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1. INTRODUCTION 

The term filtering-is used to denote the process of spectrum shaping either 

in the frequency domain or in the time domain, There are basically two different 

ways the filtering can be achieved. The more commonly used means is to use ana- 

log components like inductors, capacitors, amplifiers as the basic elements of 

the filter, Such filters are known as analog or continuous filters. Alternately, 

the signal processing can be done by using digital components like gates, flip- 

flops as the basic elements. The latter type of filters are called the digital 

filters. In a continuous filter the input and output waveforms are continuous 

functions of time, whereas in a digital filter the input and output waveforms are 

sampled signals, i.e., discrete functions of time (see Figure 1). Strictly speak- 

ing, the term digital filter represents the "computational process or algorithm by 

which a sampled signal or a sequence of numbers is transformed into a desired se- 

quence of numbers"[l]. This transformation is assumed to be a linear operation. 

Applications of digital filtering techniques include computer simulation of linear 

dynamic and continuous systems like speech communication systems, processing of 

data signals like geophysical data in a computer. It can be pointed out here that 

recent developments in monolithic integrated digital circuits indicate the possi- 

bility of eventual replacement of ananlog hardware by real time digital filtering 

systems of lower cost and size and of greater flexibility. 

The purpose of this document is to present the fundamentals of digital fil- 

ters. This report is based on the 
@6 

al sroom notes the author prepared for a 

series of lectures given at SLAC during August, 1969. 



2. PRINCIPLE 
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AtI =' (Y(O), y(T), 

x(2T), x(3T),..J 

y(2T) 5 y(3T) ,* l -1 

(1) 

The output sample at any instant, in general is related to the input sample at 

that instant and also to the input and output samples at previous time intervals, 

Thus we can write for t = nT, 

m k 
y(nT) = C Ai x(nT-i'l) + C Bi y(nT-iT) m < k (2) 

i=O i=l 

where Ai and Bi are constant coefficients. Hence, a kth order digital filter 

is described by a kth order difference equation. Equation (2) defines the digi- 

tal filtering algorithm and as a result is suitable for computer implementation. 

x"(t) is physically obtained by sampling a continuous wave form x(t) by 

means of a sampler (Figure 2). Real time digital filtering consists of perform- 

ing the algorithm indicated by Equation (1) once for each arrival of a new input 

sample and completing the operation in less than T seconds. T is known as the 

sampling interval. 

Even though the problem of designing a digital filter is not a'very diffi- 

cult one, there are many associated difficulties which may occur in an actual 

implementation of the design and as a result lead to errors, One source of error 

is the sampling process itself which in practice is not ideal. Thus the actual 

samples will have a finite width. Another source of error arises because of quan- 
'. 
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tization of the samples and the coefficients Ai and Bi. Equation (2) also indi- 

cates that a multiplication process is involved with which are associated in- 

herent round off errors caused by finite register lengths. Examination of these 

errors is beyond the scope of this report. 

3. SAMPLING PROCESS 

Since sampling is an essneital part of a digital filter design involving 

continuous input signals, let us examine in some details the sampling process. 

For our purpose we assume the sampler to be an ideal switch. This implies that 

it makes and breaks contact instantly, duration of sample is negligible and the 

sampler samples periodically every T seconds. These assumptions make the mathe- 

matics very simple without any loss of insight. The relation between a signal 

g(t) fed into a sampler and the output g^(t) of the sampler is illustrated in 

Figure 3. Note that the height of sampled pulses is equal to the value of g(t) 

at that instant, i.e., 

&nT) = g(nT) (3) 

A convenient representation of g^(t) is by means of a train of delta func- 

tions which is described next. 

3.1 Delta Function 

A delta function (or unit impulse function) 6(t) is defined as follows: 

C?(t) = 0 to (4) 

I b 
6(t) dt = 1 a>0 b> 0 (5) 

-a 

6(t) is said to occur at t = 0. An impulse function occurring at t = to is 

denoted by d(t-to). Thus 

, ,. 



