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FIRST LECTURE 

I will emphasize two points in my lectures on Theoretical Aspects of Lepton- 
Hadron Scattering: 

(1) The crucial importance of testing the “exact” sum rules as tests of 
the local current algebra. Discrepancies, if found, between experiment 
and theory cannot be “interpreted away” in terms of more complex 
parton wave functions for the hadronic ground state. The three sum 
rules of interest are those of Adler, Bjorken, and Gross and Llewellyn- 
Smith. 

(2) An understanding of the corrections to scaling in QCD and what they 
teach us. 

To begin with, I will review the parton model, its intuitive physical basis, its 
predictions, and its limitations.’ 

The power and beauty of lepton-hadron scattering is that the electroweak 
field generated during the lepton scattering is as well understood as anything 
known in particle physics. This permits us to probe the unknown structure of the 
target hadron by means of a known current operator. Furthermore, at the same 
time, its strength is weak enough to allow a perturbative treatment in powers 
of the electroweak charge and strong enough to permit accurate measurements 
under physically interesting conditions of large energy and mhmentum transfers. 

The original round of high energy measurements of elastic electron scattering 
by Hofstadter and collaborators demonstrated that protons and neutrons, similar 
to the nuclei of which they are the constituents, have extended rharge distribu- 
lions. For nuclei, in which the nucleons are highly nonrelat:ivistic-being bound 
by less than 1% of their rest energies-the charge distributions are measured by 
(to leading order in Zo < 1, and neglecting center-of-mass corrections my l/A) 

d3reifiF -$$j IPz,A) = + (Pz,A/eiFd I&+.4) , (l) 
P  
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where the electric form factor is def ined by 

W42) = (Pz,A/ 8’ IPz,~) 
= J d3  R eif” p(R) 

=  1  for a  point charge 

-t 0  for a  distributed charge, for 1q12  > & 

x 1  - $  lq12 (R2) +  . . . , for small (q12 < & . 

(2) 

By standard steps we find the elastic cross section to be  F2(q2) t imes the 
point charge cross section: 

duei 
dlqlZ= 9  P(lql2) . 

For elastic scattering the energy and  momentum transfer are related by 
the mass shell condit ion for the target nucleus [in the lab q,, =  (v, 931  

p2  = (MA)? = (p+q)2 = (MA)2 +q2+2p.q, 

= (MA)2 + u2  - lq12 + 2MAv , 
or u  =  lq12/2MA . 

(4) 

For inelastic scattering, u  and  q2  are independent  variables. For one-arm experi- 
ments that measure only the angle and  energy of the scattered electron, 

and  
(P+q)2 = M; =  (MA)2 +q2 +ZP.q 

-q2 v=m+ 
M’r - (MA)2 

2MA ’ 

(5) 

The hadronic structure is probed in such measurements by independent ly varying 
u  and  q2. The scattering cross section as der ived by standard steps is 

8% - =  
d  Id2 dv 

$  c 6(Ep + v - En) (PI c .c-~~‘~ In) (njc eicr; jp) , (6) 
n  i i 

which contains sums, Ci, over all protons in the nucleus and  C, over all nuclear 
states, In) , satisfying energy conservat ion. To  a  good  approximation for high 

energies and  small scattering angles we can use closure when su mlm ‘ng  over all 
energy transfers v for f ixed momentum transfer lq12: 

J 8% dv- =  d Id2 dv 
i$ (pi C ,C4C-Q Ip) 

1~11 fixed if 

=  G  {z+z(z-1)f21q21} , 

where f2 is the two-body correlation function. 
Several observat ions of interest may be  made about  (6) and  (7): 

(1) For IqI w [mean internucleon separation]-’ m 150  MeV, fi(q) +  0  
and  

d2uin 4n  a2  
d lq12= Id’ z . 

Equat ion (8) tells us  that there is a  finite area under  the inelastic scat- 
tering curve summed over all final resonance plus cont inuum states 
of the nucleus at f ixed large jq12. It corresponds to Coulomb scatter- 
ing from Z- independent,  incoherent point charges.  This is the same 
result as  applying the impulse approximation to each individual pro- 
ton in the nucleus, treated as free, and  neglect ing correlations and  
binding forces. 

(2) There is a  peak  in the cont inuum inelastic scattering curve at an  
energy loss corresponding to quasi-elastic scattering from a  single 
nucleon; i.e., for 

Id2 
“QE = G’ 

As shown in Fig. 1, this peak  remains, fulfilling the sum rule (8) as  
lq12 increases, and  contributions from individual resonance states are 
suppressed by their form factors analogous to (3). By the uncertainty 
principle, we expect  the impulse approximation to be  valid when the 
energy transfer u  from the scattered electron is larger than the charac- 
teristic frequencies, or excitation energies, of the proton,in a  nucleus; 
i.e., 

or, by CJ), 

v W  “‘Binding 

(10) 

lq12 W  2MWBinding N (150 MeV)2 , 

which is the same condit ion for (8) to be  valid. 
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(3) The quasi-elastic peak in Fig. 1 is broadened by the Fermi motion of 
the nucleons inside of the nucleus. 

When the SLAC-MIT deep inelastic scattering experiments were started 
twenty-five years ago, there was little reason to suspect that the nuclear-inspired 
ideas of quasi-elastic peaks and large continuum scattering from point-like 
constituents were applicable to individual nucleons. All we knew from the elastic 
scattering measurements was that the nucleon form factors-defined by a general- 
ization of (3) known as the Rosenbluth formula, including relativistic corrections 
to the kinematics and a second form factor arising from the anomalous mag- 
netic moments-decreased as (1/q2)2 for large q2 corresponding to distributed 
average charge and moment distributions with mean square radii of N  0.8 fermis. 
The pivotal theoretical contributions of Bjorken and Feynman, and the exper- 
imental findings of Friedman, Kendall, Taylor, and collaborators were to show 
that we could, with appropriate care, transfer to the structure of hadrons the 
ideas illustrated above for nuclei. This spectacular progress and what we have 
learned from lepton scattering since that breakthrough are the subjects of these 
two lectures. 

For high energy lepton-nucleon scattering, we must generalize the previous 
discussion to include hadronic recoil in the kinematics, the spin of the electron 
and the target hadron, and the transition current in addition to the charge of 
the scattered electron. To lowest order in Q  = I/137, the Feynman graph-with 
the defining notation for this process-is shown in Fig. 2. 

In terms of laboratory variables, with lepton mass set to 0, 

P, : (E, 0, 0, P) 

p: : (E’, 0, p’ sine, p’ cos6) 

PN : CM, 0, 0, 0) 

Q2 t -q2 = 4EE’ sin2(0/2) 

qo = E-E’ 3 u 

W2-M2 = 2Mv-Q2 = 2Mv(1-it), 

(11) 

and for longitudinally polarized initial leptons and hadrons we define the covariant 
spin pseudovectors (s . p = 0; s* = -1) 

50 : ; (P, 0, 0, E) 

lij1’/2M m, 

_ 0.5 Momentum Transfer = 500 MeV/c 

+A 

Ca40 
e= 120” 

t 
High la12 

t 

t +i 

0 80 160 240 320 
Excitation Energy (MeV) 

Fig. 1. Inelastic electron-nucleus scattering showing the :quasi-elastic peak at 
both low and high I#. 

