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1. Introduction

String theory was originally formulated in terms of a perturbative expansion
around classical solutions to the effective spacetime equations of motion, the Ein-
stein equations of general relativity. Quantizing strings in these backgrounds re-
sulted in remarkably rich spectra, including a graviton, which led to much ex-
citement. Unfortunately, the spectra also contained tachyons, whose equations of
motion have exponentially growing solutions which make perturbation theory in-
consistent. Since these string theories were defined pertubatively, this looked like a
disaster.

One might say the same of perturbation theory for a rigid pendulum about its
unstable equilibrium point, i.e.pointing straight up. In the perturbative approxima-
tion of very small displacement, § << 1, the potential energy is simply V() = —6?2,
which is a tachyonic potential. When we perturb the system away from equilibrium
by, say, blowing on it, it immediately falls down the potential with an exponen-
tially growing velocity - any small fluctuation grows rapidly. Perturbation theory
is thus inconsistent. However, this spectacular failure of perturbation theory does
not mean that the physical system is sick, but that we have chosen a poor point
about which to conduct a small-fluctuation analysis; what we need is knowledge of
the physics beyond perturbation theory. Of course, for the pendulum this is easy:
the full potential is V() = cos(f), and when perturbed from vertical it simply
swings down to the stable equilibrium point at § = m, about which perturbation
theory is valid. In this “vacuum”, the perturbative hamiltonian is hermetian and
perturbations remain bounded under evolution.

Unfortunately, in canonical world-sheet string theory, we do not have such non-
perturbative information; the stringy analog of the full potential remains utterly
mysterious. When the tachyon turns on, where does it go? Perturbation theory,

our only guide, says nothing. The perturbative theory appears dead in the water.
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1 Introduction 2

Supersymmetry provides a beautiful escape from this unpleasant state of affairs
by ensuring a tachyon-free spectrum (a hermetian hamiltonian), resulting in a self-
consistent and well-posed! perturbative expansion. Supersymmetry thus does not
solve the problem of tachyon condensation; it eliminates the problem altogether.
Of course, since supersymmetry is not manifest on any observable scale, one might
worry that this is not a terribly well-motivated addition to the theory. But then
the same could be said of the full gauge symmetry of the electroweak theory; could
not supersymmetry be spontaneously broken well below the string scale? In any
case, such objections are simply irrelevant: the superstring is the only well-posed
perturbative string in town.

Nearly thirty years of work on supersymmetric string theory has led to spectac-
ular progress in understanding non-perturbative aspects of string theory, resulting
in a host of powerful new techniques for studying regimes in which the perturbative
worldsheet description, even with supersymmetry, breaks down. Perhaps most im-
portant are D-branes, stringy solitons whose mass (in string units) scales inversely
with the string coupling, allowing them to probe length scales (and time scales) far
shorter than the string scale? the natural short-distance cutoff in perturbative string
theory. Careful study of these D-branes led to the AdS/CFT correspondence, which
reveals that string theory in anti-de Sitter spacetimes is exactly dual to N' = 4 SYM,
providing not just a non-perturbative probe but a full non-perturbative definition
of string theory, at least in this class of spacetimes. Another set of tools exploit not
spacetime supersymmetry but worldsheet supersymmetry, including gauged linear
sigma models, topological sigma models, and mirror symmetry. Of no less im-
portance has been the introduciton of many tools of modern algebraic geometry,
especially toric geometry, which are intimately related to both worldsheet super-

symmetry and spacetime geometry.

1 Mostly well posed - a number of problems remain, such as the exponential growth of
hard-scattering amplitudes with genus, making the string expansion asymptotic at best.

2 In particle theories without gravity, one can in principle probe arbitrarily small length
scales by colliding particles at ever higher energies - which is how particle accelerators
work. In string theory, however, this is not true, since as we pump energy into a string, it
actually gets longer and floppier, and ends up probing a larger length scale than the static
string. The minimum length scale probed by perturbative strings is thus limited to the
fundamental string scale.



1 Introduction 3

It is armed with these awesomely powerful tools that we return to the ba-
sic problems of non-supersymmetric string theory, in particular the fate of closed
string tachyons and, in non-tachyonic models, tadpole-driven instabilities. In the
remainder of this dissertation, we will describe three approaches to these problems,
employing modern non-perturbative techniques as well as old-fashioned worldsheet
technology applied using intuition from a modern, non-perturbative perspective.

In Chapter 2 we will study tachyons in non-supersymmetric orbifolds of an
AdS/CFT duality. As the CFT provides an exact non-perturbative definition of
the dual string theory, we will be able to faithfully phrase the question of the fate of
the closed string tachyon in terms of completely well-posed, concrete computations
in the dual orbifold CFT. We will find that the CFT description often supports much
of our intuition, with the string theory running apparently non-critical as advocated
for decades by Polyakov, but that the details of this process are surprisingly rich
and complicated, while in some cases our intuition will be totally violated. These
ideas were developed in collaboration with Eva Silverstein.

In Chapter 3 we will study closed string tachyons in locally flat spacetimes
where supersymmetry is broken only at isolated orbifold singularities. While these
systems do not have complete non-perturbative definitions, D-probe, GLSM and
gravitational methods will provide enough non-perturbative information to allow
us to follow the condensation of these localized tachyons in a completely controlled
and reliable way. Remarkably, tachyon condensation will be shown to dynamically
resolve the supersymmetry violating orbifold singularities, driving the spacetime to
a stable and generically supersymmetric endstate. These ideas were developed in
collaboration with Joe Polchinski and Eva Silverstein.

It should be emphasized that these well-understood cases form a set of measure
zero in the full space of non-supersymmetric string vacua, generic examples of which
contain tachyons in the bulk of a non-AdS spacetime; thus many questions remain
largely untouched. To get a flavour for the challenge involved, recall that the c-
theorem (which does not apply to localized tachyon condensation in non-compact
orbifolds) suggests that bulk tachyon condensation drives a theory sub-critical. This
can be seen explicitly in a number of simple cases. But is this always the result?
What happens when we condense, say, the Type 0 tachyon? Does the theory get
driven non-critical, or through strong string coupling, where the c-theorem does not

apply?



1 Introduction 4

In Chapter 4 we address non-supersymmetric vacuua with entirely non-
tachyonic spectra. In all known cases, such vacuua have non-vanishing (though
often finite) one-point functions for their massless moduli at one loop in the string
expansion, which also destablized the perturbative vacuum. This is one aspect of
the cosmological constant problem.

The cosmological constant problem, one of the basic problems of quantum
gravity, involves the physics of both the strict UV and the deep IR, and thus seems
unlikely to be solved by playing with the details of UV physics alone. Moreover,
since we have probed the equivalence principle only up to length scales well below
the Hubble scale, we are truly ignorant of Hubble scale physics. Along these lines,
and motivated by our experiences studying the dynamics of non-supersymmetric
orbifolds of AdS/CFT dualities described in Chapter 2, Chapter 4 describes some
early concrete explorations of quantum field and string theories with modified IR
physics. In particular, it will describe a proposal for the IR modification of per-
turbative string theory which was hoped to result in a perturbatively finite and
unitary flat-space S-matrix without massless moduli. The simple version discussed
in this chapter, unfortunately, does not correctly deal with worldsheet anomalies,
and thus is not a well-posed definition in and of itself; nontheless, it provides a first
step towards such a theory, towards which we continue to work. While this is a
somewhat speculative approach, even negative results could teach us a great deal
about the physics of non-supersymmetric string vacua. These ideas were developed
in collabora,tioh with John McGreevy and Eva Silverstein.

These three approaches, together with a variety of modifications which have
appeared in the literature, provide an important first step in the application of
tools and lessons from supersymmetric theories to the fundamental problems in
non-supersymmetric string theories. A very small first step, admittedly: much
‘remains to be understood, most notably, the fate of bulk tachyons, regarding which
we have had very little to say. Nontheless, the limited successes described in these
chapters should give us hope that these more thorny and dificult questions may be

fruitfully addressed with similar tools. With that in mind, let’s begin the story.




2. Closed String Tachyons, AdS/CFT and Large-N QCD

2.1 Introduction and Summary

Orbifold examples [1][2][3] provide one of the simplest testing grounds and
applications of AdS/CFT duality [4][5]. With less than maximal SUSY, the physics
at low energies is less constrained, and new elements of the AdS/CFT dictionary
emerge. One such element is the relation between the gravity-side cosmological term
(dilaton potential) which typically gets generated in the absence of SUSY, and the
finite-N beta functions and dimension spectrum of the gauge theory [1][6][7].

Another element that arises upon breaking supersymmetry is the possibility
of a stringy tachyon in the twisted sector on the gravity side. This typically (in
fact in all cases known to the authors) happens at large AdS radius when the
orbifold is symmetric and fixes some or all of the points on the S? component of
the gravity background.® Freely-acting orbifolds on the $7 have no twisted-sector
tachyon at large radius, since the twisted-sector states must wind around the sphere
and are therefore very heavy. In this chapter, we find an interesting pattern in the
corresponding instability structure of the small radius limit of these theories by
investigating the dynamics of twisted operators in the appropriate weakly-coupled
dual quiver gauge theories [8].

Building on work of Tseytlin and Zarembo [9], we study radiative corrections
in ITB/(—1)F (Type 0) on AdSs x S° and more general non-supersymmetric non-
freely-acting orbifolds by I' = Z,,, identifying a Coleman-Weinberg effective poten-
tial [10] which leads to growth of the VEVSs of certain twisted operators quadratic in

This chapter is reprinted, with changes, from Allan Adams and Eva Silverstein, “Closed
String Tachyons, AdS/CFT and Large-N QCD” Phys. Rev. D 64, 086001 (2001), by
permission of the publisher. © 2000 by the American Physical Society.

3 A tachyon indeed appears in the twisted sector of the non-SUSY model studied in
detail in [1]; the statement otherwise was in error.

5



2 Closed String Tachyons, AdS/CFT and Large-N QCD 6

the gauge theory scalars. This instability along a (partial) Coulomb branch of the
quiver gauge theory describes D-branes splitting into fractional branes at the fixed
point locus of the orbifold. This one-loop contribution to the effective potential
involves double-trace operators which affect correlators involving twisted operators
at leading order in 1/N? (corresponding to genus zero on the gravity side). It is
the leading non-conformal effect at small ’t Hooft coupling and introduces non-
conformal correlators for twisted operators into the theory at large V.

This raises an interesting puzzle some of whose potential resolutions we discuss
in §3.2. It has to do with the issue of whether and how the conformal symmetry of
the gauge theory (or equivalently the SO(4, 2) isometry group of the AdSs x S*/Z,)
should be preserved in correlation functions involving twisted operators in the QFT
dual to the standard gravity-side orbifold construction of the AdSs x S° sigma
model. As we will discuss in §2, there is a space of possible orbifold quantum field
theories arising from the space of renormalization group trajectories consistent with
the quantum symmetry and inheritance of untwisted operator correlation functions
from the N' = 4 theory. This suggests a corresponding space of dual gravity-side
orbifold string backgrounds, generic elements of which may generalize the standard
construction.

The one-loop calculation is reliable in this context for a large but finite range
of nonzero VEVs for the scalar fields, including values near a local minimum of the
effective potential. We find that a renormalization-group improved perturbation
theory analysis using one-loop beta functions does not lead to any additional control
for the calculation of the potential near the origin of the Coulomb branch. From this
we conclude that the instability indicated by this potential is present but, depending
on the form of the potential near the origin of the Coulomb branch, may be a global
effect accessible only by tunneling.

The resulting instability, present in the large-N limit, drives the erstwhile
tachyon (or at least a twisted state with the same quantum numbers as a large-
radius tachyon) to condense. It is interesting to note that whatever the behavior
near the origin, the instability is consistent with the reality of the operator di-
mensions observed in [11], though not with an uncorrected extrapolation of the
Breitenlohner-Freedman bound to the regime of large curvatures and large RR field

strengths.
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For a freely-acting orbifold, the quiver gauge theory has no Coulomb branch,
as the D-branes are at the same codimension as the orbifold fixed point locus in
spacetime and have no directions in which to split up into separated fractional
branes. One correspondingly finds no instability in the effective potential for twisted
operators; we therefore conjecture that the tachyon-freedom of this type of model
persists to small radius. This constitutes an interesting prediction for the RR string
theory in this limit, and a satisfying class of examples to contrast with the tachyonic
models.

We also study a case with non-free orbifold action and discrete torsion which
projects out the lowest-lying tachyon, leaving tachyonic modes with angular momen-
tum along the sphere. At weak coupling we find no one-loop instability. However
there is a Coulomb branch (again describing fractional D-branes) in this case, and
we find no symmetries preventing instabilities from getting generated at higher
order.

We then consider in more detail the effects of condensing the twisted modes
in the unstable (non-freely-acting) cases. On the gravity side at large radius, con-
densing a tachyon is expected to drive the theory to a subcritical dimension (with
compensating gradients for the dilaton and other gravity fields), since the zero-
momentum tachyon is a relevant operator on the string worldsheet [12][13][14]. One
way in which this can happen is to lose and/or deform the dimensions correspond-
ing to the S°/T" and the radial direction in AdSs. This suggests losing the scalars
and perhaps non-chiral fermions on the gauge theory side, since these matter fields
have quantum numbers associated to the sphere. Similarly, non-perturbative insta-
bilities have been argued to drive the theory to an endpoint with a loss of degrees
of freedom (decays to “nothing”) [15].

We find on the field theory side that the Coleman-Weinberg potential indeed
drives the theory toward one with fewer degrees of freedom at least in the IR: in some
cases, pure glue SU(N) QCD plus some decoupled matter and U(1) factors. This
can be seen algebraically or from a simple geometric picture of the low-energy/near
horizon limit of symmetrically distributed fractional D-branes. We conjecture that
this pure glue QCD theory is described by the endpoint of tachyon condensation
in the dual gravity theory, at least at long distance on the QFT side. As just
discussed, this is likely to be a D < 10 theory on the gravity side (which may or may

not be a perturbative string theory, depending on the effective string coupling that
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emerges in the subcritical theory when the tachyon has become large and mixed
with the dilaton and other string fields). This result is suggestive of Polyakov’s
proposal for QCD as a noncritical string [16}; our analysis suggests that if realized
it could be connected to ordinary AdS/CFT by tachyon condensation. * More
complicated models involving both open and closed strings on the gravity side may
leave surviving quark flavors as well, but we leave this goal of getting full QCD for
future work.

Of course there are other avenues toward the String/M dual of QCD, arising
from the low-energy limit of relevant perturbations of the N' = 4 theory as in
for example [18]. Our connection to non-SUSY AdS/CFT examples via tachyon
condensation appears complementary to these. It involves a dynamical mechanism
for eliminating the extra matter on the gauge theory side, but the starting point is
a non-supersymmetric system less well-understood than the A’ = 4 theory. As with
many applications of AdS/CFT, it can be taken as a lesson about the gravity side:
the gauge theory remaining after condensation of the twisted operators gives a dual
answer to the question of what happens to the closed string theory after tachyon
condensation.

There have been interesting discussions on closed string tachyons in D-brane
and/or AdS/CFT systems in [3][11][19][20][21]. The role of tachyons, tachyon
condensation, and/or tachyon-freedom in other conjectured non-supersymmetric
closed string dualities has been studied in other contexts previously for example in
[22][23][6][24][25][14][26]. Calculations making use of the relevance of open-string
tachyon vertex operators appeared in for example [27]. It would be very interesting
if these techniques could be transported back to closed-string theory to investigate
further the hints of QCD emerging in the systems we study here. Indeed, there is
some resemblance of the Coleman-Weinberg potentials we discuss here and formulas
for an (open string) tachyon potential in [27].

It would be interesting to study potential relations of our results on instabil-
ities on the gauge theory side to the kinds of gravitational instabilities studied in
[15][28][29] and in particular in the AdS/CFT context in [30]. Aside from a few
comments, we leave this for future work, and focus here on the field theory side at

weak coupling.

4 This possibility was suggested earlier in general terms by Minahan at the end of [17].
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The chapter is organized as follows. In §2, we calculate the one-loop Coleman-
Weinberg potential for a large class of Z, orbifold models with fixed points, ex-
hibiting a nontrivial regime of validity of the one-loop analysis out on the classical
Coulomb branch. In §3, we find two simple minima of the potential within this
regime of validity at which the low-energy gauge theory contains pure glue QCD
sectors. We study the N-dependence of our results from §2 and establish that at
large N the dynamically generated potential affects correlators involving twisted
operators, and does not affect untwisted correlators. We discuss a puzzle this raises
and several possibilities which may lead to its resolution, and review the evidence
we have gathered for the persistence of the tachyon to small radius in these exam-
ples. In §4 we turn to the case of freely-acting orbifolds (where there is no tachyon
at large radius) and show that the branch along which such an instability would
arise is absent in this case. In §5 we analyze an orbifold with discrete torsion which
has no Coleman-Weinberg instability at one loop but does have a Coulomb branch

along which one could emerge at higher orders. Finally in §6 we discuss future

directions.

2.2 Z, Orbifolds with Fixed Points and Effective Potential

Given the duality between N = 4 SYM and IIB string theory on AdSs x S°,
we can obtain new dual pairs by orbifolding both sides of this “parent” duality by
a discrete group I' C SO(6) [1](2]. The gravity side is Type IIB string theory on
AdSs x S%/T', and the QFT side is a quiver gauge theory [8] obtained by taking
the low-energy limit of the worldvolume theory on D3-branes at the corresponding
C3 T orbifold singularity. ° On the gravity side, correlations of untwisted operators

are inherited at genus zero. The corresponding planar diagrams, in particular those

5 We are working with orbifolds of the maximally supersymmetric version of the duality.
The duality being a statement of equivalence between two descriptions of one and the
same system, the orbifold (including its instabilities) tautologically exists on one side if it
exists on the other. Note that this equivalence is between the quantum theories, which
introduces subtleties having to do with the manifestation on the gravity side of the choice

of renormalization condition in the gauge theory side as we will discuss shortly.
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corresponding to the beta functions [1], of the quiver gauge theories are inherited
from those of the parent ' = 4 theory [31].6

Twisted states in the orbifold string theory correpond to “twisted operators” of
the orbifold gauge theory, which are gauge-invariant operators that do not descend
from gauge-invariant operators of the parent N = 4 theory. On the gravity side,
non-freely-acting geometrical orbifolds have tachyons in the twisted sector at least
at large radius, while freely-acting orbifolds do not have tachyons, since twisted-
sector states are very massive; we will return to them in §4. The effective potential
for twisted operators is not constrained by the A/ = 4 theory, so we should expect an
effective potential for twisted operators at order N2, whereas the effective potential
for untwisted operators should appear only at order N°; we will see this explicitly
below.

We will find it instructive to study several different cases. In this section we
will focus on non-freely-acting orbifolds, which fix some locus on the S°. The most
extreme case of this is the “Type 0” theory [3], which is an orbifold by (-1)F
which acts only on the spinors and thus fixes the entire spacetime [32]. The cor-
responding quiver theory has gauge group SU(N)? with six real adjoint scalars
Xt = (N%2-1,1), X} = (1,N2-1),i=1,...,6, four Weyl fermions x* in the
bifundamental representation (N, N), and four Weyl fermions % in the (N, N).

These representations arise from projections of a parent SU(2N) N = 4 the-
ory. In a convenient basis, the gauge fields and scalars sit in diagonal blocks of
this SU(2N) theory and the fermions sit in the off-diagonal blocks. The tree-level
interactions of the orbifold theory are those of the SU(2N) N = 4 theory which in-
volve fields which survive the orbifold projection. In addition to the minimal gauge
couplings, one has quartic scalar interactions of the X} which are identical to those
of an SU(N) N = 4 theory and likewise for X3. The bifundamental fermions mix
the two SU(N) gauge groups via tree-level Yukawa interactions of the form”

gyMm [tT‘(@ZXﬂP) +tr(xxX1) + tr(¥Xex) + tr(¥9 Xs) (2.2.1)

6 It is worth emphasizing that we here take the regular representation for the action
~ab of the orbifold group on the Chan-Paton indices, one where ¢try = 0. With any
other choice of action, the D-branes are a source for the twisted-sector tachyon in the
asymptotically flat region away from the core of the D-branes, which does not decouple
from the near-horizon low energy D-brane theory [20].

7 In this section we henceforth assume canonical normalization for the kinetic terms
with no factors of 1/g%,, in front of the action.
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The orbifold on the gravity side has a “quantum symmetry” T', [33], under which
twisted states transform non-trivially. In the Type 0 case, this is a Zp symmetry
which is manifested on the gauge theory side by a symmetry exchanging the two
SU(N) factors in the gauge group (and correspondingly exchanging X + X} and
¥ ¢+ ). The lowest-dimension twisted operators in our theory are thus trX?—t¢rX?2
and trXiX? — tr XiXJ, which have dimension two at leading order. In the full D-
brane system, these operators couple to two derivatives of the tachyon field in the
directions transverse to the D-branes [34], while the tachyon itself couples to the
dimension four operator tr(F? + DX;DX; — F} — DX,DX,) [34][11].

The interactions of untwisted states are inherited at genus zero, but those
of twisted states are constrained a priori only by the quantum symmetry. Our
main interest will be contributions to the scalar potential generated by quantum
corrections to the gauge theory at leading order in the 1/N? expansion. We will
discuss the calculation of the effective potential in non-freely-acting Z, orbifolds in
the remainder of this section, and then interpret the results in terms of tachyons
and explore the instability structure on the gauge theory side in §3.

In [9], Tseytlin and Zarembo calculated the bosonic potential energy lifting the
classical moduli space of the Type 0 theory at one-loop order in the gauge theory.
Because of the quartic scalar interactions, the classical moduli space of this theory is
parameterized by the elgenvalues of commuting matrices (X$) = diag(zh?,. .., i)
and (X3) = diag(z?,...,z5") with S,zi® = 0= S.z5®. Going to a generic point
on this moduli space and integrating out massive particles, one obtains a simple

expression for the vacuum energy as a function of z3'* and x5 [9]:

% — 0|2 1% — 5|2
Vars ~ B0, ot - atlttog Lot + 1o Ik
8m M?2 M?2
128 2 (2.2.2)
b4 Lo
—2[z§ — o5 lOg—MT—]

where |z|2 = ziz? = 72 and M is related to a subtraction point to be discussed
shortly. The first two terms in (2.2.2) arise from integrating out the off-diagonal
entries in (X1)ap, (4%)ss and (X2)as, (A% )ab, Which have masses gy n|z$ — z3| and
gy |z — 5| respectively. The last arises from integrating out the fermions (%)qp

and (x)ap in the bifundamental (N, N) @ (N, N), whose masses are gy u|z$ — z3|.
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This expression can be understood (and later generalized) as follows. Integrating

out a particle of mass m? leads to a contribution

®dt _, 2
(-1)F / d*p log(p® + m?) ~ (-1)F /0 e tm (2.2.3)
where F' is the spacetime fermion number and where we are ignoring coeflicients of
order one. This expression has quadratic and logarithmic divergences (as well as a
quartic divergence in the vacuum energy to which the field theory is insensitive).

