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1. INTRODUCTION 

Thisiear we celebrate the 50th anniversary of the discovery of Cherenkov radiation by 
P.A. Cherenkov [I] in Moscow. This kind of radiation is basically an electromagnetic 
shock-wave phenomenon, analagous in form to the more familiar shock-wave phenomena 
in classical physics of front-wave emission from a boat in water and acoustic bang-wave 
emission from a supersonic aeroplane. In all three cases the shock wave can be described as 
the result of constructive interference of spherical (circular) waves emitted by an object (the 
emitter e) travelling in a medium (m) along a straight path with a speed V~ that exceeds the 
wave-propagation velocity (group velocity) v, in the medium. The angle of emission 0 of 
the shock wave with regard to the trajectory of the object is straightforwardly obtained 
using Huygens’ principle as illustrated in Fig. 1; 

0 = arccos (vm/vr). (1) 

For a charged particle travelling in a transparent dielectric medium of refractive index n we 
may express the two velocities as 

Vr = Bc, (2) 

Vm = c/n, (3) 

which inserted in Eq. (1) yields 

8 = arccos (l/pn) (4) 

This relation can also be derived from classical electrodynamics considering the angular 
distribution of energy radiated from a current density (defined in this case by the moving 
charged particle) in a homogeneous dielectric. [2] The radiation distribution is found to 
have a sharp maximum at the polar angle arccos(l/pn). The classical relation (1) can thus 
be used also for relativistic velocities. Note, however, that since in the classical case vL can 
be much larger than v,,,, 0 may approach 90” when vr is very large. Since in the relativistic 
case fi cannot be larger than unity,0 will not exceed the angle arccos (I/n). The Cherenkov 
angle thus grows from 0 = 0 at the threshold velocity j3 = l/n up to a maximum value 0 = 
arccos (I/n) as D approaches unity. In Table 1 the refractive index for visible light and the 
maximum Cherenkov angle are given for some familiar gases, liquids, and solids. 

When dealing with relativistic elementary particles it is often more convenient to use 
the Lorenz variable 

y = E/m = l/m (5) 

SHOCK WAVE EMISSION 

Fig. I Shock-wave formarion by an objecr e that travels rhraugh a medium m cmitring sphetical waves. If v. > 
v. a shock-nave is rormed according to Huygens’ principle (right). If v, < vn no shock wave is formed 
(IdI). 

to specify the velocity of the particle rather than the relative velocity @ (= v/c = p/E = 
JI - I/y’). This is so because for a given particle of mass m at highly relativistic energy, 
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7 is approximately proportional to the momentum p (y = E/m =\‘p’ + m’/m = p/m for 
p t m). The momentum can be determined from the curvature of the charged-particle 
track in a magnetic field. Measuring both p and 7, an approximate value of the mass of the 
particle is thus simply obtained as the ratio between the two. 

Table 1 

Retracthe mdcx for visible tisht. maximal Chcrenko\ angle and number oichercnkov photon5 emitted from a IO 
cm tong track in a icu welt-known garcr. liquids. and solids. 

” &n.. Nph “is (10 cm) 
(“1 

Helium l.wOO3S 0.48 0.39 
Air I .006283 1.36 3.14 
lsobutane 1.00127 2.89 14.07 
Freon I.233 35.8 1899 
Water 1.33 41.2 2412 
Quartz 1.46 46.7 2946 
BGO 2.15 62.3 4349 

Expressed in y the previously discussed results take the form 

B = arccos [I /(II. -IF-$)]. 

For7 - m: 
tJ m.i = arccos (I/n). (7) 

According to classical electrodynamics, the power radiated in a given direction by an 
electric current depends only on the component of the current that is perpendicular to the 
direction of the observed radiation. Hence, if Cherenkov radiation occurs at a certain 
angle 0 with regard to the direction of the charged-particle motion, then the component of 
the current that contributes to the radiation is proportional to sin 8. As the power is 
proportional to the square of the current the intensity of the Cherenkov light is proportional 
to sin* 6. The full electrodynamical expression for the number of emitted Cherenkov 
photons is [2] 

N, = (e’/fic’)~L~sin%~Aw , (9) 

where L is the length of the particle track in the dielectric and Aw is the width of the 
frequency band over which photons are detected. This relation also expresses the important 
fact that Cherenkov radiation is evenly distributed in photon frequency. Expressjng the 
terms of Eq. (9) in convenient units we may write the number of detected photons in a given 
Cherenkov detector as 

Ndrrcrrcd = NO. L&m). sin%, WV 

where 
NO = 370 cm-’ eV-’ j E @A) d(ftw) . (10 

Here No is a quality parameter of the counter, expressed in terms of an integral over photon 
energyfiw (in eV) of the photon detector efficiency function t&t). 

Using Eq. (IO) to calculate the number of emitted Cherenkov photons in the visible 
photon energy range (setting t E 1 in the wavelength region 4OCG7500 A corresponding to 
a& range width of about 1.5 eV) for L = 10 cm one obtains the numbers given in Table 1. 

The aim of the present notes is to outline the resolution, the optics design criteria and 
the expected particle-discrimination performance of a recently developed type of Cherenkov 
detector conceived to measure the Cherenkov angle of charged particles produced at 
high-energy particle colliders thus allowing for a determination of the mass, and thereby the 
identity, of these particles. This type of detector will here be called RICH, as abbreviation 
for Ring-imaging Cherenkov counters. In a RICH counter the Cherenkov light emitted by 
a traversing charged particle is imaged onto a position-sensitive single-UV photon detector 
of time-projection-chamber (TPC) type, thereby allowing for an experimental deter- 
mination, over a large solid angle, of the Cherenkov angles for several secondary particles 
simultaneously.[3] 

A RICH counter should have as high Cherenkov-angular resolution and as high 
photon yield as possible, thereby maximizing the useful velocity range over which a mass 
determination with satisfactory resolution can be made. The counter should furthermore be 
adaptable to different geometrical configurations and have as small radial extension and as 
low matter density as possible in order to keep the detector dimensions as small as possible 
and to minimize secondary particle interactions. Below we will discuss the possibilities and 
limitations of the RICH technique along these lines. 

