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Abstract 

Tests of QCD in deep inelastic scattering of leptons on hadrons are reviewed 
and the potential of HERA for exploring particularly the small z region is 
stressed. Ways to measure the gfuon distribution at small z are described 
and the importance of these measurements is emphasized. The reason for 
the failure of the Altarelh Parisi and Lipatov equations for very small z phe- 
nomena is explained and the physical input underlying the Gribov Levin 
Ryskin equations, which more correctly account for the low t parton inter- 
actions, is discussed. What relevance shadowing and saturation might have 
for HERA is also briefly touched upon. 
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These lectures are centered around some of the physics issues that can be 
explored in high energy Iepton hadron scattering. With the commissioning of 
HERA at DESY in the proximate future, these interactions will be probed to 
hereto unexplored regions of momentum transfer and Bjorken I. Thus it seems 
particularly fruitful to discuss here some of the theoretical ideas that have been 
put forth for this new regime. A useful staring point for my lectures is provided by 
a review of QCD scaling violations in deep inelastic scattering, using the Altarelli 
Pa& equations. This not only ties in nicely with the introductory lectures of S. 
Drell at this school,’ but it also provides a very natural springboard from which 
to discuss low 5 phenomena. 

1. Testing QCD Scaling Violations in Deep Inelastic Scattering of Lep- 
tons on Hadrons 

As is well known’,’ quantum chromodynamics (QCD) provides a theoretical 
justification for the parton model calculations in deep inelastic scattering3 and 
predicts logarithmic modifications for the scaling behaviour suggested by Bjorken 
long ago.’ In the parton model the deep inelastic scattering cross section for 
leptons on hadrons can be written as a convolution of the lepton-parton cross 
section, times the distribution function I,([) of partons within the hadron. 

Here z and y are the usual (hadronic) variables* 

QZ p.9 
x=-2p ; y=p.e 1 

while zp and yp are their partonic counterparts, 

q= z ; y =p’Q=y xP=-gq=Q P P.e 

(1) 

c-4 

The kinematics for the process is exemplified in Fig. 1 
The lowest order process in QCD is two-body scattering of leptons on quarks 

and antiquarks. Because the scattering is two-body, the partonic differential cross 
section is proportional to a b-function: 

do, - 7” 6(1 - xr) 
dx,dy, 

In turn this implies that, apart from trivial kinematical dependences on q*, the 
deep inelastic cross section has no q2 dependence in this approximation. Thus the 

/p=v )x 

Figure 1: Parton model kinematics for deep inelastic scattering. 

lowest order processes in QCD give precisely Bjorken scaling4 for the hadronic 
structure functions. For instance, in this approximation, the structure function 
F,‘” for the deep inelastic (electromagnetic) process ep -+ eX is just 

F;“(x;9’) = XC l’ $9*(C) + G(F)] . (eT6(1 - ;)} 

= C’4 IX9i(X) + XQi(X)] . 

Here q,(t) and qi(<) are, respectively, the distribution functions of quarks and 
antiquarks in a proton, while the term in curly brackets above, containing the 
characteristic b-function, is the partonic contribution to the Fz structure function 
coming from electron-quark and electron-antiquark scattering. 

The lowest order QCD process underlying Iepton scattering involves q + 
V’ -+ 9 and 9 + V’ + 9 subprocesses, where V* is a virtual vector boson (V’ = 
{y, W, Z}). These subprocesses get modified in higher order QCD, involving the 
emission of gluons and virtual self energy and vertex gluonic corrections. Both the 
real and virtual modifications to O(a,) to V.-quark scattering are shown in Fig. 2. 
In addition to these corrections, to O(o.) the virtual vector boson in deep inelastic 
scattering can interact directly with a gluon in the hadron producing a quark- 
antiquark pair, V’ + g --) q + 9. The corresponding graphs for this subprocess are 
shown in Fig. 3. 

The QCD corrections to O(o,) to the subprocess V’ + q -+ q modify the 0’” 
order 6 function contribution to the partonic cross section. Schematically, one can 
write instead of Eq. (4) the expression 

*My metric is (-1,1,1, l), so that for q* space-like, as is the ease in deep inelastic scattering, 
then qz > 0. 
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&+y-yg2 + 

Figure 2: O(o.) corrections to V’ - quark scattering: a) real corrections (V’ + q -I 
Q + g); b) virtual corrections. 

Figure 3: Graphs contributing to the subprocess V’ + g -+ q + q, 

doi 
dx,dy, 

- [6(1 - XP) + $ 1~w(Qw + ~(~,)~I 
These corrections are qz - dependent for two reasons: 

i) The QCD coupling constant is not a fixed number, but varies depending on 
which momentum transfer qz the partons are being probed with t. 

tThis “running” of a. is, aclually not sew for the O(a,) graphs of Fig. 2. It arises from summing 
up via the renormalization group further corrections to V’ quark scattering like those shown, 
for example, in Fig. 4. 

ii) Gluonic emission has an associated bremsstrahlung spectrum which, upon 
integration, gives rise to the t!nq* terms in Eq. (6):I 

It is clear from Eq. (6) that although th e Q. R term is perturbatively small at 
large momentum transfers, the logarithmic term is not small at large q* since 

So the presence of additional gluon bremsstrahlung appears to vitiate the pertur- 
bation expansion! To be able to recover the parton model as the OLh order term in 
a QCD perturbation series, it is necessary to understand what to do with these 
terms. 

The solution to this conundrum was obtained in the late 1970’s when it was 
understood that these dangerous terms can actually be factorized into the parton 
distribution functions,’ making these functions also run with q’. Although I will 
not enter into the proof of factorization here 6 ’ , I will indicate how factorization 
works in a simple example. For these purposes, let me consider again F;“. How- 
ever, now for the parton contribution I will take the O(a,) expression in Eq. (6), 
rather than just the &function term. Then 

KT’(x;q2) = xCe:l’ F[qs(<)tqi(C)] . [a(l-~)t~{p,,(~)cnq’t~(~)}] . 

(9) 
To the order in (I, that I am working to, Eq. (9) can be rewritten in the following 
product form 

In this “factorized” form the redefined parton cross section contribution has a well 
defined perturbation expansion in a.(q’). The dangerous term involving t?nng* has 
been isolated into the parton distribution functions and makes these functions qz 

dependent: 

(11) 

t.5 ome of this dependence also arises from infrared sensitive part of the virtual graphs in Fig. 
2.2 
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In terms of the running parton distribution functions, the hadronic structure func- 
tions have a well defined perturbative expansion in a.(q*): 

F;“‘(x; $1 = 1 efx[qi(x; q2) + %(I; q’)] + O(a,(q2)) (12) 
t 

To the order in Q, we have considered, Eq. (11) is equivalent to the Altarelli 
- Parisi’ equation for the quark distribution function 

4i(f;q2) 4qZ) ’ Cp (f)q.(E~.q2) -=- 
d enq2 J 2% < I’ qq f’ ’ ( (13) 

Figure 4: Typical high order graph which contributes to the running of a.(q2) in 
Eq. (f-5) 

Actually, this equation is not quite complete since to O(a,) there is an additional 
contribution to F;“’ coming from the subprocesses g + V’ 4 q + Q depicted in 
Fig. 3. These contributions provide an additional term for the Altarelli Parisi 
equation, proportional to the distribution of gluons within a proton. Thus the 
correct Altarelli Parisi equation for the quark distribution function is not Eq. (13) 
but 

dqi(f; q”) ___ zz 5Td!a 
d enqZ J ’ ic,, (L)q.([‘. q’) + p 

2?r < f’ qq c * ’ Pd (L)g(f’.q2)] 
f’ ’ 

(14) 

Figure 5: Basic QCD processes giving rise to the splitting functions (16). 

reads 

ME; q”) dq’) ’ df’ ---=- 
d en+ 2x (I J 

where Pg,( f) and Pg,( f) are the corresponding splitting functions for gluons and 
quarks of momentum fraction f’ to become a gluon of momentum fraction f. 

The splitting functions just reflect the basic QCD processes, shown in Fig. 
5, by which quarks and gluons of higher momentum becomes quarks and gluons 
of lower momentum. The splitting functions are independent of quark flavor and 
they can be determined by computing the coefficients of the eng2 term in the 
appropriate parton scattering subprocesses. I record here for later use the expres- 
sion that one deduces in lowest order for each of the four splitting functions in 
Eqs. (14) and (1 5)‘12: 

Here the, so called, splitting functions P,,($) and P,,($) give the probability, 
respectively, of finding a quark with momentum fraction f inside either a quark 
or a gluon of momentum fraction f’. Corresponding to Eq. (14) there is also an 
analogous Altarelli Parisi equation describing the q* evolution of the gluon dis- 
tribution function, from branching processes of gluons and quarks. This equation 
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Pdz) = CF [ e..c + %(l - 2) O-z), 2 I (16a) 

P,,(z) = f [zz + (1 - z)Z] (16b) 

G(z) = . 
++‘y] (16c) 

1-Z ___ __ (1 _Lz)+ + z + Z(1 - 2) 1 + ’ lcA6- “‘6( 1 - z). (16d) 

Here f is the number of quark flavors, while CA and cF are weight fact,ors associated 
with the gluons and the quarks [CA = 3 and CF = 5 for QCD]. The + instruction 
in the denominators in Eqs. (16) removes the singularity as z -+ 1 by a principal 
value prescript,ion’: 

/ 
‘& f(z) = 

J 
‘dZf(4 -/(I) 

0 (1 - z)+ 0 l-z 

f&x; q2) 

(17) 

Figure 6: Evolution with q2 of the parton distribution functions which follows for 
the Altarelli Parisi equations. 