&4=P-P’ 

Fig. 2. Feynman diagram, with indicated kinematics, for inelastic electron- 
nucleon scattering. 
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The inclusive inelastic cross section-the generalization of (S)-is given for 
electromagnetic scattering by 

610 &a 
dQZ= 2EE’dcose dE’ ’ 

= $j$ ; c (‘2~)~ 64 (q + P - Pn) )bl,,(ir),,, Jr IPS)/’ , 
” 

where j, and Jr are, respectively, the lepton and hadron electromagnetic cur- 
rent operators and P, (j,),,, is the lepton current matrix element for momentum 
transfer q from an initial state with (p, s). For scattering by the weak interaction 
current: we make the substitution in (12) 

4na2 G; 
Q4 -+ 2n’ 

where GF is the Fermi coupling constant, and replace the electromagnetic current 
operators by the weak currents. For the electron currents the sum over final state 
spin gives the tensor (since s,, cc l/m, the lepton mass, must be retained in the 
spin term) 

1 
= [upuv - qrqv -I- q2grv + 2iepva+ q,s, m] - 4EE’ 

(14) 

with up E (p,, + p:). 
Note q,,I,,, = qvI,,” as it must by current conservation. We rewrite (12) as 

i(g+p-P”).2(PS IJ,I n)(n IJ,I PS) , (15) 

d% e+“(PS 1 [J,(S), J,(O)] ] ps) , 
4ra2 E’ 

Equation (15) is the relativistic generalization of (6). In Eq. (16) we used closure 
and changed the product of currents to a commutator by adding zero (since 
qo > 0; exercise for the reader). Commutators are always attractive if they can 
be brought to equal-time limits as we shall see later. 

l I.e., Q - aw and I/Q’ + l/(Q’ + M&), which leads to [4~(.~~/4n)~]/Q’ -+ 
V4av/(Q’ + J%)12 e 1/2n[(e.~/fi)/M&]z z G;/‘Ln. 

The general form of the hadronic tensor introduced in (17) is, upon averaging 
over hadron spin and enforcing current conservation, q,,W,,, = q,W,,, = 0, 

w,, = - (!7#” - y) WV14 

+ $(P#-y7p) (P,-$%“)W2(92,4. (18) 

WI and Wz are scalar functions of q2 and u = q. P/M. 

No term of form clrvarq,,Pr appears because the electromagnetic current is a 
polar vector. For the weak current that is (V-A), such an odd parity term that 
changes sign under charge conjugation does arise, and with it a third form factor 
W3. From (14), (17) and (18) we obtain for the unpolarized cross section 

d% 

dQZdv= 
!p[“(l ) 2 q , Y cos2 (o/2) + 2Wl(q2, v) sin2 (e/2)] . (19) 

The interesting physics describing the electromagnetic structure of nucleons is 
wrapped up in the two-scalar structure function WI and W2 for unpolarized 
processes. l+om the form of (18) and (19) we can anticipate that W2, which 
appears together with the tensor structure of a product of Schrodinger currents, 
will be a charge structure term. 

In general the structure functions depend on two variables Q2 and v and 
experiments probe the parameter space as illustrated in Fig. 3: 

For completeness we write here the generalization of (18) for polarized 
hadrons. 

WPV) spin = W,” 

The ratio of the spin dependent to the spin independent cross sections is 

dutt - dw = _ 4 M(E + E’ ~0s 0) 91 (a’, VI+ q2 92 (q’, v) 
dutr + dutl ?r ZW,(qZ,v) + Wz(q2, u) cot2 (e/2) 1 . (20) 
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Fig. 3. Parameter space for inelastic electron-nucleon scattering. 

To conclude the kinematics we write the inelastic cross section 1 or weak scattering 
with the additional contribution arising from the parity violating contribution 

x 
1 
Wi’(L’Q cos2 (O/2) + 2Wlfffv2) sin2 (e/2) l Wi(t’4 sin’ (e/2) (v)] , 

where e(i) denotes lepton (anti-lepton) scattering. The weak interaction structure 
functions W[,l can be related to the electromagnetic ones by the underlying 
conservation laws such as CVC or by specific models and isotopic rotations. The 
additional structure function corresponds to a parity violating contribution of 
form -iWi(“‘, cpy,,+ P”qr/ M2, added to (18). 

In order to probe the detailed structure of hadrons it is desirable to study the 
structure functions at large values of Q* and u. For elastic scattering the structure 
functions reduce to squares of the familiar form factors (K is the anomalous 
magnetic moment of the nucleon; K,, = 1.79; K. = -1.91): 

WI--) 6 v-- 
( > 

f; [Fl(Q2) + KF~(Q’)I’ $ 

(22) 

The form factors are experimentally found to fall off rapidly with increasing Q2, 
F(Q2) oc (l/Q’) out to @ N 6 GeV, indicating a diffuse and smooth structure 
with (r2)1’2 N 0.8 x lo-l3 cm. This behavior is readily accommodated by a 
three-quark model of hadron structure, but is less natural to parameterize in 
dispersion theory models. A low-lying resonance leads more simply to l/Q2 
falloff. Cancellations between several resonances have to be arranged to account 
for a more rapid falloff. 

Of primary interest is the study of the inelastic structure functions, the 
presence of quasi-elastic scattering and Bjorken scaling in the very inelastic region 
of large Q2 and v. In particular, note that in the high energy limit, with E -+ a~ 
and with fixed Q2, so that 0 -+ 0, comparison of (19) and (8) shows that 

m I 

z+ J W2(4Q*) dv . (23) 
“min 

A finite value for (23) in some sense “measures” the charged constituents of 
the nucleon. But what are they? In contrast to nuclei as we discussed earlier, 
the nucleon’s constituents had not been deciphered 25 years ago-and the debris 
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emerging from hard collisions with a single nucleon would necessarily have been 
strongly bound within the nucleon if they were its actual constituents. To aid our 
intuitive understanding, we identify kinematic conditions that permit an impulse 
approximation analysis akin to the nuclear case. This is the parton model, valid 
in the Bjorken scaling region of deep inelastic scattering with large Q* and v. 
Subsequently, to provide a solid theoretical underpinning, we will also appeal to 
quantum field theory and the current operator algebra to understand deviations 
from scaling and to establish sum rules of general validity which, if violated, would 
have profound implications for the validity of our basic theoretical understanding. 

As first suggested by Feynman, we can gain an intuitive understanding of 
deep inelastic scattering by viewing the proton from an infinite momentum frame, 
a limiting idea for very high energy eP scattering. We understand that the con- 
stituents of a nucleon-gluons, quarks, or simply partons-are bound by strong 
forces, the color forces of QCD. In this P -+ 00 frame, the partons will each share 
a finite fraction 0 < 2i < 1 of P -+ 00, and move closely parallel to P. They will 
behave as almost free on this energy scale, relative to which their binding is weak, 
and scattering from individual partons can be treated as incoherent for sudden 
perturbations. Stated more quantitatively, the lifetimes of the parton states are 
characteristically 

where we expect Me8 u 1 GeV, a typical mass scale for the nucleon, and 
P N &/2 in the eP center-of-mass frame. Equation (24) exhibits the relativistic 
time dilation, which in effect “freezes” the proton in one of its virtual states of 
mass Ms. 

The duration of the perturbing electromagnetic pulse from the scattered 
electron in this frame is (homework for you). 

4P 
~pulw - 2Mu-Q*’ (25) 

Comparing (24) and (25) note that rppulle < 31~ for 

2Mv -Q* I 2Mv(l - x) > M&. (26) 

Equation (26) defines the key condition for applying the impulse approxima- 
tion. 

