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Abstract

It is an exciting time for high energy physics. Several experiments are currently

exploring uncharted terrain; the next generation of colliders will begin operation in

the coming decade. These experiments will together help us understand some of

the most puzzling issues in particle physics: the mechanism of electroweak symmetry

breaking and the generation of flavor physics. It is clear that the primary goal of the-

oretical particle physics in the near future is to support and guide this experimental

program. These tasks can be accomplished in two ways: by developing experimental

signatures for new models which address outstanding problems, and by improving

Standard Model predictions for precision observables. We present here several results

which advance both of these goals.

We begin with a study of non-commutative field theories. It has been suggested

that TeV-scale non-commutativity could explain the origin of CP violation in the SM.

We identify several distinct signatures of non-commutativity in high energy processes.

We also demonstrate the one-loop quantum consistency of a simple spontaneously

broken non-commutative U(1) theory; this result is an important preface to any

attempt to embed the SM within a non-commutative framework.

We then investigate the phenomenology of extra-dimensional theories, which have

been suggested recently as solutions to the hierarchy problem of particle physics.

We first examine the implications of allowing SM fields to propagate in the full

five-dimensional spacetime of the Randall-Sundrum model, which solves the hierar-

chy problem via an exponential “warping” of the Planck scale induced by a five-

dimensional anti de-Sitter geometry. In an alternative exra-dimensional theory, in

which all SM fields are permitted to propagate in flat extra dimensions, we show that

properties of the Higgs boson are significantly modified.

iv



Finally, we discuss the next-to-next-to leading order QCD corrections to the dilep-

ton rapidity distribution in the Drell-Yan process, an important discovery channel

for new physics at hadron colliders. We introduce a powerful new method for calcu-

lating differential distributions in hard scattering processes. We apply our results to

the analysis of fixed target experiments, which provide important constraints on the

parton distribution functions of the proton.
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Chapter 1

Introduction

It is an exciting time for high energy physics. Several experiments are currently

exploring previously uncharted terrain. BABAR and BELLE are acquiring an un-

precedented amount of data studying CP violation in the B meson system, while the

Tevatron is providing our first glimpse of TeV-scale physics. In the coming decade,

the Large Hadron Collider (LHC) at CERN will start taking data, and construction

of a high energy e+e− linear collider will hopefully begin. These experiments will

together help us understand some of the most puzzling issues in particle physics: the

mechanism of electroweak symmetry breaking, the origin of CP violation, and the

generation of flavor physics and the fermion mass hierarchy.

With such great advances expected in experimental particle physics, it is clear

that the primary goal of theoretical particle physics in the near future is to guide

this program. This guidance can take two forms: the development of experimental

signatures for new models which address outstanding problems in particle physics,

and the improvement of the Standard Model (SM) predictions for precision observ-

ables. Both of these efforts are vital to the success of the experimental program. We

present here results which advance both of these goals.

A promising candidate for the “theory of everything” is string theory; it is there-

fore important to determine its physical predictions. Although far from complete

and incapable of making precise statements, string theory provides qualitative guid-

ance regarding how physics might be modified at short distances. We explore in

1



CHAPTER 1. INTRODUCTION 2

Chapters 2 and 3 the experimental implications of formulating field theories in non-

commutative (NC) geometries, which appear naturally in compactifications of string

theory in the presence of background gauge fields [57, 76, 156]. It has been sug-

gested that TeV-scale non-commutativity could explain the origin of CP violation in

the SM [107, 159]. We study in Chapter 2 the phenomenology of NC theories, and

show that they lead to distinct signatures in high energy processes. In Chapter 3

we demonstrate the one-loop quantum consistency of a simple spontaneously broken

NC U(1) theory; this result is an important preface to any attempt to embed the SM

within a NC framework [27, 39, 44, 45], and has been useful in other investigations

of the structure of NC theories [122, 153, 154].

The most vexing puzzle in high energy physics today is the origin of electroweak

(EW) symmetry breaking. The simple mechanism utilized in the SM, where a single

scalar Higgs boson acquires a TeV-scale vacuum expectation value, is almost certainly

incomplete. Quantum corrections tend to push the Higgs boson mass to the Planck

scale; although not yet discovered, fits to the precision Z-pole data obtained in

the LEP and SLC experiments indicate that a Higgs boson with a mass mH <

200 GeV is indeed present in nature [1]. In the past few years a new solution to

this “hierarchy problem” has been suggested. This novel approach postulates the

existence of extra spacetime dimensions in which gravity propagates [13, 22, 146,

147]. We study in Chapters 4 and 5 several phenomenological aspects of this class

of theories. In Chapter 4, we examine the implications of allowing SM fields to

propagate in the full five-dimensional spacetime of the Randall-Sundrum model [146,

147]; this is a particularly attractive theory which solves the hierarchy problem via an

exponential “warping” of the Planck scale induced by a five-dimensional anti de-Sitter

geometry. We demonstrate that the observed mc/mt and ms/mb mass hierarchies

can be naturally reproduced in this model. We also show that this scenario permits

a Higgs boson with a mass of 500 GeV in a fit to the precision EW data, and

remains otherwise invisible at the LHC; the entire parameter space is testable only

at future e+e− linear colliders. In an alternative extra-dimensional theory, known as

the universal extra dimensions model [15], all SM fields are permitted to propagate

in flat, TeV−1 extra dimensions for various model-building purposes [17, 18]. We

show in Chapter 5 that this scenario significantly modifies properties of the Higgs
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boson which will be measured at future colliders; deviations from Standard Model

predictions as large as ≈ 85% occur for typical parameter choices.

Many searches for new physics, including those described above, rely upon ob-

serving deviations from SM predictions for lepton pair production in the Drell-Yan

process [77]. This process is also important for several other reasons: (i) it is used

in global analyses of scattering data used to fit the parton distribution functions of

the proton [120, 126, 127]; (ii) it is one of the processes through which the W mass,

needed in fits to the precision Z-pole data, is measured (see [31] for a review); (iii)

it will be used as a partonic luminosity monitor at the LHC [73]. These applications

require that the differential distributions of the produced lepton pair, and not only

its inclusive production rate, are known to high precision. We present in Chapter 6

a calculation of the next-to-next-to leading order QCD corrections to the Drell-Yan

rapidity distribution; a computation to this order in perturbation theory is needed

for percent level predictions. We apply our results to the analysis of low-energy

fixed target experiments, which are used in the extraction of parton distribution

functions [162, 165].

In Chapter 7 we summarize the results obtained in this thesis, and present our

conclusions.



Chapter 2

Experimental Signatures for

Non-commutative Interactions at

Linear Colliders

2.1 Introduction and Background

Although the full details of string/M-theory have yet to be unraveled, this theoretical

effort has inspired a number of ideas over the years which have had significant im-

pact on the phenomenology of particle physics. Two such examples are given by the

string-inspired E6 models of the late 1980’s [106] and the ongoing endeavor in building

realistic and testable models from theories which have additional space-time dimen-

sions [12, 13, 22, 23, 124, 146, 147, 166]. Most recently, a resurgence of interest in non-

commutative quantum field theory (NCQFT) and its applications [89, 91, 123, 137]

has developed within the context of string theory. Of course non-commutative theo-

ries are also interesting in their own right. However, it has yet to be explored whether

they have any connection with the physics of the Standard Model (SM) or whether

their effects could be observable in laboratory experiments. In this chapter we begin

to address these questions by examining the implications of non-commutativity for

future collider experiments.

An exhaustive introduction to NCQFT is beyond the scope of the present treat-

ment, hence we will simply outline some of the basics of the theory as well as some

4



CHAPTER 2. SIGNATURES FOR NC INTERACTIONS 5

results which are relevant to the phenomenological analysis that follows. We will

see that NCQFT results in modifications to QED which can be probed in 2 → 2

processes in e+e− collisions.

The essential idea of NCQFT is a generalization of the usual d-dimensional space,

Rd, associated with commuting space-time coordinates to one which does not com-

mute, Rd
θ . In such a space the conventional coordinates are represented by operators

which no longer commute, i.e.,

[X̂µ, X̂ν ] = iθµν ≡ i

Λ2
NC

cµν . (2.1)

In the last equality we have parameterized the effect in terms of an overall scale

ΛNC , which characterizes the threshold where non-commutative (NC) effects become

relevant, and a real antisymmetric matrix cµν , whose dimensionless elements are

presumably of order unity. From our point of view the role of the NC scale ΛNC can

be compared to that of h̄ in conventional Quantum Mechanics which represents the

level of non-commutativity between coordinates and momenta. A priori the scale

ΛNC can take any value, perhaps the most likely being of order the Planck scale

MP l. However, given the possibility of the onset of stringy effects at the TeV scale,

and that values of the scale where gravity becomes strong in models with large extra

dimensions can be of order a TeV, it is feasible that NC effects could also set in at

a TeV. Here, we adopt this spirit and consider the possibility that ΛNC may not lie

far above the TeV scale.

Note that the matrix cµν is not a tensor since its elements are identical in all

reference frames. This leads immediately to a violation of Lorentz invariance which

is quite different than that discussed most often in the literature [54, 113, 114, 115,

116, 117, 118] since it sets in only at energies of order ΛNC . As we will see below, this

violation will take the form of dimension-8 operators for the processes we consider

and is thus highly suppressed at low energies. In addition, there exists a more than

superficial relation between the anti-symmetric matrix cµν and the Maxwell field

strength tensor Fµν as NCQFT arises in string theory [33, 57, 76, 92, 155, 156,

157] through the quantization of strings, described by the low energy excitations

of D-branes in the presence of background electromagnetic fields. The space-time
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components, c0i, thus define the direction of a background E field, while the space-

space components, cij , describe the direction of a background magnetic or string B

field. Geometrically, we can then think of c0i and cij as two 3-vectors that point in a

specific pair of preferred directions in the laboratory frame. Theories with c0i(cij) �= 0

are usually referred to as space-time(space-space) non-commutative.

NCQFT can be phrased in terms of conventional commuting QFT through the

application of the Weyl-Moyal correspondence [148]

Â(X̂)←→ A(x) , (2.2)

where A represents a quantum field with X̂ being the set of non-commuting coordi-

nates and x corresponding to the commuting set. However, in formulating NCQFT,

one must be careful to preserve orderings in expressions such as Â(X̂)B̂(X̂). This

is accomplished with the introduction of a star product, Â(X̂)B̂(X̂) = A(x) ∗B(x),

where the effect of the commutation relation is absorbed into the star. Making the

Fourier transform pair

Â(X̂) =
1

(2π)d/2

∫
dαeiαX̂ a(α)

a(α) =
1

(2π)d/2

∫
dxe−iαx A(x) , (2.3)

with x and α being real n-dimensional variables, allows us to write the product of

two fields as

Â(X̂)B̂(X̂) =
1

(2π)d

∫
dαdβeiαX̂ a(α)eiβX̂ b(β)

=
1

(2π)d

∫
dαdβ ei(α+β)X̂− 1

2
αµβν [X̂µ,X̂ν ]a(α)b(β) . (2.4)

We thus have the correspondence

Â(X̂)B̂(X̂)←→ A(x) ∗B(x) , (2.5)
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provided we identify

A(x) ∗B(x) ≡
[
e

i
2
θµν∂ζµ∂ηνA(x+ ζ)B(z + η)

]
ζ=η=0

. (2.6)

Note that to leading order in θ the ∗ product is given by

A(x) ∗B(x) = AB +
i

2
θµν∂µA∂νB +O(θ2) . (2.7)

Hence the non-commutative version of an action for a quantum field theory can be

obtained from the ordinary one by replacing the products of fields by star products.

In doing so it is useful to define a generalized commutator, known as the Moyal

bracket, for two quantities S, T as

[S, T ]MB = S ∗ T − T ∗ S , (2.8)

so that the Moyal bracket of any quantity with itself vanishes. Note that the inte-

gration of a Moyal bracket of two quantities over all space-time vanishes, i.e.,

∫
d4x [S(x), T (x)]MB = 0 , (2.9)

which means they commute inside the integral. This can be generalized to show that

the integral of a ∗ product of an arbitrary number of quantities is invariant under

cyclic permutations in a manner similar to the trace of ordinary matrices. We also

note that the Moyal bracket of two coordinates

[xµ, xν ]MB = xµ ∗ xν − xν ∗ xµ , (2.10)

mimics the operator commutation relation in Eq. 2.1.

Once the products of fields are replaced by ∗ products, infinite numbers of deriva-

tives of fields can now appear in an action, implying that all such theories are non-

local. This is not surprising since, in analogy with ordinary Quantum Mechanics,

one now has a spacetime uncertainty relation

∆X̂µ∆X̂ν ≥ 1

2
|θµν | . (2.11)
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Theories with c0i �= 0 have an additional problematic feature in that they generally

do not have a unitary S-matrix [6, 43, 90, 155], at least in perturbation theory, since

an infinite number of time derivatives are involved in ∗ products. However, it has

recently been shown [38] that it may be possible to unitarize the space-time case

by combining the spatial NC Super Yang Mills limit with a Lorentz transformation

with finite boost velocity. On the other hand, theories with only space-space non-

commutativity, cij �= 0, are unitary.

There are a number of important results in NCQFT which we now state without

proof, referring the interested reader to the original papers for detailed explanations.

(i) It has been shown that only the U(n) matrix Lie algebra is closed under the

Moyal bracket [35, 130], thus non-commutative gauge theories can be constructed

only if they are based upon these gauge groups. Hence in order to embed the full

SM in NCQFT, the usual Standard Model SU(n) group factors must be extended

to U(n) groups. However, due to the effective non-abelian nature of the Moyal

brackets, these U(n) groups cannot be simply decomposed into products of SU(n)

and U(1) factors. (ii) There are indications that conventional renormalizable, gauge

invariant field theories remain renormalizable and gauge invariant when generalized

to non-commutative spacetimes [19, 34, 51, 79, 119, 128, 131, 133, 134, 158], although

a proof does not yet exist for theories which are spontaneously broken [40, 144].

(iii) Non-commutative QED, based on the group U(1), has been studied by several

groups [102, 148]; due to the presence of ∗ products and Moyal brackets, the theory

takes on a non-abelian nature in that both 3-point and 4-point photon couplings are

generated. The photonic part of the action is now

SNCQED =
−1

4

∫
d4x Fµν ∗ F µν =

−1

4

∫
d4x FµνF

µν , (2.12)

where the second equality follows from the commutativity of Moyal brackets under

integration, shown in Eq. 2.9. This action is gauge invariant under a local transfor-

mation U(x) with Fµν defined as

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]MB . (2.13)

The origin of the 3- and 4-point functions is now readily transparent. Note that
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the photon’s 2-point function is identical in commutative and NC spaces because

quadratic forms remain unchanged. When performing the Fourier transformation of

these new interactions into momentum space, the vertices pick up additional phase

factors which are dependent upon the momenta flowing through the vertices. We will

see below that these kinematic phases will play an important role in the collider tests

of NCQFT. (iv) When fermions are added to the theory, covariant derivatives can

only be constructed for fields of charge 0,±1. The structure of those derivatives for

the Q = ±1 case is similar to that for fundamental and anti-fundamental represen-

tations in non-abelian theories. The covariant derivatives for neutral fields are either

trivial (as in the case of abelian commutative U(1) theory) or correspond to what

would ordinarily be called the adjoint representation in the case of a commutative

non-abelian theory. As before, the three-point function picks up an additional kine-

matic phase from the Fourier transformation of the interaction term into momentum

space. This is shown explicitly in Fig. 2.1. The general form of the Feynman rules for

NCQED can be found in Ref. [26]; the ones of relevance to the processes considered

in this chapter are displayed in Fig. 2.1. (v) NCQED with fermions and space-space

non-commutativity has been shown [159] to be CP violating yet CPT conserving.

Having now presented the basic formalism of NCQFT and subsequent modifi-

cations to QED, in the following sections we examine the effects in several 2 → 2

processes in e+e− collisions, including pair annihilation, Møller and Bhabha scatter-

ing, as well as in γγ → γγ scattering. We will see that the lowest order correction to

the SM results for these transitions is given by dimension-8 operators. In addition,

we find that an oscillatory azimuthal dependence is induced in these processes due

to the preferred direction in the laboratory frame defined by the NC matrix cµν . In

summary, we will see that high energy linear colliders can probe non-commutative

scales of order a TeV.

Before discussing our analysis for the specific processes considered here, a few

additional comments are in order regarding the observation of these non-commutative

effects. First, as discussed above, the vectors cEi = [c0i] and cBi = [εijkcjk] point in

fixed specific directions which are the same in all reference frames. In our analysis

below we define the z-axis as that corresponding to the direction of the incoming
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Figure 2.1: Feynman rules of NCQED.
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particles in a fixed laboratory frame with the vectors c having arbitrary components

in that frame. Now, imagine a second laboratory at a different point on the surface

of the Earth performing the same experiment. Clearly the co-ordinate systems of the

two laboratories will be different, i.e., the beam directions and hence the z-axis will

not be the same in the two locations. This implies that the experimentally determined

values for the components of the c vectors will differ at the two laboratory sites due

to their locally chosen set of co-ordinates. Hence both laboratories must convert their

local co-ordinates to a common frame, e.g., with respect to the rest frame of the 3

degree K blackbody radiation or some other slowly varying astronomical co-ordinate

system, so that they would measure equivalent directions and magnitudes for c. This

translation of co-ordinates to a common frame will be necessary if we are to compare

the results of multiple experiments for signals of non-commutativity.

In addition, even for a single experiment, the apparent directions of the c vectors

will vary with time due to the rotation of the Earth and its revolution about the

Sun. While the actual c vectors will always point to the same position on the sky,

the co-ordinates of this position will vary continuously in the laboratory frame due

to the Earth’s motion. (The effects of galactic motion should be small during the

life-span of any given experiment.) Collider experiments will thus have to make use

of astronometric techniques to continuously translate their laboratory co-ordinates

to astronomical ones such that when events are recorded the relative orientation of

the two frames would be accounted for. This should be a rather straightforward

procedure for any future collider experiment to implement given that many non-

accelerator based experiments already make use of these ideas.

Taking the Earth’s motion into account is particularly important for experiments

which measure observable quantities that are odd in c, including for example, the

g − 2 of the muon [102], the Lamb shift [46], as well as other processes which are

linear [136] in the NC parameter. If only the laboratory co-ordinates were employed,

at least some of the components of c would average to zero over a sidereal day. In the

cases we discuss below, the observables are even functions of c, and while we would

not obtain a null effect, time averaging would result in a diminished sensitivity to

ΛNC .
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2.2 Møller Scattering

For all of the scattering processes considered in this chapter, except for γγ → γγ,

we can define the momenta of the incoming, represented by p1,2, and outgoing, cor-

responding to k1,2, particles in terms of the coordinates fixed in the laboratory as

pµ
1 =

√
s

2
(1,−1, 0, 0)

kµ
1 =

√
s

2
(1,−cθ,−sθcφ,−sθsφ)

pµ
2 =

√
s

2
(1, 1, 0, 0)

kµ
2 =

√
s

2
(1, cθ, sθcφ, sθsφ) .

(2.14)

Note that the ordering of the co-ordinates used in these definitions is given by

(t, z, x, y), so that the z-axis is along the beam direction as usual. Using these def-

initions, the bilinear products of these momenta with the matrix cµν , which appear

in the Feynman rules of Fig. 2.1, can be calculated to be

p1 · c · p2 =
s

2
c01

k1 · c · k2 =
s

2
[c01cθ + c02sθcφ + c03sθsφ]

p1 · c · k1 =
s

4
[c01(1− cθ) + (c12 − c02)sθcφ − (c03 + c31)sθsφ]

p1 · c · k2 =
s

4
[c01(1 + cθ)− (c12 − c02)sθcφ + (c03 + c31)sθsφ]

p2 · c · k1 =
s

4
[−c01(1 + cθ)− (c12 + c02)sθcφ − (c03 − c31)sθsφ] (2.15)

p2 · c · k2 =
s

4
[−c01(1− cθ) + (c12 + c02)sθcφ + (c03 − c31)sθsφ] .

We remind the reader of the fact that a · c · a = 0 for all vectors a due to the

antisymmetry of the matrix c. Note that c23 does not appear in any of the above

expressions since we have defined the z-axis to be along the direction of the initial

beams and there is no B field associated non-commutative asymmetry relative to

this direction.

The Feynman diagrams which mediate Møller scattering are displayed in Fig. 2.2.

In this case, the NC modifications correspond to the kinematic phase which appears

in each vertex. The question here is how to treat the Z-boson exchange contribution.

While NCQED is a well defined theory, it is not immediately clear how to extend it

to the full SM in a naive way even if we are only interested in tree-level fermionic

interactions. Without such guidelines we see that there exist three possibilities: (i)
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the simplest case is if the Z and photon have the same vertex structure as shown in

Fig. 2.1, (ii) the full theory and appropriate Zff̄ kinematic phase are more complex,

or (iii) only γff̄ vertices pick up kinematic phases. Clearly, as far as signatures of

non-commutativity are concerned, cases one and three will be qualitatively similar.

Hence, for simplicity, we assume that the first possibility is realized.

2
(k

(k
22

(k
2

(k

(p )e− )e− )e
1

−(p )e−

)e
1

− )e−(p )e
1

−)
1

(p−e

Figure 2.2: Feynman graphs contributing to Møller scattering, with the exchanged
particle corresponding to a photon and Z=boson.

Following the Feynman rules of Fig. 2.1 and the momentum labeling given in

Fig. 2.2 we see that the t- and u-channel exchange graphs now pick up kinematic

phases given by

φt =
1

2
[p1 · θ · k1 + p2 · θ · k2]

φu =
1

2
[p1 · θ · k2 + p2 · θ · k1] . (2.16)

Clearly, only the interference terms between the t- and u-channel diagrams pick up

a relative phase when the full amplitude is squared. We define this phase as ∆Moller

and find it to be given by

∆Moller = φu − φt =
−√ut
Λ2

NC

[c12cφ − c31sφ] , (2.17)

with the second equality following from Eq. 2.16. (We define the Mandelstam vari-

ables as usual: t, u = −s(1∓ cos θ)/2.) Hence the resulting differential distributions
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for this process appear exactly as in the SM except that the t, u-channel interfer-

ence terms should be multiplied by cos ∆Moller. Note that all of the terms involving

time-space non-commutativity have dropped out of the expression for ∆Moller. In

addition, as we take the limit ΛNC →∞, cos ∆→ 1 so that the SM is recovered. In

the limit of small s/Λ2
NC, cos ∆Moller can be expanded where it is seen that the low-

est order correction to the SM occurs at dimension-8. Perhaps the most important

thing to notice, as discussed above, is that ∆Moller �= 0 induces a φ dependence in a

2→ 2 scattering process since there now exists a preferred direction in the laboratory

frame.

For simplicity in our numerical results presented below, we will only consider the

case c12 �= 0. If instead c31 is non-zero, the results will be similar except for the

phase of the φ dependence. When both terms are present, the situation is in general

somewhat more complex, yet will be qualitatively comparable to the case analysed

below. Since we only consider one non-vanishing value of cij at a time, we set its

magnitude to unity when obtaining our results.

The differential cross section for Møller scattering in the laboratory center of mass

frame can be written as

dσ

dz dφ
=
α2

4s

[
(eij + fij)(P

uu
ij + P tt

ij + 2P ut
ij cos ∆Moller) + (eij − fij)(

t2

s2
P uu

ij +
u2

s2
P tt

ij )
]
,

(2.18)

where z = cos θ, a sum over the gauge boson indices is implied, eij = (vivj + aiaj)
2

and fij = (viaj + aivj)
2 are combinations of the electron’s vector and axial vector

couplings and

P qr
ij = s2 (q −m2

i )(r −m2
j) + ΓiΓjmimj

[(q −m2
i )

2 + (Γimi)2][(r −m2
j)

2 + (Γjmj)2]
, (2.19)

with mi(Γi) being the mass (width) of the ith gauge boson, where i=1(2) corre-

sponds to the photon(Z). The expression for the differential Left-Right Polarization

asymmetry, ALR(z, φ), can be easily obtained from the above by forming the ratio

ALR(z, φ) = N(z, φ)/D(z, φ) , (2.20)
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where D(z, φ) is the differential cross section expression above and N(z, φ) can be

obtained from D(z, φ) by the redefinition of the coupling combinations eij and fij as

eij = fij = (vivj + aiaj)(viaj + aivj) . (2.21)

Although we have expressed the cross section in an apparently covariant form using

Mandelstam variables, it is not actually invariant due to the presence of ∆Moller

which is highly frame dependent.

Figure 2.3 displays the effect of a finite value of ΛNC =
√
s on the shape of the

conventional bin-integrated, z-dependent event rate and ALR for a 500 GeV linear

collider assuming an integrated luminosity of 300 fb−1. In presenting these results

we have neglected initial state radiation and beamstrahlung effects, assumed both

beams are 90% polarized with δP/P = 0.003, and taken an overall luminosity error

of 1%. Angular cuts of θ = 10o have also been applied but the entire φ range has been

integrated over. As we can see from this figure, the influence of Λ−1
NC �= 0 appears

to cause a small downward shift in the cos θ distribution which is most noticeable at

large scattering angles away from the forward and backward t- and u-channel poles

from the photon exchange graph. The effect of a finite value of ∆Moller is thus seen to

increase the amount of destructive interference between the u- and t-channel graphs.

