
SLAG187
UC-32

A SYSTEM FOR LARGE STRUCTURE GRAPHICS*

BARYWILLIAMPOLLACK

STANFORD LINEAR ACCELER!4TOR CENTER

STANFORD UNIVEE?SITY

Stanford, California 94305

PREPARED FOR THE U.S. ENERGY RESEARCH AND DEVXLOFMFXC ADMINIST~TION
UNDER CONTRACT NO. E(O4-3)-515

Manuscript Completed August 1975

Printed in the United States of America.. Available from National Technical
Information Service, U.S. Department of Commerce, 5285 Port Royal Road,
Springfield, VA 22161. Price: Printed Copy $8.50; Microfiche $2.25.

*
Ph.D. dissertation.

!

i

(c) Copyright 197s

bY

Bary William Pollack

ii

ABSTRACT

In this thesis we present the design for a system

with the Fotential for solving .real-world large structure

graphics prcblems, Such problems are continually

encountered in industry. Although present-day techniques

for drafting, architectural drawing, airfoil design,

automobile and ship design, and so forth are to some extent

automated, these are mainly areas which are approached with

traditional and mechanical methods.

This research: 1) demonstrates the practicality

and power of using a parallel systems approach to graphical

system design, 2) develops a dual data structure which is

especially efficient in dealing with large structures, and

3) unifies a variety of techniques currently available in

several disciplines.

Tha culmination of this research has been the

implementation of the GPAPL system. Additionally, we have

developed two languagc?s: the GRAPL implementation language

in which the GRAPL system is actually implemented, and the

GRAPL command language, which forms the user-system

interface.

GRAPL provides a system with vhich one may design a

structure of major complexity. It is readily tailored to i i
various user requirements while remaining efficient in its f

real-time rn.3pons+2. And, GRAPL is capable of acceptj I E I
"advice* on hcu it mtty improve its performance.

iii

PREFACE

I wish to express my most sincere thanks to

Professor Uilliam F. Miller who continually provided

encouragement, gui-dance, and insight, and who shepherded me

through this arduous task. Without his support I never

could have completed this research. Dr. Alan Kay provided

much of the early motivation for this project, guided me

into the literature, and has always provided the

stimulating questicns, suggestions, and criticisms,

hanlf is evi.ienced throughout.

I also would like to express my appreciation

most

His

for

the advice, support, and friendship given me by the other

members of my reading committee -- Prof fessors Forest

I3askett and Ccrdell Green -- as well as to my fellow

graduate students and co-workers at the SLAC Computation

Group -- Jim George, Steve Levine, Jerry Friedman, and

Harriet Canfield.

iv

DEDTCATT3N

'This work is dedicated tc my parents,
Srynour and Evelyn Pollack,

and to my wife,
Kimberly,

withcut. whose support, confidence,
and understandinq I surely would

have given up long ago.

V

Preface iv

List of Table.5 ix

List of X

1 introaucticn 1

1. 1 Ohj?ctivw of Chir; thesis 1
l-2 Automation of design 3
1.3 i'he ust-?r interface 3
1. 4 Grnohics from a diffarcrnt point of vi,zu 6

PrOblGillS in Graphics 11

2.1 Display and computation 11
2.2 aid Ien surfaces, textures, colors, shadows 12
2.3 Visjlal effects 1 3
2.4 Ccntrol of detail 16
2.5 Context and neighbcrhoods 17
2.6 Curves Rnd surfaces 18
2.7 ?ieS3-varyinq displays 19
2. 8 Attributes 19
2.9 sketchiny 20
2.10 Defwdts' and a sympathetic environment 20
2. 11 ;iou to represent knowledge 21
2.12 Datl structures 23
2.13 A summary of our research 24

3 Survey of Related work 28

3.1 Architecture, design, and general philosophy 29
3.2 Graphics systems 30
3.3 Display algorithms 30
3.4 Sia!llation approach 31
3.5 ?:irtial application/incremental compilation 31
-i.6 Artificial intelligence 32
3.7 Syntax 32
3.8 Semantics 33

9 SYSTEM uOF LAPGE STPUCTURE GRAPHICS

T!>.;LE :I' CONTl?NTS

Chapter Paqe

Abstract iii

vi

A SYSTEM FOR LARGS STRIJCT!lFE GRAPHICS

TABLE OF CONTENTS (Continued)

Chapter Paae

3.9 Data structures 7 3
3.10 Control structures 33
3.11 Zxtensible languages 34

4 The GRAPL Approach 35

4.1 A parallel. system dasiqn 35
4.2 Duality of data and program 38
4. 3 The GEAEL data structures 39
4.4 Splitting cubes u4
4.5 Display algorithms 46
4.6 Secondary storage algorithm 48
4.7 Selective incremental compilation so
4-a qeighborhoods and constraints 52
4.9 Giving GRAPL advice s3
4.10 Giving results in real time 53
4.11 What is a wall with windows? 56
4.12 What is a t8master'1? Yhat is an "instance"? s9

5 Description of the GRAPL Languages 62

5.1 The GPAEL implementation language 63
5.2 Constants 64
5.3 Identifiers 65
5.4 Lists, segments, and S-expressions 66
5.5 Indaxing 67
5.6 Specifying data structures f-58
5.7 Rindinq, fllnction definiticn, and access 68
5.8 Operators 73
5-9 Sequential control 74
5. 10 Backtrack control 78
5.11 Prccesses and process control 79
5.12 Expressions 87
5.13 Programs 88
5.14 The GKAEL evaluator 89
5.15 The GRAFL system command language 91

6 Sevaral Examples 94

6.1 Walking through a building 95
6.2 A simple operating system 116

vii

A SYSTEP FOR LARGE STRUCTURE GRAPHICS

TABLE OF CONTENTS (Continued)

Chapter Page

6.3 A simple graphing system 119
6.4 suildinq a house 125
6.5 Some additional constructions 150

System Performance 159

7.1 GRAPL efficiencies 159
7.2 K?rnal system 166
7.3 Operating system simulation 167

9 conclusions and Suggestions for Further Study 168

8-l GRA?L's successes 168
a.2 CRAPL's shortcomings 170
8.3 Suqgestions for further study 172

9 Biblicqraphy 179

viii

LIST OF TABLES

Table Page

2, 1 GRA?T.*s mr>st significant featuror; 24
2.2 A?ditiqnal advant.ages 25
2.3 Yhat's new in GRAPL 26
2.4 Tmplementation difficulties 27
5.1 The GRAEL evaluator a9
5.2 Command language summary 92

c

ix

LIST OF ILLUSTRATIONS

Figure Page

6.1.1
6.1.2
c-1.3
6.1.4
6.7.5
6.1.6
6.1.7
6.1.8
6.1.9
6-l-10
6.1.11
6.1.12
6.1.13
6.1.14
6.1.15
6.1.16
6.1.17
6.1.18
6.3.1
6.3.2
e-3.3
6.3..
6.4. 1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.4.7
6.4-8
6.4.9
6-4.10
6.4.11
6.511
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6-S. a

1 kilceeter away
The 30'th story
The 303th story
The 3O'th story, still closer
Increasing the level of detail
Just inside the building
Approaching the desk and chair
A lateral view
Thg file, desk, and chair
The desk and chair alone
Zooming in on the left
The three drawers
Increasing the level of detail
Closer still
The pyramid appears
Uithin the drawer
Closer aqain
t8GRAPL*1 appears within the pyramid
Y = (x+30) (x-6) (x-30)
Y = (nts(x) + ab) / (x*x + h*b)
Y = {x mod 24) (x mod 24 + a - 12)
y = (x+35) (x+5) (x-5) (x-35)
Floorplan t 1 - a simple hcnse
Floorplan #2
Floorplan 63
FlQorplan X4
Floorplan #5
Floorplan rC6
Floorplan X4 modified
Ploorplan t4 in perspective
Floorplan iI4 in perspective
Floorplan #4 with interior from the top
Floorplan 44 with interior in perspective
Automobile side view
Autcmobile front view
Ths entire automobile
Automobile in perspective
A ccntemporary building
A kit closer
Th,? huildinq in perspective
The huildinq in a "tract home'* setting

98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
121
122
123
124
139
140
14 1
142
143
744
145
146
147
148
149
15 1
152
153
154
155
156
157
158

X

A SYSTFM FOR LARGE STRUCTURE GRAPHICS PAGE 1

1

CriAPTER 1 02:38:08 08/04/75

Which virtues of a computer-based graphics system

are attractive tc an architect 31: an urban planner? why

should a designer use such a system? Obviously, the savings

made in the au+omation of the drafting process alone are

inad+q!late rdasons for choosing a computer-based svstsm.

Computer graphics has th.5 potential fcr offering designers

t he following: a drawing medium better than paper -- more

flexible, 0 f higher resolution, more easily edited; a

display medium superior to paper -- dynamic perspective,

three-dimsnsicnal rt?presentation, translation, rotation,

scale, etc; an assistant who "understands" and t~remenhersm

the class of problems under consideration; instant

accsssibilitp, Permanent storage of notes and designs: the

ability t0 perform design-related calculations

simultaneously with the design process: the possibility of

tryinq out several alternative designs at small additional

cost; seeing hc>w t.hese look, their expense, length of ?ime

for construction: acd much more.

1.1 Objtzc tivos of this thesis

A SYSTElY FOR LARGF STRUCTURE GRAPHICS PAGE 2

This thesis demonstrates the utility and pouer of

two concepts: 1) a system design which is essentially

parallel admitting recursion, backtracking, coroutines and

parallel routines; and 2) a dual data structure especially

suited for the design of extremely large structures -- these

are structures so large that perhaps only 5% to 10% of the

data can resida in core at any one time,

In addition, this thesis provides the basis for a

class of 'systems with the following characteristics: the

systems are capable of handling large data structures, are

interactive, are capable of dealing with incompletely

specified problems, have easily modified syntax and

semantics, ar3 easily and naturally extendible, and are

portable.

Research generally progresses in tuo directions:

in the development of new techniques, and in the

application, simplification, and unification of existing

techniques, This thesis is primarily a study in the second

direction.

We viev graphics primarily as a problem in system

design. Althsugh many advances recently have been made in

this field, our research offers a clean synthesis of many of

the techniques which have beon developed,

PAGE 3 '

1.2 Automation of assign

A distinction may be madt? between the terms "design

automation" and "the automation of design.81 The former

usually means the at.temFt t0 replace the designer by a

computer systeia capable Of peEfOrUIing some sr1h.set of the

usual design tasks. '*The automation of desiqn," on the

othsr hand, is an attempt to bring to the designer the

advantages cf ccaputer techniqubzs. Our goals lie in the

latter domain. We are not trying to solve the problems of

the professicnal desiqner or partially replace him: rather,

W8 are offering him tools which may enhance his

problem-solving ability.

I.3 Thsz user interface

The application of new techniques to a discipline

is governed largely by how readily these techniques lend

themselves to the specific problems which arise and by how

readily these problems may be formulated within the scope of

the new methods. It is for this reason that the user

interface is Of greatest importance, If it is too

difficult, rs:Iuires too much effort, demands too much time

to use a new approach, traditional methods will continue to

be used, ev+n thcugh they may be less powerful, less concise

A SYSTRM FO? LARGE STRUCTURE GRAPHICS PAGS 4

or less +fit.h-2t.i.c.

Iny computer design system which attempts to be

‘1 SC? f U 1 t 0 t h f? df? S i gr. profession at large should meet most of

the followiny criteria:

1) Thr system should offar a merlin m significantly

bt?ttclr than pper. It should he more flexible, natural and

easier to use, an1 more efficient for the designer to use

the COitlp~ltf2lI thar to use traditional drawing and drafting

techniques. Ihe GPAPL svstem meets these criteria.

2) Problems which are easy to solve should be

stated simply. Commands to generate the usual kinds of

drawings should be readily accessible. The GRAPL system

meets this critericn.

3) More complicated problems should grow

corresponfling to their complexity. A complicated design

might well tak.2 a significant amount of time to create, but

it should in no event take longer or cost more to produce a

complicated design with the computer system than by

traditional methods. The GRAPL system meets this criterion.

4) Th:2 basic concepts and primitives in the design

system should be natural and appropriate to the design

A SYSTEY FOR LARG,?? S'IPUCTUFY GRAPHICS PAGE 5

process. An archi+ectural dasiqner shouk? not have to learn

concepts which are not part of his profession, pather, the

computer system designer should tailor his system t.0 the

needs and requirements of the architect. To the extent of

the commands we have implemented, the GRAPL system meets

this criterion.

5) The s yst "!u should be relatively easy to modify,

not only by the system programmer but also by the user. HD

should be able to define his own constructs and give their

semantics; he shculd be able to create macros in order to

abbreviate, he should be able to change the meanings of

already defined constructs. The GFAPL system meets this

criterion.

5) The system should be sufficiently powerful so

that problems of similar types may be solved essentially by

analogy to already solved problems. The GRAPT, system does

not meet this criterion. Very serious questions arise when

one attempts to be precise about what one intuitively means

by "solving hy analogy." ?he GRAPL system has the potential

power and fl??xibility to implement analogy-solving systems

at least as ccmplex as those already in existence (the

high-school wcrd problem system of Pobrow, for example). We

have not chosen tc pursue this avenue of research although

we realize that it is especially important if we intend to

A SYSTEH FOfi LAFGE STRUCTTJRE GRAPHICS PAGE 6

intorfac2 to thn ncn-computer professsional.

7) The system should facilitate control of the

degree of detail to be used at all levels. The user should

be able to show all details, eliminate extraneous details

from a picture, compute gross costs, compute precise or /

approximate results, an.1 so forth. The decision as to the

amount of dstail and precision to be used should rest with

the user. The GRAEL system meets this criterion.

R) The system should perform in real time. The

GRAPL system only partially meets this criterion, primarily

due to limitations inherent in the particular I
hardware-software environment in which we have implemented

it. Given a dedicated machine, GRAPL would meet this

criterion.

1.4 Graphics from a different point of view

There are several ways in which our approach to

graphics differs from the traditional. Perhaps of greatest

importance is the fact that we view graphics as a system

design problem. This means that we are not bound by any

specific language, data structure, control structure, or

even hardware. Rather, we allow the requirements of the

graphical design process to impose themselves and we present

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 7

a system which reflects these requirements. In particular,

these requirements are reflected in: 1) the overall system

design, 2) the types of data structures, 3) the format in

which knowledge is represented -- as program, and 4) the

maintenance of proqrams i n interpreted rather than in

compiled form.

Many attempts in graphics primarily have been

concerned with which primitives to include in the command

language, which primitive data struct.ures to implement, and

which primitives to include in the base lang !Iage. Such

decisions are important, but these decisions need not have

the major emphasis, Graphics is essentially a modnlinq

problem -- we :;hculd he most concerned with which pcoperti':Ps

form 3 (3aod model of the world for the purposes of computer

graphics. It is iaportant to note that we were led t.0 the

development cf our particular model by the renuirements of

th? resl world (not, say, by the a priori decision that ring

structures ;irIo tetter s u it e d fOK graphics than list

structures).

The traditional design of graphics systems assumes

that a lar3e amcunt of numerical calculation is necessary

t,oth to [:todllce the pictures reauired and t. 0 complete t hc?

calcnlati.ons requested. AS a Ti?SUlt, most graphics systems

have been implemented in either a computationallv oriented

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 8

algorithmic language (such as Fortran or PL/l) or in a

machine language, Decause we view graphics as a modeling

rather than as a computational problem, OUIY choice of

I.anguage has been one which includes general simulation

capabilities. Rather than attempting to modify a language

such as SLMDLA or GPSS to include the general data structure

facilities and control structures, which we find useful in

graphics, ua havs elected to design and implement our oun

language. A dascription of the GRAPL language may be found

in Chapter 5,

After rather exhaustive search we have found that

few graphics systems have used many of the techn iqnes

currently available in the field of artificial intelligence.

The closest application has been the work of Terry Uinograd

-- hut his uork is primarily in lingui sties; he used

graphics solely as a way to observe his simulated computer

arm. The use of modifiable strategies for display and

computation, the use of heuristics for control of detail,

the representation of knowledge in the form of programs are

all new to graphics. These approaches represent a

significant advance both in providing the kind of generality

necessary for the design of usable graphics systems and in

providing tha capatility for the imFlement.ation OF truly

responsive systems.

A SYS'PEM FOR LARGE STRUCTURE GRAPHICS PAGE 9

A command language which may be fitted to a user's

requirements is an attribute of any system which attempts to

communicate with the non-computer specialist. Towards this

end graphics systems have usually allowed the user to define

macros in an effort to have a wore flexible and concise user

interface. A few graphics systems have gone further -- they

have allowed the system progransler to specify the command

language at system generation time ard then run the system

description through a pre-processing stage, We have gone

still further -- the dzsiqn of the command language has been

brought to the USeIT SO that it may best be designed to

satisfy his particular needs. The system we present has all

the necessary tools available for such an endeavor.

Open-ended interpretive systems such as ours

usually suffsr great run-time inefficiency. This is in part

due to the inherent. overhead in interpretation and in part.

due to our great system generality. We have been able to

keep this in,?fficiency to a minimum through the use of

selective an d incremental compilation. That is, those

highly utilized portions of the system which art- inefficient

may be ccmpile4 by the user (OK the systt-?m dosigner) to gain

greater ex5cut.ion speed and more compact storaqe

utilization. ;f at some time the user wishes to alter a

compiled part of the system, he need only supply an updated

interpretive version of it. Then at. his convenience he may

A SYSTEM FOR LARGE STRUCTURS GRAPHICS PAGE 10

compile his new versi,on if he finds it satisfactory.

Alternatiwely, he may try another version of his own or

return to the original version. BY using selective and

incremental compilation we retain the system's generality

and open -mdednass without yielding to the inefficiencies of

interpreted co3e.

2

A SYST!T:M FOE LARGE STPUCTIIRE GRAPHICS PAGE 11

C!IAP%EF 2 02:38:08 Of3/04/75

Ptoblzms in Graphics

Tn this chapter we discuss the problems which are

c:ncountered in graphics and point cut that subset which we

have attacked. He dt.scribe son-l2 of the kinds of

capabilities required by a sophisticated user of a computer

design system. All current systems incorporate som;? subset

of t he capabilities we list here, but to our knowledge no

system (inclodinq curs) currently incorporates all of them.

2.1 Display and computation

Two general requirements are placed on graphics

systems, These are: they must provide for the calculations

necessary to represent the structures being modeled --

structural analysis, population density, heating

requirements, traffic flow, wbat have yo11; and they must

allow for the efficient display of the objects being

designed. Although thes2 two requirements are independent,

they are linked at the data structure level. A set of data

structures. must be availaklo which lends itself to both the

requirements cf interactive display and to the mlculation

of the many parameters involved in the simulation proper.

A SYSTEM FOR LARGE STRUCTIJRE GRAPHICS PAGE 12

Two basic approaches are available: represent the

araphics information with one data structure and the

compuational information with ancther, providing a mapping

betwesn %he twa; or, represent the information for both in a

;i.ngl? d at .I :;tructore, including t.he appropriate selection

flechanisms. Thn fcrmer approach leads to a proliferation of

3ata srruct~ires and large amounts of duplicated information:

the latter 3FFKOaCti dOe.5 not.. To obtain information from

datct structurfzs cf the former approach does not usually

involve traversing t he topo1oqy of the model, whereas

obtaining information from data structures of the latter

approxh IlSU3 lly does, This situation reflects one of the

basic trade-offs between storage and speed. The greater

flexibility of the single data structure approach has led to

our adoption of it in GRAPL.

2.2 Hidden surfaces, textures, colors, shadows

'The Suppression of hidden lines and surfaces is one

of the obvious requirements of usable graphics systems. A

dssiqner must not be encumbered by the display of

information which cannot be seen in the real world. On the

other hand, it should be possible for him to request such

information if he so desires. The current implementation Of

GRAPL does not give the user the ability to remove hidden

9 5yrjrgNl FOR LARGE STFUCTIIRE GFAPHXCS PACE 13

lines an4 surfaces interactively, Howevc I:, the addition of

this capabilitv as w+ll as the addition of textures, colors,

shadows, etc., would be straightforward and i.E discussed in

Chapter 8.

Ir. many 3Fplications it is important to see the

actual textures cf surfaces, how a wall siding appears in

full sunlight, or in diffuse light, etc. The design process

should proceed in full color if the designer so requests.

Color displays are currently on the market and vi11 be

relatively inexpensive in th~3 near future. Primarily

hecause of cost, 3esiqn is done currently either in black on

white or in white on blue. Computer graphics will make

color design less expensive.

In architectural design it is occasionally

important to daterm ine the effect of shadows 011 the

environman%. This is especially a consideration in

designing buildings adjacent to ot.her s true turcs. The

display of shadows and the calculation of their effects on

the heating an4 ventilation requirements of a building is

currently available.

2.3 Visual effects

During the design process one frequently needs to

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 14

view the object being designed from various angles and from

several points of vieu. If the obiect is a building, this

may mean vieuing it from fifty feet, or one hundred feet, or

a quarter of a mile away, It may he advantageous to get a

"bird's eye view" cf the building. Cne should be able to

describe these vantage points in a simple manner, save their

descriptions, and then s3e oners building from each vantage

point at. will. Better yet, one should be ahle to view the

building from several positions simultaneously.

Also, one should have the ability to project the

object onto any given plane. This uould allow the creation

of the normal orthographic projections vhich some des.igners

find useful.

Stereoscopic views also are feasible. Various

techniques exist fcr the creation and viewing of stereo

information; these should he available to the designer if he

wishes to use them.

The generation of perspective views of objects

should be the normal display mode. But one'should allow for

the normal mode to be changed to elevation, one-, two-, and

three-point parspective, in addition to any other vieus the

designer may request.

A SYSTEM FOR LARGF STRUCTUiiE GRAPHICS PAGE 15

In some applications the generation af exploded

view pictures will be important. Techniques are currently

available for their generation and this capability should be

available to the desiqner.