To explore the meaning of (26) further, we make two observa 4 ions: 

(1) Magnitude of M$ 

Consider a proton with p’ disassociating virtually into two constituents 
with momenta zs p’ + Zl and (1 - zs)p - Zl, respectively. The energy 
denominator (or reciprocal lifetime) of this virtual state is given by 

AE = J-i+ (1-Z,,)*p*+K~+“+,,~ 

a1+m;(l -zo)+m;so - M*zo(l -20) 
210(1 - 20) I 

= M:f 
P * 

(27) 
For (26) to be satisfied in the lab, zs must approach neither 0 nor 1, and JCL 
must be bounded, as is observed experimentally from the small momentum 
width of secondaries and the rapid fall off of elastic form factors, which 
measure the probability of putting the proton back together in an elastic 
collision. 

(2) Interpretation of 2 

The relation 
Q2 

x=2Mv (28) 

is just the condition for elastic scattering from a constituent’with longitu- 
dinal momentum zp’ in the P --* 00 frame. 

To see this, ignore the “parton” mass and transverse momentum as rela- 
tively small X 1 GeV; then P&,rtituent = rsP’ and the elastic scattering 
condition 

(P + PC? = Pt > of (e + zoP)* = (zoP)* 

gives I 

Q2 = 2xoq. p = 2xoMu , or x0 = & = x by (26) . 

Equation (26) shows that x cannot approach too close to 1; combined with 
(27), the condition that x = x0 not approach too close to 0 is seen to be 
identical to Q* > M2. 
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For scattering from point-like partons of spin l/2 and charge qi e, one finds 
by direct calculation, or from (22) with M  4 xM, 

= $6(x-&), 
“II = xq~6(x-~). 

(29) 

(30) 

Thus for a proton built of N  partons of charge qi and momentum distribution 
fi(Xi), 

N 

uw* = JC ix1 

fi(xi)$ri6(e;-&) dxi 

= 5 fi (&) 2 (&) = CXfi(X) 4 7 

i=l i 

and 

-dv 
1 

J - V 
uW2 = Cqf dxfi(x) = Cqf . 

i J 
“th 0 i 

(31) 

(32) 

Equation (32) is for nucleons the analogue of (23), with which it coincides for2 
constituents of unit charge. Most importantly, we observe that WI and uW2 
depend only on the ratio x = Q*/2Mu. Th is result is known as “bj” scaling, as 
first derived and predicted by Bjorken in 1966 from a formal study of the current 
matrix elements in the large u and Q* limits and with z not too close to 0 or 1. 
Note also that 

VW, = 2MxWl. (33) 

This prediction is valid for the charged partons having spin l/2, and is expected 
to be true in QCD in the bj limit, since integer spin gluons are electrically neu- 
tral. This relation, known as the Callan-Gross Relation, is accurate to 10 to15% 
in current measurements. 

The simple form of (31) suggests simple sum rules for deep inelastic scattering 
in terms of quark models of the hadron. Most directly, from (32) we expect in a 
pure three quark model of the hadron that 

J du VW2 = 
' dx J y (r’W2)z = 

for a proton (uud) , - 
i/3 for a neutron (udd) . 

(34) u 
0 

However, the measured shape of VW*, as illustrated in Fie. 4 shows that a 
simple model of three-valence quarks does not accurately represent the nucleon. 
In particular if there were just three quarks in a proton that shared its momen- 
tum, we would expect to see a quasi-elastic peak as found earlier for nuclei and 
illustrated in Fig. 1. In contrast, Fig. 4 suggests that the integral (32) diverges 
logarithmically due to the presence of an infinite “sea” of qq pairs in the nucleon 
at low (“wee”) values of x resulting from the quark-gluon interaction. This is the 
QCD analogue of soft bremsstrahlung and pair production in QED. 

In a three-quark model we also expect 
1 1 

J dx (VW*)+ = J xf&) dx = 
l/3 for a proton , 

219 for a neutron . (35) 
0 0 

This is a more convergent relation than (34) as x + 0. However, for many 
years it has been known that about 50% of the momentum of the proton is not 
on the three-valence quarks and must be shared with the sea quarks and gluon 
content-so the picture is not so simple as all that. 

Evidently rigorous results will play a most crucial role in understanding 
inelastic scattering, beyond simple parton models. However, there are a number 
of simple and useful sum rules that can be derived from the quark-parton model 
of a nucleon built of spin-l/2 quarks plus neutral gluons. Several examples are 
as follows. 

Reverting to the notation in (31) and defining the number density of u, d, s 
quarks in a proton by 

fY,dX) = 
5 i b(x), 4x1, +)I , ’ 

we can write 

(36) 

i F;*(x) P i (VW*)“* 

= ; b(x) + W I + f [d(x) + +)I + f [s(x) + i(x)] + . . . . 
/ (37) 

By isospin rotation u H d for a neutron, and 

; F?(x) = f b44 + cl(x)] + f [u(x) + ii(x)] +. . . . 

FL? (xl The ratio - 
F;*(x) 

clearly is bounded between 

-53- 



Fig. 4. Schematic representation of data observed for deep inelastic electron- 
proton scattering structure function, uWz(r), in the scaling region. 

For small x where many pairs of sea qq may be dominant\ we thus expect 
the ratio (aen/ac*) + 1, consistent with experiment. I 

For large x on the other hand, the so-called valence quarks should dominate 
leading to u(x) = 2d(x) in a proton with two up quarks and one down quark. 
Were that the case, the ratio (cre”/oe*) should 4 2/3. However, experimentally 
the ratio falls to l/4, corresponding to d/u ---) 0, and again cautioning that simple 
three-quark models can be dangerous. 

Another example is the sum rule (32) applied to the difference between the 
proton and neutron for which the “sea” contributions are expected to cancel 
largely, leading to a finite result. This is called the Gottfried sum rule, and in 
terms of (37) and (38) reads 

1 

J $ [Fip(x) - F?(x)] = 1 dx 
0 0 

X  f [u(x) + a(x)] - f [d(x) + d(x)] + heavier “sea quarks”) . 

(39) 
Since the proton has two more up-quarks than anti-up, and one more down 

than anti-down, we can write exact integral relations 

1 

J dx [u(x) -a(x)] = 2 
0 

1 

J dx [d(x) -I?(X)] = 1 . 
0 

(40) 

Inserting (40) into (39) gives 

l dx J y [F,*(X) - F?(X)] = S+idx {i [C(X) - J(X)] + heavier “sea quarks”} . 
0 0 

(41) 
Recently published data by the NMC collaboration at CERN indicate that, 

for Q2 21 4 GeV*, the simple three-valence quark prediction of l/3 is approxi- 
mately 25% larger than the observed value of 0.240 f 0.016. 
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Similar predictions can be constructed for deep inelastic neutrino scattering 
from Eq. 21, plus three additional findings: 

(1) uW3, like uW3 and WI, scales. 

(2) The weak currents appear in (16) and the commutator becomes 

(PSI [~;f(4,J;(0)] Ips) 

where, neglecting Cabibbo mixing 

J; = ar,,(l - 75) d = (J;)+ . (42) 

Evidently under an isospin rotation, which turns a neutron into a 
proton and vice versa, 

wi’” = WY) and W/‘n = Wipp . (43) 

(3) Introducing F,(“’ = MW{“), F,(“) = uWz(“), and FL”) = uW3(“‘, 
Eq. (21) becomes in the scaling region (x E Q*/2Mu; y 3 u/E) and 
for Q*/E* + 0, 

dLa 
-= 

dxdy $ WE) { ( 1 - y) Fz t zy* FI f ; xy(2 - y) F3 
> 

(44) 

showing a total cross section that rises linearly with energy (for 
E g: Mw!). 

Again various sum rules can be derived based on quark-parton wave functions. 
One can relate the structure functions probed by the weak currents with the 
electromagnetic ones on the basis of known symmetries. 

