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Chapter 1 

Introduction 

The nature of the strong interactions has been a concern since the 1930’s when peo- 
ple tried to understand the forces that held nuclei together. Today it is believed that 
the problem is solved in principle: strong interactions are described by the theory of 
quantum chromodynamics or QCD. Explicit solutions to many problems, however, 
can not be given using QCD because of mathematical complexities. Of particular 
interest is the fragmentation of quarks into jets of hadrons under the influence of 
color confinement forces, because it is one of the fundamental phenomena of high 
energy physics. Unfortunately, current mathematical techniques are not powerful 
enough to solve the QCD equations governing quark fragmentation. In the absence 
of explicit solutions, fragmentation models have been developed, and insight into 
QCD is obtained by the agreement of certain models with experimental data. The 
reaction e+e- --+ hadrons provides a very clean environment to study quark frag- 
mentation and to establish a rich data base against which fragmentation models as 
well as particle production in other reactions can be compared. This thesis provides 
a coherent set of inclusive charged pion, kaon, and proton cross sections and the 
associated particle fractions in commonly used variables such as rapidity, Feynman 
5, transverse momentum, etc. These results should be of interest to model builders 
and others working in all aspects of fragmentation physics. Predictions of various 
hadronization models of current interest are compared to the data. Comparisons 
are also made between fragmentation in e+e- annihilation and fragmentation in 
other processes. 

The thesis starts with a review of e+e- annihilation in Chapter 2. Different 
fragmentation models of current interest are also discussed. In Chapter 3 the Time 
Projection Chamber (TPC) detector used for collecting the data is discussed. Chap- 
ter 4 contains an explanation of our event reconstruction, selection, and simulation. 
In Chapter 5 both the theory of ionization energy loss and the algorithm we use to 
identify particles knowing their momentum and dE/dx  are discussed. Chapter 6 
describes in detail the method I used to measure the inclusive cross sections and par- 
ticle fractions. The results are presented in Chapter 7, along with the comparisons 
to hadronization models and to fragmentation in other processes. 
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Chapter 2 

The Reaction e+e- -+ Hadrons 

In this chapter the reaction e+e- + hadrons is reviewed. Section 2.1 is an overview 
of e+e- physics with emphasis of the jet structure of annihilation events. The 
reaction e+e- + y* + qij or qqg is discussed as an explanation of the jet structure. 
Then QCD, the theory describing the dynamics of quarks and gluons, is reviewed 
in section 2.2. The reason why QCD calculations of fragmentation can not be made 
is discussed. Because of our inability to do exact calculations, we are forced to rely 
on fragmentation models. In section 2.3 the more popular fragmentation models 
are discussed. The predictions of several fragmentation models are compared to the 
data in Chapter 7. 

2.1 Observation Of Jets 
When a positron and electron annihilate at high energy, many particles can be 
produced. Figures 2.1 and 2.2 show the projections of two typical annihilation events 
detected with the Time Projection Chamber (TPC) particle detector located in the 
PEP e+e- storage ring at the Stanford Linear Accelerator Center (SLAC). The main 
point, and most striking feature, of Figures 2.1 and 2.2 is the way the particles leave 
the interaction region collimated in cones approximately a steradian in size'. Fig. 
2.1 contains two such cones and Fig. 2.2 contains three. The multiplicity of charged 
particles produced in a typical event is in the neighborhood of 10 to 15. (Only 
charged particles can be seen in the tracking volume of the TPC.) Almost all 
the particles produced are hadrons, particles that take part in strong interactions. 
This is especially interesting because the electron and positron in the initial state are 
leptons, particles that do not themselves take part in strong interactions. The events 
shown in Figs. 2.1 and 2.2 are called multihadron events and the collimated groups 
of particles in such events are called jets. The electron and positron can interact 
in other ways, but for this analysis, we are exclusively interested in multihadron 
events . 

'Events from the 1982/84 data set using a low magnetic field of 3.89 kG were used for these 
figures so the jet structure would be more clearly visible. The 1985/86 data set used for this thesis 
was taken with a magnetic field strength of 13.25 kG. 
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1 EXP= 11, RUN= 24, EVENT= 2570. P I X  I D =  
TRG=' 1740'0 PNL='20000200'X ANL=' 20000 K 
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Figure 2.2: Typical 3-jet event in the TPC. 
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Figure 2.3: Feynman diagram for e+e- --f 44, leading to a 2-jet event. 

Jets were first observed in 1975 by Hanson et al. (the Mark I1 group) at the 
SPEAR storage ring at SLAC [l]. Counter-circulating bunches of 3.7 GeV positrons 
and electrons made to collide in the SPEAR ring produced the jets. The total center 
of mass energy of 7.4 GeV is small by today’s standards, In 1977 the PEP storage 
ring was completed, boosting the available center of mass energy at SLAC to 29 
GeV. 

Some aspects of multihadron events can be interpreted in terms of Feynman 
diagrams. The Feynman diagrams corresponding to Figures 2.1 and 2.2 are shown 
in Figures 2.3 and 2.4, respectively. The figures show the electron and positron 
(e- and e+) annihilating into a virtual photon (y*) which then decays into a quark- 
antiquark pair (99) in Fig. 2.3; and a quark, antiquark, and gluon in Fig. 2.4. The 
q and 4 in Fig. 2.3 fragment after they are produced, that is, they produce two jets 
of particles as in Fig. 2.1. Similarly, the q, tj, and g of Fig. 2.4 produce three jets 
as in Fig. 2.2. The particles in the jets move in the general direction of the initial 
quark, antiquark, or gluon. Free quarks and gluons have never been observed [2]. 
In e+e- annihilation more quarks and antiquarks are produced which combine in 
quark-antiquark states, three quark states, or three antiquark states, to produce 
the particles observed. The reason why free quarks are not observed is a property 
called confinement, which will be discussed when the theory of QCD is reviewed. 
Understanding the process in which the initial partons (quarks, antiquarks, gluons) 
produce the final observed particles, the parton’s fragmentation, is the motivation 
for this thesis. 

An overall e+e- annihilation event is pictured in Fig. 2.5. The amplitude for 
the interaction, A,  is given by [3] 

e’ 
A N - j p J p ,  

S 

where e is the electron charge, and 1/s comes from the photon propagator (s is 
the square of the energy in the center of mass frame). The current j ,  = Cy,u 
describing the e+e- + y* interaction comes from QED. u and v are Dirac spinors 
and the yp are the Dirac matrices. The physics of the reaction y* + hadrons is 
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Figure 2.4: Feynman diagrams for e+e- -+ qqg, leading to a 3-jet event. 
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Figure 2.5: Diagram representing an overall e+e- annihilation event. 
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contained in JU. This illustrates how the reaction e+e- + hadrons separates into a 
well understood piece, e+e- + y*, and the piece under study, y* + hadrons. It is 
this clean separation that makes the e+e- initial state so attractive. 

The process y* -+ hadrons is described in principle by the theory of quantum 
chromodynamics (QCD). The words “in principle” are used because of the mathe- 
matical difficulties of doing QCD calculations. In the following section we will see 
that the coupling constant of QCD changes with the energy scale of the process 
involved. At high energies the coupling constant is small and one can use pertur- 
bation theory to do QCD calculations. It is in this regime that one can draw the 
Feynman diagrams of Fig. 2.3 and 2.4. In fact, one could draw more diagrams for 
four jets, etc. This is as far as one can go with perturbation theory, however. The 
fragmentation of the quarks is a low energy process characterized by a large cou- 
pling constant, as we will see. Perturbation theory is not valid and nobody knows 
how to solve the full equations of QCD. For lack of better methods, one makes mod- 
els of hadronization and gains an understanding of QCD by assuming its solutions 
resemble closely the fragmentation mechanism in the most successful model. 

2.2 Quantum Chromodynamics 
Originally, the term “strong interactions’’ referred to the forces among baryons and 
mesons. However, these forces are very complicated, and in fact are not funda- 
mental interactions. With the advent of the quark picture, the interactions among 
hadrons were viewed as the byproduct of more fundamental forces between quarks. 
Today, the theory of strong interactions focuses on the interactions between quarks. 
The currently favored candidate theory is quantum chromodynamics, or QCD. No 
experiment to date has ruled out QCD. In fact, where QCD calculations can be 
performed, the agreement between theory and experiment is good. 

QCD evolved from many ideas [4]. Its origins are in the concept of quarks, ar- 
rived at independently by Gell-Mann [5] and Zweig [6] in 1963. They were able to 
understand the spectrum of mesons and baryons as bound states of quark-antiquark 
pairs (99) and three quarks (qqq), respectively. Three “flavors” (u,d,s) of spin-; 
quarks were needed to describe the particles known at that time. The meson and 
baryon spectra were understood in terms of the symmetry group S U ( 3 ) j ,  where the 
“f” denotes flavor symmetry. By “symmetry group” we mean that under rotations 
in SU(3) flavor space (ie. mixing the u, d, and s quarks to produce different parti- 
cles) the properties of the resulting particles are unchanged. The SU(3)j  symmetry 
gave a natural way to group the known particles according to the irreducible repre- 
sentations of SU(3) .  In this way the 0- was predicted in advance of its discovery, 
a triumph of the quark idea. If SU(3) j  were a true symmetry, all particles in a 
multiplet (ie. in an irreducible representation) would have the same mass. This 
was seen to be violated, but was explained. SU(3) j  is an approximate symmetry, 
and additional terms in the Hamiltonian, not respecting S U ( 3 ) j ,  easily account for 
the mass splittings in terms of perturbation theory. 

The next major advance toward QCD came in the years between 1964 and 1966 
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Figure 2.6: Triangle diagram for the decay ?yo -+ yy. 

when it was realized that the u, d, and s quarks carried an internal quantum number. 
There was a problem in understanding why qtj and qqq states had low masses, but 
q, qq, . . . states did not [7,8,9]. This problem was understood by introducing the 
new quantum number “color” which took on three values, eg. red, blue, green. 
Each flavor quark came in three colors, so instead of a single u quark, for instance, 
one had to consider ur, Ub, and ug. It was postulated that color singlet states were 
lighter than non-singlets, explaining how the non-singlet q, qq, . . . states could be 
too heavy to be observed at that time. At this stage, the reason why non-singlets 
were heavier was not understood. 

More convincing arguments in favor of the color quantum number followed. 
The best known argument in favor of color is the spin-statistics problem in the non- 
relativistic quark model if color is not introduced. The A++ with spin 3/2 consists of 
three spin up u quarks in a symmetric spatial wavefunction. The total wavefunction 
for the spin 1/2 quarks has to be antisymmetric to obey Fermi-Dirac statistics. The 
antisymmetric color singlet wavefunction provides the most convincing way to make 
the overall wavefunction antisymmetric. 

Experimental arguments for the color quantum number also followed. The de- 
cay n’ + yy is given to lowest order by the famous triangle diagram shown in 
Fig. 2.6. The decay rate can be calculated using the theoretical technique of Par- 
tially Conserved Axial Currents (PCAC) and is found to be proportional to the 
number of colors squared [lo] since each color of a given flavor quark in the loop 
contributes equally. By comparing the experimentally observed decay rate to the 
rate theoretically predicted, one finds the number of colors is [ll] 

N, = 3.06 f 0.10, 

in perfect agreement with the theoretically anticipated value of N, = 3. Similarly 
in the reaction e+e- -+ hadrons, the reaction rate relative to e+e- + p+p- is, to 
lowest order, [ll] 

R =  = N , C e ; .  a(e+e- --$ hadrons) 

a(e+e- + p + p - )  Q 
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It depends on the quark charges and the number of colors. The quark charges are 
known from the quark model, so by comparing to the data, the number of colors N,  
can be determined. The MAC collaboration at SLAC has measured R = 3.96f0.09 
[12]. At 29 GeV, the formula above gives N,C,  e: = 3(11/9) N 3.67 (q=u, d, c, s, b) 
for N,  = 3. The discrepancy between the lowest order formula and the MAC result 
is easily accounted for by higher order QCD effects. This is very strong evidence 
that N ,  = 3, and not 2, 4, etc. 