2. DETECTOR OPTICS AND CHERENKOV ANGLE RECONSTRUCTION 

If the light emission per unit track-length from a charged particle travelling in a given 
radiator medium [see Eq. (IO)) is sufficiently large it may be possible to determine the 
Cherenkov angle with satisfactory precision by measuring the light emitted from a thin layer 
of radiator by simply projecting the light onto a photon-detector surface at some distance as 
illustrated in Fig. 2. This scheme is usually practicable when using dense radiators such as 
liquids. The ultimate geometrical resolution in Cherenkov angle of this method is limited by 
the finite value of the ratio of the radiator-layer width d to the lever-arm length f. 
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PROXIMITY FOCUSSING 

Liquid radiator Lever 
layer arm 

Photon detector 
image plane 

Fig. 2 Detcrminarion of the Cherenkov angle by lettins the light emitted from a thin liquid radiator layer be 
projected 0n10 a photon-detector surface (‘proximity focussing’ 141). 

If, on the other hand, the light emission per unit length of radiator medium is low, as it 
is in gases, the radiator length has to be maximized. In this case the light has to be focused 
to retain a satisfactory geometric angular resolution. Cherenkov light is emitted at a constant 
polar angle around the particle trajectory. Therefore, if the trajectory is rectilinear the light 
is parallel in any given azimuthal plane, and if reflected by a concave spherical mirror the 
light will focus to a point halfway between the mirror surface and its centre of curvature as 
illustrated in Fig, 3. Note however that this focusing condition is only valid for small values 
of 6’. For larger angles the photon rays are no longer central and the focal point varies with 
the location of the point of emission along the particle trajectory. Non-central photon rays 
are also obtained even in the case of small 8 if the particle trajectory does not pass through 
the centre of curvature of the mirror. The displacement of the focus for non-central photon 
rays is illustrated by the so-called caustic curve shown in Fig. 4. The deviation of the light 
from non-central incidence leads to geometrical aberrations in the system, limiting the 
angular resolution. 

The photon acceptance of a RICH counter is maximized if the photon detector covers 
the light image for all azimuthal angles around the particle trajectory. If so, the image 
obtained in the photon-detector plane is ring-shaped. The ring is, however, perfectly 
circular only for particles incident along the optical axis of the detector-in all other cases 
the image is more or less ellipsoid. For inclined particles in liquid radiators part of the 
azimuthal acceptance may be lost due to total internal reflection of the Cherenkov light at 
the inner surface of the liquid and the images are in such cases not even rings but open 
paraboloids. 

To facilitate the reconstruction of the Cherenkov angle the coordinates of the 
trajectory of the radiating particle must also be measured. A light ray is traced from the 
location of each detected photon back to the location of the midpoint of the particle 
trajectory (in the case of a focusing counter after reflection in the mirror) and the 
Cherenkov angle of the individual photon is calculated as the angle of the reconstructed ray 
with the particle trajectory. In the case of a liquid radiator it is also of importance to take 
into account the refraction of the light-ray in the downstream liquid boundary. Double 
refraction in windows should also be included. 

Note that in the case of a focusing counter parallel tracks will, to the first order of 
approximation, give ring-images with coinciding centres. The position of a Cherenkov ring 
in a focusing counter thus depends to first order only on the direction of the track and not 
on its location. 

The Cherenkov angle for the particle is calculated as the (possibly weighted) mean- 
value of the angles reconstructed from the detected photons. The amount of background 
photons from nearby tracks or other sources can be minimized by selecting only those 
photons that have a reconstructed angle that falls within 2 or 3 standard deviations from the 
observed peak value. Alternatively, knowing the momentum of the particle the location of 
the images of the Cherenkov photons can be predicted assuming the radiating particle to 
have the mass of either e, 8, x, K, or p. It is then possible to test which of these image 
locations that best fits with the actually observed location of the photons (the number of 
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FOCUSSING WITH SPHERICAL MIRROR The Caustic 

Photon detector 
image plane 

f= focal length= 
half the radius 
of curvature 

Spherical 
mirror 

Fig. 3 Determination of the Cherenkov angle by letting the light emitted in a gaseous radiator be focalized by B 
spherical mirror onto B photon-detector surface. 

incident 
parallel 
Light 

Spherica\ 
mirror 

Fig. 4 The so-called caustic curve which shows how the position of the focus for parallel light reflected by a 
spcrical mirror depends on the impact parameter of the light. The center of curvature of the mirror is 
indicated with a cross. (The caustic can be straightforwardly observed in sunlight, e.g. inside a 
wedding-ring placed on a flat rurlacc or in a tilled coffee cup). 
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photons falling within 2 or 3 standard deviations from each expected image can be 
identified and a x2 probability for each case evaluated). 

Once the Cherenkov angle has been determined the mass of the radiating particle can 
be calculated provided that also the momentum of the particle has been measured. 
Contracting Eqs. (4) and (5) we obtain 

m = p Jn’ co? 0 - 1 . (12) 

As the mass ratios of e, rr, K, and p (but not p/z) are relatively large the mass 
determination can be used to reliably identify any of these particles provided that the 
standard error in mass is not more than say, for example, o,/m = 15%. Since m is 
proportional to p, the momentum resolution required for satisfactory particle identification 
is then of the same order, i.e. or/p = 15%. The requirements on o&l are discussed in 
Sections 3 and 4. 

3. ANGULAR RESOLUTION AND DESIGN OF COUNTERS 
WITH GASEOUS RADIATOR 

The values of the refractive index minus one (n - 1) and the Cherenkov angle (0) are 
both small compared to unity for gaseous radiators. This is, on the other hand, not the case 
for liquid and solid radiators (see Table 1). In the expressions involving the two quantities 
mentioned it is therefore possible to make simplifying approximations when dealing with 
gaseous radiators, Conversely these approximations cannot be used for liquid or solid 
radiators. 