Although the shift is apparently small it occurs over many bins and is statistically

quite significant given the size of the errors at this integrated luminosity. For ALR

there is hardly any shift from the SM values in this case.

Figure 2.4 presents the z-integrated, φ dependent distribution for both the rate

and ALR. Note that as we perform more restrictive cuts on |z|, the central region,

which is the most sensitive to ΛNC , is becoming more isolated. As can be seen from

the figures, this approach enhances the φ dependence for the differential cross section.

Though the φ dependence also appears to be rather weak, it is again statistically

significant at this large integrated luminosity. As in the case of the φ-integrated

ALR, the z-integrated ALR shows hardly any sensitivity to finite ΛNC even when a

strong |z| cut is applied.

In order to obtain a 95% CL lower bound on ΛNC from Møller scattering we
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Figure 2.3: Binned cross section (top) and polarized asymmetry (bottom) as a func-
tion of z = cos θ for Møller scattering at a 500 GeV linear collider assuming an
integrated luminosity of 300 fb−1. The histogram is the SM expectation while the
data corresponds to ΛNC =

√
s.
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Figure 2.4: φ dependence of the Møller cross section (top) and left-right asymmetry
(bottom) for the SM (straight lines) and for the case ΛNC =

√
s (shown as data)

at a 500 GeV linear collider with a luminosity of 300 fb−1. From top to bottom in
the top panel a z cut of 0.9(0.7, 0.5) has been applied with the order reversed in the
lower panel.
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Figure 2.5: 95% CL lower bound on ΛNC at a 500 GeV linear collider as a function
of the integrated luminosity from Møller scattering via the fit described in the text.
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perform a combined fit to the total cross section, the shape of the doubly differential

z − φ angular distribution and ALR(z, φ). In the latter two cases we bin the NC

results in a 20 × 20 array of z, φ values and employ only statistical errors apart

from the polarization uncertainty. In the case of the total rate we also include

the luminosity uncertainty in the error. For a fixed value of luminosity we then

compare the predictions of the SM with the case where ΛNC is finite and repeat this

procedure by varying ΛNC until we obtain a 95% CL bound by using a χ2 fit. From

this procedure we obtain the search reach on ΛNC as a function of the integrated

luminosity as displayed in Fig. 2.5. As we can see from this figure, bounds on ΛNC

of order (3− 3.5)
√
s are obtained for reasonable luminosities.

Figure 2.6: Scaled dependence of the Møller total cross section, subject to a angular
cut (from top to bottom) of |z| ≤ 0.9(0.7, 0.5) assuming the SM (dashed curves) or
ΛNC =500 GeV (solid curves).
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We now examine how the Møller cross section behaves as
√
s grows beyond ΛNC .

In the SM for large s we expect the scaled cross section, i.e., the product s · σMoll,

to be roughly constant after a cut on | cos θ| cut is performed. Ordinarily when

new operators are introduced, the modified scaled cross section is expected to grow

rapidly near the appropriate scale beyond which the contact interaction limit no

longer applies. However, in the present case, the theory above the scale ΛNC is a

well-defined theory since it is not a low energy limit. We would thus anticipate that

the cos ∆Moller factor leads to a modulation of the scaled cross section that averages

out rapidly with a period that depends on the hardness of the | cos θ| cut as the value

of
√
s increases. This effect is displayed in Fig. 2.6 and behaves exactly as expected.

2.3 Bhabha Scattering

The Feynman graphs which mediate Bhabha scattering in NCQED are given in Fig.

2.7. In this case, the t-and s-channel kinematic phases are now given by

φt =
−1

2
[p1 · θ · k1 − p2 · θ · k2]

φs =
−1

2
[p1 · θ · p2 − k1 · θ · k2] , (2.22)

which implies that the interference term between the two amplitudes is sensitive to

cos ∆Bhabha which is given by

∆Bhabha = φs − φt =
−1

Λ2
NC

[c01t+
√
ut(c02cφ + c03sφ)] . (2.23)

Note that whereas Møller scattering was sensitive to space-space non-commutativity

we see that Bhabha scattering is instead sensitive to time-space non-commutativity.

Here we see that there are two distinct cases depending whether or not ∆Bhabha has

a φ dependence. If c01 is non-zero then the φ dependence will be absent, whereas

the two cases c02, c03 �= 0 are essentially identical except for the phase of the φ

dependence. We thus only consider the cases c01 = 1 or c02 = 1.



CHAPTER 2. SIGNATURES FOR NC INTERACTIONS 21

)
2)

2

)
2

)(−p2

)
1

)
1

)
1

)
1

e+(−k+(−p

(ke−

e

−e (p
e−(p

+(−k+

(k

e e

e−

Figure 2.7: Feynman graphs contributing to Bhabha scattering with the exchanged
particle corresponding to a photon and Z-boson.

Using the notation above, the differential cross section in the laboratory center

of mass frame for Bhabha scattering can then be written as

dσ

dz dφ
=
α2

2s

[
(eij + fij)(P

ss
ij + P tt

ij + 2P st
ij cos ∆Bhabha)

u2

s2
+ (eij − fij)(P

ss
ij

t2

s2
+ P tt

ij )
]
,

(2.24)

with ALR(z, φ) defined in a manner similar to that for Møller scattering by forming

the ratio N(z, φ)/D(z, φ).

We first consider the case where c01 is taken to be non-zero. Figure 2.8 displays

the (in this case trivial) φ integrated angular distribution and ALR for the SM with

ΛNC =
√
s = 500 GeV. Here one sees that a finite value of Λ−1

NC leads to a slight

increase in the cross section at large angles and a moderate change in ALR in the

same z range. In the case where c02 is non-zero, Fig. 2.9 shows the corresponding

distributions. Note that the shift in the cross section looks almost identical in the

two cases but the deviation in ALR is more shallow in the latter case. Figure 2.10

shows the φ dependence of the z-integrated distributions for the same three cuts on

cos θ discussed above in the case of Møller scattering. As before we see that the effect

in the cross section is most visible for stiffer cuts which isolate the central region. In

the case of ALR the φ dependence is too small at these integrated luminosities to be

visible. In order to obtain a 95% CL lower bound on ΛNC from Bhabha scattering we



CHAPTER 2. SIGNATURES FOR NC INTERACTIONS 22

Figure 2.8: Same as Fig. 2.3 but now for Bhabha scattering assuming that c01 is
non-zero.
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Figure 2.9: Same as in Fig. 2.8 but now assuming that c02 is non-zero.
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follow the same procedure as that discussed above for Møller scattering and obtain

the results presented in Fig. 2.11. Here we see that the reach for ΛNC via Bhabha

scattering is not quite as good as what we had found earlier for the case of Møller

scattering, given only by 
 2
√
s, for both of the cases considered.

Figures 2.12 and 2.13 show the scaled cross sections for Bhabha scattering after

the z cuts are employed for values of
√
s > ΛNC. Here we see that for both cases,

the presence of a finite value for ∆Bhabha leads to an increase in the constructive

interference between the s- and t-channel exchanges with two very different periods.

Again for values of
√
s much larger than ΛNC we see that the oscillations average

out to approximately half of their original amplitude.

2.4 Pair Annihilation

The Feynman diagrams which contribute to pair annihilation in NCQED are shown

in Fig. 2.14. Note that in this case, there is a novel s-channel contribution in

NC field theories from the 3γ self-coupling, in addition to the kinematical phase

factor which appears at each vertex. Due to the presence of the non-abelian like

coupling, one must exercise caution in calculating the cross section to ensure that

the Ward identities are satisfied and to guarantee that unphysical polarization states

are not produced. Hence one must either extend the polarization sum to incorporate

transverse photon polarization states or include the contribution from the production

of a ghost-antighost pair to cancel the contribution of the unphysical gauge boson

polarizations. This procedure is similar in manner to that performed for the parton-

level scattering of qq̄ → gg in QCD. We find that the differential cross section in the

laboratory center of mass frame for pair annihilation in NCQED is then given by

dσ

dz dφ
=
α2

4s

[
u

t
+
t

u
− 4

t2 + u2

s2
sin2(

1

2
k1 ∧ k2)

]
, (2.25)

where we have introduced the wedge product defined as p ∧ k = pµkνθ
µν . Note that

in this case, the contribution from the relative phases from the interference terms

cancels. We also note that the sign of the modification due to NCQED does not vary
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Figure 2.10: Same as Fig. 2.4 but now for Bhabha scattering with c02 taken to be
non-zero. The order for the cuts on | cos θ| is reversed in the lower plot.
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Figure 2.11: 95% CL bounds on ΛNC as a function of luminosity from Bhabha
scattering assuming either c01 (solid) or c02 (dashed) is non-zero.
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Figure 2.12: The scaled cross section for Bhabha scattering with c01 non-zero.
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Figure 2.13: Same as in the previous figure but now with c02 non-zero.
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since it is an even function and hence the effect does not wash out over time due to

the rotation of the Earth.
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Figure 2.14: The three tree level contributions to e+e− → γγ in NCQED.

Evaluating the wedge product yields

∆PA ≡ 1

2
k1 ∧ k2 =

−s
2Λ2

NC

[
c01cθ + c02sθcφ + c03sθsφ

]
. (2.26)

Note that this process is sensitive only to space-time non-commutativity. We again

stress that this is only true in the CM frame; due to the violation of Lorentz invariance

this will not hold in all reference frames. As discussed above, it is important to

remember that although we have expressed the cross section in terms of the Lorentz

invariant Mandelstam variables, s , t , u, the phase ∆PA is not Lorentz invariant. For

this reaction, we parameterize the c0i by introducing the angles characterizing the
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background E field of the theory:

c01 = cosα

c02 = sinα cosβ (2.27)

c03 = sinα sinβ ,

so that

∆PA =
−s

2Λ2
NC

[
cosθ cosα + sinθ sinα cos(φ− β)

]

=
−s

2Λ2
NC

cosθNC , (2.28)

where θNC is the angle between the E field and the direction of the outgoing photon

denoted with momenta k1. Note that β simply defines the origin of the φ axis; we will

hereafter set β = π/2. This parameterization provides a good physical interpretation

of the NC effects. (Note that the c0i are not independent; in pulling out the overall

scale ΛNC we can always impose the constraint |c01|2 + |c02|2 + |c03|2 = 1.) Here, we

consider three physical cases: α = 0, α = π/2, and α = π/4, which correspond to the

background E fields being at an angle α from the beam axis. The correction term

∆PA then takes the following forms in each of these cases:

∆PA(α = 0) =
−s

2Λ2
NC

cosθ

∆PA(α = π/2) =
−s

2Λ2
NC

sinθ sinφ

∆PA(α = π/4) =
−s

2
√

2Λ2
NC

[
cosθ + sinθ sinφ

]
. (2.29)

As in the previous processes we considered, a striking feature of these correction

terms are their φ dependence, arising from a preferred direction which is not parallel

to the beam axis.

In Figs. 2.15 and 2.16 we present the bin-integrated event rates, taking ΛNC =√
s for purposes of demonstration, which show the angular dependences of the NC

deviations for the two cases α = π/2 and α = 0, taking ΛNC =
√
s = 500 GeV
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Figure 2.15: φ dependence (top) and θ dependence (bottom) of the e+e− → γγ
cross section for the case α = π/2. We take ΛNC =

√
s = 500 GeV, and assume a

luminosity of 500 fb−1. In the top panel a cut of |z| < 0.5 has been employed. The
dashed line corresponds to the SM expectations and the ‘data’ points represent the
NCQED results.
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Figure 2.16: θ dependence of the e+e− → γγ cross section for the case α = 0. We
again use ΛNC =

√
s = 500 GeV, and a luminosity of 500 fb−1. In the bottom panel,

note that the number of events in each bin is scaled by 1− |z|.
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and a luminosity of 500 fb−1. For the case of α = 0 we have also scaled the angular

distribution by the factor 1−|z| in order to emphasize the deviation from the Standard

Model in the peaking region. Note that the NC contributions lower the event rate

from that expected in the SM in the central region. As expected, the α = 0 case

shows no φ dependence since the preferred direction is parallel to the beam axis,

while the φ distribution for α = π/2 exhibits a strong oscillatory behavior. The case

α = π/4, as well as more general choices of α, simply extrapolates between these two

extremes.

To obtain a 95% CL lower bound on ΛNC , we perform a fit to the total cross

section and the angular distributions employing the procedure discussed above. Our

results are presented in Fig. 2.17 for three values of α, where we see that the NC

search reach from pair annihilation is approximately given by 1.5
√
s. This is inferior

in comparison to that obtained in the case of Møller and Bhabha scattering, due, in

part, to the large available statistics in the latter cases. The scaled cross sections,

after employing identical z cuts as in the previous two sections, are presented in Fig.

2.18. Here, we see again that the anticipated high energy behavior is realized.

2.5 γγ → γγ at Linear Colliders

Future linear colliders have the option of running in a γγ collision mode [82, 83], in

which laser photons are Compton back-scattered off the incoming fermion beams.

The lowest order SM contributions arise at the 1-loop level with fermions and W

bosons propagating in the loop. Since the exact SM calculation of this box diagram

mediated process is rather tedious [111], there exist various approximations in the

literature [93, 94] which are valid in the regime where the center of mass energy

is large compared to the W mass. Since this process only occurs at loop-level in

the SM, it has been proposed as a useful test of new physics which contributes to

the amplitude at the tree level in, for example, supersymmetry[93, 94] or quantum

gravity models with large extra dimensions [65]. In the present case, NCQED also

predicts new contributions to γγ → γγ at tree-level, and hence we examine how well

this process can bound ΛNC .
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Figure 2.17: 95% CL bound on ΛNC from pair annihilation as a function of luminosity
(top) and

√
s (bottom). In the top panel we set

√
s = 500 GeV, while in the bottom

panel we assume a luminosity of 500 fb−1.
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Figure 2.18: The scaled cross section for pair annihilation for α = 0, π/2 correspond-
ing to the (top, bottom) panels, respectively.
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We will consider only tree-level NC contributions since the NC generalization of

the full electroweak SM is unknown and coupling constant suppressed. There are four

diagrammatic contributions in this case: three from the s, t, and u channels of photon

exchange and one from the four-point photon coupling. These are presented in Fig.

2.19. Denoting the incoming photon momenta by p1 and p2, and the outgoing photon

momenta by k1 and k2 as before, we find six non-vanishing NC helicity amplitudes:

MNC
+−−+ = −32πα

t̂

ŝ

[
sin(

1

2
p1 ∧ k1) sin(

1

2
p2 ∧ k2) +

t̂

û
sin(

1

2
p1 ∧ k2) sin(

1

2
p2 ∧ k1)

]

MNC
++++ = 32πα

[
û− t̂
ŝ

sin(
1

2
p1 ∧ p2) sin(

1

2
k1 ∧ k2) +

(
û

t̂
− 2û

ŝ

)
sin(

1

2
p1 ∧ k1)

× sin(
1

2
p2 ∧ k2) +

(
t̂

û
− 2t̂

ŝ

)
sin(

1

2
p1 ∧ k2) sin(

1

2
p2 ∧ k1)

]
, (2.30)

where we have made use of the relation ŝ+t̂+û = 0 and the ŝ denotes the parton-level

center-of-mass frame. The other four amplitudes are related to these by MNC
−−−− =

MNC
++++; MNC

+−−+(k1, k2) = MNC
−++−(k1, k2) = MNC

+−+−(k2, k1) = MNC
−+−+(k2, k1).

The corresponding SM amplitudes can be found in Refs. [93, 94] and will be given

in Appendix A.

The kinematics of this process are more complicated than those of the previous

cases. The backscattered photons have a broad energy distribution, and the collision

no longer occurs in the center of mass frame, i.e., the CM and laboratory frames

no longer coincide. As NC theories violate Lorentz invariance, the differential cross

section is no longer invariant under boosts along the z-axis and we are thus forced to

consider this process in the laboratory frame. Letting x1 and x2 denote the fraction

of the fermion energy carried by each of the backscattered photons, the photon

momenta become

pµ
1 =

x1

√
s

2
(1, 1, 0, 0)

pµ
2 =

x2

√
s

2
(1,−1, 0, 0)

kµ
1 = E1(1, cθ, sθcφ, sθsφ)

kµ
2 = ((x1 + x2)

√
s

2
−E1, (x1 − x2)

√
s

2
− E1cθ,−E1sθcφ,−E1sθsφ) , (2.31)
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Figure 2.19: The tree level contributions to γγ → γγ in NCQED.
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where E1 is given by

E1 =
x1x2

√
s

x1 + x2 − (x1 − x2) cosθ
. (2.32)

Note that the Mandelstam invariants appearing in the amplitudes are now those for

the photon-photon center of mass frame, with, e.g.,
√
ŝ = x1x2

√
s.

We define the observable amplitudes by summing over the helicities of the out-

going photons:

|M++|2 =
∑
ij

|M++ij|2 ,

|M+−|2 =
∑
ij

|M+−ij|2 , (2.33)

which also include the SM contributions. The lab frame differential cross section for

this process is

dσ

dΩ
=

1

128π2s

∫ ∫
dx1 dx2

E1

E2

f(x1)f(x2)

x1x2

[(
1 + ξ(x1)ξ(x2)

2

)
|M++|2

+
(

1− ξ(x1)ξ(x2)

2

)
|M+−|2

]
, (2.34)

where E1, E2 denote the outgoing photon energies, f(x) is the photon number density

function, and ξ(x) the helicity distribution function, which is presented in the ap-

pendix. The distribution functions depend upon the variable set (Pe1, Pl1, Pe2, Pl2),

which represent the polarizations of the initial fermion and laser beams. In this

chapter we set |Pe| = 0.9 and |Pl| = 1.0, leaving six independent combinations:

(+, +, +, +), (+, +, +, −), (+, +, −, −), (+, −, +, −), (−, +, +, −), and, finally,

(+, −, −, −), where, for example, (+, −, +, −) means Pe1 = 0.9, Pl1 = −1.0,

Pe2 = 0.9, and Pl2 = −1.0. We use the approximate SM amplitudes found in [93, 94],

valid form2
W/xp < 1, where xp represents any of the photonic Mandelstam invariants.

To validate this approximation we employ the cuts

|cos(θ)| ≤ 0.8 ,
√

0.4 < xi < xmax . (2.35)

xmax is the maximum fraction of the fermion beam energy that a backscattered

photon can carry away; numerically, xmax ≈ 0.83. Evaluating the wedge products in
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the NC amplitudes in the lab frame yields

p1 ∧ p2 =
−c01x1x2s

2Λ2
NC

p1 ∧ k1 =
−x1E1

√
s

2Λ2
NC

[
c01 (1− cθ)− c02sθcφ − c03sθsφ − c12sθcφ + c31sθsφ

]

p2 ∧ k1 =
x2E1

√
s

2Λ2
NC

[
c01 (1 + cθ) + c02sθcφ + c03sθsφ − c12sθcφ + c31sθsφ

]

p1 ∧ k2 =
−x1E1

√
s

2Λ2
NC

[
c01x2

√
s

E1
− c01(1− cθ) + c02sθcφ +

c03sθsφ + c12sθcφ − c31sθsφ

]

p2 ∧ k2 =
−x2E1

√
s

2Λ2
NC

[ −c01x1

√
s

E1

+ c01(1 + cθ) + c02sθcφ +

c03sθsφ − c12sθcφ + c31sθsφ

]

k1 ∧ k2 =
−E1

√
s

2Λ2
NC

[
(x1 + x2){c02sθcφ + c03sθsφ + c01cθ}

−(x1 − x2){c01 − c12sθcφ + c31sθsφ}
]
, (2.36)

where, as before, we can interpret the cµν in terms of the directions of the background

E and B fields, with, the z-axis has being defined to be along the direction of the

initial beams. Note that in this case, however, we have defined p1 to be in the positive

z-direction. Two important properties of these expressions are that the presence of

both c0i and cij indicates that γγ → γγ is sensitive to both space-time and space-space

non-commutativity, unlike the previously examined processes, and the disappearance

of c23 indicates that B fields parallel to the beam axis are unobservable as in the case

of Møller scattering. We consider three different possibilities: (i) c01 = 1, with all

others vanishing; (ii) c03 = 1, with all others vanishing; and (iii) c12 = −1, with all

others vanishing. In terms of the angular parameterization, case (i) corresponds to an

E field parallel to the beam axis (denoted by α = 0 in our discussion of e+e− → γγ),

case (ii) to an E field perpendicular to the beam axis (α = π/2 in e+e− → γγ), and

case (iii) to a B field perpendicular to the beam axis. As noted earlier for e+e− → γγ,

c02 and c03 are equivalent up to a redefinition of φ, as are c12 and c31. Note, however,

that despite their apparent similarity, the space-time and space-space components
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are not equivalent up to a redefinition of φ. Redefining φ in an attempt to relate

c03 and c12 inflicts a sign change in the amplitudes, which affects the interference

between the SM and NC amplitudes.

In Figs. 2.20, 2.21, and 2.22 we display the bin-integrated angular distributions

assuming a 500 GeV e+e− linear collider with an integrated luminosity of 500 fb−1

and employing the cuts discussed above. We also take ΛNC =
√
s for purposes of

demonstration. As can be seen from the figures, the effects of NC space-time yield

marked increases in both the z and φ distributions over the SM expectations, whereas

this process is seen to be rather insensitive to space-space non-commutativity. The

NC space-space corrections also do not strictly increase the SM result, unlike the

other two cases, due to an interference effect between the SM and space-space NC

contributions, and from the small magnitude of the NC effect in this case.

Figure 2.23 displays the 95% CL search reach for the NC scale ΛNC as a function

of luminosity for the three cases with the polarization state (+,−,+,−) as well

as for the case c01 with all polarization configurations. As expected, γγ scattering

is relatively insensitive to space-space non-commutativity yielding bounds that are

essentially just below
√
s. However, in the case of space-time NC, we see that the

potential limits are comparable to that obtainable from pair annihilation and are

of order 1.5
√
s. 2 photon scattering also nicely complements e+e− → γγ as one is

sensitive to c01 with the other depending on c02 and c03.

2.6 Summary

In summary, we have examined the testable nature of non-commutative quantum

field theory by analyzing various 2→ 2 processes at high energy e+e− linear colliders.

We have parameterized the non-commutative relationship in terms of an overall NC

scale, ΛNC , and an anti-symmetric matrix cµν which is related to the direction of the

background electromagnetic field present in these theories. We have seen that these

theories give rise to modifications to QED, resulting in a non-abelian like nature with

3- and 4-point photon self-couplings, as well as momentum dependent phase factors
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Figure 2.20: Angular dependence of the γγ → γγ cross section for the case c01 = 1.
We take ΛNC =

√
s = 500 GeV, and a luminosity of 500 fb−1 and employ the cuts

discussed in the text.
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Figure 2.21: θ (top) and φ dependence (bottom) of the γγ → γγ cross section for the
case c03 = 1. We again take ΛNC =

√
s = 500 GeV, with a luminosity of 500 fb−1.
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Figure 2.22: Same as the previous figure, only for c12 = −1.
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Figure 2.23: 95% CL bound on ΛNC from γγ → γγ as a function of luminosity
for
√
s = 500 GeV. Top panel: the three cases of cµν discussed in the text with

the polarization state (+,−,+,−), and bottom panel: all polarization states with
c01 = 1.
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Process Structure Probed Bound on ΛNC

e+e− → γγ Space-Time 740− 840 GeV
Møller Scattering Space-Space 1700 GeV
Bhabha Scattering Space-Time 1050 GeV

γγ → γγ Space-Time 700− 800 GeV
Space-Space 500 GeV

Table 2.1: Summary of the 95% CL search limits on the NC scale ΛNC from the var-
ious processes considered above at a 500 GeV e+e− linear collider with an integrated
luminosity of 500 fb−1.

appearing at each possible vertex in NCQED. We have seen that both Bhabha and

Møller scattering are affected by the interference momentum dependent phase factors,

whereas pair annihilation also receives contributions from the 3-point function. We

have also examined γγ → γγ, which is sensitive to both the 3- and 4-photon self-

couplings.

In all the processes considered in the text, the NC affects arise at lowest order

from dimension-8 operators. In addition, they generate an azimuthal dependence,

which is not present in the SM, due to the NC preferred direction in space-time.

These effects are not Lorentz invariant, and caution must be exercised in evaluating

them, both theoretically and experimentally.

The above four processes are complementary in terms of probing the NC pa-

rameter space. Pair annihilation and Bhabha scattering, together, explore the full

parameter space for Space-Time non-commutativity, whereas Møller scattering is

sensitive to 2 of the parameters in the case of Space-Space NC. Two photon scat-

tering simultaneously probes Space-Space and Space-Time NC, but is found to be

rather insensitive numerically to the Space-Space case. In all of these transitions,

the effects of B fields parallel to the beam axis are unobservable. We summarize

our results for the 95% CL search reach for the NC scale in Table 2.1. We see that

NCQED can be probed to scales of order a TeV, which is where one would expect

NCQFT to become important, if stringy effects or if the fundamental Planck scale

are also at the TeV scale.



