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I. Introduction 

We all know that the basis of physics is experiment. Without it, theoret- 

ical physics would be reduced to mere philosophical speculation. However, it 

may not be as widely appreciated thot the heart of experimental physics is in- 

strumentation: Without appropriate instruments, experiment could hardly flour- 

ish. That this has always been the case can be illustrated by the figures on the 

next two pages. If Archimedes did not have the wonderful circular instrument 

in Figure 1, it might have been difficult for him to do his famous experiment. 

As fully realized, especially at SLAC, linear instruments play an equally 

important part. In Figure 2 we give one such example. Without this marvelous 

linear tool, which is now in Florence, it would have been impossible for Gali- 

leo to do some of his celebrated experiments. And if we did not have those we 

might not even have the beginning of classical physics. 

The development of linear and circular facilities played an even more 

basic role in high energy physics. Without these accelerators it would simply 

not be possible to have today’s particle physics. This talk is dedicated to one 

of the true giants in this field, Wolfgang K. H. Panofsky. 

This research was supported in part by th; U. S. Department of Energy. 

@T. D. Lee 1984 

-664- 



Figure 1. 

Figure 2. 
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II. Present Status 

High energy physics can perhaps be.dated to the construction of the cyclo- 

tron by Lawrence in 1928. In theory we may regard Fermi’s formulation of the 

weak interaction in 1932 and Yukawa’s meson hypothesis of the strong interaction 

in 1934 as the beginning of the present era. During the fifty years since then we 

have made tremendous progress in our understanding of the fundamental struc- 

ture of matter. The table an the next page comprises almost all the highlights 

in our field for more than three decades. It is of interest to note some consistent 

patterns: 

1) With the exception of the anti-nucleon and the intermediate bason, none 

of these landmark discoveries was the reason for the construction of the relevant 

accelerator. 

When Lawrence built his 184” cyclotron, the energy was thought to be be- 

low pion production. Therefore, after the cyclotron was turned on, even though 

pions were produced abundantly, for a long time nobody noticed them. 

The progress of particle physics is closely tied r0 the discovery of resanan- 

ces, which started with the (3,3) level found at the Chicago cyclotron. Yet 

even the great Fermi, when he proposed the machine, did not envisage this at 

all. When the Cosmatmn was constructed, some high priests of theory thought 

that the most important high energy problem was to understand the angular dis- 

tribution of pp collisions, which remains mysteriously flat even at a few hun- 

dred MeV, although at that energy s, p, d, f, g * . waves are all involved. 

But as we all know, it was the dynamics of strange particles that put the Cosmo- 

tmn an the map. 
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We could go on and on, and the same pattern would repeat itself throughout 

this list. There is no reason for us to believe that it will change. Nor should we 

expect too much from our present theorists for the prediction of the future. This 

certainly will make my task much easier. 

2) Another interesting feature is the density of great discoveries per unit time. 

As we can see, this is quite uniform and averages out to about one in two years. 

There is every reason for us to expect that very saon there should be another ma- 

jor breakthrough beyond the present intermediate boson physics. From CERN we 

hear reports of seveml mther puzzling high energy pp events, same give a lep- 

ton pair plus a hard photon with large probability, and some give only a single 

jet or a photon with large missing 4-momentum. Perhaps these are indications of 

the future. Although we do not know how it will eventually shape up, it is just 

this unpredictability that makes physics so challenging. 

While theorists are not very good at predicting the future, we are full of - 

hindsight. The present status of theory may be summarized as follows: 

Interaction Theory 

electro-weak SU(2) x U(1) 

QED 

gravitation general relativity 

The remarkable thing is the simplicity of the theoretical basis of this entire 

edifice, with renormalizable quantum gauge theory for the strong and electm- 

weak interactions, and Einstein’s theory of general relativity for gravitation. 

The whole foundation was essentially available almost 50 years ago. We could 

speculate that a bright young theorist might have been able to construct QCD 

and SU(2) X U(1) gauge theory in the 1930s. Indeed this was attempted by 

Oscar Klein, who published a remarkable paper in New Theories in Physics 

(International Institute of Intellectual Cooperation, League of Nations, 1938). 

