3L the concepts of norma 

Yields 

makes IDENTITY 
the identity 
function of or,c? 
argument 

makes IDENT the 
identity function 
of indefinitely 
many arguments 

makes PCN the 
function: 
P(X) = x*x 

('A '9) 
(U Ul 
'(fJ U) 
-II u- 

' (A 9 C D) 
(3 ('I U) 3 (U U)) 

variable access, 

loCal aTld q 1. qba 1 variables, and free dnd bound variables 

have been extended slightly to include values obtainable by 

dccess. 

A (I c t? c: c= ..I variables correspontl somewhat t0 OtJN 

variables in .I\Lc;CL, 5 11 t. t-hey am process-oriented rAther 
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than procedure-oriented. That is, access variables are 

those local (OWN) variables which are declared at process 

instantiation time, They retain their values so long as 

their process exists within the system; they are 

incaccessible by any means after their process disappears 

from the system. Ploreower, access variables follow a 

separate rule for global (or free) reference: Whenever a 

process is generated, an access variable uhose name is 

GLOBAL is declared. Its value is generally set to the name 

of the generating process, It may be explicitly set if the 

user wishes. Then, any reference to an access variable of 

the form (<alpha> variable) will automatically reference: 

11 the current process' OWN variables 
21 the CWN variables of the process pointed to * 

by GIORAL 
3) if the variable still has not been found, 

step (2) is repeated until either the variable 
is found or the topmost process is reached 
(in which case an error is reported) 

Access variables have characteristics both of 

static local and global (bound and free) variables such as 

found in ALGOL, FL/ 1, and LISP, and of dynamic state 

variables in a process such as found in SI?llJLA or SINSCRIPT. 

Moreover, in GRAEL the chains of access links may be 

modified ,3ucing execution.' 
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5.0 Operators 

The GRAPL operators include all mLIsP * and rlLfSP2 

operators in addition to <alpha>, the access opsrator. For 

complataness, we present the following table: 

Abhreviat icn 

* 
/ 
i 

<up arrow> 
<down arrow> 

3 
= 

<not equal sign> 
<less/equal sign> 

<great/3qual sign> 
<*psilon> 

F; 
(invorte.1 V> 

I 
V 

&ha> 

Function 

?I MES 
QUOTIENT 
PLUS (ok as a prefix] 
CTFFERENCE (MINUS if a prefix) 
PRELIST (a generalized CAR) 
SUFLIST (a generalized CDR) 
APPEND 
!?QUAL 
NEQUAL 
LEQUAL 
GEQUAL 
YEMBER 
AND 
AND 
OR 
OR 
NOT 
ACCESS (as a prefix only) 

Parentheses mav be usad to force the order of 

evaluation. In acidition, all binary LISP functions (such as 

CAR, CDR. etc.) may he used as infix ooerators, 

A precedence system is used in parsing expressions: 

the rea;ler is referred to the (ILISP manual <Sm 70, for ia 

fuller discussion. 

The access operator, <alpha>, was discussed in the 

previous section, 
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5.9 Sequential control 

Six sequential control expressions exist in GRAPL: 

GO, IF, FOR, WHILE, UNTIL, and CASE. 

5.9.1 GO-expressions 

A GO-expression forces an unconditional transfer of 

control. A GO-expression is the word GO folloved by an 

expression which must evaluate to an atom. This atom must 

be a label on one of the expressions within the current 

procedure. Global lables (such as are possible in ALGOL and 

PL/l) are not allowed. 

GO LABL; 

GO 'IF A=R THEN Ll ELSE L2; 

5.9.2 IP-expressions 

Tha IF-expression is the conditional expression in 

GRAPL. It is formed by the vord IF followed by an 

expression, followed by the word THEN, followed by another 

expression. Optionally, this sequence may be followed bp 

the word ELSE and another expression. One or more 

ALSO-clauses consisting of sequences of the word ALSO and an 

expresion may fellow the THEN-expression and/or the 
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ZLS?- expression, Ihe s$m;intics of the IF-prpression are the 

Sam-? as in YLTSP. 

TF A=R THEN C <- C+l; 

TF FINISHED “'HEN PINALLFNCTIr)N(EES51I,TS) 
ELSF GO LOOP: 

IF PRED THEN I <- I+1 ALSO L <- CDR L 
ELSZ I <- 0 ALSO L <- OLDL ALSO GO LOOP: 

5.9.3 FOR-expressions 

The FOR-a xpression is one of the most powerful 

expressions in GFAPL (and YLISP). Rathtir than duplicating 

the excel lent description found in the MLISP manual, we 

present a list of the capabilities of this expression and 

give some examples. FOP-expressiocs allov orle to: 

1) Increment (decreraent) through a numerlcal range 
vith arbitrary step size 

2) Sequence through a list. using the first, second, 
third, . . . element 

3) Sequence through a list using the whole li st, 
t-he list minus th? first element, minus the first and second 
elements, etc. 

4) Force the FOP-variables to he local t-0 the 
FOR-expression or use variables global to th2 FOB-expression 

5) Ccntrol the manner in which tho results of the 
FOR-expressicn are accumulated 

6) Terminate execution of the FOR-expression at any 
time 

7) Run any number of FOR-variables in parallel 
and/or nest FOR-expressions. 
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The follouing examples il.lustrate some possible 
constructions snd the results of their execution. 

Let L = ' (A (E\ C) 

PO!? NEW I <- 1 TO 10 BY 2 DO F'RINT I; 

prints 1 
3 
5 
7 
9 

returns 9 
uses d local I 

FOR J <- 1 TO 999 DO PRINT <I> UNTIL J EQ 4; 

prints ( 1) 
(2) 
(3) 
(4) 

teturns (4) 
leaves J set to 4 

FOR NEW K IN L CO PRINT K; 

prints A 
(Bl 

C 
returns C 
uses a local K 

FOR K CN L DO PRINT K: 

prints (A (B) '3 
f(B) C) 
ICI 

.returns (Cl 
leaves K SET to NIL 

FOR N3W I IN L CO COLLECT PRINT <I>; 

prints (A) 
f(W) 
K) 

returns IA (8) Cl 
uses a local X 

FOR J ON L DO COLLECT PRINT 3: 
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prints (A (RI Cl 
((8) (3 
If-3 

returns (A (R)- C (B) C C) 
1-3aves J S-ET TO NIL 

FOR I (- 1 TO 5 FOR J IN L DO PRINT <I,J>; 

Prints (1 A) 
(2 CB)) 
(3. Cl 

returns t3 c\ 
leaves I set to 3 and J se+ to C 

Further examples my he fo!ind in the tiLISP manual., 

5.9.4 WHILE-?xprassions and rJNTIL-expressions 

These tldc forms allow one to form iterative 

expressions wit.h arbitrary or no specific sequencing 

control. The WHILE-expression is formed by the wDrd WHILE, 

followed by 3 11 expression, followed by the word DO or 

COLLECT, follotied ty another expression. So long as the 

first EXpr 2r;sior. evaluates to a non-NIL valtie, the second 

expression is repeatedly evaluated. The UNTIL-exDression is 

formed by ths uord DO or COLLECT, followed by an expression, 

followed by th? word UYTIL, followed by another expression. 

Its execution i s similar to that of the WHILE-expression 

except that th? body of tha expression in guaranteed to be 

evaluated once beforlz, termination. 

UHYLE NEQUAL(A,H) DO A <- A+l: 

WHILE CAR L = 'A DO 
BEGIN 
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s-9.5 

x.9 <- CDR L; 
I <- I*1 

END: 

DO A <- A+1 IJNTIL A=R; 

DO BEGIN 
L <- CDR L: 
I <- I:+1 

END 
UNTIL ?JEQUAL(CAR L,'A) i 

CASE-eXFressiOns 

The CASE-expression is similar to the CASE 

statemsnt of ALGOL. It is formed by the word CASE, followed 

by an expression, folloved by the words OF BEGIN, folloued 

by a sequence of expressions, followed by a closing END. 

The value of the first expression must be an integer greater 

than zero and nc larger than the number of expressions 

follovinq the BEGIN. If the value of the expression is 

outsite these limits, an error occursI If the value is N, 

(and is within the limits) then the Nth expression is 

evaluated and is the value of the CASE-expression, 

CASE N OF 
BEGIN 

PRINTSTR "N IS ONE": 
PRINTSTR "N IS TUO"; 
BEGIN 

PRINTSTR "19 IS THREE"; 
TERPRI() 

END; 
PRINTSTR "N IS POUR" 

END: 

5.10 Backtrack control 
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9acktracking is accomplished through use of 

rlLIsP2's SELECT function. The syntax of the SELECT fwction 

is: 

SELECT <value-expression> 
PROM <identifier> : <domain expression> 
NEXT <successor-exprassion) 
!JNLFSS (tarminator-expression> 

TN WHICH CASE <final-expression> 

where, if the phrases are omitted, the defaults 
are: 

<value-expression> = CAR 
<successor-expression> = CDR 
<terminator-exDrwsion> = N IJLL 
<final-expression> 5 FAILrJRF:() 

A simuln exampl.2 of the use cf the ~;E'L,FCT functior: 

is Floyd's C!lCIr:E function: 

EXPR CHOICE(N); 
<ELECT I FROY I: 1 NEXT I+1 

I1NLES.l; 1 GREPTPRP N; 

5.11 Pr9cesses an:1 process control 

Gf APT pl-oczsses are named collections of :;tate 

variables nmcnq which are mm (the fucctior,.il body), PC 

(the proqr Iii1 counter), 3 nd GLOBAL (a pointc:r to the 

next-most qloh91 prccess). 
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GEAPL has two built-in queues, QUEUE and PQUEUE. 

