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Abstract 

We report the final results from experiment E140, a recent deep inelastic electron- 

deuterium and electron-iron scattering experiment at SLAC. In addition, we present 

the results of a combined global analysis of all SLAC deep inelastic electron-hydrogen 

and electron-deuterium cross section measurements between 1970 and 1983. Data 

from seven earlier experiments are re-radiatively corrected and normalized to ex- 

periment E140. We report extractions of R(s, Q2) and F2(2, Q”) for hydrogen and 

deuterium over the entire SLAC kinematic range: .06 5 2 < .90 and 0.6 5 Q2 5 30.0 

(GeV2). 

We find that Rp = Rd, as expected by &CD. Extracted values of R(z, Q”) are 

significantly larger than predictions based on QCD and on QCD with the inclusion of 

kinematic target mass terms. This difference indicates that dynamical higher twist 

effects may be important in the SLAC kinematic range. 

A best fit empirical model of R(z, Q’) is used to extract F2 from each cross 

section measurement. These Fs extractions are compared with Fs data from EMC 

and BCDMS. Agreement is observed with EMC when the EMC data are multiplied by 

x1.07. Agreement is observed with BCDMS over a limited range in 2. The ratios 

of Fi/J’l are examined for Q2 dependence. We observe a significant negative slope 

for z 2.6, and a significant positive slope above z > .7, in excellent agreement with 

predictions based on QCD with the inclusion of kinematic target mass terms. 

. . . 
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Chapter 1 

Introduction 

The objective of this experimental and analytical thesis is to clarify and expand 

our knowledge of hydrogen and deuterium structure functions in the intermediate Q2 

range between the nucleon resonance region and the high Q2 domain of perturbative 

&CD. Our goal is to create a rigorous statistical framework for the extraction of SLAC 

structure functions, and to use this framework in the reanalysis of all deep inelastic 

cross section measurements at SLAC, including those of our recent experiment E140. 

In this chapter we discuss our motivation and provide a brief overview of El40 

and the global reanalysis effort. In Chapters 2 and 3, we discuss the experimental 

and analytical details of E140, with emphasis on the origin and propagation of exper- 

imental and theoretical uncertainty in the cross section measurements. In Chapter 

4 we present the final structure function results for E140, superceding the results of 

our two previous reports. I12 Chapter 5 is devoted to the rigorous extraction of the 

structure functions R(x, Q”) and Fz(x, Q2) f rom the combined set of all deep inelastic 

cross section measurements at SLAC, improving on two previous similar efforts.394 

Section 1.3 explains the notation conventions used throughout this report. Ap- 

pendix A provides a brief reference for deep inelastic electron scattering - both a 

concise definition of the scattering kinematics and an elementary introduction to the 

subject. Appendix B provides a review of several important statistical ideas used 

frequently in this report. Appendix E and the enclosed IBM and Macintosh diskettes 

present the final SLAC structure function tables for hydrogen and deuterium. 



-2 Introdzlction 

1.1 Motivation 

Currently there exist large disparities within and among the structure function 

results of various collaborations. This situation is worsened by the fact that the ex- 

perimental datasets are often kinematically disjoint, making comparisons difficult and 

subjecting global analyses to large systematic error. These discrepancies propagate 

into large uncertainties in the parton distribution functions, impairing the calcula- 

tional ability of QCD. A precise knowledge of the parton distributions is critical in 

any attempt to compare the fundamental interactions of the theory with measured 

cross sections. 

Any rigorous test of &CD, however, must additionally contend with target mass 

and higher twist power corrections. These corrections obscure the logarithmic scaling 

of the structure functions, adding ambiguity to measurements of &CD and clouding 

the extraction of the parton distributions. The importance of the deep inelastic 

scattering data in understanding nucleon structure and power corrections to QCD 

cannot be overstated. 

1.1.1 The ,!kucture Function R =c?L/UT 

Experimental determinations of the structure functions Fz(x, Q2) and R(x, Q2) 

require cross section measurements at the same (x, Q2) over a range of 6. The rela- 

tionship between these quantities is 

4x, Q2, 4 1 
amott v = F2(x,Q2) 1 e 1+ R(x,Q2) ’ 

though, in practice we exploit the linear relationship between b/I’ and E, 

4x, Q2, 4 ; = e(x, Q2) [l + eR(x, Q2)] 9 

(1.1) 

(1.2) 

to extract R and F2 from the parameters of the best fit line. The impact of this 

technique is directly tied to the span in E, or Ac, over which the cross sections are 

accurately measured. 



1.1 Motivation 3 

With the End Station A apparatus5 at SLAC it is difficult to measure cross 

sections over a large Ac with a single spectrometer. By combining data from three 

experiments taken with two spectrometers, Bodek et ~1.~ were able to extract R(x, Q2) 

and Fz(x, Q2) for hydrogen and deuterium over a wide kinematic range. Their results 

for R(z, Q2) are consistent with no kinematic dependence, 

RP = .138 f .Oll f .056 , Rd = .175 f .009 f .060 . (1.3) 

and are shown in Figure 1.1 averaged over x and averaged over Q2. In a similar analy- 

sis, Mestayer et ~1.~ combined data from seven experiments and three spectrometers, 

to extract R(x,Q2) over a smaller kinematic range. Their values are likewise consis- 

tent with simple constants, 

RP = .21 f .lO ) Rd = .22 f .lO , (1.4) 

and are similarly shown in Figure 1 .l. As the data analyzed by Bodek et d3 is a 

subset of that used by Mestayer et al., 4 these results are not entirely independent. 

Also presented in Figure 1 .l are calculations6 of R based on QCD7 and on QCD 

with the inclusion of target mass effect.@ (QCD+TM). These calculations are presented 

at the mean x and mean Q2 of each datum of Bodek et aL3 These early SLAC mea- 

surements of R are consistently higher than RQcD and RQCD+TM. At low x the data 

seems to rise in good agreement with theory, though, the data is equally consistent 

with the constant values of Equations 1.3 and 1.4. 

At very high Q2, R goes to zero according to the Callan-Gross relation. Observa- 

tions of R from deep inelastic muon scattering from hydrogen9 and ironlo by EMC are 

in good agreement with this. These EMC values are consistent with both R= RQcD 

and R = 0 for a mean Q2 of 25 GeV2, and display overall averages of 

RP = -.019 f .034 f .118 , Rd = .036 f .040 f ,087 . 

A smooth transition between the large R seen at intermediate Q2 and the small R 
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Figure 1.1. Shown are the SLAC measurements of RP from two 
previous analyses. Data are systematically higher than RQcD and 
RQCDfTM, and everywhere consistent with R(x, Q') = .17. Re- 
sults for Rd from these analyses are similar. Errors bars on the 
Mestayer et aL4 results include both statistical and systematic un- 
certainties. 
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observed at high Q2 is consistent with both SLAC and EMC, but is nowhere evidenced. 

Other measurements of RF’ from muon1’s12 and neutrino13-15 scattering display no 

kinematic dependence and are consistent with any constant value of R between zero 

and .2.+ 

A precise experimental determination of R(z, Q2) would permit a critical test 

of &CD, QCDSTM, and higher twist effects. In the SLAC kinematic range, the con- 

tributions to R arising from target mass and higher twist effects are expected to be 

large compared to leading order &CD. A significant difference between measured R and 

RQCD+TM would be a primary observation of higher twist effects in nuclear structure. 

A precise measurement of R would test the predictions of other proposed nonpertur- 

bative contributions to nuclear structure, most notably, diquark formation.lg 

1.1.2 The Structure Function F2 

To extract F2 from the measured cross sections one must either simultaneously 

extract R or claim a prior knowledge of R. In muon scattering, for example, F2 

follows directly from Equation 1.1 under the assumption that R = RQcD or R = 0. 

This is a reasonable assumption, except at small x where R may not be so small and 

where c becomes a strong function of Q2 at fixed beam energy. On the other hand, 

in electron scattering at SLAC, F2 and R are simultaneously determined from linear 

regression analyses to Equation 1.2. This technique yields relatively large statistical 

uncertainties in F2, but is necessary in light of the absence an adequate model of R 

in the SLAC kinematic range. 

It is highly desirable to combine the F2 results from muon and electron scatter- 

ing to form a single dataset spanning two orders of magnitude in Q2. This combined 

F2 dataset would permit tests of QCD over a wide span in Q2, while simultaneously 

-exposing ‘target mass and higher twist contributions to theoretical or phenomeno- 

+ Recent high precision results from the BCDMS~~$~~ and CDHSW~~ collaborations 
are compared with our results in Sections 4 and 5. 
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Figure 1.2. Shown are the EMC/BCDMS hydrogen F2 ratios,16 av- 
eraged over Q 2. Results17 for F$f ratios are similar. 

logical analysis. Most important, perhaps, in light of the current discrepancy16J7r20 

between EMCgv21 and BCDMS16y17 hydrogen and deuterium structure functions, would 

be the simple unification of the SLAC F2 results with one or the other of these high 

precision F2 datasets. This discrepancy, shown in Figure 1.2, is not resolvable by 

comparison16j17j20 with the early SLAC results of Bodek et aZ.,3 which are at lower 

Q2 (compare Figure 5.13 with Figures 5.14 through 5.17). 

A precise experimental determination of R(x, Q2) could be used to derive an 

accurate model of R in the SLAC kinematic range. This model could then be used 

to precisely extract F2, via Equation 1.1, from each cross section measurement. This 

technique would yield F2 extractions at twice the Q2 previously reported by Bodek 

et a1.,3 extending well into the high Q2-domain of the EMC and BCDMS datasets. 
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, 

1.1.3 Neutron/Proton Studies 

In practice, the difference between Rd and RP is obtained with minimal system- 

atic uncertainty via 

ad tYd -=T 
P up u* 

[I +E'(R~-RP)] , 

where 

e’ = E 
l+ cRd ' 

(1.6) 

(l-7) 

which follows directly from Equation 1.2. Assuming the smearing corrections for FI 

and F2 are the same, this difference is related to R" by3 

R" = ~~ + pd-p] @  , 
1s 

where (Fl), denotes the smeared structure function. While QCD does not predict a 

significant difference between Rd and Rp, nonperturbative diquark formationlg pre- 

dicts Rd-Rp- - .07 for x > .6. Measured values of Rd-RJ' by Bodek et al3 are shown 

in Figure 1.3, averaged over Q 2. While consistent with zero, the large uncertainties do 

not rule out a significant kinematic dependence, including that predicted by diquark 

formation. The overall average of the Bodek et aL3 data is 

Rd-RP = .031 f .015 f .036 , (1.9) 

where the systematic error is dominated by uncertainties in the relative normalizations 

of the three experimental datasets included in the analysis. 

Recent attempts22*23 to determine an upper limit on the mass of the top quark 

from the ratio 
R= #W+4 

#V -4 

from UA124 and UA225 measurements, have become muddled by differences between 

the quark distributions obtained from the EMC and the BCDMS data. In particular, 
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Figure 1.3. Shown are measurements of Rd-Rp by Bodek et aZ.,3 
averaged over Q2. 

R is sensitive to the ratio of up to down quark distributions,28 as is the ratio FF/FZp. 

The current disparity26 in F2”IF2p between EMC, BCDMS and the SLAC results of Bodek 

et aZ.,3 shown in Figure 1.4, propagates into large uncertainties in the upper limit for 

the top quark mass. 

While the extraction of neutron structure functions is beyond the scope of this 

thesis, a precise determination of the ratio F$(x, Q2)/F{(z, Q2) would permit com- 

parisons with similar ratios from EMC and BCDMS. The most important region for 

this comparison is at low 5 where smearing effects are quite small. Alternatively, 

precise measurements of F,d/Fl might reveal a significant negative slope with respect 

to [InO”], which would be consistent with the data shown in Figure 1.4. 1 
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Figure 1.4. Shown are the ratios of Fc/Fl for the EMC,21 BCDMS,26 
and SLAC3 datasets. The SLAC data shown here have been re- 
corrected26 for smearing effects a la Frankfurt and Strikman.27 

1.2 Overview 

Our response to the need for more accurate knowledge of structure functions in 

the SLAC kinematic range is twofold. First, experiment El40 addresses the kinematic 

variation of R using a single spectrometer in a dedicated effort to reduce systematic 

uncertainties in R to the f.03 level. And second, a global reanalysis of the earlier 

cross section measurements results in more extractions of R and F2 over a much wider 

span in (x,Q2), and occasionally rivaling the statistical and systematic accuracy 

of the El40 results. Neither of these efforts would be possible without the recent 

improvements to our radiative corrections procedure. Our new Bardin/Tsai radiative 

corrections procedure is described in Section 3.2.2 and in more detail in Reference 29. 
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1.2.1 Experiment E140 

Experiment El40 is designed to measure R(x, Q2) to f .04f .03 statistical and 

systematic accuracy. By using a single spectrometer, we explicitly remove the largest 

source of uncertainty faced by Bodek et aZ.3 and Mestayer et aZ.4, though in doing 

so, we impose tight limits on the range of accessible (x, Q2, E). Our choice of the 8 

GeV Spectrometer facility5 of End Station A is made to maximize, for a wide range 

of (x, Q2), the span in c over which we can accurately measure cross sections. 

Figure 1.5 shows the (x, Q2) point selection for E140. Limitations in x and Q2 are 

dictated primarily by the resonance region and the maximum electron beam energy 

and intensity. The upper limit in E is determined by the minimum scattering angle 

(11.5”) and by the maximum scattering momentum (8.0 GeV). The lower limit in E is 

a product of several concerns: minimum scattering momentum (1.0 GeV), maximum 

radiative correction (-40%)) and maximum acceptable background rates (13% charge 

symmetric; 125 r-/e- ratio). The available span in E under these constraints is 

ACM .35 for all (x, Q2), d emanding &l% cross section measurements to meet the 

statistical goal of E140. 

An additional goal of El40 was to measure the differences RF’-Rd and Rd-Rp. 

Discrepancies at low x between the original report 21 of the EMC effect and subsequent 

low Q2 observations 3oy31 from SLAC gave cause to suspect32 that RF” > Rd in the 

SLAC Q2 range, contrary to QCD predictions.33 Our results for RF” and RF’-Rd are 

included in this report. However, as our hydrogen target was irreparably damaged 

very early in E140, no results are reported for IP’ or Rd- Rp. 

As each (2, Q2, c) point corresponds to a unique set of laboratory scattering pa- 

rameters, (E,, E’, 0 ), cross sections were measured in the virtually random order dic- 

tated by the need to minimize the number of beam energy changes. Careful attention 

to all known systematic effects was critical to ensure the integrity of our extractions 

of R from cross sections measured days, or weeks, apart. At each (E,, E’, 0 ), cross 

section measurements on all scheduled targets were interleaved to eliminate many 

relative systematic errors. 
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Figure 1.5. Shown is the El40 kinematic point selection for each 
target, with curves indicating kinematic restrictions. 

1.2.2 Global Reanalysis 

This global reanalysis is the third attempt to assimilate all prior deep inelastic 

cross sections measurements at SLAC into a single coherent, consistent dataset for the 

extraction of the structure functions R and Fz, Both previous attempts met with 

only limited success: 

l The 1979 study by Bodek et aZ.,3 while rigorous in the treatment of systematic 

uncertainties, suffered largely from the limited statistics and kinematic range 

spanned by only three experiments. Uncertainties of &l% in the relative normal- 

izations of the datasets and of f5% in the MIT radiative corrections procedure3j34 

greatly limited the resolution of their analysis. 
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l The 1983 study by Mestayer et aZ.,4 while abounding in statistics and kinematic 

range, suffered largely from the nonrigorous treatment of systematic errors. The 

dominant uncertainties in this study were the large uncertainties in the relative 

normalizations of the datasets. t Of lesser importance, though still significant, 

was the f5% uncertainty of the Tsai radiative corrections procedure.36 

Our reanalysis is founded on three major analytical advancements: First, the new 

Bardin/Tsai radiative corrections procedure reduces the systematic uncertainties due 

to radiative corrections to below the &l% level. Second, a new technique is used 

to precisely determine the relative normalizations of the datasets, yielding typical 

uncertainties of f.7%. And third, a highly detailed propagation of systematic errors 

exploits all known correlations, resulting in smaller, more accurate estimates of the 

structure function uncertainties. 

We include in our global reanalysis all deep inelastic experiments at SLAC dating 

back to 1970. These experiments were performed at the End Station A experimental 

facility using one of three spectrometers: the 1.6 GeV,37 the 8 GeV,5 or the 20 GeV.38 

Given the excellent documentation that exists for these experiments, we are confident 

of our grasp of most or all of the experimental details. The eight experiments included 

in our reanalysis are listed in Table 1.1. * Noteworthy among these is E139, a high 

precision study of the EMC effect which rivals El40 in the measurement of deuterium 

cross sections. 

The kinematic ranges of these eight experiments are shown in Figure 1.6. Each 

point represents either an individual cross section measurement or the centroid of a 

t It should be noted that despite observing35 normalization differences among the 
datasets as large as 5.5%, no correction was made for these disparities. Rather, 
these differences were taken to be normalization uncertainties and were propa- 
gated through the R extractions, resulting in the inflated statistical errors shown 
in Figure 1.1. 

$ Earlier deep inelastic data which are not included in this study are summarized 
in Reference 39. We do not include in our study the portion of experiment E4b 
due to Miller et al., 4o though this data is included in the analysis of Mestayer 
et al4 
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Table 1.1. Presented is a summary of the datasets included in our global 
reanalysis. The year is that in which the experiment was performed. The 
two SLAG collaborations are Group A and the Spectrometer Facilities Group, 
denoted SGA and SFG, respectively. 

Spec- Primary Collab- 
Experiment trometer Targets Thesis Reference oration Year 

E49a t z 
E49b + J 
E61 $ 
E87 + * 
E89a $ 
E89b $ 
El39 
El40 

20. HD 
8. HD 

20. HD 
a. HD 
1.6 HD 

20. HD 
8. D 
8. D 

41 3,42 
34,43 3 
none . 44 
none 3 

45 46 
35 4 
30 31 

29,47 47 

MIT/SGA 1970 
MIT/SFG 1970 

SGA 1971 
MIT/SFG 1972 

SGA 1974 
SGA 1974 
El39 1983 
El40 1985 

+ Included in 1979 study by Bodek et aL3 
j Included in 1983 study by Mestayer et ~1.~ 

set of adjacent measurements. All experiments prior to El39 were constrained by 

radiative corrections considerations34y36 to measure cross sections in E’-spectra for 

each (Ei, 8 ) , f or several beam energies Ei 5 E,. Thus, each upward-sweeping spectra 

in Figure 1.6 represents measurements over a span in E’ for a specific (E,, 6 ). Cross 

sections were measured on hydrogen and deuterium in an interleaving fashion to 

eliminate or reduce many relative systematic errors. 

A composite of Figure 1.6 is presented in Figure 1.7 with El39 and El40 data 

highlighted. Visible are our imposed cuts at W2 2 3 GeV2, and our cuts at 

z 2 .062 , and Q2 > .566 GeV2, (1.11) 

made to guarantee convergence of the radiative corrections. Also indicated in Fig- 

ure 1.7 is the overlap of the SLAC data with those of EMC and BCDMS. Though 

not extensive, this overlap is critical if the SLAC data is to resolve the EMC/BCDMS 

discrepancy shown in Figure 1.2. 
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Figure 1.6. Shown are scatterplots in (z,Q2) of the scattering 
kinematics of each of early SLAC experiments. The c range of each 
experiment is also indicated. See text for more details. 
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Figure 1.7. Sh own is a composite scatterplot of all SLAC cross 
section measurements. High statistics measurements (f.8%) by 
El39 and El40 are shown as large diamonds. The low Q2 extents 
of the EMC and BCDMS hydrogen measurements are also indicated. 

1.3 Notation Conventions 

Throughout this report we employ the usual ti = c = 1 notation, we use only 

natural logarithms, and in paired coordinates such as (5, Q2) = (.2,5) , we suppress 

the obvious units. 

Cross sections are expressed in units of [pb/(sr GeV)] and defined per target 

nucleon. Structure functions are similarly defined per target nucleon. Iron and gold 

cross sections and structure functions, as reported, include a symmetrizing correction 

-f or neutron excess (Equations 3.8 and 5.49). 

Uncertainties in the cross sections and extracted values of F’ are always expressed 

relatively. Uncertainties in R are always expressed absolutely. 
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In all plots, the data are presented with the total error given by the full error 

bar, and with the statistical (or random) component of the total error designated by 

the hashmark on the error bar. Exceptions to this rule are at all times clearly noted. 

Correction factors are quantities by which one multipies the data. Normalization 

factors are likewise the number by which one multiplies. For example, the normal- 

ization factor of dataset A to dataset B is the number by which dataset A must be 

multiplied to make it compatible with dataset B. 

Calculations’ of R and Fz based on QCD plus target mass effects (QCD+TM) are 

made according to the prescription of Georgi and Po1itzer.s 

Lastly, our need to work both in the laboratory frame and in the spectrometer, 

or TRANSPORT,48 frame introduces notational ambiguities. To avoid double uses of 

the symbols theta and phi, we let (O,$) re p resent quantities in the laboratory frame, 

and (lo,cp) represent quantities in the spectrometer frame. Double uses of the symbol 

“6” cannot be avoided, however. We use this symbol both as a TRANSPORT variable 

and as a differential, to represent uncertainties. 



Chapter 2 
El40 Experimental Apparatus 

A schematic representation of the 8 GeV spectrometer facility at SLAC is shown 

in Figure 2.1. The detector package performs the dual role of electron/background 

discrimination and particle trajectory analysis. For particle identification we rely 

on a threshold hydrogen gas Gerenkov counter plus calorimetric information from a 

lead glass shower array. Scattering trajectories are determined with ten planes of 

multiwire proportional chambers (the MWPC). 

Our primary trigger components are a high signal from the Gerenkov counter 

and an early shower development in the lead glass array. Event signals are recorded 

by a PDP-11/04 and VAX-11/780 computers. Other experimental parameters are 

monitored by an LSI-11 computer and passed to the VAX-11/780 at ten minute 

intervals. 

2.1 The Electron Beam 

The El40 electron beam originates at the Main Injector for beam energies greater 

than 4.25 GeV and otherwise at the more luminous Nuclear Physics Injector.4g The 

electrons are accelerated by the Stanford Linear Accelerator” and momentum an- 

alyzed in the A-bend3T30j50 of th e b earn switchyard before being sent to the target. 

The central energy of the beam is determined to an absolute accuracy of 3~.1%.~’ The 

maximum permitted total energy spread of the beam during El40 is &.l%, though, 

for some low rate kinematics this condition is relaxed to f.3%. 
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Shower Counter 

Target 
Aamembly 

L pivot 

Figure 2.1. Shown is the 8 GeV Spectrometer apparatus of End 
Station A at SLAC. The two dipole magnets achieve momentum 
analysis through a 30” bend in the vertical. The three quadrupole 
magnets yield line-to-point focusing in the horizontal (along beam- 
line) and point-to-point focusing in the vertical. Also indicated 
are the main El40 detector components inside the concrete shield- 
ing. During E140, additional concrete shielding was placed atop 
magnets Q82, B81 and B82. 

The incident beam is continuously monitored3’ and steered by the LSI-11 com- 

puter, which maintains an incident angle within f.003” of nominal beamline. Fre- 

quent visual confirmation of the steering alignment (at the f.008” level) is made 

by inserting two ZnS screens into the beam. Beam profile is also monitored by the 

LSI-11. Typical spot sizes are .3 to .5 mm in diameter. 

Beam intensities vary from 1 to 40 x lOlo electrons per 1.6 ,US pulse, with typically 

60 to 90 pulses per second. Two slightly different toroidal beam charge monitors30~51~52 

are used to estimate the charge in each beam pulse. These two systems typically agree 

to better than f.2%. The toroids are calibrated against a charged capacitor every 
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few horns to correct the effects of fluctuations in temperature, amplifier gains, and 

-timing signals. A detailed study 53 of our calibration system evaluates the uncertainty 

in our knowledge of the beam charge to be f.3% (relative to a charged capacitor). 

This uncertainty is believed to be uncorrelated between measurements separated in 

time by an hour or so. Over much briefer periods, this uncertainty is more accurately 

estimated to be f.2% and strongly self-correlated. 

The absolute calibration of our beam charge monitoring system is known from 

three previous comparisons against a high precision Faraday cup.54 Results from a 

detailed 1967-1968 study,52 and two subsequent measurements34~55 are summarized 

in Table 1.1. Agreement is observed at the f.5% level for various beam energies, 

intensities, and pulse shapes. 

Table 2.1. Shown are the results of three tests of the toroidal beam charge 
calibration system against a Faraday cup known to be accurate to 41.3%. 

Study Toroid/Faraday Cup 

1968 1.0076 f .0003 
1.0073 f .0026 

.9978f.0006 

.9978f.0003 
1970 LJ980f.0050 
1979 .9965 f .0015 

2.2 The Targets 

To minimize systematic errors in the study of RF”-Rd and AA“--Rd our target 

assembly is designed to rotate frequently between all targets. By interleaving partial 

cross section measurements on the scheduled targets, relative systematic errors due to 

-beam charge fluctuations are reduced below the *.l% level. Our target assembly2g~51 

is modified from an earlier design56 to include a set of thin solid targets, and is 

virtually identical to that used in the previous experiment E139.30 
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Table 2.2. Shown are the thin solid target thicknesses, measurements are 
f.0005 cm. 

Target Thickness (cm) Thickness (RL) Uncertainty (%) 

Fe#l .1067 .0606 f .5 
Fe#2 .0470 .0267 f 1.1 

Au .0198 .0592 f 2.5 

Table 2.2 shows the thicknesses of our thin solid targets. We use two iron targets 

of different thicknesses to check the “external” portion of our radiative corrections 

procedure (see Section 3.2.2). 

Additionally, we use two liquid deuterium targets of different lengths. Virtually 

all our deuterium measurements are with the long target which matches in radiation 

lengths (RL) the thin iron target. A description of the long deuterium target is given 

in Appendix D. The background contribution due to scattering from the aluminum 

entrance and exit windows of the target is measured at each kinematic point with 

an empty target replica. 57 This correction to the measured deuterium cross section is 

typically -1.1% and contributes &.l% Poisson counting uncertainty to the measured 

cross section. 

The deuterium density is measured at the entrance and exit of the target cell by 

platinum resistors and by hydrogen vapor pressure bulbs. Temperatures are measured 

and recorded every 10 sec. Random fluctuations in temperature are observed at the 

fl” level. 

Density changes due to heating by the bearn5(j are minimized5* by forced convec- 

tion through a heat exchanger in thermal contact with a 21” liquid hydrogen reservoir. 

Temperature variations across the target length are typically .2”, indicating a density 

variation of .3%. Uncertainties in the calibrations of the two temperature measure- 

ment techniques are estimated to be less than f.l”, though, our measurements indi- 
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cate a systematic disparity of .2” between the two techniques. The dominant source 

of uncertainty in the target density, however, is the cryogenic data for deuterium 

density at this temperature, 5g which is quoted to only 6.6%. 

The deuterium target length is measured optically to &.20/o. The uncertainty in 

interaction length due to target cell misalignment is estimated to be f.2%. And lastly, 

an uncertainty in the 2% hydrogen contamination of our deuterium supply propagates 

into f.2% in the deuterium cross sections. A summary of the uncertainties due to 

the liquid deuterium target is presented in Table 2.3. 

Table 2.3. Shown are the uncertainties to the cross section which originate 
at the liquid deuterium target. Most contributions are perfectly correlated 
across all kinematics, contributing only to the overall normalization uncer- 
tainty of E140. 