In that paper, Klein started with the Kaluza-Klein theory and proceeded 

to formulate an SU(2) non-Abelian gauge theory with the neutral member of the 

gauge field identified as the photon. In addition, Klein proposed one genemtion 

of hafmns consisting of the proton and neutron, plus one generation of leptons, 

the electron and neutrino. There it is ! All the essential ingredients are correct. 

Yet somehow, like the League of Nations itself, the idea was right; but the cam- 

portents did not quite represent the practical reality. From this; maybe we can 

draw a lessan. Without experlmental facts, it is perhaps impossible to foresee all 

the details of our future theory. 

In Klein’s time, intelligence alone could not predict the complexity of cal- 

or and flavor degrees of freedom that we know today. Nevertheless, it was pas- 

sible to anticipate the bmad theoretical basis on which the future might rest. 

Therefore in this talk I will concentrate on the theoretical foundation, not the 

detailed structure. 

Let us rmw examine the major problems in today’s physics: 
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1. Quantizatian of gravity 

General relativity lies outside the scope of renormalizable theories. Our 

inability to quantize gravity shows that there should be new physics, at least at 

the level of the Planck length, 10 
-33 

cm. 

2. New puzzling pp events 

The new high energy pp events observed ot CERN, mentioned before, give 

indications that there might be new physics at 10 
-16 

cm. 

Roth of these may lead us into territories outside our present theory. 

3. Number of pammeters in the present theory 

In addition, there are too many porameters in our present theory: the various 

masses of quorks and leptons, the different angles required for mixing, the CP - 

violating phase, etc. All these make one feel that our present theory is far from 

perfect and may only be phenomenological in nature. 

From the uncertainty principle, we should associate small distances with 

large masses. Since at distances larger than 10 
-16 

cm we know that the present 

theory works quite well, it is not clear how the unknown physics of small distan- 

ces can produce the type of small mosses that we know today. Now, the product 

of o small mass times a small distance is an even smaller dimensionless number. 

This implies that our underlying fundamental theory must either contain or be 

able to generate some extremely small dimensionless physical parameters. 

This is hardly surprising since we already have a few such small parameters 

on hard: for example, the ratio of the CP violation amplitude to the strong inter- 

action amplitvde and the ratio of pmton number to photon number in the universe. 

They are both -10e9. Any theory containing pammeters of the order of 10m9 

con easily upset some naive estimates. Squaring 10 
-9 

, we can relate the pres- 

ent 100 GeV physics into regions of the Planck length. In that sense, we may 

not have the right to dissociate gravitation fmm other physical interactions. 

It is not difficult to convince oneself that the concept of local field theory 

is pmbobly inapplicable to distances of the order of the Planck length. Imagine 

that sameone measures the gravitational field at two nearby space-time points 

within the Planck length, but outside each other’s light cone. Local field theo- 

ry then assures us that these two experiments con be done independently of each 

other, no motter how close the points. Yet, just based on uncertainty principle, 

we expect the disturbance caused by these two measurements to be the creation 

of a black hole. Thus, it seems unreasonable to accept the local field theory at 

this level. Furthermore, if one does opply the present local field theory to grav- 

ity, incurable infinities arise to render the quantum theory unusable. Now if 

locality is not satisfied at the Planck length, then the correct physical theory 

must be nonlocal in character. The fact that the Planck length is small is be- 

side the point. We would like this nonlocal fundamental theory to retain oil 

the good features: Lorentz invariance, Poinco* invariance, non-Abelian gauge 

symmetries, unitarity and the general coordinate invariance of general relativ- 

ity. Jn addition it should not contain divergence difficulties, so that quantiza- 

tion of gravity can be carried out. For the rest of this tolk, I will give you one 

such candidate. 
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JIL Space and Time as Dynamical Variables (An Overview) 

In this new theory that we shall discuss, space ond time will be treated as 

dynamic01 variables. This is quite different from our traditional way of thinking. 

