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ABSTRACT 

We present new equations for three- and four-body scattering,within 

the context of non-relativistic quantum mechanics and a Hamiltonian 

scattering theory. 

For the three-body case we present Faddeev-type equations which, 

although obtained from the rigorous Faddeev theory, only require two- 

body bound state wavefunctions and half-off-shell transition amplitudes 

as input. In addition, their "effective potentials" are independent of 

the three-body energy, and can easily be made real after an angular 

momentum decomposition. The equations are formulated in terms of physi- 

cal transition amplitudes for three-body processes, except that in the 

breakup case the partial-wave amplitudes differ from the corresponding 

full amplitudes by a Watson final-state-interaction factor. 

We also present new equations for four-body scattering, obtained by 

generalizing our three-body formalism to the four-body case. These 

equations, although equivalent to those of Faddeev-Yakubovskii, are 

expressed in terms of singularity-free transition amplitudes, and their 

energy-independent effective potentials require only half-on-shell sub- 

system transition amplitudes (and bound state wavefunctions) as input. 

However, due to the detailed index structure of the Faddeev-Yakubovskii 

formalism, the result of our generalization is considerably more compli- 

cated than in the three-body case. -. 
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Chapter One 

INTRODUCTION 

Our understanding of physical processes in the microscopic realm 

is largely based on quantum theory, developed in the 1920's and 

1930's by Bohr, Schrsdinger, Heisenberg and others. 

In the decades that followed, as mastery of the new theory and 

the amount of relevant experimental data increased, attention was 

turned to the problem of understanding the nature of the interactions 

among subatomic (or nuclear) particles. The physical process that 

was then studied more and more extensively was that of scattering, 

in which a beam of particles of one kind is made to hit a target 

(usually stationary in the laboratory) composed of one or more kinds 

of particles. 

The theory that was developed to describe such a process was 

quantum scattering theory.' During the 1940's and 1950's this theory 

was developed in great mathematical detail for the case of two-body 

scattering, that is a scattering in which the beam and the target are 

each composed of a single kind of particle. For such physical 

processes, the theory was developed to a very satisfactory state, 

especially after the introduction of the Lippmannischwinger (LS) 

equation,2 which marked the transition from a theory based on differ- 

ential equations to one based on integral equations. 

In the late 1950's, attempts were made at generalizing scatter- 

ing theory to the case of three-body scattering, first with great 

confidence in the power of the already-developed two-body theory, and 

then more haltingly as serious difficulties were encountered 
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repeatedly. These difficulties, related to a basic difference in the 

asymptotic nature of the two- and three-body scattering descriptions, 

were eventually pinpointed as arising from the non-uniqueness of the 

solutions of the three-body LS equations.3 

In the late 1950's and early 1960's many successful special 

models for the. three-body problem were presented, meeting these dif- 

ficulties within the restrictions of each model: A zero-range model 

by Skornyakov and Ter-Martirosyan,4 separable models by Mitra,5 

' Sitenko and Kharchenko,6 and a non-relativistic field-theory model by 

Amado. 

A rigorous mathematical solution to the general problemofthree- 

body scattering within a Hamiltonian theory was finally presented in 

the early 1960's by Faddeev,8 who was able to solve the above- 

mentioned difficulties by introducing different three-body entities 

and the new set of coupled integral equations they satisfy. Faddeev's 

work was recast into a form more suitable to meet the practical 

requirements of scattering data by Lovelace,g who first used the con- 

cept of pole dominance, and later by Alt, Grassberger and Sandhas,lO 

with their quasi-particle approach. Extensive calculations applying 

these equations to specific physical systems were-carried out in the 

last two decades.ll 

One of the most characteristic features of the Faddeev equations 

is that they are expressed in terms of amplitude components, i.e. in 

terms of splittings of the three-body entities considered in the LS 

equations. This is a consequence of the fact that to properly handle 

the asymptotic structure of the three-body problem, Faddeev intro- 
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duces the definition of channel, in which only two of the particles 

are assumed to interact, while the third particle is free. 

As a result, the Faddeev equations have as input the channel 

two-body transition matrices of each two-body subsystem. Because of 

the kinematics involved, these two-body t-matrices appear in the 

kernels off the energy shell; that is, the energy parameter corre- 

sponds to neither of the momenta arguments in the two-body t-matrix. 

In this way, the three-body energy parameter appears in the kernel 

:not only through the physical singularities (Green's functions), but 

also through the two-body subsystem t-matrices. Thus the kind of 

analytic structure that appears in the LS equations is significantly 

changed when going into the Faddeev theory. Furthermore, since the 

experimental phase shifts of the two-body subsystems are connected 

only to the fully-on-shell two-body t-matrices, the input to the 

Faddeev equations is far removed from the experimental data, and thus 

highly model-dependent. 

Using a general representation of the off-shell two-body t-mat- 

rices that separates the on-shell from the off-shell pieces,l' Noyes 

deals with this problem by introducing a further decomposition of the 

three-body amplitudes into "interior" and "exterior" parts, so that 

only the "interior" amplitudes involve off-shell pieces of the two- 

body t-matrices.13 However, since the interior and exterior ampli- 

tudes remain coupled to each other in this formulation, the off-shell 

character of the kernel is not completely eliminated. 

In this work, we deal with this difficulty in Faddeev's work by 

focusing on a different aspect of the three-body problem that is 
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seemingly disconnected from the one mentioned above. Most of the 

approaches we referred to define the amplitudes of the theory by 

using an appropriate plane-wave basis in which to expand the relevant 

state vectors of the theory. This is understandable, as historically 

this choice is the most direct generalization of the two-body case: 

In two-body scattering, the only natural basis that exists is of 

course that of the eigenstates of the free Hamiltonians, i.e. the 

plane-wave basis corresponding to a single free particle. Obviously, 

a plane-wave representation is also natural in three-body scattering; 

however, other natural bases are also available in this case, namely 

the complete sets of eigenstates of the channel Hamiltonians H=Ho+V, 8 

8=1,2,3. (An analogous freedom of choice of course holds inthefour- 

body case.) Such projections of the three-body wavefunction compo- 

nents onto channel eigenfunctions were first considered by Noyes." 

It is by exploiting this freedom of choice for the three- and 

four-body case that we arrive at the main results of this work: 

We present here three- and four-body scattering equations that result 

from expanding the corresponding wavefunction components onto eigen- 

functions of the appropriate channel Hamiltonians, rather than consi- 

dering the plane-wave projections of such components. 

For the three-body case, we expand the three-body Faddeev 

wavefunction components onto the two-body channel eigenstates,15 and 

show that this representation is actually more natural than the 

plane-wave representation, and leads to a considerably simplified 

formulation of the three-body theory. 

This three-body approach leads to a new pair of amplitudes 4% Ba 
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and 8 
f3a ’ that represent the nonsingular parts of the three-body wave- 

function in a simpler way than the amplitudes introduced by Faddeev 

do. The main advantage of this formulation, however, lies in the 

fact that the integral equations for the new set of amplitudesxand 

&are significantly simpler in structure: their effective potentials 

are independent of the three-body energy, and they only require two- 

body half-on-shell transition amplitudes and bound statewavefunctions 

as input. Additional convenient features become apparent after an 

.angular momentum decomposition: by a simple redefinition of the 

partial wave components of the amplitude 8, the effective potentials 

can be made real, and the breakup scattering amplitude is seen-to 

exhibit explicitly a Watson final-state-interaction factor in each 

channel. 

The reasons for these simplifications can be physically under- 

stood as follows: much of the complicated structure of the plane wave 

projections of the three-body wavefunction is not due.to true three- 

body dynamics, but is simply a reflection of the "spectator" two-body 

channel dynamics. By considering these plane wave projections, the 

channel dynamics are mixed with the true three-body dynamics in a 

complicated way. If however we expand each Faddeev component of the 

full wavefunction into the complete set of eigenfunctions of the 

spectator Hamiltonian in its own channel, the two-body channel 

dynamics are automatically treated in a natural way by these specta- 

tor complete sets; as a consequence, the three-body entities one is 

left to consider when solving the three-body problem get appreciably 

simplified. 
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For the case of four-body scattering, the situation is signifi- 

cantly more complicated; nevertheless, we obtain our equations by 

following a similar approach.16 The resulting four-body equations 

exhibit essentially the same features as our three-body equations. 

To carry out our four-body generalization, we choose the formu- 

lation due to Yakubovskii,17 obtained by generalizing Faddeev's 

three-body theory. Yakubovskii's approach is the most well-estab- 

lished four-body theory, in particular because its equivalence with 

-the Schradinger equation has been demonstrated, so the possibility 

of spurious solutions can be ruled out. 

The most characteristic feature of this formalism, and also its 

main weakness, is its very detailed classification of the clustering 

properties of the four-body system. 

In some alternative approaches (such as that due to Sloan18), a 

less detailed index structure is considered, for instance using only 

a two-cluster classification of the four particles. As compared to 

Yakubovskii's, the resulting equations exhibit in general a more 

complicated structure, and their connection with the Schradinger 

equation remains unclear. 

A common feature of all these formalisms is-that they have been 

developed almost exclusively at the formal operator level: the actual 

complexity involved (such as the singularity structure of the consid- 

ered entities) is therefore not explicitly shown. 

In our generalization we establish a four-body formalism based 

on the Faddeev-Yakubovskii (FY) theory in a way that makes the actual 

structure of the formalism more evident. With our three-body results 
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in mind, we carry out a similar singularity analysis of the four- 

body kernel. As in the three-body case, this task is considerably 

simplified by using the complete sets of eigenstates of the channel 

Hamiltonians. The analysis turns out to be particularly straight- 

forward for N entities labeled by two-cluster indices only - such as 

the wavefunction components '4" =I$, 'Y; being the conventional four- 

body N component - and leads very naturally to new singularity-free 

amplitudes for four-body scattering. 

In order to obtain equations for such amplitudes, however, the 

N formalism requires that we also analyze the wavefunction component 

Y;I itself; i.e., it requires that the singularity analysis be made 

taking into account the full index structure of the formalism. Un- 

fortunately, this more detailed analysis turns out to be less 

straightforward than the first; in addition to the physical transi- 

tion amplitudes, we are forced to introduce a nonphysical amplitude 

which, although not present in the full four-body wavefunctions,still 

appears in the dynamical equations. 

Nevertheless, the set of equations we are led to exhibit essen- 

tially the same features as our corresponding three-body equations: 

namely, a multi-channel Lippmann-Schwinger structure with energy- 

independent effective potentials that require a simplified subsystem 

input (i.e., only half-on-shell subsystem scattering amplitudes and 

bound state wavefunctions). 

In Chapter 2 we present a brief summary of the relevant two-body 

operators and eigenstates, as well as the relations and equations 

that will be useful in later chapters. 
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In Chap. 3 we review the difficulties faced by the direct gene- 

ralization of two-body theory to the case of three-body scattering, 

summarize some elements of integral equations theory that have relevance 

to the subject, and outline Faddeev's solution to the quantum-mechanical 

three-body problem. 

In Chap. 4 we present one of the main results of this work, 

namely our half-on-shell three-body equations. We obtain the half- 

off-shell amplitudes&and 6' from the projections of the Faddeev 

components into channel eigenstates, generalize to the corresponding 

fully-off-shell amplitudes, and derive the equations they satisfy. 

We consider the angular momentum decomposition of these equations for 

the S-wave case, and show how the &amplitude can be redefined so as 

to produce equations with real effective potentials. The amplitudes 

for processes starting from three free particles are briefly consid- 

ered. In the appendix we prove that the amplitudes we have defined 

are free from primary singularities.lg 

In Chap. 5, we explore the question of whether the amplitudes 

of our three-body theory are unitary. We outline the symmetry 

properties of our amplitudes under time reversal, and define the 

amplitudes that arise from expanding the outgoing=wave three-body 

wavefunction components. We define the three-body S-matrix compo- 

nents in terms of the new amplitudes, and explore the conditions 

imposed on the latter by the requirement of S-matrix unitarity. We 

prove a general unitarity relation for the operators of our theory, 

and find some of the unitarity relations they imply for the scatter- 

ing amplitudes we have defined. 

-8- 



Finally in Chapter 6, we present the generalizationof ourthree- 

body approach to the four-body case. We briefly present a straight- 

forward route to derive the N equations, and introduce the four-body 

channel eigenstates. We analyze the singularities of the partially- 

summed wavefunction components, and identify the physical scattering 

amplitudes. The fully-split N components are then analyzed, and we 

find the equations they satisfy. Finally, we generalize our ampli- 

tudes to the fully-off-shell case, connect our amplitudes to the 

:operator formulation, and discuss the complications encountered. In 

the appendix we prove that our amplitudes yield the physical scatter- 

ing amplitudes. 
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Chapter Two 

TWO-BODY SCATTERING 

I. The two-body scattering problem 

In this chapter we outline the main results of two-body scatter- 

ing theory that are relevant to the material presented in later chap- 

ters, and write down some results that will become useful later. 

For the case of two-particle scattering, the mathematical 

difficulties referred to in Chap. 1 can be easily handled by appro- 

priate specialized techniques, introduced during the early develop- 

ment of scattering theory. The starting point for these techniques 

is stationary scattering theory, in which it is required that we find 

solutions of the two-body SchrSdinger equation, 

h IQ,' = (ho+v)I$e> = ei$,> (1.1) 

where h=h +v is the two-body Hamiltonian operator for the system. In 0 

momentum space, Eq. (1.1) has a representation 

P2$g(;) +.l;(i:-;')~@d3p~ = k24@ (1.2) 

while, if we assume local potentials, it has a coordinate-space 

representation 

(1.3) 

In the above expressions, 5-1 is the reduced mass of the two-body 

system, $ is the relative momentum corresponding to an energy eigen- 

value e=k2/2p, g is the vector distance between the two particles in 

configuration space, $ is the relative momentum, and g2=p2/2u k2=k2/2u. , 

The interaction between the particles is usually represented by a 

potential operator v, with v(~)=<$]v]% and v($-$~>=<$~~v[~>. Finally, 
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we have denoted <zIJIr and <GIli, 2' by I$+(;) and $2(G) respectively. 