Source 
Cross Section 
Uncertainty 

WV 

Counting Errors (SST) 
Endcap subtraction &.l% 

Random Errors (SsR) 
Temperature fluctuations 5.3% 

Normalization Errors ( SNM) 
Temperature calibration 
Temperature variation across 

target cell 
Cryogenic data 
Target length 
Target misalignment 
Target impurities 

Total Normalization Error 

.3 

.3 

.6 

.2 

.2 

.2 

&.S% 
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2.3 The 8 Gel’ Spectrometer 

El40 Experimental Apparatus 

Scattered particles from the target were momentum analyzed using the 8 GeV 

spectrometer. 3y5$o Several recent reports2g~30~51~61 provide excellent descriptions of 

the optical properties of the 8 GeV spectrometer. We discuss here only new results 

relevant to the analysis of E140, and in particular, the results of our recent floating- 

wire62 calibration study 63 of the 8 GeV spectrometer. 

2.3.1 Scattering Kinematics 

The central scattering angle of the spectrometer is calibrated64y65 relative to 

the nominal incident beamline to an accuracy of f.003”. This uncertainty includes 

contributions due to survey errors (~I~.001’), uncertainties in the nominal beamline 

(f.OOl"), effects originating in the noncentral rotation of the spectrometer (&.002”), 

and uncertainties in the wirefloat determination 63 of the optical axis of spectrometer 

relative to its own physical axis [a - .009” effect] (f.002”). As the 8 GeV spectrometer 

is not a perfectly elastic rigid rotor, there is an additional uncertainty which is not 

correlated with the absolute calibration. A statistical studys4 of the repeatability 

of the spectrometer axis versus large and small angular displacements measures a 

f.002” random uncertainty in the scattering angle. 

The central momentum of the spectrometer is calibrated to f.04% by the wire- 

float study,63 and confirmed by subsequent extensive NMR studies.66 Statistical fluc- 

tuations in the computer controlled magnet currents contributed67 an additional 

f.03% random uncertainty to the energy of the scattered particle. A cross cali- 

bration of the incident and scattered energies, E, and E’, based on elastic hydrogen 

cross sections measured during El40 reports:‘l 

l Assuming perfect knowledge of E’, the observed E, is less than the calibrated 

value by .15%. and displays random fluctuations of f.O5%. 

l Assuming perfect knowledge of E,, the observed E’ is greater than the calibrated 

value by .ll% and displays random fluctuations of f.04%. 
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We conclude that a combination of these scenarios is likely and that these observations 

are consistent with the individual calibrations and the known fluctuations of E, and 

E'. 

_ 2.3.2 Acceptance 

To determine the total acceptance of our spectrometer we rely on a high statistics 

technique used successfully in the previous deep inelastic experiment E139.30 The 

scattering trajectory of all observed electrons (see Section 3.1) are reconstructed using 

the TRANSPORT48-like model of the spectrometer given in Table 2.4. We then compare 

the number of observed electrons in a particular (29,6, cp) bin to the number of electrons 

observed in the fiducial region of the spectrometer acceptance, given by 

-3.0 mr 5 6 I 3.0 mr , 

-1.5 % 5 6 5 1.5 % , (24 

-10.0 mr 5 cp 5 10.0 mr . 

Electrons within this region encounter are detected with perfect efficiency. Using 

the cross section model to the deep inelastic region of Bodek et aZ.,3 we determine 

the expected number of counts in each (19, S,cp) bin from the number of counts in 

the fiducial. The acceptance function, Acc(19,6, cp) is defined as the ratio of observed 

counts to expected counts in the (9,6, cp) b in, and is determined using the sum of the 

data from the thin solid targets. The acceptance criteria and total acceptance for 

El40 are given by 
-6.0 mr 2 29 5 6.0 mr , 

and 

-3.5 % 5 6 2 3.5 % , P-2) 

-28.0 mr 5 5 28.0 cp mr , 

Total Acceptance = 3.659 f .014 msr% , (2.3) 

where the total acceptance is the average of Acc(S,S,cp) over this region times the 

volume of this region. Studies of other possible acceptance criteria indicate effects of 
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Table 2.4. Presented is the TRANSPORT matrix used to reconstruct the exact 
scattering (tgt) kinematics from the wire chamber trajectory. The implicit 
units are powers of [cm], [mr], and [%]. 

xtgt 29 tgt ‘Ptgt &gt 

ii -4.29185 4.55362 .19387 .02408 - .03694 .03954 -.00205 .00245 
Y - .06007 .00050 -.02689 - .34275 

,i -.00142 .01756 -.00419 .00051 -.92820 .01063 -.00013 .00074 

X6 - .03237 -.00103 -.01993 .00012 
XY -.00492 -01458 .00034 .00059 
xc’p .00133 - .00098 .00056 .00005 
I92 .01543 .00051 .00930 .ooooo 
9Y .00850 -.01421 -.00037 -.00059 
99 -.00106 .00082 - .00052 -.00003 
Y2 -.00411 -.00012 - .00525 .00020 
Y’p -.00019 .00003 - .00083 .00136 
(P2 -.00005 .00001 -.00009 .00004 

size f.3% in the measured cross sections and no effect in the extraction of R. Plots 

of Acc( 19,6, cp) and additional discussion are given in Reference 29. 

Our single largest concern regarding systematic errors in R comes from possible 

E’ dependence of the spectrometer acceptance. This concern prompted the extensive 

floating wire calibration study63 of the 8 GeV spectrometer, which measured all 

primary first order optics coefficients as a function of E’. These wirefloat coefficients 

are used to calculate a correction factor to the nominal acceptance, Equation 2.3, 

obtained from the coefficients of Table 2.4, for each value of E’. These correction 

factorss3 are plotted in Figure 2.2 and are given by the best fit line 

ACCTrue/ACCNominal = .9815 - .00049 (E’ - 3.99 GeV) , 
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Figure.2.2. Shown is the wirefloat measurement of the E’ depen- 
dence of our acceptance. The 9 GeV value evidences magnet satu- 
ration. Shown is the best fit line to the data at and below 8 GeV, 
the maximum value of E’ used in E140. 

where 3.99 GeV is the weighted mean E’ of the El40 data. The uncertainty in this 

slope is f.00036 GeV- r. The uncertainty in the intercept, f.010, is the systematic 

uncertainty in our knowledge of the acceptance and is dominated by systematic survey 

uncertainties. . 

A similar concern regards the possible 0 dependence of the spectrometer accep- 

tance for the 20 cm long deuterium target, despite line-to-point horizontal focusing 

of the 8 GeV spectrometer. Monte carlo studies 2g151 for the acceptance criteria of 

-Equation- 2.2 indicate a slight negative effect, modeled well by 

Acc(fJ)/Acc(O) = 1 - .008sin2 8 . (2.5) 
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50 cm 

Cerenkov Detector MWPC - Shower Counter 

Figure 2.3. Sh own is a schematic of the El40 detector package 
as viewed from the side. Also indicated are the focal planes of 
the spectrometer, which pass through the MWPC. Gravity, in this 
picture, points at 7 o’clock. 

For Act(0) we use the Equation 2.3 determined with the thin solid targets. This 

very small effect is seen 51 to increase sharply for larger cp acceptance ranges than 

Equation 2.2 (c). 

2.4 The Detectors 

Our detector package is shown schematically in Figure 2.3. Improvements over 

recent previous experiments30961 include the use of hydrogen as a cerenkov gas and a 

new highly-segmented shower counter. We present here only a concise description of 

each portion of the detector. More extensive discussions of the El40 detector package 

are provided by References 29 and 51. 

A brief summary of the properties of our Cerenkov detector is given by Table 

2.5. Our selection of hydrogen gas greatly decreases the knock-on background, those 
” 

events in. which a pion triggers the Cerenkov detector through an intermediary atomic 

electron knocked above the electron threshold. Similarly, hydrogen gas results in fewer 

multiple-scattering events, increasing our tracking efficiency. 
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Table 2.5. Shown is a summary of our hydrogen gas Cerenkov detector prop- 
erties. The last category is addressed in Chapter 3. 

Hydrogen pressure 
Scattering chamber 
Index of Refraction 

1 atm 
3.15 m 

1.000140 

Threshold energy for e- 
Threshold energy for x- 

.031 GeV 
8.40 GeV 

Photomultiplier tube 
Quantum efficiency 
Number photoelectrons 

RCA 
Quanticon 8854 

15-20% 
6-8 

Knock-on probability 
Electron efficiency 

-2% 
99.7% 

Our MWPC? is composed of ten planes which are spread out to cover the focal 

planes of the spectrometer. These chambers are the same as those used in two previous 

high energy experiments. 30~61 The primary features of our MWPC are summarized in 

Table 2.6. 

Our lead glass shower counter is divided, as indicated in Figures 2.3 and 2.4, into 

five layers of thicknesses 3.2 RL and 4 x 6.8 RL. We use longitudinal segmentation6’ 

to reject those pions which undergo charge-exchange interactions by looking for early 

shower development within the PR. Electron showers, except at very high energies, 

are contained entirely within the PR, TA, and TB layers. To improve our energy 

measurement in the TA layer, where the electron shower is a maximum, we attach a 

phototubes to each end of each counter. Using a detailed calibration procedure2’ we 

.achieve an energy resolution of lS%/JE? full width at half maximum. Additional 

discussion regarding the use of shower counters in the 8 GeV spectrometer is provided 

by Reference 70. 
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Table 2.6. Shown is a summary of the primary features of our MWPC. The 
last category is addressed in Chapter 3 and in more detail in Reference 51. 

Number of 6 planes 
Number of 6 planes 
Plane size 
Plane separation 

5 
5 

35cmx93cm 
20 cm 

Wire composition 
Wire diameter 
Wire separation 

Au-plated W 
20 pm 

2mm 

6 resolution 
19 resolution 

f.05 % 
f.07 mrd 

Single plane efficiency 
Total tracking efficiency 

go-95% 
99.8% 

Our three planes of plastic scintillator arrays, shown in Figure 2.3, provide ad- 

ditional timing and hodoscope information about charged tracks. The SF counter is 

composed of six vertical slats, while the SM counter is composed of three horizontal 

slats with a phototube at each end. Additionally, the SM counter is sensitive to shower 

development in the PR. 

2.5 Electronics and Data Acquisition 

Our event logic is similar to that of two recent previous high energy experi- 

ments,30161 and is described in detail in References 29 and 51. A simplified schematic 

of our electronics is presented in Figure 2.5. Signals from the individual PR and TA 

counters are summed in analog. Signals from the SF and SM scintillators are summed 

logically. Our electron trigger accepts two sets of event criteria, 

where 

ELEC = EL1 v EL2 , (2.6) 
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Figure 2.4. Shown is a schematic representation of the lead glass 
shower counter as viewed from above. Efficiencies are improved by 
rotating and staggering the layers as shown. Also shown are the 
second and third layers of plastic scintillator, SM and SR. 

EL1 = [CAPRATA] v [CAPRASM] 

V[~:ATAASM]V[PRATAASM] , 

EL2=ch{[PRhSF]~[PRhSM]~[SFhSM]}. 

(2.7) 

The second of these greatly increases our detection efficiency for electrons of E’ < 4, 

which shower almost entirely within the PR. Discriminator thresholds are set low, 

yielding an electron trigger efficiency greater than 99.99% and a pion rejection factor 

of roughly 6. 
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PR 

Trigger 

Figure 2.5. Shown is a simplified schematic of the fast electronics 
and trigger. 

We sample the background with two additional trigger elements: a pion trigger 

which requires only SF and SM (and is prescaled by 28) and a random trigger which 

fires at infrequent intervals. 

Triggers generate 100 ns gates for ADCs, scalers and latches and a common start 

for all TDCs. Coincidences (not shown in Figure 2.5) between various logical elements 

are used to calculate computer deadtime corrections. Identical trigger logics (also not 

shown) with varying signal widths are used to calculate electronics deadtime correc- 

tions. To minimize deadtime corrections, we lower the beam intensity to maintain a 

trigger rate below .2 per beam pulse and the pion flux below 2 per beam pulse.+ 

t In retrospect, higher discriminator thresholds would have given Equation 2.7 a 
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All detector information is read b;a PDP-11/04 computer through a CAMAC in- 

terface and loaded into rotating memory buffers shared with a VAX-11/780 computer. 

Additionally, the VAX-11/780 monitors and assimilates scalers, target temperatures, 

detector high voltages, and spectrometer magnetic fields. The VAX-11/780 receives 

* data from the LSI- 11 computer regarding beam steering, profile, and charge mea- 

surements, and from the Main Control Center computer regarding the incident beam 

energy. The online analysis program, also running on the VAX-11/780, provides his- 

tograms of all ADCs and TDCs to help monitor the stabilities of the electronics, the 

detectors, and the spectrometer. 

much greater pion rejection factor, allowing us to use a more intense beam and 
to reduce significantly the running time at those kinematics with large w-/e- 
ratios. 
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El40 Data Analysis 

The data analysis proceeds in three primary stages. The first stage is the event- 

by-event analysis which performs the task of particle identification and produces the 

final electron count for each run. Also at this stage, detector efficiencies, beam charge, 

target temperatures, etc., are averaged or summed over each run. The second stage 

is the run-by-run analysis which combines together runs with the same target at the 

same kinematics, applies corrections for all known systematic effects, resulting in the 

final cross sections. 

3.1 Event-By-Event Analysis 

Our three types of experimental runs are analyzed identically. These include: 

1) the primary data runs using deuterium, iron, and gold targets; 2) empty liquid 

target replica runs, needed to correct the measured deuterium cross sections;57 and 

3) runs made with reversed spectrometer polarity to measure the charge-symmetric 

background. 71 Only ELEC events are analyzed in full detail, though pion and random 

triggers provide additional informative detector spectra. 

3.1.1 Tracking 

The goal of our trajectory analysis is to correctly identify the electron track even 

in the presence of other (presumably) pion tracks and spurious background hits. We 

achieve this through a series of searches and cuts: 
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0 Our searching algorithm finds all tracks which record hits in at least seven cham- 

bers, of which at least three are 29 chambers and three are 6 chambers. If no 

tracks are found, this requirement is softened to six chambers, with at least two 

of each type. 

@J We discard all tracks which do not point to an energy deposition in the shower 

counter. 

@ We discard all tracks which pass within 3.5 cm of any edge of the PR. 

@ We discard all tracks which do not originate at the target, as determined with 

the optics matrix, Table 2.4. 

If at least one track survives to this point the event is identified by the pnemonic 

“GOODTRJICK.~ If multiple tracks survive (-10% of all events), we apply an addi- 

tional set of criteria to choose the most probable electron track, discarding the others. 

Events for which no track survives these cuts are due to pions, and are discarded. 

For roughly 2% of these events, however, no tracks are found at stage (iJ. Studies51 

indicate that the vast majority of these trajectories pass through the very edges 

of MWPC, where detection efficiency falls off rapidly. Such rays do not contribute 

to the acceptance function calculation of Section 2.3.2, and so, are discarded. The 

inefficiency of the non-edge regions of the MWPC is very small, and is addressed in 

Section 3.2.1. 

For each GOODTRACK event we calculate2’ the total energy deposited in the 

shower counter, Esh, by summing the energies deposited in all PR, TA, TB, and TC 

counters which lie on or adjacent to the identified track. 

For each GOODTRACK event we compare the reconstructed scattering trajectory 

with the acceptance criteria of Equation 2.2, denoting those events which lie inside 

acceptance region by the mnemonic %ACC." 

3.1.2 Particle Identification 

Electron identification and pion rejection is at the heart of any deep inelastic 

electron scattering experiment. Our ELEC trigger is very highly efficient for electrons 
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at the expense of also triggering on a significant fraction of the pion background. We 

remove these pions by placing cuts on the cerenkov and shower energy spectra. 

In Figure 3.1 we present the cerenkov and shower energy spectra for our deu- 

terium run with the worst case n-/e- flux ratio of 125:1, namely 

(r,Q2, E) = (.2, 5., .31) ) 

(E,, E’,O) = (16., 2.68, 19.6’) . 
(34 

Included are all [GOODTRACK A ELEC] events. Aided by pion rejection factors of 6 

from [ELEC] and 2 from [GOODTRACK], the spectra presented in Figure 3.1 display a 

7r-/e- ratio of only 11:l. 

In Figure 3.1, curves (a) and (b) h s ow the observed cerenkov spectrum for this 

run with and without, respectively, a cut on I&. The first 25 channels of these 

curves are dominated by pion events passed by the EL1 trigger. The large peak in (a) 

centered at channel 200 contains both electron events and pion events with a knock-on 

electron. These masquerading pions are eliminated in (b) by the h&h cut. We observe 

a knock-on probability of less than .2%, much smaller than observed previously3’ 

with the same chamber filled with nitrogen. 

Our cut on Cerenkov signal strength, cmin, is indicated Figure 3.1. We estimate 

the electron inefficiency of this cut with a Poisson fit (consistent with six to eight 

photoelectrons) to the electron peak of (b). U sin only runs with r-/e- flux ratios g 

<< 1, we measure the electron inefficiency to be .25%. The probability for pion events 

to pass this Cmin cut is discussed below. 

In Figure 3.1, curves (c) and (d) h s ow the observed E,h spectrum for this run 

with and without, respectively, the cut at emin. Pion events with hadronic showers 

give rise to the low energy peaks in both (c) and (d), entering primarily through 

the EL1 trigger. The peak in (c) centered at h&h = E’ represents the electromagnetic 

showers of both electron events and those pion events which undergo charge exchange 

interactions early in the PR. These latter are removed in (d) by the cut at Cmin. 
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(a) No E,, Cut 

(b) Cut on E,,>Ep . 

0 100 200 300 400 

c (ADC Bin Units) 

i., 
(c) No E Cut 

(d) Cut on C>Eh 

Figure 3.1. Plotted are the observed cerenkov and shower spectra 
with and without cuts on the other. Spectra shown are from the 
run with the worst r-/e- flux ratio of 125. In the spectra shown, 
pions outnumber electrons by 11 to 1. See text for details. 
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The observed width of the electron peak in Figure 3.1 (d) is 18%/a full 

width at half maximum. The cut on shower energy at Ezn = .7E’ approximately 

corresponds to a three standard deviation cut on a Gaussian distribution. Further 

studies51 using only runs with r-/e- flux ratios < 1 reveal that at most .25% of all 

electrons fail to pass this cut. The number of pions which succeed in passing both 

shower and Cerenkov cuts is evaluated by extrapolating the pion peak in Figure 3.1 

’ (d) into the electron peak. This contamination is less than .2% of the electron peak 

in (d), and correspondingly less for runs with lower r-/e- ratios. 

3.2 Run-By-Run Analysis 

For each run, the measured electron count, N,-, is the sum of all events which 

satisfy 

GOODTRACK A EACC A [C > Cmin] A [Esh > E,mhin] . (3.2) 

Different runs at the same kinematic point with the same target are combined together 

and the cross section is calculated. The naive cross section formula is given by 

naive $0 
0 =m= 

NC 
ARAE’ Q Nt ’ (3.3) 

where ARAE’ is given by Equation 2.3, Q is the number of incident electrons, and 

Nt is the target thickness expressed in nucleon9 per unit area. We apply a series of 

corrections to the naive cross section to account for every known systematic effect of 

size .l% or greater. These corrections are given in Table 3.1 and briefly described 

below. 

3.2.1 Corrections to the Cross Section 

We remove from the electron count, N,- , all sources of background particles. 

First, from the deuterium cross sections we subtract the measured background due to 

the aluminum target cell walls (Section 2.2). Second, we subtract the calculated pion 

contamination from each run (Section 3.1.2). Third, we correct for the background of 



3.2 Run-By-Run Analysis 37 

Table 3.1. Shown is a summary of the applied corrections to the naive cross 
section of Equation 3.3. The right-hand column specifies the propagational 
properties of the uncertainty given (see Chapter 4, for example). Uncer- 
tainties of type SST are due to counting statistics and are included in the 
quoted statistical uncertainties in the cross sections; other uncertainties are 
systematic in origin and are propagated explicitly throughout this study. 

Source 
Correction 

Sign Size 

W 

Uncer- 
tainty Type 
(f%) 

Background Corrections 
Target end caps - 1.1 .l &- 
Pion contamination - 5 .2 .O 
Charge symmetric - 5 12.5 5 1.0 f5= 

sources 5 .4 6= 

Deadtime Corrections 
Electronics + 5 .5 .l 6= 
Computer + 5 18.0 .2 tF 

Efficiencv Corrections 

cerenkov 
Shower counter 
MWPC 

+ .3 .l bSR 
+ .2 .l PR 
+ L .4 .O 

Optics Corrections 

Acceptance 
Average vs central 

kinematic 

f 5 1.7 .l PE 

- 5 .8 .O 

Miscellaneous 

Neutron excess + M 1.5 .l PM 
Kinematic mismatch f 5 1.0 .O 

Radiative Corrections 

Internal 
External 
Total 

f 1.28.0 
f < 14.0 
f 5 29.0 5 1.0 sRC 

1.0 PM 
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high energy electrons originating from intermediate sources, predominantly from 7r” 

production and decay to 77 followed by pair production. Assuming charge symmetry 

of such sources,71 we measure this correction by reversing the spectrometer polarity 

to the flux of e+. Asymmetry in K* production, however, has not been ruled out at 

the 16% level. 71 Subsequent studies 2s of the El40 data indicate that no more than 

10% of the observed e+ are due to K+ decays, and thus limit the systematic error 

due asymmetric intermediate sources at AA% of the observed effect. 

These background subtractions are made by replacing N,- in the cross section 

calculation by n/,- , where 

N,- = N, - - N,‘,“,d - N,+ - NT- . (3.4) 

The statistical uncertainty of Ne- is the sum in quadrature of the counting statistics 

of N,- , N,‘,“pd and N,+. Systematic uncertainties in Ne- due to possible charge- 

asymmetries in the N,+ term are estimated to be 

SNe+ = f max (.06, .8 - 1.3 E) % . (3.5) 

The electronics deadtime correction accounts for electron coincidences within 

the 20 ns logic signal width. The computer deadtime correction accounts for trigger 

coincidences within the 1.6 /.LS beam pulse. These corrections are measured2s~51 for 

each run. We find excellent agreement between the measured computer deadtime and 

the theoretical deadtime based on simple Poisson statistics. Uncertainties in these 

corrections are due to counting statistics are added in quadrature to the statistical 

uncertainties of the cross sections. 

The Cerenkov and shower counter efficiencies are calculated for the entire ex- 

periment using runs with a low n-/e- flux ratio (Section 3.1.2). Possible systematic 

fluctations in these efficiencies are estimated to be &:.l% or less. The SF and SM 

efficiencies are greater than 99.9%. And, the trigger efficiency is calculated from the 

efficiencies of the individual trigger elements to be 99.99%. 
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The efficiency of the MWPC is calculated by comparing the number of tracking 

successes (at 0 in Section 3.1.1) to the number of good-candidate events. An event 

is considered a good-candidate if it meets the criteria 

ESFSM A PR A TA A [i: > emin] A [Esh > Ez”] , P-6) 

where ESFSM is a cut based on the SF and SM detectors which places the event in the 

central region of the detector package. The MWPC efficiency correction is calculated 

for each run with negligible uncertainty. 

The optics corrections of Equations 2.4 and 2.5 are applied to nominal total 

acceptance of Equation 2.3. The uncertainty in the slope of Equation 2.4 generates 

an E’ dependent systematic uncertainty in the cross section, which is calculated for 

each cross section and treated specially in later stages of the analysis. The uncertainty 

in the intercept of Equation 2.4, which contributes only to the overall normalization 

of E140, is discussed in Section 3.3. 

The finite acceptance of the spectrometer necessitates a correction for the fact 

that central kinematic of the spectrometer is not equal to the average measured 

kinematic. The correction for this effect is 

c center 
=CT 

center Cj ~WC(JI 

I Cj Act(j) ’ 
(3.7) 

where the sum is taken over the (19,6, cp) bins of Section 2.3.2. For a(j) we use 

the cross section model of Bodek et al .,3 after removing the effects of the radiative 

corrections. 

Experimentally, it is difficult to perfectly realize a specific set of scattering kine- 

matics. We apply a “kinematic mismatch” correction to account for small differences 

between the realized and the targeted (5, Q2) point. Typically, this correction is .5% 

or less. 
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We apply a neutron excess correction to the iron and gold cross sections, which 

effectively converts some neutrons into protons, resulting in a symmetrized nucleus. 

This correction is 

c&d = 1+ rY/crp 

1 + ($ - 1) unp 
(34 

where, since x 2.5, we use our new model for un/c+ given by Equation 5.49. Use of 

this more exact model gives cross sections larger by .3% for iron and .7% for gold 

than our previously reported222s values. 

3.2.2 Bardin/Tsai Radiative Corrections to the Cross Section 

We apply a radiative correction to the measured cross sections to account for 

higher order contributions both “internal” and “external” to the first order born 

diagram. We calculate the internal radiative corrections according to the formulation 

of Bardin et al., 72 to which we apply an ad hoc correction based on the formulation of 

Tsai3(j to account for external effects. Our Bardin/Tsai radiative correction is given 

bY 

CRC = 1 (1 + Syzdin) 
(1+ pa’ mt+ext ) -l 

( 1 1+ 6?$) ’ 
(3.9) 

where 6, as defined by Bardin et aZ.,72 is the fractional difference between the radiative 

and nonradiative cross sections. 

To calculate 6Fzdi” we use the program TERAD authored by Bardin et aZ.72 with 

models of Fz(x, Q2) and R(x, Q2) in the SLAC kinematic range. We have produced 

a version of this program, known as INTERNAL, expressly for deep inelastic electron 

scattering and coded it in Fortran 77. Hadronic contributions, r-Z, interference, and 

a parameterization.of o4 contributions in the SLAC energy range are included in our 

calculations, though, each contributes typically less than 1% to the total radiative 

correction. We do not exponentiate the soft photon term as such effects are more 
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correctly approximated by the o4 parameterization. 73 We do exponentiate the vacuum 

polarization term via 

6 
6 vat 

vat + 1 - .5&,, * 
(3.10) 

And lastly, we apply a smearing correction to the quasi-elastic tail contributions, 

based on calculations from program EXTERNAL, described below. 

Our coding of the Tsai formulation, program EXTERNAL, follows closely the 

prescription of Tsai’s 1971 publication with two important modifications. First, we 

correct the expression for Gvac to include muon and tau loops, and to include hadronic 

polarization effects as parameterized in program TERAD. Second, and more impor- 

tantly, we do not make the energy peaking approximation, instead integrating the 

double integral over dE,dE’. We calculate ST:? by assuming a target of zero thick- 

ness, and for deuterium, we average sTiFiext over the length of the target. 

As the calculation of radiative corrections is inherently iterative, the final radia- 

tive correction factors were calculated using the IPsso and FFs models of Chapter 

5. The dependence of our procedure on the structure function models is very slight, 

typically .2% or less. The range of contributions from internal and external processes 

is given in Table 3.1, and the final radiative correction factors, Equation 3.9, are given 

in Tables 3.3 through 3.6. 

We have made a comparison2’ between @ydin and ST:; in an attempt to un- 

derstand the possible theoretical uncertainties of our internal radiative corrections. 

For this comparison we have produced a more exact version of program EXTERNAL, 

known as MT-EXACT. This program2’ makes neither the equivalent radiator approx- 

imation nor the angle peaking approximation, instead integrating Equation C.24 of 

Tsai’s 1971 report while sidestepping the infrared divergences with a familiar (non- 

physical) A cutoff parameter separating soft and hard photon effects. Our treatment 

improves upon a previous similar effort by EMC.g 
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Comparisons between INTERNAL (not including the +y-Z, and hadronic terms) 

and MT-EXACT display excellent agreement over the entire El40 kinematic range. 

Plots of these comparisons are given in Reference 29. The disagreement between 

these two formalisms is parameterized by: 

SBardin _ SMTexact 
int int = -* 014 + .017c , (3.11) 

with no apparent dependence on x or Q2. 