for example, in the usual local field theory, only the field is the dynamical var- 

iable. Roth space and time are regarded OS porameters. While the field is em- 

bedded in a continuous 4-dimensional space-time manifold, that monifold itself 

does not represent dynamics, but only kinematic parameters. This view dotes 

back to Newtonian mechanics. We may summarize the role of time in our usual 

continuum theory as follows: 

Non-relativistic 
Quantum Mechanics 

f(t) operator (observable) 

t parameter 

Relativistic Quantum Theory field +I (7, t) operator (observable) 

r , t parameters 

In our usual approach, the position 6 r (t) of a particle is a dynamical var- 

iable in clossicol mechanics, but the time t is a parameter. When we go over 

to the non-relativistic quantum mechanics, the observable r(t) becomes an op- 

erator while t remains a parameter. In the relativistic theory, r and t have 

to be treated on on equal basis. TWO choices are open. Either regard t as an 

opemtor or 7 as a parameter. Our traditional course is to opt for the latter: 

only the fields are operators or observables. The space-time coordinates are 

merely pammeters. An alternative mute is to see whether we can regard t as 

an opemtor; this is then the essence of this new approach, which J call discrete 

mechanics, and may be summarized as follows: 

Discrete Theory 

Classical Mechanics 

Non-relativistic 
Quantum Mechanics 

Relativistic Quantum Theory 

-;,t both dynamical variables 

f,t both operators 
(observables) 

7, t , 9 all operators 
(obsetvables) 

Thus, in the discrete version of relativistic quantum theory, the space-time 

position, as well as the field, is considered a dynamical variable. For example, 

in a collision experiment of, say, e+e- - u’p- at SLC in 1986, the precise 

location and time of the collision should be regarded as part of the measurement, 

on the same footing as the electric field, magnetic field, . . . . In order to in- 

corporate such a view, let us start with the discrete theory in its classical form. 
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IV. Classical Mechanics 

- 

Consider the example of a non-relativistic point particle of unit mass mov- 

ing in a potential V(T) . In the table on the next page, we give the familiar 

formulation of classical continuum mechanics in the left column with AC as the 

action. The corresponding discrete version is given in the right column. 

Let us consider a large time interval T . A fundomentol postulate of dis- 

crete mechanics is that within such a time interval o particle con only assume 

N space-time positions 

(r n ’ ‘n’ 

with n = 1, 2, ... , N . The ratio 

is a fundomental constant of the theory. for convenience and without loss of 

generality we have arranged t, , t2 , a.* , tN in ascending order. The dis- 

crete action AD is then given in the table. Unlike the continuum case (where 

only r(t) is the dynamical variable) we regard‘ 7 n and tn both as dynam- 

ical variables. Consequently there are two sets of equations: 

a AD 
- =o 
a; n 

(1) 

which gives the discrete version of Newton’s law, and in addition 

6 AD 

c 
= 0 (2) 

Continuum Mechanics Discrete Mechanics t 
T f 

LfL 
0 r- 

AC = J’ (fT2-v ‘) dt 
0 

nx f(0) = To 

‘;(T) = Tf 

PAC = 0 gives r = 6?(t) -vv 

‘;(t) = dynamical variable 

t = parameter 

= funda- 

constant 

A,D= z[+Tn2- Y! [V(y,) + VG,,-l)JJ 
n 

w ‘;;, -7p1 
. on- tn-,’ 

v = 
n tn - ‘n-l 

a*D 
-9 e 
vntl - vn 

- = O gives f(t,, - ‘“-,) a7 
n 

aAD= 

= - a V(Q 

atn 
0 gives 

En = tvn2+ f [V(Tn) + Vi;,-, )] 

= 5ltl 

Table 2 
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which yields the energy conservation. There ore altogether 4N unknowns: 

r = 
n (x nI Y,, rn) at-d tn . 

Exactly the same number of equations is supplied by (1) and (2). In continuum 

mechanics conservation of energy is a consequence of Newton’s equation. This 

is not so in discrete mechanics. 