Chapter 3

The Higgs Mechanism in

Non-commutative Gauge Theories

3.1 Introduction

We studied the experimental consequences of a non-commutative modification of

QED in the previous chapter. It is of course desirable to construct a full, renor-

malizable non-commutative Standard Model, and study its phenomenology. In this

chapter we take a first step towards this goal and study the Higgs mechanism in

non-commutative gauge theories.

A hallmark of non-commutative theories is the mixing of UV and IR diver-

gences [134]; UV divergences in the commutative theory can become IR divergences

in the noncommutative theory. This calls into question the renormalizability of non-

commutative field theories. Several papers have explicitly shown that such theories

as φ4 and U(N) gauge theories, when formulated on a non-commutative space, are

one loop renormalizable [19, 20, 26, 102, 128]. However, results in the literature [40]

have shown that non-commutativity renders impossible the continuum renormaliza-

tion of the spontaneously broken linear sigma model. They find that Goldstone’s

theorem is violated at the one loop level, and the Goldstone mode obtains a mass de-

pendent upon the theory’s UV cutoff. The situtation in spontaneously broken gauge

theories seems to also merit investigation, as both an interesting question and as a

preface to any attempts to embed the Standard Model within a non-commutative

46
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framework. In particular, the gauge dependence of the spontaneously broken the-

ory should be checked, as the analog of the problem seen in [40] would be a gauge

dependent shift of one of the masses in the theory. In this chapter we examine the

non-commutative Abelian Higgs model at the one-loop level. We work in an arbitrary

Rξ gauge, and show that the resulting BRST invariance of the action holds when

one loop corrections are calculated by finding a counterterm set capable of removing

the divergences from the 1PI functions. We find that the physical couplings and

masses are gauge-independent. Upon taking the gauge coupling to zero, we obtain

a continuum renormalization of the broken O(2) linear sigma model. We show that

the proper ordering of the NC generalization of |φ|4 term in the globally symmetric

theory is that consistent with the local realization of the symmetry. We then sum-

marize some of the properties of the theory, such as the beta functions for the various

couplings and violations of the discrete symmetries P , C, and T for certain types of

non-commutativity.

This chapter is organized as follows. In Section 2 we review the commutative

Abelian Higgs model, concentrating upon setting up the counterterm structure and

upon defining gauge independent physical parameters. We discuss this in detail as

similar definitions will be used when discussing the NC model. In Section 3 we

construct the NC Abelian Higgs model, and show by explicit calculation that the

theory is renormalizable. We summarize our results in Section 4.

3.2 Commutative Abelian Higgs Model

Here we review the commutative Abelian Higgs model in some detail, as much of

our construction will carry over into the non-commutative case. The commutative

Abelian Higgs model begins with the Lagrangian

LAH =
−1

4
(Fµν)

2 + |∂µ + igAµ|2 + µ2 |φ|2 − λ

6
|φ|4 , (3.1)

where Fµν = ∂µAν − ∂νAµ. This Lagrangian is invariant under the gauge transfor-

mation

φ→ eieα(x)φ,
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Aµ → Aµ − ∂µα. (3.2)

The potential

V [φ] = µ2 |φ|2 − λ

6
|φ|4

has minima at

|φmin|2 = ν2 =
3µ2

λ
. (3.3)

Expanding

φ = ν +
h√
2

+
iσ√
2
, (3.4)

we arrive at the Lagrangian

LAH =
−1

4
(Fµν)

2 +
1

2
M2A2 +

1

2
(∂µσ)2 +

1

2
(∂µh)

2 − 1

2
m2h2

+MAµ∂µσ −
√

2λν

6
h3 −

√
2λν

6
hσ2 − λ

12
h2σ2 − λ

24
h4

− λ

24
σ4 +

g2

2
σ2A2 +

g2

2
h2A2 + ghAµ∂µσ − gσAµ∂µh

+
√

2g2νhA2. (3.5)

The Higgs field has acquired a massm2 = 2λν2/3, while the gauge boson has acquired

a mass M2 = 2g2ν2. We will work in an Rξ gauge, so to this we add the gauge fixing

and ghost Lagrangians

Lgf + Lgh =
−1

2ξ
(∂µA

µ − ξMσ)2 − c̄
(
∂2 + ξM2 + ξgMh

)
c, (3.6)

which cancels the A − σ cross term. The Feynman rules can be found in [14]. The

total Lagrangian LAH + Lgf + Lgh is invariant under the BRST transformation

δh = −gσcΘ

δσ = McΘ + ghcΘ

δAµ = − (∂µc) Θ

δc̄ = −1

ξ
(∂µA

µ − ξMσ) Θ

δc = 0 . (3.7)
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To study the renormalizability of the theory we define the following counterterms

relating the bare and physical quantities:

Aµ
B = Z

1/2
A Aµ, φB = Z

1/2
φ φ, µ2

B = Z−1
φ Zµµ

2,

λB = Z−2
φ Zλλm

4−d
D , gB = Z

−1/2
A Zggm

2−d/2
D , (3.8)

where mD is a constant with dimensions of mass used to account for units in dimen-

sional regularization. Note that if we expand

φ = ν +
h√
2

+
iσ√
2
, ν2 =

3µ2

λ

as before, we will no longer be expanding around the minimum of the potential; the

higgs tadpole will acquire a nonzero value. It is convenient, though unnecessary, to

introduce a new counterterm Zν , expand

φ = Zνν +
h√
2

+
iσ√
2
, (3.9)

and fix Zν by requiring the higgs tadpole to vanish. We could, if desired, refrain from

introducing Zν , and include the Higgs tadpole in the calculation of other Green’s

functions. Depending upon the gauge in which we work, Zν will be UV divergent.

Although it may seem strange to be expanding the scalar field around an infinite

gauge-dependent vev, the expansion point is not a physical obervable, so no contra-

diction arises. This procedure is discussed in [56]. We now take the Lagrangian in

Eq. 3.1, written in terms of bare quantities, and insert the physical quantities and

counterterms, while expanding the field φ as in Eq. 3.9. Our new Lagrangian contains

two pieces: the Lagrangian of Eq. 3.5 written in terms of the physical parameters,

and the counterterm Lagrangian, which is used to subtract the divergences in the

physical Green’s functions. The counterterm Lagrangian generated from the original

Lagrangian plus Lgf is

Lcnt
AH+gf =

1√
2
νm2

(
ZνZµ − Z3

νZλ

)
h− 1

2
m2
(

3

2
Z2

νZλ − 1

2
Zµ − 1

)
h2

−1

4
m2
(
Z2

νZλ − Zµ

)
σ2 +

1

2
(Zφ − 1) (∂µh)

2 +
1

2
(Zφ − 1) (∂µσ)2
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− 1

24
(Zλ − 1)λh4 − 1

24
(Zλ − 1)λσ4 − 1

12
(Zλ − 1)λh2σ2

−
√

2

6
(ZνZλ − 1)λνh3 −

√
2

6
(ZνZλ − 1)λνhσ2

−ZA

4
(Fµν)

2 +
√

2 (ZgZφZν − 1) gνAµ∂µσ +
(
ZφZ

2
gZ

2
ν − 1

)
g2ν2A2

+
(
ZφZνZ

2
g − 1

)
g2νhA2 +

1

2

(
ZφZ

2
g − 1

)
g2σ2A2

+
1

2

(
ZφZ

2
g − 1

)
g2h2A2 + (ZφZg − 1) gAµ [h∂µσ − σ∂µh] . (3.10)

This expression uses the fact that Lgf is already written in terms of the physical

parameters and fields. To determine the counterterms for Lgh, we first note that

the Higgs-ghost interaction is super-renormalizable, and therefore doesn’t need a

counterterm. Returning to the gauge transformation of Eq. 3.2 written in terms

of the unbroken fields, and expanding as in Eq. 3.9, we arrive at the counterterm

Lagrangian

Lcnt
gh = − (Zν − 1) ξM2c̄c. (3.11)

The super-renormalizability of the Higgs-ghost interaction means that we do not need

to introduce a wave-function renormalization constant for the ghost field. The new

Lagrangian is invariant under a “renormalized” BRST symmetry, which is identical

to Eq. 3.7 with M → ZνM in the δσ transformation.

The terms listed above illustrate the subtlety involved with the renormalization

of spontaneously broken theories; a limited number of counterterms are needed to

subtract a large number of divergences. The above theory is renormalizable in spite

of these difficulties. An explicit one loop calculation reveals the counterterms

Zg = 1, ZA = 1− g2

24π2ε
, Zφ = 1 +

3g2

8π2ε
− ξg2

8π2ε
, Zν = 1 +

ξg2

8π2ε
,

Zλ = 1 +
5λ

24π2ε
+

9g4

4π2λε
− ξg2

4π2ε
, Zµ = 1 +

λ

12π2ε
− ξg2

8π2ε
, (3.12)

where ε = 4− d can account for the one loop divergences in this theory, and we have

used the minimal subtraction prescription.

In preparation for our discussion of the NC case, let us discuss how to obtain

gauge-independent couplings and masses. Eq. 3.8 gives the relations between the
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bare couplings and physical couplings; solving the equations for the physical cou-

plings in terms of the bare couplings and renormalization constants, and inserting

the expressions of Eq. 3.12 for the renormalization constants, gives ξ independent

expressions for the physical couplings. The calculation of the physical couplings at

various renormalization points is facilitated by finding their beta functions. We find

the following values:

β(λ) = mD
∂λ

∂mD

=
5λ2

24π2
− 3λg2

4π2
+

9g4

4π2

β(g2) = mD
∂g2

∂mD
=

g4

24π2
. (3.13)

These quantities are in agreement with those found in [55]. We can solve these dif-

ferential equations to find the relations between physical couplings at various renor-

malization points; for example, we find

g2 =
g2

0

1− g2
0

24π2 ln
(

mD

mD0

) , (3.14)

where g0 is the coupling at the renormalization point mD0. Similarly for the masses,

we have the following relations between bare and physical masses:

m2
B =

2

3
λBν

2
B = ZµZ

−1
φ m2

M2
B = 2g2

Bν
2
B = Z2

gZ
−1
A ZµZφZ

−1
λ M2 (3.15)

Note that νB = 3µ2
B/λB; Zν just defines the shift of the expansion point, and does not

enter this expression. We can check that these lead to gauge independent definitions

of the physical masses; calculation yields

m2 = m2
B

[
1− λ

12π2ε
+

3g2

8π2ε

]

M2 = M2
B

[
1 +

λ

8π2ε
− 5g2

12π2ε
+

9g4

4π2λε

]
, (3.16)

where the bare masses are infinite in order to cancel the 1/ε poles. The important

point is the gauge independence of these results; we will find that the same definitions
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of the physical parameters give gauge independent results in the NC theory.

3.3 Non-commutative Abelian Higgs Model

3.3.1 Setup of NC Symmetry Breaking in U(1)

We now examine the non-commutative extension of the Abelian Higgs model, follow-

ing the procedure introduced in the previous section. Non-commutative U(1) gauge

theory coupled to a complex scalar field is defined by the Lagrangian

LAH =
−1

4
Fµν × F µν +Dµφ× (Dµφ)∗ + µ2 |φ|2 − λ

6
φ∗ × φ× φ∗ × φ, (3.17)

where Dµφ = ∂µφ + igAµ × φ and Fµν = ∂µAν − ∂νAµ + ig (Aµ × Aν − Aν × Aµ).

With U(x) = eigα(x), the action is invariant under the gauge transformation

φ→ U × φ, φ∗ → φ∗ × U−1, Aµ → U ×Aµ × U−1 +
i

g
(∂µU)× U−1. (3.18)

Note that of the two possible noncommutative generalizations of |φ|4, φ∗×φ×φ∗×φ
and φ∗ × φ∗ × φ × φ, only the first is consistent with local gauge invariance as

defined by the transformation of Eq. 3.18. We examined the theory with the potential

f φ∗ × φ × φ∗ × φ + (1 − f)φ∗ × φ∗ × φ × φ and found that the theory is one-loop

renormalizable only if f = 1. The minimum of the potential V [φ] is the same as in the

commutative theory, and as quadratic forms are unchanged by the noncommutativity,

the Higgs particle and gauge boson acquire the same masses as in the commutative

theory. Expanding around the minimum ν, we arrive at the Lagrangian

LAH =
−1

4
Fµν × F µν +

1

2
(∂µh)

2 +
1

2
(∂µσ)2 −Mσ∂µA

µ +
1

2
M2A2

−1

2
m2h2 −

√
2ν

6
h× h× h−

√
2ν

6
h× σ × σ

− λ

24
h× h× h× h− λ

24
σ × σ × σ × σ − λ

6
h× h× σ × σ

+
λ

12
h× σ × h× σ + gMh×Aµ × Aµ +

1

2
g2h× h× Aµ ×Aµ

+
1

2
g2σ × σ × Aµ ×Aµ +

i

2
g2[h, σ]× Aµ × Aµ +

i

2
gAµ × [h, ∂µh]
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+
i

2
gAµ × [σ, ∂µσ] +

1

2
gAµ × {h, ∂µσ} − 1

2
gAµ × {σ, ∂µh} , (3.19)

where we have used the notation [x, y] = x× y − y × x and {x, y} = x× y + y × x.
To this we add the gauge-fixing and ghost Lagrangians

Lgf + Lgh = − 1

2ξ
(∂µA

µ − ξMσ)2 − c̄
(
∂2 + ξM2

)
c− ξgM

2
c̄ {c, h}

−iξgM
2

c̄ [c, σ] + igc̄∂µ [c, Aµ] ; (3.20)

to obtain the ghost Lagrangian we simply insert the BRST transformation of Eq. 3.21

into the gauge- fixing condition

F [A, σ] = ∂µA
µ − ξMσ .

The full Lagrangian LAH + Lgf + Lgh is found to be invariant under the BRST

transformation

δh = −g
2
{c, σ}Θ +

ig

2
[c, h] Θ

δσ = McΘ +
g

2
{c, h}Θ +

ig

2
[c, σ] Θ

δAµ = − (∂µc) Θ + ig [c, Aµ] Θ

δc̄ = −1

ξ
(∂µA

µ − ξMσ) Θ

δc = −igc× cΘ. (3.21)

Note that upon replacing cΘ → α in the transformation laws for h, σ, and Aµ, the

above reduce to the infinitesimal transformations found in Eq. 3.18. Let us carefully

show how to obtain the transformations of h and σ. The infinitesimal form of Eq. 3.18

is

φ → φ
′
= φ+ ig α× φ

φ∗ → φ∗
′
= φ∗ − ig φ∗ × α, (3.22)
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where the prime indicates the transformed field. Written in terms of h and σ, these

become

ν +
1√
2

(
h

′
+ iσ

′)
= ν +

1√
2

(h+ iσ) + igνα +
ig√
2
α× (h+ iσ)

ν +
1√
2

(
h

′ − iσ′)
= ν +

1√
2

(h− iσ)− igνα− ig√
2

(h− iσ)× α. (3.23)

Adding and subtracting these give the transformations of h and σ, respectively.

Given the Lagrangians of Eqs. 3.19, 3.20, we can derive the Feynman rules for

this theory. New interactions appear, such as A− 2h and 2A− h− σ vertices, which

arise from commutators that vanish in the commutative limit. These occur because

of the violation of charge conjugation symmetry, as will be shown in the next several

paragraphs.

Let us now briefly discuss the role of the discrete symmetries P , C, and T in this

theory; the presentation will very closely follow that in [159]. The transformations

of the fields under the various symmetries can be derived from the requirement that

the commutative Lagrangian of Eq. 3.5 be invariant under any of the symmetries;

the results are

P hP−1 = h C hC−1 = h T hT−1 = h

P σ P−1 = −σ C σ C−1 = −σ T σ T−1 = −σ
P Aµ P−1 = Aµ C AµC

−1 = −Aµ T Aµ T−1 = Aµ. (3.24)

We must now determine whether the interactions introduced by the non-commutativity

respect these symmetries. Although the matrix θµν is just a set of real parameters

and is not affected by any of the transformations, it will be useful to indicate the

transformations of the various θ parameters that would lead to an invariant NC

Lagrangian, as in [159].

Parity: The net effect of parity on the NC Lagrangian is to change the Moyal

product as follows:

exp

(
iθ0i

2

←
∂ 0

→
∂ i +

iθij

2

←
∂ i

→
∂ j

)
→ exp

(
−iθ0i

2

←
∂ 0

→
∂ i +

iθij

2

←
∂ i

→
∂ j

)
. (3.25)
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Hence, the NC theory is P invariant only if θ0i = 0. The theory would be parity

invariant if we also took θ0i → −θ0i.

Charge Conjugation: Charge conjugation leaves all but four terms of the La-

grangian invariant: the terms in Eq. 3.19 containing commutators and the term

leading to the triple gauge photon vertex, which also contains a single commutator.

These acquire a minus sign under C. Charge conjugation invariance is therefore vi-

olated for any non-zero value of θ; the A− 2h, A− 2σ, 3A, and 2A− h− σ vertices

arising from the commutator terms in the Lagrangian explicitly show this violation.

We could maintin C invariance by requiring C θµν C
−1 = −θµν .

Time Reversal: The net effect of the time reversal invariance on the NC La-

grangian is to change the Moyal product,

exp

(
iθ0i

2

←
∂ 0

→
∂ i +

iθij

2

←
∂ i

→
∂ j

)
→ exp

(
iθ0i

2

←
∂ 0

→
∂ i −iθij

2

←
∂ i

→
∂ j

)
. (3.26)

The theory is time reversal invariant only if θij = 0. T invariance could be maintained

by requiring T θij T
−1 = −θij .

We can see from these transformations that the theory is CPT invariant for all

θµν , and CP invariant only if θij = 0. This leads to the question of whether theories

with θij �= 0 might be used as models of CP violation in particle physics, a point

raised in [159]. We make no attempt to address this question, as it would require

the non-commutative extension of the electroweak theory, but do provide a rough

estimate of the size of such effects, obtained by considering the C violating process

A→ hh. A short calculation reveals a partial width of the form

Γ ∼M
M4

Λ4
, (3.27)

where Λ is the energy scale associated with the non-commutativity. We will not

attempt to study further the phenomonology of NC theories; preliminary discussions

can be found in [42, 46, 53, 105, 132, 136].

To study the renormalization of the theory we introduce the same wave-function

and coupling constant rescalings as in Eq. 3.8. As the ghost-gauge boson vertex
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contains factors of momenta, we must also introduce the ghost wave-function renor-

malization

cB = Zcc. (3.28)

The counterterm Lagrangian Lcnt
AH obtained from Eq. 3.19 is the same as that of

Eq. 3.10 with multiplication replaced by the Moyal product and the anti-commutators

of Eq. 3.19 accounted for appropriately. In addition, there are new counterterms for

the three and four-point gauge boson vertices, and for the new interactions repre-

sented by commutators of Eq. 3.19. As the counterterm Lagrangian is rather long we

will not write it explicitly; it is apparent how to obtain it, and the counterterms for

each vertex are presented in the next section. The ghost counterterm Lagrangian,

Lcnt
gh , is

Lcnt
gh = − (Zc − 1) ∂2c− ξ (ZcZgZν − 1)M2c̄c+ i (ZcZg − 1) gc̄ ∂µ [c, Aµ]

−ξgM
2

(ZcZg − 1) c̄ {c, h} − iξgM

2
(ZcZg − 1) c̄ {c, σ} . (3.29)

The entire Lagrangian, Lgh + Lcnt
gh + LAH + Lcnt

AH + Lgf , is now invariant under the

renormalized BRST transformation

δRh = −ZcZgg

2
{c, σ}Θ +

iZcZgg

2
[c, h] Θ

δRσ = ZcZgZνMcΘ +
ZcZgg

2
{c, h}Θ +

iZcZgg

2
[c, σ] Θ

δRAµ = −Zc (∂µc) Θ + iZcZgg [c, Aµ] Θ

δRc̄ = −1

ξ
(∂µA

µ − ξMσ) Θ

δRc = −iZcZggc× cΘ, (3.30)

which arises from the BRST invariance of the Lagrangian written in terms of bare

fields. To demonstrate that this BRST invariance holds at the one-loop level, we

must find a set of renormalization constants that can simultaneously remove the

divergences from every 1PI function; we do this below.
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3.3.2 Calculation of NC divergences

Below we present the somewhat lengthy list of the UV divergent parts of the 1PI

functions. We use dimensional regularization with d = 4−ε, and the MS prescription.

We have adopted here the notation p ∧ q = pµqνΘµν /2. As we are interested only

in the UV divergences any loop integral containing exp(ip ∧ k), where k is the loop

momentum, will be ignored, as it is damped for large k when a convergence factor is

included. We include the counterterms that must account for each divergence. Only

the distinct vertices are listed; for example, the 4− h and 4− σ UV divergences, Γ4h

and Γ4σ, are identical, and only Γ4h is given. Similarly, the following pairs of vertices

are identical: the 2A−2σ and the 2A−2h, and the 2h−A and the 2σ−A. We have

also checked that 1PI functions for which no counterterms appear, such as ΓhA, are

UV finite.

Γh =
iλνm2

8
√

2π2ε
+
iξλνM2

24
√

2π2ε
+

3igM3

8π2ε
+
iνm2

√
2

[
ZνZµ − Z3

νZλ

]

Γ2h =
−3ig2p2

8π2ε
+
iξg2p2

8π2ε
+

7iλm2

48π2ε
+

3ig2M2

4π2ε
+
iξλM2

24π2ε
− iξg2m2

16π2ε

− im2
[
3

2
Z2

νZλ − 1

2
Zµ − 1

]
+ ip2 (Zφ − 1)

Γ3h =
(
cos(p1 ∧ p2) + cos(p1 ∧ p3) + cos(p3 ∧ p2)

) [
iνλ2

18
√

2π2ε
+

3ig3M

8π2ε

−i
√

2ξνλg2

24π2ε
− i
√

2νλ

3
(ZνZλ − 1)

]

Γ4h =
(
cos(p1 ∧ p2) cos(p3 ∧ p4) + cos(p1 ∧ p3) cos(p2 ∧ p4)

+ cos(p1 ∧ p4) cos(p3 ∧ p2)
)
×
[
iλ2

36π2ε
+

3ig4

8π2ε
− iξλg2

12π2ε

−iλ(Zλ − 1)

3

]

Γ2σ =
−3ig2p2

8π2ε
+
iξg2p2

8π2ε
+
iλm2

16π2ε
+

3ig2M2

8π2ε
+
iξg2m2

16π2ε

− im
2

2

[
Z2

νZλ − Zµ

]
+ ip2 (Zφ − 1)

Γh−2σ = cos(p1 ∧ p2)

[
iλ2ν
√

2

36π2ε
+

3ig3M

8π2ε
− iξλgν

√
2

24π2ε
− iλν

√
2

3
(ZλZν − 1)

]
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Γ2h−2σ = (2 cos(p1 ∧ p2) cos(p3 ∧ p4)− cos(p1 ∧ p3 + p2 ∧ p4))
[
iλ2

36π2ε

+
3ig4

8π2ε
− iξλg2

12π2ε
− iλ

3
(Zλ − 1)

]

Γ2h−A = [p1 − p2]µ sin(p1 ∧ p2)

[
− 3g3

16π2ε
(1− ξ) + g (ZgZφ − 1)

]

Γ2h−2A = cos(p1 ∧ p2) cos(p3 ∧ p4) gµν

[
iξg4

2π2ε
+ 2ig2

(
ZφZ

2
g − 1

)]

Γh−σ−2A = cos(p1 ∧ p2) sin(p3 ∧ p4) gµν

[
iξg4

2π2ε
+ 2ig2

(
ZφZ

2
g − 1

)]

Γh−σ−A = [p1 − p2]µ cos(p1 ∧ p2)

[
− 3g3

16π2ε
(1− ξ) + g (ZgZφ − 1)

]

Γh−2A = cos(p1 ∧ p2) gµν

[
iξg3M

4π2ε
+ 2igM

(
ZφZ

2
gZν − 1

)]

Γσ−A = pµ

[
−3g2M

16π2ε
+
ξg2M

16π2ε
+M (ZφZgZν − 1)

]

Γc−c̄ = −3ig2p2

16π2ε
+
iξg2p2

16π2ε
+ ip2 (Zc − 1)− i (ZcZgZν − 1) ξM2

Γc−c̄−A = pµ
2 sin(p1 ∧ p2)

[
ξg3

4π2ε
+ 2g (ZcZg − 1)

]

Γc−c̄−h = cos(p1 ∧ p2)

[
−iξ

2g3M

8π2ε
− iξgM (ZcZg − 1)

]

Γc−c̄−σ = sin(p1 ∧ p2)

[
−iξ

2g3M

8π2ε
− iξgM (ZcZg − 1)

]

Γ2A =
(
gµνp

2 − pµpν

) [ ig2

2π2ε
− iξg2

8π2ε

]
+ igµν

(
ZφZ

2
gZ

2
ν − 1

)
M2

−i (ZA − 1)
[
gµνp

2 − pµpν

]
Γ3A = sin(p1 ∧ p2)

{
(p1 − p2)ρ gµν + (p2 − p3)µ gνρ + (p3 − p1)ν gµρ

}

×
[
− 5g3

8π2ε
+

3ξg3

8π2ε
+ 2g (ZAZg − 1)

]

Γ4A =
{

sin(p1 ∧ p2) sin(p3 ∧ p4) [gµρgνσ − gµσgνρ] + sin(p3 ∧ p1) sin(p2 ∧ p4)

× [gµνgρσ − gµρgνσ] + sin(p1 ∧ p4) sin(p2 ∧ p3) [gµσgνρ − gµνgρσ]
}

×
[
ig4

2π2ε
− iξg4

π2ε
− 4ig2

(
ZAZ

2
g − 1

)]
(3.31)
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We remind the reader of the relations m2 = 2λν2/3, M2 = 2g2ν2, and M2/m2 =

3g2/λ, which are used in showing that the renormalization constants listed below

can remove these divergences. We would also like to point out that our expressions

for individual diagrams agree with [128] when applicable. An interesting feature of

these results is that individual diagrams were not necessarily proportional to the

momentum dependent phase present in the vertices. This is particularly striking in

the 4A vertex; it contains a very non-trivial Lorentz index and phase factor structure,

and receives contributions from a very large number of diagrams, none of which are

proportional to the necessary factor. This point was also emphasized in [128], who

found the same behavior in pure NC U(N) gauge theories in arbitrary Lorentz gauges.