QrJEDk: contains the “act iveO process (the process at the head 

of the queue), and several "passivetg processes (those not at 

the head of the queue). A ** P assive" process is one which is 

on PQUEUE rather than on QUEUE. A Werainated" .process is 

one whose PC is VTERflINAT??D; it will be on neither queue 

after the scheduler has examined it. 

s-11-2 scheduler fun&ions 

GRAPL includes three types of scheduler functions: 

scheduler t3xzcution functions, scheduler queue control 

functions, and user queue control functions. 

There are four scheduler execution functions: 

INITSCHED(RUNP) 

Initializes the scheduler, If RUNP is NIL, 
sets QUErJE and PQUEUE to NIL. If RJJNP is 
non-null, the scheduler is called. 

INITSCHED,C(Sl.JNP) 

rnitializes the scheduler, sets PQUEU? to NIL 
and sets QUWJE to 'SYSTEM?. If RUNP is 
non-null, the scheduler is then called. 

SCHSD'JLEF J) 

The actual scheduler: runs processes on QUEUE 
until QUElJF becomes empty. 

SHALT0 

Ualts the scheduler. The scheduler may be 
continued by invokinq SCHEDULFR directly. 
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There are six scheduler queue control functions: 

SINITIATF,(PROCESS,STATE) 

Binds the state variables given in STATE, then 
inserts PROCESS at the tail of QUEUE, 

As SINITIATE, but inserts PROCESS at the tail 
i>f PCIJEUE instead, 

SACTIVATE (PROCESS) 

Puts PROCESS at the head of QUEUF regardless of 
whether it was suspended or passive. 

SS1JSPEND(EROCESS) 

Puts FROCESL; dt the t.sil of QUE!JE if it was 
on (IJIEUE, 

SPASSIVATE (PEOCESS) 

Removes PFCCESS from QUEUE if it was there, 
3nd Futs it at the tail of PQJJEUE. 

S"'?RMTNA!fE(PBOCFSS) 

!lumovcls PAOCES.$ from QUEUE if it was there, and 
;nts it.-; PC to 'T?FXTNATED, If it was 
not four,d in (I'IFUF:, then PQ!J!?rJE is searched. 

There are five user queue control functions: 

UTNIT(PROCBSS) 

3 i 11 d E the PC of process FBOCESS to 'SY:iO and 
puts PROCESS at the +?il of gIJE!JE. 

U~NI’IP (PFCC?lSS) 

As IJINII, but inserts FROCESS at the tail 
of PCIJEUE, 

rJACTIV(PFcCESS) 

If process PRCIC FI;I; is in OuEIlE or PQUEIJE, it 
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makes PROCESS the next process to be run. 

UPA5SIV(PEOCESS) 

Removes PROCESS from QUEUE if it was there, 
and puts it at the tail of PQUEUE- 

UTERM(PRCCESS) 

Sets the PC of process PROCESS to *TERMINATED 
and removes it from QUEUE if it was there, or 
from PQUEUE if it was there. 

5.11-3 Local, OWN, and global variables 

There are three types of variables a process w 

reference. LOCAL variables are those variables vhich have 

no value upon process activation and whose values are 

discarded upon prccess suspension. OWN variables are those 

which reside within the "state11 of a process. The PC 

(program counter) is one example of an OWN variable. GLOBAL 

variables are those which reside within the state of some 

other Process. Access to GLOBAL variables is actually 

unrestricted: any process*s variables may be read or 

written. However, the usual case is only to reference those 

variables in processes superior to one's own. This is done 

via a link contained in the state variable "GLOBAL" (and by 

use of the access operator, <alpha>). 

Changes are made to LOCAL variables using the 

normal EVAL access functions (SET, SETQ, and GET). Changes 

are made to Di4N variablss and GLOBAL variables through use 



of the functions GFT and PUT. These functions arcs called 

automatically when v,lriables are referenced in th-+ following 

aanntir: 

OWN V?riatlcs: 

PROCESS,VARIABLE C- VAL!JF:, or 
VAL!JE <- PROCESS.VA!?IABLF 

CLC)RAL Variables: 

(ACCESS VARIABLE) .VARIADLE <- VALUE, or 
VALIJE <- (ACCESS VARfABLE).VARIA3LE 

Tho system function ACCESS may he abbreviated by 

the special symbol <alpha>, yielding: 

(<alpha> VARIABLE).VARIABLE <- VALUE, or 
VALllE <- (<alpha> VARIABLE).VARIABLE 

Access to arrays may b@ made in the following 

manner: Assuming ARRAY(BETA* . . . ) is an array, and BETA 

is global to the current process, 

EVAL <(ACCESS BETA).BETA,I>, or 
BVAL <(<alpha> BETA),BETIr,I> 

both of which yield BETA(I). 
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5.11.4 Process definition and instantiation 

GR&?L allows ORE to define processes through use of 

the CLASS _ exoression, which corrasponds to the CLASS 

statemtint of SIMOLA hut is not so restrictive. The syntax 

of the CLASS expression is: 

CLASS (YA!lZ,STATZ,BODY,GLOBAL) 

NA?lE 
STATE 

BODY 
GL'39AL 

= the name of the class 
= 'the names of the process's OWN 

variables, or NL 
= the functional body, or NL 
= th=! name of the process global 

t.o the current one, or NL 

Final qrguments whose valuas are to be NL may 
he omitted. 

CLASS0 is similarly defined, but quotes all its 
arqum>nts. 

Processes may h+ instantiated by use of the NW 

expression. Its syntax is: 

NEW (INST-NAME,+lAST-NABE,STATE) 

INST-NAME = the name of the instance 
MAST-.NA!lE = the name of the master (class) 
STATE = the initial values for the 

instance's OWN variables, or NL 

Instances may be made of other instances or of 
classes, 

Final argulaents whose values are to be NL map 
be omitted. 

NEWQ(INST-NAMf,HAST-NAB&STATE) 

NEWQ is similarly defined, but quotes all its 
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arguments. 

We (give scme examples: 

CLASS ('PATIENT,'(NAMF AGE WEIGH" H?IGHT), 
'(BEGIN 

the semantics for a patient 
END)): 

CJ.ASS ('CC?JPLEXNJIMHE?,' (REALFAPT I?lAGINAPYPAPT)); 

NEW (NEUNAME,'PATI~NT,<'SMTTH,46,165,68>); 

NFW (YL,'COMPLPXNJJMDER,<5,3>); 

The first example establishes the class PATIFNT and 

declares that the four characteristcs of name, age, weight, 

and height are to be state variables. It then schematically 

continues with the definition of how a patient is to behave. 

The second example ssts up a tg data *I class called 

COMPLEXNU?lD%3, having t uo parts: a real part. and an 

imaginary part. 

Tha third example instantiates one patient. It 

assumes that N?WNAF?E will yield the name for -this particular 

patient, It then also associates the pairs: (NAME SMITH), 

(AGE 46), (WEIGHT 165), and (HEIGHT 68). 

The last exaarple instantiates one complex number of 

va.lue 5+3F. 
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5.11.5 Process ccntrol functions 

GRAPL provides t. wo special process control 

functions, VOLD and WHEN, HOLD is a special case of RHEN, 

but it is especially useful for doing simulations as it is 

time-oriented. Their descriptions are: 

HOLD(LAFfEL,AWAKE) 

Suspends (passivates) the current process until. 
t.im2 AUAKE (or later), then activates it with 
PC set to LABEL. 

WHEY(PREDICATE,ACTION,E'REDICAT~,ACTTON, . . . ) 

WHEN takes a series of predicates and actions. 
When the associated predicate becomes true, 
the action will be performed. There are no 
particular restrictions on either the predicates 
or actions. Note that UHEN will only perform 
the action once: if it is desired to have an 
action always performed when a particular 
pre,dicate is true, the action should issue 
the appropriate WHEN. 

RHENQ(PSEDICATE,ACTION,PREDICATE,ACTION, . . . ) 

WHFNQ is similarly defined but quotes all its 
ar gum ants, 

The WHEN expression is a straightforward 
r 

application cf the concept of "semi-continuously evaluating r 

expression" due to Fisher <Pi 70). 

He give some examples: 

HOLD ('LBLI ,CIJRRENTtEVENTTIF!E); 

UHEN ('CONDITfON,'(BEGIN . . . END)); 
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WHEN (PREDl( . . . ),ACTICNl( . . . ), 
PPED2( . . . ),ACTTON2( . . . ), 

*a* 
PREDK( a.. ),ACTICNK( ::: )): 

The first example suspends the current process 

until the amount of time EVENTTIME has passed; then it is 

reactivated. 

The seccnd example schematically illustrates a 

simple use Tjf UHFN, After the predicate CON,nITION becomes 

true, the code in the D%IN-END block will be executed. 

The 13st example schematically illustrates the us e 

of several predicates and actions. The PEEPS are taken to 

be various predicates and the ACTIONs are iirbi+.rary 

expressions or function calls. 