The final major advance leading to QCD was the parton model introduced by 
Feynman [ 131. The parton model explained electron-hadron and neutrino-hadron 
cross sections very well by saying that hadrons contained pointlike constituents, 
which were soon identified as quarks. The electron-hadron interaction, for instance, 
was then computed as a sum of electron-quark interactions. Although the parton 
model could describe the data very well, it was intuitive and not an adequate theory. 

In 1973 a true theory of the strong interactions, QCD, finally emerged. Gross 
and Wilczek [14], and Politzer [15] found that non-Abelian gauge theories possess 
the property of asymptotic freedom. In an asymptotically free field theory, the 
coupling constant is small for short distances between particles and becomes large 
for greater distances. Asymptotic freedom explains why in deep inelastic scattering 
the short distance structure of the target can be resolved: the interactions between 
the constituents in this regime are weak. The success of the quark parton model 
in which the constituents are treated as free is thus explained. On the other hand, 
the coupling becomes large at greater distances explaining the reason free quarks 
are not observed (confinement). It was also shown that only  non-Abelian gauge 
theories are asymptotically free, so the quark-parton model’s success was a strong 
argument for the relevance of non-Abelian gauge theories. t’Hooft [16] showed that 
non-Abelian gauge theories are renormalizable and at this point QCD was born. 
The color degree of freedom of the quarks was gauged in a well-defined Lagrangian 
field theory [17,18,19]. 

The Lagrangian for QCD can be found by mimicking the procedure for quantum 
electrodynamics (QED). However, instead of the local U( 1) phase transformations 
of QED, QCD has local SU(3) ,  phase transformations, where the “c” stands for 
color. Consider a three component quark spinor Q, where the components are the 
three color states of the given flavor quark. We assume an exact SU(3),  symmetry, 
meaning that the laws of physics are invariant under the local non-Abelian phase 
transformation 

Q’ = e i a . T ~ ,  

where the eight a;(z )  (i = 1,2, .  . . ,8) parameterize the general SU(3),  matrix and 
are functions of space and time, and the T, are the Gell-Mann matrices divided by 2, 
T, = X;/2. The standard quark Lagrangian L = $( j? - m)Q, invariant under global 
SU( 3) transformations, is made invariant under local SU(  3)c transformations by 
introducing the eight gluon fields Ar(z) (i = 1,. . . ,8) and replacing b by [ll], 
where 

p = j ?  - i g T ,  $4;. 

The summation convention, where repeated indices are summed over, is assumed 
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throughout. The Lagrangian for the gluons is Lg = -aFr“fl,, ,  where 

l?’” = 8”’; - 8”’; + g f;jkATAfC, 

The f;jk are the structure constants of SU(3) , ,  ie. 
Lagrangian is thus given by [ll] 

[T;,Tj] = ifijkT’k. The QCD 

1 
4 

L = --Fycp” + S(2 p - m)*. 

This Lagrangian has very interesting properties. In addition to the coupling 
of gluons to quarks (analogous to QED), there are couplings among the gluons 
themselves, something not present in QED. These couplings are responsible for the 
asymptotic freedom and confinement mentioned earlier. Also, the strength of all 
interactions between quarks and gluons and between gluons is given by one universal 
coupling g. 

Asymptotic freedom is the result of the coupling “constant” g depending on the 
momenta of the particles involved in an interaction. The running of the coupling 
constant, that is, its dependence on momentum, is a common phenomenon in rela- 
tivistic quantum mechanics and is described using renormalization techniques. The 
coupling constant of QCD is given by [ll] 

127r 
(33 - 2 N f )  In( Q2/A2) 

- g2 a , = - -  
47r 

where Q2 = -q2 is the momentum scale involved in the interaction, N j  is the 
number of quark flavors (at present the observed N f  = 5: u, d, s, c, b), and A is 
the only free parameter in QCD, which has to be fixed by experiment. The reason 
a free parameter is introduced is to supply a momentum cutoff needed to keep the 
coupling finite. The physical significance of A is that it is the value of Q2 at which 
a, becomes large and perturbation theory breaks down. The formula applies for 
Q2 > A2. Since strong interactions are important on a size scale of -1 Fermi (a 
typical hadron size) which corresponds to a Q2 - (200 MeV)2, we know A II 200 
MeV. Note that at large Q2, cu,(Q2) is small, and at small Q2 1 A2, a, (Q2)  is 
large: asymptotic freedom. Note that if N f  > 16 the situation is different. Then 
the formula applies for Q2 < A2 and the coupling gets larger for smaller Q2, a 
situation analogous to QED. Since asymptotic freedom is a very nice explanation 
of the success of the parton model, one is inclined to believe N f  < 16. 

The role of the gluon-gluon coupling in producing asymptotic freedom can be 
understood in a simple intuitive way [20]. A quark with given color charge emits 
virtual gluons which also carry color charge. The quark also polarizes the vacuum 
as in QED. Thus there are two competing effects. The bare charge polarizing the 
vacuum produces a color field which decreases with increasing distance, analogous to 
an electric charge in a polarizable medium. On the other hand, the charged virtual 
gluons effectively carry the charge away from the bare quark. At large distances the 
total charge is seen, but in the region near the bare quark, the resultant charge is 
diminished by the charge outside the region. These effects compete with each other 

. 
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c 

and only a detailed calculation can show that the charge “anti-shielding” due to the 
charge of the virtual gluons is the larger effect leading to asymptotic freedom. 

Associated with the running coupling constant is the problem that at Q2 N A2 
the coupling constant becomes large and perturbation theory can not be used. 
This tremendously increases the mathematical complexity of problems in this Q2 
regime. One can only solve equations in QCD to study e+e- --$ hadrons when the 
momentum scale Q2 >> A2. This corresponds to the initial part of the interaction, 
eg. In the confinement region, where Q2 N A2, the 
equations can not be solved at present. 

y* -+ qq and y* 3 qqg. 

2.3 Fragment at ion Models 
The first widely accepted fragmentation model was the Feynman-Field model of in- 
dependent fragmentation. Today, this model is known to have theoretical problems 
and it does not agree with experimental data in sensitive tests. However, it provides 
a good starting point for learning about fragmentation models, and is discussed first 
below. The second type of fragmentation model discussed is the color string model. 
In particular, the Lund color string model has been very successful and is widely 
used. Finally, the most recent models using parton showers and clusters are dis- 
cussed. They sum all orders of perturbation theory keeping only leading terms; so 
these models, in a sense, make more use of QCD than the others. 

The independent fragmentation and string fragmentation models require an ini- 
tial parton configuration as input. The probability for a given initial configuration 
is obtained by doing a fixed order (in as) perturbative QCD calculation. This de- 
termines the probability for the initial flavor of the quarks, number and relative 
angles of gluons, and momenta of all quarks and gluons. The cluster fragmentation 
model gives probabilities to produce showers of quarks and gluons from the initial 
virtual photon, so it does not need to be supplied with initial state partons. 

2.3.1 Independent Jet Fragmentation 
Independent jet fragmentation was introduced for e+e- --+ qS events in 1978 by 
Field and Feynman [21]. Despite some shortcomings, their model has had consid- 
erable sucess in describing experimental data, and has been an aid in designing 
experiments. It was extended by Hoyer [22] in 1979 and Ali [23] in 1980 to in- 
clude qqg events, and by Meyer [24] in 1982 to include baryon production. The 
basic Feynman-Field model, as it is called, is described here and the extensions are 
described briefly at the end. 

The principle of the model is outlined in Fig. 2.7 which is from Field and Feyn- 
man’s paper. A jet is made by a primary quark “a” pulling an antiquark “b” 
from the vacuum to form a meson, leaving the quark “b” to continue the cascade: 
a+b+mesonl, b-x+mesonz, etc. This process continues until there is no energy 
left. The mesons produced in the cascade are termed primary mesons. The primary 
mesons can then decay to produce the observed mesons in the final state. 

.. . 
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Figure 2.7: Illustration of meson production in the Feynman-Field model. Ref. [21]. 
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The model depends on one basic function f(q) and three additional parameters. 
The reason there is so little input is because of a very fundamental assumption: 
the longitudinal distributions scale with quark momenta. This assumption implies 
that longitudinal particle distributions only depend on the ratio of hadron momenta 
to quark momenta and are valid for all parts of the cascade. The three required 
parameters are the degree to which SU(3) is broken in pulling quark pairs from the 
vacuum, the probability of a given spin for a primary meson, and the mean trans- 
verse momentum of the primary mesons. These input quantities will be discussed 
in turn. 

The longitudinal fragmentation is completely controlled by one unknown func- 
tion f(q): 

f(q)dq = the probability that the first (rank 1) 
primary meson (aG) leaves momentum 
fraction q in dq to the remaining 
cascade. 

This same function can be used for the entire cascade because of the scaling as- 
sumption. Field and Feynman chose a form [21] 

f(7) = 1 - a + 3aq2. 

They determined the value of the parameter a = 0.88 by comparisons to experi- 
mental data. From this function, one can determine the single-particle distribution 
function F(z ) :  

F ( z ) d z  = the probability of finding any primary 
meson (independent of rank) with fraction 
z in dz of the initial quark momentum. 

F ( z )  satisfies the integral equation 

which arises because the primary meson with momentum fraction z in dz can either 
be first in rank with probability f( 1 - z)dz,  or can come from the remaining cascade 
with probability f(q)dq to have the cascade, times the probability to find the meson 
in the scaled down cascade F ( z / q ) d z / q ,  summed over q. dz then cancels on both 
sides. The function F ( z )  can be found from the integral equation by various math- 
ematical methods, which we do not discuss here in detail. One fact that emerges 
relatively easily, however, is that at small z ,  F ( z ) d z  - d z / z  [Zl]. Defining the rapid- 
ity y = In z-lnmt (the “transverse mass” mt = /=, wherept is the transverse 
momentum), we find the rapidity distribution is flat (F(y)dy = F(z)dz  = constedy). 
Looking ahead to chapter 7, one can verify the “rapidity plateau” in the data. 

The next step in the formulation is to take account of the different flavors of 
quarks pulled from the vacuum. One assumes uC pairs are produced with probability 
y, dd pairs with equal probability 7, and ss pairs with probability ys. It is assumed 
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that no heavier quarks are produced, so yd = 1 - 27. Field and Feynman chose 
ya = y / 2 ,  so y = 0.4. Then u:d:s:c:b=l:l:$:O:O. The suppression of quark pair 
production with quark mass is justified in string models. This will be discussed in 
section 2.3.2. 

At this point, the model has an interesting consequence. In e+e- annihilation a 
leading k+ particle is more likely to come from a leading u quark than a leading S 
quark. The leading k+ production probability is proportional to the charge squared 
of the leading quark, times the probability to pull the right pair quark from the 
vacuum. So the probability for a k+ being produced by a leading u quark - ( 2 / 3 ) 2  x 
(0 .2)  = 8/90, while the probability for production by a leading S quark - (1/3)2 x 
(0.4) = 4/90. So a fast kaon is not a signature for e+e- + sS. 