To test the external portion of our radiative corrections, we compare cross sec- 

tions measured on targets of different thicknesses. In our experiment, we have data 

from .026 and .06 RL iron targets and in El39 there are data from .02, .06, and .12 

RL iron, aluminum, and gold targets. Differences between the radiatively corrected 

cross sections are, for each comparison, consistent with the relative target thickness 

uncertainties. 

We take Equation 3.11 as an estimate of the e-correlated component of the sys- 

tematic uncertainty in our Bardin/Tsai radiative corrections, 

6Rc = f abs[-1.4 + 1.7 c] % . (3.12) 

This uncertainty propagates directly through Equation 1.2 to become a systematic 

uncertainty in R, 

GRRc M .025 , (3.13) 

which is very strongly correlated across all R measurements reported in this thesis. 

Note that Equation 3.11 is, in general, also consistent with a non-c-dependent 

difference between INTERNAL and MT-EXACT on the order of &l%. In other words, 

there is no a prior reason to suspect that both programs are perfectly accurate at 

E = ,824 as implied by Equation 3.12. The correct treatment of this phenomenon is to 

include an additional &l.O% uncertainty in the overall experimental normalization, 

as indicated in Table 3.2. 
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Table 3.2. Shown are the total normalization uncertainties, bNM, for the 
El40 data. Also presented is a breakdown of the contributions to &NY for 
each target . 

Source Normalization Uncertainty 
WV 

Deuterium Iron #l Iron #2 Gold 

Beam Charge 
Target 
Accept ante 

Statistical 
Systematic 

Neutron Excess Correction 
Radiative Correction 

.5 .5 .5 .5 

.8 .5 1.1 2.5 

.4 .4 .4 .4 
1.0 1.0 1.0 1.0 

.O .l .l .2 
1.0 1.0 1.0 1.0 

Total Uncertainty (SNM) f1.7% 411.6% Zt1.9% f2.9% 

3.3 El40 Cross Section Results 

In Tables 3.3 through 3.6 we present the final El40 cross sections. The total 

uncertainty of each cross section reported in these tables is broken down into four 

component uncertainties. These components are defined as follows: 

0 6=- is the statistical uncertainty, and includes only Poisson counting errors; 

l Sss is the experimental systematic uncertainty, defined as the quadrature sum 

of all systematic errors except the following; 

a tF is the systematic radiative corrections uncertainty given by Equation 3.12; 

l JNM is the overall normalization uncertainty, and includes those contributions 

summarized in Table 3.2. 

YOnly the ‘SST and 6” uncertainties are presented in the tables. The bRc uncertainty 

is given by Equation 3.12 and is perfectly correlated across all cross sections. The 

JNM uncertainties are presented in Table 3.2, and, as indicated by the breakdown, 
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are strongly correlated across the four targets.t 

The cross sections in Tables 3.3 through 3.6 are presented per nzlcZeon and, for 

iron and gold, are corrected for neutron excess (using Equations 3.8 and 5.49). These 

cross sections supercede those reported previously, 2g benefiting from iterated radiative 

corrections (see Section 5.1), final optics calibrations, and more precise neutron excess 

corrections. 

The uncertainties bsT and Sss shown in Tables 3.3 through 3.6 are defined 

fractionally. Also presented are the Bardin/Tsai radiative correction factors, defined 

by Equation 3.9. 

Finally, we note that the iron#2 data is systematically lower than the iron#l 

data by 1.8% f .5%. Th is overall normalization shift is at the 1.5 standard deviation 

level of the combined target length uncertainties. Tables 3.4 and 3.5 do not incor- 

porate a correction for this difference, though, for most purposes (see for example 

Section 4.2), we suggest normalizing the iron #2 data to the iron #l data. 

t Note that a more complex breakdown of 6ss, as indicated within Tables 2.3 and 
3.1, is utilized in the next chapter. See Appendix C for more information and 
Appendix E for the values of each component of the error vector of each cross 
section. 
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/’ 

Table 3.3. Shown are the final El40 deuterium cross sections. See text for 
details. Table continues on next page. 

E, E’ 8 e CRC u mead f 6ST f SSS 

WV) (GW (deg) (pb/sr GeV) 

x = .20, Q2 = 1.0 

3.748 1.084 28.728 .485 .773 .1820 E05 .009 .005 
4.006 1.342 24.906 .559 .803 .2472 E05 .009 .006 
4.251 1.586 22.205 .616 .825 .3248 E05 .008 .006 
5.507 2.843 14.520 .792 .889 .8708 E05 .008 .006 
6.251 3.586 12.124 .845 .915 .1334 E06 .007 .007 

x = .20, Q2 = 1.5 

5.507 1.510 24.519 .476 .779 .1133 E05 ,009 .005 
6.250 2.253 18.783 .611 .835 .2018 E05 .006 .006 
7.002 3.005 15.343 .703 .869 .3243 E05 .006 .006 
7.498 3.502 13.727 .748 ,885 .4235 E05 .006 .006 
8.251 4.254 11.866 ,799 .905 .5950 E05 .006 .006 

x = .20, Q2 = 2.5 

8.251 1.589 25.220 .348 .721 .3761 E04 .014 .006 
10.243 3.582 14.999 .606 .850 .1158 E05 .004 .006 
11.744 5.083 11.746 .716 .889 .2013 E05 .007 .006 

x = .20, Q2 = 5.0 

16.005 2.683 19.647 .314 .713 .1466 E04 .Oll .006 
17.255 3.933 15.600 .422 .790 .2423 E04 .008 .006 
18.491 5.169 13.134 .508 .832 .3538 E04 .007 .006 
19.493 6.171 11.702 .566 .854 .4624 E04 .006 .006 

x = .35, Q2 = 1.5 

3.748 1.464 30.304 .604 .933 .1133 E05 .007 .006 
4.007 1.723 26.950 .660 .953 .1472 E05 .007 .006, 
4.250 1.966 24.459 .704 .967 .1823 E05 .007 .006 
5.507 3.223 16.715 .838 1.025 .4398 E05 .007 ,006 
7.002 4.718 12.232 .907 1.072 .8930 E05 .013 ,007 

x = .35, Q2 = 2.5 

.5.501 1.695 30.008 .506 .914 .3794 E04 .008 .005 
6.250 2.443 23.345 .633 .959 .6539 E04 .007 .006 
7.081 3.274 18.900 .726 .994 .1053 E05 .007 .006 
7.498 3.692 17.283 .761 1.008 .1306 E05 .006 .006 
9.710 5.904 11.986 .870 1.062 .2977 E05 .007 .006 
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Table 3.3/continued: El40 deuterium cross sections. 

Et, E’ 0 

- (GeV)(GeV) (deg) 

x = .35, Q2 = 5.0 

‘2 CRC u mead f 6.97 f 6SS 

/ (pb/sr GeV) 

10.243 2.630 24.878 .449 .919 .1250 E04 .OlO .005 
11.753 4.140 18.447 .601 .975 .2396 E04 .006 .006 
13.320 5.707 14.735 .704 1.011 .4009 E04 .006 .006 
15.004 7.391 12.189 .777 1.040 .6126 E04 .006 .006 

x = .50, Q2 = 2.5 

3.749 1.084 46.177 .417 .962 .1505 E04 .009 .006 
4.251 1.587 35.447 .561 1.015 .2655 E04 .OlO .006 
5.502 2.838 23.082 .758 1.088 .6874 E04 .009 .006 
7.082 4.418 16.250 .865 1.148 .1531 E05 .006 .006 
9.248 6.584 11.630 .926 1.206 .3182 E05 .007 .006 

x = .50, Q2 = 5.0 

7.084 1.755 36.976 .401 .985 .4727 E03 .013 .006 
8.250 2.921 26.331 .578 1.050 .9818 E03 .007 .005 
9.710 4.381 19.742 .712 1.099 .1874 E04 .007 .006 

13.316 7.987 12.448 .863 1.179 .5241 E04 .005 .006 

X = .50, Q2 = 7.5 

10.243 2.249 33.152 .372 .990 .2339 E03 .016 .007 
14.991 6.997 15.367 .743 1.128 .1278 E04 .OlO .006 

x = .50, Q2 = 10. 

13.319 2.661 30.802 .348 .991 .1458 E03 .012 .007 
15.005 4.348 22.578 .504 1.050 .2790 E03 .012 .006 
18.490 7.832 15.100 .697 1.119 .6756 E03 .006 .006 

Miscellaneous 

13.320 5.500 18.062 .676 1.094 .9985 E03 .015 .006 
13.320 6.318 14.927 .752 1.084 .2846 E04 .014 .006 
16.006 5.331 18.042 .576 1.023 .7865 E03 .019 .006 
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Table 3.4. Shown are the final El40 iron#l cross sections. See text for 
details. Table continues on next page. 

E, E’ 8 E CRC u meas f6STf6SS 

WV) WV) kw (pb/sr GeV) 

x = .20, Q2 = 1.0 
3.748 1.084 28.728 .485 .741 .1867 E05 .013 .005 
4.006 1.342 24.906 .559 .777 .2615 E05 .009 .005 
4.251 1.586 22.205 .616 .804 .3276 E05 .012 .005 
5.507 2.843 14.520 .792 .886 .8891 E05 .008 .006 
6.251 3.586 12.124 .845 .918 .1356 E06 .007 .006 

x = .20, Q2 = 1.5 
5.507 1.510 24.519 .476 .746 .1185 E05 .OlO .005 
6.250 2.253 18.783 .611 .815 .2112 E05 .006 .005 
7.002 3.005 15.343 .703 .859 .3363 E05 ,006 .005 
7.498 3.502 13.727 .748 .880 .4318 E05 .007 .006 
8.251 4.254 11.866 .799 .908 .6061 E05 .006 .006 

x = .20, Q2 = 2.5 
8.251 1.589 25.220 .348 .680 .3695 E04 .016 .006 

10.243 3.582 14.999 .606 .834 .1196 E05 .006 .005 
11.744 5.083 11.746 .716 .885 .2077 E05 .007 .006 

x = -35, Q2 = 1.5 
3.748 1.464 30.304 .604 .955 .1129 E05 .OlO .005 
4.007 1.723 26.950 .660 .980 .1489 E05 .008 .005 
4.250 1.966 24.459 .704 1.000 .1823 E05 .008 .005 
5.507 3.223 16.715 .838 1.073 .4494 E05 .008 .006 
7.002 4.718 12.232 .907 1.132 .9119 E05 .012 .006 

x = .35, Q2 = 2.5 
5.501 1.695 30.008 .506 .929 .3668 E04 .Oll .005 
6.250 2.443 23.345 .633 .988 .6558 E04 .009 .005 
7.081 3.274 18.900 .726 1.030 .1059 E05 .007 .005 
7.498 3.692 17.283 .761 1.049 .1309 E05 .007 .005 
9.710 5.904 11.986 .870 1.117 .2983 E05 .007 .006 
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Table 3.4/continued: El40 iron #l cross sections. 

E, E’ 8 

(GeV) WV (ded 

e CRC 0 mesa * 6.9 * 6SS 

(pb/sr GeV) 

x = .35, Q2 = 5.0 
10.243 2.630 24.878 .449 .933 .1220 E04 .012 .005 
11.753 4.140 18.447 .601 1.003 .2371 E04 .008 .005 
13.320 5.707 14.735 .704 1.050 .3931 E04 .007 .005 
15.004 7.391 12.189 .777 1.083 .6053 E04 .006 .005 

x = .50, Q2 = 2.5 
3.749 1.084 46.177 .417 1.011 .1412 E04 .Oll .006 
4.251 1.587 35.447 .561 1.073 .2444 E04 .OlO .005 
5.502 2.838 23.082 .758 1.163 .6504 E04 .Oll .005 
7.082 4.418 16.250 .865 1.235 .1423 E05 .007 .005 
9.248 6.584 11.630 .926 1.307 .3001 E05 .007 .005 

X = .50. Q2 = 5.0 
7.084 1.755 36.976 .401 1.033 .4481 E03 .022 .006 
8.250 2.921 26.331 .578 1.115 .9297 E03 .Oll .005 
9.710 4.381 19.742 .712 1.175 .1752 E04 .009 .005 

13.316 7.987 12.448 .863 1.271 .4939 E04 .008 .005 
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Table 3.5. Shown are the final El40 iron#2 cross sections. See text for 
details. 

I 

(G:V) (Get) (de:) 

. 

e CRG u me48 f SST f 6.5s 

(pb/sr GeV) 

x = .20, Q2 = 1.0 
3.748 1.084 28.728 .485 .793 .1840 E05 .014 .005 
4.006 1.342 24.906 .559 .820 .2515 E05 .008 .005 
4.251 1.586 22.205 .616 .841 .3285 E05 .008 .005 
5.507 2.843 14.520 .792 .901 .8775 E05 .008 .006 
6.251 3.586 12.124 .845 .924 .1340 E06 .007 .006 

x = .50, Q2 = 2.5 
3.749 1.084 46.177 .417 .991 .1381 E04 .007 .006 
9.248 6.584 11.630 .926 1.196 .2954 E05 .018 .005 

Table 3.6. Shown are the final El40 gold cross sections. See text for details. 

E, E’ 8 e CRC u mead f 6ST f SSS 

(GW (GW Pet?) (pb/sr GeV) 

x = .20, Q2 = 1.0 
3.748 1.084 28.728 .485 .753 .1875 E05 .014 .005 
4.006 1.342 24.906 .559 ,787 .2566 E05 .009 .005 
4.251 1.586 22.205 .616 .814 .3341 E05 .007 .005 
5.507 2.843 14.520 .792 .893 .8905 E05 ,008 .006 
6.251 3.586 12.124 .845 .925 .1367 E06 .006 .006 



Chapter 4 
El40 Structure Function Results 

The fourth and final stage of our analysis is the extraction of R and F2 from the 

experimental cross sections via the linear relationship of Equation 1.2. The primary 

focus of this final stage is the accurate propagation of the systematic errors, 6”, 

through the regression analysis. The results we obtain in this analysis have smaller, 

more accurate, uncertainties than our previously reported results.1j2T2g 

Figure 4.1 shows a sample linear regression analysis for the deuterium data at 

(5, Q2) = (.2,1). R ’ g’ 1s rven by the ratio of slope to intercept and Fz is related to the 

value at c = 1. The other El40 regression analyses follow similarly from Tables 3.3 

through 3.6, and are plotted in Reference 29. 

4.1 Error Propagation 

We explicitly propagate all uncertainties through the regression analyses. We 

respect correlations among the data of each regression analysis by first resolving Sss 

into its three component uncertainties, 

p = - f bSR f ssy f FE 3 (4.1) 

each of which propagates differently through the regression. Table 4.1 summarizes 

the six components of the error vector of each cross section measurement and their 

assumed correlational properties with respect to the regression analyses. For more 

information and numerical values of the El40 error vectors see Appendices C and E. 



4.1 Error Propagation 

Figure 4.1. Shown is a sample El40 regression analysis. The full 
error bar represents the total error, given by the quadrature sum of 
bsT and 6”. The hashmark represents the random component of 
the total error, given by the quadrature sum of ~5~ and the random 
elements of 6”. Because the random component dominates the 
El40 errors, the extension of the error bar beyond the hashmark is 
barely visible (see text). 

The weights for the regression analyses are determined by the total random error, 

wtj = l/ [(6=)2+ (6sR)2] , (4.2) 

and the resulting statistical errors in R and F2 are denoted by GRsT and ~5~~~. We 

propagate the other types of uncertainties through each regression analysis by directly 

measuring the perturbation in R due to each. We define an operator “LR” which takes 

was input a set of cross sections {aj} and linearly regresses them to yield as output R, 

specifically 

R = LR{&} . (4.3) 
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Table 4.1. Presented is a brief summary of the El40 six-component error 
vector. Also given is the correlation of each error across the datapoints of 
our regression analyses. 

Source Correlation 

is=- counting statistics; random, no correlation. 

fluctuations in: beam charge, 
hSR target density, detector random, no correlation. 

efficiences, and scattering 
kinematics; 

fP non-charge symmetric back- strongly correlated. 
ground, kinematic calibrations; 

PE E’ dependence of acceptance; strongly correlated with e. 

bRC radiative corrections; strongly correlated with r. 

sNM various sources, see Table 3.2; perfectly correlated, no 
effect on R extractions. 

Then the uncertainty in R due to the errors 6f is given by 

JR” = R-LR{(Cj (1+6:))) 7 
(4.4) 

k = SY, SE. 

Uncertainties of type bRc are calculated in this way using Equation 3.12 and yield 

6RRc = .023 (1 + A&) = -025 , W) 

for El40 values of AcR. 
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In Figure 4.1 the error bars are dominated by the statistical portion of the uncer- 

tainty vector. In general, for E140, the Sm and JsE uncertainties are small relative 

to the SST and bsR uncertainties. Typically, 

(s=)2 2 (ssR)2 >> (c-j2 > (ssy2 , 

resulting in 

(SRsT)2 >> (bR=j2 M (bRsE)2 . 

(4.6) 

P-7) 

In the combined analysis of Chapter 5 the 6sy and bsE errors are much larger, 

necessitating the rigorous propagation of Equations 4.3 and 4.4. For the specific 

El40 regression analysis presented in Figure 4.1, we obtain 

R = .370 , 

GR=- = .049 , 

C5RSY = .003 , 

GRSE 1 
GRSS 

= .004 ) 
= .005 , 

(4.8) 

GRRc = .025 , 

where SRss is the total experimental systematic error. 

The 20 linear regression analyses form a set of linearity measurements versus e. 

In general, an uncorrected systematic effect in the cross sections would contribute 

curvature to the regression analyses. Figure 4.2 presents the distribution of observed 

x2/df of the regressions. The curve shown is the expected x2 distribution for an aver- 

age number of 2.45 uncorrelated measurements gaussian-distributed about a parent 

distribution. The agreement is excellent. The three regressions which yield x2/@ > 1.3 

are statistically expected and require no further treatment.+ 

+ Some sources 74-76 claim that the uncertainty on any parameter determined via 
a fitting procedure should be multiplied by a factor of dm. We address 
this wayward assertion in Appendix B.3 with a monte car10 analysis of the R 
extractions. 
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Figure 4.2. Shown is the observed distribution of x2/df for the 20 
El40 regression analyses. The curve is the expected x2 distribution 
for 2.45 degrees of freedom, assuming that all errors are gaussian 
and uncorrelated. 

Overall, the observed x2/df distribution is somewhat shifted toward zero relative 

to the theoretical distribution. This is due the inclusion of some systematic errors (the 

random component SsR) in the regression analyses. To quantify the “goodness-of-fit” 

between observed and expected, we utilize the additive property of x2 distributions.77 

Summing the observed x2’s and the degrees of freedom over all 20 linear regressions, 

we have 

(x2/df) = 34.7/49 . (4.9) 

The probability of observing a x2 5 34.7 based on 49 degrees of freedom is 12.4%. 

The value of (x2/df) we would get if no systematic errors had been included in the 
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regression analysis is larger by a factor of 

(T2+ PSRj2 x 145 
(G-q2 * ’ 

(4.10) 

or roughly 50.3/49, soundly in the center of the expected distribution. 

The observed linearity of the regression analyses greatly credits our experimental 

effort. The somewhat small (x2/d!) fl t re ec s a conservative estimate of the systematic 

errors SsR, and is inconsistent with the hypothesis that large systematic effects remain 

uncorrected in the cross section measurements. 

4.2 El40 Iron/Deuterium Comparison 

We first present the results of our iron/deuterium comparison study. We extract 

RF” - Rd directly by linearly regressing the cross section ratios aFe/crd against the 

parameter 6 via 
uF= 
- = $ [i + ~1 (R~=-R~)] , 
cd 

(4.11) 

where 

e’ = e 
l+ cRd ' 

(4.12) 

which follows from Equation 1.2. This approach exploits the fact that most com- 

ponents of the error vector cancel, or approximately cancel, in the ratio oFe/crd. 

However, because the ratio of two cross sections does not have a symmetric error 

distribution (see Appendix B.2), we perform the regression analyses once for aFe/ad 

and once for trd/aFe, and average the results RF"-Rd and - (Rd-RF'). Systematic 

errors introduced by this approximate statistical treatment are negligible. 

Systematic errors of type SsR, Ssy, and SRc approximately cancel in the cross 

section ratio, and become negligible with the exception of fluctuations in deuterium 

target density. Errors of type 6’* cancel by definition. Similarly, all SNM uncertainties 

also cancel, with the exception of target thicknesses and neutron excess corrections. 

We avoid correlations by combining the two sets of iron data before, rather than 
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Table 4.2. Shown are the El40 iron/deuterium structure function compar- 
isons. Uncertainties are fractional in F2 and absolute in R. Systematic un- 
certainties are negligible, with the exception of normalization uncertainties 
in FsFe/Ft and FsA”/F,d of &l.O% and f2.6%, respectively. More accurate 
estimates of J’lelF,d and F,A”IF,d are presented in Table 4.3. Also presented 
is the x2/df of the regression analyses. 

x Q2 F,Fe/F$ kSF,sT RF”-Rd f&R= x2/df 

Iron/Deuterium 

.20 1.0 1.013 .012 -.064 .051 .9 

.20 1.5 1.000 .013 -.143 .056 .7 

.20 2.5 1.070 .022 .148 .077 1.2 

.35 1.5 1.011 .016 .032 .078 .6 

.35 2.5 1.018 .013 .095 .056 1.0 

.35 5.0 .992 .016 .024 .058 .4 

.50 2.5 .939 .008 .018 .033 .8 

.50 5.0 .939 .013 -.016 .052 .2 

Gold/Deuterium 

.20 1.0 1.018 .012 -.045 .058 .4 

after, the comparison to deuterium. From Tables 3.4 and 3.5 we determine a relative 

normalization of 

( /e#l Fe#2 Ia >= 1.018 f .005 , 

x2/df = 5.916 , 
(4.13) 

which we use to combine the iron cross sections into a single dataset. 

Presented in Table 4.2 are the iron/deuterium comparisons. The values for 

RF”-Rd are plotted in Figure 4.3 versus x and Q2. As no significant kinematic 

dependence is observed, we calculate the overall average of the RF” - Rd measure- 

ments, 
(RFe -Rd ) = .003 f .018 , 

(4.14) 
(x2/df) = 15.4/7 . 
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Table 4.3. Shown are the El40 EMC effect ratios extracted by assuming 
RFe = RAu = Rd. Uncertainties are fractional. Systematic uncertainties are 
negligible, with the exception of normalization uncertainties of 9~1.0% and 
f2.6% for F,F”IF,d and Fk”/F,d, respectively. Also shown are the x2/@ for 
the averagings over c. 

x Q2 (~plI;;d) f SF,sT x2/df 

Iron/Deuterium 

.20 1.0 1.028 .005 1.3 

.20 1.5 1.031 .004 2.3 

.20 2.5 1.027 .006 1.0 

.35 1.5 1.005 .006 .4 

.35 2.5 .998 .005 1.4 

.35 5.0 .985 .005 .3 

.50 2.5 .935 .005 .7 

.50 5.0 .942 .006 .2 

Gold/Deuterium 

.20 1.0 1.027 .005 .4 

The probability of observing a x2/df 2 15.4 based on 7 degrees of freedom is 3.5%. 

This large x2/df reflects the large scatter at x = .2, which is in turn traceable (see 

below) to an iron measurement at (x, Q2) = (.2,1.5) and a deuterium measurement at 

(x,Q")=(.2,2.5) h’ h w lc are much lower than adjacent measurements on the same tar- 

gets. Because these two measurements of R Fe-Rd are also adjacent in Q2, we believe 

the global average expressed in Equation 4.14 is a valid representation of the data. 

However, in light of the large observed scatter, we believe that the standard deviation 

of the eight differences about their mean is a better estimate of the uncertainty in 

the mean. We thus conclude that 

RF” = RA“ = Rd , (4.15) 

within f.027 total estimated experimental uncertainty. 
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Figure 4.3. Sh own are the El40 measurements of RFe-Rd and 
RAU - Rd from Table 4.2. Systematic errors are negligible. The 
global average of R Fe-Rd is .003f .018 (see text). 
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Under the assumption that RF” = Rd, we obtain a better estimate of F,F”IF,d by 

averaging the gFe/od ratios over e for each (z, Q2). These EMC effect ratios are given 

in Table 4.3. The lack of e dependence of the cross section ratios is evidenced in the 

x2/df observed in the averaging processes. The total (x2/df) over Table 4.3 is 32.0/32. 

- These EMC ratios are systematically higher than our previously reported132g values 

primarily due to the improved neutron excess correction used here. 

4.3 El40 Deuterium and Iron Results 

Presented in Table 4.4 are the El40 extracted values of F2 and R, with their sta- 

tistical and systematic uncertainties. The uncertainty due to radiative corrections, 

GRRc = .025, is very strongly correlated across all El40 measurements of R. In Chap- 

ter 5, more precise values of F2 are extracted directly from the cross sections using 

a model for R(z, Q2). Th e v al ues of F2 in Table 4.4 are presented for completeness 

only, and are not discussed further. 

The extracted R values from Table 4.4 are plotted in Figure 4.4 along with mea- 

surements of R from the EMC,~~~' BCDMS,~~~~~ and CDHSW18 collaborations. Those 

measurements from EMC have been condensed in x and Q2 and averaged over targets 

in order to reduce scatter. Also shown in Figure 4.4 are calculations6 of R based 

QCD7 and on QCD with the inclusion of target mass effects’ (QCD+TM). 

The El40 R measurements are systematically greater than RQcD, and, with 

two notable exceptions, everywhere greater than RQcD+TM. These two points, 

the iron #l measurement at (x, Q2) = (.2,1.5) and the deuterium measurement at 

(x, Q2) = (.2,2.5), are much lower than adjacent measurements with the same targets 

(as noted in the previous section). An examination of the individual cross section 

measurements leading to these extracted R values does not indicate the presence 

of any systematic problems. Thus, we treat these two measurements as statistical 

fluctuations. See also Section 5.3.3. 
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Table 4.4. Shown are the El40 deuterium and iron structure functions. Un- 
certainties are fractional in F2 and absolute in R. Not shown are uncer- 
tainties due to radiative corrections, which artrf: less than f.5% for F2 (see 
Equation 5.39) and f.025 for R. Normalization uncertainties in F2 are given 
in Table 3.2. In Chapter 5, more precise values of F;! are extracted directly 
from the cross sections using a model for R(x, Q”). 

X Q2 F2 f SF2= f SF,ss R f SRsT f SRss X2/4 

Deuterium 

.20 1.0 .2964 .OlO ,010 

.20 1.5 .2996 .Oll .OlO 

.20 2.5 .2907 .017 .OlO 

.20 5.0 .3034 .025 .OlO 

.35 1.5 .2331 .012 .OlO 

.35 2.5 .2198 .OlO .OlO 

.35 5.0 .2081 .013 .OlO 

.50 2.5 .1412 .007 .OlO 

.50 5.0 .1174 .009 .OlO 

.50 7.5 .1109 .022 .OlO 

.50 10.0 .1019 .019 .OlO 

.370 .049 .005 .7 

.280 .050 .005 1.8 

.105 .051 .005 .O 

.233 .065 .Oll .2 

.308 .062 .005 .3 

.159 .040 .005 .6 

.126 .045 .005 .4 

.202 .029 .005 .8 

.lOO .033 .006 .8 

.152 .065 .005 - 

.045 .044 -008 .O 

Iron #l 

.20 1.0 .2990 .OlO .009 .284 .045 .005 1.8 

.20 1.5 .3002 .Oll ,009 .159 .042 .005 .5 

.20 2.5 .3112 .017 .OlO .254 .062 .005 1.5 

.35 1.5 .2360 .012 .009 .356 .069 .005 1.2 

.35 2.5 .2239 .OlO .009 I .260 .051 .005 1.1 

.35 5.0 .2063 .014 .009 .151 .050 .005 .l 

.50 2.5 .1325 .008 .009 .220 .033 .005 .6 

.50 5.0 .llOO .014 .009 .078 .048 .006 .l 

Iron #2 

.20 1.0 

.50 2.5 

Gold 

.2968 .OlO .OlO .340 .048 .005 .2 

.1310 .022 .009 .218 .056 .006 - 

.20 1.0 .3024 .OlO .OlO .339 .046 .005 .4 
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We quantify the disparity between our data at RQcD and RQCD+TM with x2 

goodness-of-fit tests. Table 4.5 shows a comparison of our data with several simple 

functional forms. The large x2’s indicate these are not successful models for R(x, Q2). 