5.12 !Zxcressicns 

An expression may be cith+r a simple expression 0 P 

two or more simpl? exprrssions s4parated hv infix operators, 

A simple expression may he 3 block, I. arr; h.1 a 

expression, IF-exprnssion, FOR-t?XFreSSiofl, WHILF-expression, 

lJNyIL-t?xprf?SSic>n, assignment expression, ens iz- expression, 

etc. The GRAPL syntax for sxpr+?ssion cfnd Simple expression 

is the same as is found in PiLISP. 
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Blocks are formed by the vord BEGIN, followed by 

any number cf declarations, followed by any number of 

expressions, followed by the word END. 

BEGIN 
NEW X,Y; 
NEU 2; 
X <- CAR (Y <- READ()): 
Z <- SVBST (‘A,X,Y); 
PRINT <X,Y,Z> 

END ; 

5.13 Programs 

A GRAPL program is an expression folloved by a 

period, Usually the program is a sequence of expressions 

enclosed in a block, but single expression programs are 

allowed. 

PRINT "THIS IS 3N EXTREMELY SHORT PROGRAI'l." 

BEGIN 
NEW I; 
I <- '(THIS IS ANOTHER SHORT PROGRAH); 
PRINT I 

EEJD, 
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5.14 The GiiAPL evaluator 

The GRAPL evaluator, EVAL, is similar in most 

respects to the LISP function of the same name, but it 

differs significantly in several important ways. 

Table 5.1 - Ihe GRAPL evaluator 

GRAPL EVAL 

Atoms only may have one value 

Atoms nay have a property 
list of indefinite length, 
with repeated indicators 

Function call occurs 
wherever a L3wbda expre-;sion 
is encountered 

Has a consistent method for 
the Lambda expression of an 
atom bound to same 

Has a uniforn method for 
function definition and 
argument binding 

Has a means for elevation to 
lists 

Incorporates backtrack control 

Incorporates parallel and 
coroutine control 

LISP EVAL 

Atoms may have an arbitrary 
number of values 

Same 

function call can occur 
only just after a left 
parenthesis 

No direct method for 
obtaining such a valu+ 
is available 

Has EXPR's, FEXPR's, etc.: 
a ncn-uniform argument 
binding mechanism 

No such mechanism exists 

Has only recursive control 

No such mechanism exists 
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We present some examples of the evaluation of GRAPY, 

expressions. 

The GRAPL Expression Yields the following 

(SET 'B ‘(LA'lBDA . . . )) binds B to (LAMBDA .-. ) 
ie. gives to B the value 
(LAHBDA -cm ) 

gives A the value 'B (SET 'A 'B) 

(SET ‘A B) 

(SET 'A .B) 

(SET 'F '(LAYBDA {X !Y) 
(LIST X Y))) 

(SET 'Z F 'A 'E 'C 'D) 

(SET '2 (F 'A 'B 'C 'D)) 

(SET '2 F '(A E!) 'C 'D) 

(SET '2 F 'A 'B 'C F 'D 'E 'F) 

(SET 'Z F 'A 'B 'C (F 'D 'E) 'P) 

gives A the value of the 
evaluation of 
EVAL (LAbBDA . . . ) 

gives A the value 
(LABBDA .w. ) 

gives P the value 
{LA&BDA ,.- ) 

gives Z the value of F 
applied to 'A 'B 'C *D 
which is (A (B C D)) 

gives 2 the saae value 

gives Z the value 
((A B) (C D) 1 

gives Z the value 
(A fB C (D (E PI))) 

gives 2 the value 
IA @  C (D (El) PI) 
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The r;!?fiFL syst.em bar, f acilitilzs both for the 

creation of nei4 objects and for the collection of old 

objects into structures which we may t.hen save as nr3u 

objects, 

The GRAPL system includes commands for the 

construction of primitive enti+iGs (bcdies), the combination 

of thes2 primitivas into more complex forms (objects), an4 

tho incorporation of these- entities into ;t world model. 

commands fall naturally 

1) 

2) 

3) 

4) 

5) 

control Commands 

Drswing Coa,mands 

Attribute commands 

Monitcr Commands 

norld Commands 

into several categories: 

those daaling with 
qeneral control 
functions 

those dealing with 
the actual drawing 
procnss; the creation 
and manipulation of 
bodies and objects 

those dealing with 
attributes given to 
bodies and objects 

those dealing with 
the monitoring 
facilities 

those dealing with 
the creation and 
manipulation of world 
models 
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Tabliz 5.; - Commanr1 language summary 

CONTROL COF(,"IANDS 

Action 

(top level) Continue GRAPL system 
(top level) dead start GRAPL system 

- Clear screen, etc. 
- reset window to normal vievpoint 
- set Mode to 

Dilate 
Rotate 
Scale 
Translate 

- sets Name to 'abc 
WORLD PEN BODY abc (ahc . t) 

- set system Parameters 
DA: Angular constant 
FVN: auto-Number vertices 
ORM : order of magnitude 
FQN: Query status 
DS: Scale factor 
DT: Translation constant 
FQW: uorld query status 

- Query system status 
List catalog of bodies and objects, 
Query system variables 
query World variables 

- execute a LISP expression 
- Zap! Terminate run 
- reset name to PEN 

<infinity> abc - compile object 'abc 
ALTMODE - restart numeric input 
* - escape -- terminate with no action 
<alpha> - output picture to XGP printer 

DRARING COKMARDS 

Command Action 

D - Celete comnands 
E t X’ Edge joining vertices t and It* 
P # I' t" - Face bounded by vertices 11, #' and GM 
0 t Object t 
v # Vertex t 

E - new vertex at pen: new Edge 
I ahc (x y 2) - Instantiate object 'abc at (x y z) 
J # #' - Join vertex X to It': pen at vertex # 
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L abc 
S ahc 
T {x y xl 
V 

- Load object *ah for edit 
- Eaves current. object ur,4et name @abc 
- move pen To (X Y Z) 
- new Vertex at. pen 

- p?nup; pen to (0 0 0); pendown 
- kenup; pen to vertex t; pendown 
- name for the last vertex created 
- rotate about the X, Y, Z axis by DA 
- translate on the X, Y. Z axis by DT 

ATTRIBUTE COHMANDS (side effect: perform a load) 

Command Action 

A abc - show Attributes of object 'abc 
D abc attr - Lelete Attribute attr from object ‘abc 
G abc attr val - Give attr value val for object ‘abc 
R abc attr - Retrieve attr's value, object *abc 

MONITOR COMMANDS 

Command Action 

M - llonitor commands 
H nam expr - nonitor expression using name 'nam 
N expr - Notify (once) when expression expr is true 
D nam - Unmonitor expression 'nam 

WORLD CCHRANDS 

Command Action 

w - world commands: all refer to current world 
D abc - Delete object 'ahc in current visual nbhd 
I abc (x y z) - Instantiate object ‘abc at (X Y 2) 
L ahc - toad world ‘abc and initialize 
S abc - Save current world under name 'nbc 
U abc - Update object ‘abc 
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Several Examples 

PAGE 94 

In orIer to demonstrate the power and flexibility 

of the GRhPL system we present four examples, The first 

example demonstrates power of GRAPL data structures. We 

have created a world composed of a set of buildings. As we 

slowly decend intc the first structure by decreasing the' 

siza of the display neighborhood, more and more detail 

becomes apparent until we reach the (current) limits of the 

resolution of the SystPn. The ease of representation of 

highly complex structures, control of the level of detail, 

and the efficient access and display of large structures are 

due largely to the manner in which GRAPL stores information 

about the real world. 

The second example demonstrates the power of our 

parallel approach to the design of interactive systems. We 

have simulated a sioall operating systea and display 

graphically various parameters of the model. The user laay 

examine the queues which arise, modify the 80iiel*s 

parameters, completely change the structure of the model, 

and display his results. Some of the syster’s 

characteristics are displayed using histograms which 
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dynamically reflect the current status. 

The third example demonstrates the addition of a 

small packaqe for the display of algebraic functions of the 

form y = E(x). The graphing packaqe generates a body which 

contains n 0 t only the representation of the function, but 

the coordinate axes as well. The form Of the equation, 

SC.3 le, and various other parameters may be set by the user 

interactively. 

Our f\>ucth example is a projection of hOW GEl APL 

might be used by an architect and his client in the design 

of a houSe. Ihe GRAPL system in its current form could be 

11.5f?a in the 32sign; however, it most prohahly would be mo're 

economical for a few nodificatiqns (additions mostly) to he 

made first s3 as t 0 l*t,ailortw GRAPL to the requirements of 

the architect ar.d his client. 

6.1 Walking through a building 

As our first c?xample, w2 present a demonstration of 

th+ power of control over the 1ZVPl of detail in the 

presentation of pictures which vary over a wide ranqe of 

magnitudes. 

In Figure 6.1.1, we se63 the gross description of a 
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skyscraper modeled after the Transamerica Building in San 

Francisco. We are about 1 km away from the building, at 

about 250 meters elevation. The level of detail is set at 

one. 

Figure 6-l-2 shows us zooming in on the 309th 

story. The visual neighborhood has been set so that only 

the front faces of the building are retrieved. Detail 

remains set at one. 

Figures 6.1.3 and 6.1.4 show use zooming still 

closer. In Figure 6.1.5, we modify the level of detail to 

two. Thus, the interior room closest to use now becomes 

visible, Not all of the contents of the room are visible, 

however, because the visual neighborhood currently extends 

only just beyond the desk and chair. 