In the model one has to put in the spins of the qS primary mesons by hand. 
This is done by assigning probabilities crps that the meson will be Jp= O’, a,, that 
the meson will be Jp = 1-, at that the meson will be Jp = 2+, .... It is assumed 
that these probabilities do not depend on the quark flavor. Field and Feynman 
chose Q p s  = CY,, = 0.5; at, ... = 0, although they note that if the quark spins 
combined randomly a,, = 3aPs.  Only recently have these values been determined 
experimentally. HRS made a fit to the data and found a mass dependence 

Q P S  1 Mu - = -(-)a, 
~u 3 Mps 

where Q = 0.55 f 0.12 [25].  JADE also made a measurement which gave similar 
results [26].  

The final step in the standard Feynman-Field model is to give the primary 
mesons transverse momentum. Although Field and Feynman admit there are other 
possibilities, they did this by going back to the quark pairs produced in the vacuum 
giving each quark a transverse momentum p7 and the antiquark -6 to conserve 
momentum. The 6 are distributed according to a Gaussian distribution 

where crpt was taken to be 350 MeV. The transverse momentum of a primary meson 
is then the vector sum of the transverse momenta of the quark and antiquark in it. 

At this stage the primary mesons are generated and their momenta are known. 
From the quark content and spins, one can assign a particle type. Then, from 
particle data tables one can decay any unstable mesons to get the final observed 
particles. 

In summary, the steps to generate a monte car10 event starting from an initial 
quark are: 

1. Generate a value of q according to f(q). 

2. Generate a pair uu, dd, or ss with probability y, y, or (1 - 2y), respectively. 

3. Generate the spin-parity of the primary meson. 
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These steps are then repeated starting with a quark of lower energy each time. 
In the end, the transverse momenta are assigned and the unstable particles are de- 
cayed. For finite energy jets, instead of using the momentum fraction as independent 
variable, one uses the E + p ,  fraction to include mass effects. 

As mentioned previously, this basic model has been extended by several authors. 
Hoyer [22] allowed single gluon bremsstrahlung permitting 3-jet events. This made 
it necessary to add several parameters. The strong coupling constant was needed to 
control the rate of 3-jet events. The gluon fragmentation function had to be defined, 
and the transverse momentum parameter a, for gluon jets had to be included. Ali 
[23] extended this to second order, allowing e+e- + qq, qqg, qqgg, and qqqq 
events. He fragmented the gluons in a 2-step process g -+ qq + hadrons. Meyer 
[24] included baryon production by allowing for leading diquarks or diquark pairs 
produced in the vacuum. 

Independent fragmentation models agree with most data amazingly well con- 
sidering the small number of adjustable parameters and the ad hoc way in which 
many effects are included. However, they have some very undesirable properties. 
Perhaps the most notable is that the models are not Lorentz invariant. For example, 
consider the change in multiplicity going from a frame in which the initial quark is 
moving, to one in which it is at rest. The string model, discussed next, overcomes 
many of the conceptual problems of independent fragmentation models. 

2.3.2 The Color String Model 
The color string model of particle production was first formulated by Artru and 
Mennessier in 1974 [27]. They considered the relativistic, classical motion of quarks 
at the ends of “rubber strings” in (1+1) dimensions to simulate hadrons, and then let 
the strings collide and break into a number of pieces to simulate hadron interactions. 
Although several other authors made contributions to the color string model, it was 
the Lund group in 1979 who brought it to fruitation [28]. They introduced the 
model in a computationally attractive form, readily usable by phenomenologists. 
Perhaps their main achievement, however, was to introduce the idea of treating a 
gluon jet as a kink in the string. The basics of string models are discussed below 
with emphasis on the Lund model. 

The basic element in the color string model is a quark and antiquark with a 
color field confined to a thin tube (a string) in between. The color field does not 
spread out like an electric field because of the non-Abelian nature of QCD. As far 
as string dynamics are concerned, there is a fundamental assumption that the color 
field produces a constant force on the quark at each end of the string. We review the 
motion of the quarks assuming they are massless since this simplifies the kinematics. 
The transverse motion of the quarks is unimportant at this point, so the discussion 
is in one space and one time dimension. 

Since the quarks itre assumed massless, they always move at the speed of light; 
and since a constant force acts on them, they obey the equation of motion [28] 

dP g2 - = f--. 
d t  4T 



16 

L/2 -Pa 

Figure 2.8: The motion of a massless quark and antiquark in the overall cen- 
ter of mass system. The hatched area shows the region where the color field is 
non-vanishing. Ref. [28]. 

The constant force is written as g2/47r since that was its form in the Schwinger 
model of QED in (l+l)-dimensions [29], a work that provided many ideas for the 
string model. In this equation the first parameter of string models is introduced, 
the string tension g2/47r. In the Lund model its approximate value is g2/47r N 1 
GeV/Fm 21 16 tons/m [30]. 

It is important to realize for the relativistic invariance of the model, that the 
constant force is Lorentz invariant. In a frame that moves with velocity V with 
respect to the original frame 

dp' = r v ( d p  - V d E )  = y v ( 1  f V ) d p ,  

where ~v = l / d m .  This follows since d x  = f d t  and d E  = f d p  for the quarks. 
The + sign is for the quark moving to the right, and the - sign for the quark moving 
to the left. Thus, in the moving frame 

dP1 - dP -- - 
dtl d t '  

so the constant force is Lorentz invariant. 
The motion in the c.m.s. is pictured in Fig. 2.8 from reference [28]. The quark 

and antiquark move apart on the light cone until they give all their energy to the 
string field and loose all their momentum. Then, they turn around and again move 
on the light cone. They first gain kinetic energy until they cross, and then they 
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Figure 2.9: Diagram representing a moving meson, constructed by boosting the 
basic “yo-yo” motion of the c.m.s. Ref. [28].  

repeat the process. If M is the total c.m.s. energy, it is easy to see that when all 
the energy is in the stretched string 

g2 M =  -L, 
47r 

or 
47r 

where L is the maximum length of the string. The period for a full cycle of the 
oscillation is 2 L  since the quarks travel at the speed of light and both quarks need 
to travel the full distance from + L / 2  to - L / 2  and back for a full oscillation. This 
is the basic “yo-yo mode” of oscillation and corresponds to a meson at rest. 

A moving meson is constructed by boosting the basic yo-yo. This is illustrated 
in Fig. 2.9, again from reference [28].  It is interesting that the color string carries no 
momentum in 1+1 dimensions since there is no Poynting vector [28] .  Thus, all the 
meson’s momentum is carried by the quarks. There is no problem with momentum 
conservation at the turning points where a quark momentum is zero, since in a 
frame where the meson is moving, the turning points are not simultaneous, as when 
the meson was at rest. 

Particle production is easily accommodated in the string model. In the color 
field of the basic yo-yo, quark-antiquark pairs can be liberated from the vacuum 
to form new string ends, thus breaking the yo-yo in two. This process can then 
be continued, forming many yo-yo’s. The yo-yo’s can be interpreted as primary 
particles in a production process. The unstable primary particles then decay, and 

L = -M, 
g2 

1. 
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Figure 2.10: Meson formation from the breaking string. Ref. [28]. 

together with the stable primary particles, give the observed particles. This is 
the basic picture of particle production by a quark-antiquark pair formed in e+e- 
annihilation. Energy and momentum are conserved in this process if the liberated 
massless quark and antiquark are produced at the same space-time point with zero 
momentum. They then move away from each other on the light cone, gaining 
momentum according to the constant force assumption. 

Since particle production is our primary concern, let us consider it in more detail. 
Consider a break of the string at (z1,tl) and another break at (z2, t2) as shown in 
Fig. 2.10. Between the breaks a meson is produced. Because of the constant force 
law, the energy and momentum of the meson are determined from the space-time 
separation of the break points, as is easily demonstrated. Suppose t2 > t1. Then 
antiquark ql starts at tl with zero momentum, and gains momentum according to 
d p / d t  = g2/47r until time t2 when q 2  is produced with zero momentum. The q1q2 
meson momentum is the sum of the ql and 4 2  momentum, which is 

P(qlq,) = K(t2 - t l )  + 0 = K(t2 - h). 

We have defined K = g2/47r to simplify the notation in the following. Now we find 
the meson’s energy. At any time 

Jqq,q,, = Ipq,l + IPqJ + 4 4 9  
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where Izl is the separation between ql and q2.  Applying this formula at t 2  gives 

E(q,q,) = 4 x 2  - 2 1 ) .  

Thus, the space-time separation of the quark-antiquark pair production points de- 
termines the energy and momentum of the produced meson. To make a meson of 
mass m, if 2 1  and tl are given, 2 2  and t 2  have to be chosen so that E2 - p 2  = m2, 
or 

[K(Q - z1)I2 - [ ~ ( t z  - t 1 ) l 2  = m 2 .  

If one adds transverse dimensions to this model, m is merely replaced by the trans- 
verse mass mt (mt = d a )  in this equation. It should be noted that the 
creation points ( 2 1 ,  t l )  and ( 5 2 ,  t 2 )  are space-like separated. This means that string 
models are acausal. The fact that hadrons end up on the mass shell is permitted 
quantum mechanically by arguing that breakup configurations which give unphysi- 
cal masses can not be projected onto a physical state [30]. 

For heavy mesons, quark masses must be taken into consideration. The yo-yo 
picture is still valid, but instead of moving on the light cones, the quarks move on 
the hyperbolae 

where p is the quark mass and ( z 1 , t l )  is a point on the quark trajectory. (The light 
cones remain asymptotes to the hyperbolae, however.) Quark masses do not change 
the jet structure of an event, only the internal motions of the quarks in a hadron. 
Quark masses do play a very large role, however, in determining which flavors of 
quarks are produced in the vacuum. Heavy quark pair production is suppressed, as 
will be discussed. 

Particle production in the Lund model is expressed in an iterative framework 
governed by a scaling function f(z), as in the Feynman-Field model. 

(z - z 1 ) 2  - (t  - t 1 ) 2  = p 2 / ‘ c 2 ,  

f(z) = probability to find a hadron containing the 
original quark qo with ( E  + p )  fraction z .  

By ( E + p )  fraction z ,  we mean z = (E+P), , ,~~, / (E+P)~”,~~.  z is Lorentz invariant. It 
is simplest to visualize particle production by first going to a frame where endpoint 
quark qo is moving slowly. In this frame the string will break first near 90, producing 
a meson containing qo. (By looking at Fig. 2.10, it is easy to imagine that the low 
momentum particles, those with t2 N t l ,  are produced first in time (lower in the 
figure).) f(z) gives the probability that the string will break by producing qlql in 
the vacuum, and meson qoql will have E + p fraction z. One now goes to a frame 
where q1 is moving slowly and uses f(z) again to get the z fraction of the next 
meson, and so on. Returning to the original frame, the z values don’t change since 
they are Lorentz invariant. The probability of finding any primary meson with E + p  
fraction z is given by D ( z )  

D ( z )  = f(2) + / / dz’dz”b(z - z’z”)f(l - Z’ )D(Z”) .  
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The first term, f(z), is the probability that the original quark qo is contained in the 
meson. The second term is the probability f(1 - z')dz' that the meson containing 
qo has E + p fraction z', leaving 1 - z' to the remaining jet; times the probability 
D(z")G(z - z'z")dz'' that the remaining jet produces a meson with E + p fraction 
z. This equation is identical to the corresponding equation in the Feynman-Field 
model. 