We therefore require counterterms; following the analysis of [10] one obtains an

expression of the form

|$a. _ xb 2
Vess = Sopmi [Im‘f ~ (A2 + (Agyp + B(X{'l’)z)log—ﬂ—/lf%%)
e — .’l:b 2
tlag — 251408 + (Agbac + BOGY Yoo T 2.0
|xa _ .’L'b 2
 2laf ~ 241 (O + (Agbas + BOB)log 122

where A and B are constants of order 1 and gy »r and A;‘}’ are renormalized couplings.
This potential includes the 1-loop contributions plus counterterms chosen to satisfy

the renormalization conditions

d4V ff b
Tt dlsgp=nm = X (2.2.5)
ij
where a:;-’}’ = zf — x?. The coupling constants determined at one value of the

subtraction point M are related to those at a different point by the renormalization
group. A choice of renormalization group trajectory is a choice of field theory
and presumably corresponds to a choice of what the precise configuration of dual
gravity-side string fields is. At small radius, we do not have an independent handle
on the gravity side, so we will simply consider the whole set of possible trajectories
consistent with the symmetries and inheritance properties of the orbifold. This issue
will be discussed further in §3.2. As discussed in [9], there are planar contributions
proportional to N in the individual terms in the effective potential that must cancel
in the orbifold theory by inheritance. This plus the quantum symmetry leads to the

simplification that in the quantum field theory dual to the orbifold background, we
should have A%} = .



2 Closed String Tachyons, AdS/CFT and Large-N QCD 13

As discussed in [9] (and as will be generalized and studied further in §3) there
is an unstable direction in the potential in which z1 = p = —z?, with all other
z? = 0. Plugging this into (2.2.4), one finds

4 4 2 28/3p2
V;ff ~p [A+ (AgYM + BA )lOg-M_ze'T/G] (226)

Let us now renormalize at a subtraction point of order the VEV of p, e.g. M =
24/3(p), where
AVeyy
#|p=(p) == 0. (227)
Imposing this condition, one obtains in the theory expanded about the minimum

of the potential a relation between A and gy s as in [10] of the form

A= Cg¥u (2.2.8)

where C is a constant of order 1. So the renormalized quartic scalar coupling along
the Coulomb branch is of order gy ,,, as befits a contribution at one-loop order in
perturbation theory. Plugging this back into (2.2.4) and defining

25

M? =%~ %M2 (2.2.9)

we recover the result (2.2.2).

The one-loop result is reliable where the logarithms in (2.2.4) are not big enough
to compensate the small couplings A, gy »r and make different orders in perturbation
theory commensurate. As in the original analysis of the massless Abelian Higgs
model in [10], our result is reliable near minima of the potential but not at the
origin :c?}’ — 0 or in the asymptotic region x;-‘}’ — 00, since there the logarithms are
large. In some theories, expressing the effective potential in terms of the running
coupling (the solution of the Callan-Symanzik equations) results in a weakly coupled
description for a larger range of . As demonstrated below, this is not the case at
one-loop order at large N in our theories, which have a somewhat remarkable RG
structure due to the vanishing of untwisted beta functions at large N.8

The 1-loop B functions are easily computed. For the Type 0 theory and the
other quiver theories we are about to analyze, Large-N inheretance ensures that the

gauge and yukawa couplings have vanishing 3 functions at leading order in 3;(31].

8 We thank D. Gross for interesting discussions on this.
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The £ function for the quartic scalar coupling (¢7X2 —trX2)2 can be calculated
directly from our calculation of the renormalized coupling:

Br~ A2+ gy (2.2.10)

the resulting RG equations are solved by

A=giu Tan(gffMan/j;-z- +92) (2.2.11)

As p gets either very large or small compared to M?2 e;;q, this solution be-
comes strongly coupled and untrustworthy. So in these theories at one-loop order
at large N, RG improvement does not help. While we can trust our one-loop ef-
fective potential near its local minimum, we cannot trust the dynamics near the
origin, or at large values of the scalar VEV. Since the gauge coupling is protected
from developing a § function at large N by inheritance, the main effect of higher
loops will be to add higher monomials in A, whose effects will depend strongly on
their signs. We will leave this much more involved two-loop calculation to future
work, and in this chapter content ourselves with having identified at least a global
instability. This leaves open the possibility that the region near £ ~ M could only
be accessible via tunneling from the region of the origin. We will comment further
on this in §3.

More generically one can consider locally-free orbifold actions. One example
we will study in detail is a C/Z3 orbifold, under which a single complex plane with
coordinate z! is rotated by o = €2™/3: 2! — a2z}, 233 — 223, This acts by a phase
a¥! = e*27/3 on all the spacetime spinors, and so projects out all the massless

gravitinos. The quiver theory in this case has gauge group SU(N)3. The matter
content consists of four real scalars in the adjoint:

Xt (NZ-1,1,1)

X: (1,N?2-1,1) (2.2.12)
X: (1,1,N%?-1),

for i = 1,...,4; one complex scalar in the bifundamental representations:
U (N,N,1)
Vv (1,N,N) (2.2.13)

w (N,1,N),
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and four Weyl fermions in the bifundamental representations:

xg (N,N,1)
& (1,N,N) (2.2.14)
X‘a’V (N’I’N),

for & =1,...,4. The interactions in this case are inherited from an SU(3N) N = 4
theory. In a convenient basis, the gauge bosons and adjoint scalars sit in diagonal
N x N blocks of the adjoint matrices of the parent theory, and the bifundamental
scalars (2.2.13) and fermions (2.2.14) sit in off-diagonal blocks.

The Higgs branch of this gauge theory, along which U = V = W (as enforced
by the quartic scalar interactions inherited from the N' = 4 D-terms) describes
motion of the D3-branes away from the orbifold fixed locus. The theory also has a
Coulomb branch, where U = V = W =0 and components of the X}, for different &
get independent VEVs. This describes motion of “fractional” D-branes away from
each other along the orbifold fixed locus 2! = 0.

In this case, one finds an effective potential analogous to that of [9] (2.2.2):

4 a b2 2
9ym 3 |z¢ — =8 |28 — 28|
Vagg~ B8 35, log — 8109 EL= I 1 g — oo =i
a __ nb|2 2
+ Img - $g|4log Istz l — |£E1 .'IIJ"IOQ%— (2.2.15)
— g% — b4 |z§ 333|2 a _ b4 |z§ $1|2
|23 — 3] log————M2 |25 — =1 log—M2

Here (similarly to the discussion following (2.2.2) ) the first three terms come from
integrating out the four real scalars and the gauge fields which transform in the
adjoint representation, which in this theory involves 3/4 of the bosons in the theory,
hence the factor of 3/4 relative to the Type 0 result. The last three terms come
from integrating out the bifundamental matter, which in this theory consists of one
complex scalar (1/4 of the total bosons) and all of the fermions, leading to the factor
of -3/4 appearing in front of these terms in (2.2.15).

It is now clear how to generalize this result to arbitrary Z, orbifolds. Con-
sider for example a non-freely acting Z, orbifold with rotation angles 2w(%, 22,0)
in the three complex planes paramaterized by z!,22,23 transverse to the D3-

branes (with 7y & 72 even so that the orbifold acts as a Z, on all spinors). The
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quiver gauge theory has a gauge group SU(N)™ =II}_,SU(N); with one complex
scalar corresponding to Z2 transforming in the adJomt k(N2 ~1),. The com-
plex scalar corresponding to Z! transforms in the bifundamental representation
»?_,(Nk, Niir,), and that corresponding to Z?2 transforms in the bifundamental
representation 7_, (N, Nyr,). Half of the fermions transform in the bifunda-
mental representation ZZ___I(Nk,Nk + ﬂyz), and the other half transform in the

bifundamental representation X%_, (Ny, Nk yrice2 ). From this one obtains the ef-
2

fective potential

2
by 1Tk = f”k‘ 4

Vef.f - 16 220. b—lz ['xk - Z | lOg M —l _xk-i-rl *

ka - xk+r |2 b 4 |"L‘z - $Z+r |2
log—]\-zz—‘— + §|xz - mk+r2| log—]\;—f—z———"’—

T8 — $b . 2 e — :L‘b _ 2
_Ixa__xb |4l0 | k k+ ]-;rgl _lxa_xb |4lo I k k+r12r2|
k k+£1¥2 g M2 k k+£1.;_"2 g M2

(2.2.16)

Finally we note that for orbifolds which act freely on the S°, with nontrivial ro-
tation angles 27(r1/n, r2/n,73/n) on the coordinates z!, 22, 23, there are no adjoint
scalars and no Coulomb branch. This follows geometrically from the fact that the
D-branes span the same dimensions as the orbifold plane and cannot move apart

into separate fractional branes at the fixed point. We will return to this in §3.

2.3 Tachyon Condensation and QCD

We have seen in the above section that the quiver theories corresponding to
orbifolds with fixed points on the S° develop a Coleman-Weinberg potential on the
classical moduli space at one loop, and we will see in this section that there are

interesting unstable directions in which twisted operators get VEVs.

2.3.1 Counting Powers of N

Let us first clarify and interpret in terms of the gravity side the N-dependence
of the results (2.2.2)(2.2.15)(2.2.16).% Let us first determine the N-dependence of the

9 The results on N-dependence here, some aspects of which appear in [9], were devel-
oped in discussions with O. Aharony.
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1-loop potential term in the field theory. In all of the orbifold theory potentials we
have derived, as noted for the Type 0 case in [9], the coefficient of the logarithmically
divergent 4-point interaction among the scalars contains no powers of N beyond
that in the factor of g%, after terms of the form g%, NZ|z,|* cancel out of Veysy,
leaving terms proportional to g%, (TrXi X] —TrX;X3)? and g4, (TrX? —TrX3)?
at the level of four-point graphs. Let us rescale the X’s so that a factor of 1/g%,, =
N/ArtHoost appears multiplying the whole tree-level action. Then g% s counts loops,
and the one-loop potential scales like g%,, = 1, down by a factor of g%,, ~ 1/N
from tree level.

With this normalization of the fields, correlation functions of the single-trace
operator NtrX? scale like N2 plus terms subleading in 1/N2. These correspond to
connected genus-zero amplitudes involving single-particle states on the gravity side
[4][5].

Normalizing operators of the form (¢rX?)? with a power of N2:
Odouble—trace = N? (tTXZ)Z, (2.3.1)

we obtain [-point correlation functions of the Ogoubie—trace Which scale like N 2
in the free theory, corresponding to ! disconnected genus zero diagrams describing
| strings propagating across the AdS. This is in line with the interpretation of
multitrace operators as multiparticle states on the gravity side in the unperturbed
theory.

As discussed below (2.2.1), the twisted operators in our theory are of the form
trX2 — tr X2,. Because they transform non-trivially under the quantum symmetry
of the orbifold, terms in the Lagrangian linear in these operators are not generated
dynamically, but terms quadratic in these operators which are invariant under the
quantum symmetry are (they are implicit in the potentials (2.2.2)(2.2.15)(2.2.16)
calculated out along the Coulomb branches in the last section). These are double-
trace operators, which are thought to correspond to multiparticle excitations of
the dual gravity theory [4][5]. As just discussed, as they appear at one-loop these

contributions scale like
88 ~ / (trX?%)?2 (2.3.2)

Now consider adding a contribution of the order (¢rX2)? to the action (as

occurs dynamically in our theory (2.3.2)). Bringing down a power of (2.3.2) into
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correlation functions, one finds the leading-N effect from factorized terms of the
form

((TrXE —TrX2)?: 04,...,00) ~ (TrX} - TrX2)0,...,0p)

, . (2.3.3)
* ((TTXk - TTXk')Ol'-Fl) ey Ol)

where we have replaced (TrX2)? in (2.3.2) with the more precise form (TrX? —
TrX2)? we have for deformations of our theories. These go like N2. However if all
the 0y, ..., O are untwisted operators, then each factor in the factorized leading-N
contribution vanishes, and one is left with an effect that is down by 1/N? from
genus-zero effects. This is in accord with large-N inheritance on the gravity side
[1] and the field theory side [31], which ensures that at large N the correlators of
untwisted operators are the same as in the N’ = 4 theory. The twisted operators
do not exist in the parent theory, and are not constrained by inheritance.

It is interesting that a mass scale M appears in correlators of twisted operators
at genus zero. In particular, the couplings of the double trace operators X (TrX ,3 -
TrX2)? have nontrivial beta functions at one-loop (as can be seen from the four-
point function contribution to the effective potentials calculated in §2). So even
before we go out on the Coulomb branch, the theory is nonconformal at leading
order in N in a nontrivial regime of Ai¢goope. This is invisible to the untwisted
operators alone at this order in N, in accord with [31]. Even so, this is puzzling
because of the general arguments advanced in [1] for the large-N conformality of
these theories. In the next subsection, we will discuss this puzzle and several possible
resolutions which it will be interesting to pursue once we have pushed the relevant

technology to the necessary level.

2.3.2 Orbifolding and Symmetries: A Puzze

As discussed in [1], there is a fairly general reason to believe that orbifold
field theories should have conformal invariance at large N, including the physics
of twisted operators.l® The worldsheet sigma model describing strings propagat-
ing on the parent space AdSs x S° has a symmetry corresponding to the SO(4,2)
isometries of the AdSs, which commutes with the SO(6) of the S°® and in partic-

ular commutes with an action of I' C SO(6) on S°. This symmetry commutes

10 We thank T. Banks and S. Kachru for discussions of this.
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with the Hamiltonian of the worldsheet theory, and therefore all of its correla-
tion functions respect it. This parent sigma model has many operators, some sub-
set of which {Vparent} constitute mutually local dimension (1,1) vertex operators
describing physical string states. When we orbifold, for example by the Z, ac-
tions we are considering in this chapter, we include only those vertex operators
{Vantwisted} = ({Vinvariant} C {Vparent}) which are invariant under the orbifold
group action. Having done this one can (and should at the one-loop level) add
“twisted” operators which are further operators from the set of operators in the
parent sigma model which are mutually local with respect to the reduced set of
operators {Vyntwistea}. S0 finally {Vorbifoia} = {Vuntwisted + Viwistea} gives the
full set of vertex operators for the orbifold theory. The Hamiltonian of the full
worldsheet sigma model is the same in all of these theories, and commutes with
the SO(4,2). So the orbifold theory should have this symmetry and the QFT dual
to it by AdS/CFT should be conformally invariant for all Ar¢go0f: at leading order
in the 1/N? expansion. This argument appears rather general (though unforeseen
subtleties involving RR fields may render it inapplicable to our case).

On the other hand, at weak coupling in the quiver gauge theory one finds
(as we have discussed) nontrivial beta functions for the double-trace quartic scalar
interactions of the form T o A(TrX2—TrX32 )% Although it is made out of twisted
operators, this contribution to the Lagrangian does not itself transform under the
quantum symmetry and if we do not condense the twisted operators we should not
have left the orbifold point.

We do not yet know the resolution of this puzzle, but can see several interesting
possibilities (which are not all mutually exclusive):
(1) The above argument about the symmetries is correct and applies to the RR
sigma models of interest here. This would suggest that there is a line of fixed points
corresponding to the radius of AdSs x S%/Z,,. Since starting at weak coupling on
the field theory side there is not such a fixed line, this line of fixed points would
have to be fundamentally strongly coupled.

Then the theories we consider here, with running ,\i’;, are deformations away
from the line of CFTs dual to the standard orbifold of AdSs x S°. But these
theories share many properties with the standard orbifold, in particular the quantum

symmetry and the inheritance of untwisted operator correlation functions at large
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N. Therefore even if (1) is true we feel it is important to understand the gravity-side

description of our (perhaps nonstandard) orbifold models. This leads to possibility

(2) The double-trace operators in the effective Lagrangian of our models correspond
to a novel type of worldsheet string theory on the gravity side, such as the one under
investigation independently in a supersymmetric context with marginal double-trace
perturbations [35].1! This novel string theory, if it exists and applies to our models
here, may not have all the properties required for the above symmetry argument.
As discussed above, a relative of this possibility is the possibility that RR sigma

models do not satisfy the assumptions in the symmetry argument presented above.

Finally, there is always the possibility
(3) Phase transitions and/or other unconstrained non-supersymmetric dynamics
ruin the application of the duality to this non-supersymmetric context. Because we
began with a parent system with two dual descriptions, the procedure applied to
one of them producing the orbifold theory ought to have a translation into the dual
variables if it exists nonperturbatively. This translation to the dual may not be a
standard orbifold construction, however, which may relate to point (2). Indeed a
phase transition in this type of system is suggested by the large-radius duality map,
which maps the tachyon to a complex-dimension operator in the field theory [11].
It would be very interesting to understand better what this means for the duality,
but in this chapter we will continue to focus on the small-radius (weak ’t Hooft

coupling) regime.

Because of the RR fields and strong coupling issues, establishing the precise
resolution of this puzzle appears out of reach of current technology, and we will leave
it for future work. We think it is likely that there is a resolution (perhaps along the
lines of (1) and/or (2)) which preserves the duality and teaches us something new
about the gravity side, and we will proceed with our analysis on the assumption
that the duality holds. In particular, our analysis has generated further concrete
evidence in favor of the duality (in addition to generating the puzzle discussed in

this subsection). However, possibility (3) should be kept in mind.

11 We thank O. Aharony and M. Berkooz for sharing with us their ideas on this.
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2.3.3 Tachyons and AdS/CFT Duality

It has been suggested [3][11] that the Type 0 tachyon is lifted at small AdS
radius to satisfy the Breitenlohner-Freedman bound [36]). Heuristically this might
be expected from the fact that the AdS curvature reaches string scale for small
enough 't Hooft coupling, so that a string-scale tachyon need not violate the bound
[3]. This sort of behavior has been seen in the AdS; context in [37]. Further, the
twisted operator trF12 +DX,DX, - F22 — DX,DX,, to which the tachyon couples
directly at large radius, is actually slightly irrelevant at weak coupling [11], which
according to an uncorrected extrapolation of the large radius duality map would
translate to a non-tachyonic mass in the bulk gravity theory.

However, we have seen that the weakly coupled dual field theory has instabilities
in the potential at leading order in 1/N? which cause certain twisted operators
(which have the same discrete quantum numbers as the large-radius tachyons) to
condense, either directly or via tunneling depending on the small-X behavior of the
potential. That the instability appears at genus zero shows that it persists even in
the strict large-N limit. This demonstrates an instability of the string theory which
causes modes from the orbifold twisted sectors to condense even at small radius.

As we have discussed, because of the running couplings in the theory, our one-
loop analysis is not sufficient to determine whether the instability is perturbative
or requires a non-perturbative tunneling process to access. If it is non-perturbative,
the situation is reminiscent of those described in [15], where a tachyonic instability
in one limit of moduli space appears to turn into a non-perturbative instability

mediated by a gravitational instanton in another limit.

2.3.4 Patterns of Symmetry Breaking

In the remainder of this section we will provide a preliminary discussion of the
physics that results when the twisted operator VEVs turn on. We will begin with
some heuristic intuition from the gravity side, and then analyze concretely some
aspects of the Higgs structure of the model given the scalar potentials calculated in
the previous section.

On the gravity side, we expect perturbative tachyon condensation to produce a
subcritical dimension target spacetime [12](13]. This is because the zero-momentum
tachyon vertex operator is a relevant operator on the string worldsheet. The world-

sheet beta function equations are then satisfied by a nontrivial field configuration
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for the dilaton, metric, and other string fields; in particular dilaton gradients con-
tribute effective central charge to compensate for that lost by going to a subcritical
dimension (as occurs for example in the case of a linear dilaton with flat string-
frame metric) [12]. In the context of the AdS/CFT correspondence, the dimensions
of the $°/Z,, and the radial direction of AdS arose from the directions transverse
to the D3-branes, which are parameterized by worldvolume scalars. It is natural to
expect therefore that losing and/or deforming the S° and radial dimensions would
correspond to losing the scalars in the dual quiver gauge theory, and perhaps also
the fermions which also transform under SO(6) rotations.

In situations with non-perturbative instabilities on the gravity side [15] one
also has a sense in which degrees of freedom are lost, as one “tunnels to nothing” .2
In our situation, as we will discuss shortly, one does not always expect to decay to
nothing, but one can decay to something which is in some sense less than what one
had to begin with: from the full quiver gauge theory to a long-distance sector with
pure glue QCD.

Let us discuss some patterns of symmetry breaking that emerge from our po-
tentials (2.2.2)(2.2.15)(2.2.16). There are instabilities in the effective potential cor-
reponding to VEVs for twisted operators in the gauge theory, manifested in the
D-brane language convenient for the calculations in §2 by relative motion of frac-
tional branes along the orbifold plane described by VEVs for diagonal entries of the
adjoint scalar matrices. Let us investigate the effect of turning on these VEVs.

Let us analyze the Type 0 case (2.2.2) for simplicity; similar patterns will
emerge in the higher Z,, cases and can be analyzed in a similar way. Consider the
direction in field space in which X} gets a VEV

(X3) = diag(pi, phs- -+ » Piv—1s =% — P3 — -« — Plv—1)s (2.3.4)
which satisfies the SU(N) condition

o pe =0, (2.3.5)

and in which (X3) = 0.

12 From other points of view one appears to tunnel to flat space via a Schwinger effect
[28][29], a situation whose interpretation and whose relation to our results here would be
very interesting to clarify.
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Plugging this into the effective potential (2.2.2), we obtain

V(52) ~ g s (Sonlie - 11002222 _onsizaltiog 2L (23.9)
Pa 9y m | #a,blPa — Pbj LOg 2 al|Pal t0g JVE -0,

where we have replaced the transverse R® index i by vector notation.

Let us consider the minimization of this potential with respect to the pf.
The first term in (2.3.6) describes the force between “electric” branes (those with
SU(N); on their worldvolume). The second term describes the force between the
electric branes and the “magnetic” branes (those with SU(IN); on their worldvol-
ume) which are all sitting at the origin, X, = 0. At sufficiently small distances
between the branes, the former is repulsive and the latter is attractive.

There is a relatively simple configuration where the g, are arranged symmet-
rically (equally spaced) on an S° of radius p. This satisfies the SU(N) constraint
(2.3.5). It is an extremum of the effective action in the angular directions. By
playing the mutual repulsion of the electric branes against their attraction to the
magnetic branes at the center, we will find a minimum for the radial mode p, gen-
eralizing the one along the direction (X?) = diag(p,0,...,0,—p) discussed in [9].

Approximating the sum over branes indexed by a by an integral over the angles
of the S5, we obtain an approximate form of the potential which will be sufficient

to indicate the presence of the anticipated minimum:

- . () — p(2)|? . ()2

[ dd0ala(0) - @y BEL=ARIE gy [ agyjpayea P2
(2.3.7)
Using this, separating the radius p of the sphere of fractional D-branes from the

angular variables, we obtain

4 4 pReT280
V(p) ~ N2g3y prp*log( e (2.3.8)
The potential (2.3.8) has a minimum at p of order M,
P2, = M2e~1/2¢=379/240 (2.3.9)

as in our earlier discussion of the Coleman-Weinberg potential. We have therefore
balanced the attractive and repulsive forces as anticipated. In particular, one finds

the force between the electric branes and the magnetic branes is attractive in this
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regime. Because the forces grow with distance, this suggests that the magnetic
branes at the origin are stable against small fluctuations, which means the X3
scalars are massive. Indeed this follows from an analysis of small fluctuations in the
Zq9p directions, as follows.

Expanding (2.2.2) around the background symmetric distribution of g,, we find
the following mass terms for the z} ,:

9 2 2 2 |Pa|2 |pa,|2 3/2
—29% M Zap| 21T2,1%) Pl logT + 4z, T3, N ZOQ—M— (2.3.10)

Summing over the spherically distributed pg,, the off-diagonal terms in the mass
matrix sum to zero and we see that the diagonal terms are nonzero and positive
at the minimum (2.3.9) (since log—zmi = —379/240 < 0 and logZmizz— Pnig®®”
1 —379/240 < 0).13

We have now accumulated enough information to determine the effect on the
gauge theory of turning on this VEV. It breaks one SU(N) to U(1)V~! and leaves
the other SU(N) intact. From (2.2.1) one finds that all the fermions get masses
once our VEVs (2.3.4) are turned on. As we have just seen, the scalars X3 get
positive mass squared.