Fiqurz 6.1.6 shows us just inside the physical 

boundaries of the room with all contents visible. We begin 

to approach the d=:, -=k in chair in Fig.ure 6-l-7. 

Getting closer still, Figures 6.1.8 - 6.1.10 shov 

us concentrating our attention on the desk. 

.- 

Figures 6.1.11 and 6.1.12 zoom in on the set and 

drawer on the left side of ths desk, In Pigur3 6.1.13, we 
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increase the lavel of detail again, and discover that the 

second drawer has a cube within it, 

Figure 6.1.14 shows us closer still, and in Figure 

6.1.15 we discover a pyramid within the cube, The cube is 

6~x1 on a side. The pyramid is 2cm on a si.de. 

Figures 6.1.16 and 6.1.17 shou u s getting closer 

still. At this point the visual neighborhood is a 10 cm 

cube. Increasing the level of detail again, we see the word 

"GRAPL" within the pyramid, 

We have traveled over the range 1 Km - 10 cm, four 

orders of magnitude. It is important to realize that all of 

the data would have been accessed and displayed if the level 

of detail were tc havs been increased at any time. Due to 

the physical size cf the objects involved, however, most of 

the time the cube, its pyramid, and the word "GFAPL" would 

have been displayed as a single point (although all of their 

internal structure would have-been there). 
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Fine 6.1.5 Increasing the level of detail Pace 102 
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Figure 6.1.6 Just inside the building Page 103 
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Figure 6.1.12 The three drawers 
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Fi@xe 6.1.13 Increasing the level of detail Page 110 
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Figure 6.1.14 Closer still Page 111 
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Figure 6.1.15 The pyramid appears Page 112 
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Figure 6.1.17 C-loser again Page 114 



Figure 6.1.18 'GRAPL" appears within the pyramid Page 115 
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6.2 A simple cperating system 

PAGE 116 

To demonstrate the use of the GRAPL system in a 

more ayplicltions orisr?ted environment we decided to model a 

simple operating system. The CALIDOSCOPY? Operating System 

<IJC 72> for th2 CIC ii400 running at the University of 

California at Berkeley was chosen as a basis for our model 

both for its simplicity and because u2 are reasonably 

familiar with its characteristics. The CALIDOSCOPE system 

supports a multiprogramDi.ng environment consisting of at 

!nost five execution tasks plus miscellaneous input/output 

functions. 

G-2.1 Hardware environment 

Cal's CDC 6400 includes th2 standard ten peripheral 

processors plus a main cpu. The system supports 65K of 

central memory plus 133K extended core storage. Users .have 

access to at most three tape units, although several 

additional units usually are on-line. Two IBM 1403 printers 

xnd a CDC 501 Frinter serve as the primary output devices, 

Additionally, there are a card punch, operator's console, 

snd high-speed card reader. 

The 6400 also supports a remote computer system 

WCS), primarily designed for the attachment of small 
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computers driving driving card readers, line printers, and 

other input/output devices: and a remote t’erminal system 

(RTS), used for remote job entry and retrieval. No true 

tiae-sharing system is implemented. 

6.2.2 Software environment 

The CALIDCSCOPE Operating System <UC 72) is a 

modification of the CDC Scope 3.0 system tailored for 

Berkeley's particular requirements. The system is modular 

and consists of several essentially independent parts, the 

most important of which is HYDRA which handles input/output 

tasks and spooling. 

The scheduler selects tasks for execution using a 

simple first in first out algorithm subject t& the following 

restricticns. Users may give jobs one of five priorities: 

Priority E - Express - Highest priority 
Priority J - Job - Usual priority 
Priority S - Short job - Similar to J jobs 
Priority C - Deferred - Run after all J jobs 
Priority 3 - Idle - Run only if idle 

Users must indicate the maximum allowed running 

time for their job, = as well as the maximum alloved number of 

pages of output. 'Ihe scheduler then snbsorts the job queues 

into the following classes: 

Class 0 - 0 - 20 (octal) seconds CPU time 
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Class 1 - 21 - 100 
Class 2 - 101 - 400 
Class 3 - 401 - ..- 

Print jobr fall into two classes, those under 25 

pages and those over, with priority generally being given to 

the shorter jcbs. 

Additional features of the system handle HYDRA RTS 

(remote terminal Systlm, priority 0) jobs, ensuring that 

deferred jobs do not persist in the system forever, and so 

forth. 

6.2.3 The GRAPL model 

Recause of the ready availability of data on the 

operational characteristics of CALIDOSCOPE through use of 

the QUEUETEST program, it was decided to model the external 

performance of CALIDOSCOPE rather than to construct a 

totally accurate model of its internal behavior. (After 

all, CALTDOSCOPE models itself perfectly: our goal is not 

duplication: rather, our goal is to demonstrate GRAPL,) 

The eodel is based upon the following: 

The priority queues: E, J, D, 1 
The scheduling algorithm 
Physical considerations such as core size, etc. 
Observed input rates as a function of time 

output from the model consists of most of the 
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essential information reported by QUEUETEST including: 

Number of jobs in each queue 
Total number of jobs processed so far 
Job backlcgs in term of CPU time 
Average turnaround 

Additional information regarding. any portion of the 

simulation is easily obtainable through use of GRAPL's 

Nonitor comnands. 

6.2.4 PFI rforra nce 

Perfcrmance of the model (called SCOPE within the 

GRAPL system) has been more than satisfactory. A vide range 

of systaa characteristics may be observed including the 

infinite deferral of Idle jobs when the system is heavily 

loaded, a midday backlog of jobs in all classes due to the 

high submission rate, excellent turnaround during the late 

eveninq and early morning hours, etc. 

6.3 A simnle graphing system 

We implemented a system for graphing functions of 

the form y = f(x). As is mentioned in Chapter 7, ths code 

for this system fits easily inside less than a page. To 

extend the system to tuo dinensions, add automatic scaling, 

change the form cf plot to bar graphs, and other such 

extensions and modifications would be the work of an 
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afternoon. 

PAGE 120 

In each Figure, the x-axis ranges from -40 to +40 : 

the y-axis has the same range, but has been scaled by an 

arbitrary amount so as to fit the entire graph within the 

visual frame, 

Figure 6.3-l shows the graph of a typical cubic 

equation, y = (x+.30) (x-6) (x-30). 

In Figure 6.3.2, ve show the graph of one of the 

arrival functions used in the operating system simulation of 

section 6.2: y = (abs(x) + ab)/(x*x + b*b), with a=15, and 

b=5. 

figure 6.3.3 shows another arrival function, y = (x 

mod 24)*(x sod 24 + a - 12), with a=24, 

In Figure 6.3.4, we show a typical symmetric 

quartic equation, y = (x+35) (x+5) (x-5) (x-35) l 
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6.4 Building a house 

In this section we present an example of hou an 

architect might rse a system such as ours to construct a 

house. We illustrate both his interactions with the system 

and the system's responses to these interactions. 

The GRAPL system as currently implemented could be 

used to design a house. Host of the commands described 

below already exist. Rouerer, to be easily usable by the 

untrained architect a rerlesign of the COIamaAd language (such 

as is mentioned in Chapter 8) should be done. 

6.4.1 Overview of the architectural design process 

Architectural design usually proceeds in 'several 

phases soae of vhich are dependent upon the results of 

previous phases and some of which are not. In general, we 

may break down the design process into three major steps: 

planning, preliminary design, and final design; although the 

actual distinctions among these are usually rather loose, 

In some firms this distinction may be made by observing in 

which department the design currently resides. In others, 

and especially in the case of designing a house, the 

distinction will be even aore difficult to make. 
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The planning phase involves the generation of a 

statement of requiremants, This statement should include 

most of the Lmportant requirements the structure must meet. 

In particular, this statement uould include the number of 

rooms, general partitioning of space, access from one part 

of the structure to another, access to the street, and so 

forth. To this statement is added the building coda 

requirements for the particular site and type of structure. 

A new document is generated, sometimes called the 

'*architectural program," which contains the specifications 

of all spaces and their corresponding functions, utilities, 

square footage, mechanical systems, and so forth, 

The preliminary design phase begins at this point. 

Decisions must be made as to the general design philosophy: 

Should the building be open or closed? How important is 

height? Is the structure to be essentially a shell housing 

its occupants, OK is it to he a showplace? How important is 

and what are the limitations of cost? Following this, the 

general location of spaces and their functions are made. 

This yields the building shell. A @9schematic" is generated 

which tells how the building works: and the preliminary 

specification of the structural, mechanical, electrical, 

utility, and communication systems is made. 

At this point final design begins. In this phase 
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the preliminary design is further resolved until it is 

realized in its final form as blueprints to be used in 

construction. 