The Altarelli Parisi equations encompass all the information coming from 
QCD for the deep inelastic region, where qz -+ 00 and - q P + 00, but 5 
is fixed. The predictions one obtains for the hadronic structure functions using 
these equations, along with the QCD corrected parton cross sections, are entirely 
equivalent to those obtained using the more formal opera.tor product expansion 
methods.s However, in many ways the physics of what is going on is much clearer 
in the Altarelli Parisi language. As qz increases, when a point,-like object probes 
a hadron it has less and less probability of scat,tcring off a parton at large z, 
for partons of larger momentum fraction naturally evolve by gluon emission, or 

quark-antiquark production, into partons of smaller momentum fraction. From the 
Altarelli Parisi equations one sees that, as q* increases, the parton distribution 
functions at large I are depleted, while there is a concomitant enhancement of 
small z partons. This behavior is shown schematically in Fig. 6. 

The evolution with qz of the parton distribution functions produces a loga- 
rithmic variation with qz of the hadronic structure functions. This variation is a 
violation of Bjorken scaling. Furthermore, the specific behaviour with qz predicted 
for the structure functions is a direct test of QCD. Because of the presence of the 
gluon distribution function, there is an important practical difference between, 
so called, singlet and non singlet hadronic structure functions. Non singlet 
structure functions always involve the diRerence of quark and/or antiquark dis- 
tributions. Because the splitting functions are independent of the quark flavor, or 
whether one is dealing with a quark or an antiquark, non singlet structure func- 
tions are independent of the gluon distribution function. For example, a structure 
function like xF3 for charged current neutrino scattering off isoscalar targets, in- 
volves the difference between quark and antiquark distributions for u and d quarks. 
Thus 

2 cc [XFS(X;Q )lisosc~ar = 5 [u(s; q2) + d(s; 92) - ii(s; q’) - d(s; qy] (18) 

is a non singlet structure function. As a result xF3, as well as any other non singlet 
structure functions, fNS(E; q’)? obeys the simple Altarelli Parisi equation given in 
Eq. (13): 

dfNSK; q’) 4qZ) zr- 
d enqZ 2lr (19) . 

Singlet distribution functions - which we will denote by fS(<;q2) - on the 
other hand always obey the coupled Altarelli Parisi equations, Eqs. (14) and (15), 
which involve the gluon distribution function. Because the evolution of these dis- 
tributions needs knowledge of the gluon distribution function, QCD tests involving 
singlet structure functions are more challenging. In general, most hadronic struc- 
ture functions will involve both singlet and non singlet pieces, so to do appro- 
priate QCD tests one also needs to know something about the gluon distribution 
function. For example, assuming for simplicity that only the u and d quarks dis- 
tributions are relevant in the proton, one can write F;“’ as the following sum of 
singlet and non singlet pieces: 

Ft”(x; q’) = c efx[q,(x; q’) + q,(x; q’)] 

= ;x[u(x; q’) + ti(z; q’) + d(r; q’) + d(r; q’)] 

+ &[u(z; q’) + 1”(z; q’) - d(r; q’) - +; q’)] 

Deep inelastic data shows clearly the qualitative behaviour expected from 
QCD, in which at low z the structure functions grow with q*, while they decrease 
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with q2 for large I. This can be appreciated from the compilation of data on 
Fz obtained in deep inelastic scattering of neutrinos and muons on an isoscalar 
targets, shown in Fig. 7. Quantitative tests of QCD, however, are more difficult 
to perform because: 

i) Present data is still taken at rather low values of q2. 

ii) ‘Fhere is some discrepancy between the various experiments, particularly at 
low values of x. 

iii) Structure functions with a singlet component are rather sensitive to the poorly 
known gluon distribution, particularly at low I. 

Nevertheless, particularly when one restricts oneself to data taken by an individual 
collaboration and does not combinedata sets, there appears also to be quantitative 
agreement with QCD predictions. 

I will not delve on how well QCD is being tested with present deep inelastic 
data, as this has been discussed in much more detail in the lecture of Traudl Hans1 
Kozanecka” in this school, as well as in the seminar by Mishra” on the new results 
from CCFR. Nonetheless, I would like to make a few remarks on these matters to 
make these lectures somewhat self contained. Present day data encompasses still 
a rather limited q2 range (q2 5 100 GeV’). Furthermore, it is questionable how far 
down in qz one can push the comparison of data with QCD without the inclusion 
of non leading l/q* corrections (the, so called, higher twist terms). Given these 
facts, it is understandable that the QCD tests so far performed with deep inelastic 
data essentially reduce to checking that the structure function’s q* - variation, at 
different I values, is described by the same scale parameter which enters in 
QS(Q2). 

The running coupling constant a,(q*), including terms of order (en q*)-‘, is 
given by the expression’ 

h($) = l b& $/A2 
l- 

b’h Pn $/A2 $. . 
bh q2/hz 

where the constants b anb b’, which depend on the number of flavors f which are 
active, are 

(22) 

The scale parameter A in Eq. (21) can be extracted from deep inelasticexperiments 

from the evolution of the structure functions with q*. The O((& q’)-‘) corrections 

in Eq. (21), as well as the non leading logarithmic’s corrections to the evolution 

1.6 x=0.045 Q 

q2(GeV2/c2 ) 

Figure 7: Compilation of data on Fz for various values of x, as a function of q*. 
Adapted from.g 

SThe neutrino and muon data ran he plott,ed together for an isoscalar target after multiplying 
the muon data by y, to account for t.he quark charges [cf Eq. (Xl)]. 
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equations, are important to specify precisely the A parameter one is measuring. 
The parti,cular parameter one usually quotes from analyses of deep inelastic data 
is hm(f = 4), where MS denotes the renormalization scheme used to compute 
the nonleading logarithmic corrections’* and 4 flavors (u, d, s and c) are taken as 
active. The way this analysis is done by the various experimental collaborations 
is to evolve the structure functions measured at a given q* value (q’ = qi) to a 
larger q* value, keeping A as parameter to be determined from the fit. For non 
singlet structure functions this procedure requires, in principle, no further inputs. 
However, for the singlet case, in addition, one must input some assumed gluon 
distribution at qi and there results - in general - some correlation between the 
value of A extracted and the functional form of g(z; 2) assumed. 

Let me expand briefly on each of the points alluded to above. The impor- 
tance of including corrections beyond the leading order to properly fix A can be 
best appreciated by considering not the structure functions themselves, but their 
moments.’ For simplicity, let me just examine the non singlet equation, Eq. (19), 
and consider the moments of the non singlet distribution fNS(<; q’): 

Defining the moments of the splitting function P,,(t) by 

it is easy to see that Eq. (19) im pl ies the following simple differential equation for 
the moments 

dMn(q*) 4q*) 
~ = -yAnMn(q*) . d !hg* (25) 

Using for a,(q*) only the lowest order term in (en q*)-’ in Eq. (21), it follows 
that the moments depend on q* as powers of enq*: 

M,,(q’) N [enq*/A’]~ . 

However, if one wants a more accurate description it is necessary both to include 
the higher order terms in Eq. (21), as well as include O(a,) corrections to the 
parton model. If one does not drop the O(a,) terms, then it no longer is true 
that the hadronic structure functions are the same as the parton distribution 
functions [cf. Eq. (12)]. If we denote the non singlet hadronic structure function 
by FNS(s; q*) and its moments by M,(q’) then, including O(a,) corrections, one 
has 

FNS(z; q’) = fNS(5; q’) + a,(qyi(z; q’) (27) 

and 
M,(q*) = M,(q’) [I + %(q2)Bn] (28) 

The function f(z; q’) and the coefficient f?, are dependent on the scheme one 
adopts for renormalizing the theory, with a convenient scheme being the minimal 
subtraction (MS) scheme of ‘t Hooft,13 or its modification - the MS scheme.‘* 
Similarly, in the Altarelli Parisi equation Eq. (19) for the non singlet distributions, 
the splitting functions Ppp will have O(a,) corrections, beyond the leading terms 
given in Eq. (Isa). These need to be calculated in the same scheme in which i 
was extracted. Thus, including O(o.) corrections, the parton moments are given 
by 

M,(q*) = M,,(q@$!$]h( 1 + [%(q*) - a.(q:)]Zm} . (29) 

Here the coefficient 2, - as well as the coefficients B, above - are calculable, but 
depend on the renormalization scheme. Finally, using both Eqs. (28) and (29), and 
including the O((enq’)-‘) term in Eq. (21), th e moments of the hadronic structure 
functions are seen to obey the following equation 

Mn(q*) = &[l + 4x~~;(~:~A2](en q*/A*)% 7 (30) 

where 

R,,(q*) = B, + Z,, - 2;A.h en q*/A* (31) 

The term involving R,(q*) in Eq. (30) contains the first non leading correc- 
tions to the lowest order QCD expectation for the structure function moments, 
Eq. (26). Including these corrections, calculated in a particular scheme, one spec- 
ifies which scale parameter one uses. Indeed, it is easy to see that a change in A 
implies a change in B, + Z,, and vice versa. For if A -+ e’A, then 

R,(q*) --+ &(q’) = Rn(q*) +4&k , (32) 

so that B, + Z,, --t B, + Z, + 4A,k. I note, parenthetically, that it is possible to 
invent schemes where to O(o,) some structure function is the same as the corre- 
sponding parton distribution function. That is, one can invent a scheme where, for 
example, B, = 0 so that M, = M,, and the non singlet structure function is the 
same as the non singlet parton distribution: FNS(z; q*) = fNS(z; q’). In practice, 
actually this is done for Fi”‘(z; q’), where in the, so called, DIS scheme” 

!$"(I; q') = C efZ[qi(Z; q') + iji(S; q')] + 0(0,2) . (33) 
t 

However, because one can make such an identification for only one structure func- 
tion, for example, in the DIS scheme Fr, does indeed contain O(n,) corrections to 
the parton model formulas. Because of this, I believe it is preferable to use the MS 
scheme, where the corrections to al1 structure functions and parton distributions 
are treated in a symmetrical f<ashion [i.e.,one has both E, and Z,, corrections, in 
the language of Eq. (31)]. 
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Fits of deep inelastic data for non singlet structure functions can, in principle, 
provide a better value for Am (4) than those involving singlet structure functions. 
Because both the gluon and non valence quark distributions are concentrated at 
small z, one can, in fact, do a non singlet fit for F;” for large 5. Such a fit, for 
the variation of Fim with q*, has been done by the BCDMS collaboration” and 
is displayed in Fig. 8 for both their Carbon and Hydrogen data. From these fits 
the collaboration deduces a value 

. 
Am (4) = (220 f 55) Mel/ (BCDMS) (34) 

for the QCD scale parameter. This value is compatible with the value that the 
CDHSW collaboration extracts by examining the xF3 distribution in neutrino 
deep inelastic scattering. However, the central value obtained by the CDHSW 
collaboration’ for A= is about a factor of two smaller [Am (4) = (100 + g) MeV] 
and the overall fit at least to my eyes - looks rather poor. Indeed, it appears to 
me that probably this value should be disregarded, particularly in the light of the 
new data of CCFR.” Although no of&ial value for Am (4) has been given yet 
by the CCFR collaboration, it is clear that their data is much more compatible 
with the BCDMS value for Am (4) given in Eq. (34). 

