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Abstract 

This thesis describes a precision measurement of the deep inelastic neutron spin struc- 
ture function gy (2). The main motivation for the experiment is a test of the Bjorken 
sum rule. Because of smaller statistical errors and broader kinematic coverage than 
in previous experiments, we are able to study in detail the behavior of the spin struc- 
ture function g ; " ( x )  for low values of the Bjorken scaling variable 2. We find that 
it has a strongly divergent behavior, in contradiction to the naive predictions of the 
Regge theory. This calls into question the methods commonly used for extrapolation 
of gy ( x )  to 5 = 0. The difference between the proton and the neutron spin structure 
functions is less divergent at low 2, so a test of the Bjorken sum rule is possible. We 
confirm the sum rule with an accuracy of 8%. 

The experiment was performed at SLAC using a 50 GeV polarized electron beam 
and a polarized 3He target. In this thesis the polarized target is described in detail. 
We used the technique of Rb optical pumping and Rb-He spin exchange to  polarize 
the 3He. Because of a novel mechanical design our target had the smallest dilution 
ever achieved for a high density gas target. Since this is a precision measurement, 
particular efforts were made to reduce the systematic errors due to the uncertainty 
in the target parameters. Most important parameters were measured by more than 
one method. We implemented novel techniques for measuring the thickness of the 
glass windows of the target, the 3He density, and the polarization. In particular, 
one of the methods for measuring the gas density relied on the broadening of the Rb 
optical absorption lines by collisions with 3He atoms. The calibration of this technique 
resulted in the most precise measurements of the pressure broadening parameters 
for 3He as well as several other gases, which are described in an Appendix. The 
polarization of the 3He was also measured by two methods, one relying on traditional 
NMR techniques and the other on the shift of the Rb Zeeman resonance frequency due 
to the 3He polarization. To calibrate the frequency shift polarimetry, we performed an 
accurate measurement of a Rb3He spin exchange parameter, significantly improving 
on previous results. 

We 
present an algorithm for electron-pion discrimination based on the lateral shape of 
their shower in the electromagnetic calorimeter. The calculation of the radiative 
corrections to the deep inelastic scattering and, especially, their effect on the exper- 
imental errors is also discussed. The la.st chapter is devoted to the interpretation of 

A part of the thesis is devoted to the analysis of the high energy data. 

... 
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our results in the framework of perturbative QCD. We present a physically intuitive 
description of the ambiguities arising in Next to Leading Order (NLO) analysis of 
the spin structure functions. Using such analysis we describe the implications of our 
data. 
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Chapter 1 

Introduction 

At present, all experimental observations in high energy and nuclear physics are 
in agreement with a theory of elementary particles and interactions known as the 
Standard model. This is a combination of the gauge theory of electromagnetic inter- 
actions based on a U(1) group, the weak interactions based on an s U ( 2 ) ~  group, and 
the strong interactions based on a non-Abelian SU(3)c group. While each of these 
theories has been studied in numerous experiments and is commonly accepted, the 
precision with which they are tested is drastically different. For example, the electro- 
magnetic coupling constant is known to 0.045 ppm [l]: cy,, = 1/137.0359895(61), the 
weak coupling constant at low energy is known to 20 ppm: GF = 1.16639(2) x lo-’ 
GeV-2, while the strong coupling constant is only known to 3%: a, ( M z )  = 0.118(3). 
Clearly, precision tests of the theory of strong interactions are called for. 

This thesis describes an experiment whose goal is to precisely test one of the 
predictions of QCD. Because the fundamental objects in QCD, quarks and gluons, 
are never observed directly, it is difficult to find precisely testable predictions. The 
QCD sum rules give predictions about the integrals of the deep inelastic structure 
functions which are free from uncertainties associated with non-perturbative quark 
interactions at low energies. Several sum rules exist in QCD. The testable sum rules 
for unpolarized deep inelastic structure functions involve only neutrino scattering. 
Nevertheless, one such rule, the Gross - Llewellyn Smith sum rule, has been tested 
to 3%. The other fundamental sum rule that can be a.ccurately tested is the Bjorken 
sum rule, which involves integrals of the proton and neutron spin structure functions. 

The measurement of the spin structure functions requires the use of both a polar- 
ized beam and a polarized target. The experiment was conducted at Stanford Linear 
Accelerator Center (SLAC), using a 50 GeV electron beam polarized to 80%. We 
used a 3He polarized target to  measure the spin structure function of the neutron. 
Because of the Pauli exclusion principle, the spins of the two protons in 3He are op- 
positely polarized and most of the spin is due to the neutron. The polarized 3He 
gas target relies on several atomic physics techniques. We used optical pumping of 
Rb vapor and Rb-He spin exchange to polarize the 3He. This experiment benefited 
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2 Chapter 1. Introduction 

from the experience of the previous SLAG 3He experiment [ a ] ,  which used a similar 
target. About half of the improvement in the statistical precision compared with the 
previous experiment came from the improvements in the target, especially its dilution 
factor. In addition, we placed a special emphasis on reducing the systematic errors 
originating from the target parameters. 

The results of the early measurements of the proton spin structure function by 
EMC at CERN [3] were quite unexpected, as they seemed to imply that the fraction 
of the proton spin carried by the quarks was very small. This interpretation sparked 
considerable theoretical and experimental interest in the area, and it is still developing 
at a rapid pace. For reviews written in the last two years see [4, 5 ,  6, 7 ,  8, 9, 10, 111. 
A relative consensus on the interpretation of the EMC result developed only recently. 

This thesis is organized as follows. In Chapter 2 I introduce polarized deep inelas- 
tic scattering and spin sum rules. A brief overview of past polarized DIS experiments 
is given. Chapter 3 focuses on our experiment and discusses all aspects of the setup 
and analysis unrelated to the polarized target. In particular, we discuss the phys- 
ical properties of the electromagnetic shower which can be used for discrimination 
between electrons and pions in our calorimeter. A full description of the analysis is 
given in Appendix A. We also describe the calculation of the radiative corrections 
to the deep inelastic scattering, in particular, their effect on the experimental errors. 
Chapters 4 and 5 focus on the polarized target. Chapter 4 describes the technique 
of optical pumping and spin exchange, fabrication of the target cells, measurements 
of their physical parameters and the target dilution factor. The performance of the 
polarized target during the run is also discussed. In Chapter 5 I describe the two 
techniques used for 3He polarimetry. A detailed analysis of the systematic errors in 
each technique is given. Finally, in Chapter 6 I present the results of our experi- 
ment and their interpretation within QCD. I give a physically intuitive description of 
the ambiguities present in QCD analysis due to  the axial anomaly, and discuss the 
implications of the data. 

T -  I 
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Chapter 2 

Polarized Deep Inelastic Scattering 

Deep Inelastic Scattering (DIS) has been a major tool in the study of hadron structure 
and QCD. The initial evidence for the existence of elementary particles inside the 
nucleon came from DIS experiments conducted at SLAC in the 60’s [l]. The study of 
the nucleon structure using DIS has continued at SLAC, CERN and DESY, providing 
some of the most stringent tests of QCD. In DIS one uses a lepton probe ( e ,  p ,  or 
u )  whose interactions are well understood to study the properties of the nucleons 
(protons or neutrons). By controlling the polarization degrees of freedom one can 
obtain significant additional information about the structure of the nucleon. 

2.1 Kinernat ics 

Most DIS experiments use a high energy lepton beam scattering from a fixed nuclear 
target’. The definition of the kinematic variables for our experiment is shown in 
Figure 2.1. In other experiments p ,  or u beams are used instead of the electrons. 

All kinematic variables are defined in the lab frame. The initial electron has an 
energy E ,  four momentum k p ,  and spin sp ,  while the neutron at rest in the lab frame 
has p p  = ( M ,  O , O ,  0) and spin Sp. The electron scatters electromagnetically from the 
constituents inside the neutron. Interactions through a 2’ exchange are also possible, 
but for our experiment Q2 << M i  and the exchange of the weak boson is strongly 
suppressed. It results, however, in a non-negligible correction which is applied to the 
data. The scattered electron is detected by the spectrometer, and its energy E’ and 
momentum k ‘ p  are measured. The (virtual) photon energy is u = E - E’ and its 
momentum transfer is Q2 = -q2  = ( k p  - k ’ p ) 2 .  After the scattering, the neutron 
breaks up into many hadronic products. Their total invariant energy is given by 
W 2  = ( p p  + qf i )2  = M2+2Mu-Q2. We do not detect any of the hadrons, but measure 
an inclusive cross-section. The scattering is called deep inelastic because W 2  >> Ad2. 
In contrast, for elastic scattering the neutron remains intact and W 2  = M 2 .  

‘Recent DIS experiments at HERA use colliding positron-proton beams. 
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2.1. Kinematics 

E ’. k ’I-1 

5 

M, p p ,  S p  n 

Hadron Products 

Figure 2.1: Kinematic variables used in deep inelastic scattering. 

It is convenient to  parametrize the scattering by two dimensionless variables, 
whose values range from 0 to  1. One defines: 

Q 2  -- - Q2 x =  
2 p - q  2Mv 
P * q  - v y = -  - - 
p * k  E 

where the first equality gives a Lorentz invariant definition and the second is true 
only in the Lab frame. As we will see, x plays a very special role in deep inelastic 
processes, while y is the fractional energy loss of the scattered electron. Several useful 
relations between the kinematic variables are given below: 

Q2 = 4EE’sin2 (0/2) = 2EMxy  
W 2  = M 2 + Q 2 ( 1 - x ) / ~  

Thus, the deep inelastic limit W 2  >> M 2  is also equivalent to the Bjorken scaling 
limit Q2 >> M 2  at constant 2. From equation (2.3) one can see that the minimum 
IC accessible to an experiment is xmin - Q2/2EM (for y N 1). For deep inelastic 
scattering one would like to have Q2 >> 1 GeV2. However, experiments show that 
the results approach the deep inelastic limit even for Q2 - 1 GeV2. Therefore, partly 
by convention, the deep inelastic region is defined as Q2 > 1 GeV2, W 2  > 4 GeV2. 
This gives xmin - 1/2E(GeV). So, with a 45 GeV beam at SLAC we can reach to  
x z 0.01. At CERN, using 190 GeV muon beam, the DIS measurements can be done 
down to x = 0.003. 

T .  



6 Chapter 2. Polarized Deep Inelastic Scattering 

2.2 The Scattering Cross-Section 
Using the usual rules of relativistic scattering theory, we can write the electron scat- 
tering cross-section in the following form [a, 31: 

where pi, i = 1 . .  . N are the momenta of the hadron products in the final state, and 
the scattering matrix is given by: 

(2.6) 

Here X denotes the final hadronic state produced by the collision, j p  (0) and J” (0) are 
the leptonic and hadronic electromagnetic currents respectively. One can separate the 
square of the matrix element into a product of purely leptonic and hadronic tensors, 
which are usually defined by: 

The leptonic part is given by: 

where we sum over the final electron spin states, since they are not distinguished in 
the detector. 

In the rest frame of a spin 1/2 particle2 the spin vector can be defined as follows: 

2s’ = ut ( I C ,  s) 6% ( k ,  s) = u ( I C ,  s) ;Yy5u ( I C ,  s )  (2.9) 

We use a normalization of the Dirac spinors .tu = 2E. In the rest frame of the 
particle of mass rn polarized in the i direction s’= mi.  Thus, the polarization vector 
has units of mass. This expression is generalized to a Lorentz invariant form: 

2sp = u ( I C ,  s )  yPy5u ( I C ,  s )  (2.10) 

For an ultrarelativistic particle polarized along is momentum (definite helicity) one 
gets s p  = X P ,  where X = f l  is the helicity. 

2Some polarized DIS experiments are done with a spin-1 D target. In this case the expressions 
are slightly modified. 



2.2. The Scattering Cross-section 7 

The main advantage of deep inelastic scattering is that the lepton electromagnetic 
current has a well known Dirac form: 

(IC’, s’ Ij’ (0) I k ,  s )  = U (k ’ ,  s‘) y’u ( I C ,  s )  (2.11) 

Summing the leptonic tensor (2.8) over the final electron spin s‘ we get: 

From now on we will neglect the electron mass rn. 
contributes only to  the anti-symmetric part of the lepton tensor. 

Note that the electron spin 

The hadronic tensor is given by: 

where we sum over all possible final states X and final spin directions S’. Since 
the proton and the final state are not elementary Dirac particles, we do not know 
the electromagnetic current. However, we can greatly restrict the possible form of 
the current by using symmetry and invariance properties. Lorentz invariance implies 
that W,, should transform as a rank 2 tensor, so it can be formed only from available 
four vectors: p,, q,, S ,  and tensors gp,, E ~ , , ~ ~ .  The conservation of the hadronic 
electromagnetic current, time reversal invariance and parity invariance3 allows one 
to specify the ha.dronic tensor in terms of 4 independent scalar functions of the two 
independent Lorentz invariant scalars, chosen to be n: and Q2 [ 3 ] :  

(2.14) 

In this way the hadronic interactions are completely parametrized by four functions: 
F,, F2, gl, and g2 ,  which are called the structure functions. gl and g 2 ,  in particular, 
are called the spin structure functions. Note that gl and g2 contribute only to  the 
antisymmetric part of the hadronic tensor. When W,, is contracted with Lpu ,  the 
spin structure functions contribute to the cross-section only if both the electron and 
the neutron are polarized4. 

3For neutrino scattering parity is violated which results in additional terms in the hadronic tensor. 
4For spin-1 targets there is a contribution for an unpolarized beam, but it is difficult to measure. 
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It is instructive to  calculate the structure functions for a target which is an ele- 
mentary Dirac spinor. In this case the scattering is elastic at the tree level. Wp,, is 
given by the same formula (2.8) as for the leptons and we get: 

PI = 11)(1-&) 2 

F2 = - 2MU ( 2;Y) 
s 1-- Q2 

g1 = -6 2 1-- ( Zv) 
g2 = 0 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

The delta function comes from momentum conservation for elastic scattering (i.e. 
w2 = M”. 

2.3 Scaling 

The first deep inelastic scattering experiments found, of course, large deviations from 
the simple Dirac form of the structure functions. However, they found a very interest- 
ing behavior that for high momentum transfer Q2 > 1 GeV2 the structure functions 
depend only on one variable z = Q 2 / 2 M v ,  and are independent of Q2 at constant z. 
This behavior, known as scaling [4, 51 was interpreted as evidence that the nucleons 
are made of elementary, weakly interacting particles, which were called partons. 

In this approximations one assumes that the electron scatters from one of the 
partons, which is assumed to  be “free” during the interaction. The scattering is an 
incoherent sum of the contributions from different partons. We assume that each 
parton carries a fraction a of the nucleon momentum and introduce parton distribu- 
tion functions q ( a )  = dP/dcu equal to the probability of finding a parton inside the 
nucleon carrying momentum fraction between cy and a + da. In QCD, the partons 
which carry electric charge and contribute to the scattering are quarks. They are 
elementary Dirac particles and should have elementary form factors. 

Since the partons have momentum p ,  = a p ,  we should replace Y = p . q /M by av. 
This results in the replacement of S (1 - Q 2 / 2 M v )  by S ( a  - Q 2 / 2 M v )  = S ( a  - z) 
in equations (2.15-2.1s). Thus, an electron with kinematic variable x can scatter 
only from a parton carrying a fraction 2 of the momentum of the nucleon. If the 
partons are non-interacting, then q (z) is a probability distribution that depends only 
on the properties of the nucleon, not on the details of the scattering. Therefore, the 
scattering cross-section should depend only on x and not on Q2 or v separately. The 

1 
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structure functions can be written in terms of the parton distributions as follows: 

a 

(2.19) 

(2.20) 

(2.21) 

9 2  (.A2) = 0 (2.22) 

where the sum runs over all partons in the nucleon weighted by the square of their 
electric charge ei (in units of the electron charge), and the polarized distributions are 
defined as the probability of finding the parton with the same c,! (x) or opposite q: (x) 
helicity as the parent nucleon. 

In QCD the partons in the nucleon are quarks and gluons. The gluons are not 
charged, while the quarks carry fractional charges: e, = 2/3, ed = -1/3, e, = -1/3. 
The neutron is made from 2 d quarks and 1 u quark, while the proton from 2 u 
quarks and 1 d quark. Actually, the quarks scheme with specific charges and masses 
was proposed by Gell-Mann and Zweig before the creation of QCD or the discovery 
of scaling [6] to explain the abundance of hadrons and mesons. QCD also predicts 
the existence of “sea” quarks, created out of the vacuum by gluon interactions. 

2.4 Sum Rules 
One of the most fruitful and robust consequences of the quark parton model (QPM) 
are the sum rules for structure functions. They give a prediction for the integral 
over x of various combinations of the structure functions. Most of them are modi- 
fied only by calculable radiative corrections when full interactions of QCD are taken 
into account. Thus, they allow a model independent test of the QPM and its QCD 
modifications. For unpolarized structure functions the only testable sum rules involve 
neutrino scattering. They are [7]: 

Gross - Llewellyn Smith (baryon) : 1’ dx (Flp(x) + F3Vn (x)) /2 = 3(2.23) 

Here F3 is an additional structure function, which is present because of parity violation 
in neutrino interactions. Presently, the baryon sum rule is tested to 3% (with 2 ~r 

deviation from the theoretical prediction), and the Adler sum rule is tested to  20% 
[7]. For polarized structure functions two more sum rules exist: the Bjorken sum rule 

1 
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[8] and the Ellis-Jaffe [9] sum rule, which are discussed in detail below. With the data 
from our experiment the Bjorken sum rule can be tested to  8%. 

In the parton model we can express the average helicity of each quark using our 
definition of the polarized quark momentum distributions: 

where q; (x) denotes the momentum distribution of the anti-quarks. The integral of 
the spin structure function gl gives us a linear combination of the helicities carried 
by each quark flavor: 

(2.26) 

which follows from equation (2.21). On the other hand, using equation (2.10) the 
helicity carried by each quark can be calculated from the following matrix element: 

2nqis/” = (+? P 5 . N  Y g,j ) (2.27) 

If the nucleon were a Dirac particle made of one quark then Aq = 1. In the quark 
parton model the two expressions for quark helicity, (2.25) and (2.27)) are identified 
with each other. We will come back to  the validity of this assumption later. 

We can now derive the Bjorken sum rule. Recall from the theory of weak in- 
teractions that the weak current matrix element for the neutron decay is defined as 
[lo]: 

where U stands for a Dirac spinor and T is a Pauli matrix acting in the isospin space. 
g A / g v  is an empirical quantity that parametrizes the deviation of the neutron weak 
axial coupling from that of a Dirac particle. Experimentally, gA/gv = 1.2601 f0.0025 
[ll]. Using properties of the isospin operators [ T + , T - ]  = T~ and T -  ( p )  = In), the 
axial current can be converted to a matrix element between proton states: 

( p  l T + ? . ~ y 5 1  n )  = ( P  1 ~ 3 ~ ~ ~ 5 1  p )  (2.29) 

With the isospin assignments for the quarks: T ~ U  = u, ~~d = -d,  and r3s  = 0 we get: 

( p  l T  3 P 5  1 p )  = ( p  157~75u - d y b Y 5 d l  p )  = 2~ (nu, - nd,) (2.30) 

( p  (T t P 5  y y 1 n )  = 2s’- g A  = 2s” (A,, - Ad,) 
W 

Thus 
(2.31) 
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To extract the appropriate combination of the quark helicities from DIS measurements 
we form the difference between the integrals of gl for the proton and the neutron and 
use isospin invariance to set Au, = Ad,, Ad, = nu,, and As, = As,. By convention) 
the quark momentum distributions refer to the distributions 
Au,. The neutron momentum distributions can be obtained 
This gives us 

in the proton: Au = 
by isospin invariance. 

(2.32) 

which is the Bjorken sum rule, derived by Bjorken in 1966 and, at that time, called 
a “worthless equation’) [8] because of inaccessibility of the spin degrees of freedom. 

In this derivation we only used the assignment of electric and isospin charges to 
the quarks, the isospin symmetry) and the identification of the quark helicity matrix 
element (2.27) with the integral of the quark momentum distribution. The assignment 
of the charges is fundamental to  the parton model and QCD, and isospin symmetry 
violations due to finite quark mass and electromagnetic interactions are expected to 
be very small. The last assumption) however) requires further justification. The 
quark momentum distributions are measured in DIS at high Q’, while the quark 
helicity matrix elements are related to weak decay constants measured at Q2 = 0. 
In the non-interacting quark parton model the scaling is exact and the structure 
functions do not depend on Q’. Thus the two expressions for the quark helicities 
are identical. This is not true in QCD, where there are scaling violations which 
become large and incalculable at low Q’. However, it turns out that the particular 
combination of quark helicities a3 = Au - Ad is independent of Q’ because of axial 
flavor current conservation, and the relationship remains valid to zeroth order in cy,. 
The only modification from QCD is due to  radiative corrections for the photon-quark 
interactions. They can be calculated using, for example, the techniques of operator 
product expansion [ 3 ] .  Thus, the Bjorken sum rule which rests on a small number 
of very fundamental assumptions, remains valid in QCD. This has led Feynman to 
conclude that “its verification or failure [the Bjorken Sum Rule] would have a most 
decisive effect on the direction of future high energy theoretical physics” [la]. 

One can carry this analysis further and consider the implications of the full SU(3), 
symmetry of 11, d and s quarks. This neglects the mass of the s quark, which is 
significant, and, therefore, on somewhat theoretically weaker grounds. Using SU( 3) 
symmetry one can show that: 

a8 = Au + Ad - 2As = 3E - D (2.33) 

where F and D are two constants that parametrize the deviation of the axial current 
from its Dirac form in the baryon octet [IO]. as is the second diagonal element of 
the axial flavor current in SU(3) and is independent of Q2 due to the conservation 
of the current. From the data on the semileptonic weak decays of baryons one can 
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determine F and D .  Further, it can be argued that the polarization of the s quarks 
should be small on the basis of the OZI rule [9] or helicity conservation of the gluon- 
quark interactions [13]. If one assumes that As = 0, the values for I': and r; can be 
predicted separately : 

1 
18 
1 
18 

r; = - ( ~ F - D )  (2.34) 

r: = - ( ~ F - ~ L I )  (2.35) 

which is known as the Ellis-Jaffe sum rule [9]. The status of this rule is much less 
solid in QCD because the assumption that As = 0 is not well justified and not even 
well defined. Recent experiments observed violations of the Ellis-Jaffe sum rule for 
both the neutron and the proton. 

Thus, there are several predictions for the integrals of the spin structure functions 
of varying degree of reliability. To test these predictions one has to measure gl over a 
large kinematic range and calculate the integral for both the neutron and the proton. 

2.5 Experimental Observables 
To access the spin structure functions experimentally, one has to measure the cross- 
section for the scattering of a polarized lepton on a polarized nucleon. Using the 
equations for the hadronic and leptonic tensors we can easily calculate the differential 
cross-section of deep inelastic scattering [14] : 

Q2 Q 2  
dxdQ2 - $ [4:i2x J'I (p, Q 2 )  + (1 - ___ 2 M E x  - -) 4E2 F2 ( x ,  Q2)] 

d2 o 
- -  

2Mx Q 2  
Q 2  ) gl ( x 7 Q 2 )  - 7 g 2  (p7 Q2)12,36) 

for longitudinally polarized beam with polarization Pb and target with polarization 
Pt. Experimentally, it is easier to measure an asymmetry between the cross-section 
with PbPt > 0 and PbP, < 0. The relative asymmetry is defined assuming 100% beam 
and target polarizations: 

d o l l  - daTT 
A l l  = doll + doll (2.37) 

and is given by t,he ratio of the polarized to  the unpolarized cross-sections. One can 
also measure an asymmetry with the target polarization transverse to the beam: 

T .  

(2.38) 
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Sometimes it is convenient to think about the scattering cross-section for a virtual 
photon shown in Figure 2.1. In this case we replace the lepton electromagnetic tensor 
Lp" by the virtual photon polarization vector E! for the external photon line and 
remove the photon propagator: 

(2.39) 

Also the flux factor 1/2E in the expression for the cross-section (2.5) should be 
replaced by 1 /2K,  where K = (W2 - M 2 )  / 2 M  = Y + q2/2M is a Lorentz invariant. 
For a real photon q2 = 0 and K = Y. The index X labels different initial polarizations 
of the photon. One usually defines [3]: 

(2.40) 

(2.41) 

which satisfy the condition E p q p  = 0. EO corresponds to  a longitudinally polarized 
photon and is allowed because the photon is virtual. One can define four cross- 
sections corresponding to  different initial polarization states [14, 151: 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

where CJ (X i ,  5';) denotes the cross-section with initial photon helicity A; and initial 
proton spin S; along the 2 axis. (TTL is the contribution of the interference term 
between the I+1, - l /2)  and (0, +1/2) states. Here y = Jw = 2zd- -+ 0 
as Q2 -+ 00 with constant x. 

It is interesting to consider this result in terms of helicity conservation at high 
energy. For an ultrarelativistic fermion (1 k y5) projects out the helicity states [2]: 

1 
2 
- (1 - y 5 ) u  R5 U L  

1 
2 
- (1 + 7 5 ) u  25 U R  

(2.46) 

(2.47) 

Using the properties of the y matrixes one can show that the electromagnetic current 
conserves helicity: i iyPu = i i ~ y p u ~  + U R Y ~ U R .  Figure 2.2 shows an electromagnetic 
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interaction between an electron and a quark. It is assumed that both the quark 
and the electron scatter backwards in the center of mass frame. Other cases can be 
expressed by using rotation properties of the angular momentum operators. Both 
the electron and the quark are ultrarelativistic. Using the conservation of helicity we 
can see that the electron is more likely to emit a longitudinally polarized photon and 
preserve its helicity. The quark is more likely to absorb the photon if its initial spin 
is opposite to the photon spin, so it can preserve its helicity as well. 

It is interesting to see what happens if we use the elementary particle form of the 
structure functions (2.19-2.22). In the limit of deep inelastic scattering y --+ 0 and to  
zeroth order in y we get: 

(2.48) 

(2.49) 

Thus, only the dominant helicity process, shown in Figure 2.2 contributes to scatter- 
ing. 

t + 
/ \ . , 

e s = +1/2 J =+1 
e 

s = -112 

Figure 2.2: The dominant spin scattering cross-section due to the helicity conserva- 
tion. 

Since the nucleon is more complicated than a single quark, all of the cross-sections 
contribute. It is natural to  define virtual photon asymmetries Al and A2 as follows: 

(2.50) 

(2.51) 

In addition one defines R = 2 g ~ /  (olp + “312) which measures the deviation of the 
unpolarized structure functions from the Callan-Gross identity 2sFl = F 2  [16]. 

Several simple predictions can be made for AI based on the quark-parton model. 
For IC -+ 1 we expect that only one quark carries all of the moment urn and spin of the 
nucleon. Therefore, the cross-section is given by equation (2.48) and Al = 1 [17]. If 
we assume the SU(6) model for the flavor and spin wavefunction of the quarks inside 
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the nucleon, then Au = 4/9, Ad = -1/9 and using: 

(2.52) 

we get A: = 5/9 and A; = 0 independent of 2. Thus, the proton asymmetry is 
expected to be large and positive, while the neutron asymmetry is close to zero. 

Since we cannot create a multi-GeV beam of virtual photons, we use polarized 
electrons (or muons) to create the photons with known polarization properties. Then 
A1 and A2 are related to  the measured asymmetries All and Al by the following 
kinematic factors [14]: 

where 
1 - EE' /E  

1 + E R  D =  

(2.53) 
(2.54) 

(2.55) 

(2.56) 

(1 + E )  c = 1 7 7  
1 

1 + 2 (1 + v 2 / Q 2 )  tan2 (@/a) E =  

(2.57) 

(2.58) 

(2.59) 

D can be thought of as a depolarization factor of the photon due to  the fact it is not 
emitted parallel to the initial nucleon spin. The factors D and 7 are plotted vs. 2 for 
the 2.75" spectrometer in Figure 2.3. 

Using equations (2.42-2.45) and (2.55-2.59) we get: 

(2.60) Fl 
1 + y 2  

Fl 
1 + y2 

91 = 

A 1  - sin (0)  All E + E' cos (0) 
(A2/Y - Al) = - 

" ( El D' 2 sin ( e )  g2 = 

where 

(2.62) 

(2.63) 

" .  
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Figure 2.3: The kinematic factors D and 7 as a function of x for the 2.75" spectrom- 
eter. 

Equations (2.60-2.61) can also be obtained directly from the expression for the lepton 
cross-section (2.36). 

So, to extract gl one has to  measure both All and A l .  However, because tan (Q/2) 
is small in our experiment, A l  gives only a very small contribution. One also needs 
to  know F2 and R, which have been measured with sufficient accuracy in unpolarized 
deep inelastic scattering experiments [18, 191. 

Experiments ca~inot measure gl (IC) over the entire range of 0 to  1, which is needed 
to test the sum rules. At low x the range is limited by the Q2 > 1 GeV2 Bjorken scaling 
cut, and at high x by the W 2  > 4 GeV2 deep inelastic cut and limited statistics due 
to  very small DIS cross-section. Therefore, theoretical input is needed to extrapolate 
the data to z = 0 and 2 = 1. For extrapolation to z = 1 one usually assumes that 
Al ---$ 1 based on helicity conservation, as described on page 14. The contribution to 
the integral of gl is small, because Fl + 0 as IC -+ 1. The uncertainty due to high x 
extrapolation is usually very small. 

The extrapolation to low z is more uncertain. This is one of the main reasons 
that the polarized DIS experiments have been conducted at increasingly higher en- 
ergy to  access a lower x region. One historically has used Regge theory for low 2 
extrapolation, which predicts that [20, 211: 

g1 (x) N 5-O1, z t 0 (2.64) 
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where a1 is constrained between -0.5 < a1 < 0. This implies that gl goes to zero 
or stays constant as 17: --+ 0. The validity of this assumption is questionable. Several 
other models exist [22, 23, 241, which predict various forms for the low 17: behavior of 
gl diverging at n: = 0 with various degrees of severity. In most experimental papers 
the Regge theory with a1 = 0 has been used for extrapolation. 

Another issue that has to be addressed in interpreting experimental results is the 
dependence of gl on Q2. Although in QPM the scaling is exact, QCD introduces 
scaling violations which depend of log Q2. The sum rules derived in Section 2.4 have 
to be evaluated at constant Q2. However, because of kinematic constraints, gl is 
measured over a range of Q2 correlated with 2. In addition, different experiments 
measure gl at different Q2. It is observed experimentally that Al N gl /Fl  has no 
Q2 dependence within errors. In QCD this is explained by the fact that Fl and gl 
have very similar Q2 evolution. Experimental analyses usually assume that AI is 
independent of Q2. Since F1 has been measured over a wide range of z and Q2, this 
allows one to calculate the Q2 dependence of gl. The questions of low 17: behavior and 
Q2 dependence will be considered in more detail in Chapter 6. 

2.6 Past Experiments 
The first polarized deep inelastic scattering experiments were carried out at SLAC 
in the 70's - early 80's. The first experiment E-80 [25] was also the first high energy 
experiment ever to use a polarized electron beam. The electron energy was 6-13 GeV. 
Polarized electrons were produced by photo-ionization of Li atoms polarized by Stern- 
Gerlach technique. The electron polarization was SO-SO%, however the beam current 
was limited to 10' electrons per pulse. The polarization of the electron beam was 
measured at the source by Mott scattering and at the target by Mdler scattering. E- 
80 used a butanol solid target polarized by the dynamic nuclear polarization technique 
(DNP) [26]. The only significant non-zero spin element in butanol is hydrogen, so 
it is equivalent to a proton target with a dilution factor of 0.11. Polarizations up to 
50% were achieved. However, the radiation resistance of the material was low, and, 
in fact, was a limiting factor for the beam current. The experiment collected data in 
the range 0.1 < 17: < 0.5 at an average Q2 of 2 GeV2. The virtual photon asymmetry 
AI was found to be close to  the SU(6) prediction of 5/9 in the range 0.3 < 17: < 0.5 
and falling down at lower 17:. 

The next experiment E-130 [27] was done using a higher beam energy of 22 GeV 
to  measure the asymmetry at higher Q2. The beam and target polarizations were 
85% and 50% respectively and a dedicated spectrometer was built at 8 = 11". The 
measurements were performed in the range 0.2 < n: < 0.65 and 2 GeV2 < Q2 < 6 
GeV2. The results were in good agreement with E-80 and confirmed the predictions 
of the SU(6) model. 
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Although the first SLAC experiments were very successful in confirming the basic 
picture of the proton spin structure, they lacked data at sufficiently low z to calculate 
the first moment of gl and check the Ellis-Jaffe sum rule. The next polarized deep 
inelastic experiment was carried out at CERN by the European Muon Collaboration 
(EMC) [as]. This and subsequent CERN experiments used a muon beam with an 
energy of 100-200 GeV to access very low 5 at high Q2. The muon beam is produced 
at CERN from the decay of pions and kaons generated by stopping a proton beam 
in a tungsten target. The muons are naturally polarized due to  the V-A structure 
of the weak decays. The average muon polarization during the run was 80%. An 
ammonia solid state target was used in the experiment, polarized by D N P  to 80%. 
The target consisted of two sections, each 36 cm long, polarized in opposite directions. 
The resolution of the spectrometer was sufficient to trace the scattered electron to 
one of the two target halves. The direction of the target polarization was periodically 
reversed to  reduce uncertainties due to variations in the spectrometer acceptance. 
However, the time drifts of the acceptance were the dominant source of the systematic 
error. The main limitation of the experiment was low statistics due to low intensity 
of the secondary muon beam. The data were collected in the range 0.01 < z < 0.7 at 
3.5 GeV2 < Q2 < 30 GeV2. Based on these data EMC calculated rl; = 0.126 f 0.010 
(stat.) & 0.015 (syst.) The Ellis-Jaffer sum rule, which assumes SU(3)f symmetry 
and negligible polarization of the strange quarks, predicts r : ( E J )  = 0.189 f 0.005 
based on the numbers for F and D available at that time. Thus, the experimental 
result disagreed by 3 0 with the Ellis-Jaffe sum rule. If the constraint As = 0 is 
removed, then one finds using equations (2.26, 2.32, 2.33): 

Au = 0.78 f 0.06 

Ad = -0.47 f 0.06 
AS = -0.19 f 0.06 
AX = AU + A d  + AS = 0.12 f 0.17 

(2.65) 
(2.66) 
(2.67) 
(2.68) 

The EMC result was particularly surprising since it gave a value for AX consistent 
with zero. In contract, in the naive quark-parton model the quarks carry most of 
the proton spin and AX N 1. This situation was called "the proton spin crisis" and 
sparked a lot of interest in the study of spin structure among both theorists and 
experimentalists. 

At this point it is appropriate to  briefly review the theoretical progress in this 
area, which has been quite active since the release of the EMC result. For reviews 
written in the last two years see [7, 15, 30, 31, 32, 33, 34, 351. Soon after the results 
were released, it was realized (see, however, [as]) that QCD significantly modifies the 
QPM interpretation of AE due to non-conservation of the singlet axial current and 
the axial anomaly, which will be discussed in detail in Chapter 6 . In addition, gluons 
can contribute to gl to first order in as.  While one expects that AX e 1 as measured 
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at low Q2, the connection to the DIS measurements is not unique. We will defer the 
detailed discussion of the QCD analysis to  Chapter 6. It suffices to say here that a 
relative consensus on this issue developed only recently. 

The next experimental challenge was to measure the spin structure of the neutron 
to test the Bjorken sum rule. Since a free neutron target is not feasible, two alternative 
approaches were pursued. At CERN a Spin Muon collaboration (SMC) was formed 
to specifically study the nucleon spin structure. To obtain data on the neutron [36] 
they used a deuterated butanol target. The deuteron is equivalent to a sum of the 
neutron and the proton up to small nuclear corrections. A deuterated solid target 
can be as thick as a proton target, which is very important for statistics limited 
muon experiments. On the other hand, the proton asymmetry is large, while the 
neutron asymmetry is small. So, to extract the neutron data from measurements on 
the deuteron, one has to subtract a large proton asymmetry from a large deuteron 
asymmetry to  get a small neutron asymmetry. In the process of this subtraction 
both the statistical and the systematic errors are amplified. The experiment used 
a new target similar in design to the EMC target, and the muon polarization was 
measured directly by looking at the asymmetry of the muon decays, whereas the 
EMC experiment determined the muon polarization based on a Monte Carlo. . 

At approximately the same time a new spin structure program was started at 
SLAC. To obtain the data on the neutron the E-142 collaboration used a 3He gas 
target [37]. In 3He the two protons are combined in a spin-0 state because of the Pauli 
exclusion principle, and the spin of 3He is mostly due to a single neutron. Thus, one is 
sensitive directly to  the neutron asymmetry. The thickness of the gas target is much 
smaller than a solid target, but this is not a problem for a high intensity electron 
beam at SLAC. The 3He was polarized by spin exchange with optically pumped Rb 
atoms. In many aspects the polarized target [38] was similar to  the target used for 
this experiment. The target polarization was on average 33% during the run. The 
polarized electron beam was produced by photoemission from an unstrained GaAs 
crystal. This technique has a theoretical polarization limit of SO%, and the average 
polarization during the run was 36%. Its main advantage is a larger beam current. 
The number of electrons per pulse was 3 x lo", 3 orders of magnitude higher than 
in E80/E130. Despite lower target and beam polarizations, the results of E-142 had 
much smaller statistical errors than SMC because of a much larger event sample. 

Following the neutron experiments, both SLAC (E-143) [39] and CERN (SMC) 
[40] conducted the second round of experiments with proton targets. They also used 
a deuterium solid target to obtain another measurement of the neutron spin structure 
[41,42]. A new experimental program (HERMES) to study the nucleon spin structure 
recently started at DESY. During their first run a 3He target was used to make a 
measurement on the neutron [43]. For the HERMES experiment polarized 3He was 
injected directly into the beam line of a positron storage ring at DESY, providing an 

r -  
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“internal target”. While the target thickness is very small, it is compensated by a very 
large current in the storage ring. Such a target is also free from any dilution due to 
scattering from unpolarized material. HERMES used the technique of metastability- 
exchange pumping to polarize 3He. They achieved an average 50% target polarization 
and 60% beam polarization. Their first results were released concurrently with our 
data. 

Thus, at present there is a relatively large number of polarized spin structure 
measurements, whose results are shown in Figure 2.4 for the proton and Figure 2.5 
for the neutron. 
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Figure 2.4: World data on the proton spin structure function 9:. Note that xg: is 
plotted on the vertical axis. 

As can be seen, there is a substantial amount of data, which are consistent with 
each other. However, the errors of the structure function gl are much larger than, for 
example, unpolarized structure function F2. There is clearly room for more accurate 
measurements. This is particularly true in the low z region, where only SMC data 
are available. The low z region is very important for extrapolation to  z = 0, which is 
necessary to test the sum rules. Therefore, our experiment was designed to achieve 
substantially higher accuracy than any previous measurements, and also to extend 
the precision data down to J: = 0.014, below previous SLAC experiments. 
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Figure 2.5: World data on the neutron spin structure function 9:. Note that xgy is 
plotted on the vertical axis. 
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Chapter 3 

The E 4 5 4  Experiment 

The experiment was conducted at Stanford Linear Accelerator Center' in Menlo Park, 
California. The accelerator provides a polarized electron beam with energy up to 50 
GeV. A new beam line was constructed to direct the electrons into the End Station 
A (ESA), were the experiment was conducted. The polarization of the electrons was 
measured in the ESA using a single arm Mgller polarimeter. The electrons were 
scattered from a polarized 3He target and detected in two spectrometers, one located 
at approximately 2.75" and the other at 5.5". Each spectrometer consisted of 2 
Cherenkov tanks, several hodoscope planes and a shower counter. In this experiment 
no hardware trigger was used. All data collected during a beam pulse were digitized 
and stored on tape for later off-line analysis. The data were collected during a 2 month 
run in October and November of 1995. In this chapter I describe the experimental 
setup and data analysis unrelated to the polarized target. 

3.1 Polarized Electron Beam 

The polarized electrons at SLAC are produced by photoemission from a strained GaAs 
cathode. For a review of polarized electron sources see [l] and references therein. The 
SLAC source, in particular, is described in [2]. The level diagram of the conduction 
and valence bands in strained GaAs crystal is shown in Figure 3.1 [a]. The valence 
band consists of P 3 p  and P1p levels which are split by spin-orbit interaction Aso. 
By introducing a uniaxial strain in the crystal one can also split the P3p level into 
sublevels with different values of ImjI (light holes and heavy holes). In effect, the 
strain induces a quadrupole splitting. The amount of splitting S is approximately 
proportional to the strain. A circularly polarized laser beam is used to excite the 
electrons from the valence band to the conduction band. If the laser is tuned to have 
an energy between Eg and Eg -t S ,  then only electrons from the P3p, mj = - 3 / 2  state 

'The accelerator is operated by the U.S. Department of Energy. 
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can be excited to  the mj = -l/2 state for right circularly polarized light. Thus, 
the polarization of the electrons in the conduction band can theoretically reach 100%. 
If the crystal is not strained, the P3/2 state is four-fold degenerate and the maximum 
polarization is limited to (3 - 1) / (3  + 1) = 50%. To achieve high polarization the 
splitting 6 should be larger than the width of the levels due to crystal defects and 
thermal smearing. 

In m,=-1/2 112 

p,,* m.=-112 112 

Figure 3.1: The energy level diagram for strained GaAs crystal. The numbers next 
to the transition lines indicate relative transition strength. 

The strain is achieved by growing GaAs on a substrate of GaAs0.72P0.28 as shown 
in Figure 3.2. GaAs0.72P0.28 has a lattice spacing smaller by about 1% than the 
spacing in pure GaAs and therefore results in tensile stress of the GaAs active layer 
[3, 41. The active layer is sufficiently thin to  prevent relaxation of the strain. Finally, 
a critical feature of a photoemission cathode is its negative electron affinity (NEA). 
The behavior of the energy levels near the surface of the cathode is shown in Figure 
3.3. A very thin film of Cs-F lowers the energy of the conduction band below the 
vacuum energy, which allows the excited electrons to escape from the crystal. The 
cathode is maintained at a negative voltage of 60-120 kV which gives the electrons 
an initial acceleration. Then they are magnetically focused, accelerated by R F  fields 
and injected into the linear accelerator. 

To achieve NEA it is extremely important to  have a very clean cathode surface 
and very high vacuum when the Cs-F film is formed. The overall probability for the 
electron to diffuse to the surface of the crystal and escape, before decaying back to the 
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Cs-F film 
t I GaAs active layer 1 100nm 

Figure 3.2: The layered structure of the strained GaAs cathode. 

U 
p-type GaAs Cs-F Vacuum 

Figure 3.3: Deposition of a Cs-F film on the surface results in a negative workfunction 
for the electrons in the conduction band. 

valence band is called the quantum efficiency (QE) of the cathode. For the cathodes 
used at SLAC over the last several years the QE varied from 0.007 to  10%. This 
indicates how sensitive the cathodes are to the preparation process. The combination 
of high vacuum and high voltage requirements make the polarized source an extremely 
complicated and delicate device. The SLAC source operates with ultrahigh vacuum 
at lo-'' torr and 40 kV/cm electric field gradient with a leakage current of 10nA. 
A special system is implemented that allows to  install the cathode without breaking 
the vacuum. The Cs film on the surface of the cathode is periodically replenished 
(a process called cesiation) by an automated system. The overall reliability of the 
source is over 95%. 

The cathode is pumped by a flashlamp-pumped Ti:Sapphire laser which delivers 
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-200 ns pulses with an energy of 80 pJ. The circular polarization of the light is 
controlled by fast Pockel cells. For each pulse the polarization is chosen by a pseudo- 
random number generator. This information is sent via several channels (polarization 
bits) to  the data acquisition system. Feedback systems control the intensity of the 
laser pulses to minimize the charge asymmetry between the left and right handed 
electron pulses. 

The electrons from the source are accelerated to about 48 GeV by 240 klystrons 
in a 2-mile long linear accelerator. A new beam-line was constructed to deflect the 
electrons to  the End Station through a 24.5" angle. When an electron is deflected, its 
spin processes due to the anomalous magnetic moment a ,  = (g - 2) /2. The amount 
of the precession is related to the deflection angle [5, 61: 

@bend 
9 - 2  

@prec = Y- 2 

The factor of y can be thought of as due to the time dilation in the rest frame of the 
electron. Longitudinally polarized electrons remain longitudinally polarized if OpTec is 
a multiple of n. This implies that full polarization can only be achieved at a discrete 
set of energies, and also allows one to measure the energy of the beam very precisely 
by measuring its polarization. In our experiment @bend = 24.5" and Oprec = 15n for 
electron energy of 48.35 GeV in the ESA (about 400 MeV are lost due to synchrotron 
radiation in the bend). 