Using our earlier conclusion that RF” = RAu = Rd, we average the R extractions 

- of Table 4.4 over targets, using the logarithmic variable of Appendix B.2 to account 

for the askew probability distribution of R. These results are presented in Table 4.6. 

The total x2/df of these averaging processes is 

(x2/df) = 12.8/11 . (4.16) 

While this is consistent with the expected x2 distribution, the measurement at (x, Q”) 

= (.2,1.5) again contributes a disproportionate share of the x2. For comparison with 

Figure 4.4, we plot the average R(x, Q2) in Figure 4.5. 

In summary, the measured R values from El40 are consistently higher than theo- 

retical predictions based on QCD even with the inclusion of target mass contributions. 

This discrepancy may be explained in terms of additional higher twist contributions 

to FL. Further discussion of the El40 data is reserved until Section 5.3.3 where com- 

parisons are made with the results of the global reanalysis of the early SLAC data. 
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Figure 4.4. Shown are the El40 measurements of R(x, Q2) from 
Table 4.4. The errors GRss are much smaller than SRsT and are 
plotted, but not visible. Errors do not include the strongly corre- 
lated GRRc = .025. See text for further discussion. 1 
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, 

Table 4.5. Shown are goodness-of-fit tests of the El40 data to various mod- 
els and calculations, including the naive parton model prediction, Rnpm = 
4Mp2x2/Q2, and the global mean value, .207 f .OlO. 

Model x2/df 

R=O 579 / 22 
R = @CD 225 / 22 
R = RnPm 175 / 22 

R= .207 f .OlO 83121 
R - - RQCD+TM 67/22 

Table 4.6. Shown are the El40 R(x, Q2) combined over all targets. Un- 
certainties are absolute. Not shown are the uncertainties due to radiative 
corrections, which are f.025. The total x2/df of all averagings over targets 
is 12.8/11. 

x Q2 (R ) f JR= f GRss 

.20 1.0 .330 .023 .005 

.20 1.5 .211 .032 .003 

.20 2.5 .168 .039 .003 

.20 5.0 .231 .065 -010 

.35 1.5 .330 .046 -005 

.35 2.5 .197 .031 .ooo 

.35 5.0 .136 .033 .004 

.50 2.5 .210 .020 .004 

.50 5.0 .094 .027 .003 

.50 7.5 .151 .065 .004 

.50 10.0 .044 .044 .006 
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Chapter 5 

Global Reanalysis of the SLAC Data 

The cross sections from experiments E49a, E49b, E61, E89a, and E89b are 

archived at SLAC in the TASI Databank, 78 both in their final form and in their 

pre-radiatively corrected form. Information about the target thicknesses and addi- 

tional radiators is similarly archived, making it feasible to re-radiatively correct the 

data. Pre-radiatively corrected cross sections from E87 are obtained from the MIT 

Pass II analysis dumps, while target and radiator information for E87 is taken from 

the E87 hardware logbooks. Final cross sections from El39 are on hand, and as yet, 

unpublished. Our primary references for the details of these experiments are listed in 

Table 1.1. 

At the start of the analysis, we attach an eight-component error vector to each 

cross section measurement. The components of this error vector are described in 

Table 4.1, with the exception of two new components, &NM1 and bNMz, which represent 

uncertainties in the relative normalizations of the eight experiments and are discussed 

in Section 5.2. Where possible, we assign values to the error vector components based 

on the publications and theses; otherwise, we estimate values. A complete summary 

of the contributions to the error vectors is presented in Appendix C. 

For the deuterium/hydrogen comparisons, we note that systematic errors of type 

bsR 7 6% , and SRc approximately cancel in the ratio of cd/up, and become negligible 

with the exception of the independent target density fluctuations. Similarly, errors 

of type JsE cancel perfectly in the cross section ratio. 
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It is crucial to our analysis that we rigorously propagate all systematic errors. 

As this subject is not treated in most statistics texts, we present in Appendix B.l our 

formula for the propagation of the error vector through a general operator, assuming 

the correlations among the data are known or can be estimated. 

Figure 5.1 presents a basic flowchart of the reanalysis procedure. Its primary 

feature is the inherently recursive structure imposed by the radiative corrections pro- 

cedure. Within each loop, there are additional frequent calls for structure function 

models, which are also updated at each iteration of the main procedure. In practice, 

two full loops were required to reduce structure function variations below 49% at all 

kinematics. 

5.1 Radiative Corrections 

Combining information from the TASI Databank with detailed information from 

the theses (when available), we are able to reconstruct the dimensions of the targets 

and upstream and downstream radiators for each of the experiments. These target 

reconstructions, described at length in Appendix D, are used to calculate the radiative 

corrections using our Bardin/Tsai procedure. 

The complete hydrogen and deuterium datasets contain together 7,810 individual 

cross section measurements. However, as noted in Section 1.2.2, almost all of these 

cross sections were measured in densely packed P-spectra. We radiatively correct 

only a sample of each E’-spectrum and interpolate the radiative corrections to the 

other points. Using the previous calculations of the Tsai radiative corrections as a 

guide, we permit interpolation spans as large as 8% (full width) in the calculated 

correction, though smaller spans of 5% are typical. This strategy introduces f.2% 

additional systematic uncertainty in the cross sections while reducing computation 

time to 60 hours of cpu on an IBM 3081/K processor.+ 

t The hydrogen resonance region was scanned to see if this approach would work 
there. Interpolation spans of 5% yielded unreliable results, indicating that a large 
cpu investment would be needed for a similar reanalysis of the resonance region. 
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Section 5.1 

Normalization Fitting 
Procedure 
Section 5.2 

Normalized 

1 I 

Figure 5.1. Shown is a flowchart of the global reanalysis procedure. 
Flggo is an abbreviation for either of the two F2 models introduced 2 

in later sections. 
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Figure 5.2 shows a comparison between of our Bardin/Tsai radiative correction 

calculations and the Tsai calculations3’ used previously. The wiggles and extreme 

points observed represent variations and spikes within the Tsai calculations only. 

These early Tsai radiative corrections were “unfolded”36 in an iterative fashion, and 

thus susceptible to long range correlations and systematic shifts. The discrepancies 

observed in Figure 5.2 are well within the f5% uncertainty of the Tsai radiative 

correction procedure. 

The model dependence of the radiative corrections is very slight. Convergence of 

the main loop in Figure 5.1 is typically f.2% for all kinematics z > .l and Q2 > 1. We 

expand the kinematic range of our analysis, however, to include all data satisfying 

Equation 1.11. For these additional low-s and low-Q2 data, the radiative corrections 

convergence is everywhere better than *l%. 

Uncertainties due to radiative corrections are the same as for E140, defined by 

Equation 3.12 and in Table 3.2. For the low-s and low-Q2 cross sections, we increase 

these uncertainties by a factor of 1.5. 

5.2 Normalization Fits 

Accurate knowledge of the relative normalizations of the eight experiments is 

critical: a normalization uncertainty of 5% between two cross sections separated by 

Ac = .5 propagates into 6R = .ll. In fact, normalization discrepancies of this size were 

noted by Mestayer et al., 4 though no correction was applied for these effects resulting 

in the large uncertainties shown in Figure 1.1. 

The obvious normalization technique is to compare cross sections measured at 

identical (E,, E’, 13). This procedure requires high statistics, even when two exper- 

iments overlap significantly, as E49b and E87 do. In the analysis of Bodek et aZ.,3 

the uncertainty in the relative normalizations was determined to only Itl.O%. When 

more than two experiments are to be mutually normalized, correlations develop and 

the obvious procedure is unsatisfactory. 
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Figure 5.2. Shown is a comparison of our Bardin/Tsai radiative 
correction calculations with those of SGA and SFG using the Tsai36 
procedure. The wiggles and spikes in the difference originate in the 
Tsai calculations only. 
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Our solution to this problem is to apply a fitting technique which simultaneously 

determines the mutual normalizations of the eight experiments and their correlations. 

Cross sections from all experiments are fit to a 15 parameter cross section model, 

allowing the normalizations of each experiment to vary as additional parameters. We 

fix the normalization of E140, which defines the overall normalization of our global 

reanalysis. 

5.2.1 Condensing the Data 

Before fitting, each dataset is condensed by combining together nearby cross sec- 

tions from the same experiment. Condensing the data improves the way in which 

systematic errors are propagated through a fitting procedure. In particular, it pro- 

vides the correct propagation of the largest systematic error, 6sR, which is strongly 

correlated locally but not globally. t The procedure for condensing a set of cross 

sections, {aj}, is 

Ujo = c uj - 
aFodel Wtj 

j f / 1 c model 
Wtj Uj, , 

j 

(5.1) 

where j, is the average kinematic, urnode’ is a cross section model, and the weights 

are determined by the bsr uncertainty only. The systematic errors are essentially 

averaged over range, propagating according to Equation B.8. The maximum span in 

kinematics over which we condense is given by 

Ax < .03 , AQ2 - 
Q2 < 6% , Ac < .05 , F-2) 

which seemed adequate, without introducing a graininess to the distribution of kine- 

matics. A study of other condensing parameters showed negligible differences. 

t Sources contributing to hsR are auto-correlated over short periods of time, which, 
for the early SLAC experiments, is over adjacent kinematics on a single E’- 
spectrum. Thus, it is correct to use the word “local” both in a kinematic and in 
a temporal sense, 
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5.2.2 Model and Algorithm 

The relative normalizations of the eight experiments are determined by simulta- 

neously fitting the condensed cross sections to a cross section model of the form 

0 mead 

amott v = F?‘(x,Q*) 
l--E 1 

1 + - e 1 + Rmode’(x,Q2) I/ NE+ , (5.3) 
where 

and 

F,n*(x,Q*) = f 2 cn+2(1--~‘)~ , 
n=3 

2’ = 
Q2 + C3 

2Mpv$C4 ’ 
(5.4) 

2” = Q* + Cl 
2M,v+C2 ’ 

R mode’(x, Q2) = [,I, c Cn+lo xn] /Qc14+c1sz , (5.5) 

Our model FF@(z, Q2) im p roves on the form of Bodek et aZ.,3 who use instead z” = 5’. 

The original motivation for Equation 5.4 comes from Bloom and Gilman,7g who 

observe approximate scaling in 

-- Q2 
x-2Mpv’M; (5.7) 

in the very early SLAC data. 3g The data presented here, in particular the El40 and 

El39 contributions, now require two scaling variables, x’ at large x, and x” at small 

2. 

The functional form of Rmode’ is chosen to be particularly free from any as- 

sumptions about the kinematic dependence of R(x, Q2). Both theory and experiment 

indicate that R( x, Q2) is smooth and featureless in this kinematic range. 
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/ 

The t terms in NEzpt are Kronecker-like delta functions defined on the set of 

experiments, 

{k = 
1, for experiment “k”; 

0, otherwise. 
(5.8) 

As defined, the normalization correction factor for experiment “P’ relative to El40 

is given by [l + ck] which is the number by which dataset “P’ must be multiplied to 

bring it into agreement with E140. The normalization factor for E89a is determined 

separately in the following section. 

And lastly, for deuterium, FF@ is defined with an additional multiplicative factor,3 

p = 1 - ~-7.7(2-‘+M;/Q.‘4 , (5.9) 

to account for nuclear binding effects at large x. 

The weights in the fitting procedure are determined by the total uncertainties, 

. wtj = l/ [(s=)*+ (ssR>“+ (P-y)‘+ (a=)‘] . (5.10) 

While a more correct procedure for the propagation of the SsE errors is available (after 

Equation 4.4), and a similar though more complicated procedure exists for the bsy 

errors, the approximate propagation offered by Equation 5.10 simple and estimated 

to be accurate to 31.1% in the Nk. 

Given the normalization factors for hydrogen and deuterium, the relative nor- 

malizations of the cross section ratios, ad/c+‘, are calculable. A better approach to 

the study of deuterium/hydrogen differences is to perform a similar normalization fit 

d to u /u . JJ We account for the asymmetric error distribution of the ad/&’ by fitting 

instead the logarithms of the data (see Appendix B.2), 

In( $ v) = ln( F,dp(x, Q2) x Rfac’Or(z, Q2) x A) 9 (5.11) 
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where 

4% 9”) = P f 2 Cnfaxn , 
n=O 

(5.12) 

Rfector(x, Q2) = 
1 + R'ggo(x, Q2) + e [l + Rdp(x, Q")] -' 

1+ Rlggo(x, Q2) + + 
, 

where IPggo is a fit to the previously extracted RP values, and where I@‘(x, Q2) is a 

model of Rd-R’ with a functional form given by Equation 5.5. 

Our fitting routine, FITPAR, is a x2 minimization program based on the gradi- 

ent expansion algorithm.” Typically, five iterations of the main routine are required 

to find a local x2 minima. In practice, these numerical solutions are found somewhat 

chaotically:+ two nearly identical initial parameter sets can lead to entirely different 

x2 minima. As it is not feasible to exhaustively explore the 21-dimensional parameter 

space, an alternative technique is used. We perform initial fits with fewer parame- 

ters, reducing the dimensionality of the problem and thus the “ruggedness” of the x2 

surface being searched. Solutions to the lower dimensional fits are then used as initial 

parameter sets for higher dimensional fits. This technique leads to “physical values” 

of the sensitive parameters Cr through Cd. The best fit solution to Equation 5.3 

displays parameters Cl through C’s closely related to those presented in Table 5.11. 

52.3 E89a Normalization 

The normalization coefficient of E89a could not be determined with the above 

normalization fit, as the E89a data are at very low c, kinematically disjoint from the 

other experiments. The fitting technique fails because the best fit value of NEaga is 

.dictated by Rmodef rather than the other data. Numerically, such attempts yield large 

correlations between NEagu and the parameters of Rmode’. Conversely, the E89a data 

t (in double precision Fortran real variables) 
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potentially carry significant weight in the extraction of R. In practice, however, the 

large 5-10% statistical uncertainties in the E89a data yield only small contributions 

to the R extractions. 

To normalize E89a with the other experiments we instead compare elastic hy- 

drogen cross sections from E89a45 with those from E89b35 and E140.51 The standard 

treatment is to compare measurements of [Go,] 2, assuming form factor scaling 

and the empirical dipole formula. However, over the wide range in scattering angles 

spanned by these three experiments, such a comparison is sensitive to possible de- 

viations of G{ from G dip . Resultsa from the El40 elastic measurements suggest a 

simple parameterization of G:/GdiP in our kinematic range, 

Q2 5 1.0 ; 

1.0 < Q2 2 3.0 ; 

3.0 < Q2 . 

(5.13) 

Using this parameterization of G$ we extract and compare (GP,/Gdip)2 from the 

three experiments, taking into account recent advances in the Bardin/Tsai radiative 

corrections to the elastic peak. ‘lla2 Comparisons are made at comparable Q2, then 

averaged. 

Table 5.1. Presented are the relative normalizations of E89a, E89b, and El40 
based on comparisons of elastic hydrogen cross sections. Corrections have 
been made for Gg # Gdip and for differences in radiative corrections. The 
errors shown are statistical only. 

Hydrogen 
Experiments Normalization 

E89a > El40 by 1.1% f 2.8% 
E89b > El40 by 4.5% f 2.2% 
E89b > E89a by 3.6% f 2.7% 
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Table 5.1 presents the results of this study, which are in basic agreement with 

the findings of the E89b thesis. t We take the first value from this table to define 

NEaga for hydrogen. For deuterium we assume 

NE89a 
P NdEaga -=- 

NE89b NdE89b ’ 
P 

(5.14) 

as experiments E89a and E89b were run simultaneously with the same target, and 

where the E89b normalizations are determined by the fit. We estimate a f2% sys- 

tematic uncertainty to account for expected differences between elastic and inelastic 

normalizations, and an additional f.5% uncertainty for the extension to deuterium. 

5.24 Normalization Results 

The best fit normalization factors are presented in Table 5.2. Two uncertainties 

are quoted for each N ‘, bNMl which is correlated between experiments (for the same 

target) and bNMz which is uncorrelated between experiments. 

The uncertainty bNMl includes the statistical uncertainties due to the uncertain- 

ties in the data, plus estimates of the model dependence of N”. The normalization 

fits were repeated with several alternate models for both R and F2, including, for ex- 

ample, the F,fl’ mode of Section 5.4.1. Model sensitivities in the Nk, typically f.3%, 

are assumed to display the same correlations between experiments as the statistical 

uncertainties. The correlation matrices for CYSTS, are discussed below. 

The uncertainty SNMz includes estimates of the dependence of the N” on the 

specific kinematic cuts applied to the data before fitting. For example, we cut the 

hydrogen data at W2 2 4 for these normalization studies to avoid any possible prob- 

lems due to resonances. Additionally, two other sources of uncorrelated error are 

included in this error term: the uncertainty in NEaga as discussed in Section 5.2.3, 

and a presumed systematic uncertainty in NEa7 as discussed below. 

t Note that Figure IV-6 of the E89b thesis contains a mislabeled data point, giving 
the visual impression of a larger normalization difference. 
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Table 5.2. Shown are the normalization factors of early SLAC experiments 
to E140. Errors are explained in the text. The overall normalization uncer- 
tainty is f2.1% for hydrogen, f1.7% for deuterium, and fl.O% for ad/up. 

Hydrogen 

E49a 
E49b 
E61 
ES7 
E89a + 
E89b 

1.012 .005 .003 
.981 

1.011 .008 .004 
.982 .005 .Oll 
.989 .028 
.953 .004 .004 

Deuterium 

E49a 1.001 .006 .002 
E49b .981 .005 .002 
E61 1.033 .007 .003 
ES7 .986 .004 .OlO 
E89a + .985 .005 .029 
E89b .949 .004 .OOl 
El39 1.008 .004 .002 
El40 1.000 

ad/up 

E49a .992 .005 .003 
E49b 1.000 
E61 1.020 .005 .003 
ES7 1.013 .005 .OlO 
E89a + .995 ,004 .005 
E89b .995 .004 .002 

+ See Section 5.4.4. 

Since El40 measures only deuterium cross sections, we choose E49b as the anchor 

for normalization of the hydrogen data. By demanding that NFgb = Npgb, we use 

E49b to define a normalization bridge between El40 and the hydrogen data. While 

any other experiment might equally serve as the bridge, the -1.9% hydrogen offset 
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indicated by E49b deuterium data comes very close to minimizing the x2-like quantity 

c (Ni -w2 

k (a,NM1)2+ (6dNM’)2 ’ 
(5.15) 

and is thus the best choice. We estimate the uncertainty due to this bridging tech- 

nique to be &l.O%. Thus, the overall normalization uncertainty of the deuterium 

data is f1.7Y ( o see Table 3.2), that of the hydrogen data is f2.1%, and that of the 

deuterium/hydrogen cross section ratios is &l.O%. 

We check the internal consistency of the normalization fitting procedure by com- 

paring the ratio of Ni/N; with the Nfp. Discrepancies of size f.2% are expected, 

and observed, with the single exception of E87. For this experiment, we obtain an 

difference of .9%, which is not explainable in terms of any known systematic effect. 

While such a difference could be caused by the presence of very large anti-correlated 

fluctuations in the ES7 hydrogen and deuterium data, this possibility is ruled out on 

the basis of the excellent x2/df observed for the ES7 data (see below). While not 

understanding the origin of the observed difference, we account for it by assigning an 

additional &l% systematic uncertainty to the Np, Nd, and Ndp of the ES7 data. 

The observed x2/df of the normalization fits are presented in Table 5.3. All ex- 

periments contribute a x2/df f o roughly one, with the exceptions of E49a, E61, and 

E139. Experiments E49a and E61, as listed in TASI Dataset, display “overstated” 

statistical uncertainties. Published plots of these data,44y42 with only statistical un- 

certainties, display too much regularity and not enough scatter. A concerted effort 

to identify the exact origin of this phenomenon was unsuccessful, and the effect is 

attributed to experimental conservatism. The small x2/df contribution of E139, on 

the other hand, reflects our conservative estimates of the systematic errors. For E139, 

csSR R3 6=- , and so the inclusion of SsR in Equation 5.10 reduces the x2 contribution 

by a factor of two. 
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Table 5.3. Shown is the x2 summary of the normalization fits. Anomalously 
small x2/df are observed for E49a and E61. 

Experiment 

x2Pf 
Hydrogen 

x2/df 

Deuterium 

E49a 
E49b 
E61 
ES7 
E89a 
E89b 
El39 
El40 

42 / 98 45 1117 81 / 98 
193 1187 222 / 193 160 / 174 

4 / 25 4 / 31 21 / 24 
74 / 93 106 /109 87 / 93 

- 71 / 70 56 / 71 74 / 66 
88 / 98 73 1100 77 / 82 

15 / 32 
41 / 48 

Total 476 1552 564 /680 500 1524 

The correlation matrices of the normalization fits offer additional insight into the 

quality of the information extracted. We observe no large off-diagonal elements of M 

indicative of a correlation between any normalization coefficient and a coefficient of 

Fp or Rmode’. This supports the earlier assertion that the normalization factors of 

display no model dependence beyond the &.30/o level. 

The correlations between the N” are given by Table 5.4. Presented is the lower 

half of Mii, the lower right submatrix of the correlation matrix for each normalization 

fit. The matrix Mij is related to the more familiar covariance matrix by Equation B.6. 

The degree of correlation between two experiments is proportional to the statistical 

impact of the data in the regions of overlap. The fact that all elements of Mij are 

positive (as they must be) greatly reduces the propagation of the SNMl through the 

regression analyses into R. 

Table 5.5 presents a comparison of our normalization results with all previous 

studies of the relative normalizations. Included are normalization results based on the 
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Table 5.4. Shown are the normalization submatrices of the correlation ma- 
trices of the fits to Equations 5.3 and 5.11. 

Mij 

Hydrogen 

E49a 1.00 
E49b .oo 1.00 
E61 .43 .oo 1.00 
ES7 .36 .oo .23 1.00 
E89b .52 .oo .36 .56 1.00 

Deuterium 

E49a 1.00 
E49b .23 1.00 
E61 .35 .13 1.00 
ES7 .25 .32 .13 1.00 
E89b .37 .37 .25 .43 1.00 
El39 -30 .31 .16 .34 .37 1.00 

E49a 1.00 
E49b .oo 1.00 
E61 .56 .oo 1.00 
ES7 .32 .oo .24 1.00 
E89b .51 .oo .46 .55 1.00 

first and third “miscellaneous” El40 cross sections in Table 3.3, which repeat earlier 

measurements by E49b and E87, respectively. Note the excellent agreement across 

the entire table. Note also that the extreme value we obtain for the normalization of 

E89b is firmly supported by each previous comparison, and is due in part from the 

normalization-like change in radiative corrections for E89b (see Figure 5.2). 

We conclude that the relative normalizations reported in Table 5.2 are reasonable 

and internally consistent at the level of the quoted uncertainties. All subsequent 

usage of the measured cross sections presumes the application of these normalization . 

correction factors. 
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Table 5.5. Presented is a comparison of our normalizaion results of Table 
5.3 with other normalization studies. “I” denotes comparisons based on 
inelastic data, “E” denotes comparisons based on elastic data. 

Other 
Region Ref. Comparison Table 5.2 

Hydrogen 

E49b > ES7 I 3 1.0% f 1.0% 
E49b > ES7 E 3 .S% f 3% 

0.1% f 1.2% 

E49b>E49a E 3 1.9% f 1.7% 3.1% f .S% 
E89b > E87 I 35 5.5% 2.9% f 1.3% 
E89b > E49b I 35 3.0% 2.8% f .S% 
E89b > E89a E 35 5.0% 
E89b > E89a E 3.6% f 2.7% > 

3.6% 312.9% 
t 

E89b > El40 E t 4.5% f 2.2% 4.7% f 1.1% 

Deuterium 

E49b > E87 I 3 l.O%k .7% 
E49b > El40 I $ 2.4% f 2.0% 
E89b > El40 I : 6.2% f 2.7% 

$ Table 3.3, miscellaneous El40 measurement. 
t Table 5.1. 

0.5% f 1.2% 
1.9%& .5% 
5.1% f .4% 

5.2.5 The “E89b Effect” 

Hindsight in a recursive analysis is as useful as foresight. At the end of the first 

cycle of Figure 5.1 we carefully examined all three sets of global data, looking for 

remnant uncorrected systematic effects. We examined residuals of the data to the 

final F2 fit plotted versus E,, E’, 8, 3, Q2, E, and W2. A large systematic effect was 

identified for E89b hydrogen and deuterium, linearly proportional to E’, as shown 

in Figure 5.3. The likely origin 83 of this effect is an applied correction35 for the E’ 

dependence of the 20 GeV Spectrometer acceptance, given by 

,final =U meae [l - .0089 (E’- (E’) )] (5.16) 
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(compare with Equation 2.4). The E’ dependence of the (191~) dispersion is directly 

measured35 with a “jailbar” optics study to be -.0028 GeV-‘. The measurement35 

of the E’ dependence of the (Sly) d is p ersion, however, is much less direct, relying on 

calculated elastic peak positions and simultaneously determined higher order optics 

matrix elements. Furthermore, these measurements display large scatter, and are 

consistent83 with a much smaller E’ dependence than the quoted -.0061 GeV-r. 

To treat this problem statistically, we performed a x2 minimization fit to Equa- 

tion 5.3 with each NE@ defined with an additional parameter linear in E’. Fits 

were made for hydrogen and deuterium simultaneously, forcing this E’ dependence 

to be identical. The E’ “slope” terms we obtained were largely uncorrelated between 

experiments.t We thus determine a best-fit counter-correction to Equation 5.16, 

aE89a = dfinal [l + (.0042 f .0006 f .OOlO) (E’ - (E’))] , (5.17) 

where the second error reflects an exhaustive study of possible systematic errors 

arising from kinematic cuts, F2 model forms, and correlations across experiments. 

Additionally, we became aware of significant effects in E49a and E49b, of size 

-.0034 GeV-1 and -.0086 GeV-’ , respectively. A careful review of the documenta- 

tion of these experiments failed to clearly identify the source of these effects. Thus, 

for E49a and E49b we take a conservative stance and correct one half of the measured 

effect and assign an uncertainty to bsE equal to the size of our applied correction (see 

Table C.1). It is important to note that searches for similar “slopes” in the other 

kinematic variables were, in each case, statistically consistent with no effect. 

After making these corrections, we began the entire analysis again from the 

beginning. Th e results presented in this chapter were yielded two full iterations 

(of Figure 5.1) later. 

t In fact, we note that a fit to data from a single experiment alone is sufficient to 
quantify the presence of an E’ slope. This is because we have a prior knowledge 
that Fz is not linear in E’ over a significant kinematic range, as reflected in our 
choices of functional forms for F2 (see also Section 5.4.1). 
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Figure 5.3. Shown are the residuals studies comparing the original 
-E89b, E49a, and E49b data to the best fit cross section model to 
all eight experiments. El40 is presented as a basis for comparison 
and shows no statistically significant slope. The observed effects 
for hydrogen are identical. The error bars represent the total un- 
certainties, as denoted in Equation 5.10. Figure continues on next 
page. 
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Figure 5.3/continued: Residuals studies of the “E89b effect.” 