There are a very limited number of renormalization constants that must account

for a large number of divergences; we find, however, that the following set suffices:

Zλ = 1 +
λ

12π2ε
+

9g4

8π2λε
− ξg2

4π2ε

Zµ = 1− λ

24π2ε
− 9g4

8π2λε
− ξg2

8π2ε

Zφ = 1 +
3g2

8π2ε
− ξg2

8π2ε

Zν = 1 +
ξg2

8π2ε

ZA = 1 +
g2

2π2ε
− ξg2

8π2ε

Zg = 1− 3g2

16π2ε
− ξg2

16π2ε

Zc = 1 +
3g2

16π2ε
− ξg2

16π2ε
. (3.32)

The relations between the divergent pieces of the 1PI functions established by the

BRST symmetry of Eq. 3.30 account for the renormalizability. The same definitions

as in the commutative theory give the following beta functions and physical masses:

β(λ) = mD
∂λ

∂mD

=
λ2

12π2
− 3λg2

4π2
+

9g4

8π2

β(g2) = mD
∂g2

∂mD
=
−7g4

8π2
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m2 = m2
B

[
1 +

λ

24π2ε
+

3g2

8π2ε
+

9g4

8π2λε

]

M2 = M2
B

[
1 +

λ

8π2ε
+

g2

2π2ε
+

9g4

4π2λε

]
. (3.33)

The U(1) coupling remains asymptotically free, as in the free NC U(1) theory. As in

the commutative case, we are able to define gauge independent couplings and masses.

We can also use these results to discuss spontaneously broken global symmetries

in NC field theories. Upon removing the gauge field and gauge-scalar couplings from

our Lagrangian, and making the gauge transformation global, we are left with the

broken O(2) linear sigma model. The remaining renormalization constants are Zφ,

Zµ, and Zλ (with ξ = g = 0). Our results show that the continuum renormalization

of this model is possible. While in the case of global symmetries both NC general-

izations of |φ|4 discussed below Eq. 3.18 are consistent with the symmetry, our result

indicates that the proper ordering is the one also consistent with a local realization

of the symmetry. This is the only choice that leads to a one-loop renormalizable the-

ory. We imagine that such considerations in choosing non-commutative extensions

of commutative interactions hold generally.

3.4 Summary

We have found that the relations between counterterms which are necessary to renor-

malize spontaneously broken U(1) gauge theory occur in the noncommutative version

of the theory; the BRST symmetry of the Lagrangian holds at the one-loop level.

Upon taking the gauge field couplings to zero we obtain a consistent continuum renor-

malization of the broken O(2) linear sigma model. In the O(2) linear sigma model,

both NC generalizations of the |φ|4 preserves the symmetry; however, renormaliza-

tion requires us to pick the one also consistent with the local symmetry. We are not

familiar with any discussions in the literature regarding how to choose NC extensions

of commutative actions when some symmetry does not dictate a choice. However,

we believe that the problem of ordering ambiguities arising from NC extensions of

global symmetries can be solved by demanding that the local symmetry also hold.

Note that this wouldn’t have dictated a choice of scalar potential in [20], as either
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|φ|4 generalization is consistent when working in the adjoint representation.

We have only discussed a single simple case in this chapter, that of a U(1) NC

gauge theory coupled to a complex scalar field in the fundamental representation.

Important generalizations are to consider different scalar representations, fermion

contributions, and arbitrary U(N) groups. While we have nothing to say about

the first two, we believe that the generalization to U(N) will be successful. The

remarkable interplay between diagrams required to renormalize the 4A vertex, seen

here in the scalar sector and in the gauge sector for general U(N) in [128] seems to

indicate the consistency of these models.

The work in this chapter should be regarded as a “proof of principle” that sponta-

neously broken NC gauge theories are consistent. The non-commutativity of space-

time at small scales is an exciting possible modification of fundamental physics.

Our result provides a step towards a NC version of the Standard Model; the work

in [42, 46, 53, 105, 132, 136], and the presence of tree level CP violation noted here

and in [159], indicates that it might lead to interesting physics.



Chapter 4

Precision Measurements and

Fermion Geography in the

Randall-Sundrum Model

4.1 Introduction

We begin our discussion of theories with extra space-time dimensions in this chapter

with a study of the Randall-Sundrum model.

The Randall-Sundrum (RS) model [146, 147] offers a new approach to the hier-

archy problem. This scheme proposes that our four-dimensional world is embedded

in a five-dimensional spacetime described by the metric

ds2 = e−2σ(y)ηµνdx
µdxν − dy2 , (4.1)

where σ(y) = k|y|, and with the 5th dimensional coordinate y = rcφ being com-

pactified on an S1/Z2 orbifold bounded by branes of opposite tension at the fixed

points y = 0 (known as the Planck brane) and y = πrc (TeV-brane). The parameter

k describes the curvature of the space (with the five-dimensional curvature invari-

ant being given by R = −20k2) and is of order the five-dimensional Planck scale,

M5, so that no additional hierarchy exists. Self-consistency of the classical theory

62
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requires [146, 147] that |R| ≤ M2
5 so that quantum gravitational effects can be ne-

glected. The space between the two branes is AdS5 and their separation, πrc, can be

naturally stabilized [59, 87, 88, 160] with krc 
 11−12; we employ krc = 11.27 in the

numerical results that follow. For such values of krc any mass of order the Planck

scale on the y = 0 brane appears to be suppressed by an amount e−πkrc ∼ 10−15 on

the TeV brane. The presence of the exponential warp factor e−σ(y) thus naturally

generates the hierarchy between the Planck and electroweak (EW) scales. The scale

of physics on the TeV-brane is given by Λπ = MP le
−krcπ ∼ TeV , where MP l is the

reduced Planck scale. Integration over the extra dimension of the five dimensional

RS action yields the relationship between the 4-dimensional Planck scale and the

scales k and M5:

M
2
P l = M3

5 /k . (4.2)

Together, this relation and the inequality |R| ≤ M2
5 imply that the ratio k/MP l

cannot be too large, and suggests that k/MP l ≤ 0.1− 1.

In the original RS framework, gravity propagates freely throughout the bulk while

the Standard Model (SM) fields are constrained to the TeV-brane. The graviton KK

states have non-trivial wave functions in the extra dimension due to the warp factor,

and have masses given by mn = xnke
−πkrc , where the xn are the unequally spaced

roots of the Bessel function J1 and n labels the KK excitation level. The first graviton

excitation thus naturally has a mass of order a TeV. The n > 0 KK states couple

to fields on the TeV-brane with a strength of Λ−1
π . The graviton KK states can

thus be produced in colliders as TeV-scale resonances with TeV−1-size couplings to

matter [63].

For additional freedom in model building, the original RS model has been ex-

tended to allow various subsets of the SM fields to reside in the bulk in the limit

that the back-reaction on the metric can be neglected. This possibility allows for

new techniques to address gauge coupling unification, supersymmetry breaking, the

neutrino mass spectrum, and the fermion mass hierarchy. Placing the gauge fields

of the SM alone in the bulk is problematic [58, 61, 108, 145], as all of the gauge KK

excitations then have large couplings to the remaining fields on the TeV-brane; these

couplings take on the value
√

2πkrc g 
 8.4 g, where g is the corresponding SM gauge

coupling. EW precision data then constrain the masses of the first KK gauge states



CHAPTER 4. PHYSICS OF THE RS MODEL 64

to be in excess of 25-30 TeV, thus requiring Λπ to be in excess of 100 TeV [61]. This

introduces a new hierarchy between Λπ and the EW scale, and therefore this scenario

is highly disfavored. It was subsequently shown that these constraints can be soft-

ened by also placing the SM fermions in the bulk [47, 80, 96, 110, 109, 112] and giving

them a common five-dimensional mass m = kν. This leads to further model building

possibilities provided ν is in the range −0.8 ≤ ν ≤ −0.3 [64]; for larger values of ν

the former strong coupling regime is again entered, while for smaller values potential

problems with perturbation theory can arise [62]. In the absence of fine-tuning, these

scenarios require that the Higgs field which breaks the symmetry of the SM remains

on the TeV brane, as when bulk Higgs fields are employed, the experimentally ob-

served pattern of W and Z masses cannot be reproduced. In this case, the W and Z

obtain a common KK mass in addition to the usual contribution from the Higgs vev.

It is then impossible to simultaneously maintain the two tree-level SM relationships

MZ cos θw = MW and e = g sin θw [47, 64, 110, 145].

In this chapter we re-examine the possibility of allowing the SM fermions to

propagate in the RS bulk. We show that if the third generation of fermions resides in

the bulk, then large mixing between the fermion zero modes and their KK tower states

is induced by the SM Higgs vev and the large top Yukawa coupling. This mixing

results in contributions to δρ or T [142] which greatly exceeds the bound set by

current precision EW measurements [97]. The only way to circumvent this problem

is to raise the mass of the first KK gauge state above 25 TeV for any value of ν in its

viable range, which again implies a higher value of Λπ. Unless we are willing to fine

tune Λπ, we must then require the third generation fields to remain on the TeV-brane

so that they have no KK excitations. If we treat the three generations symmetrically

we must localize all of the fermions on the TeV-brane, and also confine the SM gauge

sector to the TeV brane as discussed in the previous paragraph. We instead propose

here a ‘mixed’ scenario which places the first two generations of fermions in the bulk

and localizes the third on the wall. We find that mixing of the KK towers of these

lighter generations with their zero modes does not yield a dangerously large value

of δρ provided that ν ≥ −0.6. Furthermore, we show that values of ν near −0.4

to −0.5 may help explain the mass hierarchies mc/mt and ms/mb. We explore the

possible signatures of this scenario at the LHC and future linear colliders,as well as in
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precision measurements and flavor changing neutral currents (FCNC); we find that

the same parameter space which addresses the fermion mass hierarchies also allows

a Higgs boson with a mass of 500 GeV, and is otherwise invisible at the LHC.

The outline of this chapter is as follows. In Section 2 we give a brief overview of the

mechanics of the RS model which we will need for subsequent calculations. In Section

3 we examine the contributions to the ρ parameter when the third generation is in the

bulk and show that this scenario is highly disfavored. We examine the present bounds

on the KK mass spectrum in our mixed scenario that arise from precision EW data

in Section 4. We demonstrate that SM Higgs masses as large as 500 GeV are now

allowed by the electroweak fit since these contributions can be partially ameliorated

from those of the KK states. Section 5 explores the implications of this scenario for

the LHC, while Section 6 examines the signatures at a future e+e− linear collider

and at GigaZ. In particular, we show that the KK states in this model lie outside

the kinematically limited range of the LHC but yield observable indirect effects at a

linear collider. Finally, we discuss constraints from FCNC in Section 7, and present

our conclusions in Section 8.

4.2 The Standard Model Off the Wall

We present here a cursory formulation of the RS model in the case where the SM

gauge and fermion fields propagate in the bulk; we refer the reader to [64] for a

thorough introduction.

We begin by considering a SU(N) gauge theory defined by the action

SA = −1

4

∫
d5x
√−GGMKGNLFKLFMN , (4.3)

where Gαβ = e−2σ
(
ηαβ + κ5h

αβ
)
,
√−G ≡ |det(GMN)|1/2 = e−4σ, with κ5 = 2M

−3/2
5 ,

ηαβ being the Minkowski metric with signature -2, and hαβ represents the graviton

fluctuations. FMN is the 5-dimensional field strength tensor given by

FMN = ∂MAN − ∂NAM + ig5 [AM , AN ] , (4.4)
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and AM is the matrix valued 5-dimensional gauge field and g5 is the corresponding 5-

dimensional gauge coupling. We impose the gauge condition A5 = 0; this is consistent

with 5-dimensional gauge invariance [61], and with the Z2-odd parity assigned to

A5 to remove its zero mode from the TeV-brane action. To derive the effective

4-dimensional theory we expand Aµ as

Aµ(x, φ) =
∞∑

n=0

A(n)
µ

χ(n)(φ)√
rc

, (4.5)

and require that the bulk wavefunctions χ(n) satisfy the orthonormality constraint

∫ π

−π
dφχ(m)χ(n) = δmn . (4.6)

We obtain a tower of massive KK gauge fields A(n)
µ , with n ≥ 1, and a massless zero

mode A(0)
µ . The KK masses mA

n are determined by the eigenvalue equation

− 1

r2
c

d

dφ

(
e−2σ d

dφ
χ(n)

)
=
(
mA

n

)2
χ(n) . (4.7)

This yields mA
n = xA

nke
−krcπ on the TeV-brane, where the xA

n are given in [61],

with the first few numerical values being given by xA
1 
 2.45, xA

2 
 5.57, xA
3 
 8.70.

Explicit expressions for the bulk wavefunctions χ(n) also contain the first order Bessel

functions J1 and Y1, and can be found in [61, 64]; we note here only that the zero

mode wavefunction is φ independent with χ(0) = 1/
√

2π.

We now add a fermion field charged under this gauge group, and able to propagate

in the bulk. The action for this field is

SF =
∫
d4x

∫
dy
√−G

[
V M

n

(
i

2
Ψ̄γn

↔
DM Ψ + h.c.

)
− sgn(y)mΨ̄Ψ

]
, (4.8)

where h.c. denotes the hermitian conjugate, V M
µ = eσδM

µ , V 5
5 = −1, γn = (γµ, iγ5),

DM is the covariant derivative, and m is the 5-dimensional Dirac mass parameter.

This 5-dimensional fermion is necessarily vector-like; we wish to obtain a chiral zero

mode from its KK expansion. We follow [96] and expand the chiral components of
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the 5-dimensional field as

ΨL,R(x, φ) =
∞∑

n=0

ψ
(n)
L,R(x)

e2σ

√
rc

f
(n)
L,R(φ) , (4.9)

and require the orthonormality conditions

∫ π

−π
eσf

(m)∗
L f

(n)
L =

∫ π

−π
eσf

(m)∗
R f

(n)
R = δmn . (4.10)

The Z2 symmetry of the 5-dimensional mass term in the action forces f
(n)
L and f

(n)
R

to have opposite Z2 parity; we choose f
(n)
L to be Z2 even and f

(n)
R to be Z2 odd. As

shown in [96], this removes f
(0)
R from the TeV-brane action, and we obtain the chiral

zero mode f
(0)
L necessary for construction of the SM. The KK states form a tower of

massive vector fermions. The zero mode wavefunction is

f
(0)
L =

eνσ

NL
0

, (4.11)

where ν = m/k and is expected to be of order unity, and NL
0 is determined from

the orthonormality constraint of Eq. 4.10. Explicit expressions for the KK fermion

masses and wavefunctions are given in [64]; we note here that mF
n = mA

n when

ν = −0.5, and that mF
n > mA

n for all other values of ν.

Inserting the KK expansions of both the gauge and fermion fields into the covari-

ant derivative term in Eq. 4.8, we find that the ratios of fermion-gauge KK couplings

to the corresponding 4-dimensional coupling are

Cmnq
ff̄A

=
√

2π
∫ π

−π
dφ eσf

(m)
L f

(n)
L χ(q) , (4.12)

where m,n, q label the excitation state. The coefficients C00n
ff̄A and C01n

ff̄A are shown

in Fig. 4.1 for n = 1, . . . , 4 as functions of ν. Notice that C001
ff̄A vanishes at ν = −0.5

and remains small for ν < −0.5; this fact will be crucial in our later analysis.

In addition, the ratios of the KK triple gauge couplings (TGCs) to the TGC of

the 4-dimensional theory are given by

Cmnq
AAA =

g(mnq)

g
=
√

2π
∫ π

−π
dφχ(m)χ(n)χ(q) , (4.13)



CHAPTER 4. PHYSICS OF THE RS MODEL 68

where we have identified g = g5/
√

2πrc. Using the zero mode wavefunction χ(0) =

1/
√

2π and the orthonormality constraint of Eq. 4.6, we find that Cn00
AAA = 0 when

n > 0; no coupling exists between two zero mode gauge particles and a KK gauge

state.

We will also require the couplings between gauge KK states and the fermion fields

which are localized on the TeV-brane [61]. The relevant action is

SF =
∫
d4x

∫
dφ
√−G

[
V M

n

(
i

2
ψ̄γn

↔
DM ψ + h.c.

)]
δ (φ− π) . (4.14)

Inserting the expansion of Eq. 4.5 into this expression, letting ψ → e3σ/2ψ, and

setting g = g5/
√

2πrc, we find that the ratio of the nth KK gauge coupling to localized

fermions relative to the corresponding SM coupling is

Cn
ff̄A =

χ(n)(π)

χ(0)(π)
. (4.15)

Utilizing the approximate expressions for the KK gauge wavefunctions in [64], these

become

Cn
ff̄A ≈ (−1)n+1

√
2πkrc . (4.16)

We now consider the final ingredient required for construction of the SM, the

Higgs boson. As discussed in the introduction, the Higgs field must be confined to

the TeV-brane to correctly break the electroweak symmetry. Its action can therefore

be expressed as

SH =
∫
d4x

∫
dy
√−G

{
GMNDMH (DNH)† − V (H)

}
δ(y − rcπ) , (4.17)

where V (H) is the Higgs potential and DM the covariant derivative. To properly

normalize the Higgs field kinetic term we must rescale H → eσH ; we then expand H

around its vev, v, insert the expansion of Eq. 4.5 into the covariant derivative, and

identify g = g5/
√

2πrc. We find the gauge field mass terms

SH,mass =
1

2

∞∑
m,n=0

amn

∫
d4xm2

A,0A
(m)
µ A(n),µ , (4.18)
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Figure 4.1: The coefficients C00n
ff̄A (left) and C01n

ff̄A (right) for n = 1, . . . , 4 as functions
of the fermion bulk mass parameter ν.
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where mA,0 is the gauge field mass of the 4-dimensional theory corresponding to the

zero-mode of the gauge KK tower, and

amn = 2πχ(m)(π)χ(n)(π) . (4.19)

We must diagonalize the full mass matrix, including the contributions arising from

the KK reduction, to obtain the physical spectrum; we will do so for the SM gauge

fields in a later section.

We now examine the mixing between fermion KK states induced by the Higgs

field. When fermion fields are confined to the TeV-brane, no such mixing occurs;

we therefore consider only the case where the fermions propagate in the bulk. The

coupling between the Higgs and KK fermions is

Sff̄H =
λ

′

k

∫
d4x

∫
dy
√−G

{
H†ΨDΨc

S + h.c.
}
δ (y − rcπ) , (4.20)

where λ
′
is the 5-dimensional Yukawa coupling, and k has been introduced to make λ

′

dimensionless. Both ΨD and Ψc
S are left-handed Weyl fermions; we have introduced

the subscripts D and S for these fields to indicate that in the SM, the Higgs couples

SU(2)L doublets to SU(2)L singlets. After diagonalization of the mass matrix, the

hermitian conjugates of the singlet fields will combine with the appropriate doublets

to form Dirac fermions. Since, for our analysis, we are interested only in the contri-

butions to the fermion masses arising from this action, we again rescale the Higgs

field by eσ, set the Higgs field equal to its vev and expand the left-handed fermion

wavefunctions as in Eq. 4.9. Identifying

λ =
λ

′ (
f

(0)
L (π)

)2
ekrcπ

krc

(4.21)

as the 4-dimensional Yukawa coupling, we find the fermion mass terms

Sf,mass =
∞∑

m,n=0

bmn

∫
d4x

{
mf,0ψ

(m)
D ψ

c,(n)
S + h.c.

}
, (4.22)
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where mf,0 is the zero mode mass obtained when the KK states decouple, and

bmn =
f

(m)
L (π)f

(n)
L (π)(

f
(0)
L (π)

)2 . (4.23)

Since f
(n)
L (π) is approximately the same function for all n ≥ 1, we will set b0n =

√
f

and bmn = f , with m �= n �= 0, in our analysis, where f is a ν dependent quantity

that measures the strength of the mixing. This parameter is explicitly given by

f = 2
1− e−kπrc(1+2ν)

1 + 2ν
. (4.24)

These mass terms must be diagonalized in conjunction with the contributions from

the KK reduction of Eq. 4.8; we will do so for the SM b and t quarks in the next

section.

To complete our discussion of the RS model, we must briefly discuss the KK

gravitons it contains. We parameterize the 5-dimensional metric as

Gαβ = e−2σ (ηαβ + κ5hαβ) , (4.25)

where κ5 = 2M
−3/2
5 , ηαβ is the Minkowski metric with signature -2, and the fluctua-

tions of the bulk radius have been neglected. We then expand the graviton field hαβ

as

hαβ(x, φ) =
∞∑

n=0

h
(n)
αβ (x)

χn
G(φ)√
rc

, (4.26)

and impose the orthonormality constraint

∫ π

−π
dφ e−2σχ

(m)
G χ

(n)
G = δmn . (4.27)

The explicit forms of the KK graviton wavefunctions contain the second order Bessel

functions J2 and Y2, and can be found in [63, 64]. Expressing the graviton masses

as mG
n = xG

n ke
−krcπ, we find the numerical values xG

1 
 3.83, xG
2 
 7.02, xG

3 
 10.17

for the first few states which are given by J1(x
G
n ) = 0; notice that mG

n > mA
n . The
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couplings of the KK gravitons to fermions are given by

Cmnq
ff̄G

=
∫ π

−π
dφ
eσf (m)f (n)χ

(q)
G√

krc

. (4.28)

The C00n
ff̄G are presented in Fig. 4.2 as functions of ν. These couplings are relatively

small, particularly when ν ≤ −0.5; this, and their large mass, render the KK gravi-

tons unimportant in our analysis.

Figure 4.2: The coupling strengths C00n
ff̄G for n = 1, . . . , 4 as functions of the fermion

bulk mass parameter ν in units of Λπ.

We now have the tools necessary to build the SM within the RS framework. In the

next section we will discuss the diagonalization of the t and b quark mass matrices,

and the KK contributions to the ρ parameter. To whet the reader’s appetite, we

note that the off-diagonal mass matrix elements bmn, with m,n �= 1 and m �= n,

range from ≈ 10 when ν = −0.4 to ≈ 700 when ν = −0.6. This induces large

mixing between the zero mode top quark and its KK tower, and creates couplings

between the zero mode b quark and the top quark KK states. The large mass splitting

between these states results in drastic alterations of ρ, and renders the placement of

third generation quarks in the bulk inconsistent with EW measurements for a wide
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range of KK masses.

4.3 Fermion Mixing and the ρ Parameter

Since the top quark is quite heavy, with a mass mt ≈ 175 GeV, we expect the mixing

between it and its KK tower to be stronger than that for the lighter fermions, and

we focus here upon it and its isodoublet partner, the bottom quark. As mentioned

previously, after performing the KK reduction of the 5-dimensional fermion field we

obtain a chiral zero mode and a vector-like KK tower; this spectrum is presented

pictorially for the top quark in Table 4.1.

Doublet Singlet
...

...
...

...

T
(2)
L T

(2)
R t

(2)
L t

(2)
R

T
(1)
L T

(1)
R t

(1)
L t

(1)
R

T
(0)
L X X t

(0)
R

Table 4.1: Abbreviated list of the top quark KK states. The subscripts L and R
denote left-handed and right-handed fields. SU(2)L doublets are denoted by capital
T and singlets by lower case t. An X at a location in the table indicates that the
state does not exist due to the orbifold symmetry.