The angular fluctuations of the X! on the other hand are dominated by re-
pulsive interactions between the electric branes, so these fluctuations appear to be
unstable. Once this configuration of twisted VEVs in the gauge theory is turned
on, the long-distance physics of the gauge theory consists of QCD plus decoupled
U(1) factors and unstable scalars.

There is another configuration in which QCD sectors emerge at low ener-
gies without instabilities in the other sectors; this is a likely endpoint of the
spherical configuration we began with. It is another natural generalization to
large N of the instability discussed in [9). Consider again (X; = 0). Take
(X1) = diag(F,,...,7,~7,...,—7) where the first N/2 diagonal entries are 7 and
the last N/2 entries are —7. Geometrically, this describes N/2 electric branes at

—7 and N/2 electric branes at +7, with N magnetic branes at the origin.

13 Note that there is no coupling-constant dependence in the computation of the signs
of forces and scalar m2’s which depend only on the values of order one numbers arising
from the geometry of the configuration at the minimum (2.3.9).
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In this case, there is a minimum at

f@-ﬂ%m =978/3 (2.3.11)
about which the fluctuations of both X 1 and X 2 work out to be massive, which again
is consistent with naive expectation from the signs of the forces in the vicinity
of the minimum (2.3.11). The Yukawa couplings (2.2.1) yield masses for all the
bifundamental fermions in this configuration.

This more stable configuration leaves, on the gauge theory side at distances
long compared to the masses of the scalars and fermions, a pure glue QCD sector
with gauge group SU(N), decoupled from two others with gauge groups SU(N/2)
and a relative U(1) factor.

Because of the limited range of validity of the 1-loop calculation of Vs, we do
not know if the potential is bounded or unbounded from below at large (X). If it
turns out to be unbounded, it is tempting to suggest that for infinitely large VEVs
for the twisted operators in the gauge theory, the theory may reduce to separate
pure glue QCD plus decoupled U(1) sectors. However because of the long-range
forces on this fractional D-brane branch of the gauge theory, it is not clear what the
masses of the X3’s will be as a function of the VEVs of the X;’s, and it is logically
possible that the X3 scalars would come back down to zero mass and/or become
unstable as X; increases beyond the regime of validity of our current calculation.

In our Z, orbifolds, before going out on the Coulomb branch the gauge group
is SU(N)* = II}_,SU(N)g. Turning on VEVs for the diagonal elements of the
X'’s similarly leads to the near-horizon limit of various fractional D-brane configu-
rations whose low-energy theories involve gauge symmetry breaking and some mas-
sive and/or decoupled scalar and fermion matter. It would be interesting to classify
all the possible behaviors in arbitrary Z, orbifold models based on the potentials
derived in the last section, but we will leave that for future work.

It is not clear from this analysis whether this M-theory dual to the remaining
gauge theory will be a perturbative string theory.!* Indeed in ordinary large-radius
string backgrounds the tachyon mixes with the dilaton, and its condensation leads

to strong dilaton gradients; the analogous phenomenon should be expected in our

14 The results [38] perhaps suggest otherwise.
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small-radius AdS/CFT system. (Correspondingly on the gauge theory side, the
VEVs for twisted operators that we have turned on can induce large renormaliza-
tions of all the couplings in the gauge theory.) Even before turning on VEVs for
twisted operators along the unstable directions, a novel kind of string theory may
be required on the gravity side of a dual pair in which the field theory is deformed
by a double-trace operator of this kind, as discussed in §3.2 [35].

In any case, we have arrived at an interesting answer via AdS/CFT duality
to the question of what can happen when one condenses a tachyon in closed string
theory: in this system, it rolls to the gravity dual of a gauge theory with less
symmetry and reduced matter content, but sometimes retaining pure glue QCD
factors in the infrared.

As discussed above, condensing the tachyon is expected to lead to a subcritical
matter sector on the string worldsheet, and we have just learned that the corre-
sponding process on the gauge theory side can lift or decouple the extra matter and
gauge fields beyond pure glue QCD. Noncritical string theory was conjectured to

be dual to QCD in [16]. Our results provide some further evidence in this direction.

2.4 Freely Acting Orbifolds and Tachyon-freedom

Consider an orbifold group I' C SO(6) which fixes an isolated point in RS. In
the presence of N D3-branes centered at the fixed point, the spacetime geometry
blows up into a near-horizon region which is completely smooth, with the orbifold
acting freely on the §°.

Because the orbifold fixes an isolated point in RS, the codimension of the
singularity is the same as the codimension of the D3-branes, so the spacetime has
no directions along which fractional branes could separate. Correspondingly, the
scalars in the resulting quiver gauge theory are all in bifundamental representations,
in contrast to the above non-freely-acting cases where the scalars describing motion
along the orbifold fixed locus remained in the adjoint. Thus, for freely acting
orbifolds, there is no Coulomb branch.

Since in these cases the classical moduli space does not include a branch where
twisted states can develop a VEV, the theory will remain stable to all orders in
MiHooft- We therefore suspect that there are no twisted instabilities for any radius

(any 't Hooft coupling Mipe0s¢) in this system, though there is a logical possibility
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that one develops at a Arzpoo5¢ Of order one. (If so, it would have to disappear again
for large M¢Hooft as discussed above. This result is a new prediction for the gravity

description at small radius.)!®

2.5 Z, x Z, Orbifolds with Discrete Torsion

In more general orbifolds than those we have considered so far, such as Z, x
Z, orbifolds, one can project out the lowest-lying twisted-sector tachyons with a
nontrivial choice of discrete torsion. However, at large radius, tachyonic modes
dressed with angular momentum along the S°/T' will survive this projection. It
is interesting to consider whether this instability persists at small radius (weak 't
Hooft coupling) in these theories.

In this section we will study in particular a (C/Z3) x (C/Z3) orbifold with
nontrivial discrete torsion. Let the first Z3, generated by g1, act on the z* direction,
and the second generated by g; on the z? direction, with the third complex plane
parameterized by 23 left invariant. The g; twisted sector vacuum energy is -1/3,
as is that of the go twisted sector, and in the absence of nontrivial discrete torsion
these states correspond to physical tachyons in spacetime. A nontrivial choice of
discrete torsion projects out each of these vacua (g; projecting out the vacuum in
the go twisted sector and vice versa). However, there are momentum states invariant
under the both g; and g, which still have tachyonic masses m? < 0 in spacetime.

Naive intuition might suggest that these momentum-mode tachyons may get
lifted as we go toward small radius since the momentum contribution to the m?2 of
the state grows as the radius shrinks. Again naive intuition is liable to fail in these
highly curved Ramond backgrounds, and as in the previous examples, the QFT
instability analysis is the appropriate method for answering this question at small

radius given the limitations of current technology on the gravity side.

15 Very naive gravity-side intuition might have suggested that a tachyon would arise at
small radius, since the positive mass squared of twisted states at large radius is driven
by their winding energy around the $°/T', and when the S°/T" becomes small the winding
energy would appear to be negligible. However, the substringy dynamics of curved Ramond
backgrounds is hardly a place where naive intuition applies. Our QFT analysis of the lack

of instability in this system at small radius is a prediction for the worldsheet RR sigma
model.
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The worldvolume theory of D-branes on orbifolds with discrete torsion was
worked out in [39] (and studied in the context of AdS/CFT in [40]). The result
for our case in particular is as follows. The theory is an SU(3N) gauge theory
with three complex scalars Z123 and four Weyl spinors x4 in the adjoint, i.e.
a theory with the field content of N' = 4 SU(3N) SYM. The interactions, however,
differ from those of the N = 4 theory. The quartic scalar couplings involving Z?!

and Z2 are deformed from the usual commutators to take the form:

Lscalar = tr [(2122 —aZ%Z") (2521 - a-lzizﬁ)}

(2.5.1)
tr ([zl, Z32, Z3]T) +tr ([22, ALVAS Z3]T)
where a = €2™%/3, Similarly the Yukawa couplings are deformed to the form
a'll"'fﬂtr [x"‘(leﬁ — a_lxﬂZl)] + al"g‘ﬂtr [xa (Z%xP - axﬁZz)]
(2.5.2)

+T5Ptr (x"‘[Z?’, xﬁ]>

The Coulomb branch describing fractional branes is parameterized by diagonal
Z3 matrices. We can now immediately observe a difference between this case and
the cases discussed in §2. Namely, the one-loop Coleman-Weinberg potential will
be absent here, since all the tree-level vertices involving Z3 are exactly the same
as in an SU(BN) N = 4 theory. On the other hand, higher-loop contributions to
the effective potential of the gauge theory mix Z® with all the other fields, and
we expect such contributions will get generated. It would be interesting to explore

their signs to see if an instability exists in this case at higher orders in Ar¢grooft-

2.6 Discussion and Future Directions

In this chapter we have identified global instabilities in certain weakly-coupled
non-supersymmetric gauge theories whose AdS/CFT duals contain twisted-sector
tachyons at large radius. These instabilites, which induce VEVs for twisted field
theory operators, appear at one-loop in the gauge theory and genus zero in the
string theory, though their effect on untwisted operators is suppressed by factors of

(1/N2), as expected from large-N inheritance.
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At higher orders in 1/N? there will be a rich set of dynamically generated con-
tributions to the effective action which are not constrained by large-N inheritance
from the parent N’ = 4 theory. This can (and presumably does) include quadrati-
cally divergent scalar masses (as well as quartically divergent vacuum energy which
does not affect the QFT dynamics). It would be interesting to calculate these effects
and understand their description on the gravity side of the correspondence. These
finite-N effects can have a dramatic effect on the matter content and dynamics, and
it is necessary to calculate these in order to understand the finite-N system. Some
interesting perturbative calculations in these theories were done for example in [41].
While we feel such an analysis is further motivated by our work here, it is somewhat
subtle to carry out since the QFT couplings appropriate to the gravity dual may
themselves be shifted from the orbifold values by contributions of order 1/N2.16

As discussed in §2, it would be very interesting to ascertain the behavior of
the effective potential near the origin of the Coulomb branch. It would also be
interesting to see whether a higher-loop analysis leads to persistant instability at
large (X), and to study the meaning of (and possible constrints on) the quiver theory
renormalization conditions from the gravitational dual. These last issues mirror the
difficulty on the gravity side of determining the form of the tachyon potential when
the tachyon VEV is large and mixes strongly with other string fields.

One important generalization to consider is a case where quark flavors survive
the tachyon condensation process, so that we get more than just the pure glue
QCD theory. Recall that in our tachyon condensation process in §3 the fermions
decoupled and/or became massive as the twisted operator’s VEV turned on. A
case where flavors survive may well involve a second set of D-branes in addition to
the D3-branes contributing the SU(N) gauge group, so that the gravity side has
open strings as well as closed strings. It would be interesting to perform a general
analysis of symmetry breaking patterns for the Z, orbifolds considered here and
more general ones; the configurations we discussed in §3.4 are particularly simple
and there may be a rich set of interesting possibilities implicit in the potentials
(2.2.2)(2.2.15)(2.2.16).

It would be interesting to explore the tachyon potential in closed string field
theory in this system, and compare the Coleman-Weinberg potential to the closed-

string analogues of formulas in [27] for the tachyon potential in open string field

16 We thank M. Strassler for reminding us of this difficulty.
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theory. This is out of range of current technology, and our QFT calculations are
simply predictions for the behavior of the appropriate gravity side sigma model.

It would also be interesting to study the tachyon potential on the gravity side
at large radius, to see what happens to the S°/T" and to the RR fields upon tachyon
condensation in that regime. We may be able to get a handle on this by studying
the geometry of fractional D-branes splitting apart, via nonsuper-gravity at large
radius. It would also be very interesting to explore potential relations to the work
of [30] and [29]. With respect to the latter, one would need to repeat our analysis
of D3-branes in the Type 0B theory for the (nonconformal) even-dimensional D-
branes of the Type 0A theory, where the conjectured dualities and instabilities of
[29] might apply most directly.

In general, it is important to improve our understanding of the gravity side of
the duality (and the duality map) in order to resolve the puzzle of the violation of
conformal invariance on the field theory side discussed at length in §3.2.

Finally, it would be interesting to study further examples of tachyonic and
non-tachyonic non-supersymmetric AdS/CFT duals, to see how general the pattern
found here of large radius instabilities persisting to small radius proves. We covered
a large class of examples in our analysis here, but there are many more cases that

could be considered.



3. Don’t Panic! Closed String Tachyons in ALE Spacetimes

3.1 Motivation and Outline

An understanding of the vacuum structure of String/M theory after supersym-
metry breaking is crucial for phenomenology and cosmology. It is also relevant
to the question of unification; it is important to understand the extent and na-
ture of connections between different vacua in the theory. A basic issue is the fate
of theories that have tachyons in their tree-level spectra. This has long been a
source of puzzlement, but for open strings there has been a great deal of progress.'”
Open string tachyons generally have an interpretation in terms of D-brane anni-
hilation, binding, or decay, and a quantitative description of these processes has
been achieved by an assortment of methods from conformal field theory, string field
theory, and noncommutative geometry. This has also led to a deeper understanding
of the role of K theory, and the reanimation of open string field theory.

For closed string tachyons the understanding is much more rudimentary. These
should be connected with the decay of spacetime itself, rather than of branes in
embedded in a fixed spacetime. In this chapter we study a class of tachyonic closed
string theories in which the decay can be followed with reasonable confidence. The
key feature of these theories is that the bulk of spacetime is stable, and the tachyons
live only on a submanifold. Thus they are similar to the tachyonic open string
theories, and we will note certain close parallels, though in the absence of closed

string field theory we will not be able to achieve as complete a quantitative control.

This chapter is reprinted, with changes, from Allan Adams and Eva Silverstein, “Don’t
Panic! Closed String Tachyons in ALE Spacetimes” JHEP10(2001)029, by permission of
the publisher. © 2001 by the Institute for Physics

17 A small sampling of references on this subject is [42][43][44][45][46][47][48][49][50][51].
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The theories we study are noncompact, nonsupersymmetric orbifolds [52][53]
of ten-dimensional superstring theories [54][55][56][57][58]. The simplest case is to
identify two dimensions under a rotation by 27 /n, forming a cone with deficit angle
27 — 27 /n (n must be odd, for reasons to be explained in §2). This is the simplest
example of an Asymptotically Locally Euclidean (ALE) space, which is defined
generally as any space whose geometry at long distance is of the form RF /T, with
I" some subgroup of the rotation group. The tip of the cone, which is singular, is
a seven-dimensional submanifold. The rotation leaves no spinor invariant and so
supersymmetry is completely broken, and there are tachyons in the twisted sector
of the orbifold theory. Where do these tachyons take us?

There are several plausible guesses, based on experience in other systems:

(I) A hole might appear at the tip, and then expand to consume spacetime. Such a
reduction in degrees of freedom is naively suggested by the relevance of the tachyon
vertex operator at zero momentum [59], and by the presence of a nonperturbative
Kaluza-Klein instability in certain backgrounds [60], and has been argued to be the
fate of other tachyonic closed string theories [61)[62][63](64][65].

(IT) The tip might begin to elongate, asymptotically approaching the infinite throat
geometry that is often found in singular conformal field theories [66].

(III) The tip might smooth out, by analogy to the effect of the marginal twisted
sector perturbations in supersymmetric orbifolds. This smoothing might stop at
the string scale, or continue indefinitely.

We will argue that it is the last of these that occurs, as was also suggested
recently in [58]. At late times, when a general relativistic analysis is valid, an
expanding dilaton pulse travels outward with the speed of light. This is depicted in
figure 1. The region interior to the pulse is flat, with vanishing deficit angle. The
energy contained within the pulse produces the jump to the asymptotic deficit angle
of 2 — 2w /n [67). More generally, by following special directions in the space of
tachyons, the decay can take place in a series of steps, where for example €/Zg;4,
decays via a dilaton pulse to C/Zjy_1, or to any €/Zyy 1 orbifold with I’ < [.
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Figure 1: Decay of the conic singularity. The end of the cone is replaced by a flat
base. The outward-moving dilaton pulse is shown in gray.

We will analyze this process in two complementary regimes. When the tachyon
expectation value is small and so the smoothed region small compared to the string
scale, we use D-brane probes [68], whose world-volume theory is a quiver gauge
theory [69]. This is the substring regime. D-branes on supersymmetric orbifolds have
been studied extensively; we extend these techniques to study non-supersymmetric
orbifold compactifications with closed string tachyons. The probes see a smoothed
geometry when the tachyon is nonzero. When the smoothing region exceeds the
string length scale, we can instead use a general relativistic description, and we
argue that the solution has the form in figure 1. This is the gravity regime. Because
of ¢ corrections, we do not have a controlled approximation that connects the two
regimes, but we argue that together they give a simple and consistent picture of a
transition from a conic singularity to flat space via tachyon condensation. These
same complementary descriptions have been applied to type I instantons and to
supersymmetric ALE spaces [69)].

If one or more of these singularities is part of a compact manifold, then the
initial stages of tachyon condensation will be the same near each orbifold fixed
point, producing a smooth compact geometry. Unlike the noncompact system,
which evolves forever, we will argue that the compact space collapses toward a Big
Crunch in finite time.

If we put N D3-branes on the fixed plane, and consider the near horizon limit,
then the system is expected to be dual to a nonsupersymmetric gauge theory [70].
The fixed plane is partly transverse to the D3-brane, and in the large-radius limit of
the AdSs x S°%/Z,, background we find a dramatic instability that grows toward the
boundary of AdS. We argue that at large 't Hooft coupling these nonsupersymmetric
field theories are unphysical. This contrasts with the more benign infrared Coleman-
Weinberg instabilities evident on the field theory side at weak 't Hooft coupling
(small radius), which arise in theories whose gravity duals have tachyons at large
radius [57][71).

The analysis can also be applied to orbifolds the form €?/T', where I is a dis-
crete subgroup of the rotation group that fixes a point in €?. If I' ¢ SU(q) then the

background does not preserve supersymmetry, and there are twisted-sector tachyons
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localized at the fixed point. For ¢ = 1 there is no I' that preserves supersymmetry,
but for ¢ > 2 there will be.

We study several €2/Z, examples, where analysis of the quiver theories on D-
brane probes leads to predictions for transitions between different orbifolds. There
is a new effect that can occur in this case: we exhibit infinite sequences of examples
with transitions from nonsupersymmetric ALE spaces to supersymmetric ones. We
again expect a gravitational background for large tachyon VEV that involves an
expanding shell of dilaton gradient, combined with metric curvature. In this case
the total energy of the transition region must vanish, since both the initial and final
ALE spaces have vanishing energy as measured by the falloff of the gravitational
fields at infinity. (We will explain why this is not inconsistent with positive energy
theorems.)

For large n in ' = Z,,, an angular direction is small for a significant range of
radii and it is useful to go to a T-dual picture involving NS5-branes [72]. These
transitions therefore provide a closed string analogue of the open string brane de-
scent relations [73], in that we can realize for example any A space (and therefore
the equivalent dual system of k + 1 NS5-branes) via tachyon condensation (and/or
marginal deformation) from a non-supersymmetric ALE space. Also, by adding an
R-R flux, which has little effect on the geometry, we obtain a system which has a
conjectured dual description in terms of fluxbranes [74][75)[64][65]{76][77].

This realization of supersymmetric ALE spaces (and therefore NS branes) by
closed-string tachyon condensation is very reminiscent of similar constructions in
open string theory [51]. In this regard, we should emphasize that certain puzzles
that arise in the open string case arise here as well [58].1% In particular, in open
string tachyon condensation, one finds gauge fields without sufficient perturbative
charged matter to Higgs them [78][79], but open string field theory calculations
at disk order suggest that they are nonetheless lifted classically [51][80][81). In
the tachyonic closed string systems we study here, there are twisted RR gauge
potentials without perturbative charged matter; our evidence suggests that the
defect is nonetheless smoothed and the RR potential lifted. In both the open and

closed string cases, it would be very interesting to understand the classical stringy

18 We thank M. Berkooz, P. Kraus, E. Martinec, and other participants of the Amster-
dam Summer workshop for discussions on this.
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effect, evidently going beyond ordinary effective quantum field theory, which allows
gauge fields to be so lifted. In the closed string case, it would be interesting to
understand an analogue of the quantum confinement effect identified in the open
string case in [82]; here as there one has D-branes charged under the gauge group
of interest (in our case these are the fractional D-branes, whose condensation might
lead to confinement of twisted strings into untwisted strings).

The organization of this chapter is as follows. In §2 we discuss the C/Z,
orbifold, including the twisted sector spectrum and the quantum symmetry group
of the orbifold theory. We also discuss the difference between orbifolds and ALE
spaces that do not have orbifold descriptions. We consider D-brane probes in the
orbifold theory, deriving the quiver representation. In §3 we analyze the quiver
theory/linear sigma model for the €C/Z,, orbifolds and their twisted deformations,
discussing both generic decays and decays that leave lower-order orbifolds. In §4
we develop the general relativistic description of these same solutions. We discuss
renormalization group evolution and time evolution. These are similar, in that both
lead to a smoothed region that grows without bound, but there are differences in the
details. We discuss the consistency between the renormalization group analysis and
the c-theorem. We then discuss the fate of compact spaces with nonsupersymmetric
orbifold points, and the consequences of our results for AdS/CFT duality. In §5, we
analyze transitions in the C? /T case by means of the quiver theories, and exhibit
decays from non-SUSY to SUSY ALE spaces. In the general relativistic regime we
explain how our results are consistent with positive energy theorems. Finally, in §6
we discuss dual systems, including fluxbranes, and in §7 mention some directions

for further research.

3.2 The C/Z,, Orbifold
3.2.1 Closed String Spectrum

Let us start by reviewing some of the basic properties of the €/Z, orbifold
conformal field theory [54][55][56]. These orbifolds are defined by identifying the
8-9 plane under a rotation R through 27 /n. This allows two possible actions on the
spinors,

R = exp(2miJgg/n) or exp(2miJgg) exp(2miJgg/n) , (3.2.1)
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where Jgg is the rotation generator. For either choice, R™ acts trivially on spacetime
and so is either 1 or exp(2miJgg) = (—1)F. If R® = (—1)F, the orbifold group (which
is actually Z,, in this case) includes this operator and so projects out spacetime
fermions and introduces tachyons in the bulk. Because we want to have all tachyons
localized at the fixed point we must have R® = 1. For the two choices (3.2.1) one
finds

R*=(-1)F or (-1)n+DF (3.2.2)
Thus, only the second choice of R is acceptable, and only for n odd:

n+1
n

R =exp (27rz' Jsg) , n=20+1. (3.2.3)

In the sector twisted by R*¥ (1 < k < n — 1), in the light-cone Green-Schwarz
description there are six real untwisted scalars, one complex scalar twisted by k/n,
and four complex fermions twisted by k/2 + k/2n. The standard calculation of the
zero-point energy gives

a/m2 _ { —k/2n , k even ,

4 (k—n)/2n , k odd . (3.24)

Thus the lowest state is tachyonic in every twisted sector. There are also excited
state tachyons in many sectors. For example, when k = 1 the lowest twisted scalar
excitation takes (1 — n)/2n to (3 — n)/2n and so this state is tachyonic for n > 3.
Our analysis will be rather coarse, and so we will generally not distinguish the
ground state in each sector from excited states with the same symmetries.