In any architectural design project the architect 

will be concerned with the so-called "Object Systems of 

Design," These are: 

Site 
Earthvork 
Grading 
Compacting 
Faving 
Landscaping 
Orientation 

Structures 
Foundations 
Footings 
Superstructure 

Enclosures 
Floors 
walls 
Ceilings 
Roofs 

Space-Use 
Rooms 
Wings 
Suites 
Storys 
Complexes 
Porches 
Balconies 
Fireplaces 
Patios 
Lanais 
Garages 

Mechanical 
Heating 
Ventilation 
Air Conditioning 
Fluabing 

Electrical 
Power 
Lighting 

Communications 
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Telephone, telegraph, etc. 
Intercom 
Coaputer 
Radio, television 

Appurtenances 
Furniture 
Fixtures 
Equipment 

In addition, the architect will consider the 

fcllowing "Attribute Systems": 

Shape 
Area 
Volume 

Weight 
cost 

Initial 
?laintenance 
Building useful life 

tiaterials 
Visual 

Color 
Reflectance 
Light (intensity, distribution) 
Texture (visual) 

Acoustics 
sound transmission 
sound diminution 
Reverberation time 
Reinforcement 

Thernal 
Heat transmission 
Expansion-contraction 

.<afety 
Fire resistance 
Fallollt radiation protection 

Tactile 
Texture 
Vibration 
Rigi3ity 

Hiscellaneous 
Use flexitzility 
Aesthetics 
Ecology 
Social aspects 

As an example of the types of analyses the 
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architect w requite, we list here soee of the 

considerations he may encounter in determining the 

structural design of the building. In each case, a 

corresponding softuare package could be invoked: 

Calculation 
Input data General tables 
Tension Compression Torsion 
Shear Deformation Displaceeent 
Bending Buckling Stability 
Wobility Collapse etc. 

Rembers 
Beams Colurns struts 
Connectors walls Footings 
Complex structures etc. 

Structures 
Trusses Frames Shells 
Tension Composite 

structures structures 
etc. 

Materials 
Concrete w00a Plastic 
Steel Reinforced resins 
Structural foams Brick 
Aluminum Rock etc. 

The architect also will have at his disposal a wide 

variety of standard forms. These are currently found in 

various catalogs, such as: 

The Architect's and Builder's Handbook 
Architectural Specifications 
Architectural Standards, etc. 

These catalogs include not only the specifications 

of standard building materials but also various kinds of 

furnishings, fixtures, office equipment, etcc 
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6.4.2 Specifics for design of a house 

An architect might make himself the following list 

(program) to guide him in the construction of a house: 

Thumbnail sketches 
Preliminary drawings 
Structure 
Site, landscaping, foliage 
Foundation 
Superstructure 
Outside walls 
Roofs 
Uindows, skylights 
Partitions 
wall sections 
Doors, stairs, stairwells, etc. 
Room plans 

Attic 
Bathrooms 
Halls 
Bedrooms 
Uork rooms 
Den 
Dininq room 
Library 
Living room 
Closets 
Kitchen 
Garage 
etc. 

Plumtinq 
Electrical 
Gas 
Yeating & ventilation 
Communications (intercom) 
?!echanical (dumb waiters, etc.) 
Details 

Windows, skylights 
Cornice 
Stairs 
Fireplace 
Hall section 
Doors 

Interior decoratinq 
Furnishings 
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Before any design can begin, the architect should 

have a list of requirements for the structure, This list 

might include: 

Approximate cost 
Style 
Number of rooms of specific types 
Lighting 
Special requirements for adjacency of rooms 
Particular requirements of the 

prospective tenants 
etc. 

Ue will assume that our list of requirements is: 

cost 
style 
Rooms 

Square-footage 
Special req's 

$ 20,000 - $ 25,000 
California mod.arn 
Living room, dining alcove, 
bathroom, kitchen, bedroom 
1500 
None 

6-q-3 The architect's actions 

We now suggest the steps an architect miqht take in 

the design of a house to meet the above requirements. It 

probably will be helpful to refer to the following section 

(Section 6-4.4) a, c ft explains point-by-point the system's 

responses to the architect's actions. 

(1) Log into the GBAPL system. 

(2) We identify ourselves to the system, specify 
our client's name and the project's name. 

(3) We request sketching mode, so we may deal with 
the CRT as if it were a highly sophisticated type of paper. 

(4) We begin to create a thumbnail sketch of the 
floor plan. We are assuming that this will be a 
single-floor dwelling. 
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(5) We sketch in walls, doorways, entrances, and 
label the various enclosures. (aq. "BR ,“ "LR," "Bb," etc.) 
We insert closets and cabinets, etc. 

(6) Yet satisfied with this first sketch, we 
indicate? tn th.2 system that we uish to move the bedroom and 
its neighhori.ctJ bathroom to a different place in the sketch. 

17) 'Ihis is a more pleasing configuration; so we 
give it a name: PIANl, and then erase our drawing. 

(8) This sequence is repeated several times: ve try 
several variations sometimes using the current sketch, 
somet,imo,s cr33ting n4u ones. 

(9) ~3 ask ‘that each of our floor plans be 
displayed on different parts of the screen so that we w 
cornparch t h Q m simultnneouslv, At this point we decide that 
PLAN3 is inferior to the others, as is PLAYS, so we delete 
them. We present the remaining floor plans to our client 
and come to an agreement that a slight modification of PLAN4 
will best suit his needs. 

(10) We now give the name FLOORPLANSKETCn to PLAN4 
SO that we ran identify it more easily. Incidently, each 
time ue craate an obiact or access on%, the system 
automatically retains the date of creation, the creator, and 
the last tims it was referred to. 

(11) We begin to firm up the sketch. Ue indicate 
which lines to straighten, possibly also indicating that 
this one is a standard interior wall of type “SIIw34” and 
that one is an exterior wall which will be finished vith 
redwood siding, etc. 

(12) iie ask for the square-footage of the bedroom, 
and th? system responds that we have yet to give sufficient 
specifications as to the lengths of the walls. so 
rectifyinq our mistake, we hegin to give dimensions where 
required. As we do so, the picture on the CRT changes to 
reflect the proper sizes. Now we ask for the area of the 
bedroom ; think better of it, and ask for the square-footage 
in all the rocms, 

(13) At this point we should probably confer with 
our client to be certain that the current floor plan still 
reflects his wishes and that the sizes of t.he various rooms 
are ad3quat3. He indicates that the living room should be 
somewhat longer, perhaps bg 5 feet, and that the bedroom 
should also he enlarged slightly. We remind him that this 
vi11 increase the cost of his house as well as its size. 
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(?4) We therefore lengthen the living room by 
asking the system to move the wall 5 feet and to move the 
bedroom walls around slightly as well, 

(15) This nou is a firm floor plan and for easy 
reference we give it the name FLOORPLAN. 

(16) We now ask the system to rotate the floor plan 
so that we can see it in perspective. 

(17) Nou we ask the system to extend all of the 
walls 9 feet vertically. 

(18) Everyplace that we had specified a vindow on 
the floor plan is now a pair of "tic Barks" in the walls. 
In each case, we now specify a window opening, perhaps 
giving additional details such as sliding, louvered, etc. 

(19) We go on to specify each of the doors in the 
house and each of the passageways, 

(20) At this point it may be advantqgeous to 
examine the house in more detail. For instance, we may 
rotate it to see what it looks like from each side, obtain 
perspective views, and "walkn through the house, getting an 
idea of what each of the rooms vi11 look like. 

(21) Nov we add a roof; the client has decided upon 
a crushed rock and tar paper roof, flat, uith a moderate 
amount of overhang on the southern exposure to provide shade 
in the sumBer. 

(22) Ye are now ready to begin specifying the 
structural aspects of the house: the exact type of 
structure for each wall, the ceiling, the roof, etc. We 
anst occasionally move studs or other supporting members 
slightly in order to ensure structural integrity. FIZOR 
experience we know that there will be no undue loading on 
any part of the house, but we ask that the structural 
analysis routine be run to verify this. 

(23) So long as we are running analysis routines, 
we w uish to ccmpute the cost of the duelling on a cubic 
foot basis, the cost of the structural wood used, and so 
forth, This will help to give us a feeling of how close we 
will be to the specified dollar limit. 

(24) We next specify the foundation and footings, a 
poured concrete slab; and we nay also specify the driveway, 
sidewalks, curbing, and proximity to the street. 
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(2s) We are now ready to install the major plumbing 
systems, The water main on the street is at a given 
location. We indicate a main running to the house, decide 
vhere the vater heater will be (in a closet in the kitchen), 
and route the main there, We also give the sewage pipe 
routing informaticn. 

(26) Next we indicate where the plumbing should go 
to service the kitchen and bathroom. Ue may also make 
modifications to meet certain building code requirements. 

(27) We must also specify where sinks, shower, 
bathtub, lavatory, dishwasher, and washing nach ine 
facilities are to be placed. 

(28) Having completed the plumbing systems, we now 
begin to specify the electrical system. Power comes from 
underground at a given location: we specify a conduit near 
the plumbing lines running to the house. 

(29) Ye next bring the power lines up to a circuit 
box, then run main lines to each of the rooms, 

(30) 'Je insert electrical outlets at convenient 
places. Now ve specify what kind of lighting fixtures will 
be in each room and run power lines to them. 

(31) We indicate where the refrigerator, the 
electric range, and electric heating unit will be. We give 
the wiring necessary for them- 

(32) At this point we may again wish to examine the 
house from several points of view, perhaps wandering through 
the various rooms. 

(33) Ue continue the design, specifying the phone 
line into the house and the extensions the client wishes in 
the kitchen and bedroom. 

(34) Next we indicate where the heating ducts will 
be. The house vi.11 have a forced-air electric heater, 
centrally controlled, with outlets in each room excepting 
the kitchen. The control box vi11 be in the living room. 
SO we must specify some additional wiring for it. 

(35) At this point we could ask the system for 
detailed blueprints which may be given directly to the 
various contractors and sub-contractors for use in 
construction. 