In particular, recognizing that when u -+ e-, d 4 u or ii -+ d, whereas when 
P + e+, u + d or d + 6, and that (1 - 7s)* = 2(1 - 7s) for weak currents, it 
follows that (neglecting the Cabibbo angle as small) 

43~) = 22 [d(x) + +)I 
F;(x) = 2x [d(x) + u(x)] 

t heavier USean quarks 7 (45) 

and therefore for isoscalar targets, 

F;(x) + F:(x) 
F;*(x) t F;"(x) = f t strange quark corrections. (46) 

The data agree well with this result. Deviations are a measure of the contribution 
of strange quarks (anti-quarks). 

We find an intriguing result if, using (43) and (45), we form the difference 

F;*(x) - F;“(x) = 22 {[d(x) - d(z)] - [u(z) - C(x)] 
(47) 

+ differences [s(x) - a(x)] of the heavier quarks} . 

Using (40) and recalling that protons and neutrons have zero charm, strangeness, 
quantum numbers, etc., we find 

’ dx J T [F;*(x) - F;“(x)] = 2(1 - 2) = -2 . 
0 

(48) 

Equation (48) is the Adler Sum Rule first derived in 1966 from current alge- 
bra. Its generality-i.e., independence of model-dependent statements about the 
quark“sea”-suggests that it may be an exact result, derivable from the algebra 
of the operator currents themselves rather than from models of the nucleon state. 
This suggests the importance of deriving exact sum rules and of testing them 
quantitatively. In 1984 the validity of (48) was established to *20% at CERN. 

There is an additional sum rule for the odd parity term, F3, in (44) that 
suggests a more general validity than the parton model. One finds (homework!) 
that 

xF3y = fF; , 

where “+” applies for a fermion target and y-n for an anti-fermion. Correspond- 
ingly, for fermion targets 

SF; = +F,y , 
(49) 

xF3” = -Fp 2 . 

This gives from (45) 

F;(x) = 2 [d(x) - ii(x)] +. . . , 
(50) 

F;(x) = 2 [u(z) -d(x)] +. . . . : 

Using Fr” = F3*, we obtain 
1 1 

J dx [F;*(x) + F;“(x)] = 2/ dx [u(x) - a(x) t d(x) - d(xi)] = 2(2 t 1) = 6 . 
0 0 

(51) 
Equation (51) is the 1969 Gross-Llewellyn-Smith sum rule. Like the Adler sum 
rule (48) and the spin flip sum rule for electromagnetic currents derived by 
Bjorken in 1966, it too can be derived directly from current algebra-to which 
we now turn attention. 
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SECOND LECTURE 

In the first lecture I emphasized the importance of sum rules. I suggested 
that the Adler Sum Rule might have a deeper basis than the parton model result, 
which expressed it as the difference between the up and down quark numbers of 
the proton. In this lecture I want to show how the Adler Sum Rule can be derived 
very generally from the Equal Time Commutator (ETC) algebra. It is one of the 
sum rules that I think deserve great attention in the experimental program in 
the years ahead. 

We start with a quick run through of the simple algebra to derive the Adler 
Sum Rule. Remember that the structure functions are defined by W,,, which 
can be expressed as a commutator formed with the electromagnetic currents, 
Eqs. (16) and (17). The weak currents carry isotopic spin, corresponding to W+ 
and W- vector bosons that change the down to an up quark, and the up to a 
down quark, respectively. Thus in a weak interaction scattering a neutrino into 
an electron, the current is carried by a W+, which changes a down to an up 
quark in the target hadron. Calling the hadron current in this case Jr, we write 
for neutrino scattering from a proton’ 

C’,(P7d = &s/ $ye”” (Pl,li(~)J,(o)lP) , qo>O. (52) 

This is nonvanishing for qo > 0 as is clear by inserting a complete set of states 
in the matrix element and doing the time integral. Let us next write the cor- 
responding expression for anti-neutrino scattering. The anti-neutrino now turns 
into a positron and transfers one unit of negative charge, which changes an up 
to a down quark. This is called Ji, the charge-lowering operator, and the corre- 
sponding scattering expression for the anti-neutrino is 

w$3(P,P) = & g J 8~ ei9.y (P IJp(~)d(0)l P) 
(53) 

=- ’ EP J $Y e+v (P I~p(o)~ky)l P) , 27r M q. > o . 

In writing the second form of (53) we use the invariance of the diagonal matrix 
element under the displacement of ye to the origin, and then relabel the variable 
y, -+ -yr. Equation (53) is, like Eq. (52), nonvanishing when qo > 0. 

* The factor Ep/M, where Ep is the proton energy in the scattering frame, is 
included to give IV,,0 the correct Lorentz transformation property. This factor 
was replaced by unity in Eqs. (16) and (17) 
rest system. 

since we were working in the proton 

Following Steve Adler’s original derivation in 1966 of the ne 1 trino scattering 
sum rule named for him, we will now take several simple stebs of algebra to 
show that we can write the experimental quantity of interest as a commutator 
of currents. We start by constructing the commutator (54) which is related to the 
two expressions (52) and (53) as indicated. 

’ Define W,B(P,q) = G M Ep / $Y eiq.# (P 1 [J)(Y), J.(O)] I P) 

= W&(P>P) 

= -qcAP, -4 

PO > 0 

qo < 0 * 

(54) 

For qo > 0 this corresponds to v scattering, and for qo < 0, to fi scattering, with 
Q c) p and multiplied by -1. Next we follow a kinematic trick introduced by 
Fubini and Furlan in 1965 by going to an infinite momentum reference frame. 
Remember we are interested in experimental quantities such as Wl(q2, v) and 
W2(q2, V) in deep inelastic electron scattering which are scalars, and depend on q2 
and p. q = Mu, which are Lorentz invariant scalars. The kinematics is simplified 
greatly if we choose a frame in which 

so that 

P+a and P-a= 0, (55) 

p-q = Epqo = Mu. (56) 

In the p + 00 frame, it is the zero-zero component of W,B that is of interest, 
as we see from (18): 

woo + ( > g 2w2(Q2,V). : 

This is a simple result. There is nothing delicate about this limit. No limiting 
behavior is implied for WI or Wz. Let us next form the integral 

00 00 

J 
dqo Woo = J ho [Wo (P, d - Wno (P, qo, -c3] , (58) 

--oo 0 

where in writing the right hand side we have replaced qo by -qo in the second 
term of the commutator in (54). From (55), (56), and (57) it is apparent that 
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WOO depends only on the magnitude, and not the sign of $ Making the substi- 
tution a-+ -<we can carry through the manipulation shown in Eq. (59): 

00 

/ 40 wcl (P, d - % I (PI 411 
0 

= & $7 401 d4yeiq’Y (P/[JAb), Jo(O)]IP) 
-00 

= s/ d3y eiFg (P/[J~o,Y’), J~(o)]IP) 

= (g2 $7 dv [%‘(Q2, VI- Wi’(Q’, 41 . 
0 

(59) 

The equal time commutator on the right hand side of (59) can be evaluated in 
terms of the local current algebra applied to the charge densities. This algebra 
reads in the W(2) limit 

[Jo(C Jot(O)] = 2Ji%4 ~3b7’l 7 
leading directly to the Adler Sum Rule 

00 

J du [W; (Q”,u) - Wz” (Q”p)] = -2 . 
0 

(61) 

The quark currents in this limit are given by 

Jo = ut(l - r5)d 

J,j = dt(1 -p)u 
[JOWL Jot(O)] = 263(y3 (~~(1 -ys)u-dt(1 -T5)d) , 

(62) 
Recalling (43), this result can also be expressed as 

cz) 

/ 
dv [W;” (Q’, v) - Wz”” (Q’, v)] = 2 . 