Further evidence that Am (4) is closer to 200 Mel/, rather than 100 MeV, 
comes from the singlet analysis done by BCDMS. Fig. 9 shows the variation of 
dPnF2/denq2 with x for the muon deep inelastic scattering data on Hydrogen of 
BCDMS.” As can be seen, the data is well fit by the solid curve which corresponds 
to.A;iiS (4) = 220 MeV. The slope of the F2 variation with eng* sharpens as x -+ 0 
due to the gluon distribution in the proton and the figure shows the importance 
of this distribution at small I. The BCDMS fit assumed that at qi = 5 GeV* the 
gluon distribution could be parameterized by 

with vr = 8. 

xg(x; q;) = A,( 1 - x)~,, , (35) 

Even though a value of Am (4) around 200 MeV is perfectly compatible 
with other tests of QCD carried out with other hard scattering data,16 in deep 
inelastic scattering the value of Am extracted appears to be correlated with the 
softness of the gluon distribution. This is nicely demonstrated by the recent analy- 
sis of Harriman et al!7 in which contour plots are presented showing the correlation 
between Am and ‘IS, for both BCDMS dataI and EMC data,” augmented by 

BCOMS H, 

0 0.4 0.8 
X 

0 0.2 0.4 0.6 0.8 

Figure 8: Non singlet analysis for large x done by the BCDMS collaboration’5 for 
deep inelastic muon scattering on both a carbon and hydrogen target. 
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MOMS Singlet Fit for H, 

-O*\\ 0.2 0.4 0.6 0.8 1.0 

X 

Figure 9: Variation of F,‘” with q* for all values of x obtained by the BCDMS 
collaboration for deep inelastic muon scattering on a Bydrogen target.” 

5.5 6. 

‘g ‘P 

4.5 5 

3.5 4 
50 100 150 (25 175 225 275 

Figure 10: Correlation between h;i?~ and ng for: a) EMC data; b) BCDMS data!’ 

neutrino deep inelastic and prompt photon rg data. These plots are reproduced 
in Fig. 10. One sees that the EMC data prefers a smaller value for both ng and 
A= [no = 4.4; Am (4) = 100 f 20 MeV] while the BCDMS data has larger 
values for both these quantities [r/r = 5.1; Am (4) = 190 zt 20 MeV). Part of this 
difference may be due to some experimental differences between the data sets.1 
However, it is clear from the figure that. the uncertainty in the gluon distribution 
shape at q,j introduces a corresponding variation in Am. Thus, it would be par- 
ticularly nice if one could obtain some independent information on g(x; 9’). As we 
shall see in the next Section, this should be possible at HERA. 

2. QCD Tests and the Gluon Distribution at HERA 

The present, somewhat unsatisfactory, situation regarding QCD tests in deep 
inelastic scattering should be considerably improved at HERA. First of all, as can 
be appreciated from Fig. 11, at HERA there will be a substantial q* and 5 range 
accessible. Secondly, HERA affords the possibility to extract directly from data 
the gluon distribution g(x; q’) by a set of independent measurements. Even though 
the above two points make the experimental measurements which will be obtained 
at HERA very interesting, one cannot hide concomitant difficulties. For instance, 
although the large values of q* to be explored at HERA will lead to theoretical 
pristine data, since one can now really neglect higher twist corrections in the QCD 
tests, the electron proton cross section at large q* is small - scaling as (q’)-’ - and 

((These dXerences, however, appear to be resolved by the latest data obtained by the successor 
collaboration to EMC.*” 
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Figure 11: Kinematical range in the z - q2 plane accessible at HERA. 

one will be statistically limited. Furthermore, at large q*, the logarithmic QCD 
variations one is looking for in the data are themselves small. 

A few years ago Bliimlein, Klein, Ingelman and Rtickl (BKIR)” performed 
a phenomenological Monte Carlo analysis to ascertain how well one could test the 
scaling violations predicted by QCD at HERA. The result of their analysis was 
that of all structure functions accessible at HERA, only for F,‘” could one per- 
form adequate QCD tests. Furthermore, because of the z-range probed, a singlet 
analysis is required in this case. Both of these statements are easily understood 
if one considers the number of events expected for q* > 10 - 100 GeV*. For an 
integrated luminosity jt dt = 100 p&i, typical for a long run at HERA, only 
for the electromagnetic dominated processes e*p + e*X one expects over 10’ 
events. These events, as can be seen from Fig. 11, are concentrated at z values 
below z < 0.1. 

Because F;” has both singlet and non singlet pieces [c.f. Eq. (20)] the 
corresponding QCD analysis needs information on the gluon distribution. Let me 
rewrite Eq. (20) as 

1 
F;“(x; q’) = -zA(s; q’) + $xF”(x; q’) . 

6 (36) 

Then while the evolution with qz of the non singlet component A(z; q2) is that of 
I%. (13) .~ , 

dA(x; $1 dq2) ’ ~=- 
d enq2 J 2* I ppP(;MC; q’) 7 

the evolution of F’(x;q’) is coupled to the evolution of the gluon distribution 
function g(z; q’). If f is the number of active flavors (f = 4 for HERA) then one 

Table 1: Results of the Monte Carlo fits of BKIR for HERA 

Fit 6A(MeV) <q*> (GeV2) 
Non singlet f176 2800 
A,F”,s f135 400 
Fixed input f25 400 

glue 

has 

&F’(x; q*) = T (38) 

Three fits were done in the BKIR phenomenological analysis: 

i.) A non singlet fit, which by necessity required that one restricted oneself to 
5 > 0.25. Because of this restriction, the fit was statistically very poor. 

ii.) A global fit of A, F” and the gluon distribution g. This fit was dominated by 
the uncertainty in the input for this latter distribution. 

iii.) A fit of A, F” and g in which one assumes that the input gluon distribution 

57(x; PO) ’ is known. This fit gave, by far, the best results. 

The KSUI~S of these three fits are detailed in Table 1. ]] 
It is easy to understand why the fit with a given input glue distribution, 

g(x;q& gives so much better results by looking at the various contributions to 
the q* evolution of F;“. As ca.n be seen from Fig. 12, for z below about 0.1 the 
gluon contribution fully dominates. I should note that the results of the fit with 
a fixed input glue distribution quoted in Table 1 came from a fit in which only 
data for x > 0.01 was included. As I shall discuss in much more detail later on, 
for x values below this value there are other effects which alter the Altarelli Parisi 
equations. Including these additional contributions would allow one to probe even 
lower x values, which become accessible at HERA, and would further improve 
the results on 612. It is clear, at any rate, that if one really wants to perform 
meaningful QCD tests at HERA, it is important that one be able to measure the 
input gluon distribution, g(x;qi), independently, since this function is a key to 
the QCD tests. 

IIBKIR for simplicty only used lowest order QCD formulas, so that the A parameter, whose 
error is quoted in Table 1, is not Ad4). Nevertheless, one expects that 6A E 6A= 
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Figure 12: Contributions to the variation of F;“’ with qz at different x values?1 

At HERA three ways have been suggested to obtain a direct measurement 
of the gluon distribution: 

i) One may be able to extract g(x;q2) from a measurement of the longitudinal 
distribution Ft(z; q*). 

ii) g(s; q’) can be obtained, in principle, through a study of inelastic $J photo- 
production: yp ---) $X. 

iii) One may be able to determine g(z; q’) from inclusive charm and b quark 
production. 

In what follows, I will make a few theoretical and phenomenological comments on 
each of the above methods for extracting g(z; q*). 

2.1. FL Measurement 

Neglecting the contribution from Z exchange, the cross section for deep 
inelastic e*p scattering reads 

d2a 4naz -=- [l + (1 - y)‘] 
dxdqz 44T 2 2x4(x; $1 + (1 - y)Fdx; $1 , (40) 

where the longitudinal structure function FL(x; q*) is given by 

F~(x;q’) = Fz(x;q’) - 2xF~(x;q*) . (41) 

In the parton model (OLhorder QCD) F L vanishes identically because of the Callan 
Gross relationz2: 

F,(x; q’) = 2xF,(x; q’) . (42) 
The Callan Gross relation follows as a simple kinematical result, if the scattering 
of the electrons (or positrons) is done on spin l/2 partons. 

In higher order in Q,, the partons which interact with the virtual photon 
exchanged now no longer encompass just quarks and antiquarks, but also include 
the spin 1 gluons. Thus one expects violations of the Callan Gross relation in 
QCD at non trivial order in o,. Indeed, to leading order in o..,23 one finds that 
the longitudinal structure function FL is given by 

FL(x;q*) = 
a 4cF ’ 4 x 2 

4% ( I f -$c’ Fdl;q’) -t 

. (43) 

Hence FL(x; q’) contains indirectly some information on the gluon distribution 
function. 
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Martin, Roberts and Stirling*’ made the important observation that, because 
x is very small in the experiments to be done at HERA, one can well approximate 
the integrals occuring in (43) by the actual values for Fz and g at some fixed 
multiple of x. That is, one can approximate the integrals by their lower limit. 
Thus, for example, ** 

I 
‘4 2: 2 I -&) F&q*) ‘v ;Fz(o;q2) + xF;(O;q’) N iFz(2x;q”) . (44) . 

and 

I 
‘4 x 2 + -$ ?) (1 - ;)C(<; q’) ‘v ;G(O; q’) + ;G’(O; q*) N iG(3x; q’) . (45) 

Using the above and CF = 413 and C;ef = y, one arrives at an approximate 
formula for xg(x; q*) E G(z; 9’): 

That is, one can deduce the gluon distribution at a given x value from a measure- 
ment of both FL and Fz at smaller values of I. 

