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Abstract 

We examine novel formulations of the two-body bound state problem in 

quantum field theory. While equal in rigor, these have several calcula- 

tional advantages over the traditional Bethe-Salpeter formalism. In par- 

ticular there exist exact solutions of the bound state equations for a 

Coulomb-like interaction in quantum electrodynamics. The corrections to 

such zeroth-order solutions can be systematically computed in a simple 

perturbation theory. We illustrate these methods by computing corrections 

to the orthopositronium decay rate and to the ground state splittings in 

positronium and muonium. 
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I. INTRODUCTION 

In recent years, the ground state hyperfine splittings in positronium 

(e+e-) and muonium (u+e-) have been measured with great precision (1 ppm or 

better). 1,2,3 Measurements such as these allow a detailed test of our un- 

derstanding of two-body bound states in quantum field theory and particu- 

larly in quantum electrodynamics (QED). Any analysis of these atoms must 

account fully for the relativistic dynamics and interactions of both con- 

stituents. Furthermore, unlike the situation for hydrogen, strong inter- 

actions have almost no measurable effect on the spectra of these pure QED 

systems. 

In the past, most calculations have employed the covariant Bethe- 

Salpeter (BS) formalism. 4 High order calculations within this framework 

have been greatly handicapped by the lack of a tractable, systematic com- 

putational procedure, and in fact, theory has lagged far behind experiment 

in precision. It is essential that an exactly soluble zeroth-order problem, 

incorporating the basic physics, exists when computing corrections to energy 

levels or decay rates in high orders of perturbation theory. Unfortunately, 

analytic solutions of the BS equation have not been found for any approxima- 

tion of the QED (fermion) interaction. ' Formerly, the BS wave function has 

been approximated by iterating the equation. While useful when computing 

first order corrections, this procedure fails completely for higher order 

calculations. 

Much of the difficulty in solving the BS equation arises because of 

its dependence upon such superfluous variables as the relative time or 

energy of the constituents. These can be removed when the interaction is 

6 instantaneous, resulting in the Salpeter equation. Still neither the 



-2- 

Salpeter equation nor the related Breit equation is readily solved for a 

Coulomb interaction and the central problem remains. 

A major advance is to realize that the form of the bound state equa- 

tion can be greatly altered, with no loss of rigor, by a suitable redefini- 

tion of the interaction kernel or "quasi-potential."7 From this viewpoint, 

the BS equation is but one of an infinity of equivalent bound state equa- 

tions. This new freedom in designing formalisms can be exploited to in- 

corporate more physics in simpler equations. Furthermore, the basic equa- 

tions can be tailored to the particular system of interest. 

In this report we apply these ideas to the atomic physics of QED atoms. 

We will describe two new relativistic two-body formalisms--the first being 

most useful when binding is weak (e.g., positronium, muonium), 8 the second 

when constituents differ greatly in mass (e.g., muonium, high 2 atoms). 9 

Both are equal in rigor to the BS formalism but have clear calculational 

advantages. Outstanding among these is the existence in each case of 

Coulomb-like kernels for which the exact analytic solutions of the bound 

state equations are known. Corrections to these zeroth-order solutions 

can then be systematically elaborated in a simple perturbation series. To 
n 

illustrate the procedure, we compute the O(a) and leading O(a‘> correc- 

tions to the decay rate of orthopositronium. 10,ll We also compute the 

leading O(a2) corrections to the hyperfine splitting in muonium and posi- 

tronium.8'v Most of these results were computed for the first time using 

the methods described below. 

In Section II, we review the general features of a bound state for- 

malism. We also describe the BS equation and its shortcomings as a cal- 

culational tool. In Section III, we introduce a new bound state equation 

which reduces to a Schroedinger equation for a single effective particle. 
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This formalism is applied in a calculation of corrections to the decay rate 

of orthopositronium. Finally, in Section IV, we describe a formalism, 

pioneered by F. Gross, which reduces to an effective Dirac equation. This 

is applied in computing the O(a'Rna -1 ) corrections to the hyperfine struc- 

ture. 

_- 
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11. ANATOMY OF A BOUND STATE FORMALISM 

A. The General Treatment 

Most analyses of two-body bound states in field theory focus upon the 

analytic structure of the (truncated) two-particle Green's function G T as 

a function of the total energy. Unitarity requires that GT have poles at 

the bound state energies (PO), and that these poles have factorized resi- 

dues. That is 

GT(kqP,+ 4W) 5 (qP) 0 asP + P 0 

PO - P; n (11.1) 

where P is the total four-momentum, and k and q are the relative momenta 

of the constituents. The goal in applying any bound state formalism is 

to locate these poles and to determine the corresponding wave functions $. 

In field theory, GT is specified by a perturbative expansion in the 

coupling constant. However, the bound state poles of GT are also poles 

in GT considered as a function of the coupling constant (with P held fixed), 

and as such cannot appear in any finite order of perturbation theory. We 

must go beyond perturbation theory if we are to analyse the bound states 

of a field theory. We accomplish this by iterating some basic interaction 

in a Lippman-Schwinger or Dyson equation having the general form: : 

GT(P) = K(P) + K(P) S(P) GT(P) (II.2) 

where integrations over relative four-momenta are implicit. Here K(P) is 

the interaction kernel and S(P) is a two-particle propagator. The propa- 

gator S(P) is arbitrary and, once selected, determines the interaction 

K(P) as well as the final form of the bound state equations. The expan- 

sion in the coupling constant of K(P) follows from Eq. (11.2) and the 
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expansion for GT(P): 

1 
K(p) = GT(p) 1 + S(P) GT(P) 

= GT(P) - GT(P) S(P) GT(P) + . . . (11.3) 

If S(P) is well chosen, the lowest order terms in K(P) contain the basic 

physics; the remaining terms can then be treated perturbatively. The op- 

timal choice is dictated 1) by the qualitative features of the system 

under study, and 2) by the need for a bound state equation which is ex- 

actly solvable for some approximate kernel. 

It is convenient to introduce a two-particle Green's function having 

external fermion propagators: 

G(P) = S(P) + S(P) GT(P) S(P) 

= S(P) + S(P) K(P) G(P) (11.4) 

Clearly G(P), like GT(P), has poles at the bound state energies Pz: 

G(P) -t 
'n'n asP 0 + P 0 

PO-P; n 
(11.5) 

Substituting this in Eq. (11.4) and equating the residues of the pole on 

each side leads immediately to the bound state equation 

&Pn) JI, = K(P,) 'JJ, 

--an eigenvalue equation for the energies of the bound states and their 

wave functions. 

Equations (11.4) and (11.5) fix the normalization of the wave functions. 
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To see this we rewrite (11.4) as 

G(P) S-'(P) = 1 + G(P) K(P) 

Multiplying this equation on the right by $, and Eq. (11.6) on the left 

by G(P), and then subtracting the two, we obtain: 

G(P) W(PPn) qn = --%- 
PO-P; 

(11.7) 

where 

s-l(P) - s-l(Pn) 
W(PPn) = ______ - 

K(P) - UP,) 

PO - Pi PO - P; 

-f -?- [S-'(P) - K(P)] as PO -t P 0 

ape pozpo n 
n 

Evaluating Eq. (11.7) at the bound state pole we obtain the condition re- 

quired for orthonormality 

Tm WPmPn) JI, = 6mn (11.8) 

B. Perturbation Theory for Bound States 

In practice, we solve Eq. (11.6) only for some approximate kernel, 

Ko(P). The stationary perturbation theory usually applied to the Schroe- 

dinger equation is easily adapted to this problem, and may be used to cor- 

rect energies and wave functions. 
12 For simplicity we work in the rest 

frame P = (E,O,O,O) and restrict our attention to non-degenerate levels. 

