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Abstract 

The goal of this thesis is to modify projection pursuit by trading accuracy 

for interpretability. The modification produces a more parsimonious and under- 

standable model without sacrificing the structure which projection pursuit seeks. 

The method retains the nonlinear versatility of projection pursuit while clarifying 

the results. 

Following an introduction which outlines the dissertation, the first and second 

chapters contain the technique as applied to exploratory projection pursuit and 

projection pursuit regression respectively. The interpretability of a description is 

measured as the simplicity of the coefficients which define its linear projections. 

Several interpretability indices for a set of vectors are defined based on the ideas 

of rotation in factor analysis and entropy. The two methods require slightly 

different indices due to their contrary goals. 

A roughness penalty weighting approach is used to search for a more par- 

simonious description, with interpretability replacing smoothness. The compu- 

tational algorithms for both interpretable exploratory projection pursuit and 

interpretable projection pursuit regression are described. In the former case, 

a rotationally invariant projection index is needed and defined. In the latter, 

alterations in the original algorithm are required. Examples of real data are 

considered in each situation. 

The third chapter deals with the connections between the proposed modifi- 

cation and other ideas which seek to produce more interpretable models. The 
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modification as applied to linear regression is shown to be analogous to a nonlin- 

ear continuous method of variable selection. It is compared with other variable 

selection techniques and is analyzed in a Bayesian context. Possible extensions 

to other data analysis methods are cited and avenues for future research are iden- 

tified. The conclusion addresses the issue of sacrificing accuracy for parsimony 

in general. An example of calculating the tradeoff between accuracy and inter- 

pretability due to a common simplifying action, namely rounding the binwidth 

for a histogram, illustrates the applicability of the approach. 
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Introduction 

The goal of this th esis is to modify projection pursuit by trading accuracy for 

more interpretability in the results. The two techniques examined are exploratory 

projection pursuit (Friedman 1987) and projection pursuit regression (Friedman 

and Stuetzle 1981). Th e f ormer is an exploratory data analysis method which 

produces a description of a group of variables. The latter is a formal modeling 

procedure which determines the relationship of a dependent variable to a set of 

predictors. 

The common outcome of all projection pursuit methods is a collection of 

vectors which define the directions of the linear projections. The remaining com- 

ponent is nonlinear and is summarized pictorially rather than mathematically. 

For example, in exploratory projection pursuit the description contains the pro- 

jection linear combinations and the histograms of the projected data points. In 

projection pursuit regression, the model contains the linear combinations and 

the smooths of the dependent variable versus the projected predictors. 

The statistician is faced with a collection of vectors and a nonlinear graphic 

representation. Given a dataset of n observations of p variables each, suppose 

that q projections are made. The resulting direction matrix A is q X p, each 

row corresponding to a projection. The statistician must try to understand and 

explain these vectors, both singly and as a group, in the context of the original p 

variables and in relation to the nonlinear components. The purpose of this thesis 

is to illustrate a method for trading some of the accuracy in the description or 
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model in return for more interpretability or simplicity in the matrix A. The 

object is to retain the versatility and flexibility of this promising technique while 

increasing the clarity of the results. 

In this dissertation, interpretability is used in a similar yet broader sense 

than parsimony, which may be thought of as a special case. The principle of 

parsimony is that as few parameters as possible should be used in a description 

or model. Tukey stated the concept in 1961 as ‘It may pay not to try to describe 

in the analysis the complexities that are really present in the situation.’ Several 

methods exist which choose more parsimonious models, such as Mallows’ (1973) 

Cp in linear regression which balances the number of parameters and prediction 

error. Another example is the work of Dawes (1979), who restricts the parameters 

in linear models based on standardized data to be 0 or fl, calling the resulting 

descriptions ‘improper’ linear models. His conclusion is that these models predict 

almost as well as ordinary linear regressions and do better than clinical intuition 

based on experience. Throughout this thesis, accuracy is not measured in terms 

of the prediction of future observations but rather refers to the goodness-of-fit of 

the model or description to the particular data. 

Parsimony, while considering solely the number of parameters in a model, 

shares the general philosophical goals of interpretability. These goals are to 

produce results which are 

(;) easier to understand. 

(ii) easier to compare. 

(G) easier to remember. 

(iv) easier to explain. 

The adjective ‘simple’ is used interchangeably with ‘interpretable’ as is ‘com- 

plex’ with ‘uninterpretable’ throughout this thesis. However, the new term in- 

terpretability is included in part to distinguish this notion from that of simplicity 

which receives extensive treatment in the philosophical and Bayesian literature. 
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The quantification of interpretability is a difficult problem. The concept is 

not easy to define or measure. As Sober (1975) comments, ‘the diversity of 

our intuitions about simplicity . . . presents a veritable chaos of opinion.’ Fortu- 

nately, some situations are easier than others. In particular, linear combinations 

as produced by projection pursuit and many other data analysis methods lend 

themselves readily to the development of an interpretability index. This mathe- 

matical index can serve as a ‘cognostic’ (Tukey 1983), or a diagnostic which can 

be interpreted by a computer rather than a human, in an automatic search for 

more interpretable results. 

Exploratory projection pursuit is considered first in Chapter 1. A short 

review of the original method motivates the simplifying modification. The algo- 

rithmic approach chosen is supported versus alternative strategies. Various in- 

terpretability indices are developed. The modification algorithm to be employed 

requires changes to the original. An example of the resulting interpretable ex- 

ploratory projection pursuit method is examined. Projection pursuit regression 

is considered in a similar manner in Chapter 2. The differing goals of this second 

procedure compel changes in the interpretability index. The chapter concludes 

with an example. 

Chapter 3 connects the new approach with established techniques of trading 

accuracy for interpretability. Extensions to other data analysis methods that 

might benefit from this modification are proposed. The thesis closes with a 

general application of the tradeoff between accuracy and interpretability. This 

work is an example of an approach which simplifies the complex results of a novel 

statistical method. The hope is that the framework described within will be used 

by others in similar circumstances. 



Chapter 1 

Interpretable 
Exploratory Projection Pursuit 

In this chapter, interpretable exploratory projection pursuit is demonstrated. 

Section 1.1 presents the basic concepts and goals of the original exploratory 

projection pursuit technique and outlines the algorithm. An example which 

provides the motivation for the new approach is included. The modification is 

described and support for the strategy chosen is given in the next section. The 

new method requires that a simplicity index be defined, which is discussed in 

Section 1.3. Section 1.4 details the algorithm, and its application to the example 

is described in the final section. 

1.1 The Original Exploratory Projection Pursuit Technique 

Exploratory projection pursuit (Friedman 1987) is an extension and improve- 

ment of the algorithm presented by Friedman and Tukey in 1974. It is a computer 

intensive data analysis tool for understanding high dimensional datasets. The 

method helps the statistician look for structure in the data without requiring 

any initial assumptions, while providing the basis for future formal modeling. 

1.1.1 Introduction 

Classical multivariate methods such as principal components analysis or dis- 

criminant analysis can be used successfully when the data is elliptical or normal 

4 



1.1 The Original Exploratory Projection Pursuit Technique Page 5 

.in nature and well-described by its first few moments. Exploratory projection 

pursuit is designed to deal with the type of nonlinear structure these older tech- 

niques are ill-equipped to handle. The method linearly projects the data cloud 

onto a line (one dimensional exploratory projection pursuit) or onto a plane (two 

dimensional exploratory projection pursuit). By reducing the dimensionality of 

the problem while maintaining the same number of datapoints, the technique 

overcomes the ‘curse of dimensionality’ (Bellman 1961). This malady is due to 

the fact that a huge number of points is required before structure is revealed in 

high dimensional space. 

A linear projection is chosen for two reasons (Friedman 1987). First, the 

projection definition is easier to understand as it consists of one or two linear 

combinations of the original variables. Second, a linear projection does not exag- 

gerate structure in the data as it is a smoothed shadow of the actual datapoints. 

The goal of exploratory projection pursuit is to find projections which exhibit 

structure. Initially, the idea was to let the statistician choose interesting views 

interactively by eye (McDonald 1982, Asimov 1985). because the time required 

to perform an exhaustive search was prohibitive, the method was automated. A 

mathematical projection index which measures the structure of a view is defined 

and the space is searched via a computer optimization. Structure is no longer 

measured on a multidimensional human pattern recognition scale but rather on a 

univariate numerical one. This simplification consequently means that numerous 

possible indices may be defined. Thus the scheme, while making the analysis 

feasible for large datasets, requires the careful choice of a projection index. 

As Huber (1985) p oin s t out, many classical techniques are forms of ex- 

ploratory projection pursuit for specific projection index choices. For example, 

consider principal components analysis. Let Y be a random vector in RP. The 
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definition of the jth principal component is the solution of the maximization 

problem 

“p”x Var[PTY] 
i 

3 @T&=1 

and p:Y is uncorrelated with 

all previous principal components . 

Thus, principal components analysis is an example of one dimensional exploratory 

projection pursuit with variance (Var) as the projection index. 

Variance is a global or general measure of how structured a view is. In 

contrast, the novelty and applicability of exploratory projection pursuit lies in 

its ability to recognize nonlinear or local structure. As remarked previously, 

many definitions of structure and corresponding projection index choices exist. 

All present indices, however, depend on the same basic premise. The idea is that 

though ‘interesting’ is difficult to define or agree on, ‘uninteresting’ is clearly 

normality. 

Friedman (1987) and Huber (1985) p rovide theoretical support for this choice. 

Effectively, the normal distribution can be explored adequately using traditional 

methods which explain covariance structure. Exploratory projection pursuit is 

attempting to address situations for which these methods are not applicable. 

The statistician must choose a method by which to measure distance from 

this normal origin that leads the algorithm to views she holds interesting. The 

distance metric choice is thus based on individual preference for the type of 

structure to be found. Desirable computing and invariance properties which 

have been neglected so far in this discussion also affect the decision. These 

considerations in the concrete context of a particular index are discussed as the 

original algorithm is detailed in the next subsection. 



1.1 The Original Exploratory Projection Pursuit Technique Page 7 

1.1.2 The Algorithm 

Two dimensional exploratory projection pursuit is more interesting and use- 

ful than one dimensional, so the former is discussed solely. The two dimensional 

situation also raises intriguing problems when interpretable exploratory projec- 

tion pursuit is considered which need not be addressed in the one dimensional 

case. For the present, the goal is to find one structured plane. Actually, the 

data may have several interesting views or local projection index optima and the 

algorithm should find as many as possible. Section 1.5.3 addresses this point. 

The original algorithm presented by Friedman (1987) is reviewed in the ab- 

stract version due to Huber (1985), thereby simplifying the notation. Thus, 

though the data consists of n observations of length p, consider first a random 

variable Y E W. The goal is to find linear combinations (/?I, ,&) which 

3 Var[PTY] = Va?@Y] = 1 

and Cov[p~Y,&‘Y] = 0 

where G is the projection index which measures the structure of the projection 

density. The constraints on the linear combinations ensure that the structure 

seen in the plane is not due to covariance (Cov) effects which can be dealt with 

by classical methods. 

Initially, the original data Y is sphered (Tukey and Tukey 1981). The sphered 

variable 2 E RP is defined as 

2 f D- W(Y - E[Y]) EW 

with U and D resulting from an eigensystem decomposition of the covariance 

matrix of Y. That is, 

c = E[(Y - E[Y])(Y - E[Y])*] 

= UDU* 
P.31 
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with U the orthonormal matrix of eigenvectors of C, and D the diagonal matrix 

of associated eigenvalues. The axes in the sphered space are the principal com- 

ponent directions of Y. The previous optimization problem [l.l] involving Y can 

be translated to one involving linear combinations al, a2 and projections of 2: 

max G(cuTZ, o$Z) 
QI>q 

3 a& = 4cv2 = 1 

and LVTQ~ = 0 . 

WI 

The fact that the standardization constraints imposed to exclude covariance 

structure, which the technique is not concerned with, are now geometric con- 

ditions reduces the computational work required (Friedman 1987). Thus, all 

numerical calculations are performed on the sphered data 2. 

In subsequent notation, the parameters of a projection index G are (,0TY, /3lY) 

though actually the value of the index is calculated for the sphered data [1.2]. 

The sphering, however, is merely a computational convenience and is invisible to 

the statistician. She associates the value of the index with the visual projection 

in the original data space. 

After the maximizing sphered data plane is found, the vectors o1 and CQ are 

translated to the unsphered original variable space via 

/31= UD- ia, 

p2 = UD-+a2 . 

Since only the direction of the vectors matter, these combinations are usually 

normed as a final step. 

The variance and correlation constraints on ,L?i and @2 can be written as 

pf-cp, = 0 . 
D.61 



1.1 The Original Exploratory Projection Pursuit Technique Page 9 

Thus, ,& and ,& are orthogonal in the covariance metric while (Ye and ~2 are 

orthogonal geometrically. 

The optimization method used to solve the maximization problem [1.4] is a 

coarse search followed by an application of steepest descent, a derivative-based 

optimization procedure. The initial survey of the index space via a coarse step- 

ping approach helps the algorithm avoid deception by a small local maximum. 

The second stage employs the derivatives of the index to make an accurate search 

in the vicinity of a good starting point. 

The numerical optimization procedure requires that the projection index pos- 

sess certain computational properties. The index should be fast and stable to 

compute, and must be differentiable. These criteria surface again with respect 

to the interpretability index defined in Section 1.3. 

1.1.3 The Legendre Projection Index 

Friedman’s (1987) Legendre index exhibits these properties. He begins by 

transforming the sphered projections to a square with the definition 

Rl E 2G+I!;Z) - 1 

R:! E 2@(aTZ) - 1 

where @  is the cumulative probability density function of a standard normal 

random variable. Under the null hypothesis that the projections are normal and 

uninteresting, the density p(R1, R2) is uniform on the square [-1, I] X [-l,l]. 

As a measure of nonnormality, he takes the integral of the squared distance from 

the uniform 

G&?;Y, /3;Y) - J’ J’ [p(&, R2) - +I2 d&dR2 . 
-1 -1 

P.71 

He expands the density p(R1, R2) using Legendre polynomials, which are 

orthogonal on the square with respect to a uniform weight function. This ac- 

tion, along with subsequent integration taking advantage of the orthogonality 
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.relationships, yields an infinite sum involving expected values of the Legendre 

polynomials in R1 and R2, which are functions of the random variable Y. In 

application, the expansion is truncated and sample moments replace theoretical 

moments. Thus, instead of E[f(Y)] f or a function f, the sample mean over the 

n observations yl, ~2, . . . , yn is calculated. 

This index has been shown to find structure in the center of distribution, 

rather than in the tails. Thus, it identifies projections which exhibit clustering 

rather than heavy-tailed densities. GL also has the property of ‘affine invariance’ 

(Huber 1985), h h w ic means that it is invariant under scale changes and location 

shifts of Y. The index has this characteristic as it is based on the sphered 

variables 2. Since exploratory projection pursuit should not be drawn in by 

covariance structure, this property is desirable for any projection .index. 

The Legendre index is also stable and fast to compute. Research continues in 

the area of projection indices but so far alternatives have proved less computa- 

tionally feasible. Other indices use different sets of polynomials to take advantage 

of different weight functions or use alternate methods of measuring distance from 

normality as discussed in Section 1.4.2. 

In the following section, an example of the original algorithm using GL is dis- 

cussed in order to provide the motivation for the proposed modification. After 

considering how to modify the method in order to make the results more inter- 

pretable, the projection index clearly needs a new theoretical property which GL 

does not have. Consequently, a new index is defined in Section 1.4.2. 
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1.1.4 The Automobile Example 

The automobile dataset (Friedman 1987) consists of ten variables collected 

on 392 car models and reported in ‘Consumer Reports’ from 1972 to 1982: 

Yl : gallons per mile (fuel inefficiency) 
Y2 : number of cylinders in engine 
Y3 : size of engine (cubic inches) 
Y* : engine power (horse power) 
Ys : automobile weight 
Y6 : acceleration (time from 0 to 60 mph) 

., Y7 : model year 
Y8 : American (0,l) 

fi : European (0,l) 
Ylo : Japanese (0,l) 

The second variable has 5 possible values while the last three are binary, in- 

dicating the car’s country of origin. As Friedman suggests, these variables are 

gaussianized, which means the discrete values are replaced by normal scores after 

any repeated observations are randomly ordered. The object is to ensure that 

their discrete marginals do not overly bias the search for structure. 