In particular, Eqs. (7) and (8) can be simplified in the following way when 0 and 
n - I are small. 

9 mpI = sin tl,,, = dl - co? 6,,. = m = m) and (13) 

y,hrrrhdd = I/J1 - I/n* = l/v) I I/m. (14) 

These approximations do not entail relative errors in 6 mlr or ~rs,~~r,~rd exceeding 2 x 10 - r 
for gaseous radiations [(n - I) < 2 x IO-‘]. We have thus obtained 

8 nlar = d7iG-G = I/ythreahald. (15) 

Let us define a normalized Cherenkov angle 0 nDrm and a normalized Lorenz velocity 
ynO,“,, respectively, as 

e nOlm = e/e,., = 0/m and 

ynorm = y/y,hddd = Y -Jm=x. (17) 

Inserting these quantities in Eq. (6) we obtain the following simplified expression [a]; 

e norm = JI - I/rft,. (18) 

The interesting feature of this expression is, besides its formal simplicity, that it is 
invariant in the refractive index n. The values of n - 1 for different gases at NTP span 
several orders of magnitude (see Table 1). The conclusions we will draw from Eq. (18) will 
nonetheless be equally valid for all gases since the refractive index does not appear in the 
formula. 

Figure 5 shows a plot ofRelation (18) illustrating how the Cherenkov angle grows very 
rapidly from zero just above threshold velocity and how it approaches asymptotically its 
maximum value from below. For values of y nDr,,, large relative to unity we see that B.,,, 
approaches its maximum value of 1 as 

1 - en,,., = 1 - di-T7&, - 1/(2’yf,r,), 

i.e. as half the inverse square of ynorm. 

3.1 Angular resolution and particle discrimination 

As already discussed in the Introduction, any photon detector will have a certain range 
SW, -4iw~ in photon energy over which it is sensitive (e.g. for the eye%wr = 3.1 eV and 
+ihw2 = 1.65 eV). As, in general, the refractive index in a dielectric varies with& this leads 
to a spread in the observed Cherenkov angle which is not related to the velocity of the 
radiating particle but to the energy of the particular Cherenkov-photon registered [see 
Formula (6)]. This spread in 0. related to the photon energy spread through the variation in 
n, is called chromatic aberration. As the photon detectors we discuss here do not measure 
the individual energy of each photon registered there is no way of correcting for this type of 
aberration in a wide aperture counter. (As opposed to the case of small aperture counters, 
for which chromaticity-correcting lenses may be used to reduce the aberration). The angular 
error in a RICH counter can, therefore, not be smaller than the angular spread caused by 
chromatic aberration. 

The angular resolution of a RICH counter is only of critical interest at high values of 7, 
where the relative variation in 0 is small. In order to obtain the variation of 8 with n we may 
therefore differentiateExpression (15) with regard to n 

aelan = ae,,./an = a [-]/an = I/~) (20) 

-+ (Ae/epom = ‘/2.An/(n _ I) , (21) 

from which we conclude that the relative spread in Cherenkov angle for a gaseous radiator 
is equal to half the relative spread in refractive index. 
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Fl& 5 Plot of Eq. (18) showing how the normalized Cherenkov angle B m_ grows from zero at normalized 
Lorenz velocity lmrn = I up towards the maximum value 8,, = 1 at large velocities. 

Let us now compare the chromatic spread in Cherenkov angle (21) with the deviation 
1 - Onor,,, of the Cherenkov angle from its saturated value (19). Clearly, above the ynonn 
value for which A&% > 1 - B..,,, it is no longer possible to derive a precise value for y 
from a measurement of B..,,. This upper limit in yDorm defined here as -$$, , is obtained 
fromExpressions (19) and (21) as 

1/(2.yiorm) = % An/(n - 1) -t -&% = \/(n - I)/An = 1/G cw 

Since the lower limit in velocity for measurement of ynorm by definition is at the threshold, 
i.e. $& = 1, the result (22) implies that the dynamical range in y. defined as ymsX/ymi”, is 
equal to the inverse square root of the relative dispersion Annonn = An/@ - 1) in refractive 
index. 

According toExpression (14) 

Y min = 1/m, 

from which it follows that 

Y 
mar _ InPI 

- ynorm ‘Y min = [m)/An].[l/m)] = l/G (24) 

The upper (lower) limit in y is thus equal to the inverse square root of twice the absolute 
dispersion (the residue) of the refractive index. 

We will now use these results to evaluate up to what total-energy E two particles of 
mass m. and rnb can be separated on the basis of a measurement of 0 under the idealized 
conditions that the chromatic dispersion is the only source of error in 0 and that the error in 
the E measurement is negligible. We thus define that the particles as separated when their 
corresponding Cherenkov angles differ by At@‘“. 

Given 

7. = Wm., 
yb = E/mb , and 
mb < m., 

we obtain using Eqs. (14) and (19) 

e nom.r - enom.b = ‘/z [m./Em)]* - ‘/~[rnt./E~]~. 

This difference O..,,,. - &,,rm,b is equal to the relative angular chromatic dispersion of Eq. 
(21) when 

‘/,.(m: - mf)/Ez.2(n - 1) = ‘/z.An/(n - 1) -V 

(25) 
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This is the upper limit in particle total energy for discrimination between particles a and b. 
Assuming mb < m. the correspondijtg lower limit is simply obtained as the energy below 
which none of the particles radiates 

E%?, - mbYlhr.rhold = mb 2(n - 1). (26) 

In Table 2 we have listed the values of n - 1 and An for three noble gases, three 
hydrocarbon gases, and five fluorocarbon (freon) gases (at NTP except C~FII and &FM 
which are not gases at NTP). The photon energy range has been assumed to be in the 
far ultraviolet region 6.5-7.5 eV (wavelength 1650-1900 A). For each gas -y,,,,“, EzE, 
EK’D p In!“, ymr. msx, E!$!:“,, An/(n - I), the dynamical range y,,,/y,i. and the length 
of radiator gas required to detect 15 photons in a counter of quality parameter No = 
80 cm - ’ is listed. The range in y and E for each gas has also been illustrated in Fig. 6. 