We wish to ask, where do these tachyonic perturbations take the system? Since
they are in the twisted sectors, their initial effect is in the neighborhood of the fixed
point. There are two contexts to consider. First, we could add the tachyonic ver-
tex operators to the Hamiltonian. Tachyonic states correspond to relevant vertex
operators, so they change the IR behavior of the world-sheet theory. We are then
interested in determining the renormalization group (RG) flow. Second, we could
consider a time-dependent string solution that begins as a small but exponentially
growing tachyonic perturbation of the orbifold. We are then interested in the sub-
sequent time evolution.

Physically these are distinct questions. The first is an off-shell question from

the point of view of string theory, but well posed as question in two-dimensional
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quantum field theory. The second is an on-shell question in string theory. In fact we
will find, as has been seen in other contexts, that the scale and time evolutions are
similar. In both cases the question can be posed in the classical string limit, with no
string loop effects. If the world-sheet theory were to become singular, for example
if the dilaton were to become large, then this framework would break down, but we
will find that at least generically this does not happen.

The orbifold preserves an SO(7,1) x U(1) subgroup of the parent SO(9,1). In
addition there is a new “quantum” symmetry that appears in the orbifolded theory
[83]: the twist is conserved, mod n.1® The lowest tachyons in general break the
quantum symmetry completely but leave the SO(7,1) x U(1) unbroken (in the RG
case) or break it to SO(7) x U(1) (in the time-dependent case). In some cases
we will consider perturbations that leave part of the quantum symmetry unbroken,
while in others we will find that a new quantum symmetry, unrelated to the original
one, emerges asymptotically.

Actually, the evolution is more restricted than would follow from spacetime
symmetry alone. The XM and 9™ (of the RNS description) upon which the
SO(7,1) or SO(7) acts do not appear in the perturbation. These fields there-
fore remain free, whereas the symmetry would allow a warp factor depending on
the other coordinates.

We will consider processes where a Zj;.; singularity emits a radiation pulse
with just the appropriate energy to leave behind a Zy;_; singularity. We could also
imagine the time-reversed process, sending in a pulse with the appropriate energy.

This raises an interesting issue. We have found that there are no Zy; orbifolds
with supersymmetry broken only locally at the tip of the cone, but what if we con-
sider a solution of type II string theory which describes a pulse sent inward with just
the right energy to create such a singularity? When the pulse reaches the origin, the
geometry is a cone with deficit angle 2 — 27/2l. The difference between this case
and the time reversal of our orbifold decay process is that here there is no simple de-
scription of the singularity. Away from the singularity, the lines § = 0 and § = 2w /2l
are identified under a rotation exp(2niJgg/2l) or exp(2niJsg) exp(2miJzg/2l). This

19 This is not the same spacetime Z,, group used to construct the orbifold. All states
are invariant by definition under that symmetry, while the quantum Z, is carried by the
twisted sector states.
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is a sensible configuration, and the dynamical process allows one to reach it. How-
ever, on the 2[-fold covering space, the lines # = 0 and € = 27 are identified under
the action of (—1)F, and so there is a branch cut in the spinor fields. This is the
essential difference from the orbifold: in the orbifold the untwisted fields are single-
valued on the covering space. We could similarly consider a wedge of any opening
angle 6,, where the plane is generically not a covering space. Again, dynamically we
could construct a state that has this behavior away from the singularity, but that
within a string distance of the singularity has some complicated description, not
based on a free CFT, if the singularity is resolved at all. Indeed, we will find many
example of orbifolds decaying to such spaces; we will use the terms ‘quasi-orbifold’
or ‘quasi-ALE (QALE)’ to refer to these more general spaces that are locally Eu-

clidean but are not obtained as orbifolds of a single-valued theory on Euclidean

space.

3.2.2 Open String Spectrum

We now consider a Dp-brane probe of the geometry. Here as in many other con-
texts, D-brane probes [69] and closely related linear sigma model techniques [84] are
useful for obtaining a broader view of the space of closed string backgrounds than
is available from perturbation theory about a specific world-sheet CFT. In study-
ing a D-brane probe, the low energy quantum field theory on its world-volume is
only valid in the substring regime, where the VEVs of world-volume scalars (scaled
to have dimensions of length) are sufficiently small compared to the string length
va!. We will also study the D-brane probes in the classical limit, and in doing
so will self-consistently find results consistent with the string coupling remaining
bounded throughout the tachyon decay process. It would be an interesting, but
distinct, question to relax the g; — 0 limit we consider here and analyze the quan-
tum dynamics on D-brane probes in these backgrounds, a question that could be
considered both before and after the tachyons condense.

The classical world-volume theories of D-branes probing orbifold singularities
were worked out in a beautiful paper by Douglas and Moore [69]. The orbifold group

I’ has both a geometric action R and an action ~r on the Chan-Paton indices,

|¢,Z,J) - 'YRii"Rwai,aj,)'YE}/j . (325)
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For branes that are free to move away from the orbifold singularity, there must be a
distinct image for each element of I and so the Chan-Paton indices transform in the
regular representation. These branes have integer tensions and charges. Irregular
representations correspond to fractional branes bound to the fixed locus. We will
be interested in the regular case; as we have noted in the introduction, fractional
branes are confined once the singularity is resolved, but the full mechanism is not
understood.

We will consider a Dp-brane probe that is extended in the directions p =
0,1,...,p and localized in the directions m = p+1,...,7 and in the orbifolded
8-9 plane. The treatment will be uniform for the ITA or IIB theories, and for all
p in the respective theories. We take a single copy of the regular representation,
but the discussion readily extends to N copies. For I' = Z,,, R cyclically permutes
the D-brane images and so ygjx = 0j4+1,%. The indices j,k are understood to be
defined mod n, so in particular 45,1 = 1. It is more convenient to work in a basis
in which the spacetime action is not so evident but the spectrum and its quiver

representation are simple:

Yrik = €279/ "5 . (3.2.6)

The low energy theory is itself an “orbifold” of the N = 4 world-volume theory
of a D-brane in flat space, obtained by projecting out gauge theory fields that
are not invariant under the action (3.2.5). The massless open string fields are the
vector potential Ak, the collective coordinates XJ; and Zjx = (X® +iX®);x, and
the spinor &; in the 8 of SO(7,1) and with Jgg = +%. The real and imaginary
parts of £ form the 16 of SO(9,1); we will suppress the SO(7,1) spinor index.
The orbifold projection (3.2.5) on the operation (3.2.3), (3.2.6) retains fields with
j — k+ (n+ 1)Jge = 0. The surviving fields are then

Auii s Xj5y Zigris &gt (3.2.7)

where j runs from 1 to n = 2/ + 1 and indices are defined mod n. The conjugates
are Zj41,; and &; j41.

Thus the gauge group is U(1)", with the collective coordinate Z; ;41 having
charge +1 under U(1); and charge —1 under U(1);41, while &;,j—; has charge +1 un-
der U(1); and charge —1 under U(1);_;. The spectrum can be succinctly expressed

through “quiver” diagrams [69]. For each factor in the product gauge group, the
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diagram has a node; for I' = Z,, these are in one-to-one correspondence with the
range of the Chan-Paton indices. A field with charge +1 under U(1); and charge
—1 under U(1) is denoted by an arrow from node k to node j. For more general
representations of I' the gauge group is a product Hj U(N;) and the arrows repre-
sent bifundamentals. Arrows beginning and ending on the same node are adjoints,
which of course are neutral in the case of U(1)". For the example I' = Z5, figure 2

shows the separate quiver diagrams for the various fields.

Y

A o o

J B

Fig. 1: Figure 2: Quiver diagrams for the C/Zs orbifold: for Z, for &,
and for A, and X™.

Note that the quiver theory spectrum is invariant under cyclic permutation of the
gauge groups; call this symmetry I'g. All gauge invariant operators inherited from
the parent theory, such as Zj Fﬁ,,jj, are scalars under I'g. Gauge invariant oper-
ators not descending from gauge invariant operators in the parent theory, such as
Fﬁ,,u, are not I'g scalars. Since the lagrangian itself descends from a gauge invari-
ant operator in the parent theory, it is a scalar, and so I'g is truly a symmetry of
the system. This symmetry is just the realization in the quiver theory of the orb-
ifold quantum symmetry. In particular, bulk twisted modes couple to gauge-twisted
operators (i.e. not I'g scalars) on the brane only in I'g invariant combinations —
a very useful fact in fleshing out the AdS/CFT dictionary, for example. We will
see that quiver diagrams are a very effective tool for following the behavior of the
probe theory as the singularity decays.

The potential for the scalars is classically, at the orbifold point,

1 1 2
V=3 D (X7 = XTh1 401 Zg g + 3 Z('Zj,jﬂlz - le_l,jlz) . (3.2.8)
jm J
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where the overall normalization will not be important. We are interested in the
Higgs branch, where X7} is independent of j and the Zj;, are nonzero. This
corresponds to a D-brane probe of the orbifold geometry. On the Coulomb branch
the X7% depend on j and the Z; ;41 vanish. This branch corresponds to the probe
separating into fractional D-branes trapped at the singularity, and it disappears in
the deformed geometry. On the Higgs branch there is a Yukawa interaction

Ly = ij,j—zfj-z,j+17j+1,j . (3.2.9)
J

Note that each interaction forms a closed loop on the quiver diagram.

We now consider the geometry of the Higgs branch. The vanishing of the
potential (3.2.8) implies that the magnitude |Z; ;41| is independent of j. Of the n
U(1) symmetries, the diagonal decouples. The remaining n — 1 gauge symmetries
can be used to set the phases of the Z; ;11 equal as well, so that the common value
Z;j+1 = Z parameterizes the branch. The branch is thus two-dimensional, as it
should be for the interpretation of a probe. The gauge choice leaves unfixed a Z,,
gauge symmetry, whose generator is

exp (—% > jQ,-) . (3.2.10)
i

This identifies Z — €%™¥/"Z, so the probe moduli space is indeed the €/Z,, space-
time. For each of the fields (3.2.7) there is one massless mode, where the field is
independent of j. This is the correct spectrum for a D-brane probe.

The moduli space metric, as measured by the probe kinetic term, is obtained by
integrating out the higgsed gauge fields. In a general gauge, the potential requires
that on the moduli space Z; j.+1 = re"%. The kinetic terms are then

NE

2
Ly= I(Wu +1Apjj — iAIJ'J'+1,J'+1)Zj:J'+1'

1

<.
I

(3.2.11)
[(7r)? + 2(m85 = Byy)?] -

L)
I
ey

il
.M"

We have defined the relative gauge potentials, B,; = A,j; — Auj+1,j41, which
tautologically satisfy the constraint ) B,; = 0. The total U(1) is unbroken and
decouples. Integrating out the broken gauge fields subject to the constraint gives

- .1 &
Byj=mu(8;-0), 6== kz_lok : (3.2.12)
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Inserting this into the kinetic term gives the manifestly gauge invariant result
Ly = n[(m‘)2 + 72 (wé)z] . (3.2.13)

As deduced above, the periodicity of 8 is 27 /n. Rescaling to 0 = nf, with canonical
period 27, the kinetic term becomes

2
Ly = n(ar)? + %(wB)z , (3.2.14)

corresponding to the metric of a flat Z,, cone,

2
ds? = ndr? + %dﬁz , (3.2.15)
as expected. For future reference note that we can define 0 as

0= arg(anZlg N Zn-l,n) 3 (3216)

the RHS is gauge invariant, so the period of # is manifestly 2.

The gauge bosons that have been integrated out have masses of order r/d/,
while excited string states with masses of order o/~'/2 have been ignored. The
result is therefore valid in the substringy regime [68], r < o/}/2. We have also
ignored quantum corrections in the world-volume theory. This is valid because the
world-volume fluctuations are open string fields, and we have taken g; — 0 at the
beginning — we have posed the problem in classical string theory.

There is a closely related context in which world-volume quantum corrections
would be important. The world-volume theory of the D1-brane provides a linear
sigma model construction analogous to those in [84] of the F-string orbifold CFT
[85). In this one must let the quantum world-volume theory flow to the IR fixed
point. In the present case we know independently, from the orbifold construction,
that the fixed point action is the free action (3.2.13).

3.3 Decay of €/Z, in the Substring Regime
3.8.1 Generic Tachyon VEVs: Breaking the Quantum Symmetry

In the initial stage of the instability, the tachyon VEV is small and so the
geometry is modified only in the substringy region near the tip of the cone. D-

brane probes are therefore the effective tool for investigating the geometry. The
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closed string background determines the low energy quantum field theory on the
probe. This can be obtained directly from a calculation of the disk amplitude with
a tachyon vertex operator plus open string vertex operators, as in the appendix
of ref. [69]. For our purposes, however, it will suffice to identify the world-volume
theory by matching with the quantum numbers of the closed string tachyons.
iFrom the discussion in §2.1, the tachyons generically break the quantum sym-
metry completely, so this will be broken in the world-volume theory. We are in the

substringy regime, so we are interested in the leading effects in powers of Z. In the

potential, this would be a mass term

n
AV = "m2|Z; ) . (3.3.1)
=1
A term of definite quantum charge k& would have a coefficient proportional to
e2™iik/n  Since there are tachyons with all charges except for the untwisted k = 0,
one obtains arbitrary masses subject to the constraint i m? = 0. It is then useful

to reexpress the mass term as

n n

AV == X (|Zj,j+1|2 - |Z,-_1,,~|2) , D N=0. (3.3.2)
j=1 j=1
The notation is suggested by the supersymmetric case, where A; would be the
Fayet-Iliopoulos (FI) coefficient for U(1);.

On the moduli space we now have

|Z; 54112 = 1251512 = Aj . (3.3.3)

For generic A; the Z; ;41 are therefore distinct, and one of these has magnitude
less than the rest, say Z12. When this vanishes the remaining n — 1 Z; ;41 are still
nonzero. It follows that U(1)™ is broken to U(1) everywhere on the moduli space,
and so there is no orbifold point. The moduli space is smoothed; topologically
it is R2. The gauge-invariant combination Zn1Z12...Z5—1n, Which now vanishes
linearly when Zq5 — 0, is a good coordinate.

We can confirm these conclusions by finding the probe metric. Define p; iter-

atively,

p? = p?_l +X;j, p1=0. (3.3.4)



3 Don'’t Panic! Closed String Tachyons in ALE Spacetimes 44

Then with Z; ;1 = r;€'%, eq. (3.3.3) implies

r2=r?4+p}, r=r1. (3.3.5)
The kinetic term is now
n
L= [(mry)? + r3(mu6; — Bug)?] - (3.3.6)
i=1

Enforcing the constraint ) jBui =0 with a Lagrange multiplier A,, the equation of

motion for By; is r2(m,0;— B,;) = A,. Inserting this into the constraint determines

the multiplier,

1
M2p=mﬂ (3.3.7)

where § =3 0; is defined as in eq. (3.2.16) and so has period 2r. The action then
takes the simple form

Ly = n(r)(nr)? + a%(vr@)z , (3.3.8)
where
noo2
n(r) = ; m?- . (3.3.9)
The corresponding metric is
r2
n(r)dr? + -E(T)daz ; (3.3.10)

for constant n(r) this is the metric (3.2.15)of a cone cone of deficit angle 27 /n. The
function n(r) interpolates smoothly from n(0) = 1 (the term j = 1) to n(co) = n.
Thus the metric (3.3.10) is nonsingular at the origin and connects smoothly onto

the original C/Z,, geometry asymptotically, as in figure 3.
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Figure 3: C/Z, singularity with a twisted tachyon VEV, as seen by a D-brane
probe.

This smoothed geometry differs somewhat from what will eventually emerge
in the gravity regime, depicted in figure 1. The base of the cone is rounded rather
than flat. Also, the dilaton is constant: a nontrivial dilaton would lift the moduli
space, through the dependence of the DBI term. We will see that in the gravity
regime a dilaton must be present, so evidently this is a higher-order effect.

The exact physical meaning of the D-brane probe calculation here is a bit indi-
rect. D-brane probes can observe substringy geometry only on times long compared
to the string scale [68][86], while the decay process that we are probing takes place
on the string time scale. There are at least two contexts where the calculation
above has a precise meaning. First, we could consider a tachyon background which
is constant in time and oscillatory in space, where the wavelength is then long com-
pared to the substringy geometry. Second, at large n some tachyon masses-squared
are of order 1/n. Even when neither of these contexts is relevant, we expect that
the qualitative conclusion about the geometry is correct, and this is all that we will
need.

Again, our analysis of the gauge theory is entirely classical. The non-
supersymmetric gauge theories do not look unstable in this approximation at the
orbifold point. The tachyon instability is a closed string tree effect and so a one-loop
open string effect. In the context of AdS/CFT duality, we would expect to see this
instability in the gauge theory; we will return to this point in §4.

Finally, note that the resolved geometry is topologically trivial. Thus, unlike
the supersymmetric ALE singularity, there is no interpretation in terms of collapsing
cycles at real codimension two. However, in §3.3, and in §5 where we consider the
case of real codimension four orbifold singularities, we will see many parallels with

the supersymmetric case.

3.3.2 World-sheet Linear Sigma Model

As we noted above, the D1-brane gauge theory provides the starting point for
a LSM representation of the F-string world-sheet theory. Let us digress slightly to

explain the picture of the tachyon decay process which emerges from this point of
view.



3 Don’t Panic! Closed String Tachyons in ALE Spacetimes 46

The LSM description involves considering a simple gauge theory in the UV
which flows to the world-sheet CFT of interest in the IR [84]. In the context of
quiver theories on D1-branes at orbifold points, the classical moduli space is the
orbifold space (as we reviewed in §2.2), which is the target space for the F-string
world-sheet CFT. Based on this and the discrete symmetries of the theory arising for
appropriate choice of theta angles, it was argued in [85] that the D1-brane quiver
theory provides a linear sigma model formulation of the orbifold CFT, with the
caveat that without supersymmetry one must fine-tune away the quantum potential
on the moduli space in order to reach the orbifold CFT in the IR (which then enjoys
an accidental supersymmetry).

We are interested in the effect on the world-sheet CFT when the tachyon VEVs
are turned on in spacetime, which means in terms of a renormalization group anal-
ysis that a relevant operator is added to the world-sheet CFT action (taking the
tachyons at zero spacetime momentum). We would like to describe this deforma-
tion from the UV LSM quiver theory. As we have discussed, the tachyons transform
under the quantum symmetry in the IR CFT, and this symmetry exists already in
the UV quiver theory. Therefore we can identify twisted operators in the UV theory
which will generically mix with the twisted-sector tachyon vertex operators in the
IR. The twisted couplings of interest include the A; in (3.3.2) above. These are the
most relevant twisted deformations in the UV, and we will focus on their effects.

The RG flow diagram of this theory appears as in the following figure.

ife 2

Orbifold
CFT

v

Figure 3.5: Flow diagram for the linear sigma model.
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We consider flow toward the IR, keeping track of the indicated couplings e (the
gauge coupling) and A, and on a third axis the relevant couplings v in the scalar
potential of the theory which drive the flow away from the desired IR world-sheet
theory; these last we tune away as discussed in [85]. The flow proceeds toward
stronger gauge coupling e. As we turn on A, the vacuum manifold of the LSM
smoothes out, as we discussed above. For large A, integrating out the massive
degrees of freedom in the LSM we obtain a nonlinear sigma model whose RG flow
proceeds toward infinite flat space, as we will see in §4. For small A, as we flow
toward the IR we expect generically for ) to mix with the tachyon vertex operators,
which are relevant operators so that the flow proceeds away from the orbifold CFT
fixed point.

Putting this together, the simplest joining of the two regimes leads again to a

picture where the tachyon VEV induces flow from the orbifold CFT to smooth flat
space.

3.3.3 Special Tachyon VEVs: Annealing the Quiver

We have considered a generic tachyon VEV, which in the quiver theory breaks
all U(1)s and resolves the singularity completely. It is interesting to consider instead
partial resolutions of the singularity. Depending on the choice of twisted deforma-
tion we turn on, we will find that such resolutions can lead to quasi-orbifolds, which
have no free world-sheet CFT description, or to real orbifolds, which do. We will
start with an example of the former case and then proceed to the transitions between
real orbifolds that are our main interest.

Consider for example the case that A\; = —A2 > 0, for which eq. (3.3.3) implies
that one bifundamental is greater than the rest,

202> =1Zj 5112+ M, G#L. (3.3.11)

The maximum unbroken gauge symmetry is now U(1)*~!, where all Z; ;11 other
than Z;, vanish, so we expect that the symmetry is partially resolved to Z,_,.
The theory near the fixed point can be elegantly described in terms of annealed
quiver diagrams. As an explicit example, let us analyze the €/Zs orbifold, whose
quiver diagrams were given in figure 2. Figure 4 shows the first step in the annealing.

In the neighborhood of the fixed point, the bifundamental Z, has a relatively large
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VEV and breaks U(1); x U(1)2 to the diagonal U(1). Thus, in the second line of

figure 4 we have collapsed nodes 1 and 2.

Y <« |
-

¢ ¢  J

Figure 4: Partially annealed €/Zs scalar and fermion quivers. The scalar Z5 is

indicated in bold. In the low energy theory the nodes 1 and 2 are identified.

The scalar Z,2 decouples from the low energy theory, its magnitude fixed by the
potential and its phase absorbed by higgsing; thus it is omitted from the annealed
diagram. The adjoint scalar XJ7 — X7 accompanying the broken U(1) is also lifted
by the potential. Finally, the mass term &;4€42Z5; removes two fermions, so the

final quiver diagram is shown in figure 5.

’ L @
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Figure 5: Final annealed C/Zs scalar and fermion quivers.

The scalar spectrum is the same as for a €/Z4 orbifold in bosonic string theory,
and the metric (3.3.9) seen by a D-brane probe has a Z4 singularity. The geometry

is as in figure 6, with a Z, singularity in a space whose asymptotic geometry is

C/Zs.

Figure 6: Asymptotic C/Z, geometry with a C/Z,, singularity, with n’ < n, as

seen in the substringy and gravity regimes.

The fermion spectrum is not of quiver form. This is not surprising, as we know
that there is no orbifold construction of the supersymmetric type II string on the
C/Z, singularity. Rather, this must be a quasi-orbifold, not based on a free CFT,
as discussed in §2. However, by turning on additional Fayet-Iliopoulos terms, and
so a second scalar VEV, we can flow to the Z3 quiver as shown in figure 7; it is

easy to check that the Yukawa terms lift no additional fermions.



3 Don’t Panic! Closed String Tachyons in ALE Spacetimes 50

2

Y
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Figure 7: The massless sector of C/Zs with two scalars turned on gives the C/Z3

quiver!

More generally, the €/Zy;+1 singularity can decay to the €/Zy_; singularity,
if the FI terms are such that Z1 and Zj1 ;42 decouple. (It can also flow to a variety
of quasi-orbifold singularities.) For the true orbifold case, the quiver diagram has
an obvious Zy;_; symmetry. This is not a subgroup of Zy;+;, but emerges as an
accidental symmetry (in the technical sense) of the low-energy theory. This process

can be repeated until we reach the trivial €/Z; orbifold, without tachyons.
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Figure 8: Decay to the €/Z; space.