84 Global Reanalysis of the SLAC Data 

5.3 R Extraction and Modeling 

The set of normalized cross sections are binned in (5, Q2). Rather than using 

the condensed cross sections of Section 5.2.1, we begin with the larger set of original 

measurements, and later condense with respect to c inside each bin. A correction 

must be applied to each cross sections to effectively shift the measured (z, Q2) to 

the center of the bin, (zO,&z). I n simplest form, this is just the kinematic mismatch 

correction of Section 3.2.1, which implicitly assumes 

d--(x, Q2, e) ameas(xo, Q”,, E) 
omodel(x, Q2, E) = omodel(x,, &2,, E) 

(5.18) 

Given the same assumption, it is easier in practice to use 

ameaa(x, Q2, e) cqeas(~o, Q:) 
amodel(x, Q2, E) = qodel(xo, Q:) 

[ I+ &o, &HI] , 

where 

(5.19) 

E = R-a.9 (~0, Q2,) - Rmodez(xo, Q”,) , 
I 

/[ 1 + ~Rmode'(s,,Q:)] , E =e 
(5.20) 

which follows from Equations 4.11 and 4.12. Thus, for each (z, Q2) bin, we ap- 

ply a regression analysis to the set of ratios ameas/amodel versus c to determine the 

R meas(z,, 9:). 
A similar utility simplifies the extraction of Rd-Rp, namely 

areas(x, Q2, ~)/o~~~~~(x, Q2, e) 