Let {$:I be the eigenfunctions with total energies iEE) of Eq. (11.6) with 

kernel K,(E), and let G,(E) be the corresponding Green's function. If 
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G(E) is the Green's function for kernel K(E) = Ko(E) + &K(E), then 

G(E) = Go(E) + Go(E) &K(E) G(E) 

= 5 (Go(E) GK(E))j Go(E) 
j=O 

(11.9) 

and G(E) has poles at the perturbed energy levels {En]: 

--Jl& 
G(E) -f E-E asE+E n n 

We define a closed integration contour Cn in E-space encircling En, EE 

and no other poles of G, Go or K. Cauchy's theorem implies 

= +$- T;W(E;E) G(E) W(EEO,) '4; 

cn 

zz 
f $$v; W(E;E) G(E) W(EE;) $; 

cn 

The integrations can be expressed in terms of known quantities through 

use of Eq. (11.9) to remove G(E) in favor of &K(E) and Go(E). The result 

is an expansion for En in powers of 6K (using Eq, (11.7)): 

dE 1 -- -' &K(E) E [Go(E)SK(E)lj '4; 

= Eon + 'n 
271i E-Eo +n 

n j=o 
En 

I 

dE 
1+ - 1 

2ai (E-E~)~ 
T; &K(E) 2 IGo (E) &K(E) 1 j $z 

'n 
j=d 
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The contour integrations in each term of the expansion can be readily per- 

formed as the only poles implicit in the integrand occur in Go(E) at Ez 

and the residue is known (Eq. (11.5)). We obtain finally the familiar 

perturbation series: 

(11.10) 

Similar arguments give the perturbed wave functions: 

The perturbed wave functions are useful primarily in computing scattering 

amplitudes. They will not be needed in what follows. 

Decay channels shift the bound state poles of G below the real axis. 

The decay width of the n 
th level is simply 

Tn = -2#mEn (11.11) 

and may be calculated perturbatively from Eq. (11.10). 
13 
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C. An Example: The Bethe-Salpeter Equation 

Equation (11.4) becomes the BS equation4 if we choose the propagator 

SW) = T p+$ i 

1 -ml T2#-1C-m2 

m. 1 T. = 1 m +m 12 

The bound state equation is Eq. (11.6) 

4 
(rll!+K-ml)(~2#-K-m2) $B,(kP) = - dq 

(2s)4 % 
OW') JIBS (qp) 

The kernel KBS is the sum of all two-particle irreducible diagrams (Eq. (II.3), 

Fig. 1). This kernel is dominated by the static single-photon interaction 

in nonrelativistic QED atoms. When the kernel is static (i.e., independent 

of relative energy), the BS equation is greatly simplified by integrating 

over the relative energy. This results in a three-dimensional formalism 

whose propagator in the atom's rest frame is 

S(kP) = 2ai6(k") 1 
= 2ai6(k") 

I 
pp _ pIL(2) py'2> 1 

PO-Hl(i;)-H2(-c) + + - - _ o o 

where 

(11.12) 

H(z) = G-k i- Bm = E(k) (2A+(z) 7 1) 
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.- 

4 -76 

3320A6 

yv( + )I$-$( + 0. 

Fig. 1. The two-particle irreducible 
BS kernel. 
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The resulting bound state equation is the 'Salpeter equation':6 

[PO-Hl(i;)-H2(-i;)]$(i$ = $)h(+2) - n'_l)n'2)] yb')y(i) 

I 
3 

x -!ki- i K(c<P)$(<) 
(2n) 3 

(11.13) 

It can be made exact by incorporating retardation corrections into the 

kernel via Eq. (U.3). Still this equation allows no simple solutions 

for QED atoms. It also illustrates a basic defect in the BS formalism. 

In the Coulomb-ladder approximation (iK = - e y, 2(1)$02)/&;;/2) Eq. (11.13) 
, 

becomes 

J 
3 2 

(ml+& - Z - ‘: - Bml) q(d) = A(:’ (k) d q3 +-e+ 2 
(2~) Ik-ql tJ6 

when m + m 2 and where E is the binding energy. This is not the Dirac 

equation, which is the correct limit, because of the A+(k) on the left hand 

side. The antiparticle component of the Dirac propagator is completely sup- 

pressed. The Dirac equation is recovered only when all cross-ladder dia- 

grams of all orders are included in K. The failure of the BS ladder approxi- 

mation in the infinite mass limit is not serious for nonrelativistic atoms, 

but demonstrates that the formalism is remarkably inefficient in analysing 

the relativistic problem. 

Breit suggested that the projection operators in Eq. (11.13) be omit- 

ted.14 The equation then has the correct infinite mass limit but is still 

quite difficult to solve. 

We mention one final problem with the BS formalism--the lack of gauge 

invariance. The wave functions, kernels and Green's functions are not 
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gauge invariant, though physically measurable quantities such as spectra 

and decay rates must be. The Coulomb gauge seems to be optimal for atomic 

physics insofar as it incorporates the most physics in the simplest graphs. 

The Feynman gauge used in the ladder approximation, for example, results 

in spurious terms in the binding energy of O(a311ncc) and O(a3m). 15 These 

terms, which persist even in the infinite mass limit, are cancelled by an 

infinite number of cross-ladder diagrams. They arise because the Coulomb 

propagator has ma&.-shell singularities in this gauge. These unphysical 

Coulomb photons, which never appear in physical gauges such as the Coulomb 

gauge, are introduced to make the theory explicitly covariant. However, 

they must and do ultimately decouple. 

The major defect in the BS approach has been the lack of a soluble 

zeroth order problem approximating the QED atom. Even given a solution, 

the formalism is awkward since the wave functions depend not only upon the 

relative position (or momentum) of the constituents but on the relative 

time (or energy) as well. These problems are overcome in the new treat- 

ments discussed in what follows. In addition, the other problems touched 

upon above (i.e., gauge invariance, the infinite mass limit) are remedied 

with varying degrees of success. 
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III. A SCHROEDINGER EQUATION FOR AN EFFECTIVE PARTICLE 

A. Introduction 

In this section we describe a fully rigorous two-fermion bound state 

formalism which can be reduced to an equivalent Schroedinger equation with 

reduced mass. The equation was first suggested by Faustov, 16 though his 

use of it differs significantly from ours. Among the attractive features 

of our approach are: 

1. We determine exact solutions of the bound state equations 

for a simple Coulomb-like interaction. The wave functions 

are essentially just the usual Schroedinger wave functions 

for the hydrogen atom. 

2. The corrections to this zeroth-order problem can be 

elaborated in a systematic perturbation series. 

3. The unperturbed two-particle Green's function can be ex- 

pressed in a number of simple analytic forms, This is 

important when computing in second order perturbation 

theory (Eq. (11.10)). 

4. As the exact unperturbed wave functions are finite at the 

origin, the expectation value of the one-photon annihila- ' 

tion kernel (in positronium) is finite. This is not the 

case in the usual BS approach where this quantity can be 

made finite only after an infinite order (in a) renormaliza- 

tion of the annihilation vertices. In the formalism des- 

cribed below, all infinities related to renormalization 

can be removed order by order in precisely the way on-shell 

amplitudes are treated. This feature greatly simplifies 

the analysis and numerical evaluation of higher order terms. 
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5. The spinor structure of the wave functions is that of 

free-particle Dirac spinors, facilitating the use of com- 

puters for performing spinor algebra. 

6. The constituents are treated symmetrically. 

7. In the limit of zero binding, the Green's function and 

wave functions reduce to the correct relativistic func- 

tions describing two free particles (at zero relative 

time).‘- 

The Dirac fine structure is not included in the unperturbed QED solu- 

tions. The fine structure of atoms with constituents of equal mass differs 

considerably in character from that of atoms with a large mass ratio. It 

is quite difficult to create a formalism which naturally accommodates both 

cases and still admits analytic solutions comparable in simplicity to those 

presented below. The fine structure terms omitted here are of O((Z%X>~) 

and are easily handled in perturbation theory when the atoms are nonrela- 

tivistic (Za<<l). Thus, although the formalism is completely general, it 

is most comveniently applied when the binding energies are small. 

As discussed in Section 1I.C. the static single-photon interaction 

dominates in weakly bound QED atoms. Furthermore, the A h term of' the -- 

two-fermion BS propagator in this case (Eq. (11.12)) contributes only to 

O( m5> - This suggests that we construct a formalism with propagator 

P(i;> P(-r;, 
S(kP) = 2ai6(k0) + + u'l'y'2) 

PO-El(k)-E2(k) ' ' 
(III.l) 
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The corresponding two-particle Green's function satisfies an equa- 

tion 

- 2-L .P(&io)(-ii) 
G(kqP) = + + pp 

PO-El(k)-E2(k) ' o 
c2,&3&;;)+ d3r J -LA -*I 

ml3 
iK(kr P)G(rqP) 

pp 

i 

(2r)363(k-q) + z 

pp 
+ + + + = pp 

PO -El-E2 TP"-El-E2 ' ' (111.2) 

where ET is related to the complete four-point function (Eq. (11.2)) by 

ET(kqP) = lim 
k",qo+O 

iGT(kqP) 

Equation (111.2) is exact only if fi is defined as in Eq. (11.3). In terms 

of the two-particle irreducible BS kernel KBs, we have (Fig. 2a): 

K(<;P) = KBS(kqP)I 
k”=qo= 0 

pp 

- 2ai6(r0) + + KBs(rqP)I + 
PO-El-E2 kozqo= 0 *" 

In this fashion, effects due to retardation and the A A terms are reintro- -- 

duced into the kernel. As mentioned earlier, the first term in Eq. (111.3) 

dominates when the binding is weak, and the remaining terms may then be 

incorporated perturbatively. 