The spectrum is simply a free chiral supermultiplet, with SUSY reappearing as an
accidental symmetry under successive quiver annealings. The order of liftings does
not particularly matter. Aslong as all but one scalar receive generic VEVs the result
is inevitably the quiver for SUSY flat space, regardless of the geometries or effective
quivers at intermediate scales. Since the bifundamentals couple to relative gauge
potentials, this maximally higgses the system; we cannot lift all the scalars without
changing the number of degrees of freedom in our theory. In complex codimension
two, the story will be much richer, as there is an infinite family of SUSY quivers to
which a generic tachyonic quiver can decay.

Note that the decays to lower-order singularities require specific FI terms of no
particular quantum symmetry, so they arise from a linear combination of different
tachyons. Since the tachyons have different lifetimes, the singular point will not be
a static configuration. Presumably it is possible to fine-tune the initial conditions
so that the geometry develops the lower order singularity as it enters the gravity

regime, where it will remain on top of its tachyon potential.

3.4 Decay of C/Z, in the Gravity Regime

In the preceding section we found that the initial effect of the tachyonic sin-

gularity is to smooth the geometry. As with any tachyon, an essential question is
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the nature of the final state: does the tachyon potential have a minimum, or does
the instability continue without end? The D-brane probe analysis in the previous
section breaks down when the size of the smoothed region reaches the string scale.
We do not have tools to probe this regime, so will study the question by going
beyond it to the regime of small curvature. If we were to find that the RG flow in
that regime carries us back to higher curvature, this would indicate the presence
of a minimum with curvature of order the string scale. In fact, we will find that
the flow goes toward ever-smaller curvature.?? Thus the geometry evolves forever,
generating an arbitrarily large region of arbitrarily small curvature, which contains

a lower-order singularity if the initial state has been appropriately fine-tuned.

3.4.1 RG Flow

We now study the RG flow of the world-sheet NLSM corresponding to a back-
ground of the massless closed string fields. Owing to discrete symmetries, we need
only consider the metric and dilaton. Note that there is no explicit tachyon field
in this regime. The instability, whose initial stage is represented by a tachyon in
the orbifold description, would now be a property of the solutions to the low energy
field equations. The RG equations are

Gun = —BIGun]+ Vuén + Vnénm ,

. (3.4.1)
® = -p[] +MVye

where Gy is the string metric, a dot denotes the logarithmic derivative with
respect to world-sheet length scale £0, and

,B[GMN] = a’RMN + 2C¥lVMVN@ )
o (3.4.2)
B[®] = o/ (V®)? — —2-v2<1> :
The vector field &y, is arbitrary and represents the freedom to make a spacetime
coordinate change with the change of world-sheet scale. A convenient choice is
v = o'V ®, so that

. !
Gun = - Ryy, &= 5‘;—\72@ . (3.4.3)

20 We cannot exclude the possibility of a fixed point with curvature of order the string
scale, but the fact that both the substring and gravity geometries evolve toward smaller
curvature strongly suggest that this flow continues smoothly through the stringy regime.
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In these coordinates the flow of the metric does not depend on the dilaton; this is
possible because the dilaton does not appear in the flat world-sheet action.

The perturbation leaves a (7 + 1)-dimensional free field theory, so the problem
is essentially two dimensional. It is convenient to work in conformal gauge, because
the flow (3.4.3) preserves that gauge. Thus,

ds? = e2(dp® + p2dh?) , (3.4.4)

where for generality we consider an arbitrary periodicity 0 < 6 < 27 /v. In this

gauge, the metric (3.2.15) for a cone of opening angle 27/n corresponds to

w= <—Z - 1) In p + constant . (3.4.5)

In conformal gauge the RG is

, A

o= %e'z“’Vzw , (3.4.6)

where V2 is the Laplacian for the flat metric dp? + p?d9?, which is 2 + p~19, for
a cylindrically symmetric solution.

Let us analyze this first for the transition n — n—2 at large n, where the change
in the metric is small. The geometry is as depicted in figure 6, with a €C/Z,,_» cone
at the origin, going smoothly to a C/Z,, cone at large radius. In coordinates with

v =n — 2, the boundary conditions are
. 2
w(p — 0) = finite ; w(p — c0) = - Inp . (3.4.7)

We can then linearize, w = o' ﬁzw/ 2. A simple solution, obtained by the Fourier

transform on the covering space, is

w(p,f) = —i—(lnln(f/lo)-i- /0 u°%“(1-e—“)) 5 -1 /0 * %”(1-6-“), (3.4.8)

n

where ug = p?/2a’ In{£/£,); in the second form the Inln term has been conveniently
absorbed in an /-dependent rescaling of p. The solution depends only on ug, so the
radius p;, of the transition region grows with increasing world-sheet length scale, p; ~
In(£/£,)/2. Pointwise in the IR the system approaches a €/Z,_; cone everywhere.

Asymptotically, all solutions to the diffusion equation with the given boundary
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conditions will have the same form. The dilaton satisfies a diffusion equation as
well and any initial dilaton gradient will similarly diffuse outward.

For the full nonlinear evolution (3.4.6) we do not have a simple analytic result,
but given the diffusive nature of the equation we expect that in general the smoothed
area depicted in figure 3 grows without bound. Hence our conclusion that the flow
found in the substring region, toward smaller curvature, continues indefinitely in
the gravity region.

There are two reasons that one might doubt this result. The first is
the Zamolodchikov c-theorem, showing irreversibility of the flow of the central
charge [87]. Here we start with an orbifold CFT of canonical central charge (15 in
all for the type II string). In the IR, we claim that the theory flows pointwise to flat
spacetime, again with canonical central charge. The reason that this is consistent is
that the noncompactness of the target space invalidates the c-theorem [88]. There
are other cases of CFT theorems that are invalid in noncompact target spaces. The
classic example is the holomorphicity of conserved currents, which does not hold
for the world-sheet currents associated with rotational invariance in noncompact
directions [89]. For the c-theorem, the basic objects are the vacuum expectation
values of operator products. The string world-sheet vacuum fills out the entire tar-
get manifold, a familiar IR effect, so the region of curvature makes a contribution
of measure zero.

A second reason that one might have expected the opposite result is the example
of compact spaces of positive curvature, which flow to greater curvature. We claim
that the difference of boundary conditions in the compact and noncompact cases
accounts for the differing behaviors. In fact, there is a simple monotonicity result
that makes this clear. From the differential equation (3.4.3) it follows that

!
00, / d?zVG = —% / d*zVGR . (3.4.9)

For a manifold of spherical topology, the RHS is —4na’ and so the volume is mono-
tonically decreasing. The curvature must at some point become stringy, and the
low energy theory break down. For the noncompact manifold the integral is not
defined, but one can consider the integral interior to a circle of some given radius
(over a region such as depicted in figure 3). The smoothing of the singularity does
have the effect of reducing this volume, whereas flow back toward a singular cone

would increase the volume in contradiction to the flow (3.4.9).
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Finally, we might also be interested in the case that the original singularity
is part of a compact space. Most simply, consider T?/Z3, which is a flat space of
spherical topology, with three €/Z3 singularities each of deficit angle 47 /3. From
the c-theorem, or from eq. (3.4.9), one concludes that the space eventually flows
to large curvature. The three singularities begin to smooth, until the smoothed

regions merge to form a rough sphere, which then evolves toward smaller radius.

3.4.2 Dynamical Fvolution

We now consider on-shell evolution,

BlGun] = B[®] =0, (3.4.10)

with the same S-functions (3.4.2). This is now a three-dimensional problem, since
the solution depends on time. It is convenient to work in the Einstein frame, where
this system is just a massless scalar canonically coupled to the metric. The initial
metric is again assumed to interpolate from C/Z, at infinity to C/Z, at the
origin, with n’ < n. This is true in both the Einstein and the string frames, because
we assume that the dilaton is nonsingular at the origin, while it goes to a constant
at infinity (where the evolution has not yet reached).

We do not have analytic solutions for this problem, but it is easy to deduce the
general form of the solutions. The constraint equations require that the change in
deficit angle be accompanied by energy density of matter. Since we can solve the
equations with the NS three-form field strength set to zero, so that the only matter
involved is the massless dilaton, this energy must be dilaton gradient and kinetic
energy. This dilaton field will radiate outward at the speed of light, as in figure 1.
The time scale of the initial decay, before the gravity regime, is the string scale, so
this sets the initial width of the dilaton pulse and the kink in the geometry, which
then gradually broadens due to dispersion. For n’ = n — 2 at large n, an analytic
treatment is again simple. The dilaton satisfies a massless wave equation in flat
spacetime, and the backreaction on the metric is a perturbative effect.

As a check, let us look for static solutions in the gravity regime, which would
have corresponded to minima of the tachyon potential that are visible in this regime.
We will take the most general form with SO(7, 1) x SO(2) spacetime symmetry:

ds® = ey, datde” + 27 (dr? + r2d6?) . (3.4.11)
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This is slightly more general than elsewhere, in that we allow the (7,1) directions
to be warped; note also a slight change of notation, p,v = 0,...,7. The dilaton

field equation is

@II
r-o 20’ = —% -8 = (7)Y = i—le-&’ (3.4.12)

with integration parameter ¢;. The uv curvature equation reads

(ro’)

— 80’ =20 = €2% =cyro'e® (3.4.13)
with integration parameter c;. Putting these together gives ® = —cjc20'/2, and
S0

e® o (In7/rg)~C1e2/28+e1ca) | o0 o (Iny/rg)t/ Brearce) (3.4.14)

These are doubly unacceptable: they do not go over to the unperturbed behavior
at large r, and they have a singularity at finite 7 = ro. Only the flat cone, the
exceptional solution with ® and o constant, survives.

It is interesting again to consider the T2/Z3 orbifold, with nonsupersymmetric
singularities in a compact space. We cannot follow the behavior analytically, but
might expect that after the dilaton pulses have begun to cross the compact space,
the time-averaged behavior will be that of a positively curved radiation dominated
spacetime. Thus, it will reach a Big Crunch in finite time, beyond which we can-
not follow the evolution. One supposition would be that the compact dimensions
effectively disappear, leaving an eight-dimensional noncritical string theory [59].
However, the simplest background in that theory — the linear dilaton — has the

wrong symmetries to be the endstate of our evolution, as the dilaton gradient is

spacelike.

8.4.8 Application to AdS/CFT

In ref. [70] it was argued that orbifolding should commute with AdS/CFT
duality, so that the dual of the orbifolded gauge theory is IIB string theory on the
orbifolded spacetime. This expectation is based on the fact that a duality like the
AdS/CFT correspondence concerns a single system with two dual descriptions; if
orbifolding makes sense on one side of the duality then the procedure can be mapped

to the equivalent dual description of the system given a complete duality dictionary
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translating between them. In the absence of supersymmetry, if the orbifolding
procedure produces a consistent physical system, this requires any instabilities that
arise to match up between the two equivalent descriptions. The leading instability
that arises in a string background is that of interest here, namely the tachyons. In
freely-acting orbifolds on the sphere component of the AdS, x S? geometry, the
spectrum is classically tachyon-free. Non-freely acting orbifolds on the S? do have
tachyons, and this has been considered at small ’t Hooft parameter [57], where the
gauge theory is perturbative. Now let us consider the situation at large 't Hooft
parameter, where the AdS description is good.

The AdS description starts with N coincident D3-branes extended in the 0123
directions. The orbifold produces a (7+1)-dimensional fixed plane. This plane con-
tains the D3-branes and extends in four transverse directions. The AdS curvature
is small on the string scale and so locally on the fixed plane the initial instabil-
ity is the same as in flat spacetime. In particular, the decay will release a given
energy per unit volume of the fixed plane, as measured in a local inertial frame.
The invariant volume element is (r/Rags)3d3z (r/Raas)~*r3dr, where z coordina-
tizes the field theory dimensions and r is a coordinate along the radial direction of
AdSs x S, with metric (r/Rags)?dz? + (r/Rags) ~2(dr? +r2dQ?). The translation
to the global conserved energy brings in an additional factor of 7/ Rags, so the total

energy released per unit gauge theory volume is simply
(oo}
/ drrd ~ A%, (3.4.15)
0

That is, it diverges quarticly in the gauge theory.

We can make a simple model of how this divergence might arise in the gauge
theory. Consider a state a U(1) gauge theory where we add a + and a — charge in
a volume of linear size £. The kinetic energy is of order 2£~1, but this is reduced
somewhat by the gauge theory potential, for a net {2 — O(g?)}£~!. Extrapolation
would suggest a possible instability at large g2 (to be precise, this theory will have
a Landau pole in the UV, so we must imagine a cutoff). In a globally supersymmet-
ric theory, positivity of the energy is guaranteed and so this instability is absent;
thus, supersymmetric field theories can make sense at large coupling. However, for
nonsupersymmetric theories there is no guarantee that they make sense at strong

coupling. Indeed the result (3.4.15) suggests an instability of just this sort: in a
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conformal theory we can produce pairs on any scale £, and the integral over all scales
produces a quarticly divergent result. Note that this is much more severe than the
instabilities normally encountered in field theories (such as symmetry breaking),
which are IR effects and release a finite energy per unit volume. It is difficult to see
how this instability could have any sensible final state.

Indeed, the AdS picture is similarly pathological. We can quantitatively study

the large-n case Z, — Z,,, because the dilaton essentially satisfies a free wave

equation on the AdSs x S° covering space,

2
RAdS
r2

r2
2
RAdS

02% = 1% (3.4.16)
The orbifold breaks the SO(6) symmetry of S° so the dilaton is a superposition of
different angular states. For angular momentum L,
5. L(L+4)
2 _ o2

0] =0, + ;8, - (3.4.17)
Imagine that the decay starts everywhere at once at ¢t = 0. This condition is confor-
mally invariant so the dilaton is a function only of rt. The wave equation (3.4.16)
then becomes an ordinary differential equation for ®1(rt), and rt = R}, is a

singular point. From the dominant terms near the singular point one finds that
& ~ (R34g — rt)~3/2 (3.4.18)

for every partial wave L. Thus, the energy density diverges at finite time for any
r; this occurs when a geodesic from (r,t) = (0o, 0) reaches a given radius, carrying
the information about the divergent energy release at large radius.

Again, this instability is a property of large 't Hooft parameter, and is not
inconsistent with the much milder instability found at small 't Hooft parameter in
ref. [57]. Note that we have assumed that the 't Hooft parameter does not run, as
holds at large N. If the full 8 function were in fact asymptotically free, then the
theory would be stable in the UV, and the instability that we are discussing would

set in only below some scale. In this event it is possible that there would be a stable

final state.
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3.5 C2/Z, Orbifolds and Non-SUSY to SUSY Flows
3.5.1 Orbifolds and Quivers

One of the interesting results of the study of open string tachyons has been
the possibility of realizing stable branes, in particular SUSY branes, by open string
tachyon condensation [51][73]. In this section, we study closed string tachyon con-
densation on C? /Z,, orbifolds by generalizing the D-brane probe approach of §3 to
this case. We will exhibit various transitions from non-supersymmetric, tachyonic
C?/Z,, orbifolds to supersymmetric ALE spaces, and provide an infinite sequence
of such flows which allows us to realize any SUSY ALE space via closed-string
tachyon condensation (or more generally a combination of marginal deformation
and tachyon condensation).

The discussion will parallel the €/Z,, case. All the orbifolds that we consider
will be based on a twist of the form

2mi

R= exp{ (J67 + ngg)} R (3.5.1)

—
depending on two integers n and k (mod 2n). We will denote the group generated
by R as Z,). On spinors with Jg7 and Jgg charge sg7 = sgg = :t%, R acts as
eE2mik+1)/2n - On spinors with —se7 = sgo = +1 it acts as e*2mi(*-1)/2n The
condition that R™ = 1 on spinors forces &k to be odd. If k£ is +1, then R leaves half
of the D = 10 spinors invariant and so produces the familiar supersymmetric A,
orbifold (for reviews see [90][91]). For other values of k, at least some of the twisted
sector ground states are tachyonic. If 2n is divisible by k£ + 1 or by k£ — 1, then
R2n/(k+1) or R2n/(k-1) leaves some spinors invariant. The associated twisted sector
ground state is massless, and indeed is the same as the corresponding twisted sector
state in the supersymmetric orbifold (but note that the respective cases k +1 =2
and k — 1 = 2 are trivial).

Let us now consider a D-brane probe in this background. Define
Z' =X +iX", Z’=X%+4Xx°. (3.5.2)

For the world-volume spinor in the 16 of SO(9,1), its component with (s¢7, Sg9) =

(—1,-1) will be denoted x and it component with (se7,sse) = (—3,+3) will be

denoted 7 (the remaining two components are the conjugates). The SO(5, 1) spinor
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indices, respectively 4 and 4’, are suppressed. Using the techniques discussed in
[69] and §2, one finds the world-volume theory to be a U(1)™ quiver theory with
matter content

Auiis X3y Zijwrs Zijeks Xid—a-1> TMig+e (k=2¢+1). (35.3)
The classical scalar potential is
V= Tr{%[Zl,Zl]z + %[Zz, 7P +|2%, 2% + |[Z1,72]|2} : (3.5.4)

Using the Jacobi identity this can also be rewritten

V= ’I‘I‘{%([Zl, 7' - (2%,2%)° +2|(2%, 22]|2}
= Tr{%([Zl, 7' +[2%,2%)% + 2|[Z1,ZZ]|2} . .
The Yukawa terms are
Ly = Tr{[Zl, Xn+ (22 X7+ h.c.} . (3.5.6)

3.5.2 The Ezample Zyy(31-1): Non-SUSY Zy; to SUSY Z,

Now we analyze the case k = n — 1, where n = 2] must be even because k is
odd. Here

R= exp{27riJ89} exp{27rz'(J67 - Jgg)/2l} (357)

is the same as in the supersymmetric case except for a factor of exp{2miJse} =
(—1)F, which breaks supersymmetry. Note however that the special case | = 1, the
c?/ Z,(1y orbifold, is supersymmetric: R = exp{2mi(Je7 + Js9)/2} leaves invariant
spinors such that sg7 = —ssg.

Before exciting tachyons, the geometry is the same as for the supersymmetric

orbifold. In particular, on the probe moduli space the condition that V' vanish gives
Z},j-i—l =71, Zfﬂ,j = 7% (independent of j) (3.5.8)

up to gauge transformation. Thus the probe has two complex moduli, as it should.

The origin, where the U(1)% gauge symmetry is restored, is a Zy; singularity as in
§2.2.
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Before discussing the generic decay, it is interesting to consider first deforma-
tions that preserve a Z; C Zy quantum symmetry. This Z; acts on the I*® twisted
sector as (—1)!, so only states twisted by powers of R% can have VEVs. Since
R? = exp{2mi(Je7 — Js9)/!}, these sectors are exactly the same as for the supersym-
metric €2 / Z,(_1) orbifold. In particular, there are no tachyons, so we are actually
considering marginal deformations. The perturbation of the gauge theory is then a

supersymmetric D-term

_Z'\ij ’ | J+1| | J+1,J|2—I 1]|2+| F.d— 1|2 (3-5-9)

where the sign of each term is determined by the U(1); charge (note that for a
k = —1 orbifold Z! and Z? are in chiral superfields, while for ¥ = +1 it would be
Z! and Z?). An overall additive constant is ignored. As in §2.2, Z?Ll Aj =0, while
the Z; quantum symmetry requires that A; = A;4;. Now consider the deformed
moduli space; focus on the second of forms (3.5.5) and note that the first term there

is just Z?f__l Djz-. The vanishing of the second term requires that

Z} 22, =0 (3.5.10)

be independent of j. Minimizing the D-terms then sets D; = A;, which determines
all of the magnitudes in terms of |Z},| and . Finally, the phases can be gauged
away except for Z?Ll argZ i j+1» 8iving four real moduli in all.

There are still singularities. Consider the subspace @ = 0. The condition
D; = ); determines

| +1| |Z_72+1,j|2 =pitz, (3.5.11)

where p; = pj—1 + A; and z is undetermined. When z = —pj, for some jo, both
Z}o,jo 41 and Z o +1,do vanish. Further, the Z, quantum symmetry implies that
Zj 1 jorisr 20d Z2 10y dot vanish as well. There are then two unbroken U(1)’s,
namely Z” io+1 @y and Zj=jo+l+1 Q;, where Q; is the U(1); charge and j is de-
fined mod 2. Thus, these ! points of restored gauge symmetry, which are generically
distinct, are Z, singularities on the moduli space.

Thus far the discussion is the same as for the resolution of a supersymmetric
C? / Zyy(—1) singularity while preserving a Z; quantum symmetry: the result there
would be a Zy(_1y orbifold of a smooth Z; ALE space. The difference for us is that
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the final orbifold operation here contains an extra factor of (—1)F, so it must be
Zy(1). Naively one might expect this orbifold point to be nonsupersymmetric, but
the discussion at the beginning of this subsection shows that it is supersymmetric
with the opposite supersymmetry from that respected by R2. One can think of
the final picture as follows: we resolve the C2/Z,(_1) orbifold generated by R2
into a smooth ALE space preserving half of the supersymmetry, and then make a
Z (1) orbifold which locally would preserve the other half. In other words, we have a
space of SU(2); C SO(4) = SU(2)1 x SU(2)2 holonomy, with [ orbifold singularities
whose holonomy is in SU(2),. The space as a whole has no supersymmetry, but half
of the supersymmetry survives in the smooth region and the other half locally at
the orbifold points. In the limit that the marginal deformation is taken to infinity,
we simply have a supersymmetric C? / Z (1) space, without tachyons.

We can verify this by examining the quivers. At the orbifold point, the potential
for the vanishing fields Z} . .1, Z2 11 5y Zi 1 soaaen 80d Z2 0 5o s quartic so
they are massless, while all other scalars are massed up. One unbroken U(1) acts on
indices j = jo, jo + !+ 1, and the other on indices j = jo+ 1, jo +!. Expanding the
Yukawa coupling (3.5.6) in components, one finds that 7;,+1,jo+1 and 7j,+i141,j0 do
not appear in terms with scalar expectation values, so these remain massless (note
that these are neutral under the unbroken U(1)’s). There must therefore also be two
massless linear combinations of x’s; these come in the bifundamental representation
of the unbroken U(1)2. The correlation between U(1) charges and SO(5, 1) quantum
numbers is the same as for the €/Z,(;y orbifold, namely the spectrum (3.5.3) at
k = 1 with 7 in the adjoint and x in the bifundamental representation of the gauge
group.

We now turn to the generic twisted state background. The full D-brane probe
analysis is less useful here, for two reasons. The first is that without any connec-
tion to supersymmetry, the quantum symmetry alone does not fix the form of the
quadratic mass terms (specifically, the ratio of Z! and Z2? masses); it requires the
calculation of a disk amplitude, as in the appendix to ref. [69]. More critically, for
general mass terms allowed by the quantum symmetry, there is no probe moduli
space. This is not a problem — from the spacetime point of view it is the same
effect that a dilaton background would have — but it makes it difficult to give a

geometric interpretation in the substring regime.
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Fortunately, we can largely deduce the fate of the instability by expanding
around the deformation already considered. Let us first deform €2 [ Za21-1) along
directions that preserve the Z; quantum symmetry as above, so as to have an
orbifold of SU(2)2 holonomy in a space of SU(2); holonomy. The orbifold locally
is supersymmetric and so has marginal deformations in the twisted sector. These
correspond to blowing the orbifold points up into smooth Z, ALE spaces of SU(2)3
holonomy. Thus we have small patches of SU(2); holonomy in a larger region of
SU(2)1 holonomy. This is only an approximate solution to the equations of motion,
and will in time evolve to a space of generic holonomy and expand indefinitely as
in the C/Z, case.