Within this framework, the appropriate boundary conditions arising 

from a general time-dependent scattering theory are incorporated into 

the stationary formulation by requiring that the solution IQ(~) be of 

the form 

*+(t) = e i%*d 
k + w&, (1.4) 

where WC(;), the scattered wave, must satisfy specific boundary condi- 

tions for I;[--, namely the radiation condition 

ikx 
w@) - f$) e_ 

,  I+== l (1.5) 

For the problem outlined above, a rigorous formulation has been 

developed by several authors; in particular, a complete mathematical 

description of the solution to the two-body problem has been given by 

Povzner and Kato, 2o who prove the existence of solutions Q(t> under 

certain restrictions imposed on the potential functions v(t). By 

showing that the functions q-+(s) (together with the eigenfunctions k 

corresponding to the discrete spectrum of the operator h), constitute a 

complete set of eigenfunctions, they make it possible to expand an 

arbitrary function into a generalized Fourier integral in terms of these 

functions. That is, they show how to construct a-general solution of 

the two-body scattering problem with arbitrary boundary conditions. A 

fully detailed exposition of both the time-dependent and the time-inde- 

pendent formulations can be found for example in Ref. 1. 

II. The Lippmann-Schwinger Equation and The 
Free-Particle Green's Function 

The fact that the boundary conditions (1.4) and (1.5) appear as an 

additional requirement on the solutions to Eqs. (1.2) or (1.3) is a 
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natural consequence of having formulated the scattering problem in terms 

of differential equations. It was therefore desirable to reformulate 

the theory in such a way so as to have those boundary conditions 

"built-in" into the new formulation. This was accomplished in the 

1950's by several authors, notably with the introduction of the Lippmann- 

Schwinger (LS) integral equation,2 which greatly facilitated further 

progress of scattering theory. 

The change from a differential equation to an integral equation 

with built-in boundary conditions can be accomplished in the following 

way: Consider again Eq. (l.l), rearranged as follows: 

(IJo-e) I$> = -v/Q> . (2.1) 

Multiplying both sides by the inverse operator (ho-e)-', we immediately 

obtain the LS equation for the two-body wavefunction, 

I$> = I$,> - (ho-e)-lvl$> , (2.2) 

where I$,> is a solution of the equation 

(ho-e) I $o> = 0, (2.3) 

i.e. it is an eigenstate of the free-particle Hamiltonian with the same 

energy eigenvalue e=k2/2p. (Sometimes we will write Ii& instead of I$,>.) 

Since the operator (ho-e)-' becomes singular at points corresponding to 
-_ 

the eigenvalues of h it is necessary to generalize its definition by 
0’ 

introducing a complex energy parameter z, i.e. by defining 

g,(z) = (h -dl, (2.,4) 
0 

known as the resolvent of the free particle Hamiltonian, or as the free- 

particle Green's function for the scattering problem. As long as 

Im z # 0, the operator g,(z) remains well behaved, and the physical 

solutions can be recovered by an appropriate limit procedure. It can be 
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shown that once I#, > is chosen and a specific prescription for the limit 

Im z-+ 0 is given, the eigenfunctions are completely determined by Eq. 

(2.2); i.e., the boundary conditions have been successfully incorporated 

into the dynamical equations to be solved. 

The nature of the limit prescription can be seen as follows: In a 

scattering situation, we have an incoming plane wave (representing the 

incident beam) impinging upon a scattering target (usually stationary in 

the lab frame). The scattering of projectile and taget produce a 

spherical wave centered at the target's position, so that we end up with 

a scattering solution of the type given in Eq. (1.4), i.e. 

(2.5) 

Choosing the positive sign to the right in (2.5) fixes an outgoing-wave 

boundary condition; i.e., an incoming plane wave and an outgoing scat- 

tered wave. A negative sign, on the other hand, yields the time-reversed 

solution, i.e. an incoming "scattered" wave which ends up as an outgoing 

plane wave. 

It can be shown that this choice can be made at the level of the 

Green's function (2.4) in Eq. (2.2); i.e. that choosing z-tefio yields 

the outgoing-wave solution, and conversely for z-te-io. We can thus 

label Eq. (2.2) more explicitly, 

IA = I+ > -go(e+io)vl$+> . (2.6) 
0 

The factor go(z>v in (2.6) is known as the LS kernel, since it appears 

in all LS-type integral equations. 

Eq. (2.6) determines the eigenfunctions of the two-body Hamiltonian. 

With appropriate restrictions on the kernel, this LS-type integral 

equation obeys the Fredholm alternative21: That is, we can either find 
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scattering wavefunctions Q+(s) as solutions of (2.6) with a nonzero k 

inhomogeneous term I$,>, and e>O, E, bound state wavefunctions 4,(c) 

(of energy -K~>, as solutions to the homogeneous version of (2.6) with 

e<O. But we can never find the two kinds of solutions coexisting at a 

given energy. 

More explicitly, that the Fredholm alternative exists for Eq. (2.6) 

implies that we can solve (2.6) in two different cases: Either for e>O 

as the inhomogeneous case (here we write 14,' as 16) 

(2.7a) 

or as the homogeneous case for e<O, 

14,' = -go (-K2hl 4,' (2.7b) 

but never both kinds simulatenously. Physically, the existence of the 

Fredholm alternative for the LS equation reflects the fact that if we 

scatter two particles that were originally free, we can never end up 

with a bound state of the pair. That is, the bound-state and the scat- 

tering state solutions are kinematically separated from each other. 

III. The Eigenfunctions and the Resolvent of the 
Iwo-Body Hamiltonian 

As is clear from the above considerations, the complete set of 

eigenfunctions of h is composed of the scatteringwavefunctions with a 

continuum set of positive quantum numbers d corresponding to an energy 

eigenvalue e=k2/2u, and the bound-state wavefunctions with a set of 

discrete negative eigenvalues -Key. Assuming only one bound state for 

simplicity, the completeness relation for the eigenfunctions of h takes 

the form 

(3.1) 
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where it will be recalled that for plane-wave states the corresponding 

completeness relations is given simply by 

J'd3k I$&{ =1 (3.2) 

The actual solutions to Eqs. (2.7), however, are usually obtained 

in terms of other operators that are more convenient and also more 

central to scattering theory. One of them is the resolvent of the full 

two-body Hamiltonian, i.e. 

g(z) = (h-z)+= (ho+v-z)-' . (3.3) 

From the definition (3.3), it is clear that, for real potentials, 

g+ (z> = gcz*k) (3.4) 

(where t implies the hermitian adjoint operation, and the asterisk * 

implies complex conjugation), and also that 

dZlb&(Z2) = (z1-z2)g(z1)g(z2) l (3.5) 

Eq. (3.5) is known as Hilbert's identity, or as the first resolvent 

equation. 

The importance of the operator g(z) is that, once it is known, the 

eigenfunctions of h can be obtained by a direct limit procedure (instead 

of finding it by solving (2.6)). To see this we manipulate Eq. (2.6) 

again, "solving" for I$>: 

Iv = [~+go(z)~-l 1 (bo>. -- 

But 

g-+p,v) = g;'+v = ho+v-z = g--l, (3.7) 

so that 

Iw = (l+gov>-% 
0 

> = g go11 $I > . 
0 

(3.6) 

(3.8) 

Furthermore, g~'I$,> .= (ho-efic){$o> = +iz$o>, so we finally find that 
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I$‘> = lim jieg(e+ie)l$o>. 
E-f o+ 

Eq. (3.9) indicates that given the initial state ($o> and the sign 
I + 

of the limit prescription, the solution I$-> is completely determined by 

the Green's function of the problem. 

Replacing (3.8) into (2.6) immediately yields the LS integral 

equation for g(z), 

g = go-govEb (3.10a) 

Had we started operating with bras rather than kets in the foregoing 

equations, we would have obtained the equivalent equation 

g = go-mo* (3.10b) 

Applying the operator g(z) to Eq. (3.1), we obtain the spectral 

decomposition of the resolvent operator, i.e. (assuming a single bound 

state of energy -K2> 

(3.9) 

g(z) = 
l9,><9, I 

Z + K2 

+ 
J ii2-z (3.11) 

in terms of the complete set of eigenfunctions of h. Note that in 

(3.11) the complex-plane structure arising from the complex variable z 

is explicitly exhibited. 

IV. The two-body t matrix -- 

The remaining important operator in two-body stationary scattering 

theory is encountered when analyzing the singularity structure of the 

momentum-space representation of the two-body wavefunction (2.7a): 

I/J%($) = $I* = <$/it> - <~(go(ekio)vl~. (4.1) 

Using (3.2), we can write 
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= <;Iv@> 
p2-i;2iio (4.2) 

(since the free-particle Green's function is diagonal in a plane-wave 

representation). Thus 

$i (3 = cs(;-%) - 
p2-i;2iio l 

(4.3) 

The matrix element <~lvl$ -+> is directly connected with the scattering 

amplitude f$ of Eq. (2.5), as can be seen by obtaining the Fourier 

transform of (4.3) to reproduce (2.5). Because of this, plane-wave 

matrix elements of a transition operator t1 are defined through 

<$jvl$& = -$jt(i;2+io)IL=t($,Z;k2kio), (4.4) 

such that 

thus related to the differential cross-section by 

g f-b 1 <Zlt(S2+io)Jd>j2 . 

(4.5) 

(4.6) 

Now from the definition (4.4) we see that 

t(k2kio)[Z> = v]I$> ; 
-_ 

furthermore, since replacing (3.10b) into (3.8) yields 

IQz> = (l-gv)lk 

(4.7) 

(4.8) 

we obtain, replacing (4.7) into (4.8), 

t = v-vgv , (4.9) 

which defines the transition operator t in terms of the Green's function 

g* Replacing (4.9) into (3.10a) right-multiplied by v, and into (3.10b) 

left-multiplied by v, we obtain the identities 
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(4.10a) 

(4.10b) 

!I? = got 
vg = tg 0 ' 

which again replaced into Eqs. (3.10) yield 

= 
g go -' ,gotgo 9 (4.11) 

which is the inverse relation to (4.9). Finally, with the aid of 

(4.10) we can rewrite (4.8) as 

ll)r = (l-g t)lG (4.12) 
0 

which (equivalently to (4.3) with (4.4)) yields the expression for the 

momentum-space representation of the wavefunction in terms of the matrix 

elements of the transition operator t: 

(4.13) 

Eq. (4.13) shows the advantage of solving for matrix elements of t 

rather than for the functions Jo+-* k. the wavefunction IQ has a 6-function 

singularity in the first term, and a pole (the physical singularity) in 

the second term. Eq. (4.13) clearly shows that the function 

t(s, z, k2+io) is less singular than IQ. 

Integral equations for t are obtained by replacing (4.10) into 

(4.9), giving 

t = v - vgot -- (4.14a) 

t = v - tgov . (4.14b) 

So far, the matrix elements <Glt(k2fio)}c> have been defined only 

with the energy argument being equal to the energy of the initial-state 

ket I?&, i.e. k2. In view of (4.9), however, a simple generalization 

allows the definition of a t-matrix operator for arbitrary argument z, 

i.e. 

t(z) = v - vg(z)v . (4.15) 

-18- 



The functions 

tc;, i&z> = <$I t(z) lib (4.16) 

are called the fully-off-shell matrix elements of t, in the sense that 

p2#k2#Rez. When z=c2+io, as in Eq. (4.4), the matrix elements (4.16) 

are said to be half on shell. The physical transition amplitudes are 

obtained from the fully-on-shell matrix elements t(d, c, k2+io) 

=&lt(k2+io)li&, as in Eq. (4.6). 

Using (3.4) and (4.9), we see that 

t+(z) = t(z*) , (4.17) 

which implies that 

t*($, %, z) = t (ii, 5, z*> . (4.18) 

In the situations that are usually encountered, in which time-reversal 

invariance and detailed balance are conserved, we also have evidently, 

t<;, 2; i) = t(Z, ;; ii) (4.19) 

in which case, by taking the complex conjugate of (4.13) (and using 

(4.18)) we obtain 

(4.20) 

V. The Analytic Structure of the t-matrix 

The singularity structure of the matrix element t(z, z; k2+io) can 

be seen to include a so-called "right-hand cut" on-the positive real 

axis (O<k<a), and a pole in the negative real axis for each bound state. 

Additional structure results from the specific nature of the potential 

functions v (Z). 

This analytic structure is best studied considering the off-shell 

matrix elements (4.16); using Hilbert's identity for g(z) (Eq. (3.5)) 

multiplied to the right and to the left by v, and recalling (4.15) and 

(4.10), we can write 
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t (z,)-t(z,) = (z 2-Zl)t(zl>go(zl>go(z2)to (5.1) 

which is known as the operator unitarity relations for t. In terms of 

the matrix elements (4.16), Eq. (5.1) yields the fully-off-shell 
5 

unitarity relations for matrix elements of t, 

t(;,;';z,)-t(;,;';z2)=(z2-zl) 
s 

f(&+(~,?;z2) 
d3k - 

(9 -zl) (i2-z,) * 

(5.2) 

By taking appropriate limits for z1 and z2, the singularity structure 

mentioned above can be made evident. In particular, if we take the 

special case $=;f*, zl=q2+io, z2=;i2-io, and recall that. 

lim 2ic - = 21~i&(x), we obtain from (5.2), 
E-HI x2+,2 

t(c,G;q2+io)-t(4,G;q2-io)= -2ni 
/ 

d3kt(<,g;q2+io) x 

X s(k2-q2)t(Z,G;q2-io), )5.3) 

which gives the discontinuity of the forward scattering amplitude across 

the positive real axis, i.e. in the physical region. Eq. (5.3) is known 

as the on-shell unitarity relation for the t-matrix. 

Itwasalsomentionedbeforethatthasasimplepoleinz ateachbound 

stateenergy. We concludethischapterbyseeingthisexplicitly. Ifweas- 

sume forsimplicityasingleboundstateofenergy-K2,wewillhave8 

t(z) = c(z) + 
Z+K2 

where tR(z) is nonsingular at 

expressions (4.15) and (3.11) 

tR(z> , 
-. 

(5.4) 

Z=‘-K 2. To find c(z) we make use of 

to obtain 

I-+ +t\ 
1 ‘K><4~l 

t(z)= v-v z x2 
I - 

+ 
J 

d3k, I$~‘$~~1 
g2-z I 

v, (5.5) 

so that 

c(z) = VI$K><4K(V , (5.6a) 
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_ 2 . 
K -Z 

Taking matrix elements of (5.6) , we get 

I (bKWKIV c&C,z) = $Iv 

(5.6b) 

(5.7a) 

. 