6(t-to) = 0 t $: to 

t +c 
'6(t-to) dt = 1 E>O 

to-c 

(G) 

An important property of a delta function is that when modulated by another func- 

tion g(t) , it in essence samples the function. More precisely 

I ~~(t-t,)s(t)dt = g(to) 

Often the above property is loosely defined as follows: 

a(t-toMa = 0,) 

In using Equation (IS), I 't -is to be understood that the sampl 

delta function holds only under integration. 

(7) 

(8) 

ing property of the 

An extension of the above idea leads to a sequence of impulses aT(t) 

occurring at t = nT where n =-CO,:-.., -3, -2, -1, 0, 1, 2, 3, . . ..+m. 'The 

function dT(t) can be represented as: . 

Q) 
aT(t) = c &(t-nT) (9) 

,=,, 

We can thus consider the output of a sampler as a sequence of pulses in 

which the input function g(t) modulates the impulse train: 

, 
I. 

Q) 
= c g(nT) s(t-nT) 

n f,gg 
(10) 



3.2 Spectral Properties of a Sampled Signal 

It is interesting to examine the spectral properties of g*(t) . Now 6,(t) 

being a periodic function of period T (sampling interval), it can be represented 

by a Fourier series: 

OD 
6T(t) = 1 c ,%kt/T 

k=-ca ' 

where ck is given by 

T/2 

C’k = f 6 
T 

tt) pM/T dt 

T/2 
1 =- 
T i 

s(t) ;jilnkt/T dt 1 =-- 
T 

-T/2 

Hence an alternate way to write g*(t) would be to express it as: 

g*b) = g(t) +) 

1" =- c 
Tk 

g(t) ej2nWT 
-D-CO 

Let us denote the Fourier transform of g(t) by G(jw): 

G(jw) =y{g(t)l = lwg(t)e-jUJtdt 

-(o 

(11) 

(12) 

(13) 

(14) 

We now take the Fourier transform of both sides of Equation (13): 

G*(jw) =${g*(t)J = f i I- s(t)e 
j2rkt/T ,-jut dt 

k=-m -~ 
(15) 

I ,. 



Recall that by shifting theorem: 

7 (g(t) ejmt) = G[j(w-m)] (16) 

Therefore 

w 
G*(jw) = f c G(jwjy) 

k=-co 

= f kz G[j(w-kwo)] 
=-QD 

where we have used the notation 

W. = q 

(17) 

08) 

fO = l/T is known as the sampling frequency. - Equation (17) says that the effect 

of impulse sampling is to produce a sampled signal whose spectrum is given by a 

succession of spectra which are proportional to the original spectrum G(ju) 

, This is illustrated but shifted periodically by a frequency separation ktil, 

in Figure 4 for a typical s(jtd) . 

An important conclusion can be made from above discussion: If G(jw) is 

band-limited, i.e. 

G(jw) = 0 for w>w a 

then the original signal can be recovered (within a multiplicative constant) 

from g*(t) by passing g*(t) through an ideal low-pass filter of cutoff fre- 

wO quency 2 wO provided wa < 2 . 

Summarizing we can state: 

Sampling Theorem 

In order to recover a band limited signal, the sampling frequency a0 
, 

should be equal to or larger than the twice the highest-frequency component of the 



input signal: 

0 0 1 Tw a (19) 

i.e., sampling interval T should be less than or equal to 1/2f a’ 
If sampling frequency w. does not satisfy Equation (19) then it is evident 

from Figure 4 that it would not be possible to recover the input signal because 

of overlaps. For simulation work thislbandlimiting of input signal is most essen- 

tial in order to minimize errors due to overlap of frequency spectrums. One way 

to achieve this is to insert a band limiter (low-pass filter) before the sampler. 

Figure 5 shows the general scheme for system simulation using digital filter rep- 

resentation for continuous system dynamics. 