3.2 Moller Polarimeter 
The beam polarization was measured in the ESA using a single arm Mdler polarimeter 
[7, 81. Mpiller scattering is elastic scattering of electrons on electrons. The scattering 
cross-section is strongly spin dependent due to helicity conservation (see Chapter 2). 
To calculate the cross-section we can virtually carry over the results from Chapter 
2 for an elementary Dirac particle. The only modification is due to the fact that 
the electrons are indistinguishable particles, which results in a contribution from an 
additional diagram with initial and final particles interchanged. The result, written 
in the center of mass frame, is [8]: 

(7 + cos2 6) sin2 8 
A ( @ )  = 

(3  + cos2 

The asymmetry is maximum for the center of mass scattering angle of BCM = 90" 
and is equal to A(90") = 7/9. For OCM = 90" scattering in the lab frame both 
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electrons have the same energy (Ebeam/2) and scatter by an equal, but opposite angle 
@LAB = 0.26'. 

The measured asymmetry 

is proportional to the beam and target polarizations and can be used to measure the 
beam polarization if the target polarization is known. 

A ferromagnetic material is usually used as a target of polarized electrons. In 
our case the target was a foil made of 49% Fe, 49% Go and 2% Va. This is a soft 
ferromagnetic material, and it is driven to  saturation by placing the foil in an 100 G 
magnetic field. Only 2 electrons in Fe and Va are polarized, so the average electron 
polarization is about 8%. The foils are 3 cm wide, 35 cm long and range in thickness 
from 20 pm to 154 pm,  although the bulk of the data was collected with a 40 ,urn 
foil. Because the foil is very thin, it can only be magnetized along its plane. This 
follows from the boundary conditions on B and H fields [5]: 

Thus, the normal component of the magnetic field B has to  be continues across 
the boundary, while the parallel component increases by the ratio of the magnetic 
permeabilities. Therefore, for maximum asymmetry the foil should be placed parallel 
to  the beam. However, the electron beam cannot travel along the foil. The solution 
is to  place the plane of the foil at an angle, so the electron polarization along the 
direction of the beam is equal to  PT cos Of. In our case the angle was 20.7", decreasing 
the target polarization by a factor of 0.935 and increasing the target thickness by a 
factor of 2.53. 

To determine the polarization of the foil we use a pick-up coil to measure the 
amount of flux in the foil [9]. The coil has N,  = 500 turns and is wrapped around the 
foil. The flux through the coil is given by @ = A,B, where A, is the cross-sectional 
area of the coil and B = H + 47rM. By sweeping the magnetic field from 100 G to 
-100 G one can reverse the direction of the magnetization. The voltage across the 
coil is given by V = -d@/d t .  An integrating voltmeter is used to  measure 

1, = / V ( t )  d t  = @'f in  - @ ) i n  = 2Nc ( H A ,  + 47rMAf) (3.9) 

1 
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where Aj is the cross-sectional area of the foil. The measurement is repeated without 
the foil in place. In the absence of the foil B = H .  Because the foil is very thin, the 
H field is not affected by the presence of the foil. This follows from the fact that the 
component of H parallel to the foil is continues across the boundary. By subtracting 
the result of the second measurement we cancel the contribution from the H field and 
get: 

I j  - Io = 2AjNC4nM (3.10) 

The cross-sectional area is determined by measuring the length and the mass of the 
foil and using the known density of the material. 

To convert the foil magnetization into a value for the electron spin polarization 
one has to  correct for the contribution of the orbital angular momentum. For the spin 
contribution one has Ms = g e P B S ,  where g ,  N 2 is the gyromagnetic ratio of a free 
electron, while for the orbital angular momentum Ado = p B L .  The magnetomechani- 
cal ratio of a material is defined by [lo]: M = g ' p B  ( L  + S ) .  It was measured for an 
alloy consisting of .50% Fe and 50% Co to  be g' = 1.916 f 0.002 [ll]. We assume that 
it is not affected by the presence of 2% of Va, however, the error is increased to  0.02 
to  allow for a small effect. One can show that the fraction of the angular momentum 
carried by the spin is (9' - 1) / (9, - l ) ,  and the electron spin polarization is: 

(3.11) 

The polarizations of the foils were measured several times and were reproducible to  
about 1%. The average polarization was 8.2% with slight differences between the 
foils. 

The Mdler electrons were deflected by a dipole magnet and detected by a silicon 
strip detector. A mask was put in front of the magnet to define the angular accep- 
tance. A septum placed inside the magnet shielded unscattered electrons from the 
magnetic field. Two sets of silicon strip detectors were used. The top detector was 
finely segmented, so the elastic Moller peak was about 6 channels wide. The scatter- 
ing angle in the CM frame was 94". Five bottom detectors usually contained the peak 
in just one channel and covered CM angle from 93" to  104". The raw asymmetry was 
about 5%. 

The signals were fit to a lineshape expected for Mdler scatters plus a quadratic 
background. The theoretical lineshapes included the effect of the correlation between 
the atomic motion of the electrons and their polarization. This effect, first identified 
by Levchuk [la],  is due to the fact that the two polarized electrons in Fe and Co 
are in the 3D shell, while the inner shells are unpolarized. The electrons in the 
inner shells have a relatively larger momentum than the polarized electrons due to 
atomic motion. Although the momentum of the electrons is only about 100 keV, 
much smaller than the beam energy, it is not negligible compared with the electron 
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rest mass, and can alter the scattering angle by up to 10%. As a result, the elastic 
peak from the unpolarized inner electrons is significantly wider than the peak from 
the polarized electrons. This effect needs to he taken into account to extract the 
Mgller asymmetry, otherwise i t  can result in errors up to 15% [13]. 

After the data are fitted to the appropriate lineshape, the background is sub- 
tracted, which increases the asymmetry by about 20%. This number is insensitive 
to particular ways of estimating the background and the lineshape. The final error 
in the measurement of the polarization is 2.8%, dominated by the uncertainty in the 
foil polarization (1.9%) and background subtraction (2%). 

A number of diagnostic tests was performed with the Mdler polarimeter in the 
beginning of the run. The frequency of the Ti-Sapphire laser pumping the cathode 
was scanned from 840 nm to 850 nm which changed the polarization from 76% to 80% 
with a maximum near 850 nm. The energy of the beam was scanned, mapping out 
one half of the oscillation cycle due to the anomalous magnetic moment (see equation 
3.1). The polarization was observed to change sign when the energy was reduced 
from 48.3 to 46.5 GeV. Based on the fit to these data the energy of the beam was 
determined independently of the magnetic field measurements in the bend line. After 
these tests the beam polarization was very stable at an average value of 82.4%. It 
was found to increase slightly when the beam current was reduced from 9x10'' to 
(3  - 5)x1010 electrons per pulse. A plot of the polarization vs. run number for the 
experiment is shown in Figure 3.4. 

3.3 Spectrometers 
The overall spectrometer layout is shown in Figure 3.5. The experiment utilized 
two separate spectrometers which detected the electrons scattered by approximately 
2.75" and 5.5" degrees. Each spectrometer consisted of a set of magnets, used for 
momentum determination and elimination of neutral backgrounds, and a detector 
package to track the scattered particles. 

The spectrometers were designed to have a broad kinematic coverage from 10 
to 44 GeV. To eliminate the background from neutral particles the spectrometers 
had a "double bounce" geometry, which means that the neutral particles had to 
scatter at least twice from the magnets or the collimators to reach the detectors 
[14, 151. The two dipole magnets in each spectrometer bent the electrons in the 
vertical plane in opposite directions, while the quadrupole in the 2.75" spectrometer 
defocused the electrons to reduce rates per detector element. Collimators were used 
to define the acceptance of the spectrometer. The position of the collimators in the 
2.75' Spectrometer was adjusted during the run to provide a constant rate as the beam 
current and target thickness were changed. Figure 3.6 shows the kinematic coverage 
in the x - Q2 plane by the spectrometers. The field of the magnets was mapped prior 

* -  I 
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Figure 3.4: The polarization of the electron beam vs. run number. 

to  the experiment. They were monitored during the experiment by NMR probes. An 
optics model was constructed which provided a mapping between the position and 
direction of a track in the spectrometer and the initial momentum and angle of the 
scattered electron [16]. The calibration of the spectrometer was checked by a special 
8 GeV run in which the energy of the proton elastic peak was measured. 

The detector system in each spectrometer consisted of 2 Cherenkov tanks, 2 banks 
of hodoscopes and a shower counter. It was designed to  identify the scattered elec- 
trons and measure their momentum and scattering angle in the presence of a large 
background of pions and neutral particles. 

. . .  , 
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Figure 3.5:  Layout of the E-154 spectrometers. 
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Figure 3.6: The kinematic coverage of the E-154 spectrometers. 

The Cherenkov counters were used in the threshold regime to discriminate between 
electrons and pions. Cherenkov radiation is created by a particle traveling through 
a medium with a velocity greater than the velocity of light in the medium. The 
threshold for production of Cherenkov light is: 

> 1/n 
@ =  Jm- (3.12) 

where n is the index of refraction of the medium. The momentum threshold for pions 
is pth  = mT (A€) , where A& is the deviation of the dielectric constant from unity, 
n = Jm. A& for a gas is proportional to  its density and can be easily adjusted. 

The number of Cherenkov photons emitted by the electron per unit length and 
wavelength is given by [5, 171: 

-112 

d 2 N  27ra 27ra 
dxdX X2 

(3.13) 

In the last expression we used the fact that for electrons p is very close to  unity. For 
pions above the threshold the number of photons is suppressed by an additional factor 
of (1 - p;h /p2) .  The photons are focused by a mirror onto a Photo-Multiplier Tube 
(PMT). The number of photoelectrons produced in the PMT is a Poisson distribution 
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with a mean given by: 

Npe = 27raL dAQE (A )  AE (A )  / A 2  J (3.14) 

where L is length of the tank and QE(A) is the quantum efficiency for collecting 
the photons and converting them to photoelectrons on the PMT cathode. We would 
like Npe to be sufficiently large so the probability of detecting zero photoelectrons 
P(0)  = e - N p e  is small. For P ( 0 )  < 1% we need Npe > 4.6. The pion production 
cross-section in deep inelastic scattering drops very fast with energy and becomes 
small for energies higher than 20 GeV. We would like to set the pion threshold to 
approximately that energy, while keeping the electron detection inefficiency P (0) 
sufficiently small. To satisfy both requirements the length of the tank has to be 
rather large. 

We choose N2 gas as the media for two reasons. It has a low scintillation rate, 
which is important because pions can produce light by scintillation even below the 
Cherenkov threshold. The average number of photoelectrons due to scintillation was 
estimated to be 0.1 per particle [18]. In addition, N2 gas has high UV transmis- 
sion down to  140 nm and the Cherenkov light spectrum is weighted toward short 
wavelength by a factor of 1 /A2 .  

The parameters of the Cherenkov tanks are shown in Table 3.1. For 2C1 tank, for 
example) A& = 5.2 x lop5  for N2 pressure of 1.4 psia [I91 giving a threshold for T- of 
19.3 GeV. The photons are emitted at an angle of 0.41" to the electron track. They are 
collected by spherical mirrors and imaged onto a Hamamatsu R1584 photomultiplier 
tube. The mirrors use an A1 film and have reflectivity higher than 75% up to  160 
nm [20]. The phototubes have a spectral range from 200 to 640 nm with 15-20% 
quantum efficiency. To detect the photons in the UV an organic wavelength shifter 
is deposited on the front face of the photomultiplier tubes. It absorbs photons in 
the range 115-310 nm and reemits them at 370 nm. Based on the manufacturer's 
specifications for the quantum efficiency of the PMT and the wavelength shifter and 
measured reflectivity of the mirrors as a function of wavelength, the predicted number 
of photoelectrons is about 6 - 8 [all, which is very close to the observed number of 
5.7. In contrast, according to the Particle Data Group [17] rule of thumb, the number 
of photoelectrons for our system is expected to  be about 2.5. 

The output of the PMTs was recorded by a 256 bit Flash Analog-to-Digital Con- 
verter (FADC) in 1 ns. intervals over the entire duration of the beam pulse (250 ns). 
The FADC consisted of 4 channels running at clock speed of 250 MHz which were 
interleaved, giving an effective 1 ns. resolution. The digitized waveform was stored 
on tape for later analysis. In addition, the last dynode of the PMT was connected 
to a Time-to Digital Converter (TDC) which recorded the time of the pulses whose 
height exceeded a preset threshold. 

* *  
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Tank Pion 
Threshold 

(GeV) 
2 c 1  19 
2c2  19 
5C1 16 
5C2 16 
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Effective Mirror Pressure Observed 
Legth Curvature (psia) NP 
(m> (m> 
5.3 1.2 1.4 5.7 
6.1 1.6 1.4 5.1 
5.6 1.2 2.0 6.2 
4.0 1.6 2.0 5.0 

Table 3.1: Parameters of the Cherenkov detectors 

The hodoscope system used for tracking consisted of a number of finely segmented 
plastic scintillation counters. Passage of charged particles though the plastic causes 
scintillation in the UV region. By adding a small amount of organic wavelength 
shifter, this radiation is converted to  visible photons, in our case at 408 nm. Approx- 
imately 10-15 photons were emitted for each particle [22]. The photons propagate 
down the plastic scintillator by total internal reflection and reflection from aluminum 
foil which is wrapped around each finger. A PMT mounted on one end of the finger is 
used to  detect the photons. Its output is connected to a multihit TDC which records 
the time(s) of particle passage. Because of a large pion background, it was critical to 
have a very finely segmented hodoscope to reduce the rate per detector element and 
the dead time. A total of 10 (8) planes of hodoscopes were used in 2.75'(5.5') degree 
spectrometer with a total of 784 channels. For better coverage, the fingers in each 
hodoscope plane overlapped by about 1/3 of their width. 

An electromagnetic calorimeter at the end of the spectrometer was used to measure 
the energy of the electrons and provide additional discrimination between electrons 
and pions. Each of the two calorimeters consisted of 200 blocks of lead glass arranged 
in 20 rows of 10 blocks each. The blocks were made of F2 lead glass (about 42% lead) 
and were 6.2 cmx6.2 cm in cross-section and 75 cm long [23]. 

High energy electrons lose energy in the shower counter by emitting high energy 
bremsstrahlung photons which in turn produce e+e- pairs. This results in a cascade 
effect and a large number of photons and electrons/positrons is created. The radiation 
length Xo is defined as the length over which the initial electron losses all but l / e  
of its energy to bremsstrahlung. The characteristic pair production length for a high 
energy photon is (7/9)X0. Thus, the length scale of the shower is governed by Xo. 
For our glass X o  = 3.17 cm [24]. As the energy of the electrons decreases, the loss by 
ionization starts to dominate over bremsstrahlung. This energy is called the critical 
energy E,. In our material E, N 13.9 MeV. The electrons and positrons created 
by the shower emit Cherenkov radiation in the lead glass, which has an index of 
refraction n = 1.58. A PMT is mounted at the end of each block to detect the 
Cherenkov light. The number of Cherenkov photons is proportional to the total track 
length of all electrons/positrons created by the shower, which is proportional to the 
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shower energy. Therefore, the integrated PMT signal is proportional to the energy 
deposited in each block. An Analog-to-Digital Converter (ADC) is used to measure 
the integral of the PMT signal over the pulse length. In addition, multihit TDCs 
record the time(s) of the pulses that exceeded a preset threshold. 

The longitudinal profile of the shower is approximately given by [as]: 

(3.15) 

where X E 1.9, and cy = In (EIE, )  /A .  The peak energy deposition occurs at (7 - 8) Xo. 
The total length of our lead blocks is 23.6 radiation length and the electromagnetic 
shower is entirely contained within the calorimeter. 

The transverse shower profile is due to  Coulomb scattering of the electrons and 
positrons during the initial stages of the shower development [25]. It is usually pa- 
rameterized by a Mdler radius, given by Rm, = &E,/EC, where E, = m,c2 471. a = 
21.2 MeV. For our glass RM M 4.8 cm. The transverse energy profile is approximately fl 
given by an exponential: 

- ~ T / R ,  - e  
dr 

(3.16) 

In our experiment the energy of the electron shower was contained almost entirely in 
9 adjacent block, the central block containing a large fraction of the energy. At later 
stages of shower development the photon absorption length becomes longer and the 
divergence of the photons starts to contribute the shower width. This gives a broader 
profile in the back of the shower, so the total shape is often parameterized by two 
exponentials [26, 271: 

_. dE ( e - T / R i  + A e - T / R 2 )  

dr 
(3.17) 

Because the number of particles in an electromagnetic shower is very large (roughly 
equal to E / E ,  - l O O O ) ,  the shower has a symmetric shape and is not affected by 
flu c t ua t i ons. 

Hadronic showers are characterized by a nuclear interaction length XI = 35 
g / ~ m ~ A ' / ~  [17]. For our lead glass XI = 34 cm, so the total shower length is only 
about 2x1. Therefore, only a fraction of pion energy is deposited in the glass. Engel- 
mann e t  al. [28] studied the energy deposition for a monoenergetic pion beam in a 
24.2 radiation length calorimeter made of similar F2 lead glass ( X o  = 3.22 cm). They 
found that about 17% of the pions do not shower, leaving only a minimum ionizing 
track of 0.5 GeV. The rest form a broad peak centered at 38% of their energy. The 
fraction of pions that deposit between 80 and 100% of their energy is only about 3%. 
In contrast, all electrons deposit more than 99% of their energy in the calorimeter. 
This allows one to use the shower counter for pion discrimination by putting a cut 
on the ratio of E / y ,  where E is the energy deposited in the calorimeter and p is the 

1 
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momentum measured by tracking. For electrons it should be equal to 1. In fact, the 
gain of the PMTs in the shower counter was calibrated so that the E / p  ratio for the 
electrons was close to 1 and then a low E / p  cut was used for pion discrimination. 
Figure 3.7 shows the histogram of E / p  ratios for electrons and pions in our calorime- 
ter. The electrons and pions were selected by applying a cut on the Cherenkov pulses 
(large pulses in both tanks for the electrons, no pulses for pions). As can be seen, the 
separation between electrons and pions is very clean. 
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Figure 3.7: The E / p  ratio for electrons (open) and pions (hatched). 

The transverse shape of the shower (i.e. the relative amount of energy deposited 
in adjacent blocks) can be used for additional pion discrimination [28]. The shape 
of the electron shower is highly regular and is described by equation (3.17).  For 
pions, the shower is broader because of a larger nuclear interaction length XI. In 
addition, because a small number of particles is produced in the shower, there are 
large fluctuations. Some of the energy can be converted to  no (for example, via 
charge exchange n-p -+ non) which decays into 27 and produces an EM cascade. If 
a n- converts to  7ro in the very front of the calorimeter, it will deposit most of its 
energy, and the shape of its shower will be indistinguishable from that of an electron 
shower. In other cases, a TO is produced later during the shower development and the 
transverse profile of the shower is highly asymmetric. 
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Several other hardware elements were used in the experiment. The beam current 
was monitored by two toroids, which detected the voltage induced in a toroidal coil 
placed around the beam as the an electron pulse went through. The beam position 
was monitored by a wire array, which consisted of a grid of wires spaced by about 
1 mm. As the beam went through the wires, it induced a voltage proportional to 
the beam intensity. This allowed measurements of the beam position and width in 
both dimensions. In addition, traveling wave beam position monitors (TWBPM) 
were used to determine the beam position. The quality of the beam was monitored 
by a set of two scintillation counters, called the “Good spill” and “Bad spill”. The 
good spill counter was placed in the ESA downstream of the target. It was a large 
area scintillator that essentially measured an average particle flux scattered from the 
target. The shape of the signal provided direct information about the time structure of 
the beam and was used by accelerator operators for tuning. The “Bad spill” monitor 
was placed upstream of the target. Any signal in this counter indicated that the beam 
was scattering from the walls of the beam pipe or had a large halo. This information 
was also used by the operators and gave the shift crew a concrete reason to complain 
about the quality of the beam. The rate in various detector elements was monitored 
by scalers, which counted the number of pulses per spill. This information was used for 
quick diagnostic. Various operating parameters (i.e high voltages, magnet currents, 
Cherenkov pressures) were recorded periodically. An automated program monitored 
their status and set off an alarm if their values deviated from a specified range. 

The data acquisition system was based on CAMAC modules, which interfaced 
with detector electronics, and VME processors, which controlled the writing of data 
to  tape. The electronics were located in the 2.75” spectrometer hut, and were not 
accessible while the beam was on. However, they were quite reliable and required little 
maintaince. The data were recorded directly to an automated SLAC tape silo without 
operator intervention. The throughput of the data acquisition system was about 0.7- 
0.8 Mbytes/s. A total of 1.4 Tbytes of data were collected during the experiment. A 
control program, run on a local workstation, was used for menu-driven control of the 
data acquisition program. On-line analysis programs ran on dedicated workstations 
for monitoring of the detector performance. 

3.4 Data Analysis 

The data analysis was done independently by two groups, one based at SLAC and 
the other at Caltech. Although the basic steps of the analysis were the same, some 
algorithms differed between the groups. The results of the two analyses were in 
excellent agreement and were averaged for the final result. The following description 
will be based on the Caltech algorithm. 

Because of the amount of data collected during the experiment, the data analysis 
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was done in 2 steps. First, the raw data were searched for particle tracks satisfying 
minimum requirements for an electron. The list of found tracks and associated detec- 
tor hits was written to Data Summary Tapes (DST). This step of the analysis took 
7 weeks running on four DEC Alpha 64 bit, 266 MHz workstations and reduced the 
amount of data by a factor of 6. Then, DSTs were analyzed, applying additional cuts 
and grouping the events according to their rt: and Q2 values. Resulting summary files 
were used in calculation of the asymmetry. 

The Cherenkov data contained the digitized form of the PMT output for the 
entire spill. The analysis proceeded in the following steps. Pulses were detected in 
the waveform by looking for jumps in the derivative of the signal. The height and area 
of the pulse were determined. Before proceeding to the next pulse, an average pulse 
shape, scaled by the height of the current pulse, was subtracted from the waveform. 
This removed small oscillations present in the tail of the pulse. The effective dead 
time of the detector and the algorithm was about 5 nsec. 

It was found that the time resolution can be significantly improved by using TDC 
information collected from the last dynode of the PMT [as]. Although the time 
resolution of the FADC is 1 nsec, it is achieved by interleaving 4 channels running 
at 250 MHz each. When the beam trigger is received, the FADC clock waits for the 
next tick (up to 4 nsec) before starting the data acquisition. This results in jitter of 
the overall time of the FADC waveform. The TDC, on the other hand, has a true 1 
nsec resolution. Therefore, the TDC time of a clean pulse can be used to shift the 
time of the entire FADC waveform. This improved the time resolution from 1.4 to 
0.8 nsec, increasing the tracking efficiency. 

The analysis of the shower counter data required a more sophisticated algorithm 
because of the limited amount of data available. For each block of the shower counter 
the ADC signal gave an integral of the PMT output over the entire spill. In addition, 
the TDC signal gave the time of the pulse (or pulses, if they were separated by more 
than 20 nsec). Because of high instantaneous rate in the spectrometer, often more 
than one particle deposited its energy in the block during the spill. Such situation was 
called an overlap. It was necessary to divide the energy recorded by the ADC between 
the particles (energy sharing). The TDC information was used for this purpose. For 
the shower counter the TDCs recorded both the leading edge time (when the PMT 
output exceeded the threshold) and the trailing edge time (when the output dropped 
below the threshold). The difference between the time of the leading and the trailing 
edge is correlated to the height of the pulse and can be used to estimate its area. 
The top half of the 2.75" calorimeter, most affected by the overlaps, was equipped 
with three TDC's set at different thresholds to  provide more information for energy 
sharing. The relationship between the TDC pulse width and the energy of the pulse 
was determined empirically from a sample of events not affected by overlaps. 

The analysis proceeded in the following steps [16] (see also Appendix A). First, 
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local maxima in energy deposition were identified among the blocks. They formed the 
central blocks of “clusters”. Additional blocks were assigned to  the clusters based on 
their proximity in space and/or in time of the TDC hits. The clusters were considered 
for further analysis only if their total energy exceeded a minimum possible energy for 
an electron. This cut rejected many pions, which often deposit very little energy, at 
the initial step of the analysis. If any of the blocks had multiple TDC hits, their 
energy was shared among different hits (“cells”). The sharing was done by doing a 
least x 2  fit using the energy estimate and error determined from the TDC information 
constrained to the total ADC signal. 

Further useful information can be extracted from the data by using particular 
physical properties of the electromagnetic shower [30], Appendix A. The transverse 
profile of the shower, given by equation (3.17), can be used to estimate the energy 
deposited in each block of the cluster based on the position of the electron hit. This 
can be done by integrating the shower profile over the size of the block. Using 1- 
dimensional version of equation (3.17) one can show that the energy deposited in the 
central block of width 2d by an electron of energy Eo is: 

Ec (x) = EO [ (1 - exp (-$) cosh (k)) + A  (1 - exp (-$) cosh 

where T is the distance of the electron hit from the center of the central 
energy deposited in the side block is: 

Es (x) = Eo [ exp ( -- 11) sinh ($ ) + A exp (-i) sinh ($1 
(3.18) 

block. The 

(3.19) 

Figure 3.8 shows the fraction of the electron energy deposited in a block as a function 
of the distance of the electron hit from the block center. If the distance is less than 
d, it is the central block, if it‘s greater than d it is the side block. The constants in 
equation (3.18) are adjusted to fit the data. As can be seen, the transverse profile 
of the shower has a regular shape with little fluctuations and can be used to extract 
useful information. 

The applications of the transverse shower profile in the analysis are discussed in 
[30], which is reproduced in Appendix A. Here we only enumerate its uses. 

1. 

2. 

The position of the electron track can be calculated by considering the ratio 
of the energy deposited in the side block and the central block Es /Ec .  This 
provides a better position determination than a simple center of gravity method 
[26, 271. The position determined from the shower is important because it is 
used as a starting point for the tracking algorithm. 

The shower shape can be used to estimate the electron energy based on infor- 
mation from only a few blocks, rather then by adding the energy of all blocks 
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Figure 3.8: The energy deposited in a shower block as a function of the track distance 
from the center of the block. The error bars indicate the RMS of the distribution. 

in the cluster (9 or more). This method is less affected by overlaps, since the 
probability of an overlap is smaller for a smaller number of blocks. 

3. The energy sharing can be improved by fitting the shape of the shower to the 
actual energy deposition in the blocks of the cluster. The energies of the blocks 
affected by the overlap are adjusted to better fit the shape. 

4. The shape of the shower can provide additional discrimination between the 
electrons and pions, since the pion shower is wider and more asymmetric than 
the electron shower. One can put a cut on the x 2  of the electron shower shape 
fit to  reject the pions [as]. 

The SLAC analysis group used different algorithms to analyze the shower data 
[31, 32, 331. For comparison of the performance of the two approaches see Appendix 
A .  

The tracking algorithm mainly relies on the timing information from the ho- 
doscope TDC’s. The process starts by collecting information from the shower counter 
and the Cherenkovs to determine an initial position and time of a track candidate. 
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Then hodoscope elements are identified, which have hits in time and within certain 
kinematic cuts. These hits are grouped into miniclusters when several fingers inter- 
sect in time and space. A fitting routine is then used to minimize the x 2  of the 
track by varying its time and coordinates. Since there is no magnetic field inside the 
spectrometer, the track trajectory is a straight line. Hits in the hodoscope which 
give inappropriately large contribution to the x2 are dropped as accidental. Cor- 
rections are applied for the time of light propagation in the hodoscope fingers and 
the Cherenkov counters (1-2 ns). The momentum of the electron can be determined 
from the track based on the knowledge of the field of the magnets in front of the 
spectrometer. 

During the analysis of the DSTs, additional cuts were applied. Since all DSTs 
could be analyzed in three days, one could experiment with different cuts. Cuts were 
used to eliminate data taken under poor electron beam conditions, as determined by 
several beam diagnostic devices (wire arrays, TWBPM, bad and good spill). Entire 
runs were eliminated if the polarization of the target was too small, the hardware 
was malfunctioning, or the electron beam had a large charge asymmetry. Electrons 
were selected by making cuts on the height of the Cherenkov pulses, the x2 of the 
shower shape fit and the E / p  ratio. The process of such selection is shown in Figure 
3.9. The first plot shows the E / p  spectrum for all particles in the detector. A large 
number of pions can be eliminated simply by applying a cut on the energy of the 
cluster, since no electrons can have a cluster with an energy less than 10 GeV. In the 
Caltech analysis such cut was applied at the initial stage of the analysis, significantly 
reducing the amount of data. Next we apply a cut on the Cherenkov signals, which 
eliminates most of the pions. As a compromise between pion contamination and 
electron inefficiency, we require a pulse in both tanks, one of which should exceed 
2.5 photoelectrons. Then we apply a cut on the x 2  of the shower shape fit, further 
reducing the pion background. The E / p  > 0.8 cut is applied last. 

3.5 Asymmetry 
The asymmetry in 
formula: 

where NT1 (NTT) is 

each n: bin can be calculated from the data using the following 

(3.20) 

the number of electrons detected in that (2: bin for the target and 
electron spins anti-parallel (parallel). Pb and Pt are the beam and target polarizations 
respectively and f is the target dilution factor defined as: 

C .  

(3.21) 
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Figure 3.9: Electron selection by a series of cuts, shown from top left to bottom right 

where N H ~  is the number of counts from 3He and Nu is the number of counts from the 
unpolarized material of the target, like the glass windows and the nitrogen gas. The 
target dilution factor will be discussed in Chapter 4 and the polarization in Chapter 
5. 

One has 
to take into account the contamination of the electron sample by pions which were 
misidentified as electrons due to  detector inefficiencies. Also, some electrons are 
produced by pair creation and do not come from deep inelastic scattering. Their 
contribution should be subtracted. To correct the measured asymmetry we need to  
know both the size of the background and its asymmetry (c.f. equation (3.37)): 

Several important corrections have to be applied to  the asymmetry. 

(3.22) 

The pion contamination is about (N,-/NDIS) = 3% at low 2, as determined by es- 
timating the pion background under the electron E / p  peak (see Figure 3.7). The 
pion asymmetry is determined from our data by selecting a pion sample with a veto 
on both Cherenkovs. The asymmetry is negative and is about three times smaller 
than the electron asymmetry, but is not consistent with zero. The contamination by 
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electrons produced by pair creation (i.e. y t e+e-, T O  t e+e-y) is measured in 
dedicated positron runs with the magnet polarity reversed. It is assumed that the 
number of positrons and electrons created in such processes is equal. The contamina- 
tion is significant, reaching 10% in the lowest z bin. The asymmetry of the positrons 
is consistent with zero, however the errors are large due to  limited statistics. The 
positron asymmetry is the largest source of systema,tic error for our lowest z bin. 

Detector inefficiencies can bias the measured asymmetry (known as the rate de- 
pendence). If the efficiency of the detector E decreases with the electron rate R: 

E = Eo (1 - P1R - P2R2.. .) 
then the detected asymmetry is reduced compared with its true value: 

(3.23) 

(3.24) 

where and p2 are some coefficients which depend on the hardware and software 
performance. The experiment was designed to minimize the rate dependence. To 
study this effect we simulated a double rate in the spectrometer by combining the 
raw data from two pulses and taking into account the electronics dead time [34]. By 
this method we determined that a: 

(3.25) 

is in the range of 443%. Since we expect that both PI and P2 are positive, but do not, 
know their relative size, we correct the asymmetry by one half of the observed rate 
dependence: 

Adet A =  
1 - 4 2  

(3.26) 

and include the whole size of CY as a error. 
We also apply a correction to  take into account the neutral current interaction by 

2' exchange. This is a parity-violating interaction which would be present even if the 
target were unpolarized. Thus, the sign of the electroweak asymmetry Aw does not 
change when the target polarization is reversed, while the sign of the electromagnetic 
asymmetry changes. The target polarization was reversed several times during the 
experiment2, and we observed a non-zero parity violating asymmetry at 4 a  level. 

In Chapter 2 we only considered the electron vertex shown in Figure 2.1 at the tree 
level. In reality, the vertex is modified by the electromagnetic radiative corrections. 
The effect of these corrections (known as the internal radiative corrections) should be 

2We rely on electron polarization reversal, which is done randomly every pulse, to eliminate the 
systematic errors due to  acceptance drifts, etc. 
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subtracted from the data to  come back to the simple picture described in Chapter 2. 
In addition, the electrons can bremsstrahlung before or after deep inelastic scatter- 
ing, which is taken into account by applying the external radiative corrections. The 
radiative corrections are discussed in detail in the next section, based on [35]. 

To extract the neutron spin structure function from a measurement on 3He one 
has to apply corrections due to  nuclear effects. Naively, only neutron contributes to 
the spin asymmetry in 3He because the spins of the two protons are opposite to each 
other due to  the Pauli exclusion principle. However, this naive picture is modified 
because the spacial wavefunction of 3He is not a pure S state. It has contributions 
from S’ and D states. In the S’ state the nucleons have a relative angular momentum 
with respect to each other, although the total angular momentum is zero. The spin 
originates from one of the protons, while the other is coupled with the neutron to a 
zero spin. In the D state the three nucleons have a total spin of 3/2, which is combined 
with 2 units of angular momentum to  give a spin 1 / 2  nucleus. The probability of the 
P state is strongly suppressed because it has opposite parity. Ignoring the collective 
nuclear effects, one can write: 

(3.27) 

where pn  and p ,  are the polarizations of neutron and proton respectively in the 3He 
wavefunction. The polarizations have been calculated in [36]: p ,  = 0.87 k 0.02 and 
p ,  = -0.028 f 0.004. To subtract the proton contribution we use the world data on 
gy (x) and include their uncertainty in our systematic error. The collective nuclear 
effects for scattering from 3He are negligible in the deep inelastic region [37]. 

To calculate gl from the asymmetry one also needs to include a small contribution 
from A1 (see equation (2.60)). We measured A1 in a series of dedicated runs by 
rotating the 3He polarization perpendicular to the beam direction. The laser system 
was not setup to  pump in this direction, so 3He polarization was decaying during 
these measurements. In addition to using these data for the calculation of gl,  we also 
extracted g2 using equation (2.61). Our g2 data [38] are consistent with zero (see 
equation 2.22). For more details see [35 ] .  

Finally, one should also be aware of the higher twist eflects, which appear if Q2 
is not sufficiently large. They are due to the breakdown of the assumption of in- 
dependent scattering from individual quarks. Their contribution is expressed as an 
expansion in powers of 1/Q2. The calculation of these corrections is difficult and their 
size and even sign is uncertain, but they are quite small for our values of Q2 [39]. We 
do not apply any correction due to  this effect. 
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3.6 Radiative Corrections 
The radiative corrections can be split into two distinct parts. The internal corrections 
are due to the radiation emitted by the electrons immediately before or after the nu- 
clear scattering. The electrons are off-shell ( q 2  # m2)  between the emission of the pho- 
ton and the nuclear scattering. The external corrections are due to  Bremsstrahlung 
of the electrons in the material of the target. The electrons are on-shell between the 
emission of the photon and the nuclear scattering. To calculate the internal correc- 
tions we used a program POLRAD 1.5 [40], written by Shumeiko and coworkers, the 
same group that developed the theory of polarized radiative corrections [41, 42, 431. 
The external corrections were calculated based on the technique of Tsai [44, 451. 

There are two main difficulties in calculating the radiative corrections. The first is 
the treatment of the errors. The radiative corrections work as a non-linear and non- 
local transformation between the measured asymmetries and the Born asymmetry. 
So, they affect non-trivially not only the central values, but also the errors of the 
asymmetry. The second is the use various input models. Calculations of the radiative 
corrections require knowledge of the polarized and unpolarized structure functions 
for a large kinematic range, and 3He quasi-elastic and elastic form factors. Some of 
them are well known, others are more controversial. 

3.6.1 The Structure of the Radiative Corrections 
In general, the cross-section for polarized scattering can be written as: 

(3.28) 

where ou and vP are the unpolarized and polarized cross-sections respectively. The 
asymmetry is given by A = op/ou, after the polarization factors are divided out. The 
internal radiative corrections consist of the vertex correction and the radiative tail 
and can be written as: 

(3.29) 

The tail is divergent as x‘ + x, and so is the vertex correction V [43]. Their sum, 
however, is finite. The regularization can be done in different ways. In POLRAD, 
an infinite term is subtracted from the vertex correction and added to the tail. That 
makes both the tail and the vertex correction finite. One drawback of this procedure 
is that the tail now depends not only on the value of g B  (x’) for x’ > 2, but also on 
oB (x). Although this procedure is mathematically exact, it is difficult to interpret 
physically. The physical tail should depend only on the value of oB (x’) for x’ > 2. 
For a finite bin size the part of the tail that falls within the same bin should not be 

1 
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treated as a radiative correction. Therefore, to  facilitate the discussion about error 
propagation we will separate the tail into the contribution from the same bin and the 
contribution from other bins. This separation is purely formal and does not affect the 
calculation of the central values of the radiative corrections. The sum of the vertex 
correction and the tail from same the bin is finite. With the internal corrections, the 
asymmetry can be written in the following form: 

oi( x) 
ad( x) 

0: (x) (V + J J,“’ I p  (x, x’, Q ’) dx’dQ ’) + c: 
a t  (x) (V + J J:’ I ,  (x, x‘, Q 2, dx’dQ 2,  + 0: 

A ~ ( x )  = - - - (3.30) 

oF(z) = / l : I , ( x , x ’ , Q 2 ) c r :  ( x ’ , Q 2 ) d d z ’ d Q 2 + c f ‘ ( x ) + ~ , & ” ( x )  (3.31) 

a:(x)  = / l : I u  ( x , x ’ , Q 2 ) c f  ( d , Q 2 ) d z ’ d Q 2 + + f ‘ ( x ) + o : ” ( x )  (3.32) 

where Ip,u (2, z‘, Q’2) represent the contribution from other regions in z and Q2 due 
to inelastic scattering, CT:,+ are the internally radiated cross-sections, o& are the Born 
cross-sections, and a:: are the contributions from the elastic (I.  e. scattering 
from the whole 3He nucleus, no nuclear break-up) and quasi-elastic (elastic scattering 
from a proton or neutron) tails respectively. x1 is the edge of the bin, and we factored 
out the cross-sections in (3.30) assuming that they do not vary appreciable from z to 
2 1 .  The inelastic part can be broken further into the deep inelastic contribution from 
the kinematic region measured by our experiment and the resonance contribution. 

The external corrections can be divided into contributions from Bremsstrahlung 
before nuclear scattering and after nuclear scattering. Since the glass windows for 
E-154 are very thin, the contribution of the external corrections before scattering is 
very small (it’s effect is less than 1%). After scattering, some electrons go through 
a much thicker glass wall (made even thicker by the oblique angle), and the external 
corrections are not negligible. They can be included, after the internal corrections 
have been applied, in the following fashion: 

1 
~:&) = E(  z , z’)of,, (XI) dz’ (3.33) 

E (2, x’) is given explicitly in [45]. 
The measured asymmetry is given by the ratio of the external (i. e. fully radiated) 

cross-sect ions: 

(3.34) 

Our goal is to  invert equations (3.30-3.34) and calculate A B ( x )  = o: (x) /a: (x), 
given A,(s). The main difficulty arises from terms that include cr; (x’, Q2), making 
the problem non-local in z and Q2. Therefore, we use an iteration technique, adjusting 
the value of AB(z) until Am(s)  is reproduced. 
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Following historical convention, we present the final result in the form  AB(^) = 
A m ( z )  +-  ARC(^). This, however, is only a convenient way of characterizing the size of 
the corrections. It can not be used for error analysis, because ARC depends on A,. 

3.6.2 Error Analysis 
The error analysis is also complicated by the presence of up” (z’, Q 2 )  terms. However, 
for a given IC bin we only need to know the cross-section at higher z. To simplify the 
discussion, assume that we made a measurement only in the lowest J: bin, and already 
know the value a: (i. e. gl) for all higher z. (One could actually use the data from 
E-142 and E-143 at higher x instead of our da.ta.. It would cause some increase in the 
size of the errors, but make the analysis simpler.) To simplify the notation, we also 
ignore, for the moment, the external corrections. Then we can write: 

(3.35) 

o& include the inelastic, quasi-elastic and elastic tails, all of them come from mea- 
surements unrelated to our experiment. One can show that as 2 1  -+ z the polarized 
and unpolarized inelastic taiIs become the same: I p  ( 5 ,  x’, Q 2 )  --t I ,  (x, d, Q’). This is 
because the emitted photons have very low energy and do not depolarize the electron. 
To simplify the notation, we introduce a new vertex correction factor: 

) V’(xl) = (V + /[’ I ,  (x,x’,Q’) dx’dQ‘) = (V t /11 1, ( z , x ’ , Q 2 )  dz’dQ2 

(3.36) 
Then, by trivial algebra, we get 

This shows that ARC (the term in parenthesis) depends explicitly on A, at the 
measured point, and has errors correlated with it. Now, it is simple to calculate 
the effect of the radiative corrections on the errors. Equation (3.37) represents a 
linear transformation applied to  the measured asymmetry, and should be treated 
in the same way as other linear transformations we apply to our data (cf. Am = 
(A,,, - AweakPb) / (P,Pbf,)). One should increase the statistical and systematic error 
of A, by: 

(3.38) 

The factor f can be thought of as a dilution factor due to the radiative corrections. 
In addition, one should add to the systematic error any uncertainty due to  the fits 

* .  
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and models used in the calculations of a:, of, and op'. A similar procedure was 
implemented by SMC in their most recent analysis of the radiative corrections [46]. 

The value of the dilution factor depends on zl.  This dependence has the following 
physical interpretation. The effect of the radiative corrections is similar to the effect of 
a finite energy resolution, which smears events from neighboring bins. The smearing 
can be deconvolved, but that causes an increase in the errors. For example, suppose 
there are two bins which are so smeared that only 1% of their event sample is not 
common. If the measured asymmetry is different by 1% between the two bins, we 
would have to  conclude that the Born asymmetry changes by 100% from one bin to 
the next. The error on the asymmetry extracted in such a way would be huge. On 
the other hand, if we ignored the possible variation of the Born asymmetry between 
the two bins, we would not need to  apply any correction at all. By binning our data 
into a certain number of bins we are already setting a minimum scale for possible 
variation of gl. Furthermore, the real physical meaning of our data is not in the 
values of gl (z) in individual bins, but in the long range trends of the data. We want 
to extract, for example, the low x power of the data, the integral over the measured 
range or other quantities that involve several bins. Therefore, it is not necessary to  
set z1 equal to  the edge of the bin. It can be moved further, which results in a larger 
dilution factor and a smaller error increase. This is similar to binning the data into 
bins which are comparable with the energy resolution without doing a deconvolution 
procedure. 

We now come back to the more complicated case, when op" for all IC is determined 
from the measured data, and include the external corrections. We can convert the 
integrals in equations (3.30-3.33) to  sums over z bins. 

0: (Xi) Vl(z1) + 

Am(z ; )  = 
0: (Xi) 

Only the unknown contribution of o:(z) needs to be written explicitly. Here I ( i , j )  
and E (i, j )  represent non-local contributions from internal and external corrections 
respectively, of is the resonance contribution, and the tilde means that the external 
corrections are already taken into account. Equation (3.39) can be written in a matrix 
form: 

(3.40) 
(3.41) 

where 

(3.42) 

1 
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In this form the quantities measured in the experiment (Am;)  are explicitly separated 
from the quantities measured in other experiments (Mij and AT;).  We also assumed 
that Q2 evolution is known, so if we measured A, at one Q2 , we can calculate it 
at all Q2. Equation (3.41) is a linear transformation, so the errors can be handled 
in a straight forward fashion. The error of AB; is due to the error in Am;, and also 
the errors in A,j ( j  > i ) .  The diagonal term Mii = f is the same as in the previous 
discussion. Therefore, the statistical and systematic errors should be increased by a 
factor of l / f .  