It may be very important at some time in the design

process to be able to zoom in dynamically on the objects

being designed. Alternatively, one may find it important to

be able to visualize walking down the corridors of a modeled

office buildinq, looking through a doorway into an office,

looking out 3 window, traveling down a str.?et, an? so forth,

Thlse capabilities should be possible,

And, it may be helpful to an architect to be able

to pass a section plane through his structure. He could

then view an arbitrary cross-section of his buildinq, see

the floors, halls, beams, conduits, and so forth,

Th+ production of hardcopy output is a royuirement

of any usable graphics sytem, This hardcopy mav be in the

form of microfilm, plotter output, blueprint, +tc. GRAPL

qives the user ccntrol over point of view, zoom, perspective

and secticn tlane, We have not implemented stereoscopic

vision or exploded views. Our current hardcopy output is

obtained via 35mm photoqraphs or via a post-nrocessor to the

Xerox Graphics Printer. All. t.he illustrations in this

A SYSTEM FOR LAl'GE STRUCTURE GRAPHICS PAGE 16

document were produced on the XGP.

2.4 Control of detail

The contrcl of detail is one of the most important

capabilities a design system can offer. The designer should

be able to suppress unneccessary detail at a.11 levels, This

means he should be able not only to suppress background,

foreground or midground information and suppress the

generation of subpictures, but also to suppress any objects

sa%isfying criteria which he gives the system. For example,

when designing a room, it may be irrelevant to the designer

that the vail panelling has a rough texture or that the

ceiling soundproofing has randomly sized and shaped holes.

If the display of these features interferes with the design

process, the designer should te able to eliminate that t YPe

of display quickly and easily.

Moreover, most often it will hs.the case that the

designer will be monitoring the cost of a structure, its

area, volume, cube foot cost, and other attributes. In most

cases it will not te necessary to know the exact values for

these calculations, a rough estimate will suffice, The

designer shoul:I he able to specify that he needs a precise

answer when he wishes one, hut otherwise not burden the

system with detailed calculation (and incidently, saost

A SYS'l'EH FOR LARGE STRUCTURE GRAPHICS PAGE 17

likely degrade the system response time),

If the user needs to aake use of this kind of

generality, h ~2 must SUPPlY the system with not only the

selectional criteria involved, but. also the gross

description cc approximation algorithms to be used in place

of the exact calculation. The ability to control detail is

one of the mcst important features which CRAPL includes,

2.5 Context and neighborhoods

Perhaps cne of the most distressing attributes of

most design systems is the fact that at the beginning of

aach session the designer must ask the question, “Where am I

now?" Moreover, when designing sev+aral objects in parallel

he may be fcrced to ask this question aqain and again with

each change of object. One should be able to define a

context and then return to it at will. A context must

contain the totality of the information which represent? the

current "state of the world." This information includes not

only the cur rent objects being dnsiqned and the Doints of

view, but also th+ ztates of all system variables at that

time.

A design system should provide for this easy and

natural description of neighborhoods of discourse. A

A SYSTEN FOR LARGE STRUCTURE GRAPHICS PAGE 18

neighborhood is one kind of context, A neighborhood might

be defined as the objects currently being displayed; in that

case we speak of a display neighborhood. Or, a neighborhood

may be defined as those objects in the model relating to

heating, power, ventilation, etc.; in that case ve speak of

a computational neighborhood. A neighborhood may be

considered a logical grouping of information which may be

referenced by name, say be displayed, computed with, stored,

and retrieved, The efficient retrieval of various

neighborhoods is one of the most difficult tasks facing the

designer of a graphics system.

Neighborhoods occur within both the GRAPL system

and the GRAPL language. In the GRAPL systea we have

implemented display and computational neighborhoods. In the

GRAPL language we allow access variables which correspond to

the kind of neighborhood called "state" or "context@* in

process-oriented environments.

2.6 Curves and surfaces

Often designers are concerned with the creation of

new shapes .and the ability to describe arbitrary curves and

surfaces in a natural way. A good design system should

facilitate the drawing of the standard engineering curves

and surfaces as well as the freehand generation of forms and

A SYX EM FOP LARi;E STRUCTURE GRAPHICS PAGE 19

their later least squares, polynomial, spline, or other fit.

We have r.ot i.u~lenent?d the atlility to treat 2 arbitrary

curves and surfaces: a dsscription of how it miqht. be added

to the GP.A!?L systea using current techniques is presented in

Chapter 8.

2.7 Time-varying displays

One important advantage a computer based design

system map offer is the ability to generate time-varying

displays. We include in this category computer animation

and computer art, modeling of dynamic structures, monitoring

the time-varying inputs and outputs of a model, and the
I display of histograms, graphs, and wave-forms representing

accounting or other information about the model, This

capability has been one of the least exploited in the d?sign

fil?ld, yet it offers, perhaps, the greatest potential, We

have ri 0 t. imrlementad time-varying displays primarily as a

result of the already slow response of our time-shared

PDP-10 environment.

2.R Attributes

To be useful, a design system rust be more than

merely a drawing or drafting tool, It must be able to

create objects and then give these objects various

A SYSTEM FOP LARGE STRUCT!IRE GRAPHICS PAGE 20

attributes such as cr)st, weight, delivery date, tensile

strength, and so forth. It is in this manner that the

designer may Fut into the data base the information

necessary t.0 run the various application programs which

cornput? total cost, beam loadings, power requirements, etc.

GRAPL has complete q,znerality for the specification of

attributes.

2.9 Sketching

3na important activity of 3 designer is making

"thumbnail sketches," Sketches of various types, views, and

complexities are generated throughout the design process.

These sketches may lack most of the detail of engineering

drawinqs, may be extremely rough or moderately neat, but

they always allow the designer to plan, to try different

ideas, to experiment with very small cost. A sketching

capability is crucial to any good design system, We aust

not force this! designer or archi%ect t. 0 be explicit or

rigorous in hi,s expression- He must have the freedom of

creativity, Therefore, our system gives him the means by

which he may refice his ideas incrementally and slouly

evolve his final Flan.

2.10 Defaults and a sympathetic environment

A SYSTEY FOE LARGE S'IRlJCTIJPF, GEAPHICS PAGE 21

Tnteractirq in a **sympathetic" environment is one

of the more important capabilities of an interactive system.

Tt is significant that little research has been ,lone in this

area of humall factors and that computer systems have

remained corri?sponilinqly hard to use by the novice or

non-computer professional. One should he able to design a

system according the user's specific requirements, establish

default conditions which remain in effect, and define an

environment suited to the requirements of the project at

hand. The user should be able to qive advice to the system

as to what things ax"\ important and unimportant, which

conditions must be enforced rigidly, which (at least

temporarily) may be ignored, and so forth.

The user should not be burdened with having to

learn the whole repertoire of system commands nor learn all

the fnaturss the system provides in order to mak.? qood use

of it. He should be able to interact with as little or as

much of the sy:;tem as he wishes.

2.11 How to represent knouledqe

The represent.ation problem is one Of the most

difficult facing the designer of any system. How are the

various features of the problem to be represented? What

representation will yield the most economical solutions for

A SYST'EM PO!? LARGE STRUCTURE GRAPH.LCS PAGE 22

most problems?

There are at least four aspects to the

representation problem. First, there is the question of

representing tha problem itself. This includes modeling the

various parsmaters of the situaticn, the interactions

between them, the specifications of size, position, cost,

and so forth.

Second, there is the representation of the system's

knowledge, This include what the system knovs and what it

knows how to do. The system requires such a self-model in

order to be able to respond *'The following information is

required before calculations may be completed: ,.,**; or.

"This calculation will cost approximately S..., and take N

hours. Are ycu prepared to wait?"

Third, there is the relationship of local and

global knowledge in the system. Local knovledge consists of

various details specific to particular aspects of the ,

problem, FOK example, it includes the arrangement of

furniture in a given office or in an apartaent building.

Global knowledge, by contrast, is information which is

significant to the whole building, It might include overall

cost, dimensicns cf the structure, type of foundation, etc.

A major obstacle in all large modular systems is ensuring

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 23

that the local information does not become

thereby slow down the overall computation.

Fourth, there is the question of the

global and

form the

knowledge may take. It may be represented in some set of

data structures, or it may be represented in the

interactions of a set of programs, or by some combination of

the two.

2.12 Da tn Structures

The question of which data structure to use to

mod31 the various aspects of a computer system is an

axtrem-3ly important on?. Various special-purpose structures

hav2 b?en developed or extendr?d esnecially for qraphics,

These inclrlda special forms of trc,?s, rings, li.;ts, graphs,

and heirarchichal versions of all of these. It is

significant that no one structure has been forlnd which

satisfies all proklams. Father, it iii alvays a set of data

structures which are implemented, each data structure

modeling a particular set of features. One of t he main

contributions of this research has been the d+v?lop~?nt of

some new (lat.3 structures. These arc? descri.bsd in Chapter 4.

A SYSTEb FOR LARGE STRUCTURE GRAPHICS PAGE 24

2.13 A summary of our research

This section presents a summary of our research in

tabular form. Table 2.1 shows the most significant parts of

the GRAPL system.
.

Table 2.1 - GRAPL's most significant

Problem Previous Solns

Accessing Trees, spheres,
very large linked lists,..
data
structures

Hodular Very careful
system: no system design
interference

Controlling NOT DONE Specifying
the detail of approxixiate
computation calculations

Giva advice NOT CONE
to system

Accept advice Abilitv
as strategies to modify

behavior.
dynamically

Our Solution

Cubes

Parallel
system

features

Our payoff

Very fast;
especially
for
architecture

Great
simplicity
and ease of
implementation

Speed

IYonitor NOT LONE, or with A parallel Can easily
constraints, 'Ireat difficulty process give user the
functions, information
variables, he requests
(e.g. cost, cube-footage, etc,)

A SYSTEEl FOR LARGE STRUCTURE GRAPHICS PAGE 25

Our approach has several additional advantaqes, as

shovn in Table 2.2

Tabla 2.2 - Additional advantages

Problem Previous Solns

Control the Clipping after
aaount of ,?xamining objects
detail
displayed

Our Solution

JJsa the
cuboid data
structure

Move around No faster than
quickly most oth3r
within some moticns
neighborhood
in the data
structure

Compile the
neighborhood

Representation Data
of objects

Program

Define a NO? DONE Save state
context, a var's of the
neighborhood system

Fast hiddrln Warnock, Watkins,
line and 2tCZ.
surface
removal

Preclip with
cubes

Several Difficult
points of
view
simultaneously

Start a couple
more display
processes
running

Flexible Syntax-driven
system, translator
command
language,
etc.

Interpreter Greater
with flexibility
compiler without loss

of efficiencv

Our payoff

Speed, do not
need to
traverse the
whole data
structure

Speed

Flexibility,
power

Accessibility

Speed
Speed

A SYSTEPI FOR LARGE STRUCTURE GRAPHICS PAGE 26

The GRAFL system demonstrates several new

approaches and techniques. These are summarized in Table

2.3.

Table 2.3 - Vhnt's new

Using a DUAL data structure

Using a PARALLEL system design

Giving ADVICE to the system

COMPILING a picture

EXECUTING an object

SELF-HODIPYXNG data structure

in GRAPL

Cubes and master-instances

Yielding modularity,
flexibility, and ease of
modification

As strategies for display,
computation, etc.

Providing speed and
extremely concise
representation for a
neighborhood

To produce a picture, its
electrical or cost
characteristics, etc.

The cubes automatically
partition themselves into
suhcubes when they become
too complex

A SYSI'EM FOR LARGE S'IRUCTIJRE GBA?HICS FACIE 27

w C’ have encountered difficulties in developing

several aspects of the GRAPL system. Those are sulcmariz3d

in Table 2.4,

Table 2.4 - Difficulties encountered

What strategies to provide initially for splitting
cubes, How many levels of cubes to have,

HOW to access uniquely an!1 efficiently the
appropriate cubes given a position in space
Dvramid cf vision (visual neighborhood), - -

How to access secondary storage efficiently.

Determining how much information of what kind to
include in the masters and instances for most
efficient use of storage and time.

How to maintain good response time in a heavily
loaded time-shared environment..

A SYSIEM FOR LARCE STEUCTORE GRAPHICS PAGF! 28

CHAPTER 3 02:38:08 OW/OU/75

survey of a?lated Work

This chapter has two objectives, First, we wish to

qive th? reader a certain perspective with which to view our

rssearch by presenting some tackcJround, Second, we wish to

acknowledge the sources of many of the techniques and

concepts which we have used.

The basic philosophy behind the desiqn of the GRAPL

system has been one of striving for consistency, uniformity,

and pouer. Yhenever possible we chose the more qeneral path

rather than the more restrictive. Thus, the system has been

implementsd in a specially constructed language based on a

high-level interpreter. The implementor may deal with the

system on any of several levels: the user level, the GRAPL

language level, the MLISP2 level, or the LISP 1.6 level,

This capability is not hidden from the user. The

sophisticate? designer might well avail himself of some of

the facilities present at one or all of the levels.

Much research in graphics has been devoted to the

selection of data structures both for the representation of

graphical entities and the representation of the elements of

A SYSTEM FOR LARGE STRUCTURE! GRAPHICS PAGE 29

the model. It is in this area that graphics systems usually

either succeed or fail. If the choice of data structures is

not large ep.ough, if they do not. have enouqh

representational pcwer, or if they can be accessed only very

slouly, the system must ultimately fail, Or, rather, it

will succeed only for the smallest of structures (log cabins

and the like). In GRAPL we have provided not only an

tixtremely efficient and powerful set. of data structures, but

we have providd?d the mechanisms for easily and quickly

altering thes? data structures t.0 meet a user's particular

requirements.

Ths remainder of this chapter acknowledges those

sources uhich have been most helpful in the development of

GRAPLL, A comprehensive bibliography on interactive computer

graphics may he found in <PO 72a>.

3.1 Architecture, design, and general philosophv

The basic architectural concep-ts and ideas have

come from a variety of sources. Th;! most important of these

uere Alexander's fine bock, "Notes on the Synthesis of Pormt*

<Al 64>, and Koestler's **The Act of Creation" <Ko 67). Our

system reflects much of the same philosophy as Negroponte

<Ne 7O> and Franked <Fr 70).

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 30

Kuch of the basic system dosign philosophy is due

to Dennis <De tjS>, Fnrley <Fa 71>, and Ruffman <Hu 71>,

3.2 Graphics systems

A variety of graphics languages and systems Vefe

exairined prior to and during the development of GRAPL. This

survey included the works of Cnrr <Ca 69>, Garuick <Ga 69>,

George <Ge 71>, Johnson <Jo 63, Rulsrud <Ku 68a>,

Negroponte <Ne 68>, Newman. <!+e 71>, Prince <Pr 71>,

Sutherland <Su 63>, and Rehrli, et al. <us 70). The result

of 3 literature survey in the field of graphics is reported

in Pollack <PO 72).

3.3 Display algorithms

A large number of people have made contributions in

the field of display algorithms. These include algorithms

for the manipulation cf data structures, hidden line and

surface removal, the mathematical representation of curves

and surfaces, and the generation of pictures of objects

illuminated from one or more light sources.

Appsl, at IBII, has been active in the first tvo

areas for many years, <Ap 66, 67, 68, 72). Plore recently,

at the University of Utah, Bouknight <Bo 69, 70>, Kelley <BK

A SYSTEM FOR LARGE S'XRUCTIJRE GRAPHICS PAGE 31

7O>, Carr <Ca 59>, Gouraud <Go 71>, Warnock <Wa 68, 69>, and

Watkins <Ya 70, have malIe major contributions. In the ama

of mathematical representation Qf curves and surfecos, Coons

<co 67> and Forrest <Fo 60 have developel the most

sophisticated representations.

Hidden line and surface algorit.hms for speci Eic

classes of objects have been developed by Galiaberty and

fiontanari <G!l 69>, Loutrel <Lo 67b, 67c, 70>, Mahl <?!a 72).

tiatsshita <Ma 69b, as well as Warnock cWa 68, 69) and

Watkins <Wa 70). and others at the IJniversity of Utah.

An excellent summary of state-of-the-art techniques

for hidden line and surface removal may be found in a recent

Computer Surveys article. by S~~therland, Snroull, and

Schumscker <SS 711).

3.4 Simulation aPproach

The simulation aspects of GEAPL have teen most

influenced by the CIVULA lanquage <DN 66>, <DR 70>, <IN h9>,

as well as long and frllitfrlll conversations with Alan Kav.

3.5 Fartiil application/incremental compilation

The b-tsic ideas behin.4 Darti. application and

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 32

incremental compilation have been around for a long time.

The most pertinent works include those of Loahardi <Lo 67a>,

Lombardi and Raphael <LR 64>, Hitchell <Hi 70>, and

Sandewall <Sa 68>, Huch of the groundwork was laid by

HcCarthy, et al., in the development of the LISP programming

language.

3.6 Artificial intelligence

The artificial intelligence features of GRAPL were

most inflUdnC%d by the LISP, PLANNER, QA-4, and LxsP70

languages. LISP is best described by Berkeley and Bobrow,

<BR 64). PLANNER was and is being developed by Carl Bevit

at HI?!, and is described in <He 71). The Q&-4 language was

deQ8lOped at Stanford Research Institute by Rulifson, et al.

<Ru 70, 71). <3W 70>, <Rn 72). The LISP70 language is under

development at. the Stanford Artificial Intelliqence Project

and is not yet well dOCUm8nt2d. The related languages HLISP

and MLISP2 are described in Smith <Sm 70) and Smith and Enea

<SE 73). Tha work of Terry Winograd <Wi 70) also was

influential.

3.7 Syntax

Thz syntax of GRAPL was most influenced by the work

of Smith, Tesslr3r, and Pnea in their deV8lOpfWtnt of the

A SYSTEM FOR LARGE S'IRUCTURE GRAPHICS PAGE 33

MLISP, IlLISP2, and LISP70 languages. nLISP is described by

Smith in <Sm 70). Smith and Enea describe HLISPZ in <SE

73). LISP70 is currently under development and has yet to

be described in the literature.

3.8 Semantics

The semantic ideas incorporated in GRAPL come from

a variety of sources including Balzer <Ba 67>, Dennis and

van Horn <DV 66>, Hswit <He 71>, Reynolds <Re 70>, Rovner

and Feldman <PF G7>, Strachey <St 66>, Teitelnan <Te 66>,

and Winograd <vi 71>.

3.9 Data structures

A variety of data structuring ideas vere valuable

including thos? described tzy Abrams <Ab 71>, Falzer <Ra 67>,

Zarley <Fa 69, 71>, Rulifson, at al. <Ru 70, 71>, <RW 70>,

<RD 72). St.andish <St 67>, Tou an? Uegner <TU 71>, van Dam

<VD 71>, Uegqer <Wf? 71>, and Winoqrad tUi 71). OUL-

algorithm for d+>tcc+.i.ng the proximity of objects is similar

in some respec+..3 to tha interpenetration algorithm of Carr

<Ca 63>.

3.10 Contr.71 structures

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 34

Control structures have become increasingly ,

important in the design of languages and systems. The most

pertinent rL3fxences are Fisher <Pi 70>, Heuit <He 71>,

Beynolds <Be 70>, and Rnlifson, et al. <Bu 70, 71, 73).

The (pssudo-) parallel portions of the system were

influenced primarily by the SIPIULA language. [See Section

3.4 above.)

3.11 Extensible languages

The extensible language festures included in GRAPL

nere most influenced by Berry <Be 71>, Cheatham tCh 69>,

Christensen and Shau <CS 69>, Jorrand <Jo 69>, and Perlis

<Pe 69).

A SYSTF"I FOR LARGE STRUCTURE GPAPHICS PAGE 35

CflAPTER 4 02:38:08 09./04/75

The GAAPL Approach

Xn this chapter we present a description of the

GRAF'L system. This discussion includes a description of the

inplementation of the various data and control structures.

A discussion of the philosophy explaining why certain design

criteria were estahlished may he found in Chapter 2. This

chapter discusses the details of how these criteria have

been met. In Chapter 5 we offer the details of the GRAPL

implementation language and a description of the GtiAPL

command language.

This ,disnssio.n proceeds from the particulars of the

iaplementation to more philosophical considerations.

4-l A parallel system design

GRAPL is implemented as a set of simulated parallel

processes running under a scheduler within the MLISP2

environment. Chapter 5 contains more information on ALISP

and IILISP2. The great ease vith which GAAPL may be

modified, and ccmmands altered, or added to is largely due

to this fact. Also, it is only within such an environment

4 SYS:EI" FOR LARGE STRTJCTURE GRAPHICS PAGE 36

t.tlnt one may ix&lement such commands as PIonitor and Notify

(see the description of the GFAPL command language below).

This approach yiel<Is a sophisticated system without the

usual corresponding system complexity. Each GRAPL command

is implnmented as a process, each body or object is a

process, ev+n the 1 Km cube representing the world and all

its subcub?:; are inplomcnted as processes.

4.1.1 A concise modular system

Two a;lvantaqas of parallel system design are: it

provides an -?xtreeelv concise manner in which to implement

the system, an3 it affords the opportunity to design an

extremely modular systenr.

The conciseness of GRAPL yields a system which is

easily ald+d to and readily modified, Almost all commands

ar* implemented in less than a single page of code. The

kernal system is just over 10 pages long; the simulation

routines occupy only 6 pages of code.

System modularity has three direct benefits: 1)

independence of ccamands from one another: 2) flexibility in

command format, alternate forms of a command may coexist,

and commands are quickly and easily updated: and, 3) the

system may be segmented with a demand overlay scheme -- only

A SYSTE:l FOR L.9RGE STR!.tCTUPE GPAPHICS PAGE .37

those parts of the system which are currently active need he

in core.

4.1.2 A small system

When the size of the GRAPL system is compared to

most conventional graphics systems which commonly have

thousands of lines of code, the advantages of our approach

become even mar-: apparent.

In addition, the GRAPL system with all commands

resident in core (a highly unlikely circumstance!) occupies

less then 60K ?DP-10 words. This figure includes 34K MLISP2

system overhead -- GRAPL itself only occupies 26K.

4.1.3 A powerful and flexible system

The parallel system approach enables us to

implement options such as multiple vieuports as multiple

instances of the viewport process. It also enables us to

utilize semi-continuously evaluating expressions (SW

Fischer <Pi 70>) tc implement commands such as Monitor and

Notify.

