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Abstract

This thesis describes a precision measurement of the deep inelastic neutron spin struc-
ture function g7 (). The main motivation for the experiment is a test of the Bjorken
sum rule. Because of smaller statistical errors and broader kinematic coverage than
in previous experiments, we are able to study in detail the behavior of the spin struc-
ture function g} (z) for low values of the Bjorken scaling variable z. We find that
it has a strongly divergent behavior, in contradiction to the naive predictions of the
Regge theory. This calls into question the methods commonly used for extrapolation
of g1 (x)to z = 0. The difference between the proton and the neutron spin structure
functions is less divergent at low z, so a test of the Bjorken sum rule is possible. We
confirm the sum rule with an accuracy of 8%.

The experiment was performed at SLAC using a 50 GeV polarized electron beam
and a polarized ®He target. In this thesis the polarized target is described in detail.
We used the technique of Rb optical pumping and Rb-He spin exchange to polarize
the *He. Because of a novel mechanical design our target had the smallest dilution
ever achieved for a high density gas target. Since this is a precision measurement,
particular efforts were made to reduce the systematic errors due to the uncertainty
in the target parameters. Most important parameters were measured by more than
one method. We implemented novel techniques for measuring the thickness of the
glass windows of the target, the *He density, and the polarization. In particular,
one of the methods for measuring the gas density relied on the broadening of the Rb
optical absorption lines by collisions with *He atoms. The calibration of this technique
resulted in the most precise measurements of the pressure broadening parameters
for *He as well as several other gases, which are described in an Appendix. The
polarization of the *He was also measured by two methods, one relying on traditional
NMR techniques and the other on the shift of the Rb Zeeman resonance frequency due
to the >He polarization. To calibrate the frequency shift polarimetry, we performed an
accurate measurement of a Rb-*He spin exchange parameter, significantly improving
on previous results.

A part of the thesis is devoted to the analysis of the high energy data. We
present an algorithm for electron-pion discrimination based on the lateral shape of
their shower in the electromagnetic calorimeter. The calculation of the radiative
corrections to the deep inelastic scattering and, especially, their effect on the exper-
imental errors is also discussed. The last chapter is devoted to the interpretation of
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our results in the framework of perturbative QCD. We present a physically intuitive
description of the ambiguities arising in Next to Leading Order (NLO) analysis of

the spin structure functions. Using such analysis we describe the implications of our
data.
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Chapter 1

Introduction

At present, all experimental observations in high energy and nuclear physics are
in agreement with a theory of elementary particles and interactions known as the
Standard model. This is a combination of the gauge theory of electromagnetic inter-
actions based on a U(1) group, the weak interactions based on an SU(2),, group, and
the strong interactions based on a non-Abelian SU(3) group. While each of these
theories has been studied in numerous experiments and is commonly accepted, the
precision with which they are tested is drastically different. For example, the electro-
magnetic coupling constant is known to 0.045 ppm [1]: a., = 1/137.0359895(61), the
weak coupling constant at low energy is known to 20 ppm: Gr =1.16639(2) x 1075
GeV~2, while the strong coupling constant is only known to 3%: o, (Mz) =0.118(3).
Clearly, precision tests of the theory of strong interactions are called for.

This thesis describes an experiment whose goal is to precisely test one of the
predictions of QCD. Because the fundamental objects in QCD, quarks and gluons,
are never observed directly, it is difficult to find precisely testable predictions. The
QCD sum rules give predictions about the integrals of the deep inelastic structure
functions which are free from uncertainties associated with non-perturbative quark
interactions at low energies. Several sum rules exist in QCD. The testable sum rules
for unpolarized deep inelastic structure functions involve only neutrino scattering.
Nevertheless, one such rule, the Gross - Llewellyn Smith sum rule, has been tested
to 3%. The other fundamental sum rule that can be accurately tested is the Bjorken
sum rule, which involves integrals of the proton and neutron spin structure functions.

The measurement of the spin structure functions requires the use of both a polar-
ized beam and a polarized target. The experiment was conducted at Stanford Linear
Accelerator Center (SLAC), using a 50 GeV electron beam polarized to 80%. We
used a *He polarized target to measure the spin structure function of the neutron.
Because of the Pauli exclusion principle, the spins of the two protons in *He are op-
positely polarized and most of the spin is due to the neutron. The polarized *He
gas target relies on several atomic physics techniques. We used optical pumping of
Rb vapor and Rb-He spin exchange to polarize the *He. This experiment benefited
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2 Chapter 1. Introduction

from the experience of the previous SLAC *He experiment [2], which used a similar
target. About half of the improvement in the statistical precision compared with the
previous experiment came from the improvements in the target, especially its dilution
factor. In addition, we placed a special emphasis on reducing the systematic errors
originating from the target parameters.

The results of the early measurements of the proton spin structure function by
EMC at CERN [3]were quite unexpected, as they seemed to imply that the fraction
of the proton spin carried by the quarks was very small. This interpretation sparked
considerable theoretical and experimentalinterest in the area, and it is still developing
at a rapid pace. For reviews written in the last two years see [4,5, 6, 7,8, 9, 10, 11].
A relative consensus on the interpretation of the EMC result developed only recently.

This thesis is organized as follows. In Chapter 2 | introduce polarized deep inelas-
tic scattering and spin sum rules. A brief overview of past polarized DIS experiments
is given. Chapter 3 focuses on our experiment and discusses all aspects of the setup
and analysis unrelated to the polarized target. In particular, we discuss the phys-
ical properties of the electromagnetic shower which can be used for discrimination
between electrons and pions in our calorimeter. A full description of the analysis is
given in Appendix A. We also describe the calculation of the radiative corrections
to the deep inelastic scattering, in particular, their effect on the experimental errors.
Chapters 4 and 5 focus on the polarized target. Chapter 4 describes the technique
of optical pumping and spin exchange, fabrication of the target cells, measurements
of their physical parameters and the target dilution factor. The performance of the
polarized target during the run is also discussed. In Chapter 5 | describe the two
techniques used for *He polarimetry. A detailed analysis of the systematic errors in
each technique is given. Finally, in Chapter 6 | present the results of our experi-
ment and their interpretation within QCD. | give a physically intuitive description of
the ambiguities present in QCD analysis due to the axial anomaly, and discuss the
implications of the data.
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Chapter 2

Polarized Deep Inelastic Scattering

Deep Inelastic Scattering (DIS) has been a major tool in the study of hadron structure
and QCD. The initial evidence for the existence of elementary particles inside the
nucleon came from DIS experiments conducted at SLAC in the 60’s [1]. The study of
the nucleon structure using DIS has continued at SLAC, CERN and DESY, providing
some of the most stringent tests of QCD. In DIS one uses a lepton probe (e, g, or
v) whose interactions are well understood to study the properties of the nucleons
(protons or neutrons). By controlling the polarization degrees of freedom one can
obtain significant additional information about the structure of the nucleon.

2.1 Kinematics

Most DIS experiments use a high energy lepton beam scattering from a fixed nuclear
target’. The definition of the kinematic variables for our experiment is shown in
Figure 2.1. In other experiments u, or v beams are used instead of the electrons.

All kinematic variables are defined in the lab frame. The initial electron has an
energy E, four momentum k#, and spin s#, while the neutron at rest in the lab frame
has p* =(M,0,0,0) and spin S#. The electron scatters electromagnetically from the
constituents inside the neutron. Interactions through a Z° exchange are also possible,
but for our experiment ?* < M% and the exchange of the weak boson is strongly
suppressed. It results, however, in a non-negligible correction which is applied to the
data. The scattered electron is detected by the spectrometer, and its energy E’ and
momentum k™ are measured. The (virtual) photon energy is v = E — E and its
momentum transfer is Q? = —¢?> = (k* — k™*)>. After the scattering, the neutron
breaks up into many hadronic products. Their total invariant energy is given by
W2 = (p* t¢#)* = M*+2Mv—Q?. We do not detect any of the hadrons, but measure
an inclusive cross-section. The scattering is called deep inelastic because W? > M2
In contrast, for elastic scattering the neutron remains intact and W? = M?.

‘Recent DIS experiments at HERA use colliding positron-proton beams.
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2.1. Kinematics 5

E. k™

E, k¥, s* 6

M, p*, S¥ n

W2

|

Hadron Products

Figure 2.1: Kinematic variables used in deep inelastic scattering.

It is convenient to parametrize the scattering by two dimensionless variables,
whose values range from 0 to 1. One defines:

@@
T 2pq 2Mv (21
A

where the first equality gives a Lorentz invariant definition and the second is true
only in the Lab frame. As we will see, x plays a very special role in deep inelastic
processes, while y is the fractional energy loss of the scattered electron. Several useful
relations between the kinematic variables are given below:

Q* = 4EE'sin®(0/2) =2EMazy (2.3)
W2 = M*+Q*(1—2)/z

Thus, the deep inelastic limit W? > M? is also equivalent to the Bjorken scaling
limit Q% > M? at constant x. From equation (2.3) one can see that the minimum
z accessible to an experiment is zmin ~ Q*/2EM (for y ~ 1). For deep inelastic
scattering one would like to have Q% > 1 GeV2. However, experiments show that
the results approach the deep inelastic limit even for Q2 ~ 1 GeV?. Therefore, partly
by convention, the deep inelastic region is defined as Q% > 1 GeV?, W2 > 4 GeV?2.
This gives zmin ~ 1/2E(GeV). So, with a 48 GeV beam at SLAC we can reach to

z ~ 0.01. At CERN, using 190 GeV muon beam, the DIS measurements can be done
down to x = 0.003.



6 Chapter 2. Polarized Deep Inelastic Scattering

2.2 The Scattering Cross-Section

Using the usual rules of relativistic scattering theory, we can write the electron scat-
tering cross-section in the following form [2, 3]:

e (2m) al P X Py
d = M 2———( 64( - i) :
7= KFMIF 0t (pr o= L) ppr s I s

where p;, 2 = 1...N are the momenta of the hadron products in the final state, and
the scattering matrix is given by:

(2.5)

iM = [ —ie <‘j;") Eos i (O k X, 8 (JY(0)|n, ) (2.6)

Here X denotes the final hadronic state produced by the collision, j# (0) and J” (0) are
the leptonic and hadronic electromagnetic currents respectively. One can separate the
square of the matrix element into a product of purely leptonic and hadronic tensors,
which are usually defined by:

(F M) = -}LWWW (2.7)

The leptonic part is given by:

L =% (K8 |j* (0)] &, s) (k, s 15% (0)] K, ) (2.8)

sl

where we sum over the final electron spin states, since they are not distinguished in
the detector.
In the rest frame of a spin 1/2 particle? the spin vector can be defined as follows:

25 = ul (k,s)u(k,s) =@ (I, s) 77 u (IC, s) (2.9)

We use a normalization of the Dirac spinors utu = 2E. In the rest frame of the
particle of mass m polarized in the 2 direction = mi. Thus, the polarization vector
has units of mass. This expression is generalized to a Lorentz invariant form:

2s* =w (IC, s) "y u (IC, s) (2.10)

For an ultrarelativistic particle polarized along is momentum (definite helicity) one
gets s* = Ak*, where A = %1 is the helicity.

2Some polarized DIS experiments are done with a spin-1 D target. In this case the expressions
are slightly modified.



2.2. The Scattering Cross-section 7

The main advantage of deep inelastic scattering is that the lepton electromagnetic
current has a well known Dirac form:

(IC, s"17* (0) k,s) =u (K*,s") y"u (k,s) (2.11)
Summing the leptonic tensor (2.8) over the final electron spin s’ we get:
L9 = 2 (Kk + Kk — (k- K —m?) g™ — ie"" gy, ) (2.12)

From now on we will neglect the electron mass m. Note that the electron spin
contributes only to the anti-symmetric part of the lepton tensor.
The hadronic tensor is given by:
1
W = -2 (27)" 8% (p+ ¢ — px) (X, 5| (0)] 1, S) (n, S 17, (0)] X, &) (2.13)
X,s’

where we sum over all possible final states X and final spin directions S’. Since
the proton and the final state are not elementary Dirac particles, we do not know
the electromagnetic current. However, we can greatly restrict the possible form of
the current by using symmetry and invariance properties. Lorentz invariance implies
that W,, should transform as a rank 2 tensor, so it can be formed only from available
four vectors: p,, q,, S, and tensors g,., €,..,-- The conservation of the hadronic
electromagnetic current, time reversal invariance and parity invariance® allows one
to specify the hadronic tensor in terms of 4 independent scalar functions of the two
independent Lorentz invariant scalars, chosen to be z and @?* [3]:

quqv F2($7Q2) p-q p-q
W;w = £ fL'aQ?) (—guu + ;2 ) + p-q Dp — _qg__qu Py — _C]Tqu
2
+ Z‘_g—l_‘(ig_)s;u/paqpsa
P
2
+ (p ] q)2g2 (‘r7 Q2> 5uupoqp [(p : (]) S7 — (S . q) p”] (2.14)

In this way the hadronic interactions are completely parametrized by four functions:
Fy, Fs, ¢1, and g¢,, which are called the structure functions. ¢g; and g, in particular,
are called the spin structure functions. Note that ¢, and g, contribute only to the
antisymmetric part of the hadronic tensor. When W,, is contracted with L**, the
spin structure functions contribute to the cross-section only if both the electron and
the neutron are polarized®.

3For neutrino scattering parity is violated which results in additional terms in the hadronic tensor.
“For spin-1 targets there is a contribution for an unpolarized beam, but it is difficult to measure.
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It is instructive to calculate the structure functions for a target which is an ele-
mentary Dirac spinor. In this case the scattering is elastic at the tree level. W, is
given by the same formula (2.8) as for the leptons and we get:

_ Q

= %5 (1 - 2MV) (2.15)
Q* 2

o 61— -@=— (2.16)
Bo= e ( 2M1/>

= 51_16 (1— Q" (2.17)
o= 2Mv '
g2 = 0 (2.18)

The delta function comes from momentum conservation for elastic scattering (i.e.
W2 = M?).

2.3 Scaling

The first deep inelastic scattering experiments found, of course, large deviations from
the simple Dirac form of the structure functions. However, they found a very interest-
ing behavior that for high momentum transfer Q2 > 1 GeV? the structure functions
depend only on one variable x = Q?/2Mv, and are independent of Q* at constant z.
This behavior, known as scaling [4, 5] was interpreted as evidence that the nucleons
are made of elementary, weakly interacting particles, which were called partons.

In this approximations one assumes that the electron scatters from one of the
partons, which is assumed to be “free” during the interaction. The scattering is an
incoherent sum of the contributions from different partons. We assume that each
parton carries a fraction a of the nucleon momentum and introduce parton distribu-
tion functions ¢ (o) = dP/da equal to the probability of finding a parton inside the
nucleon carrying momentum fraction between « and o +da. In QCD, the partons
which carry electric charge and contribute to the scattering are quarks. They are
elementary Dirac particles and should have elementary form factors.

Since the partons have momentum p, = ap, we should replace Y =p .q/M by av.
This results in the replacement of § (1 — Q*/2Mv) by 6 (a—Q*/2Mv) =é(a —z)
in equations (2.15-2.18). Thus, an electron with kinematic variable X can scatter
only from a parton carrying a fraction = of the momentum of the nucleon. If the
partons are non-interacting, then ¢ (z)is a probability distribution that depends only
on the properties of the nucleon, not on the details of the scattering. Therefore, the
scattering cross-section should depend only on = and not on Q? or v separately. The
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structure functions can be written in terms of the parton distributions as follows:

A(Q) = 32 (219)
F, (x,cy) = =) elqi(@) (2.20)
0 (207 = 35 (o @)~ @) (2.21)
g9 (2,Q%) = 0 (2.22)

where the sum runs over all partons in the nucleon weighted by the square of their
electric charge e; (in units of the electron charge), and the polarized distributions are
defined as the probability of finding the parton with the same qg (x)or opposite q} (z)
helicity as the parent nucleon.

In QCD the partons in the nucleon are quarks and gluons. The gluons are not
charged, while the quarks carry fractional charges: e, =2/3, ¢4 =—1/3, e, =—1/3.
The neutron is made from 2 d quarks and 1 u quark, while the proton from 2 u
quarks and 1d quark. Actually, the quarks scheme with specific charges and masses
was proposed by Gell-Mann and Zweig before the creation of QCD or the discovery
of scaling [6] to explain the abundance of hadrons and mesons. QCD also predicts
the existence of “sea” quarks, created out of the vacuum by gluon interactions.

2.4 Sum Rules

One of the most fruitful and robust consequences of the quark parton model (QPM)
are the sum rules for structure functions. They give a prediction for the integral
over x of various combinations of the structure functions. Most of them are modi-
fied only by calculable radiative corrections when full interactions of QCD are taken
into account. Thus, they allow a model independent test of the QPM and its QCD
modifications. For unpolarized structure functions the only testable sum rules involve
neutrino scattering. They are [7]:

Gross — Llewellyn Smith (baryon) - /1 dz (F2P (z) T F2™ (x))/2 = 3(2.23)
0

Adler / dr (F2 (@) = F7 (2)) o = 2(2.24)
0

Here F3 is an additional structure function, which is present because of parity violation
in neutrino interactions. Presently, the baryon sum rule is tested to 3% (with 2 &

deviation from the theoretical prediction), and the Adler sum rule is tested to 20%
[7]. For polarized structure functions two more sum rules exist: the Bjorken sum rule
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[8]and the Ellis-Jaffe [9] sum rule, which are discussed in detail below. With the data
from our experiment the Bjorken sum rule can be tested to 8%.

In the parton model we can express the average helicity of each quark using our
definition of the polarized quark momentum distributions:

A= [ (@)~ () +al ()~ 2)) da (2.25)

where ¢; (x)denotes the momentum distribution of the anti-quarks. The integral of
the spin structure function ¢; gives us a linear combination of the helicities carried
by each quark flavor:

1 174 1 1
= = —| = — d — .
Iy /0 g1 (z)dz 5 (9Au+ gA + 9A5) (2.26)
which follows from equation (2.21). On the other hand, using equation (2.10) the

helicity carried by each quark can be calculated from the following matrix element:
20gis" = (N |givnysai| i) (2.27)

If the nucleon were a Dirac particle made of one quark then A¢g = 1. In the quark
parton model the two expressions for quark helicity, (2.25) and (2.27)) are identified
with each other. We will come back to the validity of this assumption later.

We can now derive the Bjorken sum rule. Recall from the theory of weak in-
teractions that the weak current matrix element for the neutron decay is defined as
[10]:

plJuln) = {plrty* (1 —4° an“(l—gﬁ5>U=2(“—g—As“) 2.28
(p|Tuln) = (p|rHy* (1= 1°)|n) = Uy et P (2.28)
where U stands for a Dirac spinor and 7 is a Pauli matrix acting in the isospin space.

ga/gv is an empirical quantity that parametrizes the deviation of the neutron weak
axial coupling from that of a Dirac particle. Experimentally, g4/gv = 1.2601f0.0025

[11]. Using properties of the isospin operators [r*,77] = 73 and 7~ |p) = In),the
axial current can be converted to a matrix element between proton states:
(p|r*v*9°|n) = (B|*v*+*|p) (2.29)

With the isospin assignments for the quarks: t®u = u, 7°d = —d, and s = 0 we get:
<p |737P75'p> = <ﬁ ,ﬁ7“75u - 077“75d' p> = 2s* (Au, — Ad,) (2.30)
Thus

(p|r+ymas|n) = 25" 83 = 25" (Au, — Ad)) (2.31)
av



2.4. Sum Rules 11

To extract the appropriate combination of the quark helicities from DIS measurements
we form the difference between the integrals of ¢, for the proton and the neutron and
use isospin invariance to set Au, = Ad,, Ad, = Au,, and As, = As,. By convention)
the quark momentum distributions refer to the distributions in the proton: Au =
Au,. The neutron momentum distributions can be obtained by isospin invariance.
This gives us

P17 = L (Au—Ad) = 194 (2.32)

1 1 — 6 - 6gv .

which is the Bjorken sum rule, derived by Bjorken in 1966 and, at that time, called
a “worthless equation”) [8]because of inaccessibility of the spin degrees of freedom.

In this derivation we only used the assignment of electric and isospin charges to
the quarks, the isospin symmetry)and the identification of the quark helicity matrix
element (2.27) with the integral of the quark momentum distribution. The assignment
of the charges is fundamental to the parton model and QCD, and isospin symmetry
violations due to finite quark mass and electromagnetic interactions are expected to
be very small. The last assumption) however) requires further justification. The
quark momentum distributions are measured in DIS at high Q?, while the quark
helicity matrix elements are related to weak decay constants measured at Q? = 0.
In the non-interacting quark parton model the scaling is exact and the structure
functions do not depend on Q. Thus the two expressions for the quark helicities
are identical. This is not true in QCD, where there are scaling violations which
become large and incalculable at low Q’. However, it turns out that the particular
combination of quark helicities a3 = Au — Ad is independent of Q? because of axial
flavor current conservation, and the relationship remains valid to zeroth order in «;.
The only modification from QCD is due to radiative corrections for the photon-quark
interactions. They can be calculated using, for example, the techniques of operator
product expansion [3]. Thus, the Bjorken sum rule which rests on a small number
of very fundamental assumptions, remains valid in QCD. This has led Feynman to
conclude that “its verification or failure [the Bjorken Sum Rule] would have a most
decisive effect on the direction of future high energy theoretical physics” [12].

One can carry this analysis further and consider the implications of the full SU(3)f
symmetry of u, d and s quarks. This neglects the mass of the s quark, which is
significant, and, therefore, on somewhat theoretically weaker grounds. Using SU(3)
symmetry one can show that:

as =AuTAd —2As =3E - D (2.33)

where F" and D are two constants that parametrize the deviation of the axial current
from its Dirac form in the baryon octet [IO]. as is the second diagonal element of
the axial flavor current in SU(3) and is independent of @* due to the conservation
of the current. From the data on the semileptonic weak decays of baryons one can
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determine F' and D. Further, it can be argued that the polarization of the s quarks
should be small on the basis of the OZI rule [9] or helicity conservation of the gluon-
quark interactions [13]. If one assumes that As =0, the values for I'; and T’} can be
predicted separately:

1

= — (9F — D) (2.34)
15
1

'Y = —(6F—4D) (2.35)
15

which is known as the Ellis-Jaffe sum rule [9]. The status of this rule is much less
solid in QCD because the assumption that As =0 is not well justified and not even
well defined. Recent experiments observed violations of the Ellis-Jaffe sum rule for
both the neutron and the proton.

Thus, there are several predictions for the integrals of the spin structure functions
of varying degree of reliability. To test these predictions one has to measure ¢; over a
large kinematic range and calculate the integral for both the neutron and the proton.

2.5 Experimental Observables

To access the spin structure functions experimentally, one has to measure the cross-
section for the scattering of a polarized lepton on a polarized nucleon. Using the
equations for the hadronic and leptonic tensors we can easily calculate the differential
cross-section of deep inelastic scattering [14]:

25 Ao Q* 2 2
d‘gd@l = Q% [4M2E2:v'F1 (JC, Q2> + (1 — 2‘)%1’ — 4&’) Fy (JT,QQ)]

Gt (- i~ ) (@) H (e

for longitudinally polarized beam with polarization £ and target with polarization
P,. Experimentally, it is easier to measure an asymmetry between the cross-section
with P, >0 and £ F; <0. The relative asymmetry is defined assuming 100% beam
and target polarizations:

dott —do!!

| = 4ot FdoTt (237

and is given by the ratio of the polarized to the unpolarized cross-sections. One can
also measure an asymmetry with the target polarization transverse to the beam:

dot— — do'l*

Al = —o—
L7 dol— F dol—

(2.38)
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Sometimes it is convenient to think about the scattering cross-section for a virtual
photon shown in Figure 2.1. In this case we replace the lepton electromagnetic tensor
L* by the virtual photon polarization vector ¢ for the external photon line and
remove the photon propagator:

[(fIM])[* = eX"e5 W (2.39)

Also the flux factor 1/2F in the expression for the cross-section (2.5) should be
replaced by 1/2K, where K = (W? — M?)/2M = v t¢*/2M is a Lorentz invariant.
For a real photon ¢> =0and K =v. The index X labels different initial polarizations
of the photon. One usually defines [3]:

ei = (0,F1,-1,0)/V2 (2.40)

e = 1/Q (\/1/2-{-@2,0,0,1/) (2.41)

which satisfy the condition ¢#q, = 0. ¢¢ corresponds to a longitudinally polarized
photon and is allowed because the photon is virtual. One can define four cross-
sections corresponding to different initial polarization states {14, 15]:

dn?oy

ap = o(+1,-12) = o (B4 o= ve) (2.42)
472
032 = o(+1,4+1/2) = MI? (Fl—g1+72g2) (2.43)
o, = o(0,4+1/2) = ina (=P + F2 (1+42) /22) (2.44)
’ MK\ TR T '
A7l
or, = o (|4+1,-1/2),10,+1/2)) = 3= V27 (91 + 92) (2.45)

where o (Xi, S;) denotes the cross-section with initial photon helicity \; and initial
proton spin S; along the Z axis. ogy is the contribution of the interference term
between the |+1,~1/2) and |0,+1/2) states. Here v =/Q%/v? =22/ M?/Q? — 0
as ()? — oo with constant z.

It is interesting to consider this result in terms of helicity conservation at high
energy. For an ultrarelativistic fermion (1 £ +°) projects out the helicity states [2]:

;(1—75)u ~ ug (2.46)
1
5 @+9")u ~ u (2.47)

Using the properties of the 4 matrixes one can show that the electromagnetic current
conserves helicity: uy*u = up~y*uy, +aR—y“uR. Figure 2.2 shows an electromagnetic
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interaction between an electron and a quark. It is assumed that both the quark
and the electron scatter backwards in the center of mass frame. Other cases can be
expressed by using rotation properties of the angular momentum operators. Both
the electron and the quark are ultrarelativistic. Using the conservation of helicity we
can see that the electron is more likely to emit a longitudinally polarized photon and
preserve its helicity. The quark is more likely to absorb the photon if its initial spin
is opposite to the photon spin, so it can preserve its helicity as well.

It is interesting to see what happens if we use the elementary particle form of the
structure functions (2.19-2.22). In the limit of deep inelastic scattering v — 0 and to
zeroth order in v we get:

47l
(1 — :
o1/2 i (1—x) (2.48)
o372 = oL =07 =0 (2.49)

Thus, only the dominant helicity process, shown in Figure 2.2 contributes to scatter-
ing.

-« . —>
>— o
— J _+1 <4
€ s=+1/2 B s=-1/2 9

Figure 2.2: The dominant spin scattering cross-section due to the helicity conserva-
tion.

Since the nucleon is more complicated than a single quark, all of the cross-sections
contribute. It is natural to define virtual photon asymmetries A; and A, as follows:

A, = D279 (2.50)
0172 + 03)2
A, = —0TL (2.51)
? o1/2 + 03/2 .

In addition one defines R = 207,/ (01/2 +03/2) which measures the deviation of the
unpolarized structure functions from the Callan-Gross identity 2z F; = F; [16].
Several simple predictions can be made for A, based on the quark-parton model.
For  — 1we expect that only one quark carries all of the momentum and spin of the
nucleon. Therefore, the cross-section is given by equation (2.48) and A; = 1[17]. If
we assume the SU(6) model for the flavor and spin wavefunction of the quarks inside
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the nucleon, then Au =4/9, Ad = —1/9 and using:

2
A, = DG (2.52)
Yelg
we get A} = 5/9 and A} = 0 independent of . Thus, the proton asymmetry is
expected to be large and positive, while the neutron asymmetry is close to zero.
Since we cannot create a multi-GeV beam of virtual photons, we use polarized
electrons (or muons) to create the photons with known polarization properties. Then

Ay and A, are related to the measured asymmetries Ay and A, by the following
kinematic factors [14]:

A = D(A1+1n4) (2.53)
AL = d(Ay—CA) (2.54)
where
1-¢F'/E

b= =7 (2:59)
V@R

) = e (2.56)
2e

d = D\/1+€ (2.57)

( = n(lgf) (2.58)

1

2.59
1t2@+12/Q?) tan? (0/2) (2.59)
D can be thought of as a depolarization factor of the photon due to the fact it is not
emitted parallel to the initial nucleon spin. The factors D and n are plotted vs. x for
the 2.75° spectrometer in Figure 2.3.

Using equations (2.42-2.45) and (2.55-2.59) we get:

g =7 _1:1,72 (A1 +vA42) = %(A“ + tan (0/2) AJ_) (2.60)
1
I y ,ETE cos(0) o A>261
@ = THg A =M= g \ = As —sin (0) 4y 2.6
where
,_ (=9 E2-y) 5 62
= y(l+cR) (2.62)
2
F = F L+7 (2.63)

2z (1 + R)
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Figure 2.3: The kinematic factors D and 7 as a function of = for the 2.75° spectrom-
eter.

Equations (2.60-2.61) can also be obtained directly from the expression for the lepton
cross-section (2.36).

So, to extract g; one has to measure both A, and A,. However, because tan (6/2)
is small in our experiment, A; gives only a very small contribution. One also needs
to know F3 and R, which have been measured with sufficient accuracy in unpolarized
deep inelastic scattering experiments [18, 19].

Experiments cannot measure ¢; (ic) over the entire range of 0 to 1, which is needed
to test the sumrules. At low z the range is limited by the Q? > 1GeV? Bjorken scaling
cut, and at high = by the W2 >4 GeV? deep inelastic cut and limited statistics due
to very small DIS cross-section. Therefore, theoretical input is needed to extrapolate
the data to x =0 and * = 1. For extrapolation to x = 1 one usually assumes that
A; — 1based on helicity conservation, as described on page 14. The contribution to
the integral of ¢; is small, because F; — 0 as c — 1. The uncertainty due to high X
extrapolation is usually very small.

The extrapolation to low z is more uncertain. This is one of the main reasons
that the polarized DIS experiments have been conducted at increasingly higher en-
ergy to access a lower x region. One historically has used Regge theory for low
extrapolation, which predicts that [20, 21]:

g ()~ 2™, 2 -0 (2.64)
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where «; is constrained between —0.5 < a; < 0. This implies that ¢; goes to zero
or stays constant as « — 0. The validity of this assumption is questionable. Several
other models exist [22, 23, 24], which predict various forms for the low = behavior of
¢1 diverging at * = 0 with various degrees of severity. In most experimental papers
the Regge theory with a; =0 has been used for extrapolation.

Another issue that has to be addressed in interpreting experimental results is the
dependence of ¢g; on Q2. Although in QPM the scaling is exact, QCD introduces
scaling violations which depend of log@?. The sum rules derived in Section 2.4 have
to be evaluated at constant Q2. However, because of kinematic constraints, g, is
measured over a range of Q? correlated with x. In addition, different experiments
measure ¢; at different Q2. It is observed experimentally that A; ~ g1/ F1 has no
Q* dependence within errors. In QCD this is explained by the fact that F; and g,
have very similar Q% evolution. Experimental analyses usually assume that A, is
independent of Q2. Since F; has been measured over a wide range of z and Q?, this
allows one to calculate the Q? dependence of g,. The questions of low z behavior and
Q? dependence will be considered in more detail in Chapter 6.

2.6 Past Experiments

The first polarized deep inelastic scattering experiments were carried out at SLAC
in the 70's - early 80’s. The first experiment E-80 [25] was also the first high energy
experiment ever to use a polarized electron beam. The electron energy was 6-13 GeV.
Polarized electrons were produced by photo-ionization of Li atoms polarized by Stern-
Gerlach technique. The electron polarization was 50-80%, however the beam current
was limited to 10® electrons per pulse. The polarization of the electron beam was
measured at the source by Mott scattering and at the target by Mgller scattering. E-
80 used a butanol solid target polarized by the dynamic nuclear polarization technique
(DNP) [26]. The only significant non-zero spin element in butanol is hydrogen, so
it is equivalent to a proton target with a dilution factor of 0.11. Polarizations up to
50% were achieved. However, the radiation resistance of the material was low, and,
in fact, was a limiting factor for the beam current. The experiment collected data in
the range 0.1 <z < 0.5 at an average Q? of 2 GeV?. The virtual photon asymmetry
Ay was found to be close to the SU(6) prediction of 5/9 in the range 0.3 <z < 0.5
and falling down at lower 7.

The next experiment E-130 [27] was done using a higher beam energy of 22 GeV
to measure the asymmetry at higher Q*. The beam and target polarizations were
85% and 50% respectively and a dedicated spectrometer was built at § = 11°. The
measurements were performed in the range 0.2 <z < 0.65 and 2 GeV* < Q* <6
GeV?2. The results were in good agreement with E-80 and confirmed the predictions
of the SU(6) model.
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Although the first SLAC experiments were very successful in confirming the basic
picture of the proton spin structure, they lacked data at sufficiently low z to calculate
the first moment of ¢, and check the Ellis-Jaffe sum rule. The next polarized deep
inelastic experiment was carried out at CERN by the European Muon Collaboration
(EMC) [28]. This and subsequent CERN experiments used a muon beam with an
energy of 100-200 GeV to access very low z at high Q2. The muon beam is produced
at CERN from the decay of pions and kaons generated by stopping a proton beam
in a tungsten target. The muons are naturally polarized due to the V-A structure
of the weak decays. The average muon polarization during the run was 80%. An
ammonia solid state target was used in the experiment, polarized by DNP to 80%.
The target consisted of two sections, each 36 cm long, polarized in opposite directions.
The resolution of the spectrometer was sufficient to trace the scattered electron to
one of the two target halves. The direction of the target polarization was periodically
reversed to reduce uncertainties due to variations in the spectrometer acceptance.
However, the time drifts of the acceptance were the dominant source of the systematic
error. The main limitation of the experiment was low statistics due to low intensity
of the secondary muon beam. The data were collected in the range 0.01 <z < 0.7 at
3.5 GeV? < ()? <30 GeV?. Based on these data EMC calculated I') =0.126 4 0.010
(stat.) & 0.015 (syst.) The Ellis-Jaffer sum rule, which assumes SU(3); symmetry
and negligible polarization of the strange quarks, predicts I'Y(£J) = 0.189 + 0.005
based on the numbers for F' and D available at that time. Thus, the experimental
result disagreed by 3 o with the Ellis-Jaffe sum rule. If the constraint As = 0 is
removed, then one finds using equations (2.26, 2.32, 2.33):

Au = 0.78+0.06 (2.65)
Ad = —0.47+0.06 (2.66)
As = —0.19+ 0.06 (2.67)
AX = AutAd+TAs=0124017 (2.68)

The EMC result was particularly surprising since it gave a value for AX consistent
with zero. In contract, in the naive quark-parton model the quarks carry most of
the proton spin and AX ~ 1. This situation was called "the proton spin crisis" and
sparked a lot of interest in the study of spin structure among both theorists and
experimentalists.

At this point it is appropriate to briefly review the theoretical progress in this
area, which has been quite active since the release of the EMC result. For reviews
written in the last two years see [7, 15, 30, 31, 32, 33, 34, 35]. Soon after the results
were released, it was realized (see, however, [29]) that QCD significantly modifies the
QPM interpretation of AYX due to non-conservation of the singlet axial current and
the axial anomaly, which will be discussed in detail in Chapter 6 . In addition, gluons
can contribute to ¢; to first order in ;. While one expects that AX ~ 1 as measured
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at low @2, the connection to the DIS measurements is not unique. We will defer the
detailed discussion of the QCD analysis to Chapter 6. It suffices to say here that a
relative consensus on this issue developed only recently.

The next experimental challenge was to measure the spin structure of the neutron
to test the Bjorken sum rule. Since a free neutron target is not feasible, two alternative
approaches were pursued. At CERN a Spin Muon collaboration (SMC) was formed
to specifically study the nucleon spin structure. To obtain data on the neutron [36]
they used a deuterated butanol target. The deuteron is equivalent to a sum of the
neutron and the proton up to small nuclear corrections. A deuterated solid target
can be as thick as a proton target, which is very important for statistics limited
muon experiments. On the other hand, the proton asymmetry is large, while the
neutron asymmetry is small. So, to extract the neutron data from measurements on
the deuteron, one has to subtract a large proton asymmetry from a large deuteron
asymmetry to get a small neutron asymmetry. In the process of this subtraction
both the statistical and the systematic errors are amplified. The experiment used
a new target similar in design to the EMC target, and the muon polarization was
measured directly by looking at the asymmetry of the muon decays, whereas the
EMC experiment determined the muon polarization based on a Monte Carlo.

At approximately the same time a new spin structure program was started at
SLAC. To obtain the data on the neutron the E-142 collaboration used a *He gas
target [37]. In *He the two protons are combined in a spin-0 state because of the Pauli
exclusion principle, and the spin of *He is mostly due to a single neutron. Thus, one is
sensitive directly to the neutron asymmetry. The thickness of the gas target is much
smaller than a solid target, but this is not a problem for a high intensity electron
beam at SLAC. The 3He was polarized by spin exchange with optically pumped Rb
atoms. In many aspects the polarized target [38] was similar to the target used for
this experiment. The target polarization was on average 33% during the run. The
polarized electron beam was produced by photoemission from an unstrained GaAs
crystal. This technique has a theoretical polarization limit of 50%, and the average
polarization during the run was 36%. Its main advantage is a larger beam current.
The number of electrons per pulse was 3 x 10!, 3 orders of magnitude higher than
in E80/E130. Despite lower target and beam polarizations, the results of E-142 had
much smaller statistical errors than SMC because of a much larger event sample.

Following the neutron experiments, both SLAC (E-143) [39] and CERN (SMC)
[40] conducted the second round of experiments with proton targets. They also used
a deuterium solid target to obtain another measurement of the neutron spin structure
[41, 42]. A new experimental program (HERMES)to study the nucleon spin structure
recently started at DESY. During their first run a *He target was used to make a
measurement on the neutron [43]. For the HERMES experiment polarized *He was
injected directly into the beam line of a positron storage ring at DESY, providing an
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“internal target”. While the target thickness is very small, it is compensated by a very
large current in the storage ring. Such a target is also free from any dilution due to
scattering from unpolarized material. HERMES used the technique of metastability-
exchange pumping to polarize *He. They achieved an average 50% target polarization
and 60% beam polarization. Their first results were released concurrently with our
data.

Thus, at present there is a relatively large number of polarized spin structure
measurements, whose results are shown in Figure 2.4 for the proton and Figure 2.5
for the neutron.
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Figure 2.4: World data on the proton spin structure function ¢g7. Note that zg! is
plotted on the vertical axis.

As can be seen, there is a substantial amount of data, which are consistent with
each other. However, the errors of the structure function g, are much larger than, for
example, unpolarized structure function F%. There is clearly room for more accurate
measurements. This is particularly true in the low z region, where only SMC data
are available. The low z region is very important for extrapolation to x =0, which is
necessary to test the sum rules. Therefore, our experiment was designed to achieve
substantially higher accuracy than any previous measurements, and also to extend
the precision data down to z = 0.014, below previous SLAC experiments.
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Figure 2.5: World data on the neutron spin structure function gf. Note that x¢7 is
plotted on the vertical axis.
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Chapter 3

The E-154 Experiment

The experiment was conducted at Stanford Linear Accelerator Center' in Menlo Park,
California. The accelerator provides a polarized electron beam with energy up to 50
GeV. A new beam line was constructed to direct the electrons into the End Station
A (ESA), were the experiment was conducted. The polarization of the electrons was
measured in the ESA using a single arm Mgller polarimeter. The electrons were
scattered from a polarized *He target and detected in two spectrometers, one located
at approximately 2.75° and the other at 5.5°. Each spectrometer consisted of 2
Cherenkov tanks, several hodoscope planes and a shower counter. In this experiment
no hardware trigger was used. All data collected during a beam pulse were digitized
and stored on tape for later off-line analysis. The data were collected during a 2 month
run in October and November of 1995. In this chapter | describe the experimental
setup and data analysis unrelated to the polarized target.

3.1 Polarized Electron Beam

The polarized electrons at SLAC are produced by photoemission from a strained GaAs
cathode. For a review of polarized electron sources see [1] and references therein. The
SLAC source, in particular, is described in [2]. The level diagram of the conduction
and valence bands in strained GaAs crystal is shown in Figure 3.1 [2]. The valence
band consists of P53/, and Py, levels which are split by spin-orbit interaction Aso.
By introducing a uniaxial strain in the crystal one can also split the Pz, level into
sublevels with different values of |m;| (light holes and heavy holes). In effect, the
strain induces a quadrupole splitting. The amount of splitting é is approximately
proportional to the strain. A circularly polarized laser beam is used to excite the
electrons from the valence band to the conduction band. If the laser is tuned to have

an energy between E, and E,+ ¢, then only electrons from the P35, m; = —3/2 state

1 The accelerator is operated by the U.S. Department of Energy.
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can be excited to the S/, m; = —1/2 state for right circularly polarized light. Thus,
the polarization of the electrons in the conduction band can theoretically reach 100%.
If the crystal is not strained, the P/, state is four-fold degenerate and the maximum
polarization is limited to (3 - 1)/ (3+ 1) = 50%. To achieve high polarization the
splitting 6 should be larger than the width of the levels due to crystal defects and
thermal smearing.

Figure 3.1: The energy level diagram for strained GaAs crystal. The numbers next
to the transition lines indicate relative transition strength.

The strain is achieved by growing GaAs on a substrate of GaAsg 72P¢.28 as shown
in Figure 3.2. GaAsp72Po2s has a lattice spacing smaller by about 1% than the
spacing in pure GaAs and therefore results in tensile stress of the GaAs active layer
[3,4]. The active layer is sufficiently thin to prevent relaxation of the strain. Finally,
a critical feature of a photoemission cathode is its negative electron affinity (NEA).
The behavior of the energy levels near the surface of the cathode is shown in Figure
3.3. A very thin film of Cs-F lowers the energy of the conduction band below the
vacuum energy, which allows the excited electrons to escape from the crystal. The
cathode is maintained at a negative voltage of 60-120 kV which gives the electrons
an initial acceleration. Then they are magnetically focused, accelerated by RF fields
and injected into the linear accelerator.

To achieve NEA it is extremely important to have a very clean cathode surface
and very high vacuum when the Cs-F film is formed. The overall probability for the
electron to diffuse to the surface of the crystal and escape, before decaying back to the
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Figure 3.2: The layered structure of the strained GaAs cathode.
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Figure 3.3: Deposition of a Cs-F film on the surface results in a negative workfunction
for the electrons in the conduction band.

valence band is called the quantum efficiency (QE) of the cathode. For the cathodes
used at SLAC over the last several years the QE varied from 0.007 to 10%. This
indicates how sensitive the cathodes are to the preparation process. The combination
of high vacuum and high voltage requirements make the polarized source an extremely
complicated and delicate device. The SLAC source operates with ultrahigh vacuum
at 107! torr and 40 kV/cm electric field gradient with a leakage current of 10nA.
A special system is implemented that allows to install the cathode without breaking
the vacuum. The Cs film on the surface of the cathode is periodically replenished
(a process called cesiation) by an automated system. The overall reliability of the
source is over 95%.

The cathode is pumped by a flashlamp-pumped Ti:Sapphire laser which delivers
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—200 ns pulses with an energy of 80 uJ. The circular polarization of the light is
controlled by fast Pockel cells. For each pulse the polarization is chosen by a pseudo-
random number generator. This information is sent via several channels (polarization
bits) to the data acquisition system. Feedback systems control the intensity of the
laser pulses to minimize the charge asymmetry between the left and right handed
electron pulses.

The electrons from the source are accelerated to about 48 GeV by 240 klystrons
in a 2-mile long linear accelerator. A new beam-line was constructed to deflect the
electrons to the End Station through a 24.5" angle. When an electron is deflected, its
spin processes due to the anomalous magnetic moment a, = (g — 2) /2. The amount
of the precession is related to the deflection angle [5,6]:

—2
0prec = 7g—2_@bend (3'1)

The factor of v can be thought of as due to the time dilation in the rest frame of the
electron. Longitudinally polarized electrons remain longitudinally polarized if 8, is
a multiple of =. This implies that full polarization can only be achieved at a discrete
set of energies, and also allows one to measure the energy of the beam very precisely
by measuring its polarization. In our experiment 8., = 24.5" and 0,,.. = 157 for
electron energy of 48.35 GeV in the ESA (about 400 MeV are lost due to synchrotron
radiation in the bend).

3.2 Mgller Polarimeter

The beam polarization was measured in the ESA using a single arm Mgller polarimeter
[7,8]. Mgller scattering is elastic scattering of electrons on electrons. The scattering
cross-section is strongly spin dependent due to helicity conservation (see Chapter 2).
To calculate the cross-section we can virtually carry over the results from Chapter
2 for an elementary Dirac particle. The only modification is due to the fact that
the electrons are indistinguishable particles, which results in a contribution from an
additional diagram with initial and final particles interchanged. The result, written
in the center of mass frame, is [8]:

do o? (3 + cos? 0)

@ (1= PoPrA(0)) (32)
(7 cos? @) sin’ 0
A(0) = (3% cos20)* (3.3)

The asymmetry is maximum for the center of mass scattering angle of -y = 90"
and is equal to A(90°) = 7/9. For Ocp = 90" scattering in the lab frame both
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electrons have the same energy (Ew..m/2) and scatter by an equal, but opposite angle
Orap = 0.26°.
The measured asymmetry

A, =L — 7
m 0'T1+0'TT

= PgPrA(0cn) (3.4)
is proportional to the beam and target polarizations and can be used to measure the
beam polarization if the target polarization is known.