We have exchanged the left-handed SU(2)L Weyl singlets introduced in the preced-

ing section for their right-handed conjugates, but the reader should remember that

these states are still described by the 5-dimensional wavefunctions f
(n)
L (φ). The top

quark mass matrix receives two distinct contributions: the diagonal KK couplings

between the doublet tower states and the singlet tower states, and off-diagonal mix-

ings between the left-handed doublets and right-handed singlets arising from the

Higgs coupling on the TeV-brane. We present below the mass matrix with only the

zero modes and the first two KK levels included; the infinite-dimensional case can be

obtained by a simple generalization. Working in the weak eigenstate basis defined

by the vectors Ψt
L =

(
T

(0)
L , T

(1)
L , t

(1)
L , T

(2)
L , t

(2)
L

)
and Ψt

R =
(
t
(0)
R , t

(1)
R , T

(1)
R , t

(2)
R , T

(2)
R

)
, we
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find

Mt =




mt,0

√
fmt,0 0 −√fmt,0 0√

fmt,0 fmt,0 m1 −
√
fmt,0 0

0 m1 0 0 0

−√fmt,0 −fmt,0 0 fmt,0 m2

0 0 0 m2 0



. (4.29)

mt,0 is the mass of the zero mode in the infinite KK mass limit, and m1 and m2

are the masses of the first two KK fermion states in the limit of vanishing Higgs

couplings; f is the mixing strength introduced in the previous section. We fix mt,0

by demanding that the lowest lying eigenvalue of this matrix reproduce the measured

top quark mass, mt = 174.3 GeV. Due to the large values of the off-diagonal elements,

we diagonalize this mass matrix numerically, rather than analytically to O(mt,0/m1).

We must necessarily truncate the KK expansion at some level; we have performed our

analysis twice, once including only the first KK level and once keeping the first two

levels, and have checked that adding more states only strengthens our conclusions.

We examine the parameter region −0.3 ≥ ν ≥ −0.55; the range ν > −0.3 is strongly

constrained by contact interaction searches at LEP [64], and the values ν ≤ −0.55

are prohibited by extrapolation of the results obtained below. This is essentially the

same region studied in [67], where it was shown that the LHC will be able to probe

the shift in the Ztt̄ coupling for fermion KK mass values m1 ≤ 15 TeV. We will find

that the region where ν ≤ −0.3 and m1 ≤ 30 − 100 TeV is already disfavoured by

current measurements.

The Lagrangian containing the top quark mass terms and its interactions with

the Z and W± gauge bosons is

L =
(
Ψ̄t

LMtΨ
t
R + h.c.

)
+ Ψ̄t

L �ZCZ
t,LΨt

L + Ψ̄t
R �ZCZ

t,RΨt
R

+Ψ̄t
L �W−CW

L Ψb
L + Ψ̄t

R �W−CW
R Ψb

R + ...+ h.c. . (4.30)

We have introduced the basis Ψb
L and Ψb

R for the bottom quark in analogy with those

for the top quark. The Ci
j are matrices containing the couplings of the various top

quark states to the Z and W±; letting g denote the SM electroweak coupling, cW the

cosine of the weak mixing angle, and gL and gR the couplings of the usual left-handed
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and right-handed SM fermions to the Z boson, we find

CZ
t,L =

g

cW
diag (gL, gL, gR, gL, gR) ,

CZ
t,R =

g

cW
diag (gR, gR, gL, gR, gL) ,

CW
L =

g√
2

diag (1, 1, 0, 1, 0) ,

CW
R =

g√
2

diag (0, 0, 1, 0, 1) . (4.31)

In obtaining these matrices we have treated the T
(n)
R as SU(2)L doublets and the

t
(n)
L as singlets as denoted in Table 4.1. We diagonalize Mt with the two unitary

matrices U t
L and U t

R,

MD
t = U t

LMt

(
U t

R

)†
. (4.32)

Diagonalization of the matrix MtM†
t determines U t

L up to an overall phase matrix,

while diagonalization of M†
tMt similarly fixes U t

R. The mass eigenstate basis is

obtained by multiplication of the weak eigenstate basis by the appropriate transfor-

mation matrix:

Ψt
L → U t

LΨt
L ,Ψt

R → U t
RΨt

R . (4.33)

The coupling matrices undergo a similar shift,

CZ
t,L → U t

LC
Z
t,L

(
U t

L

)†
,

CZ
t,R → U t

RC
Z
t,R

(
U t

R

)†
,

CW
L → U t

LC
W
L

(
U b

L

)†
,

CW
R → U t

RC
W
R

(
U b

R

)†
. (4.34)

We have also implicitly performed an identical diagonalization of the bottom quark

mass matrix.

This procedure induces off-diagonal elements in both the Z and W± coupling

matrices; consequently, fermions of widely varying masses enter the vacuum polar-

ization graphs contributing to the Z and W± self energies. Such a scenario typically
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generates unacceptable contributions to the ρ parameter [163], defined as

ρ =
ΠW (q2 = 0)

M2
W

− ΠZ (q2 = 0)

M2
Z

, (4.35)

where ΠX (q2) is the X boson self energy function. We set ∆ρ = ρ − ρSM , where

ρSM is the contribution from the SM (t, b) doublet, and calculate ρ for our two cases:

once including the shifted top and bottom quark zero modes and the first KK level

only, and once including the zero modes and the first two KK states. ∆ρ is then

a measure of the deviation from the SM prediction. The results are presented in

Fig. 4.3 as functions of ν for several choices of m1. The 95% CL exclusion limit [121]

of ∆ρ ≤ 2×10−3 is also indicated. Notice that ∆ρ increases when we add the second

KK level in our analysis; thus adding more states only increases ∆ρ further, and our

neglect of these higher modes is justified. It is clear from the lower graph in Fig. 4.3

that consistency with the 95% CL exclusion limit restricts m1 to the range m1 ≥ 25

TeV for all values of ν in the previously allowed range, and requires m1 ≥ 100 TeV

when ν ≤ −0.4. When ν < −0.5, including the range ν ≤ −0.55 that we have not

presented, the corrections to ρ are so large that the perturbative definition of the

Z and W± gauge bosons is no longer valid. We stress that these restrictions are

lower bounds on the actual constraints as including more KK levels in our analysis

will only strengthen these results. These results imply Λπ ≥ 100 TeV [61], with the

exact choice depending on the value of ν, to avoid unacceptable contributions to ∆ρ;

the resulting hierarchy between the EW scale and the fundamental RS scale thus

strongly disfavors allowing the third generation quarks to propagate in the bulk.

This restriction applies only to the top and bottom quarks; the first and second

generations are much less massive, and the large mixing induced above by the top

quark Yukawa coupling does not appear when considering these states. We have

numerically checked that the contributions of bulk first and second generation quarks

are consistent with the constraints on ∆ρ, and hence the placement of the first two

generations in the bulk is still allowed. But, is such a setup motivated? Does any

interesting physics result from this construction? The answer to both questions is

unequivocally yes, as we will demonstrate in the next section.
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Figure 4.3: Contributions to ∆ρ from the zero modes and first KK level (top),
and from the zero modes and first two KK levels (bottom). The dashed black line
indicates where ∆ρ = 2 × 10−3. The various curves correspond to when the masses
of the first fermion KK excitation is taken to be m1 = 10, 20, 30, 50, 100 TeV, from
top to bottom.
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4.4 The Third Generation On the Wall and the

EW Precision Observables

A handful of authors have attempted to construct models explaining the quark and

neutrino mass matrices within the framework of the RS model [96, 109, 112]. These

ideas generically require the placement of fermions at different locations in the 5-

dimensional bulk. We have already shown that the third generation quarks must lie

on the TeV-brane; if we permit the first two generations to propagate in the bulk,

can we explain the hierarchy between the Yukawa coupling of the top quark and

those of the lighter quarks?

We consider first the coupling of the Higgs to a fermion field confined to the

TeV-brane; the relevant action is

Swall
f f̄H = λwall

∫
d4x

∫
dy
√−G

{
H†ψDψ

c
S + h.c.

}
δ (y − rcπ) , (4.36)

where λwall is the Yukawa coupling of the localized fermion, chosen to be of O(1).

To derive the 4-dimensional action we must rescale ψ → e3σ/2ψ and H → eσH as

before. The mass of this field is then mwall = λwallv/
√

2. We have shown in Eq. 4.21

that the 4-d Yukawa coupling that determines the zero-mode mass of a bulk fermion

is

λbulk =
λ

′ (
f

(0)
L (π)

)2
ekrcπ

krc
. (4.37)

We now assume that the fundamental coupling that enters the 5-d bulk fermion ac-

tion, λ
′
, is also of order unity as is λwall. The factor

(
f

(0)
L

)2
ekrcπ/krc then suppresses

λbulk with respect to λwall; we find λbulk ≈ (10−1 − 10−2)λwall when −0.55 ≤ ν ≤
−0.35, using the zero mode wavefunction given in Eq. 4.11. Choosing a value of ν in

this region, ameliorates the hierarchy between the second and third generation quark

Yukawa couplings. To be more explicit, with the top quark on the TeV brane and

λwall of order unity, we expect a top mass near its experimental value. On the other

hand, for the charm quark in the bulk, we expect a much smaller mass even if the

bulk Yukawa coupling λ′ is also of order unity. As an example, assuming λ′ = λwall

and taking ν = −0.5 one obtains mt/mc 
 2πkrc 
 70 which is within a factor of 2
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to 3 of the experimental value. A similar argument applies to the mb/ms ratio. The

localization of the third generation on the TeV brane while keeping the first two in

the bulk may thus help explain the fermion mass hierarchy. We do not attempt here

to build a more detailed flavor model incorporating the off-diagonal CKM matrix

elements, but instead examine the consequences of this simple situation. We focus

on the region −0.6 ≤ ν ≤ −0.3, extending slightly for completeness the range pre-

ferred by the quark Yukawa hierarchy. We study next the effects of KK gauge boson

mixing on the EW precision observables; we will find that large mixing similar to

that appearing in the top quark mass matrix relaxes the upper bound on the Higgs

boson mass obtained in the standard EW fit [143].

The mass terms for the W± and Z can be obtained using Eq. 4.18 as a template;

we find

Smass =
∞∑

m,n=0

amn

∫
d4x

(
m2

W,0W
+(m)
0 W

−(n)
0 +

1

2
m2

Z,0Z
(m)
0 Z

(n)
0

)
, (4.38)

where the amn are given by Eq. 4.19 and we have for notational simplicity omitted

the Lorentz indices of the gauge fields. The resulting W± mass matrix is

M2
W = m2

1




a11xW a12xW a13xW . . .

a12xW b21 + a22xW a23xW . . .

a13xW a23xW b22 + a33xW . . .
...

...
...



, (4.39)

where m1 is the first KK gauge mass, xW = m2
W,0/m

2
1, and bi = mi/m1 is the

ratio of the ith KK mass to the first. The mass matrix for the Z is obtained by

substituting mW,0 → mZ,0. The subscripts on the fields W±
0 and Z0, and on the

masses mW,0 andmZ,0, indicate that these are not the physical fields and masses; they

are the zero-mode fields and masses in the infinite KK limit. To obtain the physical

spectrum we must diagonalize the mass matrices while respecting the appropriate

constraints; these are the same as those developed for the interpretation of precision

measurements at the Z-pole [7]. This prescription states that the following quantities

are inputs to radiative corrections and to fits to the precision EW data: α as measured

in Thomson scattering, GF as defined by the muon lifetime, MZ as determined from
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the Z line shape, mt as measured at the Tevatron, and mH , which is currently a

free parameter. All other observables, such as the W± mass, MW , and the width

for the decay Z → l+l−, Γl, are derived from these measured quantities; we must

compare the RS model predictions for these parameters with the values obtained by

experiment.

We examine the six relatively uncorrelated observables MW , sin2θeff , Γl, Rb, Rc,

and sin2θνN, and discuss in detail our procedure for deriving the RS model predictions

for these quantities and then compare these predictions to the measured values. We

consider tree level KK and loop level SM contributions to these observables, and

assume that contributions from KK loops are higher order and therefore negligible.

Our analysis differs slightly from those performed in models with KK gauge bosons

arising from TeV−1-sized extra dimensions [129, 152]. Here, the parameters amn of

Eq. 4.19 which enter the mass matrices are rather large; the a1n, with n > 1, have the

approximate value
√

2πkrc ≈ 8.4, while the elements amn, with m,n > 1 and m �= n,

have the approximate value 2πkrc ≈ 71. Although the ratios xW (Z) = m2
W,0(Z,0)/m

2
1

that appear in the mass matrices may be small, they are multiplied by these large

coefficients, and to avoid errors we diagonalize the matrices and handle shifts of the

precision observables numerically to all orders in xW,Z , rather than performing the

analysis analytically to O(xW,Z). This necessitates a truncation of the mass matrices;

we work with 30× 30 matrices, and have verified that increasing the size to 60× 60

produces a negligible change in our results.

We first determine the parameter mZ,0 by diagonalizing the Z mass matrix and

demanding that the lowest eigenvalue reproduce the measured Z mass, MZ . Armed

with mZ,0, we consider next the muon lifetime, through which the input parameter

GF is defined. The relevant decay is µ− → e−νeν̄µ. In the SM this proceeds at tree

level through W exchange; it proceeds here through the exchange of the entire W (n)

KK tower. GF therefore becomes

GF√
2

=
g2

8M2
W

+
g2

0

8

∑
n

cn
m2

n

, (4.40)

where the first term arises from the exchange of the zero mode and the second term

from the higher KK states, and the cn encapsulate the couplings of the KK gauge
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states to zero mode leptons. Some clarification of this expression is required. g is the

coupling of the physical W obtained after diagonalization, whereas g0 is the coupling

that appears in the Lagrangian before diagonalization. To make this distinction

explicit we express g as

g = g0 {1−G(mW,0)} , (4.41)

where G(mW,0) accounts for the admixture of KK states in the physical W (0) bo-

son. After EW symmetry breaking, g2
0 = 4πα/s2

w,0, where sw,0 is the sine of the

weak mixing angle obtained before including mixing effects: s2
w,0 = 1 −m2

W,0/m
2
Z,0.

Substituting these relations into Eq. 4.40, we arrive at the condition

1 =
πα√

2GF M2
W s

2
w,0

{1−G(mW,0)}2 +
πα√
2s2

w,0

H(mW,0) , (4.42)

where we have introduced the dimensionless quantity

H(mW,0) =
1

GF

∑
n

cn
m2

n

. (4.43)

In the SM, after radiative corrections are included,

πα√
2GF

→ πα√
2GF (1−∆r)

= m2
W,SM

[
1− m2

W,SM

M2
Z

]
. (4.44)

To incorporate radiative corrections in our analysis, we make this substitution in

Eq. 4.42, and use the mW,SM calculated by ZFITTER [30] using MZ as an input. We

find the relation

1 =
m2

W,SM

[
1− m2

W,SM

M2
Z

]

M2
W

[
1− M2

W

M2
Z

] {1−G(mW,0)}2 +
πα

√
2
(
1− m2

W,0

m2
Z,0

)H(mW,0) . (4.45)

The only unknown quantity in this equation is mW,0; the physical W± mass, MW ,

is derived from mW,0 through diagonalization of the W± mass matrix. We now scan

over mW,0 until we find a solution to this equation; the mW,0 that furnishes this

solution also predicts a MW that can be compared with experiment.

We next compute the KK contributions to the effective coupling sin2θeff , which



CHAPTER 4. PHYSICS OF THE RS MODEL 82

appears in the dressed Zl+l− vertex [30]. In the SM,

sin2θeff,SM = κZsin2θw,SM , (4.46)

where θw is the on-shell weak mixing angle, sin2θw,SM = 1 − m2
W,SM/M

2
Z , and κZ

contains a subset of the radiative corrections to the decay Z → l+l−. In the RS model,

the weak mixing angle that appears in the Zl+l− vertex is sw,0; this is unaffected by

diagonalization because sw,0 enters the coupling of every KK excitationstate. The

RS model expression for sin2θeff is

sin2θeff = κZs2
w,0 = sin2θeff,SM




1− m2
W,0

m2
Z,0

1− m2
W,SM

M2
Z


 , (4.47)

where in the last step we have incorporated the ZFITTER predictions for sin2θeff,SM

and mW,SM to correctly account for the SM radiative corrections.

The shifts of the remaining observables occur in a similar fashion as in the two

examples given above, and hence we discuss them only briefly here. The width of

the decay Z → f̄f is

Γf =
g2MZ

96πc2w
Cf

{[
1− 4|Qf |sin2θeff + 8Q2

fsin
4θeff

] (
1 +

2m2
f

M2
Z

)
− 3

m2
f

M2
Z

}
, (4.48)

where Cf encapsulates kinematic factors, color sums for final state quarks, and fac-

torizable radiative corrections [30]. This formula is valid in both the SM and the

RS model, with the proviso that in the RS case g describes the coupling of the Z(0)

obtained after diagonalization, cw → cw,0 and sin2θeff is given by that described in

the previous paragraph. Our previous results can be adapted to compute the shift

in Γl. The change in the ratio of the Z → c̄c width to the total hadronic width,

Rc = Γc/Γh, can also be computed by following the outline presented for calculating

the Γl shift. The derivation of the shift in Rb = Γb/Γh proceeds similarly, except that

the couplings of the higher gauge KK modes to the brane localized bottom quarks

are those presented in Eqs. 4.15 and 4.16. Finally, sin2θνN is determined experimen-

tally through the measurement of R, which is the following ratio of neutrino-nucleon
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neutral and charged current scattering events:

R =
σν

NC − σν̄
NC

σν
CC − σν̄

CC

. (4.49)

It becomes

R =
1

2
− sin2θνN (4.50)

at tree level in the SM, where the W± and Z coupling constants have cancelled in the

ratio. When RS corrections are included, the gauge boson couplings no longer cancel

because of different mixing effects in the W± and Z mass matrices, and sin2θνN →
s2

w,0. Again, these corrections to sin2θνN can be easily obtained from our above

results.

Having computed these corrections, we can now compare the RS model predic-

tions for the precision observables with the values actually measured. We perform a

χ2 fit to the data, with the Higgs boson mass mH and the first KK gauge mass m1 as

free parameters. The LEP Electroweak Working Group has quoted an upper limit on

the Higgs mass in the SM of mH < 222 GeV at the 95% confidence level [1], which we

find corresponds to χ2 = 23.3. Following [152], we normalize our results by choosing

this χ2 value as our benchmark; we claim that the predictions are disfavoured at the

95% CL if χ2 > 23.3, and that the model fits the precision data otherwise. We use

the input parameter values

MZ = 91.1875 GeV ,

GF = 1.16637× 10−5 GeV−2 ,

α(me) = 1/137.036 , (4.51)

and the experimental observable values and errors

MW = 80.451± 0.033 GeV ,

sin2θeff = 0.23152± 0.00017 ,

Γl = 83.991± 0.087 MeV ,

Rb = 0.21646± 0.00065 ,
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Rc = 0.1719± 0.0031 ,

sin2θνN = 0.2277± 0.0016 , (4.52)

as presented in [1]. The results of these fits are presented in Fig. 4.4 as functions

of both mH and m1, and for four representative values of the fermion bulk mass

parameter ν. We have allowed mH to range from 115 GeV to 1 TeV; higher Higgs

masses are inconsistent with perturbative unitarity. This bound is modified slightly

by KK gauge boson and graviton exchanges, but we have neglected these effects here.

The six observables contribute to the fit with widely varying strengths; sin2θeff is

very sensitive to deviations arising from RS physics throughout the entire mH , m1

region, while Rc does not significantly affect the χ2 value for any choice of parameters.

Rb is drastically altered when ν ≤ −0.5, where the light fermion couplings to KK

gauge states either vanish or become small, but is less affected for larger values of ν.

MW , Γl, and sin2θνN are somewhat less sensitive than sin2θeff , and vary in relative

importance as mH and m1 are changed. The allowed values of mH vary with ν,

but it is clear from Fig. 4.4 that for ν ≥ −0.5 Higgs masses in the range 300− 600

GeV are permitted for n = 1 KK gauge masses of 11 ∼ 15 TeV. A heavy Higgs

has the effect of decreasing MW , while the RS mixing effects increase it, and this

compensation allows the predicted values of MW , sin2θeff , and Γl to be brought into

good agreement with the measured values by tuning m1. Shifts in Rb arising from the

confinement of the third generation quarks to the TeV-brane prevent larger values

of mH from providing a good fit to the EW precision data. For each choice of ν

and mH there exists a range of allowed m1 values that fits the EW precision data;

the lowest allowed value of m1 as a function of ν is presented in Fig. 4.5 for several

choices of mH . The drastic difference between the mH = 300 and 400 GeV curves

arises from the sharp distinction between allowed and disallowed KK masses imposed

by the cut at χ2 = 23.3. The sharp rise for lower ν values and higher Higgs masses

is due almost entirely to Rb. We present in Table 4.2 a summary of the allowed m1

ranges for various choices of ν and mH .

This relaxation of the upper bound on mH is akin to that observed in [152]; the

factors of 8.4 and 71 that appear in the off-diagonal elements of the W± and Z mixing
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−0.5 −0.4 −0.3
mH = 115 GeV > 13.9 TeV > 14.8 TeV > 15.8 TeV

300 GeV 12.0− 21.1 TeV 11.6− 26.0 TeV 12.0− 29.3 TeV
500 GeV X 11.3− 11.8 TeV 11.2− 15.1 TeV

Table 4.2: Table of m1 ranges allowed by the EW precision data for several represen-
tative values of ν and mH . An X denotes that the parameter choice corresponding
to that location is not allowed.

matrices here allow the effect to occur for much larger KK masses. At this point the

reader may wonder whether these high m1 values can be probed at future colliders.

We will show in the next section that they are indeed invisible at the LHC; however,

the large KK gauge boson couplings to third generation quarks produces observable

effects over most of the allowed parameter space at future e+e− colliders.

4.5 Searches at the LHC

We now discuss the prospects for detecting the gauge KK states which are consistent

with our EW fit at the LHC. The primary discovery mode for new heavy gauge bosons

at hadron colliders is high invariant mass Drell-Yan lepton pair production; at the

LHC the relevant processes are pp → γ(1), Z(1) → µ+µ−, e+e−. The contributing

parton level processes are qq̄ → µ+µ−, e+e−. We present dσ/dmll for this process

(with mll being the invariant mass of the final state lepton pair) in Fig. 4.6 for the

parameter choices ν = −0.6,−0.5,−0.4,−0.3 and m1 = 8, 10 TeV. These values

are representative of the allowed region for ν, but the gauge KK masses are lighter

than those allowed by the EW fit. If the rates are unobservable at these points in

parameter space, then the RS effects are undetectable for all interesting cases. The

resonances are wide in this case primarily because of the large couplings of the KK

gauge states to top and bottom quarks. With the 100 fb−1 of integrated luminosity

envisioned for the LHC, the KK contributions to Drell-Yan production are indeed

invisible. We present the expected number of excess events including both the µ+µ−

and e+e− channels for this value of integrated luminosity and for the two choices of
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Figure 4.4: χ2 values obtained in the fit to the EW precision data as a function of m1

for four choices of ν, the fermion bulk mass parameter. The solid black line indicates
where χ2 = 23.3, the value at which the 95% CL is reached. The colored curves are
the RS model fit results for different Higgs boson masses; from top to bottom, on
the left of each plot, the lines indicate mH = 115, 200, 300, . . . , 1000 GeV.
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Figure 4.5: Lowest value of m1 that fits the EW data as a function of ν, for five
representative choices of mH .

ν which produce the largest cross section in Table 4.3. Here, we have integrated over

the invariant mass bins in which there is an excess of events over the SM predictions;

this corresponds to the cuts mll ≥ 5 TeV when m1 = 8 TeV and ν = −0.3, mll ≥ 6.5

TeV when m1 = 8 TeV and ν = −0.4, mll ≥ 6 TeV when m1 = 10 TeV and ν = −0.3,

and mll ≥ 8 TeV when m1 = 10 TeV and ν = −0.4. We have not attempted to study

the depletion of events at lower mll because the event rates at the affected invariant

masses are too low. Two effects are hindering the detection of the KK contributions:

the small couplings of zero mode fermions to KK gauge states for ν ≤ −0.5, and the

high KK masses which require the parton subprocesses to occur at energies where the

quark distribution functions are small. Even with an order of magnitude increase

in integrated luminosity, the production of the first gauge KK excitation that is

consistent with the EW precision data is unobservable.

Another possible production mechanism for the KK gauge bosons at the LHC

is W+W− fusion, pp → WW + 2 jets→ V (1) + 2 jets. The relevant triple gauge

couplings, W+(0)W−(0)γ(1) and W+(0)W−(0)Z(1), are induced by mixing effects. We

present the strengths of these vertices normalized to the SM couplings W+W−γ and

W+W−Z in Fig. 4.7. Very slight ν and mH dependences enter these vertices; here
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ν = −0.4 −0.3
m1 = 8 TeV 6.4× 10−4 8.8× 10−2

10 TeV 4.9× 10−6 3.2× 10−3

Table 4.3: Table of expected Drell-Yan events at the LHC for various parameter
choices L = 100 fb−1. Both the µ+µ− and e+e− channels have been included.

we fix ν = −0.3 and mH = 115 GeV, which maximizes their strength. For m1 ≥ 11

TeV, these couplings are a fraction, ≤ 10−3, of their SM strengths. This, and the

fact that the W+W− fusion process is higher order in the EW coupling constant,

render this a poor place in which to search for KK effects.