In addition, the non-diagonal terms of M induce correlations between different 
bins. Since the statistical errors are usually assumed totally uncorrelated, the error 
due to  A,j(j > i) does not really belong to the statistical error. The systematic 
error is assumed to  be 100% correlated, so it is also not appropriate. Fortunately, the 
effect of correlations is small, and by adding them in quadrature to the systematic 
error we are making the most conservative approximation. 

In reality, it is difficult to calculate the components of the matrix, as it requires 
splitting the integration of the inelastic tail into many separate bins. It is easier to 
calculate the errors using: 

(3.4.5) 

where we use the fact that the statistical errors 0 (A,j) are uncorrelated. To evaluate 
the derivatives we calculate the variation of AB; as the input values Amj are changed. 
The effect of the correlations is very small and increases the systematic error by about 
1%. 

To calculate the central values of the corrections we are using a fit to the data. The 
measured asymmetries have statistical errors and are randomly distributed around 
their "true" values. The fit, hopefully, lies closer to the "true" result. For radiative 
corrections we need to  know the size of the Born polarized cross-section relative to 
other cross-sections. One has 
to  choose which particular fit to use in calculating the central values, since many 
functional forms give acceptable x 2 .  They differ from one another by an amount 
comparable with the statistical errors of the data. Varying the form of the fit is 
equivalent to varying the input values Amj by some fraction of their statistical errors. 
So, the variation of the radiative corrections due to different fits is already taken into 
account by multiplying the statistical error by the dilution factor. One should just 
choose one "best" fit and use it to calculate the central values. 

So, it is best to use the results of the fit AA(z). 

f .  
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In addition to increasing the statistical and systematic error by the dilution factor, 
the radiative corrections introduce additional systematic errors due to the uncertainty 
in the input models unrelated to our experiment. To estimate these errors, we vary 
the input models within amounts constrained by the existing experimental data. 

3.6.3 Input Models and their Errors 

Calculation of the radiative corrections require the knowledge of the unpolarized 
deep inelastic structure functions, polarized and unpolarized structure functions in 
the resonance region, quasi-elastic form factors and elastic form factors. They also 
depend on the Q2 evolution of 91. In choosing appropriate models it is important to 
know what region of the kinematic space has the biggest contribution to each tail. 

The inelastic tail corresponds to electron scattering resulting in the excitation or 
break-up of one of the nucleons in 3He. Since the final state does not have a definite 
invariant mass, the contribution of the inelastic tail is calculated by a two-dimensional 
integration in Q2 and z. Part of it comes from the measured z region and part from 
the resonance region. In both cases one needs to know the structure functions for a 
range of Q2. Figure 3.10 shows the contribution to the integral as a function of .E 

and Q2 for the unpolarized inelastic tail for 2 = 0.015. The line on the plot separates 
the resonance region (W2 < 4 GeV2, high IC, low Q2) from the deep inelastic region. 
To clearly show a large range of heights the square root of the integrand is plotted. 
The contribution for Q2 < 1 GeV2 (> 1 GeV2) comes from electrons which lost 
energy before (after) scattering. A large contribution comes from Q2 - 0.25 GeV2. 
It corresponds to  electrons losing most of their energy by emitting a photon before 
scattering, since Q2 = 0.23 GeV2 for E = E' = 10 GeV, 8 = 2.75'. For F2(5 ,Q2)  
we used the NMC-95 fit [47] in the deep inelastic region. The error was estimated 
by changing the parameters of the fit within the errors given by the parameterization 
(typically, 2-3% for both proton and deuteron structure functions which are assumed 
uncorrelated), as well as by changing to an older fit NMC-92 [48]. In the resonance 
region, we used the parameterization of Bodek e t  al. [49] and varied it by 5% which 
is the maximum error quoted in [49] for the relevant kinematic range. 

The contribution to  the polarized tail from various z and Q2 is shown in Figure 
3.11. Again, we plot the square root of the integrand to show a greater range of 
heights. The dominant contribution comes from the resonance region, which has a 
large asymmetry. The data of E-143 [50] were used in this region. The uncertainty 
was estimated by varying the asymmetries within experimental errors of E-143. The 
dependence on the value of g2 was estimated by varying E-154 g2 data within their 
experimental errors. 

The quasi-elastic tail results from elastic electron scattering from one of the nucle- 
ons in 3He. Since the nuclear binding energy is much smaller than the electron energy 
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Figure 3.10: Contribution to the unpolarized inelastic tail vs. x and Q2 

or the bin width, one can reduce the integration to  one dimension, using W (v, Q2) = 

W ( Q2) S (v - g) . However, one has to include the Pauli suppression effect for small 
Q2, since not all of the nucleons can participate in the scattering due to the exclusion 
principle. One usually uses the Fermi model for the nucleus, which is in good agree- 
ment with experiment [51]. The suppression factor is given in [52, 531. To determine 
the Fermi momentum for 3He we used a calculation of the quasi-elastic cross-section 
by Atti et  al. [54] compared with the Fermi model [55, 561. It gives t k ~  = 125 i6 10 
MeV. Figure 3.12 shows the contribution to the unpolarized quasi-elastic tail vs. Q 2 ,  
as well as the value of the Pauli suppression factor for x = 0.015. The peak at 
Q2 = 0.23 GeV2 corresponds to electrons losing most of their energy before nuclear 
scattering. The polarized tail has a similar Q2 dependence. 

One also needs to  know the neutron and proton elastic form factors for Q2 < 1 
GeV2. A lot of measurements have been done in this region. Most of the data for the 
proton electric and magnetic form factors and the neutron magnetic form factor are 

T *  
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Figure 3.11: Contribution to the polarized inelastic tail vs. x and Q2.  

consistent with the simpledipole fit: G; = G L / p p  = GL/pn  = (1 + Q2/0.71GeV2)-2 
The models given in [57, 581, which predict small variations from the dipole fit (5%), 
are also consistent with the data. The neutron electric form factor was taken from 
[59], also consistent with measurements summarized in [57]. The differences among 
these models were used to  estimate the errors. 

The elastic tail arises from electron scattering elastically from the whole 3He nu- 
cleus. The contribution from the elastic peak vs. Q2 is shown in Figure 3.13. All 
of it comes from very low Q2. It occurs when the electron emits a hard photon at a 
large angle, deflects by about 2.75" and then scatters elastically by a small angle (or, 
first scatters elastically and then emits a photon). The polarized tail has a similar Q2 
dependence. Since the form factors are constrained to go to  1 at Q2 = 0, the contri- 
bution is not very sensitive to the shape of the form factors. We used the data from 
McCarthy e t  aZ.[60] which cover the appropriate Q2 range. The error was estimated 
by varying the parameterization within the errors given in the paper. 
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Figure 3.12: Contribution to  the unpolarized quasi-elastic tail vs. Q2 and the Pauli 
suppression factor. 
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Figure 3.13: Contribution to the unpolarized elastic tail vs. Q2.  
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3.6.4 Results of the Radiative Corrections 
The measured (uncorrected) asymmetries of 3He were parameterized by: 

gl (z) /PI (z) = - 0 . 0 5 8 ~ O . ~ ~  (1 - z)2'31 (3.46) 

for the rz: range of the data. We assumed that gl/Fl is independent of Q2, consistent 
with the rest of the analysis. 
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Figure 3.14: The unpolarized Born cross-section and tails in the 2.75" spectrometer. 

Figure 3.14 shows the unpolarized cross-section vs. J: and various tail contribu- 
tions for the 2.75" spectrometer. The corrections to the unpolarized cross-section 
are dominated by the inelastic and quasi-elastic tail at low 2, while at high rz: the 
external corrections become significant. The total cross-section is increased by al- 
most a factor of two at low z. Figure 3.15 shows the polarized tails. The polarized 
Born cross-section is ten times bigger than the largest tail. Elastic tail makes a large 
contribution at low 5 because it has a large asymmetry. Tables 3.2 shows the val- 
ues of the radiative corrections, the enhancement factor for both the statistical and 
the systematic errors, and the systematic error due to the corrections themselves. 
We present the results graphically for the 2.75" spectrometer in Figure 3.16. The 
smaller error bars on the asymmetry are the uncorrected statistical errors, the larger 
error bars show the enhancement by the radiative corrections. The error bars on the 
radiative corrections themselves indicate their uncertainty due to the input models. 
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Figure 3.15: The polarized tails in the 2.75" spectrometer. 

The corrections reach one third of the asymmetry at low 2 ,  however, they are always 
comparable to  the statistical errors of the data. Their primary effect on the errors is 
to increase the statistical and systematic errors from other sources. The systematic 
errors due to  the corrections themselves are relatively small. 

The radiative corrections were also calculated independently by the SLAC analy- 
sis group [61]. They used a different computer program, developed at SLAC on the 
basis of formalism given in [42]. The results of the two calculations for the individual 
contributions and the total radiative corrections are in good agreement. Any dif- 
ferences are mostly due to the use of a different functional form to  parametrize the 
asymmetry for the calculation. Different fits to the asymmetry with a good x2 can 
differ from each other by a substantial fraction of the statistical errors. As a result, 
the radiative corrections can differ by as much the increase of the statistical error (i.e. 
68.6% of the statistical error for the lowest 2 point). The errors due to this variation 
are taken into account by the radiative corrections dilution factor. 
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Figure 3.16: Uncorrected asymmetry All for 3He and the radiative corrections. The 
error bars are explained in the text. 



3.6. Radiative Corrections 

0.078 
0.123 
0.173 
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-0.00151 1.154 0.00017 
-0.00122 1.113 0.00019 
-0.00099 1.068 0.00015 

I x bin I AARC I u (ABoTn) / a  (Ameas) I Syst. I 

0.241 
0.340 
0.423 

I 2.75" spectrometer I 

-0.00081 1.049 0.00018 
-0.00061 1.048 0.00026 
-0.00051 1.102 0.00046 

1.216 0.00022 

0.0573 
0.0837 

-0.00290 1.319 0.00070 
-0.00251 1.202 0.00053 

0.1231 
0.1725 
0.2420 
0.3424 
0.4423 
0.5643 

-0.00227 1.123 0.00037 
-0.00210 1.066 0.00035 
-0.00185 1.039 0.00022 
-0.00152 1.022 0.00020 
-0.00124 1.009 0.00030 
-0.00102 1.028 0.00063 

Table 3.2: The radiative corrections to and their effect on the errors. 
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Chapter 4 

Polarized 3He Target 

Our experiment used a polarized 3He target as a source of polarized neutrons. To 
polarize the 3He we used spin exchange with optically pumped Rb vapor. In this 
chapter I describe the techniques used for polarizing large quantities of 3He and 
constructing a high quality nuclear target. Measurements of the dimensions, densities, 
and temperatures of the target cells are described in detail. These numbers are 
important for determining the polarization and the dilution factor of 3He. The later 
is described in this chapter, while Chapter 5 will be devoted to the former. The target 
performance during the run is also discussed. 

4.1 Optical Pumping and Spin Exchange 
There are two techniques commonly used for polarizing 3He. One technique uses 
direct optical pumping of the metastable 2 3S1 state of 3He [l]. The metastable 
state is produced by RF discharge in a few torrs of 3He. The electron spin in the 
2 3S1 state is polarized by optically pumping the 2 3S1 -+ 2 3P0 transition with 
1.08 pm circularly polarized light. The polarization is transferred to the nucleus 
by the hyperfine interaction. While high nuclear polarization can be obtained, the 
use of this technique for high density targets is difficult because the 3He density 
has to be very low to  maintain the RF discharge. However, it is well suited for 
internal targets, which do not require high density gas. It was used recently for a 
measurement of the neutron spin structure function at DESY [2]. Compressors have 
been developed to produce high density gas without destroying the polarization [3]. 
With the compressors the technique has been used recently for a measurement of the 
3He electric form factor [4]. 

In our experiment, we use the second technique, which can be more easily applied 
for high density targets [5]. In this technique 3He is polarized by a two step process. 
First, Rb vapor is polarized by optical pumping with circularly polarized light. Sec- 
ond, the Rb electron polarization is transferred to the 3He nucleus by spin-exchange 
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interaction. 

Optical pumping of alkali metals [6] relies on the angular momentum selection 
rules in the optical excitation process. A simplified level diagram, ignoring the effect 
of the Rb nuclear spin, is shown in Figure 4.1. The modifications due to  the nuclear 
spin will be discussed later. When pumping with right circularly polarized light, the 
electrons can only be excited from the m = - l / 2  level. They decay back with equal 
probabilities to both levels, but can't be excited again from the m = +1/2 state. 
Thus, in the absence of any relaxation processes, all spins will accumulate in the 
m = + l / 2  state. Several important conditions have to be met for this scheme to 
work. First, one has to apply a magnetic field, parallel to the direction of the light 
propagation, to split the Zeeman levels. Second, when the electrons decay radiatively 
back to the ground state, they emit photons almost isotropically and with varying 
degree of polarization. In our conditions the cell is optically thick and most of the 
photons are reabsorbed before exiting the cell. Since these photons do not have, in 
general, the same polarization and direction of propagation as the pumping light, 
they severely limit the efficiency of the pumping process. To avoid this effect, about 
60 torr of N2 buffer gas is added to the cell, which radiationlessly quenches the excited 
electrons back to  the ground state. Although in our targets the optical pumping takes 
place in the presence of 10 atm. of 3He gas, N2 is still necessary. The quenching 
cross-section for N2 and other diatomic gases is several orders of magnitude larger 
than for 3He because the energy of the electron can be transferred to the vibrational 
and rotational motion of the N2 molecule. The quenching cross-sections have been 
measured in [7]. Using their results we estimate that the quenching time of the excited 
state is about 1.3 ns, compared with radiative decay time of 28 ns. Therefore, only 
about 5% of the atoms decay by emitting a photon. The N2 pressure is chosen by a 
compromise between the quenching rate and the contribution of N2 to  the dilution 
factor. In addition, there is a large collisional relaxation of the electron spin in the 
excited state due to  both N2 and 3He. Therefore, electrons decay to the ground state 
with equal probability. In the absence of spin relaxation in the ground state, two 
photons are required to polarize one Rb atom. 

Due to the non-zero Rb nuclear spin the energy levels displayed in Figure 4.1 
are modified by hyperfine interaction. The hyperfine splitting is much larger than 
the Zeeman splitting in a typical holding field of 20 G, so the electrons are in the 
eigenstates of the total spin F = 1 + S, where I is the nuclear spin ( I  = 5/2 for 
s5Rb and I = 3/2 for s7Rb) and S is the electron spin. The level structure of the 
ground state is shown in Figure 4.2. There is still a level ( F  = 3 ,m = 3) from which 
the atoms cannot be excited by right circularly light, but now it takes many more 
excitation cycles to transfer the electrons to  this state. However, most sources of 
spin relaxation and spin exchange affect only the electron spin and do not relax the 
nuclear spin. An electron from the F = 3 ,m = 3 state after going through a spin 
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Figure 4.1: Optical pumping by circularly polarized light. 

relaxation or exchange process is most likely to end up in one of the m = 2 states. It 
will need to go through, on average, only two excitation cycles to  be pumped back to 
t'he m = 3 state. Therefore, the nuclear spin acts only as a "reservoir" of the angular 
momentum, without affecting the efficiency of optical pumping. 

f F = 3  

m :  -3 -2 -1 1 0  1 2 3 

V h f =  3036 MHz 
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m :  -2 -1 2 I ~ ~ 1 4 6 6  kHz/G 

Figure 4.2: Ground state energy levels for s5Rb. 

In our conditions the absorption lines are pressure broadened by 3He to about 
160 GHz FWHM. Therefore, the hyperfine structure of the optical lines is not resolved 
and the atoms from both hyperfine states are equally likely to absorb the light Under 
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these conditions it can be shown [S, 91 that the relative population of the Zeeman 
levels obeys a spin temperature distribution [lo]: 

1 
(F ,  rn IpI F, m)  = -eorn z (4.1) 

where p is the Rb spin density matrix and /3 is the inverse spin temperature, related 
to the average electron polarization by PRb = tanh(P/2). The spin temperature 
distribution has been shown to hold experimentally [ll] with high degree of accuracy. 

The average polarization is determined by the ratio of the optical pumping and 
electron spin destruction rates 

The optical pumping rate is defined as: 

R = s a) (v) 0 (v) dv (4-3) 

where 
cross-section. 
rotation interaction during collisions of the Rb atom with other atoms [la]: 

(v) is the laser photon flux per unit frequency and u (v) is the light absorption 
The electron spin destruction rate rso is mostly due to the spin- 

h ! s ~  = y N .  s (4.4) 

which can couple the spin angular momentum to the rotational angular momentum 
N of the colliding pair. The spin destruction rate due to collisions with gas species i 
is proportional to the density of that species, so we can write 

The constants have 

Recent experiments at Princeton [9] found strong temperature dependence of these 
rates, which was not taken into account in [13], so the numbers should be treated 
only as a “factor of 2” estimates. 

In our operating conditions ( [3He]  = 2 x lo2’ ~ r n - ~ ,  [N2]  = 1.8 x 10” crnp3, 
[Rb] = 4 x 1014 ~ m - ~ )  this gives the following contributions to the spin destruction 
rate: 

(4 .9 )  -1 r S D  = 400Rb-He + 14Rb-N2 + 320Rb-Rb = 734s 
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Thus, Rb-Rb and Rb3He  collisions contribute in approximately equal amounts to  the 
relaxation of the Rb spin. Its important to realize that Rb-Rb spin-exchange process, 
which happens at a rate of 2.7 x lo5 s-' does not contribute to the spin relaxation. 
In addition to spin rotation interaction, Rb spin can relax due to collisions with the 
walls. This effect has been studied in [13]. Because of high 3He pressure, the Rb 
diffusion constant is very small D R ~ - H ~  = 0.15 cm2/s at 150°C [13], so relaxation due 
to wall collisions is only significant within 4- N 0.1 mm. of the wall. 

Finally, there is the relaxation due to the spin exchange with 3He, responsible 
for transferring Rb electron polarization to 3He [14]. The spin-exchange is due to 
hyperfine interaction between the Rb electron and the 3He nucleus [15]: 

B S E  = ali' s (4.10) 

where IC is the 3He nuclear spin. This interaction gives rise to both a transfer of 
the polarization to  3He and a shift of the Rb Zeeman frequency due to the 3He 
polarization. The frequency shift is used for 3He polarimetry, as described in Chapter 
5. The spin exchange rate constant has been measured in two experiments with results 
different by a factor of 2. Coulter et  al. [16] get k s E  = ( ~ 0 s ~ )  = (1.2 0.2) x lo-'' 

cm3/s using a similar 
experimental technique. Clearly, more measurements of this number are required. 
Spin exchange with 3He contributes about r S E  = k s E  [3He] = 24 s-l to the relaxation 
of the Rb spin'. Therefore, approximately 3% of the Rb atoms transfer their spin to 
3He, while the rest lose it in spin destruction processes. 

The 3He nuclear polarization increases with time due to spin exchange according 
to  the following equation: 

. cm3/s, while Larson et  al. [17] report k S E  = (6.1 f 0.2) x 

(4.11) 

where YSE = k S E  [Rb], r is 3He nuclear spin relaxation rate, and ( P R ~ )  is the average 
Rb polarization in the cell. Compared to the Rb spin exchange rate (rate per Rb 
atom), the 3He spin exchange rate (rate per 3He atom) is slower by the ratio of 
Rb to He number densities. So, the 3He spin exchange rate is very small YSE = 
4.8 x lop5  s-' = 1/(5.5 hrs.). Fortunately, the nuclear relaxation rate of 3He can also 
be quite small. The limiting factor is the 3He-3He magnetic dipole relaxation, which 
was calculated by Newbury et  al. [18]: 

[3Hei hrs-l rD = - 
744 

(4.12) 

where [3He] is in amagats. All 3He relaxation rates measured in our lab are larger 
or equal to this limit. For E-154 cells the limit from this source of relaxation is 

'Here and in other calculations, the result of Coulter e2 a/. [16] is used, unless stated otherwise. 
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l / r O  = 84 hrs. Therefore, provided that all other sources of relaxation are eliminated, 
one can achieve high 3He polarization. 

In addition to  the dipole-dipole relaxation there are several other sources of re- 
laxation which are small or can be made small. Relaxation due to magnetic field 
gradients [19, 201 is given by: 

(4.13) 

Because of high 3He density in our cells, the self-diffusion constant is small D H ~  = 
0.28 cm2/s. To achieve negligible relaxation l / r G  = 1000 hrs., we need lOB,I /B ,  < 
0.001 cm-l. We used Helmholtz coils with a diameter of 150 cm, much larger than our 
cell dimensions N 30 cm, and a holding field B, of 10-20 G. Precautions were taken 
to remove all ferromagnetic material from the vicinity of the target. Under these 
conditions we found that it was not difficult to satisfy the inhomogeneity condition. 

The relaxation due to beam ionization has been studied in [21, 22, 231. The 
relaxation can be written as: 

r~ = ( n a  + n m )  r~ (4.14) 

where rI is the rate of production of 3He ions by the electron beam. n, describes the 
contribution from single 3He+ ions, which is due to hyperfine interaction between the 
single electron and the nucleus. na can range from 0 to 1 [22] and in our conditions is 
close to  1 [24]. n, describes the contribution from the formation of 3He$ molecules, 
which can relax the nuclear spin by spin-rotation interaction (4.4). nm can be quite 
large, but in our cell the molecules are quickly broken up by collisions with 3He and 
neutralized by collisions with N2, so n, << 1. For our experimental conditions we 
calculate the relaxation time due to  beam ionization from 400 to  1100 hrs. depending 
on the beam current. No significant depolarization due to the beam was observed 
(see Figure 4.21). 

Even in the absence of the two relaxation sources described above, which are 
dependent on the environment, the 3He relaxation rate is usually larger than the 
dipole-dipole contribution. In most cases the relaxation rate is constant for a given 
cell and is not affected by heating cycles, measurement conditions, etc. The relaxation 
can be due to paramagnetic impurities in the walls or in the gas phase, which cause a 
large magnetic dipole relaxation rate. Or, it can be due to 3He sticking to  the surface 
of the cell for a long time and relaxing by exchange with other nuclear spins [25]. Since 
most common paramagnetic gases (02, NO) are reactive with Rb, they probably are 
gettered by Rb when the cell is hot. On the other hand, the measurements of the 
relaxation rate are always done at room temperature to remove the contribution of Rb 
spin exchange. Therefore, the possibility of outgassing of paramagnetic gases cannot 
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be excluded. The sources of relaxation on the surface are even more uncertain. It 
can be ferromagnetic elements in the composition of the glass or contaminants on 
the surface. Rb02 is also paramagnetic. It is unlikely that 3He can stick to the wall 
for a long time, because it has very low polarizability and no wall coatings are used. 
However, it can diffuse and get trapped in micro-fissures, if they are present. It was 
found [24] that the nuclear relaxation rate can be significantly reduced by using only 
glass surfaces which are freshly formed during glass blowing. Freshly reblown glass 
probably has much less micro-fissures than stock tubing. 

For our best cell, called Picard, the nuclear relaxation time was measured after the 
run to  be l/r = 84 f 5 hrs. So, the relaxation due to sources other then 3He dipole- 
dipole interaction was longer than 1300 hrs! Using the ratio of surface to volume, 
one can calculate that an average atom strikes the surface about 2 x 1011 times before 
relaxing. Even for the worst cells, which have a nuclear relaxation time of 30 hrs, 
this number is equal to 7 x lo9. We also measured the nuclear relaxation time of 
Picard during the run, in the presence of the electron beam. This measurement was 
performed during A1 running, when the cell was at room temperature. During the 
measurement the polarization was directed perpendicular to  the electron beam using 
an additional set of Helmholtz coils. The relaxation time was 5.5 f 3 hrs, significantly 
shorter than the lifetime measured before or after the run. This indicates that an 
additional source of relaxation with a time constant of 160 hrs. was present. It may 
be due to beam depolarization larger than calculated (we calculate l/rB = 1100 hrs. 
for Picard), relaxation due to  magnetic field gradients created by the spectrometer 
magnets, or some other effect associated with operation of all experimental equipment 
at once. With time constants from the spin-up of Picard, one can estimate that this 
decrease in the lifetime reduced the equilibrium 3He polarization by 3%. It would 
have even smaller effect on other cells with shorter intrinsic lifetimes. 

For optimization of the target design and operating parameters, it is convenient 
to rewrite the equation for equilibrium 3He polarization as follows: 

(4.15) 

from which it is obvious that for high polarization we need YSE >> r and R >> rso. 
To satisfy the first condition, we need to  have very high quality cells with r N ro 
and high Rb number density since Y S E  = t k s~  [Rb]. The second condition is also not 
trivial to satisfy, because I'so has components which are proportional to the Rb and 
He density, both of which are quite large. So, we need to have a large pumping rate, 
i.e. high laser intensity. 

This experiment relied on laser diode arrays for most of optical pumping. Laser 
diode arrays have many advantages over Ti-Sapphire lasers, which were used in E-142 
and also supplemented diode lasers in this experiment. They are much cheaper per 
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watt of power, more compact, require less power, and almost no operator attention. 
Their main disadvantages are a very broad spectral profile, on the order of 2-4 nm, 
and, for some models, large non-uniformity of the laser beam. The spectral width 
problem is partly alleviated by very large pressure broadening of the Rb absorption 
lines. In our cells the absorption line FWHM is about 0.34 nm, and we are usually 
able to absorb about half of the light. The propagation of the light through the cell 
is governed by a set of non-linear integro-differential equations: 

R ( z )  = / @ ( v , z ) a ( v ) d v  (4.16) 

(4.17) 

These equations do not take into account variations of the light intensity in the trans- 
verse direction, which can be significant for diode lasers, and the depolarizing surface 
layer. Solving equation (4.16, 4.17) one can calculate the average Rb polarization: 

(4.18) 

and, using equation (4.11), the 3He polarization for a given laser power, Rb number 
density, etc. However, even the basic spin destruction rates in equation (4.9) are 
uncertain by as much as a factor of 2. The Rb number density, another critical 
parameter, is also uncertain by a factor of 2 because of the temperature uncertainty 
due to the heating by laser light. Although one can model the performance of the 
cells, the predictions are usually rather unreliable and the optimization is often done 
at the experimental stage. 

4.2 Target Cells 
The two main goals in the construction of the target cells were a long nuclear re- 
laxation time and a large dilution factor. For an experiment limited by the count 
rate in the spectrometer, such as ours, the running time required to achieve a given 
statistical error is proportional to the square of both the polarization and the dilu- 
tion factor. The dilution factor, defined in Chapter 3, is the ratio of the number of 
electrons scattered from 3He compared with the total number of scattered electrons: 

where L; is the length of the material and a ; ( z )  is the deep inelastic scattering 
cross-section (not to  be confused with the optical cross-section ~ ( v ) ) .  For glass 
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nglogl (z) = E, n,o, (x) is the sum over different chemical elements in the glass. 
While the use of diode lasers allowed us to increase the average 3He polarization from 
33% in E-142 to  38%, and reach polarizations up to 48%, the bulk of the improvement 
in the target came from a smaller dilution (a  larger value of the dilution factor). The 
3He dilution factor for E-142 was about 0.35, while for this experiment it was 0.56 on 
average and as high as 0.65 for some cells. Thus, the improvement from the dilution 
factor was much more significant than from the target polarization. 

From equation (4.19) it is clear that we need to  reduce the glass thickness seen 
by the electron beam. At the same time, the dilution factor can be increased by 
increasing the density of 3He. These are mutually conflicting requirements, as the 
glass cell with very thin windows cannot withstand large 3He pressure. To achieve a 
larger dilution factor, we designed special concave windows [26], which can withstand 
much higher pressure than usual convex windows used in E-142. The windows were 
made by Princeton Glassblower Mike Souza. A detailed schematic of the windows is 
shown in Figure 4.3. 

25 mm. 21 mm. 

I 
0.75 mm. 0.95 mm. 16 mm. 

Figure 4.3: The schematic of the inverted window design. Dashed lines show the tube 
from which the window is originally blown. 

The procedure for cell fabrication was as follows. First, simple, non-inverted con- 
vex windows were produced. Their thickness was determined by either a mechanical 
measurement or X-ray absorption, as described later in the text. The windows which 
fell within the desired range from 2 to 3 mils were sealed in the inverted configuration. 
The rest of the windows were resized and measured again. The inverted configuration 
was made by sealing the window to a tube of a larger diameter, as shown in Figure 
4.3. It was very important not to have a sharp edge at the joint of the two tubes. 
All inverted windows were pressure tested. For pressure testing we filled the windows 
with water to  reduced the amount of energy stored during the test. It is known that 
water has corrosive effects on glass [27], therefore, the test was limited to 10 min. in 
duration. Deionized water was used. The cells were tested to 19 atm. overpressure, 
while the operating pressure in the cells did not exceed 12 atm. The yield of the 
windows was highly variable and mostly dependent on the quality of the seal between 
the window and the outer tube. Overall, approximately 1 in 4 windows survived the 
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test and were used in cell construction. 
In other ways the geometry of the cells was similar to  the E-142 cells. They 

consisted of two chambers, the target cell and the pumping cell, connected by a 
transfer tube. Figure 4.4 shows the dimensions of the target cell Picard. During 
operation the pumping cell was heated to N 180°C to get sufficient Rb density for 
optical pumping and spin exchange. The Rb vapor density in the target cell was 
negligible. 3He polarization was transferred to the target cell by diffusion. By using 
two chambers we avoided problems associated with simultaneous access for laser and 
electron beams and the depolarizing effects of the electron beam on the Rb vapor. 
Because only part of the cell is used for optical pumping, equation (4.11) for 3He 
polarization is modified. One can show [24] that the only modification is a replacement 
of the spin exchange rate Y S E  = k s E  [Rb] by the volume averaged rate: 

(4.20) 

where N p  and NT are the number of 3He atoms in pumping and target cells respec- 
tively. Thus, the effective spin exchange rate is a factor of 3 smaller than the rate 
in the pumping cell. This makes it only more important to have a very long nuclear 
relaxation time. 

The cells were constructed using the techniques developed for E-142 [24]. We 
used 1720 Corning glass, primarily because of its low permeability to 3He. Using 
permeability data from [28] we estimate that the cell losses 10% of 3He in about 100 
years, compared to about 2 month for Pyrex. In addition, Corning 1720 is highly 
resistant to  alkali metals and does not react with them even at high temperature. 
Finally, the surface properties of Corning 1720 have been shown to  allow very long 
nuclear relaxation times, although other glasses are not necessarily worse. On the 
other hand, Corning 1720 is one of the most difficult glasses to  work with, and this 
experiment would have been impossible without the great skill of our glassblower 
Mike Souza. 

The glass was rinsed in nitric acid, deionized water and spectroscopic grade 
methanol. One of the most important steps in the procedure was resizing, during 
which the stock tubing was mounted on a lathe and its diameter increased by slowly 
melting the glass and blowing into the tube. The purpose of the procedure is to ensure 
that the surface of the glass is freshly formed, without microfissures and impurities 
usually present on tubing from stock. This prevented 3He from diffusing into the 
micro-fissures and depolarizing. All parts of the cell were resized from tubing several 
millimeters smaller than the required size. A complete cell was annealed to relieve 
any stress created during assembly. 

The gas filling procedure was also similar to E-142. The cell was attached to a 
high purity vacuum system. A broken Rb a,mpule was sealed into the glass manifold. 

* .  
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Figure 4.4: Dimensions of the target cell Picard, mm. 

The vacuum system used a Varian diffusion pump and a cold N2  trap. Pressures of 
1 x lo-' torr were routinely achieved. The cell was baked under vacuum for several 
days at 450°C to drive the water vapor off the walls. Rb was distilled several times 
prior to  introduction into the cell. The cell was filled with ultra-pure gases (N2 grade 
6 and 3He grade 5.5). The gases were additionally cleaned by Ultra-Pure getters 
[29] operated at 350°C. To fill the cell to 10 amg. it was cooled by liquid He, so 
the pressure in the cell was less than 1 atm when it was being removed from the 
manifold by melting of a thin glass tube. Liquid He was flowing through a specially 
constructed dewar which fit over the target chamber of the cell. After the cells were 
filled, they were baked at 140" overnight. This procedure is believed to  improve the 
lifetime of the cell by allowing Rb to cover the surface and getter any impurities in 
the gas phase. 

The nuclear relaxation lifetimes of the cells measured before the run are shown in 
Table 4.2. All cells had lifetime in excess of 30 hrs. Two cells had a lifetime within 
errors of the bulk limit and another 2 cells in excess of 50 hrs. 

The physical parameters of the cells, i.e. dimensions, volumes, densities, are 
very important in calculating the polarization and the dilution factor of the target. 

n -  
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Because of the increased statistical precision of our experiment, it was very important 
to reduce the errors in these quantities. Therefore, we pay particular attention to their 
measurement, as described in the next 4 sub-sections. 

4.2.1 Cell Dimensions 
The dimensions of the cells enter into the polarimetry analysis in various ways. The 
size and shape of the target cell and the pumping cell determine the size of the AFP 
signal used for 3He polarimetry. By far, the most important dimension for determining 
this signal is the diameter of the target cell, since it determines the volume of polarized 
material between the pick-up coils. The dimensions of the transfer tube determine 
the diffusion time for polarized 3He between the pumping and the target cells, and 
hence, the difference between the pumping cell and target cell polarizations which 
is needed for EPR polarimetry. The care taken to measure each of the dimensions 
was roughly proportional to the sensitivity of the final result to that number. All 
dimensions of the cells are listed in Table 4.1. The missing numbers for Riker are 
quantities which could not be measured after the run due to the violent explosion 
which destroyed the cell. Riker was the only cell for which both the pumping cell and 
the target cell were destroyed when one of the windows failed. 

Table 4.1: Cell Dimensions in mm. 

The target cell diameters were measured with a caliper at 8 different points near 
the middle of the cell, where the pick-up coils are placed. Since the cells are made 
from reblown glass, they are not exactly cylindrical and there is a small variation of 
the diameter along the cell. The amount of the variation is indicated by OOD which 
is simply the standard deviation of the 'data set. Although the simple average of the 
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~~ 

Table 4.2: Miscellaneous cell parameters: the length, the nuclear relaxation time 
measured before the run, and the density of N2 gas. 

measurements does not take into account the scaling of the area with the square of 
the diameter, it is different from the true value only in second order (i.e. AA/A = 
( a o ~ / U D ) ~ / 3  = for the worst case). The error of individual measurements 
is about 0.025 mm. Assuming that different positions along the cell were sampled 
randomly (in reality, measurements were made at roughly regular intervals, but the 
dependence of the diameter on the position may be non-monotonic, so it is more 
conservative to  assume random sampling), the OD spread should be divided by the 
square root of the number of measurements. This gives an error of 0.05 mm in the 
worst case. The caliper may also have a systematic error of up to 0.05 mm. To be 
conservative, an error of 0.5% (0.1 mm) is used for the OD of the target cell. 

The thickness of the glass walls of the target chamber was measured for several 
cells using laser interferometry, described in the next section, or a caliper, with the 
results given in Table 4.3. Again, the measurements were made at several points 
near the middle of the cell. The results are fitted to a function t ,  = A/D,,ll where 
A = 15.14 mm2 is a common constant for all cells. It assumes that when the glass 
is reblown to  a bigger diameter it is not stretched, and the wall thickness is inversely 
proportional the diameter due to volume conservation. Using the spread divided by 
the square root of the number of measurements as the error, the data give a fit with 
x 2  << 1. This confirms the dependence of the wall thickness on the diameter and 
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Picard 
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0.691' 0.028 
0.710l 0.040 
0.734l 0.045 
0.702' 0.055 
0.682l 0.068 
0.732l 0.045 

I Cell Name I Wall Thickness I Spread 1 

Table 4.3: Wall Thickness, mm. (c  - caliper, 1 -laser) 

implies that the errors are very conservative. In Table 4.1 the results of the fit are 
used to generate the numbers for the wall thicknesses. The error in the wall thickness 
is 0.02 mm. 

The rest of the numbers in Table 4.1 come from direct measurements with a 
caliper. For the pumping cell, Length 1 is the distance between the points where 
the cylinder starts to  round off and Length 2 is the total outside length of the cell. 
The errors range from 1% for the pumping cell OD to 5% for not very well defined 
dimensions (like position of the flare). The wall thicknesses are: flare - 0.95 mm, 
pumping cell - 1.03 mm, transfer tube - 1.18 mm, all with an error of 0.1 mm. They 
were determined by measuring tube samples which were reblown in the same way as 
the cells, as well as by measuring the wall thicknesses of broken cells. For calculation 
of the dilution factor, one also needs the lengths of the cells, which are given in Table 
4.2. They are accurate to 1%. 

4.2.2 Window Thicknesses 
The thicknesses of the cell windows were measured by three methods. Initially, we 
measured the thickness mechanically, with a displacement micrometer, which had a 
resolution of 0.05 mils and an accuracy of 0.1 mil. However, some of the windows 
would break under the pressure of the tip and others might be scratched. Therefore, 
we started to use an X-ray absorption method to measure the thicknesses. We used a 
55Fe source, which emits X-rays due to K electron capture. The energies and relative 
intensities of the lines are given in Table 4.4 [30]. The X-ray spectrum is shown 
in Figure 4.5. We used a germanium detector to detect the X-rays. To determine 
the total X-ray count we always integrated under the area of both peaks, since the 
detector resolution was not sufficient to cleanly separate the two. At this low energy 
the X-rays are absorbed only by the photoelectric effect, since the cross-section for 
Compton scattering is 1500 times smaller. Since the photons are absorbed in one 
interaction process, there are no problems due to back-scattering or deflection. The 
absorption length of the "Fe X-rays in glass is approximately 1.6 mils. This is almost 
ideal for our windows of 2-3 mils, as one can show that the optimal ratio of the 
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5.899 
5.888 
6.492 20.2 

Table 4.4: X-rays emitted by the "Fe source. 

window thickness to the absorption length is 2:l. A collimator with a circular hole 3 
mm. in diameter was used to restrict the detector acceptance. Thus, the measured 
thickness was an average over a 3 mm. area in the center of the window. For each 
set of measurements we determined the incident intensity by counting X-rays with 
no windows. We also measured a small background rate by blocking the hole in the 
collimator, and subtracted it from the other intensities. 

L 1 . 0 ~ 1 0 ~  

Channel # 

Figure 4.5: X-ray spectrum from 55Fe source recorded by a germanium detector. The 
spectrum is fit well by a sum of two gaussians plus a small linear background. 

The absorption cross-section is inversely proportional to the third power of the 

oZ - E-3 (4.21) 

Since there are two lines of different energy, we approximate the absorption by a sum 
of two exponentials: 

I (x> = I~ (e-alr  + re-a2r) (4.22) 

energy [30]: 
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The parameters in equation (4.22) are measured as follows. To calculate T we 
fit the spectrum shown in Figure 4.5, which was obtained with no windows in the 
path of the X-rays, to two gaussians and determine the ratio of their areas. We 
obtain T = 0.195. Note that this number is different from the naive estimate using 
the data in Table 4.4: TO = 0.134, because the X-rays are partly absorbed in the 
air between the source and the detector. The more energetic X-ray is absorbed 
less, so its relative intensity is higher. To determine a2/cy1 we use the photoelectric 
cross-sections given as a function of energy in [31] and the known composition of 
glass (see Table 4.12). We obtain ( Y ~ / C Y ~  = 0.761. Again, this number is slightly 
different from a naive estimate C V ~ / ( U ~  = ( E 1 / E 2 ) 3  = 0.749 because equation (4.21) 
is only approximate. To check this ratio, we also recorded the X-ray spectrum and 
separately measured the absorption of the two lines for several windows. In this way 
we obtained cr2/crl = 0.760 f 0.003. To determine the last constant 01 we measured 
the X-ray absorption for a number of windows whose thickness was known from a 
different method. Initially, we used mechanical measurements for this calibration, but 
later we recalibrated with interferometric measurements, described later in the text. 
The data used for calibration are shown in Figure 4.6 with a fit to equation (4.22). 
From the fit we obtain cy1 = (41.5 f 0.7/rrn)-l. This number can be compared with 
a theoretical estimate based on known cross-sections [31] and the composition of the 
glass: aih = (42.7 f 1.4/rm)-', where the error is dominated by the uncertainty in 
composition of the glass. 

With this calibration we can now calculate the thickness of all windows measured 
by X-rays. The error is dominated by the statistical uncertainty. The windows were 
measured for 100-200 sec., which gave about 1000 counts in the detector and a error 
of about 3%. 

After the run we implemented an interferometric method for measuring the thick- 
ness, which is much more accurate. In addition, the measurements could be performed 
on windows already sealed in cells, which is impossible with the other two methods. 
This allowed us to remeasure all of the surviving windows of the cells used in the 
run. The schematic of the setup is shown in Figure 4.7. It is easy to show that the 
reflection coefficient is given by [32]: 

(4.23) 

where n is the index of refraction of the glass and d is the thickness of the window. 
Therefore, the reflection coefficient oscillates as the frequency of the light is scanned. 
Figure 4.8 shows such a signal recorded by the photodiode. In fitting the data we also 
allowed for a ba,ckground due to smearing of the interference fringes. The frequency of 
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Figure 4.6: Absorption of X-rays in windows as a function of their thickness. The 
errors are statisitical. The thickness is measured by the interferometric method. 

the oscillations can be determined very precisely. The correction due to the deviation 
of the beam from the normal direction is proportional to cos4' = 0.998, and is 
negligible. So, we only need to know the index of refraction of 1720 glass to  determine 
the window thickness. The index of refraction is known at the N a  D line [33, 341 
n = 1.530. Using approximate wavelength dependence from [35] we estimate that 
n = 1.523 at 780 nm. In addition, we determined this number by a measurement of 
the Brewster angle at 780 nm: tan = n = 1.519 f 0.01. The windows measured 
after the run suffered substantial radiation damage (they were brown). To check that 
the radiation damage did not affect the index of refraction, we measured the thickness 
of two pieces of glass from the wall of a cell. They were sufficiently thick (1 mm) to be 
also measured accurately with a micrometer. In this way we found n = 1.528 f 0.01. 
So, we know n to better than a percent. 

Figure 4.7: Setup for interferometric thickness measurements. 
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Figure 4.8: Reflection coefficient as a function of the laser frequency. 

The optical method was used to measure the thickness of the windows used for 
calibration of the X-ray absorption. We also compared it with mechanical mea- 
surements, with results shown in Figure 4.9. As can be seen, the two independent 
methods for measuring the thickness are in good agreement. Since the optical method 
is more precise, a small correction described by the fit shown in Figure 4.9 is applied 
to  the mechanical measurements. Finally, the optical method allows one to  study 
the variations in the thickness of the window with position. The optical beam is 
focused to much less then a millimeter in diameter and is easily positioned anywhere 
on the window (the beam is also visible with an IR viewer, which makes alignment 
much easier). The measurements were performed for Picard, displacing the beam by 
about 2 mm from the center in different directions, which is somewhat larger than 
the expected alignment error of -1 mm. Compared to the thickness in the center, 
the thickness changes ranged from -2.2% to +7.7%, with an average of +2% and a 
standard deviation of 3%. The results of the window measurements for all cells are 
shown in Table 4.5. The difference column indicates the difference between methods, 
if more than one was used. It shows that the mechanical and X-ray methods have 
comparable accuracy on the order of 5%. For the windows measured with the optical 
method we use a error of 3% due to the non-uniformity of the windows. For X-ray 
measurements the error is probably somewhat larger than the statistical error because 
of thickness variations. We use a 5% error for those windows which have not been 
measured optically. 
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Figure 4.9: Comparison of the mechanical and optical measurements of the window 
thicknesses. The errors are estimated based on repeatablity of the mechanical mea- 
surements. 

4.2.3 Cell Volumes 

For the analysis, it is important to know both the total volume of the cell and the 
partial volumes of the pumping cell, the target cell, and the transfer tube. The 
total volume of the cell is used in calculating the gas density from the gas filling 
data. The partial volumes are needed for corrections to  the density due to different 
temperatures in different parts of the cell. We know the volumes from three different 
sources: calculations based on outside dimensions and wall thicknesses (this is the 
only way we know individual volumes), volume measurements on the vacuum system, 
and buoyancy measurements. The results of the three methods are listed in Table 
4.6. 