A ferromagnetic material is usually used as a target of polarized electrons. In
our case the target was a foil made of 49% Fe, 49% Co and 2% Va. This is a soft
ferromagnetic material, and it is driven to saturation by placing the foil in an 100 G
magnetic field. Only 2 electrons in Fe and Va are polarized, so the average electron
polarization is about 8%. The foils are 3 cm wide, 35 cm long and range in thickness
from 20 pm to 154 wm, although the bulk of the data was collected with a 40 um
foil. Because the foil is very thin, it can only be magnetized along its plane. This
follows from the boundary conditions on B and H fields [5]:

Bixn = MB,xn | (3.6)
b2

Hi-n = &Hg -n (3.7)
23

Hlxn = Hzxn (38)

Thus, the normal component of the magnetic field B has to be continues across
the boundary, while the parallel component increases by the ratio of the magnetic
permeabilities. Therefore, for maximum asymmetry the foil should be placed parallel
to the beam. However, the electron beam cannot travel along the foil. The solution
is to place the plane of the foil at an angle, so the electron polarization along the
direction of the beam is equal to Pr cosé;. In our case the angle was 20.7°, decreasing
the target polarization by a factor of 0.935 and increasing the target thickness by a
factor of 2.53.

To determine the polarization of the foil we use a pick-up coil to measure the
amount of flux in the foil [9]. The coil has V. =500 turns and is wrapped around the
foil. The flux through the coil is given by ® = A.B, where A, is the cross-sectional
area of the coil and B = H T4z M. By sweeping the magnetic field from 100 G to
-100 G one can reverse the direction of the magnetization. The voltage across the
coil is given by V = —d®/dt. An integrating voltmeter is used to measure

I =/v (1Yt = @i — @i =2N, (HA, F47MA;) (3.9)
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where Ay is the cross-sectional area of the foil. The measurement is repeated without
the foil in place. In the absence of the foil B = H. Because the foil is very thin, the
H field is not affected by the presence of the foil. This follows from the fact that the
component of H parallel to the foil is continues across the boundary. By subtracting
the result of the second measurement we cancel the contribution from the H field and
get:

Iy —Io =2A;NArM (3.10)

The cross-sectional area is determined by measuring the length and the mass of the
foil and using the known density of the material.

To convert the foil magnetization into a value for the electron spin polarization
one has to correct for the contribution of the orbital angular momentum. For the spin
contribution one has M, = g.upS, where g. ~ 2 is the gyromagnetic ratio of a free
electron, while for the orbital angular momentum M, = g L. The magnetomechani-
cal ratio of a material is defined by [10]: M =¢'ug (L TS). It was measured for an
alloy consisting of 50% Fe and 50% Co to be ¢ = 1.916+ 0.002 [11]. We assume that
it is not affected by the presence of 2% of Va, however, the error is increased to 0.02
to allow for a small effect. One can show that the fraction of the angular momentum
carried by the spinis (¢ — 1)/(g. — 1), and the electron spin polarization is:

M r—1
Pr=2 , (9 ) (3.11)
neppg \ge —1

The polarizations of the foils were measured several times and were reproducible to
about 1%. The average polarization was 8.2% with slight differences between the
foils.

The Mgller electrons were deflected by a dipole magnet and detected by a silicon
strip detector. A mask was put in front of the magnet to define the angular accep-
tance. A septum placed inside the magnet shielded unscattered electrons from the
magnetic field. Two sets of silicon strip detectors were used. The top detector was
finely segmented, so the elastic Mgller peak was about 6 channels wide. The scatter-
ing angle in the CM frame was 94". Five bottom detectors usually contained the peak
in just one channel and covered CM angle from 93" to 104". The raw asymmetry was
about 5%.

The signals were fit to a lineshape expected for Mgller scatters plus a quadratic
background. The theoretical lineshapes included the effect of the correlation between
the atomic motion of the electrons and their polarization. This effect, first identified
by Levchuk [12], is due to the fact that the two polarized electrons in Fe and Co
are in the 3D shell, while the inner shells are unpolarized. The electrons in the
inner shells have a relatively larger momentum than the polarized electrons due to
atomic motion. Although the momentum of the electrons is only about 100 keV,
much smaller than the beam energy, it is not negligible compared with the electron
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rest mass, and can alter the scattering angle by up to 10%. As a result, the elastic
peak from the unpolarized inner electrons is significantly wider than the peak from
the polarized electrons. This effect needs to he taken into account to extract the
Mgller asymmetry, otherwise it can result in errors up to 15%](13].

After the data are fitted to the appropriate lineshape, the background is sub-
tracted, which increases the asymmetry by about 20%. This number is insensitive
to particular ways of estimating the background and the lineshape. The final error
in the measurement of the polarization is 2.8%, dominated by the uncertainty in the
foil polarization (1.9%) and background subtraction (2%).

A number of diagnostic tests was performed with the Mgller polarimeter in the
beginning of the run. The frequency of the Ti-Sapphire laser pumping the cathode
was scanned from 840 nm to 850 nm which changed the polarization from 76% to 80%
with a maximum near 850 nm. The energy of the beam was scanned, mapping out
one half of the oscillation cycle due to the anomalous magnetic moment (see equation
3.1). The polarization was observed to change sign when the energy was reduced
from 48.3 to 46.5 GeV. Based on the fit to these data the energy of the beam was
determined independently of the magnetic field measurements in the bend line. After
these tests the beam polarization was very stable at an average value of 82.4%. It
was found to increase slightly when the beam current was reduced from 9x10'° to
(3 - 5)x10 electrons per pulse. A plot of the polarization vs. run number for the
experiment is shown in Figure 3.4.

3.3 Spectrometers

The overall spectrometer layout is shown in Figure 3.5. The experiment utilized
two separate spectrometers which detected the electrons scattered by approximately
2.75" and 5.5" degrees. Each spectrometer consisted of a set of magnets, used for
momentum determination and elimination of neutral backgrounds, and a detector
package to track the scattered particles.

The spectrometers were designed to have a broad kinematic coverage from 10
to 44 GeV. To eliminate the background from neutral particles the spectrometers
had a "double bounce" geometry, which means that the neutral particles had to
scatter at least twice from the magnets or the collimators to reach the detectors
[14, 15]. The two dipole magnets in each spectrometer bent the electrons in the
vertical plane in opposite directions, while the quadrupole in the 2.75" spectrometer
defocused the electrons to reduce rates per detector element. Collimators were used
to define the acceptance of the spectrometer. The position of the collimators in the
2.75" Spectrometer was adjusted during the run to provide a constant rate as the beam
current and target thickness were changed. Figure 3.6 shows the kinematic coverage
in the z —Q? plane by the spectrometers. The field of the magnets was mapped prior
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Figure 3.4: The polarization of the electron beam vs. run number.

to the experiment. They were monitored during the experiment by NMR probes. An
optics model was constructed which provided a mapping between the position and
direction of a track in the spectrometer and the initial momentum and angle of the
scattered electron [16]. The calibration of the spectrometer was checked by a special
8 GeV run in which the energy of the proton elastic peak was measured.

The detector system in each spectrometer consisted of 2 Cherenkov tanks, 2 banks
of hodoscopes and a shower counter. It was designed to identify the scattered elec-

trons and measure their momentum and scattering angle in the presence of a large
background of pions and neutral particles.
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Figure 3.6: The kinematic coverage of the E-154 spectrometers.

The Cherenkov counters were used in the threshold regime to discriminate between
electrons and pions. Cherenkov radiation is created by a particle traveling through

a medium with a velocity greater than the velocity of light in the medium. The
threshold for production of Cherenkov light is:

p
B Tt /n (3.12)
where n is the index of refraction of the medium. The momentum threshold for pions

IS pth =M, (Ae:)_l/2 , where Ac is the deviation of the dielectric constant from unity,
n =+/1+ Ae. Ac for a gas is proportional to its density and can be easily adjusted.

The number of Cherenkov photons emitted by the electron per unit length and
wavelength is given by [5, 17):

d*N _ 2na ] 1 _ 2ra
dedh A2 B2 A2

In the last expression we used the fact that for electrons 3 is very close to unity. For
pions above the threshold the number of photons is suppressed by an additional factor

of (1-p?/p*). The photons are focused by a mirror onto a Photo-Multiplier Tube
(PMT).The number of photoelectrons produced in the PMT is a Poisson distribution

Ae (3.13)
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with a mean given by:
N,e =2ral / ANQE (A) Ae (A) /A2 (3.14)

where L is length of the tank and Q£ (A) is the quantum efficiency for collecting
the photons and converting them to photoelectrons on the PMT cathode. We would
like NV,. to be sufficiently large so the probability of detecting zero photoelectrons
P(0) = e Mre is small. For P(0) < 1%we need N,. > 4.6. The pion production
cross-section in deep inelastic scattering drops very fast with energy and becomes
small for energies higher than 20 GeV. We would like to set the pion threshold to
approximately that energy, while keeping the electron detection inefficiency P (0)
sufficiently small. To satisfy both requirements the length of the tank has to be
rather large.

We choose N, gas as the media for two reasons. It has a low scintillation rate,
which is important because pions can produce light by scintillation even below the
Cherenkov threshold. The average number of photoelectrons due to scintillation was
estimated to be 0.1 per particle [18]. In addition, N, gas has high UV transmis-
sion down to 140 nm and the Cherenkov light spectrum is weighted toward short
wavelength by a factor of 1/\2.

The parameters of the Cherenkov tanks are shown in Table 3.1. For 2C1 tank, for
example) Ae = 5.2 x 107° for N, pressure of 1.4 psia [19] giving a threshold for 7~ of
19.3GeV. The photons are emitted at an angle of 0.41° to the electron track. They are
collected by spherical mirrors and imaged onto a Hamamatsu R1584 photomultiplier
tube. The mirrors use an Al film and have reflectivity higher than 75% up to 160
nm [20]. The phototubes have a spectral range from 200 to 640 nm with 15-20%
quantum efficiency. To detect the photons in the UV an organic wavelength shifter
is deposited on the front face of the photomultiplier tubes. It absorbs photons in
the range 115-310 nm and reemits them at 370 nm. Based on the manufacturer's
specifications for the quantum efficiency of the PMT and the wavelength shifter and
measured reflectivity of the mirrors as a function of wavelength, the predicted number
of photoelectrons is about 6 — 8 [21], which is very close to the observed number of
5.7. In contrast, according to the Particle Data Group [17] rule of thumb, the number
of photoelectrons for our system is expected to be about 2.5.

The output of the PMTs was recorded by a 256 bit Flash Analog-to-Digital Con-
verter (FADC) in 1ns. intervals over the entire duration of the beam pulse (250 ns).
The FADC consisted of 4 channels running at clock speed of 250 MHz which were
interleaved, giving an effective 1 ns. resolution. The digitized waveform was stored
on tape for later analysis. In addition, the last dynode of the PMT was connected
to a Time-to Digital Converter (TDC) which recorded the time of the pulses whose
height exceeded a preset threshold.
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Tank Pion Effective Mirror Pressure | Observed
Threshold Legth Curvature | (psia) Npe
(GeV) | (m) (m)
2cl 19 5.3 1.2 1.4 5.7
2c2 19 6.1 1.6 1.4 5.1
5C1 16 5.6 1.2 2.0 6.2
5C2 16 4.0 1.6 2.0 5.0

Table 3.1: Parameters of the Cherenkov detectors

The hodoscope system used for tracking consisted of a number of finely segmented
plastic scintillation counters. Passage of charged particles though the plastic causes
scintillation in the UV region. By adding a small amount of organic wavelength
shifter, this radiation is converted to visible photons, in our case at 408 nm. Approx-
imately 10-15 photons were emitted for each particle [22]. The photons propagate
down the plastic scintillator by total internal reflection and reflection from aluminum
foil which is wrapped around each finger. A PMT mounted on one end of the finger is
used to detect the photons. Its output is connected to a multihit TDC which records
the time(s) of particle passage. Because of a large pion background, it was critical to
have a very finely segmented hodoscope to reduce the rate per detector element and
the dead time. A total of 10 (8) planes of hodoscopes were used in 2.75°(5.5°) degree
spectrometer with a total of 784 channels. For better coverage, the fingers in each
hodoscope plane overlapped by about 1/3 of their width.

An electromagnetic calorimeter at the end of the spectrometer was used to measure
the energy of the electrons and provide additional discrimination between electrons
and pions. Each of the two calorimeters consisted of 200 blocks of lead glass arranged
in 20 rows of 10 blocks each. The blocks were made of F2 lead glass (about 42% lead)
and were 6.2 cmx6.2 cm in cross-section and 75 cm long [23].

High energy electrons lose energy in the shower counter by emitting high energy
bremsstrahlung photons which in turn produce e*e~ pairs. This results in a cascade
effect and a large number of photons and electrons/positrons is created. The radiation
length X, is defined as the length over which the initial electron losses all but I/e
of its energy to bremsstrahlung. The characteristic pair production length for a high
energy photon is (7/9) Xo. Thus, the length scale of the shower is governed by Xj.
For our glass Xy = 3.17 cm [24]. As the energy of the electrons decreases, the loss by
ionization starts to dominate over bremsstrahlung. This energy is called the critical
energy E,. In our material E, ~ 13.9 MeV. The electrons and positrons created
by the shower emit Cherenkov radiation in the lead glass, which has an index of
refraction n = 1.58. A PMT is mounted at the end of each block to detect the
Cherenkov light. The number of Cherenkov photons is proportional to the total track
length of all electrons/positrons created by the shower, which is proportional to the
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shower energy. Therefore, the integrated PMT signal is proportional to the energy
deposited in each block. An Analog-to-Digital Converter (ADC) is used to measure
the integral of the PMT signal over the pulse length. In addition, multihit TDCs
record the time(s) of the pulses that exceeded a preset threshold.

The longitudinal profile of the shower is approximately given by [25]:

dE z \%
iy c ~z/A X,
= <X0> ¢ (3.15)

where A ~ 1.9,and a =1In (F/E.) /A. The peak energy deposition occurs at (7 - 8) Xo.
The total length of our lead blocks is 23.6 radiation length and the electromagnetic
shower is entirely contained within the calorimeter.

The transverse shower profile is due to Coulomb scattering of the electrons and
positrons during the initial stages of the shower development [25]. It is usually pa-
rameterized by a Mgller radius, given by Ry = XoE,/E., where E, =m.c*\/4r/a =
21.2 MeV. For our glass Ear ~ 4.8 cm. The transverse energy profile is approximately
given by an exponential:

dE

dr
In our experiment the energy of the electron shower was contained almost entirely in
9 adjacent block, the central block containing a large fraction of the energy. At later
stages of shower development the photon absorption length becomes longer and the
divergence of the photons starts to contribute the shower width. This gives a broader
profile in the back of the shower, so the total shape is often parameterized by two
exponentials [26, 27]:

— g¥/Rm (3.16)

dE N (e—r/Rl +Ae—r/R2)
dr

Because the number of particles in an electromagnetic shower is very large (roughly
equal to E/E. ~ 1000), the shower has a symmetric shape and is not affected by
fluctuations.

Hadronic showers are characterized by a nuclear interaction length A; = 35
g/ecm?AY3 [17]. For our lead glass A\; = 34 cm, so the total shower length is only
about 2);. Therefore, only a fraction of pion energy is deposited in the glass. Engel-
mann et al. [28] studied the energy deposition for a monoenergetic pion beam in a
24.2 radiation length calorimeter made of similar F2 lead glass (Xo = 3.22 cm). They
found that about 17% of the pions do not shower, leaving only a minimum ionizing
track of 0.5 GeV. The rest form a broad peak centered at 38% of their energy. The
fraction of pions that deposit between 80 and 100% of their energy is only about 3%.
In contrast, all electrons deposit more than 99% of their energy in the calorimeter.
This allows one to use the shower counter for pion discrimination by putting a cut
on the ratio of £/p, where E is the energy deposited in the calorimeter and p is the

(3.17)
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momentum measured by tracking. For electrons it should be equal to 1. In fact, the
gain of the PMTs in the shower counter was calibrated so that the E/p ratio for the
electrons was close to 1 and then a low E/p cut was used for pion discrimination.
Figure 3.7 shows the histogram of E/p ratios for electrons and pions in our calorime-
ter. The electrons and pions were selected by applying a cut on the Cherenkov pulses
(large pulses in both tanks for the electrons, no pulses for pions). As can be seen, the
separation between electrons and pions is very clean.
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Figure 3.7: The E/p ratio for electrons (open) and pions (hatched).

The transverse shape of the shower (i.e. the relative amount of energy deposited
in adjacent blocks) can be used for additional pion discrimination [28]. The shape
of the electron shower is highly regular and is described by equation (3.17). For
pions, the shower is broader because of a larger nuclear interaction length A;. In
addition, because a small number of particles is produced in the shower, there are
large fluctuations. Some of the energy can be converted to =% (for example, via
charge exchange #~p — #°n) which decays into 2y and produces an EM cascade. If
a 7~ converts to #° in the very front of the calorimeter, it will deposit most of its
energy, and the shape of its shower will be indistinguishable from that of an electron
shower. In other cases, a 7% is produced later during the shower development and the
transverse profile of the shower is highly asymmetric.
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Several other hardware elements were used in the experiment. The beam current
was monitored by two toroids, which detected the voltage induced in a toroidal coil
placed around the beam as the an electron pulse went through. The beam position
was monitored by a wire array, which consisted of a grid of wires spaced by about
1 mm. As the beam went through the wires, it induced a voltage proportional to
the beam intensity. This allowed measurements of the beam position and width in
both dimensions. In addition, traveling wave beam position monitors (TWBPM)
were used to determine the beam position. The quality of the beam was monitored
by a set of two scintillation counters, called the “Good spill” and “Bad spill”. The
good spill counter was placed in the ESA downstream of the target. It was a large
area scintillator that essentially measured an average particle flux scattered from the
target. The shape of the signal provided direct information about the time structure of
the beam and was used by accelerator operators for tuning. The “Bad spill” monitor
was placed upstream of the target. Any signal in this counter indicated that the beam
was scattering from the walls of the beam pipe or had a large halo. This information
was also used by the operators and gave the shift crew a concrete reason to complain
about the quality of the beam. The rate in various detector elements was monitored
by scalers, which counted the number of pulses per spill. This information was used for
quick diagnostic. Various operating parameters (i.e high voltages, magnet currents,
Cherenkov pressures) were recorded periodically. An automated program monitored
their status and set off an alarm if their values deviated from a specified range.

The data acquisition system was based on CAMAC modules, which interfaced
with detector electronics, and VME processors, which controlled the writing of data
to tape. The electronics were located in the 2.75° spectrometer hut, and were not
accessible while the beam was on. However, they were quite reliable and required little
maintaince. The data were recorded directly to an automated SLAC tape silo without
operator intervention. The throughput of the data acquisition system was about 0.7-
0.8 Mbytes/s. A total of 1.4 Thytes of data were collected during the experiment. A
control program, run on a local workstation, was used for menu-driven control of the
data acquisition program. On-line analysis programs ran on dedicated workstations
for monitoring of the detector performance.

3.4 Data Analysis

The data analysis was done independently by two groups, one based at SLAC and
the other at Caltech. Although the basic steps of the analysis were the same, some
algorithms differed between the groups. The results of the two analyses were in
excellent agreement and were averaged for the final result. The following description
will be based on the Caltech algorithm.

Because of the amount of data collected during the experiment, the data analysis
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was done in 2 steps. First, the raw data were searched for particle tracks satisfying
minimum requirements for an electron. The list of found tracks and associated detec-
tor hits was written to Data Summary Tapes (DST). This step of the analysis took
7 weeks running on four DEC Alpha 64 bit, 266 MHz workstations and reduced the
amount of data by a factor of 6. Then, DSTs were analyzed, applying additional cuts
and grouping the events according to their = and Q? values. Resulting summary files
were used in calculation of the asymmetry.

The Cherenkov data contained the digitized form of the PMT output for the
entire spill. The analysis proceeded in the following steps. Pulses were detected in
the waveform by looking for jumps in the derivative of the signal. The height and area
of the pulse were determined. Before proceeding to the next pulse, an average pulse
shape, scaled by the height of the current pulse, was subtracted from the waveform.
This removed small oscillations present in the tail of the pulse. The effective dead
time of the detector and the algorithm was about 5 nsec.

It was found that the time resolution can be significantly improved by using TDC
information collected from the last dynode of the PMT [29]. Although the time
resolution of the FADC is 1 nsec, it is achieved by interleaving 4 channels running
at 250 MHz each. When the beam trigger is received, the FADC clock waits for the
next tick (up to 4 nsec) before starting the data acquisition. This results in jitter of
the overall time of the FADC waveform. The TDC, on the other hand, has a true 1
nsec resolution. Therefore, the TDC time of a clean pulse can be used to shift the
time of the entire FADC waveform. This improved the time resolution from 1.4 to
0.8 nsec, increasing the tracking efficiency.

The analysis of the shower counter data required a more sophisticated algorithm
because of the limited amount of data available. For each block of the shower counter
the ADC signal gave an integral of the PMT output over the entire spill. In addition,
the TDC signal gave the time of the pulse (or pulses, if they were separated by more
than 20 nsec). Because of high instantaneous rate in the spectrometer, often more
than one particle deposited its energy in the block during the spill. Such situation was
called an overlap. It was necessary to divide the energy recorded by the ADC between
the particles (energy sharing). The TDC information was used for this purpose. For
the shower counter the TDCs recorded both the leading edge time (when the PMT
output exceeded the threshold) and the trailing edge time (when the output dropped
below the threshold). The difference between the time of the leading and the trailing
edge is correlated to the height of the pulse and can be used to estimate its area.
The top half of the 2.75° calorimeter, most affected by the overlaps, was equipped
with three TDC’s set at different thresholds to provide more information for energy
sharing. The relationship between the TDC pulse width and the energy of the pulse
was determined empirically from a sample of events not affected by overlaps.

The analysis proceeded in the following steps [16] (see also Appendix A). First,
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local maxima in energy deposition were identified among the blocks. They formed the
central blocks of “clusters”. Additional blocks were assigned to the clusters based on
their proximity in space and/or in time of the TDC hits. The clusters were considered
for further analysis only if their total energy exceeded a minimum possible energy for
an electron. This cut rejected many pions, which often deposit very little energy, at
the initial step of the analysis. If any of the blocks had multiple TDC hits, their
energy was shared among different hits (“cells”). The sharing was done by doing a
least \? fit using the energy estimate and error determined from the TDC information
constrained to the total ADC signal.

Further useful information can be extracted from the data by using particular
physical properties of the electromagnetic shower [30], Appendix A. The transverse
profile of the shower, given by equation (3.17), can be used to estimate the energy
deposited in each block of the cluster based on the position of the electron hit. This
can be done by integrating the shower profile over the size of the block. Using 1-
dimensional version of equation (3.17) one can show that the energy deposited in the
central block of width 2d by an electron of energy £, is:

Ec¢ () = Eo [(1 —exp (—}%) cosh (%)) + A (1 —exp (—Ei—) cosh (%))]

(3.18)
where z is the distance of the electron hit from the center of the central block. The
energy deposited in the side block is:

Es(2) = Eo [exp (_Ril) sinh (}%) + Aexp (—}%) sinh (—}%)] (3.19)

Figure 3.8 shows the fraction of the electron energy deposited in a block as a function
of the distance of the electron hit from the block center. If the distance is less than
d, it is the central block, if it‘s greater than d it is the side block. The constants in
equation (3.18) are adjusted to fit the data. As can be seen, the transverse profile
of the shower has a regular shape with little fluctuations and can be used to extract
useful information.

The applications of the transverse shower profile in the analysis are discussed in
[30], which is reproduced in Appendix A. Here we only enumerate its uses.

1. The position of the electron track can be calculated by considering the ratio
of the energy deposited in the side block and the central block Es/Ec. This
provides a better position determination than a simple center of gravity method
[26, 27]. The position determined from the shower is important because it is
used as a starting point for the tracking algorithm.

2. The shower shape can be used to estimate the electron energy based on infor-
mation from only a few blocks, rather then by adding the energy of all blocks
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Figure 3.8: The energy deposited in a shower block as a function of the track distance
from the center of the block. The error bars indicate the RMS of the distribution.

in the cluster (9 or more). This method is less affected by overlaps, since the
probability of an overlap is smaller for a smaller number of blocks.

3. The energy sharing can be improved by fitting the shape of the shower to the
actual energy deposition in the blocks of the cluster. The energies of the blocks
affected by the overlap are adjusted to better fit the shape.

4. The shape of the shower can provide additional discrimination between the
electrons and pions, since the pion shower is wider and more asymmetric than
the electron shower. One can put a cut on the x? of the electron shower shape
fit to reject the pions [28].

The SLAC analysis group used different algorithms to analyze the shower data
[31, 32, 33]. For comparison of the performance of the two approaches see Appendix
A.

The tracking algorithm mainly relies on the timing information from the ho-
doscope TDC’s. The process starts by collecting information from the shower counter
and the Cherenkovs to determine an initial position and time of a track candidate.
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Then hodoscope elements are identified, which have hits in time and within certain
kinematic cuts. These hits are grouped into miniclusters when several fingers inter-
sect in time and space. A fitting routine is then used to minimize the x? of the
track by varying its time and coordinates. Since there is no magnetic field inside the
spectrometer, the track trajectory is a straight line. Hits in the hodoscope which
give inappropriately large contribution to the y* are dropped as accidental. Cor-
rections are applied for the time of light propagation in the hodoscope fingers and
the Cherenkov counters (1-2 ns). The momentum of the electron can be determined
from the track based on the knowledge of the field of the magnets in front of the
spectrometer.

During the analysis of the DSTs, additional cuts were applied. Since all DSTs
could be analyzed in three days, one could experiment with different cuts. Cuts were
used to eliminate data taken under poor electron beam conditions, as determined by
several beam diagnostic devices (wire arrays, TWBPM, bad and good spill). Entire
runs were eliminated if the polarization of the target was too small, the hardware
was malfunctioning, or the electron beam had a large charge asymmetry. Electrons
were selected by making cuts on the height of the Cherenkov pulses, the x? of the
shower shape fit and the £/p ratio. The process of such selection is shown in Figure
3.9. The first plot shows the E/p spectrum for all particles in the detector. A large
number of pions can be eliminated simply by applying a cut on the energy of the
cluster, since no electrons can have a cluster with an energy less than 10 GeV. In the
Caltech analysis such cut was applied at the initial stage of the analysis, significantly
reducing the amount of data. Next we apply a cut on the Cherenkov signals, which
eliminates most of the pions. As a compromise between pion contamination and
electron inefficiency, we require a pulse in both tanks, one of which should exceed
2.5 photoelectrons. Then we apply a cut on the x? of the shower shape fit, further
reducing the pion background. The £/p > 0.8 cut is applied last.

3.5 Asymmetry

The asymmetry in each z bin can be calculated from the data using the following

formula:
1 NN

T RPN NI
where N (N1T) is the number of electrons detected in that  bin for the target and

electron spins anti-parallel (parallel). P, and P, are the beam and target polarizations
respectively and f is the target dilution factor defined as:

Ay (3.20)

NHe

f:NHe+Nu

(3.21)
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Figure 3.9: Electron selection by a series of cuts, shown from top left to bottom right

where Ny, is the number of counts from *He and NV, is the number of counts from the
unpolarized material of the target, like the glass windows and the nitrogen gas. The
target dilution factor will be discussed in Chapter 4 and the polarization in Chapter
5.

Several important corrections have to be applied to the asymmetry. One has
to take into account the contamination of the electron sample by pions which were
misidentified as electrons due to detector inefficiencies. Also, some electrons are
produced by pair creation and do not come from deep inelastic scattering. Their
contribution should be subtracted. To correct the measured asymmetry we need to
know both the size of the background and its asymmetry (c.f. equation (3.37)):

NBack NBack

DIS Npis
The pion contamination is about (N,-/Nprs) = 3% at low x, as determined by es-
timating the pion background under the electron E/p peak (see Figure 3.7). The
pion asymmetry is determined from our data by selecting a pion sample with a veto

on both Cherenkovs. The asymmetry is negative and is about three times smaller
than the electron asymmetry, but is not consistent with zero. The contamination by

Acorr = Ameas (1 + > - ABack (322)
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electrons produced by pair creation (i.e. v — ete™, 7° — ete ) is measured in
dedicated positron runs with the magnet polarity reversed. It is assumed that the
number of positrons and electrons created in such processes is equal. The contamina-
tion is significant, reaching 10% in the lowest « bin. The asymmetry of the positrons
is consistent with zero, however the errors are large due to limited statistics. The
positron asymmetry is the largest source of systematic error for our lowest = bin.
Detector inefficiencies can bias the measured asymmetry (known as the rate de-
pendence). If the efficiency of the detector e decreases with the electron rate R:

e=co(1-HR-HR..) (3.23)

then the detected asymmetry is reduced compared with its true value:
Asw=A(1 - BR — BB .. (3.24)

where 3, and 3, are some coefficients which depend on the hardware and software
performance. The experiment was designed to minimize the rate dependence. To
study this effect we simulated a double rate in the spectrometer by combining the
raw data from two pulses and taking into account the electronics dead time [34]. By
this method we determined that a:

_ &)
TR

—1=P/R+36.1R (3.25)

is in the range of 4-8%. Since we expect that both 3; and 3; are positive, but do not,
know their relative size, we correct the asymmetry by one half of the observed rate
dependence:
A= Aget

1-a/2
and include the whole size of « as a error.

We also apply a correction to take into account the neutral current interaction by
Z° exchange. This is a parity-violating interaction which would be present even if the
target were unpolarized. Thus, the sign of the electroweak asymmetry Ay does not
change when the target polarization is reversed, while the sign of the electromagnetic
asymmetry changes. The target polarization was reversed several times during the
experiment?, and we observed a non-zero parity violating asymmetry at 4a level.

In Chapter 2 we only considered the electron vertex shown in Figure 2.1 at the tree
level. In reality, the vertex is modified by the electromagnetic radiative corrections.
The effect of these corrections (known as the internal radiative corrections) should be

(3.26)

?We rely on electron polarization reversal, which is done randomly every pulse, to eliminate the
systematic errors due to acceptance drifts, etc.
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subtracted from the data to come back to the simple picture described in Chapter 2.
In addition, the electrons can bremsstrahlung before or after deep inelastic scatter-
ing, which is taken into account by applying the external radiative corrections. The
radiative corrections are discussed in detail in the next section, based on [35].

To extract the neutron spin structure function from a measurement on *He one
has to apply corrections due to nuclear effects. Naively, only neutron contributes to
the spin asymmetry in *He because the spins of the two protons are opposite to each
other due to the Pauli exclusion principle. However, this naive picture is modified
because the spacial wavefunction of *He is not a pure S state. It has contributions
from S’ and D states. In the S’ state the nucleons have a relative angular momentum
with respect to each other, although the total angular momentum is zero. The spin
originates from one of the protons, while the other is coupled with the neutron to a
zero spin. In the D state the three nucleons have a total spin of 3/2, which is combined
with 2 units of angular momentum to give a spin 1/2 nucleus. The probability of the
P state is strongly suppressed because it has opposite parity. Ignoring the collective
nuclear effects, one can write:

97 (2) = pagy () + 2p, 9% (2) (3.27)

where p, and p, are the polarizations of neutron and proton respectively in the *He
wavefunction. The polarizations have been calculated in [36]: p, = 0.87 £ 0.02 and
p, = —0.028 & 0.004. To subtract the proton contribution we use the world data on
gt (X)and include their uncertainty in our systematic error. The collective nuclear
effects for scattering from *He are negligible in the deep inelastic region [37].

To calculate g; from the asymmetry one also needs to include a small contribution
from A, (see equation (2.60)). We measured A, in a series of dedicated runs by
rotating the *He polarization perpendicular to the beam direction. The laser system
was not setup to pump in this direction, so *He polarization was decaying during
these measurements. In addition to using these data for the calculation of ¢;, we also
extracted g, using equation (2.61). Our g, data [38] are consistent with zero (see
equation 2.22). For more details see [38].

Finally, one should also be aware of the higher twist effects, which appear if Q?
is not sufficiently large. They are due to the breakdown of the assumption of in-
dependent scattering from individual quarks. Their contribution is expressed as an
expansion in powers of 1/Q*. The calculation of these corrections is difficult and their
size and even sign is uncertain, but they are quite small for our values of Q? [39]. We
do not apply any correction due to this effect.
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3.6 Radiative Corrections

The radiative corrections can be split into two distinct parts. The internal corrections
are due to the radiation emitted by the electrons immediately before or after the nu-
clear scattering. The electrons are off-shell (¢* # m?) between the emission of the pho-
ton and the nuclear scattering. The external corrections are due to Bremsstrahlung
of the electrons in the material of the target. The electrons are on-shell between the
emission of the photon and the nuclear scattering. To calculate the internal correc-
tions we used a program POLRAD 1.5[40], written by Shumeiko and coworkers, the
same group that developed the theory of polarized radiative corrections [41, 42, 43].
The external corrections were calculated based on the technique of Tsai [44, 45].

There are two main difficulties in calculating the radiative corrections. The first is
the treatment of the errors. The radiative corrections work as a non-linear and non-
local transformation between the measured asymmetries and the Born asymmetry.
So, they affect non-trivially not only the central values, but also the errors of the
asymmetry. The second is the use various input models. Calculations of the radiative
corrections require knowledge of the polarized and unpolarized structure functions
for a large kinematic range, and ®He quasi-elastic and elastic form factors. Some of
them are well known, others are more controversial.

3.6.1 The Structure of the Radiative Corrections

In general, the cross-section for polarized scattering can be written as:
o =0y, +0c,PPr (3.28)

where o, and o, are the unpolarized and polarized cross-sections respectively. The
asymmetry is given by A =o,/0,, after the polarization factors are divided out. The
internal radiative corrections consist of the vertex correction and the radiative tail
and can be written as:

o1 = 0P (2)V + // 1(z,2',Q?) 0" (¢, Q) da'dQ” (3.29)

The tail is divergent as ' — z, and so is the vertex correction V [43]. Their sum,
however, is finite. The regularization can be done in different ways. In POLRAD,
an infinite term is subtracted from the vertex correction and added to the tail. That
makes both the tail and the vertex correction finite. One drawback of this procedure
is that the tail now depends not only on the value of & (x”)for 2’ > z, but also on
oB (x). Although this procedure is mathematically exact, it is difficult to interpret
physically. The physical tail should depend only on the value of o2 (x”)for x” > «.
For a finite bin size the part of the tail that falls within the same bin should not be
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treated as a radiative correction. Therefore, to facilitate the discussion about error
propagation we will separate the tail into the contribution from the same bin and the
contribution from other bins. This separation is purely formal and does not affect the
calculation of the central values of the radiative corrections. The sum of the vertex
correction and the tail from same the bin is finite. With the internal corrections, the
asymmetry can be written in the following form:

z,2', Q%) dz'dQ?) o7

_ ole) @ (VT (
Ae) = )~ ) (VF [ (e, Q) dedgh) F ot B0
a;;r(x) = //1 T w',Q) ( )d ,dQ2+JI)El(x)+U§E($) (3.31)
ol (z) = //m (2,2, Q%) 08 (¢/,Q?) d'dQ* + o (2) + 02" (x) (3.32)

where I, (z,z°,Q'?) represent the contribution from other regions in z and Q* due
to inelastic scattering, a . are the internally radiated cross-sections, aB are the Born
cross-sections, oEl and O'QE are the contributions from the elastic (1 e. scattering
from the whole 3He nucleus no nuclear break-up) and quasi-elastic (elastic scattering
from a proton or neutron) tails respectively. x; is the edge of the bin, and we factored
out the cross-sections in (3.30) assuming that they do not vary appreciable from z to
xy. The inelastic part can be broken further into the deep inelastic contribution from
the kinematic region measured by our experiment and the resonance contribution.

The external corrections can be divided into contributions from Bremsstrahlung
before nuclear scattering and after nuclear scattering. Since the glass windows for
E-154 are very thin, the contribution of the external corrections before scattering is
very small (it’s effect is less than 19%o). After scattering, some electrons go through
a much thicker glass wall (made even thicker by the oblique angle), and the external
corrections are not negligible. They can be included, after the internal corrections
have been applied, in the following fashion:

of (z) = / ' E(z,a")o! (a')dz (3.33)

E (z, ') is given explicitly in [45].
The measured asymmetry is given by the ratio of the external (i. e. fully radiated)
cross-sections:
oy (x)

Ap(z) = =&
= r)
Our goal is to invert equations (3.30-3.34) and calculate Ag(z) = o2 (z) /0f (X),
given A (z). The main difficulty arises from terms that include o2 (X’ QQ), making
the problem non-local in z and Q2. Therefore, we use an iteration technique, adjusting
the value of Ag(z) until A,,(z) is reproduced.

(3.34)
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Following historical convention, we present the final result in the form Ag(z) =
A (z)+ Agc(z). This, however, is only a convenient way of characterizing the size of
the corrections. It can not be used for error analysis, because Arc depends on A,

3.6.2 Error Analysis

The error analysis is also complicated by the presence of af (2', Q%) terms. However,
for a given ic bin we only need to know the cross-section at higher x. To simplify the
discussion, assume that we made a measurement only in the lowest = bin, and already
know the value af (i. e. g1) for all higher z. (One could actually use the data from
E-142 and E-143 at higher x instead of our data. It would cause some increase in the
size of the errors, but make the analysis simpler.) To simplify the notation, we also

ignore, for the moment, the external corrections. Then we can write:

oy V[ L (e,2',Q%) de’dQ%) + o)

"B (VAL (2,2, Q) da'dQ?) + o

ame include the inelastic, quasi-elastic and elastic tails, all of them come from mea-

surements unrelated to our experiment. One can show that as =, + x the polarized

and unpolarized inelastic tails become the same: I, (z,x’, Q%) — |, (z,2',Q?). Thisis

because the emitted photons have very low energy and do not depolarize the electron.
To simplify the notation, we introduce a new vertex correction factor:

V(1) = (V +//x 1, (2,2,Q?) da;’dQ2> = (v t//f I, (2,2,Q?) d:c’dQ2>
(3.36)

(3.35)

Then, by trivial algebra, we get

PR N G R SN . A
of T oBV (1) oBVi(z) T "BV (z1) 0BV ()

(3.37)
This shows that Agrc (the term in parenthesis) depends explicitly on A, at the
measured point, and has errors correlated with it. Now, it is simple to calculate
the effect of the radiative corrections on the errors. Equation (3.37) represents a
linear transformation applied to the measured asymmetry, and should be treated
in the same way as other linear transformations we apply to our data (cf. A, =
(A, = Apear D) / (PP fr)). One should increase the statistical and systematic error
of A, by: 5 ,
4
l: ol V' (z1) + o, (3.38)
f oV (2:1)
The factor f can be thought of as a dilution factor due to the radiative corrections.
In addition, one should add to the systematic error any uncertainty due to the fits
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and models used in the calculations of af, af, and a;)’. A similar procedure was
implemented by SMC in their most recent analysis of the radiative corrections [46].

The value of the dilution factor depends on z;. This dependence has the following
physical interpretation. The effect of the radiative corrections is similar to the effect of
a finite energy resolution, which smears events from neighboring bins. The smearing
can be deconvolved, but that causes an increase in the errors. For example, suppose
there are two bins which are so smeared that only 1% of their event sample is not
common. If the measured asymmetry is different by 1% between the two bins, we
would have to conclude that the Born asymmetry changes by 100% from one bin to
the next. The error on the asymmetry extracted in such a way would be huge. On
the other hand, if we ignored the possible variation of the Born asymmetry between
the two bins, we would not need to apply any correction at all. By binning our data
into a certain number of bins we are already setting a minimum scale for possible
variation of ¢g,. Furthermore, the real physical meaning of our data is not in the
values of ¢; (z) in individual bins, but in the long range trends of the data. We want
to extract, for example, the low x power of the data, the integral over the measured
range or other quantities that involve several bins. Therefore, it is not necessary to
set xy equal to the edge of the bin. It can be moved further, which results in a larger
dilution factor and a smaller error increase. This is similar to binning the data into
bins which are comparable with the energy resolution without doing a deconvolution
procedure.

We now come back to the more complicated case, when af for all = is determined
from the measured data, and include the external corrections. We can convert the
integrals in equations (3.30-3.33) to sums over z bins.

oB(z)V'(z,)
Am (37:) . (UE)(.’L'Z)( )
55 06) BB ) 4 o ) + 58 () + 09 (21
= ~ETe) (3.39)

Only the unknown contribution of o7(x) needs to be written explicitly. Here 7 (1, )
and E (¢, 7) represent non-local contributions from internal and external corrections
respectively, af is the resonance contribution, and the tilde means that the external
corrections are already taken into account. Equation (3.39) can be written in a matrix
form:

Ami = M;jAg; + Ari (3.40)
Api = M (Amj; — Ari) (3.41)

where
Mi = o] (z) V(1) /o) (x:) (3.42)
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My = [I(,3)+E(,5) ol (z;) [or () (3.43)
Ar; = 68 (2:) + 6 (2:) + 697 ()] fo P (:) (3.44)

In this form the quantities measured in the experiment (A,,;) are explicitly separated
from the quantities measured in other experiments (M;; and AT;).We also assumed
that Q2 evolution is known, so if we measured A, at one Q* , we can calculate it
at all Q2. Equation (3.41) is a linear transformation, so the errors can be handled
in a straight forward fashion. The error of Ap; is due to the error in A,,;, and also
the errors in A,,; (7 >¢). The diagonal term M;; = f is the same as in the previous
discussion. Therefore, the statistical and systematic errors should be increased by a
factor of 1/f.

In addition, the non-diagonal terms of M induce correlations between different
bins. Since the statistical errors are usually assumed totally uncorrelated, the error
due to A,,;(; > ¢) does not really belong to the statistical error. The systematic
error is assumed to be 100% correlated, so it is also not appropriate. Fortunately, the
effect of correlations is small, and by adding them in quadrature to the systematic
error we are making the most conservative approximation.

In reality, it is difficult to calculate the components of the matrix, as it requires
splitting the integration of the inelastic tail into many separate bins. It is easier to
calculate the errors using:

o’ (Ap:)= 3 (Sﬁm) o (Any) (3.45)

J=i+1

where we use the fact that the statistical errors o (A.,;) are uncorrelated. To evaluate
the derivatives we calculate the variation of Ag; as the input values A,,; are changed.
The effect of the correlations is very small and increases the systematic error by about
1%.

To calculate the central values of the corrections we are using a fit to the data. The
measured asymmetries have statistical errors and are randomly distributed around
their "true” values. The fit, hopefully, lies closer to the "true" result. For radiative
corrections we need to know the size of the Born polarized cross-section relative to
other cross-sections. So, it is best to use the results of the fit A (z). One has
to choose which particular fit to use in calculating the central values, since many
functional forms give acceptable x2. They differ from one another by an amount
comparable with the statistical errors of the data. Varying the form of the fit is
equivalent to varying the input values A,,; by some fraction of their statistical errors.
So, the variation of the radiative corrections due to different fits is already taken into
account by multiplying the statistical error by the dilution factor. One should just
choose one "best™ fit and use it to calculate the central values.



52 Chapter 3. The E-154 Experiment

In addition to increasing the statistical and systematic error by the dilution factor,
the radiative corrections introduce additional systematic errors due to the uncertainty
in the input models unrelated to our experiment. To estimate these errors, we vary
the input models within amounts constrained by the existing experimental data.

3.6.3 Input Models and their Errors

Calculation of the radiative corrections require the knowledge of the unpolarized
deep inelastic structure functions, polarized and unpolarized structure functions in
the resonance region, quasi-elastic form factors and elastic form factors. They also
depend on the Q? evolution of g,. In choosing appropriate models it is important to
know what region of the kinematic space has the biggest contribution to each tail.

The inelastic tail corresponds to electron scattering resulting in the excitation or
break-up of one of the nucleons in *He. Since the final state does not have a definite
invariant mass, the contribution of the inelastic tail is calculated by a two-dimensional
integration in Q2 and z. Part of it comes from the measured z region and part from
the resonance region. In both cases one needs to know the structure functions for a
range of Q*. Figure 3.10 shows the contribution to the integral as a function of z
and Q? for the unpolarized inelastic tail for z = 0.015. The line on the plot separates
the resonance region (W? <4 GeV?, high z, low Q?%) from the deep inelastic region.
To clearly show a large range of heights the square root of the integrand is plotted.
The contribution for Q* < 1 GeV? (> 1 GeV?) comes from electrons which lost
energy before (after) scattering. A large contribution comes from @* ~ 0.25 GeV?.
It corresponds to electrons losing most of their energy by emitting a photon before
scattering, since Q% = 0.23 GeV? for E = E' = 10 GeV, 0 =2.75°. For Fy(z,Q?%)
we used the NMC-95 fit [47] in the deep inelastic region. The error was estimated
by changing the parameters of the fit within the errors given by the parameterization
(typically, 2—3% for both proton and deuteron structure functions which are assumed
uncorrelated), as well as by changing to an older fit NMC-92 [48]. In the resonance
region, we used the parameterization of Bodek et al. [49] and varied it by 5% which
is the maximum error quoted in [49] for the relevant kinematic range.