All the variables are standardized to have zero mean and unit variance before 

the analysis. In addition, the linear combinations which define the maximizing 

plane (PI, P2) are normed to length one. As a result, the coefficient for a variable 

in a combination represents its relative importance. 

The definition of the solution plane is 

p1 = (-0.21,-0.03,-0.91, 0.16, 0.30,-0.05,-0.01, 0.03, 0.00,-0.02)T 

p2 = (-0.75, -0.13, 0.43, 0.45,-0.07, 0.04,-0.15,-0.03, 0.02,-0.01)T 

That is, the horizontal coordinate of each observation is -0.21 times fuel inef- 

ficiency (standardized) -0.03 times the number of cylinders (gaussianized and 

standardized) and so on. The scatterplot of the points is shown in Figure 1.1. 

In the projection scatterplot, the combinations (PI,&) are the orthogonal 

horizontal and vertical axes and each observation is plotted as (/?TY, PZY). These 
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Fig. 1.1 Most structured projection scatterplot of the automobile data 
according to the Legendre index. 

vectors are orthogonal in the covariance metric due to the constraint [l.S]. How- 

ever, in the usual reference system, the orthogonal axes correspond to the vari- 

ables. For example, the x axis is Yl, the y axis is Y2, the z axis is Y3, and so 

on. The combinations are not orthogonal in this reference frame. This departure 

from common graphic convention is discussed further in Section 1.4.3. 

The first step is to look at the structure of the projected points. In this 

case, the points are clustered along the vertical axis at low values and straggle 

out to the upper right corner with a few outliers to the left. The obvious con- 

cern is whether this structure actually exists in the data or is due to sampling 

fluctuation. The value of the index GL for this particular view is 0.35 and the 

question is whether this value is significant. Friedman (1987) approximates the 

answer to this question by generating values of the index for the same number 



1.1 The Original Exploratory Projection Pursuit Technique Page 13 

of observations and dimensions (n and p) under the null hypothesis of normality. 

Comparison of the observed value with these generated ones gives an idea of 

how unusual the former is. Sun (1989) d e ves 1 deeper into the problem, providing 

an analytical approximation for a critical value given the data size and chosen 

significance level. The structure found in this example is significant. 

Given the clustering exhibited along the vertical axis, the second stey)is to 

attempt to interpret the linear combinations which define the projection plane. 

Though by projecting the data from ten to two dimensions, exploratory projec- 

tion pursuit has reduced the visual dimension of the problem, the linear projec- 

tions must still be interpreted in the original number of variables. The structure 

is represented by a set of points in two dimensions but understanding what these 

points represent in terms of the original data requires considering all ten vari- 

ables . 

An infinite number of pairs of vectors (pi, ,&) exist which satisfy the con- 

straints [1.6] and define the most structured plane. In other words, the two 

vectors can be spun around the origin in the plane rigidly via an orthogonal 

rotation and they still satisfy the constraints and maintain the structure found. 

The orientation of the scatterplot is inconsequential to its visual representation 

of the structure. 

These facts lead to the principle that a plane should be defined in the simplest 

or most interpretable way possible. Given that the data is standardized and the 

linear combinations have length one, the coefficients represent the individual 

contribution of each variable to the combination. Friedman (1987) attempts to 

find the simplest representation of the plane by spinning the vectors until the 

variance of the squared coefficients of the vertical coordinate are maximized. 

This action forces the coefficients of the second combination p2 to differ as much 

as possible. As a consequence, variables are forced out of the combination. This 

more interpretable and parsimonious vector has fewer variables in it. Such a 

vector is easier to understand, compare, remember and explain. 
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The goal of the present work is to expand this approach. A precise definition 

of interpretability is discussed in Section 1.3. Criteria which involve both com- 

binations are considered. More importantly, not only is rotation of the vectors 

in the plane allowed but also the solution plane may be rocked in p dimensions 

slightly away from the most structured plane. The resulting loss in structure is 

acceptable only if the gain in interpretability is deemed sufficient. 

1.2 The Interpretable Exploratory Projection Pursuit Approach 

As shown in the preceding example, exploratory projection pursuit produces 

the scatterplot (/3TY, PCY), the value of the index GL(PTY, ,%$Y), and the linear 

combinations (,&, pz). Th e scatterplot’s nonlinear structure may be visually as- 

sessed but attaching much meaning to the actual numerical value of the index is 

difficult. As remarked earlier, the linear combinations must still be interpreted 

in terms of the original number of variables. In fact, a mental attempt to under- 

stand these vectors may involve ‘rounding them by eye’ and dropping variables 

which have ‘too small’ coefficients. 

The question to be considered is whether the linear combinations can be made 

more interpretable without losing too much observed structure in the projection. 

The idea of the present modification is to trade some of the structure found in 

the scatterplot in return for more comprehensibility or parsimony in (pi, ,f?2). 

1.2.1 A Combinatorial Strategy 

If initially interpretability is linked with parsimony, a combinatorial method 

of variable selection might be considered. The analogous approach in linear 

regression is all subsets regression. A similar idea, principal variables, has been 

applied to principal components (Krzanowski 1987, McCabe 1984). This method 

restricts the linear transformation matrix to a specific form, for example each row 

has two ones and all other entries zero. The result is a variable selection method 

with each component formed from two of the original variables. Both variable 
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selection methods, all subsets and principal variables, are discrete in nature and 

only consider whether a variable is in or out of the model. 

Applying a combinatorial strategy to exploratory projection pursuit results 

in the following number of solutions, each of which consists of a pair of variable 

subsets. Given p variables and the fact that each variable is either in or out of a 

combination, 2P possible single subsets of variables exist. The combinations are 

symmetric, meaning that the (,f3i, ,&) plane is that the same as the (&, ,&) plane. 

Thus, the number of pairs of subsets with unequal members is (‘,‘). However, 

this count does not include the 211 pairs with both subsets identical, which are 

permissible solutions. It does include 2P -p degenerate pairs in which one subset 

is empty, or both subsets consist of the same single variable. These degenerate 

pairs do not define planes. The total number of solutions is 

0 2p + 2P _ 2P - p = 9-1 - 2p-1 - p . 
P 

Some planes counted may not be permissible due to the correlation constraint 

as discussed in Section 1.4.3, so the actual count may be slightly less. However, 

the principal term remains of the order of 2 2P-1 The number of subsets grows . 

exponentially with p and for each subset the optimization must be completely 

redone. Unlike all subsets regression, no smart search methods exist for elimi- 

nating poor contenders which do not produce interesting projections. Due to the 

time required to produce a single exploratory projection pursuit solution, this 

combinatorial approach is not feasible. 

1.2.2 A Numerical Optimization Strategy 

Given that a numerical optimization is already being done, an approach is to 

consider whether a variable selection or interpretability criterion can be included 

in the optimization. The objective function used is 
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for X E [0, 11. Th is f unction is the weighted sum of the projection index G 

.contribution and an interpretability index S contribution, indexed by the inter- 

pretability parameter X. The interpretability or simplicity index S is defined to 

have values E [O,l]. A na o 1 g ously, the value of the projection index is divided by 

its maximum possible value in order that its contribution is also E [0, 11. 

The interpretable exploratory projection pursuit algorithm is applied in an 

iterative manner. First, find the best plane using the original exploratory projec- 

tion pursuit algorithm. Set max G equal to the index value for this most struc- 

tured plane. For a succession of values (Xi, X2, . . . , Xl), such as (0.1,0.2, . . . , 1 .O), 

solve [1:9] with X = Xi. In each case, use the previous Xi-1 solution as a starting 

point. 

One way to envision the procedure is to imagine beginning at the most struc- 

tured solution and being equipped with an interpretability dial. As the dial is 

turned, the value of X increases as the weight on simplicity, or the cost of com- 

plexity, is increased. The plane rocks smoothly away from the initial solution. 

If the projection index is relatively flat near the maximum (Friedman 1987), the 

loss in structure is gradual. When to stop turning the dial is discussed in Section 

1.5.3. 

The additive functional form choice for the objective function [1.9] is made by 

drawing a parallel with roughness penalty methods for curve-fitting (Silverman 

1984). In that context, the problem is a minimization. The first term is a 

goodness-of-fit criterion such as the squared distance between the observed and 

fitted values, and the second is a measure of the roughness of the curve such 

as the integrated square of the curve’s second derivative. As the fit improves, 

the curve becomes more rough. The negative of roughness, or smoothness, is 

comparable to interpretability. 
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An alternate idea is to think of solving a series of constrained maximization 

subproblems 

2% GM% P2TY) 
, [l.lO] 

3 S(Pl,P2) 2 G 

for values of ci such as (0.0,O.l) . . . , 1.0). Th’ p is ro bl em may be rewritten as an 

unconstrained maximization using the method of Lagrangian multipliers. Rein- 

sch (1967) d escribes the relationship between [1.9] and [l.lO] and consequently 

the relationship between ci and Xi. 

The amount of work required by the functional approach [1.9] is linear in I. 
The computational savings for this numerical method versus a combinatorial one 

can be substantial. The inner loop, namely finding an exploratory projection 

pursuit solution is the same for either. The outer loop, however, is reduced from 

[1.8] to I. 

1.3 The Interpretability Index 

The interpretability index $ measures the simplicity of the pair of vectors 

(pi, pz). It has a minimum value of zero at the least simple pair and a maximum 

value of one at the most simple. Like the projection index G, it needs to be 

differentiable and fast to compute. 

1.3.1 Factor Analysis Background 

For two dimensional exploratory projection pursuit, the object is simplify a 

2 X p matrix 

. 

Consider a general q X p matrix 0 with entries wij, corresponding to q dimen- 

sional exploratory projection pursuit. What characteristics does an interpretable 

matrix have? When is one matrix more simple than another? Researchers have 
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considered such questions with respect to factor loading matrices. The goal in 

factor analysis is to explain the correlation structure in the variables via the fac- 

tor model. The solution is not unique and the factor matrix often is rotated to 

make it more interpretable. Comments are made regarding the geometric differ- 

ence between this rotation and the interpretable rocking of the most structured 

plane in Section 1.4.4. Though the two situations are different, the philosophical 

goal is the same and so factor analysis rotation research is used as a starting 

point in the development of a simplicity index S. 

Intuitively, the interpretability of a matrix may be thought of in two ways. 

‘Local’ interpretability measures how simple a combination or row is individually. 

In a general and discrete sense, the more zeros a vector has, the more interpretable 

it is as less variables are involved. ‘Global’ interpretability measures how simple 

a collection of vectors is. Given that the vectors are defining a plane and should 

not collapse on each other, a simple set of vectors is one in which each row clearly 

contains its own small set of variables and has zeros elsewhere. 

Thurstone (1935) advocated ‘simple structure’ in the factor loading matrix, 

defined by a list of desirable properties which were discrete in nature. For exam- 

ple, each combination (row) should have at least one zero and for each pair of 

rows, only a few columns should have nonzero entries in both rows. In summary, 

his requirements correspond to a matrix which involves, or has nonzero entries 

for, only a subset of variables (columns). Combinations should not overlap too 

much or have nonzero coefficients for the same variables and those that do should 

clearly divide into subgroups. 

These. discrete notions of interpretability must be translated into a continuous 

measure which is tractable for computer optimization. Local simplicity for a 

single vector is discussed first and the results are extended to a set of two vectors. 
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Consider a single vector w = (wi, ~2,. . . , w~)~. In a discrete sense, inter- 

pretability translates into as few variables in the combination or as many zero 

entries as possible. The goal is to smooth the discrete count interpretability 

index 

D(W) Z f: I(Wi = 0} [Ml] 
i=l 

where I{+} is the indicator function. 

Since the exploratory projection pursuit linear combinations represent direc- 

tions and are usually normed as a final step, the index should involve the normed 

coefficients. In addition, in order to smooth the notion that a variable is in or 

out of the vector, the general unevenness of the coefficients should be measured. 

The sign of the coefficients is inconsequential. In conclusion, the index should 

measure the relative mass of the coefficients irrespective of sign and thus should 

involve the normed squared quantities 

u” 
WTW 

i=l,...,p . 

In the 1950’s, several factor analysis researchers arrived separately at the same 

criterion (Gorsuch 1983, Harman 1976) which is known as ‘varimax’ and is the 

variance of the normed squared coefficients. This is the criterion which Friedman 

(1987) used as discussed in Section 1.1.3. The corresponding interpretability 

index is denoted by S, and is defined as 

s~(w)z-&f-(*-;)2 . 
i=1 ww 

[1.12] 

The leading constant is added to make the index value be E [0, 11. Fig. 1.2 shows 

the value of the varimax index for a linear combination w in two dimensions 
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0.8 

0.8 

0.2 

0.0 

angle of the vector in radians 

Fig. I.2 Varimax interpretability index for q = 1, p = 2. The value of 
the index for a linear combination w in two dimensions is plotted 
versus the angle of the direction in radians over the range [0, TIT]. 

(p = 2) versus the angle of the direction arctan(w2/wl) of the linear combination 

W. 

Fig. 1.3 shows the varimax index for vectors w of length one in three di- 

mensions (p = 3). Only vectors with all positive components are plotted due 

to symmetry. Fig. 1.3 shows the value of the index as the vertical coordinate 

versus the values of (WI, ~2). The value of w3 is known and does not need to 

be graphed. Fig. 1.4 shows contours for the surface in Fig. 1.3. These contours 

are just the curves of points w which satisfy the equation formed when the left 

side of [1.12] is set equal to a constant value. As the value of the interpretabil- 

ity index is increased, the contours move away from (-&, -$, -$=) toward the 

three points el = (l,O,O), e2 = (O,l,O) and es = (O,O, 1). The centerpoint is 
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Fig. I.3 Varimax interpretability index for q = 1, p = 3. The surface of 
the index is plotted as the vertical coordinate versus the first two 
coordinates (~1, wz) of vectors of length one in the first quadrant. 

Fig. J.4 Varimax interpretability index contours for q = 1, p = 3. The 
axes are the components (WI, ~2, ws). The contours, from the 
center point outward, are those points which have varimax val- 
ues S,(w) =(O.O, 0.01, 0.05, 0.2, 0.3, 0.6, 0.8). 
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the contour for S,(w) = 0.0 and the next three joined curves are contours for 

S,(w) = 0.01,0.05,0.2. The next three sets of lines going outward toward the 

ei’s are contours corresponding to S,(w) = 0.3,0.6,0.8. 

Since w is normed, the varimax criterion S, is equivalent to the ‘quartimax’ 

criterion, which derives its name from the fact it involves the sum of the fourth 

powers of the coefficients. S, is also the coefficient of variation squared of the 

squared vector components. 

1.3.3 The Entropy Index For a Single Vector 

The vector of normed squared coefficients has length one and all entries are 

positive, similar to a multinomial probability vector. The negative entropy of a 

set of probabilities measures how nonuniform the distribution is (Renyi 1961). 

If a vector is more simple, the more uneven or distinguishable its entries are 

from one another. Thus a second possible interpretability index is the negative 

entropy of the normed squared coefficients or 

S,(w)-l+lf: W ’2lnW ’2 
lnp 

i=l 
wTw wTw * 

The usual entropy measure is slightly altered to have values E [0, 11. The two 

simplicity measures S, and Se share four common properties. 

Property 1. Both are masimized when 

& = fej j = l,...,p 

where the ei,j = l,...,p are the unit axis vectors. Thus, the maximum value 

occurs when only one variable is in the combination. 
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Property 2. Both are m inimized when 

or when the projection is an equally weighted average. The argument could be 

made that an equally weighted average is in fact simple. However, in terms of 

deciding which variable most clearly affects the projection, it is the most difficult 

to interpret. 

Property 3. Both are symmetric in the coefficients wi. No variable counts more 

than any other. 

Property 4. Both are strictly Schur-convex as defined below. The following 

explanation follows Marshall and Olkin (1979). 