6pmeas(x, Q2, e)/qodel(x, Q2, e) = 

cqy(xo, Q:)/~,m,odez(xo, Q2,) 
~~~~(xo, Q2,)/0pnTode1(xo, Q3 

[~+,"[R~(z.,Q~)-R~(~.,Q~,~)]] y 

(5.21) 

e” = e 
/[ 1 + ~R1ggO(~o,Q~)] , (5.22) 

where 
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and Rlggo is a fit to the previously extracted RP values. This reduction pre,sumes that 

the deuterium and hydrogen cross section models are defined with identical models 

of R. See also the important procedural note in reference to Equations 4.11 and 4.12. 

We condense the data with respect to c before applying the regression analyses 

(see Section 5.2.1). The maximum span in e over which we condense is At: = .05. 

Following condensing, each (x, Q2) bin typically contains four to eight values, repre- 

senting three or four experiments, and spanning a width in E of AE = .50. 

An advantage of the approach of Equations 5.19 and 5.21 is that we no longer 

work in tiny dimensional quantities, as in Figure 4.1, but rather, unit free quantities 

on the scale of 1. Figure 5.4 shows two such sample linear regression analyses for the 

deuterium data. Two additional regression analyses, ones which do not yield such 

good x2/df, are presented in Appendix B.3. 

Because El40 measures R to high accuracy by itself, we do not include the El40 

cross sections in the combined global extraction of R. Rather, the El40 R extractions 

are reserved as an independent set of ideal (single experiment) measurements for 

comparison with the results of the global study. 

5.3.1 Error Propagation 

The ~5~ and ijsR uncertainties in the cross section measurements are propagated 

through the weights of the regression analysis (given by Equation 4.2) into the SRsr 

uncertianty in R. The other components of the error vector are propagated by directly 

measuring the perturbation in R due to each type of error in each experiment. We 

extend the formalism of Equations 4.3 and 4.4 to account for multiple experiments: 

l Let {aj) represent a set of data in a single (x, Q”) bin. 

l Let the experiment from which the datum bj originates be represented by Ej. 

l LettEiEjbeaK ronecker-like delta function defined on the set of experiments by 

<EiEj _ 1, for Ei=Ej ; 
- 

0, otherwise . 
(5.23) 
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Figure 5,4. Shown are two sample regression analyses. The full 
error bar represents the total error, given by the quadrature sum 
of f5=, P,s=, P, sNm , and ~5~~‘. The hashmark represents 
the random component of the total error, given by the quadrature 
sum of bsT and SsR. 
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I 

l Define an operator “LR” as in Equation 4.3. 

Then, the uncertainty in R due to experiment E; is given by 

JR& = R - LR{aj(l+[EiEjAt)) , 
(5.24) 

k = SY, SE, NMI, NM2. 

These uncertainties are correlated over the E; for k = NMI, but otherwise uncorre- 

lated. Thus, 

[ 1 v 

6Rk = c(6R&)2 , 
i 

and 
k = SY, SE, NM2 , 

r 
SR" = c SRL, X Mij X 6Rgj 7 

i,i 

(5.25) 

(5.26) 

k=NMI, 

where M is given in Table 5.4. Note that for uncorrelated errors, M = 1, and Equa- 

tion 5.26 reduces to Equation 5.25. Uncertainties of type GRRc are calculated in this 

way, yielding Equation 4.5. 

For the first regression analysis of Figure 5.4 we obtain 

R = .381 , 

GRsr =.082, 
GRW =.026 , I 
SRSE =.024 , 
GRNM' I 

GRss = .044 , 
=.024, 

6RNM2 = .008 ) I 
SRRC = .025, 

(5.27) 

where 6Rss is the total experimental systematic error. 
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The 260 linear regression analyses form a set of linearity measurements versus 

E. As discussed in Section 4.1, uncorrected systematic effects in the data would con- 

tribute, in general, curvature to the regression analyses. Figure 5.5 presents the distri- 

bution of observed x’/df of the regressions. The curves shown are the expected x2/df 

distributions for the average number of 3.63 uncorrelated measurements gaussian- 

distributed about a parent distribution. 

There is generally good agreement in Figure 5.5 between the observed and ex- 

pected x2/df. The observed distributions are shifted towards zero relative of the 

theoretical distributions due to the inclusion of CsR in the regression weights. Using 

the additive property of x2 distributions, we calculate the total x2/df for each set of 

analyses, 
(x2/d& = 299.6 / 332 , 

(x2/4 )d = 300.2 / 325 , (5.28) 

( x2/df )+ = 298.0 / 300 , 

each soundly in the center of the expected distribution. That the fits to ad/& display 

slightly more scatter is to be expected from Table 5.3, and is because the hsR errors 

for CY~/CYJ’ are much smaller than those for hydrogen and deuterium. 

Both the shape and area of the observed x2/df distributions are in excellent 

agreement with the theoretical distributions. This confirms our claim that the bsT 

and JsR uncertainties in the data are gaussian with correctly estimated magnitudes. 

Regression analyses with x2/df as large as 3.1 are statistically expected and require 

no further treatment.+ Six of the regression studies, however, yield anomalously 

large x2/df 1 va ues, well outside the expected distribution. For these six analyses, we 

adopt the conservative approach74-76 and multiply SRsT by the factor dm (see 

Appendix B.3). 

+ Some sources 74-76 claim that the uncertainty on any parameter determined via 
a fitting procedure should be multiplied by a factor of dm. We address 
this wayward assertion in Appendix B.3 with a monte carlo analysis of the R 
extractions. 
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Figure 5.5. Shown is the distribution of observed x2/df for each of 
the three sets of regression analyses. The curves are the expected 
x2/df distributions for 3.63 degrees of freedom, assuming that all 
errors are gaussian and uncorrelated. The arrows indicate outlying 
points which receive special treatment, as described in the text. 
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The observed linearity of these regression analyses greatly credits the experimen- 

tal efforts of the SGA, MIT, and El39 collaborations. The somewhat small (x2/alf) 

reflects both the conservative estimate of the systematic errors bsR, and the “conser- 

vative” published statistical uncertainties of E49a and E61. Statistically, the data are 

not consistent with the hypothesis that large systematic effects remain uncorrected in 

the cross sections including large errors in the relative normalizations of these seven 

experiments . 

5.3.2 Deuterium/Hydrogen Difference 

Table 5.6 presents the results of the ad/&’ linear regression analyses. The results 

are consistent with the hypothesis that there is no Q2 dependence to Rd-Rp. Thus, 

we average the results over Q2 to look for x dependence. These results are shown 

in Table 5.7. The careful propagation of the 6NMl and 6NMz through the averag- 

ing process is critical. By returning to the fundamental uncertainty contributions of 

Equation 5.24, we obtain smaller, more accurate estimates of the normalization un- 

certainties in ( R~--RP ). At fixed 2, a normalization shift to a particular experiment 

would contribute positively to Rd-RJ’ at some Q2, and negatively at others. Thus, the 

careful propagation of these correlated opposite uncertainties yields the much smaller 

systematic uncertainties shown in Table 5.7. 

The x2/df for the averages shown in Table 5.7 are consistent with our assumption 

of Q2 independence. These values of (R”-R’) are plotted versus x in Figure 5.6. 

No x dependence is observed, and R d-RJ” is consistent with zero. The average over 

(5, Q2) is similarly calculated, 

(R~-R~) = -.ooi f .009 f .008 f .005 , 

x’/df = 83.4185 , 
(5.29) 

where the uncertainties are of type GRsT, 6RNM1, and 6RNMz, respectively. While 

very little scatter is evidenced in Figure 5.6, the overall average, calculated directly 

from Table 5.6, is in agreement with statistical expectations. 
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Table 5.6. Shown are the global extractions of Rd-Rp. Uncertainties are 
absolute. Uncertainties of type GRW GRsE, and SRRc are negligible. Table 
continues on next two pages. 

X Q2 Rd- RP fSRSTfSRNM’ fSRNM2 x2/df 

.lOO 0.63 .119 .075 .021 .012 .5 

.lOO 0.80 .039 .170 .038 .025 .3 

.lOO 1.00 -.078 .070 ,016 .OlO .2 

.lOO 1.25 -.169 .086 .021 .015 .8 

.lOO 1.60 .046 .072 -006 .004 .3 

.lOO 2.00 .005 .055 .008 .004 .l 

.lOO 2.50 -.026 .149 .021 .013 1.4 

.lOO 3.20 -.043 .168 .017 .Oll 2.7 

.175 0.80 -.143 .079 .024 .016 .2 

.175 1.00 .076 .057 .014 .007 .5 

.175 1.25 -.048 .050 .017 .009 .l 

.175 1.60 -.045 .062 .019 .009 .l 

.175 2.00 .020 .063 .008 .004 .5 

.175 2.50 -.025 ,045 .008 .004 .3 

.175 3.20 -.103 .108 .015 .Oll .9 

.175 4.00 .160 .083 .015 .012 .9 

.250 1.00 .038 .082 .037 .016 

.250 1.25 -.139 .076 .016 .008 

.250 1.60 .015 .047 .015 .008 

.250 2.00 -.050 .076 .OlO .005 

.250 2.50 -.044 .076 .OlO .005 

.250 3.20 -.012 ,045 -008 .004 

.250 4.00 .189 .106 .016 .OlO 

.250 5.00 .045 .080 .012 .007 

.250 6.40 -.381 .250 .019 .OlO 

.250 8.00 - .225 ,399 .024 .013 

1.3 
- 
.8 

1.6 
1.1 

.8 
1.0 

.3 

.3 
- 

.325 1.00 .036 .122 .044 .019 .2 

.325 1.25 -.171 .106 .048 .022 .9 

.325 1.60 .099 .105 .018 .008 1.4 

.325 2.00 .074 .178 ,014 .009 6.9 

.325 2.50 .040 .079 .Oll .007 1.0 
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Table 5.6/continued: Global extractions of Rd-Rp. 

X Q2 Rd-RJ’ fSRmfGRNM’f6RNM2 x2/df 

.325 3.20 -.013 .113 .Oll .005 .5 

.325 4.00 .lOO .068 .009 .006 1.5 

.325 5.00 .095 .069 .014 .007 1.3 

.325 6.40 -.096 .097 .012 .008 1.3 

.325 8.00 .ooo .120 .019 .040 .6 

.325 10.00 .162 .226 .020 .Oll - 

.400 2.00 -.151 .258 ,001 .OOl 5.3 

.400 2.50 .020 .128 .027 ,022 .2 

.400 3.20 -.006 .057 .OlO .005 1.9 

.400 4.00 .129 .078 6010 .008 2.2 

.400 5.00 .053 .065 .009 .008 1.6 

.400 6.40 .120 .088 .Oll .016 1.1 

.400 8.00 -.078 ,074 .Oll .Oll .6 

.400 10.00 ,000 .089 ,009 .007 1.2 

.400 12.50 -.358 .470 .013 .032 5.6 

,475 2.00 -.326 .204 .021 .013 
.475 2.50 .025 .092 .020 .015 
.475 3.20 -.108 .082 .009 .004 
.475 4.00 .233 .164 ,017 ,012 
.475 5.00 -.016 .071 .007 .012 
.475 6.40 .006 .lOO .014 .Oll 
.475 8.00 .163 .138 .013 .029 
.475 10.00 - .036 .079 .008 .017 
.475 12.50 .006 .113 .012 .027 

- 

2.2 
.2 
.O 
.5 

2.3 
1.0 
1.6 

.4 

.550 2.50 -.175 .llO .020 .015 2.6 

.550 4.00 -.095 .113 .016 .031 .4 

.550 5.00 -.184 .189 .018 .015 1.3 

.550 6.40 .055 .055 .008 .OlO .l 

.550 8.00 .013 .068 .007 .009 1.1 

.550 10.00 -.041 ,067 .004 .006 .7 

.550 12.50 .035 .090 .005 .006 .7 

.550 16.00 -.062 .150 .OlO .025 .2 
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Table 5.6/continued: Global extractions of Rd-Rp. 

X Q2 Rd-Rp fGRSTfGRNM1 fSRNM2 x2fdf 

.625 5.00 -.097 .425 .033 .027 .O 

.625 6.40 .014 .034 .006 .OlO .6 

.625 8.00 .140 .086 .007 .016 .4 

.625 10.00 -.066 .063 .008 .018 1.0 

.625 12.50 -.102 .059 .go7 .015 .9 

.625 16.00 -.096 .088 .OlO .024 1.3 

.700 4.00 -.057 .233 .018 .040 - 

.700 6.40 .030 .042 .006 .OlO 1.2 

.700 8.00 .063 .063 .006 .OlO 1.5 

.700 10.00 -.055 .097 .Oll .026 .4 

.700 12.50 .081 .056 .005 .008 .6 

.700 16.00 -.106 .070 .005 .009 .7 

.700 20.00 -.290 .209 .012 .031 .3 

.775 6.40 -.189 .264 .012 .029 3.3 

.775 8.00 .047 .052 .007 .013 .4 

.775 10.00 -.033 .105 .009 .021 .7 

.775 12.50 -.036 .073 .006 .OlO 1.2 
,775 16.00 -.071 .077 .005 .008 1.1 
.775 20.00 .034 .lOl .008 .015 .3 

.860 10.00 -.007 .484 ,023 .061 - 

.860 12.50 -.065 .180 .007 .Oll 3.5 

.860 16.00 - .232 .145 .005 .009 .9 

.860 20.00 -.126 .094 .008 .016 .8 

The 1979 results of Bodek et al.,?? shown in Figure ?.? and summarized by 

Equation ?.? are inconclusive because of their large errors. Our improved statisti- 

cal uncertainty is due to the inclusion of more data, while our improved systematic 

uncertainty originates in our advanced methodology, primarily the determination of 

the relative normalizations and the correct propagation of their uncertainties. We 

conclude, then, that Rd = RP within our total experimental error of f.013. 
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Table 5.7. Shown are the global extractions of Rd- RP averaged over Q2. 
Uncertainties are absolute. Uncertainties of type GRsy , SRsE, and bRRc 
are negligible. Values of x2/df are for the averages. 

x (~2) (Ed-- RP) ~~~~~~~~~~ f6RNM2 x21df 

.lOO 1.47 -.005 .029 .Oll .005 1.1 

.175 1.90 -.OlO .022 .012 .005 1.6 

.250 2.53 -.008 .023 .012 .005 1.1 

.325 3.87 .036 .030 .015 .006 .8 

.400 5.34 .026 .029 .009 .006 .8 

.475 6.16 -.009 .033 .OlO .Oll 1.0 

.550 8.04 -.Oll .030 .007 .006 .8 

.625 8.70 -.016 .024 .005 .007 1.6 

.700 9.59 .017 .026 .005 .008 1.2 

.775 11.72 -.005 .033 .005 ,008 .5 

.860 17.60 -.139 .072 .006 .Oll .2 

5.3.3 Hydrogen and Deuterium Results 

The individual results of the hydrogen and deuterium regression analyses are 

tabled in Appendix E. In this section, we exploit the result from the previous section 

and report the average of RP and R d. Because the error vectors of RP and Rd are 

partially correlated, in most applications it is required to use the average of RP and 

Rd and the correctly propagated error vector. Further, we denote the values of R 

reported here as “SLAC” values to distinguish them from the independent “E140” 

values presented in Chapter 4. 

We average the RP and Rd values using the logarithmic variable of Appendix 

B.2 to account for the askew probability distribution of R. We conservatively assume 

that the c5Rw, 6RsE and GRRc errors are perfectly correlated between targets, while 

the 6RNM1 and SjNM2 errors are uncorrelated (with the exception of Sgza which 

is perfectly correlated). We make the simplifying assumption that the bRsT are 

uncorrelated, though, some correlated elements enter through the bsR in the definition 
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Figure 5.6. Shown are the extractions of Rd-RJ’ averaged over Q2, 
from Table 5.7. Compare with Figure 1.3 and note change of scale. 

of the weights (for example, beam charge fluctuations). To correctly account for these 

correlations we average Equation 5.24 over targets before proceeding to Equations 5.25 

and 5.26. 

The total x2/df for all the averagings is 

(x2/df) = 67.2189 , (5.30) 

and a comparison of the individual RP and Rd values reveal no large contradictions. Of 

the three outliers in Figure 5.5, the deuterium and one of the hydrogen outliers occur 

at the same kinematic, (2, Q”) = (.5,2.5). The hyd ro g en and deuterium regression 

analyses at this kinematic, however, do not show similar features, indicating that the 

large observed x2’s do not originate in a correlated spurious effect. 
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These extracted values of R are presented in Table 5.8 and plotted versus z and 

Q2 in Figures 5.7 and 5.8. The El40 results from Table 4.6 are also included in 

these plots, as are the high-Q2 values from the EMC,gy21 BCDMS,16j1' and CDHSW" 

co1iaborations.t Those measurements from EMC have been condensed in 5 and Q2 

and averaged over targets to reduce scatter. Also shown in Figures 5.7 and 5.8 are 

calculations2’ of R based on QCD7 and QCD+TM.8 The bold curve is the best fit 

model, RlggO, discussed in the next section. 

Good agreement is observed between the SLAC and El40 measurements of R. 

In particular, we observe some disagreement associated with the El40 values at 

(x:, Q2) = (.2,1.5) and (.2,2.5), which are noted in connection with the large x2’s 

of Equations 4.14 and 4.16 ( see also Figure 4.3). Given the large scatter of the SLAC 

data in this region, we cannot make a conclusive comparison, though, we note that 

despite the relatively small uncertainties in the El40 data, the large number of SLAC 

measurements in this low-x region statistically dominates the local average as repre- 

sented (presumably) by the best fit curve, RIggo. 

We observe that the measured R values are systematically higher than RQCD+TM. 

Of the 89 SLAC and 11 El40 measurements, only 17 are smaller than RQCD+TM, and 

none by more than a standard deviation. This is a strong indication that QCD+TM 

is an inadequate theory in the SLAC kinematic range. In particular, we interpret 

this discrepancy as evidence of higher twist contributions to FL, which are expected 

to be positive at the next order. A phenomenological analysisa of this twist four 

contribution to R finds excellent agreement with our preliminary SLAC deuterium 

results.85 The R calculations of this study (RTw4) though limited to Q2 > 4GeV2, are 

in good agreement with our best fit model, within the theoretical limitations imposed 

by the parton distribution uncertainties. In Table 5.9 we present a goodness-of-fit 

comparison of these calculations to the data presented in Figures 5.7 and 5.8. 

t For convenience and completeness, a table of these “world” values, as plotted in 
Figures 5.7 and 5.8, is presented in Appendix E. 
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Table 5.8. Shown are the global extractions of R(x, Q2) averaged over hy- 
drogen and deuterium. The uncertainty GRss is the total experimental sys- 
tematic uncertainty, and is the quadrature sum of the four uncertainties at 
the right. The uncertainty due to radiative corrections is GRRc = A.025 and 
is correlated across all data (for Q2 < 1 GeV2, GRRc is increased by a factor 
of 1.5, see Section 5.1). Table continues on next two pages. 

X Q2 R f6RSTfGRSS 6Rm GRsE GRNM’ 6RNMa 

.lOO .63 .256 .059 .044 .022 .034 .016 .007 

.lOO .80 .210 .123 .081 ,071 .022 ,028 .017 

.lOO 1.00 .326 .047 .030 .015 .022 .012 .005 

.lOO 1.25 .313 .058 .022 .Oll ,017 .009 .004 

.lOO 1.60 .351 .041 .022 .013 .017 .006 .003 

.lOO 2.00 ,285 .034 .018 .008 .014 .006 .003 

.lOO 2.50 .447 .lOl .072 ,041 .056 .018 .008 

.lOO 3.20 .434 .108 .058 .033 .045 .016 .006 

.175 -80 .291 .094 .045 .018 .036 .019 .008 

.175 1.00 .240 .041 .031 .012 .026 .Oll .004 

.175 1.25 .463 .064 .031 .018 .017 .017 .007 

.175 1.60 .364 .054 .028 .016 .019 .013 .005 

.175 2.00 .275 .038 .023 .012 .018 .008 .004 

.175 2.50 .235 .034 .019 .008 .015 .007 .003 

.175 3.20 .374 .077 .043 .029 .027 ,014 .006 

.175 4.00 .297 .055 .029 .018 .019 .Oll .004 

.175 5.00 .432 .157 .057 .040 .029 ,027 .012 

.250 1.00 .196 .091 .054 .030 .032 .030 .Oll 

.250 1.25 .308 .062 .036 .016 .027 .017 .007 

.250 1.60 .246 .039 .026 .OlO .022 .OlO .004 

.250 2.00 .281 .049 .025 .oll ,020 .008 .004 

.250 2.50 .213 .046 .024 .013 .017 .009 .004 

.250 3.20 .215 .035 .020 .009 .015 .008 .003 
,250 4.00 .085 .063 .023 .013 .OlO .014 .006 
.250 5.00 .115 .041 .036 .033 .009 ,008 .005 
.250 6.40 .441 .177 .058 .030 .047 .016 .OlO 
-.250 8.00 .337 .235 .057 .035 .038 .022 .Oll 
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Table 5.8/continued: Global extracted R. 

X Q2 R f6RSTfGRSS GRsy SRsE SRNM’ GRNM2 

.325 1.00 .285 .133 .067 .040 .035 .038 .015 

.325 1.25 .569 .218 .108 .071 .045 .063 .025 

.325 1.60 .300 .072 .036 .017 .028 .014 .006 

.325 2.00 .205 .049 .028 .Oll .024 .009 .004 

.325 2.50 -214 .048 .024 ,013 .018 .OlO .004 

.325 3.20 .193 .058 .029 .015 .021 .OlO .006 

.325 4.00 .148 .042 .037 .024 .017 .005 .022 

.325 5.00 .121 .040 .020 .017 .007 .007 .003 

.325 6.40 .026 .043 .016 .012 .005 .008 .006 

.325 8.00 .162 .073 .035 .017 .OlO .014 .026 

.325 10.00 .348 .128 .031 .020 .013 .017 .009 

.400 2.00 .276 .080 .041 .Oll .036 .014 .007 

.400 2.50 .383 .141 .081 .020 .075 .021 .009 

.400 3.20 .212 .041 .029 .012 .025 .009 .004 

.400 4.00 .093 .047 .038 .024 .008 .007 .028 

.400 5.00 .036 .032 .041 .024 .008 .005 .031 

.400 6.40 .024 .038 .013 .007 .006 .008 .006 

.400 8.00 .098 .043 .028 .023 .007 .OlO .OlO 

.400 10.00 .109 .048 .031 .024 .004 .008 .017 

.400 12.50 -.119 .096 .140 .123 .004 .OlO .066 

.475 2.00 .239 .168 .069 .043 .046 .027 .OlO 

.475 2.50 .149 .059 .028 .Oll .023 .009 .004 

.475 3.20 .147 .046 .028 .OlO .024 .008 .003 

.475 4.00 .114 .102 .028 .017 .004 .017 .013 

.475 5.00 .096 .033 .041 .018 .008 .005 .035 

.475 6.40 .120 ,060 .018 .009 .009 ,010 .006 

.475 8.00 .005 .067 .027 .015 .004 .OlO .020 

.475 10.00 .050 .041 .029 .015 .007 .006 .023 

.475 12.50 .132 .066 .067 .049 .OOl .009 .045 

.550 2.50 .192 .170 .031 .012 .025 .Oll .004 

.550 4.00 .094 .061 .032 .014 .014 .013 .021 
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, 

Table 5.8/continued: Global extracted R. 

X Q" R fSRSrGRSS GR= GRsE GRNM’ GRNM2 

.550 5.00 .039 .090 ,044 .024 .009 .OlO .035 

.550 6.40 .036 .030 .042 .018 .004 .004 .037 

.550 8.00 ,096 .037 .015 .Oll ,007 .005 .007 

.550 10.00 .053 .037 .038' .025 .004 .002 .029 

.550 12.50 .004 .044 .058 .041 .002 .004 .041 

.550 16.00 .205 ,091 .086 .060 ,003 .008 .060 

.625 4.00 .643 .646 .256 .087 .208 .098 .070 

.625 5.00 .161 .254 .102 .064 .069 .035 .015 

.625 6.40 ,093 .027 .049 .019 .003 .004 .045 

.625 8.00 .058 .046 .017 .009 .008 .005 .Oll 

.625 10.00 .068 .039 .044 .019 .004 .005 .039 

.625 12.50 .008 .034 .029 .020 .OlO .004 .018 

.625 16.00 -.044 .042 .065 .040 .003 .007 .051 

.700 4.00 .161 .147 .047 .016 .021 .017 .035 

.700 5.00 .178 ,171 .009 .003 .004 .007 .003 

.700 6.40 .078 .031 .045 .015 .004 .004 .042 

.700 8.00 .123 .041 ,048 .016 .004 ,004 ,045 

.700 10.00 .087 .061 .027 .020 .004 .007 .016 

.700 12.50 .072 .038 .033 .012 ,008 .002 .030 

.700 16.00 -054 .043 .046 .022 .002 .003 .040 

.700 20.00 .175 .118 ,133 .105 .OOl .Oll .081 

.775 6.40 

.775 8.00 

.775 10.00 

.775 12.50 

.775 16.00 
,775 20.00 

.018 
,077 
.109 
.037 
.153 
.047 

.140 

.036 

.072 

.044 

.055 

.061 

.034 

.047 

.018 

.040 

.047 

.080 

.012 

.015 

.OlO 

.012 

.021 

.055 

.020 

.003 

.004 

.009 

.002 

.004 

.OlO .022 

.005 .045 

.006 .013 

.003 .037 

.003 .042 

.005 .058 

.860 10.00 .476 .406 .074 .049 .017 .021 .049 

.860 12.50 .262 .117 .052 .019 .004 .003 .049 
-.860 16.00 .041 .090 .051 .017 .003 .005 .048 
.860 20.00 .082 .064 .057 .019 .004 .005 .053 
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Figure 5.7. Shown are the global extractions of R from Table 5.8. 
Errors do not include the strongly correlated SRRc x .025. See text 
for further details. Figure continues on next three pages. 
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Figure 5.7/continued: Global extractions of R(x, Q”). 
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Figure 5.7/continued: Global extractions of R(z, Q2). 
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Figure 5.8. Shown are the global extractions of R(s, Q2) from Table 
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Figure 5.8/continued: Global extractioions of R(x, Q2). 
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Figure 5.8/continued: Global extractions of R(s, Q”). 
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Figure 52/continued: Global extractions of R(z, Q”). 
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Table 5.9. Shown are goodness-of-fit tests of the El40 data to various mod- 
els and calculations, including the naive parton model prediction, Rnpm = 
4Mix2/Q2, and the global mean value, .143 f .005. 

Model X2/# 

R=O 1412 / 139 

R = R”P=’ 720 / 139 

R = .143 f .005 513 / 138 

R = @CD 479 / 139 

R = RQCD+TM 221/ 139 
R = R-4 61/ 72 

R = RI990 108 / 136 

5.3.4 Phenomenological model of R: Rlggo 

As RQCD and RQCD+TM are not sufficient to describe the data, we are motivated 

to provide a phenomenological model of R for use in various technical applications, 

including the extraction of F’ from the measured cross sections. We perform a fit to 

the set of world R measurements shown in Figures 5.7 and 5.8. This fit is performed 

with program FITPAR (see Section 5.22) in the logarithmic variable of Appendix B.2. 

Three functional forms were found to match the data quite well: 

R a2 
a = ln(Qn:/oJ) o(x’ Q2) + dm ’ 

h 
Rb = ln(Q2/.04) 

0(x, Q”) + 5 + b3 
Q2 Q4 + .32 ’ 

R 
’ = ln(&e:/.O4) 0(x, Q") t ~2 [(s" - Q:h,)2+ c:] --lj2 7 

where 

(5.31) 

(5.32) 
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gives the logarithmic term an x dependence which matches RQcD at very high Q2, 

and where 

Q:,r = 5(1-x)5 . (5.33) 

Though the data at low x and high Q 2 are insufficient to determine the best form of 

0, the one chosen appears to fit the data well. 

The weights for the fitting procedure are determined by the total experimental 

error in R, given by the quadrature sum of 6RsT and GRss. This is approximately 

correct as the GRss are only partially correlated between neighboring measurements. 

Each of the three models fits the data well, with observed x2’s of 110, 110, and 114, 

respectively, for 136 degrees of freedom. 

Each model has strengths and weaknesses. We believe that the average of the 

three models is the best parameterization of the data over the full kinematic range. 

This best parameterization of R is given by 

R lggo = {Ra + Rb + R,}/3 , (5.34) 
where 

al = .0672 , 

bl = .0635 , 

Cl = .0599 , 

a2 = .4671 , 

b2 = .5747 , 

c2 = .5088 ) 

a3 = 1.8979 , 

b3 = -.3534 , 

c3 = 2.1081 . 

(5.35) 

The observed x2/dj of Rlggo is 108/136, with the specific x2 breakdown indicated in 

Table 5.10. This model is designed to extrapolate to reasonable values outside the 

measured kinematic range: inside the resonance region, as x + 1, and as Q2 --+ 00. 

This model should not be used, however, for values of Q2 smaller than .3 GeV2. 

A study of the propagation of errors into Rlggo reveals a convenient parameteri- 

zation for the uncertainty in R lggo due to the experimental errors, GRsT and GRss, 

(jRl990 = [ (~R:YJ~+ (sR:~Q~+ (~R~:Q~] 1’2 , (5.36) 



5.3 R Extraction and Modeling 111 

Table 5.10. Shown is a x2 breakdown of the best fit model R1”‘. The x2/df 
is based on the total uncertainties, given by the quadrature sum of GRsT 
and GRss. Also shown, for comparison, is the x2/df we would obtain if only 
the 6R= uncertainties had been used. 

Dataset 
Total 
Error df 

Statistical 
Only 

SLAC 69 89 105 
El40 17 11 17 
EMC 3 4 14 
BCDMS 4 12 8 
CDHSW 5 11 15 

Total 99 124 158 

where 

,fjRl990 
x low = .020 + (.006+.03z2) 

’ 

B(x) = max(.05,8.33x-.66) , 

&pO .1x20 
2 htgh = (.86)20+ X20 ’ 

(5.37) 

1 
l/2 

&1990 
model = c (Ri- R1ggo)2/2 . 

i=a,b,c 

The last term estimates the possible error in R lggo due to the assumed functional 

form. This parameterization of SR lsso also takes on reasonable values outside the 

kinematic range of the measurements. Away from measured kinematics bR1”’ grows 

logarithmically in Q2, and stepwise in x for very high x. For very large Q2, the value 

of &lggo at 64 GeV2 is more reasonable and should be used instead. 
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Not included in Equation 5.36 are the radiative corrections uncertainties, GRRc, 

given by.Equation 4.5 with AC = .50 and highly correlated over the entire set of SLAC 

and El40 measurements. For x < .l or Q2 < 1 GeV2, we increase GRRc by a factor of 

1.5 (see Section 5.1). 

For convenience we supply a Fortran implementation of Rlggo and &Pggo in 

Appendix E. 

5.4 I72 Extraction and Modeling 

We calculate F2 from each cross section measurement using Equation 1.1 with 

R = Rlsgo. Th ese F2 values are tabled in Appendix E, along with the final cross 

section measurements. 

The uncertainty vector of each F2 extraction is exactly equal to the uncertainty 

vector of the corresponding cross section (&FL = @) with two exceptions. First, a new 

component of the error vector of F2 is generated by the experimental uncertainty in 

Rlggo. We denote this error by &72sz, and note that 

&-$= = sRlggo (l + R1ggo)-2 (e)/(l + el + ilggo) . (5.38) 

Second, the uncertainty in F2 due to radiative corrections, GF2Rc, is smaller than SRc 

(Equation 3.12). This c-dependent uncertainty is lessened due to an anti-correlated 

contribution which enters through SRRc in the calculation of F2. The sum of these 

effects is 

GFRc = .023 c - .85 + 
1 + .5Rlgs0 

2 (1 + R’99O)2 (g/(1 + e1 +ilggo ? (539) 

and is everywhere smaller than f.5%. For x < .l or Q2 < 1 GeV2, we increase Equa- 

tion 5.39 by a factor of 1.5 (see Section 5.1). 
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5.4.1 The 529 and A12 Models 

We present two fits to the sets of extracted F2. The first model is the & model 

defined by Equation 5.4. The second model is the Al2 model, defined by 

Ft” = P@‘(x) { l+ h(x)ln[-$$] + h(x)ln2[&]} , (5.40) 

where 

Fib”(x) = 2 Ci (1 - x)~+~ , 
i=l 

Xl(X) = 5 Ci+Sz’ , 

i=O 

X2(X) = 
c6 + c72 + &X2, if Q2 < A(x) , 

0, otherwise, 

and 

A(x) = 1.22e3-2Z , 

(5.41) 

and where the deuterium binding term, ,f3, is common to both models. The A12 model 

is inspired by the failure of the J29 model to adequately fit the data at large x and 

large Q2. The Rg model tends to scale quickly as Q2 gets large, whereas the A12 

model, is linear in [ lnQ2] for Q2 > A(x), and quadratic below. Linearity above some 

threshold is expected from deep inelastic muon scattering data,g121 while quadratic 

dependence in [ lnQ2] at smaller Q2 is entirely ad hoc. 

The sets of best fit parameters are determined with program FITPAR (see Set- 

tion 5.2.2) using weights determined by the total experimental error in F2, given by 

quadrature sum of all components of the error vector except bF,Rc, 

(W2s)2+ (6FsR)2+ (sF,sy)‘+ (6F:E)2 

+ (sF,TM1)2+ (sF,NMz)2+ (sF,sz)2 1 -1 

. 
(5.43) 
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Table 5.11. Shown are the best fit model parameters for the Rg and Al2 
models of F2 for hydrogen (p) and deuterium (d). 

Cl 

c2 

c3 

c4 

c5 

c6 

c7 

c8 

c9 

C 10 

Cl1 

C 12 

Rg model 
P d 

.734 .609 
11.025 8.428 

2.619 1.864 
4.096 3.130 

.121 .195 
1.971 .821 
3.889 3.281 

-14.051 -8.297 
8.808 4.489 

A12 model 
P d 

1.417 ,948 
-.108 -.115 
1.486 1.861 

-5.979. -4.733 
3.524 2.348 

-.Oll -.065 
-.619 -.224 
1.385 1.085 

.270 .213 
-2.179 -1.687 

4.722 3.409 
-4.363 -3.255 

X2/@ 5061652 4381682 4571649 4231679 

The best fit parameters are presented in Table 5.11. The uncertainties and correlation 

matrices of the parameters are used to estimate the experimental uncertainties of the 

Rg and Al2 models. A Fortran implementation of both models (with estimates of 

statistical and systematic uncertainties), Figgo (x, Q2), is provided in Appendix E. 

The uncertainty in these models due to radiative corrections has been studied 

extensively, and is everywhere f.2%. In all applications, we use the difference between 

these models to estimate the systematic errors due to the functional form of either 

structure function model. 

The experiment-by-experiment breakdown of x2 contributions is shown in Ta- 

ble 5.12. The very small x2 contributions of E49a and E61 which were noted in 

Section 5.2.4 are again observed. The right-hand columns of Table 5.12 give the x2 

contributions one would obtain allowing weights to be determined by C2= instead 
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Table 5.12. Shown is a x2 breakdown of the best fit 09 and A12 models of 
3’2. The x2/df b d is ase on the total experimental uncertainties, as indicated 
in Equation 5.43. Also shown, for comparison, is the x2/d! we would obtain 
if only the SF2= uncertainties had been used. 

Total 
Error 

fb A12 

df 
Statistical 

Only 

fb A12 

Hydrogen 

E49a 47 50 117 58 62 
E49b 187 177 208 248 232 
E61 7 5 32 11 8 
E87 69 66 109 127 116 
E89a 88 64 77 179 136 
E89b 107 94 118 174 147 

Total 506 457 661 797 702 

Deuterium 

E49a 46 44 117 57 57 
E49b 172 166 193 270 254 
E61 6 3 31 9 5 
E87 63 68 109 124 136 
E89a 44 47 71 94 113 
E89b 65 56 100 107 99 
El39 13 11 22 26 20 
El40 28 27 48 47 46 

Total 438 423 691 735 729 

of the total experimentaI uncertainty used in Equation 5.43. The x2 contributions 

of E49a and E61 in these columns support the earlier contention that the statistical 

uncertainties on the data from these experiments, as published,42y44 are anomalously 

large. In contrast, the x2 contributions of the other experiments are just as expected: 

x2/df < 1 for total experimental errors, and x2/df > 1 for statistical errors only. 
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5.4.2 Hydrogen and Deuterium Results 

In Figures 5.9 and 5.10 we present plots of our global F2 extractions structured 

into artificial “x-spectra,‘? in the fashion of the EMCSt21 and BCDMS16j17 publications. 

These x-spectra are constructed in three steps. First, we bin the data into x-bins, 

matching the binning of either EMC or BCDMS. Second, we apply a correction factor, 

based on the best fit 09 and Al2 models to 6, to adjust the F2 measurements to 

the central x value of each bin while holding Q2 fixed. The dependency of this 

correction factor on the choice of models is treated as a new source of systematic 

error and propagated accordingly (typically negligible for x < .7). Third, we then 

condense the data with respect to [InQ’] ( see Section 5.2.1) over a maximum span 

in Q2 of 6%. Throughout this condensing process, we propagate each component 

of the error vector of each F2 measurement, respecting correlations both within and 

between experiments.+ 

Data from all eight experiments (El40 included) are fused into the x-spectra 

shown in Figures 5.9 and 5.10. Each datum represents the weighted average of as 

many as twelve F2 extractions from as many as five experiments. The x-spectra 

presented in these figures match the x-binning of BCDMS. Numerical values for these 

spectra are tabled in Appendix E, along with an identical table conforming to the 

x-binning chosen by EMC. For x < .275 we apply a “scaling factor” to the plotted 

data, 
K  = 15(+275-4 , (5.44) 

thereby permitting the simultaneous presentation of the low-x data. The errors shown 

t We present in App endix E the Fortran implementation of this procedure, pro- 
gram SPECTRA. This program should serve as a detailed example of the (very 
nearly) exact propagation of the F2 error vector through a sensitive analysis (see 
also the analysis in Section 5.3.1 and the general formulas in Appendix B.l). We 
do not a prior recommend such a detailed error propagation for all applications 
of these data, because, in general, the non-random systematic components of the 
error vectors are smaller than the random components (GF,sT and GFzR) and it 
is often possible to make simplifying assumptions about the propagation of the 
non-random components. 
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in Figures 5.9 and 5.10 include all components of the error vector but do not include 

the uncertainties in overall normalization, given by f2.1% for hydrogen and 311.7% 

for deuterium (see Section 5.2.4). 

The curves plotted in Figures 5.9 and 5.10 are the best fit 0, and 1112 models 

of F2. The Ai2 model fits the data better at x > .5 and high Q2, while the Rs model 

fits the data better at x < .l. We expect that the A12 model would be improved by 

raising the number of terms in the definitions of X1,2 in Equation 5.41. We do not 

recommend the use of these models beyond the range of the data shown in these 

figures. 

Figure 5.11 shows the Q2 evolution of F~(x), as indicated by the best fit Rg and 

Ar2 models. The data show a clear shift of F~(cc, Q2) to smaller and smaller z as Q2 

increases. This behavior can be understood very generally in terms of the increasing 

resolution of the photon probea (see also Appendix A.2), or more specifically in 

terms of the QCD evolution of the quark probability distribution functions.87 

Figure 5.12 shows the linear and logarithmic derivatives of Fz(z, Q’) with respect 

to [lnQ’] , Avoiding artificial x-bins, we present the best fit values of these deriva- 

tives using the Ai2 model. Specifically, in (a), we plot Xi = d[J’z] /d[lnQ2] ; and in 

(b), we plot &F2- ‘=d[ln~2]/d[lnQ2]. Th e error curves in (a) are determined by 

program Figgo (see Appendix E) from the covariance matrix of the fit to A12, and 

the errors in (b) include an additional term reflecting the variation of F2 across the 

range of Q2 > A(x) ( see Equation 5.42). Perfect scaling is observed only at x = .195 

(for Q2 > 2.3 GeV2) with d ramatic scaling violations at both lower and higher x. 

Figure 5.13 compares the best fit Rs and Ai2 models with the values of J’2 

extracted previously by Bodek et aL3 (see Section 1.2.2). These early results are in 

-complete agreement with the values of F~(x, Q2) reported here. Importantly, however, 

our new results span a much larger kinematic range, especially in Q2, and display 

greatly reduced statistical and systematic errors. 