The contribution to the polarized tail from various = and Q* is shown in Figure
3.11. Again, we plot the square root of the integrand to show a greater range of
heights. The dominant contribution comes from the resonance region, which has a
large asymmetry. The data of E-143 [50] were used in this region. The uncertainty
was estimated by varying the asymmetries within experimental errors of E-143. The
dependence on the value of g, was estimated by varying E-154 ¢, data within their
experimental errors.

The quasi-elastic tail results from elastic electron scattering from one of the nucle-
ons in ®He. Since the nuclear binding energy is much smaller than the electron energy
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Figure 3.10: Contribution to the unpolarized inelastic tail vs.  and Q*

or the bin width, one can reduce the integration to one dimension, using W (v,Q?) =
2

W(Q*»6é (v - QW) However, one has to include the Pauli suppression effect for small

(%, since not all of the nucleons can participate in the scattering due to the exclusion
principle. One usually uses the Fermi model for the nucleus, which is in good agree-
ment with experiment [51]. The suppression factor is given in [52, 53]. To determine
the Fermi momentum for *He we used a calculation of the quasi-elastic cross-section
by Atti et al. [54] compared with the Fermi model [55, 56]. It gives kr = 125+ 10
MeV. Figure 3.12 shows the contribution to the unpolarized quasi-elastic tail vs. Q?,
as well as the value of the Pauli suppression factor for = = 0.015. The peak at
Q? = 0.23 GeV? corresponds to electrons losing most of their energy before nuclear
scattering. The polarized tail has a similar Q* dependence.

One also needs to know the neutron and proton elastic form factors for Q% < 1
GeVZ2. A lot of measurements have been done in this region. Most of the data for the
proton electric and magnetic form factors and the neutron magnetic form factor are



54 Chapter 3. The E-154 Experiment
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Figure 3.11: Contribution to the polarized inelastic tail vs. = and Q2.

consistent with the simpledipole fit: G% = G%;/p, =G/ ptn = (1+Q2/0.71G6V2)_2
The models given in [57, 58], which predict small variations from the dipole fit (5%),
are also consistent with the data. The neutron electric form factor was taken from
[59], also consistent with measurements summarized in [57]. The differences among
these models were used to estimate the errors.

The elastic tail arises from electron scattering elastically from the whole *He nu-
cleus. The contribution from the elastic peak vs. @? is shown in Figure 3.13. All
of it comes from very low (2. It occurs when the electron emits a hard photon at a
large angle, deflects by about 2.75° and then scatters elastically by a small angle (or,
first scatters elastically and then emits a photon). The polarized tail has a similar Q*
dependence. Since the form factors are constrained to go to 1 at Q2 =0, the contri-
bution is not very sensitive to the shape of the form factors. We used the data from
McCarthy et al.[60] which cover the appropriate Q* range. The error was estimated
by varying the parameterization within the errors given in the paper.
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3.6.4 Results of the Radiative Corrections
The measured (uncorrected) asymmetries of *He were parameterized by:
g1 @)/ Fy (z) = —0.058:%3% (1 - )™ (3.46)

for the x range of the data. We assumed that ¢/ F; is independent of 2, consistent
with the rest of the analysis.
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Figure 3.14: The unpolarized Born cross-section and tails in the 2.75" spectrometer.

Figure 3.14 shows the unpolarized cross-section vs. x and various tail contribu-
tions for the 2.75" spectrometer. The corrections to the unpolarized cross-section
are dominated by the inelastic and quasi-elastic tail at low z, while at high z the
external corrections become significant. The total cross-section is increased by al-
most a factor of two at low z. Figure 3.15 shows the polarized tails. The polarized
Born cross-section is ten times bigger than the largest tail. Elastic tail makes a large
contribution at low = because it has a large asymmetry. Tables 3.2 shows the val-
ues of the radiative corrections, the enhancement factor for both the statistical and
the systematic errors, and the systematic error due to the corrections themselves.
We present the results graphically for the 2.75° spectrometer in Figure 3.16. The
smaller error bars on the asymmetry are the uncorrected statistical errors, the larger
error bars show the enhancement by the radiative corrections. The error bars on the
radiative corrections themselves indicate their uncertainty due to the input models.
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Figure 3.15: The polarized tails in the 2.75° spectrometer.

The corrections reach one third of the asymmetry at low x, however, they are always
comparable to the statistical errors of the data. Their primary effect on the errors is
to increase the statistical and systematic errors from other sources. The systematic
errors due to the corrections themselves are relatively small.

The radiative corrections were also calculated independently by the SLAC analy-
sis group [61]. They used a different computer program, developed at SLAC on the
basis of formalism given in [42]. The results of the two calculations for the individual
contributions and the total radiative corrections are in good agreement. Any dif-
ferences are mostly due to the use of a different functional form to parametrize the
asymmetry for the calculation. Different fits to the asymmetry with a good x? can
differ from each other by a substantial fraction of the statistical errors. As a result,
the radiative corrections can differ by as much the increase of the statistical error (i.e.
68.6% of the statistical error for the lowest = point). The errors due to this variation
are taken into account by the radiative corrections dilution factor.
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| z bin \ AARC 'a(AB"T”) /U(Ame‘”)| Syst. '
| 2.75° spectrometer |

0.017 | -0.00341 1.686 0.00051
0.025 | -0.00285 1.500 0.00057
0.035 | -0.00233 1.334 0.00038
0.049 | -0.00192 1.216 0.00022
0.078 | -0.00151 1.154 0.00017
0.123 | -0.00122 1.113 0.00019
0.173 | -0.00099 1.068 0.00015
0.241 | -0.00081 1.049 0.00018
0.340 | -0.00061 1.048 0.00026
0.423 | -0.00051 1.102 0.00046
0.0573 | -0.00290 1.319 0.00070
0.0837 | -0.00251 1.202 0.00053
0.1231 | -0.00227 1.123 0.00037
0.1725 | -0.00210 1.066 0.00035
0.2420 | -0.00185 1.039 0.00022
0.3424 | -0.00152 1.022 0.00020
0.4423 | -0.00124 1.009 0.00030
0.5643 | -0.00102 1.028 0.00063

Table 3.2: The radiative corrections to AISIHe and their effect on the errors.
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Chapter 4

Polarized 3He Target

Our experiment used a polarized *He target as a source of polarized neutrons. To
polarize the *He we used spin exchange with optically pumped Rb vapor. In this
chapter | describe the techniques used for polarizing large quantities of *He and
constructing a high quality nuclear target. Measurements of the dimensions, densities,
and temperatures of the target cells are described in detail. These numbers are
important for determining the polarization and the dilution factor of *He. The later
is described in this chapter, while Chapter 5 will be devoted to the former. The target
performance during the run is also discussed.

4.1 Optical Pumping and Spin Exchange

There are two techniques commonly used for polarizing *He. One technique uses
direct optical pumping of the metastable 2 S, state of *He [1]. The metastable
state is produced by RF discharge in a few torrs of *He. The electron spin in the
2 3S, state is polarized by optically pumping the 2 3S; — 2 3P, transition with
1.08 pum circularly polarized light. The polarization is transferred to the nucleus
by the hyperfine interaction. While high nuclear polarization can be obtained, the
use of this technique for high density targets is difficult because the *He density
has to be very low to maintain the RF discharge. However, it is well suited for
internal targets, which do not require high density gas. It was used recently for a
measurement of the neutron spin structure function at DESY [2]. Compressors have
been developed to produce high density gas without destroying the polarization [3].
With the compressors the technique has been used recently for a measurement of the
He electric form factor [4].

In our experiment, we use the second technique, which can be more easily applied
for high density targets [5]. In this technique *He is polarized by a two step process.
First, Rb vapor is polarized by optical pumping with circularly polarized light. Sec-
ond, the Rb electron polarization is transferred to the *He nucleus by spin-exchange
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64 Chapter 4. Polarized 3He Target

interaction.

Optical pumping of alkali metals [6] relies on the angular momentum selection
rules in the optical excitation process. A simplified level diagram, ignoring the effect
of the Rb nuclear spin, is shown in Figure 4.1. The modifications due to the nuclear
spin will be discussed later. When pumping with right circularly polarized light, the
electrons can only be excited from the m = —1/2 level. They decay back with equal
probabilities to both levels, but can't be excited again from the m = +1/2 state.
Thus, in the absence of any relaxation processes, all spins will accumulate in the
m = +1/2 state. Several important conditions have to be met for this scheme to
work. First, one has to apply a magnetic field, parallel to the direction of the light
propagation, to split the Zeeman levels. Second, when the electrons decay radiatively
back to the ground state, they emit photons almost isotropically and with varying
degree of polarization. In our conditions the cell is optically thick and most of the
photons are reabsorbed before exiting the cell. Since these photons do not have, in
general, the same polarization and direction of propagation as the pumping light,
they severely limit the efficiency of the pumping process. To avoid this effect, about
60 torr of N, buffer gas is added to the cell, which radiationlessly quenches the excited
electrons back to the ground state. Although in our targets the optical pumping takes
place in the presence of 10 atm. of 3He gas, N, is still necessary. The quenching
cross-section for N, and other diatomic gases is several orders of magnitude larger
than for *He because the energy of the electron can be transferred to the vibrational
and rotational motion of the N, molecule. The quenching cross-sections have been
measured in [7]. Using their results we estimate that the quenching time of the excited
state is about 1.3 ns, compared with radiative decay time of 28 ns. Therefore, only
about 5% of the atoms decay by emitting a photon. The N, pressure is chosen by a
compromise between the quenching rate and the contribution of N, to the dilution
factor. In addition, there is a large collisional relaxation of the electron spin in the
excited state due to both N, and *He. Therefore, electrons decay to the ground state
with equal probability. In the absence of spin relaxation in the ground state, two
photons are required to polarize one Rb atom.

Due to the non-zero Rb nuclear spin the energy levels displayed in Figure 4.1
are modified by hyperfine interaction. The hyperfine splitting is much larger than
the Zeeman splitting in a typical holding field of 20 G, so the electrons are in the
eigenstates of the total spin F' = I + S, where | is the nuclear spin (I = 5/2 for
8Rb and | = 3/2 for ®”Rb) and S is the electron spin. The level structure of the
ground state is shown in Figure 4.2. There is still a level (F =3, m = 3) from which
the atoms cannot be excited by right circularly light, but now it takes many more
excitation cycles to transfer the electrons to this state. However, most sources of
spin relaxation and spin exchange affect only the electron spin and do not relax the
nuclear spin. An electron from the F' = 3,m = 3 state after going through a spin
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Figure 4.1: Optical pumping by circularly polarized light.

relaxation or exchange process is most likely to end up in one of the m = 2 states. It
will need to go through, on average, only two excitation cycles to be pumped back to
the m = 3 state. Therefore, the nuclear spin acts only as a "reservoir” of the angular
momentum, without affecting the efficiency of optical pumping.
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Figure 4.2: Ground state energy levels for 8Rb.

In our conditions the absorption lines are pressure broadened by *He to about

160 GHz FWHM. Therefore, the hyperfine structure of the optical lines is not resolved
and the atoms from both hyperfine states are equally likely to absorb the light Under
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these conditions it can be shown [8, 9] that the relative population of the Zeeman
levels obeys a spin temperature distribution [10]:

(F,m|p|F,m):§eﬁm (4.1)

where p is the Rb spin density matrix and /3 is the inverse spin temperature, related
to the average electron polarization by Pr, = tanh(3/2). The spin temperature
distribution has been shown to hold experimentally [11] with high degree of accuracy.

The average polarization is determined by the ratio of the optical pumping and
electron spin destruction rates

R
Prp= ————— .
"= R+Tsp (42)
The optical pumping rate is defined as:
R = / ® (v)o (v)dv (4.3)

where @ (v) is the laser photon flux per unit frequency and o (v)is the light absorption
cross-section. The electron spin destruction rate I'sp is mostly due to the spin-
rotation interaction during collisions of the Rb atom with other atoms [12]:

Hsp =N - S (4.4)

which can couple the spin angular momentum to the rotational angular momentum
N of the colliding pair. The spin destruction rate due to collisions with gas species ¢
is proportional to the density of that species, so we can write

I'sp = kro—He [3H6} + kro-n, [N2] + kro—rs [ RO] (4.5)

introducing spin destruction rate constants kpy—; = (voms—;). The constants have
been measured by Wagshul and Chupp [13]:

ka—He < 2 % 10_180m3/3 (46)
ka——Ng = 8x 10—1807713/8 (47)
ka—Rb = 8 X 10_13cm3/3 (48)

Recent experiments at Princeton [9] found strong temperature dependence of these
rates, which was not taken into account in [13], so the numbers should be treated
only as a “factor of 2”7 estimates.

In our operating conditions ([PHe] = 2 x 10?® cm™3, [N,] = 1.8 x 10'® c¢m™3,
[Rb]= 4 x 10'* cm™3) this gives the following contributions to the spin destruction
rate:

Isp = 400Rrs—pe + 14ps_n, + 320Rs_ps = 734571 (4.9)
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Thus, Rb-Rb and Rb-*He collisions contribute in approximately equal amounts to the
relaxation of the Rb spin. Its important to realize that Rb-Rb spin-exchange process,
which happens at a rate of 2.7 x 10° s=' does not contribute to the spin relaxation.
In addition to spin rotation interaction, Rb spin can relax due to collisions with the
walls. This effect has been studied in [13]. Because of high *He pressure, the Rb
diffusion constant is very small Dgy_g. = 0.15 cm?/s at 150°C [13], so relaxation due

to wall collisions is only significant within y/Dpgy_g./T'sp ~ 0.1 mm. of the wall.

Finally, there is the relaxation due to the spin exchange with 3He, responsible
for transferring Rb electron polarization to *He [14]. The spin-exchange is due to
hyperfine interaction between the Rb electron and the *He nucleus [15]:

Hsp = aK - S (4.10)

where K is the *He nuclear spin. This interaction gives rise to both a transfer of
the polarization to 3He and a shift of the Rb Zeeman frequency due to the *He
polarization. The frequency shift is used for *He polarimetry, as described in Chapter
5. The spin exchange rate constant has been measured in two experiments with results
different by a factor of 2. Coulter et al. [16] get ksp = (vosg) = (1.24+ 0.2) x 107*®
_em?/s, while Larson et al. [17] report ksg = (6.14 0.2) x 1072° cm?®/s using a similar
experimental technique. Clearly, more measurements of this number are required.
Spin exchange with ®He contributes about I'sg = ksg [PHe] =24 57! to the relaxation
of the Rb spin'. Therefore, approximately 3% of the Rb atoms transfer their spin to
3He, while the rest lose it in spin destruction processes.
The *He nuclear polarization increases with time due to spin exchange according
to the following equation:

Pire (t) = (Prs) —2— {1 — exp [~ (155 + 1) 1]} (4.11)
vsg + T

where vsg = ksg [Rb]T" is *He nuclear spin relaxation rate, and (Pg;) is the average
Rb polarization in the cell. Compared to the Rb spin exchange rate (rate per Rb
atom), the 3He spin exchange rate (rate per >He atom) is slower by the ratio of
Rb to He number densities. So, the *He spin exchange rate is very small vsg =
4.8 x 107° s7! =1/(5.8 hrs.). Fortunately, the nuclear relaxation rate of *He can also
be quite small. The limiting factor is the *He->He magnetic dipole relaxation, which
was calculated by Newbury et al. [18]:

r _[*He]
b= T4

where [*He] is in amagats. All *He relaxation rates measured in our lab are larger
or equal to this limit. For E-154 cells the limit from this source of relaxation is

hrs™! (4.12)

'Here and in other calculations, the result of Coulter et al. [16] is used, unless stated otherwise.
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1/T'p =84 hrs. Therefore, provided that all other sources of relaxation are eliminated,
one can achieve high *He polarization.

In addition to the dipole-dipole relaxation there are several other sources of re-
laxation which are small or can be made small. Relaxation due to magnetic field
gradients [19, 20] is given by:

VB.|* + VB, [’
Bz

I'c = Dy (4.13)

Because of high *He density in our cells, the self-diffusion constant is small Dy, =
0.28 cm?/s. To achieve negligible relaxation 1/I'¢ = 1000 hrs., we need |VB,|/B. <
0.001 cm~'. We used Helmholtz coils with a diameter of 150 cm, much larger than our
cell dimensions ~ 30 c¢cm, and a holding field B, of 10-20 G. Precautions were taken
to remove all ferromagnetic material from the vicinity of the target. Under these
conditions we found that it was not difficult to satisfy the inhomogeneity condition.

The relaxation due to beam ionization has been studied in [21, 22, 23]. The
relaxation can be written as:

I'p = (na tnm) Iy (4.14)

where T’y is the rate of production of *He ions by the electron beam. n, describes the
contribution from single *He* ions, which is due to hyperfine interaction between the
single electron and the nucleus. n, can range from 0 to 1{22] and in our conditions is
close to 1 [24]. n,, describes the contribution from the formation of *He] molecules,
which can relax the nuclear spin by spin-rotation interaction (4.4). n,, can be quite
large, but in our cell the molecules are quickly broken up by collisions with *He and
neutralized by collisions with N,, so n,, < 1. For our experimental conditions we
calculate the relaxation time due to beam ionization from 400 to 1100 hrs. depending
on the beam current. No significant depolarization due to the beam was observed
(see Figure 4.21).

Even in the absence of the two relaxation sources described above, which are
dependent on the environment, the *He relaxation rate is usually larger than the
dipole-dipole contribution. In most cases the relaxation rate is constant for a given
cell and is not affected by heating cycles, measurement conditions, etc. The relaxation
can be due to paramagnetic impurities in the walls or in the gas phase, which cause a
large magnetic dipole relaxation rate. Or, it can be due to ®He sticking to the surface
of the cell for a long time and relaxing by exchange with other nuclear spins [25]. Since
most common paramagnetic gases (Oz, NO) are reactive with Rb, they probably are
gettered by Rb when the cell is hot. On the other hand, the measurements of the
relaxation rate are always done at room temperature to remove the contribution of Rb
spin exchange. Therefore, the possibility of outgassing of paramagnetic gases cannot
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be excluded. The sources of relaxation on the surface are even more uncertain. It
can be ferromagnetic elements in the composition of the glass or contaminants on
the surface. RbO, is also paramagnetic. It is unlikely that *He can stick to the wall
for a long time, because it has very low polarizability and no wall coatings are used.
However, it can diffuse and get trapped in micro-fissures, if they are present. It was
found [24] that the nuclear relaxation rate can be significantly reduced by using only
glass surfaces which are freshly formed during glass blowing. Freshly reblown glass
probably has much less micro-fissures than stock tubing.

For our best cell, called Picard, the nuclear relaxation time was measured after the
run to be 1/I' =84+ 5 hrs. So, the relaxation due to sources other then *He dipole-
dipole interaction was longer than 1300 hrs! Using the ratio of surface to volume,
one can calculate that an average atom strikes the surface about 2x10*! times before
relaxing. Even for the worst cells, which have a nuclear relaxation time of 30 hrs,
this number is equal to 7 x 10°. We also measured the nuclear relaxation time of
Picard during the run, in the presence of the electron beam. This measurement was
performed during A; running, when the cell was at room temperature. During the
measurement the polarization was directed perpendicular to the electron beam using
an additional set of Helmholtz coils. The relaxation time was 55+ 3 hrs, significantly
shorter than the lifetime measured before or after the run. This indicates that an
additional source of relaxation with a time constant of 160 hrs. was present. It may
be due to beam depolarization larger than calculated (we calculate 1/I's = 1100 hrs.
for Picard), relaxation due to magnetic field gradients created by the spectrometer
magnets, or some other effect associated with operation of all experimental equipment
at once. With time constants from the spin-up of Picard, one can estimate that this
decrease in the lifetime reduced the equilibrium *He polarization by 3%. It would
have even smaller effect on other cells with shorter intrinsic lifetimes.

For optimization of the target design and operating parameters, it is convenient
to rewrite the equation for equilibrium *He polarization as follows:

R VSE
Py, = < ) 4.15
" R+Tsp (’YSE +F) (4.19)

from which it is obvious that for high polarization we need vsg > I" and R > I'sp.
To satisfy the first condition, we need to have very high quality cells with I' ~ T'p
and high Rb number density since vs; = ksg [Rb].The second condition is also not
trivial to satisfy, because I'sp has components which are proportional to the Rb and
He density, both of which are quite large. So, we need to have a large pumping rate,
1.e. high laser intensity.

This experiment relied on laser diode arrays for most of optical pumping. Laser
diode arrays have many advantages over Ti-Sapphire lasers, which were used in E-142
and also supplemented diode lasers in this experiment. They are much cheaper per
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watt of power, more compact, require less power, and almost no operator attention.
Their main disadvantages are a very broad spectral profile, on the order of 2-4 nm,
and, for some models, large non-uniformity of the laser beam. The spectral width
problem is partly alleviated by very large pressure broadening of the Rb absorption
lines. In our cells the absorption line FWHM is about 0.34 nm, and we are usually
able to absorb about half of the light. The propagation of the light through the cell
is governed by a set of non-linear integro-differential equations:

R(z) = /@(V,z)a(z/)dz/ (4.16)
?% = —nro (v)P(v,z) (1—%—&%) (4.17)

These equations do not take into account variations of the light intensity in the trans-
verse direction, which can be significant for diode lasers, and the depolarizing surface
layer. Solving equation (4.16, 4.17) one can calculate the average Rb polarization:

_ R(z)
(Prs) = /V By Tt (4.18)

and, using equation (4.11), the >He polarization for a given laser power, Rb number
density, etc. However, even the basic spin destruction rates in equation (4.9) are
uncertain by as much as a factor of 2. The Rb number density, another critical
parameter, is also uncertain by a factor of 2 because of the temperature uncertainty
due to the heating by laser light. Although one can model the performance of the
cells, the predictions are usually rather unreliable and the optimization is often done
at the experimental stage.

4.2 Target Cells

The two main goals in the construction of the target cells were a long nuclear re-
laxation time and a large dilution factor. For an experiment limited by the count
rate in the spectrometer, such as ours, the running time required to achieve a given
statistical error is proportional to the square of both the polarization and the dilu-
tion factor. The dilution factor, defined in Chapter 3, is the ratio of the number of
electrons scattered from *He compared with the total number of scattered electrons:

Ly.[He]lope(z)

f)= Lye[Helone (x) + Ly, [N2]on, (2) + Langog (z)

(4.19)

where L; is the length of the material and o;(x) is the deep inelastic scattering
cross-section (not to be confused with the optical cross-section o (v)). For glass
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ngaog(z) = Y.n.o.(x) is the sum over different chemical elements in the glass.
While the use of diode lasers allowed us to increase the average *He polarization from
33%in E-142 to 38%, and reach polarizations up to 48%, the bulk of the improvement
in the target came from a smaller dilution (a larger value of the dilution factor). The
3He dilution factor for E-142 was about 0.35, while for this experiment it was 0.56 on
average and as high as 0.65 for some cells. Thus, the improvement from the dilution
factor was much more significant than from the target polarization.

From equation (4.19) it is clear that we need to reduce the glass thickness seen
by the electron beam. At the same time, the dilution factor can be increased by
increasing the density of *He. These are mutually conflicting requirements, as the
glass cell with very thin windows cannot withstand large *He pressure. To achieve a
larger dilution factor, we designed special concave windows [26], which can withstand
much higher pressure than usual convex windows used in E-142. The windows were
made by Princeton Glassblower Mike Souza. A detailed schematic of the windows is
shown in Figure 4.3.

T ======T
25 mm. 21 mm.
T 0.75 mm
0.95 mm. 16 mm. ' '

Figure 4.3: The schematic of the inverted window design. Dashed lines show the tube
from which the window is originally blown.

The procedure for cell fabrication was as follows. First, simple, non-inverted con-
vex windows were produced. Their thickness was determined by either a mechanical
measurement or X-ray absorption, as described later in the text. The windows which
fell within the desired range from 2 to 3 mils were sealed in the inverted configuration.
The rest of the windows were resized and measured again. The inverted configuration
was made by sealing the window to a tube of a larger diameter, as shown in Figure
4.3. It was very important not to have a sharp edge at the joint of the two tubes.
All inverted windows were pressure tested. For pressure testing we filled the windows
with water to reduced the amount of energy stored during the test. It is known that
water has corrosive effects on glass [27], therefore, the test was limited to 10 min. in
duration. Deionized water was used. The cells were tested to 19 atm. overpressure,
while the operating pressure in the cells did not exceed 12 atm. The yield of the
windows was highly variable and mostly dependent on the quality of the seal between
the window and the outer tube. Overall, approximately 1in 4 windows survived the
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test and were used in cell construction.

In other ways the geometry of the cells was similar to the E-142 cells. They
consisted of two chambers, the target cell and the pumping cell, connected by a
transfer tube. Figure 4.4 shows the dimensions of the target cell Picard. During
operation the pumping cell was heated to ~ 180°C to get sufficient Rb density for
optical pumping and spin exchange. The Rb vapor density in the target cell was
negligible. *He polarization was transferred to the target cell by diffusion. By using
two chambers we avoided problems associated with simultaneous access for laser and
electron beams and the depolarizing effects of the electron beam on the Rb vapor.
Because only part of the cell is used for optical pumping, equation (4.11) for 3He
polarization is modified. One can show [24] that the only modification is a replacement
of the spin exchange rate ysg = ks [Rb)y the volume averaged rate:

N,

— P
VSE = ’YSE__—‘NP TN, (4.20)

where N, and Nr are the number of *He atoms in pumping and target cells respec-
tively. Thus, the effective spin exchange rate is a factor of 3 smaller than the rate
in the pumping cell. This makes it only more important to have a very long nuclear
relaxation time.

The cells were constructed using the techniques developed for E-142 [24]. We
used 1720 Corning glass, primarily because of its low permeability to *He. Using
permeability data from [28] we estimate that the cell losses 10% of *He in about 100
years, compared to about 2 month for Pyrex. In addition, Corning 1720 is highly
resistant to alkali metals and does not react with them even at high temperature.
Finally, the surface properties of Corning 1720 have been shown to allow very long
nuclear relaxation times, although other glasses are not necessarily worse. On the
other hand, Corning 1720 is one of the most difficult glasses to work with, and this
experiment would have been impossible without the great skill of our glassblower
Mike Souza.

The glass was rinsed in nitric acid, deionized water and spectroscopic grade
methanol. One of the most important steps in the procedure was resizing, during
which the stock tubing was mounted on a lathe and its diameter increased by slowly
melting the glass and blowing into the tube. The purpose of the procedure isto ensure
that the surface of the glass is freshly formed, without microfissures and impurities
usually present on tubing from stock. This prevented *He from diffusing into the
micro-fissures and depolarizing. All parts of the cell were resized from tubing several
millimeters smaller than the required size. A complete cell was annealed to relieve
any stress created during assembly.

The gas filling procedure was also similar to E-142. The cell was attached to a
high purity vacuum system. A broken Rb ampule was sealed into the glass manifold.
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Figure 4.4: Dimensions of the target cell Picard, mm.

The vacuum system used a Varian diffusion pump and a cold N, trap. Pressures of
1x107® torr were routinely achieved. The cell was baked under vacuum for several
days at 450°C to drive the water vapor off the walls. Rb was distilled several times
prior to introduction into the cell. The cell was filled with ultra-pure gases (N, grade
6 and 3He grade 5.5). The gases were additionally cleaned by Ultra-Pure getters
[29] operated at 350°C. To fill the cell to 10 amg. it was cooled by liquid He, so
the pressure in the cell was less than 1 atm when it was being removed from the
manifold by melting of a thin glass tube. Liquid He was flowing through a specially
constructed dewar which fit over the target chamber of the cell. After the cells were
filled, they were baked at 140" overnight. This procedure is believed to improve the
lifetime of the cell by allowing Rb to cover the surface and getter any impurities in
the gas phase.

The nuclear relaxation lifetimes of the cells measured before the run are shown in
Table 4.2. All cells had lifetime in excess of 30 hrs. Two cells had a lifetime within
errors of the bulk limit and another 2 cells in excess of 50 hrs.

The physical parameters of the cells, i.e. dimensions, volumes, densities, are
very important in calculating the polarization and the dilution factor of the target.



74 Chapter 4. Polarized ®He Target

Because of the increased statistical precision of our experiment, it was very important
to reduce the errors in these quantities. Therefore, we pay particular attention to their
measurement, as described in the next 4 sub-sections.

4.2.1 Cell Dimensions

The dimensions of the cells enter into the polarimetry analysis in various ways. The
size and shape of the target cell and the pumping cell determine the size of the AFP
signal used for *He polarimetry. By far, the most important dimension for determining
this signal is the diameter of the target cell, since it determines the volume of polarized
material between the pick-up coils. The dimensions of the transfer tube determine
the diffusion time for polarized 3He between the pumping and the target cells, and
hence, the difference between the pumping cell and target cell polarizations which
is needed for EPR polarimetry. The care taken to measure each of the dimensions
was roughly proportional to the sensitivity of the final result to that number. All
dimensions of the cells are listed in Table 4.1. The missing numbers for Riker are
quantities which could not be measured after the run due to the violent explosion
which destroyed the cell. Riker was the only cell for which both the pumping cell and
the target cell were destroyed when one of the windows failed.

Cell Target Cell Flare Transfer Tube | Pumping Cell
Name OD |oop | Wall | Start | OD | OD | Length | OD | L. 1| L.2
Dave |20.750.02 |0.730 | 110 |26.7 | 124 | 61.5 |36.3|84.095.1
Riker |21.72| 7 |0.697 | 105 |25.7 | 11.8 ? 3721706 | 82.3
Bob 20.80 | 0.03 | 0.728 | 115 |26.6 | 12.3 | 61.2 |36.1 | 79.0 | 94.6
SMC | 20.66 | 0.05 | 0.733 | 110 |26.3 | 12.2 | 63.5 |37.8|77.7|90.7
Generals | 21.62 | 0.13 | 0.700 | 110 {25.9 | 12.9 | 59.2 | 36.0 | 66.8 | 80.0
Hermes | 20.53 | 0.03 | 0.737 | 110 |26.7 | 11.9 | 629 |37.7|74.8 ] 89.4
Prelims | 21.24 | 0.04 | 0.713 | 110 | 26.0 | 129 | 59.4 | 36.1 | 68.3 | 80.5
Chance | 21.33 | 0.05 | 0.710 | 118 |25.4 [ 13.5| 67.0 |35.8]79.0/|93.0
Picard | 22.40 | 0.09 | 0.676 | 105 |25.3 | 11.5| 61.6 |37.7 655 |79.8
Water I | 20.55 | 0.03 | 0.737 | 102 | 24.8 | 14.0 | 59.7 |36.8|74.9|88.9
Water II | 22.62 | 0.07 | 0.669 | 112 | 254 [ 13.2| 72.6 |36.8|73.7|94.5

Table 4.1: Cell Dimensions in mm.

The target cell diameters were measured with a caliper at 8 different points near
the middle of the cell, where the pick-up coils are placed. Since the cells are made
from reblown glass, they are not exactly cylindrical and there is a small variation of
the diameter along the cell. The amount of the variation is indicated by oop Which
is simply the standard deviation of the 'data set. Although the simple average of the
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Cell Length, Nuclear N,
Name mm Lifetime, hrs | Density, amg.
Dave 291 45 0.075
Riker 300 67 0.047
Bob 299 58 0.075
SMC 302 50 0.079
Generals 297 45 0.079
Hermes 295 44 0.079
Prelims 300 30 0.078
Chance 299 41 0.078
Picard 299 68 0.078
Water 1 302
Water 11 297
Ref. Cell 1 | 303.5
Ref. Cell 2 | 297.4
Ref. Cell 3 | 304.3
Ref. Cell 4 | 302.3

Table 4.2: Miscellaneous cell parameters: the length, the nuclear relaxation time
measured before the run, and the density of N, gas.

measurements does not take into account the scaling of the area with the square of
the diameter, it is different from the true value only in second order (i.e. AA/A =
(cop/OD)? /3 = 107> for the worst case). The error of individual measurements
is about 0.025 mm. Assuming that different positions along the cell were sampled
randomly (in reality, measurements were made at roughly regular intervals, but the
dependence of the diameter on the position may be non-monotonic, so it is more
conservative to assume random sampling), the OD spread should be divided by the
square root of the number of measurements. This gives an error of 0.05 mm in the
worst case. The caliper may also have a systematic error of up to 0.05 mm. To be
conservative, an error of 0.5% (0.1 mm) is used for the OD of the target cell.

The thickness of the glass walls of the target chamber was measured for several
cells using laser interferometry, described in the next section, or a caliper, with the
results given in Table 4.3. Again, the measurements were made at several points
near the middle of the cell. The results are fitted to a function t,, = A/D..;; where
A = 15.14 mm? is a common constant for all cells. It assumes that when the glass
is reblown to a bigger diameter it is not stretched, and the wall thickness is inversely
proportional the diameter due to volume conservation. Using the spread divided by
the square root of the number of measurements as the error, the data give a fit with
x? < 1. This confirms the dependence of the wall thickness on the diameter and
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| Cell Name | Wall Thickness | Spread |

Riker 0.691¢ 0.028
Generals 0.710° 0.040
Hermes 0.734 0.045
Prelims 0.702¢ 0.055
Picard 0.682¢ 0.068
Water | 0.732' 0.045

Table 4.3: Wall Thickness, mm. (c - caliper, 1-laser)

implies that the errors are very conservative. In Table 4.1 the results of the fit are
used to generate the numbers for the wall thicknesses. The error in the wall thickness
is 0.02 mm.

The rest of the numbers in Table 4.1 come from direct measurements with a
caliper. For the pumping cell, Length 1 is the distance between the points where
the cylinder starts to round off and Length 2 is the total outside length of the cell.
The errors range from 1%for the pumping cell OD to 5% for not very well defined
dimensions (like position of the flare). The wall thicknesses are: flare - 0.95 mm,
pumping cell - 1.03 mm, transfer tube - 1.18 mm, all with an error of 0.1 mm. They
were determined by measuring tube samples which were reblown in the same way as
the cells, as well as by measuring the wall thicknesses of broken cells. For calculation
of the dilution factor, one also needs the lengths of the cells, which are given in Table
4.2. They are accurate to 1%.

4.2.2 Window Thicknesses

The thicknesses of the cell windows were measured by three methods. Initially, we
measured the thickness mechanically, with a displacement micrometer, which had a
resolution of 0.05 mils and an accuracy of 0.1 mil. However, some of the windows
would break under the pressure of the tip and others might be scratched. Therefore,
we started to use an X-ray absorption method to measure the thicknesses. We used a
5Fe source, which emits X-rays due to K electron capture. The energies and relative
intensities of the lines are given in Table 4.4 [30]. The X-ray spectrum is shown
in Figure 4.5. We used a germanium detector to detect the X-rays. To determine
the total X-ray count we always integrated under the area of both peaks, since the
detector resolution was not sufficient to cleanly separate the two. At this low energy
the X-rays are absorbed only by the photoelectric effect, since the cross-section for
Compton scattering is 1500 times smaller. Since the photons are absorbed in one
interaction process, there are no problems due to back-scattering or deflection. The
absorption length of the 3°Fe X-rays in glass is approximately 1.6 mils. This is almost
ideal for our windows of 2-3 mils, as one can show that the optimal ratio of the
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Energy, keV | Relative Intensity
5.899 100
5.888 50
6.492 20.2

Table 4.4: X-rays emitted by the 3*Fe source.

window thickness to the absorption length is 2:1. A collimator with a circular hole 3
mm. in diameter was used to restrict the detector acceptance. Thus, the measured
thickness was an average over a 3 mm. area in the center of the window. For each
set of measurements we determined the incident intensity by counting X-rays with
no windows. We also measured a small background rate by blocking the hole in the
collimator, and subtracted it from the other intensities.
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Figure 4.5: X-ray spectrum from 5°Fe source recorded by a germanium detector. The
spectrum is fit well by a sum of two gaussians plus a small linear background.

The absorption cross-section is inversely proportional to the third power of the
energy [30]:
oy~ E73 (4.21)

Since there are two lines of different energy, we approximate the absorption by a sum
of two exponentials:
| (z) =1 (e"a”” +re“a2z) (4.22)
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The parameters in equation (4.22) are measured as follows. To calculate r we
fit the spectrum shown in Figure 4.5, which was obtained with no windows in the
path of the X-rays, to two gaussians and determine the ratio of their areas. We
obtain » = 0.195. Note that this number is different from the naive estimate using
the data in Table 4.4: ro, = 0.134, because the X-rays are partly absorbed in the
air between the source and the detector. The more energetic X-ray is absorbed
less, so its relative intensity is higher. To determine «a,/a; we use the photoelectric
cross-sections given as a function of energy in [31] and the known composition of
glass (see Table 4.12). We obtain az/a; = 0.761. Again, this number is slightly
different from a naive estimate a,/oy = (E;/E,)* = 0.749 because equation (4.21)
is only approximate. To check this ratio, we also recorded the X-ray spectrum and
separately measured the absorption of the two lines for several windows. In this way
we obtained ay/a; = 0.760 &+ 0.003. To determine the last constant «; we measured
the X-ray absorption for a number of windows whose thickness was known from a
different method. Initially, we used mechanical measurements for this calibration, but
later we recalibrated with interferometric measurements, described later in the text.
The data used for calibration are shown in Figure 4.6 with a fit to equation (4.22).
From the fit we obtain «; = (41.5+ 0.7,um)_1. This number can be compared with
a theoretical estimate based on known cross-sections [31] and the composition of the
glass: ol" = (42.7+ 1.4,um)‘1, where the error is dominated by the uncertainty in
composition of the glass.

With this calibration we can now calculate the thickness of all windows measured
by X-rays. The error is dominated by the statistical uncertainty. The windows were
measured for 100-200 sec., which gave about 1000 counts in the detector and a error
of about 3%.

After the run we implemented an interferometric method for measuring the thick-
ness, which is much more accurate. In addition, the measurements could be performed
on windows already sealed in cells, which is impossible with the other two methods.
This allowed us to remeasure all of the surviving windows of the cells used in the
run. The schematic of the setup is shown in Figure 4.7. It is easy to show that the
reflection coefficient is given by [32]:

K
R —
1+ K
2 _ 2
K = [" L gin (lm/d)] (4.23)
2n c

where n is the index of refraction of the glass and d is the thickness of the window.
Therefore, the reflection coefficient oscillates as the frequency of the light is scanned.
Figure 4.8 shows such a signal recorded by the photodiode. In fitting the data we also
allowed for a background due to smearing of the interference fringes. The frequency of
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Figure 4.6: Absorption of X-rays in windows as a function of their thickness. The
errors are statisitical. The thickness is measured by the interferometric method.

the oscillations can be determined very precisely. The correction due to the deviation
of the beam from the normal direction is proportional to cos4° = 0.998, and is
negligible. So, we only need to know the index of refraction of 1720 glass to determine
the window thickness. The index of refraction is known at the Na D line [33, 34]
n = 1.530. Using approximate wavelength dependence from [35] we estimate that
n = 1.523 at 780 nm. In addition, we determined this number by a measurement of
the Brewster angle at 780 nm: tanfg = n = 1.519 + 0.01. The windows measured
after the run suffered substantial radiation damage (they were brown). To check that
the radiation damage did not affect the index of refraction, we measured the thickness
of two pieces of glass from the wall of a cell. They were sufficiently thick (1mm) to be
also measured accurately with a micrometer. In this way we found n = 1.528 + 0.01.

So, we know n to better than a percent.
Single Frequency Laser

[ ] Photo-Diode

Figure 4.7: Setup for interferometric thickness measurements.
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Figure 4.8: Reflection coefficient as a function of the laser frequency.

The optical method was used to measure the thickness of the windows used for
calibration of the X-ray absorption. We also compared it with mechanical mea-
surements, with results shown in Figure 4.9. As can be seen, the two independent
methods for measuring the thickness are in good agreement. Since the optical method
is more precise, a small correction described by the fit shown in Figure 4.9 is applied
to the mechanical measurements. Finally, the optical method allows one to study
the variations in the thickness of the window with position. The optical beam is
focused to much less then a millimeter in diameter and is easily positioned anywhere
on the window (the beam is also visible with an IR viewer, which makes alignment
much easier). The measurements were performed for Picard, displacing the beam by
about 2 mm from the center in different directions, which is somewhat larger than
the expected alignment error of —1 mm. Compared to the thickness in the center,
the thickness changes ranged from -2.2% to +7.7%, with an average of +2% and a
standard deviation of 3%. The results of the window measurements for all cells are
shown in Table 4.5. The difference column indicates the difference between methods,
if more than one was used. It shows that the mechanical and X-ray methods have
comparable accuracy on the order of 5%. For the windows measured with the optical
method we use a error of 3% due to the non-uniformity of the windows. For X-ray
measurements the error is probably somewhat larger than the statistical error because
of thickness variations. We use a 5% error for those windows which have not been
measured optically.
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Figure 4.9: Comparison of the mechanical and optical measurements of the window
thicknesses. The errors are estimated based on repeatablity of the mechanical mea-
surements.

4.2.3 Cell Volumes

For the analysis, it is important to know both the total volume of the cell and the
partial volumes of the pumping cell, the target cell, and the transfer tube. The
total volume of the cell is used in calculating the gas density from the gas filling
data. The partial volumes are needed for corrections to the density due to different
temperatures in different parts of the cell. We know the volumes from three different
sources: calculations based on outside dimensions and wall thicknesses (this is the
only way we know individual volumes), volume measurements on the vacuum system,
and buoyancy measurements. The results of the three methods are listed in Table
4.6.

The volume measurements on the vacuum system were done using a calibrated
volume and an accurate barotron [36]. First, the calibrated volume was filled to a
certain pressure, and the rest of the vacuum system was pumped out. Then the
calibrated volume was opened to the string containing the cell and the final pressure
was recorded. After the cell was pulled off, the same procedure was repeated again.
The measured reduction of the string volume is almost exactly equal to the volume
of the cell, since the pull-off volume is only 0.1 cm?®. The uncertainties come from the
volume of the valves (~0.2 cm®), as well as variations in the volume of the flexible
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Cell Name | Window # Thickness, um Diff, %
Mechanical | X-ray | Optical
Picard 39 u 65.3 69.3 6.1
41 d 57.7 61.6 6.8
Riker 40 * 66.5
36 * 60.0
Hermes 54 u b 46.9
50 d 56.6 59.0 4.2
Prelims 30 u 45.5 44.7 45.8 10.7/2.5
43 d b 42.4 42.0 1.0
Generals 45ub 52.5 51.9 1.1
48 d 54.4 59.0 59.9 10/1.5
Dave 8lub 45.0
80 d 53.5 52.5 1.9
SMC 38 * 67.7 69.5 68.8 | 1.6/1.0
56 * 61.0 64.2 5.2
Bob 60 ub 70.1
61 d 69.7 69.5 0.3
Chance 38, u 85.1 33.0 2.5
13, d 81.2 83.0 2.2
Ref. Cell #1 94 u 58.4
91d 46.5
Ref. Cell #2 4, u 73.5 74.2 1.0
! 46.3 45.9 0.9
Ref. Cell #3 Du 50.9 57.3 12.6
Fd 48.5 48.1 0.8
Ref. Cell #4 Eu 70.8 72.1 1.8
Kd 64.0 61.9 3.3

Table 4.5: Window thicknesses. Notation: u — upstream. d - downstream, b — broke
in beam, * _ orientation not known.

bellows with pressure. The error in the volume of the cell is on the order of 0.4%,
based on repeated measurements of a portion of the vacuum manifold.

The buoyancy measurements rely on Archimede's principle. First, the cell is
weighed on an accurate scale. Then, the cell is attached to a metal block suspended
from the scale and submerged in water. The buoyant force on the cell, which is
proportional to the cell outside volume, causes a decrease in the apparent weight of
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Cell Calculations Vacuum | Buoyancy
Name | Target | Pumping | Transfer | Total | System
Dave 102.0 83.7 4.5 190.2 - 186.8
Riker 114.7 75.5 3.8 194.0 - 187.8
Bob 105.1 80.8 4.3 190.2 { 189.0 189.0
SMC 107.1 83.9 4.4 195.4 - 190.0
Generals | 111.4 67.9 4.7 184.0 | 179.6 180.1
Hermes | 103.5 81.5 4.1 189.1 | 185.4 183.9
Prelims | 106.5 69.1 4.8 180.4 - 178.6
Chance | 108.6 73.8 6.0 188.4 | 179.6 180.5
Picard 116.6 74.1 3.6 1943 | 190.1 1915

the block. The inside cell volume is calculated using the formula:

Vo = Wo = Woe Fme _ me —m, (4.24)
Pw Pyl

where W, is the weight of the block submerged in water, W,. is the weight of the
block and the cell submerged together, m, is the mass of the cell, and m, is the mass
of the *He gas. p, is the density of water and p,,; is the density of glass. The scale
was calibrated using precision weights, so the error in the weight measurements is less
than 0.2%. The density of 1720 glass is equal to 2.54 g/cm?® according to [33] and
2.52 g/cm® according to [34]. This value was checked by performing the buoyancy
measurement on a 1720 glass tube. The result is 2.506 4 0.005 g/cm?®. The overall
error of the volume measurements by the buoyancy method is about 0.4%

While the results of the vacuum system measurements and the buoyancy mea-
surements agree quite well (standard deviation 0.5%), the calculations give a result
2.3+ 1%too high. This is not surprising, since the geometrical model used for the
volume calculation was very simple. For Water Cell | the volumes of individual parts
were measured during filling with water, with results given in Table 4.7.