Introducing the scaling function adds the parameters in the function and the 
functional form to the list of knobs to turn in the model. However, in string models 
the functional form of f(z)  is severly constrained. If one demands that the hadron 
distribution be the same whether one starts with qo or Qo and does the iterative 
string breaking using f(z), then f(z) must have the form [31] 

N is a normalization constant, a and b are parameters. In principle a can depend on 
the quark flavors making up the hadron, but phenomenologically this does not seem 
to be necessary [30]. Thus, only two parameters, a and b, have been added. Typical 
values obtained by fitting experimental data are a N 0.96 and b N 0.60 GeV-2. Note 
that the transverse mass of the meson enters this equation. This is important in 
the sense that it forces a connection between heavy meson z distributions (neglect 
p t )  and light meson pt distributions. 

The identity of a meson depends on its quark content and angular momentum. 
The method of determining particle identity in the Lund model is very similar to 
the method of the Feynman-Field model. Probabilities are assigned for each flavor 
quark-antiquark pair to be produced in the vacuum to break the string. A random 
number generator then selects the flavor. The ratio of vector to pseudoscalar mesons 
is put in as a free parameter, as in the Feynman-Field model, and a random number 
generator selects the spin. From the quark content and spin, the meson's identity is 
determined. The vector to pseudoscalar ratio r used in the Lund model is r = 0.75 
if the meson contains a c or b quark, and r = 0.50 otherwise. (Of course, these 
are the default values. They can be changed by the user.) In principle, tensor 
meson production in the Lund model is easily implemented since the quarks are 
given transverse momentum, however, this is not done. 

The values of the probabilities to produce the different flavors of quark-antiquark 
pairs from the vacuum can be motivated by a tunneling mechanism [32]. Consider 
Fig. 2.11. EO is the energy of an initial quark and antiquark, qoq0, separated by a 
distance d, 

EO = 2 m ~  + K d .  

If qlQ1 (the same color as qoijo) is produced in the vacuum at zero separation with 
transverse momentum p t ,  the energy increases to Eo + 2mtq,. If ql and tjl move 
apart, however, the energy is decreased by the color field energy density times the 
separation. If their separation is 5, the total energy is 

E = Eo + 2mtq, - KX. 
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Figure 2.11: The energy of a virtual quark-antiquark pair in a color field decreases 
with separation, allowing the quark and antiquark to tunnel free and break the 
string. 
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This shows that a potential is generated which is linear in the separation. Non- 
relativistic quantum mechanical tunneling arguments can be used to find the prob- 
ability that qlq1 overcome the initial 2mtql energy barrier and become liberated to 
move apart and break the string. The probability is proportional to [30] 

From this expression, one sees that heavy quark production is suppressed. In fact, 
the production ratios are [30] 

Charm and heavier quarks are almost never produced. If we neglect them, the 
probability to produce a uii or dd pair is 3/7, and the probability to produce a sS 
pair is 1/7. The ratio of s to u quarks is left as a free parameter in the Lund model 
so it can be tuned, but a typical value is 1/3. 

The Lund model uses the expression from the tunneling mechanism to generate 
p t .  It generates a 5 for the quark and -5 for the antiquark of a pair from a 
Gaussian distribution in pt 

,-P:l.: 

and a uniform distribution in azimuth. uq is left as an adjustable parameter in 
the model. A typical value of uq is uq N 350 MeV. (Note that up differs from the 
standard deviation by &.) The p’t of the meson is the vector sum of the p’t of the 
quarks in it, as in the Feynman-Field model. 

Baryon production is easily accommodated in the string picture. If the virtual 
pair qla, discussed above, don’t have the same color as qo@,, the color field between 
q1 and does not vanish. In this field another pair q2& can be produced with 
color appropriate to produce zero color field between q2 and tj2. qoqtq2 can then 
move off to form a baryon. Another method to form baryons is to produce diquark- 
antidiquark pairs in the string instead of quark-antiquark pairs. In the Lund model 
a parameter (qq)/q is introduced to give the probability of diquark production. A 
typical value is (qq)/q= 0.09. 

The treatment of hard gluons in the Lund model is very nice in the sense that 
no additional arbitrary behavior is involved. In the massless relativistic string 
formalism, it is possible to have a single point on the string carry a finite amount 
of energy and momentum [33]. Such a point produces a kink in the string, and the 
point represents a gluon in the Lund model. Thus, a 3-jet event which has a quark, 
an antiquark, and a gluon in the initial state, starts as shown in Fig. 2.12. The 
string pieces on either side of the gluon break first, giving a hadron containing the 
kink [30]. The two remaining string pieces fragment like ordinary quark-antiquark 
systems. This has the interesting and experimentally observed effect of producing 
more particles between the quark and gluon and the antiquark and gluon than 
between the quark and antiquark [34]. The observation of this “string effect” was 
a triumph of the Lund model. 
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Figure 2.12: A 3-jet event in the Lund model begins as a kink in the color string. 

To summarize, the steps for producing an event containing mesons in the Lund 
Monte Carlo, starting with an initial quark qo and antiquark 9, (no gluons for 
simplicity) are: 

1. Start at the qo  end of the string, for instance, and break the string with qlq, 
with flavor chosen according to prescribed probabilities. 

2. Generate a 6' for ql and -6t for ql. 

3. Choose the spin of the meson q,qo according to the vector to pseudoscalar 
ratio parameter. 

4. With the quark content and spin determined, the mass can be assigned. 

5. From the mass and p t  of the meson, form rnt. Then choose z from f(z) to get 
the longitudinal momentum. 

6. Repeat the same steps, only starting now with q1. 

2.3.3 Parton Shower-Cluster Models 
Parton showers leading to clusters are the most recent type of fragmentation model. 
They are appealing theoretically, have very few free parameters, and agree with 
experimental data quite well. Parton showers originated in 1981 with the calculation 
of QCD leading infra-red and collinear singularities to all orders ([35,36] review 
the calculations). These calculations are the basis of the Monte Carlo programs 
which describe the evolution of the showers. Hadronization is accomplished through 

.. . 
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Figure 2.13: Parton shower following e+e- -+ qs. Ref. [40]. 

“preconfinement”. Preconfinement is the tendency of the partons in the shower to 
form color singlet clusters with limited extension in both coordinate and momentum 
space [37,38,39]. These clusters then decay to form the observed hadrons. The 
decays are done by treating the clusters as superpositions of resonances with phase- 
space-dominated decay schemes to known resonances. This met hod introduces no 
free parameters or fragmentation functions to describe the transition from clusters 
to hadrons. 

The parton shower is illustrated for e+e- annihilation in Fig. 2.13 which is 
from reference [40]. In this process the initial y”, far off mass-shell, evolves into a 
cascade of partons nearer to mass-shell. The probability that a gluon is emitted 
is given by the “leading log approximation” which means that the highest order 
divergences are kept to all orders. This method is good for moderately soft processes 
(s >> Q2 >> A2), but not as good as fixed order perturbation theory for hard 
processes (Q2 s). 

Interference effects can not be neglected when doing parton shower calculations 
[41,42]. The effect of the interference is to force successive opening angles in the 
branching process to be uniformly decreasing. The interference arises because of the 
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inability of long wavelength (soft) gluons to resolve the individual color charges of 
partons within the cascade [40]. A consequence of the interference is that the parton 
rapidity distribution in e+e- annihilation has a dip instead of a plateau in the central 
region. Another interesting consequence of the soft gluon interference is that the 
“string effect” of the Lund model is reproduced. That is, in 3-jet events there are 
more particles between the quark and hard gluon and the antiquark and hard gluon 
than between the quark and antiquark. At present, the leading parton shower- 
cluster Monte Carlos are the Webber Monte Carlo [43,40] and the Gottschalk Monte 
Carlo [44]. They include interference effects and can reproduce the string effect and 
the dip in the rapidity distribution in the central region. An early version of the 
Gottschalk Monte Carlo did not have soft gluon interference and could not reproduce 
the string effect. 

In principle, the parton shower is controlled by only two parameters: the QCD 
scale A which enters the coupling constant, and the gluon mass cut-off QO which 
terminates the shower and allows hadronization to set in. 

Cluster formation begins as the shower ends. This is depicted in Fig. 2.14 from 
reference [40]. The ovals represent the clusters and the double lines represent the 
way color is recorded so the clusters are always color singlets. In the Webber model, 
for example, each cluster consists of a quark and an antiquark. A cluster q,q, decays 
by introducing a pair a&, where a3 is either a quark of flavor u, d, or s chosen 
at random, or one of the six corresponding diquarks. The decay products are then 
(qlitg) and (q2a3) if a3 is a quark, or (q,a3) and ( q 2 & )  if a3 is a diquark. This gives 
cluster decays leading to both mesons and baryons. The type of particles produced 
in the decay are chosen from a list of resonances with appropriate flavor, weighted 
by the spin degeneracy. The available phase space for the decay is tested against 
a random number. If the test is failed, another a3 is tried. Thus the branching 
ratios are determined entirely by the density of states (spin degeneracy times phase 
space). Also the decays are isotropic, no spin correlations are included. 

Notice that unlike the Feynman-Field and Lund models, strange quark suppres- 
sion comes entirely from the reduction of phase space. Similarly, the transverse 
momentum spectrum comes from the average energy release in cluster decay and 
subsequent decay of produced resonances. 

If a cluster is too massive in the Webber model, it is anisotropically fissioned be- 
fore decay. This introduces a new parameter M f :  clusters with invariant mass above 
M f  are fissioned, those below are not. The fission is done by a string mechanism. 

The free parameters in the Webber model are then the QCD scale A,  the gluon 
mass cut-off Qo, and the fission threshold M f .  Typical values are [40] 

A = 0.25 GeV 
Qo = 0.6 GeV 
M j  = 4 GeV. 

In addition, the constituent quark masses are needed. The light quark masses are 
fixed to be 

mu = md = -Qo = 0.3 GeV, 
1 
2 
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Chapter 3 

The TPC Detector 

3.1 Overview 
The PEP-4/PEP-9 TPC detector is located at Interaction Region (IR) 2 of the 
PEP e+e- storage ring at SLAC. A cross section of the TPC detector is shown in 
Fig. 3.1. The interaction region is surrounded by a cylindrical drift chamber (IDC) 
used mainly for triggering, followed (in the radial direction) by the Time Projection 
Chamber (TPC) as the main tracking device, a solenoidal magnet coil, an outer drift 
chamber (ODC), the electromagnetic barrel calorimeter (HEX), muon absorber steel 
serving as a flux return, and a muon detection system. Forward calorimeters, muon 
systems, and small angle detectors complete the detector system. In this chapter, 
we will concentrate on the TPC as the primary detector component used in this 
analysis, and give only grief descriptions of the other components. 

The material in front of the TPC is distributed as shown in Table 3.1 [45,46]. 
The beam pipe is made of aluminum with an inner radius of 8.5 cm and thickness 
of 0.203 cm. The beam pipe is cooled by six water filled aluminum tubes with an 
outside diameter of 0.635 cm and a wall thickness of 0.127 cm. These tubes add 
4.5% of a radiation length to 7.1% of the particles. Surrounding the beam pipe is 
the aluminum pressure wall of the TPC and IDC. Its inner radius is 10.95 cm and 
its thickness is 0.635 cm, which is 7.1% of a radiation length. 