4. Z-TRANSFORM 

In the analysis and design of continuous systems, the Laplace Transform is 

a valuable tool which enables the conversion of differential equations into alge- 

braic form for easier manipulation. In a similar manner, the Z-Transform is found 

to be useful in the analysis and design of digital filters. 

The development of Z-Transform [2] is described next. We have shown before 

in Equation (10) a sampled signal g*(t) can be represented by means of an ampli- 

tude modulated impulse train. Now if g(t) is a causal signal i.e., g(t) = 0 for 

t < 0, then Equation (10) can be rewritten as: 

00 
g*(t) = C g(nT)G(t-nT) (20) 

n=O 
Taking the Laplace transforms of both sides yields: 

G*(s) =&g*(t)'; = 
r 

g*(t)eWstdt 

0 
(21) . 

= F g(nk)i{&(t-nT)1 
n=O 



But I 

5 {s(t-n-T)) = r b(t-nT)eWst dt = eLnsT 
0 

which when used in Equation (21) yields: 

cm 
G*(s) = c g(nT) e 

-nsT 

n=o 

If we use the notation 

then Equation (23) becomes 

2 (g(t)1 = G(z) = G*(s) 
I 

i 

= T g(nT) z-" 
z=eST n=o 

(25) 

G(Z) as defined above is known as the "Z-transform of g*(t)." Note that the 

Z = esT 

w.) 

(23) . 

(24) 

Laplace transformsof sampled signals are transcendental functions of the complex 

frequency variable s. Introduction of a new variable 2 defined by Equation (24) 

makes the Z-transform a rational function in z which simplifies mathematical mani- 

pulation. 

Example 1: Let us determine the Z-transformofthe following function: 

,-at t>o 
g(t) = (26) 

0 tco 

Note that the above function reduces to the unit step function u(t) for a = 0 . 

A convenient representation of the function of (26) is eWat u(t) . Now 

m 
x _ {ematU(t)} = C emanT Z-” 

n=o 

= 
1 _ ,fT z-l = z -Ze-aT (27) 

I  
.r 

From Equation (27) it can be seen 



?J h(t)> = $J- (28) 

Since in a digital filter, 
convenient 

input and output are sequence of numbers, it is 

&o use the Z-transform techniques for analysis and design of such filters. 

4.1 Relation between s-plane and z-plane - Stability Conditions- 

It is profitable to examine the relationship between the s-plane and the 

z-plane. The transformation z = e 
ST’ 

transforms a strip in the s-plane into 

the entire z-pl,ane. The left half-p,lane portion of the strip bounded by 

tj? and -jF (shown shaded in Figure 6a) is mapped into the interior of 

the unit circle in the z-plane (shaded portion of Figure 6b). The right half 

plane portion of the strip is mapped to the exterior of the unit circle. Since 

G*(s) is a periodic function, each successive strip as shown is mapped in a 

similar fashion. This can be easily seen from the inverse transformation, 

S = felt z . . (29) 

which is multiple-valued with period jlr . Thus a periodic function G*(s) is 

transformed into a non-periodic function. 

Relating the stability results in the s-plane to that in the z-plane, we 

conclude: 

For strict stabiZity the poZes of the system function in the z-plane must 

be situated inside the unit circle. 

4.2 Evaluation of G(z) from G(s) 

Often it is necessary to determine the Z-transform from a prescribed G(s). 

The desired technique is derived next. We recall 

g*b) = gb) b+t) (10) 

‘. 

In practice, g(t) is a "causal" function, i.e. g(t) = 0 for t'< 0 . 