Definition. Let 5 = (C, &, . . . , &) and y = (ri, 72,. . . , yP) be any two vectors 

E RP. Let Cpl 2 $21 2 . - - 2 Cb] ad qll 1 721 2 . . . 2 ~1 denote their 

components in decreasing order. The vector < mujorizes y (C F -y) if 

The above definition holds w 7 = CP where P is a doubly stochastic matrix, 

that is P has nonnegative entries, and column and row sums of one. In other 

words, if y is a smoothed or averaged version of C, it is majorized by C. An 

example of a set of majorizing vectors is 

(l,O,... 
1 

,O) + (go )...) 0) h *.. I+ (- -J- 0) s ($,) . p- l’““P- 1’ 
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Definition. A function f : RP H R is strictly Schur-convex if 
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with strict inequality if y is not a permutation of <. 

This type of convexity is an extension of the usual idea of Jensen’s Inequality. 

Basically, if a vector C is more spread out or uneven than y, then S(c) > S(y). 

This intuitive idea of interpretability now has an explicit mathematical meaning. 

The two indices S, and Se rank all majorizable vectors in the same order. Us- 

ing the theory of Schur-convexity, a general class of simplicity indices could be 

defined. 

1.3.4 The Distance Index For a Single Vector 

Besides the variance interpretation, S, measures the squared distance from 

the normed squared vector to the point (k, k, . . . , t), which m ight thus be called 

the least simple or most complex point. Let the notation for the Euclidean norm 

of any vector 6 be 

If V, is defined to be the squared and normed version of w, 

lJ, z WTW7 W T W ”“’ W T W  ’ 

and t/c is the most complex point, then 

[1.13] 

&J(w) = --/$l”y - hII * - 
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.This index can be generalized. In contrast to having one most complex point, an 

alternate index can be defined by considering a set V = {or, . . . , VJ} of m  simple 

points. This set must have the properties 

Uji>O j=l,...,J i = l,...,p 
P 

c Uji = 1 j=l,...,J . 
i=l 

[1.14] 

The u;‘s are the squares of vectors on the unit sphere E RP as are u, and vC. An 

example is V = {cj : j = 1,. . . ,p}, with J = p. In the event that this index is 

used with exploratory projection pursuit, the statistician could define her own 

set of simple points rather than be restricted to the choice of V, used in S,. 

This distance would be large when w is not simple, so the interpretability 

index should involve the negative of it. An example is 

[1.15] 

The constant c is calculated so that the values are E [O,l]. Any distance norm 

can be used and an average or total distance could replace the m inimum. 

If V is chosen to be the ej’s and the m inimum Euclidean norm is used, the 

distance index becomes 

s;(w) G 1 - $@&)2-&+1] 

where k corresponds to the maximum I w; I, i = 1,. . . , p. The m inimiza- 

tion does not need to be done at each step, though the largest absolute co- 

efficient in the vector must be found. Analogous results are obtainable for 

similar choices of V such as all permutations of two $ entries and p - 2 ze- 
ros ((i, i,O,. . * , O), ($7 o,;, 0, - ’ * , 0), . . .) corresponding to simple solutions of two 

variables each. 



1. Interpretable Exploratory Projection Pursvii Page 26 

Since the ej’s maximize S, and are the simple points associated with Sl, the 

relationship between the two indices proves interesting. Algebra reveals 

wi 
m4 = --St&) + --& (P-& - 1) . 

The minimum of the second term occurs when 

W:=f 
WTW p 

or all coefficients are equal and S:(w) = S,(w) = 0. The maximum occurs when 

fL=l WTW 

and S;(w) = &(w) = 1. Th e relationship between the interim values varies., 

The difficulty with the distance index S’s is that its derivatives are not smooth 

and present problems when a derivative-based optimization procedure is used. 

Given that the entropy index S, and the varimax index S, share common prop- 

erties and the latter is easier to deal with computationally, the varimax approach 

is generalized to two dimensions. 

1.3.5 The Varimax Index For Two Vectors 

The varimax index SV can be extended to measure the simplicity of a set of Q  

vectors Wj = (Wjl, Wjz, . . . ) Wjp), j = 1,. . . , Q. In the following, the varimax index 

for one combination [1.12] is called Si. In order to force orthogonality between 

the squared normed vectors, the variance is taken across the vectors and summed 

over the variables to produce 

[1.16] 
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-If the sums were reversed and the variance was taken across the variables and 

summed over the vectors, the unnormed index would equal 

WWl) + wJ2) + * * - + &(wp) [1.17] 

with each element the one dimensional simplicity [1.12] of the corresponding 

vector. The previous approach [ 1.161 results in a cross-product term. 

For two dimensional exploratory projection pursuit, q = 2 and the index, 

with appropriate norming, reduces to 

~&l,~2) = 1 [iP - vu~l) + (P - 
2p 

W(w2) + 21 - $ -&-& , [1.181 
1 1 2 

with appropriate norming. The first term measures the local simplicities of the 

vectors while the second is a cross-product term measuring the orthogonality of 

the two normed squared vectors. This cross-product forces the vectors to ‘squared 

orthogonality’, so that different groups of variables appear in each vector. S, is 

maximized when the normed squared versions of w1 and w2 are ek and el, L # 1 

and minimized when both are equal to (i, f, . . . , 5). 

1.4 The Algorithm 

In this section, the algorithm used to solve the interpretable exploratory pro- 

jection pursuit problem [1.9] with interpretability index S,, is discussed. The 

general approach of the original exploratory projection pursuit algorithm is fol- 

lowed but two changes are required, as described in the first three subsections. 
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1.4.1 Rotational Invariance of the Projection Index 

As discussed in Section 1.1.4, the orientation of a scatterplot is immaterial 

and a particular observed structure should have the same value of the projection 

index G no matter from which direction it is viewed. An alternative way of 

stating this is that the projection index should be a function of the plane, not 

of the way the plane is represented (Jones 1983). The interpretable projection 

pursuit algorithm should always describe a plane in the simplest way possible 

as measured by S,,. Given these two facts, any projection index used by the 

algorithm should have the property of rotational invariance. 

Definition. A projection index G is rotationally invariant if 

where (PI, P2) is (771, ~2) rotated through e or 

with Q the orthogonal rotation matrix associated with the angle 8 or 

[1.19] 

Rotational invariance should not be confused with afhne invariance. As remarked 

in Section 1.1.3, the latter property is a welcome byproduct of sphering. 

Friedman’s Legendre index GL [l. 71 is not rotationally invariant. This prop- 

erty is not required for his algorithm. As described in Section 1.1.4, he simplifies 

the axes after finding the most structured plane by maximizing the single vector 

varimax index S1 for the second combination. He does not allow the solution to 

rock away from the most structured plane in order to increase interpretability. 
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Recall that the first step in calculating GL is to transform the marginals of 

the projected sphered data to a square. Under the null hypothesis the projec- 

tion is N(0, I), which means the projection scatterplot looks like a disk and the 

orientation of the axes is immaterial. Intuitively, however, if the null hypothesis 

is not true, the placement of the axes affects the marginals and thus the index 

value. 

Empirically, this lack of rotational invariance is evident. In the automo- 

. bile example from Section 1.1.4, the most structured plane was found to have 

GL(,BFY, ,BgY) = 0.35. The projection index values for the scatterplot as the axes 

are spun through a series of angles are shown in Table 1.1. A new index, which 

seeks to maintain the computational properties and to find the same structure 

as GL, is developed in the next subsection. 

e 0.0 fi zi 
3* 
ZiT t L 7* 

4 % x F 3 t 

G(/3;Y&Y) 0.35 0.36 0.34 0.32 0.30 0.29 0.29 0.29 0.30 0.32 0.35 

Table 1.1 Most structured Legendre plane index values for the automobile 
data. Values of the Legendre index for different orientations of 
the axes in the most structured plane are given. 

1.4.2 The Fourier Projection Index 

The Legendre index GL is based on the Cartesian coordinates of the projected 

sphered data ($2, o$‘Z). Th e index is based on knowing the distribution of these 

coordinates under the null hypothesis of normality. Polar coordinates are the 

natural alternative given that rotational invariance is desired. The distribution 

of these coordinates is also known under the null hypothesis. The expansion of 

the density via orthogonal polynomials is done in a manner similar to that of 

GL. 
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The polar coordinates of a projected sphered point (aT2, ac.Z) are 

Actually, the usual polar coordinate definition involves the radius of the point 

rather than its square but the notation is easier given the above definition of R. 

Under the null hypothesis that the projection is N(0, I), R and 0 are inde- 

pendent and 

R- Exp ; 
0 

0 - Unif[-7r,7r] . 

The proposed index is the integral of the squared distance between the density 

of (R, 0) and the null hypothesis density, which is the product of the exponential 

and uniform densities, 

The density pR,e is expanded as the tensor product of two sets of orthog- 

onal polynomials chosen specifically for their weight functions and rotational 

properties. The weight functions must match the densities f~ and fe in or- 

der to utilize the orthogonality relationships and the polynomials chosen for the 

0 portion of the expansion must result in rotational invariance. By definition, 

R is not affected by rotation. Friedman (1987) uses Legendre polynomials for 

both Cartesian coordinates as his two density functions are identical (Unif[-l,l]), 

the Legendre weight function is Lebesgue measure, and his algorithm does not 

require rotational invariance. Hall (1989) considered Hermite polynomials and 

developed a one dimensional index. The following discussion combines aspects of 

the two authors’ approaches. Throughout the discussion, i, j, and k are integers. 
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The set of polynomials for the R portion is the Laguerre polynomials which 

are defined on the interval [O,oo) with weight function W(U) = e-“. The polyno- 

mials are 

Lo(u) = 1 

L,(u) = u - 1 [1.21] 

L;(u) = (u - 2i + lpi-l(u) - (i - 1)2L44 . 

The associated Laguerre functions are defined as 

Z;(U) f .L;(u)e-i” . 

The orthogonality relationships between the p.olynomials are 

J 

O" Zi(U)Zj(U)dU = Sij ;,j>Oandi#j 
0 

where 6ij is the i(ronecker delta function. 

Any piecewise smooth function f : R H R may be expanded in terms of 

these polynomials as 

f(U) = e%&(u) 
i=O 

where the ai are the Laguerre coefficients 

a; Z 
J 

O” Li(U)t?-3uf(U)dU - 
0 

The smoothness property of f means the function has piecewise continuous first 

derivatives and the Fourier series converges pointwise. If a random variable W 

has density f, the coefficients can be written as 

Ui = Ef [Zi(W)] . 
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The 63 portion of the index is expanded in terms of sines and cosines. Any 

piecewise smooth function f : R H R may be written as 

f(w) = y + 5 [ ah cos( kw) + bk sin( kv)] 
k=l 

with pointwise convergence. 

The orthogonahty relationships between these trigonometric functions are 

J %  
cos2 (kv)dv = 

--r J 7r 
sin2(kv)dv = ?r k>l 

--x 

J x 
cos( kw) sin(jv)dv = 0 k>Oandj>l 

-% 

J r dv=2r . 
--I 

The ak and bk are the Fourier coefficients 

1 = 
ak E - ~ _ cos(kv)f(v)dv = ;Ef [cos(kW )] 

J 
1 = 

bk E - J sin( kv)f(v)dv = i.Ef [sin(kW)] . 
= -% 

The density pR,e can be expanded via a tensor product of the two sets of poly- 

nomials as 

i- 2 [aik cos(kv) + b;k sin(ku)]) . 
k=l 

The Uik and bik are the coefficients defined as 

C&k 3 :Ep [ii(R) cos(kO)] i,k>O 

bik G :Ep [Ii(R) sin(kO)] i>Oandk>l . 
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The null distribution, which is the product of the exponential density and 

the uniform density over [-‘ir,~] is 

h(u>fo(~) = ($+) (+-) = -&O(U) . 

The index [1.20] becomes 

The further condition that pR,e is square-integrable and subsequent multiplica- 

tion, integration, and use of the orthogonality relationships show that the index 

G(PTY, /3,‘Y) equals 

~(271)~+~~1T(u~k+b~k)-(2r)(~)(~) +(27r)(&) . [I.221 
i=l i=O k=l 

Maximizing [1.22] is equivalent to maximizing the Fourier index defined as 

G&-Y&Y) = ~G(Pf-y,&‘y) - f - 

The definitions of the coefficients in GF yield 

GF(PTY, p,‘Y) =f 2 Ep” [Ii(R)] + 2 2 (Ei [ii(R) cos(k@)I + Ep” k(R)sin(k@)l) 
i=O i=O k=l 

- ;Ep [lo(R)] . 
[1.23] 

This index closely resembles the form of GL in Friedman (1987). The extra 

i = 0 term in the first sum and the last subtracted term appear since the weight 

function is the exponential instead of Lebesgue measure as it is for Legendre 

polynomials. In application, each sum is truncated at the same fixed value and 
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the expected values are approximated by the sample moments taken over the 

data points. For example, Ei [Ii(R) cos(kO)] is approximated by 

where rj and Oj are the radius squared and angle for the projected jth observation. 

The Fourier index is rotationally invariant. Suppose the projected points are 

spun by an angle of r. The radius squared R is unaffected by the shift so the 

first sum and final term in [1.23] d o not change. The sine and cosine of the new 

angle are 

cos( 0 + T) = sin 0 cos 7 + cos 0 sin 7 

sin(O + r) = cosOcos7 - sin@sinr . 

Each component in the second term of [1.23] is 

Ei[Zi(R) cos(k(0 + T))] + E~[Zi(R)sin(k(O + r))] = 

cos2(kT) Ei[Zi(R) sin(kO)] + sin2(kr)E~[Zi(R) cos(k@ )] 
+ 2 sin( kT) cos(kT)Ep[Zi(R) sin(kO) cos(k@ )] 

+ cos2(kT) Ei[Zi(R) cos(k@ )] + sin2(kr)Ei[Zi(R) sin(k@)] 

-2sin(kr) cos(k~)E,[Z;(R)sin(kC3)cos(kO)] 

= Ei[Zi(R)cos(kO)] + E~[Zi(R)sin(kO)] 

[1.24] 

and the index value is not afFected by the rotation. The truncated version of 

the index also has this property as it is true for each component. Moreover, 

replacing the expected value by the sample mean does not affect [1.24], so the 

sample truncated version of the index is rotationally invariant. 

Hall (1989) p ro p oses a one dimensional Hermite function index. The Her- 

m ite weight function of e- 3 u2 helps bound his index for heavytailed projection 

densities. In addition, he addresses the question of how many terms to include 

in the truncated version of the index. Similarly, the asymptotic behavior of GL 
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is being investigated at present. The Fourier index consists of the bounded sine 

and cosine Fourier contribution, and of the Laguerre function portion which is 

weighted by e- 3 U. The class of densities for which this index is finite must be 

determined as well as the number of terms needed in the sample version. 

The Fourier GF and Legendre GL indices are based on comparing the density 

of the projection with the null hypothesis density. Jones and Sibson (1987) define 

a rotationally invariant index based on comparing cumulants. Their index tends 

to equate structure with outliers while the density indices GF and GL tend to 

find clusters. A possible future rotationally invariant index could be based on 

Radon transforms (Donoho and Johnstone 1989). 

1.4.3 Projection Axes Restriction 

The algorithm searches through the possible planes with the weighted objec- 

tive function [1.9] as a criterion. Every plane has a single projection index value 

associated with it since GF is rotationally invariant. Ideally, each plane would 

have a single possible representation; the most interpretable one as measured by 

S,. Unfortunately, the optimal representation of a given plane cannot be solved 

analytically. However, as the weight on simplicity (X) is increased, the algorithm 

tends to represent each plane most simply. 

In order to help the algorithm find the most interpretable representation of a 

plane, the constraints on the linear combinations (pi, ,&) must be changed. Re- 

call that in the original algorithm, the correlation constraint [1.6] is imposed on 

the linear combinations (&, &) which define th e solution plane. This constraint 

translates into an orthogonality constraint for the linear combinations (oi, ~22) 

which define the solution plane in the sphered data space. However, simplicity 

is measured for the two unsphered combinations (/?I, /32) and is maximized when 

the two vectors are (fek, &eZ), k # 1. These maximizing combinations are or- 

thogonal in the original data space and correspond to the variable k and variable 
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I axes. Unless two variables are uncorrelated, the maximum simplicity cannot be 

achieved by a pair of uncorrelated combinations. 