Equation (111.2) is far simpler than the BS equation because we have 

chosen to consider GT(kqP) only at k'=q"=O. 
17 The location of bound state 

poles is unaffected by the relative energy of the constituents, 
18 and so 
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T-~ P+k 

5-70 (b) 3403A2 

Fig. 2a. Definition of the effective kernel in terms 
of the BS kernel (Fig. 1). 

Fig. 2b. The bound state equation. 
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there is no need to retain this excess degree of freedom when computing 

energy levels or decay rates. Furthermore, when the BS kernel is static, 

GT is independent of k" and q", and solving Eq. (111.2) is then equivalent 

to solving the BS equation. 19 

From Eq. (11.6) we find that the bound state equation here is (Fig. 2b) 

(PO- El(k)- E2(k))J, ($, = n',l)(&$2)(-$ yb')$02) 
J 

3 
ti3 iz (t;P) $(;;) 
(2v) 

(111.4) 

This wave function has 16 spinor components. 

Notice that the spinor structure of $(%) follows immediately from 

Eq. (111.4): 

& =c u(l)&) J2)(-ZA’) 
$ (2) 

XA~ &(k) E2(k) AA 
(111.5) 

- 
where ~($1) is the usual free particle Dirac spinor (uu = 2m), and 4 has 

four components. Defining 

8(t;P> = u 
A' 11; A1.I ,/4El(k) E2(k) 

?2) + c(pp) v(l)v(2) u%h) u (-qu) 
0 0 

J4E1<9)E2(9) 

% 
K&;;P) = 

u x (yr) uC1) (;;A> J2) (44 
A' Ll',hJ 44 El(k) E2(k) J4El(q) E2(q) 
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we can rewrite Eqs. (111.2) and (III,4): 

Z(Z;;P, = 1. d31- 
PO 

(2x>3 63 (ii-;;) + iz(gzP)G (:;P) 
-El(k) -E2(k) I (W3 i 

as PO -f PO n 

(PO-El(k)-E2(k)) $ (kf = 2% 
/ w3 

iz(Tt;P) &) 

(111.6a) 

(111.6b) 

Wave functions $ and $* satisfy the orthonormality relation Eq. (11.8) 

with weight: 

W(iL;fP,P,) = (2s)3 63 (it-;;) - 
i?(i:;;Pm)-i~(i:~Pn) 

PO - PO 
m n 

(111.7) 

Perturbation theory (Section 1I.C) can be expressed in terms of 4, $*, 

2 and 2 or in terms of $, 6, I( and c. 

B. The Unperturbed Problem in QED 

Equation (III.Gb) is rendered more tractable by multiplying both sides 

by N(k>2/N(k> where 20 

-_ 

N(k) = 
+ El(k) + E2&) > (Pz - (El(k) - E2(k) ) 2> 

2Po(P~ - (ml - m2j2) 

4 (ml:+ m2) 
+ . . . Iii1 << m 

e=PO-m -m 12 
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and 

mlm2 m= 
ml + m2 

is the reduced mass. Note that N(k) % 1 when k is nonrelativistic, and 

therefore, low energy behavior is little changed by this factor. The re- 

sulting equation is 

(: - s)& =,s N(k)N(q) ig(gzP) -$.$ 

This is just a Schroedinger equation for an effective particle with "bind- 

ing energy" and “mass” 

% P; - Cm1 +m2f 
E= 2P 

= E 
0 

E2 + 2(ml+m2) *" 

% P; - (ml - m,,2 
m= 4P 

= m+ s($- mlFm2) + "' 
0 

We emphasize that this equation is exact and equivalent to Eqs. (111.4) 

and (111.6b). 

For QED bound states, the choice of zeroth-order kernel is now ob- -_ 

vious: 

2 
i~o(kqP) = ,c~G,2 

1 
N(k) N(q) 
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as then Eq. (111.6b) reduces to the Schroedinger-Coulomb equation: 

The eigenfunctions are simply related to the nonrelativistic Schroedinger 

wave functions with m replaced by G: 

44) = N(k) = T- 2 alSch 6; 3 n 1, 2, . . . 

1+% 
4n2 

=+ qJ(iI> = u(l) (2) d2) (-ii) d) 
J4El(k) E2(k) 

The normalization is fixed by Eqs. (11.8) and (111.7). Note that 

+(x=0) -ld3k&) is always finite in the unperturbed problem. The un- 

perturbed energy levels follow by solving 

2 
2(P0) = - LT.- Z(PO) 

2n2 

*P 0 = (ml+m2) 

( 

l- 
a2 mk 

m +m n2+z 1 2 
4 ) 

2 4 
-m +m 

' 2 
-am+am (I- 

2n2 gn4 
m y, > + OhA 

12 

It is readily demonstrated that the remaining O(a4> terms are due to 
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the following static kernels (in Coulomb gauge): 

a> Relativistic corrections to single Coulomb exchange (Fig. 3a): 

2 
iaK = -e 

c ]7+-;;/2 0 0 - ice 
v'q$2) 

=> i&g z 
2 -e 

1 

2.; $2+{2+47t.;; 
C 

1il-Gj2 4m2 ------.- 

E 

8mlm2 2 (ml + m2) 

1 
4m 2 

2 

b) Single transverse photon exchange (Fig, 3b): 

-iS %r 
e2 = 

I 

(il. ;)2-t;y _ iZxG* (i+ g2) 

$-;I2 mlm2 ld-G12 2mlm2 

-+ -+ 
(k-q) x ';: 

+ 
1' <G, x z2 -_ 

4mlm2 t 

c) Single photon annihilation (positronium only, Fig. 3~): 

Y 
iSX = F - yI 

A P,' e2 

-i&Z = e2 
A 8mlm2 

(3+:l.s2) ml = m2 

(III.Bb) 

(111.8~) 
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(a) 

(b) 

Cc) 

- . . - . - 1 

l- I 

> 

. l l l Coulomb Interaction 
--- Transverse Photon 

- Ko 12-77 
3328A4 

-_ 

Fig. 3. Kernels contributing 
to o(a4) in binding 
energies. 
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Only the dominant parts of each kernel have been exhibited, 

These kernels are important for the analysis presented in Section 1II.D. 

We will also require the ground state (n = 1) wave function 

IQ << m 1’ 9 

(111.9) 
QJ 

Y = am =am 

where x(l), i2) are two-component spinors. 

We now examine the Green's function Go for kernel Ko. We require 

for second-order perturbation theory Eq. (II.10). Applied to Eq. (III.6a), 

the arguments used above lead to a simple relation between Go and the non- 

relativistic Schroedinger-Coulomb propagator: 

zo&;P) = N(k)N(q)GSch(%;;:;:) 

-G Sch 6: E; d lk 13 << m19m2 (111.10) 
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Though analytic expressions exist for GSch in coordinate space, 
21 we find 

it convenient to use an expression in momentum space due to Schwinger: 22 

Sch(i:;;E;m) = (27)363(w) _ 1 
2 

G 
e 1 

E - Z2/2m E - Z2/2m 
-+,2 

I$- 41 E - <2/2m 

2 1 
e 

/ 

irip 
-in 1 

c-Z2/2m 
0 

- -$- (E-z2/2m) (E- $2/2m)(l-p)2 ~-@2/2rn 

_- 

where in =* . The first two terms are just the zero and one Coulomb 

terms in the Born series. Integrating by parts and taking in + 1, we can 

isolate and remove the ground state pole, and perform the p integration. 

The resulting (exact) expression is: 

,Jiq, Gsch(xG 2;:) - 
Cch&) Cch(3 -64~ = lT2y5 t? (it-;;, ~ 

I [ 
4 E-tE E-: 

0 0 
ay 4(z2+ y2) 

+ Y6 
4(z2+ y2> liL;;12 (G2+ y2) 

-I- it (ii;) 1 (III.lla) 

%(g:) represents all contributions due to exchange of two or more Coulomb 

photons and is given by: 

2 (2;) = 4y2 

G2+y2 

(III.llb) 
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For present purposes (i.e., to O(a6)>, we need never go beyond second 

order in perturbation theory. The nature of the perturbations is best under- 

stood by combining the expansion in a for G T with expansions Eqs. (11.3), 

(11.10) and (111.11). The result to two loops is presented in Fig. 4 in 

terms of the irreducible BS kernel 53s' the unperturbed kernel To, and E. 