Because FL is sizable at small z, the dominant contribution to xg(x;q2) 
will come from the contribution of the longitudinal structure function itself. One 
must make sure, however, that the q* value one is measuring FL(x; q2) at is large 
enough, to avoid having higher twist effects spoil the simple QCD formula (43). 
Indeed, for the small qz values where FL is measured at SLAC (q’ ‘V 5 GeV2) 
there appear to be substantial higher twist effects,25 with the QCD and higher 
twist terms being comparable in magnitude: 

[FL(x; q’)]exp = FyD(x; q’) t sF,(,: q’) + , 

with ICY N 0.05 GeVZ. At HERA, even for rather small I, q2 values of the order 
of 50 - 100 GeV’ are attainable, so higher twist effects should be substantially 
reduced. 

To extract g(x;q*) one needs to separate 2xF,(x; q*) from F~(x;q*), for 
fixed x and q*. This requires doing measurements at different energies. This is 
clear, since the total energy squared s r q’/xy, and to separate FL from 2xF, it 
is necessary to obtain the differential cross section (40) at different values of y. 
Cooper-Sarkar et al?6 have investig ated how well one can determine sg(x; q’) at 
HERA from measurements at 4 = 245 GeV and fi = 314 GeV, with a total 
integrated luminosity of 100 pb-’ The results of this phenomenological analysis 

**The analysis of4 is slightly more sophisticated. However, the examples shown give the essence 
of the idea. 

are shown in Fig. 13 for two values of q ‘, big enough so as to avoid large higher 
twist contributions. The plots show the expected errors one will obtain at HERA, 
for two different types of gluon distributions. As can be seen from the figure the 
gluon distribution for rather small values of x (3 x 10m3 S x < lo-‘) appears to be 
accessible and potentially well measured at HERA, independently of its detailed 
small x behaviour. 

I 1 
(bl 

q’, IOOGcVt 

Figure 13: Errors expected to reconstruct two different gluon distributions at 
HERA from a measurement ofFL(x; q’)?6 

2.2. Gluon Distribution from II, Photoproduction 

The second method proposed to extract the gluon distribution function at 
HERA makes use of the fact that the ep collisions give rise to a very large high 
energy photoproduction cross section. For nearly real photons [q* N 0) the ep cross 
section can be computed in the Weizsacker-Williams approximation, in which 
the photoproduction cross section is convoluted with the probability of finding a 
photon in the incident electron 

(48) 

Note that PTE is precisely the same splitting function as the quark-gluon splitting 
function Pg9 of Eq. (16c), except that the weight factor here is CF = 1 11. Eq. (48) 

ttOf course also a, -+ a in Eq. (48) 
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makes it clear that HERA is an ideal place to study high energy photoproduction, 
with sYP ‘v ys. 

Although high energy photoproduction is interesting per se, what is of most 
interest to study is heavy flavor production because, as is shown schematically in 
Fig. 14, this can occur through photon-gluon fusion. In principle, such a process 
provides a direct measurement of the gluon distribution function g(zs; Q’). Here 
x9 is the fraction of momentum of the proton that the gluon carries, while Q’ 
is a scale’ related to the production process. Obviously, before one can think of 
using heavy flavor photoproduction as a means of extracting information on the 
gluon distribution function, it. is important to ascertain to what extent photon- 
gluon fusion dominates and to establish what is the relation of z9 and Q2 to the 
scattering parameters. 

Q 

/ 
P 

Figure 14: Schematic diagram illustrating heavy flavor production via photon- 
gluon fusion. 

One possible way to isolate particular values of zg (and Q’), which has been 
suggested by Martin, Ng and Stirling, *’ is to look for phot,oproduction of G’s, This 
process results again from photon gluon fusion, with the produced CF pairs binding 
into a $. Since the 4 is a color singlet, for this process to occur requires that an 
additional gluon be produced in association with the $, as shown schematically 
in Fig. 15. The scale Q’ associated to the gluon distribution is related to the 1c, 
mass and the transverse momentum pi of the produced $‘s. Whether one should 
take Q2 to be simply Q2 = m$,, or one should use Q2 = Pi + m$,, or instead 
some other intermediate value, cannot really be resolved without a higher order 
calculation. flowever, because the relevant transverse momentum of the produced 
$‘s is quite limited, t.here is not much differrncr between these two scales and the 
choice Q2 CY m$ scrms a sensible first approximation 2711 

Figure 15: Diagram leading to 1/, photoproduction. 

The cross section for yp -+ 4s is dominated by values of the gluon me 
mentum fraction .r9 near its lower limit, (Ig)mi” 2 2. The actual cross section 
depends on the knowledge of the wavefunction of the $ at the origin, which enters 
to typify the binding of the produced CE pair to form a $. Fortunately, this wave- 
function is known experimentally from the size of the leptonic width of the $. The 
analysis of Martin, Ng and Stirling 2’ shows that the differential cross section for 
$ photoproduction can be written as 

Here the function K(z,; 21 IS a k nown kinematic function which is sharply peaked 

near zg z (zg),,,in. Using cuts of pi > O.lm$ and z = p*. P/9 P < 0.8, Martin, 
Ng and Stirling give an approximate handy formula for the integrated I/J photo- 
production cross section which is directly proportional to the gluon distribution 
at some average effective value of x9, near (x,),i”. They find, using Q2 N m$,, 

u(yp + $X) 2: 1.5r,g(z,; mZ,) nb (50) 

where Z, N 3.4m$/s,, = 3.4 m$/ys. Thus, using Eq. (48), one sees how 1c, 
production at HERA, in principle, can be used to extract the gluon distribution 
in a restricted range in I and 92[a 21 10m3 ; 9’ ‘V 10 GeV’]: 

da(ep -+ +X) N E 1 + (1 - y)’ _ 2 

4 2K [ Y I 
L7Tsg(Fs; 771;) en* (51) 

9min 

ft1 will return at t,he end of these lectures lo the issue of scales in heavy flavor product.ion 
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I IO’ 

Figure 16: Errors expected to reconstruct various possible gluon distributions 
using J, production in a 100 pb-’ HERA run?8 

Fig. 16, taken from the phenomenological study of Tkaczyk, Stirling and Saxon,2s 
shows how well one could determine g(z;rns) with J, production in a 100 pb-’ 
HERA run. 

Even though Fig. 16 is rather impressive, it is important to ask how reliable 
is this determination of g(x; 9’). At least two issues need to be answered: 

i.) Will all the 3’s which will be produced at HERA originate from photon gluon 
fusion? 

ii) How trustworthy is the computation of 1J, photoproduction from the diagram 
of Fig. 15? 

Although not all the r,!~‘s produced at HERA will originate from photon gluon 
fusion, studies by Kunszt and Sterling, *’ Fletcher, Halzen and RobinetP and 
Martin, Ng and Stirling 27 show that one can successfully isolate the v+!J’s produced 
from the process yg -+ $X from all other produced $‘s. For instance, although 
there will be a substantial number of $J’S produced through radiative X decay 
(X -+ Gr), since X production itself t,hrough gluon gluon fusion is expected to be 
large,s” these “background” i’s can be eliminated by an angular cut. As shown 
in Fig. 17, the r/~‘s produced from radiative X decay are produced very much more 
along the proton direction and a cut of, say, cos 6’5 0.5, should effectively eliminate 

this background. Because HERA will photoproduce an abundant number of B 
mesons, and the E -+ $X branching ratio is rather large, one must also worry 
about $‘s produced in this fashion. Fortunately, again kinematics can help. The 
4’s coming from the decay of a E meson have much larger pl ‘s, as is shown in 
Fig. 18. Thus a pI cut of a few GeV, say pl < 3 GeV, should eliminate most of 
these other unwanted ~J’s. 

For the second question above, however, the answer is not quite so sanguine. 
In fact, it is quite difficult to judge the theoretical reliability of the calculation of 
the process 7g -+ $g from Fig. 15. In effect, one needs really to compute the O(a,) 
corrections to this process - a rather prohibitive task - before one can answer this 
question. However, perhaps one can gain some insight from the, diagramatically 
similar, decay process 1c, -+ ggT. Unfortunately, this latter process is known to 
have large corrections in the MS scheme,3’ where one finds 

Using a, = 0.29 f 0.02, 3’ the higher order corrections reduce the rate for this 
process by more than a factor of 2. Whether the same thing obtains for the 
process yg + 4,s is an open question, but the result (52) certainly should give 
one pause. 