0 
(63) 

A refinement of this result to include Cabibbo mixing of the down and strange 
currents (quarks) gives 

m  

I 
du [Wf - W.f] = -2 cos’ Be - 4 sin’ Bc proton target , 

0 (64) 

= +2 cos’ Oc - 2 sin’ 0, neutron target . 

The importance of the Adler Sum Rule is that it is derivedbn the basis of 
current algebra and general symmetry principles, and is independent of approxi- 
mations on the dynamics or the hadron ground states as implied in parton model 
calculations. Experimental data from CERN in 1984, by Allasia et al. gives a 
20% measurement with a 18% systemmatic error in good agreement with the- 
ory. This is a fundamental prediction of theory and more precise experimental 
confirmation is highly desirable. 

Now we ask if there is another general prediction from current algebra which 
can be tested and is independent of detailed models. For this we look again 
to the electromagnetic current. It won’t be as straightforward ss for the Adler 
Sum Rule because there is no charge raising or lowering as in (59) and (62), and 
two electromagnetic charge densities separated by a space-like interval commute. 
However as first shown by Bjorken, in the deep inelastic scattering limit of very 
high energy electrons, the difference of spin-dependent parts of the cross section 
for electron scattering from hadrons can be expressed in terms of an equal time 
commutator of current densities. The isovector part of this commutator-i.e., the 
proton-neutron difference-can be expressed in terms of the axial vector P-decay 
coupling constant. Therefore in the deep inelastic limit-a limit not required 
for the Adler Sum Rule which is an identity for all Q’-one has a sum rule 
independent of dynamical models that is derived directly from the equal time 
current algebra. This is the Bjorken, or bj, Sum Rule and presents a basic test 
of the current algebra. Verification of the bj Sum Rule presents an important 
challenge for the future. 

I won’t reproduce all the algebraic steps in Bjorken’s derivation in this lec- 
ture, but will set up the derivation-details of which can be found in the original 
papers. It is useful to introduce the cross section for photoptoduction by a vir- 
tual photon of invariant mass q2 E -Q2 < 0 and energy q. p = Mu incident on 
a hadron (proton or neutron) of mass M. This is the part of the process below 
the dashed line in Fig. 5. Its cross section is expressed by 

4*2a Oi = u-(Q2/2M) n C(2r13 6’ (Pn - P - q) I(n Ici * JI PS)12 9 (65) 

where we have used the Hand-Berkelman convention of defining the initial photon 
flux in terms of the equivalent energy of a real photon that lvould produce the 
same final hadron mass; i.e., 

(ptq)’ = M2t2Mv-Q2 

= M2t2M v-g . 
1 1 

(66) 
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The final result is, of course, independent of this convention. The polariza- 
tion vector appearing in (65) is defined by 

ej*q = 0, e;. 6L = e;. CR = -1; e; = t1, (67) 

For q : (v, 0, 0, dm) , 

CR,L : (0, ri, 1, 0) 5 , 

h : 1/m (IPTZF, 0, 0, v) , 

for the virtual photon incident along the z-axis; CR,L denote right- and left- 
circularly polarized transverse photons and c,, the longitudinally polarized one 
present when Q2 # 0. 

To relate the cross section as defined for virtual photon scattering to deep 
inelastic electron scattering, Eq. (65) must be tied onto the electron current that 
describes the process above the dashed line in Fig. 5. Specifically, we are inter- 
ested in the scattering of left-handed (or right-handed) electrons. The appropri- 
ate current in this case is 

$. = fib’) -7,U -75) U(P) . (68) 
In the high energy deep-inelastic limit y2 > Q2 > M2, (68) becomes (class 
homework) 

(69) 

As a result of current conservation, j,,Q,, = 0, and it is possible to project 
j; as shown onto the three independent polarization vectors defined in (67). In 
the deep inelastic limit, it will be a good approximation to treat the direction of 
the incident electron spin as coincident with that of the momentum transfer 9: 
Note from (11) for the incident electron along the z-axis that 

QI p’ sin 0 E’B -= 
911 p-p’cos6 = y = (70) 

ando%,/-. H  enceforth, we neglect the angle between {and p’ in com- 
puting the cross section in the high energy, deep inelastic region for electrons 
with their spin polarized parallel or anti-parallel to that of the target protons. 
(Small correction terms can be included in comparing theory and data). With 
this simplifying assumption, which is also a good approximation, that electron 
and proton spins are aligned along the incident direction, we can perform the 

Fig. 5. Feynman diagram for inelastic scattering indicating the division into two 
parts corresponding to virtual photoproduction [Eq. (SS)] multiplied by 
the electron current [Eq. (SS)]. 
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azimuthal average when we tie (65) and (69) together as in (12) to form the 
polarized electron cross section 

d4 &a”- 
- d = a E’ (1 -2) [m,(Q’,v) + &, a~ + 2 UR] . 
27r dQ2dv *Q2v E (71) 

Interference between different polarizations is removed by the azimuthal 
averaging since such terms are proportional to cos4 and cos24. [Homework]. 
Comparing (71) with (19) in the E + co, B -+ 0 limit allows us to identify for 
deep inelastic scattering 

Wz(Q’,v) = 

The general identification is 

with OT %r f (ut i- OR) . (72) 

== = ” - (Q2/2M) w1 ’ 
(73) 

’ ’ =’ = v - (Q2/2M) 4n2a [w2($+9-WI] , 

which by (33) shows that ur -+ 0 in the scaling limit for light spin-l/2 target 
quarks. The reason for this vanishing limit is easy to see in the Breit frame for 
the target quark (i.e., the quantum must bring a unit of r-axis spin because the 
quark helicity cannot flip). We can now rewrite (71), assuming henceforth that 
we work exclusively with the azimuthally averaged scattering cross sections 

&at 
dQ2dv 

+;W2(Q2,v) ltv 
{ 2E’ [*]-ii [*I> 

for v2 > Q2 > M2 . 
(74) 

Finally, we have for the spin-dependent deep inelastic scattering to leading 
order in v/E and for v2 w Q2 w M2 

d2ae A 
dQZdu 

=A - UP 
UA+'JPt20, 

w2 7 (75) 

where, following Bjorken, we identify 

=R --*UP , 

(76) 
=L --) UA, 

for the target nuclear spin aligned parallel or anti-parallel to the I axis direction 
of < The experimentalists will accurately determine the ratio of dnpolarized-to- 
polarized cross sections (weighted of course by the degree of beam and target 
polarizations that are actually achieved): 

uA - UP 1 

uA+=P It& 
(77) 

The factor v/E is measured directly and the small ratio 

R =A!?- 
UA-tgP 

is deduced from measurement of the tan2(0/2) slope of (19) .and the definition 
(73). Typically R w 0.1. What one learns from (77) directly then is 

A, 3 w, 
“A+aP 

(78) 

The crucial quantity computed by Bjorken in the deep inelastic, high energy 
limit is the sum rule 

O” dv J - vW2 AI v (79) 

“ih = isi 
In the scaling limit, and using Fz(z) E vW2 as introduced earlier in discussing 
the parton model, (79) can be rewritten. 

(80) 

What Bjorken showed is that 2 can be written in the high energy limit as 
an equal-time commutator of two transverse components of the electromagnetic 
current densities: 

Z = lim 
P*-Da i /d3x (P ( [J&‘%  J,,(O)] [ P) . (81) 

In contrast to the Adler Sum Rule, the Bjorken Sum Rule can be derived only in 
the large Q2 high-energy limit, and on the basis of an assumption of “asymptotic 
freedom” in this limit. However it is a fundamental prediction of the theory 
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relying in this limit only on the local current algebra, and on no further dynamical 
assumptions or models. The appearance of a commutator of the x-component 
with the y-component of the current represents the difference between scattering 
of left- and right-handed electrons. The formal manipulations leading to (81) 
are slightly more complicated than Eqs. (52) to (59) for the Adler Sum Rule, and 
I don’t reproduce them here. 