The volume measurements on the vacuum system were done using a calibrated 
volume and an accurate barotron [36]. First, the calibrated volume was filled to a 
certain pressure, and the rest of the vacuum system was pumped out. Then the 
calibrated volume was opened to  the string containing the cell and the final pressure 
was recorded. After the cell was pulled off, the same procedure was repeated again. 
The measured reduction of the string volume is almost exactly equal to the volume 
of the cell, since the pull-off volume is only 0.1 cm3. The uncertainties come from the 
volume of the valves (-0.2 cm3), as well as variations in the volume of the flexible 
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Ref. Cell #3 

Ref. Cell #4 

Chapter 4. Polarized 3He Target 

7, d 46.3 45.9 0.9 
D u  50.9 57.3 12.6 
F d  48.5 48.1 0.8 
E u  70.8 72.1 1.8 
K d  64.0 61.9 3.3 

Table 4.5: Window thicknesses. Notation: u - upstream. d - downstream, b - broke 
in beam, * - orientation not known. 

bellows with pressure. The error in the volume of the cell is on the order of 0.4%, 
based on repeated measurements of a portion of the vacuum manifold. 

The buoyancy measurements rely on Archimede's principle. First, the cell is 
weighed on an accurate scale. Then, the cell is attached to a metal block suspended 
from the scale and submerged in water. The buoyant force on the cell, which is 
proportional to  the cell outside volume, causes a decrease in the apparent weight of 

1 
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Chance 
Picard 

108.6 73.8 6.0 188.4 179.6 180.5 
116.6 74.1 3.6 194.3 190.1 191.5 

the block. The inside cell volume is calculated using the formula: 

wb - w b c  + m, m, - m, vc = - 

Pw P S l  
(4.24) 

where Wb is the weight of the block submerged in water, Wbc is the weight of the 
block and the cell submerged together, rn, is the mass of the cell, and m, is the mass 
of the 3He gas. pw is the density of water and pgl is the density of glass. The scale 
was calibrated using precision weights, so the error in the weight measurements is less 
than 0.2%. The density of 1720 glass is equal to  2.54 g/cm3 according to [33] and 
2.52 g/cm3 according to [34]. This value was checked by performing the buoyancy 
measurement on a 1720 glass tube. The result is 2.506 f 0.005 g/cm3. The overall 
error of the volume measurements by the buoyancy method is about 0.4% 

While the results of the vacuum system measurements and the buoyancy mea- 
surements agree quite well (standard deviation 0.5%), the calculations give a result 
2.3 f 1% too high. This is not surprising, since the geometrical model used for the 
volume calculation was very simple. For Water Cell I the volumes of individual parts 
were measured during filling with water, with results given in Table 4.7. 

Filling 181.9 

Table 4.7: Individual volumes of cell chambers. 

So, the volumes of both the target cell and the pumping cell are overestimated 
by about the same amount. However, only the ratio of the volumes enters into the 
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analysis, so the errors will cancel to a large degree due to correlations. We always use 
volumes of the same origin in the analysis, not the volume of the pumping cell and the 
total volume from the buoyancy measurement. The small (1%) scatter in the results 
of the volume calculations indicate that it is very unlikely that the two volumes will 
fluctuate in opposite directions by a large amount. Nevertheless, a conservative 3% 
error is assumed in the ratio of the volumes since it makes very little difference on 
the final result. 

4.2.4 Cell Densities 
The density of 3He in the cells was measured using two independent methods. The 
first method used the measurements of the pressures in the vacuum system while 
the cell was being filled with gas. During the filling of the cell with 3He, the target 
cell was cooled by liquid He to about 1OK and its temperature was quite uncertain. 
So, the amount of 3He gas was carefully measured before it was put into the cell. 
A certain amount of gas was introduced into a calibrated manifold volume and its 
pressure recorded. The calibrated volume was then opened to the cold cell and the 
final pressure was recorded after equilibrium was established. One can thus calculate 
how much gas had exited the calibrated volume and entered into the cold cell. This 
procedure was repeated several times until a sufficient amount of gas was introduced 
into the cell. The final density of 3He is then given by: 

(4.25) 

where V j ,  Vs, and Vc are known volumes of the vacuum manifold, the string and 
the cell respectively. P! and P; are the pressures in the vacuum manifold for j t h  fill 
cycle before and after it was opened to the cell. The temperature in the room was 
measured before the filling procedure. However, the vacuum system temperature Tv 
was somewhat uncertain due to the presence of very cold helium vapors exiting the 
dewar during filling. Although the helium stream from the dewar did not directly 
hit any part of the system and quickly rose to  the ceiling, it might have reduced 
the temperature somewhat. We will assign a somewhat arbitrary error of 2°C to Tv. 
Other errors come from the uncertainties in the volumes (0.4%) and pressures (0.3%), 
so the total error of this method is about 0.9%. 

Before the cell was filled with 3He gas, a known amount of N2 was introduced into 
the cell manifold. It froze into the cell when it was cooled by liquid He before filling 
it with 3He. In this way we determined the N2 densities in the cells, which are given 
in Table 4.2. They are accurate to about 5%. 

While the fill measurements provide sufficient accuracy, they cannot be rechecked 
for errors and the possibility of cell leakage after filling cannot be excluded. Therefore, 

1 
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the cell density was also measured using a different technique that allows the mea- 
surements to be done after the cell has been filled and sealed. It uses the broadening 
and shift of the Rb resonance absorption lines by 3He. In the presence of several at- 
mospheres of He gas, the pressure broadening of the Rb absorption lines, D1 and D2,  
exceeds the Doppler broadening and the lines acquire a simple lorentzian shape [37 ] .  
As was first measured by Chen [38], the width and the shift of these lines is linear in 
He pressure to several tens of atmospheres and can serve as a good measure of the 
He density. Since Rb pressure broadening data for 3He exist only for the D1 line [li'], 
and even they are not quite of sufficient accuracy for our purposes, an experiment was 
performed to measure the broadening and shift of the Rb absorption lines by 3He. In 
addition, we studied pressure broadening of Rb D1 and D2 lines by 4He, N2, and Xe. 
The data were analyzed using a line-shape for a Van der Waals interatomic potential 
derived in [39]. The results are presented in [40], which is reproduced in Appendix 
B. Here we only give a brief description of the measurement for 3He. 
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Figure 4.10: Rb D1 absorption cross-section for several 3He densities. 

A single frequency Coherent 899-29 Ring laser was used to scan across the absorp- 
tion lines. The laser linewidth is much smaller than the width of the absorption lines 
and does not contribute to broadening. The laser also has a built-in wavemeter which 
was used to measure the pressure shifts of the line position. The transmission of the 
laser light through a 7 cm long cell was monitored with a photodiode. The cell was 
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D1 
Dz 

heated to 80°C, so the absorption factor e-naL ranged from 0.3 to  0.007 for the range 
of densities studied. For most measurements the power of the laser was attenuated 
to 3 mW to avoid saturating the transition. To check the linearity of the photodiode 
and the absence of atomic line saturation we also took data with the laser attenuated 
to 30 pW. The temperature of the cell was kept stable to 0.1"C to  ensure constant Rb 
number density. The measurements were performed for 3He densities ranging from 
1.5 to 9.5 amagats. The cell was attached to a pressure transducer which provided 
pressure measurements accurate to  0.3%. To convert the pressure to a density, one 
has to include the non-ideal behavior of the gas at these densities. At relatively low 
pressures it is usually described by the virial expansion [41]: 

ro, GHz a ,  GHz/amg. vo, GHz b, GHz/amg. c , GHz/amg.2 
0.46f0.61 9.34f0.095 1.21f0.58 4.97f0.23 0.141f0.02 
0.08f0.56 10.38f0.087 0.48f0.33 0.583f0.14 0.0415f0.012 

kT = n + B n 2 + C n 3 + . . .  (4.26) 

At  the densities used in this experiment, it is only necessary to  keep the first two 
terms. The values of B for 4He are given in [42]. It also contains data that indicate 
that the difference between 3He and 4He is at most several percent. However, the 
CRC Handbook of Chemistry and Physics gives somewhat different numbers. We 
will use B=11.6f l  cm3/mol. At  the highest density this gives a 0.5% correction to 
the ideal gas law. It should be pointed out that this correction does not apply to 
equation (4.25), because all measurements on the vacuum system are performed at 
pressures below 1 atm. and at room temperature, where the ideal gas law is quite 
accurate. Typical absorption curves for the D1 line are shown in Figure 4.10. For our 
purposes of comparing the absorption width in a calibration cell with the absorption 
width in a target cell it is sufficient to fit the lines to a simple lorentzian: 

(4.27) 

which describes the data sufficiently well. More sophisticated lineshapes are discussed 
in Appendix B. The dependence of the half-line width and position on 3He density 
is shown in Figure 4.11. It is well described by a linear fit r = ro + a [3He]  for 
the width and a quadratic fit for the line center: v, = vo + b [3He] + c [3He]2. In all 
cases, the intercept of the fit is equal to  zero within errors. The results of the fits are 
given in Table 4.8. The errors are given only for reference since they do not include 
correlations. 

Table 4.8: Specific broadening and shift of Rb resonance lines in the presence of 3He. 
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Figure 4.11: The width and shift of Rb resonance lines as a function of 3He density. 

The Rb optical absorption curves for the SLAC-E154 3He cells were measured 
before the run for all cells. Three quantities were used to  determine the density: 
D1 width, D1 shift and Dz width. Since the D2 line shift is small, it was not used 
directly to determine the pressure but to  check the absolute wavelength calibration 
of the laser. The specific shift and broadening of the Rb lines in the presence of N2 
was also measured and gave a correction to the 3He broadening on the order of 1%. 
The results of the three measurements were first averaged with equal weight and then 
the standard deviation from the average was calculated for each quantity. The errors 
of the pressure measurements are 0.13 amg. for D1 width, 0.074 amg. for 0 2  width, 
and 0.084 amg. for D1 shift. The systematic difference between measurements did 
not exceed 0.04 amg. The results were then averaged using the error as the weight. 
The error on the final average is about 1.0% 

Table 4.9 shows the results of the individual optical measurements, the combined 
weighted average and the results of the pressure measurements during filling. The 
density is in amagats, 1 amy. = 1 r.d. = 2.689 x 10’’ ~ 1 7 2 ~ ~ .  The average deviation of 
the two methods is 1.3%, in very good agreement with their estimated errors of 1.0% 
and 0.9% respectively, and the systematic difference is 0.4%. After the run, optical 
measurements were performed on the three remaining cells (Picard, SMC, Chance) 
and no measurable reduction in density was found. We will use the average of the 
two methods with an error of 1% for the cell density at temperature equilibrium. 
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Table 4.9: 3He densities in amagats. 

4.3 Target Setup 

The target setup included two orthogonal sets of Helmholtz coils, a mechanical target 
mover, a number of sensors and coils used for polarimetry and the laser system. The 
target schematic with major components is shown in Figure 4.12. Two orthogonal 
sets of Helmholtz coils were used to control the direction of the polarization (only 
one shown). One set of coils created a holding fields parallel to the direction of 
the beam, while the second set was used to  adiabatically rotate the direction of the 
polarization and to  collect data with the polarization transverse to the beam. The 
coils were driven with Kepco BOP-36-12 power supplies, which allowed sweeping the 
magnetic field for polarization measurements, as described in Chapter 5. The 3He 
cell was installed inside a scattering chamber, which was pumped out by mechanical 
pumps. 4He cooling jets were directed at the windows of the cell to  remove the 
heat deposited by the electron beam. In addition to the polarized 3He target, a 
reference cell was mounted inside the scattering chamber. The reference cell could be 
filled with varying amounts of gas remotely, and was used for measurements of the 
dilution factor. A mechanical mover system was used to switch between the polarized 
target, the reference cell and the “no target” position. The pumping chamber of the 
polarized 3He cell was enclosed in an oven. The oven was sealed around the pumping 
cell with RTV rubber glue. Hot air flowed through the oven to heat the pumping 
cell to approximately 180°C. A number of RTD sensors monitored the temperature 
in various parts of the cell. 

The laser system consisted of 3 fiber-coupled diode arrays and 4 Ti-Sapphire lasers. 
The fiber-coupled arrays, a relatively new product, were manufactured by OptoPower 
[43]. They are based on a linear diode array mounted on a thermo-electric cooler. 
Each diode in the array is individually coupled to  an optic fiber and the fibers are 

1 
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x 4  

Figure 4.12: The overall setup of the 3He target. 

combined in a bundle. The diameter of the fiber bundle is about 1.5 mm and the 
divergence of the beam coming from the bundle is about 10" full cone. The laser 
power out of the fiber is about 15-17 watts. The light is mostly unpolarized because 
the fibers do not preserve the direction of the polarization. The spectral width of 
the diode is about 2 nm FWHM. The profile is not entirely symmetric, as it depends 
on the wavelength distribution of the 20 individual lasers. The wavelength of the 
diode can be adjusted by either the temperature or the diode current. The current 
also controls the power of the laser. The wavelength is increased by 1 nm for every 
3°C and 2 amp. One usually sets the current to obtain the desired power and then 
adjusts the temperature to tune the laser on wavelength. However, since temperature 
tuning is time consuming due to slow response, fine tuning if often done with the 
current. Because the diode lasers are very broad, tuning to resonance by observing 
the fluorescence is difficult. The lasers were tuned by measuring their wavelength 
with a Lightwave wavemeter which had resolution of 0.01 nm. To check the absolute 
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calibration of the wavemeter, a Ti-Sapphire laser was tuned to Rb resonance by 
observing the fluorescence and its wavelength was measured and used as a reference 
point. Another method that can be used for tuning is to observe the EPR signal from 
the cell, as described in Chapter 5. The EPR signal is roughly proportional to the 
Rb polarization, so by maximizing it one can optimize the wavelength of the laser. 

The beam coming out of the fiber optic bundle is focused by a single lens with a 
focal length of f = 200 mm and transported to the target, which is 5 m away, using 
2” mirrors. Since the light from the diode lasers is unpolarized, some manipulation 
is required before it can be used for optical pumping. The beam is linearly polarized 
using a beam splitter cube. Both parts of the beam are utilized by using two quar- 
ter wave plates and appropriate mirrors. Two beams are obtained from each laser, 
circularly polarized in the same direction. 

In addition, we used 4 Spectra Physics Ti-Sapphire lasers (Model 3900s) pumped 
by Argon-ion lasers (Model 2040E). Each laser system could be tuned to give about 5 
W of power. However, the lasers would drift down to 3-4 W over approximately one 
day. Since laser tuning required access to the End Station and interruption of the 
data taking, we could not keep the lasers optimally tuned. In this regard the diode 
lasers are also much better, since they require virtually no maintenance. Over the 
course of two month of continues operation (1500 hrs.) the diode laser power dropped 
by only about 10-20%. Only one laser failed (possibly due to operator error) during 
the whole experiment. In contrast, 3 out of four ion tubes in the Argon lasers were 
replaced during the run. 

The reference cell system allowed studies of the target dilution factor. The ref- 
erence cell had the same geometry as the real polarized 3He cell and could be filled 
remotely with a variable amount of 3He. The pressure in the cell was read by a 
transducer gauge and a mechanical manometer. 

4.4 Cell Temperatures 

Under normal running conditions, the pumping cell was heated to achieve sufficient Rb 
number density, and the target cell and pumping cell had very different temperatures2. 
Although the total number of atoms in the cell did not change, the density in each 
of its chambers was different from the fill density. The ideal gas law will be used 
to  describe the gas inside the cell under conditions of temperature disequilibrium. 
The non-ideal behavior gives a correction proportional to  Bn (g - l), which is only 
0.1%. Using the ideal gas law, one gets the following equations for the density in the 

2This was not true for most of the A 1  when the cell was in thermal equilibrium. 

* .  
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RTD 1 2 3 4 
Correction, "C 3.3 4.3 2.3 2.4 
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5 Omron 
0.6 0.2 

target and pumping cells: 

nT = n p  = 
1 + ($ - I) ' 1 + x (2 - I) 

(4.28) 

where no is the density at thermal equilibrium, Vo is the total volume of the cell, and 
TT and Tp are the average temperatures of the target and pumping cells respectively. 
Equation (4.28) assumes that the pressure is equal everywhere inside the cell. In the 
presence of convection there may be local fluctuations of the pressure. To estimate 
possible pressure difference between the target and the pumping cell we will consider 
the Poiseuille flow through the transfer tube [45]: 

dN - rR4pAp 
d t  8qkTL 
- - (4.29) 

and calculate a characteristic pressure difference. Using the value of the viscosity 
7 = 35 ,upas from [42], we get a pressure gradient A p / p  = 2.4 x when we set the 
number of particles that goes through the transfer tube in one second equal to the 
total number of particles in the cell. So, the pressure fluctuations are negligible. The 
convection between the pumping cell and the target cell is also suppressed because 
the pumping cell with the less dense gas is above the target cell, the direction opposite 
to  what would drive convection. 

The temperature of the cell was monitored by 7 RTDs, 5 of which were mounted 
on the target cell or the reference cell and another 2 of which were mounted inside the 
pumping cell oven. One of the two RTDs inside the oven was attached to the pumping 
cell with heat sink compound, and connected to  the Omron temperature controller. 
The other RTD was used to  measure the temperature of the air flowing through the 
oven. The air was significantly cooler than the cell itself due to laser heating of the 
cell. After the run the RTDs were calibrated against an accurate thermometer. It 
was found that their readings have a constant offset. The hardware readings should 
be reduced by the amount shown in Table 4.10. The correction is different from [44] 
because the numbers there refer to the software temperature readings. The error in 
the temperature measurements is about 2°C after the correction has been applied. 

There are two effects complicating the calculation of the 3He density when the 
cell is hot. First, the pumping cell is heated by the laser light. As a result, there 
is a large difference between the temperature of the air flowing around the cell and 

* .  
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the temperature of 3He inside the cell. Therefore, the RTD’s in the oven do not give 
a reliable measurement of the 3He temperature. Second, the heat is flowing to the 
target cell through the transfer tube in the center, while its ends are cooled by He 
jets. Therefore, there is a significant temperature gradient in the target cell. These 
uncertainties contribute significantly to the errors in both methods of polarimetry 
and have to  be studied in detail. 

The question has been raised as to  how close the temperature measured by the 
RTDs mounted outside of the cell was t o  the gas temperature inside. The heat 
conductivity of the glass, equal to  approximately 1 W / m K ,  is not as low as it seems. 
For example, if the pumping cell absorbs 30 W of power from the lasers, the gradient 
across the glass is only 2.7”C. The heat conductivity of the gas itself is, in fact, much 
lower. To test the accuracy of the temperature measurement in the target cell and the 
reference cell, an RTD was placed inside the reference cell which was mounted in the 
scattering chamber. The RTD was also wrapped in aluminum foil to reduce heating 
by radiation. With the reference cell filled to about 17 psi, the difference between the 
readings of the RTDs inside and outside of the cell was only 1.4 f 0.9”C. Since the 
pressure in the actual cells is a factor of 10 greater, the temperature difference should 
be even smaller. 

Figure 4.13: Approximate positions of the RTDs mounted on the target cell. 

In the beginning of the run all 5 RTDs were mounted on the target cell. Figure 4.13 
shows their approximate positions. This allows a careful study of the temperature 
distribution along the target cell. To better understand the temperature distribution 
we will construct a very simple thermal model. First, calculate the heat flux from the 
pumping cell into the target cell: 

(4.30) 

where X is the heat conductivity, AT‘ is the cross-sectional area, LT‘ is the length of 
the transfer tube and AT is the temperature gradient. Using X H ~  = 0.22 W/m K and 
A,[ = 1 W / m K  we get Q = 0.09 W/s. Along the target cell the heat conductance of 
the glass is A,T,”X,I = 4.6 x W m / K  and the heat conductance of the 3He gas is 
ApeXH, = 7.0 x lop5 W m/K. Since they are not very different, the radial temperature 



4.4. Cell Temperatures 93 

gradient should be small. In any case, the radial temperature gradient is at most of the 
same order of magnitude as the longitudinal gradient and the temperature difference 
between different radial points is smaller than the temperature difference along the 
cell by the aspect ratio of the target cylinder. So, a one-dimensional model of heat 
conduction should be applicable. The data show that the temperature of the target 
cell does not change by more than a few degrees when the cooling jets are turned off, 
so most of the heat is carried away by radiation. We will assume a delta function 
source of heat in the middle of the target cell and a uniform heat sink along the length 
of the cell. The temperature then satisfies the following differential equation: 

The solution of this equation is 

(4.31) 

(4.32) 

where O ( z )  is the step function. Figure 4.14 shows this distribution along with 
temperature measurements for 3 cells. Only the value of To was adjusted to fit 
the data. Although this model is overly simplified and should not be taken too 
seriously, it fits the data surprisingly well. It probably means that the temperature 
distribution can be described by some elaboration of the heat conduction model and 
that convection does not play a significant role. 

One has to  distinguish between two temperatures relevant to the analysis. The 
volume average temperature of the target cell enters into equation (4.28) and gives 
the average density of the target cell which is used in both the polarimetry and the 
dilution factor calculations. On the other hand, the pick-up coils were located in the 
middle of the cell (see Figure 5.1), which was at a higher temperature and therefore 
a lower density. So for the purpose of polarimetry, a coil average temperature of the 
target cell should be calculated using a weighting proportional to  the amount of flux 
generated by the pick-up coils. It can be shown that to first order in temperature 
gradient, nc = ~ T T T / T c ,  where nc and Tc are the density and the temperature 
in the central region between the coils. To calculate the average temperature in 
the central region of the cell, Simpson weighting was used, TC = f (T2 + 4T3 + T4) 

when all 5 RTDs were mounted on the target cell. This gives a Tc that is 2°C) 
lower than the integral of the temperature distribution (4.32). On the other hand, 
the real heat source was not a delta function, but was spread over 1 cm. So, the 
temperature distribution should be rounded off on the top. To estimate the error 
due to  the weighting method, one can look at the two extreme weighting schemes: 
Tc = (T2 + T3 + Td) /3 or Tc = 7'3. They give temperatures different from the 

1 
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Figure 4.14: Target temperatures of 3 cells compared with the heat conduction model. 

Simpson weighting by about 2°C. To find the volume average of the temperature, 
the following weighting was used: TT = 0.185 (TI + T5) + 0.21 (7'2 + T3 + &), which 
reflects the larger relative volume of the ends of the target cell. For the 3 cells 
which had 5 RTDs, the temperature in the center of the target cell was calculated 
to  be 7.6 f 1°C higher than the average temperature. Given the reproducibility of 
this temperature gradient, the temperature distribution for the cells that had only 3 
RTDs can be calculated. On the basis of the above considerations, a 5°C error will 
be used for the values of Tc and TT. 

To determine the amount of heating of the gas inside the pumping cell by the 
lasers, we studied the variation of the AFP signal when the lasers were turned on and 
off. Turning the lasers off reduced the temperature of the pumping cell and decreased 
the density of 3He in the target cell according to equation (4.28). The AFP signal 
was measured before the lasers were turned off and about 10 min. after they were 
turned off. With the lasers off, the pumping cell reached the temperature of the 
control RTD. Since the heat flux going through the transfer tube is very small, the 
temperature of the target cell did not change appreciably in 10 min. The AFP signal 
decreased by about 1%, an easily measurable amount. Additional measurements were 
performed to correct for the fast spin-down of the cell with the lasers turned off. Two 
such studies were performed for Picard and Chance at 170°C and 190°C respectively. 
The results indicate that the average temperature inside the pumping cell was higher 
than the control temperature by 14 f 5°C and 7 f 4"C, respectively. 
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A simple thermal calculation can also be done to  estimate the spatial tempera- 
ture distribution inside the pumping cell. We begin by calculating the temperature 
distribution in a spherical cell of radius R with a uniform heat source throughout its 
volume. In spherical coordinates the heat conduction equation is: 

(4.33) 

where Q is the power absorbed from the laser per unit volume. The solution is: 

(4.34) 

where T, is the temperature of the wall. Assuming that 20 W of power are absorbed 
in a 70 cm3 pumping cell, and using R = 2 cm, which is slightly larger than the 
actual radius of the pumping cell to account for the fact that it is cylindrical, the 
temperature in the center of the cell is calculated to  be 77°C higher than the wall 
temperature. The average temperature over the cell is T, + QR2/15X = T, + 30"C, a 
factor of 2-3 higher than what was actually measured. This implies that convection 
probably plays some role. There is a region in the pumping cell where the temperature 
drops with height - a necessary condition for convection. 
indeed unstable against convection, the Rayleigh number 

To determine if the gas is 
[45] is calculated: 

(4.35) 

where h is a characteristic dimension, g is the acceleration of gravity, and cp is the heat 
capacity per unit mass. Assuming h = R and AT = 77"C, we get 32 = 20000. The 
critical value of 32 above which the gas becomes unstable depends on the geometry. 
For example, for two parallel plates it is equal to 1708. So the gas is most likely 
unstable against convection, although not overwhelmingly. In the analysis of the EPR 
data, the heat conduction model will be used to establish a limit on the temperature 
gradient in the pumping cell. 

The relevant temperatures and densities for the cells during normal running con- 
ditions are listed in Table 4.11. Based on the measurements discussed above, we 
assume that the pumping cell temperature is 10°C higher than the control setting 
and TC = TT + 7.6"C. The uncertainty in TT and Tc is 5"C, and the uncertainty in 
T p  is 10°C. This causes an error in nc/no of 1.6%. For some of the cells, the pump- 
ing cell temperature was changed during the run. However, these changes caused a 
change in the density of at most 1.0%. The pumping cell temperature was averaged 
over the use of the cell with approximate polarization weighting. The error due to 
this weighting procedure is no more than 0.5%. 

1 
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66 74 195 1.121 1.095 0.820 
65 73 180 1.107 1.081 0.830 

The size of the density increase due to the temperature gradient can be tested 
by analyzing the data taken during A1 running with Picard. The cell was heated 
up and cooled several times with long periods of time in between, which allows one 
to extract the ratio of the AFP signal when the cell is cold and hot. By fitting the 
polarization data with spin-up and spin-down curves, a ratio of AFP signals equal to 
1.104f0.02 was measured. Corrections should be applied to this number due to the 
change in the magnetic flux from the pumping cell and due to the change in the LC 
circuit gain. These effects are described in more detail below. The corrected ratio is 
1.083, very close to nc/no = 1.081 for Picard. 

4.5 The Dilution Factor 
We now have all the information needed to calculate the dilution factor for the cells 
using equation (4.19). The gas densities of 3He and N2 are given in Tables 4.9 and 
4.2. They should be multiplied by the temperature enhancement factors nT/no, given 
in Table 4.11, since we are interested in the average density over the whole target 
cell. Of course, for Al running, when the cell is at room temperature, no such 
correction is required. The window thicknesses are given in Table 4.5. The cross- 
sections 0; in equation (4.19) are calculated using the unpolarized DIS structure 
functions [46, 47, 481: 

0; (z, Q’) = K (z, Q’) [Z;F1,P (z, Q2) + (A; - 2;) F .  ( 5 ,  Q’)] E M C  (A;, Z) (4.36) 

where K (x, Q’) contains kinematic factors, and E M C  (Ai,  x) is a correction factor 
taking into account the nuclear binding and shadowing effects, known as the “EMC 
effect”. We also need to know the chemical composition of Corning 1720 glass, which 
is given in Table 4.12. The variation between different references does not cause a 
significant error. 
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Table 4.12: Chemical composition of Corning 1729 glass by weight. 

However, equation (4.36) only takes into account the tree level diagram of the elec- 
tromagnetic scattering. The cross-sections are significantly modified by the radiative 
corrections to the basic scattering process. We calculated the radiative corrections 
to the unpolarized cross-sections ci using the techniques described in Chapter 3. A 
phase shift analysis program was used to calculate the elastic form factors of the 
heavier elements from their charge density distribution [51]. The radiation length for 
the external corrections was determined by separating the target into several regions 
and using a Monte Carlo to calculate the radiation length seen by each region. 

By comparing the calculated unpolarized cross-sections with the rate in the spec- 
trometer, we can obtain a very powerful check on many aspects of the experiment, 
such as the spectrometer acceptance, target thickness, detector efficiency, beam cur- 
rent, etc. The number of counts seen in the spectrometer is given by: 

dN (.) = No atoTT ( x )  L;n;dR (x) 
dx i 

(4.37) 

where ctcoTT are the radiatively corrected cross-sections, dR ( x )  is the solid angle ac- 
ceptance of the spectrometer, determined using Monte-Carlo techniques [sa], and No 
is the number of incident electrons. The results of such comparison are shown in Fig- 
ures 4.15 - 4.17. Figure 4.15 shows the spectrum for pure 3He, which is obtained by 
subtracting the rates from a full and empty reference cell. The dot-dash curve shows 
the spectrum expected from a simple Born cross-section (4.36). Clearly, it does not 
agree with the experimental spectrum, and the radiative corrections are very impor- 
tant. Upon applying these corrections the agreement becomes much better. There 
are still a number of effects which have not been taken into account, such as the de- 
tector efficiency, pion and positron contamination. However, they are much smaller 
than the radiative correction. The disagreement at high x may also be due to a slight 
miscalibration of the spectrometer momentum (5% change in the momentum would 
account for most of it). It is very nice to  see that although our experiment was not 
designed to  measure absolute cross-sections, it can do it with a reasonable accuracy. 
It also provides the only experimental verification of the program used to  calculate 
the radiative corrections. Since the same program was used to calculate the polarized 
cross-sections, it gives us additional confidence in its results. Figures 4.16 and 4.17 
show the comparison between absolute rates for an empty reference cell and Picard. 

t .  
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The agreement is satisfactory. For the empty reference cell we see a large deviation at 
low 2 due to contamination by charge symmetric background. It is interesting to  note 
that if most of the charge-symmetric background originates in the glass cell, it can 
not have any asymmetry. This could allow us to  significantly reduce the systematic 
error due to this effect, which dominates our error at low 2. 
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Figure 4.15: The event spectrum for 3He compared to the calculated cross-section 
with radiative corrections. There are no adjustable parameters. 

For the dilution factor the effect of the radiative corrections is significantly re- 
duced, because only the ratio of the cross-sections enters into equation (4.19). Their 
effect on the dilution factor of Picard is shown in Figure 4.18. A conservative 100% 
error is used for the radiative corrections to the dilution factor. In addition, the errors 
in the window thicknesses, 3He density, and cell lengths contribute to the uncertainty 
in the dilution factor. 

The dilution factor can also be determined in a completely independent way by 
using the reference cell. Making the measurements with an empty and full reference 
cell one can determine the rate in the spectrometer from pure 3He. Let (dN/d  [ H e ] )  
be the rate in the spectrometer per unit 3He density. Then, the dilution factor can 
be written as: 

(dN/d  [ 3 H e ] )  [3He] 
Ntot 

f =  (4.38) 

where Ntot is the total rate from a given target. For this method one only needs to  

1 
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Figure 4.16: The event spectrum for an empty glass cell. The solid line includes all 
radiative corrections. 
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Figure 4.17: The event spectrum for a polarized 3He target “Picard”. 
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Figure 4.18: Radiative corrections to the dilution factor. 

know the density of 3He in the target, but not the window thicknesses or the radiative 
corrections. A comparison between the two methods of calculating the dilution factor 
is shown in Figure 4.19 for Picard. The two methods are in good agreement for all 
cells [48]. For the final result we determined the dilution factor from equation (4.36) 
and the radiative corrections. The error on the dilution factor is 596, dominated by 
the radiative corrections error. 

4.6 Target Performance 

The polarization of the target during the two month run is shown in Figure 4.20. The 
spin-up curve of the cell Picard, which achieved the highest polarization, is shown in 
Figure 4.21. As can be seen, some problems were encountered during the run. There 
were two types of problems: mechanical failures of the cells and 3He polarizations 
lower than expected. It was soon realized that the windows of the cells fail in the 
beam after approximately 3-6 days. The cell usage during the run is summarized in 
Table 4.13. The total beam charge accumulated by each cell before failure is shown in 
Figure 4.22. Points with upward arrows indicate that the cell had not failed, but was 
removed for another reason. The horizontal coordinate corresponds to  the thickness 
of the thinner window. In all cases the thinner window failed first. In general, cells 
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Figure 4.19: Comparison of the two methods for calculating the dilution factor for 
target cell Picard. 

with thicker windows lasted longer. Trying to prevent cell failures, we reduced the 
beam current in the middle of the run from 9 x 10” electrons per pulse to 5 x 10”. It 
is not clear if it had a significant effect. While “Prelims” and “Hermes” lasted longer 
than the trend suggested by the cells ran at 9 x lo1’, “Generals” did not last any 
longer. We further reduced the current to 3 x 10” for Picard, but the total charge 
accumulated by Picard before the end of the run is not particularly large. 

If we extrapolate the trend seen in the data to  the window thickness corresponding 
to one of the cells used in E-142, we get an expected total charge of 5 ~ 1 0 ~ ’ .  In con- 
trast, the E-142 cells accumulated up to  2 0 ~ 1 0 ~ ’  electrons without failure. Compared 
with E-142 our problems are rather surprising. All windows were pressure tested to 
about 60% overpressure, unlike E-142, for which only some representative windows 
were tested. No cell has ever failed after being filled with gas without the effect of 
the beam. The beam current was initially equal to 9 x lo lo  electrons per pulse (1.7 
PA),  smaller than the current in E-142, which reached up to 20 x 10” electrons per 
pulse. We reduced the current further to  5 x lo1’, but that did not solve the problem. 
Finally, because the windows were thinner by a factor of 2 compared with E-142, it 
was expected that the amount of heating would also be smaller. The only unfavorable 
difference with E-142 was the duration of the pulse. While in E-142 it was about 1.4 
psec, for our experiment the beam pulse was 200 nsec long. So, the instantaneous 
current was higher by about a factor of 3.6 in the beginning of the experiment and 
1.9 times higher after the reduction in the current. The beam size at the target was 
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Figure 4.20: Target polarization during the run. 

difficult to measure exactly because the wire array was several meters downstream 
of the target. The beam diameter was about 1 m m  and may have been somewhat 
smaller than in E-142. It is believed that the failure of the windows was caused by 
the instantaneous heating and possibly a shock wave caused by each beam pulse [54]. 
For example, it takes about 160 ns for the sound to  propagate the transverse dimen- 
sion of the beam (1 mm).  Another possibility is that the inverted windows, although 
initially quite strong, easily fail due to the buckling instability when damaged by 
the electron beam. The failures of the cells occurred on average every 6 days. It 
took approximately 24 hours to replace the cell and polarize it. However, the gain in 
the dilution factor, compared with E-142 cells, was approximately a factor of 2.6 in 
running time, so the down time was relatively insignificant. 

The problems with 3He polarization that were faced during the run were also 
rather unexpected. Their origin is not entirely understood for all cells. However, 
the cells that exhibited most pronounced polarization problems are somewhat better 
understood. These cells are SMC (20th to 25th day in Figure 4.20), Generals (25th 
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Figure 4.21: Spin-up of target cell Picard during the run. 

Table 4.13: Cell usage during the run. 
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Figure 4.22: Total charge accumulated by cells before failure. The cells with upward 
arrows had not failed. 

to 32nd day) and Chance (43rd to  49th day). In Chance the problem was most likely 
caused by a decaying nuclear relaxation lifetime. Before the run a measurement of 
the cell lifetime gave 40 hrs, but after the run we measured the lifetime and found 
that it was only 16 hrs. So, Chance lifetime apparently decayed in the beam. This is 
the only cell, to  our knowledge, whose lifetime decreased during the run. 

The problem with SMC and Generals is believed to be caused by an entirely 
different effect, associated with non-linear coupling between the polarization and the 
coils, called masing. 

4.6.1 Spin Maser 

During the run there were several very peculiar effects which strongly point toward 
the masing effect. First, the polarization of the cell SMC saturated very abruptly at 
27%, as shown in Figure 4.23, and stayed remarkably constant over a period of several 
days, insofar of changes in cell temperature and laser power aimed at increasing the 
polarization. Even more unexpectedly, the polarization dropped to  23% upon reversal 
of the holding field direction and then stayed constant at this new value. This behavior 
is very difficult to explain in terms of linear relaxation rates. 

The next cell, Generals, behaved in an even more bizarre fashion, as shown in 
Figure 4.24. The polarization failed to  reach 25% and every attempt to increase the 
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Figure 4.23: Polarization of cell “SMC” during the run. 

polarization by changing the optical pumping conditions failed. Finally, it was found 
that the polarization of the cell rose if it was kept out of the pick-up coils and only 
moved in for a very short time to do the AFP measurement. This seems to  imply that 
the coupling to the pick-up coils played a significant role in the effects being observed. 
Finally, it was decided to lower the value of the holding field from 19 G to  12 G. This 
apparently allowed the polarization to  rise even while the cell was between the pick-up 
coils. We continued to use 12 or 9 G holding field for the rest of the experiment. 

Finally, after the run we performed dedicated tests on SMC trying to confirm 
the basic predictions of the masing hypothesis. According to this hypothesis, the 
problems with polarization in SMC and Generals were caused by a non-linear coupling 
between the pick-up coils and the spins which resulted in sustained precession of the 
magnetization about the z axis. The masing phenomenon has the following rather 
peculiar properties: 

1. Masing can occur only if the spins are polarized in the high energy Zeeman 
state, so they can dump their energy into the coil. 

2. Masing is characterized by a threshold, below which the effect is negligible (the 
polarization is stable) and above which the polarization is unstable and will 
spontaneously develope a large transverse component. 

* .  
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Figure 4.24: Polarization of cell “Generals” during the run. 

3. The value of the threshold depends on the coupling to the coil, which is de- 
pendent on the difference between the resonance frequency of the coil and the 
Larmor frequency of the spins. 

4. The threshold depends on the transverse nuclear relaxation time T2. It becomes 
larger when T2 is short, for example, because of a large field gradient. 

With these properties in mind we conducted a series of tests shown in Figure 4.25. 
The polarization was seen to rise and then saturated abruptly, as it did for SMC 
during the run. At this point a magnetic field gradient of 5 mG/cm was applied, with 
the goal of shortening T2 and increasing the masing threshold. It ,  indeed, caused the 
polarization to rise sharply. It should be pointed out that the more usual relaxation 
due to field gradients (4.13) would tend to decrease the polarization. When the 
gradient was turned off, the polarization dropped very abruptly, which was consistent 
with a masing instability, but inconsistent with an additional relaxation rate. The 
cycle was repeated for the second time with the same results. Then the holding 
field was decreased from 19 G to 9 G. Even in the absence of a field gradient the 
polarization started to  rise. This behavior is exactly the same as what was observed 
for Generals during the run. It is due to a decrease of the coil coupling as the Larmor 
frequency is moved further from the coil resonance. Finally, the spins were stored at 
19 G with no gradient, but in the low energy Zeeman states. As predicted by the 

P .  1 
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masing model, this conditions allowed the polarization to rise. So, qualitatively, the 
spins reacted exactly as they should for a maser. We can even explain a jump in the 
polarization of SMC when the magnetic field was reversed by noticing that the field 
gradients usually have two components, one from the imperfections of the Helmholtz 
coils, which is proportional to the magnetic field, and the other from the ambient 
field gradients. When the field is reversed, the two components add or subtract in 
different ways, which can lead to a slightly different value of T:, and change the masing 
threshold. 
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Figure 4.25: Tests done with SMC after the run. 

We will now present a quantitative description of the masing effect. The basic 
idea is the following. Consider a polarized cell in a holding magnetic field along the 
z direction. The cell is placed inside (or near) a coil which is part of an LC circuit. 
Assume that the magnetization has a small transverse component. The spins are 
precessing around the magnetic field. Their precession induces a voltage in the coil. 
The voltage induced in the coil causes a current t o  flow through it. This current 
produces a magnetic field transverse to the holding field. Under certain conditions 
this induced field can cause the spins to tip away from the z axis and increase the 
voltage induced in the coil. That in turn increases the transverse field and causes 
a runaway situation. The longitudinal polarization of the spins will decrease while 

* *  
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certain conditions are met. Thereafter it will remain constant at the so-called masing 
threshold. A spin maser was studied in detail by Richards e t  al. [54]. It can be used 
for a number of interesting experiments, for example, searches for permanent Electric 
Dipole Moment, as described in [55, 561. We will describe the dynamics of the spins 
using Bloch equations. Although the qualitative behavior of the spins is described 
well by these equations, numerical estimates appear to be very far off. 

We start with Bloch equations with phenomenological relaxation rates: 

(4.39) 

The magnetic field consists of the holding field Bo in the z direction and a transverse 
magnetic field created by the coil. We will go to a frame rotating with the spins at 
the Larmor frequency w.  Since the transverse field is induced by the spins, it has a 
component rotating at the same frequency. 

Writing (4.39) in individual components we get: 

(4.40) 

The last two equations can be combined if we use MT = M, + iMy and BT = 
Bx + iB,. The induced magnetic field is proportional to the transverse magnetization, 
so we can write BT = A(w)MT.  We get the following two equations describing the 
behavior of the spins: 

(4.41) 

where we used MxBy - MYBx = Im(M$BT). 
Now we need to calculate the coupling of the spins with the coil. Let’s represent 

the magnetic moment 6 of the spins by a small loop of area Zm with current + I ,  flowing -+ 

through it so that ImZm = G. Let the coil produce a magnetic field B ( z )  = b(x) Ic  
when current I ,  is flowing through it. The flux of this magnetic field through the 
current loop is @, = I,b. iim = L,I,, where L,  is the mutual inductance of the coil 
and the loop. The flux of the field produced by the loop in the coil is Q C  = L ,  I ,  = 

-+ 

6, using the fact that the mutual inductances are equal [57]. 
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The voltage induced in the coil is: 

(4.42) 

where ( b T )  is the average of the transverse component of the coil field over the volume 
Vcoil where the coil field is significant. We will come back to  this approximation later. 
We also implicitly assumed that in the laboratory frame n / l ~ I l ~ b  = MTI,ote-iwt 

The current flowing through the coil is 

v -++$& W 2  v 
V - - - 0 2 4  = -(a1(w) + ia2(w)) (4.43) 

R 
I = ,  

awL + R - i / w C  R + (5 - 1)2 
Q”? 

where w: = l / ( L C ) ,  Q = w,L/R.  This equation defines the dimensionless circuit 
response functions a1 (w), a2(w).  

The field produced by the coil is B ( z )  = b(z)1/2.  The factor of 2 accounts for the 
fact that we are considering only one of the two counterrotating components of B. 

Combining equations above we get for A ( w ) :  

We can see now that the coupling of the spins with the coil is proportional to 
the square of the magnetic field b ~ .  For the pick-up coil used for polarimetry the 
field is reasonably uniform over some volume and then quickly goes to  zero. We can 
therefore divide the cell into an active region inside the coil were MT # 0 and the 
rest of the cell with MT = 0. We further assume that MT is constant over the active 
region. The average field of the coil over the active region is about 30% higher than 
the minimum field and 30% lower then the maximum field in that region. So this 
approximation is OK if we are looking for a factor of 2 estimate. It is convenient to 
define radiation dumping magnetization Mrd: 

- 1 - YKoil(bT)2 - 
MT d 2R 

We now have the following differentia1,equations for the magnetization: 

M* wa,(w)  - - 
dt  Mrd T2 

dM* - IMTI2 

(4.45) 

(4.46) 

(4.47) MZ MT -iM+o - w) - (a&)  + ia2(w) ) -wMT - - 
dt  Mrd T2 

= dMT 

where wo = yB,. In (4.47) there is an imaginary part causing MT to rotate and a 
real part causing changes in its magnitude. We chose a frame rotating together with 

1 
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the spins, so the imaginary part should be set to zero. This gives us an equation for 
the frequency w: 

MZ wo = w ( l  - a ~ ( W ) - )  
Mi-d 

(4.48) 

The frequency of the spin precession is different from the Larmor frequency, a phe- 
nomenon known as “frequency pulling”. 

The differential equations are non-linear and can exhibit an instability. Equation 
(4.47) has two terms, one tending to relax MT to zero due to T2 and another tending 
to increase it (if nil, < 0) due to the coil coupling. The competition between these 
terms determines the onset of masing. For Mz > 0 both terms are negative and the 
spins are stable. In other words, the spins are susceptible to masing only in the high 
energy state. 

The steady state solution of equations (4.46, 4.47) is 

wg = w m p +  1 (4.49) a2(wm) 

wm a1 (wm)T2 

(4.50) 

This gives the value of the “masing threshold”, below which the coupling with the 
coil has a negligible effect on the magnetization, and above which the system becomes 
unstable and the magnetization eventually decays to AIeq. 