Additionally, the existence of A scheduler provides

the capability for deferrinq actions until a more propitious

A SYSTEP! FOR LARGE STRUCTURE GRAPHICS PAGE 38

time. For example, if the cube data structure needs garbage

collection or some other *ehousekeepingt9 chores to be

oerformed, one may schedule this event now for activation at

some future time, and thereafter cease to be concerned.

4.2 Duali.ty of data and program

One of the most powerful concepts in computer

scilncf is the duality of program and data. One may vieu

all computations as sets of programs interacting with one

another with no data whatsoever <Ba 67>, or as a vast data

structure with a single access mechanism and no other

programs at all.

Elany systems have striven to divorce programs from

the data upon which they operate. But the most powerful

(and intelligent) programs tend to operate not only upon
I

data but upon themselves as well. The utility of a single

form of representation for both program and data is ,

apparent. one w view an expression either as a data

structure haring scme value, or as a program which computes

the sane value.

In GRAPL, all entities are represented in the forr

of prograpis. This means that all bodies, objects, cubes,

even the visual neighborhood and the world mOdeI, all are

A SYSl'EM FOR LARGE STRUCTURE GRAPHICS PAGE 39

programs. We interact with these programs in different ways

to achieve different effects (e-g., display, computation of

cost, retrieval of attributes, and YC forth).

4.3 The GRAPL data structures

GRAPL utilizes two dual data structures

simultaneously. These are the cube data structure, which is

used to repr=sent the physical modeling sI~?ice; and the

body-object data structure, which is used to represent the

elemants to hr inser%ed into this space. The cube data

structure provides an extremely efficient way in vhich t-0

represent ard access large physical struc?ures. The

body-object data structure is composed of tuo parts: the

class of bodies and the class of objects, Bodies and

objects are thp primitive elements used in the construct ion

of any structure.

4.3.1 Thl cube data structure

The data structure we present for model iny large

structures is *htl following: k'e define the working space as

a cube on+ ki.l~,meter cn a side. We divid? this cube into 64

suhcut)~s, ?a?h Sll tcu bs may be referred to by n,ame or by

relative location. (This partitioning of space is not

generally availatl+ t. 0 +. hc; User for he has no need to

A SYS'!'I!I FOR LARGE STNJCTURE GRAPHICS PAGE 40

reference it. To the user, space is essentially

continuous.) WC) compartmentalize the data structure

representing our structnre into these subcubes. Whenever a

given subcuhe becomes too complex (has too much data

structure), ve subdivide it into smaller cubes and

recompartmentalize its data structure,

NOW, to modify a structure, it is only necessary to

change those subcutes containing information which have been

modified. To lock down a corridor and display what is seen,

it is only necessary to examine those cubes along the

pyramid of vision for visible surfaces. As advice to speed

up the display, we may ask the system to reject

automatically all cubes of size smaller than some given

volume, (One system defaul +- for display is to reject from

consideration all cubes Y hose sizes are more than three

orders of magnitude smaller than the current cube, This

default also displays a dot if the cube contained visible

information, otherwise it displays nothing.)

The data structure within each of the smallest

subcubes is the true modeling information for the structure

being modaled. This data structure includes structural

information, information .3 s to the electrical system,

mechanical system, ventilation system, etc. Larger cubes

may contain some amount of information which is considered

A SYSTEM PO9 LARGE STRUCTURE GRAPHICS PAGE 41

to be the default data structure if the subcuhes are too

small to be considered for a given calculation.

The choice of a one kilometer cube as the largest

representable ;pacc is entirely arbitrary, but ue feel it is

reasonable in terms of using the system for architectural

design, Should one wish to do urban planning, a cube 10 or

20 kilometers on a side wollld be more reasonable, The

choice of partitioning the cubs into 64 subcubes is

motivated hy the following considerations: 1) A small

number of levels of heirarchy is lsssential for fast access

of data -- if one must continually traverse an extremely

deep structure one will spend too much time in the process,

2) We feel that the resolution for an architectural design

system should ;xterd down to about 1 millimeter, TheS? two

considerations yield a scale factor of one million between

the largest 3nd the smallest representable objects.

Partitioning each c ube into 64 suhcuhes achieves this

scaling in 10 levels. We have experimented a little with

alternative partitionings but have no conclusive results as

to optimality. In Chapter 8 VE: discuss other partitioning

schemes uith which it would be interesting to experiment.

It shculrj he noted that the data structure

presented hare is essentially the three-dimensional analog

of the Warnock algcritha. Noreover, both are instances of

A SYSTEH FOR LARGE STRUCTURE GRAPHICS PAGE 42

the more general *VDivide and Conquer Algorithm" which is in

use throughout the field of computer science, The Warnock

algorithm is performed "on the fly, " resulting in a picture

.on a display device, whereas our analcg is continually in

operation and results in a speedily accessed data structure-

The term @ 'data structure" as we have used it here

should not hz taken t.30 literally. What we are really

talking about is a dynamic process structure reflecting the

current organization of the ~0aei. In more conventional

systems this corresponds to a data structure.

The cubes are actually realized as instantiations

of the class &BE, the definition of which ve COY give.

(Refer to Section 5.11.4 for a description of the CLASS

declaration.)

CLASS ('CUBE,' (SIZE,BASELOC,DETAIL,GROSS)),
' (PROG () ()),NL);

where,

SIZE
RASEL3C -

DETAIL -

GROSS -

PRO5
NL

is the size of the cube (a power of 4)
is the coordinates of the bottom-most
corner of the cube
is the detail flag: if on, subcubes of
this cube exist; if off, the complete
description is contained in GROSS
the gross description of the contents
of this cube (a list of pairs:
(object, positioning matrix)

is a dummy program
means no process is GLORAL to CURE

A SPS‘l!EM FOR LARGE STPBCTUPE GFh?fiICS PAGE 43

4.3.2 The body-cbject data structure

EMdie are the most primitive objects which may be

represented in G,?APL. They need have no physical

significanca. sodies are generally collections of points,

lines, surfac5s, and attributes which are to hs dealt with

as A single entity. Bodies cannot be decomposed in any way.

However, they may be altered or redefined.

Objects are collections of instsnces of bodies.

objects tharefort! have subs+ructurz. This substructure may

be exaained and modified. An object utay be thought of as a

collectio'n of bcdies and oth+r objects which, while not

primitive, may be manipulated in a uniform manner af fs2cting

all constituents equally. For example, one might define a

block-like structure as a body, and then use several of

these blocks to construct a table. Alternatively, one might

describe a t.sble from the outset: then one would have a

body-table instead of an object-table.

Bodies and objects are both implemented as CLASSes

in GRAPL. This provides the flexibility to modify GRAPL's

basic data structure at the definiticnal level.

Ue give the CLASS definitions for BODY and OEJECT

below:

A ;YSTEM FOR LARGE STFUCTURR GRAPHICS PAGE 49

CLASS flBCDY,' (aOX,DATUfl,NV,NE,!+F,V,E,P),
' (PFOG 0 0) ,NL) :

CLASS ('OBJECT,' (OBOX,ODAT17M,DETATL.GROSS~,
' (PROG 0 O),NL):

where,

BOX - an enclosing cube specifying the
space spanned by the body

DATUM - is a 4 x 4 positioning matrix
NV, NE, NP - the number of vertices, edges, and

V
E

F
0970X
ODATUM -
DETAIL -

faces in the body, respectiveiy
a list of all vertices of t.he body
a' list of all edges in the body
(a list of pairs of vertices)

a list of all faces of the body
as BOX
as DATUY

GROSS

a list of pairs
(entity name,datum) which comprise

the detailed description of the
object
similar to DETAIL, but for the
gross description instead

4.4 Splitt.ing cubes

The cube sPlitting algorithm is used whenever the

structure of a cube's gross description becomes so complex

that it is worthwhile to partition the cube into suhcubes.

The algorithm which we have implemented is known not to be

optimal, Houever, it does perform satisfactorily. Other

possible algorithms are discussed in Section 8.3.

The algorithm proceeds as follows:

1) We are given a cube to be split (the base cube)

A SYS'CE?! ';OR LARGE STRUCTURE GRAPHICS PAGE 45

2) Yeasure the cube's complexity

3) If the complexity is less thaII SPLT (an integer
variable set by the user), return

4) For each objact in the base cube's gross
descriFticn, int?rse,ct the oh ject’s envelope
with all subcubes of the base cube

5) Tn?o each suhcube where there is a non-null
intersection, insert a description of the object

6) Set the taso cub?* s detail flag to True

Note that so long as the same measure of complexitv

is used at each suhcube level, ne need not examine the

complexities of the cpxeraterl. subcubes. Moreowr, once a

cube is split, it never need be split again if the algorithm

for object insertion guarantees insertion at thn lowest

possible level cute. An alternative method would be always

to insert objects at the highest cube: then split it, and

let the splitting algorithm recursively force the object

into the correct subcubes.

The ccmrlexity measure UC? have implemented is

simply a count of the number cf objects in the gross

,description. If all objects are of rough Y.p equal

complexity, thsn this is a good measure of the total

complexity. Since one commonly constructs relatively simple

aggregates of objects at any one time, this rather crude

approximation is usually reasonable. Alternative measures

of complexity, such as the total number of points in the

A SYSTEM FOP LARGE STRUCTURE GRAPHICS PAGE 46

object or the numtfr of points plus the number of lines,

etc., aasily may be incorporated into the system if the user

wishes. Other measures of complexity are discussed in

Section 8.3.

4.5 Display algorithms

The display algorithm consists of two

sub-algorithms: cne for ths display of bodies and objects,

and another fo.r the display of worlds. The simpler of the

two algorithms is the one for bodies and objects, and it

will be described first..

4.5.1 Algorithm for bodies and objects

Bodies are displayed by generating a set of CRT

commands from their internal descriptions. Rather than

creating and saving this display file of commands, they are

sent to the CRT immediately. This necessitates the

recomputation of the commands each time a body is shown, but

saves considerable memory. In addition, if one is

interestad in "walking through" a body. the display file

would have to be regenerated for each picture regardless.

Orientaticn, perspective, point of view

transformations, etc. are all computed using the usual set

A SYSTEN FOR LARGE STRUCTURE GRAPHICS PAGE 47

of matrix transformati,ons, Homogeneous 4-by-4 coordinates

are used to represent positioning information.

Objects are displayed by recursive expansion of the

bodies and objects in their descriptions, Positioning

informaticn at each level of the expansion is used to

properly orient each subpart of the object. Recursive

expansion proceeds until either the most primitive level

(bodies) is reached or level of detail cutoff occurs.

4.5.2 Algorithm for worlds

Display of worlds is based upon GRAPL's cube data

structure. 'Ihe current visual neighborhood is intersected

with top-most world cube. If a non-null intersection is

obtained, the intersection procedure recursively descends

into the cllba structure obtaining those cubes vith, a

non-null intersection. Uhen level of detail cutoff occurs,

the body/object display algorithm is invoked with the

description of all entities within the visual neighborhood

as data.

Display of world information is slightly more

complicated than for bodies and objects alone because

entities may reside within several CUk.5, This occurs

WheAeVer an Jntity is physically Larger than the smallest

A SYSTRH FOR LARGE STRUCTURE GRAPHICS PAGE 48

cubes used to represent it. The world display algorithm

keeps track of the status of each entity sent to the

body/object algorithm so as to avoid displaying the same

entity several times.

Algorithms for clipping and hidden line/surface

removal w2re not implemented for tvo reasons: the

techniques fcr accomplishing both procedures are now

veil-known, and doing either or both procedures would use up

valuable core as well as slow down the display process. The ,

addition of both facilities in the form of special commands

would be a reasonable approach if one were interested in

pursuing it.

4.6 Secondary storage algorithm
.

GRAPL secondary storage consists of a two-level

heirarchy: the usual PDF10 disk file system and a magnetic

tape backup system. The implementation of a more efficient

special piirpos* disk filing system vas considered, but it

quickly became apparent that the PDP-IO system was adequate

for our needs.

4.6.1 Disk storage

t;DAPL files are of five types: system commands,

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 49

catalogs, bodies, objects, and worlds, In each case the

file name extension describes a file's contents. The user

requests files by specifying its prefix name alone.

System commands noraally reside on the disk, When

a command is executed by the user, a check to see if the

processing rcutines for the selected command currently

reside in core. If they are not, they are loaded

immediately from the anpropriate system command files.

Whenever a CLEAR command is executed, all extraneous system

commands automatically are purged from memory. This yields

the maximum amount of storage for display of pictures (at

the expense of a small amount of added processing time the

first time the user selects a command).

Catalog files contain the names of all currently

defined and accessible bodies, objects, and worlds.

Entities are described by their textual names. Each time a

body, object, or wcrld is created or deleted these files are

modified appropriately.

Rody files cant ain the axplicit description in

terms of lines drawn on vertices of the visual properties of

the body plus all associated attribute information,

Object files contain the structural description of

f
A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE SO

the components of the object, positioning information, and

attribute infcraation.

iforld files contain the complete structural

description of an entire world. The description is in terms

of the names of objects paired with positioning information.

The actual object and body descriptions are not part of this

file. Rather, they are loaded automatically when a world

(or part of on?) is loaded for display.

4.6.2 Tape storage

Tape storage is used primarily for backup

supplementing the normal system file backup system.

Additionally, it may be used to store arbitrary files of any

type. Loading files from tape rather than from disk is

relatively automatic,

4.7 Selective incremental compilation

Sel+ctivd incremental compilation is the ability to

select certain entities, compile them, later retrieve their

uncompilad form, modify them, and then recompile them,

A common trade-off in computer science iS the one

between timd an3 space. Incremental compilation is a

A SYSTZM FOI? LAFGE STPJJCTURE GSAPHICS PAGE 51

mechanism for trading decreased executi.on time for increased

storage requirements.

In GSAPI. one may compile any object into a body.

The new body's display and computational characteristics

vi11 be the same as the object*s, but the internal structure

of the ah ject will be lost, The old (uncompiled)

description of tte object always is available for later

modification. The actual compilation is invoked through use

of the infinity key, One loads or instantiates one or more

objects, compiles them, and then has the option of saving

them under a name of one's choice.

The cube data structure may be compiled as well,

This will greatly increase the prccessing speed but will

sacrifice details cf the given cube's substructure. One

loads the cube, compiles it, and then uses its compiled form

as the new gross description. The detail flag is then

turned off.

Tf one nishes, one may compile the contents of the

visual neighborhood as well. This is particularly useful if

one wishes to examine a specific neighborhood in great

detail.

The compilation process consists of recursive

A SYSTEM FOE LAPGE STRUCTURF GRAP'rlICS PAGE 52

expansion into primitive descriptions of each element of the

object's sutructure.

‘4 . R Veighborhcods and constraints

A neiqhborhood is a collection of access paths. We

can poke a geiqhborhood or some element within a

neighborhood *nd either store or retrieve information. For

instant?, to access we might say [line, fetch, type) and we

would get back '*A to T!, type T."

From this point. of view it makes no difference

vhcther "line" refers to a data structure for a line or to a

routine to generate the line.

A constraint is a neighborhood with special

attrihutss which are interpreted in a particular way. For

instance; 'lparallel (line A, line B)" defines a neighborhood

and additionally attaches the attribute *'parallel@' to it, A

processor cont.inually runs around checking to see if it can

satisfy the constraints on the current neighborhood or all

neighborhoods.

Neighborhoods (constraints) may be small or large,

local or global. The most global neighborhood is WORLD:

the largest cube in the data structure. Local neighborhoods

A SYSFEH FOE LARGE STRUCTURE GRAPHICS PAGE 53

. . may be thz current subcube, the current visual neighborhood,

or any computational naighborhood.

4.9 Givinq GRAPL advice

The user say qivo GRAPL various forms of advice.

Ye may give an object both a gross and detailed'description,

This will greatly spe$d display, especially if the objact is

used many times in the current picture,

The user may advise the system not to display

objects below SCDe threshold size. And, the user may

restrict display to only those objects satisfying some

criteria which the user supplies.

Another fcrm of advice the user may supply is in

the form of a constraint. He may tell the sys+.em to perform

(or not to perform) some set of actions only when a

constraint is satisfied (not satisfied).

4.10 Giving results in rsal time

One important thing we can do for a user is to give

him results in real time. For example, if an architect is

designing a building and he asks, "what is the cost of the

structure as it stands now?" the resulting computation could

A SYSTE?! FOR LARGE STRUCTURE GRAPHICS PAGE 54

well take several seconds. Yet, he' might easily be

satisfied with an approximate answer, if he were allowed the

opt ion.

4.10-l Approximating calculations

Ye have as the default manner of operation an

estimator which will approximate the cost of performing each

user request.. If the cost is high, the system will attempt

to approximate the answer quickly, inform the user of its

actions, and queue the computation for background ,

evaluation. It is the responsibility of the user to specify

how to approximate those things which the system does not

already know how to calculate.

A similar approach is used for display. If the

user requests a particularly complex structure to be

displayed, the system takes the fcllowing actions. It

estimates the cost of generating the display. Since in this

example the cost is assumed to be bigh, it approximates the

display as best it can by presenting the superficial details

and outlines of the structure involved. It informs the user

that complete detail will take some amount of time and it

puts the display generation task into the background queue.

POT any task the system may request advice on how

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PACE 55

to upgrade its performance. This advice might he of the

form, "To compute the grass cost, sum i.he costs for each

major module. A major module is one occupying over 2000

square feet.," Or, it might be something like "For this

vindov, only the outtlrmost structural details are necessary,

Delete th;: interior entirely."

Ihe system continually evaluates the cost of

displaying structures when the user is in tht? process of

examining them by zoom, moving dovn the halls, sectioning,

2tc. If it finds it more economical to do so, the system

compiles the appropriate portions of the structure.

4.10.2 Speeding up display

Ona option th? user has which vi.11 nnahl? him to

speed up the display !~t objects is to advise the system of

the default aFF;earance of things vhen vievnd from far away.

For instant?, objects of small projectz,d cross-s-xtional

area will autcmatically he clipped, but a long K-bclam will

not. The structure of this T-beam will he unnecessarily

complex. It vi11 save processing time if the USt?T advises

the systw that I-kt!am?r, when viewed from greater distances

ar when some ether conditions hold, look li+cA straight

Lines. The .;yStem includes dofault. appc3ra7ces for all

caealogc?? ohlects which may he modified by the usf?r if he

A SYSl!EM FOR LAiIGE STRUCTURE GRAPHICS

vishes.

PAGE 56

4.10-3 CornFiling pictures

Obviously the cost of compiling a picture depends

on the compl.?xity of the picture. But if we were to do very

much zoominq or wandering around within a building, it would

clearly he cheaper to compile the entire building than

delving deeFly into the substructure of each wing, floor,

room, etc.

Any object in the systea may be compiled into a

body at t h? user's request. He then may replace the old

definition of the object vith its compiled form or retain

the old definiticn.

4.11 what is a wall with windows?

'Ihe q'lestion Of how to represent a wall with

vindovs or :Ioors is one which has plagued every designer of

a graphic system. Is a wall a solid? If so, th+n how do we

represent windows within the wall? Do ve intersect this

solid wall with some "neqative8' space in order to allov room

for the winriow?

7.r a wall a space vithin which we may specify an

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 57

interior? This interior may be solid, hollow, partially

solin, and may include the specification of a window.

Is a wall 3 tree structure, with the properties of

lVwallnassw hanging Off the top node, and substructure

specified as a subtree?

The above approaches all have merit, but they have

too many disadvantages to be properly useful in a graphics

system. After all, what is our objective? To model the

real world? Or, to create a system which reflects enough of

the characteristics of the real vorl.d so as to be useful?

We claim that the first statement is emphaticly NOT our

objective, The concepts of solid versus non-solid, space

versus non-space, etc. do not have to he rno,Ieled j.n order

to arrive at a useful system, We therefore compose our

model of three parts: 1) What the real world looks like --

how it appears ?o our eyes, 2) What the real uorl~l is made

of -- what are the components of these objects we SF?@: a

wall, a door* 3 plate glass windov from PPG costing $ 13.95,

etc., 3) HOW space is partitioned -- which areas are

considered enclosures, which are r3oms, which are

stairwells, etc.

Th,? question of what the real world looks like is

purely a display question, It is independent of the mod21

A SYSTEM FOR LARGE STRUCTURE GBAPBICS PAGE 58

of the (possibly dynamic) physical system we are

constructing. The display process should, therefore, occur

simultaneously or in parallel with all other portions of the

graphics system. The display process corresponds to the

visual semantics of the object ve are modeling.

'Ihe question of vhat the world is made of

corresponds to the rest of the semantics of our object, It

includes how the cbject reacts to heating, cooling, wind,

etc. ; what are the object's requirements for power, cost,

heating, etc.; what physical lavs the object aust obey, and

so forth. This set of semantics is contained within the

attributes of each of the subparts of our model.

The question of how space is partitioned is handled

in two ways. First, in some cases it may be by attaching a

name (or SOIUPB other attribute) to some neighborhood which is

important to us in a spatial sense. Secondly, it is handled

by the cubing process which part itions our -whole model

space.

So what then is a wall with a window? A wall with

a windou is a structure within some cube(s) with boundary

points, lines (edges) defined on these points, possibly with

the addition of surface attributes to some of the resulting

surfaces, There is no specific modeling of the property of

**solidness." The Len-intersection of t*solidV' bodies is a

const.raint which may be locally or globally imposed, but the

system will dynamicly determine which structures are solidly

intersxtinq with one-another. This Rode1 handles the

problem of holes quite rasily. (IIOlc3S arc! the

generalization of spaces for windcvs, doors, conduits,

passagss, etc.) For each hole, we just increase the number

of boundary noints and tht! number of edges. And, this modal

trivially allows GE to extend a two-dimensicnal strnctilre

into three-dimensions. Ue just double the number of

boundary points, dcuble the IIUlatJef of edges, and connect all

old-new houndary Fairs with a new edge as our first attempt

at interpretation cf this 2-D to 3-D extension.