Proceeding from (81) to an experimental prediction, we introduce the quark 
currents as in (62), the only difference being that the vector currents alone con- 
tribute to electromagnetic scattering. We write the vector quark current : 

J,, = $y,,Q$, whereQ = I 1 -: 
-5 

; Q2 = ; •t ; , (82) 

including the strange quark in the SU(3) limit, although it is immediately clear 
that the algebra here is the same as for SU(2). Taking the equal time commutator 
gives 

[J,(%O), J,(O)] = 2iJ3(Z) $tu. (i + 5 Q) rl t . . . , (83) 

where the added so-called gradient, or Schwinger, terms are required to insure 
locality and lorentz invariance, but do not contribute to the integral (80). As 
noted by Bjorken, the isovector part of (83) is just the ratio of the axial to 
vector p-decay coupling strengths known from low-energy processes. Therefore 
the proton-neutron difference is determined 

zp - ZN = ; 2 
I I V 

and by (80) we can write finally 
1 

J[ 
sip(x) -g;(x)] ds = ; 2 

I I 
w 0.2. 

0 V  

(84) 

Since it is an asymptotic sum rule, there are finite-energy corrections to 
the Bjorken Sum Rule that were not present for Adler’s relations for neutrino- 
scattering. These have been studied in some detail by J. Kodaira and collab- 
orators since 1979. To leading order in the strong coupling QCD corrections 
involving gluons, they find 

This correction vanishes at infinite energy as it must by asymptotic freedom. 
At Q2 x 4 GeV2, it leads to a 9% reduction of (85). 

An experimental program to test the Bjorken Sum Rule is being un- 
dertaken at SLAC under the leadership of Emlyn Hughes and Charles Prescott. 
Plans include running at electron energies up to 50 GeV incident on hydrogen 
and He3 gas targets to measure A1 for both protons and neutrons. Figure 6 from 
the experimental proposals gives an idea of the anticipated accuracies in compar- 
ison with what is already known for proton targets from earlier SLAC and CERN 
observations. Nothing is known at present about neutron scattering. Theoreti- 
cal calculations of gp(z) have led to a so-called “spin crisis”. This arises from 
the Ellis-Jaffe calculation of # gr dz m  0.19 for the proton based on the quark 
light-cone algebra that is generally accepted as valid, plus an assumption that 
strange sea quarks do not contribute in evaluating the contribution to Zp from 
the isoscalar term in (83). However, this calculation is about 50% larger than the 
smooth extrapolation to a value 

1 

I 
g[dz = 0.126 f (- .02) 

0 

from data shown in Fig. 7. The next lectures by Frank Sciulli will cover the 
experimental situation much more fully and accurately. Here I comment only to 
emphasize the importance of measuring the proton-neutron difference in order 
to avoid such model dependence and to rely on presumably accurate sum rule 
predictions. 

There is by now a very extensive literature on the spin crisis. One recent 
notable observation by Jaffe and Lipkin** based on earlier ideas of Lipkin shows 
that one way to remove the spin crisis is to form the proton of the three-valence 
quarks plus a QQ pair of quarks with L = S = 1 coupled to a J’= O++ or l++ 
state. Another interesting analysis by Anselmino, Ioffe, and Leader** emphasizes 
the transition from the Bjorken Sum Rule for Q2 + 00 with the analogous sum 
rule for real photons with Q2 = 0. 

The original dispersion relations for forward Compton scattering used causal- 
ity, analyticity, and unitarity (the optical theorem) to giveifor jr(v) and f?(v), 
as defined by 

f(v) = fi(v’) 2” . Z+ vf2(v2) io’. CT”’ x t , (87) 

Re fr(v’) = 
00 
Y 

dv12 
I 

“‘(“‘2 - “2 ) [QA(“‘) + oP(“‘)] . 038) 

0 

* R. L. Jaffe and II. J. Lipkin, Physics Lett. B200, 458 (1991). 
** M. Anselmino, B. L. Ioffe, and E. Leader, Soviet Journal of Nuclear Physics 49, 

136 (1989). 
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Fig. 6. Existing SLAC and CERN data for the proton spin structure function, 
together with data anticipated from the proposed El42 experiment at 
SLAC. 
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Fig. 7. Data for the sum rule for inelastic spin-dependent lepton-proton scat- 
tering. The black dots are the results from the EMC at CERN. s,,, z 
Q2/2M hax = V,h/ksx denotes the minimum value of I measured, cor- 
responding to the maximum energy loss by the muon in the CERN mea- 
surements and by the electron in the SLAC data. 

Re h(u2) = & ~[u,J(u’) -Us] d”” y’?- (89) 
i 

Equation (88) for the spin independent amplitude is a once-subtracted dis- 
persion relation with the zero energy limit given by the classical Thomson am- 
plitude. 

If limvd, (OP(V) - 0,4(v)) -t 0 faster than l/(&v), as indicated by low- 
order perturbation theory, Eq. (89) for the spin dependent amplitude requires no 
subtraction and converges as written. For pure QED this means no arbitrary pa- 
rameter other than the electron charge Q enters the theory. With this assumption 
the low-energy limit of ii(u) is given by 

-du’ 
f?(O) = &JT [c4(4 -apW] * 

0 
(90) 

A low energy theorem for f2(0) derived in 1954 by F. Low, and independently by 
M. Gell-Mann and M. Goldberger, from the general structure of the scattering 
amplitude, including in particular current conservation, gives the exact result 

fj’p’(O) = -’ u ““p ) 
2 M:, (91) 

where k is the anomalous nucleon magnetic moment in units of the nuclear Bohr 
magneton; i.e., np = 1.79 and ICN = -1.91 for the proton and neutron, re- 
spectively. Together, Eqs. (90) and (91) g ive an exact sum rule relation for the 
anomalous moment 

= 205 fib 

=du J 
0 

--[u;, -u;] = $ IC; = 233 pb. 

(92) 

Of particular importance to us here is that the difference of cross sections in the 
left side of (92) is precisely the Q2 -I 0 limit of the integrand in the Bjorken sum 
rule expression (79), multiplied by (-Q2/47r2a). [This is your homework; use 
Eq. (73)]. Thus defining 

Mdu J 7 [I&v*] uA - up 
UA+Upt2U, 

= Q2 IP(Q’) , (93) 
hh proton 
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we can write generally 

%  
/ Q Q2 --+ 00 

UP - 9 (94) I Q2 + 0 

and for the proton-neutron difference determined by the Bjorken Sum Rule 
1% 1 

I I 
.41 

/” 3 gy p=p Q2 + 00 

IP(Q2) - h(S2) \ (95) . \ $.ll 
* 

Thus both limits are determined exactly. Anselmino, Ioffe and Leader have stud- 
ied the transition region between Q2 --) 00 and Q2 + 0, and presented models 
to help interpolate. Figure 8 shows that a smooth extrapolation for the proton- 
neutron difference becomes a very different one for the proton and neutron in- 
dividually. The important point to emphasize is that in (93) we have a relation 
that is fixed by general predictions of local, relativistic quantum field theory in 
both the deep inelastic and the real photon limits. Confirmation of this result 
and study of the behavior between these two limits is of fundamental interest and 
importance. In both limits the predictions are in terms of zero-energy behavior. 
There is a world of interesting and clean physics to be studied here. It is a rich 
challenge to the experimenters. 