We now try to  estimate the masing threshold for SMC. The pick-up coil consists 
of two square windings 2.4 cm x 9.6 cm with 150 turns each. The average field of 
the coil is calculated on Mathematica. We get ( b )  = 37 G/A.  The DC resistance 
of the coil is 40 R. However, from an independent measurement of Q we conclude 
that the resistance at 100 kHz (the resonance frequency of the circuit) is 56 0. It 
is somewhat lower at 60 kHz (the Larmor frequency in the holding field of 19 G), 
say approximately 50 R. The volume of the active region is 30 cm3. So, we get 
Mi-d = 1.22 G. For convenience, we convert this to polarization by dividing by the 
number density and the magnetic moment of 3He, MTd = 425 (dimensionless). 

All experiments with masers [54, 55, 561 
have been done in the regime of motional narrowing, when the dephasing time 
Tp = (hy lVBz1)-’ is much longer than the diffusion time Td = h 2 / D ,  where h is 
a characteristic dimension of the cell and D is the diffusion ‘constant. In this regime 
the magnetization decays exponentially with a time constant given by: 

Mrd - Meq = 
wm a 1 (wm ) T2 

It is more difficult to estimate T2. 

(4.51) 

where k is a dimensionless constant which depends on the geometry of the sample. 
For example, for a sphere with h = R, IC = 8/175 [19]. These results do not apply 
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to our situation, however, since in our case the diffusion time is much longer than 
the dephasing time. Their ratio p = Td/Tp is ranging from 300 to 7500 depending on 
what number we use for h.  Before considering the relaxation under these conditions, 
we can try to  get a rough estimate by going to the other extreme of infinitely slow 
diffusion. 

In the static approximation there is no diffusion and the only time scale is given 
by the dephasing time Tp. The decay of the spins is not exponential and depends 
on the geometry of the sample. To study the effect of the gradient on the masing 
equilibrium we used an anti-Helmholtz coil. It was found that a gradient of approx- 
imately 3 mG/cm was necessary to establish equilibrium at 30% polarization. Then 
Tp M l / (hyVBz)  z 3 ms, where h is the half-length of the active region, equal to 5 
cm. We assume that T2 = kTp, where k is of order unity. 

The masing instability is also suppressed because the Larmor frequency at the 
holding field (60 kHz) is very far from the resonance of the circuit (100 kHz).  The 
frequency pulling increases the masing frequency by 5%. We get al(w,) = 2.9 x lop4. 
Putting everything together we get Meq = 1230, which is a factor of 4000 higher than 
the observed threshold of Meq = 0.3. So, our naive estimates seem to disagree with 
observations by a very large amount. 

Let's for a moment close our eyes to  this disagreement and study the dynamics of 
the spins. Equations (4.46, 4.47) need to be modified to include the effect of optical 
pumping and polarization transfer between different parts of the cell. We get the 
following set of differential equations: 

(4.52) 

clw a 2 ( w ,  aZ / M T d  

where M e ,  M p ,  and MRb are 3He polarizations in the ends of the target cell, the 
pumping cell, and Rb polarization respectively. Also, T,, Tp,  T,, Tse, 7'1 are diffusion 
times for the target cell, the pumping cell, the ends of the cell, the spin exchange 
time, and the longitudinal relaxation time. The constraint equation (4.48) for w was 
converted to  a differential equation for the numerical calculation. These equations 
were solved on Mathematica, the result for nilz is shown in Figure 4.26. The shape 
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of the curve is not sensitive to exact values of T2 and MTd, they were adjusted to 
get saturation at -30%. So, the dynamical behavior is explained quite well by the 
theory. 
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Figure 4.26: The evolution of the polarization with time predicted by the masing 
equations. The coil coupling is adjusted to achieve saturation at -30%. 

All properties of the maser are in agreement with observations, except the numer- 
ical estimate of the masing threshold. The most suspicious number in our calculation 
is the value of the T2, so we need to  consider the transverse relaxation in greater 
detail. The relaxation is clue to  the magnetic field inhomogeneity in the presence of 
diffusion, and is governed by the following differential equation [58, 591: 

(4.53) 

-+ 

where = yVB, 
logical relaxation 

and D is the gas diffusion constant. We replace the phenomeno- 
term in the Bloch equations by (4.53) and take into account the 

position dependence of the magnetization. Then the transverse magnetization obeys 
the following differential equation: 

(4.54) 

Following the methods of [58], we decompose MT (F,  t )  into normal modes with 

1 
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exponential time dependence: 

Substituting this expansion into equation (4.42) we obtain 

(4.55) 

(4.56) 

We ignored the time dependence due to E;, which is on the order of gh ,  much smaller 
than w.  The magnetic field of the pick-up coils is reasonably constant inside the coils 
and then quickly drops to zero (see Figure 5.1). Since we are interested only in rough 
estimates, we will separate the integral in equation (4.56) as follows: 

bT ( F )  m; (F) d3r = ( b T )  / m; (F)  d3r 
L l l  coil 

(4.57) 

where ( b T )  is the average magnetic field of the pick-up coils and the integral extends 
only over the volume where the field is significant. For convenience, we introduce a 
dimensionless mode filling factor : 

1 
A; = - rn; (F) d3r 

Koil coil 
(4.58) 

It follows that: 

Since we consider the case when the Larmor frequency is far away from the coil reso- 
nance, the frequency shift due to the factor exp ( -E;t )  is ignored. Upon substitution 
into equation (4.54) we obtain a time independent equation: 

where we ignored the position dependence of bT and M z .  The normal modes mi (?) 
are subject to the boundary condition at the walls of the cell: 

n .Vm;=O (4.61) 

which assumes that the walls are non-depolarizing. Although equation (4.60) is still 
linear in rn; (A;  is proportional to  mi), it is no longer homogeneous. There is a discrete 
set of eigenvalues 8; which correspond to eigenstates rn; satisfying the boundary 
conditions. It is shown in [58] that in the absence of coil coupling the real part of 
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E; is always positive, corresponding to decaying modes. We would like to find the 
value for Mz when the real part of E; becomes negative, indicating an exponentially 
growing mode. 

We study the equation in one dimension. Note that the only spacial dependence 
of the equation comes from the ij. r‘ term. There are no terms which depend on z ,  
the direction of the magnetic field. Therefore, we can let y’ point in any direction, not 
necessarily parallel to z .  For example, let the gradient y’ be in the i direction and 
assume that the cell is a cylinder parallel to  the ci: axis with flat end walls located at 
x = fh. Following [58], we introduce dimensionless coordinate and time: 

(4.62) 

The dimensionless coil coupling factor is given by: 

(4.63) 

and the equation reduces to: 

(4.64) 

with 
1 

A; = 1 / m; (z) dz 
2 -1 

(4.65) 

Using the numbers given above we estimate for h = 1 cm that p = 300 and f = 
-(0.3+20i).  We tried to study this equation numerically starting with the eigenvalues 
given in [58] for f = 0. We first set A; to some value and find the eigenstates of the 
equation. For sufficiently large values of f the eigenvalues indeed have a negative 
real part. Using the eigenstates, we calculate A; and then iterate the procedure. 
Unfortunately, the iterations failed to converge for the values of ,/3 and f in the range 
of interest. 

In general, A; is complex, which implies that the real part of E; depends on both 
the real and the imaginary parts of f .  This is different from the case of simple 
exponential dumping, where only the real part of f determines the masing threshold. 
Since the imaginary part of f is much larger than the real part, this may indicate 
that the masing threshold is lower. 

To summarize, we have a lot of qualitative evidence for the masing effect. Because 
masing is described by non-linear equations, there are a lot of rather specific predic- 
tions about the qualitative behavior of the spin maser, all of which are in agreement 
with the experiment. In fact, we cannot think of any other effect which could ex- 
plain even a fraction of the spin behavior explained by masing. On the other hand, 
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our initial numerical estimates of the threshold appear to be unsuccessful. The de- 
pendence of the masing threshold on various parameters is not entirely understood. 
For example, it is not clear why no masing was observed in Picard, which by naive 
analysis would be even more susceptible. With additional effort it should be possible 
to solve equation (4.64) numerically and see if the result is in better agreement with 
the experiment. It also would be very interesting to study the effect experimentally 
under more controlled conditions. If our data are indeed explained by masing, the 
dependence of the threshold on various parameters can be expected to be non-trivial. 
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Chapter 5 

"He Polarimetry 

With the reduction of the statistical errors achieved by our experiment, it becomes 
extremely important to reduce the systematic errors, like the uncertainty in the tar- 
get polarization or the dilution factor. In fact, the target dilution factor and the 
polarization are the two dominant sources of the systematic error for the integral of 
gl (2) over the measured range. A lot of effort was put into measurements of these 
quantities and our errors are significantly smaller than in previous experiments. Be- 
cause of this, the total systematic error of our experiment is approximately equal to 
the statistical error. Unlike many other experiments, the polarization of the target 
was measured by two totally independent methods. The agreement of the two results 
gives us additional confidence, since they are likely to have totally different sources 
of systematic errors. One method is a traditional NMR using Adiabatic Fast Passage 
(AFP) as was used, for example, in E-142. The second method is a rather novel 
technique relying on the shift of the Rb Zeeman resonance (EPR) frequency due to 
3He polarization. The errors of the two methods are comparable. We will describe 
each of the two methods in turn, and then discuss their agreement. The polarization 
analysis is described in [l], some of the results presented in this chapter have been 
reported in [2]. 

5.1 NMR Polarimetry 

5.1.1 Adiabatic Fast Passage 
Adiabatic Fast Passage (AFP) NMR [5] was used to measure the 3He polarization 
regularly during the run. The NMR setup is shown in Figure 5.1. The RF coils were 
used to  create an oscillating field of magnitude 2H1 perpendicular to the main mag- 
netic field H aligned along the z axis. The oscillating RF field can be decomposed into 
two counter-rotating components, each of magnitude H I .  To consider the behavior 
of the spins under the influence of the rotating field, it is useful to go into a reference 
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frame rotating around the z axis at w ,  the frequency of the Hl field. In this frame, 
the field seen by the spins is Herr = ( H  - Ho) i + HI$', where Ho = yw,  and y is 
the gyromagnetic ratio. The other rotating component of the field is oscillating at a 
frequency 2w in this frame and does not affect the spins. The size of the Bloch-Siegert 
frequency shift [3] due to  the counter-rotating field is only H;/4H; = 2 x lop6. Ini- 
tially, the holding field H is significantly smaller than Ho (i.e. Ho - H >> HI), and 
the effective field is almost parallel to the z axis. The magnetic field is swept through 
resonance until H is greater than Ho. If the sweep is slow enough, the spins can 
follow the changing field adiabatically. The maximum rate of change of l?,,, occurs 
near the resonance and is given by H I H I .  So, the adiabatic condition is satisfied if 
H / H l  << w .  However, the sweep cannot be too slow, because the spins relax faster 
near the resonance when the effective field is very small. For 3He, the relaxation rate 
in the rotating frame is given by [4]: 1/TlT = D lGHzl /I?:, where D is the 3He 

diffusion constant. The sweep rate was optimized to minimize polarization losses 
during AFP sweep. Both inequalities are satisfied very well: 

-+ 

2 

The measurements showed that the AFP losses were approximately 0.1% per sweep. 
The NMR signal was detected by two pick-up coils which were orthogonal to both 
the Helmholtz coils and the RF coils. The measured signal is proportional to the 
transverse component of the magnetization: 

This is the basic shape of the signal, it is modified by a number of effects, as described 
below. 

Data acquisition was controlled by a Mac Quadra computer running IgorProTM. 
The magnetic field was swept up and down through the resonance by sending a linear 
ramp to the Kepco power supply from the D/A output of the computer. Both outputs 
of the Lock-in amplifier were digitized and recorded by the computer. The phase of 
the lock-in was adjusted to maximize the signal in one of the channels. For the water 
calibration the uncertainty in the signal height due to  the phase setting of the Lock-in 
was about 0.5%. The RF field was turned on several seconds before the sweep and 
turned off after the sweep. The A - 9  box was used to  apply a signal of arbitrary 
magnitude and phase to one of the differential inputs of the Lock-in. It was necessary 
to  cancel the direct pick-up of the RF field. Table 5.1 lists various AFP parameters. 
For 3He AFP the field was swept up and then immediately down. For the water 

T .  1 



5.1. N M R  Polarimetry 121 

RF Coils 

H - 
I I tH, Pick-up Coils 

Amplifier, RF 

A-9  BOX 

DE D , C  I 

Mac Quadra 

Figure 5.1: NMR equipment setup. 

calibration there was a delay of 15 sec. at high field to allow the proton spins to come 
into thermal equilibrium at the new value of the magnetic field. 

Figure 5.2 shows a typical 3He AFP signal, a fit to the shape (5.2), and the 
residuals of the fit. Five parameters were used in the fit: The height, width and 
center of the peak as well as a constant and linear background. The residuals of the 
fit are quite small, and the height of the signal can be extracted with an error of 
less than 0.2%. However, to  extract the absolute polarization of the 3He, one has to  
calibrate the signal. 

In principle, the calibration can be accomplished by a calculation of the magnetic 
flux captured by the pick-up coils and the knowledge of the gain of the LC circuit and 
various other gains in the system. Such calculation was performed and is discussed 
later in the text. However, it is difficult to estimate its uncertainties and one can 
never be sure that all effects are taken into account. Therefore, the calibration is 
typically performed by measuring the NMR signal from protons in water, where the 
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Table 5.1: AFP Parameters. 
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Figure 5.2: 3He AFP signal with a fit described in the text, bottom panel shows 
residuals of the fit. 

absolute polarization is known from the Boltzman distribution: 

P P B  P, = tanh - 
kT (5.3) 

Water is used because it has one of the highest concentrations of protons. The 
calibration procedure is complicated by several factors. First, the AFP signal from 
water is lo5 times smaller than the 3He signal because the thermal polarization of 
water is only 7.5 x lo-’ at the magnetic field used in the experiment. It is quite 
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difficult to detect, and one usually has to resort to averaging many signals to get an 
acceptable signal to noise ratio. In our case, each set of water data consisted of about 
50 sweeps. Second, we would like to measure the signal from a cell filled with water 
which has dimensions identical to the dimensions of the 3He cell. In practice, the cell 
used for water calibration had slightly different dimensions and position between the 
pick-up coils, and these differences require a correction to the signal height. Third, 
the relaxation processes in water are different then in 3He and so the signal (5.2) is 
significantly modified. Therefore, to properly fit the signal and accurately determine 
its height, we need to consider the relaxation processes in detail. Fourth, the water 
calibration is a time consuming procedure and consequently was done only before and 
after the run. So, one has to worry about changes in various quantities that might 
affect the signal height between the two water signal measurements. Each of these 
problems will be addressed below. 

5.1.2 Coil Modeling 
Careful modeling of the pick-up coils is necessary to take into account the differences 
in the dimensions, positions and relative densities between the 3He cells and the 
water cell. For some cells these differences lead to corrections as large as 20%. In 
addition, coil modeling allows one to  calculate from first principles the expected size 
of the water signal. It provides a useful cross-check with an error comparable to other 
calibration methods. 

Consider the coupling of the spins with the pick-up coil. We represent the magnetic 
moment 6 of the spins by a small loop of area a', with a current I ,  flowing through 
it, so that I,a', = 6. Let the coil produce a magnetic field B ( x )  = b(x) Ic  when 
the current I ,  is flowing through -+ it. The flux of the coil magnetic field through the 
imaginary loop is @, = I,b. a', = L,I,, where L,  is the mutual inductance of the 
coil and the loop. The flux of the field from the loop through the pick-up coil is 
Q C  = L,I, = b . 6, using the fact that the mutual inductances are equal. 

-+ -+ 

-+ 

The voltage induced in the coil during the sweep is: 

- d& 
V ( t )  -- = - n ( s ) b ( x )  . - d3x = --wrnT(t) sin (ut) / n(x)b~ (x) d3x 

d t  d t  Vcell 

(5.4) 
where n is the density of the spins, bT is the transverse component of the coil field, 
and rnT is the transverse component of the magnetization given by (5.2). So, the 
calculation of the coil response reduces to the integral of the field produced by the 
coil over the volume of the cell, weighted by the density of the spins. In our case 
the cell is well approximated by a combination of cylinders. Assume that each of 
the cylinders (i.e. target cell, pumping cell) has a constant density of spins (we 
will consider a correction due to the density gradient in the target cell later). Then 
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the volume integral can be converted to a surface integral of the vector potential: 
Jv ZdV = Jv V x LdV = Js n’ x A d a .  So, we need to  calculate only a two-dimensional 
integral over the surface of the cell. Assuming that the cell is placed symmetrically 
between the coils it is sufficient to calculate the field from only one of the pick-up 
coils. The effect of the 
bend on one side of the coils can be modelled as an additional loop, whose plane 
is perpendicular to the axis of the cylinder. Using A (x) = 1/c J J’(x’)/ In: - 2’1 d3x’, 
it is easy to calculate the vector potential of a rectangular loop. It has a relatively 
simple analytical form. The two-dimensional integral of A over the surface of the cell 
was performed using Mathematica. To account for the finite thickness of the coils 
with sufficient accuracy we also integrated over two of the three coil dimensions. The 
dimensions were carefully measured with a caliper and checked against the mechanical 
drawing of the coils. 

To gauge the accuracy of the model a number of systematic checks was done. The 
model was checked by comparing the water signals from two water cells ( I  and 11) 
with widely different dimensions. The ratio of the signals, equal to 1.26 with a error 
of 1.7%, agrees with the model to better than 1%. Also, the amount of the signal 
coming from the pumping cell was checked by taking data with the pumping cell full 
and empty. The ratio of the signals agrees to l.2%, while the error is 1.4%. 

In addition to  the dimensions of the cells we need to  know their vertical position 
between the pick-up coils. We studied it after the run for the three surviving cells, 
Picard, SMC and Chance. The central position was determined by moving the cell 
in the target mover and measuring the AFP signal. The data can be described by a 
parabola near the maximum. It was found that the nominal position for all cells was 
too low with respect to the center of the coil by 2.7f0.3 mm. The nominal position 
was determined when the cell was at room temperature and the scattering chamber 
was open to air. The cell is mounted from the top of the scattering chamber, while 
the pick-up coils are mounted from the bottom. We believe that when the scattering 
chamber is pumped out and the cell it heated up, there is a deformation which results 
in the relative displacement between the pick-up coils and the cell. This displacement 
resulted in a reduction of the AFP signal by about 3%. Based on the reproducibility 
of the offset we will assume that all other cells were also 2.7 mm away from the center 
with a error of 0.5 mm. 

The flux numbers were generated for each of the cells using dimensions and relative 
densities given in Chapter 4. We split the integral over the cell into integrals over 
several cylinders (target cell, pumping cell, transfer tube): 

The coils are modelled by a series of rectangular loops. 

+ 

and took into account the difference in 3He density of the pumping cell. b~ was 
calculated based on the dimensions of the pick-up coils, while the boundaries of 
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Dave 
65.2 

Hermes 
63.7 

the integrals depended on the dimensions and position of the cells. For Picard a 
position 3.0 mm below the center of the coils was used. This vertical displacement 
was measured directly after the experiment. For the water cell, which was mounted 
in a different way, a vertical displacement of O f 1  mm was used. The numbers are 
given in Table 5.2. b~ is in units of cm-* (we factor our 1/c  in CGS units or po/47r 
in SI units) and F is in units of cm2. 

Riker Bob SMC Generals Water I1 
73.0 65.8 64.7 72.5 81.7 

Prelims Chance Picard Water I 
69.5 70.5 78.0 64.0 

The errors are dominated by the radius of the target cell, contributing 1% to  the 
flux error, the uncertainty in the vertical position of the cell, contributing 1% (except 
for the water cell) and the uncertainty in the horizontal position, contributing 0.6%. 

5.1.3 Water Signal Analysis 
The analysis of the water signals is complicated because the thermal relaxation time 
for protons is comparable to the sweep time, so equation (5.2) does not describe the 
signal very well. Relaxation during the sweep affects both the height and the shape 
of the AFP signal. It also makes the signal dependent on the speed and direction of 
the magnetic field sweep. We use the Bloch equations to  describe the time evolution 
of the three components of the polarization'(P,,P,, Pz)  in the rotating frame [5]: 

where TI is the longitudinal relaxation time, T2 ( H I )  is the transverse relaxation time 
in the presence of the rotating magnetic field H I ,  and x = p p / k ~ T .  When the RF 
field is off and the DC field is constant, the polarization has a value of P = xH. The 
resonance occurs at time t = 0 and a sweep begins at a negative time, t o  < 0 and 
ends at a positive time, tl > 0. 
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Naively, one would expect T1 = T2 for water since the correlation time, T,, asso- 
ciated with the translation and rotation of the molecules is much shorter than the 
Larmor frequency. However, several measurements [6, 7, 81 show that: 

for neutral (i.e. pH=7.0) water. The reason for this turns out to be the presence 
of 0.037% of 170 isotope in natural water [7] .  170 has a spin of 5/2 and a scaler 
coupling to proton spins. The time that an H atom spends attached to a particular 
water molecule with an 170 is about sec. The relaxation time of the 1 7 0  spin 
itself is about 4 ~ 1 0 - ~  sec. Since neither of these times is shorter than the Larmor 
frequency w ,  the motional narrowing does not apply. As a result, the proton resonance 
is split into several lines and the transverse relaxation time is reduced compared to 
the longitudinal relaxation time. 

The value of Tl was determined from a special measurement done on the cell 
used for the water calibration. The computer was set to  sweep the field up and then 
immediately down. By changing the end point of the sweep, the amount of time 
between the resonances on the way up and down was changed. The ratio of the two 
peaks was compared with the results of a numerical integration of equations (5.6). 
The ratio of the signal heights for the up and down sweeps is very sensitive to the 
value of Tl, and insensitive to a difference between the values of Tl and T2. In this way, 
it was found that TI = 2.4 f 0.3  seconds at 20f2"C. The uncertainty comes mainly 
from the possibility of a small delay between the up and down sweeps generated by 
the computer. One should be aware that Tl is extremely sensitive to  temperature. It 
changes by about 0.4 seconds when the temperature changes by 5°C. It also depends 
on the amount of O2 dissolved in the water. The value of TI for deoxygenated water is 
2.95 seconds at 20°C [9]. Our water was de-ionized but not de-oxygenated. Using the 
data from [lo], and the solubility of 0 2  in water, it is estimated that the concentration 
of 0 2  was about 50% of the saturation value for the data taken before the run. 

To apply the correction due to  a T2 shorter than Tl, it must first be checked that 
the relaxation due to 170 is the only process contributing to the difference between 
TI and T2. There are certain paramagnetic ions [7, 111 which can form molecular 
complexes with water and reduce TI and T2 by different amounts. The ions could, for 
example, dissolve from the glass walls of the cell. So, after the run, the water cells 
still containing the original water used in the calibration were shipped to  Princeton, 
where both Tl and T2 were measured using a pulsed NMR spectrometer [la]. 2'1 was 
measured using saturation and inversion recovery. First, either a 90" or 180" RF pulse 
was applied to  the spins and then another 90" pulse was applied after a time T .  The 
height of the FID after the second pulse is proportional to MO (1 - e-T /T1)  for a 90" 

pulse and Mo (1 - 2e-'/T1) for an 180" pulse. The measurement was repeated every 
60 sec with different values of T until the decay curves were mapped out. 

T '  1 
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T2 was measured with the spin echo technique using the CPMG sequence [13]. 
First, a 90" pulse along the x' axis starts the precession of the spin. The spins dephase 
in time T," << T2 due to magnetic field inhomogeneities. At some time r > T," an 
180" pulse is applied along the y' axis. It reverses the direction of all the spins and at 
time 27. they come into phase again, producing an FID. The 180" pulse is repeated 
every 2r, producing a series of echoes. The envelope of the echoes decays with a 
time constant l/Ti = l/T2 + 1/3Dy2 IVHI2r2) where D is the diffusion constant of 
water. In our case the relaxation due to diffusion was small for 7. < 15 ms. The 
measurements with 7. = 15, 10, and 5 ms all agreed within errors indicating that 
the imperfections of the 180" pulse did not cause a significant error. It was found 
that for both water cells, as well as for a control sample of freshly deionized water, 
7'1 = 3.0 f 0.1 sec and T2 = 2.2 f 0.15sec at 26°C. So, 1/T2 - l/Tl = 0.12 f 0.03 
sec-' in agreement with (5.7). The measurement also implies TI = 2.5sec at 20°C, 
in agreement with the AFP measurements taken at SLAC before the run. 

In order to apply a correction due to  T2 < TI, the magnitude of the H1 field during 
the AFP sweep must be taken into account. The effect of the H1 field was studied by 
Meiboom in [7], who used an AFP technique for measuring T2. Using his treatment 
we calculate: 

1/T2 ( H I )  = 1/T1 + 0.033sec-l (5.8) 
for H I  = 0.086 G. Putting the values of Tl and T2 back into (5.6), we find that 
the height of both the up and down water signals is reduced by 0.4%. It should be 
pointed out that if one ignored the dependence of T2 on H I ,  as had been done by 
some authors, one would get a correction of 1.4%. 

To fit the water signals we would like to  find an analytic function for the signal 
shape which takes into account the relaxation during the sweep. Equations (5.6) were 
integrated numerically on Mathematica and it was found that the reduction of T2 

compared with Tl causes a negligible correction to the shape of the signal. It only 
affects its height. Since we need an analytic function to fit the data, we will first 
assume TI = T2 and develop an expression for the signal shape. We will then correct 
its height to include the fact that 2'2 < TI. If TI = T2 the polarization follows 
the effective magnetic field fie,, = (I? - Ho) 2 + HI$ provided that the adiabatic 
conditions are satisfied, and the set of equations (5.6) can be reduced to one equation 
for Pejj: 

The integral form of the solution is: 

(5.10) 
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but the integral does not have an analytic representation. One can get an analytic 
approximation if at >> H1 by expanding Pea ( t )  in powers of l / t ,  or if t << Tl by 
expanding the exponential in powers of t/T1. Fortunately, Hl/cr = 0.07sec << TI = 
2.4 sec, and by switching from one approximation to the other one can cover the whole 
region of interest. Two terms were kept in each of the expansions and the switching 
time was adjusted to  minimize the deviations from the result of numerical integration 
of (5.9). The resulting expression did not deviate from numerical results by more 
than 0.08% of the peak height. Since the noise of the averaged water data is about 
1% of the peak height, the fit did not introduce any systematic biases. Each signal 
was fitted individually using GenplotB on a PC and the results averaged. The fit 
contained 5 parameters: the height, width and center of the peak and a constant and 
linear background. We used the value of 2'1 determined in the same cell before the 
run. The water signals can also be averaged directly, correcting for slight drifts in the 
center position. The result is shown in Figure 5.3, along with a fit. 
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Figure 5.3: An average of 50 water signals with a fit based on the Bloch equations. 

Since the relaxation during the resonance is already taken into account in equation 
(5.9), the heights of the up and down peaks should be the same. So, a consistency 
check can be performed by using the value of TI from the independent measurement 
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before the run and comparing the heights of the water signals. For the data taken 
before the run, the two heights are different by l.S%, while the combined error is 
1.6%, neglecting the error in TI. For the data taken after the run the peaks are 
different by 3.6% which is outside the error bars. The two heights are equal if we use 
TI = 1.95 sec. Given the sensitivity of TI to  the environment, this value is not too 
unreasonable. It should also be pointed out that the variation of TI causes the heights 
of the two peaks to move in opposite directions and has a negligible effect on their 
average. Another way to identify potential disagreement with the model is to study 
the systematic deviations in the residuals of the fit. The residuals of individual fits 
were added together to reduce the noise, a typical result is shown in Figure 5.4. For 
most data the systematic deviations were less than or equal to l.5%, although there 
is one set of data (the up signal for the pre-run data) were the deviations are up to 
3%. The random noise in the data is about 1%. To check if these deviations indicate 
a fundamental deficiency of the model, some data were taken in January under more 
favorable noise conditions. In these data the noise level was approximately 0.6% and 
systematic variations were also on the order of 0.6%, approximately the same as the 
He AFP residuals. Nevertheless, we will assume that the systematic error of the water 
signal analysis is 1.5%. 
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Figure 5.4: Average residual of the water signal as a percentage of the peak height. 
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For the final result we averaged the results of the individual fits and applied a 
correction (0.4%) due to T2 < 7'1. The height of the water signals taken before the 
run is S, = 1.502 f 0.015(stat)  pV, and S, = 1.533 f 0.013(stat) pV after the run. 
Here, for definiteness, we already took into account the nominal gain of the pre-amp 
and the lock-in, so the voltage refers to the RMS voltage at the output of the LC 
circuit. The same convention applies to the 3He and water signals shown in Figures 
5.2 and 5.3. 

An alternative method to  analyze the water signals is to fit them to the same 
analytic form as the 3He signals and then apply a correction to the height of the 
signal to take the relaxation into account. When the water signals are fit to equation 
(5.2), we find that the peak heights for the up and down sweeps are not equal. The 
ratio of up to down peak heights is equal to 0.813 for the data taken before the run 
and 0.849 for the data after the run. This information can be used to determine TI 
directly from the calibration data. With a numerical integration we generate water 
signals according to equations (5.6) and then fit them to a lorentzian (5.2). The value 
of 7'1 is adjusted until the ratio of the up to down heights is reproduced. In this way 
we found that Tl = 2.7f 0.4 sec. for the data taken before the run and Tl = 1.8f0.2 
sec. for the data taken after the run. Equation (5.8) is used to  calculate T2.  

With these values for 7'1 and 7'2 NMR signals are generated by numerical solution 
of the Bloch equations and the results are fit to a simple lorentzian. It is found that the 
average height of the up and down signals, as determined by the lorentzian fit, should 
be corrected by a factor of 1.012f0.004. To check if this number is affected by the 
noise in the signal, gaussian noise was added to the simulated signals generated by the 
solution of the Bloch equations. No significant changes were found. The calibration 
data are fit to the same lorentzian lineshape. After applying the correction, we find 
S, = 1.520 f 0.022(stat)  pV before the run and S, = 1.543 f 0.015(stat) pV after 
the run. 

The two methods give slightly different results for the height of the water signals, 
although the discrepancy is less than the systematic error of 1.5%. While in the first 
method the signals are fit to a more accurate shape and, therefore, should be less 
sensitive to the random distortions, the second method is more closely relying on the 
calibration data for extracting TI .  We use the average of the two methods and add the 
difference between them (0.9%) to the systematic error. The result is S, = 1.513 f 
0.015(stat) f O.O25(sys) pV before the run and S, = 1.538 f 0.015(stat) f O.O25(sys) 
pV after the run. The temperatures for the two data samples were identical within 
errors (22 f 3°C). The difference between the two numbers before and after the run, 
equal to 1.7%, is approximately the same as their combined error. So, any variation 
of the pick-up coil sensitivity with time is seen only at la level. It may be due to 
a slow deformation of the pick-up coils by heat or an abrupt motion of the pick-up 
coils during Riker explosion. We will assume that the sensitivity varied linearly with 
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5.1. N M R  Po1arimetr.y 131 

time and apply appropriate corrections to the calibration constants of all cells. 

5.1.4 Other Signal Shaping Effects 

The shape of the signal given by (5.2) for 3He and by (5.6) for water is modified by 
two additional effects; the field inhomogeneity and the time constant of the lock-in 
amplifier. Ideally, these modifications should be the same for both 3He and water. 
However, the value of the HI field was different (see Table 5.1) due to problems with 
the switch on the HP used to  turn the RF on and off. Since both effects depend on 
the value of HI ,  they need to be studied in more detail. In addition, they need to be 
included in the comparison of the absolute signal size with the results of a calculation. 

The effect of the Lock-in amplifier time constant can be accurately modelled by 
the following integral: 

This integral was evaluated on Mathematica for 7 =10 ms. The height of the signal 
is reduced by 0.7% for 3He and by 0.5% for water. The residuals for a lorentzian fit 
are 0.2%. 

The field inhomogeneity causes the spins in different parts of the cell to come into 
resonance at different times during the sweep, which broadens the signal and reduces 
its height. The dB, /dz  component of the gradient causes the biggest effec,t, because 
the region sampled by the pick-up coils extends in that direction. The signal can be 
written in the form: 

(5.12) 

where g ( 6 )  gives the relative number of the spins experiencing a gradient field 6. For 
a linear gradient in the z direction, a square pulse distribution extending from -bo to 
60 is used. bo is determined by studying the height of the AFP signals as a function 
of H1.  This was done for Picard and Chance over a range of HI  from 55 to 85 mG. 
The data first have to be corrected for the shaping due to  the lock-in time constant 
by evaluating the integral (5.11). The analysis of the data gives bo = 18 f 5 mG or 
roughly dB, /dz  = 3.6 mG/cm. When the signals are fit to a function of the form 
(5.2) plus a constant and linear background, the height is reduced by 0.9% for 3He, 
but by only by 0.7% for water, because of the larger HI field. The residuals of the fit 
are approximately 0.4%, consistent with Figure 5.2. We will correct for this effect by 
reducing the water signal height by 0.2%, so that it is consistent with the conditions 
of 3He AFP. 

1 
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5.1.5 

To study the temperature dependence of the pick-up coils gain as well as possible 

Coil Gain and Other Quantities 

coil loading, we periodically mapped out the Q curve of 
excitation loop. The voltage induced in the pick-up coils 
can be described by the following equation: 

C c 

v ( y )  = /- 

the pick-up coils using an 
as a function of frequency 

(5.13) 

where E is the EMF induced in the pick-up coils. The EMF is proportional to  the 
frequency, so we can write E = Av, where A is a constant which depends only on the 
geometry. The variation of the gain of the LC circuit during the run was about 0.5%. 
The gain was higher by 0.9% f 0.5% when the coils were hot with a 3He cell installed 
than under conditions for water calibration. The absolute size of the circuit gain at 
92 kHz is G, = V/E = 5.583 f 0.05. 

The analysis of the water signals was done in such a way that only the thermal 
proton polarization at the resonance enters into the calculations. This allows the RF 
frequency to be used rather then the magnetic field in the calculation of the Boltzman 
polarization. Using the temperature of 22f3"C we get Pth = ( h v / 2 k T )  = 7.481 x lo-' 
with 1% error. The density of protons in water at 22°C is np = 6.670 and 
the ratio of magnetic moments of the 3He and 'H is p ~ ~ / p ~  = 0.7617 

5.1.6 Absolute Calibration 
Using the model of the pick-up coils, the model of the LC circuit and other corrections 
described above, one can calculate the expected size of the water signal from first 
principles. One more effect needs to be included. The BNC cable running from the 
target to  the Counting House was loading the output of the pre-amplifier which has 
an output impedance of 500. At 92 kHz, the cable can be treated as a capacitor. To 
measure its capacitance, the cable was connected to the 6000 output of the pre-amp, 
and from the reduction of the signal it was estimated that its capacitance is 8.4 nF. 
Assuming 30pF/ft, this corresponds to 280 ft of cable, a reasonable number. The 
signal is reduced by 3fl% due to the loading by the cable. We also need to know the 
number of turns in the pick-up coils, which is equal to  N ,  = 150 [14]. The voltage 
detected by the lock-in is given by: 

V = -wppFn,PthN,G,GpG~C PO 
47T 

(5.14) 

where G, and G1 are the pre-amp and lock-in gains respectively, and C = 0.958 
is a correction factor which includes the attenuation in the cables and reduction in 

1 
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nP 
n o  

the signal height due to  field inhomogeneity and lock-in time constant. Putting all 
of the numbers together we get a value for the water signal of 1.48 pV, which is 
only different by 3% from the actual signal. It is difficult to estimate the error of the 
calculation. It is dominated by the uncertainty of the coil dimensions, and is probably 
about 5%. Nevertheless, this comparison is an extremely powerful check of the model 
calculations. Since they are able to reproduce the absolute size of the water signal, 
we trust them to  reproduce the scaling between different cells. 

2482 amg. 0.1 
Table 4.9 1 .o 

5.1.7 Calculation of the Calibration Constant 

Since the AFP signal is proportional to the spin magnetization, it is easy to scale the 
water signal to  calculate the calibration constant between the 3He signal height and 
the polarization: P H ~  = CwSHe, where w stands for water calibration. 

(5.15) 

Each of the parameters and their errors are summarized in Tables 5.3.  The errors 
for the lock-in and pre-amp non-linearity are determined by connecting the lock-in 
and pre-amp in series and changing the gain on both of them so that the product 
remains constant. Any changes in the output would indicate that one of the devices 
is non-linear. Such variations were less then 1%. The results for the water calibration 
constants in units of %/mV cells are given in Table 5.4. The total error on the water 
calibration constant is 3.4%. 

c, = (2) ( p p n p  ) ( GcuJGpw Glw 
P H ~ ~ o  ( n C / n o )  GcHeGpHeGlHe 

Parameter Value Error (%) 
7.481 x lo-' 

1.313 
1.510 - 1.535 pV 

Table 4.11 
0.991 

Table 5.3:  Water Calibration Error Table. 

'The nominal ratio of the gains is already included in the size of the water signal. 

1 



134 Chapter 5.  3He Polarimetry 

Dave 
0.1595 

Riker Bob SMC Generals Hermes Prelims Chance Picard 
0.1445 0.1603 0.1611 0.1476 0.1656 0.1496 0.1471 0.1349 

5.2 EPR 

5.2.1 Basic 

Table 5.4: Water Calibration Constants, %/mV 

Polarimetry 

Principle 
The EPR method of polarimetry uses the shift of the Rb Zeeman resonance due to 
the magnetic field created by polarized 3He. The EPR resonance is shifted due to 
two effects. The Rb-3He spin exchange interaction that is responsible for polarization 
transfer to 3He also produces a shift in the Rb EPR frequency proportional to the 
3He polarization. Also, the classical magnetic field produced by 3He magnetization 
shifts the frequency of the Rb Zeeman resonance. These shifts are quite substantial 
(about 20kHz out of 8MHz) and easy to measure. To isolate the shift due to 3He 
we reversed the direction of the 3He polarization and measured the difference in the 
EPR frequency between the two polarization states. 

To understand the contribution from the spin exchange it is convenient to use 
the density matrix formalism. For binary Rb-3He collisions the time evolution of the 
density matrix p of Rb is given by the following equation [15, 161: 

1 2 i I i 'He  do 
- (40 (2) - 6) . 9 + ~ [(k) 2, p] + d t p  (5.16) 
T H e  T H e  

where I and S are the nuclear and electron spins of Rb atom, i? is the 3He nuclear 
spin, ~ / T H ~  = rzHe'UcrRb-He is the Rb-He spin exchange rate per Rb atom. I ~ - H ~  is 
a frequency shift parameter, a and C are operators acting on the nuclear spin of 
Rb. A is the Rb hyperfine splitting, we = g , p B B / h  and WI = g I p N B / h  are the 
electron and nuclear Zeeman frequencies. clop/& is the contribution to the time 
evolution from other effects which do not depend explicitly on the 3He nuclear spin. 
Their effect will be considered later. The real part of the Rb-He spin exchange term 
results in the spin transfer between Rb and He, while the imaginary part causes the 
frequency shift. Since the nuclear spin is polarized along the z axis, (2) = K,i, the 
frequency shift due to 3He can be directly added to the Zeeman term. The real part 
of the spin exchange will contribute to the frequency shift only in second order, i.e. 
( T H ~ w , ) - ~  = 

+ 

[15], and is quite negligible. We therefore are left with: 

-p  d = - 2 ~ i  [ A I .  - S, + p ]  - i [ ( w e - -  2 IilHe (I?)) S,  - w11=, p] 
d t  T H e  

(5.17) 

. 
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This can be rewritten in the more familiar Hamiltonian formalism using i hdp ld t  = 

3-1 = 27~hAI ' S + f i  W ,  - - ( I?))  S, - h w l l ,  (5.18)  

Since A = 1012 MHz >> w e / %  = 8 MHz, we should use the eigenstates of the f. ,? 
operator, which are also the eigenstates of the total angular momentum F = I + S. 
Their energy is given by the Breit-Rabi formula [17]: 

[3-1, PI: 
- + +  2 K H e  

( T H e  

- + + +  

where (we + W I  - ( ~ I < H ~ / T H ~ )  (2) )  / ~ T V H F ,  and h V H F  = A ( I  + 1 / 2 ) .  By ap- 
plying an RF field we induce transitions between neighboring M sublevels and mea- 
sure the frequency of these transitions. Figure 5.5 shows the EPR frequencies of the 
AM = 1 ,  A F  = 0 transitions for F = 3 manifold of *'Rb ( I  = 5 / 2 )  as a function of 
B. At  low field all transitions have the same frequency, but they split at higher field. 
The effect of the Rb-3He spin exchange is equivalent to an additional magnetic field 
A B  = (21i'ff,h/THegepB) (I?). (The contribution from the nuclear Zeeman splitting 
can be ignored, since W I / W ,  = 1.5 x lop4).  The value of A B  for our conditions is 
about 0.04 G,  so in calculating the change of the EPR frequency due to 3He we can 
use the derivative of the EPR frequency with respect to the magnetic field, which is 
shown in the inset of Figure 5.5. So, the frequency shift due to  the spin exchange is 
given by: 

(I?) (5.20) 

It is proportional to the density and the polarization of 3He and depends on temper- 
ature, the absolute magnetic field and F, M quantum numbers of the transition. 

The other part of the frequency shift comes from the classical magnetic field 
created by polarized 3He. The magnetic field is proportional to  the 3He magnetization 
and, therefore, the polarization and density of 3He: 

dVEPR (F7 M )  2fZI{HenHeGgRb-He 
dB ge/LB 

a v s E  = 

(5.21)  

where C is a dimensionless factor of order unity that depends on the geometry of 
the sample. We can combine the two shifts for a sample of specific shape. So, for a 
spherical sample we define: 

(5.22) 
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Figure 5.5:  The frequency of the EPR transitions as a function of the magnetic field. 
The inset shows the derivative of the frequency for different levels. 

where f i0  is a constant that de ends on temperature, but not on the density or 
polarization of 3He, and P,ye = [I?) / K .  The shift parameter K H ~  is absorbed into 
f ig .  At low magnetic field d v E p R  ( F ,  Ad) /dB = p ~ g ~ / h ( 2 1 +  l), and (5.22) is identical 
to previous definitions in the literature [ lS ,  19, 201. The value of f i g  is not known 
with sufficient accuracy from calculations based on interatomic potentials and has to 
be measured experimentally. 

5.2.2 Detection of EPR Resonance 

To detect the EPR resonance we relied on the fact that during optical pumping the 
polarization of Rb vapor is very high (60-90%). It means that most of the atoms are 
in the F = 3 , M  = 3 state (or M = - 3 for oppositely polarized light). Although the 
Rb vapor is optically thick for unpolarized light, the laser light can penetrate quite 
far into the cell because most atoms are in the state that cannot absorb circularly 
polarized photons from the lasers. Among the a.toms that do absorb the photons and 
are excited to the P state most are radiationlessly quenched to the ground state by the 
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nitrogen in the cell. A small fraction (3-5%) decays by emitting a fluorescence photon 
at either D1 or D2 line. The fluorescence photons are observed through a D2 filter to 
block the radiation scattered from the lasers, which are tuned to the D1 transition. 
These photons form the picture that is usually observed with a CCD camera to 
monitor the optical pumping. The intensity of the fluorescence is proportional to the 
rate of photon absorbtion in the cell. If we apply an RF field at the EPR frequency 
corresponding to  n/r = 3 t 2 transition, it will tend to equalize the population of the 
two states. The number of atoms in the M = 2 state capable of absorbing laser light 
will increase and the intensity of the fluorescence will increase. So, by monitoring the 
intensity of the fluorescence as a function of the RF frequency we can detect the EPR 
resonance. 
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Figure 5.6: Equipment setup for EPR detection. 

The equipment setup for EPR measurements is shown on Figure 5.6. The RF field 

1 



138 

Parameter 
RF Frequency 
RF Amplitude 

Mod. Freq. 
Mod. Ampl. 