Water Cell T | Target | Pumping | Transfer | Total
Calculation | 101.9 79.4 5.9 187.2
Filling 98.8 76.5 6.6 181.9
Difference | +3.1% | +3.8% 12% | +2.9%

Table 4.7: Individual volumes of cell chambers.

So, the volumes of both the target cell and the pumping cell are overestimated
by about the same amount. However, only the ratio of the volumes enters into the
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analysis, so the errors will cancel to a large degree due to correlations. We always use
volumes of the same origin in the analysis, not the volume of the pumping cell and the
total volume from the buoyancy measurement. The small (1%)scatter in the results
of the volume calculations indicate that it is very unlikely that the two volumes will
fluctuate in opposite directions by a large amount. Nevertheless, a conservative 3%
error is assumed in the ratio of the volumes since it makes very little difference on
the final result.

4.2.4 Cell Densities

The density of *He in the cells was measured using two independent methods. The
first method used the measurements of the pressures in the vacuum system while
the cell was being filled with gas. During the filling of the cell with *He, the target
cell was cooled by liquid He to about 10K and its temperature was quite uncertain.
So, the amount of *He gas was carefully measured before it was put into the cell.
A certain amount of gas was introduced into a calibrated manifold volume and its
pressure recorded. The calibrated volume was then opened to the cold cell and the
final pressure was recorded after equilibrium was established. One can thus calculate
how much gas had exited the calibrated volume and entered into the cold cell. This
procedure was repeated several times until a sufficient amount of gas was introduced
into the cell. The final density of *He is then given by:

21316 | | i
nHe_TVVC{j;(Pf_Pi)VM

— (Vs — Vp) P}V} (4.25)

where Vs, Vs, and Vi are known volumes of the vacuum manifold, the string and
the cell respectively. P/ and P} are the pressures in the vacuum manifold for j** fill
cycle before and after it was opened to the cell. The temperature in the room was
measured before the filling procedure. However, the vacuum system temperature 7Ty
was somewhat uncertain due to the presence of very cold helium vapors exiting the
dewar during filling. Although the helium stream from the dewar did not directly
hit any part of the system and quickly rose to the ceiling, it might have reduced
the temperature somewhat. We will assign a somewhat arbitrary error of 2°C to Ty.
Other errors come from the uncertainties in the volumes (0.4%) and pressures (0.3%),
so the total error of this method is about 0.9%.

Before the cell was filled with 3He gas, a known amount of N, was introduced into
the cell manifold. It froze into the cell when it was cooled by liquid He before filling
it with *He. In this way we determined the N, densities in the cells, which are given
in Table 4.2. They are accurate to about 5%.

While the fill measurements provide sufficient accuracy, they cannot be rechecked
for errors and the possibility of cell leakage after filling cannot be excluded. Therefore,
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the cell density was also measured using a different technique that allows the mea-
surements to be done after the cell has been filled and sealed. It uses the broadening
and shift of the Rb resonance absorption lines by *He. In the presence of several at-
mospheres of He gas, the pressure broadening of the Rb absorption lines, D, and D,
exceeds the Doppler broadening and the lines acquire a simple lorentzian shape [37].
As was first measured by Chen [38], the width and the shift of these lines is linear in
He pressure to several tens of atmospheres and can serve as a good measure of the
He density. Since Rb pressure broadening data for *He exist only for the D; line [17],
and even they are not quite of sufficient accuracy for our purposes, an experiment was
performed to measure the broadening and shift of the Rb absorption lines by *He. In
addition, we studied pressure broadening of Rb D, and D, lines by ‘He, N,, and Xe.
The data were analyzed using a line-shape for a Van der Waals interatomic potential
derived in [39]. The results are presented in [40], which is reproduced in Appendix
B. Here we only give a brief description of the measurement for *He.
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Figure 4.10: Rb D, absorption cross-section for several *He densities.

A single frequency Coherent 899-29 Ring laser was used to scan across the absorp-
tion lines. The laser linewidth is much smaller than the width of the absorption lines
and does not contribute to broadening. The laser also has a built-in wavemeter which
was used to measure the pressure shifts of the line position. The transmission of the
laser light through a 7 cm long cell was monitored with a photodiode. The cell was
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heated to 80°C, so the absorption factor e "L ranged from 0.3 to 0.007 for the range
of densities studied. For most measurements the power of the laser was attenuated
to 3 mW to avoid saturating the transition. To check the linearity of the photodiode
and the absence of atomic line saturation we also took data with the laser attenuated
to 30 xW. The temperature of the cell was kept stable to 0.1°C to ensure constant Rb
number density. The measurements were performed for *He densities ranging from
1.5to 9.5 amagats. The cell was attached to a pressure transducer which provided
pressure measurements accurate to 0.3%. To convert the pressure to a density, one
has to include the non-ideal behavior of the gas at these densities. At relatively low
pressures it is usually described by the virial expansion [41]:

Br—n B4 CnP 4 (4.26)

At the densities used in this experiment, it is only necessary to keep the first two
terms. The values of B for *He are given in [42]. It also contains data that indicate
that the difference between *He and *He is at most several percent. However, the
CRC Handbook of Chemistry and Physics gives somewhat different numbers. We
will use B=11.6+1 cm3®/mol. At the highest density this gives a 0.5% correction to
the ideal gas law. It should be pointed out that this correction does not apply to
equation (4.25), because all measurements on the vacuum system are performed at
pressures below 1 atm. and at room temperature, where the ideal gas law is quite
accurate. Typical absorption curves for the D, line are shown in Figure 4.10. For our
purposes of comparing the absorption width in a calibration cell with the absorption
width in a target cell it is sufficient to fit the lines to a simple lorentzian:

0'0F

which describes the data sufficiently well. More sophisticated lineshapes are discussed
in Appendix B. The dependence of the half-line width and position on ®He density
is shown in Figure 4.11. It is well described by a linear fit I' = I’y +a [2He] for
the width and a quadratic fit for the line center: v, = vy Tb[3He] T c[PHe]’. In all
cases, the intercept of the fit is equal to zero within errors. The results of the fits are
given in Table 4.8. The errors are given only for reference since they do not include
correlations.

Iy, GHz | a, GHz/amg. | vy, GHz | b, GHz/amg. | ¢ , GHz/amg.?
D, | 0.46f0.61 | 9.34f0.095 | 1.21f0.58 | 4.97f0.23 0.141f0.02
D, | 0.08f0.56 | 10.38f0.087 | 0.48f0.33 | 0.583f0.14 | 0.0415f0.012

Table 4.8: Specific broadening and shift of Rb resonance lines in the presence of *He.
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Figure 4.11: The width and shift of Rb resonance lines as a function of *He density.

The Rb optical absorption curves for the SLAC-E154 *He cells were measured
before the run for all cells. Three quantities were used to determine the density:
D, width, D, shift and D, width. Since the D, line shift is small, it was not used
directly to determine the pressure but to check the absolute wavelength calibration
of the laser. The specific shift and broadening of the Rb lines in the presence of N,
was also measured and gave a correction to the 3He broadening on the order of 1%.
The results of the three measurements were first averaged with equal weight and then
the standard deviation from the average was calculated for each quantity. The errors
of the pressure measurements are 0.13 amg. for Dy width, 0.074 amg. for D, width,
and 0.084 amg. for D; shift. The systematic difference between measurements did
not exceed 0.04 amg. The results were then averaged using the error as the weight.
The error on the final average is about 1.0%

Table 4.9 shows the results of the individual optical measurements, the combined
weighted average and the results of the pressure measurements during filling. The
density is in amagats, 1amg. = 1r.d. =2.689 x 10'® em~3. The average deviation of
the two methods is 1.3%, in very good agreement with their estimated errors of 1.0%
and 0.9% respectively, and the systematic difference is 0.4%. After the run, optical
measurements were performed on the three remaining cells (Picard, SMC, Chance)
and no measurable reduction in density was found. We will use the average of the
two methods with an error of 1%for the cell density at temperature equilibrium.
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Cell Optical Measurement, amg. Fill Diff. | Average
Name | Dy width | Dy width | Dy shift | W. Ave. | Density | %

Dave 8.48 8.72 8.78 8.70 8.87 | -2.0 8.78
Riker 8.80 8.91 8.89 8.88 8.86 0.2 8.87

Bob 8.99 8.89 8.76 8.86 8.81 0.6 8.83

SMC 8.59 8.76 8.75 8.73 8.96 | -2.6 8.84
Generals 9.00 8.75 8.74 8.78 8.77 0.1 8.77
Hermes 8.67 8.78 8.62 8.70 8.77 -0.8 8.74
Prelims 9.19 8.95 8.90 3.97 8.84 1.5 8.90
Chance 8.77 8.99 8.71 8.85 897 | -1.4 8.91
Picard 8.97 8.90 8.83 8.89 8.84 0.6 8.87

Table 4.9: He densities in amagats.

4.3 Target Setup

The target setup included two orthogonal sets of Helmholtz coils, a mechanical target
mover, a number of sensors and coils used for polarimetry and the laser system. The
target schematic with major components is shown in Figure 4.12. Two orthogonal
sets of Helmholtz coils were used to control the direction of the polarization (only
one shown). One set of coils created a holding fields parallel to the direction of
the beam, while the second set was used to adiabatically rotate the direction of the
polarization and to collect data with the polarization transverse to the beam. The
coils were driven with Kepco BOP-36-12 power supplies, which allowed sweeping the
magnetic field for polarization measurements, as described in Chapter 5. The He
cell was installed inside a scattering chamber, which was pumped out by mechanical
pumps. *He cooling jets were directed at the windows of the cell to remove the
heat deposited by the electron beam. In addition to the polarized 3He target, a
reference cell was mounted inside the scattering chamber. The reference cell could be
filled with varying amounts of gas remotely, and was used for measurements of the
dilution factor. A mechanical mover system was used to switch between the polarized
target, the reference cell and the “no target” position. The pumping chamber of the
polarized *He cell was enclosed in an oven. The oven was sealed around the pumping
cell with RTV rubber glue. Hot air flowed through the oven to heat the pumping
cell to approximately 180°C. A number of RTD sensors monitored the temperature
in various parts of the cell.

The laser system consisted of 3 fiber-coupled diode arrays and 4 Ti-Sapphire lasers.
The fiber-coupled arrays, a relatively new product, were manufactured by OptoPower

[43]. They are based on a linear diode array mounted on a thermo-electric cooler.
Each diode in the array is individually coupled to an optic fiber and the fibers are
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Figure 4.12: The overall setup of the *He target.

combined in a bundle. The diameter of the fiber bundle is about 1.5 mm and the
divergence of the beam coming from the bundle is about 10" full cone. The laser
power out of the fiber is about 15-17 watts. The light is mostly unpolarized because
the fibers do not preserve the direction of the polarization. The spectral width of
the diode is about 2 nm FWHM. The profile is not entirely symmetric, as it depends
on the wavelength distribution of the 20 individual lasers. The wavelength of the
diode can be adjusted by either the temperature or the diode current. The current
also controls the power of the laser. The wavelength is increased by 1 nm for every
3°C and 2 amp. One usually sets the current to obtain the desired power and then
adjusts the temperature to tune the laser on wavelength. However, since temperature
tuning is time consuming due to slow response, fine tuning if often done with the
current. Because the diode lasers are very broad, tuning to resonance by observing
the fluorescence is difficult. The lasers were tuned by measuring their wavelength
with a Lightwave wavemeter which had resolution of 0.01 nm. To check the absolute
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calibration of the wavemeter, a Ti-Sapphire laser was tuned to Rb resonance by
observing the fluorescence and its wavelength was measured and used as a reference
point. Another method that can be used for tuning is to observe the EPR signal from
the cell, as described in Chapter 5. The EPR signal is roughly proportional to the
Rb polarization, so by maximizing it one can optimize the wavelength of the laser.

The beam coming out of the fiber optic bundle is focused by a single lens with a
focal length of f =200 mm and transported to the target, which is 5 m away, using
2” mirrors. Since the light from the diode lasers is unpolarized, some manipulation
is required before it can be used for optical pumping. The beam is linearly polarized
using a beam splitter cube. Both parts of the beam are utilized by using two quar-
ter wave plates and appropriate mirrors. Two beams are obtained from each laser,
circularly polarized in the same direction.

In addition, we used 4 Spectra Physics Ti-Sapphire lasers (Model 3900S) pumped
by Argon-ion lasers (Model 2040F). Each laser system could be tuned to give about 5
W of power. However, the lasers would drift down to 3-4 W over approximately one
day. Since laser tuning required access to the End Station and interruption of the
data taking, we could not keep the lasers optimally tuned. In this regard the diode
lasers are also much better, since they require virtually no maintenance. Over the
course of two month of continues operation (1500 hrs.) the diode laser power dropped
by only about 10-20%. Only one laser failed (possibly due to operator error) during
the whole experiment. In contrast, 3 out of four ion tubes in the Argon lasers were
replaced during the run.

The reference cell system allowed studies of the target dilution factor. The ref-
erence cell had the same geometry as the real polarized *He cell and could be filled
remotely with a variable amount of ®He. The pressure in the cell was read by a
transducer gauge and a mechanical manometer.

4.4 Cell Temperatures

Under normal running conditions, the pumping cell was heated to achieve sufficient Rb
number density, and the target cell and pumping cell had very different temperatures?.
Although the total number of atoms in the cell did not change, the density in each
of its chambers was different from the fill density. The ideal gas law will be used
to describe the gas inside the cell under conditions of temperature disequilibrium.
The non-ideal behavior gives a correction proportional to Bn (%— - 1), which is only

0.1%. Using the ideal gas law, one gets the following equations for the density in the

2This was not true for most of the A; when the cell was in thermal equilibrium.
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target and pumping cells:

ST np=—— (4.28)
! V: T
v - D RACE)

where ngq is the density at thermal equilibrium, V4 is the total volume of the cell, and
Tt and Tp are the average temperatures of the target and pumping cells respectively.
Equation (4.28) assumes that the pressure is equal everywhere inside the cell. In the
presence of convection there may be local fluctuations of the pressure. To estimate
possible pressure difference between the target and the pumping cell we will consider
the Poiseuille flow through the transfer tube [45):

dN _ nR*pAp

dt ~ 8pkTL (4.29)

and calculate a characteristic pressure difference. Using the value of the viscosity
n =35 pPas from [42], we get a pressure gradient Ap/p = 2.4 x 10~¢ when we set the
number of particles that goes through the transfer tube in one second equal to the
total number of particles in the cell. So, the pressure fluctuations are negligible. The
convection between the pumping cell and the target cell is also suppressed because
the pumping cell with the less dense gas is above the target cell, the direction opposite
to what would drive convection.

The temperature of the cell was monitored by 7 RTDs, 5 of which were mounted
on the target cell or the reference cell and another 2 of which were mounted inside the
pumping cell oven. One of the two RTDs inside the oven was attached to the pumping
cell with heat sink compound, and connected to the Omron temperature controller.
The other RTD was used to measure the temperature of the air flowing through the
oven. The air was significantly cooler than the cell itself due to laser heating of the
cell. After the run the RTDs were calibrated against an accurate thermometer. It
was found that their readings have a constant offset. The hardware readings should
be reduced by the amount shown in Table 4.10. The correction is different from [44]
because the numbers there refer to the software temperature readings. The error in
the temperature measurements is about 2°C after the correction has been applied.

RTD 1 2 3 4 5 | Omron
Correction, "C | 3.3 43| 2.3|24 1|06 0.2

There are two effects complicating the calculation of the He density when the
cell is hot. First, the pumping cell is heated by the laser light. As a result, there
is a large difference between the temperature of the air flowing around the cell and
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the temperature of *He inside the cell. Therefore, the RTD’s in the oven do not give
a reliable measurement of the *He temperature. Second, the heat is flowing to the
target cell through the transfer tube in the center, while its ends are cooled by He
jets. Therefore, there is a significant temperature gradient in the target cell. These
uncertainties contribute significantly to the errors in both methods of polarimetry
and have to be studied in detail.

The question has been raised as to how close the temperature measured by the
RTDs mounted outside of the cell was to the gas temperature inside. The heat
conductivity of the glass, equal to approximately 1 W/m K, is not as low as it seems.
For example, if the pumping cell absorbs 30 W of power from the lasers, the gradient
across the glass is only 2.7°C. The heat conductivity of the gas itself is, in fact, much
lower. To test the accuracy of the temperature measurement in the target cell and the
reference cell, an RTD was placed inside the reference cell which was mounted in the
scattering chamber. The RTD was also wrapped in aluminum foil to reduce heating
by radiation. With the reference cell filled to about 17 psi, the difference between the
readings of the RTDs inside and outside of the cell was only 1.4+ 0.9°C. Since the
pressure in the actual cells is a factor of 10 greater, the temperature difference should
be even smaller.

Figure 4.13: Approximate positions of the RTDs mounted on the target cell.

In the beginning of the run all 5 RTDs were mounted on the target cell. Figure 4.13
shows their approximate positions. This allows a careful study of the temperature
distribution along the target cell. To better understand the temperature distribution
we will construct a very simple thermal model. First, calculate the heat flux from the
pumping cell into the target cell:

A ATE 4 A ATT) AT
o Ll — o) (4.30)
Tr

where A is the heat conductivity, A" is the cross-sectional area, Ly, is the length of
the transfer tube and AT is the temperature gradient. Using Ay. =0.22 W/m K and
A = 1W/mK we get Q = 0.09 W/s. Along the target cell the heat conductance of
the glass is Aﬁ“)\g, =46 x 107> Wm/K and the heat conductance of the 3He gas is
A{Ii/\He =70x107° W m/K. Sincethey are not very different, the radial temperature
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gradient should be small. In any case, the radial temperature gradient is at most of the
same order of magnitude as the longitudinal gradient and the temperature difference
between different radial points is smaller than the temperature difference along the
cell by the aspect ratio of the target cylinder. So, a one-dimensional model of heat
conduction should be applicable. The data show that the temperature of the target
cell does not change by more than a few degrees when the cooling jets are turned off,
so most of the heat is carried away by radiation. We will assume a delta function
source of heat in the middle of the target cell and a uniform heat sink along the length
of the cell. The temperature then satisfies the following differential equation:

d*T 1
= © (5(0) - ) (4.31)
dz> (A AT + A AR Lz

The solution of this equation is

T() = To— =2 [(@ (z) - %) 2 ZQI;T“} (4.32)

L

where O (z) is the step function. Figure 4.14 shows this distribution along with
temperature measurements for 3 cells. Only the value of T, was adjusted to fit
the data. Although this model is overly simplified and should not be taken too
seriously, it fits the data surprisingly well. It probably means that the temperature
distribution can be described by some elaboration of the heat conduction model and
that convection does not play a significant role.

One has to distinguish between two temperatures relevant to the analysis. The
volume average temperature of the target cell enters into equation (4.28) and gives
the average density of the target cell which is used in both the polarimetry and the
dilution factor calculations. On the other hand, the pick-up coils were located in the
middle of the cell (see Figure 5.1), which was at a higher temperature and therefore
a lower density. So for the purpose of polarimetry, a coil average temperature of the
target cell should be calculated using a weighting proportional to the amount of flux
generated by the pick-up coils. It can be shown that to first order in temperature
gradient, n¢ = nyTr/Tc, where ne and T are the density and the temperature
in the central region between the coils. To calculate the average temperature in
the central region of the cell, Simpson weighting was used, Tc = £ (1> +413+ 1)
when all 5 RTDs were mounted on the target cell. This gives a 7¢ that is 2°C
lower than the integral of the temperature distribution (4.32). On the other hand,
the real heat source was not a delta function, but was spread over 1 cm. So, the
temperature distribution should be rounded off on the top. To estimate the error
due to the weighting method, one can look at the two extreme weighting schemes:
Te = (T, Y T3t 74) /3 or To = Ts. They give temperatures different from the
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Figure 4.14: Target temperatures of 3 cells compared with the heat conduction model.

Simpson weighting by about 2°C. To find the volume average of the temperature,
the following weighting was used: 7y = 0.185 (77 + 75) + 0.21 (T3 + 7 +T4), which
reflects the larger relative volume of the ends of the target cell. For the 3 cells
which had 5 RTDs, the temperature in the center of the target cell was calculated
to be 7.6 & 1°C higher than the average temperature. Given the reproducibility of
this temperature gradient, the temperature distribution for the cells that had only 3
RTDs can be calculated. On the basis of the above considerations, a 5°C error will
be used for the values of T and Tr.

To determine the amount of heating of the gas inside the pumping cell by the
lasers, we studied the variation of the AFP signal when the lasers were turned on and
off. Turning the lasers off reduced the temperature of the pumping cell and decreased
the density of *He in the target cell according to equation (4.28). The AFP signal
was measured before the lasers were turned off and about 10 min. after they were
turned off. With the lasers off, the pumping cell reached the temperature of the
control RTD. Since the heat flux going through the transfer tube is very small, the
temperature of the target cell did not change appreciably in 10 min. The AFP signal
decreased by about 1%,an easily measurable amount. Additional measurements were
performed to correct for the fast spin-down of the cell with the lasers turned off. Two
such studies were performed for Picard and Chance at 170°C and 190°C respectively.
The results indicate that the average temperature inside the pumping cell was higher
than the control temperature by 14+ 5°C and 7 4 4°C, respectively.
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A simple thermal calculation can also be done to estimate the spatial tempera-
ture distribution inside the pumping cell. We begin by calculating the temperature
distribution in a spherical cell of radius R with a uniform heat source throughout its
volume. In spherical coordinates the heat conduction equation is:

o*Tr 20T . Q

2 e — — — —
vil= or? + r Or A (4.33)

where Q is the power absorbed from the laser per unit volume. The solution is:

T(r)=T,+ -6% (R? —r?) (4.34)
where T, is the temperature of the wall. Assuming that 20 W of power are absorbed
in a 70 cm® pumping cell, and using B = 2 cm, which is slightly larger than the
actual radius of the pumping cell to account for the fact that it is cylindrical, the
temperature in the center of the cell is calculated to be 77°C higher than the wall
temperature. The average temperature over the cell is T, +QR2/15)\ =T, *t30°C, a
factor of 2-3 higher than what was actually measured. This implies that convection
probably plays somerole. Thereis aregion inthe pumping cell where the temperature
drops with height - a necessary condition for convection. To determine if the gas is
indeed unstable against convection, the Rayleigh number [45] is calculated:

ATgh3pc,

R = _—-—TU/\ (4.35)
where h is a characteristic dimension, ¢ is the acceleration of gravity, and ¢, isthe heat
capacity per unit mass. Assuming &~ = R and AT =T77°C, we get ® = 20000. The
critical value of ® above which the gas becomes unstable depends on the geometry.
For example, for two parallel plates it is equal to 1708. So the gas is most likely
unstable against convection, although not overwhelmingly. In the analysis of the EPR
data, the heat conduction model will be used to establish a limit on the temperature
gradient in the pumping cell.

The relevant temperatures and densities for the cells during normal running con-
ditions are listed in Table 4.11. Based on the measurements discussed above, we
assume that the pumping cell temperature is 10°C higher than the control setting
and T = Tr T 7.6°C. The uncertainty in Ty and T¢ is 5°C, and the uncertainty in
Tp is 10°C. This causes an error in n¢/ng of 1.6%. For some of the cells, the pump-
ing cell temperature was changed during the run. However, these changes caused a
change in the density of at most 1.0%. The pumping cell temperature was averaged
over the use of the cell with approximate polarization weighting. The error due to
this weighting procedure is no more than 0.5%.
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Cell Tr | Tc | Tp | nr/no | ne/no | np/no
Dave 65 | 71 | 200 | 1.144 | 1.124 | 0.824
Riker 68 | 76 | 200 | 1.121 | 1.095 | 0.814
Bob 69 | 77 | 190 | 1.125 | 1.099 | 0.836
SMC 63 | 70 | 185 | 1.129 | 1.106 | 0.834
Generals | 65 | 73 | 190 | 1.111 | 1.085 | 0.817
Hermes | 67 | 74 | 185 | 1.125 | 1.102 | 0.840
Prelims | 67 | 75 {200 | 1.121 | 1.095 | 0.812
Chance | 66 | 74 | 195| 1.121 | 1.095 | 0.820
Picard | 65| 73 | 180 | 1.107 | 1.081 | 0.830

The size of the density increase due to the temperature gradient can be tested
by analyzing the data taken during A, running with Picard. The cell was heated
up and cooled several times with long periods of time in between, which allows one
to extract the ratio of the AFP signal when the cell is cold and hot. By fitting the
polarization data with spin-up and spin-down curves, a ratio of AFP signals equal to
1.104f0.02 was measured. Corrections should be applied to this number due to the
change in the magnetic flux from the pumping cell and due to the change in the LC
circuit gain. These effects are described in more detail below. The corrected ratio is
1.083, very close to ne/ne = 1.081 for Picard.

4.5 The Dilution Factor

We now have all the information needed to calculate the dilution factor for the cells
using equation (4.19). The gas densities of *He and N, are given in Tables 4.9 and
4.2. They should be multiplied by the temperature enhancement factors nr/no, given
in Table 4.11, since we are interested in the average density over the whole target
cell. Of course, for A; running, when the cell is at room temperature, no such
correction is required. The window thicknesses are given in Table 4.5. The cross-
sections o; in equation (4.19) are calculated using the unpolarized DIS structure
functions [46, 47, 48]:

0: (2,Q) =K (2,Q%) |Z:F} (2, Q%) T (A; - Z) F} (2,Q%)| EMC (A;, 2y (4.36)

where K (z,Q?) contains kinematic factors, and EMC (A;,z) is a correction factor
taking into account the nuclear binding and shadowing effects, known as the “EMC
effect”. We also need to know the chemical composition of Corning 1720 glass, which

is given in Table 4.12. The variation between different references does not cause a
significant error.
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Reference | SiO; | Na;O | CaO | MgO | B203 | Al;O3 | K20 | AsyO5
[33] 60.7 | 1.0 8.6 7.4 5.0 17.3 0.2 0.5
[49] 57 | 1.0 | 55 | 12 | 40 | 205

[50] 62 1 8 7 5 17

Ave: 99.9 1.0 7.4 8.8 4.7 18.2

Table 4.12: Chemical composition of Corning 1729 glass by weight.

However, equation (4.36) only takes into account the tree level diagram of the elec-
tromagnetic scattering. The cross-sections are significantly modified by the radiative
corrections to the basic scattering process. We calculated the radiative corrections
to the unpolarized cross-sections o; using the techniques described in Chapter 3. A
phase shift analysis program was used to calculate the elastic form factors of the
heavier elements from their charge density distribution [51]. The radiation length for
the external corrections was determined by separating the target into several regions
and using a Monte Carlo to calculate the radiation length seen by each region.

By comparing the calculated unpolarized cross-sections with the rate in the spec-
trometer, we can obtain a very powerful check on many aspects of the experiment,
such as the spectrometer acceptance, target thickness, detector efficiency, beam cur-
rent, etc. The number of counts seen in the spectrometer is given by:

dN () _
- = NoN" 5o () Lingd (X) (4.37)
X i

where o{°"" are the radiatively corrected cross-sections, d€2(z) is the solid angle ac-
ceptance of the spectrometer, determined using Monte-Carlo techniques [52], and N
is the number of incident electrons. The results of such comparison are shown in Fig-
ures 4.15 — 4.17. Figure 4.15 shows the spectrum for pure *He, which is obtained by
subtracting the rates from a full and empty reference cell. The dot-dash curve shows
the spectrum expected from a simple Born cross-section (4.36). Clearly, it does not
agree with the experimental spectrum, and the radiative corrections are very impor-
tant. Upon applying these corrections the agreement becomes much better. There
are still a number of effects which have not been taken into account, such as the de-
tector efficiency, pion and positron contamination. However, they are much smaller
than the radiative correction. The disagreement at high x may also be due to a slight
miscalibration of the spectrometer momentum (5% change in the momentum would
account for most of it). It is very nice to see that although our experiment was not
designed to measure absolute cross-sections, it can do it with a reasonable accuracy.
It also provides the only experimental verification of the program used to calculate
the radiative corrections. Since the same program was used to calculate the polarized
cross-sections, it gives us additional confidence in its results. Figures 4.16 and 4.17
show the comparison between absolute rates for an empty reference cell and Picard.
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The agreement is satisfactory. For the empty reference cell we see a large deviation at
low = due to contamination by charge symmetric background. It is interesting to note
that if most of the charge-symmetric background originates in the glass cell, it can
not have any asymmetry. This could allow us to significantly reduce the systematic
error due to this effect, which dominates our error at low x.

800 R

+ 3He Rate

—With Rad. Corr.
— -WithlInter. Only. N
- -Born Cross—Sect.

01 0.1 1

Figure 4.15: The event spectrum for *He compared to the calculated cross-section
with radiative corrections. There are no adjustable parameters.

For the dilution factor the effect of the radiative corrections is significantly re-
duced, because only the ratio of the cross-sections enters into equation (4.19). Their
effect on the dilution factor of Picard is shown in Figure 4.18. A conservative 100%
error is used for the radiative corrections to the dilution factor. In addition, the errors
in the window thicknesses, *He density, and cell lengths contribute to the uncertainty
in the dilution factor.

The dilution factor can also be determined in a completely independent way by
using the reference cell. Making the measurements with an empty and full reference
cell one can determine the rate in the spectrometer from pure *He. Let (dN/d[He])
be the rate in the spectrometer per unit *He density. Then, the dilution factor can
be written as:

(dN/d[*He))[>He]
U N
tot

where N, is the total rate from a given target. For this method one only needs to

(4.38)
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Figure 4.16: The event spectrum for an empty glass cell. The solid line includes all
radiative corrections.
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Figure 4.17: The event spectrum for a polarized *He target “Picard”.
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Figure 4.18: Radiative corrections to the dilution factor.

know the density of 2He in the target, but not the window thicknesses or the radiative
corrections. A comparison between the two methods of calculating the dilution factor
is shown in Figure 4.19 for Picard. The two methods are in good agreement for all
cells [48]. For the final result we determined the dilution factor from equation (4.36)
and the radiative corrections. The error on the dilution factor is 5%, dominated by
the radiative corrections error.

4.6 Target Performance

The polarization of the target during the two month run is shown in Figure 4.20. The
spin-up curve of the cell Picard, which achieved the highest polarization, is shown in
Figure 4.21. As can be seen, some problems were encountered during the run. There
were two types of problems: mechanical failures of the cells and *He polarizations
lower than expected. It was soon realized that the windows of the cells fail in the
beam after approximately 3-6 days. The cell usage during the run is summarized in
Table 4.13. The total beam charge accumulated by each cell before failure is shown in
Figure 4.22. Points with upward arrows indicate that the cell had not failed, but was
removed for another reason. The horizontal coordinate corresponds to the thickness
of the thinner window. In all cases the thinner window failed first. In general, cells
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Figure 4.19: Comparison of the two methods for calculating the dilution factor for
target cell Picard.

with thicker windows lasted longer. Trying to prevent cell failures, we reduced the
beam current in the middle of the run from 9 x 10'° electrons per pulse to 5x 10'°. It
is not clear if it had a significant effect. While “Prelims” and “Hermes” lasted longer
than the trend suggested by the cells ran at 9 x 10'°, “Generals” did not last any
longer. We further reduced the current to 3 x 10!° for Picard, but the total charge
accumulated by Picard before the end of the run is not particularly large.

If we extrapolate the trend seen in the data to the window thickness corresponding
to one of the cells used in E-142, we get an expected total charge of 5x10'®. In con-
trast, the E-142 cells accumulated up to 20x10'® electrons without failure. Compared
with E-142 our problems are rather surprising. All windows were pressure tested to
about 60% overpressure, unlike E-142, for which only some representative windows
were tested. No cell has ever failed after being filled with gas without the effect of
the beam. The beam current was initially equal to 9 x 10'° electrons per pulse (1.7
pA), smaller than the current in E-142, which reached up to 20 x 10'° electrons per
pulse. We reduced the current further to 5x 10'°, but that did not solve the problem.
Finally, because the windows were thinner by a factor of 2 compared with E-142, it
was expected that the amount of heating would also be smaller. The only unfavorable
difference with E-142 was the duration of the pulse. While in E-142 it was about 1.4
usec, for our experiment the beam pulse was 200 nsec long. So, the instantaneous
current was higher by about a factor of 3.6 in the beginning of the experiment and
1.9 times higher after the reduction in the current. The beam size at the target was
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Figure 4.20: Target polarization during the run.

difficult to measure exactly because the wire array was several meters downstream
of the target. The beam diameter was about 1 mm and may have been somewhat
smaller than in E-142. It is believed that the failure of the windows was caused by
the instantaneous heating and possibly a shock wave caused by each beam pulse [54].
For example, it takes about 160 ns for the sound to propagate the transverse dimen-
sion of the beam (1 mm). Another possibility is that the inverted windows, although
initially quite strong, easily fail due to the buckling instability when damaged by
the electron beam. The failures of the cells occurred on average every 6 days. It
took approximately 24 hours to replace the cell and polarize it. However, the gain in
the dilution factor, compared with E-142 cells, was approximately a factor of 2.6 in
running time, so the down time was relatively insignificant.

The problems with *He polarization that were faced during the run were also
rather unexpected. Their origin is not entirely understood for all cells. However,
the cells that exhibited most pronounced polarization problems are somewhat better
understood. These cells are SMC (20th to 25th day in Figure 4.20), Generals (25th
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Figure 4.21: Spin-up of target cell Picard during the run.

Cell Name | Date Installed | Date Removed | First Run | Last Run
Dave 10/4 22:30 10/11 2:15 1201 1388
Riker 10/11 7:00 10/17 21:15 1412 1757
Bob 10/18 2:00 10/22 21:50 1777 2043
SMC 10/23 3:00 10/23 6:00 2050 2311

Generals 10/28 9:00 11/04 19:25 2316 2594
Hermes 11/05 00:30 11/10 13:30 2597 2902
Prelims 11/10 19:30 11/14 17:25 2903 3100
Chance 11/14 20:00 11/21 5:45 3101 3371
Picard 11/21 10:00 11/30 3:00 3377 3788
Ref. Cell #1 9/18 8:00 10/17 21:15 733 1757
Rel. Cell #£2 | 10/18 2:00 | 10/23 00:06 1777 2047
Ref. Cell #3 10/23 3:00 11/04 21:22 2050 2596
Ref. Cell #4 | 11/05 00:30 11/30 3:00 2597 | 3788 |

Table 4.13: Cell usage during the run.
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Figure 4.22: Total charge accumulated by cells before failure. The cells with upward
arrows had not failed.

to 32nd day) and Chance (43rd to 49th day). In Chance the problem was most likely
caused by a decaying nuclear relaxation lifetime. Before the run a measurement of
the cell lifetime gave 40 hrs, but after the run we measured the lifetime and found
that it was only 16 hrs. So, Chance lifetime apparently decayed in the beam. This is
the only cell, to our knowledge, whose lifetime decreased during the run.

The problem with SMC and Generals is believed to be caused by an entirely
different effect, associated with non-linear coupling between the polarization and the
coils, called masing.

4.6.1 Spin Maser

During the run there were several very peculiar effects which strongly point toward
the masing effect. First, the polarization of the cell SMC saturated very abruptly at
27%, as shown in Figure 4.23, and stayed remarkably constant over a period of several
days, insofar of changes in cell temperature and laser power aimed at increasing the
polarization. Even more unexpectedly, the polarization dropped to 23% upon reversal
of the holding field direction and then stayed constant at this new value. This behavior
is very difficult to explain in terms of linear relaxation rates.

The next cell, Generals, behaved in an even more bizarre fashion, as shown in
Figure 4.24. The polarization failed to reach 25% and every attempt to increase the



4.6. Target Performance 105

30 T T T T I T T T T l T T T T [ T T T T | T T T T I T T T T
+ 5 H i+t + ++ + Ce" ”SMC” 1
25 - + 4+ B
+ + ]
+ H oL+ tF i
® o0l a ]
" ]
+ ) ]
3 L > h
® 15 &~ ]
g + g ]
o - e —
a 10 3 ]
o ]
R ]
5F ° o .
- a ]
O C L L L 1 I 1 1 1 1 I L 1 L 1 I 1 1 1 1 l 1 L 1t l L 1 1 L ]
18 19 20 21 22 23 24

Time, days

Figure 4.23: Polarization of cell “SMC” during the run.

polarization by changing the optical pumping conditions failed. Finally, it was found
that the polarization of the cell rose if it was kept out of the pick-up coils and only
moved in for a very short time to do the AFP measurement. This seems to imply that
the coupling to the pick-up coils played a significant role in the effects being observed.
Finally, it was decided to lower the value of the holding field from 19 G to 12 G. This
apparently allowed the polarization to rise even while the cell was between the pick-up
coils. We continued to use 12 or 9 G holding field for the rest of the experiment.

Finally, after the run we performed dedicated tests on SMC trying to confirm
the basic predictions of the masing hypothesis. According to this hypothesis, the
problems with polarization in SMC and Generals were caused by a non-linear coupling
between the pick-up coils and the spins which resulted in sustained precession of the
magnetization about the z axis. The masing phenomenon has the following rather
peculiar properties:

1. Masing can occur only if the spins are polarized in the high energy Zeeman
state, so they can dump their energy into the coil.

2. Masing is characterized by a threshold, below which the effect is negligible (the
polarization is stable) and above which the polarization is unstable and will
spontaneously develope a large transverse component.
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Figure 4.24: Polarization of cell “Generals” during the run.

3. The value of the threshold depends on the coupling to the coil, which is de-
pendent on the difference between the resonance frequency of the coil and the
Larmor frequency of the spins.

4. The threshold depends on the transverse nuclear relaxation time 75. It becomes
larger when 75 is short, for example, because of a large field gradient.

With these properties in mind we conducted a series of tests shown in Figure 4.25.
The polarization was seen to rise and then saturated abruptly, as it did for SMC
during the run. At this point a magnetic field gradient of 5 mG/cm was applied, with
the goal of shortening 7% and increasing the masing threshold. It, indeed, caused the
polarization to rise sharply. It should be pointed out that the more usual relaxation
due to field gradients (4.13) would tend to decrease the polarization. When the
gradient was turned off, the polarization dropped very abruptly, which was consistent
with a masing instability, but inconsistent with an additional relaxation rate. The
cycle was repeated for the second time with the same results. Then the holding
field was decreased from 19 G to 9 G. Even in the absence of a field gradient the
polarization started to rise. This behavior is exactly the same as what was observed
for Generals during the run. It is due to a decrease of the coil coupling as the Larmor
frequency is moved further from the coil resonance. Finally, the spins were stored at
19 G with no gradient, but in the low energy Zeeman states. As predicted by the
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masing model, this conditions allowed the polarization to rise. So, qualitatively, the
spins reacted exactly as they should for a maser. We can even explain a jump in the
polarization of SMC when the magnetic field was reversed by noticing that the field
gradients usually have two components, one from the imperfections of the Helmholtz
coils, which is proportional to the magnetic field, and the other from the ambient
field gradients. When the field is reversed, the two components add or subtract in
different ways, which can lead to a slightly different value of 75 and change the masing
threshold.
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Figure 4.25: Tests done with SMC after the run.

We will now present a quantitative description of the masing effect. The basic
idea is the following. Consider a polarized cell in a holding magnetic field along the
z direction. The cell is placed inside (or near) a coil which is part of an LC circuit.
Assume that the magnetization has a small transverse component. The spins are
precessing around the magnetic field. Their precession induces a voltage in the coil.
The voltage induced in the coil causes a current to flow through it. This current
produces a magnetic field transverse to the holding field. Under certain conditions
this induced field can cause the spins to tip away from the z axis and increase the
voltage induced in the coil. That in turn increases the transverse field and causes
a runaway situation. The longitudinal polarization of the spins will decrease while
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certain conditions are met. Thereafter it will remain constant at the so-called masing
threshold. A spin maser was studied in detail by Richards et al. [54]. It can be used
for a number of interesting experiments, for example, searches for permanent Electric
Dipole Moment, as described in [55, 56]. We will describe the dynamics of the spins
using Bloch equations. Although the qualitative behavior of the spins is described
well by these equations, numerical estimates appear to be very far off.

We start with Bloch equations with phenomenological relaxation rates:

dM L. Mua+ M,y Mk
- —~Mx B— vJo_
a T T,

(4.39)

The magnetic field consists of the holding field By in the z direction and a transverse
magnetic field created by the coil. We will go to a frame rotating with the spins at
the Larmor frequency w. Since the transverse field is induced by the spins, it has a
component rotating at the same frequency.

Writing (4.39) in individual components we get:

dM, M,
= M.B, — M,B;) —
dt ’Y( y y ) T,

dM, w M,

— A M.(B. - ) _M.B, — 4.40
dt 7 y( ,7) v Y T2 ( )
dM, w M
- - Ma: Bz - - M.B; — -
7 M. ( 7) +7 7

The last two equations can be combined if we use Mr = M, +iMy and Br =
B, +z'By. The induced magnetic field is proportional to the transverse magnetization,
so we can write Br = A(w)My. We get the following two equations describing the
behavior of the spins:

dM, , M,
M b)) - o
M
o iM(B.— L)+ iy A MM, — L (4.41)
dt ~y T2

where we used M,B, — M, B, = Im(M;Br).

Now we need to calculate the coupling of the spins with the coil. Let’s represent
the magnetic moment 17 of the spins by a small loop of area d,, with current I,,, flowing
through it so that 7,,d,, = m. Let the coil produce a magnetic field B(z) = b(x)1,
when current [, is flowing through it. The flux of this magnetic field through the
current loop is ®,, :ICZ;- d,, = L, 1., where L, is the mutual inductance of the coil
and the loop. The flux of the field produced by the loop in the coil is ®. = L, [, =
b-m, using the fact that the mutual inductances are equal [57].
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The voltage induced in the coil is:

V =

d®, dMr .
— =— b ~ 9w Vi (br) M 4.42
7=, @) ieVaalbr) My (442)
where (b7) is the average of the transverse component of the coil field over the volume
V..it where the coil field is significant. We will come back to this approximation later.
We also implicitly assumed that in the laboratory frame Mr|ip = Myz|,oe™™!

The current flowing through the coil is

Vg il -5) \
3 — g P : == / 4.43
wlL TR —t/wC R %’22 +(w_ —1)? R(al(w) taz(w)) ( )

Q4w? w2

where w? = 1/(LC), Q = w,L/R. This equation defines the dimensionless circuit
response functions a;(w), az(w).
The field produced by the coil is B(z) = b(z){/2. The factor of 2 accounts for the
fact that we are considering only one of the two counterrotating components of B.
Combining equations above we get for A(w):

A(w) = wVeu(br) (—as(w) + iay(w))/(2R) (4.44)

We can see now that the coupling of the spins with the coil is proportional to
the square of the magnetic field &r. For the pick-up coil used for polarimetry the
field is reasonably uniform over some volume and then quickly goes to zero. We can
therefore divide the cell into an active region inside the coil were M7 # 0 and the
rest of the cell with M7 =0. We further assume that Mt is constant over the active
region. The average field of the coil over the active region is about 30% higher than
the minimum field and 30% lower then the maximum field in that region. So this
approximation is OK if we are looking for a factor of 2 estimate. It is convenient to
define radiation dumping magnetization M.4:

1 yVealbr)?

My — R (4.45)
We now have the following differential -equations for the magnetization:
M, _ |Mr]? M,
it ’Ml way(w) — T (4.46)
dMT _ . R Mz MT
i —itMr(wo —w) — (a1(w) +za2(w))mwMT - (4.47)

where wo = vB;. In (4.47) there is an imaginary part causing My to rotate and a
real part causing changes in its magnitude. We chose a frame rotating together with
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the spins, so the imaginary part should be set to zero. This gives us an equation for
the frequency w:

MZ
Mid
The frequency of the spin precession is different from the Larmor frequency, a phe-
nomenon known as “frequency pulling”.

The differential equations are non-linear and can exhibit an instability. Equation
(4.47) has two terms, one tending to relax My to zero due to 7, and another tending
to increase it (if M, < 0) due to the coil coupling. The competition between these
terms determines the onset of masing. For M, > 0 both terms are negative and the
spins are stable. In other words, the spins are susceptible to masing only in the high
energy state.

The steady state solution of equations (4.46, 4.47) is

wo =W(I —az(w)

) (4.48)

- m 1 + —a2(wm) .
wo = wm{l4 (wm)TQ) (4.49)
MTd
Mo = e 0

This gives the value of the “masing threshold”, below which the coupling with the
coil has a negligible effect on the magnetization, and above which the system becomes
unstable and the magnetization eventually decays to M,,.