(5.7b) tR(;,$;z)=+ji&-j3k' 
--I 2 k -Z 

Furthermore, recalling that 14 > satisfies the equation 

(ho-l-v+K2))+K>=0 and that vl~~>;Tv(l-got)l~>=tl~> , we find 

t&ic;z) = 
@ .(;> Qp3 

+ tR($,iz;z) 
Z+K2 (5.8) 

where 

g,(G) = - G2+K2) +K (3 (5.9) 

is known as the vertex function for the bound state, and the remainder 

is given by 

tR(;,$;z)=v(&$ j3k' t($,Z*;i;'2+io)t(Z~,l:;Z2~io) . 
-02 k -z (5.10) 

-- 
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Chapter Three 

THE THREE-BODY PROBLEM, AND FADDEEV'S SOLUTION 

The extensive work done on the two-body problem (briefly and 

partially summarized in Chap. 2) gave credence to the idea that the 

three-body problem could be approached in an analogous manner. The only 

modifications that were expected to arise were those due to trivial 

kinematical differences related to the larger number of particles 

involved. 

This confidence was however not justified, as was found when 

persistent difficulties were encountered during the 1950's in solving 

the three-body scattering problem. It was only in the early 1960's that 

a satisfactory mathematical solution to the general problem was found by 

Faddeev,8 who was able to prove rigorously that a theory for three-body 

scattering could be formulated so as to satisfy the requirements of 

general scattering theory. 

To examine this in some detail, we start with the Schradinger 

equation for the three-body case, 

(Ho+v-E)[y> = 0 , (1.1) 

where we now use capital letters to differentiate operators in the 

appropriate three-body Hilbert space from those defined in a two-body 

space, which are represented by lower case letters as in Chap. 2. In 

(l-l), 

v = v1 + v2 -I- v3 (1.2) 

is the sum of the three interactions between the pairs of particles, i.e. 

Vl=V(2,3) V2=V(3,1) V3=V(1,2) . (1.3) 

Following the ideas of the previous chapter, we define the three- 
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body free-particle Green's function as 

Go(z) = (Ho-z)-l, (1.4) 

and the corresponding full Green's function as 

G(z) = (Ho + V -z) -1 
(1.5) 

The three-body transition operator T(z) is defined to be, also in 

analogy to the two-body case, 

T(z) = V - VG(z)V (1.6) 

and obeys the equations 

T(z) = V-VGo(z)T(z) (1.7a) 

T(z) = V-T(z)Go(z)V , (1.7b) 

known as the three-body LS equations for T. 

Inspired by the confidence with which the well-developed two-body 

scattering formalism was generally held, it was assumed that, by means 

of similar techniques, Eqs. (1.7) would yield all scattering amplitudes 

for three-body scattering, with only the minor changes arising from the 

change from a two- to a three-body Hilbert space. 

These assumptions turned out to be incorrect, however: most of the 

work in the three-body problem carried out during the 1950's was beset 

by unexpected difficulties and ambiguities. 

In 1957, Foldy and Tobocman3 pointed out that the difficulties 

might arise from the fact that for the three-body case, the LS equations 

(1.7) did not yield unique solutions. It was not however until the work 

of Faddeev that this was studied in detail, the reasons for this non- 

uniqueness well understood, and a satisfactory new set of equations that 

yielded correct scattering amplitudes was found. 

There are several ways of understanding the problems that beset the 

attempts at solving Eqs. (1.1) or (1.7); we will give here only some of 
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them, as well as a sketch of the solution given by Faddeev. 

II. Three-Body Kinematics 

First we must outline the kinematical definitions that are used in 

the three-body problem. In the two-body problem, we describe the 

situation by a single vector variable (c or g) in center-of-mass (CM) 

coordinates (usually referred to as the coordinates of the reduced two- 

body problem). In the three-body case we have instead the lab momenta 

of the three-body particles, which (when transforming to the CM system) 

result in two independent momenta plus the overall CM momentum. 

This is done for instance by defining the following quantities in 

terms of the three CM momenta of the particles, i.e. zi,, z2, z,: 

m2Z1 - mlZ2 

'3 = ml + m2 

c3 = 
(ml+m2)Z3-m3(Zl+Z2) 

M 

2 = z1 + ic2 + ic3 = 0 (2.1) 

In (2.1), M=mlfm2-hn3, <3 is the relative momentum of the pair of 

particles labeled by 1 and 2, s3 is the momentum of the unpaired parti- 

cle (here particle 3) relative to the center of mass of the pair, and 

$ is the overall CM momentum. 

This change of variables can obviously be done in three different 

ways, according to which particle is left unpaired; thus there are 

three equivalent coordinate systems in terms of which we can describe 

the kinematics of the (CM) three-body problem. These equivalent systems 

are of course not independent, so in fact any one is sufficient to 

specify the kinematic configuration of the system. In practice, the 

choice is made by selecting the system which is "natural" to the three- 
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body entity being described. 

As an illustration, we give here the relationship between $ 
Y' ;Y 

and c (a, B, y cyclic): 

+ 
Py = $-my; . (2.2) 

“o;tmy @ 
In terms of the variables (2.1), a momentum-space representation of 

the three-body Hamiltonian H is given by 

K2 H=z + pg2 + 4; + v1+v2+v3, B=192,3 (2.3) 

The index @ refers to the unpaired particle's label, and the notation 

clearly indicates that the term p2 + q2 is independent of the choice 

of 8. In (2.3), 
c\ 

with 

-2 - P2 9; Pfi - 2ng ¶ ” = $ 

mB(ma+m > 
ng= M 

(2.4) 

(2.5) 

where c,B,y is any cyclic choice of the pairs 1,2,3. The first term in 

(2.3) can of course always be decoupled from the internal motion of the 

system. 

The kind of kinematic variables we have just described leads very 

naturally to a description of the three-body system in terms of channels, 

which as we will see are a central feature of Faddeev's solution. A 

channel is defined as a configuration of the three particles in which 
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only two particles (labeled, say, as the pair B) are interacting, while 

the third particle is assumed to be free. 

III. Relevant Integral Equations Theory 

Before we can outline the problems encountered when trying to solve 

the three-body LS equations (1.7), 

T(z) = V - VGo(z)T(z) , (3.1) 

we must briefly review some relevant aspects of the theory of integral 

equations. 

In Chapter 2 it was mentioned that a feature of the two-body LS 

equations (Eqs. (2.7) of Chap. 2) was that they obeyed the Fredholm 

alternative. In fact, this is a necessary and sufficient condition for 

the LS equations to have unique solutions. 

For this to occur, however, the kernel of the equations must obey 

certain restrictive conditions, namely the conditions that are necessary 

for the Fredholm theory of integral equations to be applicable. To see 

this condition in more detail, let us generically describe an integral 

equation as 

f(x) = fob) +JK(x,x')f(x') , (3.2) 

where {x} symbolizes the complete set of variables that describe the 

physical system, f(x) is the object we wish to solve for, K(x,x') is the -- 

kernel of the integral equation, and fo(x)is the inhomogeneous term, 

also called the "driving" term. 

It can be shown that in order for (3.2) to be solvable by the 

Fredholm method22 (i.e., that the Fredholm alternative applies), it is 

sufficient to require that the kernel K(x,x') be an 'y2 kernel", more 

precisely known as a Hilbert-Schmidt kerne1.22 This means that K must 

satisfy 
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ljK/, ~/iK(x,x')]~ dx dx' <a , (3.3) 

where we denote by IjKlls the Hilbert-Schmidt norm of the kernel K. 

This should be compared to the usual operator norm I]K[[, 

(3.4) 

where (f,f) is the inner product defined in the appropriate space the 

operator K acts upon, and f is any arbitrary function in that space. To 

require that the norm (3.4) be finite is a less restrictive condition 

than (3.3), since it can be shown that 

IIKII s L IIKII l (3.5) 

That the kernel K be Hilbert-Schmidt is, however, only a sufficient 

condition for the Fredholm method to be applicable. A more general type 

of kernel that still allows a Fredholm solution is called a compact (or 

completely continuous) kernel. 

To define a compact kernel, we assume that normalized wave-packet 

states qi(x>, i=1,2,... can be constructed from some complete set of 

wavefunctions in the Hilbert space of the state vectors of the system. 

The kernel K is said to be compact if for any infinite set of the Jli, 
, 

Wi =&( x,x'NiW)dx' (3.6) 

contains a subset converging to a limit.22 In general it is not easy to 

prove that a kernel is compact, but allLY2 kernels are compact; since 

the latter condition is easier to prove,g2 theory is ordinarily used 

when applicable. 

As a simple relevant example, let us mention that a g-function 

kernel, i.e. K(x,x') = 6(x-x ), can be easily proven to have a finite 

operator norm (3.4) but an infinite Hilbert-Schmidt norm (3.3). 
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IV. The Difficulties 

We can now state very simply the difficulties that beset the 

attempts to solve the LS equations (3.1). 

In the two-body case, the LS equation for t has a kernel that - for 

a wide class of potentials - is compact, so that for such a class the LS 

equation yields unique solutions for the physical transition amplitudes. 

Eq. (3.1), in contrast, does not have a compact (org2) kernel, so 

the Fredholm alternative does not hold. As a result, (3.1) has no 

unique solutions. The source for this difficulty can be easily found by 

looking for example at a piece of the operator VGo(z), namely the piece 

VIGo(z>. The kernel for this piece is 

v1 <;,-;;> 6 ';& 
(4.1) 

($2 +p-z) 

which contains a &function that is not removed, no matter how many 

times we iterate it. In fact, the kernel of VIGoVIGo contains the same 

6-function, and it is therefore impossible to reduce Eq. (3.1) to an 

equation with a compact kernel. 

Physically, this arises from the fact that there are pieces in the 

kernel of the equation in which one particle "just rides through", i.e. 

acts only as a spectator, giving rise to the g-function factor. This 

factor just expresses the conservation of momentum of the spectator 

particle. 

It must be emphasized that the problem does not only arise in Eq. 

(3.1), i.e. that the difficulty can't be simply eliminated by consider- 

ing instead of (3.1) some other three-body scattering equation derived 

by analogy to the two-body case. The difficulty arises because the 

asymptotic structure of the three-body problem, as we will see, is 
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intrinsically different from that of the two-body problem, and this 

different structure must be dealt with appropriately. 

To illustrate this, we show how a different view of the same 

difficulty becomes apparent when we consider the three-body Schrddinger 

equation (Eq. (l.l)), 

(Ho + ; Vu - E)IY+> = 0, 
C&l 

which we rearrange (for an arbitrary index a) to read 

(Ho + Vu - E)IY+) = -(V8 + Vy)]Y+>, a=1,2,3 

Defining the channel two-body Green's function as 

G,(z) = (Ho + Vo -z)-1 

we can invert (4.2) to obtain 

1 \y+> = C&> - Ga(E+io)(VBi-Vy)/Y+> a=l,2,3 

(4.2) 

(4.3) 

(4.4) 

where Ix,> is a solution of 

(Ho+Vu-E)\x,>=O. (4.5) 

Ix, > is the channel two-body eigenfunction of the pair a, i.e. the 

eigenfunctions of the u subsystem, in which particle c1 is a spectator. 

Obviously, we can carry out this procedure in three different ways 

(one for each channel), so there is no way to determine how much of 

each of the Ix,> goes into the full solution I\'+'+> (i.e. the values of 

the Co) until one has solved the problem in a different way.23 A priori, 

any of the equations (4.4) has a built-in ambiguity in its boundary 

conditions. 

In yet another way, we can express the difficulty by saying that, 

again due to the nature of its kernel, the homogeneous version of (4.4) 

will also have solutions in the scattering region. This helps to 
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clarify the physical reasons for the difficulty: In the two-body case, 

conservation of energy separates the scattering region from the bound- 

state region. In the three-body case, on the other hand, this is no 

longer true, since the energy released upon formation of a bound state 

in a given channel can be given to the third particle. In this way, in 

the Schrbdinger or the LS equation, the different subregions become 

kinematically accessible, and the Fredholm alternative is inapplicable. 

V. The Faddeev Equations 

The foregoing difficulties were eliminated by Faddeev by replacing 

Eqs. (3.1) or (4.4) by suitable sets of coupled integral equations for 

three-body entities different from those considered above. 

For the LS equations (3.1), Faddeev defines the new operator M Ba as 

Mga(d = %a% - VgG(z)V a , (5.1) 

such that upon summation over the channel indices, 

C M&z) = V - VG(z)V = T(z), 
Ba 

(5.2) 

i.e. we recover the usual three-body T-matrix. Comparison of (5.1) and 

(3.1) yields 

MBa (z> = 6BaVa -VBGo(z) C M 
Y ya 

(z). (5.3) 

Eqs. (5.3) are no better than the original LS-equations we started 

from, since their kernel is essentially the same. If however we shift 

the diagonal piece of the equation, VaGo(z)M Ba (z), from the right to the 

left, 

rl+VSGo(z)]Mgu(Z) = QuVo-VgGo(z) I MYo,(z)y 
v+a 

(5.4) 

and then find M 
Ba 

by inverting the operator [l+VgGo(z)], which it will 

be recalled from Eq. (3.7) of Chap. 2 has an inverse 
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[l + VBGo(d] -’ = G~l(~)cB(~) , 

we obtain the equations 

MBa = GBaG-olGaVcr - G-&VBGo C M 9 
vfa ya 

where we have omitted writing the z-dependence of the operators in 

(5.6). Recalling now Eq. (4.10) from Chap. 2, i.e. that 

GBVB 0 i3 ’ =Gt 

(5.5) 

(5.6) 

(5.7) 

where t 
t3 

is the two-body t-matrix in channel S suitably defined in the 

three-body Hilbert space, we can write (5.6) as 

or equivalently, 

MBcr = “f3atf3 -CM 3 Gt 
y BY ya 0 a 

(5.8a) 

(5.8b) 

with 6ga=l-6Sa. Eqs. (5.8) are the Faddeev equations for the Faddeev 

Operator Mf3cl l 

The kernel of Eqs. (5.8) is different from the LS kernel, due to 

the inversion (5.5) that was used to obtain them. The A-function that 

survives at all orders in the LS kernel disappears after one iteration 

from the Faddeev kernel t G 8 
f3 0 $a 

: The factor 3 
$a 

forbids the appearance 

of repeated channel indices upon iteration, and the &function is 

eliminated by the integrations involved in the first iteration. 