To ensure that the algorithm can find a maximum, given any pime defined 

by the pair (PI, p2) which satisfies the correlation constraint, the interpretability 

of the plane is calculated after the linear combinations have been translated to 

orthogonality. Unfortunately, the optimal translation is not known so it is done 

in the following manner. Without loss of generality, PI is fixed and /?2 is spun in 

the plane until the two vectors are orthogonal. The spinning is done by projecting 

@2 onto PI and taking the remainder. That is, ,& is decomposed into the sum of 

a component which is parallel to PI and a component which is orthogonal to PI. 

The new ,&, which is called ,8i, is the latter component. Mathematically, 

[1.25] 

Whether Sv( P, , Pi> is always greater than or equal to SV(p,,p2) is not clear. 

However, as noted above, the maximum value of the index can be achieved given 

this translation. 

As an added bonus, the two combinations (p,,&) are orthogonal in the 

original variable space, which is the usual graphic reference frame. This situa- 

tion is in contrast to the original exploratory projection pursuit algorithm which 

graphs with respect to the covariance metric as noted in Section 1.1.4. In effect, 

a further subjective simplification in the solution has been made as the visual 

representation is more interpretable. 

The final solution for any particular X value is reported as the normed, trans- 

lated set of vectors 

[1.26] 
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Throughout the rest of this thesis, the orthogonal translat.ion is assumed and 

(Pr, &,) is written for (&, Pi). As a result, whenever S,(p,, /?2) is referred to. the 

actual value is S,,(pl,&) and Il.181 becomes 

wdv = $KP - W l(PJ + (p - l)S@{) + 21 - $ -L!&g . [1.27] 
112 2 

1.4.4 Comparison W ith Factor Analysis 

Given that factor analysis is used to motivate the interpretability index, 

comparison with this method is warranted. The two dimensional projection 

X = (Xi, X2)r is defined as 

XEBY 

where B is the 2 X p linear combination matrix 

and the observed variables are Y = (K, Y2, . . . , YP)=. This definition is similar 

to the one for principal components except that in the latter case, usually all p 

principal components are found so that the dimension of B is p X p. In addition, 

as was remarked in Section 1.1.1, principal components maximize a different 

projection index. 

The first attempt to simplify B, due to Friedman (1987) and discussed in 

Section 1.1.4, involved rigidly spinning the projected points (X1,X2) in the solu- 

tion plane. The new set of points is QX = QBY where Q is a two dimensional 

orthogonal matrix as in [1.19]. S’ mce the rotation is rigid, it maintains the corre- 

lation constraint. Thus simplification through spinning in the plane is achieved 

by multiplying the linear combination matrix B by Q. 
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The analogous p variable factor analysis model is 

In this model, there are assumed to be two unknown underlying factors f = (fi, f2>’ and E is a p X 1 error vector. The factor loading matrix 51 is p X 2 

and is found by seeking to explain the covariance structure of the variables 

(Y,,yz,... , YP) given certain distributional assumptions. Due to the non-uniqueness 

of the model, the factors can be orthogonally rotated producing 

without changing the explanatory power of the model. A rotation is made in 

order to simplify the factor-loading matrix to CJQ’. 

Taking the transpose of the new factor-loading matrix produces QflT, a 2 X p 

matrix, which is comparable in dimensionality to the new exploratory projection 

pursuit linear combination matrix QB. Thus, spinning the linear combinations 

to a more interpretable solution is analogous to simplifying the factor-loading 

matrix in a two factor model. A transpose is taken since the factor analysis linear 

combinations are of the underlying factors, while the exploratory data analysis 

combinations are of the observed variables. This comparison is analagous to that 

between factor analysis and principal components analysis. 

Interpretable exploratory projection pursuit involves rocking the solution 

plane. In this case, the linear combinations (pi, /32) are moved in RP subject 

only to the correlation constraint. They are then transposed to orthogonality 

via [1.25] to further increase interpretability. The more interpretable coefficients 

may not be linear combinations of the original ones. Such a move is not allowed 

in the factor-analysis setting. The interpretable method may be thought of as a 

looser, less restrictive version of factor analysis rotation. 
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1.4.5 The Optimization Procedure 

The interpretable exploratory projection pursuit objective function is 

(I- A) G~(~~~~,Ty) + 
max GF 

AS (p v 1, 2 p ) [1.28] 

where &@I, P2) is calculated after the translation [1.25]. The computer algo- 

rithm employed is similar to that of the original exploratory projection pursuit 

algorithm described in Section 1.1.2. The algorithm is outlined below and then 

comments are made on the specific steps. 

0. Sphere the data [1.2]. 

1. Conduct a coarse search to find a starting point to solve the original prob- 

lem [l.l] (or [1.28] with X = 0). 

2. Use an accurate derivative based optimization procedure to find the most 

structured plane. 

3. Spin the solution vectors in the optimal plane to the most interpretable 

representation. Call this solution Pa. 

4. Decide on a sequence (Xi, X2, . . . , Xl) of interpretability parameter values. 

5. Use a derivative based optimization procedure to solve [1.28] with X = Xi 

and starting plane Pi-l. Call the new solution plane Pi.. 

6. If i = I, EXIT. Otherwise, set i = i + 1 and GOT0 5. 

The search for the best plane is performed in the sphered data space, as 

discussed in Section 1.1.2. However, an important note is that the interpretability 

of the plane must always be calculated in terms of the original variables. The pi 

combinations, not the ai combinations, are the ones the statistician sees. In fact, 

she is unaware of the sphering, which is just a computational shortcut behind 

the scenes. 

The modification does require one important difference in the sphering. In 

Friedman (1987), the suggestion is to consider only the first Q sphered variables 
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2 where q < p and a considerable amount of the variance is explained. The 

dropping of the unimportant sphered variables is the same as the dropping of 

unimportant components in principal components analysis and reduces the com- 

putational work involved. In Step 5, the interpretability gradients are calculated 

for (PI, /32) and th en t ranslated via the inverse of [1.5], 

a1 = DfU’p, 
a2 = DbJ’p, , 

p.291 

to the sphered space. If the gradient components are nonzero only in the p - q 

dropped dimensions, they become zero after translation. The derivative-based 

optimization procedure assumes it is at the maximum and stops, even though 

the maximum has not been reached. Thus, no reduction in dimension during 

sphering should be made. 

The coarse search in Step 1 is done to ensure that the algorithm starts in 

the vicinity of a large local maximum. The procedure which Friedman (1987) 

employs is based on the axes in the sphered data space. He finds the most 

structured pair of axes and then takes large steps through the sphered space. 

Since the interpretability measure S, is calculated for the original variable space, 

a feasible alternative m ight be to coarse step through the original rather than 

sphered data space. For example, the starting point could be the most structured 

pair of original axes. This pair of combinations is in fact the simplest possible. 

On the other hand, stepping evenly through the unsphered data space m ight not 

cover the data adequately as the points could be concentrated in some subspace 

due to covariance structure. Sphering solves this problem. In all data examples 

tried so far, the starting point did not have an effect on the final solution. 

In Steps 2 and 5, the accurate optimization procedure used is the program 

NPSOL (Gill et al. 1986). This package solves nonlinear constrained optimiza- 

tion problems. The search direction at any step is the solution to a quadratic 
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programming problem. The package is employed to solve for the sphered com- 

binations ((Y~,cx~) subject to the length and orthogonality constraints [1.4]. The 

gradients for the projection index GF are straightforward. The interpretability 

index SV derivatives are more difficult as they involve translations from the un- 

correlated to orthogonal combinations [1.25] and from the sphered to unsphered 

space [ 1.51. These gradients are given in Appendix A. 

The package NPSOL is extremely powerful. At present, work continues to 

design a steepest descent algorithm which maintains the constraints. However, 

given the complicated translations between the sphered and unsphered spaces, 

this problem is a difficult one. 

Step 3 can be performed in two ways. The initial pair of vectors can be 

discretely spun in the plane to the most interpretable representation or Steps 5 

and 6 can be run with A equal to a very small value, say 0.01. This slight weight 

on simplicity does not overpower the desire for structure. The plane is not 

permitted to rock but spinning is allowed. The result is the most interpretable 

representation of the most structured plane. As noted previously, this spinning 

is similar to Friedman’s (1987) simplification except that a two vector varimax 

interpretability index is used instead of a single vector one. 

The initial value of the projection index GF is used as max G in the denom- 

inator of the first term in [1.28]. However, the algorithm may be caught in a 

local maximum and as the weight on simplicity is increased, the procedure may 

move to a larger maximum. Thus, the contribution of the projection index term 

may at some time be greater than one. This is an unexpected benefit of the in- 

terpretable projection pursuit approach, both structure and interpretability have 

been increased. 

In the,examples tried, the algorithm is not very sensitive to the X sequence 

choice as long as the values are not too far apart. For example, the sequence 

(O.O,O.l,. . . , 1.0) produces the same solutions as (0.0,0.05,0.1, . . . , 1.0) but the 

sequence (0.0,0.25,0.5,1.0) does not. 
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Throughout the loop in Steps 5 and 6, the previous solution at Xi-1 is used 

as the starting point for the application of the algorithm with X;. This approach 

is in the spirit of rocking the solution away from the original solution. Examples 

have shown that the objective is fairly smooth and a large gain in simplicity is 

made initially in turn for a small loss in structure. 

As remarked in Section 1.1.4 when the example was considered, the data Y is 

usually standardized before analysis. The reported combinations are [1.26]. Thus 

the coefficients represent the relative importance of the variables in each combi- 

nation. The next section consists of the analysis of an easy example followed by 

a return to the automobile Example. 

1.5 Examples 

In this section, two examples of interpretable exploratory projection pursuit 

are examined. The first is an example of the one dimensional algorithm, while the 

second is the two dimensional algorithm applied to the automobile data analyzed 

in Section 1.1.3. Several implementation issues are discussed at the end of the 

section. 

1.5.1 An Easy Example 

The simulated data in this example consists of 200 (n) points in two (p) di- 

mensions. The horizontal and vertical coordinates are independent and normally 

distributed with means of zero and variances of one and nine respectively. The 

data is spun about the origin through an angle of thirty degrees. Three is sub- 

tracted from each coordinate of the first fifty points and three is added to each 

coordinate of the remaining points. The data appear in Fig. 1.5. 

Since the data is only in two dimensions and can be viewed completely in a 

scatterplot, using interpretable exploratory projection pursuit in this instance is 

quite contrived. However, this exercise is useful in helping understand the way 

the procedure works and its outcome. 
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Fig. 1.5 Simulated data with n = 200 ad p = 2. 

The algorithm is run on the data using the varimax interpretability index 

for a single vector S1 and the Legendre index GL. Rotational invariance and 

axes restriction modifications are irrelevant in this situation since a one dimen- 

sional solution is sought. The values of the simplicity parameter X for which the 

solutions are found are (0,O. 1,0.2, . . . , 1 .O). 

The most structured line through the data should be about thirty degrees 

or the first principal component of the data. When projected onto this line, 

the observations are split into two groups. The most interpretable lines in the 

entire space, R2 in this case, are the horizontal and vertical axes. The algorithm 

should move the solution line toward the more structured of these two axes. 

. From Fig. 1.5, the horizontal axis exhibits the most structure when the data is 

projected onto it. If the data is projected onto the vertical axis, the two clusters 

merge into one. In the horizontal projection, the two groups only overlap slightly. 
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Fig. 1.6 Projection and interpretability indices versus X for the simulated 
data. The projection index values are normalized by the X = 0 
value and are joined by the solid line. The simplicity index 
values are joined by the dashed line. 

Fig. 1.6 shows the values of the projection and interpretability indices versus 

the values of A. The projection index begins at 1.0 as it is normed and moves 

downward to about 0.3 as the weight on simplicity increases. The simplicity 

index begins at about 0.2 and increases to 1.0. 

In addition to this graph, the statistician should view the various projections. 

Fig. 1.7 shows the projection histograms, values of the indices, and the linear 

. combinations for four chosen values of A. The histogram binwidths are calculated 

as twice the interquartile range divided by ni and the histograms are normed to 

have area one. 
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Fig. 1.7 Projected simulated data histograms for various values of X. 
The values of the indices and combinations are 

X = 0.0, GL = 1.00, S1 = 0.21, ,L3 = (0.85,0.52)T 

A = 0.3, GL = 0.93, Sl = 0.47, p = (0.92,0.47)T 
X = 0.5, GL = 0.78, S1 = 0.71, B = (0.97,0.24)T 
X = 1.0, GL = 0.27, Sl = 1.00, ,!3 = (l.OO,O.OO)T 

As predicted, the algorithm moves from an angle of about thirty degrees to 

_ the horizontal axis. As the weight on simplicity is increased, the loss of structure 

is evident in the merging of the two groups. In the fmal histogram, the two 

groups are overlapping. Also important to note is the comparison between the 
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first and second histograms at X = 0 and X = 0.3 respectively. A loss of 7% in the 

value of the projection index is traded for a gain in simplicity of 0.26. However, 

the two histograms are virtually indistinguishable to the eye. 

1.5.2 The Automobile Example 

The automobile data discussed in Section 1.1.3 is re-examined using two 

dimensional interpretable exploratory projection pursuit. Recall that this data 

consists of 392 (n) observations of ten (p) variables. 

The interpretable exploratory projection pursuit analysis uses the Fourier 

GF projection index instead of the Legendre GL index due to the desire for 

rotational invariance as discussed in Section 1.4.1. Naturally, this choice results 

in a different starting point for the algorithm, the X = 0 or PO plane in the 

notation of Section 1.4.5. Comparison of these two solutions demonstrates the 

lack of rotational invariance in the Legendre projection. Fig. 1.8 shows the PO 

projection using the Fourier index. The dashed axes are (PI, ,&), which are 

orthogonal in the original variable space and are the simplest representation of 

the plane. The corresponding PO solution for the Legendre index is shown in 

Fig. 1.9. This plot is the same as Fig. 1.1 but with the same limits as Fig. 1.8 

for comparison purposes. 

In Fig. 1.9, the dashed axes are (/&,pz), which are orthogonal in the co- 

variance metric. Rigidly rotating the combinations maintains the correlation 

constraint [1.6]. However, the Legendre index changes as shown in Table 1.1. 

With imagination, spinning these axes through different angles produces lower 

index values. For example, the new marginals after a rotation of f are less 

clustered and therefore GL is reduced. 

The value of the Fourier index GF for the projection in Fig. 1.8 is 0.21 while 

the value ‘for the projection in Fig. 1.9 is 0.19. The Legendre index GL value 

for the second is 0.35 as previously reported. For the projection in Fig. 1.8, the 

Legendre index varies from 0.19 to 0.21, depending on the orientation of the axes. 
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Fag. I.8 Most structured projection scatterplot of the automobile data 
according to the Fourier index. The dashed axes are the solution 
combinations which define the plane. 

Both find projections which exhibit clustering into two groups. If the Leg- 

endre index combinations are translated to an orthogonal pair via jl.51, they 

become 

,& = (-0.21, -0.03,-0.91, 0.16, 0.30, -0.05, -0.01, 0.03, 0.00, -0.02)T 

,&. = (-0.80,-0.14, 0.27, 0.49,-0.02, 0.03,-O-16,--0.02, 0.02,-0.01)T 

and have interpretability measure S@, /&) = 0.50. Of course, this may not be 

the simplest representation of the plane though the orthogonalizing transforma- 

tion may help. 

The Fourier index combinations originally are 

PI = (-0.06, -0.22, -0.79, -0.44, 0.34,-0.05, 0.02, -0.14, -0.05, 0.04)T 

p2 = ( 0.00, O.ll,-0.53, 0.82,-0.03, 0.05,-0.01, 0.16, 0.04,-0.06)T 
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Fig. 1.9 Most structured projection scatterplot of the automobile data 
according to the Legendre index. The dashed axes are the solu- 
tion combinations which define the plane maximize GL and are 
orthogonal in the covariance metric. 

and have interpretability measure 0.17. These axes are spun to the simplest 

representation as discussed in Section 1.4.5 and orthogonalized. The resulting 

axes are shown in Fig. 1.8 and the combinations are 

p1 = (-0.03, -0.12, -0.95, -0.01, 0.29,-0.02, 0.00, -0.03,-0.02, O.OO)T 

@2 = (-0.02, 0.16,-0.09, 0.94,-0.19, 0.09,-0.01, 0.18, 0.07,-0.06)T 

with interpretability measure 0.80. 