Note that the second blowing-up will not be exactly marginal, as the coupling to
the SU(2) curvature will break supersymmetry and presumably drive the marginal
direction to be tachyonic. If the extent of initial blowing-up is reduced, so as
to condense the two steps towards one, the Zj(;y twisted state will become more
tachyonic, so we seem to connect smoothly onto the original string-scale tachyon.

There is a seeming paradox here, whose resolution provides an elegant check
on our picture. The initial C? [ Z 211y orbifold is an exact CFT, and so its tree-
level energy (as measured by the 1/r? falloff of the metric) is zero. There is a
tree-level tachyon, and so the final state should have negative energy when the
kinetic energy of the outgoing pulse is subtracted.2! Does this not violate a positive
energy theorem? In fact, there is no such theorem: negative energy configurations
of asymptotic ALE geometry exist [92].22 There is a negative energy theorem for
any geometry that admits spinor fields going to a constant at infinity [94][95]. The
geometries of ref. [92] admit spinors, so it must be that any smooth spinor field is
antiperiodic under the asymptotic ALE identification. This is precisely the geometry
of the Zg;(3—1) orbifold.

In the above example and the others we will consider in this section, we have

studied in detail the substring regime using D-brane probes, and in the case of

21 This paradox did not arise for €/Z,,, because in two dimensions a conic deficit angle
is an ADM energy.
22 We would like to thank G. Horowitz for informing us about these spaces and explain-

ing their significance, as well as sharing insights from his investigations into GR solutions
for the €®/Z, cases [93].
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marginal deformations, we have also studied the regime far away from the origi-
nal orbifold point using inheritance from a related SUSY orbifold. Once tachyons
turn on and the system evolves into the gravity regime, we have not analyzed the
subsequent GR solutions as explicitly as in the €/Z,, case. However, the following
indicates that the behavior is as before. Consider a configuration of negative energy.
If the size of the configuration is scaled up by a factor ), the energy scales as A\
(A* from the volume and A~2 from the derivatives). This implies that the potential

is unbounded below in this direction.

8.5.8 The Ezample C?/Zy3y: Non-SUSY Zy to SUSY Z,

These results have a resemblance to phenomena that have been observed in
open string systems. The existence of a tachyon, which disappears as one goes
along a marginal direction, is the same as in a D-brane/anti-D-brane system, where
the string-scale tachyon at small separation goes over to a long-range attraction as
the branes are separated. The decay of a nonsupersymmetric configuration to a

supersymmetric configuration plus outgoing radiation is also familiar.

There are many other similar flow patterns that can be deduced by studying
the quiver theories as we have done for the above case. One interesting sequence is
for n=2l and k=3,

R = exp{ 57

(Jo7 + 3J89)} ) (3.5.12)

whose quiver diagrams are shown in figure 9.
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2n-1

2n

=)
)4

Figure 9: €2 /Z2y(3) quivers

In this case R' = exp{in(Je7 — Jso)} is the same as for the supersymmetric
C? /Z3(—q) orbifold. In parallel with the previous example, we first excite only
marginal states from the sector twisted by R'. This preserves as Z; subgroup of
the original Z; quantum symmetry.

The Fayet-Iliopoulos terms then satisfy
Aj = (=1)7+1A (3.5.13)

where we take A > 0. The quantum symmetry requires that Zzlp_l,zp, Zzlp,2p +1>

Z%,_1 2py2> and Z2; 4,15 be independent of p, and the D-terms are minimized when
|Z21p—1,2p|2 + |Z§p—1,2p+2|2 = IZ21p,2p+1I2 + Ing,2p+3|2 + A ’ (3514)

While Z%p_l’zngplzp_*_s - Z21P’2p+lzgp_1,2p+2. When Z%p_l,zp - Al/z With all Othel‘

VEVs vanishing, a U(1)! is restored — namely Q2p—1 + Q2p for all p — so this is
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a Z,; singularity. Before taking into account interactions that give mass to some

fields, the quiver diagrams thus collapse to those depicted in Figure 10.

12
2n-1,20 2n—1,2n 12

34

2n-1,2n

Figure 10: C?/Z, quivers from collapse of €2/ Z3y(3), including massive fields

We next must determine which of the fields in figure 10 mass up in the tran-
sition. On the Z' diagram, the adjoint representations are removed: the poten-
tial fixes the magnitudes and the Higgs mechanism removes the phases, leaving
the result in Figure 11. On the Z? diagram, the |[Z?, Z2]|2 term gives masses to
Z%p,Zp +3) SO that the components depicted in figure 11 remain massless. Of the
fermions, only half of the components appear in the mass matrix, namely 72, 2p
and X2p+1,2p—1 — X2p,2p—2, leaving the fermions depicted in figure 11. In particular,

the 7 are in the adjoint representation and the y are in the (g, ¢+ 1) bifundamental.
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Figure 11: C? /Za3) quivers after twisted-state condensation
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Altogether, we are left in Figure 11 with the quiver theory corresponding to D-

branes at a €2 /Z(1y orbifold point, which is supersymmetric but with the opposite
supersymmetry from the R' orbifold. Thus the interpretation is parallel to the
pfevious example: the marginal direction blows up the orbifold into a manifolds of
smooth SU(2); holonomy, which is orbifolded by Z;;y C SU(2)2.

As a check, consider the low energy theory near the fixed point. We have

becomes

!
1
Jo7 + 3Jge + 2 ;(sz — Qap-1) ,

R = exp(2wiJ/2l), where J = Jg7 + 3Jgg9. This operator in the original theory

(3.5.15)
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in the low energy theory, because this is the linear combination including the broken

generators that leaves the background invariant. This acts on the massless fields as

1 1 2 2
Zopop+r = 2Z0p ap+1 + Lap-1,2p+2 ™ 2Z3p_12p12 (3.5.16)

and so it acts as J = 2(Jg7 + Jag) in the low energy theory. The orbifold operation
exp(2miJ /2l) is then Z(1y in the low energy theory.

There is another orbifold point, where Z%p—1,2p 42 = Al/2 with all other VEVs
vanishing. The analysis of the previous paragraph shows that this is a Z;_3), which
is nonsupersymmetric for | > 2.

In summary, we can obtain all supersymmetric ALE orbifolds by descent from
nonsupersymmetric ones. The €2/ Zy(z) — c?/ Z (1) flow is common to both this
sequence and the one discussed in §5.2.

3.5.4 The Example 02/25(3) — C€/Zyy: Tachyon Condensation

Since both of the above examples involved marginal as well as tachyonic de-
formations, it is interesting to ask whether there are in fact examples where such
transitions between non-supersymmetric and supersymmetric ALE spaces proceed
exclusively by tachyon condensation, without any marginal component. The follow-
ing simple example exhibits this possibility (which we expect to be generic). We will
make the assumption that the twisted deformations we turn on in the quiver world-
volume QFT can be accessed by adjusting modes in the tower of twisted states in
the closed string sector. It would be interesting to check this generic assumption
more explicitly as in [69].

Start with the orbifold €2 /Zs(3). We can choose three independent A; such
that the D-terms induce VEVs for Z};, Z},, and Z};. This preserves a U(1)?
subgroup of the U(1)°® gauge symmetry, generated by combinations of charges Q4+
Qs + @, and Q; + Q3. Plugging these VEVs into the component expansion of
the interaction terms (3.5.5)(3.5.6) as before, we find that the spectrum reduces
to that of the ©/Zy) quiver theory, with gauge group U(1)2, 5 in the adjoint
and x, Z', and Z? transforming as bifundamentals. This theory does not have
effectively supersymmetric subsectors, in contrast to those in §5.2 and §5.3. So
given our assumption about the availability of these deformations in the closed
string spectrum (including those that put the Lagrangian in supersymmetric form),
this provides an example of a truly tachyonic transition from a non-supersymmetric
ALE space to a supersymmetric one.
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3.6 Dualities, Fluxbranes, and the Type 0 Tachyon

The results in the preceding sections describe transitions between different
ALE spaces (including flat space) by processes in which the string coupling remains
bounded. While this is sufficient for our purposes, it is also instructive to consider
the predictions that these results imply for processes in dual descriptions of the
system. In particular we will consider T-dual descriptions, in the angular direction,
of the orbifolds that we have considered, as well as the addition of R-R Wilson lines.
The duals thus involve NS5-branes, fluxbranes, and the type 0 tachyon.

3.6.1 C/Z,, at Large n

An angular direction along which we rotate in performing a Z,, orbifold pro-
jection ends up n times smaller than in the parent theory, so for n large it is of
interest to T-dualize along this direction in the region near the origin. Near but
not at the origin, there is a subspace that looks approximately like a cylinder, with

twisted strings playing the role of winding modes around the S* direction of the
cylinder:

[

1

!
]
!

Figure 12: The C/Z, cone at large n, with a twisted closed string.

In other words, there are many low-lying twisted states, which become Kaluza-
Klein states in the T-dual description. The formal T-dual of the cone metric (3.2.15)
is

2
ds? = ndr? + =—df® . (3.6.1)
T

Also, the dilaton is now position-dependent,

!
e? = gs—?‘— . (3.6.2)

In the large-n limit the orbifold operation (3.2.3) is a small rotation times
(=1)F, so on the circle that we are T-dualing fields are twisted by (—1)F. Such a
twist has three effects on the T-dual description. First, the bulk theory is twisted
by (—1)F, so it is the type 0 theory (type OB if we began with IIA, and type 0A if
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we began with IIB). Second, in going around the T-dual circle there is a twist by
(—1)9Q, where Q is the quantum symmetry dual to the twist (—1)¥. That is, type 0
fields that descend from the type II theory are periodic, while type 0 fields that do
not descend (including the type 0 tachyon) are antiperiodic. Third, the periodicity
of the dual coordinate is halved, 0 < 6<m.

The T-dual description is valid out to r ~ nv/a/, beyond which the T-dual circle
is small and the original circle is large. It also breaks down for r < V!, where
the curvature becomes large. Thus, the apparent divergence of the dilaton (3.6.2)
is irrelevant, as we could have expected since the orbifold description is manifestly
weakly coupled. We do not have any good description in this region; it is some sort of
effective ‘wall’ in spacetime, whose properties can be deduced from the exact orbifold
description. One property of the wall that is not evident in the metric (3.6.1) is
the breaking of translation invariance in the g-direction. The twisted modes of the
orbifold transform under the finite Z,, quantum symmetry rather than the infinite
group Z characterizing true winding modes on a cylinder. In the T-dual description,
this means that the continuous translation symmetry along the dual angular circle
is broken to a discrete Z,, symmetry [96]. This suggests that the wall is actually
a line of n branes (defined broadly as defects which break translation invariance)
spaced equally along the T-dual circle. In the case of C?/Z., this picture is well
understood, as we will review shortly, but for C/Z,, we do not know of any suitable
candidate branes.

The twisted state tachyon of the original theory is just the bulk type 0 tachyon
in the T-dual description. The multiplicity of excited tachyons associated with the
eight-dimensional fixed plane on the orbifold side maps on the T-dual side to the
multiplicity of modes of the ten-dimensional type 0 tachyon. Because of the (—1)2
twist the decay is most rapid at small . The type 0 tachyon in ten dimensions has
-‘j;—'mz = —%, and the antiperiodic boundary condition should shift this upward by
an amount of order the inverse radius of the dual circle. Indeed, the most tachyonic
mode has y _

Zm2 =-5+3. (3.6.3)

For the partial resolution n — n — 2, it seems that the wall relaxes into a lower
energy state while a metric and dilaton perturbation (given by the T-dual of the

picture in §4) propagates outward. For the full decay n — 1, the tip of the cone
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and the associated low-lying states disappear at the speed of light. In the T-dual
picture, it seems that the wall, where our control breaks down, is propagating to
larger r at the speed of light. At larger r, the angular direction gets smaller in this
T-dual picture. It would be interesting to try to extract from this a prediction for
the type 0 tachyon, but this is not immediate in our system here because the initial
wall is present to act as a seed for the decay.

8.6.2 C%/Z, and NS5-Branes

For the orbifold €2/Z,, at large n and fixed k, the angular direction generated
by Jer + kJgo is again small and a T-dual picture is valid. This is best under-
stood in the supersymmetric cases k = £1: the T-dual description has n evenly
spaced NS5-branes [72]. The sequences of transitions between non-supersymmetric
and supersymmetric four-dimensional ALE spaces detailed in §5 (and presumably
many others like them) allow us to produce any supersymmetric ALE space by
closed-string tachyon condensation or marginal deformation. Using the T-duality,
we can restate this in terms of NS5-branes. Namely, any number of NS5-branes
can be obtained by condensation of modes in a non-supersymmetric closed string
background.

It is also interesting to look for a brane description of the tachyonic starting
point. In particular, in the case C2 [Zay2i-1) = c?/ Z,(;y one might have ex-
pected that since the bosonic action is the same as in a supersymmetric C?/Zy
orbifold, the T-duality transformation would produce a similar configuration of 2!
NS5-branes. However, the factor (—1)F in the twist (3.5.7) modifies the T-duality
as described in §6.1. The T-dual circle is only half as large, so there are only !
NS5-branes, while the bulk theory is type 0 theory with a (—1)@ twist around the
T-dual circle. The marginal deformations that we discussed descend from those of
the supersymmetric Z; theory, and so correspond to the positions of the { NS5-
branes. The tachyons, in the sectors of odd Z; quantum symmetry, are modes of
the type 0 tachyon.

It would be interesting to pursue this type of dual description of the non-
supersymmetric ALE orbifolds further. It is straightforward to apply the general
T-duality transformation [97], but this results in a smeared 5-brane solution and

we do not know the localized form in general.
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3.6.3 Adding RR Flux

A simple generalization is to add an RR Wilson line to the €/Z, orbifold,??
Cp = 1 in coordinates where the identification is § ~ 6+27/n. The net phase is then
2m/n. In M theory this corresponds to an orbifold by a 27 /n rotation accompanied
by a shift by 1/n around the M theory circle. In a dual description where a linear
combination of the eleventh direction and the angular direction of the orbifold is
taken to be the M direction, this is a fluxbrane [74][75][64](65)[76](77]. Because of the
factor of (—1)F in the orbifold, it is a fluxbrane in the type OA theory [98] of strength
BR? = 1/n, or a fluxbrane in the type ITA theory of strength BR? =1+ 1/n.

This duality is a strong-weak coupling duality, so that both sides are not si-
multaneously weakly coupled. However, on the fluxbrane side the coupling varies
with radial distance from the origin, becoming weaker toward the origin. If we fix
the string coupling to be g; < 1 on the orbifold side, on the fluxbrane side one has a
region 7 < lsg;/ 3 =nl p,11 near the origin which has string coupling ggf ) < 1. For
large n and g; > 0, this region can cover many string lengths. We will study the
predictions of our results combined with the conjectured orbifold/fluxbrane duality
for decay of the Type OA tachyon in this region. In our analysis in the bulk of
this chapter, we worked in the classical string limit. As we have just learned, in
order to dualize to a fluxbrane side with a significant region of weak coupling near
the origin, we must relax this limit somewhat, and consider a nonvanishing orbifold
string coupling, though we can keep it weak. For the remainder of this section,
we will assume that the decay process we studied proceeds similarly at weak but
nonzero coupling.

RR field strengths couple to extra powers of gs in the action and so for weak
string coupling they have only a small effect on the tachyon decay process we have
studied. The decay will proceed as we have described, with the RR flux ultimately
dispersing when we reach the flat space endpoint. For the partial decay n —
n — 2, the outgoing pulse must contain a negative RR flux 2%(% - n—_1_2-) In the
dual fluxbrane, the flux near the origin increases in the transition, from 1 to —L5.
According to the conjectured duality dictionary in [64][65], this addition of flux
takes the 0A theory closer to the flat space IIA theory.

23 We thank A. Strominger for discussions on this issue.



3 Don’t Panic! Closed String Tachyons in ALE Spacetimes 73

Therefore, by assuming the dualities described in [64][65])(76], and combining
them with our results on classical tachyon decay in orbifolds, we predict that the
type OA tachyon in ten dimensions decays toward the flat ten-dimensional ITA
vacuum. This agrees with the conjecture for the fate of the Type OA tachyon
made in [65] based on extrapolating to a regime where non-perturbative decays
from 0A to ITA occur [60][99]. Our route to this conclusion is somewhat more
direct, as we use our classical results on tachyon decays in orbifolds rather than non-
perturbative instanton effects. However, these statements are still predicated on the
conjectural non-supersymmetric strong-weak coupling duality [98][64] assumed in
[65]. Therefore we regard this as a mild consistency check of the proposal that the
type OA tachyon drives the theory to the type ITA vacuum.

3.7 Conclusions

In this chapter we have exhibited strong evidence that tachyonic non-
supersymmetric ALE spaces decay to supersymmetric ALE spaces (including flat
space). There are several interesting lessons and directions for future work that
emerge from our analysis.

On the theoretical side, as we have emphasized at various points, our results are
rather similar to ones that emerge in the study of open string tachyon condensation
and its relation to unstable brane annihilation. It would be very interesting to
understand how far the analogy between twisted strings and open strings goes.
Is there a notion of confinement of twisted strings into ordinary untwisted closed
strings? Is there a simplification of closed string field theory if one focuses on twisted
states and regards untwisted strings as derivative degrees of freedom obtained in
internal legs of the diagrams? What does the similarity between closed string and
open string processes say about the extent of applicability of K-theoretic techniques
as a function of g7

We should reemphasize, as discussed in the introduction, that there is a similar
puzzling issue in the two cases. Namely as in the open string case, our results
point to the need for a strictly classical stringy mechanism, different from the Higgs
mechanism, for lifting gauge bosons living on decaying defects. It is perhaps a clue
that the disappearance of these gauge bosons and the other phenomena we have

observed occurs in the closed string as well as open string context: whatever the
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physics is that gives rise to these processes, it is not tied uniquely to the open string
perturbation expansion since it arises for twisted closed strings as well.

Another related lesson is the existence of a large class of non-supersymmetric
configurations which, while unstable, do not “decay to nothing”, as a class of non-
SUSY models without massless fermions are known to do [60]{99][62]. Instead, they
decay via a relatively well-controlled weakly coupled process to stable supersymmet-
ric configurations. It would be very interesting to understand the fate of compact
non-supersymmetric orbifolds of the superstring with massless fermions, particu-
larly since as we discussed the time-dependent physics in the compact case is very
similar to that of a cosmology heading toward a big crunch singularity.

In terms of model-building, these results, while mostly negative for supersym-
metry breaking, at least may help direct attention to more stable possibilities than
geometrical orbifolds for breaking SUSY. The fact that the noncompact models de-
cay to SUSY spaces provides a new indication of the intrinsic role of SUSY within
the theory. Again, the question of the fate of compact examples which are most
relevant for phenomenological model-building is still open.

Finally, it would be interesting to extend these results to other cases, such
as intersecting ALE spaces probed by different combinations of D-branes, and the
type I theory. In particular, dualities suggest that the case of singular ALE spaces
intersecting at angles introduces novel phenomena [100], and it will be interesting
to see if our techniques in this chapter can provide insight into this case (or a
deformation of it).

Noncompact tachyonic orbifolds of the heterotic string may have a similar fate
to those we discussed here, but in that case there are no D-brane probes available
to study the substring regime. The heterotic case will require an understanding
of the dynamics of the vector bundle formed by the gauge bosons as well as the
configuration of dilaton and metric. Under RG flow the cases with a standard
embedding of the orbifold action into the gauge group will behave as our models
here; it would be interesting to study also the time-dependent on-shell spacetime
solutions in the heterotic string.



4. Decapitating Tadpoles

4.1 Motivation and Summary

Consider a flat space field theory or string theory with one or more classically
massless scalars. After supersymmetry breaking, these scalars (and the trace of the
graviton) typically develop tadpoles at generic points on the classical moduli space.
As aresult, perturbation theory around generic points on the classical moduli space
does not produce a sensible S-matrix. This is because the zero-momentum tadpole

can attach itself to any diagram by the massless propagator,

1
F|k=0 =w, (4-1-1)

rendering all amplitudes quantum mechanically divergent.

"
+

Fig. 2: In the presence of tadpoles, the flat space S matrix does not exist
due to divergences.

This chapter is reprinted, from Allan Adams, John McGreevy and Eva Silverstein, “De-
capitated Tadpoles”, hep-th/0209226

75
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This IR divergence is usually interpreted as a signal that one must shift the
massless field to an extremum of the radiatively generated effective potential. In
string theory, this is accomplished by adding the corresponding vertex operator to
the worldsheet action [101][102](and e.g. [103][104][105]). The equations of motion
satisfied by the shifted field can be deduced cleanly from the condition that BRST
trivial modes decouple in the string S-matrix [106][107].24

We would like to suggest that there is another way to construct a perturbatively
consistent (z.e. unitary) theory beginning with this classical background. Instead
of shifting the massless fields, we will consider changing their propagators. For

example, for scalars, we will consider (an IR and UV regulated version of)

—1 N —i(1 + F(k))
k2 + e k2 + ie

(4.1.2)

where F'(k) is chosen to preserve unitarity (and in string theory, worldsheet con-
sistency conditions) while satisfying F(0) = —1 in order to cancel the contribution
of the zero mode.2?’ This effectively changes the equations of motion for the field
whose tadpoles we are decapitating, so that any point on the classical moduli space
becomes a solution of the deformed equations of motion.

This change is effected in string theory by the perturbative application of the
following non-local string theory (NLST) [108][109] deformation of the worldsheet
action (again to be regulated in the IR and UV in a manner to be explained in
detail in the body of the chapter)

A% F(k)
_ v® [yr
O5us /(27r)d k2 + de / v (4.1.3)

24 In the case where the scalar being shifted to its extremum is the ubiquitous dilaton,
this often leads to either a trivial S-matrix, in the case that the string coupling is driven to
zero, or a background which is not well described by perturbation theory, in the case that
the dilaton is driven to strong coupling in some region of spacetime. In backgrounds of
recent interest that fix the dilaton at a nonzero value via flux stabilization or nongeomet-
rical monodromies, this problem may be avoided (though so far in those cases spacetime
techniques have proven more practical than worldsheet analysis).

25 Note that the tadpole only sources the zero mode ( f d?zh1é(z) = Mido), as is clear

diagrammatically from the fact that energy momentum conservation forces the tadpole
propagator to k = 0.
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where F(k) is chosen to have support only on-shell, on the cone k2 = 0. For
simplicity, we will in fact take F(k) to only have support at ¥ = 0, though for
scalars there may be other options, and will define it as the limit of a smooth
function. Here, [V is an integrated vertex operator; the two factors of the bilocal
product can be inserted on the same Riemann surface or on otherwise disconnected
surfaces. Diagrammatically, each propagator line is thus replaced by the right hand
side of (4.1.2), so here is the basic mechanism for removal (which we will refer to
as “decapitation”) of tadpoles:

Fig. 3: Cancellation of tadpole divergence via deformation of propagator.
The wedge denotes the contribution of the F(k) term from (4.1.3) in (4.1.2).

In addition to decapitating dilaton and moduli scalar tadpoles, we will decap-
itate the tadpole associated with the trace of the zero momentum graviton in a
similar way.