As seen, the noble gases and the freons have about the same relative dispersion in n (of 
the order of 3%), whereas the hydrocarbons are about three time more dispersive. If one 
wants to reach high values in n, keeping An/@ - 1) low, the heavy freons are to be 
preferred (note that CsFtz and C~FM are liquids boiling at 30°C and 57°C respectively-the 
values of the refractive indices given are valid for the gaseous phase at 1 atm just above the 
boiling point). 

3.2 Other sources of errcn and counter design 

In addition to the chromatic dispersion there are, of course, other sources of error in 
the measured Cherenkov angle. These other sources are, however, such that by a careful 
design of the detector the chromatic error will remain the dominant error. We will study 
below how this condition actually dictates the design of a RICH detector. 

3.2. I Geometric aberration 
As already noted, the focusing of parallel rays in a spherical mirror is exact only in the 

case when the light ray passes through the centre of curvature of the mirror. As the 
Cherenkov light makes an angle with the particle trajectory there will be some geometric 
aberration in the focusing even if the particle trajectory passes through the centle of 
curvature of the mirror (the particle track has zero impact parameter). lf, in addition, the 
particle track passes the centre of curvature of the mirror at some distance, i.e. at a 
non-zero value of the impact parameter x = b/R (where 6 = the distance and R = radius of 
curvature of the mirror) the geometric aberration will increase. Evaluating the geometrical 
aberration error as a function of x for Cherenkov light focused by a spherical mirror [sj one 
obtains for the full width of the relative angular spread 

(A@/‘&., = (n - I)-/?@ (m/7). x 0 x2 0 ,.., (27) 

where @ means addition in quadrature. From Eq. (27) we may conclude that at 
x = 0, (AU@,,,,,, = (n - 1) d3 and that for large values of x (AM&,, increases like x2 
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Fig. 6 Graph illuararing the ranges within which velocity measuremcntr can be made using a gaseous-radiator 
RICH counter wth diflcrent gasses. The lower limit is se! by the absolute threshold 7”“” = I/m 
and the upper bmit by chromatic digpersion for photon energies 7 f 0.5 cV. 7’“- = I/G. Thcrc arc 
scaler indicating the momentum for r, K and p. (The data of thir graph are lirwd m Table 2.) 

(the x2 term dominates over the x term above x = 0.03 for n I 1.002). Figure 7 shows a plot 
of (Ae/e),..m versus x for n = 1.002. 

In order to satisfy the requirement that (Ag/g),,,, c (Afl/8)chrom an upper limit on x 
must be imposed. In the optical scheme originally proposed [7] for wide-aperture RICH 
counters the centre of curvature of the mirror coincides with the point of emission of 
particles (see Fig. 8, spherical RICH) and x is zero for all directions of particle emission (at 
least in the case of zero magnetic field). For a RICH counter at a collider that should cover 
the full solid angle this implies a spherical geometry with the radius of the detector sphere 
exactly half that of the mirror sphere. Such a geometry imposes severe restrictions on the 
space available to other detectors in the experiment and on their geometry. In order to 
obtain a more flexible layout the sphere may. however, be cut up into small spherical 
sectors, called cupolas (see Fig. 8). which can be laid out in arrays that fit the geometry of 
the overall experimental layout. The centre of curvature of a cupola mirror need not at all 
coincide with the centre of emission of particles. It is sufficient that the aperture OF each 
cupola be limited such that the geometrical aberrations are small.]41 Choosing for the 
discussion a radiator for which ]An/(n - I)lckmm = 4% (ref. Table 2) the relative angular 
resolution is (Eq. 21) (Ae/e),h,, = 2%. For (AW8)..om to be smaller than (AB/%,,, 
Eq. (27) implies the requirement x < 0.14. 
The apertures of the cupola should thus in this case be such that the impact parameter x for 
all tracks is smaller than 0.14. Figure 9 shows an early working drawing of a 
spherical-mirror cupola-array layout from the discussions that led to the conception of the 
DELPHI RICH counters at LEP. 

In some cases it is preferable to use paraboloid mirrors, for example when the impact 
parameter is large but the angular spread of the particle trajectories is small. This condition 
is fulfilled, for example in the Barrel RICH of the DELPHI detector, where paraboloid 
mirrors are used in the final design. Other shapes of the mirrors,for example ellipsoid,could 
be optimal in certain cases. 

3.2.2 Photon padioning errors 
The position resolution Ar., in the image plane of the photon detector should be such 

that (r = ring radius) 

(~dh < (Ae/eh,., (28) 

Choosing, somewhat arbitrarily, as example fJ = 60 mrad and f = 1000 mm (i.e. r = 60 
mm) this implies Ar < 1.2 mm if (AB/B),k,,, = 2%. The photon detector should thus, in 
this case, have a position resolution of the order of I mm or better in order for the 
chromatic error to dominate. 

Ideally the lateral position of all photons should be measured exactly in the focal 
surface. However, this is not possible in practice. A spread AZ in longitudinal coordinate 
(transverse to the focal plane) of the point at which the lateral coordinates x and y of the 
photon track is measured will tend to increase the relative uncertainty in the measured 
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Fig. 9. Earl) worhing-drawing of a spherical-mirror cupola-array from the discurrions that led lo the 
conception of the DELPHI RICH counters. 