Fig. 1.10 shows the values of the interpretability and Fourier indices for sim- 

plicity parameter values X = (0.0, 0.1, . . . , l.O), analogous to Fig. 1.6 for the sim- 

ulated data. This example demonstrates that the projection index may increase 

as the interpretability index does, possibly because the algorithm gets bumped 
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Fig. 1.10 Projection and interpretability indices versus X for the automo- 
bile data. The projection index values are normalized by the 
X = 0 value and are joined by the solid line. The simplicity 
index values are joined by the dashed line. 

out of a projection local maximum as it moves toward a simpler solution. 

Given this plot, the statistician may then choose to view several of the so- 

lution planes for specific X values. Six solutions are shown in Fig. 1.11. The 

actual values of the combinations are given in Table 1.2. If coefficients which are 

less than 0.05 in absolute value are replaced by -, Table 1.3 results. In some 

sense, this action of discarding ‘small’ coefficients is contrary to the continuous 

nature of the interpretability measure. However, the second table shows the rate 

at which the coefficients decrease. Due to the squaring in the index SV, the 

coefficients move quickly to one but slowly to zero. This convergence problem 

suggests investigating the use of a power less than two in the index in the future 

as discussed in Section 3.4.3. The table also demonstrates the global simplicity 
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Fig. I.11 Projected automobile data scatterplots for various values of A. 
The values of the indices can be seen in Fig. 1.10 and the com- 
binations are given in Table 1.2 
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0.00 -0.09 -0.97 0.06 0.22 -0.01 0.02 -0.02 -0.02 0.00 
0.4 . 

-0.06 0.15 0.00 0.95 -0.15 0.08 -0.03 0.19 0.07 -0.06 

0.00 -0.08 -0.98 0.04 0.16 -0.02 0.03 -0.02 -0.02 -0.01 
0.5 

-0.03 0.12 0.01 0.97 -0.11 0.12 -0.03 0.14 0.06 -0.04 

0.01 -0.05 -0.99 0.01 0.12 -0.01 0.04 0.00 -0.01 -0.01 
0.6 

-0.03 0.06 0.00 0.98 -0.07 0.11 -0.03 0.11 0.05 -0.03 

0.01 -0.05 -0.99 0.02 0.09 -0.01 0.05 -0.01 -0.02 -0.01 
0.7 

-0.02 0.06 0.01 0.98 -0.04 0.10 -0.04 0.11 0.05 -0.03 

0.02 -0.04 -0.99 0.01 
0.8 

0.09 0.04 0.02 0.02 -0.01 0.00 

-0.02 -0.02 0.01 0.99 -0.02 -0.02 0.03 0.01 0.04 -0.09 

0.01 -0.03 -1.00 0.00 0.03 0.03 0.02 0.01 
0.9 

0.00 -0.01 

0.00 -0.01 0.00 1.00 0.00 0.01 0.03 0.02 0.03 -0.07 

0.00 0.00 
1.0 

-1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

Table 1.2 Linear combinations for the automobile data. The linear com- 
binations are given for the range of X values. The first row for 
each X value is PT and the second is ,f?T. 
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- -0.10 -0.96 0.05 0.25 - - - - - 
3.2 

- 0.17 - 0.94 -0.19 0.08 - 0.18 0.07 -0.05 

-0.10 -0.96 0.06 0.24 - - - - - 
3.3 - 

-0.05 0.17 - 0.94 -0.18 0.08 - 0.18 0.07 -0.05 

- -0.09 -0.97 0.06 0.22 - - - - - 
3.4 

-0.06 0.15 - 0.95 -0.15 0.08 - 0.19 0.07 -0.06 

- -0.08 -0.98 - 0.16 - - - - - 
3.5 

- 0.12 - 0.97 -0.11 0.12 - 0.14 0.06 - 

-0.05 -0.99 - 0.12 - - - - - 
3.6 - 

- 0.06 - 0.98 -0.07 0.11 - 0.11 0.05 - 

- -0.05 -0.99 - 0.09 - 0.05 - - - 
3.7 

- 0.06 - 0.98 - 0.10 - 0.11 0.05 - 

- - -0.99 - 0.09 - - - - - 
3.8 

- - - 0.99 - - - - - -0.09 

- - -1.00 - - - - - - _ 
3.9 

- - - 1.00 - - - - - -0.07 

-1.00 - - - - - - _ 
1.0 - - 

- - - 1.00 - - - - - - 

Table I.3 Abbreviated linear combinations for the automobile data. The 
linear combinations are given for the range of X values as in 
Table 1.2. A - replaces any coefficient less than 0.05 in absolute 
value. 
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Fig. I. It Parameter trace plots for the automobile data. The values of 
the parameters are given for those variables whose coefficients 
are large enough. The parameter values (/3li solid, &i dashed) 
are plotted versus A. 
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of the two combinations. If one variable is in a combination, it usually is absent 

in the other. 

Another useful diagnostic tool fashioned after ridge regression trace graphs 

is shown in Fig. 1.12. For variables whose coefficients are 2 0.10 for any value of 

X, the values of the coefficients in each combination are plotted versus X. 

One of the most interesting solution planes is the one for X = 0.8. The combi- 

nations involve four variables which are split into two pairs, one in each combina- 

tion. The first combination involves the negative of the third variable engine size 

and the fifth variable automobile weight. The second combination involves the 

engine power and the negative of the gaussianized Japanese flag. Fig. 1.13 shows 

the solution plane with the type of car (Japanese or Non-Japanese) delineated 

by the plotting symbol. 

The statistician must decide when the tradeoff between simplicity and accu- 

racy should be halted. In this example, the X = 0.8 model is a good stopping 

place, especially since the projection index actually increased from the previous 

plane. However, the decision may be difficult. Given that this is an exploratory 

technique, no external measurement such as prediction error can be used to judge 

a plane’s usefulness. Rather, the decision rests with the statistician. 

No doubt this data has a wealth of planes which exhibit structure. In fact, 

two are evident in Figs. 1.8 and 1.9. The object is to find all such views. After 

a structured plane is found, its structure should be removed without disturbing 

the structure of other interesting planes. Friedman (1987) presents a method 

for structure removal. He recursively applies a transformation to the structured 

plane which normalizes it yet leaves other orthogonal planes undisturbed. The 

interpretable exploratory projection pursuit algorithm can employ the same pro- 

cedure to.find several interesting planes. Once the A value and hence the par- 

ticular plane have been chosen, the structure is removed and the next plane is 

found and simplified as desired. 
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Fig. I.13 Country of origin projection scatterplot of the automobile data 
for X = 0.8. American and European cars are plotted as points, 
Japanese cars as asterisks. 

The interpretability of a collection of solution planes could be considered. For 

example, two planes might be simple in relation to each other if they are orthog- 

onal. However, since the structure removal procedure does not affect structure 

in orthogonal planes, in practice solution sets of planes tend to be orthogonal 

anyway. 

Originally, exploratory projection pursuit was interactive, as mentioned in 

Section 1.1.1. After choosing three variables, the statistician used a joystick 

to rotate the point cloud in real time. A fourth dimension could be shown in 

color. The statistician could then pick out structure by eye. However, this task 

was time-consuming and only allowed combinations of four variables at best. 

The solution was to automate the structure identification by defining an index 
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which measures structure mathematically and to use a computer optimizer. The 

statistician loses some of her individual choice in structure identification but she 

can define her own index if desired. 

Interpretable exploratory projection pursuit is an analogous automation of 

variable selection. The interpretability index is a mathematical measure which, 

coupled with a numerical optimization routine, takes the place of interactively 

choosing which three or four variables to view. 



Chapter 2 

Interpretable 
Projection Pursuit Regression 

This chapter describes interpretable projection pursuit regression. It is sim- 

ilar in organization to the previous chapter though condensed as several issues 

common to both have been addressed previously. Section 2.1 deals with the orig- 

inal algorithm, reviewing the notation and strategy. In the second section, the 

modification is considered and the new algorithm is detailed. Due to the differ- 

ing goals of exploratory projection pursuit and projection pursuit regression, the 

interpretability index must be changed slightly from that of Chapter 1. The final 

section consists of an example. 

2.1 The Original Projection Pursuit Regression Technique 

The original projection pursuit regression technique is presented in Friedman 

and Stuetzle (1981). Friedman (1984a, 1985) improves several algorithmic fea- 

tures and extends the approach to include classification and multiple response 

regression in addition to single response regression. In this chapter, only single 

response regression is considered. 

57 
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2.1.1 Introduction 

The easiest way to understand projection pursuit regression is to consider it 

as a generalization of ordinary linear regression. Many authors motivate projec- 

tion pursuit regression in this manner, among them Efron (1988) and McDonald 

(1982). For ease of notation, suppose the means are removed from each of the 

predictors X = (X1,X2,. . . ,Xp)T. The goal is to model the response Y as a 

linear function of the centered X. With the usual assumptions and slightly un- 

familiar notation, the single response linear regression model may be written 

Y - E[Y] = WTX + c W I 

where c is the random error term with zero mean. The vector w = (WI, ~2, . . . , w~)~ 

consists of the regression coefficients. 

In general, this linear function is estimated by the conditional expectation of 

Y given particular values of the predictors 2 = (q, 52,. . . , zp). The fitted value 

of Y is 

3(x) = E[Y] + WTX . W I 

The expected value of Y is estimated by the sample mean. The expected L2 

distance between the true and fitted random variables is 

L2(w, x, Y) E E[Y - Q2 . 

The parameters w of the model are estimated by 

m in Lg(w,X,Y) . P-31 

In practice, the sample mean over the n data points replaces the population 

mean. 
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The model [2.1] may be written 

Y - E[Y] = /qct'X) + E WI 

where p = wTw and a = (01, CY~, . . . , c+,)’ is w normed. The resulting fitted value 

equation is analogous to [2.2]. Th e p arameters p and o may be estimated as in 

[2.3] subject to the constraint that aTa, = 1. 

The rewritten model [2.4] shows that response variable Y depends only on 

the projection of the predictor variables X onto the direction o’. The relationship 

between the fitted values Y and the projection oTX is a straight line. A natural 

generalization is to allow this relationship to vary. Projection pursuit regression 

does just that, allowing the fitted value to be a sum of univariate functions of 

projections which are smooth but otherwise unrestricted parametrically. 

The projection pursuit regression model with m terms is 

y - E[Y] = 5 @jfj(aTX) + E s WI 

The linear combinations oj which define the directions of the smooths are re- 

stricted to have length one. In addition, the functions fj are smooth, and have 

zero mean and unit variance. The parameters pj capture the variation between 

the terms. In the usual way, the conditional mean is used to estimate the sum 

of functions as 
m 

p(X) = E[Y] + C @j.fj(aTx> 

j=l 

with the parameters estimated as in [2.3]. 

Analogous to exploratory projection pursuit, projection pursuit regression 

may be more successful than other nonlinear methods by working in a lower di- 

mensional space (Huber 1985). The model [2.5] is useful when the underlying 
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relationship between the response and predictors is nonlinear, versus ordinary re- 

gression [ 2.41, and when the relationship is smooth, as opposed to other nonlinear 

methods such as recursive partitioning. Diaconis and Shahshahani (1984) show 

that any function can be approximated by the model [2.5] for a large enough 

number of terms m. Substantial work remains to be done with respect to the 

theoretical properties of the method. In addition, the numerical aspects of the 

algorithm are difficult as discussed in Section 2.2.3. 

2.1.2 The Algorithm 

The parameters pj, oj and the functions fj are estimated by minimizing 

min 
@j,CYj,fj:j=l,...VZ 

La@, a, f, x, Y) 

3 QTaj = 1 

JVjl = 0 
and Var[fj] = 1 j = 1,. . . ,m . 

WI 

The criterion [2.6] cannot be minimized simultaneously for all the parameters. 

However, if certain ones are fixed, the optimal values of others are easily solved 

for. Friedman (1985) employs such an ‘alternating’ optimization strategy. His 

results are discussed in this section as they are pertinent when the modified 

algorithm is considered in Section 2.2.3. First, he considers a specific term k, 

k= l,.. . , m. The problem [2.6] may be written 

min -Wk - Bkfi;(~TX)12 
pk#k,fk 

where Rk s 
j#k 

WI 

For the kth term, the three sets of parameters /?k, ok, and fk are estimated 

in turn while all others are held constant. After all elements of the kth term 

have been found, the next term is considered. The algorithm cycles through the 
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terms in the model until the objective in [2.6] d oes not decrease sufficiently. The 

alternating strategy is discussed in more detail in Section 2.2.3. 

The minimizing ,Bk is 

The minimizing function fk for any particular point azx is 

P-81 

This estimate is found using the nonparametric smoother discussed in Fried- 

man (198413). Th e resulting curve is standardized to satisfy mean and variance 

constraints. It is not expressed as a mathematical function but rather as an 

estimated value for each observation. 

The minimizing direction ok cannot be determined directly and requires an 

iterative procedure. Minimizing the criterion [2.6] as a function of ok is a least- 

squares problem as seen in [2.7]. In applying an iterative search procedure to 

minimize a function, the goal is to use as much information about the function 

as possible. Thus, rather than use a method which only employs first deriva- 

tives, a method which also uses the actual or approximate Hessian is preferable. 

Usually the difficulty of applying these methods, specifically determining or accu- 

rately estimating the Hessian, outweighs their additional optimization properties. 

However, if the function to be minimized is of least-squares form, the Hessian 

simplifies and is easily approximated (Gill et al. 1981). Friedman (1985) cap- 

italizes on’this fact and uses the Gauss-Newton procedure to find the optimal 

ak. 
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2.1.3 Model Selection Strategy 
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Model selection in the original projection pursuit regression consists of choos- 

ing the number of terms m in the model. Interpretable projection pursuit re- 

gression considers not only the number of terms but also the interpretability of 

those terms. 

Friedman (1985) suggests starting the algorithm with a large number of terms 

M. The procedure for finding this model is discussed in Section 2.2.3. A model 

with M - 1 terms is then determined using the M - 1 most important terms in 

the previous model as a starting point. The importance of a term k in a model 

of m terms is defined as 

k Ik E fjj 
1 

[2.10] 

where ]/3l] is the maximum absolute parameter. Since the functions fj are con- 

strained to have variance one, [@J-l measures the contribution of the term to the 

model. 

The statistician may then plot the value of the objective in [2.6], which is 

the model’s residual sum of squares, versus the number of terms for each model. 

In most cases, the plot has an elbow shape. The usual advice is to choose that 

model closest to the tip of the elbow, where the increase in accuracy due to the 

additional term is not worth the increased complexity. 

2.2 The Interpretable Projection Pursuit Regression Approach 

A projection pursuit regression analysis produces a series of models with 

number of terms m = 1, . . . , M. The models’ nonlinear components are the 

functions fi. Since these functions are smooths and not functionally expressed, 

they are visually assessed by the statistician. Each is considered along with its 

associated combination aj in order to understand what aspect of the data it 

represents. The parameters ,f3j measure the relative importance of the terms. 
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Each direction oj must be considered in the context of the original number of 

variables p. The collection of combinations is not subject to any global restriction 

such as the correlation constraint in exploratory projection pursuit. As with any 

regression technique, a variable selection method which causes the same subgroup 

of variables to appear in all the combinations is desirable for parsimony. 

Arguments similar to those in Section 1.2 show that a combinatorial ap- 

proach to variable selection in projection pursuit regression is not feasible. As 

before, a weighted penalty balancing the goodness-of-fit criterion [2.6] with an 

interpretability criterion is employed. The minimization problem becomes 

min 
/3j,Crj,fj:j=l,..., TTZ 

(1 -A) L2(P)crJJm _ xqcrl Q2 
min La , a ) T.--T m [2X] 

for X E [0, l]. Th e d enominator in the first term causes both contributions to be 

E [O,l]. The simplicity index measures the interpretability of the collection of 

combinations and is subtracted since the objective is minimized. 1nterpretabilit.y 

index choices are.discussed in the next two subsections. 