Then the function &T(t) in Equation (10) can be replaced by an impulse train 

sT'(t) which is also a causal function: 

fo 

dT'(t) = c &(t-nT) 
n=O 

Now 

t bT’(t)j = A(s) = L ewnTs 
n=O 

= +iT 

(30) 

(31) 

From Equation (lo), 

ctjm 

;R h*(t)> = &- 1 G(a) A(+x)dx 
c-j, 

(32) 

by the convolution theorem in the time-domain. Using the expression for A(S) 

in Equation (32), we obtain 

(33) 

Evaluation of the above integral is accomplished through contour integration by 

closing the path of integration either in the right half s-plane (which encloses 

the poles of A(S-X)) or in the left-half s-plane (which encloses the poles of 

G(s)). If G(s) is a rational function, the number of poles is finite. Thus, 

it is convenient to close the path of integration to the left. Then, 

O-j- 

J G(a) c-j, -,-to dh = 2nj c Residue (34) . 
a11 Pk 

'=Pk 

where h = pk iS a pole Of G(h) and the summation above iS carried Out for all 



such poles (assuming simple poles only). From Equations (33) and (34), we easily 

obtain 

Example 2. Suppose 

G*(s) = C 
a11 pk 

A=Pk 

(35) 

G(S) = -hi- 
Note that the FOleS of G(s) are at pl = -a and p2 = -b. 

= (A-@? --- 
( h+a) (x+b) [1 -Fmml 

),=-a 

I G(h) c- I ,x+b 
Residue -- , ,3-(-m- = (x+a) ( A+b)[l -e-T(s-x)lw h 

=- 
b 

x=-b 

1 

= (a-b)[l-emsT eWbT] 

Hence 

,-1 (,-aT _,-bT) 

= (b-a)(l-eWaT f-')(l-eebT Z-') 

(36) 

. . 

(37) 



For multiple poles, the above procedure is modified slightly[2]. 

4.3 Inverse Z-Transform 

From a prescribed G(z) , the corresponding sampled time function g*(t) 

can be determined by using the inverse Z-transform: 

g(nT) = &- G(z) zn-' dz (38) 

where the path of integration encloses the origin. 

Example 3. Let g(t) = ktjT -- 

This implies 

g(nT) = k" 

Hence 

G(z) = c k" z-" = &. 
11=0 

Inverse transform of G(z) yields 

g(nT) = L 
,n-1 

2nJ 
-2 dz z-k 

The contour integral can be solved by Cauchy's Residue theorem by taking 

a contour which encloses the pole at z = k : 

n 

5Tdz = 2nj Residue 

z=k 

= 2nj k" 

As a result 

g(nT) = k" 

as expected. 
'; 



. . 

If the interest is only on the first few terms of the pulse sequence, an 

alternate procedure in obtaining g*(t) from a rational G(z) is as illus- 

trated in the next example. 

Let Example 4. 

G(z) = ;&- 

Rewrite G(z) as 

G(z) = d; = lc2z-1i352 

2+z-'+4z 

Divide the numerator N(z-') of G(z) by its denominator D(z-') in a long 

division: 

2+z -1 +4z -2 1+2z -1 +3z -2 1+ g, 2 4 
,-1 + j-,-2 -3 

8 
-gz 

1 f ; z-' +2z -2 

I 

3Z -1 
2 

+ z-2 

+ 17 z-4 + 
32 l -• 

3Z -1 +zz -2 
2 4 

+3z -3 

12 -2 
4 

- 3 ZL3 

-2 1 -3 1 -4 ;z +gz 2 +-Z 

25 -3 1 -4 v---z 
8 

--z 
2 

25 -3 25 -4 25 -5 -- 8z -17;z --p 



Hence 

G(z) = ;+ fz-’ + ;z-~ _ gz-3 + gz-4 + ., 

As a result 

g*(t) = 

-G 
4.4 Properties of Z-Transform 

; a(t) + + 6(t-T) f ; s(t-2T) 

s(t-3T) f 8 s(t-4T) + . . . 

Eased on the definition as given by Equation (25), several useful properties 

of the Z-transform can be derived. A few of these are given next. 

Z-transfarm is a linear operatio!1. Thus, if we define 

~llg;(t)l = G,(z) and h;(t)1 = G2(d , then 

Sequence. Delayed 

the Z-transform of the 

below. 