The naive order for any kernel in Fig. 4a is a3, for the wave function 

squared, times one a for each photon in the graph. Threshold singularities, 
_- 

if present, increase the contribution over this naive estimate. Examples 

of singular kernels are the O(a5) Lamb shift kernels in Fig. 5. These con- 

tribute only in O(a'> to the ground state splitting. Consequently, when 

computing this splitting to O(a6), only those parts of ICSS need be retained 

in Fig. 4a as result in diagrams with two or fewer loops. The diagrams 

in Fig. 4b arise when the dominant static interactions (Fig. 3) are treated 

in second-order perturbation theory. The leading contribution from these 

is O(a6), and has been computed. 8 

C. Decay Rate of Orthopositronium - O(a) Corrections 

The decay rate of orthopositronium (o-Ps: n = 1, 3 = S = 1) into 

three photons is the only annihilation rate of a purely quantum electro- 

dynamic system that has been measured to 1 percent or better (Table 1). 

The most recent theoretical prediction is 10,ll 

r o-Ps = To 1 - : 10.266(B) - $ a2Rna -' + O(a2) 1 
= 7.03859(15) psec -1 + O(a8m = 0.006psec 

-1 
> e 
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Table I 

MEASURED DECAY RATE OF ORTHOPOSITRONIUM 

Refm-ence Measured in Rate (psec-'1 

23 Gas 7.056 + 0.007 

24 Gas 7.058 + 0.015 

25 Vacua 7.09 2 0.02 

26 Si02 Powder 7.104 + 0.006 

27 Gas 7.262 + 0.015 

28 Gas 7.275 + 0.015 

Experimental determinations of the decay 

rate of orthopositronium. 
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tb) (n - r) :x (II -1) 5 -78 
3403*4 

Fig. 4. Kernels contributing to two loops in bound state perturbation 
theory. The double line represents the BS kernel (Fig. 1). 
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* + fi + m +.oo 

5-78 3403*5 

Fig. 5. Kernels contributing to O(a5) Lamb shift and O(a7) hfs. 
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where P 0 . 1s the lowest order rate: 29 

r” = a6me 2(r2- 9) = 7.21118~ see -1 
9n 

This rate is only just compatible with the most recent measurements and the 

possibility of a serious discrepancy exists. Although the experimental 

situation seems far from stable, it is imperative that the theory be ex- 

amined within the-context of a rigorous bound state formalism and all ap- 

proximations justified, Here we apply the machinery developed in previous 

sections to this problem. To treat bound states of fermions and anti- 

fermions, we must replace d2) (-%x>by 4') (-gX> in the wave function 

Eq. (111.5) and in the definitions of ?! and 2. 

The decay of o-Ps occurs via kernels in the perturbation series (Fig.4), 

having three-photon intermediate states (Fig. 6a). From Eq. (II.ll), the 

decay rate is simply 

d T(c) [-2Sm M(c%P)] Ic, (g) 

(111.12) 

/ 
ii 

d3#J 
= 

i=l (2*)320i 
(2a)4 64(P-Cki)) 

II 
.J&. &ki)) $(Tt, 

:2 

i m3 

Here M is a truncated amplitude describing elastic e-e+ scattering, and A 

is an amplitude describing annihilation into on-shell photons. Amplitude 

M has an imaginary part because the energy of o-Ps is well above the thresh- 

old for producing three photons. The definition of A (Fig. 6b) follows 

immediately from Fig. 4. All terms contributing through O(a2Po) to the 

three-photon decay rate are shown. Five-photon decays also contribute to 

the total rate at O(02Po). 
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(a) $+k k( i 1 g+q 

-(+I) 

5-78 
3403A6 

Fig. 6a. The three-photon decay kernel. 

Fig. 6b. The three-photon decay amplitude for o-Ps, including 
all corrections to O(cx2). The double line kernels are 
two particle irreducible. 
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The lowest and first-order terms in the decay rate result from the 

kernels in Fig. 7. Note that we must include propagator corrections on the 

external fermion legs (Fig. 7c) because they are not on mass-shell. How- 

ever, the only part of these corrections relevant to O(oT') is that which 

renormalizes the electron charge. It is readily demonstrated that all 

other contributions from these diagrams (i.e., Fig.7e) are of 20 O(o P ) or 

higher. Thus, we may ignore diagrams (e) in Fig. 7 if we renormalize (a), 
_- 

and (f)-(h) as if they were on-shell amplitudes (the other l/2 of (e) re- 

normalizes charges in the wave function). The final state photons, being 

on-shell, are renormalized after the usual fashion. 

The only contributions of O(aP") from graphs (b) through (i) come 

from the region of small relative momentum (k 'L y <C me) in Eq. (111.12). 

This is because the decay kernel is approximately independent of z (i.e., 

to O(c2/mi) % O(u2)> when k is nonrelativistic. Of course, the bulk of 

the wave function is concentrated in this region. Thus, we can replace 

%-i(i:ki)) by A,&O,k?)) in Eq. (111.12) when working only to first order. 

Furthermore, the effects of binding are negligible here (O(a2>> and there- 

fore, %-i can be evaluated on mass-shell. The imaginary part of A van- 

ishes below threshold and must be discarded in this approximation. Thus, 

to leading order, the decay amplitude from graphs (b)-(i) is 

-e 
*b-i 

o-Ps+3y = 

Qal e 

2 ReAF!i (0, (111.13) 
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+ +J- 
2 

(d) 

(b) 

(E+E 

(e) 

+(E + E) +(I?E2 + Ix9 
(f) (g) 

-I- I?JzE (= + + 
(h) (i) 

x+ (TJjl&E)+E-E 2 
5-78 (c’) s 

Fig. 7. Kernels contributing in lowest and first order to the 
decay of o-Ps. 
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The last integral is just the wave function averaged over a volume of 

radius ?, l/me about the origin in coordinate space, and equals (y3/n) 

x (1+0(a)). 

4 

An important feature of Eq. (111.13) is that it is completely infra- 

red finite. In Coulomb gauge (used here), infrared divergent terms vanish 

as c2/rni at threshold in each graph separately. In any gauge, this must 

be true of the sum of graphs because nonmoving charges cannot radiate in 

QED. Infrared divergences are cut off in an atom by its size (X + am) and 

appear as ana's in the binding energy (e.g., Lamb shift). Their absence 

here indicates that there are no O(uRnaI") terms arising from these graphs. 

Another important feature of Eq. (111.13) is that it is manifestly 

gauge invariant. This is true (1) because the amplitudes are evaluated 

on-shell, and (2) because graphs (b) through (i) (excluding the subtraction) 

form a gauge invariant set. The subtraction term and the wave function 

involve i? 
0 

which was defined independently of gauge considerations. Thus, 

although the analysis above assumed the Coulomb gauge, the actual computa- 

tions can be carried out in any gauge. In particular we can employ the co- 

variant (and convenient) Feynman gauge. 

We turn now to graph (a) in Fig. 7. The leading contribution .to the 

decay rate (I") comes from (a) when the relative momentum z is nonrelativ- 

istic: 

' d3k -3 Aa( TJJ&) = Ats(O,k?)) 
%e 

A" 
I I 

d3k 
o-Ps+3y = 

- JI (a 
(2lT) w3 

(2s)4 64 (P&i)) 
;(o)Axs(o ki))u(o) 2 a ' 

2m e 
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The only other contributions from this region of z-space 

This follows from the analyticity of M,(z$ (Eq. (III.12 

which implies: 

are of o(ct2ro). 
))inxandG 

+2 +2 
Ma&;) = M,(O, O)[l+O(s > % , 

ii.;; 
2 )I m m m e e e 

.r Ma@, O>Il+O(a2>l (111.14) 

The amplitude is analytic because its branch points occur when s = 0 or 

t = 4m2 e - both far from the region we are considering (s $ 4m%, t 'L 0). 

Therefore, the only contributions of O(crT') from this graph arise from 

the relativistic region of z-space. 

To further analyse the graph we use the bound state equations (Eq. 

(111.4)) to iterate the wave function (Fig. 8a). We can then compare this 

term to the subtraction in (b) evaluated on-shell as in Eq. (111.13). 