The process leading from (5.3) to (5.8), through which we insure 

that the new kernel has the desired characteristics, is called removing 

disconnected pieces from the kernel. The name arises from the fact that, 

as opposed to the three-body LS equations, no disconnected processes 

(i.e. those in which one of the particles "rides through" as a spectator) 

are allowed in (5.8). The kernel of (5.8) is therefore said to be three- 

-31- 



body connected (after one iteration). 

The splitting of T(z) into the nine pieces M Ba(d h as its counter- 

part at the wavefunction level, where Faddeev defines2' 

II+> = ; 1yt> 
B=l I3 

(5.9) 

where the I'$> are the Faddeev components of the full three-body 

wavefunction (Y+>. The splitting (5.9) corresponds to a classification 

of the full wavefunction into three pieces, according to which particle 

pair (6) interacts last. 

Instead of the system of equations (4.2) or (4.4), Faddeev postu- 

lates the system of coupled equations 

(Ho+Vg-E)IYi> = -v@ CX )Ys> +1,2,3 y YB Y 

so that inversion now yields 

lYi> = -Gg(E+io)Vg Cx I\yf> + GBlxB> y YB B 

or, again using (5.7), 

- Go(E+io)tg(Ekio) C s IY'>, y YB B 

(5.10) 

(5.11) 

(5.12) 

where 1x6> is again the channel eigenfunction defined in (4.5). 

As opposed to any of of Eqs. (4.4), here the-boundary conditions 

can be uniquely specified by simply requiring that C =6 B Ba' 
where c1 is an 

arbitrary (fixed) channel index. This choice of boundary conditions 

determines the full three-body wavefunction II+>. More explicitly, from 

/y;(a)> = Qalxa> - Go(E+io)tg(E+io) (5.13) 

we obtain a specific full wavefunction /Y:u)> , i.e. 

I’la)> =c p?+ 
6 B(a)’ ’ 

(5.14) 

-32- 



as that three-body scattering solution that arises from an initial 

state of an interacting pair a and a third free particle. Eqs. (5.13) 

are the Faddeev equations for the Faddeev components of such a full 

three-body wavefunction. 

Through this procedure, Faddeev defines four different scattering 

solutions, according to the initial state from which each arise (a bound 

state in each channel with the corresponding third free particle, and 

the state of three free particles)25: 

+ * +(o) * '(dK Y(i)(pq;p, K a; E+io) = t Y:(u)(pq;p, a ; Etio) a=1,2,3 

Y<o)(Pq9P q + tt.-f(o'(o) ; E'io) = c y+- ++ -43 40) 
y Y(O) 

(pq,p q ; Etio) (5.15) 

In the second line of (5.15), the initial state of three free particles 

has an energy E=p(o)2+ q(o)2 , while the channel initial state in the 

first line has energy E=i(o>2- K 2 a' corresponding to a bound state in 

channel a with energy - Ki -f(O) and a third free particle of momentum pa . 

The Faddeev approach in fact solves the three-body problem by 

successfully constructing the Hilbert space corresponding to the 

continuous spectrum of H from four different pieces,25 

(5.16) 

so that each of the wavefunctions (5.15) are the eigenfunctions of H in 

the proper subspace. In addition, we of course also have the (kinemati- 

tally inaccessible) discrete spectrum of H, corresponding to three-body 

bound states, with a Hilbert spaceXd.25 

Returning to the Faddeev equations (5.8) for MBa, we obtain 

equations for the corresponding amplitudes by taking plane-wave matrix 

elements of (5.8). In the two-body case, such plane-wave bra and kets 
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were simply given by I$ ; analogously, in the three-body space a 

plane-wave state of the three particles in the CM system described by 

-t-f I PSQS>' where as was noted before the kinematic variables in one 

channel are connected to those in any other channel by the linear 

relationships (2.2). 

We will now need the matrix elements of t,(z), which it will be 

remembered was the "spectator" two-body t-matrix in channel p embedded 

in the three-body space. This matrix element is readily obtained by 

realizing that for a given three-body energy z, the (interaction) energy 

available to the f3 pair is “*2 z-p 
B 

, $?p being the momentum of the third 

(spectator) particle. Thus 

(5.17) 

and the Faddeev equations (5.8) for the amplitudes~~u($6~;;$~~~;z)read 

- 1; 
Y ya 

Sd3pyd3q;' 6(;y-;;)ty(;y;-.', z-py2) x 

X hy2+ kq2-. x”;lkya(p~q~ ’ pi’;; ‘) * (5.18) 

VI. The Scattering Amplitudes 

With the Faddeev operators defined in (5.1) as the splitting of the 

full three-body T-matrix, it is unclear how the amplitudes& i3a 
themselves 

are related to the physical transition amplitudes for three-body 

scattering. 

To investigate this, Faddeev first defines an operator W Ba(z) as 

WBa(Z> = MB,(z) - GBatp * (6.1) 

‘Ba is the connected piece of the operator M Ba' 
since the (discon- 
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netted) single-scattering terms have been substracted. 

It is in fact for the operator W 
Ba 

that Faddeev carries out his 

rigorous mathematical proofs, 26 also proving that the residues at the 

physical singularities in W 
Ba 

yield the physical transition ampli- 

tudes.25y27 Explicitly, it is proven that we can write for the 

amplitudes %' 
Ba 

+ 
z+K$-p; (6.2) 

where the vertex functions Q have been defined in Eq. (5.9) of Chap. 2, 

and the functionsg, @, (@ and.Z'have no primary singularities.1gp27 

Thus, in Faddeev's approach, the scattering amplitudes are obtained 

as the residues of the operator W 
Ba' 

gis shown to be related to the 

3+3 amplitude, while both $9 andsare related to the 2+3 and 2-+2 

amplitudes. 

For the case of most physical interest, i.e. an initial state 

consisting of a bound state plus a third free particle, 9 andxare the 

relevant quantities. Instead of writing equations for FJ @a' 
Osborn and 

Kowalski considered the Faddeev equations for $9 and.%directly.27 Both 

Eqs. (6.2) and the Osborn-Kowalski (OK) equations follow from making use 

of Eqs. (5.8) of Chap. 2, i.e. of a splitting of the two-body t-matrix 

into a term t P containing the bound-state pole, and a remainder t R . 

A different approach, presented by Alt, Grassberger and Sandhas 

(AGS),lO introduces a different Faddeev operator U Su(z) that yields the 
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scattering amplitudes of the three-body problem directly, when taking 

appropriate matrix elements between initial and final states: The 2+2 

amplitude is given directly by <$B$~-I~Ba(~)I$a$~>, while the breakup 

amplitude 2+3 is 'given by ~;<$$Iu~,(z)~~~+~> (assuming an initial bound 

state in channel a). 

The equations the operators U&z) satisfy are 

uga(z)= -;;BBa+-C~ t (z)Go(z)Uya(z). y BY Y (6.3) 

The Faddeev equations in any of the forms described above (as well 

as other forms developed by other authors) solve in principle the three- 

body scattering.problem. After Faddeev's work in the early 1960's, 

considerable work has been done to apply these (or other similarly 

derived equations) to systems of practical interest, and extensive 

calculations have been carried out to this effect-l1 

Nevertheless, all these equations suffer from the same difficulty: 

the two-body t-matrix in the Faddeev equations (or, equivalently, the 

remainder t R in the OK equations) are fully-off-shell. In particular, 

when p -fco, 
i3 

the two-body energy in the two-body subsystem z-G~+-~. B 

That is, to solve any of the various forms of the Faddeev equations, it 

is necessary to know the fully-off-shell two-body t-matrices for 

arbitrarily large negative energies, i.e. in a nonphysical region. 

As we shall see explicitly in Chap. 4, the equations we present in 

this work completely eliminate this difficulty, and in addition we 

obtain other convenient simplifications over the above approaches. 
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Chapter Four 

THREE-BODY EQUATIONS WITH HALF-ON-SHELL INPUT 

I. Introduction 

We present in this chapter one of the two main results of this work, 

namely a new set of equations for three-body scattering. The remaining 

main result is the corresponding generalization to four-body scattering, 

presented in Chapter 6. 

In two-body scattering theory, as mentioned before, the only 

natural basis is the eigenstates of the free Hamiltonian h o, i.e., the 

plane wave basis {I;>}. When expressing the outgoing wave scattering 

state vector I++> in such a basis, + 

2 
++(;)=<~IJI > 

z ii 
, one is naturally led 

to a representation in terms of a less singular amplitude, such as is 

found in Eq. (4.13) of Chap. 2: 

jT,E, c2+iOl 
,;m = 6-T;) - y2 

p -K2-i0 ' (l-1) 

k2 where g= - 
2lJ ' 

and where t($,g,k2+iO) is just the plane wave matrix 

element of the transition operator t(z) (its on-shell value, i.e., the 

residue at the scattering pole p -2=l?2 in (1.1) yields the physical 

transition amplitude). 

In three-body scattering theory the situation is more complicated. -. 

Also in this case a plane wave representation (corresponding to the 

eigenstate IE> of Ho) is natural. A detailed analysis of the singular- 

ity structure of such a representation for the three-body wavefunction, 

<$$\Y'>, has been carried out by Faddeev, as referred to in the previous 

chapter, and leads to an expression similar to (l-l), but now in terms 

of a pair of amplitudes.% and %Sa (described in the Appendix). Just 
Ba 

as in the two-body case, these amplitudes are closely related to the 
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physical transition amplitudes. One can then of course consider the 

Faddeev equations these amplitudes satisfy, i.e., a three-body counter- 

part of the Lippmann-Schwinger equation for the two-body transition 

amplitude; these equations have recently been advocated by Osborn and 

However, in the three-body case other natural bases are also 

available,namelythe completesetsof channeleigenstates 
I - 

of the channel Hamiltonians H 
B = Ho+VB; 

8=1,2,3? 

In this chapter we consider the expansion of the three-body 

Faddeev wavefunction components in such a basis. We show that this 

representation is actually more natural than the plane wave representa- 

tion mentioned before, and leads to a considerably simplified formula- 

tion of the three-body theory. 

II. The AmplitudesYe and eBa 
$a 

In this section we restrict ourselves to scattering processes 

starting from an initial state of one free particle and a two-body 

bound state. For this case we consider the Faddeev equation for the 

S-component of the three-body wavefunction: 

$J:> - Go(E+iO) tp(E+iO) c I*Gtcy)> 
799 

(2.1) 

-+(O) 0: where I P, K (9x> describes the initial state, i.e., a bound state in 

channel a and a third free particle, and E is the total energy in the 

initial state, 
pm2 

E- a 2 
zpa yKa* Here and below we consider only one bound 

state per channel. Defining the complete set of channel eigenstates in 
f \ 

channel B by 
I 

P I$PK>, lFp$-- > , , 
I 

where 1~2 is the incoming two-body 

gP qf3 
scattering state with momentum ;, we obtain for the projection of (2.1) 

B 
onto these states (recall that G t = GSVS) 

06 
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‘. 

.:. _: 
: -: : ._ 

- (0) 
-- + 

<pP% I%(Q) 
>=(j - (0) pa63ti;ol-PQ ) - 

Y$J~P;~p, ;E+iO) 

$-Ki-E-i0 

<$& Iv;;(,)> = - 
6 ,(c 

p 
,c ;$d');E+iO) 

qP 
$+$-E-i0 

(2.2) 

where 

2 

and 6; = 4 
P 

m m  
andp =m*+L . 

p Q-Y 

Using (2.2), the expansion of the plane wave projections of the 

Faddeev components of the three-body wavefunction is obtained as 

Sfp 
a! 

(sp;f;(o);E+iO) 
o! 

-s 
(2.4) 

Equation (2.4) constitutes a three-body-generalization of Eq. (1.1) 

since the amplitudesYeand 8 of (2.3) are ShownintheAppendixtobe free 

from  elastic, rearrangement and breakup poles; i.e., they are the 

amplitudes in terms of which we will now formulate the three-body theory. 

We first note how these amplitudes are related to the physical 

transition amplitudes: recalling that the residues of the wavefunctions . . 

at the elastic or rearrangement and breakup poles are essentially the 

corresponding transition amplitudes, we directly see from  (2.4) that the 
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elastic or rearrangement amplitude is simply given by the on-shell 

value of.98 . In addition, 

breakup pof: p28+Gi= 

it can be shown that the residue at the 

E in (2.4) is the on-shell value of 8 
Pa' 

so that 

the breakup amplitude is given by c 
p %' 

Having established the on-shell connection between the amplitudes 

Yfland R and the physical transition amplitudes, we look into the 

relationship between our amplitudes and the matrix elements of the more 

familiar three-body transition operators. For this purpose we recall 

that in the wavefunction formalism, the three-body operators K 
Ba generate 

the Faddeev components out of the initial state wavefunction, i.e., 

I*;(,)> = - GO(E+iO) Kpa(E+iO) 1 IF.) $f > , (2.5) 

where E= 5:') 2-~E. If we take projections of (2.5) onto channel eigen- 

states and use the relation G K = -G V G U 
0 Ba 

B B o Ba, where UBa is the AGS 

transition operator,lO we find upon comparison with (2.4) that 

rep, qp; P, 
P -(‘I; E+iO) = - cTdp4, IV,GO(E+iO) Upa(E+iO) l~~“)$~> 

(2.6) 

$JPp ;ip’ P, -(‘); E-t-i0) = - <~;P$J lVPGo(E+iO) UPa(E+iO) IF’)+: > . 

qP 
In the on-shell limit <<$f lVpGo(E+iO) = -<Fp@t I, so we see that the 

expression for&Y 
Ba 

in (2.6) reduces to the familiar expression for the 

elastic and rearrangement transition amplitude in-terms of U Ba' 

In addition, the half-on-shell singularity-free amplitude..% Ba 
that 

in Faddeev's treatment ' 27 yields the breakup amplitude component can be 9 

written in operator form as 

~pJFpq+ P, 
-(0) CY ‘(‘);E+iO) =<j$~pltp(E+iO) GO(E+iO)Upol(E+iO) l P, 4,’ (2-V 

The breakup amplitude component is obtained by taking the function 

fully-on-shell, i.e., for * Since in that case 
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c Fpcp I t&E+iO) = <Fp$qpiVp , we again obtain here that, on-shell, 8 
Ba 

yields the S-component of the breakup amplitude. 