4.12 What is a q4masterB4? What is an l*instancelq?

A significant problem in graphic systems design is

the definition of masters and instances. The general

approach we take is that masters should be viewed as

templates which generate instances of a specific form, The

structure of an instance is not frozen; it may be altered at

vi11 after it has been instantiated. The structure of a

master, however, is partially but generally not completely

frozen. Sasters may be altered only in their unfrozen

dimensions.

A I;YS’I’r’M FOR LARGE 5TRUCTllRE GRAPHICS PAGE 60

One creates an instance from a master in the

obvious w*y -- by creating a copv with nev variables in each

appropriate slot. This is essentially an unfreezing

opera+.ion: instances have more dimeusions of freedom than

their defininq masters,

Cr;lating a naster from an instance is the converse

operation -- that of freezing in specific relations into the

Jefining fora. For example, if we have created art oblect

which we wish to define as a master wall, doinq so freezes

in the relations which correspond semantically to

VVwallness,*' Having instantiated a specific wall from this

master, we inay wish to add doors, windovs, conduits,

electrical wiring, and so forth.

In SRAPL we have realized masters and instances

using classes. Both the cube data structure and the

hody-object data structures are classes. Each subcuhe which

is generated is an instance of the class CUB%. Likewise,

each bo*ly which the user creates is instantiated as a BODY,

and each object which he creates is an instance of OBJECT.

The class structures serve as templates (or masters);

physical bodies are instances.

The approach we have taken corresponds to the

incremental compiler and partial evaluation concepts

A 3YSl!E!'l FOR LARGE S'TRIJCT~JR~ GRAPHICS E'AGE 61

originated by Lcmhardi and Raphael <LR 64,. It additionally

reflects the properties of parameter specification and

reparnmeterization of subprograms as applied to languages

such as ALSOL. Parentheticly, no "algorithmic Lanquagetl to

our knovledqe allows reparameterization of subproqrams, One

must go to a simulation language such as S1YTJI.A before 0 fi e

can find Yven static reparameterizatioc (via class, class

prefix, and virtual declarations). Or one must go to a

truly general languag.2 such as LISP, vhich does allow the

full g2narallity of dynamic roparamcterization.

A SYSTEM FOR LARr,E STRUCTURE GRAPHICS PAGE 62

5

CYAPTER 5 02:3$:08 08/04/75

Descripticn of the GRAPL Languages

l!he dssiqn of a new computer language should always

be approached with some caution, One should ask whether the

new language will in fact give the user qreater flexibility,

more expressive power, more freedom, retain some amount of

portability, and be better suited to his particular

problems. Ue have designed the GRAPL languages with these

requirements in mind.

We hava implemented two languages: the GRAPL

implementation language and the GRAPL system command

language. The implementation language was developed for the

design and implementation of interactive systems for

computing with large data structures. It is relatively

general-purlzose, and a wide variety of systems may be

designed and implemented with it. The command language, I

which forms the user-system interface, was developed to

facilitate intsractive use of the system, The bulk of this

chapter is concerned with a description of the

implementation language.

The semantics of the GRAPL system and of the system

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 63

command languaqe are implemented in the GRAPL implementation

1anguaJe. 'Ihe EemanticS of the GRAPL implementation

language are currently implemented in MLISP2 -- a languaqe

which has all of the virtues of LISF (and a few of its

draubacks) in addition to some powerful. features vhich lie

heyond the scope of most current LISF systems.

MLISPZ is an extension of f4LISP -- a lanquaqe

developed by David Canfield Smith <Sm 70) at the StaRford

Artificial Int3lliqencc Laboratory as a pro-proc.+ssor to

Stanford LISP 1.6 CyD 72>. ?lLISf? is well documented, and

the interested reader is rsfer.:d to Smith's fi&scription,

The MLISP2 extensions iust recently have been described by

Smith and Enea <SE 73).

In this chap+et we will present a complete

3t3scription of t. h e GPA PL lanquaqe in addition to the

relqv;nt portions of the MLISP2 and MLXSP languages.

5.1 The 3YAFL implementation lanquaqt?

r,FiAPL emtodi~s features from several different

classes of 1inquaq~)s. It includes: parall process

facilities scsewhat mot'3 general than those available in

languages such as SIFlrJLA and SIMSCFIPT; complete generality

Ii control structure 3s specified by Fisher <Fi 70); the

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 64

,flexibilitp of being interpretive while retaininq efficiency

through incremental (re-) compilation; and it represents all

knowledge in a completely uniform way -- in the form of

programs.

GFRPL is tied together via a multiprocess recursive

and backtrack control structure. Backtracking is more or

less a la PLANSER <He 71) and CISP70. States and control

points ar* estnblishsd with each decision. Backtracking is

much more general than pure recursion but should not be used

in place of recursion or iteration, Sussman <Su 72) has

more to say on this point.

Yore than one portion of GRAPL may be executing at

any one time. W9 a4mi.t coroutines and parallel routines.

Sequential control is implicit within a given process.

Parallelism is implicit among the several processes which

may be activated, passivated, terminated, and so forth.

Sub-processes are Frocesses whose execution is monitored by

B parent process.

5.2 Constants

GRAPL includes three forms of constants; numbers,

quoted expressions, and strinqs.

A SYS'CEB FOR LARGE STRUCTURE GRAPHICS PAGE 65

5.2.1 Numbers

Numbers may be of two types -- integer or real,

Integers are aither signed or unsigned and must lie in the

range: 0 <= K C= 'i**lfi,

Real numbers are either an integer followed by a

decimal which is followed by an integer, an integer followed

by an exponent, or some combination of the two, Both the

number and the exponent may be signed. Reals must lie in

the range: 0 <= ABS(K) <= t/- 2**35.

5.2.2 Quote:]. expressions

A quctz? expr.?ssion is d single quote (') followed

by an S-expression. This is exactly the same as 1'.n LISP.

5.2.3 St.rinqs

A string is a double-q uot.2 (I*) followed by any

sequence of ch?ractsrs except F ("); thes+ are folloued by a

double-quand ate, Strinqs bra primarily USed in

input/output operations, GRAPL is not desiqned to be a

string processing lanquage (as is, :;ay, SNOFSOL I(),

5.3 Identifiers

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 66

Identifiers are names for objects of all types.

They may be of arbitrary length. Identifiers must begin

with an alphabetic character (upper or lower case). The

following characters may he alphabetic or numeric.

5-Y Lists, segments, and S-expressions

Lists are formed in the same manner as in LISP and

MLISP2, either as '(THIS IS A LIST) or as

<'THIS,'IS,'ALSO,'A,'LIST>. The former method creates 'a

list constant; the latter constructs a list each time it is

referenced.

Segments are formed by use of the segment operator,

slash (/). For example, /'(THIS IS A SEGMENT) and

/<‘SO,‘IS,‘TYIS> koth yield seqments. Segments are most

useful in pattern matching.

The rules for forming S-expressions are similar to

those in LISP. An S-sxpression is either an atom or a list

of sub-lists, oath of which is an S-expression. The lists

may be formed1 either as constants (a left parenthesis,

f0ii0woa by the list elements, followed by a right

parenthesis) or by use of the list operators (left and right

angle brackets),

A SYSTE!! FOR LA?GE 'iTHIJCT!.I!lE GHAP;fICS FAGE ii7

5.5 In3exinq

Indexinq is handlEd in a cclrpl;?t~? ly uniform uay:

the functicn GET (' (A 13 C),2) yields D, GET (': ((A) (B)

(c)),1) yields (A), and so forth. GET is defined for lists,

tuples, haqs, +nd sets. Its value on sets is the i'th

component of the set expressed in cannonical order.

!loreOver, G!Z'I and PlJC allow extended access in the

following way, if

X = ' (A (B C (D) E) F.G)

GET (P,2) yields (B c (W E)
GET (X,2,1) F
GFT (x,2,3,1) D

PUT (X,1,'H) (A (3 C (D) l?) p. G)
PlJT (X,2,:,‘H) (A (13 C I! E) F C)
PUT (X,l,LI,‘H) ((A NTL NIL H) (i3 C (D) E) F Gl

A SYSTEM FOR LARc;E ST'RUCTUBE GRAPHICS PAGE 68

5.6 Specifying data structures

In G2APL we specify data structures in the

following ways:

function call returning element value
function call returning segment value

:I ;
lists
tuples

I() bags
:(1 sets

A pr-lfixed I’/” will force a function to return a

segment value rather than an element. value. A prefixed ltI1@

will force parallel anecution of a function call.

5.7 i3inding, function definition, and access

In GF9PL we view binding, assignment, and function

>iefinition in 4 completely uniform and consistent manner. A

function is viewed as a value which is a list of the

following form: It has the symbol LAMBDA, followed by a

list of arguments, followed by the expressions forming the

function body. Thcs the expression:

(Si3T 'FN '(LAHBDA (X) (CAR (CDR X))))

sets the value of the atom FN to the list '(LAtlBDA

(Xl (CAR (CDR Xl)). Whenever EVAL encounters the atom PN,

its value vi11 he obtained: and as its value is a Lambda

A SYSTEK FOR LARGE STRIICTIJDE GRAPHICS FAr;E 69

expression, araument binding and function evaluation will

coinmence. The LT'SP functions DEFINE and DEFLTST are both

replaced by simple assignment in GRAPL .

9indi3g and assignment are viewed as two

syntactically differznt mechanisms for achieving the same

semantic result. For example,

(LAYPDA (Xl 0 1) 'FOO

(LAMPDA (Xl (SET 'X 'PO011 0

both qivs X the value 'FOO, the first by binding X

t0 'FOO, the sticnnd by assigninq X the value *FOCI. (The

second examp12 is not quite fair, X is first bound to NIL,

then assigned the value 'FOO.)

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 70

5.7-l Rules for function definition

The rules for function definition are similar to

those for defining Lambda expressions in LISP, but differ

importantly in the area of argnment binding.

Argucent binding is done in the following way:

1) Yrgument atoms are paired with their
corresponding expressions

2) Expressions and segments are elevated if
their corresponding argument atom is
prefixed with an exclamation point (!)

3 Argument atoms are bound to their evaluated
or unevaluated corresponding expressions
according to whether they appear unquoted or
quoted in the argument list

Function definition itself is accomplished by

assignment rather than by declaration.

A SYSTEM FOP LARGE STRUCTURE GRAPHICS PAGE 71

5.7.2 Examples of function definition and evaluation

Assume U is bdund to 3 and V is bound to @ fU 0).

The expression

(SYT 'IDENTITY ' (LAt!BDA (X) X))

(SE?' 'IDZNT '(LA!!BDA (!X) /Xl)

(SET 'FCN
'(LARBDA (X) ("IFIES X X)))

(LA!¶BDA (X Y) (LIST X Y)) ‘A 'F!
(LA!lECA ('X 'Y) (LTST X Y)) 'A 'F
(LAPIBDA (X) X) V
(LA?lBDA ('X) X) V
/(LArlBDA (X) X) v
/(LAflRDA ('X) X) V
(LApl3DA (!X) X) V
(LAHEDA (X !Y 2)

(LISI X Y 2)) 'A 'B 'C 'I-J
fLA?lB?A ['!X) X) A 9 C D
(LAMBDA (?X) X) IJ V U V

5.7.3 Access

Tn GRAL3L the concepts of norma

Yields

makes IDENTITY
the identity
function of or,c?
argument

makes IDENT the
identity function
of indefinitely
many arguments

makes PCN the
function:
P(X) = x*x

('A '9)
(U Ul
'(fJ U)
-II u-

' (A 9 C D)
(3 ('I U) 3 (U U))

variable access,

loCal aTld q 1. qba 1 variables, and free dnd bound variables

have been extended slightly to include values obtainable by

dccess.

A (I c t? c: c= ..I variables correspontl somewhat t0 OtJN

variables in .I\Lc;CL, 5 11 t. t-hey am process-oriented rAther

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 72

than procedure-oriented. That is, access variables are

those local (OWN) variables which are declared at process

instantiation time, They retain their values so long as

their process exists within the system; they are

incaccessible by any means after their process disappears

from the system. Ploreower, access variables follow a

separate rule for global (or free) reference: Whenever a

process is generated, an access variable uhose name is

GLOBAL is declared. Its value is generally set to the name

of the generating process, It may be explicitly set if the

user wishes. Then, any reference to an access variable of

the form (<alpha> variable) will automatically reference:

11 the current process' OWN variables
21 the CWN variables of the process pointed to *

by GIORAL
3) if the variable still has not been found,

step (2) is repeated until either the variable
is found or the topmost process is reached
(in which case an error is reported)

Access variables have characteristics both of

static local and global (bound and free) variables such as

found in ALGOL, FL/ 1, and LISP, and of dynamic state

variables in a process such as found in SI?llJLA or SINSCRIPT.

Moreover, in GRAEL the chains of access links may be

modified ,3ucing execution.'

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 73

5.0 Operators

The GRAPL operators include all mLIsP * and rlLfSP2

operators in addition to <alpha>, the access opsrator. For

complataness, we present the following table:

Abhreviat icn

*
/
i

<up arrow>
<down arrow>

3
=

<not equal sign>
<less/equal sign>

<great/3qual sign>
<*psilon>

F;
(invorte.1 V>

I
V

&ha>

Function

?I MES
QUOTIENT
PLUS (ok as a prefix]
CTFFERENCE (MINUS if a prefix)
PRELIST (a generalized CAR)
SUFLIST (a generalized CDR)
APPEND
!?QUAL
NEQUAL
LEQUAL
GEQUAL
YEMBER
AND
AND
OR
OR
NOT
ACCESS (as a prefix only)

Parentheses mav be usad to force the order of

evaluation. In acidition, all binary LISP functions (such as

CAR, CDR. etc.) may he used as infix ooerators,

A precedence system is used in parsing expressions:

the rea;ler is referred to the (ILISP manual <Sm 70, for ia

fuller discussion.

The access operator, <alpha>, was discussed in the

previous section,

A SYSTEH FOR LARGE STRUCTURE GRAPHICS PAGE 74

5.9 Sequential control

Six sequential control expressions exist in GRAPL:

GO, IF, FOR, WHILE, UNTIL, and CASE.

5.9.1 GO-expressions

A GO-expression forces an unconditional transfer of

control. A GO-expression is the word GO folloved by an

expression which must evaluate to an atom. This atom must

be a label on one of the expressions within the current

procedure. Global lables (such as are possible in ALGOL and

PL/l) are not allowed.

GO LABL;

GO 'IF A=R THEN Ll ELSE L2;

5.9.2 IP-expressions

Tha IF-expression is the conditional expression in

GRAPL. It is formed by the vord IF followed by an

expression, followed by the word THEN, followed by another

expression. Optionally, this sequence may be followed bp

the word ELSE and another expression. One or more

ALSO-clauses consisting of sequences of the word ALSO and an

expresion may fellow the THEN-expression and/or the

A SYS'I'SM FOR LARGE SSBtJCTUfiE GRAPHICS PAGE 75

ZLS?- expression, Ihe s$m;intics of the IF-prpression are the

Sam-? as in YLTSP.

TF A=R THEN C <- C+l;

TF FINISHED “'HEN PINALLFNCTIr)N(EES51I,TS)
ELSF GO LOOP:

IF PRED THEN I <- I+1 ALSO L <- CDR L
ELSZ I <- 0 ALSO L <- OLDL ALSO GO LOOP:

5.9.3 FOR-expressions

The FOR-a xpression is one of the most powerful

expressions in GFAPL (and YLISP). Rathtir than duplicating

the excel lent description found in the MLISP manual, we

present a list of the capabilities of this expression and

give some examples. FOP-expressiocs allov orle to:

1) Increment (decreraent) through a numerlcal range
vith arbitrary step size

2) Sequence through a list. using the first, second,
third, . . . element

3) Sequence through a list using the whole li st,
t-he list minus th? first element, minus the first and second
elements, etc.

4) Force the FOP-variables to he local t-0 the
FOR-expression or use variables global to th2 FOB-expression

5) Ccntrol the manner in which tho results of the
FOR-expressicn are accumulated

6) Terminate execution of the FOR-expression at any
time

7) Run any number of FOR-variables in parallel
and/or nest FOR-expressions.

A SYSl?!?M F03 LARGE STFUCTUSE GRAPHICS PAGE 76

The follouing examples il.lustrate some possible
constructions snd the results of their execution.

Let L = ' (A (E\ C)

PO!? NEW I <- 1 TO 10 BY 2 DO F'RINT I;

prints 1
3
5
7
9

returns 9
uses d local I

FOR J <- 1 TO 999 DO PRINT <I> UNTIL J EQ 4;

prints (1)
(2)
(3)
(4)

teturns (4)
leaves J set to 4

FOR NEW K IN L CO PRINT K;

prints A
(Bl

C
returns C
uses a local K

FOR K CN L DO PRINT K:

prints (A (B) '3
f(B) C)
ICI

.returns (Cl
leaves K SET to NIL

FOR N3W I IN L CO COLLECT PRINT <I>;

prints (A)
f(W)
K)

returns IA (8) Cl
uses a local X

FOR J ON L DO COLLECT PRINT 3:

4 SYSTCJ FOR LARGE S'IRIJCTllRE GRAPHICS PAGE 77

prints (A (RI Cl
((8) (3
If-3

returns (A (R)- C (B) C C)
1-3aves J S-ET TO NIL

FOR I (- 1 TO 5 FOR J IN L DO PRINT <I,J>;

Prints (1 A)
(2 CB))
(3. Cl

returns t3 c\
leaves I set to 3 and J se+ to C

Further examples my he fo!ind in the tiLISP manual.,

5.9.4 WHILE-?xprassions and rJNTIL-expressions

These tldc forms allow one to form iterative

expressions wit.h arbitrary or no specific sequencing

control. The WHILE-expression is formed by the wDrd WHILE,

followed by 3 11 expression, followed by the word DO or

COLLECT, follotied ty another expression. So long as the

first EXpr 2r;sior. evaluates to a non-NIL valtie, the second

expression is repeatedly evaluated. The UNTIL-exDression is

formed by ths uord DO or COLLECT, followed by an expression,

followed by th? word UYTIL, followed by another expression.

Its execution i s similar to that of the WHILE-expression

except that th? body of tha expression in guaranteed to be

evaluated once beforlz, termination.

UHYLE NEQUAL(A,H) DO A <- A+l:

WHILE CAR L = 'A DO
BEGIN

A SYSTEB FOR LARGE STRUCTURE GRAPHICS PAGE 78

s-9.5

x.9 <- CDR L;
I <- I*1

END:

DO A <- A+1 IJNTIL A=R;

DO BEGIN
L <- CDR L:
I <- I:+1

END
UNTIL ?JEQUAL(CAR L,'A) i

CASE-eXFressiOns

The CASE-expression is similar to the CASE

statemsnt of ALGOL. It is formed by the word CASE, followed

by an expression, folloved by the words OF BEGIN, folloued

by a sequence of expressions, followed by a closing END.

The value of the first expression must be an integer greater

than zero and nc larger than the number of expressions

follovinq the BEGIN. If the value of the expression is

outsite these limits, an error occursI If the value is N,

(and is within the limits) then the Nth expression is

evaluated and is the value of the CASE-expression,

CASE N OF
BEGIN

PRINTSTR "N IS ONE":
PRINTSTR "N IS TUO";
BEGIN

PRINTSTR "19 IS THREE";
TERPRI()

END;
PRINTSTR "N IS POUR"

END:

5.10 Backtrack control

A SYSTEM FOR LARGE STRUCTlJRE GRAPHXCS E,AGE: 79

9acktracking is accomplished through use of

rlLIsP2's SELECT function. The syntax of the SELECT fwction

is:

SELECT <value-expression>
PROM <identifier> : <domain expression>
NEXT <successor-exprassion)
!JNLFSS (tarminator-expression>

TN WHICH CASE <final-expression>

where, if the phrases are omitted, the defaults
are:

<value-expression> = CAR
<successor-expression> = CDR
<terminator-exDrwsion> = N IJLL
<final-expression> 5 FAILrJRF:()

A simuln exampl.2 of the use cf the ~;E'L,FCT functior:

is Floyd's C!lCIr:E function:

EXPR CHOICE(N);
<ELECT I FROY I: 1 NEXT I+1

I1NLES.l; 1 GREPTPRP N;

5.11 Pr9cesses an:1 process control

Gf APT pl-oczsses are named collections of :;tate

variables nmcnq which are mm (the fucctior,.il body), PC

(the proqr Iii1 counter), 3 nd GLOBAL (a pointc:r to the

next-most qloh91 prccess).

A SYSTEM FOR LARGE STRIJCTLJRE GRAPHICS PAGE 80

GEAPL has two built-in queues, QUEUE and PQUEUE.

QrJEDk: contains the “act iveO process (the process at the head

of the queue), and several "passivetg processes (those not at

the head of the queue). A ** P assive" process is one which is

on PQUEUE rather than on QUEUE. A Werainated" .process is

one whose PC is VTERflINAT??D; it will be on neither queue

after the scheduler has examined it.

s-11-2 scheduler fun&ions

GRAPL includes three types of scheduler functions:

scheduler t3xzcution functions, scheduler queue control

functions, and user queue control functions.

There are four scheduler execution functions:

INITSCHED(RUNP)

Initializes the scheduler, If RUNP is NIL,
sets QUErJE and PQUEUE to NIL. If RJJNP is
non-null, the scheduler is called.

INITSCHED,C(Sl.JNP)

rnitializes the scheduler, sets PQUEU? to NIL
and sets QUWJE to 'SYSTEM?. If RUNP is
non-null, the scheduler is then called.

SCHSD'JLEF J)

The actual scheduler: runs processes on QUEUE
until QUElJF becomes empty.

SHALT0

Ualts the scheduler. The scheduler may be
continued by invokinq SCHEDULFR directly.

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 81

There are six scheduler queue control functions:

SINITIATF,(PROCESS,STATE)

Binds the state variables given in STATE, then
inserts PROCESS at the tail of QUEUE,

As SINITIATE, but inserts PROCESS at the tail
i>f PCIJEUE instead,

SACTIVATE (PROCESS)

Puts PROCESS at the head of QUEUF regardless of
whether it was suspended or passive.

SS1JSPEND(EROCESS)

Puts FROCESL; dt the t.sil of QUE!JE if it was
on (IJIEUE,

SPASSIVATE (PEOCESS)

Removes PFCCESS from QUEUE if it was there,
3nd Futs it at the tail of PQJJEUE.