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Figure 5.9. Sh own are the combined SLAC hydrogen values of 
&(z, 9”) binned into BCDMS-like z-spectra. Also shown are the 
best fit Ra and A12 models to the data (see next page). The data 
at z < .275 have been scaled by Equation 5.44. The two errant 
data points, marked by squares rather than diamonds, belong to 
the x = .lOO and x = .225 spectra. Figure continues on next page. 
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Figure 5.9/continued: Combined SLAC hydrogen Fz(x, Q”). 
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Figure 5.10. Shown are the combined SLAC deuterium values of 
F~(x, Q2) binned into BCDMS-like z-spectra. Also shown are the 
best fit 09 and AI* models to the data (see next page). The data 
at x < .275 have been scaled by Equation 5.44. Figure continues 
on next page. 
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Figure S.lO/continued: Combined SLAC deuterium Fz(x, Q2). 



122 Global Reanalysis of the SLAC Data 

0.4 

0.3 

T 
- 0.2 
ci" 

0.1 

0.0 

I- 

O 

_________ R, model 

Q2 (GeV2) 

a -7 
b 1.0 
C 2.0 
d 4.0 
e 8.0 
f 16.0 
g 26.0 

----- A,, model 

0.2 0.4 

X 

0.8 0.8 

Figure 5.11. Shown is the Q2 evolution of Fz(2) in hydrogen. 
Shown are the 09 and A12 models F2 at fixed Q2. Curves are 
shown over the range of the SLAC data only. Uncertainties in the 
data are generally larger than the difference between models and 
may be estimated from Figures 5.9 and 5.10 (also see Appendix E). 
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Figure 5.12. The slope of the Al2 fit to our hydrogen data is com- 
pared to the slopes observed in the EMC and BCDMS data (from 
Reference 88). Errors in the SLAC data are represented by the 
dotted error curves. See Sections 5.4.2 and 5.4.3 for details. 
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Figure 5.13. Shown is a comparison of the previous extractions of 
Bodek et a1.3 to the best fit models of our results (see Section 5.4.1). 
Note the effective scale change (+2) as compared to Figures 5.9 and 
5.10. See also Equation 5.44. Figure continues on next page. 
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Figure 5.13/continued: Comparison with previous Fz(x, Q2). 
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54.3 Comparison with EMC and BCDMS 

We now attempt to resolve the EMC/BCDMS F2 disparity, shown in Figure 1.2, 

with comparisons to the precise SLAC data presented in the previous section. Though 

it is has been widely demonstrated 20+88g that the EMC data are 5% to 10% lower 

than other measurements, there remains a large systematic discrepancy with respect 

to z between the EMC and BCDMS extractions of F2. The SLAC F2 results extend 

well into the high-Q2 domain of the p-scattering data and offer an excellent basis for 

comparison. 

Both EMC and BCDMS extract F2 from the measured cross sections assuming 

that Rr 0. To correct the effects of this assumption, we apply a correction factor 

to their F2 values which adjusts their data to reflect the new measurements of R, as 

parameterized by R1ggo(x, Q2). This correction factor is 

CR = 1-y+gy2+z 
1 - y + [fy2 + z(1-R1990)](l+R1990)-1 ' 

(5.45) 

where y = u/E0 and z = Q2/4Ez . 

For the BCDMS data, this correction factor is applied to each measurement at 

each beam energy, and then the corrected measurements are averaged over beam 

energies. For the EMC data, however, the process of averaging over energies is quite 

complicated,g so we adopt an approximate treatment. Instead we calculate the correc- 

tion factor for each beam energy which contributes to a particular F2 measurement 

in Table 10 of Reference 9; then average these correction factors with weights de- 

termined by the statistical errors of the individual F2 measurements in Table 9 of 

Reference 9; and finally apply the averaged correction factor to the averaged F2. For 

both BCDMS and EMC the total correction is typically less than 1% for x > .2 and 

rises to several percent for smaller x (especially at large Q2). Errors in this correction 

factor, estimated from SR1ggo, are typically below f.2% and are added in quadrature 

to the systematic errors of the EMC and BCDMS data. 
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Figures 5.14 and 5.15 compare the SLAC F2 results with those of BCDMS,16317 

corrected for the above effect. The uncertainties shown for BCDMS reflect our usual 

policy of using the full extent of the error bar to denote the quadrature sum of 

statistical and systematic uncertainties. In this case, however, it is important to 

note that the large BCDMS systematic errors at high z and low Q” are dominated 

by perfect2y correlated uncertainties in spectrometer magnetic field calibration and in 

spectrometer resolution. The overall normalization uncertainty of the BCDMS data is 

9~3% and is not included in the error bars of the figures. 

Figures 5.16 and 5.17 similarly compare the SLAC Fz results with those of 

EMC,~J~ normalized by [x 1.071. Al so included are the recent EMC low-2 deuterium 

results,g0 normalized by [x1.00]. The EMC data at x = .75 suffer from large uncer- 

tainties in the relative normalizations of data taken with different beam energies,g1 

and so, must only be used with caution. The overall normalization uncertainty of the 

EMC data is f5% and is not included in the error bars of the figures. 

Visual inspection of Figures 5.14 and 5.15 indicates that there is generally good 

agreement between the SLAC and BCDMS results, with two noted exceptions. First, 

the three lowest Q2 data of BCDMS at x = .55 and z = .65 are 10 to 15% lower than 

the SLAC data. Because these data are strongly correlated, the disagreement with 

SLAC might be explained, for example, in terms of a single -2 standard deviation 

effect in spectrometer calibration and/or resolution. Second, between x = .18 and 

x = .275 there seems to be a basic 5% disagreement between the high-Q2 “tendency” 

of the SLAC data and the low-Q 2 “tendency” of the BCDMS data. This is especially 

unfortunate because, as shown in Figure 5.12 (b), this x,range is the only region in 

which SLAC and BCDMS display the same slope in F2. 

Visual inspection of Figures 5.16 and 5.17 indicates that there is excellent agree- 

.ment between the SLAC and EMC results (modulo the 7% overall normalization factor). 

There does appear to be some disagreement at z = .08 between the “tendencies” of 
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Figure 5.14/continued: Comparison of SLAC and BCDMS hydrogen F2 results. 
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Figure 5.15. Shown is a comparison of the SLAC and BCDMS deu- 
terium F2 results. A relative normalization of 1.000 is assumed. 
See also Equation 5.44. Figure continues on next page. 
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Equation 5.44. Figure continues on next page. 



5.4 F2 Extraction and Modeling 133 

0.100 

0.050 

2 

0.010 

0.005 

J 

I I I 

x=.350 P l l f=* fI.i*. 
l l .* 

x=.450 l f, 5 ‘*p% $ D i *a +L.f 
’ l *t* 

f 4 
0 

x=.550 l I l f 
l ia* * 

l ** 

x=.650 l f 

Hydrogen F, 

t This Report 

+ EMC (x1.07) 

x=.650 1 

t 

I 

I I I 

100 101 102 

Q 2 

Figure 5.16/continued: Comparison of SLAC and EMC hydrogen F2 results. 
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the SLAC and EMC data,+ though, the x2 gap Q2 between the datasets lessens the 

value of this comparison. 

Figure 5.12 compares the slopes observed in the SLAC data with those of EMC 

and BCDMS. The SLAC data tends to slope more steeply at both low and high x, as 

can also be seen in Figures 5.14 through 5.17. We interpret the sharp discontinuity in 

slope at x = .65 and x = .75 as strong evidence of -l/Q” power corrections to &CD. 

To separate these power corrections from the QCD logarithmic scaling violations is 

difficult, especially in light of the discrepancies between the SLAC, EMC, and BCDMS 

datasets and the fact that the observed discontinuity in slope occurs precisely on the 

boundary between electron- and muon-scattering datasets. 

In Table 5.13 we present the results of a naive normalization comparison of 

the SLAC hydrogen data and that of EMC and BCDMS. We compare measurements 

at identical or nearly identical kinematics; then average over Q2, propagating all 

systematic errors as though they were perfectly correlated. This comparison, however, 

is very limited statistically and completely ignores the information available from the 

tendencies of the low CC data. Note, for example, that the low-x data in Figures 5.14 

and 5.15 clearly contradicts the global average for the BCDMS/SLAC normalization in 

Table 5.13. 

A better method to study the relative normalizations of SLAC, EMC, and BCDMS is 

to use a smooth fit to guide the comparison over longer ranges in Q2, and through the 

gap in Q2 at low x. We perform a x2 minimization fit to the combined SLACSEMC and 

SLACSBCDMS datasets, allowing a simple normalization constant to be determined 

simultaneously with the parameters of either the as or the Arz models. This is 

exactly the method of the normalization fits of Section 5.2, though, now with two 

added complications. 

t In general, we shall not comment on the recent low-x low-Q2 EMC deuterium 
data,g0 which, while in good agreement with the SLAC data, display flO% total 
errors. 
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Table 5.13. Shown are the results of a naive normalization comparison of the 
EMC and BCDMS results to those of SLAC. This study is made by comparing 
measurements at identical or nearly identical kinematics and is misleading 
because that it ignores the low-x information (see text). 

X (Q2) EMC BCDMS 

.250 8.0 1.029 f .023 f .055 

.350 10.0 1.094 .035 .050 1.018 f .044 f .032 

.450 12.9 1.165 .046 .060 1.032 .017 .027 

.550 14.7 1.126 .051 ,069 1.090 .018 .033 

.650 20.0 1.030 .114 .079 1.118 .021 .057 

.750 27.0 .733 .151 .074 1.085 .047 .079 

Global Average 

.344 10.3 1.068f.016f.057 

.538 15.3 1.072 f .OlO f .039 

First, there is minimal kinematic overlap between SLAC and the other datasets 

which causes unavoidable model dependence in the best fit normalization parameters. 

We address this issue by using two models of Fz, one which scales quickly and one 

which does not, and by testing for sensitivity of the normalization parameters which 

might indicate a gross inadequacy in the models. 

Second, there are strong correlations between the large BCDMS systematic errors 

at large x and low Q 2. We respect these correlations by altering the fitting routine 

(see Section 5.2.2) to include an additional parameter which permits the BCDMS F2 

values to vary in unison within the statistical bounds of these correlated systematic 

uncertainties.+ 

Extensive study reveals that within a percent or so, it is permissible to assume 

-that the EMC hydrogen and deuterium datasets display the same normalization rela- 

t See, for example, the seventh and eighth columns of Tables 3 through 6 of Ref- . 
erence 16. 
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Table 5.14. Shown are the results of normalization fits to the SLAC+EMC 
hydrogen (P> and deuterium (d) F2 results. See text for details. 

Model Normalization 
EMC 

X2&f 

SLAC 

x2/# 
Factor P d P d 

09 1.075 f .009 f .OlO 46/58 45/49 521/661 439/691 
A12 1.060 f .009 f .015 56/58 62/49 479/661 435/691 

tive to their SLAC counterparts; and similarly for the BCDMS datasets. Thus, we fit 

both hydrogen and deuterium data simultaneously with a common normalization fac- 

tor. For simplicity, we fit the data with weights determined by the quadrature sum 

of statistical and systematic errors, excluding the two above-mentioned correlated 

uncertainties of BCDMS. 

The results of the SLAC+EMC normalization fits are shown in Table 5.14. The 

systematic uncertainties in the table reflect an extensive study of the dependence of 

the normalization parameters on a wide variety of kinematic cuts placed on the data 

(though, we do not use any data of Q2 > 50 GeV2). The x2/dj quoted in Table 5.14 are 

for all data of Q2 < 50 GeV2, and are typical of all fits regardless of the kinematic cuts. 

The difference between models is an estimate of the systematic uncertainty in the 

normalization due to model dependence. We conclude that the relative normalization 

factor of the EMC data to the SLAC data is 1.07 f .02. While this value is somewhat 

larger than the normalization uncertainty of the EMC data, it is in good agreement 

with comparisons2op88 of the EMC iron F2 values with F2 measurements from v- 

scattering on nuclear targets.11y13j18 

We do not, however, quote the results of the SLAC+BCDMS normalization studies, 

as these fits produce uniformly unsatisfactory results. Though x2’s of less than 1 

per degree of freedom are easily obtained, they are characterized by small SLAC 
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contributions (as in Table 5.12) and much larger x2/dj’ contributions from BCDMS. In 

particular, these best fit curves fit the data very poorly between z = .18 and x = .275 : 

consistently greater than the high-Q2 SLAC data and consistently less than the low-Q2 

BCDMS data. 

We conclude from this study that SLAC and BCDMS agree in overall normalization 

to f3%, but we maintain the reservation that there remains a large x-dependent 

disagreement between the SLAC and BCDMS datasets. Although it is possible to 

understand the disparity at z = .65 and z = .55 in terms of a N 2 standard deviation 

effect in spectrometer calibration and/or resolution, it is not possible to match both 

the low-a: data ( -18 5 x 5.275 ) and the medium-x data ( x = .35 and .45) with a 

single normalization constant. 

We have considered the possibility that large s-dependent systematic problems 

pervade the SLAC dataset. This we consider extremely unlikely for several reasons. 

First and foremost, is the relative simplicity of the SLAC experimental apparatus and 

data reduction procedures compared to those of EMC and BCDMS. For example, the 

SLAC scattering kinematics are known very precisely, and the SLAC cross sections 

measurements do not rely on monte carlo studies of acceptances or efficiencies. Sec- 

ond, the SLAC results are extracted from many experiments, thereby reducing the 

impact of any single systematic error in any one experiment. Large systematic errors 

common to all experiments would have to lie in the incident electron beam monitoring 

and control systems. Such effects, however, are refuted by a series tests and recalibra- 

tions performed during the lifetime of those systems. 51~53*g2 And third, large problems 

due to radiative corrections are unlikely because of the favorable propagation of the 

difference in Equation 3.11 through the F2 extraction (Equation 5.39). 

We conclude, therefore, that the source of the disagreement between EMC and 

BCDMS, as shown in Figure 1.2, lies in uncorrected systematic effects within both 

datasets. First, the EMC data is inconsistent with the carefully evaluated SLAC 
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normalization uncertainties. We conclude that EMC data is too low by a factor of 

1.07 f .02 f .02, where the second error is the overall SLAC normalization uncertainty. 

And second, we observe a significant z-dependent disparity between the SLAC and 

BCDMS datasets which is well outside the carefully evaluated and propagated SLAC 

systematic errors. This SLAC/BCDMS disparity is of the same size and direction as 

the z-dependent component of the EMC/BCDMS discrepancy shown in Figure 1.2, 

indicating that some uncorrected z-dependent effect may persist within the BCDMS 

dataset. 

5.4.4 Neutron/Proton Studies 

The new SLAC results for adlap are tabled in Appendix E. We obtain Ft/F,f 

from ad/&’ under the assumption that Rd = RJ’.t We note that the Sfl, 6sE, and 

bRc components of the error vector approximately cancel in the cross section ratio, 

and so are neglected in this analysis. The overall normalization uncertainty of the 

SLAC ad/$’ ratios is conservatively estimated to be ~4~1% (see Section 5.2.4). 

As the calculation of Fermi smearing corrections is outside the scope of this thesis, 

we work entirely with (Fc/FZp)s, defined as the “smeared,” or non-Fermi corrected, 

neutron/proton structure function ratio, given by 

= s,-l g + (s;l- 1) , 
( ) 2 

where S, and Sp are the ratios of unsmeared to smeared F,” and Fl, respectively. 

Our primary interest (see Section 1.1.3) is in the slope of F,“IF,p with respect to 

[ lnQ2], and so, we limit the main emphasis of our study to the z < .7 region, where 

smearing effects contribute negligibly to this slope.g3 

t The uncertainty in this assumption, given by Equation 5.29, generates a 6” 
component in the error vector of ad/up of roughly f.2%. This, however, we 
choose to ignore, in the spirit of other F2*/F[ analyses.21y26 
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Phenomenologically, the SLAC (Fc/F;)s are fit quite well by a simple parame- 

terization, 

- where 

= PI(X) t P2(2) [lnQ'] , (5.47) 

Pi(S) = .9004 - .0262x - 6.0915x2 + 15.8103x3 - 12.8660x* , 

P2(x) = -.0035 - .2333x + 1.7832x2 - 5.0908x3 + 4.6070x4 . 
(5.48) 

These parameters are determined with the x2 minimization program FITPAR (see 

Section 5.2.2) working in the logarithmic variable of Appendix B.2, with weights 

determined by the quadrature sum of statistical and systematic errors. We avoid 

resonance effects by including in this fit only data for which W2 2 4 GeV2. The x2/dj 

of this fit is 487/527, with an experiment-by-experiment breakdown closely resembling 

those of Table 5.3. 

Figure 5.18 presents a contour map of the x dependence of (F,“/F2p)s for several 

values of Q2, as represented by the above parameterization. The dramatic rise above 

z = .7 observed for large Q2 is due to the uncorrected Fermi smearing of the deuterium 

structure function. 

The slope of ( F2nIF2p)s with respect to [ lnQ2] is shown in Figure 5.19. In this 

figure, the solid curve represents Pi, and the sparse dotted curves represent one 

standard deviation uncertainties in Pz(s). The points shown are the results of linear 

regression analyses to the SLAC (F2”lFzp)s d a t a when binned into artificial x-spectra 

(see Figure 5.20 and Table 5.15 below). Also shown in Figure 5.19 are next to leading 

order calculations g3 of d[F,“IF,P]/d[lnQ’] in the SLAC Q2 range based on QCD and 

on QCD+TM. 

We observe that (F2/FZp)s falls as [ lnQ2] with a significant slope, in excellent 

agreement with QCD and QCD+TM. Motivated by the flatness of the data at low x, 

we determine the average slope over prediction, we determine the average slope over 

the z L .5 region by refitting the data to the model of Equation 5.47, constraining P2 
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Figure 5.18. Shown is a contour map of the best fit to the SLAC 
(F,“/F& data. 

to a constant value. The best fit model, valid only for the range x 5.5, is 

= .9498 - .9706x + .3102s2 - .0146 [ lnQ2] , (5.49) 

with a x2/dj of 312/331. The statistical uncertainty in this slope is f.0040, and we 

estimate an additional systematic uncertainty of f.0030 which accounts for the non- 

cancellation of some systematic effects in the cross section ratio, of roughly size &l% 

over a x 10 span in Q2, averaged over all experiments. Thus, we conclude that for 

x I.5 and for SLAC values of Q2 

-.015 f .004 f .003 , (5.50) 

in good agreement with the mean QCD prediction over this range of -.OlO. 
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Figure 5.19. Shown is the derivative of (F,“IF,p)s with respect to 
Q2 as determined by the best fit to Equation 5.47. Also shown are 
calculations of this slope based on QCD and on QCD+TM. See text 
for more details. 

The slopes we observe in Figure 5.19 explain the systematic disparity in &‘/F{ 

between SLAC, EMC and BCDMS shown in Figure 1.4. To demonstrate this, we com- 

pare the best fit to the SLAC (F2/F:)s ratios, Equations 5.47 and 5.48, with (FF/J’!)s 

from EMC and BCDMS, obtained via Equation 5.46. We similarly make the simplify- 

ing approximation that all systematic errors cancel in the ratio of Ft/Fl, with the 

exception of an overall normalization uncertainty of f3% for EMCEE and f2% for 

BCDMS.26 

Figures 5.20 and 5.21 compare the SLAC (F,“/F2p)s results with those of BCDMS 

and EMC. The SLAC data shown here are obtained by binning the data into s-spectra, 

then condensing the data with respect to [Ins’] (see Section 5.4.2). The solid lines 
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shown in these figures are the best fit of Equations 5.47 and 5.48, in excellent agree- 

ment with both the BCDMS and the EMC data, except at very large z where smearing 

effects become important. 

Also shown in Figures 5.20 and 5.21 are straight line fits to the SLAC+BCDMS 

data and SLACSEMC data in each z-bin, represented by the dashed lines. As before, 

we only fit the SLAC data above W2 = 4 GeV 2. In general there is excellent agreement 

between the solid and dashed lines in these figures. At z 2.65 the span in [ lnQ2] of 

the SLAC data is quite small, and so, the SLAC data is fit equally well by the dashed 

lines of Figure 5.20. 

The slopes of these mutual best fit lines to the SLAC+BCDMS and SLACSEMC 

data are presented in Table 5.15. Identical fits to the SLAC data alone are shown 

for comparison (see also Figure 5.19). Each value in this table actually represents 

the “mean” slope determined from two regression analyses, one in (F,“/F2p)s and one 

in uwT)s ( see, for elucidation, the text to Equation 4.11 and also Appendix B.2). 

These fits yield uniformly good x2’s, indicating good agreement between datasets. We 

estimate the systematic errors in the slopes of Table 5.15 to be f.003 for the SLAC fits, 

LO07 for the SLAC+BCDMS fits, and f.O1O for the SLACSEMC fits. The dominant 

contributions to these systematic errors are the relative normalization uncertainties 

of the datasets. 

In Figure 5.22 we compare the slopes of Table 5.15 to next to leading order 

calculationsg3 of d[ F,“IF,p ] /d [ In Q ] 2 based on QCD and QCD+TM. We observe fair 

agreement between the SLACSBCDMS slopes and QCD+TM, though the data seem 

consistently lower. This apparent disagreement with theory is less alarming in light of 

the z-dependent discrepancies between the SLAC and BCDMS hydrogen and deuterium 

datasets (see Section 5.4.3), some of which, might not perfectly cancel in the gd/crJ’ 

ratio. A more careful propagation of systematic errors would likely result in larger 

uncertainties in the SLAC+BCDMS slopes. We observe excellent agreement, on the 

other hand, between the SLACSEMC slopes and the QCD+TM calculations. 
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Figure 5.20. Shown is a comparison of the SLAC (FT/F;)s results 
with those of BCDMS. A relative normalization of 1.000 is assumed. 
The solid lines show the best fit of the SLAC data given by Equa- 
tions 5.47 and 5.48. The dashed lines show the best linear fit to 
the combined data in each s-spectra. Figure continues on next two 
pages. 
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Figure 5.2O/continued: Comparison of SLAC and BCDMS (Fz”lFzp)s results. 
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Figure 5.21. Shown is a comparison of the SLAC (F,"/I?I)s results 
with those of EMC. A relative normalization of 1.000 is assumed. 
The solid lines show the best fit of the SLAC data given by Equa- 
tions 5.47 and 5.48. The dashed lines show the best linear fit to the 
combined data in each z-spectra. Figure continues on next page. 
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Table 5.15. Shown are the best fit slopes, d[(F,“IF,P),]/d[lnQ2], of the SLAC, 
SLAC+BCDMS and SLAC+EMC datasets, as shown in Figures 5.19, 5.20, and 
5.21, respectively. Errors shown are statistical. See text for details and 
estimates of systematic errors. 

X 

Slope 
SLAC 

X2/@ 
SLAC 

Slope X2/4 x2/df 

SLAC+BCDMS SLAC BCDMS 

.070 -.052 f .042 5/ 6 

.lOO -.024 .015 71 14 

.140 -.OlO .014 lO/ 15 

.180 -.009 .OlO 24/ 15 

.225 -.024 .012 12/ 15 

.227 -.004 .Oll 6/ 15 

.350 -.031 .OlO ll/ 15 

.450 -.007 .Oll ll/ 17 

.550 -.031 .014 15/ 14 

.650 ,.019 ,016 17/ 12 

.750 .078 .035 81 10 

.850 .076 .182 o/ 2 

-.OOl f .008 7/ 7 8/ 3 
-.Oll .004 7/ 15 71 7 
-.015 ,004 lO/ 16 141 12 
-.020 .003 25/ 16 181 13 
-.025 .003 121 16 231 15 
-.025 .003 9/ 16 29/ 16 
-.027 .003 12/ 16 20/ 17 
-.017 .004 12/ 18 lO/ 18 
-.037 .006 151 15 331 18 
-.016 .008 23/ 13 19/ 17 

.045 .017 lO/ 11 13/ 12 

Total x2/df: 126 / 150 149 / 159 194 / 147 

Slope X2/@ x2/df 

X SLACSEMC SLAC EMC 

.080 -.009 f .007 8/ 13 81 4 

.125 .004 .007 7/ 14 31 5 

.175 -.005 .006 141 21 61 6 

.250 -.015 .005 23/ 21 ll/ 7 

.350 -.022 .008 201 16 41 6 

.450 -.003 .009 101 18 171 6 

.550 -.OlO .013 33/ 15 91 6 

.650 ,019 .016 19/ 13 31 5 

Total x2fdf: 134 / 139 61/45 
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Figure 5.22. Shown are the values of d[(F,“/I$‘),]/d[lnQ2] ex- 
tracted from linear regression analyses to the data of Figures 5.20 
and 5.21 (dotted lines). 

In conclusion, we resolve the SLAC, EMC, and BCDMS 8’z”/F2p disparity shown 

in Figure 1.4 in terms of a logarithmic Q2 dependence of (Fc/I$‘)s. The SLAC 

(FT/F& data displays a significant non-zero slope in [ lnQ2], in good agreement 

with QCD calculations in the SLAC Q2 range. Combined studies of the SLAC+EMC 

and SLAC+BCDMS confirm this falloff with [InQ’] out to very large values of Q2, 

in excellent agreement with the results of the SLAC analysis, and in good agreement 

-with QCD. calculations at these higher Q2. 



Chapter 6 

Concluding Remarks 

The analysis presented here successfully unifies the pre-existing body of deep in- 

elastic cross section measurements at SLAC with those of our recent experiment E140. 

The resulting global dataset displays a remarkable homogeneity and a statistical ro- 

bustness when probed with a wide range of analytical tools. Within a framework of 

rigorous error analysis and propogation, we report new highly precise extractions of 

the structure functions R and Fs over the entire SLAC kinematic range. 

In this analysis we report several important fundamental observations. First, 

we measure no nucleon (or nuclear) dependence to R. This observation places sharp 

constraints on those nonperturbative contributions to parton dynamics which would 

generates large differences between Rd and RJ’, for example, diquark formation. 

Second, we observe that R is systematically and significantly much larger than 

RQCDt-TM over the entire SLAC kinematic range. This observation stands as a 

challenge for theorists and phenomenologists to develop the tools needed to un- 

derstand the next to leading twist contributions to nucleon structure. Addition- 

ally, we report best fit phenomenological models of R and the uncertainty in R, 

R’ggo(z, Q2) f 6R1ggo(s, Q2), w ic h’ h can be used to extract Fi and F2 from any deep 

inelastic lepton scattering cross section measurement. 

Third, we report new values of F2 for hydrogen and deuterium throughout the 

SLAC kinematic range which set new standards for future structure function mea- 

surements. The f2% overall normalization uncertainty of El40 combines with the 
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kinematic reach of seven other SLAC experiments to yield high precision structure 

functions measurements out to high Q2 and over a wide range in z. Using these new 

structure functions we note excellent agreement with the higher-Q2 EMC structure 

functions multiplied by a simple normalization factor of 1.07. We do not, however, find 

such agreement with the BCDMS data. Rather, we observe a significant s-dependent 

disparity between the SLAC and BCDMS structure functions consistent with previous 

comparisons of the EMC and BCDMS results. 

And fourth, we resolve the historical disparity in FF/F; ratios between the high 

Q2 data of EMC and BCDMS and the low Q2 data of SLAC. We observe a statistically 

significant falloff of FF/F2p with Q2, in good agreement with calculations based on 

&CD. Extrapolations of this effect to high Q2 are in excellent agreement with both 

EMC and BCDMS F;/Fl ratios. 

Possible future extensions of this work include phenomenological analyses of the 

higher twist contributions to R and F 2. The second of these can be done in context 

of a full QCD analysis over the two decades in Q2 spanned by electron and muon 

scattering data. Within the SLAC kinematic range, it is still possible to improve on 

the work reported here, most importantly in understanding the x dependence of R, 

which is sensitive to competing higher twist effects, Lastly, a large amount of SLAC 

data exists for the resonance region which could be subjected to a similar, albeit more 

difficult, global reanalysis and structure function extraction. 



Appendix A 

Review of Deep Inelastic Scattering 

This appendix is provided as a brief reference for deep inelastic electron scatter- 

ing. The first section is a concise statement of the scattering kinematics used in this 

report. The second section is an intuitive introduction to the subject of deep inelastic 

electron scattering at an elementary level. 

A.1 Kinematics 

In deep inelastic electron scattering at SLAC, an incident electron of high energy, 

E,, scatters from a nuclear target at rest in the laboratory frame. The scattered 

lepton is detected and is measured to scatter through an angle, 0, with secondary 

energy, E’ . 

In the first Born approximation, the electron scattering takes place through the 

exchange of a single virtual photon which carries energy v and invariant momentum 

transfer Q2, where 
V= E, - E’ , 

Q2 f -42 = 4E, E’sin’(i) . (A4 

Here, and elsewhere, we take tZ. - c G 1 and we neglect the rest mass of the electron. 

The square of the invariant mass of the undetected final hadronic state is 

W2=M;+2Mpv-Q2, (A-2) 

where MP is the rest mass of the proton. 
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The differential cross section for deep inelastic scattering from a nuclear target 

is completely calculable in QED. This cross section is expressible in terms of two 

structure functions Fl and F2 which parameterize the virtual photon-nucleon coupling 

and contain all the interesting physics, 

d2a 

arm=u 
mott iF&, Q2) + $-4(x, s”> tan2($] y 64.3) 

P 

where 

is the nonstructure Mott 

Bjorken scaling variable, 

4a2 El2 
u molt = 

Q4 
cos2( ;) 

cross section, Q is the fine structure constant, and x is the 

Alternatively, one can view the scattering process as the production and absorp- 

tion of a single virtual photon. From this perspective, the cross section is expressible 

in terms of OT and UL, the cross sections for the absorption of transverse and longi- 

tudinal photons, 

0 = I' [uT(&Q2)+ ~~L(GQ~)] , (A-6) 

where I’ is the flux of transverse virtual photons, 

W”-Mp’ 
k= 2M , 

P 

and E E [O,l] is the relative flux of longitudinal virtual photons, 

e= 1+2(1$Q;; tan 2 . 
[ 

22 2 8 -l 
> o] 

(A.7) 

(A.8) 
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One of the major goals of our effort is the extraction of the ratio R = uL/gT, which 

is expressed in terms of FI and F2 as 

R(x,Q2) = 2 = & (1 + 
UT 1 

The relationship of J’i and F2 to oT and oL is given by 

f 'hQ2) = -$fp+,Q2), 

f’2(x7Q2) = & ~(1 + $)-l [uT(t,Q2) t uL(x,Q2)] . 

(A-9) 

(A.lO) 

Frequently, the literature makes reference to the longitudinal structure function, FL, 

which is defined by 

FL = F2 - 2xFl + ( 4;f2)F2 , (A.ll) 

and in terms of which we can write 

R FL 
=s$ 

(A.12) 

A.2 Structure Functions 

In the first part of this section, we consider a simple non-relativistic description 

of electron scattering as an introduction to structure functions and form factors. In 

the second part we extend these ideas to the relativistic case, in particular, inter- 

preting the deep inelastic structure functions described in this thesis in terms of the 

quark/parton model of the nucleon. 

Consider the case of electron scattering from a target composed of N well-defined 

constituents and characterized by an initial state vector I\ki). Assume that the final 

state, /Qf), b e unobserved and denote the incident and final electron 4-momenta by 

P, = (&,E,) and P’ = (p”,E’), respectively. 
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A.2.1 Non-Relativistic Treatment 

We use first-order perturbation theory for the transition rate from initial to final 

states (Fermi’s Golden Rule), to calculate the cross section, 

(A.13) 

where w is the beam velocity, Ei and Ef are the initial and final energies of the target, 

and HI is the interaction Hamiltonian. As HI consists only of 2-body interactions 

between the electron and the target constituents, we write 

HI = 5 v,(&-?j) . (A.14) 
j=l 

For electromagnetic interactions we make Born’s first approximation, that the electron 

and target states are independent. Then, we note the following simplification within 

the matrix element of Equation A.13, 

(P’IVj(r’-r’j)lP,) = J d3rei(ir’-~o)‘tVj(r’--j) , 
(A.15) 

= e iF3 Tj(g) , 

where 

Tj({) = Jd3r eiHPVj(?) (A.16) 

is recognizable as the elastic scattering amplitude for scattering off the jth constituent 

with momentum transfer <S p” - &. 

Consider the special case where the Vj(rj) re p resent only the Coulomb interac- 

tions due to spherically symmetric charge distributions pj(rj), 

l+(F) = J d3rjH, J (A.17) 
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as in electron scattering from spin-0 nuclei. Then, T’j( (I’> simplifies to 

Ti(q2) = $FjCq2) 7 (A.18) 

where I$(q2) is defined as the elastic form factor of the jth constituent, given by 

F’(q2) E /d3reig*‘pj(r) , (A.19) 

and with the clear interpretation as the S-dimensional Fourier transform of constituent 

charge distribution. Note that F’(0) = Qj normalizes the Fj to the static charges of 

the constituents. Note also that structureless constituents would yield Fj = Qj. The 

matrix element of Equation A.13 thereby reduces to 

Mif(q2) = (qfl C Fj(q2) eia*c ISi) , 
j 

(A.20) 

in terms of which, we define the target structure function, 

W(v,q2)z C ~A4if(q2)('~(Ef-Ei-U) . 
f 

(A.21) 

The cross section of Equation A.13 can thus be expressed in the simple form 

where 

W(Y,Q2) 9 
Ruth 

( $)Ruth = [ 2mew’in2($)] 2 

(A.22) 

(A.23) 

is the Rutherford cross section for electron scattering from a spin-0 structureless 

target. 

Thus, all the interesting physics of the scattering process is dictated by the target 

structure function W(Y, q2). Conversely, by comparing the measured cross section to 
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the Rutherford prediction on.e determines W(Y, q2) and begins to decipher the internal 

.structure of the target. 

Consider the specific case of elastic scattering. The elastic cross section follows 

_ directly from Equation A.22, 

(A.24) 

where F(q2) is defined to be the elastic form factor of the target and is given by 

F(q2) E Mii(q2) = C F’(q2) (Xl?i(e’~*~ I\Ei) 
j 

(A.25) 

(and where we have neglected the usual target recoil term [l + (2p. /M) sin2 (:)I-‘). 

Note that, as above, the target elastic form factor is normalized at q2 = 0 to the total 

static charge of the target. 

In the special case that all constituents are identical and the wavefunction is 

symmetric, then Equation A.25 simplifies to 

F(q2) = C Fj(q2) Jdsrl . . . d3rNeii”fj l(?l,. . . ,&lXP;)/2 , 
j 

(A.26) 

= N Fc(q2) Jd3r e’q$ p(F) , (A.27) 

where F,( q2) is the common constituent elastic form factor and where 

p(F) = /d3r2...d3rN /(i,72,...,7Njgi)/2 (A.28) 

is the single constituent density distribution. Here, p(F) can be thought of as IQ(?)]” 

where Q(F) is the wavefunction of an average pointlike constituent bound in the 

potential well formed by the other constituents. The integral in Equation A.27 is the 
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3-dimensional Fourier transform of this charge distribution and is termed the body 

form factor g4 of the target. 

Thus, the measurable quantity, the elastic form factor of the target, is the product 

of constituent and body form factors, 

f’(q2) = N Fc(q2) x h(q2) - (A.29) 

In most applications the constituent size, R,, is tremendously smaller than the target 

size, Rb. This implies F(q2) - Fa(q2) in the range qRb - 1. For example, the dra- 