The two should cancel, at least in leading order (Fig. 8b). They differ 

only in that the total energy (appearing in the k-integration loop) is 

PO = 2me - 
2 u me/4 in the first and P = 2 J G2+rnz = 2me+G2/mz in the 

second. In each case only < of O(y) contribute. When 2 is relativistic, 

O(02) corrections to the propagators are irrelevant (e.g., S 
-1 = PO- 2E(k) 

2 2(m, -E(k)) = O(me)); in this region the graphs cancel. When Z is non- 

relativistic, the decay amplitude A,(% ti 0, ki)) factors out. If then 

-1 
'2 

we approximate the propagator S = PO-2E(k) 'L PO- 2m - -$--, the e m e 
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(a) 

5-78 (b) 3403A8 

Fig. 8a. Iteration of the wave function. 

Fig. 8b. Cancellation between iteration of 
graph in Fig. 7a, and the sub- 
traction in Fig. 7b evaluated 
on-shell. 
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difference between the two terms is 

;(O,AF (0, k(i)j u(O) 

2me (g Re[&3~$3 (* ,&2 

m m x 
+2 k +y2 g2-;;2 > 

Jr O(a2) 

d3q IL 1 + O(a2) 
z2+y2 ;2+y2 1iq2 iL2-;2 1 

= 0 

by symmetry. Thus, graph (a) in Fig, 7 is completely cancelled to O(or') 

by the subtraction term in (b), even when the latter is evaluated on-shell. 

Consequently, graphs (a), (b) and (c) may be replaced by the real part of 

(c') evaluated on-shell (Fig. 7). Graph (c') is identical to (c) but with 

a complete photon propagator in place of the transverse propagator. Now, 

relativistic wave function momenta in graph (a) appear as relativistic loop 

momenta in (c'). 

The entire decay amplitude, including all radiative corrections of 

O(a), can now be written in terms of gauge invariant on-shell amplitudes. 

and a nonrelativistic wave function: 

%Il 
A o-ps+$i)) = 

e d3k - Re AC, 
(W3 

MS (iv)) (J(Z) + 
;(0)Ad-,(O,k(i\u(O) 

2m 
e 

The computation of these terms is described in Refs. 10 and 11. The 

results are listed in Table II. We also list the results of Stroscio and 

Holt,30 the first to attempt the O(eT") calculation (note their sign error 
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rd 

rf 

r 
g,h 

ri 

r ,'r 

rs 
C’ 

Total 

Table II 

o(a) CORRECTIONS TO THE DECAY RATE OF ORTHOPOSITRONIUM 

&swell, Lepa e 
and Sapersteinll,ll 

Stroscio 
and Holt30 

-0.809 -I 0.004 -0.5 f 0.2 

4.791 + 0.003 + 4%n(Xlme) 4.785 f. 0.010 + 4.Qn(X/me) 

-2.868 + 0.003 - 6Ln(A/m,) -2.8716 f 0.0036 - 6k?n(X/me) 

-3.562 + 0.004 -3.355 2 0.003 

-2 + 21n(Alme) -2 + Z!Z.n(X/me) 

-5.818 zk 0.008 5.8 + 0.4 

-10.266 t 0.008 1.86 ?r 0.45 

Theoretical determinations of the O(a) corrections to the decay rate of 

orthopositronium (in units of (a/a)r'). rd = - 0.741 + 0.017 is quoted 

in Ref. 31. 
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AIR - =I = Re 
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inr ). 
C’ 

Spurious infrared divergences appear because the calculation 

was done in Feynman gauge. As expected these cancel in the final answer. 

Graph (c') has both a logarithmic singularity and a l/l;1 singularity at 

These are removed by subtracting 

d4k 1 1 (27~) 
4 2 2 2 k2-2P2*k 4m2 

1 1 AM' 
e a 

(k= O,"ki), 
k -A k +2P *k 1 

+L[2Ln(;j++ - 21 AT (i:=o,k')) 

from AC, where Pl =p+q and P2 =$- q. This amplitude when convoluted 

with the wave function contributes 

If+ = r” + [29.n($-)- 2]+- r” 

IR 
The singular l/q part of AC, g ave rise to the leading order term. The 

subtracted rate was found to be 

rs = 
C’ 

- 5.818 (8) -+- r” 

The total rate from c' is the sum PC, IR+rz, . 

The method described above for expressing O(a) correction in terms 

of Schroedinger wave functions and gauge invariant on-shell amplitudes 

is applicable to many other problems. As an example we cite the calcula- 

tion of O(a) corrections to the hyperfine splitting of the ground state 

in positronium (or muonium). The procedure described here is considerably 

simpler than the BS analysis originally employed by Karplus and Klein. 
32 
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D. Decay Rate of Orthopositronium - O(a2 Rna-l) Corrections 

-1 0 In this section we compute the O(a2!Lna T )corrections to the decay 

rate of o-Ps. These are potentially the largest of all second order cor- 

rections (Rna -1 % 5) though in fact the coefficient turns out to be small. 

The diagrams considered and their contributions are presented in Fig. 9. 

For all these diagrams it is found that Lna 
-1 terms come only from the 

region of nonrelativistic momenta in all loop integrations (excluding in- 

tegrations over final states). Only there are the fermion propagators in 

the kernel sufficiently singular for the binding energy to be of any im- 

portance. Thus, the general procedure to be adopted is to expand all ener- 

gies E(k) and propagators in powers of g2/rni and then to isolate terms 

which diverge logarithmically. These are the source of Rna -1 contributions. 

Of course the divergences are ultimately cut off by the propagators at mo- 

menta of O(m,). At the lower end, the cut off is due to the finite size 

of the atom (k s (Bohr radius) -1 % O(y)) and binding effects. The coef- 

ficient of Rna -1 is easily computed using Table III. 

In the nonrelativisitc region, each graph contributes terms only of 

O(a2Po) or higher. Consequently the amplitude in each case can be ap- 

proximated by 

A d3qd3kd3p ??;;> Aa6iki), UC;;> 

o-Ps+3y = 
wq 

2m 
sop+;;;: E> &&) e(z) 

e 

where 6% is any of the leading instantaneous perturbation kernels 

(Eq. (111.8), Fig. 3) and 2"' represents the nonrelativistic propagator 

with either zero or one Coulomb interaction: 

20 = (2?T)263(;;-;) Ql 1 
G = 

E - Clme 
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Table III 

TABLE OF INTEGRALS 

d3k & f(k, q> = Ks4gna-' -- _- 
k4 q4 $-dj2 

vam 

f(k, s> K 

k4, q4 0 

k2q2 4 

k2k * 4, q2k - q 2 

(k l d2 2 

Table of integrals required for ana- 

lytic evaluations. 
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(a) 

(b) 

(cl 

(d) 

(4 

5-78 
3403A9 

KERNEL _- 
=lzE- : . 

-iE - 

1I 
-T-yr 

_i 

COEFFICIENT OF 

cr*l”c?-’ l-0 

1 
2 

-- 
fi 

1 

-- 
: 

-1 

TOTAL 

~- 
1 -- 
3 

Fig. 9. Diagrams contributing to 0(a2Rna -1 0 
o-Ps decay. 

r ) in 
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W Again Aa(qkk)) can be replaced by Ay(O, k ) and we find that each graph 

in Fig. 9 contributes 

(111.15) 
to the decay rate. We examine each term separately: 

(a) Coulomb Correction: Combining 6zc (Eq. (III.8a)) with "Go we ob- 

tain the contribution from diagram (a) in Fig. 9: 

%l 

d3k e 3 - z2 a2 d q -me -e2 
e-. 