The only remaining possibility for detecting the KK states at the LHC is via

deviations in top and bottom quark production. These processes are dominated

at high energies by gluon initiated interactions; however, these do not receive any

modifications from gluon KK states since g(0)g(0)g(n) couplings do not exist. We thus

only examine top quark production, which receives a larger contribution from quark

initiated processes, and where the large couplings of the KK gauge states to third

generation quarks enter. The invariant mass distribution is presented in Fig. 4.8 for

m1 = 10 TeV and ν = −0.4. Since the KK couplings to wall fermions do not decrease

with KK level, we have checked that the contributions from including multiple states

in the KK tower does not significantly enhance the effect. In fact, summing the first

five KK contributions slightly decreases the cross section from that where only the

first level is included due to the factor of (−1)n that enters the coupling of the nth

KK level to top quarks. The expected number of excess events at the LHC is ≈ 0.14,

assuming a cut on the invariant mass of the final state top quarks of mtt ≥ 3.5 TeV.

As in the previous case of Drell-Yan production, this event rate is undetectable even

with an order of magnitude increase in integrated luminosity. The slight depletion

of events at lower invariant masses is similarly unobservable. We must therefore

conclude that the KK excitations which relax the precision EW upper bound on the

Higgs mass are invisible at the LHC.
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Figure 4.6: Cross sections for the process pp → µ+µ− for m1 = 8 TeV (top) and
m1 = 10 TeV (bottom) as functions of the final state lepton pair invariant mass. The
upper blue curves are for ν = −0.3, the slightly lower red curves represent ν = −0.4,
and the three nearly degenerate straight lines correspond to ν = −0.5,−0.6, and the
SM. K-factors and a rapidity cut |η| < 2.5 have been included.
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Figure 4.7: Couplings of W±,(0) to γ(1) and Z(1), normalized to the SM couplings of
W± to γ and Z, as functions of m1. The parameter values ν = −0.3 and mH = 115
GeV have been assumed.

Figure 4.8: Invariant mass distributions for pp → tt̄ at the LHC including only the
first KK state (top red line) and summing the first five KK gauge bosons (bottom
green line), for m1 = 10 TeV. The black line is the SM prediction.
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4.6 Searches at Future TeV-scale Linear Colliders

We examine here whether KK gauge boson exchanges can be observed at a future

e+e− collider with
√
s = 500 − 1000 GeV and L = 500 − 1000 fb−1. Since the

anticipated center-of-mass energies are well below the 11 TeV KK gauge mass defining

the lower edge of the allowed range from the EW fit, we study the off-resonance

modification of fermion pair production, e+e− → f f̄ . Z pair production receives

no KK gauge contribution, while the γ(1) and Z(1) exchanges in e+e− → W+W−

suffer from the weak triple gauge vertices displayed in Fig. 4.7. We perform a χ2

fit to the total rate, binned angular distribution, and binned ALR for fermion pair

production to estimate the search reaches possible at TeV-scale linear colliders. We

assume an 80% electron beam polarization, a 10◦ angular cut, statistical errors and a

0.1% luminosity error. We also use the following reconstructions efficiencies: a 100%

τ efficiency, a 70% b quark efficiency, a 50% t quark efficiency, and a 40% c quark

efficiency. The χ2 values obtained in this analysis are shown in Fig. 4.9 for several

choices of
√
s and L.

We see from Fig. 4.9 that the effects of KK exchange exceed the 95% CL exclusion

limit for all ν values in the allowed region and for m1 ≤ 15 TeV; the modifications

when ν ≥ −0.4 reach the 5σ discovery limit. The parameter space ν ≤ −0.5 and

m1 > 15 TeV, part of which provides a good fit to the EW precision data, falls

below the exclusion limit. It is possible that this difficulty can be alleviated with the

inclusion of more observables. We note that a small hierarchy between the EW scale

and Λπ begins to develop in this region, and it is consequently not as favored as the

m1 ≤ 15 TeV range. We note that the ordering of the ν = −0.6 and −0.5 curves in

the lower figure of Fig. 4.9 is correct.

We now subject this model to future high precision tests. Planned e+e− colliders

are designed for operation on the Z-pole for a period sufficient to collect 109 Z events.

This program, known as GigaZ, will reduce the error in sin2θeff to the 10−5 level and

the error in Rb by a factor of 5 [5]. A phase of operation on the W± pair production

threshold is also planned, which will reduce the error in the measurement of MW to

6 MeV. We now return to our analysis of EW precision data and study the effects of
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Figure 4.9: χ2 values obtained by fitting the RS model predictions for fermion pair
production to the SM for ν = −0.6,−0.5,−0.4,−0.3, as functions of m1. The upper
figure assumes

√
s = 500 GeV and L = 500 fb−1, while the lower assumes

√
s = 1000

GeV and L = 1000 fb−1. The dashed line indicates the χ2 necessary for exclusion of
the model at the 95% CL, and the dotted line illustrates the χ2 required for a 5σ
discovery. The polarizations and reconstruction efficiencies assumed are presented in
the text.
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this error reduction, keeping the central values for the observables unchanged from

the present and focusing on sin2θeff , MW , and Rb. Figures 4.10 and 4.11 display our

results in the sin2θeff versus MW plane and the sin2θeff versus Rb plane for ν = −0.5

and −0.4. These figures show the current and expected experimental precisions, SM

predictions, and RS model results for several different Higgs masses and m1 choices.

It is difficult to predict what the status of fits to the EW precision data will be

after the GigaZ program concludes, as a small shift in the experimental central values

assisted by the small anticipated errors can drastically alter the current situation. If

the central values remain unchanged, it is clear from these figures that the improved

precision in the measurement of Rb will disfavor the heavier Higgs solutions, and

require a large value of m1, which reintroduces a hierarchy between Λπ and the EW

scale. However, the RS predictions for sin2θeff and MW match experiment better

than the SM results and can accommodate a heavy Higgs, and the global fit to

the EW observables may prefer this solution. Whatever scenario is realized, it is

certainly true that the entire parameter space, including the region inaccessible in

off-resonance fermion pair production, can be probed at GigaZ.

4.7 Constraints from FCNCs

The placement of fermions in different locations in extra dimensions, on the TeV

brane or in the bulk, leads to potentially dangerous FCNC since the Glashow-

Weinberg-Paschos conditions [85, 140] for the natural absence of FCNC are no longer

satisfied. These conditions are violated automatically whenever fermions of different

generations are treated asymmetrically by some form of new physics and mixing oc-

curs between the relevant states. Within the RS scenario that we have constructed,

these FCNC can arise from a number of potential sources, not all of which present

the same level of danger. A detailed analysis of FCNC effects is certainly beyond the

scope of this paper and requires a specific flavor model as input; we simply outline

the potential sources of FCNC and provide a few estimates of their size.

The most obvious sources of FCNC are from the exchanges of gauge bosons. The

states in the gauge KK towers can feel the different fermion generation localities,
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Figure 4.10: The planes sin2θeff versus MW (top) and sin2θeff versus Rb (bottom)
showing current and future sensitivities, SM predictions, and RS model predictions.
The diamonds show the current measured values of the observables. The large solid
and dashed ellipses represent respectively the 68% and 95% CL regions from current
sensitivities, while the smaller solid ellipses anticipate the same after operation of
GigaZ. The black dashdot lines show the SM predictions for different Higgs boson
masses as labeled, while the solid colored lines show the RS model results for varying
m1 for two Higgs masses satisfying the current EW constraints.
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Figure 4.11: Same as the previous figure for ν = −0.4, and different mH choices.
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and through intergenerational mixing can then induce FCNC. Furthermore, the cou-

plings of the wall fields to the KK gauge states are enhanced by a factor of ≈ √2πkrc.

Since zero mode KK gauge states in the limit of vanishing mixing are constrained

by construction to have the same couplings to fermions as do the SM gauge bosons,

such fields can only induce FCNC through the small admixture of KK weak eigen-

states introduced by mixing. These effects are suppressed by small mixing angles,

and are not as important as those arising from the KK towers themselves. We there-

fore expect that the KK gauge state contributions represent the greatest source of

potentially dangerous FCNC.

Graviton KK towers can also probe the different locations of the SM fermion

generations and induce FCNC-like couplings. However, in this case the potentially

dangerous contributions are much smaller since (i) graviton-induced FCNC take the

form of dimension-8 operators, in contrast to the dimension-6 KK gauge contribu-

tions, and lead to amplitudes which are suppressed by factors of order m2
K,D,B/Λ

2
π.

This is an enormous degree of suppression since we have shown that Λπ ≥ 10 TeV in

the scenario presently under consideration. (ii) Unlike KK gauge fields, the graviton

KK couplings to wall fields are not enhanced by the factor
√

2πkrc.

How large are the KK gauge tower contributions? The answer depends upon

which gauge boson we are examining. We neglect in this analysis the small mixing

between the first and second generation fermions and their KK towers. Let ga
L,R

represent the couplings of a particular fermion with electric charge Q to one of the

neutral SM gauge bosons labeled by the index a. We write the fermion couplings to

KK gauge states as ga
L,Rc

n(νi), where νi is the ith generation bulk mass parameter and

n labels the gauge KK tower level. Note that the functions cn in the present model

are independent of chirality and the gauge boson under consideration. The fact that

the cn(νi) are different for each i generates the FCNC terms when we transform to

the mass eigenstate basis. Let UL,R represent the matrices performing the bi-unitary

transformation required to diagonalize the appropriate fermion mass matrix. The

off-diagonal couplings in the mass eigenstate basis are then given by

(Qn
L,R)a

ij = ga
L,R

∑
k

(Uik)L,Rc
n(νk)(U

†
kj)L,R . (4.53)
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For the specific model discussed in the previous sections we have cn(ν1) = cn(ν2) �=
cn(ν3), and we use the unitarity of the U ’s to rewrite these couplings as

(Qn
L,R)a

ij = ga
L,R[cn(ν3)− cn(ν1)](Ui3U

†
3j)L,R . (4.54)

With the third generation on the wall and the first and second in the bulk in the

region −0.6 ≤ ν1 ≤ −0.3, it is clear that |cn(ν3) − cn(ν1)| 

√

2πkrc for all n; at

worst, the size of the off-diagonal couplings in our model is given by

(Qn
L,R)a

ij =
√

2πkrc g
a
L,R(Ui3U

†
3j)L,R , (4.55)

which is independent of n. The Uij arise from some complete theory of flavor that

must reproduce the experimentally measured CKM matrix Vij . We therefore expect

Uij 
 Vij and ee adopt this approximation in our estimates below.

The most stringent constraints on FCNC arise from low energy processes such

as meson-antimeson mixing and rare decays [95]; we present here our estimate for

K−K̄ mixing. The above interaction generates a coupling which can be symbolically

written as

L = 2πkrc

∑
a

∑
n

(Ja
L + Ja

R)2/m2
n , (4.56)

where Ja
L,R = ga

L,rVi3V
†
3j f̄iγµPL,Rfj, mn is the mass of the nth KK gauge state, and

we have summed all KK contributions. Recalling the lore that we can accurately

approximate the matrix element of the two currents in the vacuum insertion approx-

imation, we see that the KK gluon towers do not contribute. This is due to the fact

that these states only couple to currents with non-zero color while both the meson

and the vacuum are color singlets. Thus we need to consider only the Z and γ tower

exchanges. Using
∑

nm
−2
n 
 1.5m−2

1 [61], V13V
†
32 
 A2(1 − ρ)2λ5 in the Wolfenstein

parameterization and

< K|JLJR|K̄ >= ΩK < K|JLJL|K̄ >= ΩK < K|JRJR|K̄ > , (4.57)
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with ΩK 
 7 [32] for the current-current matrix element, we arrive at

∆mRS
KK

∆mSM
KK


 0.0098[1 + 0.73ΩK ]
(

11TeV

m1

)2


 0.06 , (4.58)

which is within the uncertainty of the SM result [36]. From this estimate we see that,

at least for the K − K̄ system, the RS FCNC contributions are rather small. We

have also studied B − B̄ mixing and obtain similar results.

Once a realistic theory of flavor within this RS model context is constructed,

we can perform a more detailed and quantitative analysis of the potential impact

of FCNC. It will be interesting to examine if existing bounds can provide further

constraints on the RS model parameters within such a framework.

4.8 Summary

In this chapter we have re-examined the placement of SM fermions in the full 5-

dimensional bulk of the Randall-Sundrum spacetime. We have found that mixing

between the top quark zero mode and its KK tower, induced by the large top quark

mass, yields shifts in the ρ parameter that are inconsistent with current measure-

ments. To obviate these bounds we must take the fundamental RS scale Λπ ≥ 100

TeV, reintroducing the hierarchy between the Planck and EW scales and thus de-

stroying the original motivation for the RS model. We instead proposed a mixed

scenario which localizes the third generation of quarks, and presumably leptons, on

the TeV-brane and allows the lighter two generations to propagate in the RS bulk.

For values of the bulk mass parameter in the region −0.55 ≤ ν ≤ −0.35, the same

values allowed by both contact interaction searches and ρ parameter constraints aris-

ing from the first two generations, the fermions mass hierarchies mc/mt and ms/mb

are naturally reproduced.

We next explored the consequences of this proposal for current precision EW

measurements. We studied modifications of the electroweak observables caused by

both mixing of the SM gauge bosons with their corresponding KK towers and the

exchanges of higher KK states; we found that with KK masses m1 ≈ 11 TeV and

bulk mass parameters ν ≈ −0.5,−0.4 a Higgs boson with mass mH ≤ 500 GeV can
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provide a good fit to the precision electroweak data. An analysis of the fit showed

that the large couplings between the zero mode bottom quark and KK gauge bosons

induced large shifts in Rb that prevented a heavier Higgs from being consistent with

the precision data.

We then examined the signatures of this scenario at future high energy colliders.

We found that the parameter region consistent with the precision electroweak data

does not lead to any new physics signatures at the LHC; the expected event excess

in both Drell-Yan and gauge boson fusion processes are statistically insignificant

with the envisioned integrated luminosities, and the predicted modification of the

tt̄ production cross section is similarly unobservably small. The only new physics

that the LHC would possibly observe is a Higgs boson apparently heavier than that

allowed by the SM electroweak fits. By contrast, the parameter range m1 ≤ 15 TeV

and ν ≤ −0.3 can be probed in fermion pair production processes at a future e+e−

collider with center-of-mass energy of 500−1000 GeV, while the region m1 ≤ 25−30

TeV and ν ≤ −0.3 is testable at GigaZ. For larger KK first excitation masses, we

reintroduce the hierarchy between Λπ and the electroweak scale.

Finally, we considered the possible constraints on this scenario arising from low

energy FCNC. The asymmetric treatment of the three fermion generations allows KK

Z-boson exchanges to mediate FCNC interactions. We estimated the contributions

of such effects to meson-antimeson mixing, and found that their size is within the

theoretical errors inherent to meson mixing. However, a detailed analysis of FCNC

effects requires a full model of flavor, which we have not constructed.

In summary, we have found that the experimental restrictions on placing SM

matter in the RS bulk lead naturally to a very interesting region of parameter space.

This parameter region provides a geometrical origin for the fermion Yukawa hierar-

chies, and allows a heavy Higgs boson to be consistent with precision measurements

while remaining otherwise invisible at the LHC. We believe that such features render

this model worthy of further study.



Chapter 5

Kaluza-Klein Effects on Higgs

Physics in Universal Extra

Dimensions

5.1 Introduction

We studied in the previous chapter one example of an extra-dimensional theory,

the Randall-Sundrum model, which embedded our 4-dimensional space-time into a

curved 5-dimensional anti-de Sitter space. We examine here an alternative type of

extra-dimensional theory which contains flat extra dimensions. There are many rea-

sons for studying theories of this type. These models permit some of the qualitative

features of string theory, such as the existence of extra dimensions and stringy reso-

nances [3, 60, 78], to be tested experimentally, and predict the appearance of a wide

variety of phenomenology at future high energy colliders [84, 100, 104, 135, 150].

They also furnish a slightly different solution to the hierarchy problem than the

Randall-Sundrum model, by lowering the fundamental Planck scale to a TeV, rather

than generating this hierarchy through a warp factor arising from the curved geome-

try. The string theoretic motivation for extra dimensions also allows new dimensions

in which Standard Model (SM) or other non-gravitational fields can propagate [12];

for consistency with experimental constraints they must have a size of order an

TeV−1. Models utilizing this idea have been shown to yield a host of interesting

100
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phenomena, including TeV-scale unification [69, 70], explanations of fermion Yukawa

hierarchies [21, 25], mechanisms for generating neutrino masses [24, 71], and methods

of rendering axions invisible [72].

One proposed scenario, referred to as the Universal Extra Dimensions (UED)

model [15], allows all the SM fields to propagate in TeV−1 extra dimensions. At tree

level, the momentum in the extra dimensions is conserved, requiring pair production

of the associated Kaluza-Klein (KK) modes at colliders and preventing tree level

mixing effects from altering precision electroweak measurements. The compactifica-

tion scale of the UED can therefore be as low as 300 GeV for one extra dimension,

and remains less than 1 TeV for two UED. The phenomenological implications of

UED for collider experiments [125, 151], b→ sγ [4], and the muon anomalous mag-

netic moment [16] have been studied, and new mechanisms for generating neutrino

masses [18] and suppressing proton decay [17] have been developed.

The detection of direct production of UED KK states at future colliders is ex-

pected to be difficult, for the following two reasons: (i) a remnant of extra-dimensional

momentum conservation when loop effects are included implies the existence of a

neutral, stable KK mode, leading to the necessity of interpreting missing energy

signatures; (ii) the near degeneracy of the KK excitations within each level renders

the mass shifts due to radiative corrections important in determining the pattern

of decays [49, 50]. It is therefore interesting to determine whether there are other,

indirect ways in which the effects of UED can be detected. One such possibility is

through the modification of Higgs production and decay processes at future collid-

ers; determining whether such deviations can significantly modify Higgs properties

is also important considering the necessity of establishing the mechanism of elec-

troweak symmetry-breaking. We study here the processes gg → h, h → γγ, and

h → γZ; the first interaction is the dominant Higgs production mechanism at the

LHC, while the second is the primary discovery mode for mH ≤ 150 GeV. All three

processes occur at one loop in the SM, the same order at which the KK excitations

first contribute; we expect, and find, that these effects are quite large for the low

compactification scales allowed for UED. Furthermore, graviton exchanges do not

contribute to these processes at one loop, as can be seen from the unitary gauge

Feynman rules in [84, 100]. We can therefore with some sense of security neglect the
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gravitational effects which presumably also appear in the complete theory in which

the UED are embedded [98]. We concentrate here on modifications arising from

physics in UED, rather than from other extra-dimensional models, for two reasons:

(i) in the Randall-Sundrum model, in which SM fields can propagate in the full 5-

dimensional spacetime, Higgs physics is already modified at tree-level by the mixing

between the Higgs and the radion field which stabilizes the extra dimension [103];

(ii) in TeV−1 models where only gauge fields propagate in the bulk, we expect the

effects to be unobservable, because the bound on the compactification scale from

electroweak precision fits is quite high [129, 152] and the top quark KK excitations

which induce the majority of the effects found here are absent.

This chapter is organized as follows. In Section 2 we review the formulation of

the SM in one additional UED, focusing on the appropriate gauge-fixing and the

mixing within the top quark KK tower. We study the modifications of the processes

gg → h, h → γγ, and h → γZ in Section 3; we find that the heavy KK modes

decouple, yielding finite, unambiguous results for one UED. For more than one UED

the sums over KK modes diverge, and only qualitative statements can be made. We

find that observable modifications to Higgs production and decay processes occur for

compactification masses m1 ≤ 1.5 TeV; the gg → h production rate is increased by

≈ 10% − 85% for 1500 ≥ m1 ≥ 500 GeV, respectively, while the decay widths are

shifted by ≤ 20% in the same interval. We summarize our results in Section 4.

5.2 Kaluza-Klein Reduction of the 5-dimensional

Standard Model

We review here the formulation of the UED model, in which all the SM fields can

propagate in the extra dimensions. We restrict our attention to the 5-dimensional

scenario, and focus on the issues most pertinent to our calculation: the appropriate

choice of gauge-fixing and the effects of mixing within the top quark KK tower.

A detailed construction of the SM in UED is given in [15], while a discussion of

generalized Rξ gauges in a variety of extra-dimensional models is presented in [138].
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We begin with the action

S =
∫ πR

−πR
dy
∫
d4x

{
− 1

2

3∑
i=1

Tr
[
FiMNF

MN
i

]
+ (DMH)†DMH + µ2|H|2 − λ5

4
|H|4

+i Q̄ �DQ+ i t̄ �D t+
[
λt

5Q̄ i σ2H
∗ t+ h.c.

] }
. (5.1)

Here (M,N) are the 5-dimensional Lorentz indices, and R is the radius of the fifth

dimension, which we have anticipated compactifying on S1/Z2. H is the Higgs dou-

blet, and the FMN
i are the field strengths for the SM gauge groups. Q is the third

generation quark doublet and t is the top quark singlet; we will not need the remain-

ing SM fermions in our analysis, and they have consequently not been included. The

covariant derivative DM can be expressed as

DM = ∂M − i
3∑

i=1

gi
5 T

a
i A

a
i M , (5.2)

where the gi
5 are the 5-dimensional coupling constants for U(1)Y , SU(2)L, and

SU(3)c, and the T a
i are the generators of these groups. The 5-dimensional Dirac

matrices are γM = (γµ, i γ5). µ2, λ5, and λt
5 are the 5-dimensional versions of the

usual Higgs couplings and top quark Yukawa coupling. The parameters λ5, λ
t
5, and

gi
5 are dimensionful, and must be rescaled to obtain the correct dimensionless SM

couplings; no rescaling is necessary for the the Higgs mass parameter µ2.

To derive the 4-dimensional effective action we must expand the 5-dimensional

fields into their KK modes; we must also remove several extra massless particles

from the resulting theory. Five-dimensional fermions are necessarily vector-like, and

we wish to obtain the chiral zero modes necessary for construction of the SM; this

necessitates the removal of the extra zero modes appearing in the top quark KK tower.

We also must eliminate the zero modes of the scalars A5
i that arise in the reduction

of the gauge fields. To do this we follow the standard recipe of compactifying the

fifth dimension on an S1/Z2 orbifold and requiring that the fields whose zero modes

we wish to remove are odd under the orbifold projection y → −y. The appropriate
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KK expansions of the 5-dimensional fields are:

H(xµ, y) =
1√
2πR

{
H(0)(xµ) +

√
2
∞∑

n=1

H(n)(xµ) cos (
ny

R
)

}
,

Ai µ(xν , y) =
1√
2πR

{
A

(0)
i µ (xν) +

√
2
∞∑

n=1

A
(n)
i µ (xν) cos (

ny

R
)

}
,

A5
i (x

ν , y) =
1√
πR

∞∑
n=1

A
5(n)
i (xν) sin (

ny

R
) ,

Q(xν , y) =
1√
2πR

{
Q

(0)
L (xν) +

√
2
∞∑

n=1

[
PLQ

(n)
L (xν) cos (

ny

R
)

+PRQ
(n)
R (xν) sin (

ny

R
)
]}

,

t(xν , y) =
1√
2πR

{
t
(0)
R (xν) +

√
2
∞∑

n=1

[
PRt

(n)
R (xν) cos (

ny

R
)

+PLt
(n)
L (xν) sin (

ny

R
)
]}

, (5.3)

where we have introduced the projection operators PR,L = (1±γ5)/2. We thus obtain

the desired zero modes A
(0)
i µ , Q

(0)
L , and t

(0)
R , corresponding to the SM fields. These

expansions should be inserted into the action of Eq. 5.1. We must also expand the

zero mode Higgs doublet around its vev, and express the KK Higgs doublets in terms

of their component fields:

H(0) =


 φ(0)+

1√
2

(
ν + h(0) + i χ(0)

)

 , H(n) =


 φ(n)+

1√
2

(
h(n) + i χ(n)

)

 . (5.4)

Here ν is the usual 4-dimensional Higgs vev, h(0) is the physical zero mode Higgs,

and χ(0), φ±(0) are the zero mode Goldstone bosons. The h(n) are the CP-even Higgs

KK excitations, the χ(n) are CP-odd scalars that will combine with the Z5(n) to form

a tower of CP-odd Higgs bosons and generate the longitudinal components for the

Z(n)
µ , and the φ±(n) are charged scalars that together with the W±5(n) will form a

tower of charged Higgs scalars and longitudinal components for the W±(n)
µ . Inserting

the expansions of Eqs. 5.3 and 5.4 into the action in Eq. 5.1 leads to a slew of mass

terms, mixings, and couplings. We focus first on the masses and mixings in the gauge

sector, introducing the appropriate gauge-fixing terms and deriving the spectrum of
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physical states and Goldstone fields.

We first examine the photon KK tower; the relevant mass terms and mixings are

SA =
∫
d4x

∞∑
n=1

{
1

2
m2

nA
(n)
µ Aµ(n) −mnA

(n)
µ ∂µA5(n)

}
, (5.5)

where mn = n/R is the KK mass of the nth level arising from the derivative ∂5

acting on the 5-dimensional wavefunctions of Eq. 5.3. The most natural choice of

gauge-fixing is the five-dimensional analog of the Feynman gauge,

SA
gf = −1

2

∫ πR

−πR
dy
∫
d4x

(
∂MA

M
)2

. (5.6)

Utilizing the KK expansion of AM , and summing Eqs. 5.5 and 5.6, we find that the

mixing between A(n)
µ and A5(n) cancels, and that we are left with the mass terms

SA + SA
gf =

1

2

∫
d4x

∞∑
n=1

{
m2

nA
(n)
µ Aµ(n) −m2

n

(
A5(n)

)2
}

; (5.7)

the spectrum then consists of a massless zero mode A(0)
µ , a tower of KK modes A(n)

µ

with masses mn, and a tower of Goldstone particles A5(n) also with mass mn. The

treatment of the gluon KK tower proceeds identically, and we will not present it

explicitly.