Lock-in time const. 
AFP sweep start 
AFP sweep stop 

Chapter 5 .  3He Polarimetry 

Value 
8.5 MHz 
10 V p-p 
210 Hz 
6 kHz 
0.1 sec 
92 kHz 
30 kHz 

I Sweer, time I 10 sec I 

Table 5.5: Parameters for EPR frequency shift measurements. 

was created by a coil mounted on the side of the oven. The fluorescence from the cell 
was detected by a photodiode with a 0 2  filter. The RF was frequency modulated 
using a Voltage Controlled Oscillator (VCO), Wavetek function generator model SO. 
The signal measured by the lock-in amplifier referenced to  the modulation frequency 
was proportional to the derivative of the EPR line shape. A feedback circuit adjusted 
the DC level at the input of the VCO to keep the lock-in signal zero, i.e. locked to 
the center of the line [18, 191. The operating parameters of the system are given in 
Table 5.5. A circuit diagram of the proportional-integra1 feedback circuit and the 
mixer is shown in Figure 5.7. The RF frequency was measured by a counter and 
transferred to the Mac via GPIB interface. To accurately determine a shift in the 
EPR frequency it was important to  keep the magnetic field stable to one part in 10'. 
We used a Bartington Flux-Gate magnetometer [22] to measure the magnetic field. 
Since the range of the magnetometer is only -5 to 5 G, we canceled the holding field 
by a small coil wound around the magnetometer. The field and the field gradient 
created by the coil near the target were negligible. The coil was driven by a stable 
current source that served as a reference to which the field was locked. The output 
of the magnetometer was kept near zero by an identical feedback circuit controlling 
the power supply for the Helmholtz coils. 

To isolate the frequency shift due to the 3He polarization we periodically reversed 
the direction of the polarization. The reversal was done by AFP, only instead of 
sweeping the magnetic field through the resonance we swept the RF frequency. This 
way we could keep the field locked during the whole measurement cycle. The behavior 
of the spins during the frequency sweep AFP is identical to normal AFP and the end 
result of the sweep is an 1SO" flip. We utilized the same coils, RF amplifier, and 
generator. The generator was programmed to sweep the frequency at the appropriate 
rate to satisfy the AFP conditions. The parameters of the sweep are given in Table 5.5. 
The measurement cycle consisted of recording the EPR frequency for about 1 min, 
then flipping 3He spins by AFP and recording the frequency for another minute. This 
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Figure 5.7: The circuit diagram of the proportional-integral feedback and the mixer. 

procedure was repeated several times. A typical data set is shown in Figure 5.8. The 
data are fit allowing a small amount of polarization loss per cycle which is due to the 
AFP losses and the decay of the polarization during one half of the cycle because the 
lasers are pumping in the opposite direction. The quality of the data is very good 
and the size of the frequency shift can be extracted with a error of less than 0.5%. 

5.2.3 Measurement of K O  

To use the EPR frequency shift for polarimetry we need to  know the value of tc0 

for Rb-3He system. Although it was measured previously [19, 20, 211, there is some 
disagreement between the numbers, and none of the measurements were done at 
high temperature and Rb number density used in our experiment. Therefore, a 
new experiment was done at Princeton under conditions very similar to SLAC. The 
experiment used an interplay between the two sources of frequency shift to measure 
the value of K~ [20]. For a spherical sample the frequency shift is given by equation 
(5.22). For a sample of another shape we can imagine a sphere around the EPR 
detection region which will give the same shift plus a shift due to  the remaining parts 
of the sample. Since the He atoms in these parts do not come into direct physical 
contact with the Rb atoms in the detection region, they cannot contribute to the shift 
through the spin exchange. They will only contribute through the classical magnetic 
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Figure 5.8: EPR polarization measurement for the target cell Picard. 

field shift which can be calculated based on the geometry of the sample. Making two 
measurements with different geometry we can separate the magnetic field shift from 
the shift due to spin exchange and determine the value of K ~ .  

We used a long cylinder to make the measurements as shown in Figure 5.9. The 
magnetic field inside a very long cylinder magnetized along its axis is B = 471M, where 
M is the magnetization of the cylinder. For a cylinder magnetized perpendicular to 
its axis the field is B = 2nM. The field inside a uniformly magnetized sphere is 
B = 8 ~ M / 3 .  Using the linearity of electromagnetism we can simply subtract the field 
of the sphere from the field of the cylinder to calculate the magnetic field shift of the 
EPR frequency. The frequency shift for the longitudinal and transverse orientations 
is given by: 

(5.23) 

Solving these equations we get K O  = 3 (AUL + AUT)  /8 (AVL - AUT) - 1/8. Introduc- 
ing polarization to frequency conversion constants AUL = PHeKL) AUT = P H ~ K T ,  we 
can cancel the polarization of 3He: K O  = 3 ( K L  t A';.) /8 ( K L  - K T )  - 1/8 

A cylindrical cell 0.5" in diameter and 7" long was prepared for this experiment. 
The magnetic field produced by a uniform magnetization in the cell was calculated 

1 
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Figure 5.9: Experimantal arrangement for K~ measurements. 

on Mathematica and differed from the field for an infinite cylinder by less than 0.6%. 
To change the orientation of the magnetization, the cell together with the oven was 
rotated with respect to the holding field as shown in Figure 5.9. The EPR detector 
placed at the center of the cell was very similar to what was used at SLAC. It consisted 
of a 3/4 in. diameter RF coil, a light collecting lens, a D2 filter and a photodiode. 
The electronics was also similar, except for the field locking mechanism. Since the 
value of K~ depends on the difference between the EPR shifts in the two orientations, 
which is only 10% of the total shift, the frequency shifts has to be measured with 
much higher accuracy. To achieve sufficient accuracy it was necessary to keep the field 
stable to one part in lo6 ,  which exceeds the stability of the current source. Therefore, 
the field was locked to a Cs magnetometer which uses an RF generator as a reference 
source. The principle of operation of the Cs magneto'meter is also based on the EPR 
resonance [19, 231. The field locking is essentially an inversion of the above mentioned 
feedback scheme, where the RF frequency is kept constant and the magnetic field is 
locked to  the resonance. The RF generator was synchronized with the counter used 
to measure the Rb EPR frequency to avoid any relative drifts. The magnetometer 
was placed sufficiently far from the He cell to  avoid any spurious feedback due to the 
magnetic field created by 3He. The magnitude of the frequency shift was measured 
by periodically flipping 3He polarization with AFP. During the measurement the cell 
was also frequently rotated by 90" from the longitudinal to the transverse orientation. 
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To keep the laser illumination constant during the measurement it was positioned at 
45" to  the magnetic field in the plane of the cell rotation. 

The measurement procedure consisted of a combination of the following three 
actions: measuring the EPR frequency (M),  flipping the spins by AFP (F), and 
rotating the cell (R). It was important to take into account the polarization losses 
due to AFP flips and the optical pumping in the opposite direction, since they were 
significant compared to the required accuracy. Several measurement sequences were 
tried and it was found that the best cycle is (MFMFMR), repeated many times 
during the measurement. Let's follow the polarization during a measurement cycle. 
For definiteness, we start in the longitudinal orientation with the 3He spins pointing 
in the direction of optical pumping, creating a negative frequency shift and having 
a polarization P. During the measurement of the EPR frequency the polarization 
changes due to optical pumping and spin relaxation. We will parametrize the changes 
by a fractional polarization loss per second, so after a time T the polarization will 
be P (1 - SDLT).  The first subscript refers to the orientation of the spins (up or 
down) and the second subscript refers to the orientation of the cell (longitudinal or 
transverse). We also introduce SUL for He spins against the optical pumping direction 
in the longitudinal orientation of the cell, SDT and SUT for the transverse orientation 
of the cell. Since the changes of the polarization during the whole measurement 
sequence are relatively small (about 5%), we will assume that the fractional loss 
parameters remain constant. For AFP losses we introduce a fractional loss constant 
a per flip. Then the frequency shift at various points in the cycle is given by (see 
Figure 5.10 for notation): 

f i  = f L  - P1i-L 

f 2  = f L  - P(1 - S D L T ) I i - L  

f 3  = f L + P ( l - S D L T ) ( l - Q p L  

f 4  = f L  + P (1 - S D L T )  (1 - a )  (1 - S U L T )  K L  

f T  - P (1 - S D L T )  (1 - a)' (1 - SVLT) (1 - S D L T )  Ii-T 

f T  - P (1 - SDLT) (1 - a)' (1 - S U L T )  (1 - S D L T )  (1 - SDTT) 1i-T 

f 5  = f L  - P (1 - S D L T )  (1 - a)' (1 - S U L T )  Ir;, (5.25) 
f6 = fL - P (1 - S D L T )  (1 - (1 - S U L T )  (1 - SDLT) l<L 

f 7  

f 8  = 

= 

where f~ and f~ are the baseline EPR frequencies in the longitudinal and trans- 
verse orientation. During the first cycle we directly measure three quantities: MI = 
(fi  + f z )  /a, M2 = ( f 3  + f 4 )  /2, and M3 = ( f ~ ,  + f 6 )  / 2 .  w e  can extract f~ = 
( M I  + 2M2 + M3) /3 if we expand everything to first order, since all losses are much 
less than a percent. We also calculate the frequency shift before and after the lon- 
gitudinal cycle: A ~ B L  = f~ - MI = P I i ' L ( 1  - S D L T / 2 ) ,  and A f A L  = f L  - M2 = 
PI<L (1 - SDLT)  (1 - (1 - SULT)  (1 - S D L T / ~ ) .  We repeat the same procedure 
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for the next cycle, done in the transverse orientation. Now we calculate: 

where again we used first order expansion. Repeating the cycle one more time we 
can also form the ratio Az = ( A ~ B L  - A ~ A T )  / ( A ~ A T  + A f B L ) .  Averaging the two 
asymmetries we get: 

to the lowest non-trivial order in (SDL + SDT).  The amount of losses due to SDL and 
SDT is very small, since the laser pumping prevents the decay of the polarization. 
The total loss during a complete cycle SDLT + S ~ L T  + 2a is about 0.5%, most of it 
is due to spin-down in the up state and the AFP losses. Even if we use this number 
the correction to the asymmetry is only 6 x a negligible amount. We usually 
repeated the cycle 10-30 times to reduce the random measurement noise to about 
0.5%. For an infinite cylinder we immediately get the value of K O :  K~ = 3 /  (SA) - 1/S. 
For our cell the field was slightly different ( B H ~  = 4.1643M for longitudinal and 
-2.0822M for transverse orientation), so K O  = 0.3728/A - 0.1243. 

Various systematic checks were performed during the experiment. The biggest 
systematic uncertainty comes from the temperature of the cell. A 50W diode laser 
was used for optical pumping and EPR detection, and it caused a substantial heating 
of the cell. We used 4 RTDs mounted inside the oven to monitor the temperature. 
One was mounted near the air inlet and shadowed from the laser light. The second 
was mounted in front of the cell near its center. It was shadowed from the laser 
by a teflon screen and attached to  the body of the cell with a heat sink compound. 
The third was mounted behind the cell near the center, and the forth was at the 
end of the oven opposite to  the air inlet and shadowed from the laser. We used 
the temperature of the second RTD as the cell temperature. The temperatures of 
the other RTD's differed by less than 5°C. It is particularly important to study 
the asymmetry in temperature between the transverse and longitudinal orientations. 
Given the temperature dependence of K O ,  an asymmetry of 1°C will cause a error of 
about 1%. Therefore the temperature was carefully recorded during the measurement 
cycle. It was found that the asymmetry was less than 0.6"C. We also studied the 
dependence of K O  on the power of the diode laser while keeping the temperature 
constant. Reducing the power of the laser by about a factor of 2 changed the value of 
K~ by 0.5%. Another way to  check for significant temperature asymmetry is to vary 
the measurement period T ,  reducing it to the point were the temperature asymmetry 
does not have enough time to  develope. We changed T from 3 to 100 sec and have 
not seen changes in K O  of more than 0.4%. The alignment of the cell with respect 



144 Chapter 5 .  3Ht Polarimetry 

Figure 5.10: The K O  measurement sequence. Frequencies refer to  equations in the 
text. 

to the magnetic field was checked by mapping the frequency shift vs. angle near the 
transverse and longitudinal orientations. It was found that the alignment was better 
than 1" causing an error of less than 0.1%. The Earth magnetic field rotated the 
magnetization vector from the horizontal plane by 1" for the measurements done at 
27 G and by 2.5" for measurements at 11 G causing an error of less than 0.3% in 
the worst case. To check for the possibility of a polarization gradient across the cell, 
several EPR measurements were done along its axis. It was found that the changes 
in the EPR frequency shift along the length of the cell are on the order of 0.2% and 
monotonic from one end of the cell to the other. So they will not cause a error in 
the value of K ~ .  They are probably due to a temperature gradient caused by the air 
inlet located near one end of the cell. We also checked the dependence of no on the 
magnitude of the holding magnetic field, the direction of circular polarization of the 
laser light, the magnitude of the 3He polarization (from 25 to 45%), the method of 
mounting the RTD's. In all cases we have not seen any effect at the level of 0.4%. 
We also studied the temperature dependence of K O  by making measurements at four 
different temperatures, from 110°C to  170°C. We get the following result: 

K O  4.52 + 0.00934T ("G) (5.28) 

f .  
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The errors mostly come from the absolute temperature uncertainty (0.7%) and tem- 
perature asymmetry (0.6%). The total error of this K O  measurement is 1%. Our 
results are shown in Figure 5.11, where they are compared with previous measure- 
ments. As can be seen, our numbers are in good agreement with a measurement by 
Barton et  al. [20], who used a similar experimental technique, but at a lower tem- 
perature. The temperature dependence has been measured previously in [19]. Their 
result for K O  has a relatively large absolute error, so we rescale it to Barton's number. 
The slope was extracted from measurements in the range 40 - 80°C, so its use at high 
temperatures is really an extrapolation. Nevertheless, the two slopes are in very good 
agreement, which implies that the temperature dependence of li0 is quite linear over 
the temperature range studied. 
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Figure 5.11: Comparison of several measurements of K ~ .  

5.2.4 Polarization Gradient 

The EPR frequency shift is a measure of the polarization in the pumping cell, while 
AFP measures it in the target cell. Since 3He is polarized in the pumping cell and 
diffuses down, there is a constant polarization gradient between the cells. The evolu- 
tion of the polarization with time is governed by a set of differential equations that 
include spin exchange, spin relaxation and diffusion terms [24]. For diffusion in the 

, 
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presence of a temperature gradient the flux is given by [as]: 

G; = - n ( z ) D ( z )  (2 - --) kT dT i 1,2  T dz ' (5.29) 

where c; is the concentration of the i ' s  component in the mixture. Let i = 1 correspond 
to 3He atoms with the spin up and i = 2 to the atoms with the spin down. Since both 
types of atoms have the same mass, the thermal diffusion ratio kT vanishes [as ] .  We 
will assume that the flux is constant along the transfer tube, which neglects the volume 
of the transfer tube compared to the volume of the cell. We will further assume that 
the temperature changes linearly along the tube and that D ( T )  = D (To) (TIT,)", 
where m is a constant to  be determined empirically. One can show that the rate of 
change of the polarization in the pumping and target cell due to diffusion is given by: 

(5.30) 

(5.31) 

where  AT^ and L T ~  are the area and the length of the transfer tube, DT is the diffusion 
constant in the target cell and the dimensionless constant K is given by: 

(5.32) 

We use the data on the diffusion constant of 4He and 3He from [26] to determine 
DT = 2.76 cm2/s at 80°C and 1 atm. and m = 1.7. We also use the fact that DT 
is inversely proportional to pressure. Combining (5.31) with the spin exchange and 
relaxation terms we get: 

- = d P  (PT - PP) + Y S E  (PRb - PP) - rPPP (5.33) dPP 
d t  

(5.34) 

where we defined the reduced diffusion constants d p  and dT through equations (5.30, 
5.31). YSE is the Rb-3He spin exchange rate per 3He atom, and r p ,  r T  are the spin 
relaxation rates which are allowed to be different for the two parts of the cell. The 
equations can be solved analytically, but it is easier to  integrate them numerically on 
Mat hematica. 

We can check this model of the spin transfer by carefully studying the beginning 
of a spin-up when the diffusion effect is most pronounced. This was done for SMC 
after the run. Substituting appropriate dimensions we get for SMC dT = 0.95 hrs-l. 
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and d p  = 1.56 hrs-l. Assuming r p  = rT = 1/50 hrs. based on a spin-down, we 
fit the values of YSE and PRb to reproduce the long-term behavior of the spin-up 
data. It is also important to include the small contribution of the pumping cell to  
the AFP signal. We can now compare the spin-up data during the first hour with the 
predictions of the model. The result of the comparison is shown on Figure 5.12, and 
the agreement is quite satisfactory for our purposes. Now we can use this model to 
estimate the difference in polarization between the target and the pumping cell for 
Picard. Putting appropriate values for dT and d p ,  and using r p  = I'T = 1/70 hrs, 
we reproduce the long-term spin-up data for YSE = 1/9.2 hrs. and P R ~  = 73%. The 
difference between Pp and PT can be approximated quite accurately by the following 
relationship: 

PP = PT + 3.6% - 0.0501Pp (5.35) 

valid for Pp > 15%. To estimate the error due to this correction we change various 
rates subject to two conditions: PRb < 100% and r H e  > ro (equation 4.12), always 
adjusting the values of Y S E  and PRb to reproduce the observed spin-up data. In this 
fashion we determine that the error in the target cell polarization due to the gradient 
correction is 1.5%. 

I I I I I I I  I I I I I I I  , , I l l  

0.0 0.2 0.4 0.6 0.8 1 .o 
Time, H r s .  

Figure 5.12: Polarization of SMC in the first hour of spin-up. The curve is a prediction 
of the diffusion model. 
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5.2.5 Temperature Distribution in the Pumping Cell 

As described in Chapter 4 the temperature in the pumping cell is quite non-uniform. 
The frequency shift is proportional to nptcOPHe,  and both K~ and the density depend 
on the temperature. Assuming that the polarization is constant in the pumping cell, 
we need to find the average value of nptco. Fortunately, K O  increases with temperature 
while n p  decreases, so their product is not very sensitive to temperature. We will use 
the heat conduction model (4.34) to put a limit on the possible error from this source. 
Since we use the fluorescent light to  detect the EPR signal, we need to calculate how 
much fluorescence comes from different parts of the cell. The fluorescence light is 
emitted with the same spectral profile as the absorbtion profile shown in Figure 4.10 
[as]. The intensity of the fluorescence light propagating in the cell is attenuated 
according to the following equation: 

(5.36) 

where J? is the lorentzian half-width of the line, n is the Rb number density, I; is the 
initial intensity of the light, and 00 = c r e f 2 / r  ( f2  is the oscillator strength of the 0 2  

transition). Using a variable substitution y = 2r2/ ((v - YO)' + r2) and a definite 
integral from [as], we get I (z) = Iie-u0nz/2~o(a0ns/2),  where Io is the modified Bessel 
function. In the pumping cell typically aon M 20 cm-I and the Rb vapor is optically 
thick for unpolarized light. The function I ( z )  drops very fast for small z, but for 
z > 2 mm it slows down and drops only as 1/&, as shown in Figure 5.13. So, 
even in optically thick vapor the fluorescence can penetrate quite far through the 
cell. The simple fact that we can see the laser beams in the pumping cell confirms 
this conclusion. For the temperature distribution we will use equation (4.34). We 
now weight the product of n p  [T ( r ) ]  K~ [T ( r ) ]  by the absorbtion function I (z), where 
z is the distance to  the surface of the cell, to determine the average effective value 
of the product. Averaging over various paths through the cell we conclude that 
( n p  [T (x)] K O  [T (s)]) is 0.5% higher than ( n p )  tco [ ( T ) ] ,  where ( n p )  is the average 
density of the pumping cell and (5") is the average temperature. In other words, by 
using the density and temperature from Table 4.11 we are making a error of only 
0.5%. Since the temperature gradient is actually smaller than predicted by (4.34)) 
we will not apply any correction, just assume a 0.5% error coming from this source. 

5.2.6 The EPR Shift in the Cells 

The pumping cell of the target has a cylindrical shape (see Figure 4.4). Therefore, 
the frequency shift has a contribution from the classical magnetic field created by 3He 
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Distance, cm 

Figure 5.13: Fluorescence absorption function I (x). 

magnetization in addition to  the shift given by equation (5.22). One can define 

(5.37) 

where B H e  is measured in units of the magnetization. The magnetic field of a uni- 
formly magnetized pumping cell was calculated on Mathematica. It varied signifi- 
cantly across the cell. Therefore, we need to determine what region of the cell was 
sampled by the photodiode. The EPR photodiode was sensitive to  a region 2 cm. in 
diameter in the rear portion of the cell. To evaluate the average depth that the photo- 
diode was sampling, we used the absorbtion function (5.36). The intensity weighted 
average depth is 1.2 cm almost independent of temperature. The value of B H ~  in 
the sampled region equals to 2.4 f 0.7. It results in a 4.6% correction compared to  a 
spherical cell and causes a 1.3% error. 

We also need to  know the values F and A4 of the state used in EPR detection to 
calculate d v E p R  ( F ,  A4) /dB. The direction of 3He spins was parallel to the holding 
field during the entire run. It means that the Rb spin was also parallel to the field 
and the spins were pumped into F = 3, M = 3 state. The RF frequency is tuned 
to M = 3 + 2 transition which gives by far the strongest signal. It is separated 
from the next transition (A4 = 2 + 1) by 45 kHz at 1s G while the full width of 
the EPR signal is only 13 kHz. (Two measurements were made at 9 G,  where the 
separation is only 11 kHz, but the signal height of the 2 t 1 transition is about a 

P .  
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factor of 10 smaller, so it doesn't significantly affect the shape of the signal). Another 
way to check which transition was used for detection is to look at the absolute value 
of the EPR frequency. The magnetic field of the Helmholtz coils was calibrated by 
both 3He and proton NMR with an accuracy of 0.3%. Based on this calibration we 
can calculate the EPR frequency from equation (5.19). For the two measurements at 
8.973 G and 18.324G the results of the calculations agree with the data to 0.15%. 
If M = - 3 state were pumped, the numbers would disagree by 2.6 %. Expanding 
equation (5.19) to second order in V E P R / V H F  we get: 

(5.38) 

Now we have all necessary numbers to convert the EPR frequency shift to 3He polar- 
ization. 

5.2.7 Spin Exchange Effects 
In this section we will discuss the effect of the do,/& term in equation (5.16). Al- 
though it does not depend explicitly on the 3He nuclear spin, it might affect the 
observed asymmetry indirectly through Rb-He spin exchange. The largest contribu- 
tion to dop/dt  comes from the Rb-Rb spin exchange [15]: 

(5.39) 

where 1/TRb = nRbVORb-Rb is the spin exchange rate and I<Rb is the frequency shift 
parameter. The real part of this expression affects the frequency shift only in the 
second order, i.e. (ii?&?Rb)-2 [15]. Using ORb-Rb = 2 x 10-l~ cm2 [30] we get at 170°C a 
correction on the order of 5 x or 200 Hz. The imaginary part of (5.39) contributes 
directly to the frequency shift. The shift parameter I{Rb for Rb-Rb spin exchange is 
calculated by Kartoshkin [31]: I(Rb = -0.14. He also obtains ORb-Rb = 2.3 x ioi4 cm2, 
reasonably close to the experimental result. Using his number for K R b ,  the shift due 
to  the imaginary part is at most 3.7 kHz or 0.1% of the absolute frequency (assuming 
(2) = 1/2). The shift will affect the EPR measurements only if it changes when the 
3He spins are flipped. This could happen due to  the Rb-He spin exchange causing a 
change in the average value of the Rb polarization. To calculate how much the Rb 
polarization changes due to 3He spin flips we used a model of optical pumping based 
on the following equations: 

(5.40) 

R, ( 2 )  = 1 a) (v, z )  0 (v) dv (5.41) 
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(5.42) 

where @(v) is the laser photon flux per unit frequency, and rSE = nHe'i jcrRb-He. 

The numbers for the spin exchange cross-section were taken from [33, 341, for spin 
destruction rates from [32]. For the initial spectral distribution @ (v, 0) we used a 
combination of two gaussians representing the diode and Ti-S laser profiles. a ( v )  
was taken from pressure broadening measurements. We estimate that R, = lo5 s-l, 
I?SE = 24 s-l, and rso = 734 s-'. Since R, >> rSE, the effect of the 3He polarization 
reversal is not very large. However, it can affect the frequency shift in several ways, 
and we need to investigate it in more detail numerically. 

A C program was used to solve the above set of integral-differential equations 
[35]. Since the spin exchange and destruction rates from different sources disagree 
by as much as a factor of 2, and other parameters (laser power, Rb number density, 
etc.) are also not very certain, we ran the model for many different combinations of 
parameters, considering a total of 1600 cases. Based on the results of the model the 
largest variation of the Rb polarization due to a 3He spin flip is 0.5%. From the form 
of equation (5.39) it can be seen that the false frequency shift is proportional to  the 
Rb polarization [16]. Therefore, the EPR frequency asymmetry due to Rb-Rb spin 
exchange is at most 20 Hz or 0.1% of the frequency shift. 

The other contribution to dop /d t  comes from the light shift [37]: 

d 
d t  
- p  = (-27riAvL.5 - YLS) P (5.43) 

where y ~ s  and A v ~ s  are the real and imaginary shift parameters proportional to  
the intensity of the light. Recent calculations and measurements at Princeton under 
similar conditions [36] showed that the light shift is about 1 kHz and has a dispersive 
pattern as a function of frequency (i.e. equals to  zero when the laser is tuned exactly 
on resonance and reaches a maximum when it is detuned by about 2 nm). Since the 
light shift is proportional to the intensity of the light, it depends on 3He polarization 
through equation (5.42). The variations of intensity due to 3He flips are less than 1% 
based on the pumping model, so the asymmetry from this source is small. 

The other possible source of the asymmetry comes from the changes in the laser 
intensity profile coupled to the magnetic field gradient. The EPR signal is approx- 
imately proportional to  the difference in the intensity of the fluorescence with the 
resonant RF field turned on and off. The intensity of the fluorescence is proportional 
to the number of pumping photons absorbed per unit length as given by equation 
(5.42). To model the effect of the RF field we introduce an additional relaxation rate 
in equation (5.40). It can be seen from equation (5.42) that when the RF field is 
turned on, the amount of fluorescence coming from the front of the cell will increase, 
because (1 - PRb) will be larger. In the back of the cell the amount of the fluorescence 
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Figure 5.14: EPR signal vs. position in the cell according to the pumping model. 

will become smaller because less light will penetrate through the cell. The dependence 
of the EPR signal on the position is shown on Figure 5.14, as calculated using the 
pumping model. The EPR signal can actually change sign in the middle of the cell. 
This effect was detected experimentally by observing the phase of the lock-in output. 
The phase of the signal coming from the front of the cell was opposite to  the phase 
from the back of the cell. The exact position of the zero crossing is very sensitive 
to all parameters of the model. During initial setup it was determined that the best 
position for the photodiode was in the back of the cell, where the phase of the EPR 
signal was negative. However, the laser power was increased later and that moved 
the zero crossing further into the cell into the sampling region of the photodiode. As 
a result, the EPR signal taken at 170°C has a tail (see Figure 5.15) coming from the 
region of the cell with the opposite phase. This could potentially cause a big error, 
especially if the zero crossing is exactly in the center of the sampling region, making 
the EPR signal purely dispersive. Fortunately, we took data under several different 
conditions, varying the temperature and laser power (see Table 5.6). Based on the 
results of the pumping model for all 1600 possible variations of the parameters, we 
conclude that if for one of those conditions (i.e. combination of temperature and 
laser power) the zero crossing was in the sampling region, it could not have been in 
the sampling region for all other conditions. We can also estimate possible error in 
the case when the zero crossing is inside the sampling region by modelling the effect 
of the field gradient. We analyze the EPR signal shown in Figure 5.15, assuming a 
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Lorentzian line shape: 

153 

(5.44) 

where h ( z )  = ho ( z  - 20) is the height of the EPR signal vs. position with a zero 
crossing at 20, and vo ( z )  = vo+ ( d B / d z )  ( d v / d B )  z is the EPR frequency vs. position 
assuming a uniform’gradient. z1 and z2  are the boundaries of the sampling region. 
Using this function to fit the data we get a gradient of 10 mG/cm, reasonable close 
to  3.6 mG/cm estimated from the AFP data. The width of the EPR signal can be 
calculated from the spin exchange cross-section by the following equation [15]: 

21 ( 2 1  - 1) 
w =  

6~ ( 2 1  + 1)2  T R ~  
(5.45) 

Using the Rb-Rb spin exchange cross-section CrRb-Rb = 2 x cm2 [30] and nRb = 
2.73 x 1014 cmP3 at 170°C we get w = 5.3 kHz, while the fit gives 4.9 kHz, in 
surprisingly good agreement. Now we can calculate how much the position of the 
EPR peak changes when the 3He spins are reversed. Based on the pumping model 
the position of the zero crossing changes by no more than 1 mm. This causes a shift 
of the peak frequency by about 200 Hz or 0.5% of the total frequency shift. So, even 
if the EPR zero crossing is inside the sampling region, the false asymmetry is not too 
great. 

Another possible correction we need to consider is the contribution to  the fre- 
quency shift from the Van der Waals molecules. While equation (5.16) describes the 
frequency shift from the binary collisions, the Van der Waals molecules should be 
considered separately. In [1S]  a constant lil is introduced to describe their contribu- 
tion. The van der Waals molecules easily form for heavy noble gases, like Xe and 
Kr. They become less and less bound for lighter noble gases. Although there is no 
experimental evidence for 3HeRb Van der Waals molecules, their contribution was 
calculated based on interatomic potentials, giving [1S]: ~ l / l i O  = 8 x Another 
way to  put a limit on the contribution of the Van der Waals molecules is to use their 
very short lifetime at high pressure. We can use an expansion given in [37] for the 
frequency shift in the short lifetime limit: 

~ ~ E P R  hT, CY7 ( 2 1  (K,)  + 1) +o(?)’ (5.46) 

where LY = S7rg,pBpHen~e/31{, which is valid if the following conditions are satisfied: 
yN.r /h  << 1, u r / h  << 1, and p ~ B r / h  << 1, where Ny is the strength of the spin- 
rotation interaction. To put an experimental limit on the contribution of the Van der 
Waals molecules we will use the lightest gas for which the data are available: Argon 
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Figure 5.15: EPR signal detected with AM modulation of the RF field. The fit is 
based on the model described in the text. 

[38]. The lifetime of the molecules is inversely proportional to pressure and at our 
pressures is T = 8 x sec. ( r N )  / h  = 2.1 x lo7 sec from [39], so the first condition 
is satisfied. p ~ B ~ / 7 i  = 1.0 x so the other conditions are 
also satisfied and the second order term of the expansion, that would be non-linear 
in ( I (=) ,  is negligible. 

and CYT/FL = 2.5 x 

5.2.8 EPR Results 
Most EPR measurements were performed after the run on Picard. They were done 
under a variety of conditions (i.e. different laser power, temperature, magnetic field, 
polarization). Each measurement was preceded and followed by an AFP measure- 
ment. Since we did not make EPR measurements throughout the run, we can only 
use them as a calibration of the AFP system. 

The 3He polarization can be found from the frequency shift by the following for- 
mula: 

A V E P R  - A p p T  (5.47) 3 ( 2 1  + 1) 
P H e  = - 

87~ P B P H e g e  [I - 4 1  ( V E P R / u H F ) ]  K e f f n 0  ( n P / n O )  

where ~ ~ f f  is given by equation (5.37) and A P p T  = Pp - PT is calculated from 
equation (5.35). 
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The list the EPR measurements done after the run on the cell Picard is shown in 
Table 5.6, along with the results of AFP measurements done at the same time. The 
ratio of the polarization measurements is presented graphically in Figure 5.16. 

Full 8.447 21.80 6.30 0.862 1.5 39.7 41.0 0.968 
Full 8.472 22.71 6.67 0.818 1.5 41.3 45.2 0.914 
Full 5.463 23.10 6.49 0.841 1.4 42.1 44.3 0.950 
Full 8.603 15.35 6.49 0.836 2.1 26.9 28.8 0.934 

~ 8 

9 

Table 5.6: EPR Measurements. 
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Figure 5.16: Comparison of the polarization measurements under different conditions. 

The ratio of the polarization measurements is relatively stable for different oper- 
ating conditions. There is one data point, however, whose quality is questionable. 
The measurement #7 was performed at 200°C (the temperature was raised up about 
30 min. before the measurement). The Rb-He spin exchange rate in the pumping cell 
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was about 3.8 hrs. So, if the average Rb polarization dropped by, say, 20% because 
the lasers did not have enough power to polarize the Rb vapor at this temperature, 
the polarization in the pumping cell would drop by 2-3% in the time before the mea- 
surement. The polarization in the target cell did not follow since the diffusion time 
constant is about 0.7 hrs. This would explain a lower value of the polarization from 
the EPR method which measures P in the pumping cell. Therefore, one might ar- 
gue that this number should be disregarded. The average of all 9 measurements gives 
P E P R / P A F P  = 0.942f0.016. If we drop point #7 we get P E p R / P A F P  = 0.946f0.013. 
We will use the second number. The corrections due to the magnetic field shift and 
the polarization gradient can change within their error bars depending on the tem- 
perature and laser power. The variations seen in the data are less than the combined 
error due to  the polarization gradient (1.5%)) the magnetic field shift (1.3%) and 
various false asymmetries (0.7%). 

The errors of the EPR measurements mostly come from K O  ( l . O % ) ,  the polarization 
gradient (1.5%), magnetic field shift (1.3%), and the gas density (1.5%). Note that 
the error in gas density in the pumping cell is smaller than might be expected because 
the error in n p / n o  due to the temperature uncertainty is anticorrelated with the error 
in tc0. We will also include the standard deviation of the data as an additional error 
(rather then divide it by the number of measurements) because it could be due to an 
effect other then those described above. So, the total error is 3.0%. 

5.3 Comparison of Two Methods of Polarimetry 
The results of the two polarimetry methods together with their error bars are shown 
in Figure 5.17 normalized to  the calibration constant used for a preliminary result. 

If we treat the errors as statistical the disagreement between the two polarime- 
try methods is 1.20. The probability of this or bigger disagreement is 23%. Since 
our total error comes from many different sources, each on the order of 1-1.5%) the 
statistical approximation is quite good. Consider the following simple model. Sup- 
pose that the total error comes from ten independent sources each with a magnitude 
of 1.4% (this gives a total error of 4.4%) similar to our combined error of the two 
measurements). Assume that each source of the error will cause the final number to 
move by exactly 1.4% in either direction with equal probability. Assume that these 
changes are uncorrelated (since the errors come from totally different effects). We end 
up with the well-known binary distribution (e.g. coin toss). The resulting probability 
distribution of the final result together with a gaussian fit is shown in Figure 5.18. 
The statistical approximation is, in fact, quite reasonably. Since the results are not 
in disagreement, and there is no clear preference for either method (as quantified by 
their nearly identical error bars), we will average the two results. However, since the 
errors are mostly systematic and have some degree of arbitrariness, we will not use a 
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Figure 5.17: Polarization Calibration Constant (normalized to  the Preliminary Re- 
sult). 

weighted aver age. 

Estimating the error of the final result is more complicated. Naively, one should 
reduce it when averaging, which would give a error of 2.2%. This, however, disre- 
gards the possibility of an unidentified systematic error that could affect either of 
the methods. Therefore, when combining the two methods we will increase (rather 
then decrease) the total error. Different arguments could be used to estimate the 
size of the systematic error. One of the most conservative assumes that the entire 
difference comes from an unknown systematic effect in one of the methods. We want 
to include the possibility that the true answer is given by only one of the methods, 
the other being affected by a systematic error of unknown origin. Even if we reduced 
all known systematic errors to  zero, the two numbers are not guaranteed to converge. 
In this case the probability distribution of the true calibration constant is a sum of 
the probability distributions of each method, as shown in Figure 5.19. The shape of 
the sum distribution is reasonably close to a gaussian. Therefore, we can parametrize 
the final error by the width of a gaussian which resembles the sum distribution. In 
this way we can identify the error with the width of the gaussian and it will have the 
most straight forward interpretation. Using a fit with a constraint on the total area, 
we obtain a gaussian with a width of 4.5%. This is the polarimetry error at the end 
of the run. We should add to this the error due to the drift of the coil sensitivity over 
the length of the run. Using the whole size of the drift, equal to  1.7%, as a error, we 
get the final polarization error of 4.S%. The final values of the calibration constants 
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Figure 5.15: Simulation of the probability distribution based on 10 errors 1.4% each. 

are shown in Table 5.7 

Table 5.7: Final AFP Calibration Constants (%/mV) 

5.4 Polarization Direction 

The direction of the 3He polarization corresponding to an AFP signal of a particular 
sign was determined by a two step process. First, we determined the orientation of 
the polarization with respect to the magnetic field and then the orientation of the 
magnetic field relative to  the electron beam. In each case we used several methods. 
To avoid masing during AFP 3He spins were always stored in high energy state. The 
direction of the polarization was reversed by rotating the holding field by 180". This 
also resulted in the reversal of the AFP signal sign. Both the sign of the magnetic 
field and the sign of the AFP signal were recorded to tape. In the following discussion 
we will consider the positive polarization state. 

We note that the AFP signal is positive for both 3He and water when the field is 
swept up through the resonance. On the way down the signals have opposite signs, but 
this is due to the fact that proton spins relax between the sweeps, while He spins do 
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Figure 5.19: Probability distribution for the calibration constant compared with a 
gaussia.n. 

not. The proton spins are polarized according to the Boltzman distribution, therefore 
they have to be in the low energy state. Since X = --G. g, the magnetization M p  is 
parallel to B. The sign of the AFP signal depends on the sense of the magnetization 
precession, which is given by the Bloch equations [5]: 

+ 
- = y G x H  
d&l 
dt  

(5.48) 

where y = p / h .  Since protons have a positive magnetic moment and 3He has a 
negative moment we conclude that the magnetization of 3He is opposite to B. Finally, 
using M H ~  = ~ H ~ I < ,  we determine that the 3He spin is parallel to B. 

We note that the sign of the EPR shift is negative (see Figure 5.8). Since K~ is 
positive this implies that the magnetic field created by polarized 3He inside the cell 
is opposite to  B.  Again, we conclude that MHe is opposite to B and K is parallel to 
B. 

One can also determine the direction by looking for the occurrence of the masing 
effect. As was described in Chapter 4, masing can occur only if the spins are in 
the high energy state. If we believe that the polarization problems in SMC and 
Generals were due to  masing, we conclude that the spins were stored in the high 
energy state. However, we can come to the same conclusion by noticing that no 
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masing was observed during AFP (where it would manifest itself as a large difference 
in the AFP signals for the up and down sweeps). For AFP we sweep the magnetic 
field up to 36 G,  so the Larmor frequency of the spins passes through the pick-up 
coil resonance at 101 kHz. Since the coupling of the pick-up coils to the spin is much 
stronger on resonance (by a factor of 3500 compared with a holding field of 20G), one 
would expect that masing is very likely to occur there. To avoid this problem, the 
RF frequency is set below the coil resonance (in our case to 92 kHz) and the spins 
are stored in the high energy state. In this way, the direction of the polarization is 
reversed by AFP before the sweep reaches 101 kHz, and the spins pass through the 
coil resonance in the low energy state. If the spins are ever stored in the low energy 
state, they will end-up in the high state while passing through the resonance and lose 
their polarization due to  masing. This effect was observed several times during the 
setup stages of the experiment. It was the reason that we reversed the polarization by 
a rather complicated field rotation, instead of a simple AFP. So, 3He is stored in the 
high energy state, which implies that its magnetic moment is opposite to  the holding 
field, in agreement with the other two methods. 

The direction of the magnetic field was also measured in several ways. It was de- 
termined using a compass, whose North direction shows the direction of the magnetic 
field. We also used a Flux-gate magnetometer and a Hall probe to  measure the sign 
of the field. The Hall probe was calibrated against the spectrometer magnets. Fi- 
nally, the direction of the field was determined from the direction of the coil winding 
and the electric current. All methods indicate that the field was pointing opposite 
to the direction of the electron beam. So, the 3He (and neutron) spin was pointing 
opposite to the electron momentum when the AFP signal was positive. The direction 
of the electron polarization was determined from the sign of the Meiller asymmetry 
[40] as well as the direction of the circular polarization at the source. We could also 
determine the direction 3He polarization from the circular polarization of the optical 
pumping light. However, this method relies on the manufacturer’s specification of the 
polarization direction for a circular analyzer (for example, a liquid crystal polarizer). 
Although this method agrees with the other, it cannot be trusted because there are 
two conflicting definitions of circular polarization in the optics manufacturing trade. 
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Chapter 6 

Results and QCD Analysis 

6.1 Traditional Analysis 
Our results for the neutron spin structure function gy and the virtual photon asym- 
metry A;" are shown in Table 6.1 with their statistical and systematic errors. The 
systematic errors are comparable to the statistical errors in the lowest two z bins 
(due to contamination by charge symmetric background) and are smaller at higher 
z. Before these data can be used for comparison with other experiments or tests of 
the sum rules, we need to calculate gl at a common Q 2 .  The raw data are in the 
range 1 GeV2 < Q2 < 15 GeV2 and the statistics weighted average Q2 is about 5 
GeV2. This number is close to the average Q2 of the SMC deuteron measurement 
and has been used in previous analyses of the spin structure functions [l]. Therefore, 
we evolve our data to 5 GeV. 

Following traditional methods [1, 21, we assume that AI is independent of Q2, 
and use the measured Q2 dependence of the unpolarized structure function F1 [3] to 
calculate gl at constant Q2: 

As will be described in Section 6.3, a more sophisticated Q2 evolution based on 
NLO QCD analysis does not significantly modify the results. Equation (6.1) is also 
consistent with our measured Q2 dependence between the two spectrometers, however, 
this is not a very stringent test because of the small lever arm in Q2. 

Our results for gy (z) at Q2 = 5 GeV2 [4] are shown in Figures 6.1 and 6.2, 
where they are compared with previous SLAC and CERN results respectively, and 
the numbers are given in Table 6.2. Several observations can be made. The results of 
our experiment are in good agreement with all previously available data. This includes 
experiments done at SLAC with polarized gaseous 3He [23 and solid H/D targets [5], 
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Table 6.1: Results for the neutron spin structure function gy and the virtual photon 
asymmetry A; 

experiments at CERN using solid H/D targets [6], and at DESY with a polarized 3He 
internal target [9]. The experiments are also done under widely different kinematic 
conditions, with different sources of systematic errors, etc. Thus, the experimental 
measurements of the spin structure functions are quite reliable. In fact, history shows 
that all of polarized deep inelastic scattering experiments are in agreement with each 
other and have not suffered from unaccounted errors. 

Second, our statistical errors are smaller by a factor of 3 or more than in any of 
the previous experiments. Our systematic errors are comparable to our statistical 
errors at low z and are much smaller at higher z. The experiment also extends the 
precision measurements to  lower z than previous SLAC experiments. As we will see, 
this is critical for the extrapolation to  low z and the measurement of I'y. Although 
our data do not extend as far down in z as the results of SMC, most fits of the low 
z behavior of the spin structure function starting at z = 0.1 are dominated by our 
data because of higher statistical precision. 

Third, our low z data do not show any evidence for the onset of Regge behavior 
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Q2 = 5 GeV2 
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Figure 6.1: Our results for gy (5) compared with previous SLAC data. xgl is ploted 
on the vertical scale for better display. 

Table 6.2: The results of our experiment for g: at (Q2) = 5 GeV2. 
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Figure 6.2: Our results for gy (x) compared with previous SMC data. xgl is ploted 
on the vertical scale for better display. 

gl (x) - x(O-O.’) in the measured range, in agreement with SMC results, see Figure 
6.3. While in the past it was usually assumed that the Regge behavior sets in at 
x - 0.03 [ 5 ,  lo],  our data do not support this conclusion. While it may be true that 
Regge extrapolation is valid for SMC measurements starting at x - 0.01, there is 
no experimental evidence for it. In using Regge extrapolation experimenters in the 
past assigned a “conservative” error, for example, 100% of the extrapolated value 
of the integral [a, 5, 61. However, as can be seen from our low x data fitted to an 
unconstrained power law, such error estimates are dangerous. Figure 6.3 shows the 
low x region of our data, as well as SMC data. Note that in this case gl itself is 
plotted, instead of xgl, showing true divergence of the data. In Table 6.3 we give the 
parameters for several fits and the integral over the unmeasured region J00’0135 gy ( x )  dx 
calculated from these parameters. For a power fit gl (x) - x”, cy = -0.92f0.16. The 
value of the integral J, gy (x) clx can range from -0.14 to infinity. In contrast, 
assuming a Regge fit with Q = 0 ( gl - const), we get for the extrapolation integral 
-0.0055. Clearly, a error equal to  100% of this value is inappropriate. 