Had we treated time merely as a predetermined discrete parameter, the sys- 

tem would then violate time-translational invariance, and lead to energy non- 

conservation. Historicolly this has always been the difficulty encountered in 

any attempt to treat time as o discrete parameter. Here, by viewing r and n 

tn as dynamical variables we bypass this problem. 

for a free particle V = 0, Eq. (1) gives qn = constant, which alsa satis- 

fies (2). The tmjectory of the particle is always o straight line, the same OS in 

the continuum version. Therefore Newton’s first law remains unaltered. 

for a nonzem V , both yn and tn are determined by the difference 

Equations (1) and (2). both sets of variables respond to the potential and both 

are integral parts of the dynamics. 

In the above discrete action, we use 

f [Vi;,’ + qn-, 1 I on - tn-, ) 

as the discretized version of V(T) dt in the usual continuum theory. Of 

course, we may also use an alternative form: e.g., 

VQ on - fn-,’ , (4) 

or some other choice. When p = y - OD , these different choices all approach 

the same contfnuum limit. However, when p is finite, they correspond to dif- 

ferent discrete dynamic01 systems. We may ask: is there o principle to guide us 

sa that the choice can be unique? This will be discussed in the next section. 
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V. The Discrete Limit of Continuum Theory 

vs 

The Continuum <Limit of Discrete Theory 

In our usual approach the continuum theory is regarded OS fundamental. 

The motion of o particle is then described by, say, a smooth continuous curve C 

in the x , t plane. As an approximation we may replace C by a continuous 

but piece-wise linear lattice curve D, as illustrated in Figure 3(a). We shall 

call the vertices on D the lattice sites and the straight lines between the con- 

secutive sites the links. Let Q be the average length of the links. When 

Q - 0 ; D - C and the discrete action AD for the different choices (3), (4), . . 

approaches the same continuum limit A 
c ’ 

as discussed before. 

In discrete mechanics we assume thot the particle can only take on a dis- 

crete number of space-time positions. If we represent these points by lattice 

sites in the x , t plane, and if we connect the neighboring sites by stmight 

lines, a discrete path wn be formed. The result is a continuous but piece-wise 

linear curve D . Let us keep its link length Q nonzem by fixing D. Consider 

a sequence of smooth continuous curves C which approach D as a limit, as 

shown in Figure 3(b). When C + D , the continuum action 

n+l 

Keep S # 0 

Fix D 

let C-D 

Action AC+ A, 

AC 
= J (fi2 -V) dt 

Figure 3. 

approaches a unique limit A D . By taking the discrete limit of the usual wn- 

tinuum theory, we arrive at a unique discrete action AD . 

If we accept this approach, then we may regard the discrete theory as a 

limit of the usual continuum theory. By considering only those orbits 
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VI. Relativistic Quantum Field Theory 

in which xD(t) is continuous but piece-wise linear with the constraint of a fixed 

density p of lattice sites (vertices), we can derive the discrete mechanics from 

the usual continuum theory. because x,(t) is uniquely specified by the positions 

xi at-d ti of its lattice sites i = 1, 2, 3, . . . , a variation in x 
D 

(t) is identical 

to a variation in xi and ti . Therefore the usual differential equation 

6A = 0 
6&o 

becomes simply the difference equations 

aA = 0 ad aA 0 z, -= 
ati 

in discrete mechanics. Furthermore, since the constraint of a fixed density of Jot- 

tice sites is an invariant concept, all symmetries of the usual continuum theory re- 

main valid in its discrete limit. This is why our discrete theory wn retain transla- 

tional invariance in both space ond time, and therefore Conserves energy and IIKB- 

mentum. The same idea can be generalized to the quantum theory, and the result- 

ing S-matrix can be shown to satisfy unitarity. 

As on example, let 9(x) be a scalar field in the usual continuum theory 

with x denoting the space-time coordinates. In the path integration formula- 

tion the operator -IHT e isgiven by (h = c = 1) 

-iHT 
e = s eiAC [d*(x) ] 

where H is the Hamiltonion operator, AC the usual wntinuum action and T 

the total time interval. Because in the usual continuum theory the space-time 

coordinates x ore parameters, and only 9(x) ore dynamical voriables, the 

functional integration in (7) Jsover [d+(x)] , not [dx] . 