2.2.1 The Interpretability Index 

Consider for the moment that the number of terms m is fixed. This assump- 

tion is discussed in Section 2.2.2. The goal is define an interpretability index S 

foragroupofmvectors(ai,cy2,..., am). At first glance, the situation is a gen- 

eralization of interpretable exploratory projection pursuit where the simplicity of 

two vectors (PI, ,&) is measured. However, in the latter case, the vectors define 

a plane. In relation to each other, the simplest pairs of combinations are ones 

which, when normed and squared, are orthogonal. This type of orthogonality is 

named squared orthogonality in Section 2.3.5. Measures of this squared orthog- 

onality and each vector’s individual interpretability enter the index S, [1.18]. 

Within each combination, variables are selected via the single vector varimax 

interpretability index Sr [1.12] by encouraging the vector coefficients to vary. 
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Different variables are selected for either vector by forcing the combinations to 

exclude the same variables. 

Projection pursuit regression has a different goal. First, each vector should 

be simple within itself. That is, homogeneity of the coefficients within a vector 

is penalized. The varimax index Sr for one vector achieves this. However, in the 

interest of decreasing the total number of variables in the model, the same small 

subset of variables should be nonzero in each vector. Summing the simplicities 

of each direction as in [ 1.171 d oes not force the vectors to include the same 

variables necessarily. On the other hand, if the exploratory projection pursuit 

varimax measure [l ,161 for q = m vectors is used, the vectors would be forced 

to squared orthogonality and would contain different variables. This old index 

may be used for projection pursuit regression to achieve this outcome. However, 

if variable selection is the object, a new index must be developed. 

Consider the m X p matrix of combinations 

Though the directions aj are constrained to have length one in [2.6], the index is 

defined for all sets of combinations in general. The goal is that all the combina- 

tions are nonzero or load into the same columns so that the same variables are 

in all combinations. An index’ which forces this outcome is based on a summary 

vector y of the matrix 52 whose components are 

3;’ - 2 
2 

5; 
“T~j 

i=l,...,p * 
j=l 

[2.12] 

Each component yi is positive and contains the sum of each term’s relative con- 

tribution to variable i, or the total column weight. The components of the new 
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vector sum to m. The object is to force these components to be as varied as pos- 

sible. For a single combination, this is achieved via the varimax interpretability 

index S, [1.12]. For y appropriately normed, this measure is 

WY) = $-&py . 
84 

12.131 

The index [2.13] f orces the weight of the columns of R to vary widely. As a 

function of all the combinations, this index is called Ss and may also be written 

Sd O!y1,(Y2,...,~m)=- f2 [F waJ+2(pP 1) 5 5 g-&l +m;;:l) * 
j=l j#k i=l 

The function Sr measures the individual interpretability of each combination. 

This re-expression is in contrast to S, for interpretable exploratory projection 

pursuit [1.18], in which the cross-product over the terms is subtracted in order 

to force the squared orthogonality of the combinations. 

The index forces the overall weights of each column to be dissimilar. The 

dispersion of the each total column weight over the rows of the matrix, or terms 

of the model, depends on the goodness-of-fit criterion, An example using this 

index is discussed in Section 2.3. 

2.2.2 Attempts to Include the Number of Terms 

In the discussion so far, the number of terms m in the model is fixed. The 

argument that a model with fewer terms is more interpretable than one with 

-more persuasive. However, on further reflection, this conclusion does not appear 

so certain. Each term involves its combination oj and the smooth function fj. 

The interpretability of the combination can be measured but the function must 

be visually assessed. 
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Consider the following example with two variables Xi and X2 (p = 2). With- 

out knowing the data context, ranking the two fitted models 

(1) n-l = 2, fl(&), f2(X2) 

(2)m=l, f(X1ix2) 

in order of interpretability is impossible. The first model involves two functions 

of one variable each, the simplest combination. The second involves only one 

function consisting of the most complex combination of variables, the average. 

Situations easily can be imagined in which clearly one or the other model is 

more interpretable. For example, if the two variables are distinct measurements 

of widely varying traits (apples vs. oranges), then a combination of the two 

would be difficult to understand and Model (1) would be preferable. However, if 

the two were aggregate measures of similar characteristics (reading and spelling 

scores) which could be combined easily into a single variable (verbal ability), the 

second model m ight be easier to interpret. However, considering ways to include 

the number of terms in the interpretability measure of a model is enlightening 

even if present attempts are unsuccessful. 

As with interpretable exploratory projection pursuit, interpretable projec- 

tion pursuit regression can be envisioned as an interactive process in which the 

statistician is equipped with an interpretability dial. As the dial is turned, the 

weight (X) in [2.11] is increased and the model becomes more simple. If the 

number of terms to begin with is m  and this parameter is included in the mea- 

sure of simplicity, the algorithm should drop terms as it simplifies the model. In 

the following discussion, three methods for including m  in the index [2.13] are 

considered. Factors required to put the index values E [0, l] are ignored. Un- 

fortunately, none of the resulting indices works in practice for the reasons given 

below. 
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Since the interpretability of a model decreases with the number of terms, the 

%rst attempt is to multiply the interpretability index [2.13] by A, obtaining 

Sa(CY1, Cr2,. . .) CXm) E - ;[$-&-;)2] . . 
t=l 

The resulting index Sa decreases as the number of terms increases. However, this 

measure does not work in practice as each term’s contribution is reweighted when 

the number of terms changes. Instead, the index should be such that submodels 

of the current model measured contribute the same to the index, regardless of 

the size of the complete model. 

Each model can be thought of as a point E BP, As terms are added, the 

number of points increases. Consider a distance interpretability index as in 

Section 2.3.4. The total of distance from a set of points to a particular point 

increases as the number of points does. Since the object is that all the terms 

contain the sarne variables, a plausible interpretability index is 

Sb(al,Q2,-..,~m)-- ri$ el[Vc~~ -Vll12 . 
j=l 

As in Chapter 1, the set V is composed of simple vectors [1.14] and vaj is the 

squared and normed version of the oj term [1.13]. This index is similar to the 

one dimensional index [1.15]. The m inimum is not taken of each individual term 

j but of the sum of distances in order to ensure that all the terms simplify to 

the same interpretable vector ~1. If the set V consists of the cl’s (1 = 1,. . . ,p), 

Sb reduces to 

- 
Pm 2 

cc 
"ji 

- - 2-/k + m  T 
i=l j=l 

~j tyj 

. where yk is the largest component as defined in [2.12]. Unfortunately, even 

with the removal of the m inimization, the derivatives of the given index are 

discontinuous. 
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Averaging all the possible distances produces a third index 

which is continuous. The power r must be chosen so that each term simplifies 

toward one of the interpretable vectors ul. As a result, T must be less than 

one so that the closest ~1 overpowers the others and pulls the term toward it. 

Unfortunately, though continuous as opposed to Sa, the index S, does not force 

all the terms to collapse toward the same simple vector. 

In conclusion, none of the three attempts at incorporating the number of 

terms into the index works. A method for simultaneously and smoothly measur- 

ing both the number of terms and the interpretability of the terms themselves 

has not been found yet. Without such a method, projection pursuit regres- 

sion model selection cannot be reduced to a one parameter situation in which 

the interpretability parameter X completely controls the tradeoff between inter- 

pretability and accuracy. The outlook for an analogy with model selection in 

linear regression is poor. Instead, interpretable projection pursuit regression is a 

procedure to explore the model space, rather than a strict model selection pro- 

cess. How the statistician should compare these models is discussed in Section 

2.3. The optimization procedure is described in the next subsection. 

2.2.3 The Optimization Procedure 

The strategy is to begin with a large number of models M. For each sub- 

model with number of terms m = 1,. . . , M, the following algorithm is employed 

to find a sequence of interpretable models for different values of the interpretabil- 

ity parameter X. Steps 1 and 2 find the original projection pursuit regression m 

term model which minimizes [2.6]. Steps 3 and 4 find the sequence of models 

which minimize [2.11] for various X values. Throughout the description, updat- 

ing a parameter means noting the new value and basing subsequent dependent 
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calculations on it. Moving a model means permanently changing its parameter 

values. 

1. The objective function is [2.6]. Use the stagewise modeling procedure out- 

lined in Friedman and Stuetzle (1981) to build the M term model. 

2. Use a backwards stepwise approach to fit down to the m term model. 

Fori=l,...,M-m 

begin 

Rank the terms from most (term 1) to least important (term M - i + 1) 

as measured by [2.10]. D iscard the least important term. 

Use an alternating procedure to minimize the remaining M - i terms. 

a. Fork=l,...,M-i 

begin 

Update the term’s parameters pk, Ok and curve fi; assuming the 

other terms are fixed. Choosing from among several steplengths, 

do a single Gauss-Newton step to find the new direction ok. Com- 

plete the iteration by updating pk and fi; using [2.8] and [2.9] 

respectively. Only one Gauss-Newton step is taken for each iter- 

ation due to the expense of a step. Continue iterating until the 

objective stops decreasing sufficiently. 

end 

b. If the objective decreased on the last complete loop through the terms 

(a), move the model. If the objective decreased sufficiently, perform 

another pass (GOT0 a.). Otherwise, the optimization of the M - i 

term model is complete. 

end 
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3. Let X0 = 0 and call the m term model resulting from Steps 1 and 2 the X0 

model. Choose a sequence of interpretability parameters (Xl, X2, . . . , XI). 

Let i = 1. 

4. The objective function is [2.11]. Set X = X; and solve for the m term 

model using a forecasting alternating procedure and the Xi-1 model as the 

starting point. 

Reorder the terms in reverse order of importance [2.10] from least (term 

1) to most important (term m). 

Make a move in the best direction possible. 

a. For k = 1,. . . , m 

begin 

Choosing from among several steplengths, update the crk resulting 

from the best step in the steepest descent direction. Complete the 

iteration by updating ,& and fk using [2.8] and [2.9] respectively. 

Only one steepest descent direction step is taken due to the expense 

of a step. Always perform at least one iteration and then continue 

iterating until the objective stops decreasing sufficiently. 

end 

6. If only one loop through the terms (a) has been completed, move 

the model regardless of whether the objective decreases or not and 

perform another pass (GOT0 a). If more than one loop has been 

completed and the objective decreased, move the model. If more than 

one loop has been completed and the objective decreased sufficiently, 

perform another pass (GOT0 a). Otherwise, the optimization of the 

m term model with interpretability parameter X; is complete. 

c. If i = I, EXIT. Otherwise, let i = i + 1 and GOT0 4. 
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The forecasting alternating procedure in Step 4 differs from the alternating 

procedure in Step 2. In the latter case, determining the optimal direction al; for a 

specific term reduced to a least-squares problem as noted in Section 21.2. While 

this problem could not be solved analytically and had to be iterated, the least- 

squares form lent itself to a special procedure (Gauss-Newton) which utilized 

the estimated Hessian. However, with the addition of the interpretability term 

the objective [2.11] no longer has this form. Thus, a cruder optimization method 

must be used. Steepest descent is employed and the step direction is the negative 

of the gradient of the objective. Unfortunately, this method is not as accurate 

as Gauss-Newton. The gradients of the objective are given in Appendix A. 

The Step 4 approach is also different in that an attempt is made to forecast 

the effect a simplification of one term will have on the others. In the original 

algorithm as described in Step 2, each term is considered separately. A term is 

not updated unless the objective function decreases as a result. This approach 

ignores the interaction between the terms, sacrificing accuracy in the solution 

for ease in calculation. However, scenarios exist in which this approximation 
/ 

does not produce the global m inimum. For example, suppose a change in term 

one does not produce a decrease in the objective. However, possibly this change 

in term one and the resulting shift in term two produces a decrease. Such a 

combination of moves is not considered in the original algorithm. 

Using this ‘look one step ahead’ approach in interpretable projection pursuit 

regression does not work because of the strong interaction between the terms 

in the simplicity index S, and the equality among term contributions to the 

index. The increase in interpretability for an individual term must be very large 

before it changes on its own. However, once it changes, the other terms quickly 

follow suit, like a row of dominoes. The result is that if Step 2 approach is used, 

the algorithm produces either very complex or very simple models but none in 

between. 
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Thus, a compromise is reached based on empirical evidence. The first change 

is due to the fact that all terms contribute equally to the interpretability mea- 

sure, irrespective of their relative importance 12.101. Thus, when considering a 

simplification of the model, that term which least affects the model fit should be 

considered first as it does as well as any other at increasing interpretability. As 

a result, the terms are looked at in reverse order of import ante (Step 4). 

The second change is that the algorithm moves the entire set of m  terms at 

once as opposed to one term at a time. A move is not evaluated until it is formed 

from a sequence of submoves, each of which is a shift of an individual term (Step 

4~). These submoves are made in reverse order of goodness-of-fit importance and 

are made in the best direction possible, the steepest descent one. 

The third change is that the algorithm always moves the model, even if the 

move appears to be a poor one. In some respects this jiggling of the model is 

a form of annealing (Lundy 1985). Th e m inimum steplength considered in Step 

4a is positive yet quite small, so large unwelcome increases in the objective are 

impossible. 

Both the second and third changes are attempts at forecasting the effect 

of the simplification of one term on subsequent terms. The given algorithm 

works well in practice as is demonstrated in the next section. Occasionally, the 

requirement that the algorithm always move means that a clearly worse model 

results. However, the algorithm quickly adjusts for the next value of X. This 

behavior is seen in the following example. 



2.3 The Air Pollution Example Page 73 

2.3 The Air Pollution Example 

The example in this section concerns air pollution. The data is analyzed 

using additive models in Hastie and Tibshirani (1984) and Buja et al. (1989), 

and using alternating conditional expectations (ACE) in Breiman and Friedman 

(1985). It consists of 330 (n) b o servations of one response variable (Y) and nine 

(p) independent variables each. The daily observations were recorded in Los 

Angeles in 1976. The variables are 

Y : ozone concentration 
x1 : Vandenburg 500 m illibar height 
x2 : windspeed 
x3 : humidity 
x4 : Sandburg Air Force Base temperature 
xg : inversion base height 
x6 : Daggott pressure gradient 
x7 : inversion base temperature 
X8 : visibility 
xg : day of the year 

As in exploratory projection pursuit, all of the variables are standardized to have 

mean zero and variance one before projection pursuit regression is applied. 

As suggested by Friedman (1984a), the original algorithm (Steps 1 and 2 in 

Section 2.2.3) is run for a large value of M  initially. For this example, M  is 

chosen to be nine (p). The algorithm produces all the submodels with number of 

terms m  = l,..., M  by backstepping from the largest. The inaccuracy of each 

model is measured as the fraction of variance it cannot explain. As noted in 

the introduction, inaccuracy in this thesis denotes lack of fit as measured with 

respect to the data rather than to the population in general. From [2.6], this 

fraction is defined as 

u - J52MdJJ) 
k(Y) * 

The plot of the number of terms and fraction of unexplained variance of each 

model is shown in Fig. 2.1. 
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m 

Fig. 2.1 Fraction of unexplained variance U versus number of terms m 
for the air pollution data. Slight ‘elbows’ are seen at m = 2,5,7. 

Using the original approach, the statistician chooses the model from this plot 

by weighing the increase in accuracy against the additional complexity of adding 

a term. She generally chooses a model at an ‘elbow’ in the plot, where the 

marginal increase in accuracy due to the next term levels off. In some situations, 

such an elbow may not exist or it may not be a good model choice in actuality. 

Only one model for each number of terms m is found. For a particular m, the 

model space is one dimensional in U. 

Interpretable projection pursuit regression expands the model space for a 

particular. number of terms m to two dimensions by adding an interpretability 

. measure. The starting point for each simplicity search for a given m is the model 

shown in Fig. 2.1. Then for a sequence of X values which signify an increasing 

weight on simplicity, the algorithm cuts a path through the model plane [V X S,]. 
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Lubinsky and Pregibon (1988) d iscuss searching through a description or 

model space in general. Their premise is that a formalization of this action pro- 

vides the structure by which such a search can be automated. Their descriptive 

space characterization, which is based on Mallows’ (1983) work, is-more com- 

prehensive than the two dimensional U and Sg summary given above. They 

agree that two important description dimensions are accuracy and parsimony. 