(36) Althcugh our client will furnish the house 
himself, it is a mall matter to insert beds, dressers, 
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couches, etc. in crder to show him how his house vi11 
appear upon completion. Together, we IlOY examine the 
finished Flans, Obtaining his final approval, construction 
can begin. 

6-4.4 The system's responses 

The architect may wish to include his list Of 

requirements in the system so that he may readily refer to 

them as the design proceeds. He may do this by ent eting 

them as a (text) file to which he might give the name 

REQUIREtlENTS. 

(1) fhe leg-in process will reinitialize the GRAPL 
system to the version which the architect last used, The 
architects's system is viewed as a continuing process which 
is suspended whenever he logs out and is resumed when he 
loqs in. 

(2) Tdentification of the project's and client's 
names secve to establish a primary context for future 
actions in the system. The architect may change this 
context at will, For instance, if he is doing several 
designs at the same time, 

(3) Rather than forcing the architect to learn the 
system in its entirety, we construct several subsystems with 
which he may learn to interact. One such subsystem is 
**sketch mode," in which he may deal with the CRT as if it 
were essentially a piece of paper. This mode is somewhat 
similar to the normal mode of interaction of SKETCHPAD, but 
does not force all the automatic line straightening and line 
connecting fe.aturrs -- these are options the designer may 
choose to use or net as he prefers. 

(4) This sketch vi11 look as if it were made on 
paper with a charcoal pencil. 

(5) Each line he sketches is retained as an @*analoq 
patch.= 'Ihe architect may refer to each by givinq it a name 
or by pointing at it with the stylus, mouse, etc. 
Enclosures are likewise given names at the option of the 
architect for easy reference. Enclosures are represented by 
trees in the data structure, 
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(6) Movement of an enclosure is reflscted by a 
cbanqe in the tree structure which represents the current 
state of ths hause. 

(7) Naming the sketch corresponds to giving the 
tree a name, It may already partially exist in secondary 
storage, but the naming operation will most probably have as 
a side effect the cutputing of the structure. Erasing the 
drawing probably will force the outputing of same to 
secondary storage, If the structure does not already have 
an external name, the system will ask for one. The name for 
an unnamed object is CURRENT. 

(8) Renaming is obvious. Creating a data structure 
similar to another is a tree copy, followed by updates on 
the new copy. 

(9) At any time we may specify portions of the 
screen as windows, In each window we may request objects to 
be displayed. This display does not affect the data 
structure in any way. Each window is handled by another 
instantiation Df the '*window demon." The contents of each 
window may also be manipulated. If this manipulation 
results in a change in the actual structure of the object, 
then it will t-3 reflected as a change in the object’s 
representation in the da la structure. 

(10) This multiple naming permits us to access 
objects (drauings) by name, by date, by time of last use, 
etc. In addition, WC? may always look at the current 
dictionary of okjects in the system (selected by client, 
architect, date, etc.) if we forget uhat we have already 
stored away and what its name is. 

(11) This straightening process is actually one of 
redefinition. Each an alog patch is replaced by the data 
structure reflecticg its neu definition. The additional 
information as to what kind of wall, cost, structure, and so 
forth goes in as attributes of the structure, 

(12) Asking for the floor area of the be:;,“:: 
corresponds to running an attribute system routine. 
may be run at %ny time. If the current information in the 
data structure is insufficient to calculate an exact ansver, 
th+? system will request that the missing information be 
supplied. 

(IQ) This requsst to th+ system is effected by 
changinq the length of the walls of the livingroom and 
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bedroom. The system uill automatically adjust the display 
reflecting the new dimensions. An alternate manner in which 
this ray be done is by selecting the appropriate vall and 
asking the system to move it following the stylus, mouse, 
etc. The current dimensions of the vall are displayed, 

(15) We rename the data structure. 

(16) Rotation as vell as all other affine and 
perspective transformations are handled as attribute system 
routines which are supervised by the'display deaons. They 
do not cause any change in the data structure. 

(17) This important action changes our 
tvo-dimensional Elan into a three-dimensional object. It 
forces a redefinition of each wall, closet, opening, or 
enclosure, 

(18) Specifying the vindovs is a matter of 
replacing the definitions of the appropriate valls by the 
new data structure which has the selected vindov inserted in 
it at the specified position. The type of window, wall, and 
so forth are simply attributes of each, respectivelf. 

(19) Doors are special in that ue may ask the 
system to shov the space swept. (This is not the usual mode 
of display-) Passageways are reflected by the attribute 
" access. " 

(20) Again, these operations are handled by the 
display demons as attribute system routines. No data 
structure changes are made. 

(21) Addition of the roof insects the appropriate 
objects into the data structure, complete with attributes as 
to type, size, and other pertinent data. 

(22) ?his operation is essentially an elaboration 
of the attributes already in the data structure, Specific 
types, number of studs, kind of wood, and so forth are all 
inserted as attributes. Additionally, we 0ay exanine walls 
now in much greater detail, seeing cross-sections if we 
wish, 

(2.3) Here ve are running attribute system routines. 
If ve request a computation with which the system is 
unfamiliar, we may specify how to compute it and give it an 
appropriate name. The new routine will henceforth he 
available to the architect at all future sessions. 

(24) These operations are elaborations of the data 
structure and tbe addition of attributes, 
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(25) Phe addition of plumbing is similar to the 
specification of the structural details of the building. 
Additional data structure is created, attributes added: now 
the wall cross-sections will have plumbing shown as well as 
structural members. 

(26) 

(27) 

(28) The electrical system goes in similarly to the 
plumbing, 

(29) 

(30) Thorn are additional details in each room. 

(31) Additional details within each room are 
additions to the data structures corresponding to same. 

(32) 

(33) The communication system goes in similarly. 

(34) Heating and ventillation, similarly. 

(35) Rlueprints go out from the CRT on film or onto 
a plotter. This is handled by the display demons. 

(36) Additional modifications to the house may be 
made at any time and new blueprints produced. 
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Some additional constructions 

PAGE 150 

This section shows a small selection of 

illustrations generated while testing the GRAPL system, 

In Figure 6.5.1 we see the side view of a compact 

"Gfl-type* automobile. Figure 6.5.2 shows the front view, 

In Figure 6.5.3 we have increased the depth so as to show 

the entire automobile: and finally, in Figure 6.5.4, ue show 

the automobile in perspective. 

We d2signF,d a contemporary building using the 

Stanford University Artificial Intelligence Laboratory as a 

model, as shovn in Figure 6.5.5. In Figure 6.5.6 we brought 

the building closer, so as to be able to check some details. 

Then in Figure 6 .5.7 we rotated it into a perspective view; 

and in Figure 6.5.8 we replicated the building six times and 

created a "tract hcne" style environment. 



Figure 6.5.1’ Automobile side view Page 151 



Itigure 6.5.2 Automobile front view 

. 

Page 152 

, ~AMI nulof -- - -..r nnoi ttvw:.t nir 
YrN!l n WII. NIL 01 n.!,r -1 n,.*,E5 

lL~v1.i.L J.L Dtm! 3 5l’Ll I7 on 12 DIGYits 
D!i 7.0 



Figure 6.5.3 The entire automobile Page 153 

r 
Iinn, twllt noot t twst nrc 

GlRAIPlL 
lw’l n “IL NIL 01 C.!iL- I n, tt “5 
IwIlt! 3 51’11 1.2 on 1 z nt Iit’ I s 

DS 7.n 

I 
-9 . r x 



Fi~'-ure 6.5.4, Automobile in perspective 
. 

Page 154 

NiSII WI IIN! IlUOl lCnN!iLnl, 
YIN’I D NIL N I I. DI R.!.I-I HI IL&-s 
flw? 3 WLI 12 l-h-l I2 IN IXI 15 

DS i.” 



Figure 6.5.5 A con ten;)orary building Page 155 

NRnC tJX!!N I iDDC Tl?nNsLniE 
UDI!I 0 YII. NIL or e.st-I tKlEKS 
DRDR 3 SPLI I2 OR I2 DCGREES 

OS 2.9 



:i:i&lre 6.5.G A bit closer 

Nnl?L fllXWN rtoL;r ~1m5Lni~ 
tm!I u NIL NIL Dl O.O~‘JS!W99 III. lf RS 
OPDR 3 SPLl 12 cm I2 DEGCLES 

DS 2.0 

: 

Y 

.’ 
2 

.f 45 , :. ,.‘..\ 

X 

._ 



Page 157 

NnnE HODRNR IKIDE II!nNSLnlr 
YOEID NIL NlL 01 O.SL-I I lCrCRS 
OROR 3 SPLl 17 LXl 17 DtGRCES 

DS 7.8 



Yigure ~3.5.8 The lyLiild-in~y 2.11 a' "tract home" Page 158 

. . : 
‘. 

: 

- 

Y 

: i? 

x 

“.. A? m’.‘. :. l,’ 

-c. 



A STSTB?l POE LARGE STRUCTURE GRAPfiICS PAGE 159 

CHAPTLB 7 02:38:08 08/04/75 

7 System Performance 

UC? present a summary of GRAPL's observed 

performance based on the examples of Chapter 6 and various 

other experiments which we have performed, We begin by 

discussing those aspects of the GRAPL system which are of 

especial interest because of thsir efficiency. Then we 

briefly summarize ether aspects of system performance. 