The inner drift chamber [47] extends from roughly 13 cm to 19 cm in radius 
and is 1.2 m long covering 95% of 47r. It consists of 4 axial layers of proportional 
chambers filled with 8.5 atm. of argon-methane gas (80%-20%). Each layer contains 
60 sense wires uniformly distributed for a total of 240 sense wires, and is rotated 
3" or half a cell size with respect to the previous layer. At present the inner drift 
chamber is only used for triggering. 

Outside the inner drift chamber is the Time Projection Chamber (TPC) 1481, the 
detector used for this analysis. The TPC extends from 20 cm to 100 cm in radius 
and is 2 m long. It is filled with argon-methane gas (80%-20%) at 8.5 atm. Fig. 3.2 
shows the field configurations in the TPC. The axial magnetic field bends particle 
trajectories while the parallel, axial electric field sweeps the resulting ionization 
electrons to the endcaps. The ionization is measured at the endcaps giving position 
and d E / d x  information. From the track curvature in the magnetic field and the 
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Before 1984 

Component 
Beam Pipe 

Cooling Tubes 
Pressure Wall 

Gas Gap 
Inner Drift Chamber 

Insulator + Field Cage 
TPC Volume 

Field Cage + Insulator 
Gas Gap 
Magnet 

Outer Drift Chamber 

After 1984 
Inner 

Radius 

8.50 
8.70 
10.95 
11.59 
13.18 
20.00 
22.25 
97.05 
100.50 
102.00 
119.00 

(cm) 
2.3 
2.6 
9.7 
9.8 
12.1 
19.6 
24.5 
34.6 
34.7 
166.6 
173.1 

2.3 
0.3 
7.1 
0.1 
2.6 
3.2 
4.9 
10.1 
0.1 
87.4 
6.5 

Radiation 
Length 

2.3 
0.3 
7.1 
0.1 
2.3 
7.5 
4.9 
10.1 
0.1 
131.9 
6.5 

(m 

Table 3.1: Distribution of material in the TPC. 

High Voltage M e m b r a n h  

Cumulative 
Rad. Length 

2.3 
2.6 
9.7 
9.8 
12.4 
15.6 
20.5 
30.6 
30.7 
118.1 
124.6 

(W 

& + % Electron Drift % 

Figure 3.2: Schematic diagram of the Time Projection Chamber showing the axial 
electric and magnetic field configurations. 
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d E / d s ,  particle identification is possible. The TPC is described in greater detail in 
section 3.2. 

The axial drift field in the TPC is maintained by an inner and an outer field 
cage. A high voltage insulator separates the IDC and TPC. In 1984 the original 
mylar-polyurethane insulator was replaced by an insulator made of polyethylene 
on a carbon fiber support cylinder. This reduced the amount of material of the 
insulator plus field cage from 7.5% to 3.2% of a radiation length. The cumulative 
amount of material in front of the TPC was 19.6% of a radiation length before 1984 
and is 15.6% of a radiation length now. 

The coil that produces the magnetic field for the TPC volume is at an inner 
radius of 102.1 cm, directly outside the insulator for the large radius field cage. 
Prior to 1984 a conventional coil was used which produced a magnetic field of 3.89 
kG. The combination of heat shields, cooling tubes and coil added 1.32 radiation 
lengths before the electromagnetic calorimeter. In 1984 the conventional coil was 
replaced by a superconducting coil which produced a magnetic field of 13.25 kG 
and added only 0.87 radiation length before the electromagnetic calorimeter. 

Directly outside the magnet coil is the outer drift chamber [47]. It has three axial 
layers of proportional wires and extends from a radius of 1.19 m to 1.24 m and is 3 
m long covering 77% of 47r. The gas used is 1 atm. of argon-methane (80%-20%). 
The outer drift chamber is used for triggering and for information about photons 
that convert in the coil. 

The hexagonal electromagnetic calorimeter [49] outside the outer drift chamber 
is a 40 layer gas, lead-laminate sampling calorimeter operated in a limited Geiger 
mode. It consists of 6 trapezoidal modules, each 10.4 radiation lengths deep. The 
length of 4.2 m gives a solid angle coverage of 75% of 47r. Before 1984, the gas used 
was argon-ethyl bromide (96%-4%) at 1 atm. Unfortunately, a chemical reaction 
between the ethyl bromide and aluminum crippled two of the six modules. In 1984 
the modules were restored and the gas changed to argon(92.3%)-methylal(5.5%)- 
nitrous oxide(2.2%) at a pressure of 1 atm. No subsequent problems developed. 
Sense wires are strung axially in the 6 mm gas gaps with 5 mm wire spacing. The 
lead-laminates in each layer have aluminum cathode strips at f60" with respect to 
the wires providing a stereo view of the showers. The measured energy resolution is 
~ E / E  = 17%/* (E in GeV) for E below 1 GeV. The energy resolution is degraded 
at high energies because of the limited thickness (10.4 r. 1. ) of the calorimeter. For 
Bhabhas U E / E  = 14% at 14.5 GeV is obtained. 

Behind the endplanes of the TPC and in front of the magnet pole-tips are the 
pole-tip calorimeters [50]. Each pole-tip calorimeter is an electromagnetic calorime- 
ter consisting of 51 layers of lead-laminate and gas with sense wires operating in 
the proportional mode. The direction of the wires in three consecutive layers are 
rotated by 60" so as to provide three 60" stereo views of a shower. The gas is 8.5 
atm. of argon-methane (80%-20%). Each calorimeter is 13.5 radiation lengths deep 
and together they cover 18% of 47r. The resolution is O E / E  = ll%/a below 10 
GeV and 6% for Bhabhas at 14.5 Gev. 

Outside the electromagnetic calorimetry is the muon detector system [51]. The 
central muon detector consists of three layers of drift chambers, followed by a fourth 
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Figure 3.3: Minimum and maximum number of interaction lengths in the iron over 
all azimuth as a function of the cosine of the angle with respect to the beam pipe. 

layer of drift chambers at 90". The drift chambers are made from triangular ex- 
truded aluminum tubes. With this geometry, two adjacent wires usually fire resolv- 
ing left-right ambiguities inherent in most drift chambers. In the barrel region, 30 
cm of iron form the return yoke for the magnet and the first absorber layer. The 
first wire layer is directly outside the iron return yoke. It is followed by a 35 cm iron 
inner absorber before the second wire layer, and then a 30 cm iron outer absorber 
before the third and fourth wire layers (Fig. 3.1). The wires are operated in the 
proportional mode with argon-methane gas (80%-20%) at 1 atm. Three layers of 
these proportional tubes are also placed behind the pole-tips of the TPC giving 
the muon system a total coverage of 98% of 4n. Fig. 3.3 shows the minimum and 
maximum number of interaction lengths in the iron over all azimuth as a function 
of  COS^, where 8 is the angle with respect to the beam pipe. A coverage map of 
one octant of the muon detectors is shown in Fig. 3.4 where the cracks between 
the barrel and the endcap detectors (lower right), the crack between two barrel 
detectors (lower left), and the crack between the two halves of the endcap detectors 
(upper right) are visible. The reduced iron thickness in front of the endcap muon 
detectors makes them less useful than the central detectors. 

Sets of detectors used for measuring low angle tracks lie near the beam pipe 
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Figure 3.4: Coverage map of one octant of the muon detector system as a function 
of azimuth angle and cosine of the angle with respect to the beam pipe. The cracks 
between two barrel segments (lower left), the barrel and endcap segments (lower 
right), and the two halves of the endcap detectors (upper right) are visible. 
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on either side of the TPC [52]. Each of the two detector sets contains five drift 
chambers for tracking, an NaI low angle shower detector, a lead-scintillator large 
angle shower detector, a two plane scintillating hodoscope for time of flight, a muon 
detector, and a Cherenkov detector. The five drift chambers have position resolution 
around 300 pm, angular acceptance from 22 mrad to 180 mrad, and provide a 
momentum measurement with resolution ( U ~ / P ) ~  = (0.025)2 + (0 .008~)~ .  The NaI 
detector contains 60 crystals each 22 inches long and hexagonal in cross-section (6 
inches apex to apex) with an energy resolution of u*/E z 0.9% at 14.5 GeV (best 
performance without radiation damage). The lead-scintillator shower detector has 
angular acceptance from 100 mrad to 180 mrad, spatial resolution N 1 cm, and 
energy resolution U E / E  = 0.15/0. The time of flight scintillating hodoscope has 
a resolution of 0.3 ns. The muon detector consists of 1 m of iron and three drift 
chamber modules and has a spatial resolution of 220 pm. The Cherenkov detector 
with angular coverage from 22 mrad to 180 mrad is a 1 atm C02 radiator 70 cm 
long. Its efficiency for electrons is greater than 90% overall and greater than 95% 
over 80% of its angular coverage. Typical trigger thresholds for the electron tagging 
system are E > 2 GeV in the NaI (double tag trigger) and E > 4 GeV in the NaI 
in coincidence with an extra charged or neutral particle (single tag trigger). 

3.2 The Time Projection Chamber 
The primary detector used for this analysis was the Time Projection Chamber. In 
this section the device itself is first discussed, then the calibration and performance. 

3.2.1 Description Of The TPC 
The Time Projection Chamber (TPC) is a gas filled cylindrical detector which pro- 
vides 3-D images of tracks from charged particles and ionization energy loss ( d E / d x )  
information [48]. The ionization along a track is drifted in an axial electric field 
to the end planes which are equipped with a large array of proportional wires and 
position pads. The wire signals provide d E / d x ,  and radial and axial position infor- 
mation, while the pads provide azimuthal and axial position information. The axial 
or “z” position is determined from the drift time of the electrons in the electric 
field. A solenoidal magnetic field bends the tracks so the particle momentum is 
determined from the position measurements which give the curvature. The simul- 
taneous d E / d x  and momentum measurements provide particle identification. 

Fig. 3.2 shows the field configurations in the TPC. The axial magnetic field is 
produced by the solenoidal coil. The axial electric field is produced by the central 
membrane at a negative voltage and the field cage, a series of equipotential rings at 
the inner and outer radii of the TPC. Prior to 1984 the electric field strength was 
75 kV/m resulting in an ionization drift speed of 5 cm/ps. In the 1984 changes the 
electric field was lowered to 50 kV/m giving an ionization drift speed of 3.3 c m / p .  
(Halfway through the data taking the field was raised to 55 kV/m.) Decreasing the 
drift velocity improved the z position resolution as discussed below. 
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The MWPC detector planes are divided into 6 sectors, each with 183 sense wires 
spaced at 0.4 cm and operated in the proportional mode. The amplitude of the 
signal on a sense wire provides ionization ( d E / d s )  information, and the timing of 
the pulse determines the depth of the track in the TPC. Thus the wires give r, z, and 
amplitude information. Fig. 3.5 shows the wire configuration of a sector. The drift 
region and amplification region are separated by a shielding grid. Between the sense 
wires are wires for field shaping. In 1984 a gating grid was installed. This grid serves 
to reduce the space charge in the TPC drift volume due to positive ions created in 
the amplification regions. Only after a (loose) pretrigger condition is fulfilled, the 
grid is switched into the transparent mode (Fig. 3.5) and drift electrons can reach 
the sense wires [53]. By the time positive ions produced in the amplification region 
drift back to the grid wires, the grid is usually closed and the ions are discharged at 
the grid wires. The gating grid greatly reduces electrostatic distortions, improving 
the momentum resolution. Azimuthal information is obtained from induced signals 
on 15 rows of rectangular cathode pads 0.75 cm high and 0.70 cm wide with spacing 
of 0.05 cm between pads. The cathode pads are 0.4 cm behind the sense wires (Fig. 
3.5). There are 1152 pads per sector. Fig. 3.6 shows the relative position of the 
strips of cathode pads in a sector. This geometry provides 2 or more 3-d points and 
15 or more wire signals per track over 97% of 47r. 