At the same time that we decapitate the tadpole, we remove the zero modes
of the massless scalars and graviton from the set of external states we consider in
the S matrix. More generally we will focus on the physical S matrix with generic
incoming momenta or with external states constructed from smooth wavepackets.
In string theory, this is accomplished by rescaling the vertex operators describing
external states in our S-matrix by

Ve o /1+F(p) VP, (4.1.4)

We will choose F'(k) so that (4.1.3) does not contribute to S-matrix elements except
via its cancellation of the massless tadpoles. This naively ensures the perturbative
unitarity of the resulting theory, provided that the tadpole-free diagrams in the
original theory satisfy the cutting rules; this is manifest in simple field theoretic

examples and is thought to hold in superstring perturbation theory.
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However, in string theory, simply removing the divergences is not enough to
ensure the perturbative unitarity of the resulting diagramatic expansion, as pointed
out in the context of this construction by Joe Polchinski [110]. In amplitudes with
BRST trivial vertex operators, the undeformed theory has a finite contribution from
the tadpole which is not cancelled by our deformation (4.1.3) as it stands. Therefore
the claims of consistency made in the remainder of this chapter on the string theory
case based on (4.1.3) alone are wrong. An additional set of NLST deformations
which cancel the BRST anomaly as well as the divergences are under investigation
to see whether they lead to a fully consistent theory. While the procedure outlined
in the remainder of this chapter does not result in a unitary string S-matriz for the
string theory case, it is worth noting that this problem does not arise for the field
theory case of our procedure.

As we will explain in detail in the bulk of the chapter, this effectively removes
the spacetime average of the tadpole for the field in a radiatively stable way, while
retaining the quantum-generated self energy for nonzero-momentum modes, includ-
ing mass renormalization lifting moduli. In simple examples (where the tadpole is
constant in spacetime) this leads to a nontrivial nonsupersymmetric perturbative S-
matrix in flat space. We will study this explicitly for theories for which the tadpole
is generated perturbatively.?® The S matrix so constructed agrees at tree level with
the classical S matrix of the undeformed theory, but exists quantum mechanically
(at least in perturbation theory). In this S-matrix the fluctuating (nonzero) modes
of the moduli are lifted, while the zero mode values (VEVs) of the moduli constitute
parameters (couplings) on which the S-matrix amplitudes depend.

In quantum field theory, the perturbative S matrix we construct this way is
equivalent (for external states carrying generic momenta or arranged into smooth
wavepackets) to that which one would obtain from simply fine tuning away order by
order the linear term in the potential expanded about any value for the VEV of the
scalar field (or fine tuning away the cosmological constant in the case of gravity).
Such a prescription would not be radiatively stable. Our prescription of a nonlocal
shift in the propagator is radiatively stable. So, by enlarging the space of possible

backgrounds to include nonlocal deformations, one can realize in a radiatively stable

26 We expect that similar results will hold in situations with dynamical supersymmetry
breaking.
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manner a system which would otherwise require unnatural fine tuning. In pertur-
bative string theory, one cannot directly fine tune the spacetime effective action in
any case, but the decapitation prescription (4.1.3) can be implemented directly and
again provides the same effect in a radiatively stable way. It is also worth noting
that it seems likely that the full theory in the presence of F'(k), including the pos-
sibility of expanding around backgrounds other than flat space, is not equivalent to

that which one would obtain from fine tuning away the tadpole.

]

vs.

Divergence + Cwnionenn =0 Divergence + Gulliotine =0

l

-

Fig. 4: A counterterm for the tadpole requires delicate order-by-order fine-
tuning, and depends critically on the UV cutoff. By contrast, decapitation
automatically generates contributions cancelling the tadpoles to all orders

once the tree level deformation has been specified, and thus does not involve
fine tuning.

Even if we focus on the radiatively stable description in terms of the modi-
fied tree-level propagator, we cannot regard this prescription as a solution to the
cosmological constant problem per se since in the real world the tadpole is not con-
stant in spacetime. Our prescription removing the zero mode does not address the
issue of phase transitions (variation in time) and does not cancel the cosmological
term in different localized spatial domains (variation in space) [111]. Indeed, one
of the appealing features of our construction is that the metric responds normally
to localized sources of stress-energy; it is only the tadpoles due to the cosmological
term which are removed by the procedure. It will be interesting to explore more
systematically the space of consistent IR modifications, and to try to implement in
string theory deformations with a better chance of solving the real-world vacuum

energy problem.
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Finally, it should be mentioned that, although we will argue for perturbative
consistency (unitarity) of our S-matrix, we will have nothing to say here about
nonperturbative stability and consistency.

Our argument may appear at odds with standard assumptions about the unity
and predictivity of string theory, which are supported by some spectacular results
of recent years. Ordinary string/M theory has been unified significantly by string
dualities, and formulated nonperturbatively in some backgrounds by matrix theory
and AdS/CFT. However, these beautiful results, while conceptually unifying the
framework, have not yet rendered the theory highly predictive. Indeed, the space of
a priori possible string phenomenologies has grown tremendously with the advent
of nonperturbative gauge symmetries, D-branes, and dual descriptions of large N
gauge sectors; focusing on elegant possibilities such as [112] may be well motivated
from phenomenological considerations and simplicity but has not yet been seen as
a prediction of the full theory, which can apparently accommodate arbitrarily large
gauge groups and matter content. In addition, the different backgrounds of the the-
ory, while mathematically arising from a unified framework, may not be physically
connected due to their very different UV and/or IR behavior [113][114]. In the con-
text of AdS/CFT the equivalence of quantum field theory and string theory shows
that string theory need not be more predictive than field theory. In the context of
string compactification there is growing evidence that many quantities in the low
energy theory can be effectively tuned by choosing the background [115]{116][117].
The most urgent issue in evaluating a potential new class of backgrounds of string
theory is its physical consisteﬁcy. The question of vacuum selection in the full quan-
tum theory is an issue that must certainly be addressed but may well fall outside
the scope of perturbation theory. In any case, if our backgrounds can ultimately be
eliminated by some concrete physical consistency requirement going beyond those
we address in this chapter, it would serve as further evidence for the unity and
predictivity of string theory.

Regardless, our proposal, which will be checked in detail the bulk of this chap-
ter, may seem outlandish on first sight. Let us begin therefore by sharing some of
the motivations leading to this idea, before embarking on a systematic analysis of

our prescription and its physical features.
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4.1.1 Motivation from AdS/CFT double-trace couplings

Bilocal deformations of the general form of (4.1.3), namely

0Sys ~ ZCIJ / v /V(J) (4.1.5)
1,J
have been derived perturbatively on the string theory side of AdS/CFT dual pairs
perturbed by double trace deformations [108][109]. In some AdS/CFT examples
[70][118][119][120][121}[122], running marginally-relevant double-trace couplings on
the field theory side are generated dynamically [57][71][121][122][123] and affect
some amplitudes in the theory at large N [108][57].

On the field theory side, the space of couplings includes both single-trace and
arbitrary multitrace deformations. These couplings are all on the same footing in
field theory (aside from their effect on the structure of the 't Hooft expansion). In
specifying a field theory, one chooses a renormalization group trajectory accounting
for the behavior of all the couplings. Depending on how one organizes the perturba-
tion expansion, this may involve cancelling divergent amplitudes with counterterms.
The coefficients of these counterterms are determined by appropriate renormaliza-
tion conditions.

Applying the dictionary of [108], this suggests that one should enlarge the space
of string backgrounds one considers to include those deformed from ordinary string
theory by perturbations of the form (4.1.5). As in field theory, and in the case of
local deformations of string theory, appropriate consistency conditions will restrict
this space of backgrounds to a physical subspace.

Moreover, in the context of AdS/CFT, UV divergences requiring counterterms
on the field theory side map to IR divergences on the string theory side. These
IR divergences may therefore entail a corresponding renormalization prescription,
including contributions of the form (4.1.5) required to cancel divergences, similarly
to the way counterterms for double-trace couplings cancel UV divergences on the
field theory side [124][125].

This idea is difficult to apply directly in the context of AdS/CFT with dynam-
ically generated double-trace interactions in perturbation theory, because of the
usual difficulty involved in describing the string theory side at large curvature. In
this chapter, we will take this as motivation and apply these ideas directly to flat
space string theory, studying the deformation of the form (4.1.3) and placing on its
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coefficient F(k) appropriate “renormalization conditons” to ensure the finiteness

and consistency of the resulting S matrix.?”

4.1.2 Outline of the chapter

In section 2 we will present our prescription in detail and show how it cancels
tadpole divergences in a radiatively stable manner and lifts the nonzero modes of the
moduli. In section 3 we will address the question of other effects of the deformation,
and show that the deformation does not contribute for generic external momenta
(and therefore smooth wavepackets) to S-matrix elements except via its cancellation
of massless tadpoles. This in particular ensures spacetime unitarity and Lorentz
invariance of the resulting S-matrix, given plausible assumptions about superstring
perturbation theory. In section 4 we will assemble and discuss some basic physical

features of the construction, and discuss many future directions.

4.1.3 Related work

The notion of modifying gravity in the IR and generalizing renormaliza-
tion to that context is an old idea which has also been explored recently in
[127][128][129][111]{130]. The work [127][129] has pursued the possibility of a con-
sistent modification of gravity in the IR arising in a brane configuration in a higher
dimensional bulk spacetime in the presence of an Einstein term with large coeffi-
cient on the brane worldvolume. The work [111] has provided many insights into
the requirements an IR modification of gravity must satisfy in order to be able to
address the cosmological constant problem including the effects of phase transitions,
while maintaining consistency with known physics, and has proposed concrete ex-
amples and mechanisms for satisfying these requirements. It would be interesting

if an NLST prescription such as the one we employ here to produce a consistent

27 Another approach to flat space was adopted in [109], by taking a scaling limit of
double-trace deformed AdS/CFT to flat space; there one found divergences from insertion
of a bilocal product of 0-momentum vertex operators, not smoothed by an integral over k
as we have done in (4.1.3). In [126], NLST deformations naturally arose in describing the
squeezed states obtained from particle creation in an asymptotically flat time-dependent
background; again this is different because our deformation (4.1.3) involves both positive
and negative frequency modes and does not constitute a squeezed state in the original flat
space background.
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flat-space nonsupersymmetric S-matrix could provide a way to formulate a consis-
tent string-theoretic embedding of the effective field theory examples of [111]. The
approach of [128] is complementary to ours in a sense we will remark on in the
following. Bilocal worldsheet terms appeared in the work [131] on generating ef-
fective field theory from string theory, as well as in the more recent context of the

AdS/CFT double trace deformations just reviewed.

4.2 The prescription, and cancellation of tadpole divergences
In this section we will lay out in detail the prescription motivated and summa-
rized in the last section.
4.2.1 Tadpoles, Divergences, and Regulators

In string theory, similarly to field theory, the contribution of a massless tadpole
to an S-matrix element is by a factor of the zero momentum propagator Gz(k = 0)
times the one-point function of the massless vertex operator at zero momentum.
This multiplies the rest of the diagram given by one insertion of the massless vertex
operator at zero momentum along with the insertions of vertex operators describing

the external states in the amplitude,

AP\ adpote ~ { / yik) / ALY / Vg x Galk=0) x ( / VO . (4.21)

This is represented diagramatically as follows:

~— ~—
° °
~— ~—

a) b)

Fig. 5: a) a generic h-loop amplitude; b) the contribution of the one-loop
tadpole to this amplitude is a product of the (h — 1)-loop amplitude, the
one-loop tadpole, and a propagator.



4 Decapitating Tadpoles 84

At least in the bosonic string, both the massless tadpole diagram and the re-
maining contributions to the amplitude can be represented as a collection of field
theoretic diagrams constructed from (an infinite number of) hermitian irreducible
vertices and propagators [132][133]. In this decomposition, all spacetime IR diver-
gences arise from propagator contributions, not from the effective vertices. In the
superstring we expect a similar decomposition to hold, and we will assume this,
though to our knowledge this has not been proven. This field theoretic decomposi-
tion will be important in the following, particularly for our analysis of unitarity in
§3 (as in [133]).

While the tadpole is finite in the absence of tachyons (thanks to the soft UV
properties of string loops) the on-shell massless propagator is divergent, and requires
regularization. We will discuss two natural ways to do this in the case of scalar fields,
one of which generalizes to the graviton. We will work in signature (+,—,...,—),
and denote by d the number of dimensions in which the field whose tadpole we are
decapitating propagates.

We begin by discussing classically massless scalar fields. In field theory, a simple
method of IR regulation, in situations where it is consistent with gauge invariance,
is the by-hand introduction of a small mass p to be taken to zero at the end of each

calculation giving the regulated propagator,

1
k2 —p? e (4.2.2)

In string theory, infrared regularization is most directly expressed in terms of
a cutoff on the appropriate Schwinger parameter arising in the propagator of the
field theory decomposition summarized above (for a discussion of IR regulation in

string theory, see e.g. [134][135]). In particular, the closed string propagator is

Te—00,Tp —)08

T. -
lim ¥ dTe~T(Lo+Lo) (4.2.3)
thtes Y To

In flat space, for a state corresponding to a spacetime excitation with mass m and

momentum k this gives

T. '
Ga(ki Te, To) ~ | dTeT®'—m+)

To (4.2.4)
_ 1 ( eTc(kz—m2+ie) _ eTg(kz—mz +ie)>

k2 — m?2 + e
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Taking T, — oo, Ty — 0 reproduces the usual pole Eﬁ—_nlsz For finite (but large)
T,, as k% — m? we obtain an IR regulated result

Ga(k? = m%T.) ~ T, (4.2.5)

One may define these momentum integrals in appropriate circumstances by Eu-
clidean continuation; in that case, Tp represents a UV cutoff which we may also
employ. We can relate the two regulation schemes near the IR limit k¥ — 0 by

taking T to be a function of k2 and p? given by the solution to

1 T.(k2+ie) _ To(k?+ie) 1
——\|ec - = ——". 4.2.

k2+z'e<e ¢ k% — p? + e (42.6)
We will mostly consider the hard (i.e. y-independent) T, regulator, but will use the

p regulator in sufficiently simple quantum field theory examples.

4.2.2 The Deformation

We will consider our deformation both in perturbative quantum field theory
and string theory. In the y regularization scheme in quantum field theory, we deform

the propagator by
iF (k)
_ 1\ 4.2.7
k2 — p? + ie (42.7)
where F (k) will be specified shortly. One can also employ the Schwinger parame-
terization and regularization in quantum field theory.
In string theory, in terms of the Schwinger cutoff, we implement the following

NLST deformation, adding to the worldsheet action

§Sws / ddklf(—&(emk’“e) — eTolk*+ie)) / v® / vh) (4.2.8)
where [V are integrated vertex operators corresponding to the massless particles
whose tadpoles we wish to decapitate.

As in [108][109], we treat this deformation perturbatively. This introduces an
infinite array of new diagrams in which the vertex operators in (4.2.8) attach to
Riemann surfaces in all possible combinations (including diagrams in which the
two members of the bi-local pair of vertex operators sit on different, otherwise

disconnected, Riemann surfaces).
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Fig. 6: The bi-local deformation can connect two Riemann surfaces or
attach to a single Riemann surface.

Because our two vertex operators in the bi-local term carry momentum & and
—k respectively, they occur precisely in the same way as the propagator for the
corresponding low-energy field, and thus the effect of the deformation is to shift the

propagator:

i(1+ F(k ie ie
Gz(k,Tc) — (kz—-l-’fé_)—)_ (6Tc(k2+ ) — eT°(’°2+ )> . (429)

In terms of the p cutoff, the full momentum-space propagator is parameterized as

i(1+ F(k))

R (4.2.10)

In identifying our deformation with a shift in the propagator, we have not
implemented any extra subtraction prescription (such as normal ordering) to remove
divergences when the V) approach the V(~%), As we will see in detail in §3, this
divergence integrates to zero once we regulate the theory and does not require any
such subtraction procedure. (That is, in the field theoretic organization of the string
diagrams which we are using [132][133], all such divergences arise in the propagator,
which we have regulated.)

F(k) is constrained as follows.

1. In order to preserve conformal invariance of the worldsheet theory, we demand
that F(k) vanish when k is off-shell.
2. In order to cancel the divergences coming from tadpoles, we need
L

F(0)= ~1+0(z

)s (4.2.11)
and in order to precisely cancel the zero mode propagator, we will require

F(0) = -1. (4.2.12)
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The latter condition ensures that we remove the full zero mode propagator from
the tadpole contribution, rather than leaving behind a contribution scaling
like an extra massive tadpole as would occur if we kept a nontrivial O(Tlc)
contribution allowed by (4.2.11).

3. We require F(k) to be corgistent with unitarity of the resulting perturbative
S matrix. The simplest way to ensure this, which we will employ here, is to
choose an F'(k) such that the deformation of the propagator does not contribute
except in precisely cancelling the tadpole contributions, leaving behind tadpole-
free diagrams which satisfy the cutting rules.

One choice of F we have found consistent with the criteria 1 — 3 is

2
F(k) = lim F,(k) = lim N . . (4.2.13)
n0 T 0 (k0 ¢ (8] — im) (k0 — [F] — i)

In a tadpole diagram, (4.2.7)(4.2.8) appears integrated with the energy-
momentum conserving delta function §%(k) for the propagator in the tadpole part
of the diagram. This picks out the integrand evaluated at £ = 0, for which the
factor (4.2.13) becomes (—_'5,? = —1. The entire propagator strictly at k = 0 is
then (in the Schwinger parameterization)

Go(k=0)= lim (1-1)(T.-Tp) =0, (4.2.14)

T:.—00,Tp—0
or, in the massive QFT regularization scheme,

1

1-1)——— =
( )—u2+ie

0, (4.2.15)

as depicted in fig. 3. Again, we refer to this mechanism for decoupling the zero
mode as decapitating the tadpole.

F, (k) in (4.2.13) can be written as
Fy(k) = n® (K + k] +im) (k® — k] + im)dq (k° + [k1)85 (K — |EI) (4.2.16)

where 6,(z) = -};—m—,—}ﬁf is a regulated Dirac delta distribution. As such, when
F(k) is integrated against a smooth function, it vanishes. As we have seen, when
integrated against %(k) (which is of course not smooth at k = 0) it is —1, so that
the deformation cancels the tadpole divergence. We will see that these properties of

F(k) imply that its only contribution to physical S-matrix elements (ones at generic
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external momenta or set up as scattering amplitudes of smooth wavepackets) is
precisely its cancellation of the tadpole divergences.

Although we will work with the specific form (4.2.13) for F(k), any choice
satisfying criteria 1-3 is suitable. Any such F which preserves Lorentz symmetry
will give an identical perturbative S matrix, so any parameters involved in this
choice are not physical, at least perturbatively.

We will perform computations with the following order of limits: we first send
e — 0 and 7 — 0, then remove our IR regulator by taking T, — oo (alternatively,
g — 0). The ¢ - 0 and n — 0 prescriptions are applied integral by integral,
diagram by diagram (i.e. these limits are taken before summing over infinite series
of diagrams). We refer to this regularization scheme as the padded room.

This prescription involves two minor subtleties. Before taking 7 — 0, our de-
formation (4.2.7)(4.2.8) includes off- shell (non-BRST invariant) vertex operators
V(£F) with k2 # 0. Calculating the effects of our deformation perturbatively, as we
are doing, thus involves diagrams with insertions of off-shell vertex operators. In
tadpole diagrams, energy-momentum conservation projects the deformation onto
k = 0 so this issue does not arise. In other diagrams, we need to define our pre-
scription and check that the non gauge-invariant contributions vanish as 7 — 0 (the
limit we are taking in which F(k) has support only at k¥ = 0). Our prescription for
the finite  theory before taking the limit 7 — 0 is to work in a specific gauge (fixing
the worldsheet metric up to moduli to be integrated over) and calculate correlation
functions of the (on-shell and off-shell) vertex operators in the worldsheet CFT on
this Riemann surface as in [106]. We will see in §3 that the integration over k
in (4.2.7)(4.2.8) involves F'(k) convolved with a smooth integrand in the regulated
theory, so that the deformation makes a vanishing contribution as 7 — 0. This will
depend simply on the local behavior of the V(F) near other vertex operators and
degenerations of the surface.

In regulating the theory to produce a finite integral over k for general diagrams,
note that a UV regulator is also important in intermediate steps of the calculation.
For finite 7, the wedge propagator scales as n?/k* for large k, (in the UV), which
is not soft enough to prevent UV divergences in the diagrams we are adding with
wedge propagators in loops. These must be regulated. Once we regulate in the UV,
all such diagrams are proportional to (positive powers of) 7, and these terms all

vanish diagram-by-diagram in the UV regulated theory once we impose our limit
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(n = 0). In the Schwinger parameterization, we can regularize in the UV with our
parameter Ty in computations in which the loop integrals are defined by Euclidean
continuation.?® Alternatively we can simply cut off the k integrals at some scale
Myyv. We will see in §3 that all such loop contributions will vanish regardless of
the details of the choice of UV regulator. (Note that in the tadpole diagrams, the
UV behavior is irrelevant since the momentum k is strictly zero.)

This prescription (4.2.12)(4.2.14)(4.2.15) for cancelling divergences caused by
radiative tadpoles is reminiscent of the prescription for renormalization of UV di-
vergences via counterterms in quantum field theory. Although our deformation has
a large effect in cancelling the divergences from tadpoles, it can be treated pertur-
batively via (stringy) Feynman diagrams much like counterterms in quantum field
theory. In both cases, the (infinite) corrections appear in one to one correspondence

with divergences in the uncorrected theory, cancelling them precisely.

4.2.3 Radiative corrections: stability and moduli masses

It is important to ask whether the specific form of F(k) required by the cri-
teria of the previous subsection is preserved by loop corrections. By construction
it is immediate that loop corrections to the “head” of the tadpole do not affect
the decapitation, which occurs at the level of the “neck” (i.e. at the level of the
propagator, regardless of the form of the one-point amplitude to which it attaches).

In fact, loop corrections to the propagator itself also preserve the cancellation
of divergences. To see that this is the case, take the 1PI self-energy, ¥, and use
it to correct the propagator including the modification (4.2.15) in the tree-level

propagator. One finds (for example in the field theoretic regularization scheme)

1+ F 1+ F 1+ F
G2,Ren(k7 .U') = m (1 +2-];2——_—u—2 + ) =2 uz — (1+F)2' (4.2.17)

The fact that 1+ F(k) remains in the numerator of the corrected propagator clearly

shows that the cancellation persists at zero momentum and the renormalization of

28 In rotating from Lorentzian to Euclidean loop momentum integrals, an extra pole
must be included from (4.2.13); however this pole does not contribute anything in our
regulated theory, as will become clear in §3.
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the propagator does not change the fact that the tadpoles (now with renormalized
propagator for the neck) are decapitated.

Furthermore, this exhibits the following important physical feature of our con-
struction. Nonzero modes in (4.2.17) are not affected by F(k), and are subject to
generic mass renormalizations included in the quantum self-energy ¥. For models in
which this renormalization produces positive mass squared for all the scalars (i.e.
models in which the second derivative of the effective potential is positive in all
directions about the starting value), the fluctuating modes of the moduli are lifted!
One example of this is the O(16) x O(16) heterotic string, whose one-loop potential
energy in Einstein frame is proportional to +¢(5/2)2  Another example would be a
pair of D-branes with a repulsive force between them.

On the other hand, there are models in which some of the moduli have negative
mass squared at one loop, leading to tachyonic instabilities for nonzero modes. The
resulting striped phases may be interesting to study, but for now let us discard these
cases since these instabilities will drive us away from the simplest case of Poincaré
invariant flat space. Examples of this latter class of 1-loop tachyonic backgrounds
include Scherk-Schwarz compactifications and D-brane-anti-D-brane systems.