We next study the Z boson KK tower, together with the KK excitations of the

zero mode Goldstone particle, χ. The corresponding masses and mixing terms are

SZ =
1

2

∫
d4x
{
M2

Z

(
Z(0)

)2
+ 2MZZ

(0)
µ ∂µχ(0) +

∞∑
n=1

[
−m2

n

(
χ(n)

)2
+m2

Z,nZ
(n)
µ Zµ(n)

−M2
Z

(
Z5(n)

)2 − 2mnMZZ
5(n)χ(n) + 2Z(n)

µ ∂µ
(
MZχ

(n) −mnZ
5(n)
) ]}

, (5.8)

where we have introduced the abbreviation m2
Z,n = M2

Z +m2
n. We choose the straight-

forward 5-dimensional generalization of the usual SM Feynman gauge,

SZ
gf = −1

2

∫ πR

−πR
dy
∫
d4x

(
∂MZ

M −MZχ
)2

; (5.9)

utilizing the KK expansion of Eq. 5.3 and combining this with Eq. 5.8, we derive the
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following mass terms:

SZ + SZ
gf =

1

2

∫
d4x

{
M2

ZZ
(0)
µ Zµ(0) −M2

Z

(
χ(0)

)2
+
∞∑

n=1

[
m2

Z,nZ
(n)
µ Zµ(n)

−m2
Z,n

(
χ(n)

)2 −m2
Z,n

(
Z5(n)

)2
]}

; (5.10)

the mixing between Z(n)
µ and Z5(n) cancels. It is clear from Eq. 5.8 that the linear

combinations of fields that serve as Goldstone modes for the Z boson KK tower are

G
(n)
Z =

MZχ
(n) −mnZ

5(n)√
M2

Z +m2
n

, (5.11)

while the physical CP-odd scalars are

χ
(n)
Z =

mnχ
(n) +MZZ

5(n)√
M2

Z +m2
n

. (5.12)

With the gauge choice we have made, the states G
(n)
Z , χ

(n)
Z , and Z(n)

µ all possess the

mass mZ,n.

Finally, we consider the masses and mixing terms involving the W± KK tower

and the KK excitations of the zero mode Goldstone fields φ±:

SW =
∫
d4x

{
M2

WW
+(0)
µ W−µ(0) + iMW

(
W−(0)

µ ∂µφ+(0) −W+(0)
µ ∂µφ−(0)

)

+
∞∑

n=1

[
−m2

nφ
+(n)φ−(n) +m2

W,nW
+(n)
µ W−µ(n) −M2

WW
+5(n)W−5(n)

−imnMW

(
W−5(n)φ+(n) −W+5(n)φ−(n)

)
−W−(n)

µ ∂µ
(
mnW

+5(n)

−iMWφ
+(n)

)
−W+(n)

µ ∂µ
(
mnW

−5(n) + iMWφ
−(n)

) ]}
, (5.13)

where we have abbreviated m2
W,n = M2

W +m2
n. The appropriate choice of gauge-fixing

term is again the obvious 5-dimensional extension of the SM Feynman gauge:

SW
gf = −

∫ πR

−πR
dy
∫
d4x

(
∂MW

+M − iMWφ
+
) (
∂MW

−M + iMWφ
−) . (5.14)

Inserting the KK expansions of Eq. 5.3 into this expression, and adding it to Eq. 5.13,
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we find that the mixing between W±(n)
µ and W±5(n) cancels, and we obtain the mass

terms

SW + SW
gf =

∫
d4x
{
M2

WW
+(0)
µ W−µ(0) −M2

Wφ
+(0)φ−(0)

+
∞∑

n=1

[
m2

W,nW
+(n)
µ W−µ(n) −m2

W,nW
+5(n)W−5(n)

−m2
W,nφ

+(n)φ−(n)
]}

. (5.15)

Again, the Goldstone modes are linear combinations of the 5-dimensional components

of the gauge fields, W±5(n), and the KK excitations of the zero mode Goldstone, φ±(n):

G±(n) =
mnW

±5(n) ∓ iMWφ
±(n)√

m2
n +M2

W

. (5.16)

The physical charged Higgs pair is the orthogonal combination:

H±(n) =
mnφ

±(n) ∓ iMWW
±5(n)√

m2
n +M2

W

. (5.17)

In the 5-dimensional generalization of the SM Feynman gauge we employ, the fields

W±µ(n), G±(n), and H±(n) share the common mass mW,n.

Having computed the spectrum of states in the gauge sector, we can now derive

the interactions of the gauge and scalar particles; we identify the 4-dimensional

couplings as λ = λ5/2πR, λt = λt
5/
√

2πR, and gi = gi
5/
√

2πR so that the zero

mode interactions match those of the SM. Letting φ
(n)
i denote a KK excitation of an

arbitrary SM field, the contributing KK interactions take the form

φ
(0)
i φ

(n)
j φ

(n)
k , φ

(0)
i φ

(0)
j φ

(n)
k φ

(n)
l . (5.18)

The explicit expressions for these vertices are simple to obtain; for every SM vertex

φ
(0)
i φ

(0)
j φ

(0)
k or φ

(0)
i φ

(0)
j φ

(0)
k φ

(0)
l , there is a corresponding KK vertex with exactly the

same coupling strength. We note explicitly that the h(0)W+(n)W−(n) and h(0)Z(n)Z(n)

vertices are identical to the h(0)W+(0)W−(0) and h(0)Z(0)Z(0) vertices; the masses that

appear in the KK interactions are MW and MZ , not mW,n and mZ,n. The heavy
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KK states decouple from the processes considered here, allowing us to obtain finite

results in five dimensions when the sum over KK modes is performed. The only other

interactions needed for our calculation are those involving W±5(n), which are simple

to obtain. For a complete list of the SM vertices we refer the reader to [68].

We now derive the interactions of the top quark KK states required in our analysis.

Although there is no mixing between different levels of the top quark KK tower, the

doublet and singlet states within each level mix. The mass matrix for the nth KK

level arising from the reduction of Eq. 5.1 is

(
Q̄

(n)
L , t̄

(n)
L

) mn mt

mt −mn




 Q

(n)
R

t
(n)
R


+ h.c. , (5.19)

where mt is the zero mode top quark mass. This can be diagonalized with the

following unitary matrices for the left and right-handed fields:

U
(n)
L =


 cos(α(n)/2) sin(α(n)/2)

sin(α(n)/2) −cos(α(n)/2)


 , U

(n)
R =


 cos(α(n)/2) sin(α(n)/2)

−sin(α(n)/2) cos(α(n)/2)


 ,

(5.20)

where both states in the physical basis have mass mt,n =
√
m2

n +m2
t , and cos(α(n)) =

mn/mt,n, sin(α(n)) = mt/mt,n. We must derive the couplings of these states to h(0),

A(0)
µ , Z(0)

µ , and g(0)
µ for our analysis. Denoting the mass eigenbasis of the nth level by

the vector T (n), we find the following KK interactions:

St =
∫
d4x

∞∑
n=1

{
T̄ (n) �A(0)C

(n)
A T (n) + T̄ (n) �Z(0)C

(n)
Z,V T

(n) + T̄ (n) �g(0)C(n)
g T (n)

+
[
h(0)T̄ (n)C

(n)
h T (n) + h.c.

] }
. (5.21)

The coupling matrices appearing in this expression are

C
(n)
A = eQt


 1 0

0 1


 , C

(n)
Z,V =

g

cW


 gv − ga cos(α(n)) 0

0 gv + ga cos(α(n))




C
(n)
h = mt


 sin(α(n)) cos(α(n))

−cos(α(n)) sin(α(n))


 , C(n)

g = g3


 1 0

0 1


 , (5.22)
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where Qt is the top quark charge in units of e, cW is the cosine of the weak mixing

angle, g and g3 are respectively the coupling constants of SU(2)L and SU(3)c, and gv,

ga are the top quark vector and axial couplings to the SM Z. The γ5 component of

the Z interaction does not contribute to the studied processes, and has consequently

not been included. We note that the coupling of top quark KK states to the Higgs

is proportional to mt, not mt,n; the heavy KK top quarks decouple as do the W±(n)

and Z(n) towers. This is in contrast to the behavior of a heavy fourth generation

quark, whose coupling to the Higgs is proportional to its mass, and which does not

decouple.

We now possess the tools required to study corrections to Higgs boson production

and decay processes arising from one loop KK exchanges. We will concentrate on

the processes gg → h, h → γγ, and h → γZ, which occur at one loop in the SM;

the KK contributions to these interactions are therefore of the same order as the

SM contributions. The decoupling of the higher KK modes allows us to obtain finite

predictions when only one extra dimension is considered; furthermore, at one loop

graviton exchanges do not contribute to these processes, rendering our neglect of the

gravity sector of the theory justifiable. These features allow us to obtain unambiguous

and testable predictions.

5.3 KK Effects in One Loop Higgs Processes

We now study the effects of virtual KK exchanges in gg → h, h→ γγ, and h→ γZ,

processes relevant for Higgs production and decay at the LHC. Both the SM and

KK contributions to these interactions occur at one loop, and we therefore expect

the modifications arising from KK exchanges to be significant. This is indeed the

case; we will find that KK effects are visible for the compactification mass m1 in the

range 400 GeV ≤ m1 ≤ 1500 GeV, a region consistent with the constraints arising

from both direct searches and precision measurements [15].

5.3.1 gg → h

The process gg → h proceeds in the SM through diagrams containing fermion triangle

loops. We consider only contributions arising from the top quark and its KK tower;
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the couplings of other fermions to the Higgs are much smaller than that of the top

quark, and are negligible in our analysis. The production cross section, which is

proportional to the h→ gg width, can be written in the form

σgg→h =
GF [αs(mH)]2

32
√

2πm4
H

|Ft|2 , (5.23)

where GF is the Fermi constant, αs(mH) is the QCD coupling strength evaluated at

the Higgs mass scale, and Ft is the contribution of the loop integrals over the top

quark KK tower contributions. Introducing the abbreviation

C0(m
2) = C0(m

2
H , 0, 0;m2, m2, m2) (5.24)

for the three-point scalar Passarino-Veltman function [68, 141], the SM result be-

comes

F SM
t = −2m2

t +m2
t

(
m2

H − 4m2
t

)
C0(m

2
t ) . (5.25)

The scalar three-point function of Eq. 5.24 can be evaluated in terms of elementary

functions, yielding

C0(m
2) =



− 2

m2
H

[
arcsin

(
1√
τ

)]2
τ ≥ 1

1
2m2

H

[
ln
(

1+
√

1−τ
1−√1−τ

)
− iπ

]2
τ < 1

, (5.26)

where τ = 4m2/m2
H . The couplings of the top quark KK excitations to both zero

mode Higgs bosons and photons are given in Eq. 5.22; utilizing these expressions, we

can write Ft = F SM
t + FKK

t , where

FKK
t = 2mt

∞∑
n=1

mt,n sin(α(n))
{
−2 +

(
m2

H − 4m2
t,n

)
C0(m

2
t,n)
}
. (5.27)

In obtaining this formula, and other formulae presented in this paper, we used

QGRAF [139] to check that we included all the appropriate diagrams and FORM [164]

to verify our algebraic manipulations. In the limit m2 → ∞, C0(m
2) ≈ −1/2m2 −
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m2
H/24m4. Applying this result to FKK

t , we find that

FKK
t ≈ −2m2

Hm
2
t

3

∞∑
n=1

1

m2
n

(5.28)

in the limit that the KK mass parameters mn are much larger than either mt or

mH . In five dimensions this sum is over a single index n, and we obtain a convergent

result. In greater than five dimensions we must sum over an array of indices ni,

where i ranges over the number of extra dimensions, and FKK
t diverges (in more

than five dimensions there is also a greater multiplicity of states arising from the KK

reduction [48], which affects both the finite piece and the coefficient of the divergent

part of the sum). These divergent sums can be evaluated by introducing a cutoff Λ;

in six dimensions, for example, this leads to the result FKK
t ∝ ln(ΛR). We will not

study scenarios with D > 5 here; we expect, however, that the results we obtain in

the 5-dimensional case will be qualitatively similar to those found in the complete

D > 5 theory in which these UED are embedded, and in which this arbitrariness is

removed.

Since the lower bound on the KK mass parameter m1 in UED models is quite

low, m1 ≥ 300−400 GeV, we expect the deviations due to the virtual KK exchanges

to be large. We present in Fig. 5.1 the fractional deviation of the production cross

section from that of the SM for the following choices of compactification mass: m1 =

500, 750, 1000, 1250, 1500 GeV. It was argued in [15] that the 4-dimensional effective

theory remains valid until mn ≈ 10 TeV. A negligible fraction of the effects found

here are induced by KK modes with masses above this value, and we can therefore

trust our results for the compactification masses m1 ≤ 1.5 TeV considered. Fits

to the electroweak precision data within the framework of extra-dimensional models

typically allow Higgs masses larger than the 95% CL upper bound obtained in the

SM [152]; we therefore present results for the range mH ≤ 500 GeV. For m1 = 500

GeV and mH ≈ 120 GeV, the production rate is ≈ 85% larger than in the SM;

this decreases to 40% for a 500 GeV Higgs. For m1 = 1500 GeV and mH ≈ 120

GeV the increase is ≈ 10%. A more complete analysis would take into account the

next-to-leading order QCD corrections, which significantly increase σgg→h [66, 75],

and the next-to-next-to-leading order QCD corrections in the mt →∞ limit, which
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have recently been computed [10, 101]. However, the KK contributions will receive

the same QCD corrections, and we expect that for m1 ≤ 1.5 TeV and a light Higgs

boson, deviations arising from physics in UED should be observable. Future e+e−

linear colliders will determine the h→ gg decay width with a 10%− 12.5% precision

for Higgs masses in the range 120 − 140 GeV [2], indicating that compactification

masses m1 ≤ 1500 GeV are indeed testable.

We will examine the observability of UED contributions at future colliders in more

detail in the following subsections, where we compute the corresponding deviations

arising from KK exchanges in the decays h → γγ and h → γZ. This will allow us

to estimate the total shift in production rates for the processes gg → γγ, γZ, which

are relevant for Higgs searches at the LHC.

Figure 5.1: The fractional deviation of the gg → h production rate in the UED
model as a function of mH ; from top to bottom, the results are for m1 =
500, 750, 1000, 1250, 1500 GeV.
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5.3.2 h→ γγ

We now study the decay h→ γγ, which is the primary discovery mode at the LHC

for a Higgs with mass mH ≤ 150 GeV. At one loop, this process proceeds through

both top quark and gauge sector loops, with the latter involving the W± tower and

its associated Goldstone modes and ghosts. The decay width can be written as

Γh→γγ =
GFα

2

8
√

2π3mH

|F |2 , (5.29)

where α is the electromagnetic coupling, and F = FW + 3Q2
tFt. The SM result for

F SM
t is given in Eq. 5.25, and

F SM
W =

1

2
m2

H + 3M2
W − 3M2

W

(
m2

H − 2M2
W

)
C0(M

2
W ) . (5.30)

In the UED model there are additional contributions from the top quark KK tower,

the W± tower and its associated Goldstone modes, ghost KK states, and the H±

tower defined in Eq. 5.17. We set Ft = F SM
t + FKK

t and FW = F SM
W + FKK

G ,

with FKK
t denoting the top quark KK tower contribution and FKK

G including the

contributions of the KK excitations in the gauge and Higgs sectors. FKK
t is then

given by the expression in Eq. 5.27, and

FKK
G =

∞∑
n=1

{
1

2
m2

H + 4M2
W −

[
4M2

W

(
m2

H − 2m2
W,n

)
−m2

Hm
2
W,n

]
C0(m

2
W,n)

}
.

(5.31)

Using the expansion C0(m
2) ≈ −1/2m2 −m2

H/24m4, it is simple to check that this

sum converges in five dimensions. However, it diverges for D > 5, as does the

gg → h production cross section. We again expect that the results we obtain will

be qualitatively similar for D > 5 when the cutoff dependence is fixed by a more

complete theory.

The interference between the SM and KK contributions is more intricate in

h → γγ than in gg → h, as thresholds exist at both 2MW and 2mt where the

relative importance of the various contributions can change. The fractional devi-

ation of the h → γγ decay width is shown in Fig. 5.2 for five choices of m1, and

the fractional deviations due to the top quark KK tower and the gauge and Higgs
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tower contributions are presented separately for m1 = 500 GeV in Fig. 5.3. The γγ

decay width in the UED model is ≈ 12% smaller than in the SM for mH ≤ 2MW

and m1 = 500 GeV, the Higgs mass region in which this decay is expected to be the

discovery mode at the LHC; this result drops to ≈ 4% for m1 = 1000 GeV. However,

at mH ≈ 2mt the decay width in the UED scenario becomes larger than in the SM.

The relevant contributions of the top quark and gauge sector KK towers are shown

in Fig. 5.3. The contribution of the top quark KK tower, the dominant UED term,

interferes destructively with the SM result below the 2mt threshold; this behavior

reverses above threshold.

Figure 5.2: The fractional deviation of the h → γγ decay width in the UED model
as a function of mH ; from top to bottom on the right, the results are for m1 =
500, 750, 1000, 1250, 1500 GeV.

To determine the sensitivity of the LHC to these effects, we must compute the

net shift in the γγ production rate resulting from the deviations in both gg → h and

h→ γγ. For resonant production of the Higgs, the γγ signal is well approximated by

taking σgg→h×Γh→γγ , including the parton density functions evaluated at the relevant

scale, and multiplying by the appropriate prefactors. The fractional deviation in the
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Figure 5.3: The fractional deviation of the h → γγ decay width for m1 = 500 GeV
as a function of mH , with the contributions of the top quark sector and the gauge
and Higgs sectors shown separately.

γγ production rate is presented in Fig. 5.4 for five choices of m1. For mH ≤ 150

GeV, the region of interest at the LHC, the increase in σgg→h and the decrease in

Γh→γγ yield a total ≈ 10%− 65% increase in the total rate as m1 is varied from 1250

GeV to 500 GeV, respectively. The LHC is expected to be sensitive to this rate at

the 10% − 15% level [167]; consequently, we expect signals from UED to be visible

if m1 ≤ 1000− 1250 GeV. An independent measurement of the h→ γγ decay width

will be achievable at future linear colliders; for mh ≤ 150 GeV, a measurement of

the hγγ coupling at the 7%− 10% level will be possible [2]. This will provide a test

of UED models with m1 ≤ 800 GeV. A measurement of the h → γγ width with an

accuracy of ≈ 2% is possible with the proposed photon collider option of future e+e−

colliders [28]; this would allow probes of the UED model with KK mass parameter

m1 ≤ 1500 GeV.
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Figure 5.4: The fractional deviation of R = σgg→h × Γh→γγ, the γγ production rate,
in the UED model as a function of mH ; from top to bottom, the results are for
m1 = 500, 750, 1000, 1250, 1500 GeV.
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5.3.3 h→ γZ

We examine here the decay h → γZ, which proceeds in the SM through top quark

and gauge sector loops. Although the width of this process exceeds the h→ γγ width

for Higgs masses in the range mH ≥ 130 GeV, the single photon and need to demand

a leptonic Z decay for reconstruction purposes render it less interesting at the LHC.

However, since it potentially provides another test of the detailed properties of the

Higgs boson, we study modifications of this decay arising from physics in UED.

The decay width can be expressed as

Γh→γZ =
αG2

FM
2
Wm

3
Hs

2
W

64π4

(
1− M2

Z

m2
H

)3

|F |2 , (5.32)

where sW is the sine of the weak mixing angle. We introduce the abbreviation

C2(m
2) = C1(m

2
H ,M

2
Z , 0;m2, m2, m2) + C11(m

2
H ,M

2
Z , 0;m2, m2, m2)

+C12 (m2
H ,M

2
Z , 0;m2, m2, m2) , (5.33)

where C1, C11, and C12 are the Passarino-Veltman tensor coefficients defined in [68],

and change slightly our shorthand notation for the scalar three-point function:

C0(m
2) = C0(m

2
H ,M

2
Z , 0;m2, m2, m2) . (5.34)

These can be evaluated in terms of elementary functions [74]; setting τZ = 4m2/M2
Z

and τH = 4m2/m2
H , we have

4m2C2(m
2) =

τZτH
2 (τZ − τH)

+
τZτ

2
H

2 (τZ − τH)2 {τZ [f(τZ)− f(τH)]

+ 2 [g(τZ)− g(τH)]} ,
4m2C0(m

2) =
2τZτH
τZ − τH [f(τZ)− f(τH)] , (5.35)

where

f(τ) =




[
arcsin

(
1√
τ

)]2
τ ≥ 1

−1
4

[
ln
(

1+
√

1−τ
1−√1−τ

)
− iπ

]2
τ < 1

, (5.36)
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and

g(τ) =




√
τ − 1 arcsin

(
1√
τ

)
τ ≥ 1

1
2

√
1− τ

[
ln
(

1+
√

1−τ
1−√1−τ

)
− iπ

]
τ < 1

. (5.37)

Writing

F = cot(θW )FW + 3
gvQt

sW cW
Ft , (5.38)

where θW is the weak mixing angle, the SM result becomes

F SM
t = 4m2

t

{
4C2(m

2
t ) + C0(m

2
t )
}

F SM
W = 4

{
−M2

W

(
3C0(M

2
W ) + 5C2(M

2
W )
)
− 1

2
m2

HC0(M
2
W )

+s2
W

[
M2

W

(
6C2(M

2
W ) + 4C0(M

2
W )
)

+m2
HC2(M

2
W )
] }

. (5.39)

In our notation, gv = I3/2− s2
WQt, where I3 is the third component of the top quark

weak isospin. In the UED model, there are additional contributions from both the

top quark KK tower and the gauge sector KK excitations; partitioning these pieces

as in the h→ γγ case, Ft = F SM
t + FKK

t and FW = F SM
W + FKK

G , we find

FKK
t = 8

∞∑
n=1

{
mtmt,n sin(α(n))

[
4C2(m

2
t,n) + C0(m

2
t,n)
]}

FKK
G = 4

∞∑
n=1

{
−M2

W

(
3C0(M

2
W ) + 7C2(M

2
W )
)
− 1

2
m2

HC0(M
2
W )

+s2
W

[
M2

W

(
8C2(M

2
W ) + 4C0(M

2
W )
)

+m2
HC2(M

2
W )
] }

. (5.40)

We have used the couplings given in Eq. 5.22 in deriving these results. It can be

checked that these sums converge in D = 5, but diverge for D > 5; again, we

concentrate on the D = 5 scenario.

We present the fractional deviation of Γh→γZ in the UED model in Fig. 5.5 for

five choices of the KK mass parameter m1, and show the relative contributions of

the top quark and gauge sectors in Fig. 5.6. The decay width in the UED model is

slightly larger than the SM width for mH ≤ 275 GeV, and slightly smaller for higher

values of mH . The top quark and gauge sector KK towers have contributions with

approximately equal magnitude but opposite sign, as seen in Fig. 5.6, and their effects
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tend to cancel. For all mH and m1 considered the deviation is ≤ 10%, and is hence

smaller than the modifications to the gg and γγ widths. An effect of this magnitude

is possibly observable at future linear colliders, although a detailed analysis of this

decay mode has not been performed; it is also possible that such an effect could be

observed in the γγ collision option of future colliders.

Figure 5.5: The fractional deviation of the h → γZ decay width in the UED model
as a function of mH ; from top to bottom on the left, the results are for m1 =
500, 750, 1000, 1250, 1500 GeV.

The fractional deviation of the γZ production rate at the LHC via gg → h→ γZ

is shown in Fig. 5.7 for five choices of mH . The production increase is ≈ 95% for

mH ≤ 150 GeV and m1 = 500 GeV, and ≈ 20% for m1 = 1000 GeV. This shift is

caused primarily by the gg → h deviation; however, it may render this decay mode

visible above the background at the LHC. Again, a detailed analysis of this decay at

the LHC has not been performed.
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Figure 5.6: The fractional deviation of the h → γZ decay width for m1 = 500 GeV
as a function of mH , with the contributions of the top quark sector and the gauge
and Higgs sectors shown separately.

Figure 5.7: The fractional deviation of R = σgg→h × Γh→γZ , the γZ production rate,
in the UED model as a function of mH ; from top to bottom, the results are for
m1 = 500, 750, 1000, 1250, 1500 GeV.
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5.4 Summary

We have studied the virtual effects of KK excitations in UED on Higgs production

and decay processes relevant for high energy experiments at the LHC and at future

linear colliders. The heavy KK modes decouple, allowing us to obtain unambiguous

predictions for one extra dimension. For two or more extra dimensions the KK mode

sums diverge, and while we expect our results in these scenarios to be qualitatively

similar to those obtained here, we cannot make precise predictions. We have found

that the KK excitation contributions can be quite significant; the gg → h production

rate can be ≈ 85% larger than the SM result for mH ≤ 150 GeV and KK mass

parameter m1 = 500 GeV, a value allowed by current constraints. For m1 ≈ 1500

GeV, the rate increase is ≈ 10%; assuming the SM theoretical prediction is under

control by the time the LHC turns on, this should be an observable shift. The

corresponding deviations in the h → gg decay width can be probed at future e+e−

colliders, allowing compactification masses in the range m1 ≤ 1500 GeV to be tested.