2.3. Determing the Gluon Distribution from Heavy Flavor Production 

The gluon distribution function can also be determined at HERA by study- 
ing directly the production of heavy flavors. Both charm and bottom quarks will be 
abundantly produced at HERA, with the dominant mechanism being the photon 
gluon fusion shown in Fig. 14. Roughly speaking, the cross section for producing 
a CC pair through photon gluon fusion is near 1 pb, while 66 production is about 
10 nb. The heavy quarks are produced with a rather flat rapidity distribution and 
a pl spectrum which has a much broader tail for b quarks than for c quarks32.ss 
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Figure 17: Polar angle distribution of +‘s produced via photon gluon fusion and 
through radiative x decays. 29 

I”“l”“l’l 

Pr (GeVkl 

Figure 18: The pI dependence of 4’s produced via photon gluon fusion and from 
l? decay at HERA. 27 

The cross section for Qa production - where Q  is a heavy quark - at HERA 
can be obtained from the analogous photoproduction cross section by using the 
Weiszzicker Will iams formula, Eq. (48). In lowest order in QCD, the photoproduc- 
tion cross section is proportional to the gluon distribution function g(z9; Q’), and 
one finds= 

d4v -+ Q&W 
dx, 

= g(xs;Q2)~~~e~].((1+~-lr,Z)~n~-~(lt~)} . (53) 

Here i is the invariant mass squared of the Qs pair, while w = 4mi/i and 
x = [l - UJ]‘/~ are related to the velocity of the heavy quark. Note that the gluon’s 
momentum fraction is directly related to the invariant mass of the QQ pair 

To be able to use the above formula to determine the gluon distribution 
function one needs to know what scale Q2 one should take and, further, what 
scale is relevant. for a, in Eq. (53). As I alluded to earlier, and will explain in 
more detail towards the end of these lectures, one cannot really determine what 
Q* to use, or what crS(p2) to take, until higher order corrections of O(aat) are 
computed. Ellis and Kunszt,32 on the basis of a partial calculation of the higher 
order corrections, noted that the product g(z9; &*)a,(~*), which enters in Eq. (53), 
has compensating tendencies if one takes Q* w p*. As Q* decreases the gluon 
distribution, at fixed x9, also tends to decrease, while the opposite is the case for 
a,(~~). From their analysis, Ellis and Kunszt”* suggested that a sensible choice 
to take for these scales is 

Q* = p2 = p: + rni (55) 

This choice remains reasonable also in the light of the full O(aa~) calculation of 
the process yg -+ Q&g) which has now been completed by Ellis and Nason.34 
However, a theoretically more consistent approach incorporates these corrections 
directly in a transverse momentum convolution rather than just as some overall 
effective momentum scale.35 I will return to give a fuller explanation of this point 
at the end of the next Section. 

Besides t,he question of which scales enter in Eq. (53), a crucial other issue 
is how one determines experimentally xg or, equivalently, the Qs invariant mass. 
Here a nice trick has been suggested by Schuler and collaborators.36 In the case 
of photoproduction, the HERA lab frame in which the electron and proton collide 
head on, and the QQ CM frame are just related by a boost. Thus the corresponding 
rapidit,ies add, and one finds3” 

(56) 
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where E,, E,, are the energies of the electron and prot,ons in the HERA frame. If 
one studies the heavy quark production through the subsequent leptons produced 
in the heavy quark decay, i.e.,ep -+ eQQX -+ eP+P-X, then one expects that in 
the QQ CM frame the e+f!- rapidity vanishes. If y(e+P-)qqcM = 0, by measuring 
the t’+l- rapidity in the HERA lab frame one reconstructs directly zg. Using 
Eq. (56), it follows that 

. YE, xg = -exp - 
EP 

(57) 

Fig. 19 shows the result of a phenomenological study of this procedure for 
the proposed ep collider that would result from colliding LEP electrons with the 
protons of the LHC. In this Monte Carlo study, Eq. (57) was usrd to determine 
x9 and the figure shows how well the reconstructed gluon distribution compares to 
the input gluon distribution. It is clear that the method appears to work very well. 
Thus, if the theoretical underpinnings relared to higher order QCD corrections to 
Eq. (53) can be successfully handled, it appears that heavy flavors production 
in ep collisions can provide a very good independent determination of the gluon 
distribution function. 

3. Deep Inelastic Scattering at Small x 

Besides trying to measure in an independent manner the gluon distribution 
function, HERA will naturally explore deep inelastic scattering at extremely low 
values of I [ c.f. Fig. 11 where the x - q* range which can be accessed at HERA is 
detailed]. This is an extremely interesting region theoretically. Furthermore, pre- 
dictions for high energy experiments at the SSC and LHC will depend considerably 
on our knowledge of the structure functions of quarks and, particularly, of gluons 
at small I. Thus it behooves us to spend the rest of these lectures discussing what 
are the theoretical expectations and what are the uncertainties, concerning deep 
inelastic scattering in this region. 

What makes the small I region in deep inelastic scattering interesting is that 
new dangerous logarithms, involving (I, enzr enter. Through the Altarelli Parisi 
equations and factorization we learned in Sec. 2 how to handle the large infrared 
logarithms that threatened perturhative QCD. For small x physics we have to 
understand what to do with these new Q, ens terms. In fact, as Levin and Ryskin 
have emphasized, 3s there are 3 interesting regions to explore in the I - q* plane. 
These are depicted schematically in Fig. 20. These are: 

i) The purely deep inelastic region, where qz is large (q’ >> 0) and I is moderate 
(x > x0). 

ii) The deep inelastic, small I region, where qz is large (q* >> qz) but z is small 
(x << IO) 

iii) The Regge region. where hot h q* and z are small (q’<qi ; x << zro) 

Figure 19: Comparison of the reconstructed gluon distribution, obtained by study- 
ing the dileptons produced in heavy quark decays, compared to an assumed input 
gluon distribution. 37 

Although it is difficult to draw strict boundaries between the regions, sensible 
choices for q,f and 10 are q,j N 4 GeV* , x0 N lo-* . 

In the deep inelastic region the only important large logarithms involve 
a, eng* and their proper handling eventually leads to the running of the parton 
distribution functions. How these functions run is detailed by the Altarelli Parisi 
equations. In the small I, deep inelastic region, one has both o, Onx and a, Pnq’ 
terms, along with double logarithms like a, Pnx l?nq*,. These logarithms, as we 
shall see, if left unchecked give rise to unphysical characteristics. However, when 
parton-parton interactions at low z values are included through the, so called, 
Gribov Levin Ryskin (GLR) equation,3g one again can control these dangerous 
logarithms. The GLR equation will also help tame some of t.he difhculties caused 
by the a, enr logarithms, which enter in the Regge region. Although there has 
been considerable theoretical work in the low x region, the status of the theory 
here is considerably less well established than in the purely deep inelastic region. 

-274- 



. 

1 T 
E! 

I 
I Deep inelastic 

G 1 and 

I E I small x 
I 

I Deep inelastic 
I 

Figure 20: Interesting regimes in the x - q* plane?8 

To begin to understand some of the new elements involved in low I physics, 
it is useful to return to examine the Altarrlli Parisi equations. Recall that the 
Altarelli Parisi equation for the moments of the non singlet structure function 

dK(q*) dq’) ___ = ‘x AA, , d thg2 (58) 

where 

(59) 

and 

(60) 

had a very simple solution (c.f. Eq. (ZS)]: 

Mn(q2) = Cn[ Pn$]A 

It is useful to rewrite Eq. (61) m  erms of a power series expansion. By doing so t 
one can associate each term in the expansion with specific Feynman diagrams, 
whose set when summed gives the full moments of the non singlet distribution 
function.” Expanding Eq. (61) one has 

h4,tq*) = c, exp{& en enq*/A*l 
1 An = cn C --- en enq*/i\2]h . 

h h! 2sb (6‘4 

This formula can also be derived from a diagrammatic analysis of specific 
Feynman graphs which contribute to the non singlet structure functions - and 

- -- -I k 11 .- -- 

1 b2 . 

-1 

: 
. .- -- 

/ q2 

I, 
P 

Figure 21: Ladder graph whose discontinuity in the axial gauge contributes to the 
hfh term in Eq. (62). In this diagram the gluon transverse momenta are ordered 
(q* >> Ic:,... >> Icth) as are the momentum fractions carried by the quarks 
th > (h-l >  . . . >  (1 . 

hence to their moments. Because one is only interested in the leading logarithmic 
behaviour, one can simplify both the structure of the terms one keeps and their 
associated phase space factors. Effectively, one retains in these diagrams only those 
pieces in which the momenta of the produced partons are ordered in a particular 
way. ” I claim, without particular justification at this moment, that the hth- term 
of Eq. (62) can be associated with the absorptive part* of the diagram in Fig. 
21 containing h gluon rungs. Indeed, it is easy to check that one can reproduce 
the formula (62), if one assumes furthermore that the transverse momenta of 
the gluons are ordered, so that the gluons farther away from the incoming virtual 
vector boson have smaller transverse momenta. That is, q2 > k:, > ki2.. . > kth. 
In addition, to reproduce Eq. (62), the longitudinal momentum fraction of the 
quarks in between the emitted gluons must also have decreasing value, as the 
quarks get progressively farther and farther away from the incident proton. That 
is, <h > (h-1 > <r > I. The result for M,,(q2) is recovered if the contribution 

*That. structure functions are associated with absorptive parts of Feynrnan diagrams is partic- 
ularly clear in a parton picture. since in calculating the deep inelastic cross section one sums 
over incoherent parton production processes. 
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of the qqg vertex to the absorptive part of the non singlet structure function, in 
this specified kinematical ordering, is simply given by 

v(‘th-,,th; ku,) = + ’ $,,(~) . 
Ih 

The vertex associated with Eq. (63) is shown in Fig. 22 . 
. To obtain the contribution of graphs of the type shown in Fig. 21 to the 

non singlet structure function, one must perform the phase space integrals for 
the h-rung gluon diagram with the restrictions indicated, and then sum over the 
number of produced gluons from h = 1 to h = co. Let us check that indeed the 
h-rung term precisely gives the right contribution to Eq. (62). The contribution 
to the non-singlet structure function is 

E I h-l ----- k 
‘h 

lh 

Figure 22: The qqg vertex of Eq. (63), with the corresponding kinematics shown. 

[FNS(X; qZ)],,erung = ” p+ J,’ ~,,(;) 

J k?-, dk= a (k:,; 
IhL <‘- ~pW(~)jNS((h) (64) 

k:h 2* J h I 

where f(t) is the oarton distribution of the initial quark in Fig. 21. In this language 
it is the emission of the h - gluons - with h going from 1 to 00 - which makes the 
structure function FNS(s; q’) run.t Taking the moments of Eq. (64) gives for the 
h-rung contribution of M,,(q*) the following expression: 

bfn(QZLung = J o’ $fh”fNS(Fh)[$]” . 

.{ J” $h,(k:,). . Jkih-’ +,(k:,)j . (65) 

Using that a,(kf) = l/b t’n(k:/h2) ‘t r is easy to check that the nested 
integrals in the curly bracket in Eq. (65) just give 

{ Eq. (65)) = ;( t&z &I 4*/A*)” . 