The factors VBGO on the left in the amplitudes (2.6) are present to 

insure that the half-off-shell amplitudes&? 
Ba and ~57 Ba do not contain 

singularities (poles) in the off-shell variable G 
B' 

The off-shell extensions of the amplitudes (2.6) are defined as 

ey&.JFpP; P, --(‘I; z) = <Fj@; lVpGo(z) Upa, Go(z) Vcr I$$$; > 

In the appendix it is shown that the amplitudes (2.8) are free from 

elastic, rearrangement and breakup poles. In fact,Ye 
$a 

in (2.8) coin- 

cides with Faddeev's fully-off-shell amplitude&e 
$a' 

On the other hand, 

the amplitude Q 
Ba 

in (2.8) and the Faddeev fully-off-shell amplitude.%' 
Ba 

are different; it is this different choice of off-shell extensions that 

enables us to write remarkably simple Faddeev equations forgeand 8, as 

we show in the next section. 

III. Equations for%' and 8 
Ba Ba 

Inserting the expansion (2.4) into Faddeev's equations (2.1) a 

system of coupled integral equations for the half-on-shell amplitudes 

sand G can be immediately obtained. However, as-it will be more con- 

venient for the discussion of their properties, we present here the 

corresponding equations for the fully-off-shell amplitudes. 

Such equations can be obtained from the Faddeev equations for the 

operators U 10 
Ba’ 

U@p) = -apa G;‘(z) -c s’ Y mr t tz) Go@) U&z) (3.1) 

where 6gy=l-6gy. Multiplying (3.1) with the appropriate operators and 

taking the matrix elements indicated by the definitions (2.8), (again, 
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recall that Got6 =GBVB and that the channel eigenstates form a complete 

set) we get 

where the "effective potentials"vare given by 

(3.3) 

The driving term%& to1 (6$), vanishes if a=@, and is otherwise obtained 

from the expression for fl~@$~) in (3.3), tangy=a and replacing K2 by Y 
,. a- 

pm2-z . a In (3.3), qp -(l~=(my/ma+m~)Pp+ i$ , qy -m = -; 

B- 93’ ma+mg)F$ , 
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:;.:.:. .- .:. 

B and QK is the two-body bound state vertex function, defined as 

As was mentioned before, we can see in (3.2) and (3.3) how the 

formulation of the three-body theory gets simplified when it is 

expressed in terms of the new pair of amplitudes%'and 8. In fact, 

Eqs. (3.2) have the following features: 

(i) The effective potentials are all independent of the energy 

parameter z. This fact simplifies the structure of the equations and 

has obvious computational advantages. 

(ii).'The input consists solely of two-body bound state wavefunctions 

and half-off-shell transition amplitudes. The completely off-shell 

amplitudes - in particular for arbitrarily large negative energies - 

occuring in the usual treatments of the Faddeev equations, are therefore 

completely eliminated. 

Additional convenient features become evident after an angular 

momentum decomposition of Eqs. (3.2) is carried out. This is discussed 

in detail in the next section. 

IV. Angular Momentum Decomposition 

In this section we consider the angular momentum decomposition of 

Eqs. (3.2). Since the properties we wantto discuss are present in all 

terms of such a decomposition, we only consider the simplest situation, 

i.e., the S-wave case: We assume that the total angular momentum J is 

zero, and that only s-wave two-body interactions are present. 

It will be remembered from Eqs. (2.8) that the breakup amplitude 

component ~5 $a 
is obtained by projecting to the left onto scattering 

channel eigenstates <$;I. As is well-known from two-body scattering 

theory,2g the coordinate space representation of this solution can be 
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expressed in the s-wave case as 

(4-U 

where +,B (r) is the s-wave regular solution to the partial wave 

Schradinger equation (satisfying boundary conditions at the origin 

9 
qB 

(O)=O, 4 0x=1) 
q$ 

and9 (q > - B 
is the two-body Jost function. A similar 

relation holds of course in every partial wave. 

In this way, we see from (4.1) that a Jost function factor l/s 
B+ 

can naturally be extracted from each partial wave component of 8 
Ba' 

Redefining these amplitudes accordingly, 

(4..2) 

n 

the new amplitudes 6' Ba 
are obtained in each partial wave by projecting 

onto the regular solutions rather than onto the scattering solutions. 

The resulting equations for the amplitudesXBaand~ Ba 
in the S-wave case 

- c JaP;2 dP$ qg%?p;Pq “,2 l 2 
r#P 0 Pr -KY-Z 

z&$P~~Polo)3) 

,L2!LfPL ;yapql.pJO);z) 72 “12 Pr +qy *z 



(4.3) 

The partial wave components of the effective potentials of the 

original equationsareredefinedaccordingly, and the resulting potentials 

in (4.3) are: 

s 

1 
-@Q;P;) = - ; -1 dtcos s,, 

where I 

(4.5) 

This redefinition of the &amplitudes has the following advantages: 

first, the phase of the Jost function is precisely the two-body phase- 
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shift, i.e., 

27,(qa' = 1 Q?*(qp) le 
7 i6 (sp) 

. (4.6) 

Since the same phase is carried by the two-body half-on-shell t-matrix 

and two-body scattered wave function, we see that all these phases 

cancel out in the expression for the potentials. That is to say, the 

potentials (4.4) in the equations fork andsare not only z-independent, 

but also real. In addition to the computational simplifications entailed 

. by such a situation, problems related to unitarity (such as the construc- 

tion of unitary approximation schemes) become easier to handle. 

Obviously, to obtain real potentials it is only necessary to factor 

out the phase of the Jost function from the original8 amplitude. How- 

ever, we believe it is useful to factor out also the modulus of the 

Jost function, as we have done above. The reason is that the regular 

solution dqB(r) of (4.1) is analytic everywhere in the complex q B 
plane, 

. 
1.e., it has no bound state or resonance poles, nor any branch points. 

Instead, this structure of the two-body scattering wave function is 

carried by the Jost function denominator. Thus, the amplitudes 8' 
Ba 

are 

more smoothly-varying functions of q 
B 

than the corresponding gBa- 

amplitudes. 

The same two-body structure is also absent from the potentials in 

(4.4), since they carry factors g+t and Q-s-. In this manner, the two- 

body bound state and resonance singularities are predominantly carried 

out by the factor 1 in Eq. (4.3). 
El 2 

We conclude by writing the expression for the breakup amplitude in 

terms of the new amplitudes 2 Ba 
in the S-wave case: 
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33 c 
1 A 

oo! = 
P 5+ 

- &/3cY (4.7) 

We see in (4.7) thatzBa differs from the corresponding breakup 

amplitude component by a Watson final state interaction factor. 30 

V. The 3-3 and 3-2 Amplitudes 

For the sake of completeness, we consider in this section the 

amplitudes for processes starting from three free particles. For this 

purpose we recall expression (2.8) for the amplitudes corresponding to 

processes starting from a bound state and a third free particle, i.e., 

The remaining amplitudes are now defined as 

3 - 2: q?ct =<f3&V GU p K p 0 pa!GoVc,Ipo! 
-w $)+ 

$0)' 
o! 

(5.1) 

(5.2) 

That the 3-3 amplitude of (5.2) directly yields the connected part of 

the 3-3 transition amplitude can be seen as follows: in Faddeev's 

treatment, this 3-3 amplitude is obtained by taking the fully-on-shell 

plane-wave matrix elements of the operator M @a' 
i.e., 

(5.3) 

where $+$= p, Q! . -vw +;i(w 

Since M 
Ba 

= GgatB+WBa, where Wga is the connected three-body 

Faddeev operator, related to UBcl through WBa = tBGoUguGota, we see that 
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However, since (5.4) is fully-on-shell, we can write the second term as 

so that the 3-3 amplitude is simply given by 

(5.5) 

(5.6) 

Off-shell, of course, again TBu and the plane wave matrix elements of 

wBcr differ. 

The Faddeev 

by replacing&‘& 

equations forgBa andgBa can be obtained from (3.2) 

by c?', andgBa bygBa. In addition, the driving terms 

must also be replaced: for example, the driving term in the ZSu-equations 

is given by 

y(O) - - . 
pa! (ppqps PO! 

-P)~(");z) = _ & t (q $l).i2+iO) -2 
a P P P' P ' P 42 

pp+qp -z 

x t <y t2), z lo) ; $“)2+iO) 
a Q! CY o! (5.7) 

v (note that$+qP -w .= ptw+p2 
a a! )- 

Similarly, it can be shown that the amplitude 2 Ba 
of (5.2), when 

taken on-shell, is a component of the 3-2 transition amplitude. 

Returning to Eqs. (5.1) and (5.2), we observe that the amplitudes 

for all possible three-body processes are obtained by taking matrix 

elements of the operator V G U B 0 G V between channel eigenstates i3a 0 0. 

appropriate to the initial and final states. Since we have at our 

disposal both incoming and outgoing scattering states, it should be 

noted that it is also possible to define amplitudes with a choice of 

JI- and $+ states that is different from the choice used in (5.1) and 
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(5.2). However, such amplitudes are not as simply related to the 

physical transition amplitudes. The physical reason for this is that 

the three-body S-matrix involves inner products of incoming and outgoing 

three-body scattering states in the same order as they are expanded in 

(5.1) and (5.2). 

APPENDIX 

Here we give an outline of the proof of the fact that the new 

amplitudes E 
Ba 

are free from primary singularities.lg Similar proofs 

can be obtained for the remaining new amplitudes G and F 
Ba Ba l 

We start by noting that the amplitudesxand sin terms of which 

Faddeev carries out the singularity analysis of the three-body wavefunc- 

tion are defined by the first of Eq. (2.8) and 

- (0) %/&&Pa ;z) = - <$$ I ;,(z, Go(z) Up,,(z) Go(Z) VLy l ;;“G;> (A. 1) 

where f. 
B 

is obtained by splitting the two-body transition operator t 
B 

into a term t P 
B 

containing the bound state pole and a remainder t 
B' 

The 

representation of the three-body wavefunction component in terms of L7e 

and %'can be obtained from (2.5) and the relationsG K = -G 
0 Pff 

t G U opo pcYy 

t =t?+; with the result 
P P P' 

-. 
- (0) <7$$$;~, ;Ea+iO) 

+ -2 -2 
1' 

pB+qP - EQ-i0 

(A* 2) 

By comparing (A.2) with (2.4), it can be seen how the choice of the 

new setxand &instead of the set3V'and % simplifies the singularity 

structure of the expansion. 
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Now, recalling Eqs. (2.8)) (3.1) and (A.l), we find that 

X 

(A. 3) 

Consider the first term in (A.3). Since neither the vertex 

function @F nor the half-off-shell tB have any real singularities as 

functions of the momenta, only secondary singularities occur in this 

term. Turning to the second term in (A.3), we note that it is identical 

to the expression (6.26) of Ref. 8, with the half-off-shell tB instead 

of the off-shell ? 8' 
and the functionsg(3),g(2) and $?(2) replaced by 

the functions E, $9 and Z', respectively. These changes do not affect 

the character of the estimates used in the subsequent discussion of 

(6.26); therefore, arguments similar to those of Faddeev enable us to 

conclude that the singularity structure of 8 is similar to that of the 

Faddeev amplitudestiand se: In particular, 47 is-free from primary 

singularities. 
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Chapter Five 

THREE-BODY UNITARITY 

I. Introduction 

It will be remembered from Chap. 3 that the Faddeev operator 

M@u(z) depends on the three-body energy parameter z only through the 

three-body Green's function G(z), i.e. 

M&d = GgaVS- QG(z)Vo. (1.1) 

It is thus straightforward to show that MBcr, as well as the ampli- 

tudes arising from taking plane-wave matrix elements of M 
Ba' 

obey the 

appropriate three-body unitarity relations.31 In addition, because of 

the symmetry involved in the definition (l.l), the plane-wave matrix 

elements of M 
Ba 

are simply related to the time-reversed amplitudes; i.e., 

(recall that G+(z) = G(z*)), 

(1.2) 

In this chapter we proceed to investigate the corresponding 

symmetry properties of the new amplitudes of Chap. 4, as well as the 

three-body unitarity relations they satisfy. 

II. Symmetry Properties 

In the theory we presented in Chap. 4, the situation is different _. 

from that encountered in the Faddeev theory. Even though the definition 

of our three-body operator T $a' 
i.e. 

TBa (z) = VBGo(z)UBu(z) Go(z) Vo , (2.1) 

is still symmetric, the matrix elements that are taken to define the 

scattering amplitudes are not: As will be recalled from Chap. 4, these 

amplitudes are (Im z > 0) 
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where the asymmetric nature of the amplitudes is evident. The reasons 

for using the (+) superscript in (2.2) will soon become clear. 

From (2.2) we immediately see that, for instance, 

(2.3) 

That is, the time-reversed amplitude 6 Bcl d+)*(z) is not related to &“$)(z*), 

but to a different amplitude not yet defined. A similar situation holds 

for the 3+2 and 3+3 amplitudes in (2.2). 

This situation is however to be expected in the kind of theory we 

have presented here: As will be recalled, we obtain our amplitudes by 

expanding the full three-body wavefunctions IY" > or lyto)> in terms of 
(a> 

the complete sets of two-body spectator solutions. For an outgoing- 

wave three-body scattering solution 

order to obtain amplitudes that are 

II+>, we showed in Chap. 4 that in 

simply related to the physical 

scattering amplitudes, it was necessary to choose incoming-wave two-body 

spectator solutions; it is thus quite natural that, when analyzing the 

incoming-wave three-body scattering solution IY-> , we must use instead 

the two-body outgoing-wave solutions. 

In this way, a time-reversed version of our theory gives rise to 

the new amplitudes (Im z<O) 
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In terms of both kinds of amplitudes (2.2) and (2.4), we obtain as 

expected the relations (Im z>O) 

(2.4) 

(2.5) 

That is, when considering the time-reversed version of our theory, we 

are led to amplitudes that are different from the ones used in Chap. 4 

(with the exception of the elastic/rearrangement amplitudeJ%u, which is 

the same in both). 

In the next section we will obtain our three-body unitarity 

relations by defining the three-body S-matrix components in terms of the 

amplitudes of Chap. 4, and then requiring that such S-matrix components 

be unitary. Because of the reasons outlined above, however, both kinds 

of amplitudes will be involved in the expressions we obtain. 