2 (a g;(t) + b g;(t)} = a G,(z) + b G2(z) (39) 

If we denote by G(z) , the Z-transform of g*(t) , then 

delayed sequence g*(t-kT) is easily derived as shown 

z{g*(t-kT)I = E g(nT-kT) z-" 
n=o 

= i g(nT-kT) z-" 
n=k . 

= z -k i g(nT-kT) z -(n-k) 

n=k 

z-k 
00 

= C g(mT) zmrn = zmk G(z) (40) 
m=o 



Product of Z-Transforms: Convolution Theorem 

. 

If 

y(z) = G(z) X(z) (41) 

where 

02 

Y(z) = c y(nT) z-" 
n=o 

00 

G(z) = c g(nT) z-" 
n=o 

Q) 
x(z) = c x(nT) z-" 

n=o 

(42) 

(43) 

(44 1 

then 
n 

y(nT) = c g(mT) x(nT-mT) 
m=o 

= ! g(nT-ml') x(mT) (45) 
ni=o 

Expression (45) can easily be proved by substituting Equations (42)-(44) in 

Equation (41)) and equating coefficient of z-" on both sides. 

5. FIRST-ORDER DIGITAL FILTERS [33 

The kth order difference equation given in Equation (2) describes a kth 

order digital filter. It thus follows that a first order digital filter will 

be characterized by a difference equation of the form: 

y(nT) = A, x(nT) + A1 x(nT-T) + 6, y(nT-T) (46) 

Equation (46) can be solved sequentially to express y(nT) in terms of the initial 

state y(-T) for n = 0, 1, 2, . . . . If x*(t) is a causal function, i.e., x(nT) = 0 

for n < 0, then we have 



Y(O) = B, y (-I-) + A0 x(O) 

If the input x(t) 

This implies 

provided jB,l < 1 

Y(T) = B, ~(0) + A0 x(T) + A, x(o) 

; 8: y(-T) + Ao x(T) f @,A0 + A11 ~(0) - 

y(nT) = Blntl Y(-T) + A, x(nT) 

+ "cl Bin-l-m 
CBIAo*A1 Ix(mT) (47) 

m=o 

is a unit step function at t = 0, i.e., x(t) = u(t) 

x(nT) = 1 for all values of n 

n-l 
y(nT) = 8, "+ly(-T) t A0 + [BIAo+Al] 'c Bin-'-m 

ti=0 

n+l = 
Bl Y(-'-1 + A, + 

* If lBil< 1 then 

I-Bin 

my-- ~BIAo+A1 I 

B'; % 0 for large values of n 

so that the steady-state response for large values of n becomes 

y(nT) : 
steady state 

(48) 2 

BIAo+Al 
='o+ l-B, 

Ao+Al 
=--my (49) 



It is evident from Equation (48), if lB1l is not less than 1, then the first 

order digital filter is unstable, i.e., y(nT) 4 00 as n 4 43. 

A plot of y(nT) for some typical values of the parameters is shown in 

Figure 7 with y(-T) = 0 . Note the similarity of the response for A0 = 0 

with the step response of an RC integrating circuit. 

A convenient representation of the first order digital filter described 

by Equation (46) is shown in Figure 8. 

Several comments are here in order with regard to either digital computer 

simulation or digital hardware realization of Equation (48). Note that even 

for the simple case of A, = 0 and A, = 1, three registers are needed 

to store H, , hold y(nT) and hold x(nT) . In addition, facilities for 

multiplication and addition must be available. This type of implementation 

appears to be expensive forrealizing a simple first order filter. But the 

real gain is achieved if these digital components were utilized to realize large 

number of first order filters by making use of time multiplexing [3]. 

6. SYSTEM TRANSFER FUNCTION 

As in the case of the continuous system, we can define a system transfer 

function for a digital filter by expressing the Z-transform of the response as ' 

y(z) = H(z) X(z) (50) 

where X(z) is the Z-transform of the input. In Equation (50) H(z) is the 

system transfer function. Using Equation (50) in Equation (2 ) , we readily 

obtain for a kth order filter: 

H(z) = ;';' = zk-m . 
A,+A,-,z+..+ A,z"-'+Aozm 

- 
k 

(51) .- 
'-(Bk+Bk-,z +..+Elz k-1 )+ z 



If we let 

i 
Z = ,SJ (52) 

then we can write 

H(ejWT) = IHlejJ, (53) 

where 

4' = arg H (e jwT) (54) 

H(ejd thus determines the frequency response of the digital filter. 