S"'?RMTNA!fE(PBOCFSS)

!lumovcls PAOCES.$ from QUEUE if it was there, and
;nts it.-; PC to 'T?FXTNATED, If it was
not four,d in (I'IFUF:, then PQ!J!?rJE is searched.

There are five user queue control functions:

UTNIT(PROCBSS)

3 i 11 d E the PC of process FBOCESS to 'SY:iO and
puts PROCESS at the +?il of gIJE!JE.

U~NI’IP (PFCC?lSS)

As IJINII, but inserts FROCESS at the tail
of PCIJEUE,

rJACTIV(PFcCESS)

If process PRCIC FI;I; is in OuEIlE or PQUEIJE, it

A SYSTEM POR LARGE STRUCTURE GRAPHICS PAGE 82

makes PROCESS the next process to be run.

UPA5SIV(PEOCESS)

Removes PROCESS from QUEUE if it was there,
and puts it at the tail of PQUEUE-

UTERM(PRCCESS)

Sets the PC of process PROCESS to *TERMINATED
and removes it from QUEUE if it was there, or
from PQUEUE if it was there.

5.11-3 Local, OWN, and global variables

There are three types of variables a process w

reference. LOCAL variables are those variables vhich have

no value upon process activation and whose values are

discarded upon prccess suspension. OWN variables are those

which reside within the "state11 of a process. The PC

(program counter) is one example of an OWN variable. GLOBAL

variables are those which reside within the state of some

other Process. Access to GLOBAL variables is actually

unrestricted: any process*s variables may be read or

written. However, the usual case is only to reference those

variables in processes superior to one's own. This is done

via a link contained in the state variable "GLOBAL" (and by

use of the access operator, <alpha>).

Changes are made to LOCAL variables using the

normal EVAL access functions (SET, SETQ, and GET). Changes

are made to Di4N variablss and GLOBAL variables through use

of the functions GFT and PUT. These functions arcs called

automatically when v,lriables are referenced in th-+ following

aanntir:

OWN V?riatlcs:

PROCESS,VARIABLE C- VAL!JF:, or
VAL!JE <- PROCESS.VA!?IABLF

CLC)RAL Variables:

(ACCESS VARIABLE) .VARIADLE <- VALUE, or
VALIJE <- (ACCESS VARfABLE).VARIA3LE

Tho system function ACCESS may he abbreviated by

the special symbol <alpha>, yielding:

(<alpha> VARIABLE).VARIABLE <- VALUE, or
VALllE <- (<alpha> VARIABLE).VARIABLE

Access to arrays may b@ made in the following

manner: Assuming ARRAY(BETA* . . .) is an array, and BETA

is global to the current process,

EVAL <(ACCESS BETA).BETA,I>, or
BVAL <(<alpha> BETA),BETIr,I>

both of which yield BETA(I).

A SYST?M F33 LARGE STh‘UCTURE GRAPHICS PAGE 84

5.11.4 Process definition and instantiation

GR&?L allows ORE to define processes through use of

the CLASS _ exoression, which corrasponds to the CLASS

statemtint of SIMOLA hut is not so restrictive. The syntax

of the CLASS expression is:

CLASS (YA!lZ,STATZ,BODY,GLOBAL)

NA?lE
STATE

BODY
GL'39AL

= the name of the class
= 'the names of the process's OWN

variables, or NL
= the functional body, or NL
= th=! name of the process global

t.o the current one, or NL

Final qrguments whose valuas are to be NL may
he omitted.

CLASS0 is similarly defined, but quotes all its
arqum>nts.

Processes may h+ instantiated by use of the NW

expression. Its syntax is:

NEW (INST-NAME,+lAST-NABE,STATE)

INST-NAME = the name of the instance
MAST-.NA!lE = the name of the master (class)
STATE = the initial values for the

instance's OWN variables, or NL

Instances may be made of other instances or of
classes,

Final argulaents whose values are to be NL map
be omitted.

NEWQ(INST-NAMf,HAST-NAB&STATE)

NEWQ is similarly defined, but quotes all its

PAGE 85

arguments.

We (give scme examples:

CLASS ('PATIENT,'(NAMF AGE WEIGH" H?IGHT),
'(BEGIN

the semantics for a patient
END)):

CJ.ASS ('CC?JPLEXNJIMHE?,' (REALFAPT I?lAGINAPYPAPT));

NEW (NEUNAME,'PATI~NT,<'SMTTH,46,165,68>);

NFW (YL,'COMPLPXNJJMDER,<5,3>);

The first example establishes the class PATIFNT and

declares that the four characteristcs of name, age, weight,

and height are to be state variables. It then schematically

continues with the definition of how a patient is to behave.

The second example ssts up a tg data *I class called

COMPLEXNU?lD%3, having t uo parts: a real part. and an

imaginary part.

Tha third example instantiates one patient. It

assumes that N?WNAF?E will yield the name for -this particular

patient, It then also associates the pairs: (NAME SMITH),

(AGE 46), (WEIGHT 165), and (HEIGHT 68).

The last exaarple instantiates one complex number of

va.lue 5+3F.

A SYSTE?l FOR LARGE STRUCTURE GRAPHICS PAGE 86

5.11.5 Process ccntrol functions

GRAPL provides t. wo special process control

functions, VOLD and WHEN, HOLD is a special case of RHEN,

but it is especially useful for doing simulations as it is

time-oriented. Their descriptions are:

HOLD(LAFfEL,AWAKE)

Suspends (passivates) the current process until.
t.im2 AUAKE (or later), then activates it with
PC set to LABEL.

WHEY(PREDICATE,ACTION,E'REDICAT~,ACTTON, . . .)

WHEN takes a series of predicates and actions.
When the associated predicate becomes true,
the action will be performed. There are no
particular restrictions on either the predicates
or actions. Note that UHEN will only perform
the action once: if it is desired to have an
action always performed when a particular
pre,dicate is true, the action should issue
the appropriate WHEN.

RHENQ(PSEDICATE,ACTION,PREDICATE,ACTION, . . .)

WHFNQ is similarly defined but quotes all its
ar gum ants,

The WHEN expression is a straightforward
r

application cf the concept of "semi-continuously evaluating r

expression" due to Fisher <Pi 70).

He give some examples:

HOLD ('LBLI ,CIJRRENTtEVENTTIF!E);

UHEN ('CONDITfON,'(BEGIN . . . END));

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 87

WHEN (PREDl(. . .),ACTICNl(. . .),
PPED2(. . .),ACTTON2(. . .),

a
PREDK(a..),ACTICNK(:::)):

The first example suspends the current process

until the amount of time EVENTTIME has passed; then it is

reactivated.

The seccnd example schematically illustrates a

simple use Tjf UHFN, After the predicate CON,nITION becomes

true, the code in the D%IN-END block will be executed.

The 13st example schematically illustrates the us e

of several predicates and actions. The PEEPS are taken to

be various predicates and the ACTIONs are iirbi+.rary

expressions or function calls.

5.12 !Zxcressicns

An expression may be cith+r a simple expression 0 P

two or more simpl? exprrssions s4parated hv infix operators,

A simple expression may he 3 block, I. arr; h.1 a

expression, IF-exprnssion, FOR-t?XFreSSiofl, WHILF-expression,

lJNyIL-t?xprf?SSic>n, assignment expression, ens iz- expression,

etc. The GRAPL syntax for sxpr+?ssion cfnd Simple expression

is the same as is found in PiLISP.

A SYSTEM POR LARGE STRUCTURE GRAPHICS PAGE 00

Blocks are formed by the vord BEGIN, followed by

any number cf declarations, followed by any number of

expressions, followed by the word END.

BEGIN
NEW X,Y;
NEU 2;
X <- CAR (Y <- READ()):
Z <- SVBST (‘A,X,Y);
PRINT <X,Y,Z>

END ;

5.13 Programs

A GRAPL program is an expression folloved by a

period, Usually the program is a sequence of expressions

enclosed in a block, but single expression programs are

allowed.

PRINT "THIS IS 3N EXTREMELY SHORT PROGRAI'l."

BEGIN
NEW I;
I <- '(THIS IS ANOTHER SHORT PROGRAH);
PRINT I

EEJD,

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 89

5.14 The GiiAPL evaluator

The GRAPL evaluator, EVAL, is similar in most

respects to the LISP function of the same name, but it

differs significantly in several important ways.

Table 5.1 - Ihe GRAPL evaluator

GRAPL EVAL

Atoms only may have one value

Atoms nay have a property
list of indefinite length,
with repeated indicators

Function call occurs
wherever a L3wbda expre-;sion
is encountered

Has a consistent method for
the Lambda expression of an
atom bound to same

Has a uniforn method for
function definition and
argument binding

Has a means for elevation to
lists

Incorporates backtrack control

Incorporates parallel and
coroutine control

LISP EVAL

Atoms may have an arbitrary
number of values

Same

function call can occur
only just after a left
parenthesis

No direct method for
obtaining such a valu+
is available

Has EXPR's, FEXPR's, etc.:
a ncn-uniform argument
binding mechanism

No such mechanism exists

Has only recursive control

No such mechanism exists

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 90

We present some examples of the evaluation of GRAPY,

expressions.

The GRAPL Expression Yields the following

(SET 'B ‘(LA'lBDA . . .)) binds B to (LAMBDA .-.)
ie. gives to B the value
(LAHBDA -cm)

gives A the value 'B (SET 'A 'B)

(SET ‘A B)

(SET 'A .B)

(SET 'F '(LAYBDA {X !Y)
(LIST X Y)))

(SET 'Z F 'A 'E 'C 'D)

(SET '2 (F 'A 'B 'C 'D))

(SET '2 F '(A E!) 'C 'D)

(SET '2 F 'A 'B 'C F 'D 'E 'F)

(SET 'Z F 'A 'B 'C (F 'D 'E) 'P)

gives A the value of the
evaluation of
EVAL (LAbBDA . . .)

gives A the value
(LABBDA .w.)

gives P the value
{LA&BDA ,.-)

gives Z the value of F
applied to 'A 'B 'C *D
which is (A (B C D))

gives 2 the saae value

gives Z the value
((A B) (C D) 1

gives Z the value
(A fB C (D (E PI)))

gives 2 the value
IA @ C (D (El) PI)

A SYSTEM POL LAR';E STRJJCTURE (;J?A?HICS PAr,Z 91

The r;!?fiFL syst.em bar, f acilitilzs both for the

creation of nei4 objects and for the collection of old

objects into structures which we may t.hen save as nr3u

objects,

The GRAPL system includes commands for the

construction of primitive enti+iGs (bcdies), the combination

of thes2 primitivas into more complex forms (objects), an4

tho incorporation of these- entities into ;t world model.

commands fall naturally

1)

2)

3)

4)

5)

control Commands

Drswing Coa,mands

Attribute commands

Monitcr Commands

norld Commands

into several categories:

those daaling with
qeneral control
functions

those dealing with
the actual drawing
procnss; the creation
and manipulation of
bodies and objects

those dealing with
attributes given to
bodies and objects

those dealing with
the monitoring
facilities

those dealing with
the creation and
manipulation of world
models

Command

C
G

C
H
?I

D
R
s
T

N ahc

P
A
N

Q”
S
T
w

Q
L
Q
w

x
z
.

A SYSTEFI FQR LARGE STEUCT1JRE GRAPHICS PAGE 92

Tabliz 5.; - Commanr1 language summary

CONTROL COF(,"IANDS

Action

(top level) Continue GRAPL system
(top level) dead start GRAPL system

- Clear screen, etc.
- reset window to normal vievpoint
- set Mode to

Dilate
Rotate
Scale
Translate

- sets Name to 'abc
WORLD PEN BODY abc (ahc . t)

- set system Parameters
DA: Angular constant
FVN: auto-Number vertices
ORM : order of magnitude
FQN: Query status
DS: Scale factor
DT: Translation constant
FQW: uorld query status

- Query system status
List catalog of bodies and objects,
Query system variables
query World variables

- execute a LISP expression
- Zap! Terminate run
- reset name to PEN

<infinity> abc - compile object 'abc
ALTMODE - restart numeric input
* - escape -- terminate with no action
<alpha> - output picture to XGP printer

DRARING COKMARDS

Command Action

D - Celete comnands
E t X’ Edge joining vertices t and It*
P # I' t" - Face bounded by vertices 11, #' and GM
0 t Object t
v # Vertex t

E - new vertex at pen: new Edge
I ahc (x y 2) - Instantiate object 'abc at (x y z)
J # #' - Join vertex X to It': pen at vertex #

9 SySrEM FOA LARGE STRUCTURY GRAPHICS PAGE 93

L abc
S ahc
T {x y xl
V

- Load object *ah for edit
- Eaves current. object ur,4et name @abc
- move pen To (X Y Z)
- new Vertex at. pen

- p?nup; pen to (0 0 0); pendown
- kenup; pen to vertex t; pendown
- name for the last vertex created
- rotate about the X, Y, Z axis by DA
- translate on the X, Y. Z axis by DT

ATTRIBUTE COHMANDS (side effect: perform a load)

Command Action

A abc - show Attributes of object 'abc
D abc attr - Lelete Attribute attr from object ‘abc
G abc attr val - Give attr value val for object ‘abc
R abc attr - Retrieve attr's value, object *abc

MONITOR COMMANDS

Command Action

M - llonitor commands
H nam expr - nonitor expression using name 'nam
N expr - Notify (once) when expression expr is true
D nam - Unmonitor expression 'nam

WORLD CCHRANDS

Command Action

w - world commands: all refer to current world
D abc - Delete object 'ahc in current visual nbhd
I abc (x y z) - Instantiate object ‘abc at (X Y 2)
L ahc - toad world ‘abc and initialize
S abc - Save current world under name 'nbc
U abc - Update object ‘abc

6

A SYSSEM POR LARGE STRUCTURE GRAPHICS

CiiAPTER 6 02:38:08~08/04/75

Several Examples

PAGE 94

In orIer to demonstrate the power and flexibility

of the GRhPL system we present four examples, The first

example demonstrates power of GRAPL data structures. We

have created a world composed of a set of buildings. As we

slowly decend intc the first structure by decreasing the'

siza of the display neighborhood, more and more detail

becomes apparent until we reach the (current) limits of the

resolution of the SystPn. The ease of representation of

highly complex structures, control of the level of detail,

and the efficient access and display of large structures are

due largely to the manner in which GRAPL stores information

about the real world.

The second example demonstrates the power of our

parallel approach to the design of interactive systems. We

have simulated a sioall operating systea and display

graphically various parameters of the model. The user laay

examine the queues which arise, modify the 80iiel*s

parameters, completely change the structure of the model,

and display his results. Some of the syster’s

characteristics are displayed using histograms which

A SYSTEB FOR LARGE STRUCTURE GRAPHICS PAGE 95

dynamically reflect the current status.

The third example demonstrates the addition of a

small packaqe for the display of algebraic functions of the

form y = E(x). The graphing packaqe generates a body which

contains n 0 t only the representation of the function, but

the coordinate axes as well. The form Of the equation,

SC.3 le, and various other parameters may be set by the user

interactively.

Our f\>ucth example is a projection of hOW GEl APL

might be used by an architect and his client in the design

of a houSe. Ihe GRAPL system in its current form could be

11.5f?a in the 32sign; however, it most prohahly would be mo're

economical for a few nodificatiqns (additions mostly) to he

made first s3 as t 0 l*t,ailortw GRAPL to the requirements of

the architect ar.d his client.

6.1 Walking through a building

As our first c?xample, w2 present a demonstration of

th+ power of control over the 1ZVPl of detail in the

presentation of pictures which vary over a wide ranqe of

magnitudes.

In Figure 6.1.1, we se63 the gross description of a

A SYSTEM FOR LARGE STRUCTURE GBAPHICS PAGE 96

skyscraper modeled after the Transamerica Building in San

Francisco. We are about 1 km away from the building, at

about 250 meters elevation. The level of detail is set at

one.

Figure 6-l-2 shows us zooming in on the 309th

story. The visual neighborhood has been set so that only

the front faces of the building are retrieved. Detail

remains set at one.

Figures 6.1.3 and 6.1.4 show use zooming still

closer. In Figure 6.1.5, we modify the level of detail to

two. Thus, the interior room closest to use now becomes

visible, Not all of the contents of the room are visible,

however, because the visual neighborhood currently extends

only just beyond the desk and chair.

Fiqurz 6.1.6 shows us just inside the physical

boundaries of the room with all contents visible. We begin

to approach the d=:, -=k in chair in Fig.ure 6-l-7.

Getting closer still, Figures 6.1.8 - 6.1.10 shov

us concentrating our attention on the desk.

.-

Figures 6.1.11 and 6.1.12 zoom in on the set and

drawer on the left side of ths desk, In Pigur3 6.1.13, we

A SYSTEi'l FOR LARGE STRUCTURE GRAPHICS PAGE 97

increase the lavel of detail again, and discover that the

second drawer has a cube within it,

Figure 6.1.14 shows us closer still, and in Figure

6.1.15 we discover a pyramid within the cube, The cube is

6~x1 on a side. The pyramid is 2cm on a si.de.

Figures 6.1.16 and 6.1.17 shou u s getting closer

still. At this point the visual neighborhood is a 10 cm

cube. Increasing the level of detail again, we see the word

"GRAPL" within the pyramid,

We have traveled over the range 1 Km - 10 cm, four

orders of magnitude. It is important to realize that all of

the data would have been accessed and displayed if the level

of detail were tc havs been increased at any time. Due to

the physical size cf the objects involved, however, most of

the time the cube, its pyramid, and the word "GFAPL" would

have been displayed as a single point (although all of their

internal structure would have-been there).

Figure 6.1.1 l'kilometer away Page 98

I"igure 6.1.2 The 3G'th story Page 99

:
!

/

I

c 7

/
-x

-- 1
i
--I

:

J

E'ig-ure 6.1.4 The 30' th story, s-W.1 closer Page 101

\
Y

7

-+-

x

Fine 6.1.5 Increasing the level of detail Pace 102

1

Figure 6.1.6 Just inside the building Page 103

Figure 6 L l 7 Approaching the desk and chair Page 104

Figure 6.1.8 A lateral view Page 105

I

/

1 .

I

!

I

I

I

/’ --

NlW’ I’,,,,” I nnru vmtm ntr
YIlI!LD N II Nil Dl I.01 .7 fit II ty
Dt’ot! 3 51’1 1 ,z Dn I.2 III Gf!l I 5

05 2.0
-

-I_ ---____

Figure 6.1.9 The file, desk, and chair Page 106

ffnfl~ tntr ttm ! t’nw n t r
“,tt!l D N IL fill. Dl n.51 -I n, ,,c5
Dt!Dl! 3 WL1 I2 DII IZ Orl;f’lL5

05 i.0

-K - T

I

.---.___---- --- -

1 CZZZ3

Figure 6.1.12 The three drawers

-, .

-

/

-

L- -X

-?k

‘4

,

--

/

/

--

7

-.

/’

Fi@xe 6.1.13 Increasing the level of detail Page 110

/

H

’

7
-I

1‘ L

5

7

-

/

.

Figure 6.1.14 Closer still Page 111

r-
--

_--- -.--- -- r

--

Figure 6.1.15 The pyramid appears Page 112

Figure 6.1.16. VI-thin the drawer We 113

. !LJFuwL *
nnnt In71 noon ivn~w nlr
UOPIO NII NIL 01 R.!K-I nl.If.,!;
Ql!QN 3 51’1 1 IZ on 17 01m1.15

DS 7.0

----- - -.-

v

i/
7

4----

I

--- - -

Figure 6.1.17 C-loser again Page 114

Figure 6.1.18 'GRAPL" appears within the pyramid Page 115

wnnl In73 nncl I~IN!,I nlf

.

UOi!l D HII NIL 01 n.!.l -I nf II w
IWIN’ 3 SPLl 12 Dn 17 DLKI!I I5

OS 7.0
.

i

A SYS'=E!? FOR LARGE STRUCTURE GRAPHIC!?

6.2 A simple cperating system

PAGE 116

To demonstrate the use of the GRAPL system in a

more ayplicltions orisr?ted environment we decided to model a

simple operating system. The CALIDOSCOPY? Operating System

<IJC 72> for th2 CIC ii400 running at the University of

California at Berkeley was chosen as a basis for our model

both for its simplicity and because u2 are reasonably

familiar with its characteristics. The CALIDOSCOPE system

supports a multiprogramDi.ng environment consisting of at

!nost five execution tasks plus miscellaneous input/output

functions.

G-2.1 Hardware environment

Cal's CDC 6400 includes th2 standard ten peripheral

processors plus a main cpu. The system supports 65K of

central memory plus 133K extended core storage. Users .have

access to at most three tape units, although several

additional units usually are on-line. Two IBM 1403 printers

xnd a CDC 501 Frinter serve as the primary output devices,

Additionally, there are a card punch, operator's console,

snd high-speed card reader.

The 6400 also supports a remote computer system

WCS), primarily designed for the attachment of small

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 117

computers driving driving card readers, line printers, and

other input/output devices: and a remote t’erminal system

(RTS), used for remote job entry and retrieval. No true

tiae-sharing system is implemented.

6.2.2 Software environment

The CALIDCSCOPE Operating System <UC 72) is a

modification of the CDC Scope 3.0 system tailored for

Berkeley's particular requirements. The system is modular

and consists of several essentially independent parts, the

most important of which is HYDRA which handles input/output

tasks and spooling.

The scheduler selects tasks for execution using a

simple first in first out algorithm subject t& the following

restricticns. Users may give jobs one of five priorities:

Priority E - Express - Highest priority
Priority J - Job - Usual priority
Priority S - Short job - Similar to J jobs
Priority C - Deferred - Run after all J jobs
Priority 3 - Idle - Run only if idle

Users must indicate the maximum allowed running

time for their job, = as well as the maximum alloved number of

pages of output. 'Ihe scheduler then snbsorts the job queues

into the following classes:

Class 0 - 0 - 20 (octal) seconds CPU time

A SYSTEM FOR LARGE STFUCTURS GRAPHICS PAGE 118

Class 1 - 21 - 100
Class 2 - 101 - 400
Class 3 - 401 - ..-

Print jobr fall into two classes, those under 25

pages and those over, with priority generally being given to

the shorter jcbs.