To test the sum rules, it is convenient to start the integral at x = 1 and integrate 
the data to the lowest x point. Then one can attempt to extrapolate to n: = 0. The 

0.0135 

r *  
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# P. Parameters Jo0.01j5dx sl" 
3 C = -0.41 f 0.05 f 0.06 -0.0055 f 0.0007 f 0.0008 
4 C = -0.125 f 0.014 f 0.016 

LY = 0.92 f 0.16 f 0.09 
C = -0.034 f 0.021 f 0.011 

/3 = 3.2 f 1.6 f 0.7 

-0.0291 f 0.0032 f 0.0036 
5 C = -0.014 f 0.007 f 0.004 -0.14 f 00 f 00 

11 -0.031 f 0.022 f 0.013 
CY = 0.70 0.18 f 0.10 
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Figure 6.3: Several fits to  the low z region of our data. 

Table 6.3: Various low z fits of the data and values of extrapolated integral. 

results of such integration for the Ellis-Jaffe sum rule are shown in Figure 6.4 and 
for the Bjorken sum rule in Figure 6.5. It should be noted that the horizontal axis 
is logarithmic, and its zero is "infinitely" far away. It can be seen from Figure 6.4 
that the Ellis-Jaffe sum rule is most likely violated. The integral already exceeds the 
prediction by 2a and shows no sign of slowing down. Thus, the Ellis-Jaffe sum rule 
is violated in the neutron as well as in the proton [8, 6, 51. 

For the test of the Bjorken sum rule we combine our neutron data with all available 
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Figure 6.4: Integration of g: from 1 to x compared with Ellis-Jaffe sum rule. 

data on the proton (EMC, SMC, E143). As can be seen from Figure 6.5, the Bjorken 
sum rule is not violated by the data over the measured region. Its confirmation 
requires an extrapolation to x = 0 which should contribute about 12%. Fortunately, 
the difference g: (x) - yy (x) is much less divergent than each structure function 
separately. Fitting the difference to a free power law gives: gr (x)-gy ( x )  N x-(o.52*o.1) 
and the low IC extrapolation gives Jo The total 
integral is I'; - = 0.192 f 0.024. An alternative extrapolation, based on Regge 
gy ( I C ) - ~ ;  (x) - const behavior gives I'; -r; = 0.170f0.012. This is to be compared 
with the prediction of the Bjorken sum rule rBJ' = 0.186 f 0.005, which includes 
corrections up to  O ( a ? )  [27]. Thus, both methods of extrapolation are consistent 
with the Bjorken sum rule and with each other. One can argue based on perturbative 
QCD that the two methods of extrapolation are extreme, and in reality gl diverges 
at low x slower than any power of x, but faster than any power of log (2). Therefore, 
the test of the Bjorken sum rule is relatively robust against possible forms of low IC 

behavior, and our experiment confirms the sum rule. 

Significantly more detailed information about the quark helicity distributions and 
other implications of our data can be obtained by considering their interpretation 
within QCD theory at Next-to-Leading order (NLO) level, which we turn to  in the 
next sect ion. 

0.0135 (g: - gy)dx = 0.032 f 0.015. 

1 
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Figure 6.5: Integration of glp - gy from 1 to n: compared with Bjorken sum rule. 

6.2 The Interpretation of QPM within QCD 

In our analysis of polarized DIS in Chapter 2 within the framework of the Quark 
Parton Model (QPM) we identified the integral of the quark helicity momentum 
distribution: 

aq = J,’ (qT (.) - ql (n:) + 97 (.) - 41 (x)) dn: (6.2) 

with the matrix element of the quark helicity operator at zero Q2: 

However, these two equations for quark helicity really apply to  different quarks. In 
the first case, we are considering the quarks in the deep inelastic limit, where they 
are asymptotically free particles. In the second case, the relationship applies to  con- 
stituent quarks present in the nucleon at rest. In the QPM these two types of quarks 
are not distinguished, because there is no Q2 dependence and the quarks are not inter- 
acting. In QCD this is no longer true. The modifications due to QCD are three-fold. 
First, the Bjorken and Ellis-Jaffe sum rules receive calculable radiative corrections as 
a power series in cy,. Second, the quark momentum distributions become dependent 

I 
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on Q2: q ( 2 )  t q (x, Q2). Third, the interpretation of Aq measured in deep inelastic 
scattering is modified. 

There are at least two different approaches to the calculation of QCD corrections: 
one relying on Operator Product Expansion (OPE) and the other on perturbative cal- 
culations, also known as QCD improved Parton Model [ll]. While the OPE method 
combined with the renormalization group equation is more widely used, greater in- 
sight can be obtained by following the perturbative approach. The two methods 
have been shown to  be equivalent [ll]. In the following discussion we will follow the 
perturbative treatment to illustrate the effects of QCD. 

In calculating the QCD corrections to the parton model one extends the methods 
used in derivation of the parton model itself [la].  There, we defined the probabilities 
q; ( IC) of finding a quark inside a nucleon and then assumed that the scattering from 
different quarks is incoherent and that the cross-sections (instead of the amplitudes) 
can be added directly. Now we realize that because of QCD interactions the quark 
cross-section itself is modified from the simple Dirac form. To take this effect into 
account, we write the virtual photon cross-section in a more general form. Schemat- 
ically, the process is shown in Figure 6.6. The nucleon with momentump contains a 

Figure 6.6: Embeding of the photon-quark cross-section into the photon-nucleon 
cross-section. 

quark with momentum fraction y which interacts with the photon and ends up with 
momentum fraction IC. Because of possible gluon emission, z is not necessarily equal 
to  y .  Thus, we can write: 

where oqy ( 2 ,  Q 2 )  is the (dimensionless) cross-section for quark-photon scattering nor- 
malized by appropriate kinematic factors. The other structure functions (including 
gl and 9 2 )  can be written in similar form. Performing z integration with the delta 

1 
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function we get: 
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Several processes contribute to the quark-photon cross-section a,, (z /y ,  Q 2 )  [13], as 
shown schematically in Figure 6.7. 

- 1  12 

Figure 6.7: Contributions to  ugy to order CY,. 

In calculating these diagrams we, as usual, encounter divergences. There are both 
infrared and ultra-violet divergences in the integrals over the internal lines and un- 
detected final state particles. The ultraviolet divergences are dealt with by the usual 
process of UV regularization and renormalization [14], since QCD has been shown 
to be a renormalizable theory [15]. The most commonly used UV renormalization 
scheme is modified minimal subtraction [16], denoted m, which is based on dimen- 
sional regularization. In calculations of the cross-sections all UV divergent integrals 
should be renormalized in a consistent fashion. As long as this is done, the only other 
effect of UV divergences is the running of the coupling constant a, with Q 2 ,  which 
is governed by the renormalization group equations. From now on a,  will refer to 
as ( Q 2 )  even if not stated explicitly. In the remainder of the discussion we will not 
concern ourselves with UV renormalization. All discussion about regularization and 
renormalization will refer only to  infrared divergences. One does not have to choose 
the same scheme for UV and IR renormalization. 

The infrared divergences can be divided in two types. One type is due to  emission 
of soft and colinear gluons. The divergences cancel between the real gluon emission 
and the vertex correction diagrams shown in Figure 6.7 [17]. This is quite similar 
to the infrared divergences and their cancelation in QED, which were discussed in 
relation to  the radiative corrections in Chapter 3. In addition, there are divergences 
which appear if we try to take the quark masses to zero. One method of infrared 
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regularization is to leave finite quark masses. Alternatively, we could set the masses to 
zero and use, for example, the dimensional regularization scheme to  control divergent 
integrals. Other regularization schemes are also possible. In any scheme, we introduce 
a cut-off p ,  which has dimensions of mass, and in some schemes is associated directly 
with the mass or minimum momentum of the particles in the loop. In general, we get 
the following result: 

where P,, ( 2 )  and C,, (2) are some functions, and C,, depends on the regularization 
scheme [13]. Clearly, this expression is dependent on the cut-off p and diverges as 
p t 0. Since we believe that the quark masses are small, and do not have a major 
effect on QCD interactions, this situation is unsatisfactory. 

In addition, we calculated the cross-section only in first order perturbation, valid 
for CY, << 1. Since the strong coupling constant is dependent on Q2 and grows as 
Q2 + 0, the results are invalid when the momentum transfer is comparable to or 
lower than the QCD interaction scale A,. We need to separate the low energy non- 
perturbative behavior from the high energy perturbative behavior of QCD. One way 
of accomplishing this is to introduce a separation scale p j  between the soft processes 
with Q2 < p; and the hard processes with Q2 > p; [18]. The non-perturbative, low 
Q2 effects can be absorbed into the definition of the quark momentum distributions 
(QMDs). We can write: 

which follows from equations (6.5) and (6.6) to first order in CY,. This separation is 

QMD. The factorization scale p j  is usually set to the Q2 of the measurement: p; = 
Q2. In this case the QMD depends on Q 2 :  

known as factorization. pf is the factorization scale and qi f (x, p;,  p 2 )  is the factorized 

(6.10) 

while the factorized (hard scattering) cross-section of ( z , Q 2 , Q 2 )  = a ( z )  is Q2 in- 
dependent. From equation (6.10) we obtain an integro-differential equation for Q2 
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evolution of q (x, Q 2 )  (we now drop the f superscript): 

(6.11) 

known as Dokshitzer-Gripov-Lipatov-Altareli-Parisi (DGLAP) [19] or simply Altarelli- 
Parisi equation. If we know q ( x , Q 2 )  at one Q2 we can calculate (evolve) it to other 
values of Q2. In addition, the factorization theorem states that the QMDs are in- 
dependent of the process in which they are probed (i.e. DIS, Drell-Yan) while the 
hard scattering cross-sections CT ( z )  are independent of the hadron being probed (i.e. 
proton, neutron, pion) [lS]. 

Before proceeding any further, it is important to realize that there are several 
ambiguities in this decomposition. First, in calculating the cross-sections we intro- 
duced a cut-off p using a regularization scheme. The function C,, is dependent on 
this choice. Sometimes this procedure is called renormalization, although technically 
this is not correct, since the quantities still depend on the cut-off and have not been 
made explicitly finite. Second, the factorization process is not unique. Finite terms 
can be moved between q f  and d .  This ambiguity is known as the factorization 
scheme dependence. In practice, however, in each regularization scheme there is a 
most natural way to  factorize hard and soft contributions. Therefore, the choice of 
the regularization and factorization schemes is related. The combination of regular- 
ization and factorization procedures makes all quantities finite and independent of 
quark masses. It can be properly called an infrared renormalization scheme. Finally, 
one does not have to  choose p."f = Q2,  although it is a universal choice. Once the 
regularization and the factorization schemes are chosen, the expression for C,, can 
be uniquely calculated. 

For polarized structure functions gl and 9 2  the formalism is identical, with q; 
replaced by Aq;. The function P,, is also identical for the polarized and unpolarized 
case, which explains why g1 and F1 evolve similarly with Q2 and the asymmetry A1 
is approximately independent of Q2. The relationship is only approximate because of 
the gluon contribution, which we will discuss next. 

To order a, we should also include the gluon diagram shown in Figure 6.8. Then 
the full expression for the spin structure function gl becomes: 

were we have introduced convolution: 

(6.12) 

(6.13) 

T *  1 
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2 

Figure 6.8: Gluon contribution to the photon-quark cross-section. 

and AG (a, Q 2 )  = GT (x, Q2) - GI (x, Q 2 )  is the gluon helicity distribution. 

integral of gl (x, Q2):  
For the sum rules we are particularly interested in the gluon contribution to  the 

(6.14) 

The last step follows from the properties of the convolution (6.13). Thus, we see that 
the gluon contribution to  rl depends on the integral of C,, (x). As was mentioned 
before, the definition of C,, (x) depends on the renormalization scheme. In some 
schemes its integral is equal to zero, while in others its not. One may think that I‘f 
is only a perturbation, because it is proportional to  CY,, and CY, goes as 1/ log ( Q 2 )  in 
the deep inelastic limit Q2 + 00. However, the helicity carried by the gluons grows 
logarithmically with Q2 [20]: 

(6.16) 

because of the axial anomaly, so CY, ( Q 2 )  AG ( Q 2 )  is of order unity even at infinite Q2. 
Thus, we need to consider the gluon contribution in detail. The polarized cross- 

section, shown in Figure 6.8, is divergent, as usual. We will consider two regularization 
schemes which are particularly illustrative. In one scheme, we put a lower cut-off p 2  
on the gluon momentum, which gives for Q2 >> -p2 [all: 

(6.17) 

Alternatively, we can leave a finite quark mass m, in which case [22, 231: 

1 - 2  + 2 ( 1 - x ) ]  (6.18) 
X 
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The cut-off dependent parts of the cross-section can be absorbed into the QMDs, 
while the finite terms give Cqg. For example, in the momentum regularization scheme 
by comparing with equation (6.6) we can read off 

yg = (ax - 1) (6.19) 

(6.20) 

The integral of C,, is different in the two schemes: 

Therefore, in the momentum regularization scheme 

(6.21) 

(6.22) 

(6.23) 

and the gluon helicity appears in the integral of gl, while in the mass regularization 
scheme: 3 

1 rl = e:& (6.24) 

and the integral of gl does not depend on the gluon helicity. 
One could argue that one or another of these schemes is unphysical’. In fact, 

for the polarized scattering structure functions there is no completely satisfactory 
choice of the regularization procedure. Because of the axial anomaly, the singlet axial 
current 5; = ijy,y5y is not conserved: 

(6.25) 

where G,, is the gluon field. As a result, when one chooses a regularization procedure 
either of the three things can happen [24]: the gauge invariance is lost, the chiral 
symmetry of QCD is broken, or the anomaly is not taken into account. For the gluon 
momentum regularization scheme the anomaly is not included because it cannot be 
obtained from the gluon equations of motion. The chiral symmetry is preserved, 
however. On the other hand, in the quark mass regularization scheme the chiral 
symmetry of QCD is broken. 

On a more intuitive level (see Figure 6.9), by choosing a gluon momentum cut- 
off, we are including in the hard cross-section only processes which originated from 

‘In this case the momentum scheme [21] is questionable [23]. However, identical results can be 
obtained by another method [24]. 

1 
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a hard gluon. The gluon, therefore, is in perturbative realm of QCD and is weakly 
interacting. Its momentum distribution is well defined. The photon scatters from 
the virtual quark cloud of the gluon. Therefore, it is natural that gluon distribution 
contributes to rl. In contrast, by using a quark mass cut-off, we are only considering 
the contribution of the quarks whose momentum p 2  = m2 is large, without putting a 
cut on the gluons. In this case it is the quarks which are in the perturbative regime 
with a well defined momentum distribution. But the quark contribution is already 
included at the tree level. The fact that the quarks can originate from gluons is taken 
into account by allowing a contribution from the sea quarks. Therefore, no additional 
gluon contribution is required. These two interpretation are shown schematically in 
Figure 6.9. 

DO000 

Hard gluon 
-P2> P," 

Hard quark 
m2>  p: 

Figure 6.9: Hard scattering contribution: a) only from hard gluons, b) only from hard 
quarks. 

For practical calculations it is more convenient to use different regularization 
schemes. One commonly used scheme is dimensional regularization, denoted M S  
by analogy with UV renormalization scheme. The results for rl and a,, obtained 
within this scheme are identical to our quark mass regularization scheme (to order 
cy, only). The chiral symmetry is broken in this scheme because of difficulty in defin- 
ing y5 in 4 + E dimensions. The other commonly used scheme is the Adler-Bardeen 
scheme, denoted AB, whose result for rl is identical to our gluon momentum cut-off 
scheme. The chiral symmetry is preserved in this scheme, but one cannot define gauge 
invariant operators for the quark helicity. 

While the contribution of the gluons to the first moment of y1 depends on the 
regularization scheme, there is always some contribution to gl (x) through C,, terms 
and to Q2 evolution of quark densities through P,, terms. It is convenient to form 
particular linear combinations of the quark momentum distributions. In non-singlet 
combinations Au - Ad and Au + Ad - 2As the effect of the gluons always cancels, 
because gluons couple in the same way to all quarks. Or, to say it in different words, 
these combinations are proportional to the non-singlet axial current J l N S  = 4X"yp"y5q, 

- 

1 
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where A” is an SU(3) matrix acting in flavor space. The non-singlet axial current does 
not get a contribution from the axial anomaly and is conserved. Only the singlet 
contribution AX = Au + Ad + As is affected by the gluons. The Q2 evolution of the 
non-singlet and singlet combinations is calculated separately: 

(6.26) 

Using the properties of the convolution (6.13) one can also write Q2 evolution eyua- 
tions directly for first moments of Aq;: 

(6.28) 

where y;j ( n )  = s,’ zn-lP;j (x) dx are called anomalous dimensions. 
At this point it is appropriate to briefly describe the other method of QCD analysis 

based on Operator Product Expansion (OPE). In OPE the fundamental quantities 
are the moments of the structure functions: 

f (n ,  Q2) = /’ zn-’f (J:, 9’) d ~ : ;  f = F 1 , 2 , 9 1 , 2  (6.30) 
0 

It can be shown that for inclusive deep inelastic scattering they are related to the 
forward matrix elements of local gauge-invariant operators of the form: 

(6.31) 

(6.32) 
(6.33) 

where DP is a covariant derivative. Using the renormalization group equation one can 
calculate the anomalous dimensions of the operators and their Q2 evolution. Mellin 
transforms are used to  convert back to the J: dependent spin structure functions. 

From equations (6.17, 6.18) we see that yqg (1) = 0 in both renormalization 
schemes considered here. However, in the next order ( a t )  the Q2 evolution is depen- 
dent on the renormalization scheme. It can be shown [as], that in the MS scheme: 

- 

P *  
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where AG' G ( ~ , / 2 7 r )  AG. So, in this scheme A X m  is not independent of Q2 in 
second order of cy,. On the other hand, in the Adler-Bardeen scheme: 

(6.35) d AXAB ACAB 
d k  ( Q 2 >  ( AG' ) = ( ; -& ) ( AG' ) 

and ACAB is independent of Q'. In fact, it can be shown that AXAB is independent 
of Q2 to all orders. This is because the singlet axial current is replaced by a conserved 
current of the form: 

The second term is needed to cancel the contribution of the anomaly and can be 
interpreted as the gluon helicity operator. 

To summarize, there are two commonly used renormalization schemes. In the M S  
scheme only quark helicities appear in the first moment of gl: 

- 

1 r1 (Q2) = 5 e:&; (Q') (6.38) 

but the total quark helicity AE = Au + Ad + As evolves with Q2.  Therefore, a value 
of AX obtained in DIS cannot be compared with static models of the nucleon. Also, 
the chiral symmetry is broken in because of the definition of y5 = iy0y1y2y3 in 
4 + dimensions. In the Adler-Bardeen scheme the gluon helicity also appears in the 
expression for rl: 

(6.39) 

but the total quark helicity AX is independent of Q' and the chiral symmetry is not 
broken. 

The Bjorken sum rule involves a non-singlet combination Au - Ad, so it is un- 
affected by the gluon contribution. In addition, because of the conservation of non- 
singlet axial current J:Ns = QX"yp"y4, it is also unaffected by the Q2 evolution, i.e. 
J,, PISdx = 0 to all orders in cy,. The only QCD modification is due to the C,, term, 
which has a non-vanishing first moment Jt C,, (x) dx = -2 [26], so we get: 

1 dX (g; (.) - g; (x)) = - 1 (Au - Ad) (-2)) = -- 1 gA (1 - ") (6.40) 
1 

2 6 gv 7r 

using equation (6.12). It is easier to calculate the corrections using the techniques of 
OPE, and they have been calculated to order ai [27]: 

2 
r p - n  = _ _  (1 - - 3.5833 (:) - 20.215 ( > ) 3 )  

6 gv 7r 
(6.41) 

for three quark flavors. 
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6.3 Analysis of the Data within QCD 
The analysis of the data within QCD proceeds through the following steps. First, 
one has to  parametrize the helicity momentum distributions of the quarks and gluons. 
Many possible forms of the parametrization are possible, see for example [31]. In the 
range of x where the data on gl exist, the exact form of the parametrization is not very 
critical, because several parameters are adjusted to fit the data. However, the form 
of the parametrization is critical for extrapolating to n: = 0, since different functional 
forms fitted to  the same data will give different results in the unmeasured region. 
In our analysis [30], we follow the anzatz of Gliick e t  al. [29], who assume that the 
polarized momentum distributions are given by: 

A f = A f  x a f f  (2, Q2) (6.42) 

where f are the unpolarized momentum distributions. This parametrization has 
several advantages. For low x the helicity momentum distributions behave as a power 
law and can be compared with Regge predictions. We also expect that IAfJ - 1, 
since at high x the polarization of the quarks approaches unity. Thus, there are some 
theoretical expectations with which we can compare our results. But this is by no 
means a unique form of the parametrization. 

The unpolarized momentum distributions are obtained from expeiimental data in 
[as]. They are separated into valence and sea distributions: u (x) = uv (2) + us (x) 
and similar for d quarks. It is further assumed that us (x) = 6 ,  (x) = d, (x) = d, (x) = 
As (x) = AS (x), where X is an SU(3) symmetry breaking parameter, which can vary 
between zero and one. It is convenient to  parametrize the sea distribution by Q = 
(us + d,)/2 + s/5 which directly enters into the expression for gl .  In equation (6.42) 
f is u, d ,  Q or G - the gluon momentum distribution. The unpolarized momentum 
distributions are given in Table 6.4. The parametrization is done at Qi  = 0.34 GeV2 
and the momentum distributions are evolved up in Q2 for comparison with DIS data 
at Q2 > 1 GeV2. In this way the positivity constraints are automatically satisfied. 
In addition, by evolving in Q2 by a large amount, we are incorporating as much of 
perturbative QCD behavior as possible. It is also believed that the Regge behavior 
is more likely to be observed at very low Q2 than at the Q2 of measurement. As will 
be shown, our results for gl are relatively insensitive to the initial distributions. We 
cannot go any lower in Q2 because CY, becomes too large and the NLO calculation is 
not sufficient. 

A similar NLO analysis was recently performed by Altarelli e t  al. [31], including 
preliminary E-154 data released in the summer of 1996. They use several different 
functional parametrizations of the polarized momentum distributions, some similar 
to (6.42) and some different. They only work in the AB scheme. By comparing 
the results of their and our analysis we can estimate how the conclusions depend on 
different functional fits to the same data. 

- 

1 
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uv(r ,  Qi) 
dv(z, Q;) 
Q ( x ,  Qi) 
G(z, Qg) 

0 . 9 8 8 ~ - ' . ~ ~ ~ ( 1  - z)3.3s0(l + 1 . 5 8 ~ " ~  + 2.582 + 1 8 . 1 ~ ~ 1 ~ )  
0.1822-0.684(1 - 2)4.113(l + 2 . 5 1 ~ ~ 1 ~  + 25.02 + 1 1 . 4 ~ ~ 1 ~ )  
0 . 5 4 5 ~ - ~ . ~ ~ ( 1  - 2)8.33(l + 2.652) 
26.22'.'( 1 - 

Table 6.4: Parametrization of the unpolarized momentum distributions. 

With the unpolarized distributions and the parametrization (6.42) the polarized 
distributions are evolved in Q2 using next-to-leading order evolution equations (6.26, 
6.27). The splitting functions P;j have been calculated to next-to-leading order in [26]. 
The spin structure functions are calculated using equation (6.12). The hard scattering 
cross-sections are also given in [26]. We perform the calculations in moment space 
(6.30) and then convert to  2 space by a Mellin transform. The calculations were 
performed in two renormalization/factorization schemes: M S  and AB. 

We used all available world data on the proton and neutron spin structure func- 
tions. The data were fit by adjusting 8 constants A f  and c y f  in equation (6.42). 
The errors of the fit were estimated by a Monte Carlo technique. Experimental data 
points were randomized within their statistical errors and the parameters of the fit 
were recalculated. In addition, all data points within a given experiment were moved 
by the systematic error, assuming that it was 100% correlated. We also assigned 
a theoretical error which came from several sources. The biggest contribution was 
from the uncertainty in the value of cy,, which was determined from all available DIS 
data. To check the sensitivity to  the parametrization functions, we used a different 
parametrization of unpolarized momentum distributions at Qi = 1 GeV2 [32]. The 
SU(3) symmetry breaking parameter X was varied from 0 to 1. 

The results for the fit parameters are shown in Table 6.5. The proton and neutron 
data together with the fits are shown in Figures 6.10 and 6.11. The results for physical 
quantities extracted from the fits are given in Table 6.6. 

Several conclusions can be reached. The results for the scheme invariant quantities 
Aq3, Aq8 and rl are the same in the two schemes within theoretical uncertainties. 
For the Bjorken sum rule we get a world average' I'Ywn = 0.168 f 0.012, while using 
only our results for the neutron we get I':+ = 0.172 f 0.013. This is in agreement 
with the predicted value of I?:' = 0.186f0.005. It is interesting to  note that the NLO 
analysis gives a result very close to  a naive Regge extrapolation. Thus, the Bjorken 
sum rule is verified with a precision of 8%. 

For the neutron integral we get I?; = -0.056 f 0.009 (our data alone r;? = 
-0.053 f 0.010). Using the value of as = 0.579 f 0.025 from a recent analysis by 
Close and Roberts [33], we get for the Ellis-Jaffe sum rule r;" ( E J )  = -0.021 f 0.004. 
However, in calculating as from the hyperon decay data, one has to apply a variety 

- 

2For definiteness we quote the numbers from the scheme. 
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Table 6.5: Parameters of the fits for polarized momentum distributions. 

Table 6.6: Physical quantities extracted from the fits. 

of corrections which are not entirely unambiguous [34]. Depending on the analysis 
technique, r ; l ( E J )  can have a error as large as 0.016 [2, 351. The Ellis-Jaffe sum 
rule is violated by 3.50 if we use the smaller error, or by 1.90 with a larger error on 
r; ( E J ) .  

One can also turn the analysis around, and assuming the validity of the Bjorken 
sum rule, perform a global fit of the polarized deep inelastic data to determine the 
value of a,. Such analysis was performed by Altarelli e t  al  [31], who used our pre- 
liminary data. Their result is: a, (Adz) = 0.120~0,005 -o,oo6, where the first error is 
experimental and the second is theoretical. The total error is only twice larger than 

t0.004 tO.009 
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Figure 6.10: NLO fit to all available proton data. 

the error on Q, determined from all unpolarized deep inelastic scattering data. With- 
out our measurement the experimental error on Q, would have been larger by a factor 
of 2. 

The question about the total amount of helicity carried by the quarks should be 
addressed with caution. The number that can be most closely associated with the 
interpretations of the naive parton model is ACAB which is independent of Q2 [22,25]. 
Our result is ACAB = 0.25 f 0.1, very far from unity, which would be expected in 
the naive parton model based on SU(6). We emphasize, again, that because ACAB is 
independent of Q2,  it can be identified with the spin fraction carried by the constituent 
quarks in a nucleon at rest, provided that the SU(3) and chiral symmetry breaking 
due to finite quark masses is small [31]. Of course, the SU(6) model is too naive. For 
example, in SU(6) g A / g v  = 5/3 = 1.66, compared with experimental value of 1.26. 
However, using equation (2.33) we can calculate the polarization of the s quark from 
measured quantities without invoking any static model of the nucleon. The result is: 

(6.43) 

where we used us = 0.579 f 0.025. It is 3 0  away from zero. On the other hand, in the 
Adler-Bardeen renormalization scheme the chiral symmetry is preserved. Therefore, 

1 T *  
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Figure 6.11: NLO fit to all available netron data. 

helicity conservation at the gluon quark vertex (see Figure 6.9) should imply that 
As N 0. So, our situation is reminiscent of the proton spin crisis. 

At first, the EMC results were explained by noticing that the gluons make a con- 
tribution [22, 25, 241 to rl, which, at that time, was not known. It was estimated that 
AG - 2.5 is needed to reconcile AX with the naive parton model. Since AG -+ $00 

for large Q2 , such explanation seems quite reasonable. Several techniques for measur- 
ing the gluon helicity to confirm this explanation were proposed [36]. Alternatively, 
working in the scheme, one notices that AXM, depends - on Q2 and cannot be 
compared with static nucleon properties. In addition, in the M S  scheme the chiral 
symmetry is broken, so there is no reason to expect As 3 0. 

With new precision data on the spin structure functions it becomes possible to 
constrain the gluon contribution by studying the Q2 dependence of the structure 
functions. Our result in the AB scheme AG = 0.4 seems to indicate that the gluon 
helicity is smaller than expected, and the s quark polarization is 30- away from zero. 
These conclusions, however, are not yet sufficiently robust. Altarelli e t  al  [31] on 
the basis of similar analysis of similar data, obtain ACAB = 0.45 f 0.09 and As = 
-0.04 & 0.03, consistent with zero. The difference is presumably in the different 
functional form of the fits. Although our numbers are only 1.50 apart, our conclusions 
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are opposite. 
Another interesting conclusion can be drawn about the shape of the polarized 

momentum distributions. In our fits we used 8 adjustable parameters to calculate 
the polarized momentum distributions from the unpolarized distributions. However, 
as can be seen from Table 6.5, the errors for 6 of them: AQ, AG, CY,, ad, CYQ,  and LYG 

are rather large. We can fix the low z powers cy; using Regge behavior at Q2 = 0.34 
GeV2 and ignore the gluon and sea quark contribution. In this case, there are only 2 
free parameters, A, and Ad. Furthermore, we expect that the polarization of valence 
quarks goes to  1 as z + 1 (see Chapter 2), in other words IAqv (z)l /qv (z) -+ 1 as 
z + 1. This implies that lAul and lAdl should be close to 1, which is indeed true (see 
Table 6.5). Thus, by using unpolarized momentum distributions at low Q2 and some 
theoretical input about the low and high z behavior, we can predict the spin structure 
functions with almost no free parameters. By evolving the momentum distributioiis 
using AP equations over a large range in Q 2 ,  we essentially obtain a pQCD prediction 
for the spin structure functions which is insensitive to the initial distribution. The 
data for both the neutron and the proton can be reproduced within 2 when we use 
only 2 adjustable parameters [30]. 

Finally, we can look at the Q2 dependence of the asymmetry AI to check the 
scaling assumption, commonly used in the analysis of the spin structure functions. 
The comparison between the traditional evolution and evolution based on the A P  
equations is shown in Figure 6.12. As can be seen, the difference is noticeable, but is 
still smaller than the statistical errors of the experiment. 

6.4 Conclusion and Outlook 
Our experiment significantly improved the accuracy with which the neutron spin 
structure function is known. Perhaps the most surprising feature of our data is the 
apparent divergence of the neutron spin structure function at low 5 ,  in contradiction 
to  the naive Regge behavior. This behavior requires us to analyze the data in the 
framework of NLO QCD to extract the information about the integral of gy. On the 
basis of such analysis one can reach a number of conclusions: 

0 With our data, the Bjorken Sum rule is confirmed to an accuracy of 8%. 

0 The Ellis-Jaffe Sum rule is violated. 

0 If we adopt the AB renormalization scheme, in which the “proton spin crisis” 
is explained by a large gluon helicity contribution, we arrive at a contradiction 
again. Based on our analysis, the gluon contribution is only AG = 0.4 and the 
total helicity carried by the quarks in the AB scheme is ACAB = 0.25 f 0.1, 
which implies that As = -0.1 f 0.03. This result is unexpected, since in the 
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Figure 6.12: Traditional scaling and NLO Q2 evolution. 

AB scheme the chiral symmetry of QCD is preserved, and one expects that 
As 2i 0. Therefore, it may be interpreted as a next generation proton (or, more 
appropriately, neutron) spin crisis. However, one should treat such conclusion 
with extreme caution. The extrapolation of gl to x = 0 contributes a significant 
amount to  the first moments and is sensitive to the parametrization of the 
quark momentum distributions. The parametrization used in our analysis, while 
motivated by certain theoretical models, is not unique. A different analysis of 
the same data [31] gives As which is only one sigma away from zero. 

One of the main goals of our experiment was a precision measurement of the spin 
structure function at low x. We can now say that the low J: behavior is even more 
interesting than we thought, and one has to go to  even lower J: to really understand 
it. This, undoubtedly, will be the goal of future experiments. 

In the next year the results of E-155 will become available, giving a measure- 
ment of the proton spin structure function similar in accuracy to our neutron data. 
This will improve the precision with which one can do a global analysis of the po- 
larized structure functions and test the Bjorken sum rule. E-155 will also measure 
the deuteron asymmetry and obtain the neutron structure function with comparable 
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accuracy. In the longer term, planning has started for an experiment at HERA which 
will use colliding polarized proton and electron beams to measure the proton spin 
structure function down to z = There is even a possibility of using a polarized 
3He beam to obtain data on the neutron. 

Our target represents a substantial improvement over previous polarized 3He tar- 
gets, particularly in the dilution factor, the use of diode lasers, and the handling of 
systematic errors. However, some improvements are still possible, particularly in 3He 
polarization, by better optimization of the operating parameters. 3He targets polar- 
ized by spin exchange will continue to be widely used in nuclear physics experiments. 
Several experiments are planned at TJNAF [ 3 7 ] .  A precision measurement of the neu- 
tron spin structure function at high z will be able to test a prediction that AI + 1 as 
z 4 1. A measurement at low Q2 will observe a transition between the deep inelastic 
scattering and low energy behavior, establishing a connection between Bjorken and 
Gerasimov-Drell-Hearn sum rules. The electric form factor of the neutron will also 
be measured precisely. 

And the searches for the Permanent Electric Dipole Moment will continue, aided 
by the efforts of the author. 
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Appendix A 

Shower Analysis 

E154 Note #48 

Yury Kolomensky, Mike Romalis 
November 21, 1996 

Shower code for the “Caltech” analysis 
This note describes the shower code used by the Caltech analysis group. 

A . l  Introduction 
In this note, we describe the shower code used by the Caltech-based analysis. This 
code is one of the major parts of the raw analysis code that is different from the 
one used in the SLAC DST production. The shower counters provide electron iden- 
tification via energy, E / p ,  and shower profile (shape, neural net) cuts. The cluster 
information is the basis for the tracking algorithm[l]; in addition, the shower position 
resolution directly affects momentum and angular resolution. The shower analysis 
meets certain challenges in the high rate environment of E154 due to  the overlaps of 
the electron and pion clusters (Fig. A . l ) .  Such overlaps create rate-dependent biases 
in energy and position reconstruction and calorimeter-based electron identification, 
and thus have a potential to alter experimental asymmetries. It is important to have 
an analysis algorithm that is robust in the high rate environment; it is also necessary 
to  study and correct for any possible rate dependence. 

The code benefited greatly from the experience with the existing SLAC code[2]. 
At the same time, it was an entirely new code written from scratch, so it provided 
an important cross-check of the existing algorithm. Besides, we improved the spa- 
tial and timing resolutions, and eliminated biases in the cluster position and energy 
reconstruction. Also, as an alternative to the neural network used in the SLAC anal- 
ysis, we developed a particle ID method based on the information about the lateral 
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Figure A.l: Number of overlaps per electron cluster versus momentum of the elec- 
tron in 2.75" (top) and 5.5" (bottom) spectrometers. A sharp rise at low momenta 
corresponds to increasing pion production rate. 

shower profile (the "shape cut"). We will discuss the clustering algorithm and the 
shape analysis in the following pages. 

In this note, we follow the definitions adopted in the SLAC shower code[2, 31. 
An elementary cell is a signal induced by one particle in one block. Each cell is 
characterized by its time and energy. We record times of both leading (LE) and 
trailing edges (TE) of the photomultiplier pulses. Cell time is determined by its LE 
time. Cell energy is determined by the difference between TE and LE times as will be 
discussed below. Energies of all cells in one block always add up to the total energy 
deposited in that block in one spill. If a block does not have any TDC hits within one 
spill, we create one cell which carries full energy deposited in the block; the time of 
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such cell is undefined. A cell with a definite time is required to have a LE, but it does 
not always have a TE (misses of TE happen less than 1% of the time). A cluster is 
a collection of cells with common time that are grouped according to the set of rules 
to be discussed below. 

A.2 Clustering algorithm 

A.2.1 5 x 5 clusters 

Contrary to  the standard SLAC analysis which employs the cellular automaton[4] 
technique, we have chosen a simpler and faster method sometimes referred to as 
“vector approach”[4]. As a first step, after the data from the TDCs and ADCs are 
copied into the local common blocks, we search the 10 x 20 shower array for the local 
energy maxima (“central blocks”) that pass the following criteria: 

1. There is at least 1 TDC hit in the central block; 

2. The sum over 9 blocks around the central block 

The first requirement ensures that the cluster candidate has timing information. 
Electrons energy deposition in the central block is always higher then the TDC thresh- 
old; the lack of a timing hit signals either a DAQ failure or an event affected’by an 
overlap. Such clusters cannot be used in the further analysis. The second requirement 
provides a simple and effective pion rejection at the very early stage of the analysis. 
The value pmin(rozu) is determined by the lowest momentum of electrons that hit the 
particular block after passing through the spectrometer. This value is in principle 
different for every row (and is increasing from top to  bottom of the calorimeter), in 
practice the value of 9 GeV was used for every block. The constant CCut was chosen 
to be 0.7, safely below any reasonable E / p  cut value’. Thus, most pions that deposit 
energy of less than 6.3 GeV are cut before the main clustering and tracking started, 
significantly reducing the precessing time. 

Having found the central block, we share its energy among its cells. The cluster is 
started with the highest energy cell of the central block. We add to the cluster cells 
from the surrounding 5 x 5 matrix that 

0 among 8 blocks closest to the center and 

‘For the dedicated pion DST production, this value was lowered to 0.05. 
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1. Are in time with the central block, or 

2. Have no TDC hits 

0 among the outer 16 blocks and 

1. Are in time with the central block, or 

2. Have no TDC hits and no other cluster nearby 

The time window is set to be lAtl 5 5 nsec. 

A.2.2 Energy sharing 
When two or more particles hit one block, energies are added in the ADC. To separate 
them, we use the correlation between the pulse height and the time difference between 
the leading (LE) and trailing edges (TE) of the pulse (Fig. A.2). For all pairs of 
leading and trailing edges (cel ls) ,  we calculate the expected energy e; = f ( f E  - t:") 
and error 0;. We then minimize 

2 E; - e; 

i 

with a constraint 

2 

where Etot is the full energy deposit in the block, and solve for cell energies E;. The 
benefit of such an approach is obvious. For any TDC level, the dynamical range for the 
energy sharing is limited; from Fig. A.2 one can see that the meaningful information 
can only be extracted if the ratio of the pulse height to threshold E/Eth,,, 5 4. 
Electron pulses are often much higher than that,  especially for the low thresholds2. 
Pion pulses, on the contrary, are predominantly small. Thus, combining the pion 
and electron information reduces the error in electron energy determination. This is 
important to  minimize the rate dependence associated with the E / p  cut. 

A.2.3 Cluster time and position 
An energy-weighted average used by SLAC analysis 

C b l o c k s  IC; E; x =  
C b l o c k s  

2The values of the discriminator thresholds are summarized in Table A . l .  Note the thresholds 
were set in mV, and the spread of thresholds in GeV corresponds to the spread of calibration 
const ants. 
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Figure A.2: The pulse height as a function of the difference between the leading and 
trailing edge times for different discriminator levels. The error bars represent the 
RMS of the distribution. 

is known[5] to  give a biased estimate of the cluster position due to  the relatively 
coarse transverse segmentation of the calorimeter. It results in the bias towards the 
coordinate of the central block, as could be clearly seen in Fig. A.3 which shows the 
difference between the cluster and track positions for the SLAC code. The position 
bias is the strongest when electrons hit the boundary of the block (x tr  - x,h = f 3 2  
mm) and reaches 1 cm. Alternatively, we calculate the cluster position using the 
formula 

J: = A, [2 - exp(-c,(r - b,)) - exp(-d,(r - b,))] (A.4) 

where r = Eside/Ec.b. is the ratio of the energies in the side and central blocks. 
Coordinates determined by the blocks on either side of the central block are weighted 
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mV GeV 

20 0.08 0.6 0.3 
125 0.4 2.8 1.6 
800 2.7 20.0 9.9 
50 0.16 1.2 0.3 
20 0.08 0.4 0.2 
125 0.4 1.9 1.12 
800 2.7 15.4 6.7 
50 0.15 1.16 0.4 
20 0.09 0.23 0.15 
125 0.5 1.4 0.8 
800 2.8 8.0 4.7 
50 0.16 1.2 0.5 
20 0.09 0.23 0.15 
125 0.5 1.4 0.8 
500 1.8 5.5 3.1 
50 0.16 1.2 0.5 
50 0.0 0.8 0.4 

min max average 

Table A. l :  Range of discriminator thresholds 
Runs 

1304-2058 

2059-2543 

2544-2902 

2902-3788 

1304-3788 

Table A.2: Parameters of the Eq. (A.4). 

KG24 
by the uncertainties to calculate the cluster position. The parameters of the "double- 
spinup" function in (A.4), determined from the data (Fig. A.4), are listed in Table A.2. 

The spatial resolution of the 2.75' and 5.5' shower counters is shown in Fig. A.5. 
The resolution in n: was determined to be 5.9 mm (2.75') and 7.9 mm (5.5'), and in y 
direction the resolution is 7.5 mm (2.75') and 7.9 mm (5.5'). This is to be compared 
to oz = 9.7 mm and ov = 9.3 mm for the SLAC code (see Fig. A.3, top). The 
improvement in the position resolution results in a better angular and momentum 
resolution[l]. Note that the resolution was determined by comparing the coordinate 
of the shower cluster with the coordinate of the electron track at the z position of 
the shower counter. The tracking spatial resolution without cluster constraints (i .  
e.for class 3 tracks used to determine the resolution) is expected to be 4 - 5 mm 
at the shower counter[l], so the actual position resolution of the clustering might be 
even better than the numbers quoted above. The wings of the distribution are due 
to effects of accidental and correlated (delta rays) backgrounds in tracking. Fig. A.6 
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Figure A.3: Performance of the SLAC code. (top) Shower position resolution. (bot- 
tom) Cluster spatial offset versus the position of the track relative to the center of 
the central block. All numbers are in mm. 

shows the distribution of the electron clusters in the calorimeter and the difference 
between the track position and the cluster position plotted versus the position of the 
track. Notice that there are no significant biases in either x or y direction (c.f. Fig. 
A.3, bottom). 

The time of the cluster was determined by averaging TDC times of all blocks 
which energy deposit was at least 10% of the central block energy: 

where a(t i )  is the time uncertainty for each block. The energy cut minimized the 
timing jitter of the small pulses. Another potential problem with using blocks with 
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Figure A.4: Cluster position versus the ratio of energies in the side and central blocks. 
Error bars represent the RMS of the distribution. 

small energy deposit is that they are usually on the tails of the shower and the effective 
z position of the particles in the shower tail is significantly deeper than the core of 
the shower. The light from the shower tails reaches the phototube earlier than the 
light from the core (since the shower develops with the speed of light in the vacuum 
c whereas the light propagation speed is c / n  with the index of refraction n = 1.62. 
The energy cut minimizes this effect so no correction is necessary. 

The time resolution of both calorimeters is shown in Fig. A.7. With the technique 
described above we achieved the resolution of - 0.7 nsec (for electrons), compared to - 0.9 nsec for the SLAC code. 

A.2.4 Shower shape 

The differences in electron and pion shapes are frequently used to  separate the par- 
ticles in the electromagnetic calorimeter. The standard measure of the shower cross 
section is the scaling variable referred to as the Molikre radius R,[5]; for ASP(F2) 
lead glass used in our calorimeters R, x 5 cm. For electromagnetic showers, 90% 
and 95% of the shower energy are contained in the cylinders with radii R, and 2R, 
respectively. A simple approximation of the lateral shower profile is a one-exponential 
form[5] 

A(R)  = A(0) exp(-R/Ro) ( A 4  
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Figure A.5: The position resolution for electrons in 2.75" (top) and 5.5" (bottom) 
calorimeters. The fit is gaussian with quadratic background. 

where R is the transverse shower dimension and Ro = 0.25Rm is the damping con- 
stant. A more realistic model is a double-exponential shape[6] 

A(R)  = AI exp( -R/&)  + A2 exp( -R/R2) (A.7) 

where the first exponent describes the narrow shower core, and the second corresponds 
to a longer tail of soft electrons and photons. For a finite calorimeter block of size 2s, 
one can calculate the energy deposit from the shower centered at (20 ,  yo): 

E = E d s L s  dzdy a (J( .  - 20)2  + (Y - 9012) (A.8)  

where a(R) is a normalized shower profile of Equations (A.6) or (A.7) and Eo is the 
total cluster energy. The resulting distribution is fitted to the following functional 
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Figure A.6: (top) Cluster position distribution in the 2.75" shower counter for Caltech 
analysis. (bottom) The cluster spatial offset versus the position of the track relative 
to the center of the central block. The error bars are statistical. 

form: 

(x ,y)  is the center of a given block and (x0,yO) is the shower position. The elec- 
tron shower profile is shown in Fig. A.8. The parameters of Eq. (A.9) are given 
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- L  

Figure A.7: Time resolution for electrons in 2.75" (left) and 5.5" (right) calorimeters. 
The fit is gaussian. 
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Figure A.8: (left) Electron shower shape; (right) Pion shower shape. 
represent the RMS of the distributions. 