For the first order digital filter of Equation (46), the system transfer 

function is 

H(z) = 
Aoz + A 

Z-B ' (55) 
1 

Consequently 

A ,jaT+.A 
t.j(ej(d = 0 1 

,J~T _ B 
(56) 

1 

Thus 

IHI = 

I 

= (57) 

and 

9 = tan 
-1 A,sinwT 

- tan -1 sinwT 
A,+A,coswT coswT-B, (58) 

The magnitude function Ii-i1 has been plotted for in Figure 9 for typical 

values of various parameters. The possibility of obtaining frequency selectivity 

with digital filters is illustrated by this figure. 



7. SECOND-ORDER DIGITAL FILTERS 

Let us now examine several realizations of the second-order 

digital filter. The methods discussed can readily be extended for higher order 

filters. 

The general form of a second order filter is obtained from Equation (2 ) 

as: 

y(nT) = Aox + A, (nT-T) + A2x(nT-2T) 

+ B,y(nT-T) f B2y(nT-2T) 

Taking the Z-transformsof both sides, assuming y(-T) = y(-2T) = 0 and 

re-arranging terms, we obtain 
Y(z) = 

Ao+A,z-'+A z-2 2 - . x(z) 
~-B,z-'-B~z-~ 

(59) 

(60) 

The system transfer function is then 

H(z) = 
Ao+A,z-'+A2z-2 

l-Blz-1-B2z-2 
(61) 

Direct realization of this filter is sketched in Figure 10. 

An alternate realization is obtained by writing Equation (60) as two equa- 

tions: 

G(z) = w 
~-B,z-T-B~z-~ 

(62) 

or 

Y(z) = (Ao+A,z-1tA2z-2)G(z) (63) 
. . 

We rewrite Equation (62) as 

G(z) = X(z) + B,z-'G(z) t B2z-2G(z) (64) 



. 

Realization of the filter described by Equations (63) and (64) is illustrated in 

Figure 11 a. Note that the signal at points a' is g(nT-T), and so is the signal 

at point a". Thus, these two points can be combined. This would eliminate one 

delay unit. Similarly, points b' and b" can be combined to eliminate another 

delay unit. The modified realization is shown in Figure 11(b). For a second 

order digital filter, the minimum number of delay units necessary is two. Hence 

the realization of Figure 11(b) is "optimal" with respect to the number of delay 

units and is said to be "canonic" in form. qnother "canonic" realization is 

indicated in Figure 12. 

The second-order digital filter can be considered as the basic building block 

for the realization of higher order digital filters. It is generally known that 

such method leads to lowest coefficient accuracy requirements. The kth order 

digital filter transfer function as given by Equation (51) can be expressed either 

as a product or as a sum of second-order transfer functions if k is, evenfl]. If k 

is odd, then a first order building block will be needed in either case, To 

illustrate this approach, consider the case of k = 4. Then we have 

or 

a20+a21Z 
-1 

H(z) =Dt al@+alTZ 
-1 

1-Bll~-'-Bl~z-~ 
t 

-1 -2 035) 
1-B2lz -B22z 

The product-form of (65) is obtained by factoring roots of the denominator 

and numerator of H(z) . The sum-form of Equation (66) is obtained by a partial 

fraction expansion and assuming simple poles only; For the multiple pole case the 

form is slightly modified. The two corresponding realizations are shown in 

Figures 13 and 14, 
5. 
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8. DESIGN TECHNIQUES 