Additional features of the system handle HYDRA RTS

(remote terminal Systlm, priority 0) jobs, ensuring that

deferred jobs do not persist in the system forever, and so

forth.

6.2.3 The GRAPL model

Recause of the ready availability of data on the

operational characteristics of CALIDOSCOPE through use of

the QUEUETEST program, it was decided to model the external

performance of CALIDOSCOPE rather than to construct a

totally accurate model of its internal behavior. (After

all, CALTDOSCOPE models itself perfectly: our goal is not

duplication: rather, our goal is to demonstrate GRAPL,)

The eodel is based upon the following:

The priority queues: E, J, D, 1
The scheduling algorithm
Physical considerations such as core size, etc.
Observed input rates as a function of time

output from the model consists of most of the

A SYSTER FOR LARGE STRUCTURE GRAPEICS PAGE 119

essential information reported by QUEUETEST including:

Number of jobs in each queue
Total number of jobs processed so far
Job backlcgs in term of CPU time
Average turnaround

Additional information regarding. any portion of the

simulation is easily obtainable through use of GRAPL's

Nonitor comnands.

6.2.4 PFI rforra nce

Perfcrmance of the model (called SCOPE within the

GRAPL system) has been more than satisfactory. A vide range

of systaa characteristics may be observed including the

infinite deferral of Idle jobs when the system is heavily

loaded, a midday backlog of jobs in all classes due to the

high submission rate, excellent turnaround during the late

eveninq and early morning hours, etc.

6.3 A simnle graphing system

We implemented a system for graphing functions of

the form y = f(x). As is mentioned in Chapter 7, ths code

for this system fits easily inside less than a page. To

extend the system to tuo dinensions, add automatic scaling,

change the form cf plot to bar graphs, and other such

extensions and modifications would be the work of an

A SYSTEM FOR LARGE STRUCTURE GRAPHICS

afternoon.

PAGE 120

In each Figure, the x-axis ranges from -40 to +40 :

the y-axis has the same range, but has been scaled by an

arbitrary amount so as to fit the entire graph within the

visual frame,

Figure 6.3-l shows the graph of a typical cubic

equation, y = (x+.30) (x-6) (x-30).

In Figure 6.3.2, ve show the graph of one of the

arrival functions used in the operating system simulation of

section 6.2: y = (abs(x) + ab)/(x*x + b*b), with a=15, and

b=5.

figure 6.3.3 shows another arrival function, y = (x

mod 24)*(x sod 24 + a - 12), with a=24,

In Figure 6.3.4, we show a typical symmetric

quartic equation, y = (x+35) (x+5) (x-5) (x-35) l

Figure 6.3.1 y.‘= (x+30)(x-6)(x-30) Page 121

.

Hnnl- r*l!nrll tlflDC ll3.1NSl nrl
YUi!I 0 NIL NIL Dl 0.:.1.-l nllr~!‘i
i11’01! 3 9-t I 17 Dn 17 DI IX’I I5

Dlj 7.0

I

I.11

Figure 6.3.2 y = ‘abs(x)+ab)/(x% + b++b) Page 122

I 1 I I 1 i I

/

--

I

/
-I

- -

Figure 6.3.3 y'= (x mod 24)(x mod. 24 + a - 12) Page IL23

/

7

/
-X 7i

.

I I -
I
---_ --

l’
-. I I -.-

I I
-- -

I
-

.

A SYSTEH FOR LARGE STRUCTURE GRAPHICS PAGE 125

6.4 Building a house

In this section we present an example of hou an

architect might rse a system such as ours to construct a

house. We illustrate both his interactions with the system

and the system's responses to these interactions.

The GRAPL system as currently implemented could be

used to design a house. Host of the commands described

below already exist. Rouerer, to be easily usable by the

untrained architect a rerlesign of the COIamaAd language (such

as is mentioned in Chapter 8) should be done.

6.4.1 Overview of the architectural design process

Architectural design usually proceeds in 'several

phases soae of vhich are dependent upon the results of

previous phases and some of which are not. In general, we

may break down the design process into three major steps:

planning, preliminary design, and final design; although the

actual distinctions among these are usually rather loose,

In some firms this distinction may be made by observing in

which department the design currently resides. In others,

and especially in the case of designing a house, the

distinction will be even aore difficult to make.

A SYSTEM FOR LARGE jTRUCl!URE GRAPHICS PAGE 126

The planning phase involves the generation of a

statement of requiremants, This statement should include

most of the Lmportant requirements the structure must meet.

In particular, this statement uould include the number of

rooms, general partitioning of space, access from one part

of the structure to another, access to the street, and so

forth. To this statement is added the building coda

requirements for the particular site and type of structure.

A new document is generated, sometimes called the

'*architectural program," which contains the specifications

of all spaces and their corresponding functions, utilities,

square footage, mechanical systems, and so forth,

The preliminary design phase begins at this point.

Decisions must be made as to the general design philosophy:

Should the building be open or closed? How important is

height? Is the structure to be essentially a shell housing

its occupants, OK is it to he a showplace? How important is

and what are the limitations of cost? Following this, the

general location of spaces and their functions are made.

This yields the building shell. A @9schematic" is generated

which tells how the building works: and the preliminary

specification of the structural, mechanical, electrical,

utility, and communication systems is made.

At this point final design begins. In this phase

A SPSTE!! FOR LARGE STRUCTURE GRAPHICS PAGE 127

the preliminary design is further resolved until it is

realized in its final form as blueprints to be used in

construction.

In any architectural design project the architect

will be concerned with the so-called "Object Systems of

Design," These are:

Site
Earthvork
Grading
Compacting
Faving
Landscaping
Orientation

Structures
Foundations
Footings
Superstructure

Enclosures
Floors
walls
Ceilings
Roofs

Space-Use
Rooms
Wings
Suites
Storys
Complexes
Porches
Balconies
Fireplaces
Patios
Lanais
Garages

Mechanical
Heating
Ventilation
Air Conditioning
Fluabing

Electrical
Power
Lighting

Communications

R SYSTEX FOR LARGE STRUCTURE GRAPHICS PAGE 128

Telephone, telegraph, etc.
Intercom
Coaputer
Radio, television

Appurtenances
Furniture
Fixtures
Equipment

In addition, the architect will consider the

fcllowing "Attribute Systems":

Shape
Area
Volume

Weight
cost

Initial
?laintenance
Building useful life

tiaterials
Visual

Color
Reflectance
Light (intensity, distribution)
Texture (visual)

Acoustics
sound transmission
sound diminution
Reverberation time
Reinforcement

Thernal
Heat transmission
Expansion-contraction

.<afety
Fire resistance
Fallollt radiation protection

Tactile
Texture
Vibration
Rigi3ity

Hiscellaneous
Use flexitzility
Aesthetics
Ecology
Social aspects

As an example of the types of analyses the

A SYSTEH FOR LARGE STRUCTURE GRAPHICS PAGE 129

architect w requite, we list here soee of the

considerations he may encounter in determining the

structural design of the building. In each case, a

corresponding softuare package could be invoked:

Calculation
Input data General tables
Tension Compression Torsion
Shear Deformation Displaceeent
Bending Buckling Stability
Wobility Collapse etc.

Rembers
Beams Colurns struts
Connectors walls Footings
Complex structures etc.

Structures
Trusses Frames Shells
Tension Composite

structures structures
etc.

Materials
Concrete w00a Plastic
Steel Reinforced resins
Structural foams Brick
Aluminum Rock etc.

The architect also will have at his disposal a wide

variety of standard forms. These are currently found in

various catalogs, such as:

The Architect's and Builder's Handbook
Architectural Specifications
Architectural Standards, etc.

These catalogs include not only the specifications

of standard building materials but also various kinds of

furnishings, fixtures, office equipment, etcc

A SYSTEM FOR LARGE STRUCTURE GRAPHICS P&GE 130

6.4.2 Specifics for design of a house

An architect might make himself the following list

(program) to guide him in the construction of a house:

Thumbnail sketches
Preliminary drawings
Structure
Site, landscaping, foliage
Foundation
Superstructure
Outside walls
Roofs
Uindows, skylights
Partitions
wall sections
Doors, stairs, stairwells, etc.
Room plans

Attic
Bathrooms
Halls
Bedrooms
Uork rooms
Den
Dininq room
Library
Living room
Closets
Kitchen
Garage
etc.

Plumtinq
Electrical
Gas
Yeating & ventilation
Communications (intercom)
?!echanical (dumb waiters, etc.)
Details

Windows, skylights
Cornice
Stairs
Fireplace
Hall section
Doors

Interior decoratinq
Furnishings

A SYSTEH FOR LARGE STRUCTURE GRAPHICS PAGE 131

Before any design can begin, the architect should

have a list of requirements for the structure, This list

might include:

Approximate cost
Style
Number of rooms of specific types
Lighting
Special requirements for adjacency of rooms
Particular requirements of the

prospective tenants
etc.

Ue will assume that our list of requirements is:

cost
style
Rooms

Square-footage
Special req's

$ 20,000 - $ 25,000
California mod.arn
Living room, dining alcove,
bathroom, kitchen, bedroom
1500
None

6-q-3 The architect's actions

We now suggest the steps an architect miqht take in

the design of a house to meet the above requirements. It

probably will be helpful to refer to the following section

(Section 6-4.4) a, c ft explains point-by-point the system's

responses to the architect's actions.

(1) Log into the GBAPL system.

(2) We identify ourselves to the system, specify
our client's name and the project's name.

(3) We request sketching mode, so we may deal with
the CRT as if it were a highly sophisticated type of paper.

(4) We begin to create a thumbnail sketch of the
floor plan. We are assuming that this will be a
single-floor dwelling.

\ SYSi'EK FOF! LARGE STRUCTJJRE GRAPHICS PAGE 132

(5) We sketch in walls, doorways, entrances, and
label the various enclosures. (aq. "BR ,“ "LR," "Bb," etc.)
We insert closets and cabinets, etc.

(6) Yet satisfied with this first sketch, we
indicate? tn th.2 system that we uish to move the bedroom and
its neighhori.ctJ bathroom to a different place in the sketch.

17) 'Ihis is a more pleasing configuration; so we
give it a name: PIANl, and then erase our drawing.

(8) This sequence is repeated several times: ve try
several variations sometimes using the current sketch,
somet,imo,s cr33ting n4u ones.

(9) ~3 ask ‘that each of our floor plans be
displayed on different parts of the screen so that we w
cornparch t h Q m simultnneouslv, At this point we decide that
PLAN3 is inferior to the others, as is PLAYS, so we delete
them. We present the remaining floor plans to our client
and come to an agreement that a slight modification of PLAN4
will best suit his needs.

(10) We now give the name FLOORPLANSKETCn to PLAN4
SO that we ran identify it more easily. Incidently, each
time ue craate an obiact or access on%, the system
automatically retains the date of creation, the creator, and
the last tims it was referred to.

(11) We begin to firm up the sketch. Ue indicate
which lines to straighten, possibly also indicating that
this one is a standard interior wall of type “SIIw34” and
that one is an exterior wall which will be finished vith
redwood siding, etc.

(12) iie ask for the square-footage of the bedroom,
and th? system responds that we have yet to give sufficient
specifications as to the lengths of the walls. so
rectifyinq our mistake, we hegin to give dimensions where
required. As we do so, the picture on the CRT changes to
reflect the proper sizes. Now we ask for the area of the
bedroom ; think better of it, and ask for the square-footage
in all the rocms,

(13) At this point we should probably confer with
our client to be certain that the current floor plan still
reflects his wishes and that the sizes of t.he various rooms
are ad3quat3. He indicates that the living room should be
somewhat longer, perhaps bg 5 feet, and that the bedroom
should also he enlarged slightly. We remind him that this
vi11 increase the cost of his house as well as its size.

A SYSTEM FOR LAFGE STRUCTURE GRAPHICS PAGE 133

(?4) We therefore lengthen the living room by
asking the system to move the wall 5 feet and to move the
bedroom walls around slightly as well,

(15) This nou is a firm floor plan and for easy
reference we give it the name FLOORPLAN.

(16) We now ask the system to rotate the floor plan
so that we can see it in perspective.

(17) Nou we ask the system to extend all of the
walls 9 feet vertically.

(18) Everyplace that we had specified a vindow on
the floor plan is now a pair of "tic Barks" in the walls.
In each case, we now specify a window opening, perhaps
giving additional details such as sliding, louvered, etc.

(19) We go on to specify each of the doors in the
house and each of the passageways,

(20) At this point it may be advantqgeous to
examine the house in more detail. For instance, we may
rotate it to see what it looks like from each side, obtain
perspective views, and "walkn through the house, getting an
idea of what each of the rooms vi11 look like.

(21) Nov we add a roof; the client has decided upon
a crushed rock and tar paper roof, flat, uith a moderate
amount of overhang on the southern exposure to provide shade
in the sumBer.

(22) Ye are now ready to begin specifying the
structural aspects of the house: the exact type of
structure for each wall, the ceiling, the roof, etc. We
anst occasionally move studs or other supporting members
slightly in order to ensure structural integrity. FIZOR
experience we know that there will be no undue loading on
any part of the house, but we ask that the structural
analysis routine be run to verify this.

(23) So long as we are running analysis routines,
we w uish to ccmpute the cost of the duelling on a cubic
foot basis, the cost of the structural wood used, and so
forth, This will help to give us a feeling of how close we
will be to the specified dollar limit.

(24) We next specify the foundation and footings, a
poured concrete slab; and we nay also specify the driveway,
sidewalks, curbing, and proximity to the street.

A SYSTEM FOR LARGE STRUCTU3E GRAPHICS PAGE 134

(2s) We are now ready to install the major plumbing
systems, The water main on the street is at a given
location. We indicate a main running to the house, decide
vhere the vater heater will be (in a closet in the kitchen),
and route the main there, We also give the sewage pipe
routing informaticn.

(26) Next we indicate where the plumbing should go
to service the kitchen and bathroom. Ue may also make
modifications to meet certain building code requirements.

(27) We must also specify where sinks, shower,
bathtub, lavatory, dishwasher, and washing nach ine
facilities are to be placed.

(28) Having completed the plumbing systems, we now
begin to specify the electrical system. Power comes from
underground at a given location: we specify a conduit near
the plumbing lines running to the house.

(29) Ye next bring the power lines up to a circuit
box, then run main lines to each of the rooms,

(30) 'Je insert electrical outlets at convenient
places. Now ve specify what kind of lighting fixtures will
be in each room and run power lines to them.

(31) We indicate where the refrigerator, the
electric range, and electric heating unit will be. We give
the wiring necessary for them-

(32) At this point we may again wish to examine the
house from several points of view, perhaps wandering through
the various rooms.

(33) Ue continue the design, specifying the phone
line into the house and the extensions the client wishes in
the kitchen and bedroom.

(34) Next we indicate where the heating ducts will
be. The house vi.11 have a forced-air electric heater,
centrally controlled, with outlets in each room excepting
the kitchen. The control box vi11 be in the living room.
SO we must specify some additional wiring for it.

(35) At this point we could ask the system for
detailed blueprints which may be given directly to the
various contractors and sub-contractors for use in
construction.

(36) Althcugh our client will furnish the house
himself, it is a mall matter to insert beds, dressers,

A SYSTEH FOR LARGE STRUCTURE GRAPHICS PAGE 135

couches, etc. in crder to show him how his house vi11
appear upon completion. Together, we IlOY examine the
finished Flans, Obtaining his final approval, construction
can begin.

6-4.4 The system's responses

The architect may wish to include his list Of

requirements in the system so that he may readily refer to

them as the design proceeds. He may do this by ent eting

them as a (text) file to which he might give the name

REQUIREtlENTS.

(1) fhe leg-in process will reinitialize the GRAPL
system to the version which the architect last used, The
architects's system is viewed as a continuing process which
is suspended whenever he logs out and is resumed when he
loqs in.

(2) Tdentification of the project's and client's
names secve to establish a primary context for future
actions in the system. The architect may change this
context at will, For instance, if he is doing several
designs at the same time,

(3) Rather than forcing the architect to learn the
system in its entirety, we construct several subsystems with
which he may learn to interact. One such subsystem is
**sketch mode," in which he may deal with the CRT as if it
were essentially a piece of paper. This mode is somewhat
similar to the normal mode of interaction of SKETCHPAD, but
does not force all the automatic line straightening and line
connecting fe.aturrs -- these are options the designer may
choose to use or net as he prefers.

(4) This sketch vi11 look as if it were made on
paper with a charcoal pencil.

(5) Each line he sketches is retained as an @*analoq
patch.= 'Ihe architect may refer to each by givinq it a name
or by pointing at it with the stylus, mouse, etc.
Enclosures are likewise given names at the option of the
architect for easy reference. Enclosures are represented by
trees in the data structure,

A SYSTEK FOR LARGE STRUCTURE GRAPHICS PAGE 136

(6) Movement of an enclosure is reflscted by a
cbanqe in the tree structure which represents the current
state of ths hause.

(7) Naming the sketch corresponds to giving the
tree a name, It may already partially exist in secondary
storage, but the naming operation will most probably have as
a side effect the cutputing of the structure. Erasing the
drawing probably will force the outputing of same to
secondary storage, If the structure does not already have
an external name, the system will ask for one. The name for
an unnamed object is CURRENT.

(8) Renaming is obvious. Creating a data structure
similar to another is a tree copy, followed by updates on
the new copy.

(9) At any time we may specify portions of the
screen as windows, In each window we may request objects to
be displayed. This display does not affect the data
structure in any way. Each window is handled by another
instantiation Df the '*window demon." The contents of each
window may also be manipulated. If this manipulation
results in a change in the actual structure of the object,
then it will t-3 reflected as a change in the object’s
representation in the da la structure.

(10) This multiple naming permits us to access
objects (drauings) by name, by date, by time of last use,
etc. In addition, WC? may always look at the current
dictionary of okjects in the system (selected by client,
architect, date, etc.) if we forget uhat we have already
stored away and what its name is.

(11) This straightening process is actually one of
redefinition. Each an alog patch is replaced by the data
structure reflecticg its neu definition. The additional
information as to what kind of wall, cost, structure, and so
forth goes in as attributes of the structure,

(12) Asking for the floor area of the be:;,“::
corresponds to running an attribute system routine.
may be run at %ny time. If the current information in the
data structure is insufficient to calculate an exact ansver,
th+? system will request that the missing information be
supplied.

(IQ) This requsst to th+ system is effected by
changinq the length of the walls of the livingroom and

A SYSTER FOE LARGE STRUCTURE GRAPHICS PAGE 13'7

bedroom. The system uill automatically adjust the display
reflecting the new dimensions. An alternate manner in which
this ray be done is by selecting the appropriate vall and
asking the system to move it following the stylus, mouse,
etc. The current dimensions of the vall are displayed,

(15) We rename the data structure.

(16) Rotation as vell as all other affine and
perspective transformations are handled as attribute system
routines which are supervised by the'display deaons. They
do not cause any change in the data structure.

(17) This important action changes our
tvo-dimensional Elan into a three-dimensional object. It
forces a redefinition of each wall, closet, opening, or
enclosure,

(18) Specifying the vindovs is a matter of
replacing the definitions of the appropriate valls by the
new data structure which has the selected vindov inserted in
it at the specified position. The type of window, wall, and
so forth are simply attributes of each, respectivelf.

(19) Doors are special in that ue may ask the
system to shov the space swept. (This is not the usual mode
of display-) Passageways are reflected by the attribute
" access. "

(20) Again, these operations are handled by the
display demons as attribute system routines. No data
structure changes are made.

(21) Addition of the roof insects the appropriate
objects into the data structure, complete with attributes as
to type, size, and other pertinent data.

(22) ?his operation is essentially an elaboration
of the attributes already in the data structure, Specific
types, number of studs, kind of wood, and so forth are all
inserted as attributes. Additionally, we 0ay exanine walls
now in much greater detail, seeing cross-sections if we
wish,

(2.3) Here ve are running attribute system routines.
If ve request a computation with which the system is
unfamiliar, we may specify how to compute it and give it an
appropriate name. The new routine will henceforth he
available to the architect at all future sessions.

(24) These operations are elaborations of the data
structure and tbe addition of attributes,

A SYSTEX FOR LARGE STRUCTURE GRAPHICS PAGE 138

(25) Phe addition of plumbing is similar to the
specification of the structural details of the building.
Additional data structure is created, attributes added: now
the wall cross-sections will have plumbing shown as well as
structural members.

(26)

(27)

(28) The electrical system goes in similarly to the
plumbing,

(29)

(30) Thorn are additional details in each room.

(31) Additional details within each room are
additions to the data structures corresponding to same.

(32)

(33) The communication system goes in similarly.

(34) Heating and ventillation, similarly.

(35) Rlueprints go out from the CRT on film or onto
a plotter. This is handled by the display demons.

(36) Additional modifications to the house may be
made at any time and new blueprints produced.

-
NnnE FL rtH.? noor lmmnir
UDPl’D NIL NIL DT o.sc-I rxTIYS
Ol!DR 3 5PLl I.2 DA 12 cccI:LLs

DS 2.9

. I

*

,

.

Figure 6.4.3 Floorplan 7?;:3

h’nnc JtnH3 nooc wntw nit
UDRID NIL NIL 01 B.SI-l NlJPS
W:DP 3 5rLi 12 Ofi IZ DLLPIIS

05 2.e

.

Page 142

NrVIC PLftNI nooc m-wibv~
DI 8.5E-I t lElERS
DA I2 DECREES
DS t.e

,
.

v

x

Figure 6.4.5 Floorplan #5

.

Page 143

Nnflt PI nN5 MODE lR~ll!iLnlC
UORlD NIL NIL DI 0.X-l tltltF5
OFDR 3 WI.1 I2 CR 17 CTGPI’I ‘,

OS 2.e
1 - ----.-

I -

NIWE PLwti nom ww,LnTE
UOi?LD 1llL NIL DT 8.X-l nETrES
OPDR 3 SPLT 12 DA It DCGCECS

vi 2.e

figure 6.4.7 Fl+oorplan #4 niodified Page 145

GRA~D?lL.
NNlE PI nN11 KOOE ‘(RftNSLIITE
UORLD NIL NIL DT e-SE-1 !KICRs
DRDR 3 SPLl I.? DR 12 DEGREES

QS 2.e
--

Figure 6.4.8 Floorplan 74% in perspective. Page 146

RODE TRIINSLnTE
DT 8.5X-l t lE7ERS
OR 12 DECRELS
DS if.8

. .‘I

z

.’ -li:

X

.