Cherenkov angle. For this spread in B to be smaller than that caused by chromatic 
aberration is required that AZ < f.(AM) <hro,,, in case of perpendicular incidence of the 
light on the photon detector. However, if x # 0, the light will in general hit the photon 
detector al an angle (Y, which in practical cases can be considerable. In such cases the image 
aberration is systematic and can be corrected for provided that the depth coordinate z is 
measured with sufficient accuracy [the accuracy required for z depends on (Y. 
AZ < f (A0 ~j,rom/a& 

3.2.3 Magnericfield and multiple Coulomb scatkving 
As already discussed, in order to use the measurement of the velocity y to identify 

particles, the momentum of the particle must also be known. This implies, in practice, that 
a magnetic spectrometer must be used. If the Cherenkov counters have to be placed in the 
magnetic field of the spectrometer the particle track will be bent and the image distorted. 
The effect on the image is illustrated in Fig. 10. The displacement A0 in angle for a particle 
of momentum p traversing a radiator of length d in a magnetic field with a component BT 
perpendicularly to the particle trajectory is 

AfJ = 0.3 Brd/p , (2% 

Averaging the angular smear around the ring reduces A0 by a factor 2/r. As it is at high 
momenta (where the difference in ring radius for different particles is small) that a high 
resolution in B is needed 9~ can in practical cases be quite high (- IT) without significantly 
deteriorating r/K and K/p separation. However, e/r separation may be significantly 
affected since the * ring approaches the e ring in radius at comparatively much lower 
momenta. 

It should also be noted that the magnetic field in general will affect the operation of the 
photon detector, possibly changing its position resolution. 

Another reason for the particle trajectory not to follow a straight line is multiple 
Coulomb scattering in the radiator. This effect is, however, in most practical cases of 
negligible magnitude. 

4. ANGULAR RESOLUTION AND DESIGN OF COUNTERS 
WITH LIQUID RADIATORS 

There are several qualitative differences between the case of liquid radiators and that of 
gaseous radiators. As seen from Table 1, comparing a heavy gas (such as isobutane) with a 
light liquid (such as freon), the density of emitted photons is more than two orders of 
magnitude larger and the Cherenkov angle more than one order of magnitude larger in the 
case of the liquid. These facts are, of course, just reflections of the large step in (n - I) of 
more than two orders of magnitude when going from gases to liquids. The consequences are 
the following: 
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EFFECT OF MAGNETIC FIELD 

T 6 

Fig. 10 Illustration of how a Chcrenkov ring is smeared il the radiating particle passer through a magnetic 
field. 

i) In view of the high photon density a liquid radiator may be made thin (- 1 cm), so that 
B can be measured by simple projection without focusing mirrors,[4] as already 
discussed (see Fig. 2). 

ii) The large value of 0 implies that the small-angle approximation is no longer valid. 
iii) The large value of the refractive index implies that refraction of Cherenkov light in the 

downstream liquid surface has 10 be taken into account. In particular, under certain 
conditions the Cherenkov light is subject to total internal reflection. 

iv) Finally, the relative range of (n - I) is much smaller for liquids than foor gases. In terms 
of the ratio (nmax - t)/(n,i. - 1) the range is about 45 for gases at NTP (see Table 1, 
nmin = 1.OOoO35, n,,, = 1.00127) but only 1.8 for liquids (nmin = 1.233, n,., = 1.41; 
for n > 1.41 all Cherenkov light is totally internally reflected for particle trajectories 
normal to the downstream liquid boundary). This implies that it is not possible 10 
change dramatically the lower velocity limit yrnin for particle-discrimination of a 
liquid-radiator counter by changing the liquid. 
With reference to Fig. 2, defining as in the case of gaseous radiators a normalized 

radius R norm = R/R,., and a normalized velocity ynO,,,, = ~/y,h,~,b.,,~, we obtain the 
relation between R,,,, and ynorm by contracrion of the following expressions 

R norm = tan $/tan d,., 

$ = arcsin (n sin ~9) (Snell’s law) 

fI = arccos [ 1 /(n . m)] 

y = rn”‘./- 

(30) 

(6) 

(8) 

leading to 

R ““IIn = 
tan [arcsin (n sin (arccos [l/(n x 41 - (1 - l/n2)/rzm-)~ 

tan (arcsin [n sin [arccos (I/n)]]) (31) 

to be compared with the expression obtained for gaseous radiators 

In the limit n -+ 1 Eq. (31) reduces to Eq. (18). Clearly, Eq. (31) does not have the formal 
simplicity of Eq. (18) and, more importantly, Eq. (31) is no/ invarionf in n as is Eq. (18). 
Therefore, conclusions drawn from Eq. (31) will be different for different liquids (different 
values of n). The scale-breaking in n is illustrated in Fig. 11, where Rno,, has been plotted 
versus ynorm for different values of n between 1.20 and 1.40. When n -+ 1 the curves tend to 

-255- 



01 I I I I I I _ 
0 2 4 6 0 10 

Normalized velocity parameter ‘i 

Fig. II Plot ol Eq. (31) showing the relation between the normalized Chercnkov-ring radius Rmm. and the 
normalized velocity ynorn for normal incidence of particles in a proximity locursing liquid-radiator 
RICH-counter for different values of the r&active index n. 

the limiting curve, here labelled n = 1.0017. which, as already stated [Relation (18) invariant 
in n] is valid for all gases. The dashed curve has been calculated for n = 1.40 not including 
the effects of refraction [Relation (30)j.The significant difference between this curve and 
that including refraction for n = 1.40 shows the dominant importance of the refraction as n 
approaches the limiting value n = fi, above which total reflection occurs. 

In Fig. 12 R.,,, has again been plotted, this time as a function of y (= -ynorm. ~,hrclha~d). 
It is apparent from this figure that the available range in threshold velocities is quite limited; 
y,hrcaho~d = 1.41 (n = 1.41) to 1.67 (n = 1.25). However, the curve for n = 1.40 seems to 
stretch over quite a large dynamical range, having a very low threshold and approaching 
R norm = 1 at about the same rate as the curve for n = 1.02. From these considerations alone 
one would conclude that a liquid with a refractive index just below n = 1.41 would 
represent an optimal choice. However, as discussed in the following section, chromatic 
dispersion in the refraction invalidates such a conclusion. 

4.1 Angular resolution and particle discrimination 
As for a gaseous-radiator counter the ultimate limit in angular resolution is set by the 

chromatic dispersion of the refractive index. To study the effects of this dispersion for 
liquid radiators we cannot use the simple Eq. (21). primarily because this formula does not 
include the additional angular spread introduced through chromatic dispersion in the 
refraction in the downstream liquid surface and also because of the fact that the small-angle 
approximation used to derive this formula is no longer valid. 