Before proceeding, however, we will simplify our task by redefining 

one of our amplitudes. As.will be remembered, we proved in Chap. 4 that 

all our amplitudes are free from primary singularities. For this to be 

true also in the case of the 3+3 amplitude, it was necessary to define 
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such an amplitude with the single-scattering, term subtracted; that is, 

the 3+3 physical scattering amplitude T was given as (Eq. (5.6) of 

Chap. 4) 

T= C gficr+Ct . 
f3 B 

(2.6) 
%a 

The advantages of writing equations for amplitudes free from 

primary singularities have already been discussed in the previous 

chapter; nevertheless, since the amplitude that ‘actually occurs in the 

S-matrix is the physical 3+3 amplitude T of (2.6), it is simpler for the 

purposes of the present chapter to redefine our 3+3 amplitude to be 

+k$i’ (PBqB;Pa 
-t -f +b>;;b> 

a ;E+io) l (2.7) 

On-shell, of course,&? %a 
and the Faddeev amplitude& %a 

of (1.2) are 

identical, since they both yield the physical 3+3 scattering amplitudes. 

dkP 
%a 

constitutes therefore a different off-shell extension. 

III. The Three-Body S-matrix Components 

For the three-body problem Faddeev defines25 the S-matrix 

components Soo, Soa and S %a' 
corresponding to 3-+3, 2-+3, and 2-t2 transi- 

tions respectively, in terms of the Faddeev amplitudesX,(e and& 

Following steps analogous to those of Faddeev, it is straightforward to 

show that, in terms of the amplitudes%,& and F, the S-matrix amplitude 

components can be written as 

Soo(PqYP ++.+b>p) = * (&$Q))g (;$") )- 

2 
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- +-Co) Soa(Pq;Pa )=-27ii6(p2+q2-p(":K2)~ E~)(~S~~;~(~);E+~~) 
a% 

a 

with E = p 
0 

-b)2+p)2 
, 

E = pbP4 
a a a ' 

The requirement that the three-body S-matrix be unitary is of 

course that 

s+s = ss+ = 1, (3.2) 

which in terms of S-matrix components takes the form25 

3 

+ s yCo ‘%Y ya = 6%a . (3.3) 

When the S-matrix components are expressed in terms of the amplitudes 

L%$ % and dd, Faddeev proves that the unitarity requirement (3.3) does 

indeed hold, so that the Faddeev amplitudes are shown to yield the 

correct scattering amplitudes for all three-body processes.25 In the 

next section we proceed to show that the S-matrix components (3.1) 

defined in terms of our amplitudes$@,& and 3 are also unitary. 

We conclude this section by writing down the condition our ampli- 

tudes must satisfy to fulfill the requirements (3.3). For simplicity, 

we consider first the case of two-body interactions that support no 
_. 

two-body states. As we will see in the next section, the operator 

relations we are led to in this way are also valid for the case of 

interactions with two-body states, so this restriction produces no loss 

of generality. 

For such a situation, (3.3) reduces to the condition Sf;oSoo=l, or 

in terms of the amplitudes (3.1), 

s d3p'd3q' +1-f, S~,<;';';&b Soo(p q ;P 
+(o) p>= 6 (&p> > (j (;;-$">) . (3.4) 
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Replacing (3.1) into (3.4), we see that for the case of no two-body 

bound states, the unitarity requirement implies that 

>i ki’ ($ z aG(o)z(o) ;E+io)-J-) (G 
BB’a a $a 

z .$(o)G(o) ;E--jo)= 
BB’a a 

=-2?Ti c 
YY' 

J d3p 1 d3qfc/i;;) (~B;;B;~~~~;E-io)s(i;':n'lE) X 

Note that in (3.5), consistent with the 

all amplitudes with Imz>O (Imz<O) have 

IV. Operator Unitarity 

It is best to prove (3.5) by first 

T&z) are themselves unitary. This is 

E+io). (3.5) 

structure outlined in Sec. II, 

the superscript t+> (G)). 

Relations 

showing that our operators 

done most simply by defining an 

operator M&z), whose matrix elements give the 3+3 amplitudes of (2.7). 

Recalling from Chap. 2 that (l+Go(E+io)Va)lGio)$+ 
p 

>=l$~")~~o)> 

and that <G $2 IV 
Bqg 6 

we see that such an operator can be 

defined as 

RBa (2) = GBaVB(l+Go(Z)Va) + T&z) 

since then 

as was desired. The equations the operators fiBa satisfy are 

cl Ba = GBuVB(l+GoVa) - C 3 V G % 
y $a B y- Ya 

fi 
- - 

Ba = G6aVp+GoVa) - ;  ~yaMfiyGyva l 

(4.1) 

(4.2) 

(4.3) 

Eqs. (4.3) and the corresponding equations for the operator T Ba 

differ only in the driving terms, the kernels being the same in both. 

Therefore, even though the operator % Ba 
defines amplitudesdzBa that 
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have primary singularites (as opposed to s,), the equations arising 

from (4.3) still retain all other convenient features of the equations 

of Chap. 4, and we have introduced no formal complications. 

From (4.3) we see that we can factor out V 
B 

to the left or Vu to 

the right from our operators k 
Ba 

; i.e., we can define operators R $a 

and L 
Ba 

through 

V$RBa = E Ba = Lf3aVa, 
where 

LBc, = GBu(l+VBGo) - C 8. E G 
y w BY Y 

Rt3c, = GBu(l+GoVa) - C 3 G g 
y BY Y Ya 

(4.4) 

(4.5a) 

(4.5b) 

The operators L 
Ba 

and R 
Ba 

will be extremely useful in our proof of oper- 

ator unitarity, as will be seen below. 

ReturningtotheoperatorM 
Ba' 

with the definitions (4.1) and (4.2)we can 

now write an operator version of the unitarity relation (3.5), i.e. 

(l+VBGo,(l-tx) ~Bu(+)-~Ba(-)(l-Got,)(l+G~Va) = 

=-~y,fiBY(-)(l-G~t;)(G~-G~)(l-t;,G~)~y,a(+) , (4.6) 

where for convenience we have used the shorthand notation 

Mga(+)=~ga(Ekio), Gf = Go(E*io), etc. 
0 

Taking matrix elements of (4.6) between outgoing-wave scattering 

solutions <sB$ 1 and Ip, +(")$$o) > , with $tiqi=E=pu c1 * (d2+p2 , we obtain 
B 

expression (3.5) directly. That is, Eq. (3.5) is the on-shell amplitude 

version of the general operator unitarity relation (4.6). This result 

can be seen as follows: It will be recalled that 

1 =g l f in6(p2+q2-E) (4.7) 
p2i-q2-E%o p2+q2-E 

where gdenotes a principal-value integral, so we can write 
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GL-Gi= 2?ri / d3p'd3q'/~';;'>d(p2+q2-E)<~';;' 1 (4.8) 

and thus, 

(l-Got;)(G~-Go)(l-t:,G~)=2niSd3p',d3q'1~~~~,>6(p2+q2_E)<~~,Jl;t, 1 (4.9) 
Y Y' 

so the matrix elements of the right-hand side of (4.6) reduce immedia- 

tely to the right-hand side of (3.5). Furthermore, we note that, since 

the bras and kets we use are on-shell, we have 

(1-Gota)(l+G;Vu) ($')$+ dco)' = l~~"'qo)'. 
4 a 

(4.10a) 

(4.10b) 

Therefore, also the matrix elements of the left-hand side of (4.6) 

reduce to the left-hand side of (3.5). 

We now proceed to prove the operator unitarity relation (4.6). To 

do this we separate the diagonal (y=y') and non-diagonal (y#y') terms of 

the right-hand side of (4.6), and note that 

(1-G&,(G;-G;)(l-tx) = G;-G; , 

so we can write the diagonal piece of the right hand side as 

RHs)d = - c R 
Y By 

(-) (G;-G;)fiya(f), 

which using (4.4) can be written as 

RHS) d= -;~~~(-)v~G;~~u(+) + C k 
Y By 

(-)G;VyRya(+). 

We now add and subtract the term 

Y By 
c G (-)Rya (+) - ; L@@+) * 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

obtaining 

msjd=- c Fi (->(l-~yV~)~~u(+) + ; ~~~(-)(l-v~G:)M~u(+) 
Y BY 

(4.15) 
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We now use (4.5a) for LBy(-) in the 2nd term in (4.15) and (4.5b) for 

Rya(+) in the first, obtaining 

RHs>d = -MB,(-) (~-G~vJ (i+~~o)+(i+~~~;) (~-vBG$$~(+) 

+C’8 
YY 

, yy,i$yC(l-G-V )G+ y y y,-G;(l-Vy,G~,)l~y,a(+) (4.16) 

But the factor in square brackets in the 2nd term in (4.16) is equal to 

(l-Git,)(Gz-Gi)(l-t:,Gz), so that we recognize this 2nd term to be 

exactly equal to the non-diagonal piece of (4.6), with opposite sign. 

Thus the surviving terms become identical to the left-hand side of 

(4.61, and we have completed the proof. 

V. Unitarity Relations for the Amplitudes 

We now complete our discussion by allowing two-body bound states 

to be present. We first note that the proof the operator unitarity 

relation (4.6) given in the last section is completely general, and 

holds whether the two-body interactions can support bound states or not. 

However, when taking matrix elements of (4.6) when there are two- 

body bound states, we are not led to (3.5), but to a different 

expression. The reason for this is that when there are bound states, 

the two-body t-matrices in the factors (l-Got;) and (1-t:,Gz) have a 

pole for each bound state (Cf. Eq. (5.8) of Chap. 2), and when y=y' 

these poles combine with the factor (";t-Gi) to yield a finite extra term 

involving the two-body bound-state wavefunctions. 

A direct way to see this explicitly is to first write, using (4.11), 

(1-G;ot,)(G;-G;;)(l-t;,G;) = (G;-G;)6yy,+ 

+(1-G;~;)(G-G;)(~-~;,G;)~~~,. (5.1) 

Using the spectral decomposition of G y (Cf. Eq. (3.11) of Chap. 21, and 
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recalling (4.7), we can write in (5.1) 

G+-G- = 2ni 
Y Y J- 

d3p'/~~9:>6(p;2-lc~-E)<~~~~I + 

+ 2ri 
/ 

d3p'd3q'I$;$i, >S(p,2+q'2-E)<$;$t, I 
Y Y 

so that replacing (5.2) into (5.1) yields 

+2Ti d3p'd3q'/~~$~,>6(p 
/ 

Y 

12+q& -E)+ $J:, 1 
Y' qyl (5.3) 

when two-body bound states are present. 

term that occurs compared to expression 

In (5.3), the (diagonal) extra 

(4.9) (which is valid when there 

are no two-body bound states) is explicitly exhibited. 

As an example of the on-shell unitarity relations for amplitudes 

we can obtain from (4.6) when there are bound states, we take matrix 

(5.2) 

'(0) 0, elements between states <sg$! ( and Ip, 4 >, -2 -2 - (OQ 

B K 
with pB+qS=E=pa u. 

To do this we note that when acting on a bound-state wavefunction 

IQ, the operator (1-Giti)(l+Gf;V,) is equal to the identity operator, 

i.e. 

(5.4) 

(This can be easily seen by recalling that the operator (1-G~t~)(l+G~V,)% 

5 1, and that the bound-state solutions do not distinguish between 

incoming and outgoing states). With the aid of (5.4) we obtain 

8Ba (Pgqs;P, 
(+> + + +-(O) ;E+io) _ ,&) + + ‘(‘);E-io) = 

f3ct (pft$ ;plY, 

= -2ni C Jd3p;$) 
Y' 

(~~~~;~~;E-io)S(P;2-~~-E)~~(~~;~~o);E+io) 

- 2Ri C 
YY' 

s d3pid3q' 
P 

-ii' (~B<b;~~~~;E-io) 6 (p;2+i;2-E)x 

-6O- 

(5.5) 



As the on-shell amplitudes cFBcl directly yield the breakup scatter- 

ing amplitudes, Eq. (5.5), when summed over (3, has the form one would 

expect from physical grounds for the breakup case.32 
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Chapter Six 

FOUR-BODY EQUATIONS WITH HALF-ON-SHELL INPUT 

In this chapter we present the second main result of this work, 

namely the generalization of the half-on-shell three-body equations we 

presented in Chap. 4 to the four-body case. 

For this purpose we follow a method suggested by our three-body 

theory, in which a thorough singularity analysis of the Faddeev three- 

body kernel led us to singularity-free physical amplitudes that obey 

dynamical equations with a considerably simplified input. 

With these results in mind, we carry out a similar singularity 

analysis of the four-body kernel. As in the three-body case, this task 

will be considerably simplified by using the complete sets of eigen- 

states of the channel Hamiltonians. 

Before we do this, however, we shall very briefly review the four- 

body theory whose kernel we will analyze, namely the approach due to 

Faddeev and Yakubovskii.17~33 

II. The Faddeev-Yakubovskii Equations for 
Four-Body Scattering 

We present here a direct method34 for obtaining the FY equation 

for the FY wavefunction components, starting from the four-body 

Schradinger equation for the full four-body wavefunction, 

(HO+V-E)$ = 0 , (2.1) 

where V = c Vis the sum of all potentials between pairs of particles. 
Y Y 

We will now carry out steps analogous to those of Sec. V, Chap. 3. We 

are now interested in outgoing wave scattering solutions corresponding 

to two-cluster initial states. Inverting (2.1), we obtain 

3 = C@ - Go(E+io)V9 , (2.2) 
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where I$ is a solution of (Ho - E)$ = 0, and C is a constant. Since we 

have chosen to consider only two-cluster configurations as initial 

states, C = 0. As indicated in (2.2), all operators of this section are 

to be taken at an energy corresponding to that of the initial state. 

As in Chap. 3, Faddeev components of the four-body wavefunctions 

are defined through 

(2.3) 

so that 

*=c* 
0' (2.4) 

where 6 is a label corresponding to a splitting of the four particles 

into three groups, i.e. so that only a single pair (B) is interacting. 

Again as in Sec. V, Chap. 3, we apply the Faddeev procedure of removing 

two-body disconnected pieces from the kernel of (2.3), obtaining 

(l+ GoVO)qp = - Govp c zpy Q y . 
Y 

Operating on (2.5) with (1-Gotg), we get 

(2.5) 

(2.6) 

where $B satisfies (l+G V )$I =O. 
06 B 

Again, due to our choice of initial 

state, C=O. 