Figure 6.4.9 Floorplan .#% in perspective rage 147

GIRAIPIL,

mf my43
MOPLO I IL NIL
ORDR 3 SPLT I2

PIOOE TPIINSLfilE

DT B.SE-1 tIETtRS
087 12 DEGREES
OS 2.e

X

E'igure 6.4 .lO “1, Ploorplau ii '-I_ with interior Page 148

'from the b3g

,
i .

: : .

. .
.

. . *

.

’

Figure 6.4 .u. Floorplan 7f4 with interior
in perspective

GIRAIPL
t4nnE PLh45K noor IPnNSLRlr

UORLD NIL NIL 07 e.x-t nclrss
DEDR 3 SPLl 12 Dn 12 D:LRELS

DS 2.6

Y
2

I. ,\

‘3,

.’ ’
.

I .

.I
. . .

6.5

A SYSTBM FOR LAqGE STRUCTURE GRAPHICS

Some additional constructions

PAGE 150

This section shows a small selection of

illustrations generated while testing the GRAPL system,

In Figure 6.5.1 we see the side view of a compact

"Gfl-type* automobile. Figure 6.5.2 shows the front view,

In Figure 6.5.3 we have increased the depth so as to show

the entire automobile: and finally, in Figure 6.5.4, ue show

the automobile in perspective.

We d2signF,d a contemporary building using the

Stanford University Artificial Intelligence Laboratory as a

model, as shovn in Figure 6.5.5. In Figure 6.5.6 we brought

the building closer, so as to be able to check some details.

Then in Figure 6 .5.7 we rotated it into a perspective view;

and in Figure 6.5.8 we replicated the building six times and

created a "tract hcne" style environment.

Figure 6.5.1’ Automobile side view Page 151

Itigure 6.5.2 Automobile front view

.

Page 152

, ~AMI nulof -- - -..r nnoi ttvw:.t nir
YrN!l n WII. NIL 01 n.!,r -1 n,.*,E5

lL~v1.i.L J.L Dtm! 3 5l’Ll I7 on 12 DIGYits
D!i 7.0

Figure 6.5.3 The entire automobile Page 153

r
Iinn, twllt noot t twst nrc

GlRAIPlL
lw’l n “IL NIL 01 C.!iL- I n, tt “5
IwIlt! 3 51’11 1.2 on 1 z nt Iit’ I s

DS 7.n

I
-9 . r x

Fi~'-ure 6.5.4, Automobile in perspective
.

Page 154

NiSII WI IIN! IlUOl lCnN!iLnl,
YIN’I D NIL N I I. DI R.!.I-I HI IL&-s
flw? 3 WLI 12 l-h-l I2 IN IXI 15

DS i.”

Figure 6.5.5 A con ten;)orary building Page 155

NRnC tJX!!N I iDDC Tl?nNsLniE
UDI!I 0 YII. NIL or e.st-I tKlEKS
DRDR 3 SPLI I2 OR I2 DCGREES

OS 2.9

:i:i&lre 6.5.G A bit closer

Nnl?L fllXWN rtoL;r ~1m5Lni~
tm!I u NIL NIL Dl O.O~‘JS!W99 III. lf RS
OPDR 3 SPLl 12 cm I2 DEGCLES

DS 2.0

:

Y

.’
2

.f 45 , :. ,.‘..\

X

._

Page 157

NnnE HODRNR IKIDE II!nNSLnlr
YOEID NIL NlL 01 O.SL-I I lCrCRS
OROR 3 SPLl 17 LXl 17 DtGRCES

DS 7.8

Yigure ~3.5.8 The lyLiild-in~y 2.11 a' "tract home" Page 158

. . :
‘.

:

-

Y

: i?

x

“.. A? m’.‘. :. l,’

-c.

A STSTB?l POE LARGE STRUCTURE GRAPfiICS PAGE 159

CHAPTLB 7 02:38:08 08/04/75

7 System Performance

UC? present a summary of GRAPL's observed

performance based on the examples of Chapter 6 and various

other experiments which we have performed, We begin by

discussing those aspects of the GRAPL system which are of

especial interest because of thsir efficiency. Then we

briefly summarize ether aspects of system performance.

7.1 GRAPL efficiencies

The efficiency of the GRAPL system is noteworthy in

three distinct (but related) areas:

11 Space: the system utilizes an efficient
representation for its data objects,

2) Time: tha system includes algorithms for
accessing data efficiently.

3) Human: the system is efficient for the user --
it is easily learned, simply maintained, and
quickly oodif ied.

It is the combination of these factors which makes

GRAPL into such an extremely poverful and versatile system.

7.1-l Space efficiency

A SYSTEH FOR LARGE STRUCTURE GRAPHICS PAGE 160

GRAPL's data structure is particularly efficient

for representing objects of the physical world, Remembering

from Chapter 4, the dual data structure consists of a

heirarchy of objects plus a heirarchy of cubes (consisting

of 10 levels, with 64 subcubes per cube).

The use of heirarchy to represent objects -- the

use of masters and instances, templates and usages, etc. --

is ccmmon to most sophisticated graphics systems, and GRAPL

realizes the same savings by its use as a0 other systems.

This saving is expcnential in that one trades an exponential

amount of storage for a corresponding amount of processing

time as the depth of the heirarchy increases.

Tn GEAPL, however, rather than fully paying this

exponential expense, only those cubes within the visual

neighborhood are actually brought intc core, and it is only

those visible objects within these cubes which take up

memory space.

For example, let us consider the description of an

R-story building of approximately 500 square meters area and

20 meters height. The following cubes will be required in

order to describe the contents of the entire structure with

the resolution of a single room of about 4 cubic meters:

A SYSTEH FOR LARGE STRUCTURE GRAPffICS PAGE 161

Cube Order Ro. Req'd

O(l0) - 1
O(9) - 1
O(8) - 1 (the whole building fits here)
O(7) - 8 (16 meter cubes)
O(6) - 175 (4 meter cubes)

* To display 1 room will require S/186 of the total
cube storage, or about 2-69 percent-

* The amount of cube storage is independent of the
complexity within the room.

* Only that portion of the cube data structure
actually would be brought into core for processing.

* This saving is realized before the heirarchy of
objects within the displayed room is investigated.

The number of cubes required to represent any

structure is a function of l), the gross size of the

structure; and 2), the resolution desired. The maxiauia

number of primary cubss required to represent a structure

which is no more than k meters on a side may be given by:

C = 11-m m = ain O(j) >= k
1

The O(m) cubes are the smallest ones which mav

properly contain the given structure.

To gain the resolution of an r-meter cube, the C

cubes above are adequate. However, if one wishes to make

optimal use of memory, one sb'ould partition the 0 (6) cubes

aown to ths r-meter size. This would require no more than

A SYSTEH FOR LARGE STRUCTURE GRAPHICS PAGE 162

an additional R cubes, where R is given by:

n-l
. -----

.
*

R=r
*

l --
i=r

(where [x] = ceil(x))

The total number of cubes in the representation is

then no more than C + R, and to examine a single r-meter

substructure uith full resolution would require only S cube

accesses, where I = 11-r. The fraction of the total cube

structure actually brought into core would be at most

s/ (C+R) .

Each cube represents four words of memory: three

for the base position vector, and one telling the order of

the cube.

Bodies ana objects are represented in more or less

traditional ways, as described in Chapter 4. The number of

words required to describe a structure is given bp:

BODY OBJECT

name 1 name 1
enclosing box 6 enclosing box 6
position vector 16 positicn vector 16
V vertices 3*V datail flag 1
E edges 2*E list of L L
P faces of D*Z objects

D edges

A SYSTEB FOR LARGE STRUCTURE GRAPHICS PAGE 163

Bodies grown in size linearly in vertices and

edges, and quadraticly in faces, Objects are linear in

their complexity -- the number of suhobjects.

7.1.2 Tine efficiency

GRAPL is especially efficient in processing its

data structure for a variety of reasons.

Access to objects within the visual neighborhood is

pruned exponentially by the cube data structure, independent

of the complexity of the structures within the cubes. That

is, one realizes the same exponential saving in access time

as one does in memory space.

GRAPL has the ability to compile both objects and

cubes, thus trading increased memory for decreased

processing time. The amount saved is proportional to the

conplexity of the object being compiled. This saving also

is exponential , growing with the depth of the heirarchy.

Assume that we wish to display every room of the 8ystory

building simultaneously (inpossible due to hardware

restrictions). Then the system Bust access all 186 cubes.

Rouever,

if we coapile to O(7) - only 11 cubes accessed
if we compile to O(8) - only 3 cubes accessed

A SYSTEM FOR LARGE S'IRlJCTIJRE GRAPHICS PAGE 164

if we compile to O(9) - only 2 cubes accessed
if ve coapile to O(10) - only 1 cube accessed

Additionally, the system permits the user to

control the level of detail displayed. This is reflected in

the amount of data structure -- both cube and heirarchical

-- which actually is accessed. This means that independent

of structural complexity, if the visual neighborhood is of

sizc3 N, access cutoff will occur at N/(lO**C), where C is

t.h3 cutoff factor. T'hus, if ve vere displaying the entire

R-story building fcom the outside and N was slightly larger

than the O(10) cube, with C=3, only 3 cubes uould be

accessed. In general, as C approaches 1, savings increase

by 54**C cubes.

7.1.3 Human efficiency

Articulating the human efficiency is extremely

difficult in the absence of an actual demonstration.

Several factcrs should be considered: How easy is it to

learn to use the system? How easily may be the system be

changed -- the command language, the command semantics? BOU

much effort must be expended to implement a graphically

oriented project? Hov much for a non-graphically oriented

project? How general is the system? How flexible? How

'*natural*@? It should be clear that the answers to most if

not all of these questions really are subjective; they

A SYSTEM FOR LARGE STRUCTURE GRAPHXCS PAGE 165

cannot be measured objectively.

Any modification or extension to the GRAPL syster

requires some understanding of the system's internal

organization, We will attempt to give an impression of the

magnitude of effort necessary to accomplish any significant

modification. Assuming that the functional characteristics

of the modiffcation have b-een determined, the following must

be done:

Decide upon the syntax to be used by the user to
specify the necessary comaands, faplementation
consists of modifying only three lines of code.

Implement the semantics for the extension. This
will be the single major coding effort, Using
the GRAPL uniform naming conventions, demand
loading of all appropriate routines will occur
automatically, as will garbage collection,

For example, let us consider the implementation of

a package for graphing rational functions of a single

variable. Re must make decisions regarding placement of

axes, scaling, labeling, how to specify the function and its

domain, what to do about undefined values, and so forth.

Next we must decide how to invoke the package, and what

commands we will use to specify each of the above items.

Several alternatives present themselves: the package may be

completely self-contained, using the GRAPL implementation

language support alone: the package may be partially

self-contained, wing some of the higher-level GRAPL

A SYSTECl FOR LARGE STRUCTURE GRAPHICS PAGE 166

functions; or the package might be implemented almost

totally usinq GRAPL high-level rout.ines.

As an exercise, we implemented such a graphing

package using each of the three approaches (See Chapter 6).

In each case, the display package coasisted of less than a

page of coda, plus about half a page of initialization

routines. Moreover, arbitrary functions of a single

variable would be accepted, with no restrictions upon the

function's actual form: an arbitrary GRAPL routine was

acceptible: it just had to return numbers.

If one wished to implement an animation package,

the procedure would be similar. Most probably the best

approach would be to implement it using as many of the

predefined high-level GRAPL support routines as possible,

plus the operating system simulation routines. The most

strenuous coding effort would be in specifying how one

wished the displayed objects to change over time.

A still more ambitious effort would be .the '

implementation of a circuit analysis package. Here most of

the coding would go into deciding vhat kinds of circuit

elements to include and how they are to be simulated.

7.2 Kernel syster

A SYSTEH FOB LARGE STRUCTURE GRAPHICS PAGE 167

In this and the followinq section we present a

description of various aspects of the system.

Ihe kernel system requires slightly over 55K words

of memory plus 50 disk blocks. Host commonly, the system is

used in under 75K of core, depending upon the complexity of

the structures being described. True processing tiae is

extremely difficult to specify due to the nature of the

timesharing environment in which GRAPL is implemented.

Processing time for most commands is on the order of 0.1

second. The display or compilation of large structures may

take times on the order of S-10 seconds. Effective

processing time consists of these minimums pIUS the

timesharing system load.

7.3 Operating system simulation

The operating system simulation requires

approximately 1K of memory. When running vith no competing

timesharing users a full day's siaulation requires

approximately 40 seconds elapsed time. This varies, of

course, depending upon the simulation time interval between

events. The code occupies about three-fourth's the space of

a comparable simulation in a language such as SIUULA,

8,

A SYSTEH FOR LARGE STRUCTURE GRAPHICS PAGE 168

CHAPTER 8 02:38:08 08/04/75

Conclusions and Suggestions for Further study

In this chapter we present our conclusions based on

over two years' experience with the GBAPL system and suggest

areas for further study.

8.1 GRAPL's successes

The most notable GRAPL successes include the ease

with vhich the system may be modified, the dual data

structure reprssentation, the parallel system design, and

the uniformity of implementation. GRAPL demonstrates a

uniform solution of a set of problems in system design and

implementation.

5.1.1 Simultaneous computations

The desiqn process more and more requires the

calculation of various quantities and the deduction of

performance of a wide variety of interrelated objects

(through simulation, if no other means is available). GRAPL

proviles an environment where these calculations,

simulations, deductions, and models all may be carried out

A SYSTEH FOR LARGE STRUCTURE GRAPHICS PAGE 169

simultaneously with the design process. Moreover, in GBAPL

it is precisely this capability that yields such a

responsive, attractive syste*.

8.1.2 Notification and "posted" actions

Additionally, not only is it possible to calculate

and compute. in parallel with design, but it is possible to

request GRAPL to notify the user when an arbitrary condition

in the design process becomes true, and automatically to

take some specified action. For example, cost overruns

become obvious immediately, therefore; and corrective

actions may be made at the time the error is made,

8.1.3 Variations

Because it is possible to freeze GRAPL's state at

any time it is possible to attempt variations of design

approachas, do calculations on feasibility and the like, yet

return to the original plan if it is desired.

8.1.4 Easily modified command language

The command language is quickly and easily

modified. For most changes only a minimal acquaintance with

the GRAPL system is required. Extensions may be of any

A SPSTEH FOR LARGE STRUCTWRE GRAPEICS PAGE 170

nature whatsoever; and one has the advantage of a general

purpose algorithmic language at one's disposal uith which to

implement thsm.

8.1.5 Efficient access into data structures

Although the hidden line problem has been solved

for various classes of structures, it is not necessary to

apply any restrictions to the types of objects displayed in

GRAPL, nor is it necessary to apply hidden line/surface

algorithms to the entire data structure in order to create a

more pleasing view,

8.1.6 Portability

The GRAPL system is completely portable. The basic

requirements for the implementation on any computer system'

are the existence of a LISP interpreter or compiler and a

direct view storage tube type display. If one uefe

intarested in utilizing different display devices, plasma

panels for example, th9 modification of GRAPL to produce

trus display files is minor.

8.2 GRAPL's shortcomings

GEI\PL has several shortcomings, as do most large

A SYSTEfi POR LARGE STRUCTURE GRAPHICS PAGE 171

systems. Since hindsight usually is so much better than

forsight,these deficiencies halYe become more and more

apparent with time, and now "haunt" us.

8.2.1 Respcnse time

-The major shortcoming of the system is in its

extremely slew response time. This primarily is due to tuo

factors: One is the fact that the system is interpretive,

and the particular time-sharing environment in which it was

i mpleasnted. The other shortcominq is the file environment

of the time-sharing system.

The response problem might be partially solved in

one of two ways. Compilation of the major GRAPL routines

vould yield a factor of 5 to 10 in speed. Dedication of a

portion of the system to GRAPL, including locking the GRAPL

system into core to eliminate the necessity for swapping

could yield an additional factor of 5 to 10, Were one able

to implement the system with a dedicated machine with no

time-sharing overhead, the performance of GRAPL uon'ld be

comparable to that of most current interactive systems.

8.2.2 Sy.stea command language

The command language was developed as the GRAPL

A SYSTEM P@R LARGE STRUCTURE GRAPHICS PAGE 172

system took shape, and thus shows the influence of ngrouth.~

For the most. p?rt, it is uniform, deals with constructs in a

consistent manner, and is relatively natural, However, the

addition of a light-pen capability would greatly enhance the

ability to itfentifv parts of objects and parts of

structures. The mcticn commands are adequate, but should be

implemented with some form of joy stick (or graphical

equivalent).

The command language is relatively *@unforgiving" in

that if a command is ill-form& in any way, the system will

comment to that effect and abort processing, What would be

more desirable is a more sympathetic and helpful facility --

one which attempted to aid the user in the correct

formulation of what he is trying to say.

R.3 Suggestions for further study

The process of research never quite ends: there

always is .another approach to be investigated, an

altarnative not taken earlier (or not possible earlier), or

new ideas to incorporate. In this section we present some

possible av+nuds for furtber research which ue believe it

would be fruitful to pursue.

8.3.1 A proposed sketching command language

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 173

He wish to accomodate the designer with full

sketching capabilities. Essentially what we propose is to

simulate "ideal paper, " but retain the information in a very

different form. The sketching operations are of course

device independent, but there is an explicit assumption that

one would use some kind of "artistic" input hardware such as

a stylus, light pen, mouse, or joy stick. Furthermore,

corresponding to the operations of erasing, redrawing at a

different scale cr point of view, and so forth, are Sketch

Mode commands achieving the same results, _

The Sketch Mode comaands we propose initially are:

SKETCH - Track the input device and trail
a line

ERASE - Erase along the track uith given
width

SURROUND - Enclose ,the designated lines and
treat them as a unit

COPY - Copy the designated object to a new
position, orientation, and scale

MOVE - Hove the designated object to a new
position, orientation, and scale

SCALE - Lengthen or contract lines, scale up
or scale doun objects

MOVE DESTRUCTIVE - Hove the designated object to a
new position, orientation, scale
replacing what was previously there

EXPAND - Create a hole into which new objects
may be placed

SHOOTH IT - Smooth lines, make them straight,
arcs, or elipses, etc., connect near
vertices, force parallelism,
perpendicularity, angularity, and
so forth. Essentially this is a
map into the SKETCHPAD domain

RUBBER BbNC - Rubber band line drauing

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 174

It should be noted .that with these few commands we

already have a system uhich is reasonably sophisticated in

comparison to ordinary paper. Yet we have retained the

freeness of expression and the lack of constraint of usual

drafting systems.

The manner in which we propose to store sketched

information is of some interest. The system uses objects

which we call "analog patches," These are essentially small

matrices of qrey-levels which represent the lines and

surfaces described. Obviously, the store would overflou

quickly if one attempted to create too large or complex a

structure. But this is precisely the tradeoff between

generality ard flexibility versus program and data size.

One does not ccmsonly sketch the most detailed objects at

the saae tins as one blocks in the overall size and shape of

a structure; so, YE feel relatively secure in providing this

capability. Whenever the system finds that the display time

orI in general, the processing cost for much sketched

information becomes too high, it should begin to smooth

things by itself and might ask the user to do so as well.

And of courset the user would always have the option of

converting his sketch into a more final formt qreatly

reducing the processing cost.

A SYSTEM FOR LARGE STRUCTURE GRAPRXCS PAGE 175

8.3.2 Shadows, grey-scale, color, texture

The addition of shadow using one or more simulated

light sources might be very valuable for structural designs

where the effects of the sun play a major role in the

heating and cooling requirements of a building, Research is

currently being pursued in this direction both by the

University of Utah and independent architectural firms such

as skidmore, Owens, and C!errill,

Tha uses of grey-scale and color have been

investigated in some detail, especially at the University of

Utah. Perhaps the most advanced digital color pictures have

been developed there, Incorporating the results of that

research might easily be done.

The display of texture is a current area of

research in graphics. It is a rather difficult problem and

not too much success has been obtained to date.

8.3.3 Stereo, erpi0aea views, curves, and surfaces

The qaneration of stereo views for display on some

stereoscopic device is currently available in GRAPL. One

might vish to add ,the user 00mmands to facilitate this

display.

A SYSTEt'l FOR LARGE STRUCTURE GRAPHICS PAGE 176

Exploded views are. especially useful in the

construction of aggregates of complex parts. The addition

of this capability would necessitate the nodification of the

display ana drawing routines. The theory behind exploded

view generation is well-known. This addition would present

little difficulty.

Addition of arbitrary curves and surfaces v0ula

involve the creation of some additional data structures, A

careful series of extensions to GRAPL in this direction,

incorporatinq the most recent works of Coons, Forrest, and

Bez ier, might he acne.

8.3.4 Solution ty analogy

The solution of problems by analogy to already

known soluticns (cr probleas) is one of the areas currently

being investigated by workers in Artificial Intelligence.

This certainly is a capability one would wish to have in an

intaractive environment. The user then could specify the

computation of his various requirements and constraints by

either giving their explicit formulas (or programs) or by

referring to already known formulas (or programs) and

specifying how the new computations are similar or different

from the old,

A SISTER FOR LARGE STRUCTURE GRAPHICS PAGE 137

0.3.5 Various other partitioning algorithms

The current cube partitioning algorithm certainly

is not optisal, It was chosen primarily on the basis of

ease of implementation and the fact that it seemed to meet

' our requirements at the time.