An overriding condition when choosing a radiator is that it be transparent to the 
photons to be detected. As the TPC-type photon detectors developed so far use 
tetrakis-(dimethylamine)-ethylene (TMAE) as the photo-ionizing component, only photons 
of an energy above the photo-ionization threshold of this substance which is 5.4 eV 
(wavelengths below 230 nm) can be detected. If purified fused quartz is used as window 
material only light of energy below the transparency threshold of this material, 7.5 eV 
(165 nm), can be detected. As a consequence, we require a good radiator to have a high 
transparency over most of the interval 5.4-7.5 eV. This condition is fulfilled for the noble 
gases and the lighter hydrocarbons and fluorocarbons listed in Table 2. However, we have 
already mentioned that the hydrocarbons have a larger chromatic dispersion in this 
photon-energy range as compared to the nobel gases and the fluorocarbons. We could thus 
obtain satisfactory radiator liquids by liquefying noble gases or fluorocarbons. There are 
obvious practical advantages of not having to work at low temperature. This in turn implies 
that the use of liquefied noble gases should be avoided and focuses the choice on the heavy 
fluorocarbons which are in liquid phase at room temperature. In Table 3 we have listed a 
series of fluorocarbons with their refractive indicies at 7 eV and the absolute and relative 
variation in n over the range 6.5-7.5 eV (below 6.5 eV the quantum efficiency of TMAE is 
quite low). Of these only CIF~Z and GFlr are liquid at room temperature. 

From Table 3 we see that the value of An/@ - 1) is about 3% for the fluorocarbons. 
Using Eq. (31) we may now explicitly calculate the relative spread in radius (AR/R&., for 
different values of n, assuming a relative full width dispersion in n of An/@ - I) = 3%. 
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Table 3 

For each of the five bred radialor liquids are given the rclractive index at 7 cV photon energy (177 nm) and its 
absolute and relative full-width chromatic dispersion in the range 6.5-7.5 eV. For each radiator the tcmperarure 
al which Ihe measuremen! was made is indicated in parenthesis (only the last two are liquids at room 

Radiator n 
liquid 7eV 

CF4 (- 136°C) 1.226 
CzFs(- 82°C) 1.248 
C.,F,,, (- 10°C) I.266 
CsF,z(+ZO”C) 1.262 
GFD(+ZO’C) 1.277 

AQWOlll 
6.5-7.5 eV 

a.0047 
0.0075 
0.0102 
0.0080 
0.0093 

An/(n - 1) 

. 2.1% 
3.0% 
3.8% 
3.1% 
3.4% 

The corresponding curve is shown in Fig. 13. As expected [see Formula (21)) (AR/R&,, 
tends to (%).An/(n - 1) = 1.5% when n goes to 1. Repeating the calculation without 
refraction included in the expression for R.,,,, (AR/R),,,,,, is equal to 1.5% at all values of 
n (dashed line in Fig. 13). However, when refraction is included, (AR/R),h,,, increases with 
n and grows rapidly to very large values when n approaches the value CThe actual loci in 
Fig. 13 for the fluorocarbons in Table 3 have been marked with crosses. For comparison the 
loci of liquefied noble gases have also been indicated (He, Ne, and Ar). For the twb 
fluorocarbons in Table 3 that are liqtiids at room temperature (AR/R&, = 4-5%, which 
is a large increase from the value of 1.6-1.7% [= (%)An/(n - I)) these media have in 
gaseous phase. The reason for this increase is to be found in the additional refractive 
dispersion occurring in the downstream liquid surface. 

Let us now evaluate in the same way as in the case of gaseous radiators over what 
-r-range a measurement of the velocity can be made by comparing the deviation (I - Rnarm) 
with the relative chromatic spread ARnorm.chrom. In Fig. 14 the ratio of these two quantities 
(I - R,,, )/ARnorm.eh,om has been plotted as a function of y for a series of different values 
of n. Throughout, the value assumed for An/(n - I) is 3% as approximately valid for the 
fluorocarbons. 

From Fig. 14 it is apparent that the y-value at which (1 - R.,,,) is equal to 
ARnorm.c~rom decreases monotonically with increasing n. From this we may conclude that the 
large dynamical range in the variation of Rno,, with y for values of n just below n = asee 
Fig. 12) is counteracted by the strong increase in relative chromatic dispersion (AR/R&,, 
when approaching n = -how in Fig. 13). The net result is that if the goal is to measure 
the velocity to the highest possible value of y. one should choose the radiator liquid that has 
the lowest possible value of n (as seen in Fig. 14). Of the liquids in Table 3,CsFn~ boils at 
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Fig. 14 The ratio betwen the deviation of the normalized radius R __ from its saturated value I and the full 

width in R,., due to chromatic dispersion as function of velocity in a liquid-radmtor RICH counter for 
different valuer of the refractive index n. 

Fig. 13 The relative full-width of chromatic dispersion in Chcrenkov-ring radius R in a liquid radiator RICH 
counwr for part& of normal mcidcnce as function of the refractive index. assuming a constant rclatiYe 
full-width dispersion in the refractive index of An/(n - I) = 3%. The crosses show the loci for various 
radiaLor liquids in the graph. The dashed tine shows the dispersion in R if there were to be no rclraction 
in the counter. 
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30°C and CeFt4 at 56’C. We will choose CsFrz as an example to evaluate the upper and 
lower limits in energy for particle discrimination. From Table 3 we have for CsFII 

n = 1.262 
Relation (8) I 

Y~MI,~M = 1.64, and 

An/(n - 1) = 3.1% 
Figure 14 I 

Ym*x = 7.2 

which implies the following momentum ranges for the three stable, charged hadrons 

T 180 GeV/c to 1000 MeVk, 
K 640 GeV/c to 3500 MeV/c, and 
P 1220 GeV/c to 6700 MeV/c. 