(S2+y2j2 (2~)~ G2+y2 lz-41 8 

vn e 
d3k d3q 

42.;; -;;2-p-a2m2 
=r e 

(z2+y2)2 ;;2 + y2 [iL;;12 

Terms in 6gc proportional to d x G * + o integrate to zero because the wave 

function is symmetric. The terms 41 l G and -c2 in the numerator lead to 

logarithmic divergences. From Table III we find immediately: 

r = L a29nu-'To + 0(a2ro) a 4 

Diagram (b) in Fig. 9 is identical to (a) but with 2' replaced by ??: 

VII e 3 P”“e 

rb 
= 2r”+ 

/ 

d3q d3p -me me2 -me -e2 

K (k2:y')2' (2TrP q2+y2 lG-G12 P2 + Y2 IGl 

i 

41:.;:-z2-;2 2 e -am 
x I 

-+2 
$-PI I 
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Only the z2 term diverges logarithmically. We find 

e -1 cr2gn-J-1 0 
4 r + O(a2T0) 

(b) Transverse Photon: The calculation for diagrams (c) and (d) is 

analogous to that just described--6% (Eq. (111.8b)) replaces Sic. Note 

+ 
that in the o-Ps state <z, * 02>~=~=1=1. The diagrams contribute 

we 
d3k 

%e 
d3q 1 

(Z2+ y2)2 ;2+ y2 $-;;I2 

= a2 &no,-1 r” + o(ci2ro) 

rd = - r” 

II -1 a2tn.-l O 
3 

r + o(a2ro) 
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(c) Annihilation to One Photon: When 6zA is combined with Go in 

Eq. (III.15) the result diverges linearly. This indicates an O(ar') con- 

tribution from the relativistic region (as computed earlier), but no terms 

of O(u211n awlro) . Only with ?? does 6zA contribute (Fig. 9e): 

J d3q d3p 1 

G2+ y2 G2+y2 J&y2 

= - a2 Rnci-‘r” + o(a2ro) 

The only other kernels which might be sufficiently singular to con- 

tain u2Rna -1 corrections are the lowest order decay kernel (Fig. 7a), and 

the terms just considered but with two or more intermediate Coulomb inter- 

actions (i.e., last term in Fig. 6b). The first, though it contributes to 

o(a2ro), results in no Rna -1 terms. This is readily demonstrated given 

expansion Eq. (111.14). Contributions from the second source have been 

computed numerically using expression Eq. (111.11) for %. The analytic 

results quoted for these in Fig. 10 agree to five figures (at least) with 

the numerical results. -1 No further Lno terms appear here. 
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_- 

KERNEL COEFFICIENT OF 

.*r” 

) i,(R)- 
7T* -- 

A 24 

I- 
I R 

7 7T* --- 
4 6 

5-78 

3 -- 
2 3403A10 

Fig. 10. Multi-Coulomb corrections to o-Ps decay rate. 
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Iv. A DIRAC EQUATION FOR AN EFFECTIVE PARTICLE 

A. Introduction 

In this section we discuss a bound state equation for the BS wave 

function with one constituent on its mass-shell. This formalism origi- 

nated with Gross33 and has subsequently been discussed by several 34,9 authors. 

The major attraction of this formulation is that in ladder approximation it 

reduces to the Dirac-Coulomb equation when the mass of the on-shell con- 

stituent is taken to infinity. This is very desirable when studying atoms 

whose constituents differ greatly in mass. However, the asymmetric treat- 

ment of the constituents is less desirable when they are equal in mass. 

Thus, although the treatment is completely general, we shall only apply it 

here to atoms having a large mass ratio (e.g., muonium). It is usually 

more convenient to use the formalism described in Section III when the 

mass ratio is arbitrary or near unity. 

Gross' suggestion is to replace the B'S propagator by 

S(kP) = 2r i S+(k2-m:) 
(It + ml)(‘) 

(P-Y-m2)(2) 

The two-particle Green's function satisfies an equation 

(IV.1) 

G(i:;;P) = 
(K +y)(‘) 

(#-K-m,)(') 
(2~)~ 2Ek63(i:-;;) + / 

3 
d3r 

- -++ 
iK(krP)E(:<P) 

(2s) 2Er 

+ 
In 6) ” (3 

PO-PO n 

as P 
0 

-f PO n 



- 
where the truncated part of G is related to the complete four-point func- 

tion (Eq. (11.2)) by 

cT(z<P) = lim i GT(kqP) 

k"+Ek 

q"+Eq 

The various poles and cuts of KBs are reintroduced into z by definition 

(Eq. (11.3)): 

%kqP) = KBS(kdk"=Ek, qO=E 
4 

i 

(5 - f - m21c2) 

x 

I . 
(f -:p - 

2a 6+ (r2-m$(#+ml)(') Kbs(rqP) 

I 

+ . . . 

k"=Ek, qO=E 
q 

On physical grounds we expect the first term to dominate when the binding 

is weak or when ml >> m2. In either case particle one remains close to - 

its mass-shell. 

The bound state equations follow immediately from Eq. (IV.2): 

(I’ - $ - m2f2) Y(Z) = (k+m,)(') 3 iK(dGP) Y(c) 

(k-m,)(') Y(Z) = 0 k" = Ek 
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The second of these equations implies that 

(IV.3) 

where u(l) is an on-shell spinor and j, has eight components--four spinor 

components for particle two and two spin components for particle one. 

Wave function $-satisfies 

(P-k-m,) q(Z) = 
c 3 

+ ig(iCGP> $J($) 
J (2n) 

where 

z<z;p, = 
;(')(&)i?(kqP) u(')(qX') 

Ah' m 

(IV.4a) 

(IV.4b) 

It is normalized as in Eq. (11.8) with weight function 

W(Z;;PmPn) = y, 1(2a)3 S3&<)l 

it(i:;iPm) - i#(tdPn) 

P; _ P; 

Again, perturbation theory (Section 1I.B) can be expressed in terms of 

Y, E and z or in terms of $, t and 2 (defined analogously to 2). 

One advantage of this approach is its partial gauge invariance which 

occurs because ml propagates on-shell. By current conservation, this 

formalism is invariant under the general class of gauge transformations 
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g uv + fCk A) $,A” 

k2 

performed upon all photons interacting with ml (index p) and, in particular, 

on all photons in simple ladder and cross-ladder kernels. Unfortunately, 

this class of gauges does not include the Coulomb gauge, though in general 

any gauge-dependent terms associated with these photon lines must vanish 

in the Dirac limi+ (m 
1 

+ m). 

B. The Unperturbed QED Problem 

Here we solve Eq. (IV.4) with a kernel go which approximates the QED 

interaction. The solutions are exact in Za and correct to lowest and first 

order in m /m 2 1' This is sufficiently accurate for all calculations in mu- 

onium and hydrogen. These solutions are also correct to all orders in 

m2/ml in the nonrelativistic limit ($ 'L ZCX + 0). Another solution is 
2 * 

described in Ref. 9 which is exact to all orders in m2/ml but somewhat less 

convenient to use. 

We first rewrite Eq. (IV.4): 

(P-Ek+z*g -Bm2)$&)- d3q 
(27d3 

V(k q.p) JI (;I = 0 

that is 

(PO- Ek + z-2 - Bm2 - V) J, = 0 (IV.5a) 

where 

(IV.5b) 
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Equation (IV.5) is greatly complicated by the term Ek = 
d 

k2 +m: . Grotch 

and Yennie, 3.5 employing a similar equation, expanded E k to first order in 

+2 2 
k /ml, but this procedure leads to anomalous divergences in the 0(a2m2/ml) 

corrections. To remove Ek, we multiply by (PO + Ek + z * $ - bm2 - V)/2P" 

to obtain 

I Brn2 
) 

-9 v 
I,2P0 i 

(IV.6) 

where 

P2 + m2 - rn: 
E'= ' 2; 

0 

ands=P 0 -m -m 1 2' The potential due to one-photon exchange (Coulomb 

and transverse) is 

+ -f + 
ikxqsu 1 

) -( 

+ Ze2 ;* <ii+;, 

2ml rw2 

-f a. (iq($2 - ;;2) + i(;-z)x zl* z 

-+4 
Ii:-41 

+2 
Ii:-41 ) 

(IV.7) 

It is responsible for all the binding energy up to and including O((Zo)4). 

We approximate this potential by 

Z2e4 

16mll~-~I 
(IV.8) 

in coordinate space 
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Note that the expectation value of the last term in V. is equal to that of 

the next to last term in V 
lY 

up to corrections of 0(a5m21ml). To O(a4m2/ml), 

only the hyperfine interaction has been omitted. With Vo, Eq. (IV.6) be- 

comes 

* ii - Bm2 - 
PO-Brn 2 

PO 
$= 0 (IV.9) 

where we have dropped terms of order (m /m 21 )2 or higher. 36 This equation 

can be solved exactly if we make the Coulomb interaction term proportional 

to a unit matrix in spinor space. To achieve this we define a new wave 

function 3 by 

$J &) = L.2 BX 1 +T $ (%) 

where 4 
A= PO ‘I- m2 

2 

[( 11 
I m2 

m2 I 

1- - 32- 
PO 2P0 

Equation (IV.9) now becomes 

where to lowest and first order in m2/ml: 

I= 
(l+A2) E'-2m2 h 

1 - I2 
e mlm2 + E ml+m2 

PO PO 

% m2(1+A2) -2hE' mlm2 m= c 
1 - A2 PO 

(IV.10) 

2 
+E 

2P0 

ZZ = Za 
(1+x2) PO - 2m2X 

= za 
(1 - A2)P0 
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This is just the Dirac equation for a single effective particle moving in 

an external Coulomb field. The spectrum is well known: 

i 1+ (ZZ) - (ZZ)2)" 2 1 1 -4 n' j =$, = 4, . . . t((j+412 + n112 

0, 1, 2, . . . 