In the discrete version, we impose a maximal * number N of experiments 

that can be performed within any given space-time volume V , with 

N e e-4 
T 

= fundamental constant. @’ 

Each measurement determines the field +IJ as well as the space-time position 

xi with i = 1, 2, ... , N . The i will be referred ta as lattice sites, as illus- 

trated by Figure 4(a). The Green’s function (7) is now replaced by 

s eiAD [dxi] [d+] . (9) 

Because 4 and xi are all dynamical variables, in the discrete theory we 

l If more than N measurements are performed, then one would discover from 

the results of the measurements thot the space-time volume they cover would 

automatically be larger thon the prescribed V . 

-673- 



l 

0 

l 

x2432 . 

Figure 4. 

integrate over [dqi ] as well OS [dxi ], The latter integration makes it ob- 

vious that mtational and translational symmetries con be maintained in the dis- 

crete theory. 

To simulate the local character of the usual continuum theory, each site in 

the discrete theory is coupled only to its neighboring sites, as illustrated in Fig- 

ure 4(b). The whole volume is then divided into triangles if the dimension d =2 , 

tetrahedra if d = 3 , etc. The algorithm of linking the sites into a simplicial lat- 

tice for any d is given by Christ, Friedberg and Lee.’ The result is a simplicial 

lattice D . 

To derive AD , we may regard the discrete theory as the limit of the usuol 

continuum theory. Again we consider a sequence of smooth continuous surfaces 

C in the (d + I)- dimensional space (the field 0 plus the d components of the 

space-time coordinate x), In this sequence the surface C acquires shotper and 

sharper ridges, so thot in the limit C - D . The limiting lattice surface D is 

continuous but piece-wise flat. Just as in the previous section, A + A 
C D 

which gives a unique expression for the discrete action. Since D is charocter- 

ized by the positions of its lattice sites oi and x. , in the d+ 1 space, a vor- 

iation over the function01 space I+(X) in the usual continuum theory becomes 

[d&)] - Idxi I Idoil 
As in Sect. V , the discrete theory can be regarded OS o limit of the usual wn- 

tinuum theory under the constraint of o fixed density of lattice sites, Eq. (8). Be- 

cause the site density is an invariant, Lorentz invorionce and Poincare invariance 

can both be preserved in this discrete limit. 
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VIL Furdomental Length R 

Assuming that the discrete theory is the fundamental one, the length R de- 

fined in (8) can be determined experimentally. The presence of a nonzem R 

can produce many physical effects, among them energy level changes and pmpa- 

gator modifications. 

1) Hydrogen-like atoms 

There will be o shift between the energy ED in the discrete theory from 

EC of the usual continuum theory for a hydrogen-like otom 
2 

: 

ED - EC 2 - & a2Q2 1 9(O) I2 
e 

where R is the nuclear rcdius, m 
e 

the electron mass, a the fine-structure 

constant and q(O) the usual non-relativistic Schmedinger wave function of 

the electron at the origin. By using the present Lamb-shift result3 we deter- 

mine an upper limit for the fundamental length 

Q < 1.6 x 10-14cm. 

A better bound, < lo-l5 cm, can be obtained by using mu-mesic atoms, g - 2 , 

and other atomic results. 
4 

2) Photon propagator modification 

In a discrete theory, the photon pmpagotor s(k) differs from its usual 

form k 
-2 

where k is the wave number. Because Lorentz invariance is moin- 

tained in the discrete theory, d (k) depends only on k2 . At the origin, 

k = 0 , the propagator is finite (whereas in the usual continuum theory, 

k-2 - 00). At the long wavelength limit we hove 
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From high-energy ete- dato5 we find 

Q < 5 x lo-l6 cm . (‘2) 

A similar bound can also be set by using the forword dispersion relation6 in np . 
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VIIL Lattice Gmvity Regge’s original approach, he considers the discrete action as on approximotion 

The usual Einstein action in general relativity is 

AC(S) = s /m Rdx 
C 

(13) 

where C is a d-dimensional smooth continuous surface, \ g 1 is the absolute 

volue of the determinant of the matrix of the metric tensor g 
P 

on C, R is 

the scalar curvature and dx is the d-dimensional volume element in the 

space-time coordinate x . 