We now try to estimate the masing threshold for SMC. The pick-up coil consists
of two square windings 2.4 cm x 9.6 cm with 150 turns each. The average field of
the coil is calculated on Mathematica. We get (b) = 37 G/A. The DC resistance
of the coil is 40 R. However, from an independent measurement of Q we conclude
that the resistance at 100 kHz (the resonance frequency of the circuit) is 56 £2. It
is somewhat lower at 60 kHz (the Larmor frequency in the holding field of 19 G),
say approximately 50 R. The volume of the active region is 30 cm® So, we get
M., = 1.22 G. For convenience, we convert this to polarization by dividing by the
number density and the magnetic moment of *He, M,; = 425 (dimensionless).

It is more difficult to estimate T2. All experiments with masers [54, 55, 56]
have been done in the regime of motional narrowing, when the dephasing time
T, = (hy|VB.|)™" is much longer than the diffusion time 7; = h?/D, where h is
a characteristic dimension of the cell and D is the diffusion ‘constant. In this regime
the magnetization decays exponentially with a time constant given by:

1 kh472 VB, |

7 5 (4.51)

where K is a dimensionless constant which depends on the geometry of the sample.
For example, for a sphere with h = R, k = 8/175 [19]. These results do not apply
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to our situation, however, since in our case the diffusion time is much longer than
the dephasing time. Their ratio 3 = T,/T, is ranging from 300 to 7500 depending on
what number we use for h. Before considering the relaxation under these conditions,
we can try to get a rough estimate by going to the other extreme of infinitely slow
diffusion.

In the static approximation there is no diffusion and the only time scale is given
by the dephasing time 7,. The decay of the spins is not exponential and depends
on the geometry of the sample. To study the effect of the gradient on the masing
equilibrium we used an anti-Helmholtz coil. It was found that a gradient of approx-
imately 3 mG/cm was necessary to establish equilibrium at 30% polarization. Then
T, = 1/(hyVB,) = 3 ms, where h is the half-length of the active region, equal to 5
cm. We assume that T, = kT, where k is of order unity.

The masing instability is also suppressed because the Larmor frequency at the
holding field (60 kHz) is very far from the resonance of the circuit (100 kHz). The
frequency pulling increases the masing frequency by 5%. We get a;(w,,) =2.9 x 107
Putting everything together we get M., = 1230, which is a factor of 4000 higher than
the observed threshold of M., = 0.3. So, our naive estimates seem to disagree with
observations by a very large amount.

Let's for a moment close our eyes to this disagreement and study the dynamics of
the spins. Equations (4.46, 4.47) need to be modified to include the effect of optical
pumping and polarization transfer between different parts of the cell. We get the
following set of differential equations:

dM, Miwaq(w) + M, — M, M, — M, M.,

dt M4 T, T, T
dMt al(w)LUMTMz My
a T My T
dM, _ Mpm—M, M, M,—M, (452)
dt T.. T, T,
dM,  M.—-Me M,
da T, T
dw a2(w)wMz/MrJ
At 1= ay(w) e — ah(w)wik

where M., M,, and Mg, are *He polarizations in the ends of the target cell, the
pumping cell, and Rb polarization respectively. Also, T}, T,, T¢, Ts., Ty are diffusion
times for the target cell, the pumping cell, the ends of the cell, the spin exchange
time, and the longitudinal relaxation time. The constraint equation (4.48) for w was
converted to a differential equation for the numerical calculation. These equations
were solved on Mathematica, the result for M, is shown in Figure 4.26. The shape
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of the curve is not sensitive to exact values of T; and M,4, they were adjusted to

get saturation at —30%. So, the dynamical behavior is explained quite well by the
theory.
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Figure 4.26: The evolution of the polarization with time predicted by the masing
equations. The coil coupling is adjusted to achieve saturation at —30%.

All properties of the maser are in agreement with observations, except the numer-
ical estimate of the masing threshold. The most suspicious number in our calculation
is the value of the T,, so we need to consider the transverse relaxation in greater
detail. The relaxation is clue to the magnetic field inhomogeneity in the presence of
diffusion, and is governed by the following differential equation [58, 59]:

OMry (7, 1)

ot
where ¢ = fy@Bz and D is the gas diffusion constant. We replace the phenomeno-
logical relaxation term in the Bloch equations by (4.53) and take into account the

position dependence of the magnetization. Then the transverse magnetization obeys
the following differential equation:

OMry (7, 1)
ot
Following the methods of [58], we decompose My (r,¢) into normal modes with

= DV*My (7,t) — ig - PM7 (7, ) (4.53)

= i’yBTMZ + DVZMT (F, t) — Zg . FMT (F, t) (454)
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exponential time dependence:

My (7 t) =3 cimy (7) e 5 (4.55)
Substituting this expansion into equation (4.42) we obtain
Ve=iwY e B [ b (@m (@) dr (4.56)
i cell

We ignored the time dependence due to E;,which is on the order of gh, much smaller
than w. The magnetic field of the pick-up coils is reasonably constant inside the coils
and then quickly drops to zero (see Figure 5.1). Since we are interested only in rough
estimates, we will separate the integral in equation (4.56) as follows:

[ br @y () dPr = or) [

where (br) is the average magnetic field of the pick-up coils and the integral extends
only over the volume where the field is significant. For convenience, we introduce a
dimensionless mode filling factor :

m; (7) d°r (4.57)

1
A; = = L m; (7) d°r (4.58)

It follows that:

(—az(w) +1a1(w)
2R

Br (7,1) = br (M Vi (br) e PA: (459)

Since we consider the case when the Larmor frequency is far away from the coil reso-

nance, the frequency shift due to the factor exp (—£;t) is ignored. Upon substitution
into equation (4.54) we obtain a time independent equation:

(—a2(w) + 101 (w))

e Vit (br)? Ai =0 (4.60)

(DV? —ig - 7+ E;) mi (7) + iy M.w

where we ignored the position dependence of b7 and M,. The normal modes m; (7)
are subject to the boundary condition at the walls of the cell:

n-Vm; =0 (4.61)

which assumes that the walls are non-depolarizing. Although equation (4.60) is still
linear in m; (Ajis proportional to m;), it is no longer homogeneous. There is a discrete

set of eigenvalues F; which correspond to eigenstates m; satisfying the boundary
conditions. It is shown in [58] that in the absence of coil coupling the real part of
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E; is always positive, corresponding to decaying modes. We would like to find the
value for M, when the real part of E; becomes negative, indicating an exponentially
growing mode.

We study the equation in one dimension. Note that the only spacial dependence
of the equation comes from the g - 7 term. There are no terms which depend on z,
the direction of the magnetic field. Therefore, we can let § point in any direction, not
necessarily parallel to z. For example, let the gradient ¢ be in the z direction and
assume that the cell is a cylinder parallel to the & axis with flat end walls located at
z = +h. Following [58], we introduce dimensionless coordinate and time:

tD h*
=720 @i = E,— (4.62)

C=afh T -

The dimensionless coil coupling factor is given by:

Vioit (br)? wh? [He] ppe

f=1 55D (a1(w) + iaz(w)) Py (4.63)
and the equation reduces to:
02
(3_C2 +1i6¢ + ai) m; (() — fA; =0 (4.64)
with -
A= é/—l m; (z)dx (4.65)

Using the numbers given above we estimate for h = 1 cm that 8 = 300 and f =
—(0.3+4202). We tried to study this equation numerically starting with the eigenvalues
given in [38] for f = 0. We first set A; to some value and find the eigenstates of the
equation. For sufficiently large values of f the eigenvalues indeed have a negative
real part. Using the eigenstates, we calculate A; and then iterate the procedure.
Unfortunately, the iterations failed to converge for the values of 5 and f in the range
of interest.

In general, Aj; is complex, which implies that the real part of E; depends on both
the real and the imaginary parts of f. This is different from the case of simple
exponential dumping, where only the real part of f determines the masing threshold.
Since the imaginary part of f is much larger than the real part, this may indicate
that the masing threshold is lower.

To summarize, we have a lot of qualitative evidence for the masing effect. Because
masing is described by non-linear equations, there are a lot of rather specific predic-
tions about the qualitative behavior of the spin maser, all of which are in agreement
with the experiment. In fact, we cannot think of any other effect which could ex-
plain even a fraction of the spin behavior explained by masing. On the other hand,
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our initial numerical estimates of the threshold appear to be unsuccessful. The de-
pendence of the masing threshold on various parameters is not entirely understood.
For example, it is not clear why no masing was observed in Picard, which by naive
analysis would be even more susceptible. With additional effort it should be possible
to solve equation (4.64) numerically and see if the result is in better agreement with
the experiment. It also would be very interesting to study the effect experimentally
under more controlled conditions. If our data are indeed explained by masing, the
dependence of the threshold on various parameters can be expected to be non-trivial.
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Chapter 5

"He Polarimetry

With the reduction of the statistical errors achieved by our experiment, it becomes
extremely important to reduce the systematic errors, like the uncertainty in the tar-
get polarization or the dilution factor. In fact, the target dilution factor and the
polarization are the two dominant sources of the systematic error for the integral of
g1 (x) over the measured range. A lot of effort was put into measurements of these
quantities and our errors are significantly smaller than in previous experiments. Be-
cause of this, the total systematic error of our experiment is approximately equal to
the statistical error. Unlike many other experiments, the polarization of the target
was measured by two totally independent methods. The agreement of the two results
gives us additional confidence, since they are likely to have totally different sources
of systematic errors. One method is a traditional NMR using Adiabatic Fast Passage
(AFP) as was used, for example, in E-142. The second method is a rather novel
technique relying on the shift of the Rb Zeeman resonance (EPR) frequency due to
SHe polarization. The errors of the two methods are comparable. We will describe
each of the two methods in turn, and then discuss their agreement. The polarization
analysis is described in [1], some of the results presented in this chapter have been
reported in [2].

5.1 NMR Polarimetry

5.1.1 Adiabatic Fast Passage

Adiabatic Fast Passage (AFP) NMR [5]was used to measure the *He polarization
regularly during the run. The NMR setup is shown in Figure 5.1. The RF coils were
used to create an oscillating field of magnitude 2H, perpendicular to the main mag-
netic field H aligned along the z axis. The oscillating RF field can be decomposed into
two counter-rotating components, each of magnitude H;. To consider the behavior
of the spins under the influence of the rotating field, it is useful to go into a reference
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frame rotating around the z axis at w, the frequency of the H; field. In this frame,
the field seen by the spins is ﬁeff = (H-Hy)2 + H,4’, where Hy = yw, and y is
the gyromagnetic ratio. The other rotating component of the field is oscillating at a
frequency 2w in this frame and does not affect the spins. The size of the Bloch-Siegert
frequency shift [3] due to the counter-rotating field is only H?/4H2 =2 x 10~%. Ini-
tially, the holding field H is significantly smaller than H, (i.e. Hy, — H > H;), and
the effective field is almost parallel to the z axis. The magnetic field is swept through
resonance until H is greater than H,. If the sweep is slow enough, the spins can
follow the changing field adiabatically. The maximum rate of change of ﬁeff occurs
near the resonance and is given by H/H,. So, the adiabatic condition is satisfied if
H/H, < w. However, the sweep cannot be too slow, because the spins relax faster
near the resonance when the effective field is very small. For 3He, the relaxation rate

in the rotating frame is given by [4]: 1/Ty, = Dl@HZ Z/Hf, where D is the *He

diffusion constant. The sweep rate H was optimized to minimize polarization losses
during AFP sweep. Both inequalities are satisfied very well:

Lv—ffl—m23x1o—3<<ﬁ < w=5.8x10° (5.1)
H? ' H ) ’

The measurements showed that the AFP losses were approximately 0.1% per sweep.

The NMR signal was detected by two pick-up coils which were orthogonal to both

the Helmholtz coils and the RF coils. The measured signal is proportional to the
transverse component of the magnetization:

- _ (ﬁeff)T . Hl
() o (¥), = A M¢(H<t) — Ho)? + H? >

This is the basic shape of the signal, it is modified by a number of effects, as described
below.

Data acquisition was controlled by a Mac Quadra computer running IgorPro’™.
The magnetic field was swept up and down through the resonance by sending a linear
ramp to the Kepco power supply from the D/A output of the computer. Both outputs
of the Lock-in amplifier were digitized and recorded by the computer. The phase of
the lock-in was adjusted to maximize the signal in one of the channels. For the water
calibration the uncertainty in the signal height due to the phase setting of the Lock-in
was about 0.5%. The RF field was turned on several seconds before the sweep and
turned off after the sweep. The A-¢ box was used to apply a signal of arbitrary
magnitude and phase to one of the differential inputs of the Lock-in. It was necessary
to cancel the direct pick-up of the RF field. Table 5.1 lists various AFP parameters.
For 3He AFP the field was swept up and then immediately down. For the water
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Figure 5.1: NMR equipment setup.

calibration there was a delay of 15sec. at high field to allow the proton spins to come
into thermal equilibrium at the new value of the magnetic field.

Figure 5.2 shows a typical *He AFP signal, a fit to the shape (5.2), and the
residuals of the fit. Five parameters were used in the fit: The height, width and
center of the peak as well as a constant and linear background. The residuals of the
fit are quite small, and the height of the signal can be extracted with an error of
less than 0.2%. However, to extract the absolute polarization of the *He, one has to
calibrate the signal.

In principle, the calibration can be accomplished by a calculation of the magnetic
flux captured by the pick-up coils and the knowledge of the gain of the LC circuit and
various other gains in the system. Such calculation was performed and is discussed
later in the text. However, it is difficult to estimate its uncertainties and one can
never be sure that all effects are taken into account. Therefore, the calibration is
typically performed by measuring the NMR signal from protons in water, where the
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Parameter Value for *He | Value for water calibration
Resonance frequency w 92.000 kHz 92.000 kHz
Resonance field Hy, 28.364 G 21.608 G
Sweep starting field 18.32, 8.80 G 17.59 G
Sweep ending field 35.92 G 24.92 G
Sweep rate 1.192 G/s 1.192 G/s
RF field, H, 7242.1 mG 86.4+3 mG
Lock-in Time Constant 10 ms 10 ms
Digitizing Rate 15 ms 15 ms

Table 5.1: AFP Parameters.
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Figure 5.2: *He AFP signal with a fit described in the text, bottom panel shows
residuals of the fit.

absolute polarization is known from the Boltzman distribution:

pp B
P, =tanh "— 5.3
T (5.3)
Water is used because it has one of the highest concentrations of protons. The
calibration procedure is complicated by several factors. First, the AFP signal from
water is 10° times smaller than the *He signal because the thermal polarization of
water is only 7.5 x 1072 at the magnetic field used in the experiment. It is quite
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difficult to detect, and one usually has to resort to averaging many signals to get an
acceptable signal to noise ratio. In our case, each set of water data consisted of about
50 sweeps. Second, we would like to measure the signal from a cell filled with water
which has dimensions identical to the dimensions of the *He cell. In practice, the cell
used for water calibration had slightly different dimensions and position between the
pick-up coils, and these differences require a correction to the signal height. Third,
the relaxation processes in water are different then in *He and so the signal (5.2) is
significantly modified. Therefore, to properly fit the signal and accurately determine
its height, we need to consider the relaxation processes in detail. Fourth, the water
calibration is a time consuming procedure and consequently was done only before and
after the run. So, one has to worry about changes in various quantities that might
affect the signal height between the two water signal measurements. Each of these
problems will be addressed below.

5.1.2 Coil Modeling

Careful modeling of the pick-up coils is necessary to take into account the differences
in the dimensions, positions and relative densities between the *He cells and the
water cell. For some cells these differences lead to corrections as large as 20%. In
addition, coil modeling allows one to calculate from first principles the expected size
of the water signal. It provides a useful cross-check with an error comparable to other
calibration methods.

Consider the coupling of the spins with the pick-up coil. We represent the magnetic
moment 72 of the spins by a small loop of area & with a current I, flowing through
it, so that I,,d,, = 6. Let the coil produce a magnetic field B(z) = b(z)I. when
the current I, is flowing theough it. The flux of the coil magnetic field through the
imaginary loop is ¢, = I.b-d = L,,1., where L,, is the mutual inductance of the
coil and the loop. The flux of the field from the loop through the pick-up coil is
o, =1,1, =b.6,using the fact that the mutual inductances are equal.

The voltage induced in the coil during the sweep is:

V(t)= —d(ic = —/Vw” n(x)b(x) .dd—TdB:c = —wmy(t)sin(wt) Ace” n(z)by (z) &z

(5.4)
where n is the density of the spins, by is the transverse component of the coil field,
and mq is the transverse component of the magnetization given by (5.2). So, the
calculation of the coil response reduces to the integral of the field produced by the
coil over the volume of the cell, weighted by the density of the spins. In our case
the cell is well approximated by a combination of cylinders. Assume that each of
the cylinders (i.e. target cell, pumping cell) has a constant density of spins (we
will consider a correction due to the density gradient in the target cell later). Then
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the volume integral can be converted to a surface integral of the vector potential:
fv BdV = [, V x AdV = g7 x Ada. So, we need to calculate only a two-dimensional
integral over the surface of the cell. Assuming that the cell is placed symmetrically
between the coils it is sufficient to calculate the field from only one of the pick-up
coils. The coils are modelled by a series of rectangular loops. The effect of the
bend on one side of the coils can be modelled as an additional loop, whose plane
is perpendicular to the axis of the cylinder. Using A (x)=1/c [ J(z)/ |z — 2’| d®,
it is easy to calculate the vector potential of a rectangular loop. It has a relatively
simple analytical form. The two-dimensional integral of A over the surface of the cell
was performed using Mathematica. To account for the finite thickness of the coils
with sufficient accuracy we also integrated over two of the three coil dimensions. The
dimensions were carefully measured with a caliper and checked against the mechanical
drawing of the coils.

To gauge the accuracy of the model a number of systematic checks was done. The
model was checked by comparing the water signals from two water cells (I and 11)
with widely different dimensions. The ratio of the signals, equal to 1.26 with a error
of 1.7%, agrees with the model to better than 1%. Also, the amount of the signal
coming from the pumping cell was checked by taking data with the pumping cell full
and empty. The ratio of the signals agrees to 1.2%, while the error is 1.4%.

In addition to the dimensions of the cells we need to know their vertical position
between the pick-up coils. We studied it after the run for the three surviving cells,
Picard, SMC and Chance. The central position was determined by moving the cell
in the target mover and measuring the AFP signal. The data can be described by a
parabola near the maximum. It was found that the nominal position for all cells was
too low with respect to the center of the coil by 2.7f0.3 mm. The nominal position
was determined when the cell was at room temperature and the scattering chamber
was open to air. The cell is mounted from the top of the scattering chamber, while
the pick-up coils are mounted from the bottom. We believe that when the scattering
chamber is pumped out and the cell it heated up, there is a deformation which results
in the relative displacement between the pick-up coils and the cell. This displacement
resulted in a reduction of the AFP signal by about 3%. Based on the reproducibility
of the offset we will assume that all other cells were also 2.7 mm away from the center
with a error of 0.5 mm.

The flux numbers were generated for each of the cells using dimensions and relative
densities given in Chapter 4. We split the integral over the cell into integrals over
several cylinders (target cell, pumping cell, transfer tube):

1
F={ br(e)ds+ ”—P/ br () &z + = <"—P + 1> / br(z) &z (5.5)
targ ne Jpump 2 ne tran

and took into account the difference in *He density of the pumping cell. b7 was
calculated based on the dimensions of the pick-up coils, while the boundaries of
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the integrals depended on the dimensions and position of the cells. For Picard a
position 3.0 mm below the center of the coils was used. This vertical displacement
was measured directly after the experiment. For the water cell, which was mounted
in a different way, a vertical displacement of 01 mm was used. The numbers are
given in Table 5.2. b7 is in units of cm™! (we factor our 1/c in CGS units or ug/4r
in Sl units) and F' is in units of cm?.

Dave Riker Bob SMC | Generals | Water 11

65.2 73.0 65.8 64.7 72.5 81.7
Hermes | Prelims | Chance | Picard | Water |

63.7 69.5 70.5 78.0 64.0

The errors are dominated by the radius of the target cell, contributing 1%to the
flux error, the uncertainty in the vertical position of the cell, contributing 1% (except
for the water cell) and the uncertainty in the horizontal position, contributing 0.6%.

5.1.3 Water Signal Analysis

The analysis of the water signals is complicated because the thermal relaxation time
for protons is comparable to the sweep time, so equation (5.2) does not describe the
signal very well. Relaxation during the sweep affects both the height and the shape
of the AFP signal. It also makes the signal dependent on the speed and direction of
the magnetic field sweep. We use the Bloch equations to describe the time evolution
of the three components of the polarization (P,, P,, P,) in the rotating frame [5]:

= P, (H—- Hy) — ———F———
dt v y( 0) TQ(H])
dP, P
— = —vP.(H - H, P.H, — z 5.6
T P ( o) +vP:H, Ty (Hy) (5.6)
dpP. (P, — xH)
i = b T
H = H0+Olt

where T, is the longitudinal relaxation time, 7, (H;) is the transverse relaxation time
in the presence of the rotating magnetic field Hy, and x = p,/kg7. When the RF
field is off and the DC field is constant, the polarization has a value of P = yH. The
resonance occurs at time t = 0 and a sweep begins at a negative time, t, < 0 and
ends at a positive time, t; > 0.
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Naively, one would expect T} = T, for water since the correlation time, 7., asso-
ciated with the translation and rotation of the molecules is much shorter than the
Larmor frequency. However, several measurements [6, 7, 8] show that:

1/Ty = 1)Ty +0.125sec™? (5.7)

for neutral (i.e. pH=7.0) water. The reason for this turns out to be the presence
of 0.037% of 7O isotope in natural water [7]. 7O has a spin of 5/2 and a scaler
coupling to proton spins. The time that an H atom spends attached to a particular
water molecule with an 7O is about 1072 sec. The relaxation time of the 17O spin
itself is about 4x1072 sec. Since neither of these times is shorter than the Larmor
frequency w, the motional narrowing does not apply. As aresult, the proton resonance
is split into several lines and the transverse relaxation time is reduced compared to
the longitudinal relaxation time.

The value of 77 was determined from a special measurement done on the cell
used for the water calibration. The computer was set to sweep the field up and then
immediately down. By changing the end point of the sweep, the amount of time
between the resonances on the way up and down was changed. The ratio of the two
peaks was compared with the results of a numerical integration of equations (5.6).
The ratio of the signal heights for the up and down sweeps is very sensitive to the
value of T;, and insensitive to a difference between the values of 77 and 75. In this way,
it was found that 77 = 2.4 £ 0.3 seconds at 20+2°C. The uncertainty comes mainly
from the possibility of a small delay between the up and down sweeps generated by
the computer. One should be aware that 7} is extremely sensitive to temperature. It
changes by about 0.4 seconds when the temperature changes by 5°C. It also depends
on the amount of O, dissolved in the water. The value of T} for deoxygenated water is
2.95 seconds at 20°C [9]. Our water was de-ionized but not de-oxygenated. Using the
data from [10], and the solubility of O, in water, it is estimated that the concentration
of O, was about 50% of the saturation value for the data taken before the run.

To apply the correction due to a 7, shorter than Ty, it must first be checked that
the relaxation due to 'O is the only process contributing to the difference between
T, and T,. There are certain paramagnetic ions [7, 11] which can form molecular
complexes with water and reduce 7T and 13 by different amounts. The ions could, for
example, dissolve from the glass walls of the cell. So, after the run, the water cells
still containing the original water used in the calibration were shipped to Princeton,
where both 77 and T, were measured using a pulsed NMR spectrometer [la]. 77 was
measured using saturation and inversion recovery. First, either a 90" or 180° RF pulse
was applied to the spins and then another 90" pulse was applied after a time t. The
height of the FID after the second pulse is proportional to My (1 — e‘T/Tl) for a 90"

pulse and M, (1 — 2e‘T/Tl) for an 180" pulse. The measurement was repeated every
60 sec with different values of 7 until the decay curves were mapped out.
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T was measured with the spin echo technique using the CPMG sequence [13].
First, a 90° pulse along the z’ axis starts the precession of the spin. The spins dephase
in time 757 < T, due to magnetic field inhomogeneities. At some time = > T an
180° pulse is applied along the y’ axis. It reverses the direction of all the spins and at
time 27. they come into phase again, producing an FID. The 180° pulse is repeated
every 27, producing a series of echoes. The envelope of the echoes decays with a
time constant 1/7; =1/T, + 1/3D~* |[VH|* 72, where D is the diffusion constant of
water. In our case the relaxation due to diffusion was small for - < 15 ms. The
measurements with = = 15, 10, and 5 ms all agreed within errors indicating that
the imperfections of the 180° pulse did not cause a significant error. It was found
that for both water cells, as well as for a control sample of freshly deionized water,
Ty = 3.0+ 0.1sec and 7, = 2.2+ 0.15sec at 26°C. So, 1/7T, — 1/1, = 0.12 4+ 0.03
sec™! in agreement with (5.7). The measurement also implies T, = 2.5sec at 20°C,
in agreement with the AFP measurements taken at SLAC before the run.

In order to apply a correction due to 7, <7, the magnitude of the H; field during
the AFP sweep must be taken into account. The effect of the H; field was studied by
Meiboom in [7], who used an AFP technique for measuring 7,. Using his treatment
we calculate:

1/Ty (Hy) =1/T; 10.033sec™ (5.8)

for Hy = 0.086 G. Putting the values of 77 and T3 back into (5.6), we find that
the height of both the up and down water signals is reduced by 0.4%. It should be
pointed out that if one ignored the dependence of 7; on Hy, as had been done by
some authors, one would get a correction of 1.4%.

To fit the water signals we would like to find an analytic function for the signal
shape which takes into account the relaxation during the sweep. Equations (5.6) were
integrated numerically on Mathematica and it was found that the reduction of 75
compared with T, causes a negligible correction to the shape of the signal. It only
affects its height. Since we need an analytic function to fit the data, we will first
assume T} = T, and develop an expression for the signal shape. We will then correct
its height to include the fact that 7, < T). If 7} = T, the polarization follows
the effective magnetic field I—fleff = (H — Hyp) 2 + H,z provided that the adiabatic
conditions are satisfied, and the set of equations (5.6) can be reduced to one equation
for Peysy:

Py B H(H — Hy) + H?
=7 (Peq (1) = Pess),  Peg (1) = x (\/H;2 + (H — HO)Z) )

The integral form of the solution is:

i ’
P(t) = e"t=)/Ta (P(to) + %/ et —to)/Tlpeq (t)dt’) (5.10)

1 Jto
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but the integral does not have an analytic representation. One can get an analytic
approximation if ot > H; by expanding P., (t)in powers of 1/¢, or if t <« T by
expanding the exponential in powers of ¢/7;. Fortunately, H;/«a = 0.07sec < T} =
2.4 sec, and by switching from one approximation to the other one can cover the whole
region of interest. Two terms were kept in each of the expansions and the switching
time was adjusted to minimize the deviations from the result of numerical integration
of (5.9). The resulting expression did not deviate from numerical results by more
than 0.08% of the peak height. Since the noise of the averaged water data is about
1% of the peak height, the fit did not_introduce any systematic biases. Each signal
was fitted individually using Genplot© on a PC and the results averaged. The fit
contained 5 parameters: the height, width and center of the peak and a constant and
linear background. We used the value of 77 determined in the same cell before the
run. The water signals can also be averaged directly, correcting for slight drifts in the
center position. The result is shown in Figure 5.3, along with a fit.
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Figure 5.3: An average of 50 water signals with a fit based on the Bloch equations.

Since the relaxation during the resonance is already taken into account in equation
(5.9), the heights of the up and down peaks should be the same. So, a consistency
check can be performed by using the value of 7 from the independent measurement
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before the run and comparing the heights of the water signals. For the data taken
before the run, the two heights are different by 1.8%., while the combined error is
1.6%, neglecting the error in 7y. For the data taken after the run the peaks are
different by 3.6% which is outside the error bars. The two heights are equal if we use
Ty = 1.95sec. Given the sensitivity of 7} to the environment, this value is not too
unreasonable. It should also be pointed out that the variation of 7} causes the heights
of the two peaks to move in opposite directions and has a negligible effect on their
average. Another way to identify potential disagreement with the model is to study
the systematic deviations in the residuals of the fit. The residuals of individual fits
were added together to reduce the noise, a typical result is shown in Figure 5.4. For
most data the systematic deviations were less than or equal to 1.5%, although there
is one set of data (the up signal for the pre-run data) were the deviations are up to
3%. The random noise in the data is about 1%. To check if these deviations indicate
a fundamental deficiency of the model, some data were taken in January under more
favorable noise conditions. In these data the noise level was approximately 0.6% and
systematic variations were also on the order of 0.6%, approximately the same as the
He AFP residuals. Nevertheless, we will assume that the systematic error of the water
signal analysis is 1.5%.
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Figure 5.4: Average residual of the water signal as a percentage of the peak height.
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For the final result we averaged the results of the individual fits and applied a
correction (0.4%) due to 7% <T). The height of the water signals taken before the
run is § = 1.502+ 0.015(stat) 4V, and § = 1.533 £ 0.013(stat) uV after the run.
Here, for definiteness, we already took into account the nominal gain of the pre-amp
and the lock-in, so the voltage refers to the RMS voltage at the output of the LC
circuit. The same convention applies to the *He and water signals shown in Figures
5.2 and 5.3.

An alternative method to analyze the water signals is to fit them to the same
analytic form as the *He signals and then apply a correction to the height of the
signal to take the relaxation into account. When the water signals are fit to equation
(5.2), we find that the peak heights for the up and down sweeps are not equal. The
ratio of up to down peak heights is equal to 0.813 for the data taken before the run
and 0.849 for the data after the run. This information can be used to determine T}
directly from the calibration data. With a numerical integration we generate water
signals according to equations (5.6) and then fit them to a lorentzian (5.2). The value
of T} is adjusted until the ratio of the up to down heights is reproduced. In this way
we found that 77 = 2.7+ 0.4 sec. for the data taken before the run and 7y, =1.8+0.2
sec. for the data taken after the run. Equation (5.8) is used to calculate 7.

With these values for 7} and T, NMR signals are generated by numerical solution
of the Bloch equations and the results are fit to a simple lorentzian. It is found that the
average height of the up and down signals, as determined by the lorentzian fit, should
be corrected by a factor of 1.012+0.004. To check if this number is affected by the
noise in the signal, gaussian noise was added to the simulated signals generated by the
solution of the Bloch equations. No significant changes were found. The calibration
data are fit to the same lorentzian lineshape. After applying the correction, we find
S = 1.520+ 0.022(stat) pV before the run and § = 1.543+ 0.015(stat) pV after
the run.

The two methods give slightly different results for the height of the water signals,
although the discrepancy is less than the systematic error of 1.5%. While in the first
method the signals are fit to a more accurate shape and, therefore, should be less
sensitive to the random distortions, the second method is more closely relying on the
calibration data for extracting 7;. We use the average of the two methods and add the
difference between them (0.9%) to the systematic error. The result is § = 1.513+
0.015(stat) £0.025(sys) pV before the run and § = 1.538+0.015(stat) £ 0.025(sys)
pV after the run. The temperatures for the two data samples were identical within
errors (22 + 3°C). The difference between the two numbers before and after the run,
equal to 1.7%, is approximately the same as their combined error. So, any variation
of the pick-up coil sensitivity with time is seen only at la level. It may be due to
a slow deformation of the pick-up coils by heat or an abrupt motion of the pick-up
coils during Riker explosion. We will assume that the sensitivity varied linearly with
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time and apply appropriate corrections to the calibration constants of all cells.

5.1.4 Other Signal Shaping Effects

The shape of the signal given by (5.2) for *He and by (5.6) for water is modified by
two additional effects; the field inhomogeneity and the time constant of the lock-in
amplifier. Ideally, these modifications should be the same for both *He and water.
However, the value of the H, field was different (see Table 5.1) due to problems with
the switch on the HP used to turn the RF on and off. Since both effects depend on
the value of H,, they need to be studied in more detail. In addition, they need to be
included in the comparison of the absolute signal size with the results of a calculation.

The effect of the Lock-in amplifier time constant can be accurately modelled by
the following integral:

t ., H
S(t) = e-“‘“’)”/ eI ! (5.11)
o H + (at')?

This integral was evaluated on Mathematica for 7 =10 ms. The height of the signal
is reduced by 0.7% for ®*He and by 0.5% for water. The residuals for a lorentzian fit
are 0.2%.

The field inhomogeneity causes the spins in different parts of the cell to come into
resonance at different times during the sweep, which broadens the signal and reduces
its height. The dB,/dz component of the gradient causes the biggest effect, because
the region sampled by the pick-up coils extends in that direction. The signal can be
written in the form:

S(t) =

g (b)db (5.12)

H,
/ \/Hf + (at — b)?

where ¢(6) gives the relative number of the spins experiencing a gradient field 6. For
a linear gradient in the z direction, a square pulse distribution extending from —b, to
bo is used. by is determined by studying the height of the AFP signals as a function
of H,. This was done for Picard and Chance over a range of H; from 55 to 88 mG.
The data first have to be corrected for the shaping due to the lock-in time constant
by evaluating the integral (5.11). The analysis of the data gives bp = 18+ 5 mG or
roughly dB,/dz = 3.6 mG/cm. When the signals are fit to a function of the form
(5.2) plus a constant and linear background, the height is reduced by 0.9% for *He,
but by only by 0.7% for water, because of the larger H; field. The residuals of the fit
are approximately 0.4%, consistent with Figure 5.2. We will correct for this effect by
reducing the water signal height by 0.2%, so that it is consistent with the conditions
of *He AFP.
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5.1.5 Coil Gain and Other Quantities

To study the temperature dependence of the pick-up coils gain as well as possible
coil loading, we periodically mapped out the Q curve of the pick-up coils using an
excitation loop. The voltage induced in the pick-up coils as a function of frequency
can be described by the following equation:

&

=(@) 1) + &

where E is the EMF induced in the pick-up coils. The EMF is proportional to the
frequency, so we can write E = Av, where A is a constant which depends only on the
geometry. The variation of the gain of the LC circuit during the run was about 0.5%.
The gain was higher by 0.9% & 0.5% when the coils were hot with a >He cell installed
than under conditions for water calibration. The absolute size of the circuit gain at
92 kHz is G, = V/E = 5.5834 0.05.

The analysis of the water signals was done in such a way that only the thermal
proton polarization at the resonance enters into the calculations. This allows the RF
frequency to be used rather then the magnetic field in the calculation of the Boltzman
polarization. Using the temperature of we get Py, = (hv/2kT) = 7.481x107°
with 1%error. The density of protons in water at 22°C is n, = 6.670 10** cm~ and
the ratio of magnetic moments of the *He and 'H is pp./p, = 0.7617

V(v) (5.13)

5.1.6 Absolute Calibration

Using the model of the pick-up coils, the model of the LC circuit and other corrections
described above, one can calculate the expected size of the water signal from first
principles. One more effect needs to be included. The BNC cable running from the
target to the Counting House was loading the output of the pre-amplifier which has
an output impedance of 500. At 92 kHz, the cable can be treated as a capacitor. To
measure its capacitance, the cable was connected to the 6000 output of the pre-amp,
and from the reduction of the signal it was estimated that its capacitance is 8.4nkF.
Assuming 30pF/ft, this corresponds to 280 ft of cable, a reasonable number. The
signal is reduced by 3+1% due to the loading by the cable. We also need to know the
number of turns in the pick-up coils, which is equal to N, = 150 [14]. The voltage
detected by the lock-in is given by:

V =wu, Fn,P,,N.G.G,G,C (5.14)
LY s

where G, and G, are the pre-amp and lock-in gains respectively, and ¢’ = 0.958
is a correction factor which includes the attenuation in the cables and reduction in
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the signal height due to field inhomogeneity and lock-in time constant. Putting all
of the numbers together we get a value for the water signal of 1.48 xV, which is
only different by 3% from the actual signal. It is difficult to estimate the error of the
calculation. It is dominated by the uncertainty of the coil dimensions, and is probably
about 5%. Nevertheless, this comparison is an extremely powerful check of the model
calculations. Since they are able to reproduce the absolute size of the water signal,
we trust them to reproduce the scaling between different cells.

5.1.7 Calculation of the Calibration Constant

Since the AFP signal is proportional to the spin magnetization, it is easy to scale the
water signal to calculate the calibration constant between the *He signal height and
the polarization: Py, = C,Sg., where w stands for water calibration.

B o))

HHeTO (nC/nO) GcHerHeGlHe FHe

Each of the parameters and their errors are summarized in Tables 5.3. The errors
for the lock-in and pre-amp non-linearity are determined by connecting the lock-in
and pre-amp in series and changing the gain on both of them so that the product
remains constant. Any changes in the output would indicate that one of the devices
is non-linear. Such variations were less then 1%. The results for the water calibration
constants in units of %/mV cells are given in Table 5.4. The total error on the water
calibration constant is 3.4%.

Parameter Value Error (%)
Py 7.481x107° 1.0
Sw 1.510 - 1.535 'V 1.8
fho/ WHe 1.313 -
np 2482 amg. 0.1
N Table 4.9 10
ne /no Table 4.11 1.6
Gew/Gene 0.991 0.5
Giw [Gime 1000, (1)! 0.7
Gow [Gonie 20, (1)! 0.7
F,/Fy. Table 5.2 1.6

Table 5.3: Water Calibration Error Table.

'The nominal ratio of the gains is already included in the size of the water signal.



134 Chapter 5. ®He Polarimetry

Dave | Riker Bob SMC | Generals | Hermes | Prelims | Chance | Picard
0.1595 | 0.1445 | 0.1603 | 0.1611 0.1476 0.1656 0.1496 0.1471 | 0.1349

Table 5.4: Water Calibration Constants, %/mV
5.2 EPR Polarimetry

5.2.1 Basic Principle

The EPR method of polarimetry uses the shift of the Rb Zeeman resonance due to
the magnetic field created by polarized *He. The EPR resonance is shifted due to
two effects. The Rb->He spin exchange interaction that is responsible for polarization
transfer to 3He also produces a shift in the Rb EPR frequency proportional to the
3He polarization. Also, the classical magnetic field produced by ®*He magnetization
shifts the frequency of the Rb Zeeman resonance. These shifts are quite substantial
(about 20kHz out of 8MHz) and easy to measure. To isolate the shift due to *He
we reversed the direction of the 3He polarization and measured the difference in the
EPR frequency between the two polarization states.

To understand the contribution from the spin exchange it is convenient to use
the density matrix formalism. For binary Rb-*He collisions the time evolution of the
density matrix p of Rb is given by the following equation [15, 16]:

d

Ep = —2m [AI : S7p] —1 [weSz - WIIZHO] +

1 > = L, 2ty . d°
7 (4e(K) =€) g +% K¥nt—, 619

where | and S are the nuclear and electron spins of Rb atom, K is the 3He nuclear
spin, 1/Tye = nu.vors—ge is the Rb-He spin exchange rate per Rb atom. Ky, is
a frequency shift parameter, o and C are operators acting on the nuclear spin of
Rb. A is the Rb hyperfine splitting, w. = g.pupB/h and w; = g;unyB/h are the
electron and nuclear Zeeman frequencies. d°p/dt is the contribution to the time
evolution from other effects which do not depend explicitly on the *He nuclear spin.
Their effect will be considered later. The real part of the Rb-He spin exchange term
results in the spin transfer between Rb and He, while the imaginary part causes the
frequency shift. Since the nuclear spin is polarized along the z axis, <1;’> = K.z, the
frequency shift due to *He can be directly added to the Zeeman term. The real part
of the spin exchange will contribute to the frequency shift only in second order, i.e.
(Trewe) > =1071% [15], and is quite negligible. We therefore are left with:

(,1

ft»p = 271 [Af S, p] —1 [(we — é H;e (2)3. —wil.,p] (5.17)
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This can be rewritten in the more familiar Hamiltonian formalism using :hdp/dt =

[H, p]:

H =2xhAT- S +h (we _2;‘”6

(1?)) S, —hwil, (5.18)
Since A = 1012 MHz > w./2x =8 MHz, we should use the eigenstates of the I
operator, which are also the eigenstates of the total angular momentum F = | +
Their energy is given by the Breit-Rabi formula [17]:

h h
vVyFr VHF (1 n 4M

1/2
- BM 2) .
s@r 1) drvBME— Ty te (5-19)

Er—rs1/2m = ~

where ¢ = &we +wr — (2Kge/The) <K’>) [27vgp, and hvgp = A(I+1/2). By ap-
plying an RF field we induce transitions between neighboring M sublevels and mea-
sure the frequency of these transitions. Figure 5.5 shows the EPR frequencies of the
AM = 1,AF =0 transitions for ' =3 manifold of 3°Rb (| =5/2) as a function of
B. At low field all transitions have the same frequency, but they split at higher field.
The effect of the Rb-*He spin exchange is equivalent to an additional magnetic field
AB = (2Kych/Thegeprs) (1?). (The contribution from the nuclear Zeeman splitting
can be ignored, since wr/w, = 1.5x 107*). The value of AB for our conditions is
about 0.04 G, so in calculating the change of the EPR frequency due to *He we can
use the derivative of the EPR frequency with respect to the magnetic field, which is
shown in the inset of Figure 5.5. So, the frequency shift due to the spin exchange is
given by:

dVEPR (F, M) 2h K gen e VO Ry —He <1{;>

dB geltB

It is proportional to the density and the polarization of *He and depends on temper-
ature, the absolute magnetic field and F, M quantum numbers of the transition.

The other part of the frequency shift comes from the classical magnetic field
created by polarized *He. The magnetic field is proportional to the *He magnetization
and, therefore, the polarization and density of *He:

AI/SE = (520)

— dVEpR(F,M)CMH _ dI/EpR (F,M)

Avs dB B

Crpepne (K) 1K (5.21)
where (' is a dimensionless factor of order unity that depends on the geometry of

the sample. We can combine the two shifts for a sample of specific shape. So, for a
spherical sample we define:

87 d FM
Avgpr = %%Koﬂ[{en]{ep]{e (5.22)
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Figure 5.5: The frequency of the EPR transitions as a function of the magnetic field.
The inset shows the derivative of the frequency for different levels.

where k¢ is a constant that depends on temperature, but not on the density or
polarization of *He, and Py, = ]_\}> /K. The shift parameter Ky, is absorbed into
ko. At low magnetic field dvgpr (F,M) /dB = ppgs/h(21 +1), and (5.22) is identical
to previous definitions in the literature [18, 19, 20]. The value of k¢ is not known
with sufficient accuracy from calculations based on interatomic potentials and has to
be measured experimentally.

5.2.2 Detection of EPR Resonance

To detect the EPR resonance we relied on the fact that during optical pumping the
polarization of Rb vapor is very high (60-90%). It means that most of the atoms are
in the ' =3, M = 3 state (or M = — 3for oppositely polarized light). Although the
Rb vapor is optically thick for unpolarized light, the laser light can penetrate quite
far into the cell because most atoms are in the state that cannot absorb circularly
polarized photons from the lasers. Among the atoms that do absorb the photons and
are excited to the P state most are radiationlessly quenched to the ground state by the
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nitrogen in the cell. A small fraction (3-5%) decays by emitting a fluorescence photon
at either Dy or D, line. The fluorescence photons are observed through a D, filter to
block the radiation scattered from the lasers, which are tuned to the D, transition.
These photons form the picture that is usually observed with a CCD camera to
monitor the optical pumping. The intensity of the fluorescence is proportional to the
rate of photon absorbtion in the cell. If we apply an RF field at the EPR frequency
corresponding to M = 3 — 2 transition, it will tend to equalize the population of the
two states. The number of atoms in the M = 2 state capable of absorbing laser light
will increase and the intensity of the fluorescence will increase. So, by monitoring the
intensity of the fluorescence as a function of the RF frequency we can detect the EPR
resonance.
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Figure 5.6: Equipment setup for EPR detection.

The equipment setup for EPR measurements is shown on Figure 5.6. The RF field
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Parameter Value
RF Frequency 8.5 MHz
RF Amplitude 10V p-p
Mod. Freq. 210 Hz
Mod. Ampl. 6 kHz
Lock-in time const. | 0.1 sec
AFP sweep start 92 kHz
AFP sweep stop 30 kHz
Sween time 10 sec

Table 5.5: Parameters for EPR frequency shift measurements.

was created by a coil mounted on the side of the oven. The fluorescence from the cell
was detected by a photodiode with a D, filter. The RF was frequency modulated
using a Voltage Controlled Oscillator (VCO), Wavetek function generator model SO.
The signal measured by the lock-in amplifier referenced to the modulation frequency
was proportional to the derivative of the EPR line shape. A feedback circuit adjusted
the DC level at the input of the VCO to keep the lock-in signal zero, i.e. locked to
the center of the line [18, 19]. The operating parameters of the system are given in
Table 5.5. A circuit diagram of the proportional-integral feedback circuit and the
mixer is shown in Figure 5.7. The RF frequency was measured by a counter and
transferred to the Mac via GPIB interface. To accurately determine a shift in the
EPR frequency it was important to keep the magnetic field stable to one part in 10°.
We used a Bartington Flux-Gate magnetometer [22] to measure the magnetic field.
Since the range of the magnetometer is only —5to 5 G, we canceled the holding field
by a small coil wound around the magnetometer. The field and the field gradient
created by the coil near the target were negligible. The coil was driven by a stable
current source that served as a reference to which the field was locked. The output
of the magnetometer was kept near zero by an identical feedback circuit controlling
the power supply for the Helmholtz coils.