Finally, there is one additional sum rule that I mentioned at the end of the 
first lecture-the Gross-Llewellyn-Smith Sum Rule (51) for neutrino scattering. 
As noted there, the parton result suggested a more general basis for it. It too 
can be deduced similarly to the Bjorken Sum Rule as an asymptotic result, and 
with the same QCD correction factor as in (86). It has been tested with modest 
accuracy, as Sciulli will discuss in his lectures. That is the end of the Sum Rule 
story. 

We turn next to deviations from scaling. The underlying physical picture 
of the proton leading to scaling is that there are point-like constituents in the 
nucleon. It would be startling if this were strictly true. It would mean the end 
of our search for nature’s building blocks if these were truly points. However, we 
know from all previous advances in physics that even if a particle looks point-like 
on one resolution scale, at higher resolution you find some structure on a smaller 
scale. The electron was point-like in the Dirac hydrogen atom for a long time 
until we looked with such precision that quantum radiative corrections had to be 
included. To understand the electron’s anomalous magnetic moment, g - 2, and 
the Lamb Shift we had to include the coupling of the electron to the radiation 
field, which gave it structure, characteristically - ,/E A, where Q  = l/137 and 
AC is the electron compton wavelength, X, E h/me z 3.8 x lo-” cm. 

I I I I I I I I I 

0.2 - 

,,J 
-~(K~-K~)=o.ll M2[Ip(Q2)-INKy 

0.1 - *-* . . . . . . . . . . . . .s1-+Jy~ 
. . . . . . . . . . . . 

0 

-0.6 - 

-1.01 I I I I I I I I I , 
4 6 ' 

- 

. . . 

10 
s-02 

TlPlAa 

Fig. 6. The dotted line indicates the prediction of the Bjorken Sum Rule for 
large Q2. The existing data for the proron alone lie near this predirt.ion. 
The intercepts at Q’ = 0 for real photons are the dispersion relatiou 
predictions, Eqs. (94) and (95). 
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It would indeed be amazing if quarks didn’t have a structure because of their 
color interaction in QCD to gluons. Analogously to the electron in the atom, we 
expect to see deviations from scaling due to quark-gluon coupling in the proton. 
Scaling deviations should be seen-and in fact, they are observed experimentally. 

In contrast to quantum electrodynamics, QCD is asymptotically free. There- 
fore, when we go to asymptotically high momentum transfer, we should ob- 
serve scattering from free, point-like objects. But in QCD there is no length 
scale, and the approach to asymptopia is only logarithmic. In contrast, for a 
super-renormalizable theory with a length scale, interactions look really point- 
like asymptotically. However, QCD is a renormalizable theory with dimensionless 
interactions, and the approach to asymptopia is very slow, or logarithmic. This 
leads to the expectation of logarithmic deviations from scaling. The rest of this 
lecture is devoted to developing an understanding of the logarithmic corrections 
to scaling and to showing how they measure properties of theory. For large Q2 
there will be “higher twist” corrections of order M’/Q’, where M represents a 
proton or quark mass, or a threshold for creating massive quarks. These are 
important, and must be included as part of the technology of the field in mak- 
ing accurate analyses. I am not talking about these. I am talking about an 
in-principle deviation from scaling, even if Q2 is very large and one can forget 
about the masses of quarks. 

This deviation is to be expected if you think about it as follows. When you 
(theoretically) “look at a quark with a limited-power microscope”-which is what 
deep inelastic scattering does-you will see a quark carrying a certain momentum. 
But if you look with a very high resolving power with your microscope, you may 
not see that quark, but a quark with a fraction of that momentum because it has 
radiated a gluon that is moving with it. Or you may also see a quark-anti-quark 
pair. You will see more structure when you look with finer resolution, just like 
the atom became a structure and wasn’t a point, and also the nucleus revealed its 
structure, and so forth, as the resolution increased. And as one goes from Qr to 
a higher Qz > Qr, you may ask what is the quark momentum distribution in the 
proton that will be seen. In general one might expect that, for increasing Q, the 
quark momentum distribution-i.e., its distribution as a function of the Bjorken 
scaling variable I, which is the fraction of the P -+ 00 momentum of the proton 
that it carries-would be more highly concentrated at smaller I than for small Q 
values. This expresses the fact that at higher Qz > Qr, one is more likely to be 
seeing a quark that has radiated a fraction of its momentum to a gluon, which it 
interacts with in the usual way of field theory. This effect is illustrated in Fig. 9. 

The formal field theoretic analysis of the Q2 dependence of the structure 
functions relies on the fact that deep inelastic scattering processes are dominated 

3-92 X 7121A9 

Fig, 9. Predicted deviation from scaling for increasing Q’. 
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by contributions that come from near the light cone to the current commutator 
in Eq. (16)-i.e., 

I eiq’l 8~ (P 1 [J,(Y), JO)] I P) . (96) 

In (96), causality restricts the invariant interval y2 = t2 - i2 2 0. Furthermore, 
we may expect that the dominant contributions to (96) come from the space- 
time region characterized by Q  * y S 1, since there will be rapid oscillations in the 
integrand beyond this region. Recalling the definition of qJ’ in the proton rest 
system[see Eq. (ll)], this becomes 

q’y = “l-Jmy,,rsl. (97) 

Denoting by yll and yl the components of y’ parallel and perpendicular to & 
respectively, and identifying ys = t, we find 

t - Y(( - ; 1 
1 

Yll - j.& - t , y:s -L 
Q2 ’ 

and y,yp w L 
cl2 ’ 

(98) 

which indicates that the dominant contribution to deep inelastic scattering comes 
from the region asymptotically close to the light cone. Therefore in a theory such 
as QCD that is asymptotically free, one expects a parton theory with scaling 
behavior to emerge for large Q2. 

As to the rate of approach to scaling, a formal, elegant formalism was de- 
veloped in 1969 by K. Wilson to systematically study expansions about the light 
cone. A more intuitive and physical picture is given by that of the evolution equa- 
tions, such as developed in the studies of the development of cosmic ray showers 
passing through matter. The generalization of this approach from Abelian QED 
to non-Abelian QCD for quarks and gluons was pioneered by Kogut and Susskind, 
and given an elegant formulation in terms of the master equation for evolution 
by Altarelli and Parisi in 1977 and by Gribov, Lipatov and collaborators. This 
approach will give us a very nice physical understanding of the origin of the Q2 
variation. As always for an iterative description of the interaction of quarks with 
gluons, we work in an infinite momentum frame with p’ -+ oo as appropriate for 
the quark-parton model. 

We define q’(t,r) to be the number density of quarks of type i; that is the 
probability that (quark)i, when probed by a current at log momentum I has 
momentum fraction I. The r is defined by 

Q2 7 z en-, 
9: (99) 

where Qs is an arbitrary reference scale of which physical results and predictions 
must be independent. Tau plays a role analogous to time in familiar time evo- 
lution problems, and henceforth, for simplicity, we shall call r simply t. The t 

dependence of Q’(x, t) appears because as discussed above, wha( appears as a 
quark with z at a given tl may appear as a quark with only a fraction of that z 
accompanied by a gluon or quark pairs when viewed by a current at higher resolv- 
ing power t2 > tl. Consider that a quark with I may radiate a gluon and retain 
a fraction .r < 1 of its original momentum. Were there no gluon interactions, 
the probability density of finding a quark with a fraction I < 1 of momentum 
z would be zero, no matter what the resolving power t. Then the probability 
density of finding a quark would be 

P,i’ = a(2 - 1) . Pw 

Figure 10 illustrates what is being described (in one-dimension, with neglect 
of small transverse momentum corrections). Figure 10s shows that in the absence 
of QCD gluon interactions the current “sees” a quark with momentum +p. 