= I-+; -I- E2 
2mlm2 

+ O((Za)4 m3/mt) n=n'+j+% 

Aside from hyperfine terms, this is the complete spectrum to O((Za)4m2/ml). 

The (normalized) wave functions are just the usual Dirac-Coulomb wave func- ~ 

tions I$(',' (-2) 
nj 

: 

l)(b) = - 1 + BA ( 1 1+?l 
p *vj C-Z) x(l) (IV.11) 

with Za, m replaced by Zz, G . We require the ground state wave function 

in the next section: 

$2) 
1s 

c ,p&) + *p 
0 

" (4, + 6$!;) c-z> 
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where 

y= z;; I ZZik (1 + O((Za)2)) 

(IV.12) 

N = 1 + (i - J,n2)(Z$2/2 + O((Za)4) 

Note that S$ is 0 (Za)20,) when k 2, O(y), and O(Za$o) when 2 is relativistic 

(Q m>. 

As indicated above, the only perturbations of O((Za)4) are in VIY-V. 

(Eqs. (IV.7,8)): 

i&gly(z:) = y"(VIY - Vo> 

Ze2 =- - 
2ml 

Z2 e4 y” 

16ml/z-<I 

Ze2 i(:-z) x Sl * 7; Ze2 itx~*~, 
- 

+ 2ml lx-q2 - - 4m: 
Y0 

lW2 
(IV.13) 
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(a) 

(b) 

(cl 

KERNEL 

x+x- *Ez 

COEFFICIENT OF 

(d) 2 i + 7 - z L - 1 

$ 

3 -- 
4 

0 

TOTAL 2 

5-78 ( iTo+- + Z.G) 3403A,l 

Fig. 11. Kernels contributing to O(a2 me/muRna -' EF) 

in muonium hfs. An 'x' on a fennion line 

indicates that it is on mass-shell. 
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Although the diagonal matrix elements of the first two terms cancel, the 

off-diagonal elements are of O((Za)4m2/ml~. Consequently, these terms 

are as important as the hyperfine interaction when we consider contribu- 

tions from second-order perturbation theory in the next section. 

C. Muonium Hyperfine Splitting to O(a6Rna1) 

Here we compute all O(a'Rna') contributions to the ground state hyper- 

fine splitting (hfs) in muonium (e-u+). The current theoretical estimate 

of the hfs is37 

AEpe=EF 

L 

++a'- a2($- an2)) 

m -1 
+ !f!L e -a- 

( 

h (mp /me> 

FLOW mu l- (me/mP)2 

+ 2a2Rna 
B (l+ me/mP)2 

t O(a2) 

3 
t-u + (18.36 It 

TI J (IV.14) 

where ae is the electron's anomalous magnetic moment and EF is the."Fermi 

Splitting": 

Current experimental results are sensitive to all terms exhibited as well 
m 

as the many O(a2-$EF, a3EF) terms not yet computed. 
lJ 

The diagrams contributing to O(a2me/m 
-1 

Rna 
P 

EF) are presented in 

Fig. 11 (cf. Fig. 4). The procedure for isolating Rna's is as described 

in Section III.D--that is, expand all energies and propagators in powers 
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of g22/mt and seek out 2 -1 O(a me/mUIln a ) terms which appear to diverge 

logarithmically. We examine each contribution in turn: 

(a) One-Photon Corrections (Fig. lla): Two terms in 6%ly (Eq. IV.13) 

contribute to the hfs. The first comes from exchange of a transverse pho- 

ton: 

2+ + 
ie (q-k)xo i 

The contributions from @o and 64, respectively, are 

6E 
Y 

= 6Eo + 6El 
I 

&E = 2 aN2 f d3k d3 (L;;) x :, . (iL@ x zv 

0 .ir4 mm p e J (Z2+y2)2 (z2+ y2)2 $-;I2 

= EF 

53 
&El = ' a d3k d3q 

2v4m m 
ev 

(it2+y2)2 (;2+y2)2 

+ g2-y2 tan-l k 
zx; l CL;;) xt 2 e y + 2z2 

k-r -+2 I&l +2 k 

tan-' k 
v 

The "Fermi splitting" is contained in 6Eo, but no a2 &na -1 
terms. In 6E1 

we can rescale all momenta by y. The result is a convergent integral 
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independent of a. There are no a2 Rn a -1 
terms here. 

The other relevant term in 6Rl 
Y 

comes from the Coulomb interaction (the 

lower spinor components):5 

E *"l.l 
m 

=+F,g> 
I 

d3k 

-- 8n4 m 
1! (ii2 + y2)2 

This integral diverges logarithmically. The factors Ek, E ,... cut it off 
4 

at m,, while it is cut off at the lower end by y = am 
e' Referring to 

Table III we find 

m 
EF + $ a2 2 .P,n %- 

mv me EF 

m 
+ O(a2 $- EF) 

IJ 

which is 6Ea in Fig. 11. 

(b) Two-Transverse Photons (Fig. lib): The contributions from the 

ladder and cross-ladder diagrams with two transverse photons have been com- 

puted and are described in the literature. 38 
The result is 

9 2 - a me/mu Ilno -1 
2 EF ' However, parts of the interaction due to exchange 

of a transverse photon are already in 2 
0 

and are, therefore, included to 

all orders in the wave function. To avoid double counting (of parts of 

6E,) these must be removed, as indicated in Fig. lib. Here we compute the 
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subtraction: 

4 
6EtT z - + 

I 

d3k d3q d3r i(Z -il>x z 
Fc 

4m (2~)~ 2Er 1; -Z12 d-me 
?J 

_- 
d3r 1 = EF 2 L 

2Tr6 4 y2>2 z2+ y 2 1;-iq2 

(2) We have replaced $ by $. and (P-r)2 - rnt by - (:2 + y2). Isolating just 

the divergent terms: 

s m 

6ETT 
= + EF a2 -2% 

d3q d? 2;. ;;- G2 

4 (;2+y2)2 :2+ y2 p-612 

CI - 2E 
F 

a2% Rna-l + O(a2me 
"11 

ii- EF) 
P 

Combining this with the known contribution from the complete ladder and 

cross-ladder diagrams we obtain 

5 2me m 
6Eb =? a m Lna -1 E$ + O(a2$ EF) 

1-I u 
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(c) Two-Transverse, One-Coulomb Photons (Fig. 11~): Again the con- 

tribution from this diagram with complete transverse photons has been com- 

39,9 puted, and the result is 5 a2 m /m -1 
4 Rna EF * From this we must re- 

e u 

move the iterations of lower order results. The subtraction term to be 

added here is 

----YL 
x P-i-me 1;-;12 P-i-me ( 

q l (G+i$ + ray’ 
liX12 $-;;I i J,(G) 

This integral diverges only when the integrations over k and q factor-- 

i.e., when set k, q a y Q 0 in the kernel. The only divergent term is 

-ml 

/ 

d3r d3p 1 
-+2 
r +y2 

+2 
P +Y2 $-:I2 

= - 2 a2 2 RnaslE 
m F 

+ O(a2 me m E ) F 
v v 

Thus the total contribution from graphs (c) in Fig. 11 is 

&EC = - + a2 > Rn a -’ EF+O(a m 2 k EF) 
11 

(d) One-Transverse, One-Coulomb Photons (Fig. lid): The first two 

diagrams in Fig. lid are most conveniently computed by closing the integra- 

tion contour for the loop energy at infinity thereby encircling the poles 
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in the propagators--the muon, photon and positron poles in the ladder dia- 

gram; the antimuon, photon and positron poles in the cross-ladder. The 

contribution from the ladder diagram's muon pole has 'already been included 

(in 6E,) and must be omitted. This leaves only terms from the photon poles 

in each diagram; antiparticle poles correspond to "Z-graphs" in time- 

ordered perturbation and are not sufficiently singular to contribute. How- 

ever, O(a'Rn a-'E,) contributions from the photon pole term in the ladder 

diagram have been-shown to completely cancel those from the cross-ladder.' 