To isolate the frequency shift due to the *He polarization we periodically reversed
the direction of the polarization. The reversal was done by AFP, only instead of
sweeping the magnetic field through the resonance we swept the RF frequency. This
way we could keep the field locked during the whole measurement cycle. The behavior
of the spins during the frequency sweep AFP is identical to normal AFP and the end
result of the sweep is an 180° flip. We utilized the same coils, RF amplifier, and
generator. The generator was programmed to sweep the frequency at the appropriate
rate to satisfy the AFP conditions. The parameters of the sweep are given in Table 5.5.
The measurement cycle consisted of recording the EPR frequency for about 1 min,
then flipping *He spins by AFP and recording the frequency for another minute. This
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Figure 5.7: The circuit diagram of the proportional-integral feedback and the mixer.

procedure was repeated several times. A typical data set is shown in Figure 5.8. The
data are fit allowing a small amount of polarization loss per cycle which is due to the
AFP losses and the decay of the polarization during one half of the cycle because the
lasers are pumping in the opposite direction. The quality of the data is very good
and the size of the frequency shift can be extracted with a error of less than 0.5%.

5.2.3 Measurement of x

To use the EPR frequency shift for polarimetry we need to know the value of kg
for Rb-*He system. Although it was measured previously [19, 20, 21], there is some
disagreement between the numbers, and none of the measurements were done at
high temperature and Rb number density used in our experiment. Therefore, a
new experiment was done at Princeton under conditions very similar to SLAC. The
experiment used an interplay between the two sources of frequency shift to measure
the value of ko [20]. For a spherical sample the frequency shift is given by equation
(5.22). For a sample of another shape we can imagine a sphere around the EPR
detection region which will give the same shift plus a shift due to the remaining parts
of the sample. Since the He atoms in these parts do not come into direct physical
contact with the Rb atoms in the detection region, they cannot contribute to the shift
through the spin exchange. They will only contribute through the classical magnetic



140 Chapter 5. *He Polarimetry

4'180 _I T l‘lifl T T 1 | 1 T i 1 | T ] I T | 1 3 I |—
N - | l .
d 4170 — K ]
S 4160 |- )
)] R ]
3 L i
o . ]
8 4150 ~ K ]
B r T T T ]
gf 4140 [soocssesed se005000 ° -
] i i

4_130 i 1 ] i | 1 H 1 [l I L1 ! 1 I L1 1 i | 1 L 'l l_

0 10 20 30 40 5(

Nata Point

Figure 5.8: EPR polarization measurement for the target cell Picard.

field shift which can be calculated based on the geometry of the sample. Making two
measurements with different geometry we can separate the magnetic field shift from
the shift due to spin exchange and determine the value of «qg.

We used a long cylinder to make the measurements as shown in Figure 5.9. The
magnetic field inside a very long cylinder magnetized along its axis is B = 47 M, where
M is the magnetization of the cylinder. For a cylinder magnetized perpendicular to
its axis the field is B = 27 M. The field inside a uniformly magnetized sphere is
B =87 M/3. Using the linearity of electromagnetism we can simply subtract the field
of the sphere from the field of the cylinder to calculate the magnetic field shift of the
EPR frequency. The frequency shift for the longitudinal and transverse orientations
is given by:

d FM 3 8w\
dv M 87 87
Avr —-———EPI;E? )pHenHePHe <?no + (27r — T)) (5.24

Solving these equations we get ko = 3 (Avy T AuT) /8(Av — Avr) —1/8. Introduc-
ing polarization to frequency conversion constants Avy;, = Py Kp, AuT = Py K7, we
can cancel the polarization of *He: o =3(Ky + Kr) /8 (K1 — K1) —1/8

A cylindrical cell 0.5" in diameter and 7" long was prepared for this experiment.
The magnetic field produced by a uniform magnetization in the cell was calculated
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Figure 5.9: Experimantal arrangement for o measurements.

on Mathematica and differed from the field for an infinite cylinder by less than 0.6%.
To change the orientation of the magnetization, the cell together with the oven was
rotated with respect to the holding field as shown in Figure 5.9. The EPR detector
placed at the center of the cell was very similar to what was used at SLAC. It consisted
of a 3/4 in. diameter RF coil, a light collecting lens, a D, filter and a photodiode.
The electronics was also similar, except for the field locking mechanism. Since the
value of ko depends on the difference between the EPR shifts in the two orientations,
which is only 10% of the total shift, the frequency shifts has to be measured with
much higher accuracy. To achieve sufficient accuracy it was necessary to keep the field
stable to one part in 10%, which exceeds the stability of the current source. Therefore,
the field was locked to a Cs magnetometer which uses an RF generator as a reference
source. The principle of operation of the Cs magneto'meter is also based on the EPR
resonance [19, 23]. The field locking is essentially an inversion of the above mentioned
feedback scheme, where the RF frequency is kept constant and the magnetic field is
locked to the resonance. The RF generator was synchronized with the counter used
to measure the Rb EPR frequency to avoid any relative drifts. The magnetometer
was placed sufficiently far from the He cell to avoid any spurious feedback due to the
magnetic field created by *He. The magnitude of the frequency shift was measured
by periodically flipping *He polarization with AFP. During the measurement the cell
was also frequently rotated by 90° from the longitudinal to the transverse orientation.
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To keep the laser illumination constant during the measurement it was positioned at
45° to the magnetic field in the plane of the cell rotation.

The measurement procedure consisted of a combination of the following three
actions: measuring the EPR frequency (M), flipping the spins by AFP (F), and
rotating the cell (R). It was important to take into account the polarization losses
due to AFP flips and the optical pumping in the opposite direction, since they were
significant compared to the required accuracy. Several measurement sequences were
tried and it was found that the best cycle is (MFMFMR), repeated many times
during the measurement. Let's follow the polarization during a measurement cycle.
For definiteness, we start in the longitudinal orientation with the >He spins pointing
in the direction of optical pumping, creating a negative frequency shift and having
a polarization P. During the measurement of the EPR frequency the polarization
changes due to optical pumping and spin relaxation. We will parametrize the changes
by a fractional polarization loss per second, so after a time T the polarization will
be P(1-SprT). The first subscript refers to the orientation of the spins (up or
down) and the second subscript refers to the orientation of the cell (longitudinal or
transverse). We also introduce Syr, for He spins against the optical pumping direction
in the longitudinal orientation of the cell, Sp7 and Sy7 for the transverse orientation
of the cell. Since the changes of the polarization during the whole measurement
sequence are relatively small (about 5%), we will assume that the fractional loss
parameters remain constant. For AFP losses we introduce a fractional loss constant
a per flip. Then the frequency shift at various points in the cycle is given by (see
Figure 5.10 for notation):

H = fi —PKy

fo = fo—PQ —SpT)Ky

fs = fi+POQ—=5SpT)(1-a)Ky

fo = fotPOA—SprT)(1 —a)(1 = SurT) Ky,

fs = fo—P@A-SpT)(1-a) (1-SurT)Ky (5.25)
fo = fu—PQ=SpT)(1 —a)’ (1= SurT)(1 = Sp.T) Ky

fr = fr=P@-SpT)(1-a) (1-SurT) (1-SpiT) Ky

f8 — fT -P (l—SDLT) (l—a) (1—SULT) (l—SDLT) (l—SDTT)]X’T

where fr and fr are the baseline EPR frequencies in the longitudinal and trans-
verse orientation. During the first cycle we directly measure three quantities: AM; =
(fr +f2) /2, My = (f3+f4)/2, and Ms = (fs +fs) /2. We can extract f, =
(M, +2M, + M) /3 if we expand everything to first order, since all losses are much
less than a percent. We also calculate the frequency shift before and after the lon-
gitudinal cycle: Afpr = fo — My = PK (1 — Sp.T/2), and Afar = fi, — M, =
PKp (1-SpiT) (1-a)® @ = SurT) (1— SprT/2). We repeat the same procedure
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for the next cycle, done in the transverse orientation. Now we calculate:

_ AfAL — AfBT _ ](L — ]X’T (1 — SDLT/Q) (1 — SDTT/Q)
AfAL—{-AfBT K, +]X’T(1 —SDLT/Q)(l — SDTT/Q)

where again we used first order expansion. Repeating the cycle one more time we

can also form the ratio A; = (Afpr, — Afar) [ (Afar +AfBL). Averaging the two
asymmetries we get:

A+ Ay Kp— Ky {1 KKy <5DL + SDTT)2}
2 Kp+Kr (Kp + Kr)* 2

to the lowest non-trivial order in (Spr +SDT). The amount of losses due to Sp;, and
Spr is very small, since the laser pumping prevents the decay of the polarization.
The total loss during a complete cycle Sp.T' + Sy, T *2a is about 0.5%, most of it
is due to spin-down in the up state and the AFP losses. Even if we use this number
the correction to the asymmetry is only 6 x 107%, a negligible amount. We usually
repeated the cycle 10-30 times to reduce the random measurement noise to about
0.5%. For an infinite cylinder we immediately get the value of xo: ko =3/ (SA)-1/8.
For our cell the field was slightly different (By. = 4.1643M for longitudinal and
—2.0822M for transverse orientation), so ko =0.3728/A — 0.1243.

Various systematic checks were performed during the experiment. The biggest
systematic uncertainty comes from the temperature of the cell. A 50W diode laser
was used for optical pumping and EPR detection, and it caused a substantial heating
of the cell. We used 4 RTDs mounted inside the oven to monitor the temperature.
One was mounted near the air inlet and shadowed from the laser light. The second
was mounted in front of the cell near its center. It was shadowed from the laser
by a teflon screen and attached to the body of the cell with a heat sink compound.
The third was mounted behind the cell near the center, and the forth was at the
end of the oven opposite to the air inlet and shadowed from the laser. We used
the temperature of the second RTD as the cell temperature. The temperatures of
the other RTD's differed by less than 5°C. It is particularly important to study
the asymmetry in temperature between the transverse and longitudinal orientations.
Given the temperature dependence of xo, an asymmetry of 1°C will cause a error of
about 1%.Therefore the temperature was carefully recorded during the measurement
cycle. It was found that the asymmetry was less than 0.6°C. We also studied the
dependence of ko on the power of the diode laser while keeping the temperature
constant. Reducing the power of the laser by about a factor of 2 changed the value of
ko by 0.5%. Another way to check for significant temperature asymmetry is to vary
the measurement period 7', reducing it to the point were the temperature asymmetry
does not have enough time to develope. We changed 7' from 3 to 100 sec and have
not seen changes in «o of more than 0.4%. The alignment of the cell with respect

Ay

(5.26)

A

(5.27)
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Figure 5.10: The ko measurement sequence. Frequencies refer to equations in the
text.

to the magnetic field was checked by mapping the frequency shift vs. angle near the
transverse and longitudinal orientations. It was found that the alignment was better
than 1" causing an error of less than 0.1%. The Earth magnetic field rotated the
magnetization vector from the horizontal plane by 1" for the measurements done at
27 G and by 2.5" for measurements at 11 G causing an error of less than 0.3% in
the worst case. To check for the possibility of a polarization gradient across the cell,
several EPR measurements were done along its axis. It was found that the changes
in the EPR frequency shift along the length of the cell are on the order of 0.2% and
monotonic from one end of the cell to the other. So they will not cause a error in
the value of kq. They are probably due to a temperature gradient caused by the air
inlet located near one end of the cell. We also checked the dependence of xo on the
magnitude of the holding magnetic field, the direction of circular polarization of the
laser light, the magnitude of the *He polarization (from 25 to 45%), the method of
mounting the RTD’s. In all cases we have not seen any effect at the level of 0.4%.
We also studied the temperature dependence of ko by making measurements at four
different temperatures, from 110°C to 170°C. We get the following result:

Ko = 4.52 +0.00934 T ("G) (5.28)
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The errors mostly come from the absolute temperature uncertainty (0.7%) and tem-
perature asymmetry (0.6%). The total error of this x, measurement is 1%. Our
results are shown in Figure 5.11, where they are compared with previous measure-
ments. As can be seen, our numbers are in good agreement with a measurement by
Barton et al. [20], who used a similar experimental technique, but at a lower tem-
perature. The temperature dependence has been measured previously in [19]. Their
result for ko has a relatively large absolute error, so we rescale it to Barton's number.
The slope was extracted from measurements in the range 40 - 80°C, so its use at high
temperatures is really an extrapolation. Nevertheless, the two slopes are in very good
agreement, which implies that the temperature dependence of ¢ is quite linear over
the temperature range studied.
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Figure 5.11: Comparison of several measurements of k.

5.2.4 Polarization Gradient

The EPR frequency shift is a measure of the polarization in the pumping cell, while
AFP measures it in the target cell. Since *He is polarized in the pumping cell and
diffuses down, there is a constant polarization gradient between the cells. The evolu-
tion of the polarization with time is governed by a set of differential equations that
include spin exchange, spin relaxation and diffusion terms [24]. For diffusion in the
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presence of a temperature gradient the flux is given by [25]:

Gi=—n(z)D(z) (‘;Z - %%) L i=12 (5.29)

where ¢; isthe concentration of the 7’s component in the mixture. Let i = 1correspond
to *He atoms with the spin up and ¢ = 2 to the atoms with the spin down. Since both
types of atoms have the same mass, the thermal diffusion ratio kz vanishes [25]. We
will assume that the flux is constant along the transfer tube, which neglects the volume
of the transfer tube compared to the volume of the cell. We will further assume that
the temperature changes linearly along the tube and that D (T)= D (Ty) (T'/To)"™,
where m is a constant to be determined empirically. One can show that the rate of
change of the polarization in the pumping and target cell due to diffusion is given by:

dPr Ar,Dr

= K (Pp—-P .30
7 TA P (Pp— Pr) (5.30)
dPp Ar.Drny

= K (Pr— P .
dt VpLTTnP ' ( T P) (5 31)

where Ap, and L, are the area and the length of the transfer tube, Dy is the diffusion
constant in the target cell and the dimensionless constant K is given by:
(m — 2) (TT — Tp) TT

R P

(5.32)

We use the data on the diffusion constant of “He and ®He from [26] to determine
Dr = 2.76 cm?/s at 80°C and 1atm. and m = 1.7. We also use the fact that Dr
is inversely proportional to pressure. Combining (5.31) with the spin exchange and
relaxation terms we get:

dPp
dt
dPr

= dp (PT'_PP)‘*"YSE (PRb—PP) —FPPP (533)
(Pp— Pr)—TrPr (5.34)

where we defined the reduced diffusion constants dp and dr through equations (5.30,
5.31). sk is the Rb-2He spin exchange rate per *He atom, and I'p, I'7 are the spin
relaxation rates which are allowed to be different for the two parts of the cell. The
equations can be solved analytically, but it is easier to integrate them numerically on
Mathematica.

We can check this model of the spin transfer by carefully studying the beginning
of a spin-up when the diffusion effect is most pronounced. This was done for SMC
after the run. Substituting appropriate dimensions we get for SMC dr = 0.95 hrs™!.
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and dp = 1.56 hrs™!. Assuming I'p = I'r = 1/50 hrs. based on a spin-down, we
fit the values of vsg and Pg, to reproduce the long-term behavior of the spin-up
data. It is also important to include the small contribution of the pumping cell to
the AFP signal. We can now compare the spin-up data during the first hour with the
predictions of the model. The result of the comparison is shown on Figure 5.12, and
the agreement is quite satisfactory for our purposes. Now we can use this model to
estimate the difference in polarization between the target and the pumping cell for
Picard. Putting appropriate values for dr and dp, and using I'p = I'r = 1/70 hrs,
we reproduce the long-term spin-up data for vsg =1/9.2 hrs. and Pg, = 73%. The
difference between Pp and Pr can be approximated quite accurately by the following
relationship:

Pp = Prt+3.6% —0.0501Pp (5.35)

valid for Pp > 15%. To estimate the error due to this correction we change various
rates subject to two conditions: Pr, <100% and 'y, > ['p (equation 4.12), always
adjusting the values of vsg and Pg, to reproduce the observed spin-up data. In this
fashion we determine that the error in the target cell polarization due to the gradient
correction is 1.5%.
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Figure 5.12: Polarization of SMC in the first hour of spin-up. The curve is a prediction
of the diffusion model.
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5.2.5 Temperature Distribution in the Pumping Cell

As described in Chapter 4 the temperature in the pumping cell is quite non-uniform.
The frequency shift is proportional to npkoPre, and both o and the density depend
on the temperature. Assuming that the polarization is constant in the pumping cell,
we need to find the average value of npkg. Fortunately, o increases with temperature
while n p decreases, so their product is not very sensitive to temperature. We will use
the heat conduction model (4.34) to put a limit on the possible error from this source.
Since we use the fluorescent light to detect the EPR signal, we need to calculate how
much fluorescence comes from different parts of the cell. The fluorescence light is
emitted with the same spectral profile as the absorbtion profile shown in Figure 4.10

[28]. The intensity of the fluorescence light propagating in the cell is attenuated
according to the following equation:

I;
7w

—a(v)nz O'OF2
/dua(l/)e , o(v)= m (5.36)

I(z)=

where T is the lorentzian half-width of the line, n is the Rb number density, I; is the
initial intensity of the light, and oo =cr. f2/T" (f2 is the oscillator strength of the D,
transition). Using a variable substitution y = 2I'%/ ((v — 1) +F2> and a definite
integral from [29], we get | (z) = Lie=70"*/2[y(aonz/2), where I, is the modified Bessel
function. In the pumping cell typically ogn ~ 20 cm™! and the Rb vapor is optically
thick for unpolarized light. The function [ (z) drops very fast for small z, but for
x > 2 mm it slows down and drops only as 1/+/z, as shown in Figure 5.13. So,
even in optically thick vapor the fluorescence can penetrate quite far through the
cell. The simple fact that we can see the laser beams in the pumping cell confirms
this conclusion. For the temperature distribution we will use equation (4.34). We
now weight the product of np [T(r)] ko [T(r)] by the absorbtion function I (z), where
z is the distance to the surface of the cell, to determine the average effective value
of the product. Averaging over various paths through the cell we conclude that
(np [T (z)] ko [T(s)]1)s 0.5% higher than (np) ko [(T)], where (np) is the average
density of the pumping cell and (T') is the average temperature. In other words, by
using the density and temperature from Table 4.11 we are making a error of only
0.5%. Since the temperature gradient is actually smaller than predicted by (4.34))
we will not apply any correction, just assume a 0.5% error coming from this source.

5.2.6 The EPR Shift in the Cells

The pumping cell of the target has a cylindrical shape (see Figure 4.4). Therefore,
the frequency shift has a contribution from the classical magnetic field created by *He
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Figure 5.13: Fluorescence absorption function | (z).

magnetization in addition to the shift given by equation (5.22). One can define

3

Reff = Ko + 8_7Z'BH6 (537)
where By, is measured in units of the magnetization. The magnetic field of a uni-
formly magnetized pumping cell was calculated on Mathematica. It varied signifi-
cantly across the cell. Therefore, we need to determine what region of the cell was
sampled by the photodiode. The EPR photodiode was sensitive to a region 2 cm. in
diameter in the rear portion of the cell. To evaluate the average depth that the photo-
diode was sampling, we used the absorbtion function (5.36). The intensity weighted
average depth is 1.2 cm almost independent of temperature. The value of By, in
the sampled region equals to 2.4 4 0.7. It results in a 4.6% correction compared to a
spherical cell and causes a 1.3% error.

We also need to know the values F and A4 of the state used in EPR detection to
calculate dvgpr (F,M) /dB. The direction of *He spins was parallel to the holding
field during the entire run. It means that the Rb spin was also parallel to the field
and the spins were pumped into F' = 3, M = 3 state. The RF frequency is tuned
to M = 3 — 2 transition which gives by far the strongest signal. It is separated
from the next transition (A4 = 2 — 1) by 45 kHz at 18 G while the full width of
the EPR signal is only 13 kHz. (Two measurements were made at 9 G, where the
separation is only 11 kHz, but the signal height of the 2 — 1 transition is about a
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factor of 10 smaller, so it doesn't significantly affect the shape of the signal). Another
way to check which transition was used for detection is to look at the absolute value
of the EPR frequency. The magnetic field of the Helmholtz coils was calibrated by
both *He and proton NMR with an accuracy of 0.3%. Based on this calibration we
can calculate the EPR frequency from equation (5.19). For the two measurements at
8.973 G and 18.324 G the results of the calculations agree with the data to 0.15%.
If M = -3 state were pumped, the numbers would disagree by 2.6 %. Expanding
equation (5.19) to second order in vgpr/var We get:

d 3 e
vepr(3,3)  pBg (1 B 1OVEPR) (5.38)

dB 2+ 1 VHF

Now we have all necessary numbers to convert the EPR frequency shift to 3He polar-
ization.

5.2.7 Spin Exchange Effects

In this section we will discuss the effect of the d°p/dt term in equation (5.16). Al-
though it does not depend explicitly on the *He nuclear spin, it might affect the
observed asymmetry indirectly through Rb-He spin exchange. The largest contribu-
tion to d®p/dt comes from the Rb-Rb spin exchange [15]:

d 1 A o~ x 2K o =
0 = 7 (10(S) = 4) - §+ = [(5) 5. (539)

where 1/Try = nryvogs—ps is the spin exchange rate and Kp is the frequency shift
parameter. The real part of this expression affects the frequency shift only in the
second order, i.e. (woTrs) > [15]. Using ore—ps =2 X 10714 cm? [30] we get at 170°C a
correction on the order of 5x107° or 200 Hz. The imaginary part of (5.39) contributes
directly to the frequency shift. The shift parameter Kpg, for Rb-Rb spin exchange is
calculated by Kartoshkin [31]: Kgr, = —0.14. He also obtains cgy_gs = 2.3 X 10'* cm?,
reasonably close to the experimental result. Using his number for Kg;, the shift due
to the imaginary part is at most 3.7 kHz or 0.1% of the absolute frequency (assuming
<§> =1/2). The shift will affect the EPR measurements only if it changes when the
3He spins are flipped. This could happen due to the Rb-He spin exchange causing a
change in the average value of the Rb polarization. To calculate how much the Rb
polarization changes due to *He spin flips we used a model of optical pumping based
on the following equations:

R,(z) + TU'sgPy.
R,(z)+Tsp + sk

Ry (2) = /cb ) o (Vv (5.41)

Pry (2)

(5.40)
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00 (r2) _ o(v)® (v, 2)(1 — Ppy (2 (5.42)

where @ (v) is the laser photon flux per unit frequency, and I'sg = ny.00Rs_He-
The numbers for the spin exchange cross-section were taken from [33, 34], for spin
destruction rates from [32]. For the initial spectral distribution ® (v0) we used a
combination of two gaussians representing the diode and Ti-S laser profiles. o (v)
was taken from pressure broadening measurements. We estimate that R, = 10° s™!,
IFsp =24s7!, and I'sp = 734 s71. Since R, > I'sg, the effect of the *He polarization
reversal is not very large. However, it can affect the frequency shift in several ways,
and we need to investigate it in more detail numerically.

A C program was used to solve the above set of integral-differential equations
[35]. Since the spin exchange and destruction rates from different sources disagree
by as much as a factor of 2, and other parameters (laser power, Rb number density,
etc.) are also not very certain, we ran the model for many different combinations of
parameters, considering a total of 1600 cases. Based on the results of the model the
largest variation of the Rb polarization due to a 3He spin flip is 0.5%. From the form
of equation (5.39) it can be seen that the false frequency shift is proportional to the
Rb polarization [16]. Therefore, the EPR frequency asymmetry due to Rb-Rb spin
exchange is at most 20 Hz or 0.1% of the frequency shift.

The other contribution to d°p/dt comes from the light shift [37):

d
at’ =

where y.s and Avps are the real and imaginary shift parameters proportional to
the intensity of the light. Recent calculations and measurements at Princeton under
similar conditions [36] showed that the light shift is about 1kHz and has a dispersive
pattern as a function of frequency (i.e. equals to zero when the laser is tuned exactly
on resonance and reaches a maximum when it is detuned by about 2 nm). Since the
light shift is proportional to the intensity of the light, it depends on *He polarization
through equation (5.42). The variations of intensity due to *He flips are less than 1%
based on the pumping model, so the asymmetry from this source is small.

The other possible source of the asymmetry comes from the changes in the laser
intensity profile coupled to the magnetic field gradient. The EPR signal is approx-
imately proportional to the difference in the intensity of the fluorescence with the
resonant RF field turned on and off. The intensity of the fluorescence is proportional
to the number of pumping photons absorbed per unit length as given by equation
(5.42). To model the effect of the RF field we introduce an additional relaxation rate
in equation (5.40). It can be seen from equation (5.42) that when the RF field is
turned on, the amount of fluorescence coming from the front of the cell will increase,
because (1 — Pg;) will be larger. In the back of the cell the amount of the fluorescence

(—QWiAVLS —'YLS)P (543)
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Figure 5.14: EPR signal vs. position in the cell according to the pumping model.

will become smaller because less light will penetrate through the cell. The dependence
of the EPR signal on the position is shown on Figure 5.14, as calculated using the
pumping model. The EPR signal can actually change sign in the middle of the cell.
This effect was detected experimentally by observing the phase of the lock-in output.
The phase of the signal coming from the front of the cell was opposite to the phase
from the back of the cell. The exact position of the zero crossing is very sensitive
to all parameters of the model. During initial setup it was determined that the best
position for the photodiode was in the back of the cell, where the phase of the EPR
signal was negative. However, the laser power was increased later and that moved
the zero crossing further into the cell into the sampling region of the photodiode. As
a result, the EPR signal taken at 170°C has a tail (see Figure 5.15) coming from the
region of the cell with the opposite phase. This could potentially cause a big error,
especially if the zero crossing is exactly in the center of the sampling region, making
the EPR signal purely dispersive. Fortunately, we took data under several different
conditions, varying the temperature and laser power (see Table 5.6). Based on the
results of the pumping model for all 1600 possible variations of the parameters, we
conclude that if for one of those conditions (i.e. combination of temperature and
laser power) the zero crossing was in the sampling region, it could not have been in
the sampling region for all other conditions. We can also estimate possible error in
the case when the zero crossing is inside the sampling region by modelling the effect
of the field gradient. We analyze the EPR signal shown in Figure 5.15, assuming a
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Lorentzian line shape:

72 h(z) w?
S(v) =
) /zl (w2 +(v—w (z))2)

where h (z) = ho (z — zo) is the height of the EPR signal vs. position with a zero
crossing at zg, and vg (2)=wvo+(dB/dz) (dv/dB) z isthe EPR frequency vs. position
assuming a uniform’gradient. z; and 2, are the boundaries of the sampling region.
Using this function to fit the data we get a gradient of 10 mG/cm, reasonable close
to 3.6 mG/cm estimated from the AFP data. The width of the EPR signal can be
calculated from the spin exchange cross-section by the following equation [15]:

dz (5.44)

21(21-1)
w =
67 (21 +1)* Try

(5.45)

Using the Rb-Rb spin exchange cross-section ogry—rs =2 X 107!* cm? [30] and ngy, =
2.73 x 10" ¢cm™ at 170°C we get w = 5.3 kHz, while the fit gives 4.9 kHz, in
surprisingly good agreement. Now we can calculate how much the position of the
EPR peak changes when the *He spins are reversed. Based on the pumping model
the position of the zero crossing changes by no more than 1 mm. This causes a shift
of the peak frequency by about 200 Hz or 0.5% of the total frequency shift. So, even
if the EPR zero crossing is inside the sampling region, the false asymmetry is not too
great.

Another possible correction we need to consider is the contribution to the fre-
quency shift from the Van der Waals molecules. While equation (5.16) describes the
frequency shift from the binary collisions, the Van der Waals molecules should be
considered separately. In [18] a constant & is introduced to describe their contribu-
tion. The van der Waals molecules easily form for heavy noble gases, like Xe and
Kr. They become less and less bound for lighter noble gases. Although there is no
experimental evidence for *HeRb Van der Waals molecules, their contribution was
calculated based on interatomic potentials, giving [18]: k1/k0 = 8 x 107¢. Another
way to put a limit on the contribution of the Van der Waals molecules is to use their
very short lifetime at high pressure. We can use an expansion given in [37] for the
frequency shift in the short lifetime limit:

Avpr = haAdlkh + 0 <9hi>2 (5.46)

where a = 8% ¢geuppinenue/3K, which is valid if the following conditions are satisfied:
yN7/h < 1,a7/h < 1,and ugBr/h < 1, where N« is the strength of the spin-
rotation interaction. To put an experimental limit on the contribution of the Van der
Waals molecules we will use the lightest gas for which the data are available: Argon
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Figure 5.15: EPR signal detected with AM modulation of the RF field. The fit is
based on the model described in the text.

[38]. The lifetime of the molecules is inversely proportional to pressure and at our
pressures is 7 = 8x 10712 sec. (yN) /h = 2.1 x 107 sec from [39], so the first condition

is satisfied. ugBr/h = 1.0x 1073, and a7 /h = 2.5x 107°, so the other conditions are
also satisfied and the second order term of the expansion, that would be non-linear
in (K), is negligible.

5.2.8 EPR Results

Most EPR measurements were performed after the run on Picard. They were done
under a variety of conditions (i.e. different laser power, temperature, magnetic field,
polarization). Each measurement was preceded and followed by an AFP measure-
ment. Since we did not make EPR measurements throughout the run, we can only
use them as a calibration of the AFP system.

The 3He polarization can be found from the frequency shift by the following for-
mula:

3 (21 T1)

~ 87 ppnede (L — AT (vEpR/viF)] fepsno (np /1)

Py Avgppr — APpr G40

where k.5 is given by equation (5.37)and APpr = Pp — Pr is calculated from
equation (5.35).
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The list the EPR measurements done after the run on the cell Picard is shown in
Table 5.6, along with the results of AFP measurements done at the same time. The

ratio of the polarization measurements is presented graphically in Figure 5.16.

# | Tp, | Laser | vgpr | Avgpr | kers | np/no | APpr | Pepr | Parp %ﬁﬁ
°C | Power | MHz kHz % %
1 | 180 Full 4.159 18.98 | 6.49 | 0.833 1.8 33.7 36.3 | 0.928
2 | 180 Full 4.148 | 23.32 | 6.49 | 0.836 1.4 42.1 44.5 | 0.946
3 | 180 Full 8.445 | 22.46 |6.49 | 0.836 1.5 41.0 42.7 1 0.960
817011 LDA [ 8453 | 21.80 |6.39 | 0.849 1.5 39.8 427 10.932
5 1180 Full 8.444 | 21.74 | 6.49 | 0.837 1.5 39.6 41.7 1 0.950
6 | 160 Full 8.447 | 2180 | 6.30 | 0.862 1.5 39.7 41.0 | 0.968
7 | 200 Full 8.472 22.71 | 6.67 | 0.818 1.5 41.3 45,2 | 0914
8 | 180 Full 5.463 | 2310 | 6.49 | 0.841 14 42.1 44.3 | 0.950
9 | 180 Full 8.603 15.35 | 6.49 | 0.836 2.1 26.9 28.8 | 0.934
Table 5.6: EPR Measurements.
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Figure 5.16: Comparison of the polarization measurements under different conditions.

The ratio of the polarization measurements is relatively stable for different oper-
ating conditions. There is one data point, however, whose quality is questionable.
The measurement #7 was performed at 200°C (the temperature was raised up about
30 min. before the measurement). The Rb-He spin exchange rate in the pumping cell
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was about 3.8 hrs. So, if the average Rb polarization dropped by, say, 20% because
the lasers did not have enough power to polarize the Rb vapor at this temperature,
the polarization in the pumping cell would drop by 2-3% in the time before the mea-
surement. The polarization in the target cell did not follow since the diffusion time
constant is about 0.7 hrs. This would explain a lower value of the polarization from
the EPR method which measures P in the pumping cell. Therefore, one might ar-
gue that this number should be disregarded. The average of all 9 measurements gives
PEPR/PAFP = 0.942f0.016. If we dI’Op point #7 we get PEPR/PAFP =0.946f0.013.
We will use the second number. The corrections due to the magnetic field shift and
the polarization gradient can change within their error bars depending on the tem-
perature and laser power. The variations seen in the data are less than the combined
error due to the polarization gradient (1.5%))the magnetic field shift (1.3%) and
various false asymmetries (0.7%).

The errors of the EPR measurements mostly come from xq (1.0%), the polarization
gradient (1.5%), magnetic field shift (1.3%), and the gas density (1.5%). Note that
the error in gas density in the pumping cell is smaller than might be expected because
the error in np/ng due to the temperature uncertainty is anticorrelated with the error
in kg. We will also include the standard deviation of the data as an additional error
(rather then divide it by the number of measurements) because it could be due to an
effect other then those described above. So, the total error is 3.0%.

5.3 Comparison of Two Methods of Polarimetry

The results of the two polarimetry methods together with their error bars are shown
in Figure 5.17 normalized to the calibration constant used for a preliminary result.
If we treat the errors as statistical the disagreement between the two polarime-
try methods is 1.20. The probability of this or bigger disagreement is 23%. Since
our total error comes from many different sources, each on the order of 1-1.5%, the
statistical approximation is quite good. Consider the following simple model. Sup-
pose that the total error comes from ten independent sources each with a magnitude
of 1.4% (this gives a total error of 4.4%, similar to our combined error of the two
measurements). Assume that each source of the error will cause the final number to
move by exactly 1.4% in either direction with equal probability. Assume that these
changes are uncorrelated (sincethe errors come from totally different effects). We end
up with the well-known binary distribution (e.g. coin toss). The resulting probability
distribution of the final result together with a gaussian fit is shown in Figure 5.18.
The statistical approximation is, in fact, quite reasonably. Since the results are not
in disagreement, and there is no clear preference for either method (as quantified by
their nearly identical error bars), we will average the two results. However, since the
errors are mostly systematic and have some degree of arbitrariness, we will not use a
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Figure 5.17: Polarization Calibration Constant (normalized to the Preliminary Re-
sult).

weighted average.

Estimating the error of the final result is more complicated. Naively, one should
reduce it when averaging, which would give a error of 2.2%. This, however, disre-
gards the possibility of an unidentified systematic error that could affect either of
the methods. Therefore, when combining the two methods we will increase (rather
then decrease) the total error. Different arguments could be used to estimate the
size of the systematic error. One of the most conservative assumes that the entire
difference comes from an unknown systematic effect in one of the methods. We want
to include the possibility that the true answer is given by only one of the methods,
the other being affected by a systematic error of unknown origin. Even if we reduced
all known systematic errors to zero, the two numbers are not guaranteed to converge.
In this case the probability distribution of the true calibration constant is a sum of
the probability distributions of each method, as shown in Figure 5.19. The shape of
the sum distribution is reasonably close to a gaussian. Therefore, we can parametrize
the final error by the width of a gaussian which resembles the sum distribution. In
this way we can identify the error with the width of the gaussian and it will have the
most straight forward interpretation. Using a fit with a constraint on the total area,
we obtain a gaussian with a width of 4.5%. This is the polarimetry error at the end
of the run. We should add to this the error due to the drift of the coil sensitivity over
the length of the run. Using the whole size of the drift, equal to 1.7%, as a error, we
get the final polarization error of 4.8%. The final values of the calibration constants
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Figure 5.15: Simulation of the probability distribution based on 10 errors 1.4% each.

are shown in Table 5.7

Dave Riker Bob SMC | Generals | Hermes | Prelims | Chance | Picard
0.1552 | 0.1406 | 0.1560 | 0.1567 0.1436 0.1611 | 0.1456 | 0.1431 | 0.1313

Table 5.7: Final AFP Calibration Constants (%/mV)

5.4 Polarization Direction

The direction of the 3He polarization corresponding to an AFP signal of a particular
sign was determined by a two step process. First, we determined the orientation of
the polarization with respect to the magnetic field and then the orientation of the
magnetic field relative to the electron beam. In each case we used several methods.
To avoid masing during AFP 2He spins were always stored in high energy state. The
direction of the polarization was reversed by rotating the holding field by 180°. This
also resulted in the reversal of the AFP signal sign. Both the sign of the magnetic
field and the sign of the AFP signal were recorded to tape. In the following discussion
we will consider the positive polarization state.

We note that the AFP signal is positive for both >He and water when the field is
swept up through the resonance. On the way down the signals have opposite signs, but
this is due to the fact that proton spins relax between the sweeps, while He spins do
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Figure 5.19: Probability distribution for the calibration constant compared with a
gaussian.

not. The proton spins are polarized according to the Boltzman distribution, therefore
they have to be in the low energy state. Since H = -M- B, the magnetization M, is
parallel to B. The sign of the AFP signal depends on the sense of the magnetization
precession, which is given by the Bloch equations [5]:

dvr_ +M x H (5.48)
dt
where v = u/h. Since protons have a positive magnetic moment and 3He has a
negative moment we conclude that the magnetization of *He is opposite to B. Finally,
using My. = ug. K, we determine that the *He spin is parallel to B.

We note that the sign of the EPR shift is negative (see Figure 5.8). Since «¢ is
positive this implies that the magnetic field created by polarized *He inside the cell
is opposite to B. Again, we conclude that My, is opposite to B and K is parallel to
B.

One can also determine the direction by looking for the occurrence of the masing
effect. As was described in Chapter 4, masing can occur only if the spins are in
the high energy state. If we believe that the polarization problems in SMC and
Generals were due to masing, we conclude that the spins were stored in the high
energy state. However, we can come to the same conclusion by noticing that no
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masing was observed during AFP (where it would manifest itself as a large difference
in the AFP signals for the up and down sweeps). For AFP we sweep the magnetic
field up to 36 G, so the Larmor frequency of the spins passes through the pick-up
coil resonance at 101 kHz. Since the coupling of the pick-up coils to the spin is much
stronger on resonance (by a factor of 3500 compared with a holding field of 20G), one
would expect that masing is very likely to occur there. To avoid this problem, the
RF frequency is set below the coil resonance (in our case to 92 kHz) and the spins
are stored in the high energy state. In this way, the direction of the polarization is
reversed by AFP before the sweep reaches 101 kHz, and the spins pass through the
coil resonance in the low energy state. If the spins are ever stored in the low energy
state, they will end-up in the high state while passing through the resonance and lose
their polarization due to masing. This effect was observed several times during the
setup stages of the experiment. It was the reason that we reversed the polarization by
a rather complicated field rotation, instead of a simple AFP. So, 3He is stored in the
high energy state, which implies that its magnetic moment is opposite to the holding
field, in agreement with the other two methods.

The direction of the magnetic field was also measured in several ways. It was de-
termined using a compass, whose North direction shows the direction of the magnetic
field. We also used a Flux-gate magnetometer and a Hall probe to measure the sign
of the field. The Hall probe was calibrated against the spectrometer magnets. Fi-
nally, the direction of the field was determined from the direction of the coil winding
and the electric current. All methods indicate that the field was pointing opposite
to the direction of the electron beam. So, the *He (and neutron) spin was pointing
opposite to the electron momentum when the AFP signal was positive. The direction
of the electron polarization was determined from the sign of the Mgller asymmetry
[40] as well as the direction of the circular polarization at the source. We could also
determine the direction *He polarization from the circular polarization of the optical
pumping light. However, this method relies on the manufacturer’s specification of the
polarization direction for a circular analyzer (for example, a liquid crystal polarizer).
Although this method agrees with the other, it cannot be trusted because there are
two conflicting definitions of circular polarization in the optics manufacturing trade.
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Chapter 6

Results and QCD Analysis

6.1 Traditional Analysis

Our results for the neutron spin structure function gt and the virtual photon asym-
metry A;" are shown in Table 6.1 with their statistical and systematic errors. The
systematic errors are comparable to the statistical errors in the lowest two x bins
(due to contamination by charge symmetric background) and are smaller at higher
x. Before these data can be used for comparison with other experiments or tests of
the sum rules, we need to calculate ¢, at a common Q2. The raw data are in the
range 1 GeV? < Q2 < 15 GeV? and the statistics weighted average @* is about 5
GeV?2. This number is close to the average Q* of the SMC deuteron measurement
and has been used in previous analyses of the spin structure functions [1]. Therefore,
we evolve our data to 5 GeV.

Following traditional methods [1, 2], we assume that A; is independent of Q2
and use the measured Q? dependence of the unpolarized structure function F; [3]to
calculate ¢; at constant Q?:

Fl ((13, 5 G€V2)
1y (z,Q7%)

As will be described in Section 6.3, a more sophisticated (? evolution based on
NLO QCD analysis does not significantly modify the results. Equation (6.1) is also
consistent with our measured Q# dependence between the two spectrometers, however,
this is not a very stringent test because of the small lever arm in Q2.

Our results for g7 (z) at @Q* = 5 GeV? [4] are shown in Figures 6.1 and 6.2,
where they are compared with previous SLAC and CERN results respectively, and
the numbers are given in Table 6.2. Several observations can be made. The results of
our experiment are in good agreement with all previously available data. Thisincludes
experiments done at SLAC with polarized gaseous *He [23 and solid H/D targets [5],

g1 (x,5GeV2) =g (x,Q2>

(6.1)
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(z) 1(Q% (GeV?) | g} + stat. £ syst. | A7 £ stat. + syst.
2.75° spectrometer
0.017 1.21 —0.351 £0.115 £ 0.104 | —0.058 £ 0.019 4+ 0.017
0.024 1.59 —0.374 £ 0.071 £ 0.062 | —0.080 £ 0.015 4 0.014
0.035 2.05 —0.290 £ 0.061 £ 0.037 | —0.078 +0.018 £ 0.011
0.049 2.57 —0.212 £0.041 £ 0.021 | —0.089 + 0.016 £ 0.010
0.078 3.32 —0.119 £ 0.031 £ 0.013 | —0.078 £ 0.019 £ 0.009
0.123 4.09 —0.075 £ 0.030 £ 0.009 | —0.089 4 0.031 £ 0.011
0.173 4.63 —0.070 £ 0.033 £ 0.009 | —0.100 %+ 0.053 £+ 0.014
0.241 5.09 —0.053 £0.028 £ 0.007 | —0.078 + 0.077 £+ 0.018
0.340 5.51 0.001 £0.036 £ 0.004 | —0.166 + 0.206 + 0.051
0.423 5.82 0.027 £ 0.059 £ 0.007 0.166 £+ 0.606 + 0.038
5.5° spectrometer
0.057 4.03 0.224 £+ 0.285 + 0.035 0.045 £ 0.120 + 0.012
0.084 5.47 —0.152 £ 0.029 £ 0.019 | —0.104 £ 0.018 £ 0.013
0.123 7.23 —0.117 4+ 0.017 £ 0.012 | —0.110 £ 0.015 & 0.012
0.172 8.94 —0.059 £0.016 £ 0.007 | —0.090 £ 0.023 + 0.011
0.242 10.71 —0.040 £0.012 £ 0.005 | —0.118 & 0.030 £ 0.016
0.342 12.55 —0.019 £0.012 £ 0.005 | —0.057 4+ 0.068 + 0.022
0.442 13.83 —0.009 £ 0.012 £ 0.002 | —0.013 +0.146 £ 0.018
0.564 15.00 0.003 £ 0.008 £+ 0.001 0.100 £ 0.294 + 0.032

Table 6.1: Results for the neutron spin structure function ¢ and the virtual photon
asymmetry A7

experiments at CERN using solid H/D targets [6], and at DESY with a polarized *He
internal target [9]. The experiments are also done under widely different kinematic
conditions, with different sources of systematic errors, etc. Thus, the experimental
measurements of the spin structure functions are quite reliable. In fact, history shows
that all of polarized deep inelastic scattering experiments are in agreement with each
other and have not suffered from unaccounted errors.

Second, our statistical errors are smaller by a factor of 3 or more than in any of
the previous experiments. Our systematic errors are comparable to our statistical
errors at low x and are much smaller at higher z. The experiment also extends the
precision measurements to lower = than previous SLAC experiments. As we will see,
this is critical for the extrapolation to low z and the measurement of I'}. Although
our data do not extend as far down in z as the results of SMC, most fits of the low
x behavior of the spin structure function starting at « = 0.1 are dominated by our
data because of higher statistical precision.