matic diffractive structure observed” in nuclear form factors at q < 1 fm-1 is due 

to scattering (transmission) resonances at qRb - nr/2. Inverting the nuclear Fb(q’), 

one typically obtains” a flat charge distribution, p(r), out to some well-defined &,, 

beyond which p(r) falls quickly to zero. The small r dependence of p(r) dictates the 

asymptotic behavior of Fb(q2), and if p( ) r is normalizable at the origin, it followsg4 

that Fb(q2) falls off at least as fast as l/q4. Only at very large q2, qR, - 1, does the 

constituent form factor become important, though, in general, it can be quite difficult 

to separate constituent and body form factors. 

In the case of electron-nucleon elastic scattering, one observes a smooth “dipole” 

elastic form factor, F(q2) = l/(1 +q2/.71GeV2)2. The lack of resonant structure in 

F(q”) implies that Rb is not well defined, an idea consistent with the exponential 

charge distribution obtained by inverting F(q2). A n estimate of the possible FC(q2) 

contribution (quark substructure) to F(q2) would require that the large q2 behavior 

of Fb(q’) be much more firmly understood in terms of QCD than at present. 

The results presented here rely in part on several simplifying assumptions. As- 

sumptions about Igi) are made only to simplify Equation A.25 to the more intuitive 

factorized form of Equation A.29. The assumption that HI is purely Coulomb is 

likewise not critical - the inclusion of magnetic interactions generates a second form 

factor, magnetic in origin. The primary assumption of this presentation, however, 
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is the pertinence of a non-relativistic approach to a discussion of high energy elec- 

tron scattering. For atomic or nuclear targets, this assumption is suitable, though, if 

we wish to address nucleon targets (composed of quarks and gluons), then we must 

extend our formalism into the relativistic domain. 

A.2.2 Relativistic Treatment 

A frame-independent treatment of electron scattering should be expressed in 

terms of Q2, the invariant 4-momentum transfer, rather than q2, as above. The in- 

variant cross section can evaluated as above, though, the integration in Equation A.19 

must be strictly an integral over space-time, with [Q- ] r as a scalar product of 4-vectors. 

In general, therefore, F(q2) 1 oses its interpretation as the Fourier transform of the 

spatial charge distribution, though, in the case of elastic scattering, Q2 x q2 (as the 

energy transfer is small) and we can still extract p(r) by inverting F(q2). Thus, we 

see that for small energy transfers, the interaction time is large and the form factor 

accordingly reflects the time-average of the charge distribution. On the other hand, 

for large energy transfers we probe the “instantaneous” structure of the nucleon, 

which we interpret in terms of the invariant structure function, WY”, the relativistic 

extension of Equation A.21. 

The invariant cross section can be expressed in the form 

d2a a2 E’ 
aS2aE’ = ~E,LPVW”’ 1 (A.30) 

where 

L,v = 2E,P: +2&P:, -g+,vQ2 

is the electron polarization tensor averaged over initial spin states, 

(A.31) 

IV’” = ~(~IJ+~lf)(.f IJvIp)~4(p-pr-Q) 
f 

(A.32) 

is the unpolarized hadronic tensor (with an implied average over initial spins), and 

J” is the hadronic transition current. All the interesting target physics is contained 
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within Wp’“. Without any a prior knowledge of nucleon structure it is possible to 

place strong constraints on the form of Wfiv and thus on the cross section. The most 

general form of WPv consistent with Lorentz and gauge invariances and parity is 

- Wp” = WI@, Q2) 1 
P” 

where WI and W2 are independent scalar functions of 

Equation A.30 yields 

(A.33) 

(Y, 0”). Using this form in 

a2a - = amott [W~(V,Q~)+~W~(V,Q~)~~~~(:)I , 
lXME 

(A.34) 

where amott is given by Equation A.4. Here WI and W2 are the two target struc- 

ture functions reflecting the possibility of magnetic as well as electric scattering, or, 

alternatively, the possibility of photoabsorption of either transverse (helicity fl) or 

longitudinal (helicity 0) photons. Note that for structureless targets, WI and W2 

become constants and Equation A.34 reduces to the Dirac cross section for scattering 

from spin- $ targets. 

It was suggested by Bjorkeng6 that for large v and Q2, vW2 and MPWl should 

become functions solely of the ratio z = Q2/2MPy. This functional dependence was 

indeed observedg7 in the very early SLAC data, at least approximately, as shown 

in Figure A.l. Holding x fixed, as in this figure, is equivalent to imposing a delta 

function constraint on the structure function, S(V - Q2/2MPx), and is similar to the 

delta function imposed by elastic scattering, namely, S(V - Q2/2MP). If the nucleon 

constituents had internal structure (on this scale of R, N Q-l), denoted by Fc(q2), 

then, in analogy with the previous section, we would expect the data in Figure A.1 

to be damped by an additional factor of lFc(q2)12. Thus, the lack of pronounced Q2 

dependence, known as scaling, suggests that the nucleon constituents are pointlike 

(see also Figure 5.14). 
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Figure A.l. Shown is an early observation” of scaling at x = .25. 
The abscissa is in units of GeV2. 

A simple approach to understanding this scaling phenomenon is offered by the 

naive parton model. g8ygg In this model, the nucleon is assumed to consist of a collection 

of pointlike constituent partons with well defined quantum numbers. Viewed from 

a frame in which the nucleon is highly relativistic, the so-called infinite momentum 

frame, deep inelastic scattering is seen to be simply incoherent scattering from the 

individual partons. In this highly boosted frame, the partons recombine to form the 

final hadronic state over a much longer time scale than that of the collision, and so, it 

.is precise-to consider these as quasi-free non-interacting particles. In this frame, the 

Bjorken scaling quantity, z, is identifiable as the momentum fraction of the eIastically 

scattered parton. Spin-$ partons thus contributing incoherently to the Dirac cross 
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section yield the observable structure functions 

where fi(x) is the probability density of finding the ith parton with fractional mo- 

mentum x. The Callan-Gross relation, Fz = 2xF1, is a direct consequence of spin-a 

partons and is strongly supported experimentally. To complete the identification of 

these partons with the quarks of Gell-Mann and Zweig”’ one compares electron and 

neutrino scattering results for PI and F2 to infer the fractional charge assignments of 

the quark model (see, for example, Reference 86). 

Experimentally, in Figures 5.9 and 5.10 we observe scaling as low as .6 GeV*, 

though with distinct violations seemingly logarithmic in Q2. As shown in Figures 

5.11 and 5.12, as Q2 increases, F~(x) shifts to smaller and smaller x. From the 

perspective of the earlier non-relativistic discussion, such behavior is understood in 

terms of the increasing resolution of the photon probe: for Q2 << 1 GeV2 we know 

elastic (x = 1) scattering is predominant; at Q2 w 1 GeV2, we see that F~(x) peaks 

around l/N where N ~5 approximates the number of target constituents; and at 

larger Q2, F~(x) p ea s a smaller and smaller values of l/N. These large values of k t 

N reflect scattering from the populous low-x sea of quark and anti-quark pairs which 

become resolvable only at large Q2 and small x. As N increases, an equilibrium 

is approached where the momentum of the proton, originally carried by the three 

“valence” quarks, is shared among all types of quarks and gluons. Thus, even at 

very high Q2, we expect to observe some scaling violation as F~(x, Q2) is driven to 

increasingly smaller values of x, tending ultimately to S(x). 

Theoretically, perturbative QCD predicts logarithmic scaling violations, with true 

scale invariance being approached only asymptotically in Q2. The observed scaling 

violations are understood in terms of the Q2 dependence of the quark and anti- 
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quark distribution functions (in Equation A.35) as dictated by the Alterelli-Parisi 

equations, lo1 As Q2 increases, the photon probe is more and more likely to resolve 

the struck quark into a quark and a radiated gluon. The resulting tendency is to 

drive the structure function momentum distributions to lower and lower x. 

Perturbative QCD calculations of the structure functions, however, ignore all 

terms that fall off as fast as N 1/Q2, It is possible, however, that these terms represent 

a significant, if not dominant, contribution to the observed scaling violations in the 

SLAC data.lo2 Such an occurrence would invalidate any real test of QCD over the full 

decade in Q2 spanned by the SLAC data. 

These power corrections to QCD are of both a kinematic (or target mass) and 

dynamic (or higher twist) nature. The kinematic target mass corrections to per- 

turbative &CD, aa calculated by Georgi and Politzer’ within the framework of the 

operator product expansion, take the form of a power series in (M,2/Q2). Kinematic 

occurrences of (Mj/Q2) are linked in an intricate way to the x dependence of J’i and 

F2, leading to the identification of a new scaling quantity, the Nachtmann scaling 

variable,lo3 

(A.36) 

It has been shown by Ellis et al. lo4 that the same power series in (M,2/Q2) is 

obtained as a kinematic consequence of the naive parton model with the inclusion 

of a Lorentz-invariant intrinsic transverse momentum, though without off-shellness. 

In a QCD analysis which includes both off-shellness and interactions, Ellis et al. cal- 

culate the twist-4 corrections, which are in general expressed as a power series in 

(&JQ2)‘-*, where AQCD is the usual QCD scale parameter and r is the twist 

-counting index,io5 given by r E {2,4,6,. . .} . These higher twist corrections are the 

dynamical complement of the target mass corrections: both are seen to be manifes- 

tations of the transverse degrees of freedom of the partons and gluon field. Higher 

twist corrections, however, are generally incalculable, as they depend on the unknown 

parton correlation functions which dictate the non-perturbative dynamics. 
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Within the framework of the naive parton model with spin-i partons, R is given 

by 4M~x’/Q’. By allowing the partons in this model to have an intrinsic transverse 

momentum, pT , and a nonzero mass, the value of R is increased and given by” 

R(x, Q2) = 
4 [M;x’ + (pT)* + 6] 

Q* + (P=)* ’ 
(A.37) 

where 6 parametrizes the parton mass effects. 

First order QCD calculations do not contribute to R. However, in second or- 

der QCD the inclusion of hard gluon bremsstrahlung and photon-gluon interactions 

contribute to FL, ro4j7 through the advent of transverse momenta, PT. The gluon 

contributions to PT rise ,Q*, while the p, contribution to R falls -l/Q*. Thus the 

leading order QCD contribution to R varies as cr,, namely, RQcD - l/lnQ*. Because 

these QCD calculations of R are quite small, + target mass and higher twist power 

corrections are expected to be significant, especially in the SLAC Q* range. See, for 

example, Section 5.3.3. 

+ Calculations106 to fourth order in QCD are only slightly smaller. 
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Statistical Techniques 

This appendix provides concise statements of the statistical identities and tech- 

niques employed in this thesis. 

B.l The Propagation of Errors 

Consider a set of measured quantities {Aj}, each element of which has associated 

with it a vector of uncertainties, 6j. ’ Assume that the correlations between 6: and 

6; are known, and denoted by the correlation matrices M k. Let F be any operator 

which acts on the set {Aj}, such that 

Then, the uncertainty vector of A is given bylo 

Fw 

For most applications of Equation B.2 in this thesis, F is the operator which 

takes the weighted average of the {Aj}, 

A=CAjwtj Cwtj 7 
j I i 

P.3) 
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and the uncertainty vector of A is 

All the interesting physics is in the assignment of the correct weights in this procedure. 

It is critical that the weights be determined only by the random components of the 

error vector, 

Wtj = 1 
I 

C (6;)’ . 
k 

random 

(B-5) 

Because some components of the error vector are nearly random, or only partially 

correlated, it is often difficult to determine the correct summation in Equation B.5. 

For each application of Equation B.4, we explicitly state which components of the 

error vector are included in the assignment of the weights. 

The correlation matrix used throughout this report is related to the more usual 

covariance matrix, M, by 

Mij = Mij/ [Mi; Mjj]’ . (B-6) 

Thus the elements of M are bounded by f 1. 

These formal expressions, Equations B.2 and B.4, reduce to more familiar” forms 

under specific ideal assumptions. First, if the errors 6; are perfectly uncorrelated (or 

random), then M” = 1. In this case, Equation B.2 reduces to 

and Equation B.4 reduces to 

i 

1 (6;Wtj)2 

j 
(Jw 
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which, for weights given by l/(6:)’ furth er reduces to the usual “inverse-root-sum- 

of-inverse-squares” propagation formula for statistical errors.8o 

Second, if the errors 6; are perfectly correlated, then Mk is the matrix with all 

_ elements equal to 1. In this case, by inverting the summations and multiplications of 

Equations B.2 and B.4 we note the following simplifications. Equation B.2 reduces 

to the simple sum of propagated errors, 

and Equation B.4 reduces to the weighted average of the correlated errors, 

6” = Cb~lJJtj/~ Wtj . 
j j 

(B.lO) 

B.2 Non-Gaussian Error Distributions 

An extensive numerical study lo8 of the error distribution of the quotient of two 

measured quantities with gaussian errors recommends a simple approximate treat- 

ment for statistical operations on the data. We quote here only a formal statement 

of the observations of this report. 

If the independent quantities zr and z2 conform to a gaussian distribution with 

fractiona standard deviations Sr and 62, respectively, and 61 x 62, then ln(sr /zz) 

approximately conforms to a gaussian distribution with absolzlte standard devi- 

ation &53$ . 

The askewity of the error distribution in R is related to that of cross section ratios,iog 

and can be seen in Figure B.2. Similarly, 

If R f SR is extracted via a regression analysis of measured cross sections over a 

span in e of AC, and if the measured cross sections conform to gaussian distribu- 
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tions with roughly equal widths, then ln(l+A&) approximately conforms to a 

gaussian distribution with standard deviation AC bR/( 1 +A&) . 

Throughout this report, all statistical operations performed on the cross section ratios 

or on the R measurements are carried out in these pseudo-gaussian logarithmic vari- 

ables, including the error propagations of Equation B.2. For AC we use the average 

e span of the data, AC = .39 for El40 and AC = .49 for SLAC. The only exception to 

this procedure is in the regression analyses for Rd-Rp and RF”-Rd when a simpler 

technique is employed instead (see Section 4.2). 

Because the error distributions of Rd-RP and RF”-Rd are symmetric, we do not 

use the logarithmic variable in the analyses of these quantities, but instead make the 

very minor approximation that they are perfectly gaussian distributed. 

B.3 On the Interpretation of x2 

The data shown in the regression analyses in Figure 5.4 display the statistically 

expected amount of scatter, each best fit yielding a x2/df M 1. The correct procedure 

for the analysis of data which display more than the statistically expected amount 

of scatter is a subject of some controversy. There are two philosophically different 

ways to define the uncertainties in the best fit parameters from any x2 minimization 

procedure: 

@  The correct parameter uncertainties are determined exclusively by the uncer- 

tainties in the data, without regard to the quality of the fit, or the size of the 

residuals; 

@  The. correct parameter uncertainties are determined exclusively by the residuals 

to the fit. The parameter values are determined using the weights assigned to 

each point, but the parameter uncertainties are solely based on the residuals to 

the fit. 
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And, there is a simple relationship between these prescriptions, 

Errors@ = Errors@ x dm . (B.ll) 

. This is the same factor by which one would have to inflate the errors in the data in 

order to achieve a fit with x2/#= 1.00. 

The first philosophy is the standard high energy physics approach, where accurate 

knowledge of the statistical and systematic uncertainties in the data is a priority. 

The second philosophy is the accepted approach in the biological and social sciences, 

where the uncertainties in the data are often only partially understood. Yet, even in 

physical science applications, the additional factor of dm is often touted74-76 as 

a necessary correction to the uncertainties whenever the x*/df is greater than one. 

The relevance to our work is the clear. We report the results of 260 linear 

regression analyses, many of which display much more than the statistically expected 

amount of scatter. In Figure B.l we present two such regression analyses. To answer 

the question of whether or not the additional factor of dm is required in the 

definition of SR ST, we perform a monte carlo simulation of the R extractions. We 

randomly generate five cross sections from a gaussian distribution centered at 1.000 

with a LO20 width, and assign them to E values of { .4, .5, .6, .7,.8}. A linear regression 

analysis is applied, and the observed values of R and x2/df are recorded. This process 

is iterated lo6 times to study the width of the distribution of observed R values as 

a function of x2/df. Th e results of this study are shown in Figure B.2. For each 

x2/df bin, the width of the observed R distribution is f.08. Thus, we conclude that 

regression analyses obtained by fits with large x2/df, within the assumptions of this 

study, measure R as accurately as those with much smaller x2/@. 

This.conclusion, to have any merit, must be accompanied by the statement that 

systematic effects do not contribute to the x 2. Large systematic effects in the data 

will generate large x2/df, and will clearly not measure R as accurately as data which 

display no such systematic effects. We show with Figures 4.2 and 5.5 that no large 
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Figure B.l. Shown are two sample regression analyses which dis- 
play more than the statistically expected amount of scatter. Com- 
pare with Figure 5.4. Poor fits such as these occur naturally and 
with the statistically expected frequency. 
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systematic effects remain within the El40 data or the SLAC data. For the six analyses 

outside the expected x2/# distribution in Figure 5.5, we hypothesize that some large 

systematic effect may exist in these data and we increase the GRsT obtained from 

these regressions by the factor dm. 

Further studies demonstrate that our conclusion is robust with respect to the 

main parameters of the monte carlo simulation. We hypothesize the generalization of 

our conclusion to include the treatment of errors from any x2 minimization procedure, 

though, in this thesis we rely only on the conclusion as stated. 

. 
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Figure B.2. Sh own are the results from a monte carlo study of 
R extractions from cross sections with f2% gaussian errors. The 
full width at half maximum of each distribution is indicated by 
the double arrows. The results indicate that regression analyses 
displaying large x2/@ measure R as accurately as those with much 
smaller x2/df. 
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Systematic Errors 

This appendix explicitly delineates all contributions to all components of the 

uncertainty vector assigned to each measured cross section and cross section ratio 

included in our global reanalysis. 

Table C.l presents the experimental uncertainty due to each contribution to 

the cross section calculation. Units are everywhere [%I in the cross section, with two 

exceptions. First, uncertainties in the scattering kinematics propagate complexly into 

the cross sections, as derivable from the cross section models @12 and R1”‘. Thus, 

energy uncertainties are expressed in units of [Y] o energy and angle uncertainties are 

in units of [mrd]. Second, uncertainties of type SsE are in units of [GeV-I] and are 

propagated as in Equations 2.4 and 5.17, where (E’) for the eight experiments are 

{9.68,3.04,14.50,6.26,1.20,7.68,6.40,3.99} GeV, respectively. For El39 and El40 

the bsE are taken from the wirefloat calibration studies,63 (see Section 2.3.2) and for 

the other experiments these SsE represent limits imposed by the residuals studies of 

in Section 5.2.5. 

Not shown in Table C.l are the uncertainties due to radiative corrections proce- 

dure, which are taken to be perfectly correlated across all cross sections reported in 

-this study. The SRc component of this uncertainty is given by Equation 3.12. Ad- 

ditionally, as noted in the text to Equation 3.12, there is a &l.O% normalization-like 

uncertainty due to the radiative corrections this study. 
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The bNM portion of Table C.1 is presented for completeness only and is not used 

in the global reanalysis (with the exception of the El40 column which reproduces Ta- 

ble 3.3, modulo the above note). Rather, we use the measured relative normalization 

uncertainties, JNMl and bNM2, as discussed in Section 5.2. The measured normaliza- 

tion offsets of each experiment to E140, given in Table 5.2, compare favorably with 

the total of the JNM uncertainties given in Table C.l. After removing the common 

uncertainties in the world cryogenic data for hydrogen and deuterium densities, we 

observe an average x2/df of 7.4/6 for hydrogen and 9.9/7 for deuterium. Note that 

half of the x2 contribution in each of these is due to the large relative normalization 

difference observed between E89b and the other experiments. 

For ad/+’ ratios most components of the error vectors approximately cancel and 

become negligible. The bsy, bsE, and SRc components are thus assumed to cancel 

perfectly. Some elements of the SsR component are similarly assumed to cancel in the 

cross section ratio (the fluctuations in beam charge and detector efficiencies), while 

the other elements are independent and propagated exactly. 

Using the SNM portion of Table C.l, it is possible to make a x2-based consistency 

check of the relative normalizations of Table 5.2. Making the worst case assumption 

that the first and last rows of the SNM section of Table C.l are very strongly correlated, 

and after removing the common uncertainties due to the world cryogenic data, we 

observe a x2 of 4.5 for the deuterium data (with El40 “floating” and E89a excluded). 



Appendix C Systematic Errors 177 

Table C.l. Presented is a concise summary of all contributions to the un- 
certainty vector of each cross section measurement. Tabled values are for 
both deuterium and hydrogen except where noted. See text for units and 
for further discussion. Table continues on next page. 

E49a E49b E61 E87 E89a E89b El39 El40 

PR 
Beam energy .25 .25 .lO .25 .20 .20 .15 .lO 
Beam angle .08 .08 .08 .08 .07 .07 .08= .05 
Beam charge .70 .30 .60 .30 .50 .50 .30 .30 
Target density .30 .30* .50= .30 .30” .30= .50 .30 
Scattering angle .oo= .05= .oo= .05= .02= .05= .05= .03 
Secondary energy .05= .05= .05= .05= .03= .05= .03= .03 
Detector 

Efficiencies 1.5 .70 1.4 .70 1.3 l.oc .10= .15 

6= 

Calibrations 
Beam energy .lO .lO .lO .lO .lO .lO .lO .lO 
Scattering angle .02 .05 .02 .05 .02 .05 .05 .03 
Secondary energy .lO= .lO” .10= .10= .10= .10= .05 .04 

Background 
lr- d .30 e .30 l.Of .oo .oo 
x0 + e+e- h .lo h .30 i h:c .lO j 

PE 
Acceptance .17 .43 .lO .02 1.00 .12 .04 .04 

bNM 
Beam charge .7 .5 .8= .5 .5= .5= .5 .5 
Target densityk l.O= .9 .8 .7 .7 .7 .7 .7 
Target length .8= .6 .4 .4 .5 .5 .4 .4 
Target impurities .2” .2” .l .l .2 .2 .1 -2 
Target endcap 

subtraction’ .5= .3 .5 .3 .4 .7” .o .o 
Acceptance 2.0 1.5 2.0 1.5 1.0 2.0 1.1 1.1 

a Assumed. 
*For deuterium, if E, E {10.392,13.320,8.713,11.900} then 6= .5. 
=The value quoted in the E89b thesis is overly conservative. The 

value we use is more accurate, yet still conservative. 
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Table C.l/continued: Error vector summary. 

_ ‘Weusethep arameterization: 6 = .l; if 4 < E’< 7, S = .6. 
e We use the parameterization: S = .3; if 6 < E’< 10, S = .7. 
fFor hydrogen we use: 6= .5. 
9 We use the parameterization: 6 = .4; if 5 < E’ < 9, S = 1.0; 

if5<E’<9 and8<10° and E,>15, 5=2.5. 
‘We use a parameterization based on the E89b thesis: 

6=.2; w& = 2.15+.14E,; if 8 5 6”, IVfh, = w&,+.35; 
if W2 > W,&, S= .6. 

i We use a parameterization based on the E89a offline logbooks:l” 
6 = r/(1 - r) where: if E, < 8, r = 31 exp( - E’l.16); 
else if E, < 11, r =68exp(-E’l.16); 
else if E, 5 14, r = 23 exp( - E’l.22); 
else r = 2.5exp(-E’l.54). 

j We use the parameterization of Equation 3.4. 
“For hydrogen, S is smaller by .2 for E49a, E49b, and E61 and by .3 

otherwise. 
’ For hydrogen we use: 6= 1.75s. 
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Target Models 

This appendix provides all the target and radiator information needed to repro- 

duce the Bardin/Tsai radiative corrections calculations for the hydrogen and deu- 

terium cross section measurements of all eight experiments. 

A detailed reconstruction of each target from each experiment is attempted based 

on the theses of Table 1.1, information archived in the TASI Database,‘s and various 

logbooks and technical notes. As these sources frequently differed in their representa- 

tion of the target information, the parameters presented here are our best estimates 

based on an overall average with greatest weight assigned to the earliest sources. 

Where possible, we calculate target thicknesses from the quoted density and target 

length (in cm) using modern values for the target radiation lengthslo 

RLH = 61.28 g/cm2, 
P.1) 

RLD = 122.6 g/cm2. 

Otherwise, we have used the quoted target thicknesses (in RL) and applied a correc- 

tion factor to account for changes in the known radiation lengths of hydrogen and 

deuterium. 

Table D.l presents the thicknesses in units of [RL] for targets, target cell wall 

thicknesses, and upstream and downstream radiators. The upstream radiator thick- 

nesses include all material between the A-bend of the beam switchyard (see Section 
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Table D. 1. Presented are the target thicknesses plus additional external radi- 
ators for the eight experiments. Units are everywhere [RL] and expressed in 
[%o]. Except where noted, cell walls are aluminum. Other external radiators 
are predominantly aluminum. See text for further details. 

Target Upstream Hydrogen Deuterium Cell Downstream 
Type Radiator Target Target Wall Radiator 

E49a VC 
E49b VC 
E61 vc 
E87 VC 
E89 VC” 
El39 HCY 
El40 HCg 

.027a .824 .963 .086 .744b 

.031 .788 .9’76 .086 .582 

.058 .794 .983 .086 .625 

.036 1.594” 1.935” .146d .517 

.036 2.009 2.423 .248d .018f 

.104 2.072 .132h+,j .913 

.103 2.769 .086’tj .940 

aFor 0 = 10.000” use t = .032. 
b For 6 = 10.000” use t = .650. 
‘Target cell is centered off beam axis, .040 towards the spectro- 

meter. 
dTarget walls are steel. 
eTarget is a vertical oval tube rather than a vertical cylinder; see 

text. 
f For E89b use t = .560. 
gTarget width perpendicular to the beam axis is .350 (2.54 cm). 
‘For target entrace window use t = .078 and for target exit window 

use t = .115. 
i Exit window bows outward with radius of curvature .700 (5.08 cm). 
j Additional material effectively increases the target cylindrical cell 

wall thickness: 
Coaxial mylar flowguide (see Figure D.l): .024; 
Epoxy and solder averaged over cell length: .043; 
Aluminum superinsulation: .022. 

2.1) and up to, but not including, the cell wall of the target. The downstream radiator 

thicknesses include all material between, but not including, the cell wall of the target 

(or, if used, target superinsulation) and the bending magnets of the spectrometer. 
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Figure D.l. Shown is a schematic of the El40 and El39 horizontal 
cylinder targets and empty target replicas. Additional radiators 
are added to the entrance and exit windows of the empty replica 
to improve counting rates and approximately match the external 
radiative corrections of the full targets.57 

Also indicated in Table D.1 are the target shapes and orientations with respect 

to the incident beam. Targets of type VC are vertical cylinders centered on and 

perpendicular to the beam. Flow is perpendicular to the beam and fan driven. The 

general design of the VC targets is described in detail in Reference 3 and to varying 

degrees in the references of Table 1.1. Target type HC is a horizontal cylinder coaxial 

to the beam, shown schematically in Figure G.l. An internal coaxial flowguide sep- 

arates flows parallel and antiparallel to the beam. Additional specifications for the 

HC target thicknesses are given in Table D.l. The general design of HC targets is 

discussed in References 58 and 111 and more specifically in the references of Table 

1.1. 
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The large angle experiment E89a (performed simultaneously with E89b) required 

thick targets to improve the counting rates. To minimize the amount of target ma- 

terial viewed by the scattered particles the target cross section was not circular, but 

oval. For a horizontal (5,~) orthogonal coordinate system with origin at the target 

center and z parallel to the incident beam, the cell walls are located35 at points 

ks2+ Gz>““= l ’ 

cia2+ &>““= l ’ 
(D-2) 

for hydrogen and deuterium, respectively, in units of [RL]. 

To simplify the radiative corrections, the target walls, upstream and downstream 

radiators are assumed to be aluminum. We calculate the radiative correction at sev- 

eral points within the targets and average over the target lengths. The amount of 

target material viewed by the scattered targets is calculated for each angle, numer- 

ically for E89, and using a detailed target model for El39 and E140. Early studies 

support the assertion by Tsai3‘j that for VC targe ts the external radiative correction 

does not depend strongly on the scattering location. Observed effects were at the 

f.2% level. The extended lengths of the El39 and El40 targets, on the other hand, 

required that the radiative corrections be calculated at and averaged over a minimum 

of nine points along the target central axis. 
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Data Tables and Software 

The primary set of data tables for this thesis, including hydrogen and deuterium 

cross sections and structure functions, is stored on a floppy diskette, in the form of 

19 ASCII files occupying a total of 460 kilobytes. Three storage media are available: 

high density 5$ inch IBM PC/AT formatted diskettes, double density 33 inch IBM 

PS/2 formatted diskettes, and double density 3$ inch Apple Macintosh formatted 

diskettes. 

A copy of any of these diskettes may be obtained from: SLAC Publications, Mail 

Bin 68, P.O. Box 4349, Stanford, CA 94309-4349, phone (415) 926-2677. Request 

SLAC-REPORT-357/Appendix E Diskette, and specify computer format. Alterna- 

tively, these files can be obtained via bitnet from SERQSLACVM, EMRQSLACVM, or 

LWW@SLACVM during the foreseeable future. 

Presented below is a brief summary of the 19 files found on each diskette. 

File E.l. HELP.DOCUMENT. Provides detailed information about the other files found 

on the disk. 

File E.2. STGMA.HYDROGEN. Table of final normalized hydrogen cross sections with 

error vectors. Cross sections are condensed exactly as described in Section 5.2.1. This 

table also gives the Bardin/Tsai radiative correction factor applied to the raw cross 

sections. 
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FiIe E.3. SIGMA.DEUTRIUM. Table of final normalized deuterium cross sections with 

error vectors. Cross sections are condensed exactly as described in Section 5.2.1. This 

table also gives the Bardin/Tsai radiative correction factor applied to the raw cross 

sections. 

File E.4. FS.HYDROGEN. Table of final normalized hydrogen Fz values with error 

vectors. Each element in the table is extracted from the corresponding element of 

File E.2 according to the prescription of Section 5.4. 

File E.5. FP.DEUTRIUM. Table of final normalized deuterium F2 values with error 

vectors. Each element in the table is extracted from the corresponding element of 

File E.2 according to the prescription of Section 5.4. 

File E.6. F2.DPRATIO. Table of final normalized deuterium/hydrogen FzdlF2p ratios. 

Using our result that Rd = RP (see Section 3.5.2), we note that this table also gives 

the deuterium/hydrogen cross section ratios CT d P Ratios are condensed exactly as /u . 

described in Section 5.2.1. 

File E.7. SPECTRA.BCDMS. Table of SLAC hydrogen and deuterium structure func- 

tions as plotted in Figures 5.14 and 5.15. 

File E.8. SPECTRA.BCDMSZ. Table of BCDMS hydrogen and deuterium structure 

functions, extracted assuming R = RlggO, as plotted in Figures 5.14 and 5.15. 

File E.9. SPECTRA.EMC. Table of SLAC hydrogen and deuterium structure functions 

as plotted in Figures 5.16 and 5.17. 

File E.10. SPECTRA.EMCZ. Table of EMC hydrogen and deuterium structure func- 

tions, extracted assuming R = Rrggo, as plotted in Figures 5.16 and 5.17. 
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File E.ll. SPECTRA.FORTRN. Fortran code used to generate Files E.7 and E.9 from 

files E.4 and E.5. The primary feature of this program is the (very nearly) exact 

propagation of all components of the error vector through the binning and averaging 

processes. Th is program is easily generalizable to produce other binnings in (2, Q2) 

or to propagate the error vectors through any analysis. See footnote in Section 5.4.2. 

File E.12. R1990.FORTRN. Fortran code for the phenomenological model of R defined 

in Section 5.3.4. The program encodes Equations 5.29 through 5.35 and returns the 

best fit value for R and the total uncertainty in R. 

File E.13. F1990.FORTRN. Fortran code for both the $‘FQ and J’t12 models defined 

in Section 5.4.1. The program returns both F2 and its statistical uncertainty. This 

program requires an external data file, supplied here as File E.14. 

File E-14. F1990.MATRICES. Covariance matrices for the best fit solutions to the PFQ 

and @lz models. Accessed in this way, the models can be conveniently updated 

without altering the code of File E.13. Note that 10 digits of accuracy are required 

for the successful calculation of the statistical uncertainty in Fz. 

File E.15. R.HYDROGEN. Table of extracted R values from the combined hydrogen 

data. Note that the R values presented in Table 5.8 are the average of these values 

and the deuterium values of File E.16. 

File E.16. R.DEUTRIUM. Table of extracted R values from the combined deuterium 

data (El40 data excluded). Note that the R values presented in Table 5.8 are the 

average of these values and the hydrogen values of File E.15. 

-File E.17: R.WORLD. Table of world R values. Reproduces Tables 4.6 and 5.8, plus 

includes the R data from the EMC,‘I~~ BCDMS,16*17 and CDHSW18 collaborations. 
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File E.18. SPECTRA.F2NF2P. Table of smeared neutron/proton F2 ratios (as defined 

by Equation 5.41) for SLAC, as plotted in Figures 5.20 and 5.21, matching the binnings 

of BCDMS and EMC, respectively. 

File E.19. SPECTRA.F;ZNFBPZ. Table of smeared neutron/proton F2 ratios (as defined 

by Equation 5.41) for BCDMS and EMC as plotted in Figures 5.20 and 5.21, respec- 

-tively. 
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