The signals on the sense wires and pads are amplified and shaped before being 
sampled by charge coupled devices (CCD’s) which provide pulse height measure- 
ments at 100 ns intervals [54]. The CCD’s hold a 45.5 ps history (445 CCD buckets). 
On readout, the CCD clock frequency is changed from 10 MHz to 20 kHz allowing 
time for the signals in the CCD to be digitized. Each digitized signal is compared 
to a threshold for that channel stored in a RAM, and is read out to a buffer mem- 
ory only if it is above the threshold. The shaper amplifiers were designed so an 
ionization pulse typically has 5 to 7 samples above threshold (see Fig. 4.1), thus 
providing enough information for good time (z) and pulse height resolution. 

3.2.2 TPC Calibration And Corrections 
Both tracking and dE/ds determination in the TPC require very precise charge 
measurements. To achieve the required accuracy for the ionization and spatial 
position measurements, each channel must provide charge information which is 
both accurate and stable to better than 1% [55,56]. Several corrections must be 
applied to the raw pulse-height data from the TPC so it accurately reflects the 
ionization produced in the TPC volume. The size of a pad or wire signal depends 
on temperature, pressure, and composition of the TPC gas, the absorption of drift 
electrons by electronegative impurities, the gas gain as determined by the local 
geometry of the sense wire and cathodes, and on the transmission and recovery 
characteristics of the preamp, CCD, and digitizer. In addition, the measurement of 
the z-coordinate via the drift time requires precise knowledge of the drift velocity 
as well as propagation delays in the readout system. Calibration constants related 
to gas composition or detector temperature are usually time dependent. 

The TPC electronics calibration is performed in two stages. First, the pedestal 
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Figure 3.5: Wire configuration of a sector. The sense wires are operated in the 
proportional mode, and together with the induced signals on the segmented cathode, 
provide z, y, z,  and amplitude information. 
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Figure 3.6: Relative position of the 15 strips of cathode pads. 

levels are determined by setting the digitizer thresholds to zero and reading out the 
CCD’s. A least squares straight line fit to the measurements gives the pedestal slope 
(due to leakage currents, the pedestal increases over a full CCD readout by typically 
1-2% of a pulse height for a minimum ionizing track) and the rms noise. The second 
step in the calibration is to measure the shape of the amplifier’s gain curve. The 
shielding grid (see Fig. 3.5) is pulsed at different voltages with a precision pulser 
and the gain of the wires and pads is measured and parameterized by an 11 point 
spline fit. 

After a pulse is amplified, the amplifier output undershoots by about 0.5% of 
the pulse height, lowering the pedestal value for the remainder of the CCD read-in 
time. This biases any second ionization pulse to a lower value by about 0.5%. This 
effect is corrected, removing an observed dependence of the measured pulse heights 
on the number of tracks per sector. 

Gas gain corrections are done in several steps. An initial calibration determines 
fixed correction factors (such as for variations in wire diameter) for each wire. Then 
time varying correction factors for continuously measured quantities (such as for 
TPC gas temperature variations) are applied on an event by event basis. Finally, 
run to run corrections are made which account for longitudinal diffusion and electron 
capture, and all remaining effects. 

The calibration is done using a map of the wire gain made before the sectors 
were in place and then finding in situ corrections to the map. The map of the 
wire gain was made using an 55Fe line source to determine the relative gain every 4 
degrees in azimuth along the wires. These relative gains were shown to be constant 
as long as the sector was not changed mechanically. The observed fluctuations were 
on the order of 3% rms and were due to variations in the diameter of the wire and 
variations in the distance from the wire to the cathode [55].  In addition, the heat 
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from the wire preamps, in spite of water cooling, caused a 3% increase in the gain 
in the vicinity of the preamps. 

Since the environment of the sectors is different in the detector from that in the 
test system, the gain maps alone can not be used as a calibration of the gain at 
the sense wires. In situ calibration is necessary. Each TPC sector is equipped with 
three 55Fe line sources which can be moved pneumatically from behind screens to 
irradiate the wires. The 55Fe emits monoenergetic 5.89 keV X-rays which ionize 
K shell electrons in the argon. 85% of the time an Auger electron is emitted in 
addition to the primary electron and both travel a distance on the order of microns 
before loosing their energy by d E / d x .  The ionization is collected on a single wire 
providing the main calibration peak N 5.89 keV. The other 15% of the time a photon 
is emitted, resulting in satellite peaks. Corrections to the initial gain maps from 
this calibration are of order 1-2% [57]. In addition, this data is used to eliminate 
sector to sector and wire to wire gain variations which are on the order of 15%. The 
reproducibility of the endplane source measurements has been extremely good with 
changes less than 0.3% over periods of six months [55]. The calibration is performed 
once or twice a month. 

Quantities like gas pressure, temperature, and sector voltage which affect the 
proportional amplification are continuously measured and are read out with each 
event. Corrections for any changes are made to the data. A 1% change in the 
sector voltage causes an 18% change in the gain, a 1% change in gas density causes 
a 9% change in the gain, a 1% change in the CH4 fraction causes a 10% change in 
the gain, and a 1 “C change in temperature makes a 3% change in the gain [55]. 
Changes in the proportional amplification affect d E / d x  measurements. 

Longitudinal diffusion and electron capture by electronegative contaminants in 
the gas biases the ionization measurements to lower values for longer drift distances. 
The effect is typically between 5% and 13% over one meter [57]. This effect is 
monitored on a run by run basis (i.e. typically once per hour) and is corrected for. 

After these corrections, a global d E / d x  normalization factor is determined from 
the data for each run by looking at tracks with momentum between 400 and 600 
MeV/c. In this region pions are minimum ionizing and are well separated from kaons 
and electrons (see Fig. 5.5). The mean d E / d x  value for these tracks (the mean of 
the truncated means) is corrected to be 12.1 keV/cm (because early theoretical 
work predicted this value) and other dE/da:  measurements are then made relative 
to this value. d E / d x  measurements are discussed further in section 5.1. 

In addition to the run to run corrections to the ionization measurements, there 
are also corrections that have to be made on a track by track basis. For example, 
when determining d E / d s ,  the amount of ionization per unit track length is required, 
so the effects of dip angle must be included. The track length sampled by each 
wire increases with dip angle. Also, the amount of ionization per unit track length 
depends on the logarithm of the length of the track sample. The dip angle correction 
includes this “log(1ength)” effect. After these corrections are made, the d E / d s  of 
minimum ionizing pions is plotted as a function of time, azimuth, and dip angle. 
Any remaining dependence on these variables is removed with ad hoc corrections 
which are typically less than 3% [58]. 
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A final quantity that must be accurately known is the drift velocity since it affects 
the z position resolution. It is found by monitoring the arrival time of ionization 
from cosmic ray tracks that cross the TPC midplane. Further refinements are made 
during data taking by monitoring Bhabha events and the endpoint of the arrival 
time distribution in multihadron events. The variation in drift velocity over the 
entire 1985/86 running cycle was around 7%, and the drift velocity was determined 
to 0.03%. 

3.2.3 Position Measurement In The TPC 
The 15 pad rows on each sector provide x-y position measurements for up to 15 
points along a track. Signals are induced on a given pad from the five wires nearest 
the pad, and an avalanche on a given wire can induce signals on either two or three 
pads. The x position (along a pad row) is found by fitting the response of the pads 
to a Gaussian. For 40% of the measurements, three pads are above threshold and 
the width of the Gaussian can be determined by the fit. If only two pads itre above 
threshold, the average measured width is used as input to the Gaussian fit. 

The y position (perpendicular to the pad row) is calculated as the average po- 
sition of the five wires that contribute to the pad signals, weighted by their pulse 
heights and coupling to the pad. This method reduces the effects of ionization 
fluctuations. 

The z position of a spatial point is given by the average of the z positions 
determined by the pad signals. On any individual pad, an arriving pulse is shaped 
and sampled by the CCD. In the analysis, the samples are used to reconstruct the 
pulse and the position of the peak determines the arrival time. The z position is 
given by the product of the arrival time and the drift velocity. 

After the 15, or so, spatial points on a track have been measured, corrections 
are made for known electrostatic distortions. Positive ion distortions affect the 
position measurement at small radii (the first pad row). In the older data set their 
magnitude was on the order of 1 cm, however, with the addition of the gated grid, 
they were negligible in the newer data set. Local electrostatic distortions caused 
by charge buildup on the field cages affect both the first and last pad rows. Their 
size is on the order of 1-2 mm for both the old and new data sets. Distortions from 
large scale electric field irregularities in the volume of the TPC are on the order of 
1 mm for both the old and new data sets. 

Since pulse heights are used to find position, factors determining the position 
resolution me the electronics calibration, electronic noise, diffusion in the 1 m drift 
distance, and ionization fluctuations [59]. A further factor is an E x B effect near 
the sense wires. This affects the resolution through a transverse force due to the 
fact that the electric and magnetic fields are no longer parallel. 

The x-y position resolution is plotted in Fig. 3.7. For the newer data set, many 
things, including the electronics calibration, contributed a floor of 85 pm to the 
error on x-y position measurements. Electronic noise contributed 62 pm with an 
rms variation of 25 pm depending on the position and orientation of the track with 
respect to the pad row. The floor and noise contributions can be added in quadra- 
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Figure 3.7: Position resolution crzy as a function of the tangent of the azimuth angle 
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ture resulting in a fixed error of 105 pm. The x-y position error from transverse 
diffusion is proportional to L3, P-3, and ( l + ( u ~ ) ~ ) - T ,  where L is the drift distance, 
P is the pressure, o is the electron cyclotron frequency, and T is the mean electron 
collision time. For a one meter drift the error averaged over azimuth is 64 pm with 
an rms variation of 8 pm. Ionization fluctuations contribute an error which varies 
strongly with azimuth, as does the error due to E' x B' effects. To illustrate this, 
consider a track whose projection on the endplane makes an angle a with respect to 
the normal to the wires. If a # 0, an ionization fluctuation on one of the five wires 
contributing to the two or three pad signals will bias the pad response to larger 
values near the fluctuation. This will shift the measured x position. Weighting the 
five wires with their pulse heights to determine the y position partially compensates 
for this. The error is proportional to tan(a). In addition, for a # 0, the x-y reso- 
lution is affected by the E' x B' force near the wires which broadens the ionization 
pulse along the wire. Ionization fluctuations and the I? x $ effect contribute to the 
resolution about 200 pm times the angular dependence. All effects are combined 
in Fig. 3.7 which shows the x-y position resolution as a function of tan(a) over a 
sector (-30" < cy < 30"). The non-symmetric shape is due to the 2 x B' effect. 

For comparison, in the older data set the fixed position error was about 160 
pm, the error from transverse diffusion was about 105 pm (for a 1 m drift), and 
the error from ionization fluctuations was about 250 pm. The I? x 5 effect was not 
important with the lower magnetic field strength. The 1984 electronics calibration 
improvement is largely responsible for the smaller fixed position error in the newer 
data set. The increased magnetic field strength is responsible for limiting transverse 
diffusion, giving a smaller error from this contribution. 