Third, our low x data do not show any evidence for the onset of Regge behavior
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Figure 6.1: Our results for g} (z) compared with previous SLAC data. zg, is ploted
on the vertical scale for better display.

z bin () | (Q%) g7 £ stat. £+ syst.
GeV? (Q? = 5 GeV?)
0.014 —0.02 | 0.017 1.2 | —0.497 £0.163 4+ 0.148
0.02 —0.03]0.024 1.6 | —0.481 £ 0.092 £ 0.081
0.03 —0.04 | 0.035 2.0 | —0.345 £0.073 £ 0.046
0.04 —0.06 | 0.049 2.6 | —0.228 £0.045 £ 0.024
0.06 —0.10 | 0.081 4.4 | —0.139 £0.022 £+ 0.016
0.10 —0.15]0.123 6.6 | —0.105+0.014 +£0.011
0.15 —0.20 | 0.173 8.2 | —0.060 + 0.014 £+ 0.007
0.20 —0.30 | 0.242 9.8 | —0.043 £0.011 £0.005
0.30 —0.40]0.342 | 11.7 | —0.018 £0.013 £ 0.005
0.40 —0.50 | 0.441 | 13.3 | —0.009 + 0.014 + 0.002
0.50 —0.70 ] 0.564 | 15.0 0.005 £0.012 £ 0.001

Table 6.2: The results of our experiment for g7 at (Q?) =5 GeV?2.
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Figure 6.2: Our results for g7 (x)compared with previous SMC data. zg; is ploted
on the vertical scale for better display.

g1 (X)~ z(©=%5) in the measured range, in agreement with SMC results, see Figure
6.3. While in the past it was usually assumed that the Regge behavior sets in at
z ~ 0.03 [5,10], our data do not support this conclusion. While it may be true that
Regge extrapolation is valid for SMC measurements starting at z ~ 0.01, there is
no experimental evidence for it. In using Regge extrapolation experimenters in the
past assigned a “conservative” error, for example, 100% of the extrapolated value
of the integral [2, 5, 6]. However, as can be seen from our low = data fitted to an
unconstrained power law, such error estimates are dangerous. Figure 6.3 shows the
low = region of our data, as well as SMC data. Note that in this case g; itself is
plotted, instead of xg,, showing true divergence of the data. In Table 6.3 we give the

parameters for several fits and the integral over the unmeasured region 00'0135 g7 (x)dz
calculated from these parameters. For a power fit gy (X)~ 2%, &« = —0.92f0.16. The

value of the integral [)°"°¢? (x)dz can range from —0.14 to infinity. In contrast,

assuming a Regge fit with o =0 ( ¢; — const), we get for the extrapolation integral
—0.0055. Clearly, a error equal to 100% of this value is inappropriate.

To test the sum rules, it is convenient to start the integral at + = 1and integrate
the data to the lowest = point. Then one can attempt to extrapolate to x = 0. The
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Figure 6.3: Several fits to the low z region of our data.

Fit # p- Parameters 0 da g7
7 =C 3 | C=—041%005+006 | —0.0055+ 0.0007 - 0.0008
97 = C'/(:L‘ In? a:) 4 C = —0.1254 0.014 + 0.016 | —0.0291 4+ 0.0032 + 0.0036
gy =Cz™* 5 C = —0.014+ 0.007 4 0.004 —0.14+ 00 + ¢

a =092+ 0.16 + 0.09

gr =Cz (1 —z)’| 11

C = —0.034 £ 0.021 + 0.011
a =0.70 £ 0.18 + 0.10
8=32+16+07

—0.031+ 0.022 + 0.013

Table 6.3: Various low z fits of the data and values of extrapolated integral.

results of such integration for the Ellis-Jaffe sum rule are shown in Figure 6.4 and
for the Bjorken sum rule in Figure 6.5. It should be noted that the horizontal axis
is logarithmic, and its zero is "infinitely" far away. It can be seen from Figure 6.4
that the Ellis-Jaffe sum rule is most likely violated. The integral already exceeds the
prediction by 2a and shows no sign of slowing down. Thus, the Ellis-Jaffe sum rule

is violated in the neutron as well as in the proton [8, 6, 5].

For the test of the Bjorken sum rule we combine our neutron data with all available
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Figure 6.4: Integration of g7 from 1to x compared with Ellis-Jaffe sum rule.

data on the proton (EMC, SMC, E143). As can be seen from Figure 6.5, the Bjorken
sum rule is not violated by the data over the measured region. Its confirmation
requires an extrapolation to x = 0 which should contribute about 12%. Fortunately,
the difference g7 (x) — ¢7 (x) is much less divergent than each structure function
separately. Fitting the difference to a free power law gives: g7 (z)—g7 (x) ~ 2~ (0-52£0-1)
and the low  extrapolation gives [09% (g7 — ¢7)dz = 0.032 + 0.015. The total
integral is I/ — I'7 = 0.192 + 0.024. An alternative extrapolation, based on Regge
gy (z)—g} (x) ~ const behavior gives 'Y —I't = 0.170f0.012. This is to be compared
with the prediction of the Bjorken sum rule I'BY = 0.186 & 0.005, which includes
corrections up to O (a?) [27]. Thus, both methods of extrapolation are consistent
with the Bjorken sum rule and with each other. One can argue based on perturbative
QCD that the two methods of extrapolation are extreme, and in reality g, diverges
at low z slower than any power of z, but faster than any power of log (x). Therefore,
the test of the Bjorken sum rule is relatively robust against possible forms of low i
behavior, and our experiment confirms the sum rule.

Significantly more detailed information about the quark helicity distributions and
other implications of our data can be obtained by considering their interpretation

within QCD theory at Next-to-Leading order (NLO) level, which we turn to in the
next section.
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Figure 6.5: Integration of gf — ¢ from 1to x compared with Bjorken sum rule.

6.2 The Interpretation of QPM within QCD

In our analysis of polarized DIS in Chapter 2 within the framework of the Quark
Parton Model (QPM) we identified the integral of the quark helicity momentum
distribution:

A= [ (0 @) —d @)+ @) - ¢ (@) do (62)

with the matrix element of the quark helicity operator at zero Q*:
<N ’(j’y“’fql N> = 2Aqs” (6.3)

However, these two equations for quark helicity really apply to different quarks. In
the first case, we are considering the quarks in the deep inelastic limit, where they
are asymptotically free particles. In the second case, the relationship applies to con-
stituent quarks present in the nucleon at rest. In the QPM these two types of quarks
are not distinguished, because there is no Q? dependence and the quarks are not inter-
acting. In QCD this is no longer true. The modifications due to QCD are three-fold.
First, the Bjorken and Ellis-Jaffe sum rules receive calculable radiative corrections as
a power series in «;. Second, the quark momentum distributions become dependent
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on Q% q(x) — q(z,Q*). Third, the interpretation of Ag measured in deep inelastic
scattering is modified.

There are at least two different approaches to the calculation of QCD corrections:
one relying on Operator Product Expansion (OPE)and the other on perturbative cal-
culations, also known as QCD improved Parton Model [11]. While the OPE method
combined with the renormalization group equation is more widely used, greater in-
sight can be obtained by following the perturbative approach. The two methods
have been shown to be equivalent [11]. In the following discussion we will follow the
perturbative treatment to illustrate the effects of QCD.

In calculating the QCD corrections to the parton model one extends the methods
used in derivation of the parton model itself [12]. There, we defined the probabilities
g; ac) of finding a quark inside a nucleon and then assumed that the scattering from
different quarks is incoherent and that the cross-sections (instead of the amplitudes)
can be added directly. Now we realize that because of QCD interactions the quark
cross-section itself is modified from the simple Dirac form. To take this effect into
account, we write the virtual photon cross-section in a more general form. Schemat-
ically, the process is shown in Figure 6.6. The nucleon with momentump contains a

Figure 6.6: Embeding of the photon-quark cross-section into the photon-nucleon
cross-section.

quark with momentum fraction y which interacts with the photon and ends up with
momentum fraction ic. Because of possible gluon emission, z is not necessarily equal
to y. Thus, we can write:

Fi (2,Q?) = %;ef [t [ ayacw)s @ -z, (07 (64)

where o, (z, Q2) is the (dimensionless) cross-section for quark-photon scattering nor-
malized by appropriate kinematic factors. The other structure functions (including
g1 and g¢2) can be written in similar form. Performing =z integration with the delta
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function we get:
1 1 dy
F (2,Q%) = 5;6?/() ~ W) (=/v.Q?) (6.5)

Several processes contribute to the quark-photon cross-section a, (z/y,Q?%) [13], as
shown schematically in Figure 6.7.

e
pES

Figure 6.7: Contributions to o,, to order a;.

12

0,,(z.Q% =

In calculating these diagrams we, as usual, encounter divergences. There are both
infrared and ultra-violet divergences in the integrals over the internal lines and un-
detected final state particles. The ultraviolet divergences are dealt with by the usual
process of UV regularization and renormalization [14], since QCD has been shown
to be a renormalizable theory [15]. The most commonly used UV renormalization
scheme is modified minimal subtraction [16], denoted M S, which is based on dimen-
sional regularization. In calculations of the cross-sections all UV divergent integrals
should be renormalized in a consistent fashion. As long as this is done, the only other
effect of UV divergences is the running of the coupling constant a, with Q% which
is governed by the renormalization group equations. From now on «, will refer to
as (Q*) even if not stated explicitly. In the remainder of the discussion we will not
concern ourselves with UV renormalization. All discussion about regularization and
renormalization will refer only to infrared divergences. One does not have to choose
the same scheme for UV and IR renormalization.

The infrared divergences can be divided in two types. One type is due to emission
of soft and colinear gluons. The divergences cancel between the real gluon emission
and the vertex correction diagrams shown in Figure 6.7 [17]. This is quite similar
to the infrared divergences and their cancelation in QED, which were discussed in
relation to the radiative corrections in Chapter 3. In addition, there are divergences
which appear if we try to take the quark masses to zero. One method of infrared
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regularization is to leave finite quark masses. Alternatively, we could set the masses to
zero and use, for example, the dimensional regularization scheme to control divergent
integrals. Other regularization schemes are also possible. In any scheme, we introduce
a cut-off u, which has dimensions of mass, and in some schemes is associated directly
with the mass or minimum momentum of the particles in the loop. In general, we get
the following result:

s

o (5@) =004 r@loe (L) 4 2000 69

where Py, (z) and Cy, (2) are some functions, and C,, depends on the regularization
scheme [13]. Clearly, this expression is dependent on the cut-off ¢ and diverges as
¢ — 0. Since we believe that the quark masses are small, and do not have a major
effect on QCD interactions, this situation is unsatisfactory.

In addition, we calculated the cross-section only in first order perturbation, valid
for or, < 1. Since the strong coupling constant is dependent on @* and grows as
Q? — 0, the results are invalid when the momentum transfer is comparable to or
lower than the QCD interaction scale A,. We need to separate the low energy non-
perturbative behavior from the high energy perturbative behavior of QCD. One way
of accomplishing this is to introduce a separation scale p; between the soft processes
with @* <% and the hard processes with Q% > x4 [18]. The non-perturbative, low
QQ? effects can be absorbed into the definition of the quark momentum distributions
(QMDs). We can write:

Py (2,Q%) = Z /1 il of (v, 13) o* (2/y, Q% 113) (6.7)

i (e8) = w0+ geion (1 D[ awe, (2) (63)

o (@) =[50+ B >1og( ) + 20,0 (69)
which follows from equations (6.5) and (6.6) to first order in .. ;Shis separation is
I

known asfactorization. x; is the factorization scale and ¢f (x pf, is the factorized

QMD. The factorization scale y; is usually set to the Q* of the measurement: p} =
@Q?. In this case the QMD depends on Q?:

o (.Q%) = 4 (v) + =P G) log (f—) (6.10)

while the factorized (hard scattering) cross-section ¢/ (z,Q% Q?*) = o (z) is Q? in-
dependent. From equation (6.10) we obtain an integro-differential equation for Q?
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evolution of ¢ (z,Q*) (we now drop the f superscript):

dg(z,Q%) o, ['dy z
o -5 o) ()

known as Dokshitzer-Gripov-Lipatov-Altareli-Parisi(DGLAP)[19] or simply Altarelli-
Parisi equation. If we know ¢ (z,Q?) at one Q* we can calculate (evolve) it to other
values of Q% In addition, the factorization theorem states that the QMDs are in-
dependent of the process in which they are probed (i.e. DIS, Drell-Yan) while the
hard scattering cross-sections o (z)are independent of the hadron being probed (i.e.
proton, neutron, pion) [18].

Before proceeding any further, it is important to realize that there are several
ambiguities in this decomposition. First, in calculating the cross-sections we intro-
duced a cut-off x using a regularization scheme. The function C, is dependent on
this choice. Sometimes this procedure is called renormalization, although technically
this is not correct, since the quantities still depend on the cut-off and have not been
made explicitly finite. Second, the factorization process is not unique. Finite terms
can be moved between ¢/ and o/. This ambiguity is known as the factorization
scheme dependence. In practice, however, in each regularization scheme there is a
most natural way to factorize hard and soft contributions. Therefore, the choice of
the regularization and factorization schemes is related. The combination of regular-
ization and factorization procedures makes all quantities finite and independent of
quark masses. It can be properly called an infrared renormalization scheme. Finally,
one does not have to choose u} = @?, although it is a universal choice. Once the
regularization and the factorization schemes are chosen, the expression for C,, can
be uniquely calculated.

For polarized structure functions ¢, and g, the formalism is identical, with ¢;
replaced by Ag;. The function P, is also identical for the polarized and unpolarized
case, which explains why ¢; and F; evolve similarly with Q% and the asymmetry A,
is approximately independent of Q2. The relationship is only approximate because of
the gluon contribution, which we will discuss next.

To order o, we should also include the gluon diagram shown in Figure 6.8. Then
the full expression for the spin structure function g, becomes:

&qu () @ Agi (5177 QQ)

1
2 _ - 2 . 2
g1($7Q> - QZZ:el{AqZ($7Q)+2ﬂ'
Qg 9
5 Cag (1) © AG (2.Q%)} (6.12)
were we have introduced convolution:

r@est=[2Lr(2)o0) (613)
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c,(zQ% =

Figure 6.8: Gluon contribution to the photon-quark cross-section.

and AG (aR?) =G"(z,Q?%) — G! (x,Q?) is the gluon helicity distribution.
For the sum rules we are particularly interested in the gluon contribution to the

integral of ¢, (z, Q?):
( ) / d:z:/l dycqg< )AG(y Q?) (6.14)

<Z ) U de G ( H/ dxCyy (x ] (6.15)

The last step follows from the properties of the convolution (6.13). Thus, we see that
the gluon contribution to I'; depends on the integral of C'y, (z). As was mentioned
before, the definition of C,, (x) depends on the renormalization scheme. In some
schemes its integral is equal to zero, while in others its not. One may think that F{’
is only a perturbation, because it is proportional to cv,, and ¢, goes as 1/ log (Q?) in
the deep inelastic limit Q% — oc. However, the helicity carried by the gluons grows
logarithmically with Q? [20]:

gl _
Fl _—

o= N =

im [ AG (2,Q%) do — log @ (6.16)
Q%?—oc0 Jo
because of the axial anomaly, so cv, (Q?) AG (Q?) is of order unity even at infinite Q.
Thus, we need to consider the gluon contribution in detail. The polarized cross-
section, shown in Figure 6.8, is divergent, as usual. We will consider two regularization
schemes which are particularly illustrative. In one scheme, we put a lower cut-off p?
on the gluon momentum, which gives for Q% > —p? [21]:

. Q? 1
of. = —(2z -1 [log — +log — —2 (6.17)

Alternatively, we can leave a finite quark mass m, in which case [22, 23]:

ol = QF{(Qx—l)(logQi%—logl_:v )*2(1—1’)] (6.18)

g
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The cut-off dependent parts of the cross-section can be absorbed into the QMDs,
while the finite terms give C,,. For example, in the momentum regularization scheme
by comparing with equation (6.6) we can read off

pPro= (2r - 1) (6.19)
cto= (2z-1) (log 3—2 -2 (6.20)

The integral of C, is different in the two schemes:

1
/ C? (z)dz = 1 (6.21)
0
1
/ Cro(z)de = 0 (6.22)
0
Therefore, in the momentum regularization scheme
L=y 2[A % AG (6.23)
= - e ;G — — .
1= 3 i q o

and the gluon helicity appears in the integral of ¢;, while in the mass regularization
scheme:

T, = %Z e2Ag; (6.24)
and the integral of ¢g; does not depend on the gluon helicity.
One could argue that one or another of these schemes is unphysical’. In fact,

for the polarized scattering structure functions there is no completely satisfactory
choice of the regularization procedure. Because of the axial anomaly, the singlet axial
current J{ = gy*~°¢ is not conserved:

9, = %N,:Tr (G G (6.25)

where G, is the gluon field. As a result, when one chooses a regularization procedure
either of the three things can happen [24]: the gauge invariance is lost, the chiral
symmetry of QCD is broken, or the anomaly is not taken into account. For the gluon
momentum regularization scheme the anomaly is not included because it cannot be
obtained from the gluon equations of motion. The chiral symmetry is preserved,
however. On the other hand, in the quark mass regularization scheme the chiral
symmetry of QCD is broken.

On a more intuitive level (see Figure 6.9), by choosing a gluon momentum cut-
off, we are including in the hard cross-section only processes which originated from

‘In this case the momentum scheme [21] is questionable [23]. However, identical results can be
obtained by another method [24].
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a hard gluon. The gluon, therefore, is in perturbative realm of QCD and is weakly
interacting. Its momentum distribution is well defined. The photon scatters from
the virtual quark cloud of the gluon. Therefore, it is natural that gluon distribution
contributes to I'y. In contrast, by using a quark mass cut-off, we are only considering
the contribution of the quarks whose momentum p? = m? is large, without putting a
cut on the gluons. In this case it is the quarks which are in the perturbative regime
with a well defined momentum distribution. But the quark contribution is already
included at the tree level. The fact that the quarks can originate from gluons is taken
into account by allowing a contribution from the sea quarks. Therefore, no additional
gluon contribution is required. These two interpretation are shown schematically in
Figure 6.9.

,Y* b) ,Y*
Hard gluon Hard quark
__pz > Mfz m2> p-fz

Figure 6.9: Hard scattering contribution: a) only from hard gluons, b) only from hard
quarks.

For practical calculations it is more convenient to use different regularization
schemes. One commonly used scheme is dimensional regularization, denoted M S
by analogy with UV renormalization scheme. The results for I'; and a,, obtained
within this scheme are identical to our quark mass regularization scheme (to order
a; only). The chiral symmetry is broken in this scheme because of difficulty in defin-
ing vs in 4 + ¢ dimensions. The other commonly used scheme is the Adler-Bardeen
scheme, denoted AB, whose result for I'; is identical to our gluon momentum cut-off
scheme. The chiral symmetry is preserved in this scheme, but one cannot define gauge
invariant operators for the quark helicity.

While the contribution of the gluons to the first moment of ¢; depends on the
regularization scheme, there is always some contribution to ¢; (z) through C,, terms
and to Q* evolution of quark densities through P,, terms. It is convenient to form
particular linear combinations of the quark momentum distributions. In non-singlet
combinations Au — Ad and Au + Ad — 2As the effect of the gluons always cancels,
because gluons couple in the same way to all quarks. Or, to say it in different words,
these combinations are proportional to the non-singlet axial current Jy s = gA\*v*v°q,
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where A% is an SU(3) matrix acting in flavor space. The non-singlet axial current does
not get a contribution from the axial anomaly and is conserved. Only the singlet
contribution AX = Au t Ad T As is affected by the gluons. The Q% evolution of the
non-singlet and singlet combinations is calculated separately:

d o, (Q?
dlog QQAqNS (m’Q2> - 2(7? )qu ® Aqns (6.26)
d__ [ Ags(z,Q7) @ (Q%) ( Py Py Aq
dlog Q2 ( AG (z,Q%) ) o7 ( P, P, ) ® ( AC? ) (6.27)

Using the properties of the convolution (6.13) one can also write Q? evolution equa-
tions directly for first moments of Ag;:

d o 2

dlog QZAqNS (@) = %wq (1) Agns (6.28)
4 [ AY(QRY) ) s (@QY) ( Yoo (1) 7gq (1) AY \
dlog ()? ( AG (-1’7Q2) N 27 Yaq (1) Vgg(l) ) ( AG) (6-29/

where v;; (n)= [, " ' P;; (z) dz are called anomalous dimensions.

At this point it is appropriate to briefly describe the other method of QCD analysis
based on Operator Product Expansion (OPE). In OPE the fundamental quantities
are the moments of the structure functions:

f (n, Qz) _ /01 LS (;,;, QZ) de; f =Fig,012 (6.30)

It can be shown that for inclusive deep inelastic scattering they are related to the
forward matrix elements of local gauge-invariant operators of the form:

5‘1/.-#71 _ 1/;,}/#1 DF2 ... Doy (6.31)
(};114...}171 — 1/_17‘“ 75Du2 . D”"'(b (632)
Oél\/.'“un — G/;l Duz R Dltn—l ng (633)

where D* is a covariant derivative. Using the renormalization group equation one can
calculate the anomalous dimensions of the operators and their Q% evolution. Mellin
transforms are used to convert back to the  dependent spin structure functions.
From equations (6.17, 6.18) we see that v,, (1) = 0 in both renormalization
schemes considered here. However, in the next order (a?) the @? evolution is depen-
dent on the renormalization scheme. It can be shown [25], that in the MS scheme:

d AY+r5 as\?( =2N; 0 AY=
dlog(@2)<AGj’ws):<E) ( > 0)<AG’MS) (634



6.2. The Interpretation of QPM within QCD 179

where AG' = (a,/27) AG. So, in this scheme AX:z is not independent of Q% in
second order of ¢y, On the other hand, in the Adler-Bardeen scheme:

d AEAB (%)2 0 O ZXEDAB (6 35)
dlog (Q?) | A = \2r 2 2Ny AG '
and AX 4p is independent of Q2. In fact, it can be shown that AY 5 is independent

of Q2 to all orders. This is because the singlet axial current is replaced by a conserved
current of the form:

Jro= q7u75q+Nf§—;ew,,aGgDpGg (6.36)
Jl =0 (6.37)

The second term is needed to cancel the contribution of the anomaly and can be
interpreted as the gluon helicity operator.

To summarize, there are two commonly used renormalization schemes. In the M S
scheme only quark helicities appear in the first moment of g,:

N (@) = 13 €84 Q) (6.38)

but the total quark helicity A¥X = Au + Ad * As evolves with Q*. Therefore, a value
of AY. obtained in DIS cannot be compared with static models of the nucleon. Also,
the chiral symmetry is broken in MS because of the definition of 4> = i7%y!142+3 in
4t ¢ dimensions. In the Adler-Bardeen scheme the gluon helicity also appears in the
expression for I'y:

N (Q7) = 5 T e [aa (@) - 5246 (¢7)] (6.39

but the total quark helicity AX is independent of Q% and the chiral symmetry is not
broken.

The Bjorken sum rule involves a non-singlet combination Au — Ad, so it is un-
affected by the gluon contribution In addition, because of the conservation of non-
smglet axial current J¥ s = gA*v*+°q, it is also unaffected by the @ evolution, i.e.
A P dz =0to all orders incy. The only QCD modification is due to the C, term,
WhICh has a non-vanishing first moment f) C, (x)dxz = —2[26], so we get:

/ dz (g} () — g7 (0)= (Au — Ad) (1 +—( 2)) —é—gvg (1 —%) (6.40)

using equation (6.12). It is easier to calculate the corrections using the techniques of
OPE, and they have been calculated to order o2 [27]:

a,\?
[P-n — égi 1 - - 35833( ) —20.215 (—7;) ) (6.41)

for three quark flavors.
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6.3 Awnalysis of the Data within QCD

The analysis of the data within QCD proceeds through the following steps. First,
one has to parametrize the helicity momentum distributions of the quarks and gluons.
Many possible forms of the parametrization are possible, see for example [31]. In the
range of x where the data on g¢; exist, the exact form of the parametrization is not very
critical, because several parameters are adjusted to fit the data. However, the form
of the parametrization is critical for extrapolating to x = 0, since different functional
forms fitted to the same data will give different results in the unmeasured region.
In our analysis [30], we follow the anzatz of Gliick et al. [29], who assume that the
polarized momentum distributions are given by:

Af = Apa* f (2,Q7) (6.42)
where f are the unpolarized momentum distributions. This parametrization has
several advantages. For low z the helicity momentum distributions behave as a power
law and can be compared with Regge predictions. We also expect that |As| ~ 1,
since at high = the polarization of the quarks approaches unity. Thus, there are some
theoretical expectations with which we can compare our results. But this is by no
means a unique form of the parametrization.

The unpolarized momentum distributions are obtained from experimental data in
[28]. They are separated into valence and sea distributions: u (X)= uy (z) +u, (X)
and similar for d quarks. It is further assumed that u, (x)=a, (X)=d, (X)=d, (x)=
As (x) = As (X) ,where X is an SU(3) symmetry breaking parameter, which can vary
between zero and one. It is convenient to parametrize the sea distribution by Q =
(us +ds)/2 +s/5 which directly enters into the expression for g;. In equation (6.42)
f is u, d, Q or G - the gluon momentum distribution. The unpolarized momentum
distributions are given in Table 6.4. The parametrization is done at Q2 = 0.34 GeV?
and the momentum distributions are evolved up in Q* for comparison with DIS data
at Q? > 1 GeV2. In this way the positivity constraints are automatically satisfied.
In addition, by evolving in Q2 by a large amount, we are incorporating as much of
perturbative QCD behavior as possible. It is also believed that the Regge behavior
is more likely to be observed at very low Q? than at the Q? of measurement. As will
be shown, our results for ¢g; are relatively insensitive to the initial distributions. We
cannot go any lower in (92 because c¢v, becomes too large and the NLO calculation is
not sufficient.

A similar NLO analysis was recently performed by Altarelli et al. [31], including
preliminary E-154 data released in the summer of 1996. They use several different
functional parametrizations of the polarized momentum distributions, some similar
to (6.42) and some different. They only work in the AB scheme. By comparing
the results of their and our analysis we can estimate how the conclusions depend on
different functional fits to the same data.
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(1 — 2% T 15877 T258¢ T 18.177)
dy(z,02) | 0.1822%%4(1 — )" 13(1 T2.512'/% T25.02 T 11.42°/7)
O(z.02) | 0.54527%7(1 — 2)*3(1 T 2.652)

G(z,Q2) | 26.22%%(1— )"

Table 6.4: Parametrization of the unpolarized momentum distributions.

uy(z,Q2) 0.988z 0457

With the unpolarized distributions and the parametrization (6.42) the polarized
distributions are evolved in Q? using next-to-leading order evolution equations (6.26,
6.27). The splitting functions P;; have been calculated to next-to-leading order in [26].
The spin structure functions are calculated using equation (6.12). The hard scattering
cross-sections are also given in [26]. We perform the calculations in moment space
(6.30) and then convert to = space by a Mellin transform. The calculations were
performed in two renormalization /factorization schemes: M S and AB.

We used all available world data on the proton and neutron spin structure func-
tions. The data were fit by adjusting 8 constants A; and ay in equation (6.42).
The errors of the fit were estimated by a Monte Carlo technique. Experimental data
points were randomized within their statistical errors and the parameters of the fit
were recalculated. In addition, all data points within a given experiment were moved
by the systematic error, assuming that it was 100% correlated. We also assigned
a theoretical error which came from several sources. The biggest contribution was
from the uncertainty in the value of ¢y, which was determined from all available DIS
data. To check the sensitivity to the parametrization functions, we used a different
parametrization of unpolarized momentum distributions at Q2 = 1 GeV? [32]. The
SU(3) symmetry breaking parameter A was varied from 0 to 1.

The results for the fit parameters are shown in Table 6.5. The proton and neutron
data together with the fits are shown in Figures 6.10 and 6.11. The results for physical
quantities extracted from the fits are given in Table 6.6.

Several conclusions can be reached. The results for the scheme invariant quantities
Aqs, Ags and I'; are the same in the two schemes within theoretical uncertainties.
For the Bjorken sum rule we get a world average' I'/”™" = 0.168 ¥ 0.012, while using
only our results for the neutron we get I'7™" = 0.172 + 0.013. This is in agreement
with the predicted value of I'?¥ = 0.186f0.005. It is interesting to note that the NLO
analysis gives a result very close to a naive Regge extrapolation. Thus, the Bjorken
sum rule is verified with a precision of 8%.

For the neutron integral we get I'y = —0.056 £+ 0.009 (our data alone I'} =
—0.053 & 0.010). Using the value of ag = 0.579 + 0.025 from a recent analysis by
Close and Roberts [33], we get for the Ellis-Jaffe sum rule I'7 (£J) = —0.021+ 0.004.
However, in calculating ag from the hyperon decay data, one has to apply a variety

2For definiteness we quote the numbers from the M .S scheme.
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MS AB ’

Value | Stat. | Syst. | Theory | Value | Stat. | Syst. | Theory

A, | 099 Z06s | Toos | T | 098] Tooe | Toor | Tons
Ag | =078 [ E050 | 5008 | T [ —0.82 [ T09% [ 1008 [ H0o)
Ag | —0.02 ] T508 | ¥602 | Toss [ —0.04 | Toos | ¥oos | Foue
Ag | 16 [Zos [ 508 | 03 0.1 [Zo5 [ %55 | oo
a, | 063 T00 [ T002 | Tooe | 055 | Fowe | Toos | Toos
as | 028 [Ty [Fom | Togs | 040 ] FoT [ 105 | Tos
ag | 0.04 [T033 [ F003 | Toor | 0.00 | Fogo | Fooo | Foo
ag | 08 T35 T3 T %04 0.0 1% %0 1T %%

Table 6.5: Parameters of the fits for polarized momentum distributions.

MS AB

Value | Stat. | Syst. | Theory | Value | Stat. | Syst. | Theory
Auy | 069 | To0; | Tooa | Toor 0.74 | %005 | Toos | Toor
Ady | —0.40 | T007 [ 3005 | Tovo | =033 ] Toos | To0s | Toos
AQ | —0.02 [ ¥50; [ 306 | Toos | —0.03} 00 | Toor | oo
AG 18 | *oF | %05 | *0s 04 | 57 1 %06 | Toa
Ags 1.09 | ¥06 | %005 | oo 1.07 | *000 | To0e | oo
Ags | 030 ] To08 | *05: | oo 0.42 | *o0s | ¥006 | oo
Aqgo 020 | 006 | To0s | Toon 0.21 | *00s | To07 | Toos
AY 0.20 | T90e | Zoos | Toor 0.25 | Toor | Toos | Tous
Iy 0.112 | 75008 | T0008 | —ooor | 0-114 | oooe | Toonr | Toos
T 1-0.056 | To007 | Too06 | o001 | —0.051 | Tooer | Tooor | Toor
I 0.026 | T0008 | To00a | o001 | 0.029 | *o058 [ 0007 | Toor
L7 [ 0.168 [ X0603 | To007 | ooor | 0165 [ *o50s | o000 | Toom

Table 6.6: Physical quantities extracted from the fits.

of corrections which are not entirely unambiguous [34]. Depending on the analysis
technique, T'7 (EJ) can have a error as large as 0.016 [2, 35]. The Ellis-Jaffe sum
rule is violated by 3.50 if we use the smaller error, or by 1.90 with a larger error on
[T (EJT).

One can also turn the analysis around, and assuming the validity of the Bjorken
sum rule, perform a global fit of the polarized deep inelastic data to determine the
value of a,. Such analysis was performed by Altarelli et a/ [31], who used our pre-
liminary data. Their result is: a, (M) = 0.12075:90¢ +0-999 " \where the first error is
experimental and the second is theoretical. The total error is only twice larger than
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Figure 6.10: NLO fit to all available proton data.

the error on o, determined from all unpolarized deep inelastic scattering data. With-
out our measurement the experimental error on «, would have been larger by a factor
of 2.

The question about the total amount of helicity carried by the quarks should be
addressed with caution. The number that can be most closely associated with the
interpretations of the naive parton model is AY 45 which is independent of Q2 [22, 25].
Our result is AX 45 = 0.25 4 0.1, very far from unity, which would be expected in
the naive parton model based on SU(6). We emphasize, again, that because AX 45 is
independent of ()2, it can be identified with the spin fraction carried by the constituent
quarks in a nucleon at rest, provided that the SU(3) and chiral symmetry breaking
due to finite quark masses is small [31]. Of course, the SU(6) model is too naive. For
example, in SU(6) g4/gv = 5/3 = 1.66, compared with experimental value of 1.26.
However, using equation (2.33) we can calculate the polarization of the s quark from
measured quantities without invoking any static model of the nucleon. The result is:

1
As = 3 (A¥ap — ax) = ~0.11 40035 (6.43)

where we used as = 0.579+ 0.025. It is 30 away from zero. On the other hand, in the
Adler-Bardeen renormalization scheme the chiral symmetry is preserved. Therefore,
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Figure 6.11: NLO fit to all available netron data.

helicity conservation at the gluon quark vertex (see Figure 6.9) should imply that
As =~ 0. So, our situation is reminiscent of the proton spin crisis.

At first, the EMC results were explained by noticing that the gluons make a con-
tribution [22, 25, 24] to 'y, which, at that time, was not known. It was estimated that
AG ~ 2.5 is needed to reconcile AX with the naive parton model. Since AG — +oo
for large Q% , such explanation seems quite reasonable. Several techniques for measur-
ing the gluon helicity to confirm this explanation were proposed [36]. Alternatively,
working in the MS scheme, one notices that A¥+7z depends_an_()? and cannot be
compared with static nucleon properties. In addition, in the M.S scheme the chiral
symmetry is broken, so there is no reason to expect As ~ 0.

With new precision data on the spin structure functions it becomes possible to
constrain the gluon contribution by studying the Q? dependence of the structure
functions. Our result in the AB scheme AG = 0.4 seems to indicate that the gluon
helicity is smaller than expected, and the s quark polarization is 30 away from zero.
These conclusions, however, are not yet sufficiently robust. Altarelli et al [31] on
the basis of similar analysis of similar data, obtain A¥ 4 = 0.45 + 0.09 and As =
—0.04 £ 0.03, consistent with zero. The difference is presumably in the different
functional form of the fits. Although our numbers are only 1.5¢ apart, our conclusions
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are opposite.

Another interesting conclusion can be drawn about the shape of the polarized
momentum distributions. In our fits we used 8 adjustable parameters to calculate
the polarized momentum distributions from the unpolarized distributions. However,
as can be seen from Table 6.5, the errors for 6 of them: Aq, Ag, o, ay, cve, and ag
are rather large. We can fix the low = powers cy; using Regge behavior at Q? = 0.34
GeV? and ignore the gluon and sea quark contribution. In this case, there are only 2
free parameters, A, and A,. Furthermore, we expect that the polarization of valence
quarks goes to 1as @ — 1 (see Chapter 2), in other words |Aqgy (2)|/qv (z) — las
x — 1. This implies that |A,| and |A4| should be close to 1, which is indeed true (see
Table 6.5). Thus, by using unpolarized momentum distributions at low @? and some
theoretical input about the low and high « behavior, we can predict the spin structure
functions with almost no free parameters. By evolving the momentum distributioiis
using AP equations over a large range in Q?, we essentially obtain a pQCD prediction
for the spin structure functions which is insensitive to the initial distribution. The
data for both the neutron and the proton can be reproduced within 2 & when we use
only 2 adjustable parameters [30].

Finally, we can look at the Q? dependence of the asymmetry A; to check the
scaling assumption, commonly used in the analysis of the spin structure functions.
The comparison between the traditional evolution and evolution based on the AP
equations is shown in Figure 6.12. As can be seen, the difference is noticeable, but is
still smaller than the statistical errors of the experiment.

6.4 Conclusion and Outlook

Our experiment significantly improved the accuracy with which the neutron spin
structure function is known. Perhaps the most surprising feature of our data is the
apparent divergence of the neutron spin structure function at low z, in contradiction
to the naive Regge behavior. This behavior requires us to analyze the data in the
framework of NLO QCD to extract the information about the integral of ¢g7. On the
basis of such analysis one can reach a number of conclusions:

o With our data, the Bjorken Sum rule is confirmed to an accuracy of 8%.
o The Ellis-Jaffe Sum rule is violated.

o If we adopt the AB renormalization scheme, in which the “proton spin crisis”
is explained by a large gluon helicity contribution, we arrive at a contradiction
again. Based on our analysis, the gluon contribution is only AG = 0.4 and the
total helicity carried by the quarks in the AB scheme is AX 4 = 0.25+£ 0.1,
which implies that As = —0.1+ 0.03. This result is unexpected, since in the
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Figure 6.12: Traditional scaling and NLO Q? evolution.

AB scheme the chiral symmetry of QCD is preserved, and one expects that
As ~ 0. Therefore, it may be interpreted as a next generation proton (or, more
appropriately, neutron) spin crisis. However, one should treat such conclusion
with extreme caution. The extrapolation of ¢; to x = 0 contributes a significant
amount to the first moments and is sensitive to the parametrization of the
quark momentum distributions. The parametrization used in our analysis, while
motivated by certain theoretical models, is not unique. A different analysis of
the same data [31] gives As which is only one sigma away from zero.

One of the main goals of our experiment was a precision measurement of the spin
structure function at low . We can now say that the low x behavior is even more
interesting than we thought, and one has to go to even lower z to really understand
it. This, undoubtedly, will be the goal of future experiments.

In the next year the results of E-155 will become available, giving a measure-
ment of the proton spin structure function similar in accuracy to our neutron data.
This will improve the precision with which one can do a global analysis of the po-
larized structure functions and test the Bjorken sum rule. E-155 will also measure
the deuteron asymmetry and obtain the neutron structure function with comparable
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accuracy. In the longer term, planning has started for an experiment at HERA which
will use colliding polarized proton and electron beams to measure the proton spin
structure function down to z = 10~*. There is even a possibility of using a polarized
3He beam to obtain data on the neutron.

Our target represents a substantial improvement over previous polarized *He tar-
gets, particularly in the dilution factor, the use of diode lasers, and the handling of
systematic errors. However, some improvements are still possible, particularly in *He
polarization, by better optimization of the operating parameters. 3He targets polar-
ized by spin exchange will continue to be widely used in nuclear physics experiments.
Several experiments are planned at TINAF [37]. A precision measurement of the neu-
tron spin structure function at high = will be able to test a prediction that A; — las
z — 1. A measurement at low Q2 will observe a transition between the deep inelastic
scattering and low energy behavior, establishing a connection between Bjorken and
Gerasimov-Drell-Hearn sum rules. The electric form factor of the neutron will also
be measured precisely.

And the searches for the Permanent Electric Dipole Moment will continue, aided
by the efforts of the author.
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Appendix A

Shower Analysis

E154 Note #48

Yury Kolomensky, Mike Romalis
November 21, 1996

Shower code for the “Caltech” analysis

This note describes the shower code used by the Caltech analysis group.

A.l Introduction

In this note, we describe the shower code used by the Caltech-based analysis. This
code is one of the major parts of the raw analysis code that is different from the
one used in the SLAC DST production. The shower counters provide electron iden-
tification via energy, £/p, and shower profile (shape, neural net) cuts. The cluster
information is the basis for the tracking algorithm[1]; in addition, the shower position
resolution directly affects momentum and angular resolution. The shower analysis
meets certain challenges in the high rate environment of E154 due to the overlaps of
the electron and pion clusters (Fig. A.l). Such overlaps create rate-dependent biases
in energy and position reconstruction and calorimeter-based electron identification,
and thus have a potential to alter experimental asymmetries. It is important to have
an analysis algorithm that is robust in the high rate environment; it is also necessary
to study and correct for any possible rate dependence.

The code benefited greatly from the experience with the existing SLAC code[2].
At the same time, it was an entirely new code written from scratch, so it provided
an important cross-check of the existing algorithm. Besides, we improved the spa-
tial and timing resolutions, and eliminated biases in the cluster position and energy
reconstruction. Also, as an alternative to the neural network used in the SLAC anal-
ysis, we developed a particle ID method based on the information about the lateral
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Figure A.l: Number of overlaps per electron cluster versus momentum of the elec-
tron in 2.75" (top) and 5.5" (bottom) spectrometers. A sharp rise at low momenta
corresponds to increasing pion production rate.

shower profile (the "shape cut"). We will discuss the clustering algorithm and the
shape analysis in the following pages.

In this note, we follow the definitions adopted in the SLAC shower code[2, 3].
An elementary cell is a signal induced by one particle in one block. Each cell is
characterized by its time and energy. We record times of both leading (LE) and
trailing edges (TE) of the photomultiplier pulses. Cell time is determined by its LE
time. Cell energy is determined by the difference between TE and LE times as will be
discussed below. Energies of all cells in one block always add up to the total energy
deposited in that block in one spill. If a block does not have any TDC hits within one
spill, we create one cell which carries full energy deposited in the block; the time of



A.2. Clustering algorithm 193

such cell is undefined. A cell with a definite time is required to have a LE, but it does
not always have a TE (misses of TE happen less than 1%af the time). A cluster is
a collection of cells with common time that are grouped according to the set of rules
to be discussed below.

A.2 Clustering algorithm

A.2.1 5 x5 clusters

Contrary to the standard SLAC analysis which employs the cellular automaton[4]
technique, we have chosen a simpler and faster method sometimes referred to as
“vector approach”[4]. As a first step, after the data from the TDCs and ADCs are
copied into the local common blocks, we search the 10 x 20 shower array for the local
energy maxima (“central blocks”) that pass the following criteria:

1. Thereis at least 1 TDC hit in the central block;

2. The sum over 9 blocks around the central block

Z EZ > Ecut = Ccutpmin(row)'

3x3

The first requirement ensures that the cluster candidate has timing information.
Electrons energy deposition in the central block is always higher then the TDC thresh-
old; the lack of a timing hit signals either a DAQ failure or an event affected by an
overlap. Such clusters cannot be used in the further analysis. The second requirement
provides a simple and effective pion rejection at the very early stage of the analysis.
The value pyin(row) is determined by the lowest momentum of electrons that hit the
particular block after passing through the spectrometer. This value is in principle
different for every row (and is increasing from top to bottom of the calorimeter), in
practice the value of 9 GeV was used for every block. The constant C.,; was chosen
to be 0.7, safely below any reasonable E/p cut value’. Thus, most pions that deposit
energy of less than 6.3 GeV are cut before the main clustering and tracking started,
significantly reducing the precessing time.

Having found the central block, we share its energy among its cells. The cluster is
started with the highest energy cell of the central block. We add to the cluster cells
from the surrounding 5 x 5 matrix that

e among 8 blocks closest to the center and

'For the dedicated pion DST production, this value was lowered to 0.05.
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1. Are in time with the central block, or
2. Have no TDC hits

¢ among the outer 16 blocks and

1. Are in time with the central block, or
2. Have no TDC hits and no other cluster nearby

The time window is set to be |At| < 5 nsec.

A.2.2 Energy sharing

When two or more particles hit one block, energies are added in the ADC. To separate
them, we use the correlation between the pulse height and the time difference between
the leading (LE) and trailing edges (TE) of the pulse (Fig. A.2). For all pairs of
leading and trailing edges (cells), we calculate the expected energy e; = f(t7E —¢LE)
and error o;. We then minimize

=3 <E;—e;>2 (A1)

i a;

with a constraint
Z E;, = FE.,; (A.2)

where E,; is the full energy deposit in the block, and solve for cell energies E;. The
benefit of such an approach is obvious. For any TDC level, the dynamical range for the
energy sharing is limited; from Fig. A.2 one can see that the meaningful information
can only be extracted if the ratio of the pulse height to threshold E/E,.s < 4.
Electron pulses are often much higher than that, especially for the low thresholds?.
Pion pulses, on the contrary, are predominantly small. Thus, combining the pion
and electron information reduces the error in electron energy determination. This is
important to minimize the rate dependence associated with the £/p cut.

A.2.3 Cluster time and position
An energy-weighted average used by SLAC analysis

T = Zblocks T E;
Zblocks EZ
2The values of the discriminator thresholds are summarized in Table A.l. Note the thresholds

were set in mV, and the spread of thresholds in GeV corresponds to the spread of calibration
constants.

(A.3)
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Figure A.2: The pulse height as a function of the difference between the leading and
trailing edge times for different discriminator levels. The error bars represent the
RMS of the distribution.

is known[5] to give a biased estimate of the cluster position due to the relatively
coarse transverse segmentation of the calorimeter. It results in the bias towards the
coordinate of the central block, as could be clearly seen in Fig. A.3 which shows the
difference between the cluster and track positions for the SLAC code. The position
bias is the strongest when electrons hit the boundary of the block (z¢ — s, =132
mm) and reaches 1 cm. Alternatively, we calculate the cluster position using the
formula

r=A,[2 —exp(—c(r — b)) —exp(—d.(r —b))] (A4)

where r = E.q./FE.5. is the ratio of the energies in the side and central blocks.
Coordinates determined by the blocks on either side of the central block are weighted
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Table A.l: Range of discriminator thresholds
Runs Spec | mV GeV
min max average
275" |20 0.08 0.6 0.3
125 04 28 1.6
1304-2058 800 2.7 200 9.9
50 016 1.2 0.3
275" |20 0.08 04 0.2
2059-2543 | 2.75" | 125 04 1.9 1.12
275" | 800 2.7 154 6.7
275" | 50 0.15 1.16 0.4
275" | 20 0.09 0.23 0.15
2544-2902 | 2.75" | 125 05 1.4 0.8
275" | 800 2.8 8.0 4.7
275" |50 016 1.2 0.5
275" |20 0.09 0.23 0.15
2902-3788 | 2.75" | 125 0.5 14 0.8
275" | 500 1.8 5.5 3.1
275" |50 016 1.2 0.5
1304-3788 | 55" |50 00 0.8 0.4

Table A.2: Parameters of the Eq. (A.4).
A, b, ¢ dy
17.1 0.031 3. 31.

by the uncertainties to calculate the cluster position. The parameters of the “double-
spinup” function in (A.4), determined from the data (Fig. A.4), are listed in Table A.2.