The width of the decay h→ γγ, the primary discovery mode for a Higgs with mass

mH ≤ 150 GeV at the LHC, is decreased relative to the SM prediction by ≈ 12%.

The total γγ production rate is increased by ≈ 10% − 65% for 1250 ≥ m1 ≥ 500

GeV when the reaction gg → h → γγ relevant at the LHC is considered. With

the 10% − 15% accuracy expected in the determination of this rate at the LHC,

compactification masses m1 ≤ 1250 GeV can be probed. The h→ γγ width can be

independently measured at future e+e− and γγ colliders; we expect the effects from

compactification masses m1 ≤ 800 GeV to be observable with the 7%−10% precision

expected at e+e− colliders, and from masses m1 ≤ 1500 GeV to be testable with the

2% precision expected at γγ colliders. Finally, we have examined the deviations in

the decay h → γZ predicted by UED models. We have found that the deviations

from the SM result are less than ≈ 10% throughout the mH , m1 region studied.

However, the process gg → h → γZ is expected to increase by ≈ 20% − 95% for

compactification masses in the range 1000 ≥ m1 ≥ 500 GeV. No detailed study of

this process has been performed for either the LHC or future linear colliders; however,

the production increase at the LHC is possibly visible above background.

How do these results compare with the deviations induced in other new physics
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models? In the Randall-Sundrum model studied in [103], where the Higgs and radion

fields mix, both Γh→gg and Γh→γγ are decreased throughout the allowed parameter

space; the total Higgs production rate can be decreased to ≤ 1% of the SM value

for a large range of Higgs-radion mixing strengths. These results for Γh→gg are

the opposite of those found here, in which the width is increased throughout the

allowed parameter space. The situation is murkier in the Minimal Supersymmetric

Standard Model (MSSM), as a large number of parameters enter calculations at

the one loop level. A detailed study of Higgs physics in the MSSM was performed

in [41]. Typically, Γh→gg is decreased by ≤ 15% throughout the allowed parameter

space, while Γh→γγ is shifted by ≤ 5%, with the direction of the shift parameter

dependent. Again, the deviation in Γh→gg is opposite that found here. Γh→gg was

also studied in [37] within a supersymmetric extra-dimensional scenario [29]. In this

model, Γh→gg receives contributions from loops of both top and stop KK excitations;

the localization of fermion Yukawa couplings at orbifold fixed points induces mixing

within these KK towers. The width is decreased relative to its SM value throughout

the entire parameter space; for a Higgs with mH ≈ 120 GeV the width is ≤ 25%

of the SM result. This is again opposite the shift found here. The effects of any of

these scenarios on Higgs physics should therefore be distinguishable from the shifts

found in the UED model studied here; the direct production of the various new states

associated with each model should also assist in distinguishing them.

In summary, the virtual effects of KK excitations in UED can significantly alter

Higgs properties which will be measured at future colliders. The implications of ra-

diative corrections in extra-dimensional models have not been studied extensively,

primarily because of the resulting divergences. We have shown that in certain sce-

narios such effects are both calculable and important, and we believe that further

investigations along these lines should be undertaken.



Chapter 6

The Drell-Yan Rapidity

Distribution at Next-to-next-to

Leading Order in QCD

6.1 Introduction

In the previous chapters we discussed various forms of new physics which might be

uncovered in future collider experiments, and detailed the most promising signatures

for their discovery. The success of these searches will require a precise knowledge

of the Standard Model backgrounds that can mask the presence of new physics.

Predictions for Standard Model rates and differential distributions beyond leading

order in perturbation theory are required. In this chapter we discuss the next-to-

next-to leading order QCD corrections to the dilepton rapidity distribution in the

Drell-Yan process, one of the most important discovery channels for new physics at

hadron colliders.

The production of lepton pairs in hadronic collisions, known as the Drell-Yan

(DY) process [77], was the first application of parton model ideas beyond deep in-

elastic scattering. Due to its clean theoretical interpretation and large rates, the DY

process has been studied extensively, and will continue to be investigated at both

the Tevatron and the LHC. The DY process provides valuable information about

partonic structure functions, enables measurements of the masses and decay rates
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of the W and Z bosons, and furnishes a sensitive test for many varieties of new

physics, such as the additional gauge bosons that appear in almost any extension of

the Standard Model. It will also be used for the more prosaic purpose of monitoring

partonic luminosities at the LHC.

Despite its importance and the significant amount of work devoted to its de-

scription, the calculation of higher order QCD corrections to the DY process has

proceeded slowly. The next-to-leading order (NLO) QCD corrections to the total

cross-section, and the xF and rapidity distributions, were calculated nearly 25 years

ago in Ref. [8]. The NNLO corrections to the total cross-section were obtained eleven

years later in [99]. No complete calculation of the NNLO QCD corrections to any

differential distribution has ever been performed, although partial results exist in the

literature [149].

Recently, the NNLO virtual corrections to several interesting hard scattering

processes in QCD have been computed (see, for example, [86] and the references

within). The calculation of real emission amplitudes, required for complete NNLO

predictions, is still in progress. In their most general form, these computations entail

a careful analysis of perturbative multiparticle final states in generic hard scattering

events. While it is certainly useful to solve this problem in complete generality, it

is also useful to study specific examples, especially those most urgently needed in

experimental analyses. It is possible to develop alternative methods of calculation

which can be used to compute basic differential distributions. In [9, 10, 11] it was

shown how a simple generalization of the optical theorem can be combined with multi-

loop computational technology to produce a powerful method for the evaluation of

phase-space integrals. In this chapter we present a non-trivial application of these

ideas; we analyze the rapidity distribution of the virtual photon produced in the DY

process through NNLO in perturbative QCD.

We consider the production of low invariant mass lepton pairs in proton-proton

(pp) collisions at relatively small center of mass energies. Such kinematic configu-

rations are being investigated in fixed target experiments. The most recent mea-

surements come from the E866/Nusea collaboration at Fermilab where the dimuon

production cross-section in pp and proton-deuteron collisions has been measured at
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√
s ≈ 40 GeV for muon invariant masses in the interval 4 − 16 GeV. These experi-

ments are sensitive to both the x→ 1 components of the valence quark distribution

functions and to the moderate x components of the sea quark distribution functions

of the proton. Both of these kinematic configurations are not very well constrained

by other data, and therefore the recent measurements of E866 provide a valuable

constraint. The precision of their measurement is approximately 10% per bin; given

significant (∼ 40%) NLO corrections at such energies, the complete NNLO computa-

tion is required. Although in principle both photon and Z boson exchanges contribute

to this process, the Z exchange component is surpressed by M2/M2
Z , where M is the

invariant mass of the lepton pair. This is an approximately 1% effect for the relevant

invariant masses, and will be neglected in our analysis.

This calculation is quite challenging technically. Existing techniques used for

computing phase-space integrals are not capable of handling problems of this com-

plexity. We introduce here a powerful new method for performing these calculations.

We extend the optical theorem in such a way that the calculation of differential distri-

butions becomes possible using the techniques developed for multi-loop calculations.

To achieve this, we represent the rapidity constraint by an effective “propagator”.

This propagator is constructed so that when the imaginary part of the forward scat-

tering amplitude is computed using the optical theorem, the mass-shell constraint for

the “particle” described by this propagator is equivalent to the rapidity constraint

in the phase space integration. We then use the methods described in Ref. [10] for

the calculation of inclusive cross sections, keeping the fake particle propagator in the

loop integrals, and deriving the rapidity distribution as the imaginary part of the

forward scattering amplitude.

6.2 Description of the Calculation

The production of lepton pairs in high-energy hadronic collision occurs in two distinct

steps; the quarks and gluons from the colliding hadrons first annihilate to create a

highly virtual time-like photon, which then decays into a pair of leptons. In the center

of mass frame, the two colliding hadrons have the momenta P1,2 =
√
S/2 (1, 0⊥,±1).

A virtual photon of invariant mass M , produced in the collision, has the momentum
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Pγ = (E,p⊥, pz). The energy and the momentum of the virtual photon are related

by the “mass-shell” condition E2 − p2 = M2. The rapidity of the virtual photon is

defined as Y =
1

2
ln

(
E + pz

E − pz

)
.

We first compute the partonic hard scattering cross-sections, and then convolute

them with the parton distribution functions of the colliding hadrons. The partonic

rapidity distributions for the hard scattering of partons i, j, with momentum p1 =

x1P1 and p2 = x2P2 respectively, are obtained by integrating the hard scattering

matrix elements over the phase-space of the final state particles with the rapidity

and the mass of the virtual photon kept fixed:

dσij

2e2Y dY
=
∫

dΠf |Mij|2δ
(
e2Y − E + pz

E − pz

)
. (6.1)

We consider the collision of the two partons in the center of mass frame. The

rapidity constraint can then be written as

δ

(
e2Y − E + pz

E − pz

)
= e−2Y δ

(
Pγ[p1 − up2]

Pγp1

)
, (6.2)

where we have set u = x1

x2
e−2Y . At leading order in αs, the production of the virtual

photon occurs through the annihilation of a quark anti-quark pair. Only the virtual

photon is produced in the collision, rendering the phase-space integrations trivial.

At higher orders in αs, inelastic channels contribute; at O(αs), for example, we must

also consider both qq̄ → γ∗g and qg → qγ∗. It is still relatively simple to perform

these phase space integrations; however, this approach becomes impractical at higher

orders. We adopt instead the alternative method first suggested in Ref. [9], which

can be efficiently applied at NNLO.

We first represent the δ-function in Eq. 6.2 as the imaginary part of an effective

propagator:

δ(x)→ 1

2πi

[
1

x− i0 −
1

x+ i0

]
. (6.3)

Following the discussion in [10], we then map the constrained phase-space integrals

onto forward scattering loop integrals. We denote the difference of propagators with

opposite i0 prescription, such as that shown in Eq. 6.3, by a cut propagator; final
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state particles on mass-shell are also represented by cut propagators. The rapidity δ-

function constraint becomes, as indicated above, an unconventional propagator linear

in the loop momentum.

At NLO, we must consider integrals of the following general form:

I(ν1, ν2, ...ν5) =
∫

ddk

(2π)d

1

Aν
1...A

ν5
, (6.4)

where A1 = k2−M2± i0, A2 = (k+p2)
2, A3 = (k+p1 +p2)

2± i0, A4 = (k+p2)
2,

and A5 = k · p1 − uk · p2 ± i0. The propagators A1, A3 and A5 should be “cut”

according to Eq. 6.3, indicating that the corresponding particles are on-shell. The

propagators A1..5 are linearly dependent; we can therefore eliminate both A2 and

A4 from the integrand in Eq. 6.4 by partial fractioning. This partial fractioning

produces integrals with either ν1, ν3 or ν5 equal to zero. When the cutting rule of

Eq. 6.3 is applied, these integral vanish. We find that we can reduce all phase-space

integrals of the form of Eq.(6.4) to a single “master” integral, I(1, 0, 1, 0, 1), using

only partial fractioning identities. The need to use only partial fractioning relations

to perform this reduction is specific to the NLO calculation; we will discuss a more

general reduction technique when we consider the NNLO corrections.

We compute the virtual corrections to the leading order production process qq̄ →
γ∗ in the standard fashion, since the rapidity constraint leaves this calculation unaf-

fected. After combining the real and virtual corrections and performing the collinear

factorization, we arrive at the LO and NLO results for the partonic rapidity distri-

butions, which we present here for completeness.

We write the partonic differential cross section for the process i + j → γ∗X,

renormalized in the MS scheme, as

(1− z)dσij

dY
= η

(0)
ij +

(
α

π

)
η

(1)
ij +

(
α

π

)2

η
(2)
ij +O(α3

s), (6.5)

where αs = αs(M) is the strong coupling constant assuming nf massless quark

flavors, renormalized at the scale M . The factorization scale is also set equal to

M ; the dependence on both the renormalization and the factorization scales can be

restored by using the renormalization group invariance of the hadronic cross-section.
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At the lowest order in αs, the virtual photon can be produced only in the collision

of a quark and antiquark of the same flavor. Therefore,

η
(0)
ij = Q2

q (δiqδq̄j + δiq̄δqj) δ(1− z) (δ(y) + δ(1− y)) , (6.6)

where z = M2/spart, spart is the partonic Mandelstam invariant and y = (u−z)/(1−
z)/(1 + u).

At NLO, the qq̄ channel receives O(αs) corrections, and the q(q̄)g channel con-

tributes. We find

η
(1)
qq̄

Q2
q

= ∆(y)

[
δ(1− z)

(
−16

3
+

8ζ2
3

)

+
8z2(1 + z2)

3(1 + z)

[
2D1(1− z)− ln z

1− z +
1− z
1 + z2

]]

+
8

3
D0(1− z)T00(y) +

8z(1− z)3(2y2 + 1− 2y)

3(z + 1)

−8(z2 + 1 + z3 + 2z)

3(z + 1)
T0(y), (6.7)

η(1)
qg

Q2
q

= δ(y)

[
z2(1− 2z + 2z2)

1 + z
ln

(1− z)2

z
+

2z3(1− z)
1 + z

]

+
z2(−2z + 2z2 + 1)

(z + 1)
D0(y)− (1− z)4zy3

(z + 1)

+
z(3z − 1)(−1 + z)3y2

(z + 1)
− z(4z − 1)(−1 + z)3y

(z + 1)

+
z(−1 + z)(2z3 − 6z2 + 3z − 1)

(z + 1)
. (6.8)

In the above formulae, Di(y) denotes the standard plus-distribution [lni(y)/y]+,

∆(y) = δ(y(1 − y)), Ti(y) = Di(y) + Di(1 − y), and Tij(y) = Di(y)Dj(1 − y).

NLO results for the other channels can be obtained by permuting partonic labels

and changing y → 1− y in Eqs. 6.7, 6.8.

We now discuss the calculation of the NNLO contributions. The completely vir-

tual correction to the rapidity distribution is the same as the virtual correction to the
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total cross section, and is straightforward to compute using standard techniques. We

compute both the real-virtual and the real-real corrections using the method proposed

above. However, at NNLO we must supplement the partial fractioning identities to

achieve a complete reduction to master integrals. Our substitution of the rapid-

ity constraint with an effective propagator facilitates the use of integration-by-parts

techniques [52, 161], typically used in the reduction of loop integrals. Approximately

thirty master integrals are needed in the calculation of the rapidity distribution. The

integration-by-parts technology can be also used to construct differential equations

satisfied by the master integrals, as demonstrated in [10]. Since we keep the ra-

pidity of the produced photon fixed, the master integrals are functions of both the

invariant mass and the rapidity; two first order inhomogeneous partial differential

equations can be derived for each integral. These equations can then be solved, and

the boundary conditions can be obtained by considering simple kinematic limits.

At NNLO, the following partonic channels contribute: qq̄, the scattering of a

quark and anti-quark of the same flavor; q(q̄)g; gg; qiqj(q̄j), the scattering of quarks

(anti-quarks) of arbitrary flavor. The complete analytic results for the partonic cross

sections are quite lengthy and not illuminating, and will not be presented here.

Integrating the partonic cross-sections over the virtual photon rapidity, we re-

produce the O(α2
s) correction to the total cross-section computed in Ref. [99]. This

provides a strong check on our result.

Finally, we must convolute the renormalized partonic cross-sections with the par-

tonic structure functions to obtain the experimentally measured cross section. We

consider the doubly differential cross-section dσ/dMdY :

dσ

dMdY
=

4πα2

9M3

∑
i,j

∫
dx1dx2fi(x1)fj(x2)

dσij(zp, up)

dY
,

where zpx1x2 = x, x = M2/s, and up = ux1/x2, and α is theelectromagnetic coupling

evaluated at the scale M ; numerically, α−1 ≈ 132. It is convenient to express the

integration over x1 and x2 through the partonic variables z and y; doing so, we obtain

a representation of the above integral suitable for numerical evaluation. We use the

approximate set of NNLO splitting functions described in Ref. [126].
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6.3 Numerical Results

In Fig. 6.1, we present the center-of-mass system (CMS) rapidity distribution of an

8 GeV virtual photon produced in pp collisions at
√
s ≈ 40 GeV; these parameter

values are among those studied in low energy fixed-target experiments. We present

the LO, NLO, and NNLO results, with the renormalization and factorization scales

both set equal to µ. The bands in the figure indicate the variation of the cross sections

between the scale choices µ = M/2 and µ = 2M . It is apparent that the NLO and

NNLO distributions become more sharply peaked at central rapidities; this is due

primariliy to the evolution of the parton distribution functions beyond leading order.

The significant scale dependence of the NLO cross section, which reaches nearly

25% over the interval M/2 ≤ µ ≤ 2M , is reduced to approximately 10% at NNLO,

indicating a reasonable convergence of the perturbative expansion. The magnitude of

the NNLO corrections depends upon the choice of µ; typically, they increase the NLO

result by approximately 5-15%. We note that the NNLO corrections are drastically

reduced for the scale choice µ = M/2. The NNLO corrections computed in the so-

called “soft” approximation, which retains only those terms that are singular in the

limit z → 1, lead to σNNLO which is lower than the result of the full calculation by

approximately 20%.

We now separate our result into its partonic components. The qq̄ and qg pieces

contribute the majority of the result; the remaining channels are a factor of 50-100

smaller. The magnitude of the NNLO result is determined by a significant cancella-

tion between the qq̄ and qg channels. We illustrate this cancellation by plotting the

NNLO contributions of these channels, together with their sum, normalized to the

complete NNLO differential cross section in Fig. 6.2. The sum of these channels also

contributes a much flatter correction to the rapidity distribution than either piece

individually. The qg channel contributes a significant fraction of the complete dif-

ferential cross-section; combining both the NLO and NNLO qg pieces, we find that

they account for about 15% of the complete NNLO result for central rapidities, and

nearly 40% for larger (Y ≥ 1) rapidities. This indicates that the NNLO rapidity

distribution is quite sensitive to the gluon content of the colliding protons.
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Figure 6.1: The CMS rapidity distribution of the virtual photon produced in proton-
proton collisions at LO (lower band), NLO (middle band), and NNLO (upper band),
for parameter choices relevent for fixed target experiments. The bands represent the
scale dependence of the cross sections; the upper edge of each band denotes the scale
choice µ = M/2, while the lower edges indicate the choice µ = 2M .

Finally, we discuss the dependence of the perturbative K-factors upon rapid-

ity. We define the K-factors as follows: K(N)NLO(Y ) = σ(N)NLO/σLO, and K(2)(Y ) =

σNNLO/σNLO. We present them in Fig. 6.3. The significant variation of bothKNLO(Y )

and KNNLO(Y ) with rapidity, a nearly 25% change from Y = 0 to Y = 1, illustrates

that the LO result provides a poor approximation to the shape of the rapidity dis-

tribution, as does the LO result weighted by the NNLO K-factor computed from the

inclusive cross section. However, the relative flatness of K(2) indicates that the NLO

result does accurately predict the shape of the distribution; the NLO differential

cross section weighted by σNNLO/σNLO, the ratio of NNLO and NLO inclusive cross

sections, is valid at these energies to approximately 3-5%. This result appears rather

promising, since it suggests a simple and fairly accurate way of incorporating NNLO

corrections into NLO Monte Carlo event generators by renormalizing with constant

K-factors. It remains to be seen, however, if the same conclusion is valid for other

processes or even for the DY process at higher energies.
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Figure 6.2: The NNLO corrections for the partonic channels qq̄ and qg, normalized
to the complete NNLO differential cross section. We have again chosen

√
s = 38.76

GeV, M = 8 GeV, and µ = M .

Figure 6.3: The K-factors KNLO(Y ) = σNLO/σLO, KNNLO(Y ) = σNNLO/σLO, and
K(2)(Y ) = σNNLO/σNLO. The scale is set equal to the photon invariant mass: µ = M .
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6.4 Summary

In conclusion, we have described a calculation of the NNLO QCD corrections to

the rapidity distribution in the Drell-Yan process. We have introduced a power-

ful new method for the calculation of differential quantities in perturbation theory.

Although we have presented only a specific example of this technique, it is clear

that this method is of more general applicability; the relation between differential

distributions and forward scattering amplitudes described above enables the use of

multi-loop technology for the calculation of a large class of phase space integrals.

We are confident that this technique will be succesfully applied to compute other

quantites of phenomenological interest.



Chapter 7

Conclusions

We have discussed several exciting possibilities for TeV-scale physics. Both non-

commutativity and extra dimensions are well-motivated ideas that could conceivably

be discovered in future experiments. Most importantly, they are falsifiable ideas; we

have developed definite signatures that can be searched for at upcoming colliders,

and have shown that the parameter spaces of these models can be severly restricted,

if not completely ruled out. Detailed phenomenological studies of theoretical ideas,

such as those performed in this thesis, are vital to the success of the high energy

experimental program.

An equally important theoretical task is the precise evaluation of Standard Model

predictions for quantities which play a central role in searches for new physics. We

have presented here a calculation of the next-to-next-to leading order QCD correc-

tions to the dilepton rapidity distribution in the Drell-Yan process. This production

channel is used for several purposes at hadron colliders: (i) as a discovery mode for

the new gauge bosons which appear in many extensions of the Standard Model; (ii)

as a strong constraint on the parton distribution functions of the proton; (iii) as a

partonic luminosity monitor. Our results provide Standard Model predictions at the

percent level for this process; this should assist in achieving the percent level accu-

racy desired for partonic luminosity determinations at the LHC [73, 81], and should

improve the next-to-next-to leading order global analysis used to extract parton dis-

tribution functions [126].

We are approaching a new frontier in particle physics. Surprising discoveries
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at the TeV-scale almost certainly await us. New ideas must be explored and old

ones refined before we can fully utilize the discovery potential of both existing and

planned experiments. Hopefully, the work described in this thesis will contribute to

all aspects of meeting the challenge set by our experimental colleagues.



Appendix A

Formulae for γγ Collisions

In this appendix we present the SM amplitudes and photon distribution functions

relevant for the process γγ → γγ. For a more detailed discussion the reader is

referred to [82, 83, 93, 94].

As discussed in the text, the one loop contributions to γγ → γγ arise from W

boson and fermion loops. At high energies, which we are considering, there is only

one non-negligible independent helicity amplitude. The approximate amplitudes for

the W contribution is

M(W )
++++(s, t, u)

α2
≈ 12 + 12

(
u− t
s

) [
ln

(−u− iε
m2

W

)
− ln

(−t− iε
m2

W

)]

+16
(
1− 3tu

4s2

)
[
ln

(−u− iε
m2

W

)
− ln

(−t− iε
m2

W

)]2

+ π2




+16s2

[
1

st
ln

(−s− iε
m2

W

)
ln

(−t− iε
m2

W

)
+

1

su
ln

(−s− iε
m2

W

)
ln

(−u− iε
m2

W

)

+
1

tu
ln

(−t− iε
m2

W

)
ln

(−u− iε
m2

W

)]
, (A.1)

where α ≈ 1/137, mW represents the mass of the W boson and ε is a small positive

quantity defining the branch cut prescription. The fermion contribution gives rise to
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the approximate amplitude

M(f)
++++(s, t, u)

α2Q4
f

≈ −8− 8
(
u− t
s

) [
ln

(−u− iε
m2

f

)
− ln

(−t− iε
m2

f

)]

−4

(
t2 + u2

s2

)[ln
(−u− iε

m2
f

)
− ln

(−t− iε
m2

f

)]2

+ π2


 , (A.2)

where Qf is the fermion charge in units of the positron charge, and mf is the mass

of the fermion in the loop. The other amplitudes are related to these by

M+−+−(s, t, u) = M+−−+(s, u, t) = M++++(u, t, s). (A.3)

We now present the expressions for the photon distributions. We define the

auxiliary functions

C(x) ≡ 1

1− x + (1− x)− 4r(1− r)− Pe Pl r z(2r − 1)(2− x), (A.4)

where r = x/[z(1− x)], and

σ
C

=

(
2πα2

m2
ez

)[(
1− 4

z
− 8

z2

)
ln(z + 1) +

1

2
+

8

z
− 1

2(z + 1)2

]

+Pe Pl

(
2πα2

m2
ez

) [(
1 +

2

z

)
ln(z + 1)− 5

2
+

1

z + 1
− 1

2(z + 1)2

]
. (A.5)

Here z is a variable describing the laser photon energy; varying z affects the value of

xmax, the maximum value of the fermion beam energy that the backscattered photons

can acquire. We set z = 2(1 +
√

2) in our analysis, which maximizes xmax. In terms

of these functions the photon number and helicity distribution functions take the

form

f(x, Pe, Pl; z) =

(
2πα2

m2
ezσC

)
C(x) (A.6)

ξ(x, Pe, Pl; z) =
1

C(x)

{
Pe

[
x

1− x + x(2r − 1)2
]
− Pl (2r − 1)

(
1− x+

1

1− x
)}
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