For the four-body case, the kernel of (2.6) must be further 

modified, since it still contains disconnected pieces corresponding to 

two non-interacting clusters - i.e. to clusters of the type 1+3 and 2+2 

- labeled by the index o. We now proceed to remove those pieces. From 

(2.6) we define the components 

- Gotp 
whereaI>P ,and such that 

(2.7) 

(2.8) 
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As before, we take the diagonal piece in (2.7) to the left, and get 

(2.9) 

Consider now an operator Ku 33 
Ba 

defined in the subsystem u through 

the equation 

(2.10) 

Operating on (2.10) with the expression (6 
PP' - GoKp"p, ), P, P'c U, we get 

*a”= C+;‘- CG If c zuppp , pea 
KU O Py P,Y Y (2.11) 

where y~~6py + Gotp 6/3y' @y - (' = 0, i.e. 4;') is the Faddeev component of 

the wavefunction corresponding to a bound state in the subsystem o. 

With our choice of initial state, C = &oT and we obtain the four-body 

Faddeev-Yakubovskii (FY) equations.33 

The kernel of (2.11) is now more connected than that of (2.6), in 

the sense that its third (or higher) power does not contain disconnected 

pieces corresponding to two non-interacting clusters. The kernel of 

(2.11) is said to be four-body connected (after two iterations). 

III. Generalization to the Four-Body Case: 
Preliminary Considerations 

Let us now rewrite (2.11) in more detail, i.e. 

l*a(TJ> 
B 

= 6u71~r)> - c GO(E+iO)Kk(E+iO) c 8apleP(T)> 
Y ' (3.1) 

KU P’Y 

and review the meaning of our notation. The N wavefunction components 

are labeled both by two-cluster indices u,p,~, etc. (i.e., of the type 

(12.3) (4) or (12) (34))) and by three-cluster indices a,@,~, etc. (of the 

type (12)(3)(4), i.e., pair indices). The decomposition is such that 

c c $y is the full four-body wavefunction. A three-cluster index 
u pcu 

below a two-cluster index (as in Y OCT.) 
B ) 

indicates that the three clus- 

ters have been obtained by further splitting one of the two clusters (as 
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in o=(123)(4)+(12)(3)(4)=f3)?5 This is also described by writing pCu. 

In Eq. (3.1), QLT) denotes the B-component of the initial state 

wavefunction; the operator Kiy is the three-body kernel operator of 

subsystem c (more precisely, it is the two-cluster subsystem kernel 

operator, since o can be either of the 3i-1 or the 2+2 type), defined as 

Vp"ph - VP 
(3.2) 

where G”=(Hu-E-iO)-’ = c Vy-E-i0 
-1 

. 
YCU 

In order to proceed with our treatment of the four-body case, we 

need to define the appropriate complete sets of eigenstates of the 

channel Hamiltonians Ho. For o of the 3-i-l type, the complete set of 

eigenstates of the three-body Hamiltonian c2g2+ c Vy is given by 

Faddeev3' as being 
YCU 

I I@>, I** > , I*>> 
i 

, all Ku 
(6 pq 

(3.3) 

where I@> is a three-body bound state (we only consider one three-body 

bound state per channel) of energy -K:; II+ (s)~ is the (outgoing wave) 

scattering state corresponding to an initial state of a bound pair 6 and 

a third free particle with relative momentum G, and I'?+; is the 

(outgoing wave) scattering state corresponding to an initial state of 

three free particles of relative momenta c,z. 

Therefore, in the 3+1 case, the complete set of four-body channel 

eigenstates can be written as 

i 
i;r$(“), , I&f”)* > , lFQtu)*> 

<& i 
, all KU (3.4) 

s 

where if, say, a=(123)(4), ; is the momentum of the fourth particle 0 

relative to the center-of-mass of the other three. (Note that we sup- 

press the channel indices of all variables.) 
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On the other hand, if o is of the 2+2 type, the complete set of 

channel eigenstates is given by 

(3.5) 

In (3,5),ifwelet 6,ylabelthetwo subsystems of a(i.e., if a=(12)(34)and 

6=(12), theny=(34)), [g@(o) -t&Y > = Is$K$K>representsastateoftwoboundpairs 

moving with relative momentum z and corresponding to a total energy 

'E=g22- K2-K2 
6 Y' 

where g2=s2 
U d 2rl,, with 77, = Bml+m2) (“3”m4,1/(ml+m2+m3+mq) 

if a=(12(34). Similarly, I&y>= &$6 7#5* > 
(ml 

K 
% 

represents a state where 

the &-pair is bound, while the y-pair is in a scattering state of 

initial momentum < 
Y' 

and so forth. 

In what follows, we will in general not treat the two kinds of 

indices o separately, but use only the set (3.4), with the understanding 

that when o is of the 2+2 type, the labels z,$,G of (3.4) should be 

replaced by the labels ~,~,~' of (3.5). 

IV. Singularity Analysis of \Y O(T) : The Scattering Amplitudes 

The most natural generalization of our three-body formalism would 

be to consider four-body wavefunction components labeled only by a two- 

cluster index o. As we have seen in Eq. (3.1), however, the FY compo- 

nents $ b(T) 
I3 

represent a more detailed splitting of the full wavefunction, 

since in them not only the last interacting subsystem is specified 

(labeled by a), but also the last interacting pair (within the subsystem 

labeled by 0). 

Therefore, we first consider the singularity structure of the 

"partially summed" wavefunction component \k Using Eq. (3.X.3, 

we find 

@)> = p p)@(T)> _ G"(E+iO) c c v:) fp I*,(T)> , (4.1) 
YCU p=)Y 
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where v(U)= c V 8 (it 
Y ACU A A7 

is understood that +~cu), and we have used the 

relation 

Go F K; = GUT;’ ,. 
(4.2) 

which follows from (3.2). 

With the explicit appearance of the channel Green's function Go in 

(4.1), the singularity analysis of Ye(r) becomes straightforward. Using 

the complete set of channel eigenstates (3.4) or (3.5), we obtain 

Gc(E+iO) = /6 g(% dF 
; 2+(2 

<i? ip) 1 
u - E-i0 

(4.3) 

where p2 and q2 
-2 -2 

are defined in Section II, and r a=rJ2na, 

with na=[m4(ml+m2+m3))/(ml+m2-hn3+m4) if 0=(123)(4). With the aid of 

Eq. (4.3), (4.1) can now be written as 

8”‘(~,$ ,$;$‘);E+iO) , 

(4.4) 
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where ~~r(~,$o);E+iO) = Gs(~)IC 
YCU 

c P $0) IPy)> 
P=y 

~uT(~$$;$o);ECiO) = <++ 1 c c . 
j3-q ycu p3y 

Equation (4.4) constitutes a four-body analog of Eqs. (2.4) of 

Chap. IV; i.e., it explicitly exhibits all the physical poles of the 

wavefunction components Y a(T) in separate terms. The residues at these 

poles - i.e., the amplitudes (4.5) - are free from primary singularities 

(just as in our three-body formalism), and are the components of the 

physical scattering amplitudes: As is shown in the Appendix, the on- 

shell values oftWuT, 2F 0.7 

uzi @) 
and 8 c 

UT are the amplitudes for 
U 

elastic/rearrangement, partial breakup and full breakup, respectively.38 

The remaining step in the generalization would now be to find 

equations for these amplitudes. Unfortunately, as can be seen from Eqs. 

(4.1), Ye(T) is coupled to all the FY components Y ah) 
B 

, and not simply 

to the remaining Y'('). As a result, no equations for the wavefunction 

components Y (J.(T) are available within the FY formalism, and it is there- 

fore not possible to obtain dynamical equations for the amplitudes (4.5) 

at this stage. 

To proceed within the FY formalism, it is also necessary to perform 

a singularity analysis of the FY components Y ;"' (f or which, of course, 

Eqs. (3.1) are available). This however is not straightforward, as will 

be seen in the next sections, and is certain to lead to a larger number 

of amplitude components (this being the weak point of the FY formalism 

in general). 
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At this point one could therefore abandon the FY formalism and use 

other dynamical equations for the components Y O(T) , for example those 

discussed in Refs. 18 and 39. However, all such alternatives we are 

aware of lead to dynamical equations with effective potentials that are 

not only energy dependent, but also require fully-off-shell subsystem 

input. In addition, these alternative equations may possibly admit 

spurious solutions. For these reasons, we choose to remain within the 

N formalism for the present work. 

V. Singularity Analysis of the FY Components Y U(T) 
B 

Recalling Eqs. (3.1) and (3.2), we see that the kernel that must 

be now analyzed for singularities is G Ku 
0 BY’ 

In analogy with (4.2), we 

write 
GoK; = c G” V 8 

1(-u PA A AY ’ 
(5.1) 

where 

= 6j3AG0 - GOVpG U 

(5.2) 

is the Faddeev component of the Green's function GO, with the property 

that Therefore, we see that for the pole decomposition of 

yu (.c> 
i-3 

it is necessary to analyze the Green's function components G" 6X' 

rather than G" itself. As is evident from (5.2), use of the spectral 

decomposition of Go (Eq. (4.3)) is not sufficient, since there is also 

a pole in G 0' This pole is accounted for in the following way: In each 

term that results from applying the spectral decomposition (4.3) to the 

product GO(E+io)VgGo(E+io) of (5.2) we use the resolvent identity 

GO(E+iQ = Go(zr) + (E+ie-2’) GO(E+ic) Go(zl) , (5.3) 

with z' equaltotheenergy of the corresponding channel eigenstate (with 

an imaginary part c' that is always understood to go zero before E). 
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Then, the GO(z')VB factors in (5.2) can be eliminated using the 

three-body relations 

(5.4) 

GO(~2+~2+~2-ic’)VpIr \E- - (a)-, = _ ‘7 ,(a)- > 

PQ P5-c 

where xhO)- is what remains of Yb"'- once the initial-state plane wave 

has been subtracted. 

As a result, we obtain a "pole decomposition" of the Green's 

function components given by 

Gil(E+iO) = / 
- PI 
Ir % 

(5.5) 

where we have also replaced 
‘7 ,@) > by ‘i$=)- 

Pipa. 
-'- $,tFf;+ and 

P(N;p q 
3-t-P 

made use of the fact that Go is diagonal in an I rpq> representation. 

In (5.5) we see that upon summation over PCU, the factor 

multiplying G 0 (E+io) vanishes identically. In addition, the first three 
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“_ _.,_ I 
,i 

terms become equal to the expression (4.3) for G', since the Faddeev 

components of (5.5) add up to the full channel eigenstates. 

Using (5.5), we finally obtain the sought-for pole decomposition 

of the FY kernel (5.1), and also of the FY wavefunction components (3.1): 

<TyTjr I* u(T) 
P 

> = 6cT g~-~(O) (7) -- 
)@@ @q) 

1 
?+p+q-E-i0 

SY~(~(“);E+iO) , (5.6) 

where2i?rand gy& have already been defined in (4.5), and 81 is a 

decomposition of the amplitude c?urof (4.5), i.e., 

&'r(? g3;$");E+iO) = <?I$(~)-IV c 6' c fp I@(r)> 
ixp Ayca Xyp,y Y ’ (5.7) 

with c 
.ACCT 

qL 87. The remaining amplitude 23uTis given by 
P 

;E+iO) = c-p I c 
I 

6 - 
aca PA 

Equation (5.6) constitutes a further generalization of our previous 

decomposition (4.4), where now all physical singularities of the FY 
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component Y$(T) are explicitly exhibited in separate terms. It is a 

remarkable fact that in (5.6) the B-dependence in the terms containing 

*and gfactorizes, so that these scattering amplitudes still depend 

In other words, only on the two-cluster index CT of the wavefunction. 

further splitting of Y G.(T) in (4.4) into Y (J(T) 
B 

in (5.6) only produces 

a splitting of the amplitude @*. 

In addition, the amplitude 3 QT 
P 

must now be introduced. Just as in 

(5.5), this amplitude vanishes identically upon summation of 'Pi(') over 

all pCa. (as did the last term in (5.5)), and is therefore also absent 

from the full wavefunction. Consequently,% CT is not a physical 
P - 

scattering amplitude. 

VI. Equations for the Scattering Amplitudes 

Let us now derive the equations that our amplitudes &X?',g$ and 

satisfy. 

P(T) Replacing the pole decomposition (5.6) for IYY z= in the 

definitions (4.5) and (5.7) for these amplitudes, and in the definition 

(5.8) for9iT, the following (half-on-shell) equations are immediately 

obtained: 

wt “‘“Pi;f;T) CG 

zr2-K2-E i0 
xP'(?;$');E+iO) 

P - 

3 P’@i 3 3 ;$‘);E+i()) 
A 
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where E=?(0)2-~2 --(TT The corresponding equations for 3 oJ=7 
7' (PI ' 

&y and p 

are obtained from (6.1) by replacing, respectively, V (*d by *vf33, 

*v18&) and "Y (%=x9 , and so on. 

Examples of the potentials appearing in (6.1) are, 

(6.2) 

where the index y is uniquely determined by the conditions y.21 and'ycp, 

(07% 1. (Note that when both o and p are of the 2+2 type,an@, so the 

corresponding potentials vanish.) 

In spite of the fact that two-body potentials ap,pear in (6.2), all 

effective potentials in (6.1) can be expressed in terms of half-on-shell 

subsystem scattering amplitudes and bound state wavefunctions, with no 

two-body potentials remaining explicitly. For example, '%" (.*s) in (6.2) 

can be written as 

(6.3) 

xPA@'(2),ji$;$- Kf-iO) 

-.%I- -(2)2 2 ,p12+ ,2+io 
py - Ky A A 

where, as in (6.2),7-n, is uniquely determined by cs and o(o#o). Also, 

-41) - MLl 7 ++ -42) Ma 
pY My+M u P 

and =T-'+ 7 
P pY Q MY+M, p '. 
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where if, say a=(123)(4) and p=(124)(3), y=12, M =M12=m1+m2, Mo=m4 and 
Y 

MP=m 3' 

The factors appearing to the left in (6.3) are projections of the 

three-body bound state wavefunction onto the complete set of two-body 

channel eigenstates. The amplitudesxand &' are the scattering ampli- 

tudes of our three-body formalism, taken half-on-shell. 

The potentials coupling$ to the physical amplitudes differ 

somewhat from those in (6.2); e.g., 

As expected, all these potentials vanish upon summation over @Co 

Again, all two-body potentials that appear explicitly in (6.4) can be 

eliminated in favor of half-on-shell subsystem amplitudes and bound 

state wavefunctions (the first term S 
BY 

in (6.4) is actually cancelled 

by a piece of the fourth term). 