7.1 GRAPL efficiencies 

The efficiency of the GRAPL system is noteworthy in 

three distinct (but related) areas: 

11 Space: the system utilizes an efficient 
representation for its data objects, 

2) Time: tha system includes algorithms for 
accessing data efficiently. 

3) Human: the system is efficient for the user -- 
it is easily learned, simply maintained, and 
quickly oodif ied. 

It is the combination of these factors which makes 

GRAPL into such an extremely poverful and versatile system. 

7.1-l Space efficiency 
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GRAPL's data structure is particularly efficient 

for representing objects of the physical world, Remembering 

from Chapter 4, the dual data structure consists of a 

heirarchy of objects plus a heirarchy of cubes (consisting 

of 10 levels, with 64 subcubes per cube). 

The use of heirarchy to represent objects -- the 

use of masters and instances, templates and usages, etc. -- 

is ccmmon to most sophisticated graphics systems, and GRAPL 

realizes the same savings by its use as a0 other systems. 

This saving is expcnential in that one trades an exponential 

amount of storage for a corresponding amount of processing 

time as the depth of the heirarchy increases. 

Tn GEAPL, however, rather than fully paying this 

exponential expense, only those cubes within the visual 

neighborhood are actually brought intc core, and it is only 

those visible objects within these cubes which take up 

memory space. 

For example, let us consider the description of an 

R-story building of approximately 500 square meters area and 

20 meters height. The following cubes will be required in 

order to describe the contents of the entire structure with 

the resolution of a single room of about 4 cubic meters: 
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Cube Order Ro. Req'd 

O(l0) - 1 
O(9) - 1 
O(8) - 1 (the whole building fits here) 
O(7) - 8 (16 meter cubes) 
O(6) - 175 (4 meter cubes) 

* To display 1 room will require S/186 of the total 
cube storage, or about 2-69 percent- 

* The amount of cube storage is independent of the 
complexity within the room. 

* Only that portion of the cube data structure 
actually would be brought into core for processing. 

* This saving is realized before the heirarchy of 
objects within the displayed room is investigated. 

The number of cubes required to represent any 

structure is a function of l), the gross size of the 

structure; and 2), the resolution desired. The maxiauia 

number of primary cubss required to represent a structure 

which is no more than k meters on a side may be given by: 

C = 11-m m = ain O(j) >= k 
1 

The O(m) cubes are the smallest ones which mav 

properly contain the given structure. 

To gain the resolution of an r-meter cube, the C 

cubes above are adequate. However, if one wishes to make 

optimal use of memory, one sb'ould partition the 0 (6) cubes 

aown to ths r-meter size. This would require no more than 
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an additional R cubes, where R is given by: 

n-l 
. ----- 

. 
* 

R=r 
* 

l -- 
i=r 

(where [x] = ceil(x)) 

The total number of cubes in the representation is 

then no more than C + R, and to examine a single r-meter 

substructure uith full resolution would require only S cube 

accesses, where I = 11-r. The fraction of the total cube 

structure actually brought into core would be at most 

s/ (C+R) . 

Each cube represents four words of memory: three 

for the base position vector, and one telling the order of 

the cube. 

Bodies ana objects are represented in more or less 

traditional ways, as described in Chapter 4. The number of 

words required to describe a structure is given bp: 

BODY OBJECT 

name 1 name 1 
enclosing box 6 enclosing box 6 
position vector 16 positicn vector 16 
V vertices 3*V datail flag 1 
E edges 2*E list of L L 
P faces of D*Z objects 

D edges 
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Bodies grown in size linearly in vertices and 

edges, and quadraticly in faces, Objects are linear in 

their complexity -- the number of suhobjects. 

7.1.2 Tine efficiency 

GRAPL is especially efficient in processing its 

data structure for a variety of reasons. 

Access to objects within the visual neighborhood is 

pruned exponentially by the cube data structure, independent 

of the complexity of the structures within the cubes. That 

is, one realizes the same exponential saving in access time 

as one does in memory space. 

GRAPL has the ability to compile both objects and 

cubes, thus trading increased memory for decreased 

processing time. The amount saved is proportional to the 

conplexity of the object being compiled. This saving also 

is exponential , growing with the depth of the heirarchy. 

Assume that we wish to display every room of the 8ystory 

building simultaneously (inpossible due to hardware 

restrictions). Then the system Bust access all 186 cubes. 

Rouever, 

if we coapile to O(7) - only 11 cubes accessed 
if we compile to O(8) - only 3 cubes accessed 
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if we compile to O(9) - only 2 cubes accessed 
if ve coapile to O(10) - only 1 cube accessed 

Additionally, the system permits the user to 

control the level of detail displayed. This is reflected in 

the amount of data structure -- both cube and heirarchical 

-- which actually is accessed. This means that independent 

of structural complexity, if the visual neighborhood is of 

sizc3 N, access cutoff will occur at N/(lO**C), where C is 

t.h3 cutoff factor. T'hus, if ve vere displaying the entire 

R-story building fcom the outside and N was slightly larger 

than the O(10) cube, with C=3, only 3 cubes uould be 

accessed. In general, as C approaches 1, savings increase 

by 54**C cubes. 

7.1.3 Human efficiency 

Articulating the human efficiency is extremely 

difficult in the absence of an actual demonstration. 

Several factcrs should be considered: How easy is it to 

learn to use the system? How easily may be the system be 

changed -- the command language, the command semantics? BOU 

much effort must be expended to implement a graphically 

oriented project? Hov much for a non-graphically oriented 

project? How general is the system? How flexible? How 

'*natural*@? It should be clear that the answers to most if 

not all of these questions really are subjective; they 
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cannot be measured objectively. 

Any modification or extension to the GRAPL syster 

requires some understanding of the system's internal 

organization, We will attempt to give an impression of the 

magnitude of effort necessary to accomplish any significant 

modification. Assuming that the functional characteristics 

of the modiffcation have b-een determined, the following must 

be done: 

Decide upon the syntax to be used by the user to 
specify the necessary comaands, faplementation 
consists of modifying only three lines of code. 

Implement the semantics for the extension. This 
will be the single major coding effort, Using 
the GRAPL uniform naming conventions, demand 
loading of all appropriate routines will occur 
automatically, as will garbage collection, 

For example, let us consider the implementation of 

a package for graphing rational functions of a single 

variable. Re must make decisions regarding placement of 

axes, scaling, labeling, how to specify the function and its 

domain, what to do about undefined values, and so forth. 

Next we must decide how to invoke the package, and what 

commands we will use to specify each of the above items. 

Several alternatives present themselves: the package may be 

completely self-contained, using the GRAPL implementation 

language support alone: the package may be partially 

self-contained, wing some of the higher-level GRAPL 
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functions; or the package might be implemented almost 

totally usinq GRAPL high-level rout.ines. 

As an exercise, we implemented such a graphing 

package using each of the three approaches (See Chapter 6). 

In each case, the display package coasisted of less than a 

page of coda, plus about half a page of initialization 

routines. Moreover, arbitrary functions of a single 

variable would be accepted, with no restrictions upon the 

function's actual form: an arbitrary GRAPL routine was 

acceptible: it just had to return numbers. 

If one wished to implement an animation package, 

the procedure would be similar. Most probably the best 

approach would be to implement it using as many of the 

predefined high-level GRAPL support routines as possible, 

plus the operating system simulation routines. The most 

strenuous coding effort would be in specifying how one 

wished the displayed objects to change over time. 

A still more ambitious effort would be .the ' 

implementation of a circuit analysis package. Here most of 

the coding would go into deciding vhat kinds of circuit 

elements to include and how they are to be simulated. 

7.2 Kernel syster 
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In this and the followinq section we present a 

description of various aspects of the system. 

Ihe kernel system requires slightly over 55K words 

of memory plus 50 disk blocks. Host commonly, the system is 

used in under 75K of core, depending upon the complexity of 

the structures being described. True processing tiae is 

extremely difficult to specify due to the nature of the 

timesharing environment in which GRAPL is implemented. 

Processing time for most commands is on the order of 0.1 

second. The display or compilation of large structures may 

take times on the order of S-10 seconds. Effective 

processing time consists of these minimums pIUS the 

timesharing system load. 

7.3 Operating system simulation 

The operating system simulation requires 

approximately 1K of memory. When running vith no competing 

timesharing users a full day's siaulation requires 

approximately 40 seconds elapsed time. This varies, of 

course, depending upon the simulation time interval between 

events. The code occupies about three-fourth's the space of 

a comparable simulation in a language such as SIUULA, 
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CHAPTER 8 02:38:08 08/04/75 

Conclusions and Suggestions for Further study 

In this chapter we present our conclusions based on 

over two years' experience with the GBAPL system and suggest 

areas for further study. 

8.1 GRAPL's successes 

The most notable GRAPL successes include the ease 

with vhich the system may be modified, the dual data 

structure reprssentation, the parallel system design, and 

the uniformity of implementation. GRAPL demonstrates a 

uniform solution of a set of problems in system design and 

implementation. 

5.1.1 Simultaneous computations 

The desiqn process more and more requires the 

calculation of various quantities and the deduction of 

performance of a wide variety of interrelated objects 

(through simulation, if no other means is available). GRAPL 

proviles an environment where these calculations, 

simulations, deductions, and models all may be carried out 
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simultaneously with the design process. Moreover, in GBAPL 

it is precisely this capability that yields such a 

responsive, attractive syste*. 