There are basically two types of digital filters. If the filter is des- 

cribed by Equation ( 2) with all Bi being zeros, it is called a non-recursive 

or transversal type digital filter. In this case, the output at any time 

depends only on the present and past samples of the input, and does not depend 

on the previous samples of the output. If on the other hand, at least one Bi 

and one Aj are non-zero, then the filter is said to be recursive type digital filter, 

We now present four methods of digital filter design, the first three lead 

to recursive type filters and the last one for the non-recursive type filter. pII 

8.1 _Impulse.l?esponse Invariance Technique 

By this method, one can design a digital filter whose impulse response 
response 

is identical to the sampled impulse,of a given continuous filter. From the pre- 

scribed impulse response y(t) , we first obtain the system function Y(s) = 

~Iy(~t)~ . Assuming simple poles, H(s) can be expressed in a partial fraction 

expansion as: 
m a. 

Y(s) = c &- 
i=l i 

which implies 
m 

y(t) = X a. ecbit 
j=l 1 

Hence 
'rn 

y(nT) = c a. eVbinT 
i=l ' 

(67) 

(69) 

We want y(nT) =- h(nT) where h*(t) is the impulse response of the digital 

filter. Thus 
co 

H(z) = C h(nT)z-" 
n=o 



m a. 1 
= 

121 1-ewbiT z-l (70) 

Note that the above results could have been obtained directly by making use of 

the relation between Z-transform and the Laplace transform outlined in Section 4.2. 

If bi is complex, then we can combine the terms corresponding to bi 

and its conjugate bi * in Equation (67) to yield either of the following forms: 

y,(s) = S+a 

(s+a)2+B2 
(71) 

The corresponding expressions in H(z) will be 

l-e -aT (cos~T)z-' 
H,(Z) = l-2e-aT(cosBT)z-1+e-2"1 zm2 

ecaT(sinBT)z-' 
H2(4 = 

-'-c 
l-2e-aT(cos~T)z-l+e-2ai zmL 

(72) 

(73) 

(74) 

The method can be routinely extended for the case of multiple poles. 

8.2 Design based on Magnitude Function Specification 

An elegant technique based on magnitude function approximation is as follows. 

We first note that H(t) is a rational function in z 
-1 and for t = e jwT (i.e. 

on the unit circle), H(ejUt) is a rational function of e jwT . Consequently 

IH(ejWT)l* can always be expressed as a ratio of two trigonometric functions 

of wT . To illustrate now the basic idea behind the second method, suppose 

we have approximated a specified magnitude function in the form: 

lH(ejWT)12 = 1 

, + tant"(wT/2) 

tan “(wcT/2) 

(75) 

5. 



If we let 2 = e 
jwT , then 

z-l 
Fi = j tan $- 

Using Equation (76) in Equation (75), we obtain 

lH(z)12 = 
tan2n(wcT/2) 

tan'"(w T/2) 
C 

(76) 

(77) 

It can be seen that IH( is a rational function in z , which has a zero 

of-order 2n at z = -1 . Determination of the poles is readily achieved by 

using a new transformation 

(78) 

Thus the 2n poles of IH(p are uniformly spaced around a circle of radius 

tan (wcT/2) in the p-plane. From the knowledge of the p-plane roots, z-plane 

roots are found by using the inverse transformation 

Z = ‘+ 
P -P 

and the roots inside the unit circle are chosen as the poles of H(z) . 

Example 5. Consider n = 2 
. 

IH(e 

Let wcT = F then tan 2 
I I 
w,T = fi thus, Equation (77) becomes 

IH( = 

Making use of the transformation indicated by Equation (78), we have 

(79,) 

L 
1H(p)12 = & = (p2 + &p+3);p2-Jsb+3) 



Using inverse transformation of Equation (78) we thus get 

IH( = II 
9(z+l j4 

4+ 6 z2+4z+(4-71 t(&&z+4z+(4+~)) /, 

Considering only the poles inside the unit circle, we finally obtain the required 

system transfer function as 

H(z) = 3(z2+2z+l) 

(4t&)z2+4z+(4-6) 

8.3 Techn*e Based on Bilinear Transformation 

Let H(s) be a realizable analog filter transfer function. Its frequency 

response is found by evaluating H(s) at points on the imaginary axis of s- 

plane. If in the function H(s) s is replaced by rational function of z , 

f(z) I which maps the imaginary axis of the s-plane onto the unit circle of the 

z-plane, then the resulting function of variable z, H'(z), where 

H’(z) = H(s) 
I s=f(z) ' 

030) 

evaluated along the unit circle will take on the same set of values as H(h) . 