Hence, indeed Eq. (65) reproduces the /I*” term of Eq. (62), provided one identifies 
the coefficient C,, as the nfh moment of the “fixed momentum” parton non singlet 
distribution: 

cn = 1’ +fNS(th) (67) 

Several comments are in order: 

i) We have demonstrated that the contribution to the non singlet structure func- 
tion due to the h-rung gluon graph of Fig. 21, with the kinematics as we 
specified and with the qqg vertex of Eq. (63), reproduces precisely the hth 
term of Eq. (62). This equivalence of the Altarelli Parisi equations with 
ordered ladder graphs, with vertices given by the splitting functions of 
Eq. (63), actually holds only in an axial gauge.” In any other gauge, the 
most singular contribution to the structure function arises not only from di- 
agrams in which the gluons are emitted from the initial partonic leg, but also 
from graphs where the gluons are emitted from the final partons. Of course, 
since the structure functions are gauge invariant, the answer one computes is 
gauge independent. Obviously, however, it is physically much more intuitive 
to present the calculation in an axial gauge, where the only diagrams which 
give logarithmic enhancements of t’nq2, reflecting the collinear singularities 
caused by gluon emission, are the ladder diagrams of Fig. 21. 

ii) It is clear, either from Eq. (62) 01 . f rom computing the ladder diagrams of Fig. 
21, that the Altarelli Parisi equations in leading order in QCD just give the 
leading logarithmic contributions. That is, the Altarelli Parisi equations sum 
up all contribution of order (a, thq2/A2)h . in graphs with h-rungs, yielding 

tNote that, in this efktively “lowest order” treatment, the hadronic structure function 
FNS(z; q*) coincides with the partonic non singlet distribution function fNS(z; q’). 
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a factor of (thq2/h2)h. Because a,~nq2/Az N O(l), such a sum is necessary 
and the Altarelli Parisi equations just give one the results of such a leading 
logarithm sum. 

This reinterpretation of the Altarelli Parisi equations in terms of ladder 
diagrams sums is very useful for understanding what happens at low I. In the 
low z region, one encounters new logarithmic effects associated with ens, or more 
precisely;with In l/x. In the Regge region, as we shall see, it will be important to 
sum up all terms of O((a, en l/x]“), w I e in the low x, deep inelastic region one h’l 
will need to account for, in addition, of al1 terms containing (cr. Pn q2)hr as well as 
mixed terms like (a, t!n q2 Pn I/z)~. B ecause q2 and x are different kinematical 
parameters and a, depends only on qz, a.(q2) N (fhq*)-‘, it is clear that in both 
regions one will obtain progressively worse behaved terms as x -+ 0. Thus, unless 
one includes some more physical input in this region, it is not surprising that one 
eventually runs into trouble. 

To begin to appreciate the problems one encounters, it is useful to start by 
looking at the Altarelli Parisi equations in the low x limit. Although we know 
that these equations sum up correctly all the en qz terms, they do not account 
completely for all the small x physics. This physics, as we have just argued, can 
generate further logarithms of &l/s which need not be contained in the ladder 

graphs of Fig. 21. Because the gluon distribution g(x; q’) dominates over the quark 
distributions at small x [c.f. Fig. 121, ‘t 1 is sensible to just retain this distribution 
function in the Altarelli Parisi equations. That is, let us consider Eq. (39) in which, 
however, we drop altogether the singlet contribution due to fS(t; q’). In addition, 
since we are interested in the limit as x -+ 0, we can retain in the gluon-gluon 
splitting function only the leading term as .z = f -+ 0, namely 

Thus, in the low z - limit, the Altarelli Parisi equation we want to examine just 
reduces to the following equation for the gluon distribution function: 

-&&7(x; PZ)l = 1,’ ~=$%,K; $)I (69) 

Eq. (69) can actually be rather readily solved, if one assumes sufficiently simple 
boundary conditions. For these purposes, following Gribov, Levin and Ryskin,3g 
it is useful to change variables from x and q2 to z and g, where 

u = en enq2/A2 

Then, defining G(z;a) = xg(x;q’), it is easy to see that G obeys the integro- 
differential equation 

aG( z; u) -= 
au J = dz’G( z’; u) . 

0 (71) 

If one takes as a boundary condition that at (J = 00 G(t; uu) = 1, then it is easy 
to show3’ that the solution of Eq. (71) is precisely given by a modified Bessel 
function of imaginary argument: 

G(r; u) = Io[&=i$] (72) 

We will be interested particularly in the small x case where zo >> 1. In this case 
Eq. (72) just gives that G(z,o) N exp 2[.20]‘~~, so that in the small x limit the 
gluon distribution function takes the form 

xg(x;,$) x 2 0 exp 212 en ien Pn q2/AZ]*~z. 

As we shall see, this result is precisely that which arises from summing a series of 

double logarithms involving terms of O([P, t?n$ en Pn$lh). 

The result (73) is obtained again by summing the discontinuities of a set 
of ladder graphs quite similar to those of Fig. 21, but where now all rungs are 
gluons except for a final quark-antiquark pair where the external currents V’ 
attach themselves. The relevant h-rung graph is shown in Fig. 23. In this graph, 
to reproduce Eq. (73) one must assume that besides the transverse momentum 
ordering of the emitted gluons, qz >> k:, >> . . . >> klh, these excitations have 
also a longitudinal ordering in which the rung closest to the external current has 
the least longitudinal momentum fraction: x << xr << . . . << zh. Finally, the 
triple giuon vertex reflects the form of the gluon gluon splitting function (68)j: 

cA 1 
rb In k$/Az k:; . 

Using the vertex (74) and the ordered phase space described above, the contribu- 
tion of the h-rung ladder or Fig. 23 to xg(z; q*) is 

[Xg(x; ‘?)]h-rung = IJ~‘~&/,$$.. 

J k:,-, dkZ 1 Ih-.-.--- J !Eis!) . 
kfh enkThJA2 I,,-, Xh rb 

(75) 

tThe factor of z/c is absorbed into the phase space factor. 
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Figure 23: Ladder graphs whose discontim1it.y produces the gluon distribution 
function given in Eq. (73), when one uses the gluon vertices of Eq. (74) and a 
phase space which is ordered in both longitudinal and transverse momentum. 

The integrals within the curly bracket above contain two kinds of nested 
integrals. The transverse momentum nested integrals will give as before a factor 
of [cf Eq. (66)] 

Transverse nested integrals = $(tn hzq2/A2)*. (76) 

The longitudinal nested integrals, on the other hand, will give a factor of 

Longitudinal nested integrals = k[s &zAlh . (77) 

Thus the sum over h of the h-rung integrals of Fig. 23 gives for the gluon structure 
function 

(78) 

As anticipared, this is indeed a sum of double logarithms in o, Pn$ Pnq*. This sum, 
in fact, can be performed and gives precisely the Bessel function I0 encountered 
previously: 

xg(x; q2) = [o[2(Fb eni en h2g2/A2)‘~*] ‘v ~XP 2[2 eni 62 enq2/A21’~2 , (79) 

which establishes our contention. 
The result of Eq. (79), however, cannot be correct as 5 -+ 0, since it leads 

to a violation of unitarity! It is easy to check that Eq. (79) as z ---) 0 grows faster 
than any power of (ens). But we know that unitarity restricts the ep cross section 
to grow at most as (ens)* since: 

cep - ~xY(x;~*) 5 opp 5 const (ens)2 , 

where the second inequality is the famous Froissart4* bound. Hence, it follows that 
the Altarelli Parisi evolution equations do not give a complete description of the 
problem for small x and must be suitably modified. 

Before discussing this modification, it is useful to consider also the expec- 
tation in the Regge region (q’ < qi, z << Q,) for very small z. As we shall 
see, also here similar problems with unitarity are encountered. The appropriate 
equation to describe the behaviour of the structure functions in the Regge region 
was first discussed by Lipatov43 and then derived and discussed in more detail by 
Balitsky, Fadin, Kuraev and Lipatov in a series of papers.44 This equation - the 
BFKL equation again can be obtained by looking at the sum of ladder graphs 
containing gluonic rungs shown in Fig. 23. However, in contrast to what happens 
for the small I deep inelastic region, because q2 is not large, the gluon rungs will 
only have longitudinal ordering (z << II . . << 21) but no transverse ordering. 
Because of this, furthermore, the t,hree gluon vertex which enters in the ladder 
graph sum, in contrast to the vertex of Eq. (74), now depends on both li:,-, and 
kti. The idea that, in the Regge region, deep inelastic scattering is dominated 
by only longitudinally ordered ladder graphs gives an explicit realization of the 
Pomeron for these processes and was first formulated by Lipatov.43 It embodies 
the suggestion of Low and Nussinov 45 that the Pomeron can be represented as a 
t - channel 2 gluon exchange process. 

The BFKL equation is more complicated than the corresponding Altarelli 
Parisi equation since there is no tra.nsverse ordering and the three gluon vertex 
has a non trivial dependence on both k:,,-, and klh. As a result, I will content 
myself to examine only the structrue of its h-rung factor, rather than the whole 
equation. Because in the ladder graphs of Fig. 23 the longitudinal integrals are 
nested, the BFKL equation will also have for the h-rung contribution a factor 
of $(Pn$)h. However, the transverse momentum dependence in the BFKL case 
is more complex. One finds for the h-rung contribution to the gluon structure 
function the expression 

Here k: is t.he qq transverse momentum in Fig. 23 and kf 2: q*. The BFKL vertex 

-ua- 

-- 



V above depends on the adjoining momenta in the ladder and is given by: 

where 

. -dk:8) = /dk:$( ,k: : k:,, - [4k: +‘k:,,,,Z} (83) 

Note that the above vertex reduces precisely to the three gluon vertex V,(i) in the 
limit in which the transverse momrntaare strongly ordered, so that k:,-, >> kl,: 

- CT4 %(k: ) V(k: ,-,, k:,) k:,-,>>k:, &g(i) = L-----J- H k:; 

Because in Eq. (81) the transverse momenta t:, are not strongly ordered, 
the contribution in the curly bracket in this equation does not reduce simply to 
powers of the log-log of the virtual current. momentum transfer q* [cf Eq. (76)]. 
One can, nevertheless, get some idea of what might be expected in the Regge 
region by considering a somewhat crude first approximation to V(k:,-,, kf;), in 
which one supposes that the dependence of k:,-, and kii factorizes.“” If the BFKL 
vertex were factorizable 

V(k:,_,,k:i) = A(k:,_,)B(k:,) , (85) 

then the transverse momentum integrals in Eq. (81) are again trivial to do and 
the curly bracket in the equation reduced to 

{Eq. (81)) = ,4(k:)Xh , (86) 

where 
X = dk:,/t(k;,)l?(k:,) . 