8.1.2 Notification and "posted" actions 

Additionally, not only is it possible to calculate 

and compute. in parallel with design, but it is possible to 

request GRAPL to notify the user when an arbitrary condition 

in the design process becomes true, and automatically to 

take some specified action. For example, cost overruns 

become obvious immediately, therefore; and corrective 

actions may be made at the time the error is made, 

8.1.3 Variations 

Because it is possible to freeze GRAPL's state at 

any time it is possible to attempt variations of design 

approachas, do calculations on feasibility and the like, yet 

return to the original plan if it is desired. 

8.1.4 Easily modified command language 

The command language is quickly and easily 

modified. For most changes only a minimal acquaintance with 

the GRAPL system is required. Extensions may be of any 
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nature whatsoever; and one has the advantage of a general 

purpose algorithmic language at one's disposal uith which to 

implement thsm. 

8.1.5 Efficient access into data structures 

Although the hidden line problem has been solved 

for various classes of structures, it is not necessary to 

apply any restrictions to the types of objects displayed in 

GRAPL, nor is it necessary to apply hidden line/surface 

algorithms to the entire data structure in order to create a 

more pleasing view, 

8.1.6 Portability 

The GRAPL system is completely portable. The basic 

requirements for the implementation on any computer system' 

are the existence of a LISP interpreter or compiler and a 

direct view storage tube type display. If one uefe 

intarested in utilizing different display devices, plasma 

panels for example, th9 modification of GRAPL to produce 

trus display files is minor. 

8.2 GRAPL's shortcomings 

GEI\PL has several shortcomings, as do most large 
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systems. Since hindsight usually is so much better than 

forsight,these deficiencies halYe become more and more 

apparent with time, and now "haunt" us. 

8.2.1 Respcnse time 

-The major shortcoming of the system is in its 

extremely slew response time. This primarily is due to tuo 

factors: One is the fact that the system is interpretive, 

and the particular time-sharing environment in which it was 

i mpleasnted. The other shortcominq is the file environment 

of the time-sharing system. 

The response problem might be partially solved in 

one of two ways. Compilation of the major GRAPL routines 

vould yield a factor of 5 to 10 in speed. Dedication of a 

portion of the system to GRAPL, including locking the GRAPL 

system into core to eliminate the necessity for swapping 

could yield an additional factor of 5 to 10, Were one able 

to implement the system with a dedicated machine with no 

time-sharing overhead, the performance of GRAPL uon'ld be 

comparable to that of most current interactive systems. 

8.2.2 Sy.stea command language 

The command language was developed as the GRAPL 
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system took shape, and thus shows the influence of ngrouth.~ 

For the most. p?rt, it is uniform, deals with constructs in a 

consistent manner, and is relatively natural, However, the 

addition of a light-pen capability would greatly enhance the 

ability to itfentifv parts of objects and parts of 

structures. The mcticn commands are adequate, but should be 

implemented with some form of joy stick (or graphical 

equivalent). 

The command language is relatively *@unforgiving" in 

that if a command is ill-form& in any way, the system will 

comment to that effect and abort processing, What would be 

more desirable is a more sympathetic and helpful facility -- 

one which attempted to aid the user in the correct 

formulation of what he is trying to say. 

R.3 Suggestions for further study 

The process of research never quite ends: there 

always is .another approach to be investigated, an 

altarnative not taken earlier (or not possible earlier), or 

new ideas to incorporate. In this section we present some 

possible av+nuds for furtber research which ue believe it 

would be fruitful to pursue. 

8.3.1 A proposed sketching command language 
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He wish to accomodate the designer with full 

sketching capabilities. Essentially what we propose is to 

simulate "ideal paper, " but retain the information in a very 

different form. The sketching operations are of course 

device independent, but there is an explicit assumption that 

one would use some kind of "artistic" input hardware such as 

a stylus, light pen, mouse, or joy stick. Furthermore, 

corresponding to the operations of erasing, redrawing at a 

different scale cr point of view, and so forth, are Sketch 

Mode commands achieving the same results, _ 

The Sketch Mode comaands we propose initially are: 

SKETCH - Track the input device and trail 
a line 

ERASE - Erase along the track uith given 
width 

SURROUND - Enclose ,the designated lines and 
treat them as a unit 

COPY - Copy the designated object to a new 
position, orientation, and scale 

MOVE - Hove the designated object to a new 
position, orientation, and scale 

SCALE - Lengthen or contract lines, scale up 
or scale doun objects 

MOVE DESTRUCTIVE - Hove the designated object to a 
new position, orientation, scale 
replacing what was previously there 

EXPAND - Create a hole into which new objects 
may be placed 

SHOOTH IT - Smooth lines, make them straight, 
arcs, or elipses, etc., connect near 
vertices, force parallelism, 
perpendicularity, angularity, and 
so forth. Essentially this is a 
map into the SKETCHPAD domain 

RUBBER BbNC - Rubber band line drauing 



A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 174 

It should be noted .that with these few commands we 

already have a system uhich is reasonably sophisticated in 

comparison to ordinary paper. Yet we have retained the 

freeness of expression and the lack of constraint of usual 

drafting systems. 

The manner in which we propose to store sketched 

information is of some interest. The system uses objects 

which we call "analog patches," These are essentially small 

matrices of qrey-levels which represent the lines and 

surfaces described. Obviously, the store would overflou 

quickly if one attempted to create too large or complex a 

structure. But this is precisely the tradeoff between 

generality ard flexibility versus program and data size. 

One does not ccmsonly sketch the most detailed objects at 

the saae tins as one blocks in the overall size and shape of 

a structure; so, YE feel relatively secure in providing this 

capability. Whenever the system finds that the display time 

orI in general, the processing cost for much sketched 

information becomes too high, it should begin to smooth 

things by itself and might ask the user to do so as well. 

And of courset the user would always have the option of 

converting his sketch into a more final formt qreatly 

reducing the processing cost. 
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8.3.2 Shadows, grey-scale, color, texture 

The addition of shadow using one or more simulated 

light sources might be very valuable for structural designs 

where the effects of the sun play a major role in the 

heating and cooling requirements of a building, Research is 

currently being pursued in this direction both by the 

University of Utah and independent architectural firms such 

as skidmore, Owens, and C!errill, 

Tha uses of grey-scale and color have been 

investigated in some detail, especially at the University of 

Utah. Perhaps the most advanced digital color pictures have 

been developed there, Incorporating the results of that 

research might easily be done. 

The display of texture is a current area of 

research in graphics. It is a rather difficult problem and 

not too much success has been obtained to date. 

8.3.3 Stereo, erpi0aea views, curves, and surfaces 

The qaneration of stereo views for display on some 

stereoscopic device is currently available in GRAPL. One 

might vish to add ,the user 00mmands to facilitate this 

display. 
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Exploded views are. especially useful in the 

construction of aggregates of complex parts. The addition 

of this capability would necessitate the nodification of the 

display ana drawing routines. The theory behind exploded 

view generation is well-known. This addition would present 

little difficulty. 

Addition of arbitrary curves and surfaces v0ula 

involve the creation of some additional data structures, A 

careful series of extensions to GRAPL in this direction, 

incorporatinq the most recent works of Coons, Forrest, and 

Bez ier, might he acne. 

8.3.4 Solution ty analogy 

The solution of problems by analogy to already 

known soluticns (cr probleas) is one of the areas currently 

being investigated by workers in Artificial Intelligence. 

This certainly is a capability one would wish to have in an 

intaractive environment. The user then could specify the 

computation of his various requirements and constraints by 

either giving their explicit formulas (or programs) or by 

referring to already known formulas (or programs) and 

specifying how the new computations are similar or different 

from the old, 
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0.3.5 Various other partitioning algorithms 

The current cube partitioning algorithm certainly 

is not optisal, It was chosen primarily on the basis of 

ease of implementation and the fact that it seemed to meet 

' our requirements at the time. 

Ue would like to do a series of experinents 

implementing partitioning algorithms based on: 

1) A better measure of the complexity of the 
structure of the cube 

2) A dynamic complexity measure, rather than 
2 static measure 

3) An alqoritha uhich was related to the 
cube’s usage, rather than to its 
structure, and a combination of both 
usage and structure 

4) An algorithm based on the size of the 
display neighborhood 

8.3.6 Other measures of an object's complexity 

The complexity measure currently used in GRAPL is 

merely a count of the number of subobjects in the enclosing 

cube at the first description level. Complexity in the real 

world certainly is proportional to t-he structural complexity 

of objects, but it would be interesting to investigate 

measures based on cost, size, volume, ease of construction, 
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time for construction, and other objective and subjective 

values. 

8.3.7 Clipping and hidden line/surface removal 

The addition of interactive clipping and hidden 

line/surfaca removal would be of special interest in 

producing more pleasing displays, rather than including it 

in the post-processor as is currently done. 

Of course, the aost desirab.le approach is to 

purchace or build special purpose hardware for these tasks. 

However, if one Gished to implement these functions in the 

display software, the most rewarding route probably would be 

to implement special commands for display in clipping, 

hidden line/surface mode. Alternatively, it would be 

extremely easy to describe the new display algorithms, and 

then load them into GRAPL at will. One can conceive of a 

collection of diEplay algorithms: GRAPL using the one 

specified by the user. An excellent summary of current 

softvare techniques for hidden surface removal may be found 

in a recent Computer surveys article by Sutherland, Sproull, 

and Schumacker <SS 74). 
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