The coupled integral equations (6.1) constitute a generalization of 

our three-body equations to the four-body case. We obtain in this way a 

formalism with advantages similar to those present in our three-body 

theory, namely: 

(i) The dynamical equations are expressed in terms of components 

of the physical scattering amplitudes; 

(ii) The amplitude components defined in the formalism are free 

from primary singularities, i.e., from poles (in the off-shell 

variables); 
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(iii) The equations have the structure of a multichannel Lippmann- 

Schwinger formulation, with effective potentials that are 

independent of the four-body ene,rgy; 

(iv) The equations require as input only half-on-shell subsystem 

transition amplitudes and bound state wavefunctions. 

As pointed out before, however, the equations also include a non- 

physical amplitude SC7 
P 

and our goal is therefore not fully achieved. 

The presence of this nonphysical amplitude can be understood as follows: 

The N equations are obtained from.the four-body Lippmann-Schwinger 

equations by means of a two-step procedure34: the two-body disconnected 

pieces are first removed from the kernel, and only then are three-body 

disconnected pieces removed. (This is done in such a way that the 

resulting N kernel connects three particles after one iteration and all 

four particles after two iterations.34) As a consequence, the full 

wavefunction is split first according to three-cluster indices, and 

then split further according to two-cluster indices. 

On the other hand, as we have seen, the singularity structure of 

the full wavefunction is most naturally exhibited by considering the 

wavefunction components Y u(z) , split only according to the two-cluster 

index (T. The (prior) additional splitting according to three-cluster 

indices required by the N formalism (in order to achieve connectedness 

of the kernel) appears thus far less natural from the point of view of 

the singularities of the kernel (or from the point of view of asymptotic 

channels). 

The N formalism nevertheless requires that we perform the more 

complicated singularity analysis of the fully-split wavefunction 

components Y U(f) . 
f3 , i.e., that we retain the full index context of the N 
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equations. In choosing to remain within the N formalism, and insisting 

on energy-dependent half-on-shell input, we are not only required to 

CT split the breakup amplitude eOrfurther into components gP (an expected 

complication) but also to introduce the nonphysical amplitudes 9 m- 
P ' 

VII. Generalization to the Fully-Off-Shell Case 

In the previous sections we constructed our four-body formalism 

keeping the use of four-body operators and operator relations to a 

minimum; i.e., staying essentially within the wavefunction approach. It 

is illustrative however to consider how our formulation relates to the 

four-body transition operators, and how a fully-off-shell version of our 

amplitudes can be obtained from these operators. 

To do so, we first recall from Chap. 5 that in our three-body 

formalism the fully-off-shell amplitudes are defined using the three- 

body operatorI 

T&Z) = VpGo@) UPC,(z) Go@) Va , (7.1) 

where U BCY. (=) is the three-body AGS transition operator." The on-shell 

matrix elements of the operator (7.1) between appropriate channel eigen- 

states give the various three-body physical transition amplitude 

components. 

In order to obtain the corresponding four-body operators, it is 

convenient to make use of the matrix formalism33: We first define a 

matrix version of (7.1) by means of the four-body matrix of operators 

VT = @}, according to 

T A(TT = V(o) Gf’ TUT Gr) ~(7) , (7.2) 

where V@)= 5 G-l {- pa! o }, G~'=[-bp,GotpGg), etc., (with P,Qco), and 

TUT = B;) stands for the matrix of four-body AGS operators.33 
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Next, as in (7.1), we define 

= VpGoTpa. o a! -G V , 

or, more explicitly, 

The equations these operators satisfy are easily obtained 

four-body equations for Uiz:33 

T;;(z) = ‘SW $&Go(z) t,+z) Go(z) Va$,a 

where Go y,x has been defined in (5.2) (recall also (5.1)), 

determined by the conditions-f% and y’=Unp. 

(7.2) 

. (7.3) 

using the 

(7.4) 

and y,y' are 

By analogy with the three-body case, we expect matrix elements of 

the operators (7.3) (rather than matrix elements of just U iz) to be 

closely related to the amplitudes of the previous sections. Indeed, by 

applying the pole decomposition (5.5) of Gp y,x (with E+io-+z) to (7.4), 

and projecting onto channel eigenstates, we easily verify that the 

resulting kernels are identical to the kernels of Eqs. (6.1). Moreover, 

when z is chosen to be the energy of the initial state, also the 

resulting driving terms become identical to the driving terms of (6.1). 

We can therefore identify the half-on-shell matrix elements of Tar 
Ba 

between appropriate initial and final states with our previously 

defined scattering amplitudes Z@ 
CT of (4.5) and 8(rTof (5.7) 

B 
(recall that 

With this identification it is straightforward to define the 

corresponding fully-off-shell versions of our amplitudes as 
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(7.5) 

where 
T QT = c c T;; . 

pea QCT (7.6) 

It is important to note that it is from the appropriately "dressed" 

operator (7.3) that we can obtain singularity-free scattering amplitudes. 

This is in analogy with the three-body case, where the factor VBGO in 

Taa (Eq. (7.1)) is present to eliminate the primary singularities of the 

matrix elements of U 
Ba' 

In the four-body case, the factor V G $ t G 
p o&i 0 

in (7.3) performs a similar function. 

The equations satisfied by the amplitudes (7.5) can be directly 

obtained from the operator equation (7.4), using (5.5) with E+io 

replaced by z. The effective potentials in the resulting equations are 

identical to those of Eqs. (6.1), but the driving terms are slightly 

different. 

At this point, in view of the complications we have encountered 

in generalizing our three-body formalism (in particular the appearance 

of the nonphysical amplitude "J 
CT 

P ) 
, one may ask whether the off-shell 

four-body amplitudes have really been chosen properly. We therefore 

conclude this section by giving another argument in favor of our choice. 

For this we turn to the full four-body Green's function G, and note 

that in terms of the transition operators we have defined, it is 

straightforward to write 
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G = Go -GoTGo= 

=Go-~GOtyGO-~ c G T(O)G - c G"T*G7. , 
Y a&(T ' pa a! u,T (7.7) 

where Tbz' 
CYCU 

is the three-body (i.e., two-cluster) transition operator 

Eq..(7.1)), and Tar has been defined in (7.6). 

In (7.7) we observe that the four-, three- and two-cluster discon- 

nected pieces of G have been separated from the true one-cluster (i.e., 

four-body connected) piece in a very natural manner. In addition, it is 

easy to verify that the four-body connected pieces of G can be written 

as 

(7.8) 

U where GBy is the "left-hand" splitting of G" as defined in (5.2), and 

Cy ha = $*GO - GTVaGO is the corresponding "right-hand" splitting of Gr. 

We thus see that both the operators TUT of (7.6) and TBcl uT of (7.3) 

appear in the cluster decomposition of the four-body Green's function in 

a very natural manner, suggesting that they are indeed the proper choice 

of transition operators in this formalism. 
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APPENDIX 

We show here that the on-shell values of our amplitudes%'@', So7 
(6) 

and B QT yield the transition amplitudes for all physical processes 

starting from an initial state of the 3+1 type. 

In order to do so we first establish some intermediate results, 

such as the relationship between the three-body initial state wavefunc- 

tion and its Faddeev components. Combining the relations 

(7) (7) I@, >=-GOVA19 > with the Faddeev equations I@:)>= -Got7 c 3 l+(r)>, 
ACT yA A 

we get 

I+;‘> = Got,, c ij G V I&)> 
hCT 'A ' A 

, 
(A. 1) 

where it is understood that all operators are to be taken on-shell. 

Combining now relations (7.5), (7.3) and (A.l), we get for the 

half-on-shell amplitudeS@'the expression 

If we now take (A.2) fully-on-shell, we can again use (A.l) to obtain 

(8.3) 

which is known to be the expression for the elastic and rearrangement 

scattering amplitudes.34 

Next we turn to the full breakup amplitude. Taking the expression 

for t"(TT in (7.5) fully-on-shell, and applying (A.l), we get 

&gT(Fi;(i;r(o);E+iO) = 

In order to proceed we need the expression for Ir‘k_, - (o)-> in terms of 

the initial state E;G>. 
PQ 

This is obtained'from three-body theory by 

recalling that 
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,* PI- > = -GO(E-i0) c Mu (E-i0) I=> , 
P;iZ ACU flh (A. 5) 

whereM;A=VpGph- V’G”VA is the three-body Faddeev operator in subsys- 

tem u. Combining (A.5) with the last of Eqs. (5.4) we obtain 

- w- GO(E-i0) V,, Ir ‘k,+> = o G (E-it)) c Mu (E-i0) I:<> . 
KU -IA (A. 6) 

PQ 
With (~.6), the on-shell amplitude EuT can be written (recall that 

Gi(E-io) = Go(E+io), etc.), 

8 *T = c c c c <y F ;i’M;A$aGotrGoU;; ir(‘)@$)>. 
(A. 7) @CU yCU ACa OlcT 

To simplify this expression we recall from the matrix notation 33 

that d4'= 
0 

-6o'G W” G 0 pa , where Wio is the connected part Miu; i.e., 

w”p, = M;lpa - dPatP = -?;*M; $aGota 
(A. 8) . 

Using the fact that G!)T(~) = N(4) = b. K;;\, where Kzi is the four- 

body kernel operator, we can now write instead of (A.7), 

(A. 9) 

When summed over CT, (A.9) b ecomes identical to the expression for 

the full breakup scattering amplitude given in Ref. 34. 

We conclude by considering the partial breakup amplitude. We 

proceed as before, and take expression (7.5) for $ *' fully on-shell, 
(6) 

again using (A.l). Further, we recall from three-body theory 

,qp > = (b ps - GO(E-i0) Ki6(E-i0)) 1; $> . 

B; (6 
.- 

(A.ll) 

If this expression is multiplied by tg(E-io)6gX, the Faddeev equation 

for Kig can be used to simplify the right-hand side. Using in addition 

the second of Eqs. (5.4) on the left-hand side, we get 

(A.lO) 

that 
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-&tfi(E-iO)~P~Go(E-iO)~'i*(@)$ =$.(E-iO)l~d~> l 

(A.12) 

Finally, with the relgtion Ku =- 
PS 

tGf 
P 0 PS 

we get for the on-shell value 

of (A-10), 

<'i;t j? @, c Vu G t G UuTI‘i:(o)@(-$ . 
K hcu ?A 0 A 0 AfB! (A.13) 

We compare this with the expression obtained in Ref. 34 for the 

partial breakup amplitude, i.e., with 

c *~3~l~(3,2)l*~a21> < 

b2 
; 

with the definitions 

I 
ycu u~GotyGou~ c 

@p3'=[~wm(p~, @'a21={~uT@'y7') and B(3*2) =[B;L}= 

' (A.14) becomes identical to (A.13) when the latter 

is summed over allaC6. 

-82- 



Chapter Seven 

CONCLUSIONS 

Within the context of non-relativistic quantum mechanics and the 

framework of a Hamiltonian scattering theory, we have presented in this 

work new sets of dynamical equations for three- and four-body scattering, 

expressed in terms of components of the physical scattering amplitudes. 

For the three-body case, we have seen how the use of the complete 

sets of eigenstates of the channel Hamiltonians significantly simplifies 

the formulation of three-body scattering theory. By using this repre- 

sentation we have obtained a new set of amplitudes for all three-body 

processes that coincide on-shell with the physical transition amplitudes. 

We have further shown how these amplitudes satisfy integral equations 

that are simpler than the usual Faddeev equations: 

(i) The effective potentials are all independent of the three- 

body energy; 

(ii) The input consists solely of two-body bound state wave- 

functions and half-off-shell transition amplitudes; 

(iii) Our choice of partial wave components of the three-body 

amplitudes satisfy equations with real effective potentials. 

In addition, the breakup amplitudes explicitly exhibit a 

Watson fsi factor. 

Finally, we expect that by the nature of the input to these equa- 

tions, they will be particularly useful in understanding the dependence 

of three-body observables on the off-shell two-body input. In addition, 

the simplified structure of our equations suggests that the problem of 

constructing approximation schemes should now be reconsidered. 

We have also carried out a generalization of this method to the 
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four-body case, by performing an analogous singularity analysis of the 

Faddeev-Yakubovskii four-body kernel. When performing such an analysis 

on the wavefunction components Y UC-c) -where u is a two-cluster-index - 

we find, as expected, a natural expansion of Y (J(T) in terms of 

singularity-free scattering amplitudes that exhibits all the physical 

singularities of the full wavefunction. In addition, we also find a 

corresponding natural separation of the four-body Green's function into 

pieces of increasing degree of connectedness. 

However, since this analysis is carried out on objects that are 

labeled only by two-cluster indices, while the FY formalism involves 

objects labeled by both two- and three-cluster indices, no dynamical 

equations within the N formalism can be obtained in this manner; it 

becomes necessary to carry out a more detailed and much less transparent 

singularity analysis of the N components Y U(T) 
B * 

Such an analysis does yield dynamical equations that exhibit 

advantages analogous to those obtained in our three-body formalism, 

namely, 

(i) The equations are expressed in terms of components of the 

physical amplitudes; 

(ii) The amplitude components defined are free from primary 

singularities, i.e., from poles (in the off-shell variables) 

that correspond to physical singularities; 

(iii) The equations have the structure of a multichannel Lippmann- 

Schwinger formulation, with effective potentials that are 

independent of the four-body energy; 

(iv) The equations require as input only half-on-shell subsystem 

transition amplitudes and bound state wavefunctions. 
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However, the equations also include a nonphysical amplitude~uT, 
P 

which is an unexpected complication. This additional amplitude is the 

result of a lack of correspondence between the singularity structure of 

the FY'equations and their detailed index structure: In fact, to our 

present understanding, the connectedness of the (twice iterated) FY 

kernel has been obtained through a procedure that is incompatible with a 

straightforward singularity analysis. The nonphysical amplitude 

serves to compensate for this incompatibility, in a way that allows the 

desired features (i) to (iv) to be carried over directly from the 

three-body case. 

Whether or not to remain within the N formalism becomes therefore 

a matter of deciding which characteristics of the four-body equations 

one chooses to emphasize. As was pointed out, we could have chosen to 

consider formalisms other than that of N to obtain equations for the 

components Y O.(T) . None of these formalisms, however, are clearly free 

from spurious solutions; and, more importantly for our present treatment, 

all the alternative formalisms we are aware of lead to equations with an 

input that is not only energy-dependent, but also fully-off-shell. In 

keeping with our aim of obtaining a theory without such features, we 

have chosen for the present work to remain within the N formalism. 

Nevertheless, further work on alternative formulations of the four-body 

theory is clearly called for. 
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