J (87) 

In this approximation, the behaviour of xg(z; q2) in the Regge region is just 

kd’;Q )I 
1 1 4f12) * bgr = A($)? $(x enzjh = 2x 

If X  is positive, this is a singular behaviour rr$ I -+ 0, which again violates the 
Froissart bound of Eq. (80) since, for qz = qi, x - q,j/s. 

Although the actual BFKJ, vertex is not factorable , the result of the anal- 
ysis of Balitsky Fadin Kuraev and Lipatov44 shows that the gluon distribution 
function zg(x;q*) is given by a sum of terms of the ahove type, with various 
eigenvalues X,. The maximum rigenvalue in this sum t,hen gives the most, singular 
hehaviour as z + 0: 

One can show, furt,hcrmore, (.hat this maximum eigenvalue lies somewhere in the 
range 

(90) 
where ki is some appropriate infrared cutoff, beyond which one cannot trust the 
calculation.4F 

The singular behaviour displayed at small I by the gluon distribution func- 
tion of Eqs. (79) and (89) is an indication that the Altarelli Parisi equation (in 
the deep inelastic regime) and the BFKL equation (in the Regge regime) give an 
incomplete descript.ion of the physics at small 2. Before trying to consider alter- 
natives to these equations at small 5, it is useful to try to understand physically 
what is the origin of the troubles one is encountering. A  nice intuitive picture of 
what is happening has been put forth by Mueller.47 

Consider for t.hese purposes ep scattering in a frame where zp >> fl. Then 
a measurement of g(r; q’) prohes gluons which have a transverse size AZ, - l/n, 
but negligibile longitudinal size Azll - l/rp. In this frame, one can ask how much 
of the area of the proton disk (rR*) ‘. 15 occupied by gluons. If the gluons occupy 
an area much less than aR*, as shown schematically in Fig. 24a, then the QCD 
parton model should be OK since - even at low I values - there is not much gluon 
overlap and one can sensible imagine that there are no additional contributions. 
If, on the other hand, t.he gluon density in the proton is very high, as shown I 
schematically in Fig. 24h, then the parton picture idea that the external current 
probes just one constituent parton in the proton (and its descendants) ceases to 
be a sensible approximation and one must include further interactions. 

The area occupied by the gluons is, approximately, 

Area glue - 
dx 

transverse size. number gluons prr - 
x 

4”; q’) - Ax:“g(z;q*) - ~ 
q* 

so, as long as 
4x; q2) 

q* 
<< rR* , (92) 

one should be able to trust t,he resulrs of the Alt.arclli Parisi or BFKL equations. 
However, when rg(.r; q*) E rR*q*, corresponding to the schematic pictureof Fig. 
24h, then t,he gluon density within the prot,on is so great that one must include 
more than t,he single ladders of Fig. 23 to account for the effects of the high gluon 
density. 
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Figure 24: a) Sparse gluon distribution in the proton for which the Altarelli Parisi 
and BFKL equations hold; b) gluon distribution in proton which leads to impor- 
tant corrections to the simple ladder contributions. 

When the inequality (92) is violated, it no longer makes sense to consider 
that under the probing of the virtual current a proton is “made up” of a linear 
chain of gluons, which are emitted independently but with well ordered momenta 
[c.f. Fig. 231. At high gluon density effective gluon-gluon interactions are important 
which, in a Feynman graph language, correspond to having more than one gluonic 
chain participate when the virtual current V’ probes the proton. § These effective 
gluon gluon interactions lead to modifications of the Altarelli Parisi and BFKL 
equations which serve to restore unitarity. The relevant equation which includes 
these important effects is known as the Grihov Levin Ryskin equation (GLR 
equation) and was derived in the early 1980’s by these authors.3g 

Before discussing the GLR equation, it is interesting to see for what values 
of x and q* one gets into trouble, as a result of Eq. (92) not being satisfied. For 
definitiveness, let us consider the deep inelastic low z region where the gluon 
distribution is given by Eq. (79). Setting zg(z;q*) in Eq. (79) equal to rR*q* 
determines the region in I - q* space where effective gluon-gluon interactions 
become important. As is easily seen, this region is essentially a parabola in the 
en l/r - en q* plane given by the equation 

en I/X = -C 
[ 

I 
4~ en eng* /Al I 

en*(*R*q*) . 

The quantity in the square brackets above in the HERA energy range is of the 
order of 0.2. Fig 25 shows the intersection of the line given by Eq. (93) for two 
values of R [R = 5 GeV-’ and R = 2 GeV-‘1 which as we shall see below are 
sensible, along with the kinematical region accessible at HERA. For regions to 

SThat is, the current V’ resolves more than one gluon (and its descendants) in the proton 

q2 (GeV2 1 
Figure 25: Kinematical region accessible to HERA. The diagonal lines correspond 
to a solution of Eq. (93), so that to the left of these lines multiparton interactions 
should begin to become important. 

the left of the diagonal lines the multi parton interactions should begin to be 
important. Obviously, in this respect HERA is a very interesting machine, for it 
will begin to probe this new kinematical regime. 

After this qualitative discussion, let us begin to consider more seriously how 
the very singular hehaviour as z ---) 0 in the Altarelli Parisi and BFKL equations 
(c.f. Eqs. (79) and (89)] gets fixed. What cures the very singular 5 -+ 0 behaviour 
in these equations is the incorporation of more than one gluon ladder (and the 
interaction of the gluons in these ladders) to describe the partonic content of the 
proton. These further contributions give a shadowing correction to the original 
very singular behaviour of zg(r; q’) as z ---) 0, yielding finally a function which is 
better controlled in this region. 

In diagrammatic language, the shadowing corrections arise from the Feyn- 
man graphs shown in Fig. 26, in which one is instructed to take the discontinuity 
coming from all the possible cuts. These graphs lead to a decrease in the growth 
of rg(z; q’) as r + 0, with this function eventually reaching some limiting distri- 
bution for extremely low I values. The precise value of this limiting distribution 
is, however, not a matter that is totally resolved, because as I + 0 further cor- 
rections beyond those shown in Fig. 26 can intervene. 7 Mueller, 47 for instance, 

(These corrections correspond to probing multigluon states (Ng > 2) and their associated 
ladders in the proton. 
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Figure 26: Ladder interactions whose effect is to shadow the singular contribution 
as x -+ 0 coming from the contributions of a single ladder. 

argues on the basis of the Fro&art bound 42 that as x ---t 0 the gluon distribution 
should approach 

- 
xg(x;q*) x 4 0 gZRZ h(z;9') (94) 

with h(z; 9’) being weakly dependent on x and 9*, with perhaps h(x; 9’) N en*l/x . 
The ladder diagrams of Fig. 23 lead to either the BFI<L or the Altarelli Parisi 

equations, depending on what the assumed vertices and transverse momentum 
orderings are. Including the diagrams of Fig. 26 leads to a nonlinear modification 
of these equations, whose principal characteristic is to damp away the unphysical 
behaviour at low x. The inclusion of the diagrams of Fig. 26 is what gives rise to the 
Gribov Levi” Ryskin equation. In this equation,3g at small x a new fundamental 
object becomes important for the description of the relevant physical phenomena: 
the triple ladder vertex shown in Fig. 26. 

To understand the role of the triple ladder vertex, it is useful to give a 
pictorial description of the Altarelli Parisi equation for the gluon distribution 
function. The differential form of the equation, given in Eq. (69), is easily seen to 
be equivalent to the following integral equation 

where xg(x; 9:) is some input gluon distribution. This integral equation associates 
diagramatically xg(x; 9’) to the graph of Fig. 27a, while the second term of Eq. 
(95) corresponds to the graph of Fig. 27b, in which there is an extra gluon rung. 

The diagram of Fig. 26 - which because of its shape has become known as 
a fan diagram - corresponds to the (first) non linear modification to Eq. (95). To 
the right hand side of Eq. (95) one must add the contribution of the fan diagram, 
shown more schematically in Fig. 28. Note that, as I already mentioned earlier on, 
since in the fan diagram there is more than one way to take the discontinuity, the 
resulting contribution to xg(x; 9*) is the sum of all these discontinuities. A rather 
involved computation3’ ‘s secures the following contribution to xg(x; 92) coming 
from the fan diagram: 

Figure 27: a) Pictorial representation of xg(x; 9’) and of b) its one gluon interac- 
tion. 

where the triple ladder vertex VTL(IC:) above is given by 

1 
vn,(k:) = scan. - 

( > RZP I 
(97) 

Various remarks are in order: 

i) The contribution of the fan diagram depends rather naturally not on xg(x; 9’) 
but its square. So this contribution is negligible in physical circumstances 
(and kinematical regions) where the gluon density in the proton is low, like 
in Fig. 24a. However, this becomes important when this density starts to 
grow and one arrives at the situation schematically depicted in Fig. 24b. 
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ii) Because of the minus sign in Eq. (96), th e non linearities associated with the 
fan diagram indeed serve to damp the unphysical behaviour of xg(x; 9’) at 
low x. The presence of this sign is the result of the shadowing of one ladder 
by another and is characteristic of absorptive phenomena where unitarity 
comes into play. ]] 

iii) The triple ladder vertex VTL(~:) contains an incalculable radius parameter 
R. This parameter is associated with the momentum flow along the gluon 
ladders in Fig. 28, which gives rise to an infrared sensitive integral which 
must be cut off at some scale. One can proffer arguments for R lying some- 
where in the range” 

2 GeV-’ < R < 5 GeV-’ , (98) 

with the tower limit above being associated with the size of a valence quark 
and the upper limit being given by the size of a nucleon. 

iv) The fan diagram contribution is a higher twist effect, since the triple lad- 
der vertex gives an extra contribution of $. This is most easily seen by 

I 
considering the f?n# derivative of the fan diagram contributions 

If one includes the contribution of the fan diagrams, the gluon distribution 
function no longer satisfies the Altarelli Parisi equation (or the BFKL equation 
in the Regge region) but a non linear integro differential equation - the Gribov 
Levi” Ryskin (GLR) equation. For the gluon distribution in the deep inelastic, 
low x region, this equation takes the form: 

Figure 28: Schematic representation of the fan diagram which include the triple 
ladder vertex VT,. Note that all cuts through the ladders must be taken to obtain 
Eq. (96). 