Error bars 

in Table A.3.  The pion hadronic showers are wider on average (Fig. A.8),  and the 
individual pion clusters are much less symmetric than the electron ones. 

A.2.5 Iterating the cluster shape 

The energy sharing using the LE and TE information is not always perfect. First 
of all, it has a limited dynamic range. Pions with energy deposit below threshold 
are not detected by TDCs. Secondly, if electron energy deposit in one block is much 
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Table A.3: Parameters of the shower shape in Eq. (A.9) 
s (mm) h T E1 (mm) E2 (mm) P 

34.0 0.872 0.3 4.0 19.0 2.9 

bigger than the threshold, the time information is not reliable and leads to large 
errors in energy sharing. The latter fact is potentially more dangerous: if the energy 
of the cluster is underestimated due to energy sharing, the event may not pass the 
E / p  cut (typically, E / p  > 0.8 cut is a part of electron definition). Another danger is 
the cluster position bias due to overlaps that translates into the error in momentum 
reconstruction. All these effects are rate-dependent and thus can bias the measured 
asymmetry. 

In order to further reduce the rate-dependent effects in the cluster energy and 
position reconstruction, we developed an iterative procedure using the typical electron 
shape of Eq. (A.9)3. It works in two steps. First, we calculate the cluster position 
(xo, yo) using Eq. (A.4) and the initial estimate of the cluster energy 

( A . l l )  E(o)  = E, 
q x c  - 2 0 ,  Yc - Yo) 

where E, and (xc, yc) are the energy and position of the central cell. We then calculate 

(A.12) 

where the sum is over all cell in the cluster. Here E!’) is the initial energy of each cell 
determined as described in Section A.2.2. Eback = 50 MeV is the average background 
noise, and (T; is the uncertainty of the block energy given by 

(A.13) 

where Isshare is the uncertainty in energy sharing. A fit to  the data yields a = 0.15 
GeV, b = 0, and c = 0.2. 

Minimizing x 2 ,  we find a new estimate of energy E = E(’) and position ( 2 0 ,  yo)(’) 

(we linearize the problem by treating Ax = x!) - z r ’  as perturbation). The energies 
of each cell E; are allowed to vary within their uncertainties. The cell is “frozen” 
(i. e. its energy is fixed) if change in its energy exceeds the uncertainty. The x 2  
minimization is repeated with new cell energies E:’). The iterations converge if one 
of the following conditions is met: 

31t is not used for special pion DST production. 
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0 Cluster position does not change 

0 All cells are frozen 

0 Number of iterations exceeds 10 
The convergence is typically achieved in 1-2 iterations. Cluster position (zo (n) , yo (4) 

and its uncertainty are copied to the output common block and used in tracking. 
After a track has been associated with the cluster, the electron coordinates at the 

shower counter are determined quite accurately. We can now fix the cluster position 
(x0,yO) in Eq. (A.12) to be the track position at the shower counter, and minimize 
shape residuals varying only cluster energy E.  

A.2.6 Energy measurement 

Three energy variables and corresponding uncertainties are reported by the shower 
code and are written to DSTs: 

0 Eg: Sum of cells in 3 x 3 matrix around the central block. 

0 E4: Sum of four most energetic blocks in the cluster (the central block, the 
most energetic blocks in L and y directions, and 1 diagonal block). The sum is 
scaled by a factor of 1.05 to normalize it to E g .  

0 El:  energy determined in iterative process (after tracking). 

The ratios &/E9 and &/E9 and their momentum dependence are shown in Eq. 
(A.9). Eg is a basic energy definition and is used for shower calibration. The ad- 
vantage of E4 and El over E9 is reduced sensitivity to  overlaps. E4 samples smaller 
number of blocks than E9 and therefore the pileup probability for E4 is lower. The 
drawback is that E4 is an approximation that is reasonably good up to energies of - 30 GeV. At higher energies, the shower broadens and energy deposit into other 
blocks of the 3 x 3 matrix becomes increasingly important. This is evident from 
Fig. A.9: the ratio E,/& deviates significantly from 1 starting at p N 30 GeV. The 
iterated energy El does not exhibit such a behavior (Fig. A.9). 

Fig. A.10 shows the ratio E / p  for electrons in both spectrometers. Left plots 
correspond to Eg energy, and right plots are for El energy. The energy resolution is 
comparable to that of SLAC code. In Fig. A. l l  we show' the ratio El /p  in the 2.75" 
calorimeter for four special cases: clusters with no overlaps (top left), clusters with 
an overlap in any of the blocks (top right), clusters in overlaps in the central block 
(bottom left), and clusters with the central block on the edge of the calorimeter. 
No significant degradation of energy resolution and no significant bias is observed 
for either case. Fig. A.12 shows the same plots for the low J: (2.75" spectrometer, 
9 < p < 12 GeV). Again, energy determination is reasonably stable. 

1 



204 

- 

- 

k7 1 
W" 

1 -  

.e.*... 
0.98 - - ...e... ? 

0.96 - 
- 

0.94 - 

0.92 - 

0.9 I '  ' I  ' ' I  ' ' I  ' I  ' ' ' I  

Appendix A. Shower Analysis 

0 1.02 

R 
14000 1 
12000 

10000 

8000 

6000 

4000 

2000 

0 
0.6 0.8 1 1.2 1.4 

14000 

12000 

10000 

8000 

6000 

4000 

2000 

0 
0.6 0.8 1 1.2 1.4 

*........e** 

e 

* +  
0.96 

0.94 

0.92 0.9 10 L 20 30 40 

P ( G W  

Figure A.9: Ratios of energies El /Eg  (top,left) and E4/E9 (top,right) and their mo- 
mentum dependence (bottom). 

A.3 Shape cut 

The difference between pion and electron shapes (Fig. A.8) can be used to  separate 
electrons from pions using only shower counter information. SLAC analysis uses the 
algorithm based on a multi-layered neural network[4, 71. A set of input parameters 
(discriminating variables), e. g. energy deposited in each cluster block, cluster posi- 
tion, etc., combined in a non-linear fashion, identifies the event. Due to  its non-linear 
nature, the properties of the network highly depend on the environment (rate, pion to 
electron ratio, etc.) and the event sample on which the network is "trained" (i. e. the 
way the relative weights of the input parameters are determined). Thus, the neural 
network efficiency is potentially rate dependent [7, 81, especially at low momentum 
where the rate of pion-electron overlaps is high. The overall efficiency is about 90% 

8 . .  
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Figure A.lO: Ratios E g / p  (left) and El/p (right) for electrons in 2.75" (top) and 5.5" 
(bottom) spectrometers. The fit is gaussian with quadratic background. 

at low x [ 7 ] ,  and increases with momentum. 

from the electron shower shape x 
We discriminate between electron and pion showers by calculating the deviation 

1 ,  

(A.14) 

where the summation is over all cluster blocks, except for four most energetic ones 
used in the definition of E 4 .  The electrons are identified by the requirement x 5 0.045. 
The distribution of variable x for electrons and pions is shown in Fig. A.13. The 
electron and pion efficiencies are shown in Fig. A.14. The electrons were selected by 
requiring a track with cherenkov pulses in both tanks higher than 4.5 photoelectrons 
and a good match with the shower cluster. The pions were defined as class 2 (no 
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in central block, (bottom right) clusters with the central block on the edge of the 
calorimeter. 

cherenkov signals and a good match with a shower cluster) tracks. Open circles 
in Fig. A.14 show the efficiencies for the electron and pion samples that included 
additional cut E / p  > 0.8. 

Several observations can be made. First, the pion rejection power of the x cut is 
about 10:1. However, for the pions that have E / p  > 0.8, it is at best 2:1, comparable 
to the SLAC neural network performance under the same conditions[7]. The reason is 
that pions usually deposit large amount of energy if they undergo a charge exchange 
7r-p + ran. 7ro decays instantly into two photons and develops an electromagnetic 
shower; such a cluster is almost indistinguishable from an electron cluster. Since the 
shape or neural net cut is optional and is usually applied in addition to the E / p  cut, 

f 



A.3.  Shape cut 

0 

20 7 

600 1 

1 1  I 

2oo 100 F i 
0 

0 0.5 1 1.5 2 
Sp2 elec Elp, low x,no pileup 

F 206.6 

o . w m . m  
- 1 7 . 1 ~  

1.010 

t I/ I 

c I 

v 

0 0.5 1 1.5 2 
Sp2 elec Elp, low x,pileup in cb 

11 200 

il, 
Sp2 elec Elp, low x,pileup anywhere 
7 ramtm, 

0.9903 
b # "  O.XIMF.-OI 

5Z.W 
-n.n 

20 

0 
0 0.5 1 1.5 2 

Sp2 elec Elp, low x,edge blocks 

Figure A.12: Same as Fig. A . l l  for electrons with 9 < p < 12 GeV. 

it is the later rejection power that is relevant for the background analysis. 
Electron efficiency ranges from 92% to 95% at low x (depending on the run), and 

slowly increases with momentum. It is comparable, if not slightly higher, than the 
neural network efficiency[7]. The variations with the run conditions are smaller than 
quoted for the SLAC code[7] that implies smaller rate dependence4. The reason for a 
sharp drop at about 30 GeV is use of variable E4 in Eq. (A.14). As was shown above 
(Fig. A.9), it deviates significantly from the true cluster energy starting at about 30 
GeV, and the shape function E4S(a; - xo,  yi - yo) systematically underestimates true 
cell energy. The situation is improved, indeed, if other energy variables, El or Eg are 
used in Ey. (A.14) (Fig. A.15). This effect was discovered too late to be applied to 

4The rate dependence of the overall shower efficiency, including the shape cut ,  was studied by 
Piotr Zyla[lO] and was found to be small. 
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Figure A.13: Distribution of the shower shape variable x for electrons (open) and 
pions (hatched). 

the DST production code. Instead, we turn off the shape cut for p > 30 GeV where 
pion contamination is negligiblelg]. 
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Figure A.14: Efficiencies of the shape cut for electrons (left) and pions(right) for 2.75" 
(top) and 5.5" (bottom) shower counters. A sample of electrons and pions is formed 
using the tracking and cherenkov information as described in the text (closed circles). 
Open circles show efficiencies for the samples that included E / p  > 0.8 cut. 
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Figure A.15: Efficiency of the shape cut with different energy variables. Energy used 
in Eq. (A.14) is E4 (crosses), El (open circles), E9 (closed circles). Note that the 
drop in efficiency disappears for El and Eg. 
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Appendix B 

Pressure Broadening 

Pressure broadening of Rb D1 and D2 lines by 3He, 4He, N2, 
and Xe: line cores and near wings* 

M.V. Romalis, E. Miront, G.D. Cates 
Physics Department, Princeton University, Princeton, N J  08544 

We studied the line shape of Rb D1 and D2 resonance lines in the presence 
1 to 10 amg. of several foreign gases: 3He, 4He, N2, and Xe. We found that 
the line cores are well describe by an asymmetric line shape for a Van der 
Waals interatomic potential. The width and shift of the lines is proportional 
to the density of the foreign gas with high degree of accuracy, while the 
asymmetry is independent of the density. The constants of proportionality 
for pressure broadening and shift were measured with much higher accuracy 
than in previous experiments. We also studied the density dependence of 
the transition oscillator strength. 

B.l Introduction. 
The study of pressure broadening of atomic resonance lines by collisions with neutral 
atoms has a long history starting with work of Michelson [l], who observed that the 
line width increases with pressure in a roughly linear fashion. Early theoretical work 
by Lorentz [a] and Weisskorf [3] predicted a lorentzian shape for the line core, treating 
the broadening as an interruption of the radiation wave train by collisions with gas 
atoms. This approach is called the impact approximation. Later work by Lindholm 
[4] and Anderson [5] also predicted the shift of the line center and a dispersion-like 

*To be submitted to Phys. Rev. A. 
tPermanent Address: NRCN, P.O. Box 9001, Beer Sheva 84910, Isreal. 
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asymmetry of the line core. The experimental measurements of the line cores are 
reviewed by Chen and Takeo [6], Lewis [7], Allard and Kielkorf [SI. The widths and 
shifts of the alkali metals spectral lines in the presence of noble and other chemically 
inert gases have been studied very extensively, with perturber gas pressures up to 
several tens of atmospheres. The accuracy of most measurements, however, is only 
about 10-20%. 

Another important feature of the pressure broadening is the formation of satellite 
lines. This effect is most easily explained in the framework of the quasi-static ap- 
proach, first developed by Kuhn [9]. It relates the line intensity to the dependence 
of the energy difference between the atomic levels involved in the transition on the 
distance between the colliding atoms. An extremum in the energy difference results 
in the formation of a satellite line. The quasi-static formalism can be applied most 
successfully to the far wings of the atomic lines. In a series of papers Gallagher and 
co-workers used the measurements of the far wing profiles to extract the interatomic 
potentials for a number of alkali metal-noble gas pairs [lo]. 

A unified quantum-mechanical theory for the line core and wings was developed by 
Szudy and Baylis using the Franck-Condon treatment [ll]. It also predicted a specific 
lineshape for the line core and the satellite lines for a given interatomic potential. For 
the line core, the lowest order correction to the lorentzian line shape is a dispersion- 
like asymmetry. The first quantitative observation of the asymmetry was reported by 
Walkup et al. [la] for N a  resonance lines in the presence of about 10 torr. of several 
noble gases. Higher order corrections can also be calculated. The calculation was 
done for a van-der-Waals potential [13]. A recent review by Szudy and Raylis [14] 
summarizes the quantitative experimental and theoretical results on the line shape 
for the cores and far wings of spectral lines, including satellite lines. 

Here we present a measurement of line cores and near wings of Rb D1 and D2 lines 
in the presence of 3He, 4He, N2 and Xe. Our measurements are done for perturber gas 
densities ranging from 1 to 10 amg. Compared with previously available data, our 
results on line widths, shifts and asymmetry are much more accurate. We also report 
on the first quantitative study of the spectral line cores exhibiting deviations from the 
lorentzian line shape beyond the first order dispersion asymmetry. Our measurements 
are in good agreement with calculations by Walkup e t  al. [13] for a van-der-Waals 
potential. We also present measurements of the pressure dependence of the D1 arid 
D2 oscillator strengths. 

One of the initial motivations for this work was an accurate determination of 
pressure broadening and shift density coefficients, which can be used to measure gas 
pressure in experiments using optical pumping. The technique of Rb optical pumping 
and spin exchange [15,16] finds many applications. 3He polarized using this technique 
is used in measurements of the neutron spin structure functions [17, 181, tests of 
fundamental symmetries [ 191, neutron polarizes and analyzers [20], and magnetic 
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resonance imaging (MRI) of the lungs [all. 12’Xe polarized by Rb-Xe spin exchange 
is used in MRI [22], surface studies [23], cross-polarization experiments [24] and other 
applications. Nz and sometimes 4He [25] are added to aid in the process of optical 
pumping. In some of these applications it is important to know accurately the pressure 
of the gas in the optical pumping cell. For example, in a recent precision measurement 
of the neutron spin structure function gy at SLAC [lS], the 3He pressure in the target 
cells was determined with an accuracy of 1% by measuring the broadening and shift 
of Rb D1 and D2 lines using the results of this paper as a calibration. Also, the 
knowledge of pressure broadening and oscillator strength can be used to determine 
the Rb number density and for modelling of the optical pumping process. These 
technique were used in several experiments [26, 271. The choice of the gases used 
for this study, while motivated by the optical pumping experiments, provides a good 
sampling of noble (He is least polarizable, Xe is most polarizable) and diatomic (N2) 

gases. 
In section B.2 we describe our experiment, which uses a laser absorption method 

to measure the line profile. Section B.3 describes our analysis technique, which is 
based on the classical limit of the unified Franck-Condon theory [ll] for a van-der 
Waals interatomic potential [13]. In section B.4 we present our results for the line 
width, shift, asymmetry and oscillator strength. 

B.2 Experimental Technique. 

In this experiment we used laser absorption spectroscopy. We measured the trans- 
mission of a laser beam through a cell filled with Rb vapor and the perturber gas 
as the frequency of the laser was scanned through the resonance. This technique is 
free from optical attenuation effects, which can cause distortions of the line core in 
measurements based on detection of the fluorescence light. It also allows simple mea- 
surements of the oscillator strength, provided that the Rb number density is known. 
The schematic of the experiment is shown in Figure B.l .  We used a single frequency 
Ti:Sapphire ring laser (Coherent 899-29) to scan across the absorption lines. The 
laser linewidth of about 500 kHz and wavelength jitter of about 100 MHz were much 
smaller than the width of the pressure broadened lines, so no instrumental corrections 
were needed. The absolute wavelength was measured by a build-in wavemeter with 
an accuracy of 0.5 GHz, sufficient for shift measurements. The power of the laser 
was attenuated to  a few mW/cm2 by two reflections from uncoated glass to avoid 
saturating the atomic line. For this intensity the product of the optical excitation 
rate times the atomic lifetime 1a.r was always less than 3 x The laser beam 
was chopped at a frequency of 340 Hz. The incident and transmitted intensities were 
measured using silicon photodiodes. The signals were detected with lock-in amplifiers 
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referenced to the chopper and digitized by a computer. The same computer also con- 
trolled the wavelength scan. Fluctuations in the incident light intensity were canceled 
by dividing the transmitted intensity by the incident intensity. We also recorded the 
fluorescence coming from the cell. It was not used in the analysis of the line core 
because of significant optical attenuation, but was used to  check the transmission 
measurements in the far wings. To ensure the linearity of the photo-diodes and the 
absence of line saturation, we also performed measurements with the light intensity 
attenuated by a factor of 1000, to  a few pW/cm2. No changes in the line shape were 
observed. 

Figure B.l: Experimental Setup. The laser intensity is attenuated by reflection from 
two optical blanks. The computer controlled the wavelength scan and stored the 
lock-in amplifier signals. 

The cell used for the measurements was a simple cylinder 7.15 cm long. It was 
placed in a large oven heated by flowing hot air. The temperature was measured with 
an RTD sensor and controlled by an analog Omega controller. We also measured the 
temperature with an accurate mercury thermometer. The air flow rate was stabilized 
using a pressure regulator. The temperature in the oven was stable to 0.1"C with time 
and varied by less than 1°C across the cell. For most measurements the temperature 
was 80°C corresponding to Rb number density [Rb] =1.4x1Ol2 ~ m - ~ ,  so the optical 
thickness varied between 0.3 and 0.005, depending on the density of the gas. Some 
measurements with 4He were also done at 100°C and 60°C. 
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The signal to noise ratio was limited by two factors. The laser intensity fluctua- 
tions, which are on the order of 5-l0%, were not perfectly canceled by taking the ratio 
of the incident to transmitted intensity. In addition, because the coherence length of 
the laser is very long, the glass windows of the cell and the oven can act as etalons, 
resulting in oscillations of the transmitted intensity. This effect was reduced by ex- 
panding the laser beam. The signal to noise ratio is the worst for the highest density, 
because the optical thickness is small and the maximum absorption is only 30%. At 
low density, on the other hand, the absorption is very strong, and the line shape can 
be distorted by the finite dynamic range of the A/D board. The temperature and 
the length of the cell were chosen to find the best compromise between these two 
limitations. 

The cell, made out of Pyrex, was initially baked under high vacuum and a small 
amount of Rb was distilled into the cell. It was then filled with about 10 amg. of 
the gas. About 8-12 measurements were performed with densities ranging from 10 
to  1.5 amg. After each measurement some of the gas was released from the cell. 
When the pressure in the cell approached atmospheric pressure, the measurements 
were stopped. The cell was attached to the vacuum system, evacuated and filled with 
the next gas. 

B.3 Data Analysis 
The collision-broadened line profile is usually expressed in terms of the Fourier trans- 
form of the dipole autocorrelation function g (7)  [ 5 ,  111: 

where g (7) is given in the classical approximation by: 

and n is the density of the foreign gas perturbers. Here w ( R )  = (V,  ( R )  - V, ( R ) )  / h ,  
where V, ( R )  and V,  ( R )  are the interatomic potentials for the ground and excited 
state respectively. R ( t )  describes the path of the perturbing atom in the center of 
mass frame during the collision. For straight trajectories R ( t )  = d m .  The 
average (...) is over the impact parameter b and thermal velocity v. 

Equation (B.l)  can be simplified for low perturber density by performing two 
integrations by parts and expanding the exponent in powers of n [14, 29, 301. The 
low density approximation is justified if the time between collisions is much longer 
than the duration of the collisions. This condition is satisfied for most of our data. 

1 
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The specific limits of applicability will be discussed later. With this approximation 
we get [14]: 

where [ = w - wg - A. Here y is the full width and A is the shift of the lorentzian 
line core. They are defined in terms of g ( 7 )  by: y/2 - iA = ng’(oo), which predicts 
a linear dependence of the width and shift on the gas density. 

The dependence of I? on the detuning [ is responsible for deviations from the 
lorentzian shape. In terms of the autocorrelation function g ( 7 )  it is given by [14]: 

To calculate r([) one needs to assume a specific shape for the difference potential 
w ( R ) .  The calculation for a van der Waals potential w (8) = (V, ( R )  - V, ( R ) )  /tZ = 
-C6/R6 has been done by Walker et  al.  [13] and will be used in our analysis. They 
convert equation (B.4) to  the following form [30, 291: 

assuming straight classical trajectories for R ( t ) .  The results of their calculation are 
parametrized in the following fashion: 

115 -615 where Td = c6 V t h  is the duration of the collision, R t h  = TdVth is the effective 
radius of the collisions, and uth = Jm is the most probable thermal velocity 
in the center of mass frame. I ( z )  is a dimensionless function of a dimensionless 
parameter z = /Td that contains all numerical information. If Cg is positive (the 
excited state is more attractive than the ground state), then z < 0 corresponds to the 
quasi-static wing and z < 0 to the anti-static wing. The low density approximation, 
used in derivation of equation (B.3), can be quantitatively expressed as Tdy << 1, 
since the time between collisions is on the order of l / y .  

The results of the calculation for I ( z )  are plotted in Figure B.2. The calculation 
is done numerically for -2.4 < z < 2.4 with an accuracy better than 1%, except near 
x = 2.4, where the error is 5 5% [13]. For z < -2.4 the quasi-static result I(.) = 
7r/6& is sufficiently accurate. For the anti-static wing z > 2.4 one can use the result 
of an asymptotic expansion 1 (z) = 0.8464fiexp (-2.1341 x5/9) derived in [as]. We 
use a polynomial to  interpolate between the calculated points and smoothly match to 
the asymptotic functions. Near z = 0, I (z) is well approximated by a linear function 
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I (z) = 0.3380 - 0.2245 2 .  It shows that the first order correction to the lorentzian 
profile is a dispersion term. This observation has been confirmed experimentally [la]. 
By making measurements at higher pressures (but still low enough for the low density 
approximation to  be valid), we can observe the non-linear behavior of I ( z ) .  We can 
also check the prediction of the theory that the asymmetry, parametrized by the 
collision time Td, should be independent of the pressure. 
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Figure B.2: Function I(x) calculated by Walkup e t  al. 
potential . 

[13] for a van der Waals 

The intensity transmitted through the cell IT is given by: 

IT = Io exp (- [Rb] 0 (v) L )  (B-7) 

where Io is the incident intensity and L is the length of the cell. To extract the line 
profile from our data we plot S (Y) = In (GTIT/GOIO) = - [Rb] 0 (v) L + In ( G T / G ~ ) ,  
where GT and Go are the gains of circuits used to detect the transmitted and incident 
intensity respectively. These data are fitted to the following equation: 

AI ( 2 ~ T d  ( v - v.)) 
S ( Y )  = + B  

(v - YJ2 + 
where the constants A,B,Td,v,, and y are allowed to vary to minimize the x 2  of 
the fit. The constant B absorbs the values of the signal gain and does not c x r y  
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any physical information. To correct for the ground state hyperfine splitting, we 
fit to the sum of four functions (two for each *'Rb and 87Rb) in the form (B.8) 
with appropriate weights and shifts. This results in a very small correction. We 
ignore much smaller hyperfine splitting of the excited state. We also ignore Doppler 
broadening, which gives a negligible contribution to our width. The asymmetry due 
to  collision correlations [31] is also negligible. 

Also of interest is J 0 (Y) dv = 7rrOcf, where ro = 2.82 x lO-I3cm. is the classical 
electron radius and f is the transition oscillator strength. This gives us a relationship 
between the oscillator strength and the Rb number density. If we assume that the 
Rb number density is given by the equilibrium vapor pressure, we can measure the 
oscillator strength and study its dependence on the gas density. 

We note that for a pure van der Waals potential the width, shift and asymmetry 
can be calculated for a given value of Cs [4]: 

However, these equations are not in good agreement with experimental data. There- 
fore, we vary all constants independently. Then we can compare our results with val- 
ues predicted by equations (B.9) using CS determined from measurements of atomic 
polarizability [32]. 

B.4 Results and Discussion. 

B.4.1 3He and 4He data. 
The D1 absorption cross-section for several pressures of 3He is shown in Figure B.3. 
The cross-section is fitted to  equation (B.S). Because the value of the asymmetry is 
quite small, the results of the fit based on the Walkup function I (x) are indistinguish- 
able from the fits using only a first order approximation, which gives a dispersion-like 
asvmmetrv: 

+ B  
A (1 + 0.664 2~Td ( V  - vC)) 

S ( Y )  = 
(. - &I2 + ( Y / 2 ) 2  

(B.lO) 

For example, for the largest value of Td (D1 line for 'He) detuning of 500 GHz corre- 
sponds to 2 = 1, the point where I (x) just starts to deviate from the linear behavior. 
The dispersion form of the asymmetry can be derived without reference to a partic- 
ular interatomic potential [33]. Our data agree very well with equation (B.8) for all 
densities studied. Small oscillations in the data for the highest density are due to the 
windows of the cell acting as etalons. 

P .  
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D1 full width, 
GHz/amg. 

D1 line shift, 
G Hz / amg . 

D1 asymmetry, 
T ~ ,  10 -13~  

D2 full width, 
GHz /amg . 

GHz/amg. 
D2 line shift, 

D2 asymmetry, 
Td, w 3 s  

4He 3He Temp. 
This Previous This Previous Depen. 
Work Results Work Results 

18.0f0.2 16 .6f3  [34] l8.7f0.3 19.9&0.4 [37] T0.05*0.05 

4.3f0.1 8.0 [36] 5.64f0.15 5.78f0.2 [37] T1.l*'.' 

-1.9 f 0.1 

17.6 [35] 

5.2 [35] 
-3.5 f 0.1 

18.1f0.2 17.4f3 [34] 20.8f0.2 ~0.53+0.06 
19.4 [35]  

l.S [35] 
0.46f0.06 0.77 [34] 0.68f0.05 ~ 1 . 6 k O . 4  

-0.44 f 0.1 -0.73 f 0.1 

Table B. 1: Broadening and shift coefficients, asymmetry parameters and temperature 
dependence for 3He and 4He. Negative value of Td implies that c6 < 0. 

The dependence of the line width and shift on the gas density is shown in Figure 
B.4. As predicted by the theory at low densities the dependence is quite linear. In all 
cases the offset of a linear fit is consistent with zero within error bars. The broadening 
and shift density coefficients are summarized in Table B.l. We also found that the 
asymmetry is independent of the density. Because the asymmetry is quite small, the 
best fit value of the asymmetry is strongly correlated with the fit value of the line 
center. Therefore, in addition to  fitting each pressure scan individually, we also fitted 
them simultaneously with a common value of Td. When the number of adjustable 
constants is reduced from 5 per scan to  about 4.1 (10 data sets are analyzed with a 
common value of Td), the value of x 2  increases by only 1-2%. This confirms that the 
asymmetry is independent of density. 

The low density approximation used in the analysis requires that Tdy << 1. To 
check the validity of this approximation we calculate the critical density n, for which 
Tdy = 1. The most stringent constraint comes from the D1 line in 4He, which gives 
n, = 25 amg. Thus, the condition is satisfied, although not by a large margin. To 
check if the broadening and shift are slightly non-linear due to the breakdown of 
the low density approximation we fit the lowest four data points independently. The 
broadening and shift coefficients change by less than 1 sigma indicated in Table B.l. 
Therefore, we conclude that the low density approximation remains valid for n/n ,  
approaching unity. 

We have also studied the temperature dependence of the pressure broadening and 

I 
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Figure B.3: Absorption cross-section for Rb D1 line in the presence of 3 different 
densities of 3He. The solid lines are fits to equation (B.8). The curves have arbitrary 
offset and are scaled for better display. 
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Figure B.4: The dependence of the shift and width of Rb D1 and DZ lines on the 
density of 3He. 
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shift. The temperature dependence can come from two effects. The average velocity 
of the collisions depends on temperature through vth = d%. In addition, the 
probability of finding a He atom a distance R from the Rb atom is proportional 
to exp (-& (R) / k T ) .  However, if one assumes straight path trajectories for R ( t )  
in equation (B.2), this factor is neglected. Such approximation is justified, because 
typical values of V, ( R )  for the line core correspond to  about 5 K ,  much lower than the 
temperature of the atoms. Thus, the factor exp (-V, ( R )  / k T )  is very close to  unity. 
If all temperature dependence is due to the average velocity, then the data for 3He are 
equivalent to the 4He data taken at a temperature higher by a factor of p 4 / p 3  = 1.312. 
Figure B.5 shows the line widths and shifts for 4He measured at 60, 80 and lOO"C, 
as well as the data for 3He taken at 80°C and converted to  effective 4He temperature 
of 463 I(. As can be seen, the scaling between the temperature and reduced mass 
is reasonably well satisfied within error bars. The temperature dependence is very 
different for the four quantities studied. This is to be contrasted with predictions 
based on the van der Waals R-6 interaction which give dependence for all four 
quantities [4]. We fit the temperature dependence to a power law T" ,  with the results 
for n shown in Table B.l.  

This temperature dependence is used to convert previous measurements of the 
4He and 3He width and shift density coefficients to our temperature. In general, our 
results are in agreement with previous measurements, although in some cases it is 
difficult to judge the agreement quantitatively because the authors do not quote a 
error for their data. There is only one measurement (3He D1 width and shift) with 
an accuracy comparable to ours [37]. Although the results for the shift are in good 
agreement, the width measurements disagree. This may be due to the fact that in 
[37] the authors use a different functional form to  describe the line asymmetry and 
do not correct for the instrumental broadening of 18 GHz. 

We can compare our results with predictions based on the van der Waals interac- 
tion using equations (B.9). The line center is shifted to the blue and Td < 0, which 
implies that the interatomic difference potential is repulsive (i.e. C6 < 0). On the 
other hand, the long range van der Waals interactions are always attractive, and larger 
for the excited state than for the ground state, so one expects C6 = C, - C, > 0, as 
can be seen in Mahan's numbers derived from atomic polarizability [32]. However, 
because of low polarizability of He, the Rb-He van der Waals interactions are very 
weak and at shorter distances are overwhelmed by core repulsion [38]. Apparently, 
the line shift and asymmetry are dominated by the repulsive core interactions. The 
anomalously small value of the shift and asymmetry for the D2 line is most likely due 
to cancelation of the effect of van der Waals attraction and core repulsion. 
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Figure B.5: Temperature dependence of the line width and shift. Relative change 
normalized to 353 K is plotted. The data points are shifted slightly in temperature 
for clarity. The lowest 3 points are for 4He, while the highest point is for 3He scaled 
as described in the text. 

B.4.2 N:! and Xe data. 

N2 and Xe are heavier than He and have a smaller thermal velocity. In addition, they 
are more polarizable and, therefore, have a stronger van der Waals interaction with 
Rb. As a result, the duration of the collisions Td = C, vth is longer and the low 
density approximation is not satisfied for all densities studied. Figure B.6 shows the 
absorption cross-section for N2 at two different densities. For N2 the critical density 
corresponding to Tdy = 1 is equal to  n, = 5.5 amg. As can be seen from Figure B.6, 
the line shape at low density ( n  = 2.66 amg.) is described very well by equation (B.8), 
while at n = 7.43 amg. it shows small systematic deviations. Figure B.7 shows the 
values of the line shift and width as a function of N2 density. As before, we find that 
the asymmetry is independent of density. To determine the pressure broadening and 
shift rates we fit only the lowest 3 data points with n < 4 amg. For higher density the 
widths deviate slightly from the linear behavior, while the shift remains quite linear. 
Table B.2 summarizes our results for the pressure broadening and shift coefficients and 
the asymmetry. To our knowledge, no previous measurements for Rb-N;, broadening 
exist. Because N2 is diatomic, it has a large radiationless quenching and mixing cross- 
sections, unlike the noble gases. It results in the reduction of the Rb excited state 

11.5 -615 

P *  



B.4. Results and Discussion. 225 

lifetime and contributes to broadening. Using the values of the cross-sections from 
[39], we calculate that inelastic processes contribute 3.3 GHz/amg. width to the DI 
line and 3.0 GHz/amg. to the D2 line. 

4 

3 
v) 
3 
.rl 

e 
1 

0 

+D, ,  nN2=7.43 amg. 
OD,, nN2=2.66 amg. 

-600 -400 -200 0 200 400 
Au, GHz 

Figure B.6: Pressure broadening by N2 with a fit to function (B.8). 

Figure B.8 shows the absorption cross-section for Xe with a fit to  equation (B.8). 
The critical density for Xe is n, = 2.3 amg. The lineshape agrees very well with the 
data. The broadening and shift coefficients, given in Table B.2, are calculated from 
the data with n < 2 amg. The collision time Td is independent on pressure within 
our error bars. Our numbers for the width agree well with the results of Ottinger 
et al. [34], while our shift rate is substantially smaller. However, they define the 
shift as the position of the line center at the half-height, which is affected by the 
asymmetry of the line. Table B.2 also shows results predicted by equations (B.9) for 
a van der Waals potential. We used Cg = 6.86 x erg cm6 for the D1 line and 
c6 = 7.26 x lO-'' erg cm6 for the D2 line from [32]. The agreement with experiment 
is reasonably good, especially for the collision time Td, which characterizes the line 
asymmetry. 

Because the asymmetry is larger than for He, higher order corrections to the 
lineshape become important for Xe and N2. For Xe, 27rTd (v - v.) = 1 for detuning 
of 45 GHz, while for N2 this happens at 100 GHz. To evaluate the importance of 
the higher order effects, we tried to fit the data using only a linear approximation 
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Figure B.7: Broadening and shift as a function of N2 density. The straight lines are 
fits to the lowest 3 data points, where the low density approximation is valid. 

(B.lO). For both Xe and Nz it resulted in the increase of the x2 by a factor of 2-3. It is 
difficult to get a more significant confirmation of the higher order effects in (B.8). For 
the higher order effects to be important, one would like to have Tdy - 1. However, 
this is exactly the place where the low density approximation starts to break down. 

Equation (B.8) uses only one parameter (Td) to characterize the asymmetry of 
the line. It is independent of the gas density, has a clear physical interpretation 
and is in agreement with calculations. For comparison, we also tried to  fit the data 
with several other functions which use two parameters to characterize the shape of 
the asymmetry that are free to vary with density. Nevertheless, we could not find a 
simple function which would consistently give x2 better than or comparable with the 
results of equation (B.8). Therefore, we conclude that the function I (x) calculated 
for a van der Waals potential in [13] is very successful in describing the shape of the 
line core, including corrections beyond the first order dispersion asymmetry. 

For Xe data with n > 3 amg. the line shape becomes significantly distorted by 
formation of a satellite line. Figures B.9 and B.10 show several absorption cross- 
sections measured at densities ranging from 4.87 to 9.31 amg. The peak cross-section 
of the line core goes down as l / n  with density, while the peak cross-section of the 
satellite is proportional to n. Therefore, the relative size of the satellite line grows as 
n .  

In quasi-static theory of line shapes the appearance of the satellite is associated 

2 

1 r -  I 
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Figure B.8: Pressure broadening by Xe with fits using function (B.8). 

D1 full width, 
GHz/amg. 

D1 line shift, 
G Hz / amE. 

D1 asymmetry, 

D2 full width, 
GHz/amg. 

D2 line shift, 
GHz/amn. 

T ~ ,  10-13~. 

D2 asymmetry, 
T ~ ,  10-13s. 

N2 

This Work 
17.8f0.3 

-8.25 f 0.15 

1 6 f 2  34 

Table B.2: Broadening and shift coefficients and asymmetry for N2 and Xe. 
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with an extremumin the interatomic difference potential AV ( R )  = V ,  (R)-V, ( E ) .  If 
dAV (R,) /dR, = 0, then a satellite line should appear at detuning v, = AV (R,) / h .  
If the difference potential can be approximated by a parabola near the extremum, 
one can derive a characteristic line shape for the satellite [ll]. However, we were not 
able to fit the data to such a line shape. We believe that for Xe-Rb the satellite is due 
to two extrema, one minimum and one maximum, located very close to each other. 
The Rb-Xe interatomic potential for the D1 line is shown in Figure B . l l  [41]. The 
difference potential has a minimum of 1544 GHz at R = 5.7781 and a maximum of 
2042 GHz at R = 7.06 A, while we observed the satellite at about 700 GHz. However, 
the shape of the interatomic difference potential near the extrema is very sensitive 
to the shape of V, (R) and V, ( E ) .  The values of the maximum and minimum of 
the difference potential can probably be moved to 700 GHz by adjustments of the 
parameters which are consistent with other data from which the interatomic potentials 
where determined. Therefore the position of the satellite can be used in combination 
with other data to determine more accurately the interatomic potentials. Once the 
interatomic potentials are determined, the shape of the satellite line can be used as 
a good test case to compare against the predictions of the unified satellite line shape 
theory [ll]. 

Av, GHz 

Figure B.9: Rb D1 absorption cross-section in the presence of high density Xe. 
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Figure B.lO: Rb D2 absorption cross-section in the presence of high density Xe. 
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B.4.3 Oscillator Strength. 
By integrating the absorption cross-section over the wavelength we can also get in- 
iormation on the oscillator strengths of the D1 and D2 transitions and their pressure 
dependence. It requires the knowledge of the Rb number density, which we can only 
determine from the vapor pressure curves. The cell was kept at 80°C for a period of 
several days prior to each set of measurements, and the temperature was very uniform 
across the cell. So, it is reasonable to assume that the Rb vapor pressure should be 
close to equilibrium. To calculate Rb number density we use the data from CRC 
Handbook of Chemistry and Physics [42], which have a quoted accuracy of 5%: 

(B . l l )  

At 353 K it gives density 7% higher than more commonly used Killian formula [43]. 
However, Killian does not quote a error for his data. 

The area is 
calculated from the parameters of the fit. This takes into account the area under 
the wings outside our measured range, which is on the order of several percent. It 
should be accurate for He because the low density approximation is satisfied for all 
of our data and the lineshape agrees with data quite well. In addition, there are no 
significant satellite lines for He [34]. For N2 our fits do not work very well at high 
pressures, so the numbers should be treated with caution. However, as can be seen 
in Figure 12, the results for N2 are similar to 3He and 4He. The uncertainty in the 
temperature of the cell is 0.5"C, corresponding to  a density error of 4%. The error in 
the length of the cell is 2%, and the error in the determination of the area under the 
absorption curve for 3He and 4He is 3%. The total error for our values of f is 7%, 
including the uncertainty in the vapor pressure curve. 

We parametrize the density dependence of the oscillator strength by f ( n )  = 
f (1 + a n) .  Because of the uncertainty in the estimation of the area for N2 based on 
the fit, only 3He and 4He data are used for quantitative analysis. We find that the 
oscillator strength of the D1 line is independent of pressure within our sensitivity: 
la11 < 0.003 amg-l (la), while the D2 oscillator strength decreases with pressure: 
u2 = -0.019 f 0.003 amg-l (the results for 3He and 4He are the same within errors). 
Our results for the oscillator strengths at zero pressure f1 = 0.33 f 0.02 and f2 = 
0.66f0.05 are in very good agreement with commonly acceptled values fl = 0.322 and 
f 2  = 0.675 [44]. We can compare our numbers with measurements by Chen [35], who 
studied the Rb oscillator strengths for 4He densities up to 45 amg using a technique 
similar to ours. He found al = -0.017 amg-l and a2 = -0.019 amg-l. While the 
results for the D2 line are in agreement, the pressure dependence of the D1 oscillator 
strength is different from our result. 

fi = 1 is almost saturated by the D1 and D2 transitions: f i t  

.f2 = 0.997, their oscillator strength should decrease with density as the intensity of the 

Our results for the oscillator strength are shown in Figure B.12. 

Since the sum rule 
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Figure B.12: Oscillator strength determined from the integral of the absorption cross- 
section as a function of the foreign gas density. 

forbidden transitions increases. The density dependence of the oscillator strengths for 
forbidden transitions was studied in more details for Cs than for Rb [46, 47, 481. The 
density dependence of the D1 and D2 transitions in Cs was also studied in detail [45]. 
It was found that the ratio of the D1 to Dz oscillator strength for Cs remains constant 
as the density is increased. This would imply that al = a2 in agreement with Chen's 
Rb measurements [35 ] .  On the other hand, it is difficult to imagine how our slope 
for the D1 oscillator strength could be more negative. If there is a significant area in 
the satellites which is not included in our integral, it can only result in the reduction 
of the apparent oscillator strength at higher densities. If the vapor pressure of Rb is 
reduced by the presence of He [49], it will also result in the apparent reduction of the 
oscillator strength with pressure. When the gas was released from the cell, some of 
the Rb vapor was released as well, reducing the Rb number density. This effect could 
result in the apparent reduction of the oscillator strength at low density. The vapor 
pressure will come back to  equilibrium with a time scale given by the diffusion from 
the walls to the center of the cell, which was 6-30 sec. Each scan took about 5 min. 
and we alternated between first scanning the D1 line followed by the D:! line and vise 
versa after each release of the gas. Therefore, if this systematic effect was significant, 
it should have resulted in a systematic difference between odd and even points in our 
measurement, which was not observed. 

T I .  
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B.5 Conclusion 
We have reported on a study of the line cores and near wings of the Rb D1 and D2 

lines in the presence of 1-10 amg. of 4He, 3He, Xe, and N P .  The measurements were 
performed using laser absorption spectroscopy, which is free from systematic effects 
that can cause distortions of the lineshape. Unlike many earlier measurements, we 
extracted the values for the line width, shift and asymmetry by fitting the entire 
lineshape to  a theoretically well-motivated functional form. As a result, our parame- 
ters are measured in an unambiguous fashion without mutual correlation and can be 
directly related to physical quantities. The accuracy of our data is in most cases sig- 
nificantly higher than in previous measurements. We have also confirmed with high 
degree of accuracy that the line width and shift increase linearly with density until 
the time between collisions becomes comparable to the duration of the collisions. 

We also studied the temperature dependence of the line width and shift for 3He and 
4He, and confirmed a scaling relationship between the temperature and reduced mass. 
Our lineshape data agree very well with calculations for a van der Waals potential 
made by Walkup et al. [13]. By making measurements at densities comparable to the 
critical density, we have confirmed not only the first order dispersion correction to the 
lorentzian lineshape, but also higher order corrections. We have also obtained data 
for the Rb-Xe lineshape at high Xe density exhibiting strong satellite lines, which 
can be used with other available data for accurate calculations of the interatomic 
potentials. We have measured oscillator strength of Rb resonance lines as a function 
of the foreign gas density and observed a reduction of the oscillator strength for the 
D2 line with density, but not for the D1 line. Our data provide important tests of the 
pressure broadening theory and also will be useful in applications of optical pumping. 

We would like to  thank Prof. William Happer for stimulating discussions. MVR 
would like to acknowledge support from Elizabeth Procter Fellowship. This work was 
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