Consider now o simplicial d-dimensional discrete lattice D with i = 1, 2, ... 

denoting the lattice sites and Qij the link lengths between sites i and j . The 

Qij ore assumed to sati+ all simplicial inequalities, so that each d simplex of 

d+ 1 linked sites, by itself, con be realized in a flat d-dimensional space. This 

entire lattice D can be embedded in a d+n flat space provided n is large 

enough, with Qij the Cartesian distance between i and j in this flat (d+ n) - 

dimensional space. 

Next we consider o sequence of smooth continuous d-dimensional surfaces 

C which have sharper and sharper ridges, and approach D in the limit. At 

first sight, it might appear difficult to approach this limit bacouse the metric 

gij would change discontinuously from simplex to simplex, the Christoffel sym- 

bol would then acquire 6-functions and the scalar curvature 6’ -functions. 

Since Einstein’s action is nonlinear in gij , one might expect the resulting ac- 

tion to be totolly unmanageable. It turns out that this is not so. In the discrete 

limit of the continuum theory, Einstein’s action approaches Regge’s action.’ In 

to Einstein’s continuum action. Here we are reversing the role and regarding 

the discrete action A D OS more fundamental. It is therefore satisfying to real- 

ize that Regge’s action AD is precisely the discrete limit of Einstein’s con- 

tinuum action.* 

The discrete action A D can also be formulated in terms of Regge’s deficit 

angle e s around a d -2 simplex s : 

where F is the volumeof s. [SeeReferences 7 and 8 for details.] Be- 

cause AD is the discrete limit of Einstein’s action, A D enjoys the same sym- 

metry property under a generol coodinote transformation. In addition to all in- 

variance properties of general relativity, AD the lattice action has further sym- 

metries. We may fill in the space between the lattice sites by a d-dimensional 

smooth surface S embedded in a flat (d+ n) -dimensional space. Given S 

and the relative position of the i 
th 

site zi on the manifold, we can figure out 

.th the link length Qij between the I and j 
th 

lattice sites. Therefore the lat- 

tice action AD con also be regarded as a function of the manifold S and the 

coo&notes z . 
i . 

AD = AD( S , zi) . 

We can K)W consider transformations: 

or 
s - s , zi - Zi’ 

s- S’, zi-zi . 

(15) 

(16) 
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*L 
can be Invariant under either of these two types of transformations provided 

the link length ‘t;j is unchqnged. These symmetries do not exist in the usual 

Einstein theory of general relativity. Therefore the discrete theory has all the 

invariance character of the usual theory of general relativity; in addition it is 

invariant under these new transfonations (16). 

IX. Concluding Remarks 

By regarding space and time as dynamical variobles, a fundamental length 

Q can be introduced which removes all ultraviolet divergences, and therefore 

makes quantization of gravity possible. As we have shown, such a discrete the- 

ory can also be viewed as a limit of the usual continuum theory but with a 

fixed density of lattice sites. Because this is an invariant constraint, the dis- 

crete theory shares the same symmetries of the usual continuum theory. In this 

way, we have succeeded in the creation of theories with finite degrees of free- 

dom, but which retoin all the good properties of the usual continuum theory. 

At the minimum, this gives a cut-off procedure that satisfies all symmetries in- 

cluding the general caordinate-transformation symmetry of general relativity 

which is otherwise extremely difficult to achieve. At the maximum, the dis- 

crete theory may change our fundamental concept of space-time. The discrete 

formulation is more basic, and our usual differential formulation is only an 

approximation. 

The fundamental length Q can be 10 
-16 

cm or smaller. If it is about 

lo-l6 cm, then in a few years it will be measured here at SLC. But if it is much 

smaller, then a direct measurement may require an accelerator of a scale shown 

in the next figure. We might call such an accelerator SSSPFC (Super-super- 

super PieF-Collider), but otherwise it is also known as Quasar 3C273. Of course 

there may also be some more clever way to determine the fundamental length, 

and we shall leave this as a challenge to Pief. 
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