However, with gluon coupling, shown to lowest order in Fig. lob, there is also 
probability density in momentum space to “see” a quark with momentum fraction 
I, and the amplitude for this is proportional to the running coupling constant 
of &CD, a,(t). This contribution adds to Eq. (100) the probability density of 
finding a quark with fraction z when probed by a current with resolving power 
At about t. We have now 

Qdt) (0) pi:’ + dpj,o) = 6(z - 1) + 2* Pqq (2) dt , (101) 

where we have defined [a,(t)/(2*)] P,,(z) as th e variation per unit t of the prob- 
ability to find a quark with fraction z within the original one when probed at t. 
This introduces correspondingly the change in number density of quarks of type i 

dpi(,,t)= 
1 1 

44 
dt -J I 2* 4 dz QZY - ~1 Pq’q+) q’(y,t) , 

b 0 
(102) 

= T$]$ Pqtqi (;) *‘(y,t). ’ 
E 

This simplest form for the evolution equation is incomplete since we must 
still include the contribution of gluons transiting back to quarks, and in non- 
Abelian theories, to gluon pairs; all three contributions shown in Fig. 11 must be 
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Fig. 10. The current with qsees a quark with momentum fraction z in 10(a) in 
the absence of gluon emission, and with a reduced fraction 21 in IO(b) 
after gluon emission. 
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Fig. 11. The three elementary quark and gluon interactions with momentunl 
sharing as indicated, in an infinite momentum frame. 

included to order a,(t). The general form of the evolution equ ion for i quark 
flavors plus gluons, as written by Altarelli and Parisi is ’ 

003) 
in an obvious notation. This system of equations is simplified by incorporating 
symmetry properties of QCD in the definitions of P. For example, 

Pqiq> = 6ij Pqq (104) 

expresses the fact that the flavor does not change with gluon emission, and 

PGq1 = PGq 

PqiC = PqG 
(105) 

express the approximation of neglecting quark masses in calculating the proba- 
bility of finding a gluon inside a quark (anti-quark) and vice versa. There are 
additional relations reflecting momentum conservation and the conservation of 
the difference in numbers of quarks and anti-quarks; i.e., they are only produced 
or annihilated in pairs. 

Continuing the effort to uncover the physics without being buried in algebra, 
let us consider the evolution of the quark-anti-quark difference, defined as the 
nonsinglet number density, that is diagonal in flavor by (104) and (105) and can 
be written 

This result should look familiar to those of you who study the development of 
high-energy cosmic ray showers passing through matter. An important difference 
here, as we shall see shortly, is the running of the coupling constant in &CD, which 
can be neglected in practical applications of the evolution equation to shower 
development in QED. In the lowest order equivalent photon approximation in 
QED, Eq. (102) is valid. 
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For experimental analysis it is most convenient to separate the dependence of 
the matrix elements on momentum transfer t from the z variation of the density 
distributions. To do this in (106), one sim 
form the moments of the distributions (qN P 

ly takes a Mellin transformation to 
I Q  - a) 

MfS(t) E ) dx x”-1 d-(x4 . (107) 

For the nth moment as defined, (106) becomes 

$ M,?(f) = &dy jdrjdxx”-’ 6(yz-x) Pqq(z) eNS(y,t), 
0 0 0 

= $MfS(t) (idzz”-‘Pqq(z)) s$A;SMtS(t), 

. / 
Physics input 

W3) 
which expresses the t variation of M,,(t) in terms of the physics in AC’ and the 
running of a,(t). If we introduce the leading log approximation to a,(t), 

a,(t) = Lk- , 
1 + ba,t (109) 

we can integrate (108) to give the t dependence of the nth moment. 

My(t) = M,NS(0) (1 + ba,t)AzS(‘)/2*’ . (110) 
This displays the logarithmic dependence of the matrix elements in Q2 as 

claimed earlier. Physics lies in the power of the log as well as the slope b, which re- 
flects the symmetry properties-i.e., number of colors and flavors via its definition 

b = 11N-2f 
12* ’ 011) 

where N is the number of colors [= 3 for SU(3) of color], and f is the number of 
flavors (= 3 for three generations). 

Note that if the coupling constant didn’t run, i.e., b + 0 in (109) and (llO), 
the moments would vary with a fractional power of Q2 rather than of its log 

(112) 

Detecting such a difference is a difficult but not impossible challenge for an 
experimentalist. Figure 12 shows what is required for typical numbers for the 
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Fig. 12. Schematic representation of the difference in Q’ variation of the third 
moment M!‘(t) d p d’ g e en m  on whether the coupling constant runs (a) 
[Eq. (IlO)], or is constant (b) [Eq. (112)). 
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third moment to distinguish these two behaviors. Since the different moments 
are’related to one another through A,, and a,(t), their t variation gives informa- 
tion about the physics. One can calculate the A, using the simple QCD vertices 
in the infinite momentum frame and thereby predict the t, or log Q2 variation 
for experimental testing. For example the A,, for gluons of spin-0 differ from 
the values for spin-l, and accurate data confirms their spin-l character as gauge 
bosons. The calcuations of A,,, while not trival, are straightforward. One calcu- 
lates Pqq(z) in the + 00 frame. This is the first graph in Fig. 11, and one finds 

1 

ANS E  n 
/ 

dz I”-* Pqq(z) 
0 

(113) 

= C2(fu 

1 

-; + &  - 22; , 
j=2 1 

for n > 1 (AfS = 0), where the color Casimir Cz(R) is given by 

N2-1 4 
C2(R) = $ c t’t’ = 2N = - 3 for SU(3) color . (114) 

0 
For detailed calculations see the treatises by R. Field and C. Quigg. 
This concludes the discussion of the logarithmic approach to Bjorken 

scaling-and I am just about out of time. 
There are a number of things that I haven’t talked about that are very 

important; in particular model building; the transparency of nuclear matter with 
atomic number A > 1; the limiting behavior for x + 0 and tieing in with Reggie 
theory. There is a lot of very good technology being developed here and it is 
very important technology. Ask Stan Brodsky while you’re here at the school, 
because he knows so much about the nucleon wave functions that are constructed 
to interpret the vast body of data that cannot be summarized into Sum Rules. 
I have slighted this work not because it is not important. Simply, I chose to 
concentrate my two hours on the approach to scaling and on sum rules that I 
consider so basic . I really hope that the Bjorken sum rule will be proved wrong. 
That would cause quite a stir! 

REFERENCES 

T-P. Cheng 
and L-F. Li 

R. P. Feynman 

Rick Field 

H. E. Fisk 
and F. Sciulli 

Gauge Theory of Elementary Particle Physics 
(Oxford, 1984). 

Photon-Hadron Interactions 
(W. A. Benjamin, Inc., 1972). 

Applications of Perturbative QCD 
(W. A. Benjamin, Inc., 1989). 

Charged-Current Neutrino Interactions 
(Annual Reviews of Nuclear and Particle Science 
Vol. 32, 1982). 

B. L. Ioffe, Hard Processes, Vol. I. Phenomenology Quark- 
V. A. Khoze, Parton Model 
and L. N. Lipatov (North Holland, 1984). 

S. R. Mishra 
and F. Sciulli 

Deep Inelastic Lepton-Nucleon Scattering 
(Annual Reviews of Nuclear and Particle Science, 
Vol. 39, 1989). 

Chris Quigg Gauge Theories of the Strong, Weak, and Electro- 
magnetic Interactions 

(W. A. Benjamin, Inc., 1983). 

T. M. Yan The Parton Model 
(Annual Reviews of Nuclear and Particle Science, 
Vol. 26, 1976). I 

-67- 