Hence, there is no contribution from graphs (d) in Fig. 11. 

The diagrams in Fig. 12 appear to contribute to order a2Rna 
-1 

EF (no 

factor m lm 
e u' 

as above). In fact, it is trivially shown that these terms 

exactly cancel to this order in pairs as indicated in Fig. 12. Note also 

that intermediate multi-Coulomb exchange in diagrams such as Fig. llc leads 

to O(a2m /m E > 
e uF 

terms, but no Rna's (see Ref. 8). 

The total O(a2me/mp Rna -1 EF) hyperfine splitting of the muonium 

ground state is 

6E a-d = 2a2> Rna' EF 
11 

= 0.0112 MHZ 

This result has recently been confirmed by Bodwin and Yennie. 
20 Theory 

and experiment are compared in Table IV. Little can be said about the 

comparison at least until all terms of the form a2me/mu(kn mli/me)n EF have 

been computed. 

D. Positronium Ground State Splitting to O(u6Rn a 
-1 ) 

The current theoretical estimate of the ground state splitting in 
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I I 0 

: *. I . 

‘1 ! 
I I 0 

Fig. 12. Diagrams which cancel pairwise to O(a2me/mu inclEF). 

An 'x' on a line indicates that it is on mass-shell. 
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Table IV 

THEORY AND EXPEXIMENT - MUONIUM Hfs. 

Theory 

m 
EF + 0 $ EF, a2EF,a3EF 4463.293 (6) MHz 

u 

Total Theory 

Experiment 

Ref. 3 

0.011 

4463.304 (6) MHz 

4463.30235 (52) MHz 

Comparison of theory and experiment for muonium hfs. 

Uncertainties shown in theory due to uncertainties in 

uu/up (Ref. 3). Terms of O(a2me/mP Rn mu/meEF)% 0.01 

MHz have yet to be computed and are not included. 
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positronium is 37 

‘e 2 
AEe; = EF 7 

()[ 0 

+ O(a2) 

+EA[l-$ (y +P,n2) +a2'~v1i-O(a2) 

where the Fermi splitting in positronium is 

_- 
4 am 

EF = ---..% 
3 

and EA is the splitting due to annihilation into one photon (Fig. 3~): 

4 am 
EA = 9 

The first term in AE is just the muonium result Eq. (IV.14) with mP-+me. 

In particular, the calculations of O(a2me/mu Rna -1 EF) discussed above have 

been carried out to all orders in m /m 
9 

e u 
using the formalism described above. 

The exact mass dependence is that exhibited in Eq. (IV.14). 

The second term in AE is due to one- and two-photon annihilation ker- 

nels and is peculiar to positronium. The terms of this sort contributing 

to O(02Qn a -1 EA) are exhibited in Fig. 13. These can be evaluated im- 

mediately (using the formalism described in Section III) by noting that 

1) they are identical in form to the three-photon annihilation graphs dis- 

cussed in Section 1II.D (Fig. 9) but with one photon replacing three; and 

2) like the three-photon annihilation kernel, the one-photon annihilation 

kernel (Fig. 3c)is essentially momentum independent for nonrelativistic mo- 

menta and factors out of the calculation. Thus, we need only replace robyEA 
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(e) 

(0 

(9) 

KERNEL 

2(x - 

*p--q- 

COEFFICIENT OF 
a2 h-d EA 

b-4 
I 4 

TOTAL 
5 - 78 6 3403Al3 

I -- 
3 

I -- 
2 

Fig. 13. Contributions of O(a2Rna -1 
EA) to the positronium ground 

state splitting coming from annihilation graphs. These 

are computed using the formalism described in Sect'ion III. 
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in the expressions generated in Section TII,D, being careful not to count 

diagram (g) in Fig. 13 twice. The final result is (some of these contribu- 

tions were first presented in Refs. 39, 40) 

2 
&E zaaia 

-1 

e-g 
s 

Combining this with the contribution from ladder graphs we obtain the 

total O(a6mekn~l) ground state splitting for positronium: 

6E 2 =aIlna 
a-g 

-1 (-k+$) = 5 a6 ena-lme 

= 0.0191 GHz 

Again, theory and experiment (Table V) are consistent within errors. How- 

ever, the comparison will not be satisfactory until all O(a6me) terms have 

been computed. 
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Table V 

THEORY AND FXPERIMENT - POSITRONILJM Hfs. 
_- 
Theory 

0 a4me, 
( 

a5m e 

5 6 ?;I; a me Rna -1 

Total Theory 

Experiment 

Ref. 1 

Ref. 2 

203.3812 GHz 

0.0191 

203.4003 GHz 

203.3849 (12) GHz 

203.3870 (16) GHz 

Comparison of theory and experiment for 

positronium hfs. Terms of O(a2me/2) -0.01 

GHz are not yet computed. 
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V. CONCLUSIONS 

Evaluation of the entire O(a6) ground state splitting in muonium and 

positronium is among the most important remaining high order QED calcula- 

tions. This calculation is straightforward using the methods described 

above, and much of it is amenable to computer analysis since 

1) simple analytic expressions exist for the unperturbed 

wave functions; 
_- 

2) corrections to the unperturbed binding energies are 

unambiguously specified in perturbation theory; 

3) spinor algebra can be performed automatically. 

It is likely that bound state calculations can be systematized to the same 

extent as (g-2) calculations. 

Of the O(a6) terms, the only ones that have been computed to date are: 

. all O(a6Rn a-l) contributions (Section IV); 

. all terms requiring a Bethe-type sum-over-states (Fig. 4b>8; 

. all terms in positronium involving annihilation into two or 

three photons. 41 

A large but finite number of kernels having two loops or fewer remains to 

be considered (Fig. 4a). An added complication is that calculations should 

be carried out in the Coulomb gauge for the reasons discussed in SectionIIC. 

For muonium it is also necessary to compute all terms of 

O(a3EF 'L u7mi/mu). Since recoil corrections (i.e., O(a3me/mPEF )) 

are irrelevant here, this part of the calculation can be done using the 

Dirac equation for an electron in an external field (i.e., me/mu + 0 in 

Section IV). The leading terms have already been computed; 
42 evaluation 

of the remainder is again straightforward though involved. 



Each kernel contributing to O(a6> in muonium also contributes in 

positronium--here the only difference between the atoms is the mass ratio, 

m /m 2 1' Of course, for positronium there are additional annihilation ker- 

nels. Calculations for both atoms can be carried out simultaneously using 

the formalism of Section III. This formalism is well suited to the study 

of nonrelativistic atoms, such as these, having any ratio m2/ml. 

The theoretical analysis of the decay rate of orthopositronium is 

similar to that of the ground-state splitting. The current status of this 

analysis is also the same--there remains a large number of decay kernels 

having two loops or fewer which contribute to O(a2ro)(Fig. 6b). The rela- 

tive importance of higher order corrections is somewhat enhanced here since 

the lowest order rate has an anomalously small numerical coefficient 

(r" % a6me/16). The coefficient in higher order terms need not be so 

small and indeed it is not for the O(ar'> corrections. Even accounting for 

this enhancement, experimental errors must be reduced by at least an order 

of magnitude before the decay rate measurement is as stringent a test of 

theory as the measurement of ground state splittings. Still, this is the 

only annihilation decay whose rate is known both theoretically and:experi- 

mentally with an accuracy of 'L 0.1%. 

The only other accurately determined 

the 23s 1 
- 23p2 splitting in positronium. 

agreement: 

property of a pure QED atom is 

Theory and experiment are in 

Theory: 43 AE = 8625.14 MHz +, O(2 MHz) 

Experiment: 44 AE = (8628.4 'r 2.8) MHz 

Again O(a2) corrections have yet to be computed. 

As discussed earlier, the techniques developed in Section IV are very 



well suited to analyses where only lowest and first orders in m2/ml are 

important. They can be useful in verifying the O(a6) hfs in muonium. 

This formalism should also be quite useful in the analysis of nuclear 

recoil effects in hydrogen atoms or in high -(Za> atoms. In addition, 

both this formalism and that described in Section III have applications in 

the analysis of non-QED atoms--e.g., relativistic analysis of the spectra 

of $/J, D, U, . . . mesons. 
_- 

To summarize, we find that the theory of pure QED systems is generally 

in accord with experiment, though less precise. There appear to be no 

problems of principle in refining theoretical predictions. 
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