The spatial resolution of the 2.75' and 5.5' shower counters is shown in Fig. A.5.
The resolution in = was determined to be 5.9 mm (2.75°) and 7.9 mm (5.5°), and iny
direction the resolution is 7.5 mm (2.75") and 7.9 mm (5.5"). This is to be compared
to o, = 9.7 mm and o, = 9.3 mm for the SLAC code (see Fig. A.3, top). The
improvement in the position resolution results in a better angular and momentum
resolution[l]. Note that the resolution was determined by comparing the coordinate
of the shower cluster with the coordinate of the electron track at the z position of
the shower counter. The tracking spatial resolution without cluster constraints (i.
e.for class 3 tracks used to determine the resolution) is expected to be 4 — 5 mm
at the shower counter[1], so the actual position resolution of the clustering might be
even better than the numbers quoted above. The wings of the distribution are due
to effects of accidental and correlated (delta rays) backgrounds in tracking. Fig. A.6
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Figure A.3: Performance of the SLAC code. (top) Shower position resolution. (bot-
tom) Cluster spatial offset versus the position of the track relative to the center of
the central block. All numbers are in mm.

shows the distribution of the electron clusters in the calorimeter and the difference
between the track position and the cluster position plotted versus the position of the
track. Notice that there are no significant biases in either = or y direction (c.f. Fig.
A.3, bottom).

The time of the cluster was determined by averaging TDC times of all blocks
which energy deposit was at least 10% of the central block energy:

_ > ti/02(ti)
yil/a?(ti)

where o(t;) is the time uncertainty for each block. The energy cut minimized the
timing jitter of the small pulses. Another potential problem with using blocks with

t (A.5)
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Figure A.4: Cluster position versus the ratio of energies in the side and central blocks.
Error bars represent the RMS of the distribution.

small energy deposit is that they are usually on the tails of the shower and the effective
z position of the particles in the shower tail is significantly deeper than the core of
the shower. The light from the shower tails reaches the phototube earlier than the
light from the core (since the shower develops with the speed of light in the vacuum
¢ whereas the light propagation speed is ¢/n with the index of refraction n = 1.62.
The energy cut minimizes this effect so no correction is necessary.

The time resolution of both calorimeters is shown in Fig. A.7. With the technique
described above we achieved the resolution of ~ 0.7 nsec (for electrons), compared to
~ 0.9 nsec for the SLAC code.

A.2.4 Shower shape

The differences in electron and pion shapes are frequently used to separate the par-
ticles in the electromagnetic calorimeter. The standard measure of the shower cross
section is the scaling variable referred to as the Moliére radius R.,[5]; for ASP(F2)
lead glass used in our calorimeters R, =~ 5 cm. For electromagnetic showers, 90%
and 95% of the shower energy are contained in the cylinders with radii R, and 2R,
respectively. A simple approximation of the lateral shower profile is a one-exponential
form[5]

A(R) = A(0)exp(— R/ Ro) (A.6)
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Figure A.5: The position resolution for electrons in 2.75" (top) and 5.5" (bottom)
calorimeters. The fit is gaussian with quadratic background.

where R is the transverse shower dimension and R, = 0.25R,, is the damping con-
stant. A more realistic model is a double-exponential shape[6]

A(R) = A, exp(—R/Ry) T Azexp(—R/R:) (A7)

where the first exponent describes the narrow shower core, and the second corresponds
to a longer tail of soft electrons and photons. For a finite calorimeter block of size 2s,
one can calculate the energy deposit from the shower centered at (zo,yo):

= [ [ ety o (e —aor s —uor) (A8)

where a(R) is a normalized shower profile of Equations (A.6) or (A.7) and E; is the
total cluster energy. The resulting distribution is fitted to the following functional
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Figure A.6: (top) Cluster position distribution in the 2.75° shower counter for Caltech
analysis. (bottom) The cluster spatial offset versus the position of the track relative

to the center of the central block. The error bars are statistical.

form:
h{ [l —exp(—s/Ry)cosh(d/R:)]+
£ _ S(x — 20,y — 1) = r[l —exp(—s/Ry) cosh(d/Rsz)] } |d| <s
£, 0¥ Yo h{ sinh(s/Ry)exp(—d/Ry )+
rsinh(s/Ry)exp(—d/Rs) } |d| > s,
where

d =]z = zol” + |y — yo")"'",

(A.9)

(A.10)

(z,y) is the center of a given block and (z¢,%o) is the shower position. The elec-
tron shower profile is shown in Fig. A.8. The parameters of Eq. (A.9) are given
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Figure A.7: Time resolution for electrons in 2.75" (left) and 5.5" (right) calorimeters.
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in Table A.3. The pion hadronic showers are wider on average (Fig. A.8), and the
individual pion clusters are much less symmetric than the electron ones.

A.2.5 Iterating the cluster shape

The energy sharing using the LE and TE information is not always perfect. First

of all, it has a limited dynamic range. Pions with energy deposit below threshold
are not detected by TDCs. Secondly, if electron energy deposit in one block is much
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Table A.3: Parameters of the shower shape in Eq. (A.9)
s(mm) h r R (mm) R, (mm) P
340 0872 0.3 4.0 19.0 2.9

bigger than the threshold, the time information is not reliable and leads to large
errors in energy sharing. The latter fact is potentially more dangerous: if the energy
of the cluster is underestimated due to energy sharing, the event may not pass the
FE/p cut (typically, £/p > 0.8 cut is a part of electron definition). Another danger is
the cluster position bias due to overlaps that translates into the error in momentum
reconstruction. All these effects are rate-dependent and thus can bias the measured
asymmetry.

In order to further reduce the rate-dependent effects in the cluster energy and
position reconstruction, we developed an iterative procedure using the typical electron
shape of EQ. (A.9)3. It works in two steps. First, we calculate the cluster position
(zo,yo) using Eq. (A.4) and the initial estimate of the cluster energy

E(O) — Ec
S(zc — 2o, ve — Yo)

(A1)

where E, and (z., y.) are the energy and position of the central cell. We then calculate

O _ BOS(e: — 20, ys — o) — ’
X2 — z (Ez E S(SC, Lo, Yi yO) EbaCk) (A12)

; gi

where the sum is over all cell in the cluster. Here E,-(O) is the initial energy of each cell
determined as described in Section A.2.2. Fy,.r =50 MeV is the average background
noise, and o; is the uncertainty of the block energy given by

2
o2 = a® + (bEi + c\/f) +ob (A.13)

where o4, 1S the uncertainty in energy sharing. A fit to the data yields a = 0.15
GeV,b=0,and ¢ =0.2.

Minimizing x2, we find a new estimate of energy E = E() and position (zo, yo)™*
(we linearize the problem by treating AX = xél) —xéo) as perturbation). The energies
of each cell E; are allowed to vary within their uncertainties. The cell is “frozen”
(i. e. its energy is fixed) if change in its energy exceeds the uncertainty. The x?
minimization is repeated with new cell energies E}l). The iterations converge if one
of the following conditions is met:

31t is not used for special pion DST production.
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o Cluster position does not change
o All cells are frozen

o Number of iterations exceeds 10
The convergence is typically achieved in 1-2iterations. Cluster position (zf ,yén))

and its uncertainty are copied to the output common block and used in tracking.

After a track has been associated with the cluster, the electron coordinates at the
shower counter are determined quite accurately. We can now fix the cluster position
(zo,y0) in EQ. (A.12) to be the track position at the shower counter, and minimize
shape residuals varying only cluster energy E.

A.2.6 Energy measurement

Three energy variables and corresponding uncertainties are reported by the shower
code and are written to DSTs:

o Fq: Sum of cells in 3 x 3 matrix around the central block.

o E4: Sum of four most energetic blocks in the cluster (the central block, the
most energetic blocks in x and y directions, and 1 diagonal block). The sum is
scaled by a factor of 1.05to normalize it to Fy.

o FEi: energy determined in iterative process (after tracking).

The ratios £,/ Ee and E4/Ey and their momentum dependence are shown in Eq.
(A.9). FEg is a basic energy definition and is used for shower calibration. The ad-
vantage of £, and E; over Fs is reduced sensitivity to overlaps. E, samples smaller
number of blocks than Egy and therefore the pileup probability for F, is lower. The
drawback is that F, is an approximation that is reasonably good up to energies of
~ 30 GeV. At higher energies, the shower broadens and energy deposit into other
blocks of the 3 x 3 matrix becomes increasingly important. This is evident from
Fig. A.9: the ratio E£,/Fy deviates significantly from 1 starting at p ~ 30 GeV. The
iterated energy £, does not exhibit such a behavior (Fig. A.9).

Fig. A.10 shows the ratio £/p for electrons in both spectrometers. Left plots
correspond to Ey energy, and right plots are for £, energy. The energy resolution is
comparable to that of SLAC code. In Fig. A.Il we show'the ratio £;/p in the 2.75"
calorimeter for four special cases: clusters with no overlaps (top left), clusters with
an overlap in any of the blocks (top right), clusters in overlaps in the central block
(bottom left), and clusters with the central block on the edge of the calorimeter.
No significant degradation of energy resolution and no significant bias is observed
for either case. Fig. A.12 shows the same plots for the low = (2.75" spectrometer,
9 <p <12 GeV). Again, energy determination is reasonably stable.
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Figure A.9: Ratios of energies E;/FEy (top,left) and E4/Ey (top,right) and their mo-
mentum dependence (bottom).

A.3 Shape cut

The difference between pion and electron shapes (Fig. A.8) can be used to separate
electrons from pions using only shower counter information. SLAC analysis uses the
algorithm based on a multi-layered neural network[4, 7]. A set of input parameters
(discriminating variables), e. g. energy deposited in each cluster block, cluster posi-
tion, etc., combined in a non-linear fashion, identifies the event. Due to its non-linear
nature, the properties of the network highly depend on the environment (rate, pion to
electron ratio, etc.) and the event sample on which the network is "trained" (i. e. the
way the relative weights of the input parameters are determined). Thus, the neural
network efficiency is potentially rate dependent[7, 8], especially at low momentum
where the rate of pion-electron overlaps is high. The overall efficiency is about 90%
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at low z[7], and increases with momentum.
We discriminate between electron and pion showers by calculating the deviation
from the electron shower shape y

(A.14)

1
X = -E—\/Z (EZ — E4S(wi — To,Y; — yO) - Eback)
4 7

where the summation is over all cluster blocks, except for four most energetic ones
used in the definition of E4. The electrons are identified by the requirement x < 0.045.
The distribution of variable y for electrons and pions is shown in Fig. A.13. The
electron and pion efficiencies are shown in Fig. A.14. The electrons were selected by
requiring a track with cherenkov pulses in both tanks higher than 4.5 photoelectrons
and a good match with the shower cluster. The pions were defined as class 2 (no
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calorimeter.

cherenkov signals and a good match with a shower cluster) tracks. Open circles
in Fig. A.14 show the efficiencies for the electron and pion samples that included
additional cut E/p >0.8.

Several observations can be made. First, the pion rejection power of the y cut is
about 10:1. However, for the pions that have £/p > 0.8, it is at best 2:1, comparable
to the SLAC neural network performance under the same conditions[7]. The reason is
that pions usually deposit large amount of energy if they undergo a charge exchange
7 p — 7%n. 7©° decays instantly into two photons and develops an electromagnetic
shower; such a cluster is almost indistinguishable from an electron cluster. Since the
shape or neural net cut is optional and is usually applied in addition to the F/p cut,
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Figure A.12: Same as Fig. A.ll for electrons with 9 <p <12 GeV.

it is the later rejection power that is relevant for the background analysis.

Electron efficiency ranges from 92% to 95% at low = (depending on the run), and
slowly increases with momentum. It is comparable, if not slightly higher, than the
neural network efficiency[7]. The variations with the run conditions are smaller than
quoted for the SLAC code[7] that implies smaller rate dependence®. The reason for a
sharp drop at about 30 GeV is use of variable £ in EQ. (A.14). As was shown above
(Fig. A.9), it deviates significantly from the true cluster energy starting at about 30
GeV, and the shape function FyS(x; —0,y:; —yo) Systematically underestimates true
cell energy. The situation is improved, indeed, if other energy variables, F, or Ey are
used in Ey. (A.14) (Fig. A.15). This effect was discovered too late to be applied to

2

207

4The rate dependence of the overall shower efficiency, including the shape cut, was studied by
Piotr Zyla[10} and was found to be small.
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the DST production code. Instead, we turn off the shape cut for p > 30 GeV where
pion contamination is negligible[9].
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Appendix B

Pressure Broadening

Pressure broadening of Rb D; and D, lines by *He, He, Ny,
and Xe: line cores and near wings*

M.V. Romalis, E. Mironf, G.D. Cates
Physics Department, Princeton University, Princeton, NJ 08544

We studied the line shape of Rb D; and D, resonance lines in the presence
1to 10 amg. of several foreign gases: *He, *He, N,, and Xe. We found that
the line cores are well describe by an asymmetric line shape for a Van der
Waals interatomic potential. The width and shift of the lines is proportional
to the density of the foreign gas with high degree of accuracy, while the
asymmetry is independent of the density. The constants of proportionality
for pressure broadening and shift were measured with much higher accuracy

than in previous experiments. We also studied the density dependence of
the transition oscillator strength.

B.l Introduction.

The study of pressure broadening of atomic resonance lines by collisions with neutral
atoms has a long history starting with work of Michelson [1], who observed that the
line width increases with pressure in a roughly linear fashion. Early theoretical work
by Lorentz [2] and Weisskorf [3]predicted a lorentzian shape for the line core, treating
the broadening as an interruption of the radiation wave train by collisions with gas
atoms. This approach is called the impact approximation. Later work by Lindholm
[4] and Anderson [5]also predicted the shift of the line center and a dispersion-like

*To be submitted to Phys. Rev. A.
f Permanent Address: NRCN, P.O. Box 9001, Beer Sheva 84910, Isreal.
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asymmetry of the line core. The experimental measurements of the line cores are
reviewed by Chen and Takeo [6], Lewis [7], Allard and Kielkorf [8]. The widths and
shifts of the alkali metals spectral lines in the presence of noble and other chemically
inert gases have been studied very extensively, with perturber gas pressures up to
several tens of atmospheres. The accuracy of most measurements, however, is only
about 10-20%.

Another important feature of the pressure broadening is the formation of satellite
lines. This effect is most easily explained in the framework of the quasi-static ap-
proach, first developed by Kuhn [9]. It relates the line intensity to the dependence
of the energy difference between the atomic levels involved in the transition on the
distance between the colliding atoms. An extremum in the energy difference results
in the formation of a satellite line. The quasi-static formalism can be applied most
successfully to the far wings of the atomic lines. In a series of papers Gallagher and
co-workers used the measurements of the far wing profiles to extract the interatomic
potentials for a number of alkali metal-noble gas pairs [10].

A unified quantum-mechanical theory for the line core and wings was developed by
Szudy and Baylis using the Franck-Condon treatment [11]. It also predicted a specific
lineshape for the line core and the satellite lines for a given interatomic potential. For
the line core, the lowest order correction to the lorentzian line shape is a dispersion-
like asymmetry. The first quantitative observation of the asymmetry was reported by
Walkup et al. [12] for Na resonance lines in the presence of about 10 torr. of several
noble gases. Higher order corrections can also be calculated. The calculation was
done for a van-der-Waals potential [13]. A recent review by Szudy and Baylis [14]
summarizes the quantitative experimental and theoretical results on the line shape
for the cores and far wings of spectral lines, including satellite lines.

Here we present a measurement of line cores and near wings of Rb D; and D, lines
in the presence of *He, “He, N, and Xe. Our measurements are done for perturber gas
densities ranging from 1to 10 amg. Compared with previously available data, our
results on line widths, shifts and asymmetry are much more accurate. We also report
on the first quantitative study of the spectral line cores exhibiting deviations from the
lorentzian line shape beyond the first order dispersion asymmetry. Our measurements
are in good agreement with calculations by Walkup et al. [13] for a van-der-Waals
potential. We also present measurements of the pressure dependence of the D; arid
D, oscillator strengths.

One of the initial motivations for this work was an accurate determination of
pressure broadening and shift density coefficients, which can be used to measure gas
pressure in experiments using optical pumping. The technique of Rb optical pumping
and spin exchange [15, 16] finds many applications. *He polarized using this technique
is used in measurements of the neutron spin structure functions [17, 18], tests of
fundamental symmetries [19], neutron polarizes and analyzers [20], and magnetic
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resonance imaging (MRI) of the lungs [21]. *?°Xe polarized by Rb-Xe spin exchange
is used in MRI [22], surface studies [23], cross-polarization experiments[24] and other
applications. N, and sometimes *He [25] are added to aid in the process of optical
pumping. In some of these applications it is important to know accurately the pressure
of the gas in the optical pumping cell. For example, in a recent precision measurement
of the neutron spin structure function g7 at SLAC [18], the *He pressure in the target
cells was determined with an accuracy of 1%by measuring the broadening and shift
of Rb D, and D, lines using the results of this paper as a calibration. Also, the
knowledge of pressure broadening and oscillator strength can be used to determine
the Rb number density and for modelling of the optical pumping process. These
technique were used in several experiments [26, 27]. The choice of the gases used
for this study, while motivated by the optical pumping experiments, provides a good
sampling of noble (He is least polarizable, Xe is most polarizable) and diatomic (Ny)
gases.

In section B.2 we describe our experiment, which uses a laser absorption method
to measure the line profile. Section B.3 describes our analysis technique, which is
based on the classical limit of the unified Franck-Condon theory [11] for a van-der
Waals interatomic potential [13]. In section B.4 we present our results for the line
width, shift, asymmetry and oscillator strength.

B.2 Experimental Technique.

In this experiment we used laser absorption spectroscopy. We measured the trans-
mission of a laser beam through a cell filled with Rb vapor and the perturber gas
as the frequency of the laser was scanned through the resonance. This technique is
free from optical attenuation effects, which can cause distortions of the line core in
measurements based on detection of the fluorescence light. It also allows simple mea-
surements of the oscillator strength, provided that the Rb number density is known.
The schematic of the experiment is shown in Figure B.l. We used a single frequency
Ti:Sapphire ring laser (Coherent 899-29) to scan across the absorption lines. The
laser linewidth of about 500 kHz and wavelength jitter of about 100 MHz were much
smaller than the width of the pressure broadened lines, so no instrumental corrections
were needed. The absolute wavelength was measured by a build-in wavemeter with
an accuracy of 0.5 GHz, sufficient for shift measurements. The power of the laser
was attenuated to a few mW/cm? by two reflections from uncoated glass to avoid
saturating the atomic line. For this intensity the product of the optical excitation
rate times the atomic lifetime Ior was always less than 3 x 10~*. The laser beam
was chopped at a frequency of 340 Hz. The incident and transmitted intensities were
measured using silicon photodiodes. The signals were detected with lock-in amplifiers
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referenced to the chopper and digitized by a computer. The same computer also con-
trolled the wavelength scan. Fluctuations in the incident light intensity were canceled
by dividing the transmitted intensity by the incident intensity. We also recorded the
fluorescence coming from the cell. It was not used in the analysis of the line core
because of significant optical attenuation, but was used to check the transmission
measurements in the far wings. To ensure the linearity of the photo-diodes and the
absence of line saturation, we also performed measurements with the light intensity
attenuated by a factor of 1000, to a few xW/cm?2. No changes in the line shape were
observed.

Single Frequency Ring Laser
(Coherent 899-29)
T

Pressure
r Gauge

{ } Photo-Diode

l— Lock-in
Ref. = E:FJ—

Lock-in PC

Figure B.l: Experimental Setup. The laser intensity is attenuated by reflection from
two optical blanks. The computer controlled the wavelength scan and stored the
lock-in amplifier signals.

The cell used for the measurements was a simple cylinder 7.15 cm long. It was
placed in a large oven heated by flowing hot air. The temperature was measured with
an RTD sensor and controlled by an analog Omega controller. We also measured the
temperature with an accurate mercury thermometer. The air flow rate was stabilized
using a pressure regulator. The temperature in the oven was stable to 0.1°C with time
and varied by less than 1°Cacross the cell. For most measurements the temperature
was 80°C corresponding to Rb number density [Rb}=1.4x10'2 cm™>, so the optical
thickness varied between 0.3 and 0.005, depending on the density of the gas. Some
measurements with “He were also done at 100°C and 60°C.
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The signal to noise ratio was limited by two factors. The laser intensity fluctua-
tions, which are on the order of 5-10%, were not perfectly canceled by taking the ratio
of the incident to transmitted intensity. In addition, because the coherence length of
the laser is very long, the glass windows of the cell and the oven can act as etalons,
resulting in oscillations of the transmitted intensity. This effect was reduced by ex-
panding the laser beam. The signal to noise ratio is the worst for the highest density,
because the optical thickness is small and the maximum absorption is only 30%. At
low density, on the other hand, the absorption is very strong, and the line shape can
be distorted by the finite dynamic range of the A/D board. The temperature and
the length of the cell were chosen to find the best compromise between these two
limitations.

The cell, made out of Pyrex, was initially baked under high vacuum and a small
amount of Rb was distilled into the cell. It was then filled with about 10 amg. of
the gas. About 8-12 measurements were performed with densities ranging from 10
to 1.5 amg. After each measurement some of the gas was released from the cell.
When the pressure in the cell approached atmospheric pressure, the measurements
were stopped. The cell was attached to the vacuum system, evacuated and filled with
the next gas.

B.3 Data Analysis

The collision-broadened line profile is usually expressed in terms of the Fourier trans-
form of the dipole autocorrelation function g(7) [5,11]:

1 foo :
I (w) x py /_Oo dr e~ (wwo)T=ng(7) (B.1)
where ¢ (7) is given in the classical approximation by:
g(r)= <1 —e'le dt‘“<R<”>> (B.2)

and n is the density of the foreign gas perturbers. Herew (R)= (V. (R)-V, (R)Y#,
where V; (R)and V. (R)are the interatomic potentials for the ground and excited
state respectively. R (t) describes the path of the perturbing atom in the center of
mass frame during the collision. For straight trajectories R (t) = /6% + v?t2. The
average (...) is over the impact parameter b and thermal velocity v.

Equation (B.l) can be simplified for low perturber density by performing two
integrations by parts and expanding the exponent in powers of n {14, 29, 30]. The
low density approximation is justified if the time between collisions is much longer
than the duration of the collisions. This condition is satisfied for most of our data.
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The specific limits of applicability will be discussed later. With this approximation
we get [14]:
I'(¢)

1O = a5y
where £ =w —wy — A. Here v is the full width and A is the shift of the lorentzian
line core. They are defined in terms of g (7) by: v/2 —iA =ng’ (c0), which predicts
a linear dependence of the width and shift on the gas density.

The dependence of I' on the detuning £ is responsible for deviations from the
lorentzian shape. In terms of the autocorrelation function g(7) it is given by [14]:

(B.3)

= /_O; dretwwo=A)T g1 (1) (B.4)

To calculate I' (¢) one needs to assume a specific shape for the difference potential
w (R).The calculation for a van der Waals potential w(R) = (V. (R)-V, (R) )Yk =
—Cs/R® has been done by Walker et al. [13] and will be used in our analysis. They
convert equation (B.4) to the following form [30, 29]:

2

> (B.5)

r €)=n<v[)m2wbdbl/j;dtw(}%(t Desp i (& - /Oow(R(t’))dt’)]

assuming straight classical trajectories for R (t).The results of their calculation are
parametrized in the following fashion:

[ (&) = nvg St RA T (ETY) (B.6)

where Ty = Cé/svt_h is the duration of the collision, Ry, = Tyve, 1s the effective

radius of the collisions, and vy, = 4/2kT/p is the most probable thermal velocity
in the center of mass frame. I (z) is a dimensionless function of a dimensionless
parameter x = £Ty that contains all numerical information. If Cg is positive (the
excited state is more attractive than the ground state), then x <0 corresponds to the
quasi-static wing and = < 0 to the anti-static wing. The low density approximation,
used in derivation of equation (B.3), can be quantitatively expressed as T3y < 1,
since the time between collisions is on the order of 1/+.

The results of the calculation for / (z) are plotted in Figure B.2. The calculation
is done numerically for —2.4 <z < 2.4 with an accuracy better than 1%,except near
x = 2.4, where the error is < 5% [13]. For @ < —2.4 the quasi-static result I (z) =
7 /6+/z is sufficiently accurate. For the anti-static wing = > 2.4 one can use the result
of an asymptotic expansion I (z) =0.8464,/z exp (—2.1341 135/9> derived in [28]. We

use a polynomial to interpolate between the calculated points and smoothly match to
the asymptotic functions. Near z =0, | (z)is well approximated by a linear function
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| (@)= 0.3380 — 0.22452. It shows that the first order correction to the lorentzian
profile is a dispersion term. This observation has been confirmed experimentally [12].
By making measurements at higher pressures (but still low enough for the low density
approximation to be valid), we can observe the non-linear behavior of I (2). We can
also check the prediction of the theory that the asymmetry, parametrized by the
collision time Ty, should be independent of the pressure.

1.4 T T T ! T T T l T T T l' T T T ] T T T | T T T
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Figure B.2: Function I(x) calculated by Walkup et al. [13] for a van der Waals
potential.

The intensity transmitted through the cell I7 is given by:
It =Ipexp (- [Rby (V)L) (B.7)

where [y is the incident intensity and L is the length of the cell. To extract the line
profile from our data we plot S (v)y=In(Grlr/Goly) = — [Rb¥ (V)L T In(G1/Gy),
where G and Gy are the gains of circuits used to detect the transmitted and incident
intensity respectively. These data are fitted to the following equation:

AL 2Ty (v —v))
O GR

where the constants A, B, Ty, v., and ~ are allowed to vary to minimize the x? of
the fit. The constant B absorbs the values of the signal gain and does not carry

+ B (B.8)
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any physical information. To correct for the ground state hyperfine splitting, we
fit to the sum of four functions (two for each **Rb and ®"Rb) in the form (B.8)
with appropriate weights and shifts. This results in a very small correction. We
ignore much smaller hyperfine splitting of the excited state. We also ignore Doppler
broadening, which gives a negligible contribution to our width. The asymmetry due
to collision correlations [31] is also negligible.

Also of interest is [ o (Y)dv = wrgcf, where 7o = 2.82 x 10~ *3cm. is the classical
electron radius and f is the transition oscillator strength. This gives us a relationship
between the oscillator strength and the Rb number density. If we assume that the
Rb number density is given by the equilibrium vapor pressure, we can measure the
oscillator strength and study its dependence on the gas density.

We note that for a pure van der Waals potential the width, shift and asymmetry
can be calculated for a given value of Cs [4]:

v o= 17.0nv?,{5062/5 ,
A = 0.182y (B.9)
T, = CY

However, these equations are not in good agreement with experimental data. There-
fore, we vary all constants independently. Then we can compare our results with val-
ues predicted by equations (B.9) using C¢ determined from measurements of atomic
polarizability [32].

B.4 Results and Discussion.

B.4.1 °*He and *He data.

The D, absorption cross-section for several pressures of 3He is shown in Figure B.3.
The cross-section is fitted to equation (B.8). Because the value of the asymmetry is
quite small, the results of the fit based on the Walkup function | (x)are indistinguish-
able from the fits using only a first order approximation, which gives a dispersion-like
asvmmetrv:
A (110664 27Ty (v —v.))
Sv) = 4 2
(v —ve)” T(v/2)

For example, for the largest value of T (D, line for *He) detuning of 500 GHz corre-
sponds to = 1, the point where | (X)just starts to deviate from the linear behavior.
The dispersion form of the asymmetry can be derived without reference to a partic-
ular interatomic potential [33]. Our data agree very well with equation (B.8) for all
densities studied. Small oscillations in the data for the highest density are due to the
windows of the cell acting as etalons.

+B (B.10)
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1He 3He Temp.
This Previous This Previous Depen.
Work Results Work Results
D, full width, | 18.0f0.2 | 16.64+3 [34] | 18.7f0.3 | 19.9£0.4 [37] | T005%005
GHz/amg. 17.6 [35]
D, line shift, 4.310.1 8.0 [36] 5.64f0.15 | 5.78f0.2 [37] | T1%0!
GHz/amg. 5.2 [35]
D, asymmetry,| —3.5+£0.1 -194+0.1
Td, 10_138
D, full width, 18.1f0.2 | 17.443 [34] | 20.8f0.2 770.53£0.06
GHz/amg. 19.4 [35]
D, line shift, 0.46+0.06 0.77 [34] 0.68f0.05 T1.640.4
GHz/amg. 1.S [35]
D, asymmetry, | —0.44+ 0.1 —0.73+£0.1
Ty, 107135

Table B.1: Broadening and shift coefficients, asymmetry parameters and temperature
dependence for *He and *He. Negative value of T, implies that Cs <0,

The dependence of the line width and shift on the gas density is shown in Figure
B.4. As predicted by the theory at low densities the dependence is quite linear. In all
cases the offset of a linear fit is consistent with zero within error bars. The broadening
and shift density coefficients are summarized in Table B.l. We also found that the
asymmetry is independent of the density. Because the asymmetry is quite small, the
best fit value of the asymmetry is strongly correlated with the fit value of the line
center. Therefore, in addition to fitting each pressure scan individually, we also fitted
them simultaneously with a common value of 7;. When the number of adjustable
constants is reduced from 5 per scan to about 4.1 (10 data sets are analyzed with a
common value of 7y), the value of x? increases by only 1-2%. This confirms that the
asymmetry is independent of density.

The low density approximation used in the analysis requires that Ty < 1. To
check the validity of this approximation we calculate the critical density n. for which
T,y = 1. The most stringent constraint comes from the D; line in *He, which gives
n. = 25 amg. Thus, the condition is satisfied, although not by a large margin. To
check if the broadening and shift are slightly non-linear due to the breakdown of
the low density approximation we fit the lowest four data points independently. The
broadening and shift coefficients change by less than 1sigma indicated in Table B.1I.
Therefore, we conclude that the low density approximation remains valid for n/n,.
approaching unity.

We have also studied the temperature dependence of the pressure broadening and
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Figure B.3: Absorption cross-section for Rb D, line in the presence of 3 different
densities of >He. The solid lines are fits to equation (B.8). The curves have arbitrary
offset and are scaled for better display.
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Figure B.4: The dependence of the shift and width of Rb D, and D, lines on the
density of *He.
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shift. The temperature dependence can come from two effects. The average velocity

of the collisions depends on temperature through v, = 1/2kT/u. In addition, the
probability of finding a He atom a distance R from the Rb atom is proportional
to exp(—V, (R)/kT). However, if one assumes straight path trajectories for R (t)
in equation (B.2), this factor is neglected. Such approximation is justified, because
typical values of V, (R )for the line core correspond to about 5 K, much lower than the
temperature of the atoms. Thus, the factor exp (—V, (R)/kT') is very close to unity.
If all temperature dependence is due to the average velocity, then the data for >He are
equivalent to the *He data taken at a temperature higher by a factor of u4/us = 1.312.
Figure B.5 shows the line widths and shifts for *He measured at 60, 80 and 100°C,
as well as the data for *He taken at 80°C and converted to effective *He temperature
of 463 K. As can be seen, the scaling between the temperature and reduced mass
is reasonably well satisfied within error bars. The temperature dependence is very
different for the four quantities studied. This is to be contrasted with predictions
based on the van der Waals R~¢ interaction which give T°2 dependence for all four
quantities [4]. We fit the temperature dependence to a power law 7", with the results
for n shown in Table B.I.

This temperature dependence is used to convert previous measurements of the
‘He and *He width and shift density coefficients to our temperature. In general, our
results are in agreement with previous measurements, although in some cases it is
difficult to judge the agreement quantitatively because the authors do not quote a
error for their data. There is only one measurement (*He D; width and shift) with
an accuracy comparable to ours [37]. Although the results for the shift are in good
agreement, the width measurements disagree. This may be due to the fact that in
[37] the authors use a different functional form to describe the line asymmetry and
do not correct for the instrumental broadening of 18 GHz.

We can compare our results with predictions based on the van der Waals interac-
tion using equations (B.9). The line center is shifted to the blue and 7; < 0, which
implies that the interatomic difference potential is repulsive (i.e. Cg < 0). On the
other hand, the long range van der Waals interactions are always attractive, and larger
for the excited state than for the ground state, so one expects Cs =C. —C, >0, as
can be seen in Mahan’s numbers derived from atomic polarizability [32]. However,
because of low polarizability of He, the Rb-He van der Waals interactions are very
weak and at shorter distances are overwhelmed by core repulsion [38]. Apparently,
the line shift and asymmetry are dominated by the repulsive core interactions. The
anomalously small value of the shift and asymmetry for the D, line is most likely due
to cancelation of the effect of van der Waals attraction and core repulsion.



224 Appendix B. Pressure Broadening

i T I i T T T I T 1 T 1 3 T

1.4 - O D, Width e

- A Dp Width N

v - x D, Shift e 1

@ [ % D, Shift T I

S12F 2 e .

£ R

e [ g '

- - — j -

© 1.0 |- 1 T

[} | |
o=

0.8 | l —

i 1 A l 1 1 1 1 l 1 1 1 1 l 1 1 |

350 400 450

Temperature, K

Figure B.5: Temperature dependence of the line width and shift. Relative change
normalized to 353 K is plotted. The data points are shifted slightly in temperature
for clarity. The lowest 3 points are for *He, while the highest point is for *He scaled
as described in the text.

B.4.2 N, and Xe data.

N, and Xe are heavier than He and have a smaller thermal velocity. In addition, they
are more polarizable and, therefore, have a stronger van der Waals interaction with
Rb. As a result, the duration of the collisions T,; = Cé/svt_,f/s is longer and the low
density approximation is not satisfied for all densities studied. Figure B.6 shows the
absorption cross-section for N, at two different densities. For N, the critical density
corresponding to T3y = 1is equal to n. = 5.5 amg. As can be seen from Figure B.6,
the line shape at low density (n= 2.66 amg.) is described very well by equation (B.8),
while at n = 7.43 amg. it shows small systematic deviations. Figure B.7 shows the
values of the line shift and width as a function of N, density. As before, we find that
the asymmetry is independent of density. To determine the pressure broadening and
shift rates we fit only the lowest 3 data points with n <4 amg. For higher density the
widths deviate slightly from the linear behavior, while the shift remains quite linear.
Table B.2 summarizesour results for the pressure broadening and shift coefficients and
the asymmetry. To our knowledge, no previous measurements for Rb-N, broadening
exist. Because N, is diatomic, it has a large radiationless quenching and mixing cross-
sections, unlike the noble gases. It results in the reduction of the Rb excited state
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lifetime and contributes to broadening. Using the values of the cross-sections from
[39], we calculate that inelastic processes contribute 3.3 GHz/amg. width to the D,
line and 3.0 GHz/amg. to the Dy line.

4 T T T T T T T ] T T T T T T T T T T T

L +D,, ng=7.43 amg.
- OD,, ny,=<.66 amg.
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Figure B.6: Pressure broadening by N with a fit to function (B.8).

Figure B.8 shows the absorption cross-section for Xe with a fit to equation (B.8).
The critical density for Xe is n. = 2.3 amg. The lineshape agrees very well with the
data. The broadening and shift coefficients, given in Table B.2, are calculated from
the data with n < 2 amg. The collision time T, is independent on pressure within
our error bars. Our numbers for the width agree well with the results of Ottinger
et al. [34], while our shift rate is substantially smaller. However, they define the
shift as the position of the line center at the half-height, which is affected by the
asymmetry of the line. Table B.2 also shows results predicted by equations (B.9) for
a van der Waals potential. We used Cs = 6.86 x 107°® erg cm® for the D, line and
Ce = 7.26 x 107°% erg cm® for the D, line from [32]. The agreement with experiment
is reasonably good, especially for the collision time 7, which characterizes the line
asymmetry.

Because the asymmetry is larger than for He, higher order corrections to the
lineshape become important for Xe and N,. For Xe, 277, (v—v.) = 1 for detuning
of 45 GHz, while for N, this happens at 100 GHz. To evaluate the importance of
the higher order effects, we tried to fit the data using only a linear approximation
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Figure B.7: Broadening and shift as a function of N, density. The straight lines are
fits to the lowest 3 data points, where the low density approximation is valid.

(B.10). For both Xe and Ny it resulted in the increase of the y* by a factor of 2-3. It is
difficult to get a more significant confirmation of the higher order effects in (B.8). For
the higher order effects to be important, one would like to have 7;y ~ 1. However,
this is exactly the place where the low density approximation starts to break down.

Equation (B.8) uses only one parameter (7;) to characterize the asymmetry of
the line. It is independent of the gas density, has a clear physical interpretation
and is in agreement with calculations. For comparison, we also tried to fit the data
with several other functions which use two parameters to characterize the shape of
the asymmetry that are free to vary with density. Nevertheless, we could not find a
simple function which would consistently give x? better than or comparable with the
results of equation (B.8). Therefore, we conclude that the function | (z) calculated
for a van der Waals potential in [13] is very successful in describing the shape of the
line core, including corrections beyond the first order dispersion asymmetry.

For Xe data with n > 3 amg. the line shape becomes significantly distorted by
formation of a satellite line. Figures B.9 and B.10 show several absorption cross-
sections measured at densities ranging from 4.87 to 9.31 amg. The peak cross-section
of the line core goes down as 1/n with density, while the peak cross-section of the
satellite is proportional to n. Therefore, the relative size of the satellite line grows as

n2.

In quasi-static theory of line shapes the appearance of the satellite is associated
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N,
This Work | This Work | Previous Results | Van der Waals
D; full width, 17.84:0.3 18.940.5 19.2+2(34] 15.9
GHz/amg,. 14.2[40]
D, line shift, | —8.25+ 0.15| —5.05Ff 0.3 6.95+0.7[34] —5.76
GHz/ameg. 6.5[36]
D; asymmetry, 16 £ 2 34
Ty, 10713,
D, full width, 18.1f0.3 19.2f0.5 19.5[34] 16.3
GHz/amg. 14.2[40]
D, line shift, | —5.9+£0.1 | —5.15+0.3| —8.34 F 0.6[34] —5.92
GHz/amg.
D, asymmetry, 12+£1 35+2 34
Ty, 10~ Bs.

Table B.2: Broadening and shift coefficients and asymmetry for N, and Xe.
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with an extremumin the interatomic difference potential AV (R)=V. (R)-V, (R). If
dAV (R,)/dR, =0, then a satellite line should appear at detuning vs = AV (R,)/A.
If the difference potential can be approximated by a parabola near the extremum,
one can derive a characteristic line shape for the satellite [11]. However, we were not
able to fit the data to such a line shape. We believe that for Xe-Rb the satellite is due
to two extrema, one minimum and one maximum, located very close to each other.
The Rb-Xe interatomic potential for the D; line is shown in Figure B.Il [41]. The
difference potential has a minimum of 1544 GHz at R = 5.77A and a maximum of
2042 GHz at R = 7.06 A, while we observed the satellite at about 700 GHz. However,
the shape of the interatomic difference potential near the extrema is very sensitive
to the shape of V. (R) and V, (R). The values of the maximum and minimum of
the difference potential can probably be moved to 700 GHz by adjustments of the
parameters which are consistent with other data from which the interatomic potentials
where determined. Therefore the position of the satellite can be used in combination
with other data to determine more accurately the interatomic potentials. Once the
interatomic potentials are determined, the shape of the satellite line can be used as
a good test case to compare against the predictions of the unified satellite line shape
theory [11].
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B.4.3 Oscillator Strength.

By integrating the absorption cross-section over the wavelength we can also get in-
formation on the oscillator strengths of the Dy and D, transitions and their pressure
dependence. It requires the knowledge of the Rb number density, which we can only
determine from the vapor pressure curves. The cell was kept at 80°C for a period of
several days prior to each set of measurements, and the temperature was very uniform
across the cell. So, it is reasonable to assume that the Rb vapor pressure should be
close to equilibrium. To calculate Rb number density we use the data from CRC
Handbook of Chemistry and Physics [42], which have a quoted accuracy of 5%:

[Rb] — 1026.178—4040/T/T (B A I)

At 353 K it gives density 7% higher than more commonly used Killian formula [43].
However, Killian does not quote a error for his data.

Our results for the oscillator strength are shown in Figure B.12. The area is
calculated from the parameters of the fit. This takes into account the area under
the wings outside our measured range, which is on the order of several percent. It
should be accurate for He because the low density approximation is satisfied for all
of our data and the lineshape agrees with data quite well. In addition, there are no
significant satellite lines for He [34]. For N, our fits do not work very well at high
pressures, so the numbers should be treated with caution. However, as can be seen
in Figure 12, the results for N, are similar to *He and *He. The uncertainty in the
temperature of the cell is 0.5°C, corresponding to a density error of 4%. The error in
the length of the cell is 2%, and the error in the determination of the area under the
absorption curve for ?He and “He is 3%. The total error for our values of f is 7%,
including the uncertainty in the vapor pressure curve.

We parametrize the density dependence of the oscillator strength by f (n) =
f (1+ an). Because of the uncertainty in the estimation of the area for N, based on
the fit, only *He and *He data are used for quantitative analysis. We find that the
oscillator strength of the D, line is independent of pressure within our sensitivity:
la;] < 0.003 amg™" (la),while the D, oscillator strength decreases with pressure:
az = —0.019 F 0.003 amg~! (the results for >He and *He are the same within errors).
Our results for the oscillator strengths at zero pressure f; = 0.33+ 0.02 and f; =
0.66f0.05 are in very good agreement with commonly accepted values f; = 0.322 and
fa = 0.675 [44]. We can compare our numbers with measurements by Chen [35], who
studied the Rb oscillator strengths for *He densities up to 45 amg using a technique
similar to ours. He found a¢; = —0.017 amg™" and a; = —0.019 amg™'. While the
results for the D, line are in agreement, the pressure dependence of the D, oscillator
strength is different from our result.

Sincethe sum rule }_ f; = lis almost saturated by the D; and D, transitions: f;+
f2 =0.997, their oscillator strength should decrease with density as the intensity of the
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Figure B.12: Oscillator strength determined from the integral of the absorption cross-
section as a function of the foreign gas density.

forbidden transitions increases. The density dependence of the oscillator strengths for
forbidden transitions was studied in more details for Cs than for Rb [46, 47, 48]. The
density dependence of the D, and D, transitions in Cs was also studied in detail [45].
It was found that the ratio of the Dy to D, oscillator strength for Cs remains constant
as the density is increased. This would imply that a; = as in agreement with Chen’s
Rb measurements [35]. On the other hand, it is difficult to imagine how our slope
for the D, oscillator strength could be more negative. If there is a significant area in
the satellites which is not included in our integral, it can only result in the reduction
of the apparent oscillator strength at higher densities. If the vapor pressure of Rb is
reduced by the presence of He [49], it will also result in the apparent reduction of the
oscillator strength with pressure. When the gas was released from the cell, some of
the Rb vapor was released as well, reducing the Rb number density. This effect could
result in the apparent reduction of the oscillator strength at low density. The vapor
pressure will come back to equilibrium with a time scale given by the diffusion from
the walls to the center of the cell, which was 6-30 sec. Each scan took about 5 min.
and we alternated between first scanning the D; line followed by the D, line and vise
versa after each release of the gas. Therefore, if this systematic effect was significant,
it should have resulted in a systematic difference between odd and even points in our
measurement, which was not observed.
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B.5 Conclusion

We have reported on a study of the line cores and near wings of the Rb D; and D,
lines in the presence of 1-10 amg. of *He, *He, Xe, and N,. The measurements were
performed using laser absorption spectroscopy, which is free from systematic effects
that can cause distortions of the lineshape. Unlike many earlier measurements, we
extracted the values for the line width, shift and asymmetry by fitting the entire
lineshape to a theoretically well-motivated functional form. As a result, our parame-
ters are measured in an unambiguous fashion without mutual correlation and can be
directly related to physical quantities. The accuracy of our data is in most cases sig-
nificantly higher than in previous measurements. We have also confirmed with high
degree of accuracy that the line width and shift increase linearly with density until
the time between collisions becomes comparable to the duration of the collisions.

We also studied the temperature dependence of the line width and shift for *He and
4He, and confirmed a scaling relationship between the temperature and reduced mass.
Our lineshape data agree very well with calculations for a van der Waals potential
made by Walkup et al. [13]. By making measurements at densities comparable to the
critical density, we have confirmed not only the first order dispersion correction to the
lorentzian lineshape, but also higher order corrections. We have also obtained data
for the Rb-Xe lineshape at high Xe density exhibiting strong satellite lines, which
can be used with other available data for accurate calculations of the interatomic
potentials. We have measured oscillator strength of Rb resonance lines as a function
of the foreign gas density and observed a reduction of the oscillator strength for the
D line with density, but not for the D, line. Our data provide important tests of the
pressure broadening theory and also will be useful in applications of optical pumping.

We would like to thank Prof. William Happer for stimulating discussions. MVR
would like to acknowledge support from Elizabeth Procter Fellowship. This work was
supported by DOE contract DE-FG02-90ER40557.
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