In this analysis it is important to follow the padded room regularization pre-
scription specifying that the limit 7 — 0 be taken diagram by diagram. In partic-
ular, for finite 7, the right hand side of (4.2.17) has poles in the complex k plane
corresponding to solutions of the linearized field equations with exponential growth
along the spacetime coordinates z#.2% As we take n — 0, these solutions revert
to oscillating solutions; summing the resulting diagrams then gives the finite result
above. If instead we were to sum these diagrams before taking n — 0, thereby study-
ing the RHS of (4.2.17) first at finite 7, we would expect divergences arising from
these exponentially growing solutions (similar to divergences caused by tachyons in
loop diagrams). Importantly, this order of operations is explicitly disallowed in our
regularization prescription; the limit # — 0 is part of the definition of each diagram
and must be taken before doing the sum in (4.2.17). In fact, as we will see in §3,
diagram by diagram our deformation does not contribute in loop propagators; F'(k)

integrated against the rest of the amplitude vanishes unambiguously, diagram by
diagram.

29 We thank the authors of [111] and N. Kaloper and E. Martinec for emphasizing this
issue to us.
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A related issue is the question of whether nonperturbatively the decapitated
theory has other background solutions, different from flat space, with consistent
(in particular, unitary) physics. (For example, in the presence of our deformation,
could one still start with a solution in scalar field theory with the scalar field rolling
down the potential hill and expand around this solution to produce a consistent
theory?) If there exist other solutions which are in fact connected physically to our
flat space solution, it would be interesting to study nonperturbative dynamics that
may select which background will arise naturally when this framework is considered

in a cosmological context. This very interesting question we leave for future work.

4.2.4 Decapitating the graviton tadpole

We so far formulated our deformation for massless scalar fields. The tadpole
generated for the (trace of the) graviton is the cosmological constant and is of
particular interest.30

Since the graviton tadpole (cosmological constant) is one of the main motiva-
tions for pursuing this direction, we wish to generalize our prescription to a modi-
fication of the graviton propagator which cancels its zero mode. In particular, for
the procedure under discussion to be useful in a simple closed string example (like
the O(16) x O(16) heterotic string) we need to decapitate the graviton also so as to
avoid generating large curvature.

It may also be interesting in some circumstances to decapitate the scalars but
shift the gravity background in the standard way to obtain dS or AdS space. That
said, we content ourselves in the following to the most simple case of asymptotically
flat space, leaving generalizations to future work.

In expanding about flat space, Lorentz invariance implies that the only tadpole
contribution from the gravitational sector comes from the trace of the graviton.
The trace can be gauged away for nonzero momentum, but at zero momentum the
gauge transformation required to do so would not vanish at infinity. The worldsheet

manifestation of this is the presence of an extra BRST-invariant vertex operator at

(k=0)

zero momentum transforming as a spacetime scalar, which we will denote by V,,

30 We could restrict our attention to scalars by considering tadpoles for the scalars
arising in the open string sector on D-branes with broken supersymmetry (see the next
subsection).
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(This mode is degenerate with but independent from the zero-momentum mode of
the dilaton.) Defining

V) = ISVt X (4.2.18)
we add to the worldsheet action
dik  F(k) 2, 2, k —k
6553 — O (eTc(k +ie) _ oTo(k +ze)) /'VtgG)/Vt(rG ) (4.2.19)
As in the case of the scalar fields, before taking 7 — 0 this involves off-shell vertex

operators Vt(r%k) with k # 0 included in (4.2.19). Again, we can compute in a fixed

gauge and show that these contributions vanish when n — 0.

As in the scalar case, this suffices to cancel all tadpole divergences at any loop
order. (Note that in contrast to the scalar case, the self-energy of the graviton of
course does not include a mass by gauge invariance.) Since we only modified the
zero mode of the graviton, we do not expect problems with gauge (diffeomorphism)
invariance to be introduced by our prescription; gauge transformations which die
at infinity cannot act on the strict zero mode of the graviton. Acting only on
the zero mode also ensures that the graviton responds to ordinary local sources of
stress-energy in the usual way, as we will exhibit for the S-matrix in §3.

4.2.5 Open string ezamples

It is worth emphasizing that we may consider tadpoles for scalars independently
of gravitons by considering a non-supersymmetric combination of D-branes in a
supersymmetric bulk theory. In such a situation, any closed string tadpoles can be
absorbed in radial variation of the fields (if the D-branes are at sufficiently high
codimension). In order to produce an S- matrix with positive mass squared for the
nonzero modes of the scalars, we can for example choose a pair of branes which
repel each other at long distance. (Note that we may not choose an attractive
potential V' (r) ~ —ri,, such as arises in a simple D-brane-anti-D-brane system since
V"(r) < 0 in that case; we can instead choose a repulsive potential V(r) ~ +-%
which has V”(r) > 0.) In such a system we may decapitate the tadpoles for scalars
on one or both of the branes (shifting the nondecapitated fields to the appropriate
time-dependent solutions describing motion of the corresponding brane).

4.2.6 BRST analysis

In [106][107], the loop corrected equations of motion for massless fields were de-
rived by requiring that BRST trivial modes decouple from string S-matrix elements.
One considers a diagram
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i
—

1QX> QX

A A

Fig. 7: Before decapitation, the tadpole spoils the decoupling of BRST
trivial modes. Decapitation adds a diagram precisely cancelling only the
divergent part of this anomaly: see text.

with one BRST trivial vertex operator Qpx = fz jBX(2,2) and any number of
physical vertex operators V;. One can deform the contour of integration away from
x(z, Z) so that the BRST operator @p acts on the other insertions in the diagram.
@ kills the remaining (physical) vertex operators. On a degenerating tadpole neck,
it contributes a finite anomalous piece which our deformation as it stands does not

cancel. A modification aimed at correcting this is in progress.

4.2.7 Effective field theory description

A useful heuristic way to describe our prescription is to consider the momentum-
space effective action for a scalar field ¢ whose tadpole we are decapitating. The
presence of the discontinuous object F'(k) = lim,_,o Fy(k) complicates the analysis
of the field theory (the limit  — 0 being taken diagram by diagram in the S matrix
as we explained in §2.1§2.2). We will ignore all such subtleties in this subsection
with the aim of gaining some further intuition for the physics of the deformation.
Taking into account the modification we have made to the propagator, this effective
action is

/ ddk[¢(k)(%—,\2)¢(—k)] —A10(0)— / d%k / Ak As(k) (k') p(—k—K)—. ..

(4.2.20)
This leads to the equation of motion
1
¢(—k) = ,\lfsd(k)kz—_z—_T (4.2.21)
1+F (k) 2

plus subleading terms involving the higher (A,>2) terms in the effective potential.
Because of the F/(0) = —1 contribution, the right hand side here is of the form
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f(y)dé(y) with f(0) = 0, so this vanishes. That is, ¢(0) is not forced to shift by the
tadpole once we include our modification of the kinetic term (corresponding to our
original modification of the propagator).

This description involving a nonlocally modified action may be useful but we
will mostly stick to the S-matrix formalism (natural in perturbative string theory)
we have been developing.

4.2.8 In contrast

Before returning to the S-matrix description, it is worth noting at this point
that our prescription is different from two somewhat similar manipulations that
might be confused with it.

Removing the zero mode by boundary conditions

First, in field theory one might consider removing the zero mode of a massless
field by putting the system in a box with appropriate boundary conditions. For
example, consider a scalar field with a tadpole (say a linear potential) in a box.
Imposing Dirichlet boundary conditions removes the zero mode. However, since
this does not change the basic equation of motion, half of the remaining modes still
respond to the linear term in the potential. Adiabatically decompactifying the box
therefore leads to an unstable theory.

Decapitation works not by selecting particular solutions of the original equation
of motion, but by changing the equations of motion. In our case (4.2.20), there is no
linear term for nonzero modes, and hence no instability left in the system once we
remove the zero mode by our decapitation prescription. Also, our analysis of decap-
itation involves a regulation prescription compatible with an S matrix description,
whereas introducing a box as an IR regulator would not have this feature.

String IR modifications

As discussed in [108], the bilocal deformation S ~ [V [V can be obtained

by deforming the action locally by

6S = / d2z\V (4.2.22)

and integrating over A with a Gaussian weight.

Recently a modification of string theory has been proposed in [128] which
involves considering fluctuating couplings A on the worldsheet. In our case (4.2.22),
A(k) is a constant on the worldsheet, whereas in [128], A = A(z, Z) is a fast varying
function of the worldsheet coordinates, and in particular explicitly does not include
a worldsheet zero mode.
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4.3 Effects of deformation on general diagrams and unitarity

We have so far established that our modification removes the tadpole diver-
gences associated with massless fields. We must now address the question of what
other effects the modification has, and in particular determine whether the S-matrix
resulting from our deformation is unitary.

Because of the simplicity of the F'(k) we chose for our deformation, we will
see in fact that it does not contribute to physical S-matrix amplitudes beyond its
cancellation of tadpole divergences, and that unitarity is therefore satisfied.

In particular, as we have seen, F'(k) vanishes when integrated against any
smooth function (its nonvanishing contribution cancelling the tadpole arises from
its integration against a delta function d¢(k)). The question is then whether the
k-dependence of the integrand in amplitudes obtained by bringing down powers of
(4.2.8) and (4.2.19) is sufficiently smooth, modulo (non-smooth) §¢(k) factors com-
ing from tadpole contributions. (Note that we are working with a UV cutoff which
ensures no divergence from the UV end of the & integration.) Generic diagrams
involving smooth wavepackets integrated over external momenta as well as ordi-
nary loop momentum integrals indeed turn out to have this property in the padded
room, i.e. in our regularization prescription.

Thus we are interested in the k-dependence of amplitudes with insertions of
V(&k) | near potential singularities in the integrand. The V() can be slightly off
shell before we take the limit 7 — 0, and we define their amplitudes by working in
a gauge-fixed worldsheet path integral. The possible singularities in the integrand
arise as the V(%) approach other vertex operators V() or degenerating internal
lines carrying momenum p;. In both cases, the behavior is determined locally on the
Riemann surface and has the structure [ B d’z 1 . As in the UV,

2926~ (htpi)?—mitie
these potential divergences are cut off in the IR by our regularization prescription.

4.8.1 Non-1PI contributions

Let us consider first diagrams for which cutting an F(k) contribution to the
propagator (which we will refer to as a “wedge propagator” contribution) breaks the
diagram in two. For this non-1PI propagator there are two cases. One is what we
have already accounted for: the wedge propagator attaches to the head of a tadpole

(with no incoming momentum); in this case the wedge contribution cancels the
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divergence from the tadpole (in fact the whole massless propagator contribution)
by construction. The second case is that the the wedge propagator in question
connects to a subdiagram with incoming momenta g;, so that generically there is
nonzero momentum k = Y .., ¢; flowing through the wedge propagator.

At generic incoming momentum, since k = Y., ¢i # 0, F(k) does not con-
tribute (since F(k # 0) = 0). Similarly, if we consider a smooth wavepacket in the

incoming momenta g;, the relevant part of the amplitude is
&, () F(S g ’ (0, @) +ielTo _ [, a0 +ielT | (431

We can change basis in the g; to obtain an integral over ), g; (the argument of
F in this amplitude); it is then clear that the integrand is sufficiently smooth at
Y-; ¢ = 0 and because of the convolution with F' this amplitude vanishes.?!

Forces between D-branes

One type of one-particle reducible diagram of particular interest is that de-
scribing the force between D-branes, so let us study this explicitly. Here we have
at leading order

.-
\ M
i -
1 ‘\.

N —

Fig. 8: Diagrams contributing to the force between parallel branes.
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The correction term is proportional to

/dnE_L F(kl) (e—Tc(ic.i-i-iE) _ e"TO(E?L'HE)) (4.32)
k3 + e
where k | denotes the momenta in the n transverse directions to the D-brane. This

contribution vanishes, as can be seen by plugging in the above expression for F' in

31 In fact for normalizable wavepackets f(gi) is not only smooth at Zi g = 0 but
vanishes there.
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terms of delta functions (4.2.16). So as expected from the general arguments above,
we see explicitly here that the force between gravitational sources such as D-branes

is not changed by our decapitation of the tadpoles of the closed strings exchanged.

4.8.2 1PI contributions

Consider a general contribution involving wedges which carry loop momentum
(i.e. a diagram which is 1PI with respect to cutting at least some of the wedges).
We would like to know if this diagram is nonzero (and if it is nonzero, we would
like to know if it preserves unitarity of the S-matrix).

Let us focus on one wedge at a time, with momentum k. If the Riemann
surfaces are smooth and the vertex operators are separated from each other and
from the V(¥)’s, then the integrand will be nonsingular. The potential divergences
as k varies come from the degenerations of the Riemann surface approaching the
V{&k)’s and/or the approach of vertex operators to each other. These can always
be viewed as IR divergences or poles in the S-matrix. So we can focus on the region
of the moduli space of the Riemann surface near IR limits and poles. (Again, note
that any UV divergences are cut off.)

Using this, the structure of the potentially singular part of the k-dependent
integrand in the amplitude is

d 4 T, (k2 +ie) _ To(k?+ie)
/d Is:F(Is:)-——-———k:2 e (e e )

1
II [ sl

- m?2 +ie

Cataliars )2—m+ie) _ oTo((k+pi)®-mi tie))
?

(4.3.3)
times a factor of T, if the V(**) approach each other (c.f. (4.2.5)). Here the p; are
linear combinations of some subset of the momenta (including in general both loop
and external momenta). That is, the propagators in (4.3.3) come from pieces of the
diagram in which a V(%) line hits a line carrying momentum p;. In the case that
p; is a linear combination of external momenta, then we take the function f(p;) to

be a nontrivial smooth wavepacket.3? When p; involves a loop momentum, then

32 This wavepacket should die off fast enough for large momentum so as not to intro-
duce new UV divergences; we may in any case include a UV cutoff Myv on the external
momentum integrals as well as on the internal ones.
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f(p;) encodes any further momentum dependence in the amplitude beyond the pole
contribution, and again is a smooth function.

As before, whether this contribution survives is determined by whether the
integrand as a function of & can become singular as k varies. This is clearly averted
here since the only singularities of the integrand are the poles from the propagators,
and for finite T., the expansion of the exponentials for small (k + p;)? — m? kills
the factor of (k +p;)2 —m? in the denominator. So we see that the F terms do not
contribute in loop (1PI) propagators, just as we found for non-1PI propagators in
physical S-matrix amplitudes.

4.3.8 New tadpole diagrams which vanish

It is worth mentioning that the tadpole contributions formally include the

following diagrams introduced by our modification:

Fig. 9: 04(-0)=0.

However, these diagrams cancel. Not only do they cancel each other exactly
via decapitation, but they are separately zero because as we have just derived, the
F’s do not contribute in loops. This is related to the comment in §2 about the

absence of a need for a normal-ordering prescription for the product V)V (%),

4.3.4 Ezxplicit evaluation at one loop

The above general arguments suffice to establish that our deformation propor-
tional to F' does not contribute except in decapitating the tadpoles. It is nonetheless
instructive to work out explicitly a simple 1-loop example in quantum field theory
to illustrate the effect.

Let us consider a one-loop graph involving two virtual massless scalar particles
(whose tadpoles we are decapitating) with total momentum p running through it

and loop momentum k. This is given by (up to an overall real constant)
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lim lim - -
p—0n—-0 | (2m)2 k2 — p2 + ie (k — p)2 — p2 +ie

(4.3.4)

Let us perform the k° integral by treating it as a contour integral, closing the
contour at infinity in the lower half plane. This is possible because the integrand
falls off for large |k°|. This picks up the residues of poles at kO = /2 4 2 — ie
and k° = p¥ + \/ (k- )2 + u? — ie. (Note that this follows even in the presence

of the F' terms because we constructed Fy (k) to have no poles in the lower half ko

plane.) Letting Ej = /|k|2 + u2, this gives

Z/ di-1k <1+F,,(Ek —ie,k) 14 Fy(BEy —ic—p° k—p) N
(2mr)a-1 24/ k2 4 p? — e (By, — ie — p0)2 ~ (k — §)2 — 2 + ie
1+ Fy(Epp—ie,k—P) 1+ F(p° + Ep—p — i€, k) )
2Elc—p — 1€ (pO + Ek_p - ?:6)2 - EZ — p,2 + 1€
(4.3.5)

For generic external momentum p, the denominators in this expression never vanish

(for finite , which is taken to zero at the very end of the computation) where either
of the F factors have support. Hence as argued for general diagrams in the above
subsections, here we see explicitly that the deformation does not contribute in loop

propagators.

4.3.5 Unitarity

Because the F terms do not contribute to amplitudes except in cancelling
massless tadpole contributions, we expect that perturbative unitarity is satisfied.
This is manifest in simple quantum field theories such as ¢ theory expanded about
¢o = 0: once the diagrams including tadpoles are removed the remaining diagrams
satisfy the cutting rules for perturbative unitarity (see figure 9). This result is
clear also from the equivalence of the S matrix resulting from decapitation and that
obtained by simply fine tuning away the tadpole contribution order by order; the
latter also removes the tadpole diagrams leaving behind finite ones satisfying the

cutting rules.
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Fig. 10: The one loop two-point function in decapitated ¢* theory. (a) All
diagrams with wedges in loops vanish identically. (b) Decapitation ensures
that all tadpole diagrams cancel. (c) The remaining diagram respects the
cutting rules by construction.

In ordinary bosonic string theory, one can formally argue for perturbative uni-
tarity by decomposing string diagrams into quantum field theory diagrams made
from propagators and hermitian vertices (the latter containing no boundaries of
moduli space and therefore no poles) (see e.g. [132] and the discussion in [133],
chapter 9), and then appealing to the field theory argument based on Cutkosky
rules. As we have shown in this section, the effect of our deformation is precisely to
cancel massless tadpole contributions in this field theory language; the remaining
diagrams satisfy the cutting rules as usual if they do in the undeformed theory. So
if the superstring perturbation theory works similarly to the bosonic case in this re-
gard, i.e. if it is decomposable into diagrams, formed from propagators and vertices,
which satisfy the cutting rules for unitarity (which seems plausible though it has
not been proved), then we can conclude that our deformation produces a unitary
theory.

Since the remaining diagrams describe forces that fall off with distance, we
expect cluster decomposition to hold in our theories. (This is again manifest in the
perturbative quantum field theory examples where the result is equivalent to that
one would obtain tuning away the tadpoles.)

Note that since we have shown that tadpole-free diagrams are unaffected by our
modification, the analogous modifications of perturbative supersymmetric theories

would have no effect on the physical S matrix. (An interesting future direction
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is to apply our construction, perhaps field theoretically, to models of low-energy

supersymmetry with dynamical (nonperturbative) supersymmetry breaking.)

4.4 Discussion

Having argued for the unitarity of our S-matrix, let us now recap and assemble
the salient physical features of our system. Our prescription leads to a class of
unitary non-supersymmetric perturbative S-matrices in flat space, parameterized by
the VEVs of the classical moduli, whose fluctuating modes are generically lifted. We
accomplished this by rendering non-dynamical the zero modes of fields (moduli and
the graviton) which would otherwise be destabilized by tadpoles, via a modification
of the propagator for these fields in the deep infrared. On the worldsheet this
modification arises as a perturbative NLST deformation. The tree-level S-matrix
is the same as in the unmodified theory; in particular the response of gravity to
localized sources of stress-energy is as in ordinary general relativity and has not
been removed by our mechanism.

The tadpoles in our examples are uniform over spacetime, and have been ef-
fectively removed. It is worth emphasizing that this is not true of the cosmological
term in the real world, which is subject to phase transitions (variation in time) as
well as possible variation among different spatial domains. Further, we have not
so far identified a dynamical mechanism for selecting our theory. In this regard,
it will be very interesting to study more systematically the space of consistent IR
deformations along these lines.

One result of our analysis which is in some sense disappointing is the presence
of parameters descending from the VEVs of the moduli fields. Again, these arise
because we can implement our decapitation construction expanding about any point
in the classical moduli space having positive 1-loop quadratic terms in the potential
for all the moduli. The point in the moduli space from which we start controls the
couplings in the S matrix, while the decapitation construction removes the tadpoles
which would otherwise generically drive the moduli away from the starting point.
Our construction (for any choice of F'(k) satisfying our criteria in §2) does not entail
any parameters coming from F(k), though it is possible that more general choices of
F(k) that do affect non-tadpole diagrams could also lead to consistent perturbative
S matrices in flat space or otherwise.
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Continuous parameters are of course also seen in flat space SUSY models
with moduli spaces and in SUSY and non-SUSY versions of (deformations of)
the AdS/CFT correspondence (where the values of the field theory couplings in
the UV form a continuum of parameters). The novelty here is the persistence
of such a continuum after supersymmetry breaking, in a background preserving
maximal (Poincaré) symmetry. (This also has something of an analogue in known
backgrounds-in flux compactifications even after supersymmetry breaking, one has
a finely spaced set of discrete parameters which can allow one to effectively tune
contributions to the low-energy effective action, including the cosmological term
[115][116][117][136][137].)

This work leaves open the possibility that our perturbative string theories may
not complete to nonperturbatively consistent theories. It was only relatively re-
cently that ordinary perturbative string theories have been (in many cases) un-
derstood to fit into a nonperturbative framework via string/M theory duality, ma-
trix theory, and AdS/CFT. We do not have any concrete results on this question;
perhaps something could be learned by considering nonperturbative features of de-
capitation in spontaneously broken gauge theories.3® Also, it is possible that the
assumption we make about the undeformed superstring diagrams satisfying pertur-
bative unitarity relations as in quantum field theory along the lines of the bosonic
case [132][133] is wrong because of subtleties associated with superstring perturba-
tion theory. This loophole we find less plausible but in the absence of a proof it
certainly remains a possibility.

Although (as in the previously known cases listed above) the parameters add to
the lack of predictivity in perturbative string theory, there is a very appealing robust
prediction in this class of models. Namely, our construction provides a mechanism
for solving the moduli problem, in that for generic values of the parameters in our
S-matrix, the fluctuating modes of the moduli are lifted.

While in this chapter we considered perturbative diagrams producing tadpoles,
our construction may also apply to situations in which SUSY is broken dynamically
at low energies. As an IR effect, we can describe our modification in field the-

ory terms, and low-energy field theoretic SUSY breaking models may be amenable

33 Work on a related question of whether or not similar modifications might be consistent
in the Higgs sector of the Standard Model is in progress [138].
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also to such a deformation. (Also, in some circumstances classical SUSY breaking
superpotentials may be dual to dynamical ones.)

Similarly we may ask about non-flat backgrounds. It will be interesting to
consider whether we can decapitate scalar tadpoles but not the graviton tadpole,
leading to a de Sitter or anti de Sitter solution. It is also important to understand
much better the space of consistent string backgrounds, in particular to understand
how much fine tuning of initial conditions is required to land on the flat space
backgrounds we have exhibited in this chapter.

Along similar lines, one may consider IR deformations of this sort which involve
different forms for F(k). In particular one can imagine introducing a length scale
L above which the decapitation acts nontrivially, rather than simply acting at zero
momentum. As in [111], this may bring the approach closer to applying to the real
world cosmological term.

An important theme of this subject is the application of renormalization ideas
to infrared divergences. Our prescription here is analogous to renormalization via
counterterms in that the finite result we obtain arises from cancellation of quantities
that diverge as the cutoff is removed. It would be very interesting to pursue the
possibility of IR, renormalization using instead an analogue of Wilsonian renormal-

ization involving coarse-graining in momentum space.
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