The position resolution in z is determined by the uncertainty in the arrival time 
of an ionization pulse, the drift velocity, and the t o  calibration. The main factors 
that contribute to the uncertainty in the arrival time of an ionization pulse are 
the CCD sampling rate, ionization fluctuations, electronic noise, and longitudinal 
diffusion. Under present conditions, the CCD sampling rate gives the largest con- 
tribution. Since the CCD sampling rate did not change in 1984, the uncertainty 
in the arrival time of a pulse did not change significantly. However, the decrease 
in drift velocity improved the z position resolution proportionally, from 340 pm to 
200 pm (averaged over dip angles). 

The measured z position resolution as a function of dip angle is shown in Fig. 3.8. 
The z position resolution depends strongly on the dip angle (angle with respect to 
the midplane) of a track since the ionization pulse broadens with dip angle, making 
it more susceptible to electronic noise. 

3.2.4 Momentum Measurement In The TPC 
The momentum of a charged particle in the TPC is determined by first fitting an 
orbit to the measured spatial points, taking into account the energy loss along the 
track. The inner and outer drift chambers are not used in the fit. A vertex fit then 
constrains the orbits to go through a common origin, consistent with the beam 
position. Only those tracks are included in the vertex fit, which do not raise the 
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Figure 3.9: Distribution of curvature difference for cosmic rays as measured in two 
different sectors. 

global x 2  of the fit by more than 30. For tracks included in the vertex fit, the result 
of this constrained fit is used in the analysis. Note that since the TPC measures 
true space-points, three points or two points and the common vertex are sufficient 
to measure the momentum of a particle. 

The error on the momentum has two contributions: position measurement er- 
rors and multiple scattering. The drastic reduction of beam related electrostatic 
distortions for the second data sample resulted in much smaller position measure- 
ment errors on both the inner and outer pad rows, essentially adding two points to 
the track fit. In addition, the improved position resolution reduced the component 
of the momentum uncertainty due to measurement errors. Increasing the magnetic 
field in the TPC from 3.89 kG to 13.25 kG improved both the measurement and 
multiple scattering components of the momentum resolution by the ratio of the field 
strengths. The measured momentum resolution was ( ~ , / p ) ~  = (0.06)2 + ( 0 . 0 3 5 ~ ) ~  
prior to 1984, and at present is ( ~ , / p ) ~  = (0.015)2 + ( 0 . 0 0 7 ~ ) ~  ( p  in GeV/c) for 
the fit with the vertex constraint. Without the vertex constraint, the measurement 
error contribution to the momentum resolution increased from 0 . 0 3 5 ~  to 0 . 0 6 ~  in 
the first data set, and from 0 . 0 0 7 ~  to 0 . 0 1 1 ~  (p in GeV/c) in the second data set. 

The measurement error component of the momentum resolution was determined 
by comparing the curvature of cosmic rays as measured in two opposite sectors. A 
constraint that the two halves of the track meet at a common vertex was imposed. 
The distribution of the curvature difference is shown in Fig. 3.9 for the new data. 
A Gaussian fit gives 

- OP = 0.007 (GeV/c)-'. 
P2 

This value was checked with Bhabha and p+p- events where the momenta of both 

.. . 
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Figure 3.10: Curvature distribution for tracks in p+p- events. 

particles is 14.5 GeV (broadened by bremsstrahlung). Fig. 3.10 shows the curva- 
ture distribution for particles in p+p- events. The peaks for positive and negative 
particles are separated and symmetrical around zero curvature. The width of the 
peaks correspond to a momentum resolution consistent with the cosmic ray result. 

The quoted multiple scattering contribution to the momentum resolution is cal- 
culated using the formula in Gluckstern [60]. 

3.3 Trigger 

The trigger system for the TPC detector uses information from the drift chambers, 
the TPC, and the calorimetry, and is designed to provide high efficiency not only 
for annihilation events, but also for low-multiplicity two-photon reactions. 

The trigger for the TPC [61] is composed of two parts, a pretrigger and a second 
level trigger based on a limited pattern analysis. The PEP beam crossing time is 
2.44 ps and the ionization drift time from the midplane to the endcap of the TPC 
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is about 30 ps with 3.3 cm/ps drift velocity. The pretrigger uses TPC tracks which 
go through the endcaps providing prompt signals and the prompt signals from the 
inner and outer drift chambers. Beam crossings of possible interest are selected 
within 2 ps, leaving about 500 ns for clearing the analog systems if no pretrigger is 
generated. If a pretrigger is generated, the second level trigger uses the TPC wire 
signals to search for continuous tracks which come from the beam crossing position. 
This takes about 35 ps, limited by the ionization drift time. In the event of a 
second level trigger, the TPC is read out, requiring about 100 ms. The pretrigger 
rate is about 1 kHz corresponding to a trigger decision dead time of about 3%. The 
trigger rate is 1-2 Hz, resulting in an electronics dead time of 10%-20%. The TPC 
can trigger on 2 or more charged particles over 85% of 47r. The trigger efficiency 
for multihadronic events is larger than 99%. The calorimeters are used to supply a 
neutral energy trigger if there is 2 GeV or more of neutral energy in the hexagonal 
calorimeter or 1 GeV or more of neutral energy in the pole tip calorimeter (with two 
clusters required), or energy in two or more calorimeter modules each with more 
than 0.7 GeV. A charged+neutral trigger is formed if there is one or more charged 
tracks in the TPC and neutral energy of 750 MeV or more. 
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Chapter 4 

Event Reconstruction, Selection, 
And Simulation 

This chapter describes the method used to reduce the data samples of 77 pb-' taken 
in the 1982/83 running year and 67 pb-' taken in the 1985/86 running year to data 
summary tapes. A further event selection was used for this analysis and it is also 
described. Finally, because of its importance in the analysis, the Monte Carlo used 
for event simulation is discussed. 

4.1 Event Reconstruction 
The events which trigger the TPC are reconstructed in an iterative procedure. 
After the application of calibration constants to determine pulse heights and drift 
distance, a pattern recognition algorithm finds approximate orbits. The resulting 
knowledge about the direction of a track crossing a pad row is used to determine 
second-order, orbit dependent corrections. These corrected points are used in the 
final fits. 

The first step in analysing an event is to find the spatial points in the TPC 
volume from the corrected sense wire and pad signals. Fig. 4.1 shows the signals 
on three neighboring pads as a function of CCD sample number. The signal from 
each channel is first examined as a function of CCD sample number, and contiguous 
samples are combined to give an arrival time and pulse height by fitting the three 
largest samples to a parabola. The arrival time is corrected for the relative timing 
of the CCD clock with respect to the beam crossing. The z position where the 
ionization originated is then calculated using the measured drift velocity. The pulse 
height is corrected using the electronics calibration. Spatial points are then roughly 
found by searching for contiguous pads with signals roughly at the same z .  The 5 

position along the pad row is given by the average of the pad positions weighted 
by the pulse heights, and the y position perpendicular to the pad row is set to the 
centerline of the pad row. The z position is the weighted average of the z positions 
of the individual pad signals. Track finding algorithms connect the rough spatial 
points to form a first order set of tracks in the event. This is done online. 
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Figure 4.1: CCD samples above threshold from three pads. 
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The track finding program for high multiplicity events makes histograms in sin X 
(A  is the dip angle with respect to the midplane) of the spatial points for each sector. 
For each bin in the histogram, the program chooses test points starting at the outer 
radius and moving inward. For each test point, it goes through the other points in 
the bin and makes a histogram of the sagitta of the circle that goes through the 
origin. Peaks in the histograms are taken as track candidates. The points in the 
peaks are then fit to a helix. Any points causing large residuals are excluded. In 
the end, a clean up procedure combines pieces of the same track together and adds 
points that had not been found before. The procedure is around 98% efficient at 
finding tracks which traverse many pad rows, and around 50% efficient at finding 
short tracks which traverse only three pad rows. 

At this stage, time-dependent correction factors are determined from the data 
and updated. The beam-beam interaction point is measured as the average of the 
fitted event vertices. The drift velocity is measured by monitoring the endpoint of 
the ionization arrival time distribution. Gas gain at the sense wires is monitored 
using the dE/da: of minimum ionizing pions. Also, electrostatic distortions are 
monitored using the residuals of points in the track fits. Those corrections are 
averaged over an event sample (typically a 1 hour run) and are then applied in a 
second-pass, offline analysis. 

In the next stage of the analysis, wire signals are associated with all tracks 
previously found using pads. A wire signal is associated with a track if its z position 
is within 0.7 cm of the original fitted track (1 cm in the older data set because of the 
increased drift velocity). However, a wire is excluded if the track to be associated 
with it is ambiguous, or if the pulse height is uncertain for some reason (if there 
is a neighboring large pulse which could cause crosstalk, or if there is another wire 
hit close in time which would affect the electronics). 65% of the tracks have 80 or 
more wire signals associated with them. The wire signals are used to determine the 
particle’s d E / d x ,  as discussed in chapter 5. 

The wire pulse heights and track information are used to refine the pad space 
points. The a: position along the pad row is determined by a Gaussian fit to the 
pad signals, and the wire signals are used to find the y position, perpendicular to 
the pad row. Tracks are then refit to the refined space points. These refined tracks 
are used in the final fit which constrains all tracks to come from the event vertex. 

Fig. 4.2 shows a typical multihadron event in the TPC from the 1985/86 data 
set. The reconstructed tracks have been labeled. In the side view all points have 
been rotated about the beam axis to lie in a plane. 

4.2 Multihadron Event Selection 
After the event reconstruction, a selection is made to separate multihadron events 
which are then put on data summary tapes (DST’s). The multihadron DST’s are 
the source of data for this analysis. The criteria for an event to be put on the 
multihadron DST’s are discussed below. 

The tracks used to select multihadron events are “good tracks” which pass the 
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Figure 4.2: Typical multihadron event in the TPC from the 1985/86 data set. 
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following cuts. (1) The angle of the track with respect to the beam pipe must be 
larger than 30” to ensure that the track is in the fiducial volume of the TPC. (2) 
The error on the measured curvature of the track must be less than 0.3 GeV-’ or 
the curvature error has to be less than 30% of the curvature. This is to ensure a 
good momentum determination. (3) The measured momentum of the particle must 
be larger than 0.12 GeV to remove particles coming from nuclear interactions in 
the material in front of the TPC. (4) The extrapolated origin of the track must be 
within 6 cm in the x-y direction, and 10 cm in the z direction (along the beamline) 
of the nominal vertex. This is to eliminate tracks not associated with the event 
such as those from cosmic rays. 

The “good tracks” defined above are used to select multihadron events. To be 
considered a multihadron event, an event must meet the following criteria. (1) The 
event must have at least five good tracks in the TPC which are determined to be 
non-electrons either by dE/da: or by a pair finder program which geometrically re- 
constructs conversion pairs. The restriction to non-electrons is to eliminate Bhabha 
events where the electron or positron showered in the material in front of the TPC. 
(2) The observed energy of charged particles, E&, has to exceed 7.25 GeV. This 
cut is used to eliminate 2-photon events. (3) The net momentum along the beam 
pipe of the charged particles must be less than 40% of E c h / C .  This cut eliminates 
events with large initial state radiation and also reduces contamination from two- 
photon events. (4) The majority of the tracks in the event have to be good tracks 
in the sense defined above. ( 5 )  To reject T events two hemispheres along the jet 
axis are constructed. In at least one hemisphere the event must have more than 
three charged tracks, or the invariant mass of the charged particles in the hemi- 
sphere must be larger than 2 GeV. (6) The reconstructed vertex of the event must 
be within 2.0 cm in x-y and 3.5 cm in z of the nominal vertex. 