The velocity range for CsFta is shown together with the velocity ranges for the gaseous 
radiators (from Fig. 6) in Fig. 15. Assuming that CsFtz is the lightest available 
UV-transparent liquid at room temperature with low relative chromatic dispersion, then the 
upper y limit cannot be increased by choosing other radiator liquids (however, if a 
cryogenic and/or pressurized liquid-radiator container can be used, this is certainly not 
true). The lower limit in y (i.e. ylsrcrsotd) can be lowered to y = 1.41, as indicated in Fig. 15, 
by using a liquid (or solid) with a refractive index just below n = 1.41 but only at the price 
of significantly decreasing the upper limit ymar. 

Let us finally note that using the heaviest gaseous radiator an absolute threshold as low 
as 2.4 GeV/c is obtainable for * mescms (using, for example, CsFtz in gaseous phase-see 
Table 2). Above 2.4 GeV/c it is thus possible to separate s’s and K’s using a 
gaseous-radiator counter alone. Adding, in series, a liquid-radiator counter would allow 
s/K separation up to 3.5 GeV/c. There is thus an overlap between the two counters which 
assures continuous s/K separation at momenta from the x momentum threshold in the 
liquid (180 MeV/c) up to the upper K momentum limit in the gas (47 GeV/c-see Table 2). 
For K/p separation, on the other hand, the K threshold in the gas is about 8.3 GeV/c, 
whereas the maximum momentum for protons to be measured in the liquid-radiator counter 
is 6.7 GeV/c. For the case of K/p separation a combined liquid and gaseous-radiator 
counter will thus have a region of reduced performance around 7-8 GeV/c. The ‘hole’ 
in K/p separation would be reduced if one can find a liquid radiator of even lower n and 
A n/(n - 1) or a gaseous radiator of even higher n than has been discussed here. 

Liquid 

He 

Nt 

Ch 
C, F, Gasses 

C4 Fw 

C, Fn 

4 h4 

1 I I I I I I I I I b 
12 5 10 20 50 100 200 500 1000 

Y 

Fig. Is Thisgraph show the same velocity-measurement ranges for gaseous radiators as displayed in Fig. 6 and 
in addilion the range corresponding LCI B liquid-radiator RICH counter with C,FII as radiator (n = 
1.262). The dashed lint shows the small extension that is possible towards lower velocities by going 10 
heavier liquids (up to n = I .41). 

4.2 Other sources of error and counter design 
As for the gaseous-radiator RICH, the design of a liquid-radiator RICH is dictated by 

the ambition to reduce the other sources of error in the mesured Cherenkov angle to such an 

extent that the irreducible chromatic dispersion remains the dominant error source. 

Choosing CsFIz as radiator liquid we have (AR/R)ebmm = 4%. 
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4.2.1 Geometric errors 
The finite width of the liquid radiator layer implies a finite width ARscO, of the ring, as 

illustrated in Fig. 2. The expressions for R and AR,,., are (using Eq. (30)] 

R = D tan + = D tan [arcsin (n sin f7)] and (32) 

AR,c,m = d tan 6. (33) 

Note that refraction increases R but does not influence AR,.., 

(AR/R)‘..m = (d/D) (tan B /tan [arcsin (n sin 191). (34) 

The effect of refraction is thus to reduce the relative geometric error in R. The reduction 
factor is shown as a function of n in Fig. 16. At n = 1.262 (GFtz) we have (AR/R),,.. = 
0,65.(d/D). Requiring (AR/R),.,, < (AR/R),k,,, = 4% we obtain d/D < 0.04/0.65 = 
l/16. 
Assuming somewhat arbitrarily a Ne value of 60 cm -’ one obtains for n = 1.26, using 
Expressions (10) and (7). 

N ,n,rc,c4.ro.X = 60 sin [arccos (l/1.26)] = 22 photons/cm. 

Assuming that of the order of 22 photons are required to determine 0 (considering that 
some photons may be lost due to total internal reflection for inclined tracks) we could settle 
for d = I cm and would as a consequence require D 5 16 cm. A lever arm of D = 20- 
25 cm thus seems to be a reasonable first choice. 

Any further considerations with respect to geometric errors must include the fact that 
non-perpendicular tracks will have ellipsoidal and paraboloidal images. In a medium with n 
= 1.26 total internal reflection occurs for light hitting an inside surface of the medium at an 
angle larger than arcsin (I/n) = 52.5 O. Since the maximum Cherenkov angle for n = 1.26 
is 0 = arccos (l/n) = 37.5”, part of the Cherenkov light is lost (leading to a paraboloidal 
image) when the particle trajectory is inclined by more than 15” with regard to the 
downstream liquid surface. This fact is illustrated in Fig. 17. 

If the particle trajectory is known, an independent estimate of the Cherenkov angle can 
be obtained from each individual photon in an image. Since, in general, for each value of 
the azimuthal emission angle around the particle trajectory the chromatic and geometric 
errors are different the errors should be evaluated for each photon separately and then be 
used to calculate a weighted mean value and error for the Cherenkov angle. Figure 18, 
taken from the DELPHl proposed,[8] illustrates for a specific case the behaviour of the 
geometric and chromatic errors as function of the azimuthal angle around the track. 

i c 
1.1 1.2 1.3 1.4 

Refractive index n 

Fig. 16 The reduction factor multiplying d/D in Eq. (34) as function of refractive index n showing how the 
relative geomerric resolution in Chercnkov ring radius R in a liquid-radiator RICH cbunrer improves 
when going 10 higher values of n. 

4.2.2 Photon-posiiioning errors 
As in the discussion on the geometric error and the requirements on the distances d and 

D, a precise calculation of the requirements on the spatial resolution of a photon detector 
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cannot be made without specifying the individual case in detail. We will, therefore, limit the 
discussion here to some simple considerations to illustrate the first approach to the subject. 

Assuming D = 20 cm and 6 = 50’ (n =* 1.26, normal incidence) gives a ring radius of 
24 cm. The requirement that (AR/Rhr < (AR/R&, = 4% would imply that AR,, < 
I cm. However, inclined particle trajectories will require AR,, to be smaller to match the 
higher resolurion in certain azimuthal ranges around such tracks. 