The second contribution on the RHS above comes precisely from the fan 
diagrams [cf. Eq. (99)]. This equation has been analyzed recently numerically by 
Collins and Kwiecinski4’ and by Bartels Bliimlein and SchulersO and I will discuss 
here some of their results. Fig. 29, taken from, ” shows how the inclusion of the 
fan diagram contribution modifies the small x behaviour of the gluon distribution 
function considerably. Furthermore the amount of shadowing clearly depends on 
the scale one assumes for the radius parameter R. 

Similar results to those discussed by Collins and KHiiecinski4g have been 
obtained by Bartels et al. who also included shadowing corrections via the GLR 
equation. Fig. 30 shows their results for the gluon distribution function in two 9’ 
regions and for two rather distinct x regions. For x N 10e3 - lo-’ the shadowing 
effect computed by Bartels et al is qualitatively similar to that shown in Fig. 29. 
However, f6r extremely low values of x (x 5 lo-“) the gluon distribution actually 
appears to saturate to some nearly x independent, but 9* dependent value. The 
saturation of the gluon distribution function at the very small x values shown in 
Fig. 30 should be taken with a grain of salt. Saturation, roughly speaking, means 
that the quadratic term in g in Eq. (100) are of the order of the linear terms. But 
when this happens one cannot neglect higher nonlinearities, i.e., fan diagrams with 
multiladders proportional to [Cg(<; 9’)lN9. F or small, but not extremely small I, 
the ratio of the quadratic to the linear term in the GLR equation is still sensible, 

((For further discussion of this point, see’” and, particularly,39 
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as Fig. 31 shows. However, this same ratio would begin to go out of control as x 
becomes very small. 

Figure 29: Plot of xg(x;9’) versus x for three differrent assumptions. The solid 
line is the result of the Altaretli Parisi equation, while the dash-dotted and dashed 
lines incorporat,e shadowing with R = 5 GeV-’ and R = -$ GeV-’ in the GLR 
equation. 49 

Although the results shown in Fig. 29 and 30 are quite interesting, it is 
important to note that the actual results one obtains are rather sensitive to what 
equation and what input distributions one uses, as well as the strength one assumes 
for the nonlinearities in Eq. (100). Th’ IS salutary lesson emerges clearly from the 
study of Bartels et al. For instance, Fig. 32 shows that the differences between the 
Altarelli Parisi equation with the simplified low x structure for the gluon-gluon 
splitting function and the full Alt arelli Parisi equation is comparable to the effect 
of including the first nonlinearities in the simplified equation through Eq. (loo)! 
Similarly, by taking different input distribution functions at some low 9z value 
(normally 9: = 4 GeV’), one obtains quite different amount of shadowing. As it 
is physically clear, the more singular the input function is, the more shadowing 
one is to expect. This is illustrated in Fig. 33 for two radically different input 
distributions. The Morfin-Tung ” distribution function is singular as x -+ 0 

while the input distribution of Eichten et al? is x independent: 

b?d~;Q~)IEHLQ - CCd . (102) 

As a result, as is demonstrated in Fig. 33, the former distribution function has 
considerably stronger modifications at small I, as a result of shadowing. 
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Figure 30: Plots of xg(x;p’) for two different values of 9’, as a function of y N 
6.6 log,,(i). The dashed line is the result of the Altarelli Parisi equation while 
the solid tine gives the result of the GLR equation. Note how, for extremely low 
values of I, the gluon distribution function saturates? 

Mx; 9hfT N & (101) 
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Figure 31: Plot of the ratio P(z;qi) w IC measures the size of the quadratic h’ h 
gluon contribution compared to the gluon contribution itself in Eq. (loo), for the 
case when no shadowing is taken into account (solid line) and when shadowing is 
included (dashed line). Here qi = 4 Gel/’ and R = 5 Get’-‘. 49 
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Figure 33: Comparison of shadowing for different input distribution functions: a) 
The input distributions of Morfin and Tung” and Eichtein et al? at qi = 4 Get”; 
b) The evopd distributions including (dashed lines) and excluding (solid lines) 
shadowing. 

Figure 32: Comparison between the gluon distribution functions obtained by using 
the simplified Altarelli Parisi equation Eq. (69) [DLA], the full Altarelli Parisi 
equation [LL(Q’)A] and the GLR equation, Eq. (100) [DLA + fan]. ” 

-284- 



The above discussion points to the need of further experimental and thee 
retical input before one can hope to really understand the low x behaviour of the 
gluon (and quark) distribution functions. This point emerges very clearly from a 
recent paper of Kwiecinski, Martin, Stirling and Roberts.53 These authors have 
done a careful reanalysis of the structure functions at low I and have considered 
their evolution to larger q*. The study of Kwiecinski et aIs was based on the GLR 
equatio? in which the full splitting functions - including corrections of O(a.) - are 
used. Furthermore, for low q2 and small x the linear term in the GLR equation 
used is precisely that of the BFKL equation. The result of their analysis is that 
present day data is incapable of distinguishing between input gluon distribution 
functions which are singular and those which are not. This is illustrated clearly in 
Fig. 34 where the BCDMS data for Fz is obviously fit equally well by either the 
B- or Bs curve. These curves are generated by evolving xg(x; qi) from two rather 
different input gluon distributions. In the case of the Bs curve, the input gluon 
distribution at qi = 4 GeV* has a non singular behaviour as x + 053: 

xg(x; qi) = 2.87 (1 - x)‘.’ (set Bo) . (103) 
The B- set on the other hand, at qi = 4 GeV* behaves as x-‘/’ as x + 0: 

e7(x;ql3 = 0.26511 + f;;l” - xF5 tset B-I . 
(104) 

Although both the B- and Es sets fit the existing data equally well, they 
begin to depart from each other at values of x 5 (2 - 5) x 10m3. In both sets 
the effects of shadowing are beginning to be felt in the HERA range, although 
numerically the singular set with shadowing, using R = 2 GeV-‘, gives roughly 
the same contribution as that of the unshadowed non singular set!** This is shown 
in Fig. 35, both for Fz(s; q’) and for the longitudinal structure function FL(x; q’). 
Because HERA will be able to measure xg(x; q’) at small x, it is clear that it will 
give important new input information for extrapolating these structure functions 
to the even smaller x’s of interest for the LHC and the SSC. Furthermore, if at 
HERA one could also measure xg(z; q*), for different values of q* one could already 
get some information on how important the shadowing is in the qz evolution. 

In Section 2 we already discussed various ideas of how to extract xg(x; q*) at 
HERA from measurements of FL(x; q’) and by studying heavy quark production, 
both at the 11, and in the continium. As a last topic in these lectures I want 
to briefly return to this issue - particularly as it concerns the measurement of 
xg(x;q*) from heavy quark production. The main formula for QQ production 
which we used in’our earlier discussion was based on the lowest order graph for 
photon gluon fusion, shown in Fig. 36a, which yields 

4 F[‘(x) ot :=20GeV* 

BCDMS (x0.98) 

X 

Figure 34: Fit to to F,(x) at qz = 20 GeV* using as inputs the gluon distributions 
of either the B- set or BO set. 53 

This formula can be perturbatively improved by calculating the O(a.) corrections, 
and this was done by Ellis and collaborators 32 34 . However, as we discussed in this 
Section, since one is interested really in the low x behaviour, one should really 
sum the whole set of gluon ladders, shown in Fig. 36b, which build up the small 
x behaviour of the gluon distribution function. 

Catani, Ciafaloni and Hautmannn ss have pointed out, however, that the 
inclusion of the gluon ladders does not simply replace xrg(xs;Q2) in the naive 
formula (105) by an “improved” gluon distribution, such as would emerge from 
solving the Altarelli Parisi equation (95) or its improvement, the GLR equation, 
Eq. (100). Rather, the inclusion of the ladders of fig. 36b results in a formula for 
07r which, more correctly, involves a kl-space convolution: 

(1’33) 

(105) 

**This kind of ambiguity is similar to the one found earlier by.5o 
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Here 6 is the cross section for yg(li) ---) QQ in which the gluons have a trans- 
verse momentum kl and F is related to the gluon structure function, when one 
integrates it over k:: 

xg(x; Q’) = 
/ 

” dk:F(x; kl) . (107) 

Figure 37 shows a pictorial representation of Eq. 106. 
Because of the kl convolution of Eq. (106), the final result for 07s is not 

simply given by replacing the gluon distribution function in Eq. (105) by its “im- 
proved” version at small x. Rather the Icl convolution produces an effective K- 
factor, whose magnitude can in fact be very large. For example, if one uses a gluon 
distribution corresponding to the solution of the BFKL equation 

A(d) %sk%7;%3 - - 
BFKL x5? 

Xmsx (108) 

the I<-factor calculated by Catani, Ciafaloni and Hautmann3’ is KBFH.L = grr’, 
which is indeed large. Of course, with enough data it may be possible to undo the 
convolution in Eq. (106) by studying the transverse momentum distribution of the 
produced heavy quarks. Nevertheless, this discussion makes it clear that, although 
HERA will provide invaluable information on the gluon distribution function at 
small 5, considerable further theoretical analysis will be necessary before this func- 
tion can be unambiguously extracted from the data. 
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