One such transformation is 

s Z-l 
=s (81) 

Let WA be a particular analog frequency of interest, and the correspond- 

ing digital frequency variable be wDT such that the following holds 

‘H(uA) = H'(wDT) (82) 



It can be shown easily that Equation (82) holds if 

Since the transformation indicated maps the left half s-plane onto the inside of 

the unit circle, H'(z) is guaranteed stable,provided H(s) was stable. 

Example 6. A low-pass digital filter having a monotonic frequency response 

is-to be designed for a 3KHz sampling rate. The 3-db cut-off is at 0.5 KHz d"- 

and the response should be more than-t8':db downat 1 KHz. 

A Butterworth filter would satisfy these requirements in the analog domain. 

The peWkent frequencies of the digital filter are at: 

W"T E -!-I AL! 
D 3x103j 3 

Corresponding frequencies in the analog domain are at: 

(4 

U;lT 
= tin 2 z tan i 

11 
1 E- 

4i 

lo;; 
$T 

= tan 2= tan 
[1 ii =rT 

A normalized Butterworth filter has a 3-db cut-off at w. = 1 . This has to be 

de-normalized to wc = WA' = 2 . ,Our next problem is to determine the order 

of the filter, we note at tiAlt we must have 



Which is equivalent to 

I 

or 

Hence n must be 3. The resulting poles are at 

The corresponding analog transfer function is 

H(s) = 
1 

(3vT)s3+6s2t(2/T)s+l 

H'(z) is obtained from above by replacing s by (z-l)/(ztl) : 

w 1 3 
H'(z) = - --- 

(7+5~)z3-(7~t3)z2+(7~~-3)z+(7-5~) 

8.4 The Fourier Series Approach - 

Let H(s) be the desired analog transfer function which is to be approxi- 

mately realized by a digital filter so that the magnitude characteristics match. 
0 

We expand, H(w) in a Fourier series over the band (01 < -$ : 

QD 
H(w) = c an cos nwT . 

n=o 

. 

(84) 

or 
, . . 



DJ 

H(w) = c bn sin nwT 035) 
n=o 

If H(s) z Ksm for small s , then the cosine-series of Equation (84) is used 

if m is even. If m is odd, then the sine-series expansion of Equation (85) 

is used. Since on the unit circle, 

2 E. ,M 

Equations (84) and (85) lead to the corresponding 

the non-recursive filters: 

co 

H(z) = a0 + $ c a, (z" 
n=o 

(86) 

system transfer functions for 

St -n 
1 , m even (87) 

= $ ; bn (2” + f”) , n odd 033) 
n=o 

In practice, the series is truncated which leads to errors in the approximation. 

Various approaches have been suggested to improve the approximation by modify- 

ing Ian , b,3 [Il. 

9. CONCLUSION 

An introduction to basic concepts of digital filter along with the theory 

of analysis and design of such filters has been presented. More extensive 

information on the subject will be found. in the references listed in the bib- 

liography. 

For conventional applications, a digital filter employs more components in 

comparison to an equivalent analog filter. This probably has restricted the 

use of such filters primarily to simulation work. With large scale integration 

of digital circuits implementation of digital filters would be cheaper with 

5. 



I. 

resultant decrease in size and an increase in reliability, making digital fil- 

ters more attractive than their equivalent analog filters. An unique property 

of the digital filters is the ease with which they can be easily modified and 

time-shared. This particular property will be made more use of in future in 

designing filtering systems. 

1. 

2. 

3. 

4. 
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