In their work, the latter concept is an extension of the usual number of param- 

eters measure and is in the spirit of interpretability as defined in this thesis. It 

includes both ‘the conciseness of the description and its usefulness in conveying 

information.’ 

Initially for this and other examples, the interpretability parameter X se- 

quence is (O.O,O.l,. . . , 1.0). However, the usual result is a path through the 

model space which consists of a few clumps of models separated by large breaks 

in the path. Even the forecasting nature of the algorithm described in Section 

2.2.3 cannot completely eliminate these large hops between model groups. In or- 

der to produce a smoother path, the statistician is advised to run the algorithm 

with additional values of X specifically chosen to produce a more continuous 

curve. For example, if on the first pass the path has a large hole between the 

X = 0.3 and X = 0.4 models, the algorithm should be run with additional X val- 

ues of (0.33,0.36,0.39). Using this strategy, twenty models are produced for each 

valueof m = l,..., 9. The actual X values used are not shown in the following 

figures as their values are not important. The interpretability parameter is solely 

a guide for the algorithm through the model space. 

Various diagnostic plots can be made of the collection of models which are 

distinguished by their m, U and Sg values. Chambers et al. (1983) provide several 

possibilities. Given that the number of terms variable m is discrete, a partitioning 

approach is used. Partitioning plots are shown in Figs. 2.2 and 2.3. Each point 

in a plot represents a model with the given number of terms, interpretability 

S, and inaccuracy U. Ideally, for the best comparison, these plots should be 
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Fig. 2.2 Model paths for the air pollution data for models with number 
oftermsm=l,... ,6. Each point indicates the interpretability 
S, and fraction of unexplained variance U for a model with the 
given number of terms. 
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Fig. 2.8 Model paths for the air pollution data for models with number 
of terms m = 7,8,9. Each point indicates the interpretability 
Ss and fraction of unexplained variance U for a model with the 
given number of terms. 

lined up side by side. However, note that though the interpretability Ss scales 

superficially appear to be the same for all the graphs, they are not as implicit in 

each plot is the number of terms m. A symbolic scatterplot in which all models 

are graphed in one plot of unexplained variance U versus interpretability S, with 

a particular graphing symbol for the number of terms, also obscures the fact that 

the simplicity scales are dependent on the number of terms in the model. 
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As interpretability increases, so does the inaccuracy of a model. For most 

values of m , the path through the model is ‘elbow-shaped’, indicating that ini- 

tially a large gain in interpretability is made for a small increase in-inaccuracy. 

The curves shift to the left as m  increases, as the additional terms decrease the 

overall inaccuracy of all possible models. For all values of m , the X = 1 models 

have the same inaccuracy. These models have all directions parallel and equal to 

an ej, so in effect they only have one term of one variable. 

Due to the forecasting algorithm employed, the path through the model space 

is not always monotonic. Occasionally, a clearly worse model as evidenced by a 

non-monotonic move resulting in smaller interpretability and larger inaccuracy, 

is found. However, usually on the next step, the algorithm readjusts. This type 

of behavior is evident for m  = 3, interpretability values Ss E [0.2,0.4]. The 

intermediate poor move may be needed to force the algorithm out of a local 

m inimum. The algorithm does not find the global m inimum for a particular 

value of X, rather it helps describe the models which are possible for a given 

number of terms m . In contrast, linear regression variable selection methods find 

the model which m inimizes inaccuracy for a fixed interpretability value, which is 

usually the number of parameters. 

The draftsman’s display in Fig. 2.4 shows how the number of terms m  and 

the inaccuracy U and simplicity Ss vary. Again, note that if a model with 

fewer terms is considered simpler than one with more, plotting all the models 

versus the same interpretability scale is m isleading. This set of plots is useful 

in determining the models from which to choose if certain requirements must be 

met, such. as U 5 0.20, Sg 2 0.50, or some combination thereof. More formally, 

the statistician can define equivalence classes of models from the draftsman and 

partitioning plots consisting of sets of models with different number of terms 

which satisfy certain inaccuracy and interpretability criteria. 
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Fig. 2.4 Draftsman’s display for the air pollution data All possible pair- 
wise scatterplots of number of terms m, fraction of unexplained 
variance U and interpretability S, are shown. 

The statistician must now choose a model. The first term explains the bulk 

of the variance, approximately 75% (U = 0.25). For models with m 5 6, models 

with even moderate interpretability (S, 2 0.40), cannot be achieved without 

inaccuracy crossing the 0.20 threshold (U 2 0.20) as seen in Fig. 2.2. If a 

model which explains more than 80% of the variance is required, a seven term 

model with S, = 0.60 is possible. However, its advantages over the original two 

term model (Fig. 2.1) which explains slightly less is debatable. If close to 0.25 
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inaccuracy U is acceptable, simple two or three terms .models are possible. For 

.example, a three term model exists with S, = 0.40 and U = 0.21. Alternatively, 

a two term model exists with Ss = 0.85, U = 0.23 and combinations- 

p1 = 0.21, Q!l = ( 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, o.oy 

p2 = 1.10, Q2 = ( 0.0, 0.0, 0.3, 0.9, 0.0, 0.0, 0.1, 0.0,-0.2)r . 

As discussed in Sections 1.5.2 and 3.4.3, the convergence of the coefficients is 

slow and an interpretability index with a power less than two may be warranted. 

The fourth variable, Sandburg Air Force Base temperature, is the most in- 

fluential as is cited in other analyses of this data (Hastie and Tibshirani 1984, 

Breiman and Friedman 1985). The last variable day of the year also has an effect. 

The projection pursuit regression model is different in form to the additive and 

alternating conditional expectation models as it includes smooths of several vari- 

ables rather than of one variable. Thus, the three models cannot be compared 

functiondly. However, the three inaccuracy measures are comparable. 

As remarked in Section 2.2.2, the inclusion of the number of terms in the 

gauging of a model’s interpretability is subjective and depends on the context 

of the data. In addition, the statistician views the functions fj when choosing 

among the models. Though each of the curves is a smooth and therefore does 

not have a functional description, one model may be more understandable and 

explainable than another. For example, a function may have a clear quadratic 

form. Similar to the weighing of the model’s number of terms m, this quali- 

tative assessment is a further subjective notion of interpretability which is not 

automated by the index Ss. 

In contrast to exploratory projection pursuit, projection pursuit regression is 

a modeling procedure. As such, an objective measure of predictive error may be 

-. applied to choose between models. Methods such as cross-validation may be used 

to produce an unbiased estimate of the prediction accuracy in the models. A good 

strategy is to choose a small number of models based on the above procedure and 
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I then distinguish between them using a resampling method. Unfortunately, due 
1 

to a lack of identifiability which results from the fact that the number of terms 
/ 

cannot be included in the interpretability index, the cross-validation procedure / 

/ is not a one parameter (X) minimization problem. A subjective measure of how 
I 

the model’s complexity increases with an additional term must be made. Thus, 
’ 

interpretable projection pursuit regression is an exploratory rather than a strict 
I modeling technique. 
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Chapter 3 

Connections and Conclusions 

A comparison of the accuracy and interpretability tradeoff approach de- 

scribed in the previous two chapters with other model selection techniques is 

warranted and interesting. In this chapter, connections between the proposed 

method and established ideas are considered. This discussion is preliminary and 

topics of future work, including other data analysis methods to which this method 

could be extended, are identified. The last section includes an example which 

demonstrates the generality of the trading accuracy for interpretability approach. 

3.1 Interpretable Linear Regression 

Since other model selection procedures have not yet been proposed for pro- 

jection pursuit, the interpretable modification is considered for linear regression 

in this section. This setting provides various other model space search methods 

whose properties are known for comparison. 

First, the notation for the linear regression problem is described. Rather 

than use random variable notation as in Chapter 2, matrix notation is used. 

The problem is stated as a minimization of the squared distance between the 

observed and fitted values rather than an expected value minimization. The 

vector Y consists of the response values for the n observations (yl, ~2,. . . , yn), 

and the n X p matrix X has entries xij, the value of the jth predictor for the jth 

82 
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observation. If an intercept term is required, a column of ones is included. The 

error vector is E and the model may be written as 

Y=XO+c . 

The parameters p = (/31, ,&, . . . , ,f$,) are estimated by m inimizing the squared 

distance between the n fitted and actual observations. The problem in matrix 

form is 

m jn (Y - XP)‘(Y - XP) . 

The least squares estimates solve the normal equations 

BL* E (xTx)-lxTy . W I 

The modification for values of the interpretability parameter X E [O, 11, is 

“F (I - x) 
(Y - -v>*v - -w 

(Y - XPts>‘(Y - XBLS) 

_ x S(P) P.21 

where the interpretability index S is the single vector varimax index Sr defined 

in [1.12] for example. The denominator of the first term is the m inimum squared 

distance possible, which would be at the ordinary linear regression solution [3.1]. 

Recall that the combination of the predictors Xp that has maximum correla- 

tion with the response is the ordinary linear regression solution. Thus, if the 

correlation is used instead of squared distance as a measure of the model’s fit, 

the problem becomes a maximization and the simplicity term should be added 

rather than subtracted. 

As the interpretability parameter X increases, the fitted vector f = X,8 

moves away from the ordinary least squares fit E’LS in the space spanned by the 
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Fig. 3.1 Interpretable linear regression. As the interpretability param- 
eter X increases, the fit moves away from the least squares fit 
~LS to the interpretable fit ~ILR in the space spanned by the 
p predictors. 

p predictors as shown in Fig. 3.1. The interpretable fits ?ILR are not necessarily 

the same length as the least squares one. 

As a variable’s coefficient decreases toward zero , the fit moves into the space 

spanned by a subset of p - 1 predictors. The most interpretable p - 1 variables 

may not be the best p - 1 in a least squares sense. Even if the variable subset 

is the same, the interpretable search may not guide the statistician to the best 

. fitting least squares model. The interpretability index S attempts to pull the 

coefficients /?i apart since a diverse group is considered more simple, whereas the 

least squares method considers only squared distance when choosing a model. 
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The definition of the interpretability index S as a smooth function means 

that it can be used as a ‘cognostic’ (Tukey 1983) to guide the automatic search 

for a more interpretable model. However, these smooth and differentiable prop- 

erties are the root of the reason the equation [3.2] cannot be solved explicitly. 

The problem is that the interpretability index contains the squared and normed 

coefficients which make the objective a nonquadratic function. A linear solution 

similar to [3.1] is not possible. 

In comparison, Mallows’ (1973) CP and Akaike’s (1974) AIC variable selec- 

tion criteria involve a count function as an interpretability index as defined in 

[l.ll]. As [3.2] d oes not admit a linear solution, the more general Mallows’ CL 

criterion which may be used for any linear estimator cannot be determined for 

the interpretable estimate. For both the CP and AIC criteria, the complexity of a 

model is equal to the number of variables in the model, say k. With appropriate 

norming, the associated interpretability index is 

sM(p)sl- 'c . 
P 

W I 

The Mallows variable selection technique uses an unbiased estimate of the 

model prediction error to choose the best model. The resulting search through 

the model space includes only one model for a given number of variables. Alter- 

natively, the interpretability search procedure is a model estimation procedure 

which guides the statistician in a nonlinear manner through the model space. 

Another result of this search is variable selection as variables are discarded for 

interpretability. Using this terminology, the discreteness of the criterion [3.3] 

means that the CP and AIC techniques are solely variable, rather than model, 

selection procedures. 

As is discussed in Section 1.3.4, an alternate interpretability index sd can be 

defined as the negative distance from a set of simple points. The natural question 

is whether the modification [3.2] can be thought of as a type of shrinkage. 
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3.2 Comparison W ith Ridge Regression 

In Section 1.3.4, a distance interpretability index Sd is defined in [1.15] which 

involves the distances to a set of simple points V = {VI,. . . , YJ}. Before restrict- 

ing its values to be E [O,l], th is simplicity measure of the coefficient vector ,f3 is 

the negative of the m inimum distance to V or 

- m in 
CC 

p #  vj i  2  . 

j=l,...,J i=l P’P > 

The coefficient vector ,L? is squared and normed so that the relative mass, 

not the absolute size or sign, of the elements matters. Though these actions 

lead to a nonlinear solution, vectors of any length may be compared equally and 

properties such as Schur-convexity are possible. Suppose for the moment that the 

response Y and predictors X are standardized to have mean zero and variance 

one. This standardization ensures that one variable does not overwhelm the 

others in the coefficient vector though the length of the coefficient vector itself 

is not necessarily one. This action partially removes the reason for normalizing 

the coefficient vector in the interpretability index. 

In order to remove the need for squaring, all possible sign combinations must 

be considered. The simple set vectors vj are no longer the squares of vectors on 

the unit RP sphere but just vectors on it. For example, they could be fej, j = 

1 ,‘“7 p. The distance to each simple point is written in matrix form as 

(P-vj)T(P-vj) j=l,...,p , 

If the optimization problem is reparameterized with a new interpretability 

parameter K, [3.2] becomes 

rnjn (Y - Xp)‘(Y - XP) + K j-ynp (P - vj>‘(P - Vj) K>O . 
- ,..., 
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The second m inimum may be placed outside of the first since the first term does 

not involve Uj resulting in 

m in 
j=l ,...,P [ 

rnp (Y - X/?)‘(Y - Xp) + K (P - Uj)'(fi 

The solution vector is 

p s (XTX + KI)-‘(XTY + Kzq) 

P4 

P-51 

where I is the p X p identity matrix and I is the index which m inimizes the 

bracketed portion of [3.4]. 

This estimated vector is similar to that of ridge regression (Thisted 1976, 

Draper and Smith 1981) with ridge parameter K. The ridge estimate is 

pR f (XTX + KI)-lXTY . WI 

Ridge regression may be examined from either a frequentist or Bayesian view- 

point. The method is advised in situations where the matrix XTX is unstable, 

which can occur when the variables are collinear. In addition, it does better than 

linear regression in terms of mean square error as it allows biased estimates. 

If a Bayesian analysis is used, the distributional assumption is made that the 

error term E has independent components each with mean zero and variance 02. 

Given this assumption, the prior belief 

. produces the Bayes rule [3.6]. 

The ridge estimate @R [3.6] h ’ k s rm s away from the least squares solution ~,QS 

[3.1] toward the origin as the ridge parameter K increases. The interpretability 
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estimate p^ [3.5] h ’ k s rm s away from the least squares solution toward the simple 

point ul as the interpretability parameter K increases. The index I may change 

during the procedure however. 

If the varimax index [1.12] is used instead of the distance index [1.15], the 

result is a solution similar to [3.5] except that the shrinkage is away from the set 

of 2p points (&*, 4~3,. . . f &). Shrinkage toward points is the usual ridge 

regression terminology, so the distance index is used in the explanation above. 

As Draper and Smith (1981) point out, ridge regression places a restriction on 

the size of the coefficients ,0, whether or not that restriction is called a prior. The 

interpretability approach [3.2] d oes not require any restriction as it norms and 

squares the coefficients before examining them. As noted, however, this produces 

mathematical problems. Clearly, the approach can be viewed as placing a prior 

on the coefficients and this Bayesian viewpoint is discussed in the next section. 

3.3 Interpretability as a Prior 

The least squares solution is also the maximum likelihood solution givenr 

certain conditions. The necessary assumptions are that the elements of the error 

term E are independent and identically distributed N(0, a2). , Then the squared 

distance is the negative of the log likelihood or 

-logL(P;Y) = (Y - XP)‘(Y - XP) * 

The maximum likelihood estimate m inimizes this expression. Given a prior dis- 

tribution, the posterior distribution is equal to the likelihood multiplied by the 

prior. Thus, as Good and Gaskins (1971) point out, m inimizing the reparame- 

. terized [3.2] 

(Y - XP)'(Y - XP) - fqP) 



3.3 Interpretability as a Prior Page 89 

1.0 

angle of /3 in radians 

Fig. 3.2 Interpretability prior density for p = 2. The prior fn( ,0) is 
plotted versus the angle of the coefficient vector in radians for 
various values of K. 

is equivalent to minimizing the negative log likelihood minus the log prior. To 

do so is to put a prior density on p where the prior is proportional to 

exp(KS(P)) K>O . 