Ue would like to do a series of experinents

implementing partitioning algorithms based on:

1) A better measure of the complexity of the
structure of the cube

2) A dynamic complexity measure, rather than
2 static measure

3) An alqoritha uhich was related to the
cube’s usage, rather than to its
structure, and a combination of both
usage and structure

4) An algorithm based on the size of the
display neighborhood

8.3.6 Other measures of an object's complexity

The complexity measure currently used in GRAPL is

merely a count of the number of subobjects in the enclosing

cube at the first description level. Complexity in the real

world certainly is proportional to t-he structural complexity

of objects, but it would be interesting to investigate

measures based on cost, size, volume, ease of construction,

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 178

time for construction, and other objective and subjective

values.

8.3.7 Clipping and hidden line/surface removal

The addition of interactive clipping and hidden

line/surfaca removal would be of special interest in

producing more pleasing displays, rather than including it

in the post-processor as is currently done.

Of course, the aost desirab.le approach is to

purchace or build special purpose hardware for these tasks.

However, if one Gished to implement these functions in the

display software, the most rewarding route probably would be

to implement special commands for display in clipping,

hidden line/surface mode. Alternatively, it would be

extremely easy to describe the new display algorithms, and

then load them into GRAPL at will. One can conceive of a

collection of diEplay algorithms: GRAPL using the one

specified by the user. An excellent summary of current

softvare techniques for hidden surface removal may be found

in a recent Computer surveys article by Sutherland, Sproull,

and Schumacker <SS 74).

9

A SYSTEH FOR LARGE STRUCTUBE GRAPHICS

CHAPTER 9 02: 38: 08 08/04/75

Bibliography

PAGE 179

This bibliography primarily contains those works

actually cited in the text and those which bear most

directly on our research. A very coxprehensive bibliography

on computer graphics [the fruit of d survey of the

literature made prior to and during this research) was

published in 1972 <PO 72a>.

an excellent text on interactive computer graphics

including a good bibliography has been published by Newman

and Spronll <NS 73).

<Ab 71) Abram, M-D,
Data structures for computer graphics,
In <TM 71>, 268-286.

<AC 68) Ahuja, D.V., and Coons, S.A,
Geometry for construction and display,
In <IB 68). 188-205.

<Al 64) Alexander, C.
Notes on the synthesis of fern.
Harvard University Press, Cambridge, Rass., (1964).

<Ap 66> Appel, A.
The visibility problem and machine rendering
of solids.
IBU T. J. Watson Research Center, Weu Iork,
Rept, No, RC 1618, (May 1966).

<Ap 67) Appel, A.
The notion of quantitative invisibility and the

A SYSTEH FOR LARGE STRUCTURE GRAPHICS PAGE 180

machine rend&ring of solids.
Proc ACM 22nd National Conf. 1967, Thompson
Rook Co., Washington, D. C., 3R7-393.

<Ap 6&t> Appel, A,
SOIUS techniques for shading machine renderings of
solids.
Proc APIFS 1968 SJCC, ~01 32, 37-49.

<Ap 68h> Appel, A.
t!odeling in three dimensions.
In <II3 68>, 310-321.

<AS 72) Appel, A., and Stein, A.
A system for the interactive design of polyhedra.
IBY T. J. Watson Research Center, New York,
Pept. NO. BC 3804, (Apr 1972).

<Ba 67> Dalzer, 8.
Dataless programming,
The RAND Corporation, Santa Ilonica, Calif.,
Hemo RM-5290-ARPA, condensed version in
Proc AFIPS 1967 FJCC, vol 31, 535-544,

<B?I 68) Baskin, H.R., and Boss@, S-P.
A multilevel modeling structure for interactive
graphics design.
In 4IB 68b, 218-228-

<BB 64) Berkeley, E.C., and Bobrov. D-G,, (eds,)
The programming language LISP: its operation and
applications.
Information International, Inc., Cambridge, Mass.,
(1964).

<Be 71) Berry, D.C!.
Introduction to Cregeno.
In <TY 71>, 171-190.

<Bo 697 Roukniqht, 'rs,J.
An improved procedure for generation of half-tone
computer graphics presentations.
Coordinated Science Laboratory, University of
Illinois, Urbana, Illinois, Tech. Rept, No. R-432,
(Sep 1969).

<Bo 707 Bouknight, W.J.
A procedure for generation of three-dimensional
half-toned computer graphics presentations.
Ccmr AC!! 1.3, 9 (Sep 1970), 527-536.

<BR 70) Bouknight, W-J., and Relley, K.

A SYSTEK FOR LARGE STRUCTURE GRAPHICS PAGE 181

An algorit.hm for producing half-tone coaputer
graphics Presentations with shadows and movable
light sources.
Proc APIFS 1970 SJCC, vol 36, l-10,

<Ca 69) Carr, C-S,
Geometric modeling.
Computer Science Department, University of Utah,
Salt Lake City, Utah,
Tech. Rept, No. TR 4-13, (Jun 1969).

<Ch 69) Cheathan, T.E., Jr.
Motivation for extensible languages.
In <CS 69>, 45-49.

<CS 69) Christensen, C., and Shaw, C-J.
Proceedings of the extensible languages symposium.
SIGPLAN Notices 4, 8 (Aug 1969).

<CL 69) Cohen, D-J., and Lee, T.fl.P.
Fast drauing of curves for conputer display.
Proc APIPS 1969 SJCC, vol 34, (1969).

<Co 68a> Comta, P.G.
A procedure for detecting intersections of three
dimensional objects.
J ACII 15, 3 (Jul 1968), 354-366, earlier version:
IBH New York Scientific Center, New York, New York,
Rept, No. 39,020, (Jan 1967).

<Co 68b> Comka, P.G.
A language for three-dimensional geometry.
In <IB 68>, 292-308.

<Co 63) Coons, S.A.
An outline of the requirements for a computer-aided
design system.
Proc AFIPS 1963 SJCC, vol 22, (1963), 299-304.

<Co 67> Coons, S.A.
Surfaces for computer aided design of space forms.
Project !lAC, Kassachnsetts Institute of Technology,
Cambridge, Hass., Rept. No. MAC-TR-41, (Jun 1967).

<DN 66) Dahl, O-J., and Nygaard, K.
sInt.m -- an ALGOL-based simulation language,
Cona ACtl 9, 9 (Sep 1969), 671-678,

<Dn 70> Dahl, O-J., Myhrhaug, B., and Nygaard, K.
Corron base language. (SItlDLA 67)
Norwegian Computing Center,
Publication lo, S-22, (Hay 1970),

A SYSi'EH FOR LAEGE STRUCTURE GRAPHICS PAGE 182

<De 68) Dennis, J..B,
Programming generality, parallelism, and computer
architecture.
Proc IFIF 1968 Congress, (1968). ~1~7,

<DV 66) Dennis, 3-R.. and van Horn, E.C.
Programming semantics for multiprogrammed
computations.
Coma ACfl 9, 3 (Har 1966), 143-155.

<Ea 69) Earley, J,
VERS -* an extensible languaqe with an
implementation facility.
Computer Science Departaent, University of
California, Berkeley, Calif., (1969).

<Ea 71) Earley, J.
Toward an understanding of data structures.
Coma ACM 14, 10 (Ott 1971) , 617-627.

<FN 69) Faiaan, E-H., and Nievergelt, J., (eds.)
pertinent concepts in computer graphics.
University of Illinois Press, (1969).

<Pi 70) Fisher, D.A.
Control structures for programming languages.
Doctoral Dissertation, Carnegie-Hellon University,
Pittsburgh, Pennsylvania, (Ray 1970).

<Fo 68) Porrest, A.R.
curves and surfaces for computer aided design.
Cambridge University, England,
CAD Group Ph.D. 'Thesis, (Jnl 1968).

<PO 70) Forrest, A.R.
Interpolation and approximation by Bezier
polynomials.
Computer Aided Design Group, Cambridge University,
England, CAD Group Document 45, (Ott 1970).

<Fr 70> Frankel, A.
What is the design process?
In Ihe Use of Computers in Engineering Design,
Furman, (Ed.), English Universities Press, (1970).

<Fr 71) Fraser, A.G.
On the meaning of names in programming systems.
Coma ACH 14, 6 (Jun 1971), 409-416.

<G!l 69) Galinberty, B-and Montanari, U.
An algorithm for hidden line elimination,

A STSTEH FOR LARGE STRUCTURE GRAPHIC? PAGE 183

icm. ACH 12, 4 (Apr 1969). 206-211,

<Ga 69) Garwick, J.V.
GPL, a general purpose language,
In <Cs 69>, 6-8, an earlier version in
coar ACB 11, 9 (Sep 1968), 634-638.

<Ge 71) George, J.E.
GEHS - A graphical experirental rota system.
Computer Science Department, Stanford University,
Rept. No. STAN-CS-71-227, (Aug 1971).

<Go 71) Gouraud, A.
Computer display of curved surfaces.
Computer Science Department, University of Utah,
Salt Lake City, Utah,
Eept. No. UTEC-CSc-71-113; (Jun 1971).

<He 71) Hewitt, C, ,
Description and theoretical analysis (using
schemata) of PLANNER: a language for provinq
theorems and manipulating models in a robot.
Doctoral Dissertation, Rassachusetts Institute of
Technclogy, Cambridge, #ass,, (Jan 1971).

<Hu 71) Huffman, D.A.
Impossible objects as nonsense sentences.
Hachine Intelligence 6, (1971), 295-323. I

<IN 69) Xchbiah, J.D., and Morse, S.P.
General concepts of the SIRULA 67 programming
language.
Coapanie Internationale pour l'Inforaatique,
(Dee 1969).

<IB 68) Internat ional Business Hachines Corporation.
Interactive graphics in data processing.
IBM Systems Journal 7, 3 E 4 (1968).

<Ir 69) Irons, E.T.
The extension facilities of IIlP.
In <CS 69). 18-19.

<Jo 63) Johnson, T.E.
SKETCHPAD III: a computer program for drawing in
three dimensions.
Proc AFIFS 1963 SJCC, vol 22, 347-353,

<Jo 69) Jorrand, P.
Some aspects of BASEL, the base language for an
extensible lanquaqe facility.
In <CS 69>, 14-17.

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 184

<Ka 70) Raneff, S., (ea.)
Picture language machines.
Procaedings of a conference held at the Australian
National University, Canberra,
on 24-28 February, 1969,
Academic Press, New York, New York, (1970).

<Ka 69) Kay, A.C.
The reactive engine.
Doctoral Dissertation, Computer Science Department,
Univwsity of Utah, Salt Lake City, Utah, (1969).

<Ke 69) Kelley, K,
A computer graphics program for the generation of
half-tone images vith shadows.
coordinated Science Laboratory, University of
Illinois, [Jrbana, Illinois,
Tech, Rert. No. 444, (Nov 1969).

<Ro 67> Koestler, A.
The act of creation.
Dell Publishing Co,, New York, New York, (1967).

<Ku 68a> Kubert, B.R,
A computer method for perspective representation of
curves and surfaces.
Aerospace Corp., San Bernadino, Calif,, (Dee 1968).

<Ku 68b> Kulsrud, H.E.
A general-purpose graphic language.
Coma ACM 11, 4 (Apr 1968), 247-254,

<Le 69a> Lee, I.M.P.
Three-dimensional curves and surfaces for rapid
computer display.
Harvard Gniversity, Cambridge, Mass.,
Tech. Rept. No. ESD-TR-69-189, (Apr 1969).

<Le 69b> Lea, T.M.P.
A class of surfaces for computer display.
Proc APIFS 1969 SJCC, vol 34, (1969).

<Lo 67a> Lombardi, L.A.
Incremental computation.
In Advances in Ccmputers, vol 8, (1967), 247-333.

<LB 64) Lombardi, L-A., and Raphael, B.
LISP as the language for an incremental computer.
M IT Project MAC, Memo MAC-M-142, (Har 1964).

<Lo 67b> Loutrel, P.

A SYSTEN FOR LARGE STRUCTURE GRAPHICS PAGB 185

A solution to the hidden-line probler'for corputer-
drawn pclyhedra.
Electrical Engineering Department, Neu York
University, Uew York, Nev York,
Tech. Rept. No. 39.020, (Jan 1967), and
Tech. Rept. No. 400-167, (Sep 1967).

<Lo 67c> Loatrel, P.

CL0 70)

<!¶a 72>

<Ha 69)

<NS 70)

tnw 71)

<hi 70>

<HA 68)

Determination of hidden edges in polyhedral figures:
convex case.
Laboratory for Electroscience Research, New York
University, New York, New York,
Tech. Rept. No. 400-145, (Sep 1966).

Loutrel, P.
A solution to the hidden-line problem for computer-
dravn polyhedra.
IEEE Transactions on Co8puters, C-19,
(Nar 1970), 205,

Hahl, R.
Visible surface algorithms for quadric patches.
IEEE Transactions on Computers, C-21, 1 (Jan 1972),
Earlier version: Computer Science Department,
University of Utah, Salt Lake City, Utah,
Rept. No. UTEC-CSc-70-111, (Dee 1970).

Matsushita, Y.A.
A solution to the hidden line problem,
Computer Science Department, University of Illinois,
Urbana, Illinois, Tech. Rept. No. 335, (Jun 1969).

BcCallister, S., and Sutherland, I.E.
Final report on the area Warnock hidden line
algorithm.
Fvans and Suterland Computer Corp., Salt Lake City,
Utah, Internal Document, (Feb 12 1970).

HcGowan, c., and Wegner, P.
The equivalence of sequential and associative
structure models.
In <TU 71>, 191-216,

Mitchell, J.G.
The design and construction of flexible and
efficient interactive proqramaing systems.
Doctoral Dissertation, Carnegie-Hellon University,
Pittsburgh, Pennsylvania, (Jun 1970).

HAGI, Mathematical Applications Group, Inc.
3-D simulated graphics.
Daaation, 14, 2 (Feb 1968). 69,

A SYSTEM FOR LARGE STRUCTURE GRAPHXCS PAGE 186

<Ne 70) Negroponte, N,
The architecture machine,
The MIT Press, Cambridge, t!ass. (1970).

<Ne 68) Newman, fi.n,
A system for interactive graphical programming.
Proc AFIPS 1968 SJCC, vol 32, 47-54,

<Be 71) Newman, E.H.
Display procedures.
Ccnr ACM 10, 14 (act 1971), 651-660.

<NS 73) Newman, P.M., and SFroull, R.F.
Principles of Interactive Computer Graphics.
H&raw-Hill, (1973).

<Pa 68> Pankhurst, R.J.
GULP -- a compiler-compiler for verbal and graphic
languages.
Joint Computer Aided Design Project, University of
Cambridge, England, Rept. No. 68-274, (1968), also
Proc 23rd ACH National Conference, (1968), 105-421,

<Pe 69) Perlis, A.J.
Introduction to extensible languages.
fn <CS 69>, 3-5.

<PO 71) Pollack, B-W,
An annotated bibliography on the construction
of compilers.
Computer Science Department, Stanford University,
Rept, No. STAN-CS-71-249, (Dee 1971).

<PO 72a> Pollack, 8.W.
A bibliography on computer (graphics.
Computer Science Department, Stanford University,
R~lpt, No. STAN-CS-72-306, (Aug 7972).

<PO 72b> Pollack, B-W,
Compiler Techniques.
Auerbach Publishers, Inc., (7972).

<PO 73) Pollack, B.W.
Usinq the GRAFL system.
Computer Science Department, Stanford University,
(fortbccming).

<Pr 71, Prince, M.D.
Interactive graphics for computer aided design.
Addison-Wesley Publishing Co., (1971).

<QD 72) Quam, L-R., and Ciffie, W.
Stanford LISP 1.6 manual.
Computer Science Department, Stanford University,
Rept. No. SAILON 28.6, (1972).

<Re 70) Reynolds, J.C.
GEDANKEN -- a simple typeless language which permits
functional data structure and coroutines,
Comm ACM 13, 5 (Ray 1970), 308-319, and as
Argonne Flational Laboratory,
Tech, Regt. No. ANL-7621, (Sep 1969).

<Ro 63) Roberts, L.G.
Machine perception of three-dimensional solids.
Lincoln Laboratory, FSassachusetts Institute of
Technology, Cambridge, Flass.,
Tech. Bept, No. 315, (Hay 1963), and as
Ph.D. Thesis, Uassachusetts Institute of Technology,
Cambridge, Mass., (Peb 1963).

<Ro 70> Rorney, G.V.

<RP 67)

Computer assisted assembly and rendering of solids. .
Computer Science Department, University of Utah,
Salt Lake City, Utah, Tech- Rept,
No. TR U-20, (1970).

Rovner, P-D., and Feldman, J.A.
The LEAP language and data structure.
Lincoln Laboratory, Nassachusetts Institute of
Technology, Cambridge, Uass., (Ott 1967).

<Ru 70) Rulifson, J-F',
Preliminary specification of the QA4 language.
Artificial Intelligence Center, Stanford Research
Institute, Tech. Note 50, (Apr 1970).

CRu 7l> Rulifson, J-F.
QA4 programming concepts.
Artificial Intelligence Center, Stanford Research
Xnstituto, Tech. Note 60, (Aug 1971).

<%U 70) Rulifson, J-P-, Waldinger, R-J., and Derksen, J.A.
QA4 working paper.
Artificial Intelligence Center, Stanford Research
Institute, Tech. Note 42, (Ott 1970).

<RD 72) Rolifson, J.P., Derksen, J-A., and Ualdinger, R.J.
QA4Z a procedural CakUlUS for intuitive reasoning.
Artificial Intelligence Center, Stanford Research
Institute, Tech. Note 73, (Nov 1972).

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 187

<Sa 68) Sandeuall, E.J.

p. SYSI'EM FOR LARGE STRUCTnRE GRAPHTCS PAGE 188

<Sm 70>

<SE 73)

<St 67>

<St 69)

A data definition facility for programming
lanquages.
Doctoral Dissertation, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, (IYay 1967).

Standish, T.A.
Some features of PPL, a polymorphic programming
language.
In <CS 69). 20-26.

<St 66) Strachey, C.
Towards a formal semantics.
In Formal Language Description Languages,
Korth-Holland Publishing Co., Amsterdam, (1966).

<.S'l 72) Sussman, G, J.
Why conniving is better than planning.
Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, lleao No. 255, (Peb 1972).

<Su 63) Sutherland, I.E.
SKETt"APAC: a man-machine graphical communication
system.
Lincoln Laboratory, hassachusetts Institute of
Technoloqy, Cambridge, Rass.,
Tech. Rept. No. 296, (Jan 1963), condensed version
in Proc AFIPS 1963 SJCC, vol 22, 329-346.

<ss 74)

<Te 66)

LISP A: A LISF-like system for incremental
computing,
Froc AFIFS 1968 SJCC, vol 32, 375384.

Smith, C.C.
RLISP.
Computer Science Department, Stanford University,
Rept, No, SAILON 135, CS 179, (Ott 1970).

Smith, D.C., and Enea, H.J.
MLISP2.
Ccmputer Scisnce Department, Stanford University,
Rept, No, STAN-730CS-356, (ray 1973), and as
Stanford Artificial Intelligence Laboratory
M?lnO. No. AI!! 195.

Standish, T-A;

Sutherland, I.E., sProul1, R.F., and
Schunacker, R-A.
A Characterization qf 10 Hidden-Surface Algorithms.
COOIF Surveys 6, 1 (Mar 74).

Teitelnan, W.
PILOT: a step toward man-computer syabiosis,

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 189

Projact flnc, Bassachusetts Institute of Technology,
Cambridge, Uass.,
Tech. Rept. No. MAC-TR-32, (Sep 1966).

<TY 71) Tou, J.?., and Wegner, P., (eds.)
Proceedings of a symposium on data structures in '
programming languages.
SIGPLAN Notices 6, 2 (Peb 1971).

<UC 72) University of California at Berkeley
CALIDOSCOPE Control Statements
University of California at Berkeley, (Nov 1972).

<VD 71) van Dam, A.
Data and storage structures for interactive
graphics.
In <TR 71>, 237-267,

<Ua 68> Uarnock, J.3,
A hidden line algorithm for half-tone. picture
representation.
computer Science Department, University of Utah,
Salt Lake City, Utah, Tech. Rept.
No. 4-5, (Bay 1968).

<Wa 69) Warnock, J-E,
A hidden surface algorithm for computer generated
halftone pictures.
Computer Science Department, University of Utah,
Salt Lake City, Utah, Tech. Rept,
No. 4-15, (Jun 1969).

<Ua 70) Ratkins, G-S.
A real-time visible surface algorithm.
Computer Science Department, University of Utah,
Salt Lake City, Utah,
Rept. No, UTEC-CSc-70-101, (J&n 1970).

<We 71) Wegner, E.
Data structure models for programming languages.
In <TP 71>, l-54.

<MS 70) Wehrli, R,, Smith, tl.J., and Smith, E.F.
ARCAID: The ARChitect's corputer graphics AID.
Computer Science Department, University of Utah,
Salt Lake City, Utah,
Rept. No, UTEC-CSc-70-102, (Jun 1970).

<life 66) Weiss, R.A.
BE VISIICR, a package of IBH 7090 Fortran programs to
drau orthographic views of combinations of plaae and
quadric surfaces.

A SYSTEM FOR LARGE STRUCTURE GRAPHICS PAGE 190

Journal ACM 13, 2 (Apr 1966), 194-204.

<UT 77) Weston, F-E,, and Taylw, S.M.
CYLINDERS: a relational data structure.
In <TW 71>, 398-416.

<Wi 71) Wincgrad, T.
Procedures as a representation for data in a
completer program for understanding natural language.
Project !lAC, flassacbusetts Institute of Technology,
Tech. Rept. No. UAC-TR-84, (Peb 1971).

<Ui 70) Winston, P.H.
Learning structural descriptions from examples.
Project MAC, bassachusetts Institute of Technology,
Tech. Rept, No. ??AC-TR-76, (Sep 1970),

<WR 71) wulf, W.A., Russell, D.8.. and Habermann, A.N.
BLISS: a lanquaqe for systems programming.
Coma ACH 14, 12 (Dee 1971), 780-790,

<RR 67> Wylie, C,, Romney, G., Evans, D-C,, and Erdahl, A.
Half-tone perspective drawings by computer.
Proc APIFS 1967 FJCC, vol 31, 49-58,

	slac-r-187a.pdf
	slac-r-187b.pdf
	slac-r-187c.pdf
	slac-r-187d.pdf
	slac-r-187e.pdf