As to the measurement of the depth coordinate in the image plane (a) its accuracy 
should be of the same order as in the xy-plane since the angles we deal with are of the order 
of45”. 

4.23 Magneticfield and mu/rip/e Coulomb scorrering 
As already discussed, a liquid-radiator counter has a much shorter radiator and much 

larger Cherenkov angle as compared to a gaseous-radiator counter. These two facts concur 
to make the relative magnetic-bend shift (AR/R)a very much smaller than (AR/R),k,,, = 
4%, when taking into account that particle discrimination in a liquid radiator counter 
is effective at much lower momenta than in a gaseoueradiator counter. 

As in the case of the gaseous-radiator counter the multiple Coulomb error in R is of 
negligible magnitude in most practical cases. 

5. SOME COMMENTS ON THE PARTICLE DISCRIMINATION POWER 
OF THE RICH METHOD 
The purpose of the discussion in Sections 3 and 4 was primarily to relate and compare 

the different error-sources in the Cherenkov-angle determination in order to study their 
influence on the design of RICH counters. In particular, the full width AfJ of the spread in 0 
due to chromatic dispersion was compared with the full widths of the spread due to 
geometric errors, photon-positioning errors and errors due to magnetic deflections. We will 
here make a few comments on how the particle discrimination power of a RICH counter is 
related to the parameters of the counter. 

The estimator of 0 in a RICH counter is in its simplest form a mean value of Cherenkov 
angles derived from a number Nd r,cclcd of individually measured photons. The shape of the 
error distribution of the one-photon Cherenkov-angle estimator is given by a convolution of 
the chromatic, geometric, photon position, and magnetic-bend error-functions. Once the 
standard deviation cre of the convoluted error function is determined, the standard error in 
the full Cherenkov-angle estimator is obtained as or/G. provided that there is no 
correlation between the measurement of the individual photons. 

For example, on the simplistic assumption that the convoluted error function is 
Gaussian with a FWHM of A0 and that there are Nr,k = 9 independent determinations of 0, 
the standard error of their mean value is 

a* = (I/fi). A8/2.35 = (l/7) Ae 

Ideally the separation by the full spread ABckrom. as discussed in Sections 3 and 4, would 

thus be on the very high level of seven standard deviations if A0 is interpreted as the FWHM 
of a Gaussian and Npk = 9. Note that the upper velocity limits ymar in Figs. 6 and I5 assume 
all errors other than the chromatic to be negligible. This will most probably not be the case 
in any given practical RICH counter used in a particle-collider experiment. Therefore the 
yrnar values quoted should primarily be taken as upper bounds. 

In Section 3. I the upper limit for separation of particles a and b is defined as the energy 
ErP< at which the difference 0. - &, is smaller than a certain width A8. According to 
Eq. (19) the angular difference is inversely proportional to yr. This implies that a reduction 
of the error in 0 by a certain factor will increase the upper energy-limit for particle 
separation only by the square-root of the same factor. 

As to the lower energy limit for particle separation we have so far only referred to the 
absolute threshold. Since a minimal average number of photons is required for reliable 
detection and measurement of 0, the effective threshold is higher than the absolute 
threshold. If we define the normalized number of photons N,,, as 

Nmm (ynom) = 
Ndetcctrd (morm) 

(35) 
Ndctcrtcd harm = 1) 

thenRelations (10) and (18) yield for small angles 

N norm = e’,,,., = I - l/yLxm -t r&S = 1141 - N,,,, . (36) 

If, for example, N.,,, = I/3 is required, then yE% = 1.22, i.e. the effective threshold is 
22% higher than the absolute. The value of N nOrm should be chosen such that the 
probability of having zero photons in an individual event [= exp (- Ndclcrlcd)] at the 
effective threshold is reasonably low. (If Ndclcclc4 = 9 and N.,,, = I/3, then we have exp 
(- 3) = 5% at the effective threshold). Note that the lower velocity limits yrnln in Figs. 6 
and I5 represent the absolute thresholds. The ymln values quoted may thus only be taken as 
lower bounds. 

In the region between the upper and lower energy limits for acceptable particle 
discrimination the particle rejection factor and the particle detection efficiency are both far 
higher than in the regions close to these limits. Here we will not make an attempt to estimate 
quantitatively the levels of and relation between rejection and efficiency as a function of 
energy but limit ourselves to pointing out the particular features which make the RICH 
counter a far more discriminating detector as compared to the classical threshold 
Cherenkov-counter. The intrinsic granularity of a RICH counter is more than three orders 
of magnitude higher than that of conventional threshold Cherenkov-counter arrays 
(microsteradians as compared to many millisteradians) making possible the separation also 
of very nearby tracks. This is valuable when studying particles in jets, in particular in 
situations where conversion electrons cannot be avoided. The high granularity, 
furthermore, suppresses that particular limitation in the particle rejection of threshold 
counters which is due to emission of light from 6 electrons. 
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It is finally important to remember that, as already discussed in Section 2 mass 
separation of particles can only be achieved through simultaneous measurement of y and p. 
This implies that the momentum rebolution of the magnetic spectrometer, necessary in any 
experiment that uses RICH counters for mass determination, may in some case be the 
limiting factor rather than the Cherenkov angular resolution. The upper momentum 
boundary most sensitive to this limitation is that for discrimination between the two 
heaviest particles, i.e. for K/p separation. 

The above discussion does not pretend to be complete. In a real detector the error 
distributions have tails, measurement of individual photons are correlated, irrelevant 
background observations get mixed with real data, and there are systematic errors of 
various kinds. The effects of all this on the accuracy of tl and on the particle discrimination 
power can only be evaluated using a fully-fledged Monte Carlo simulation program, based 
on experience with prototype measurements for a given individual project. The so far quite 
limited experience of large-scale RICH projects in collider experiments makes it difficult to 
arrive at quantitative statements of general validity with regard to momentum ranges and 
rejection factors for particle separation. As already noted&he upper and lower limits given 
in Figs. 6 and 15 should be taken as bounds based on reasonable but optimistic appreciation 
of the slams and the further development of the RICH technique. 
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