For the varimax interpretability index, the prior distribution of the coefficients 

for a given interpretability parameter value K > 0 is 

where CK is the normalizing constant. The coefficients are dependent. The 

density belongs to the general exponential family defined by Watson (1983). 
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The prior for the p = 2 case is plotted in Fig. 3.2. The constant C, is 

calculated using numerical integration. Since the exponential is a monotonic 

function, the basic shape of the curve resembles the index S1 as in Fig. 1.2. 

As K increases, the prior becomes more steep as the weight on interpretability 

increases. The coefficients are pushed toward an angle of zero (p = (1,O)) or an 

angle of $ (p = (0,l)). S imilar results would be seen for p = 3. 

3.4 Future Work 

The previous sections may serve as a foundation for the comparison of the 

interpretable method with other variable selection techniques. Further work 

connecting this approach with others is proposed below. In addition, ideas for 

both extending the method to other data analysis methods and improving the 

algorithm are given. 

3.4.1 Further Connections 

Schwarz (1978) and C. J. Stone (1981, 1982) suggest other model selection 

techniques based on Bayesian assumptions. M. Stone (1979) asymptotically com- 

pares the Schwarz and Akaike (1974) criteria, noting that the comparison is af- 

fected by the type of analysis used. In the Bayesian framework, the interpretable 

technique could be compared with these others utilizing asymptotic analysis. 

Another technique which may provide an interesting comparison is that of Ris- 

sanen (1987), who appl’ les the minimum description length principle from coding 

theory to measure the complexity of a model. In addition, the work by Copas 

(1983) on shrinkage in stepwise regression may provide ways to extend the ridge 

regression discussion of Section 3.2. Interestingly enough, all the model selection 

rules noted involve the number of parameters, k in [3.3], rather than a smooth 

measure of complexity. 

In Chapter 2, the varimax and entropy indices have similar intuitive and 

computational appeal and both have historical motivation. Interpretability as 
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measured by these indices could be compared with simplicity as defined using 

philosophical terminology in Good (1968), Sober (1975) and Rosenkrantz (1977). 

Though the framing of the interpretable approach as the placing of a prior on 

the coefficients attempts to do this, a less mathematical and more philosophical 

discussion may prove beneficial. 

3.4.2 Extensions 

The interpretable approach changes the usual combinatorial model space 

search into a numerical one. It can be applied to any data analysis method 

whose resulting description or model involves linear combinations. If the index is 

extended to measure the simplicity of other description types such as functions, 

the tradeoff of interpretability and accuracy might prove useful for even more 

complicated descriptions. 

At present, however, its main improvement is that it provides a model se- 

lection procedure for methods that produce linear combinations but for which 

feasible va.riable.selection approaches do not exist. For linear regression, all sub- 

sets regression is possible for two reasons. First, the least squares solution for 

any subset of predictors is known analytically to be [3.1]. Second, branch and 

bound search methods can be employed which smartly search the model space, 

eliminating areas so that all possible contenders need not be considered. 

Though linear regression variable selection procedures exist, interpretable 

linear regression may help in collinear situations. The least squares solution is 

unstable and in fact, ridge regression is usually suggested. At present, examples 

seem to indicate that interpretable linear regression clearly chooses the variables 

to include from a group of collinear ones and produces a stable solution. 

A general class of models for which the interpretable method may prove 

. useful is generalized linear models (McCullagh and Nelder 1983), of which logistic 

regression is an example. Whenever a generalized linear model is considered, a 

separate optimization must be done. At present, stepwise methods are used 
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to choose models. These methods could be compared with the interpretable 

approach on the basis of prediction error. 

3.4.3 Algorithmic Improvements 

As described in Chapter 1, the interpretable exploratory projection pursuit 

algorithm would benefit from further improvements. First, the rotationally in- 

variant Fourier projection index GF needs further testing and comparison with 

others. Other rotationally invariant projection indices are possible as suggested 

in Section 1.4.2. 

Second, present work involves designing a procedure to solve the constrained 

optimization instead of using the general routine as outlined in Section 1.4.5. The 

improvement should decrease the computational time involved. Analogously, the 

projection pursuit regression forecasting procedure described in Section 2.2.3 

needs further investigation. 

As mentioned in Chapters 1 and 2, the convergence of the coefficients to zero 

as the weight on interpretability increases is slow. This property results because 

of the squaring used in the varimax index and the result that the slope goes to 

zero as the combinations moves to a maximizing ei (Figs. 1.2 and 1.3). Solutions 

might be to use a lower power or a piecewise function which is the varimax index 

except for a range close to the e;‘s where it is linear. The sections of the latter 

index could be matched to have the same derivatives at their joined points. 

3.5 A General Framework 

The main result of this thesis is the computer implementation of a modifica- 

tion of projection pursuit which makes the results more understandable. In ad- 

dition, the approach provides a general framework for tackling similar problems. 

Beyond this specific application, the search for interpretability at the expense of 

accuracy is made often in statistics, sometimes implicitly. The identification and 
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formalization of this action is useful since choices which previously were subjec- 

tive become objective. In the next subsection, the rounding of the binwidth for a 

histogram is examined. This common example shows that the consequences of a 

simplifying action in terms of accuracy loss can be approximated. The definition 

of interpretability must be broadened to deal with a much more elusive set of 

outcomes than linear combinations. Measuring the interpretability increase is 

difficult. 

3.5.1 The Histogram Example 

Consider the problem of drawing a histogram of n observations ~1, x2, . . . , zn. 

Two quantities must be determined. The first is the left endpoint of the first bin 

x0, which usually is chosen so that no observations fall on the boundaries of a 

bin. The second is the binwidth h, which generally is calculated according to 

a rule of thumb and then rounded so that the resulting intervals are simple, 

usually multiples of powers of ten. Based on the mathematical approach used to 

determine the rules widely employed, the loss in accuracy incurred by rounding 

the binwidth can be calculated. 

The purpose of a histogram is to estimate the shape of the true underlying 

density. Scott (1979) d e ermines a binwidth rule which asymptotically m inimizes t 

the integrated mean square error of the histogram density from the true density. 

Diaconis and Freedman (1981) use the same criterion to lead to a slightly different 

rule and further theoretical results. A certain approximation step which Scott 

employs is useful in approximating the further accuracy lost if the binwidth is 

rounded. The discussion below follows his approach. 

The integrated mean square error of the estimated histogram density f” from 

the true density f is 

IMSE G J [ O” E f^( x) - f(x)] 2dx 
--oo 

1 
O” =- 

nh 
+ $h2 J -CO 

f’(~)~dx + O(; + h”) 
W I 
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where h is the histogram binwidth. Minimizing the first two terms of [3.7] pro- 

duces the estimate 

P-81 

Scott also shows that if the binwidth is multiplied by a factor c > 0, the increase 

in IMSE is 

IMSE(cf) = ~IMSE(IZ) . WI 

Via Monte Carlo studies, Scott shows [3.8] and [3.9] to be good approximations 

for normal data. 

In reality, [3.8] is useless since the underlying density f and therefore its 

derivative f’ are unknown. Scott, and Diaconis and Freedman use the normal 

density as a reference distribution. Scott suggests the approximation 

where s is the estimated standard deviation of the data. Diaconis and Freedman 

suggest the similar approximation 

where IQ is the interquartile range of the data. Monte Carlo studies have shown 

these approximations to be robust. 
,. 

Given either approximation hs or AD, the statistician may elect to further 

approximate the binwidth by rounding. The benefits of such simplification are 

discussed in a moment. At present, consider rounding the estimate is. The new 

estimate k* is E (fis - u, hs + u) where u is some rounding unit. For example, 

u would be i if the binwidth is rounded to an integer. The new binwidth may 

- also be written as 

A* E (1 + e)iis 
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where e is a positive or negative factor depending on whether the old estimate is 

rounded up or down. This multiplying factor must be 2 1 as a negative binwidth 

is impossible. 

The estimation procedure may be drawn schematically: 

binwidth h 

u 
minimize first two terms 

estimated binwidth i 

u 
use normal density as reference 

approximate binwidth fis 

u 
round 

rounded binwidth h* 

If [3.9] is used as an approximation for the resulting loss in IMSE due to 
* 

rounding, the relationship between the IMSE of hs and h* is written 

IMSE(fi*) = 
e3 

(13Tl ; e; 21MSE( is) . 

The percent change in IMSE can be plotted as a function of the multiplying 

factor e as shown in Fig. 3.3. 

This exercise demonstrates that rounding a binwidth up or down results in 

different repercussions in terms of accuracy. The increase in interpretability is 

difficult to measure explicitly. The histogram is easier to draw and describe 

since the class boundaries are simpler. Certainly the class delineations are easier 

to remember. In fact, Ehrenberg (1979) h s ows that two digits other than zero 

-are all that can be retained in short-term memory. In addition, the rounding 

removes confusion that might result in explaining the histogram or comparing 

it to another. Finally, the accuracy in the actual observations xi may prompt 
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e 

Fig. 3.3 Percent change in IMSE versus multiplying fraction e in the 
binwidth example. The rounded binwidth A* - (1 + e$s, where 
ks is the estimated binwidth due to Scott (1979). 

rounding. Extra digits beyond the number of significant ones in the data leads 

to a false sense of accuracy. 

How to measure the interpretability of a histogram directly is difficult to 

determine. Diaconis (1987) suggests conducting experiments to quantify the 

interpretability gain. A typical experiment m ight be to divide a statistics class 

into two matched groups and to present to either group respectively a unrounded 

histogram and its simplified version. Measurements of interpretability could be 

made on the basis of the correctness of answers to questions such as ‘How would 

- adding the following observations change the shape of the histogram?’ or ‘Where 

is the lower quartile ?‘. As interpretability is increased, some information may be 

lost. For example, the question ‘Where is the mode?’ may become unanswerable. 
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This loss of information, a more general measure of inaccuracy than IMSE, 

could be measured along with interpretability. In addition, expert opinion could 

be included by asking data analysts their reaction to rounding. - 

3.5.2 Conclusion 

Computers have changed statistics substantially and irreversibly. On the one 

hand, the resulting flexibility has cultivated previously undreamed of abilities 

and applications. On the other, the sheer number and complexity of possibilities 

can be both bewildering and unmanageable. The aim of this thesis is to use the 

principle of parsimony to monitor the sacrifice of an acceptable amount of flexi- 

bility in return for more interpretable results in a particular computer-intensive 

technique, projection pursuit. In this manner, the statistician retains her new 

modes of information translation without losing the ability to achieve her basic 

goal of clearly understanding and communicating those results to others. 

With these computer tools has come freedom. In the initial stages of an 

analysis, these abilities provide the power with which to follow the basic tenets 

of exploratory data analysis (Tukey 1977), to let the data drive the analysis rather 

than subjecting it to preconceived assumptions which may not be true. In later 

stages, the wealth of models or descriptions which can be fit and evaluated has 

expanded enormously. Confirmation of these models can be readily answered 

using the bootstrap (Efron 1979) or other resampling procedures. As Tukey 

noted, the statistician no longer answers ‘What can be confirmed?’ but rather 

‘What can be done?‘. 

Computing power is extending and eliminating previous mathematical, com- 

putational and confirmational boundaries. Even unconscious restrictions on the 

statistician’s imagination are alleviated (McDonald and Pedersen 1985). The 

results of such an analysis can be complex, hard to understand, and even more 

important, hard to explain. Though this progress is exciting, in a sense a Pan- 

dora’s box has been opened. Just as grappling with the theoretical demons of 
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new methods such as projection pursuit (Huber 1985) is a necessary and difficult 

task, so too is considering the parsimonious aspects. 

In order to understand and communicate the results of a statistical analysis 

effectively, a controlled use of these new methods is helpful. Fortunately, the very 

computing power which has produced these novel techniques provides a means 

to balance the search for an accurate and truthful description of the data with an 

equally important desire for simplicity. Interpretable projection pursuit strikes 

such a balance. 



Appendix A 

Gradients 

A.1 Interpretable Exploratory Projection Pursuit Gradients 

In this section, the gradients for the interpretable exploratory projection 

pursuit objective function 

are calculated. Since the search procedure is conducted in the sphered space, the 

desired gradients are 

dF aF aF dF 
- = (aajl’G’***’ aajplT daj 

j=1,2 . 

From [A.l], the gradients may be written in vector notation as 

as, aF _ (I- A> aGF 
dcvj max GF hi 

+A% j=1,2 . 

99 
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The Fourier projection index gradients are calculated from [1.23], yielding 

From the definition of the Laguerre functions [1.20], 

z:(R) = CSe-iR - ie-!jR i=O,l,... ) 

with recursive equations derived from the definition of the Laguerre polynomials 

p.211 

=o o -= 

a”L”, -1 -= 

ddLRz -==- 
ii: 

2 
2i - 1 -= f3R ( 
--fR)%& i - 1 dLi-2 . 

i fLi-l- (7)x 2= )... 3 . 2 
The gradients of the radius squared R and angle 0 are calculated using the 

definition [1.20]. If X1 z QTZ and X2 G ~$2, the gradients are 

g = (2Xj)Z j=1,2 

P-31 
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In [A.3], note that 2 is a vector E RP, while X1 and X2 are scalars. As with the 

calculation of the value of the index, the expected values are approximated by 

sample means over the data. 

The gradients of the simplicity index are calculated using the index defini- 

tion [1.27], th e orthogonally translated component & definition 11.251, and the 

mapping from the unsphered to the sphered space [1.5]. The gradients may be 

written in matrix notation as 

ml as, a~; ap, -- 
d012=bpiap2acv2 * 

[A*41 

In [A.4], note that the partial derivative of one vector with respect to another is 

a p X p matrix. For example, 

ah 
(-1 = aplr 

aQ, ts aals r,s = l,,.., p . 

Using [1.5] yields 

aPjr Urs -=- 
aaj, a 

r,s = l,...,p 

where U and D are the eigenvector and eigenvalue matrices defined in [1.3]. Using 

[1.25] yields 

a& 
- = - Plr ( 

P2aTPl> - WlsW2) 

ah, MA I2 

w;, _ Plr 
---pTB,(BI,) r,s=l,..., pandr#s . 
ap2, 

The diagonal elements are 
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The two vector varimax simplicity index S, [I.121 may be written as a. com- 

bination of the individual simplicities and a cross-term denoted as C yielding 

. %hPd = $P - Wl(Pl> + (P - l)Sl(PZ) + 21 - qp,,p,j 

I Taking partial derivatives yields 

6 plr gr 
- = 2PTB, P;& ah 

- --I-(p-l)sl(pl) 
[ P p 

-~+CtP1,82)] r= l,...,p . 
1 1 

The partial with respect to ,8& is identical with & components replacing ,& 

components . 

A.2 Interpretable Projection Pursuit Regression Gradients 

In this section, the gradients for the interpretable projection pursuit regres- 

sion objective function 

F(P, a, f, x, Y) z (1 - X) L2(P;;;fi;Y Y) - wJ(W,~2,...,4 WI 

are calculated. The gradients used in the steepest descent search for directions 

Cyj are 

dF aF dF aF -= 
daj (---- -y 

dajl ' aaj2" ' * ' aajp 
j = l,...,m . 

From [A.5], the gradients may be written in vector notation as 

aF (i-x) aL2 
j= l,...,m . 

Friedman (1985) calculates the L2 distance gradients from [2.7], yielding 

aL2 
L = -2E[Rj - @jfj((YTX)]Pjfj(cYTX)X 
&j 

j = I.,. . . ,m . 

The partials of the curves fj are estimated using interpolation. 
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The gradients of the simplicity index are calculated using the index definition 

[2.13]. Taking partial derivatives yields 

a&J 
-=mC~l,~(~-;)$ j=l,..., mandi=l,.:..,p . doji 

k=l 

The partials of the overall vector y [2.12] are 

ark= 

-2cViic4 

dcrj; (“jTclj)2 Ic + 2  

ark= 

2crjl,(Crroj - “3k) 

aajk (“TCyj)2 

forj=l,..., mandi=l,..., p. 
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