With these standard multihadron event selection criteria, contamination is es- 
timated to be 0.3 f 0.1% from TT events, 0.8 f 0.6% from two-photon events, and 
less than 0.1% from beam gas events and Bhabha scattering. 

For this analysis, not all the “good tracks” on the multihadron DST’s were 
used. Only those that met the following additional criteria were accepted. (1) The 
error on the measured curvature of the track had to be less than 0.15 GeV-’ or 
the curvature error had to be less than 15% of the curvature. (2) The measured 
momentum of the particle had to be larger than 0.15 GeV. (3) The extrapolated 
origin of the track had to be within 3 cm in the x-y direction, and 5 cm in the z 
direction of the nominal vertex. 

To be considered for this analysis, an event on the DST still had to have 5 or 
more good tracks as defined in the preceding paragraph. In addition, it was required 
that the polar angle of the event axis with respect to the beam pipe had to be larger 
than 45”. This was done to ensure that a large majority of the particles in each 
event were in the fiducial volume. For the older data set 21434 events survived 
these cuts, and 20270 events survived in the newer data set. 
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4.3 Event Simulation 
Monte Carlo event simulation is essential in understanding detector performance. 
The TPC group uses two Monte Carlo detector simulations, a full simulation which 
generates raw data for all detectors, and a simulation designed for speed, the Fast 
Monte Carlo, which generates space points and fits them producing DST output. 
For determining the acceptances and particle misidentification probabilities needed 
for this analysis, the Fast Monte Carlo was used because high statistics were needed. 

The Fast Monte Carlo [57] uses a physics generator (Lund, Webber, . . . ) to 
produce input events. Initial state radiation is simulated using the program of 
Behrends and Kleiss [62]. The event vertex is chosen in accordance with the PEP 
beam size. Both charged and neutral particles are tracked through the detector 
and long lived particles are allowed to decay in the detector volume. Pad hits are 
generated for charged particles in the TPC and a fit to the points gives the particle’s 
momentum. A d E / d x  value is calculated. The output is written in the standard 
DST format with an additional block containing information about the generated 
event. 

The Fast Monte Carlo models the TPC as a series of discrete layers, each of 
uniform density. The beam pipe, pressure wall, inner drift chamber, and field cage 
each constitute a single layer, as does the full distance between pad rows in the TPC. 
Charged and neutral particles are tracked from layer to layer. The effects of energy 
loss, multiple scattering, bremsstrahlung, decay in flight, and nuclear interactions 
are included for charged particles. Neutral hadrons can interact in material and 
photons can convert to e+e- pairs. Pad hits are generated for charged particles at 
the appropriate layers by smearing the tracked position with a resolution function 
that includes the effects of diffusion, dip angle, electrostatic distortions, and the 
electronics. Inefficiencies due to missing electronic channels, sector boundaries, and 
track overlap are included. 

Individual wire hits are not generated. Rather, a particle’s d E / d x  is calculated 
using its average ,By in the TPC, and then smeared. The d E / d x  resolution used 
for the smearing is the measured resolution depending on the number of wires 
and the dip angle (section 5.1). In determining the number wires, effects of sector 
boundaries, track overlap, and missing electronics channels are included, in addition 
to the TPC geometry. 

Pattern recognition in the Fast Monte Carlo is done using a simple algorithm 
for speed. Measured pad space points within 3 cm of a track are associated with 
that track, and any track with 3 or more space points is assumed to be found. 
Ambiguous space points are assigned to only one track. A vertex constrained fit 
giving the particle momenta is performed in a manner equivalent to the real data 
analysis. 

In the region within the cuts used for this analysis, the Fast Monte Carlo agrees 
with the experimental data very well, as illustrated in Fig. 4.3. 
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Figure 4.3: Comparison between the data (points) and the Fast Monte Carlo (his- 
togram). 
(a) The number of charged hadrons. (b) The sum of the energies of good tracks. 
(c) The momentum balance (E p, /  E) along the beam direction. (d) The number 
of d E / d x  samples along a track. Negative numbers indicate pads were used in the 
d E / d x  calculation rather than wires due to track overlap. (e) The curvature error 
AC for tracks with p > 1 GeV. ( f )  The relative curvature error AC/C for tracks 
with p < 1 GeV. 
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Chapter 5 

Particle Identification By d ~ / d z  

5.1 Theory And Measurement Of Ionization En= 
ergy Loss In The TPC 

Effective particle identification by dE/dz requires the precise knowledge of the 
expected ionization energy loss as a function of particle mass and momentum. For 
the TPC analysis, the velocity dependence of the energy loss is taken from a rather 
detailed theoretical calculation, to which small empirical corrections are applied for 
best agreement with the data. The calculations were heavily based on the work of 
Lynch [63], Lapique and Piuz [64], Allison and Cobb [65], and Talman [66]. 

The cross section da/dE for an incident particle to loose energy E in a collision 
with an atom of a gas is approximated by [65] 

da do d o  
dE dE dE Rutherford - = (-)resonance + (-) 

where 

da E dE'. 
( E ) R u t h e r f o r d  = -- P2r cy E 2  ' I T  

ay(E)  is the photoabsorption cross section for a photon of energy E ,  ,9 is the in- 
cident particle's velocity, Z is the atomic number of the atom, m is the electron 
mass, cy is the fine structure constant, and €1 and €2 are the real and imaginary 
parts, respectively, of the dielectric constant of the gas which can be expressed as a 
function of the photoabsorption cross section. For notational convenience, the gas 
is assumed monatomic, but the extension to mixtures is straightforward. A term 
representing Cherenkov radiation has been ignored since it is small in the TPC. 
The first term labeled ret~onance depends on o,(E) and is large at the ionization 
thresholds. The main feature of this term, however, is the strong ,8 dependence 
which allows relativistic particle identification. The Rutherford term represents the 
contribution from hard scattering off electrons. In the regions of E near the pho- 
toabsorption peaks, the Rutherford contribution to the cross section is smaller than 
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the resonance contribution. However, at large E where a,(E) is small, the Ruther- 
ford term is the larger since it depends on J:ay(E')dE'. This gives a 1/E2 tail to 
the cross section. The expression for da/dE shows that the Rutherford scattering 
term with 1 / p 2  velocity dependence will be of little use in distinguishing relativis- 
tic particles with p N 1. Thus, to determine velocity, resonant energy loss must 
dominate dE/dx, not hard Rutherford collisions. This is achieved in practice by 
sampling the energy loss in thin layers of the gas, so that in any layer the probability 
of a Rutherford scattering is small. 

The average number of interactions resulting in energy loss E in dE per unit 
path length dx is given by 

da 
dxdE dE 

= n- dN 

where n is the number density of atoms in the gas. This expression yields the 
average number of interactions per unit length 

dN da - = In-dE.  
dx dE 

The actual number of interactions per unit path length d N / d x  is distributed ac- 
cording to a Poisson distribution with mean value dN/dx .  

A Monte Carlo program was written [57] to calculate the distribution of ob- 
served energy loss per unit path length for an incident particle with fixed velocity. 
For argon and methane separately, the photoabsorption cross section a,(E) was 
expressed in terms of the oscillator strength f ( E )  by 

and the oscillator strength was approximated by a sum over atomic levels 

where w; is the probability that an electron is found in atomic level i. The form of 
f ; ( E )  was taken to be 

F(f-)-'i, for E > E; 
f ; (E> = { 0, otherwise, 

where s; and E; are constants for level i. The atomic levels and values of s; and 
E; used in the Monte Carlo are given in Table 5.1. Using this expression for f ( E ) ,  
dN;/dx was approximated for each atomic level and a value of dN;/dx was chosen 
according to a Poisson distribution. An average energy transfer per interaction was 
taken to be E i j j  (Table 5.1) in the resonance region, and in the Rutherford region 
was chosen according to a 1/E2 distribution. The total energy deposited in dx 
was then calculated by summing the energy deposited in resonance and Rutherford 
collisions for each level i for the argon and the methane. The resulting distribution 
is shown in Fig. 5.1 along with the measured distribution. Its most striking features 
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Table 5.1: Table o 

t 

Atom 
Ar 
Ar 
Ar 
Ar 

CH4 
CH4 

0.444 
0.133 
0.311 

- 0.8 
0.2 

3206. 2.75 
248. 2.29 

15.8 3.20 
11.5 2.15 
283. 2.52 

5341. 

27. 
506. 

energy levels and relevant data used in the dE, -2 calculations. 
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Figure 5.1: Distribution of energy losses in 4 mm of the 8.5 atm. argon-methane 
(80% - 20%) TPC gas. 
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are its broad shape and long tail (Landau tail [67]). Because the distribution is so 
wide, mgny measurements are needed to measure its shape or to form an estimator. 
Fig. 5.1 shows the intrinsic width (excluding the tail) of the energy loss distribution 
is N 60% of the most probable d E / d x  value. 

To associate the incident particle's velocity with the measured dE/dx distri- 
bution, it is desirable for practical reasons to have a single number, an estimator, 
reflect the distribution. The most probable dE/dx is not a good estimator for lim- 
ited statistics [65], and the same is true of the mean. The quantity used to overcome 
this problem is the mean of a fixed fraction r of the measurements with lowest en- 
ergy loss (i.e. the truncated mean). The resolution of the truncated mean was found 
to be insensitive to values of r in the range 0.4 5 T 5 0.7 [68]. We chose r = 0.65. 
The truncated mean will be referred to as the dE/dx value when talking about the 
estimator. 

The measurement of d E / d x  in the TPC proceeds along lines previously dis- 
cussed. Ionization arriving at a wire undergoes proportional amplification. The 
wire signal is then amplified, shaped, and sampled 5 to 7 times by a CCD. Upon 
analysis, the three largest CCD samples are fit to a parabola to determine the pulse 
height, which is then corrected as previously discussed. Up to 183 wire signals 
can be obtained along a track. These individual measurements are then used to 
calculate a truncated mean. 

In some cases the amplitude of the pad signals provides a more accurate d E / d s  
determination than the wire signals. In cases of track overlap, few wires are associ- 
ated with a track. Since the pad signals integrate over several wires, the statistical 
significance of a pad signal is greater than for a wire signal. The pad signals are 
used to determine the dE/dx value if Npads 2 0.4Nwjres. This happens 12.9% of the 
time. 

An assumption, which is widely accepted, is that the ionization I produced by 
a moving charged particle is proportional to its energy loss E ,  I = E / W ,  where 
the proportionality constant 1/W is independent of E [65]. We have assumed this, 
often speaking of energy loss and ionization equivalently. 

The expected velocity dependence of the truncated mean was calculated using 
the formalism discussed above [58]. It was assumed the truncated mean d E / d x  has 
the same velocity dependence as the most probable value, which is fairly easy to 
calculate. 

The calculation proceeds along the same lines used to derive the dE/dx  dis- 
tribution, except a closed form expression is obtained. Again, the calculation is 
illustrated for a monatomic gas for simplicity, but the extension to mixtures is 
straightforward. The most probable energy loss AEmP in a thickness Ax of gas is 
approximated by the sum of a resonance and a hard scattering contribution, 

A E ~ ~ o n , n , e  is given by the sum over energy levels of the most probable number of 
interactions from level i, times the average energy loss per interaction. The most 
probable number of interactions from level i is the mean ( A x  d N j / d z )  minus 1/2, 
since the number of interactions follows a Poisson distribution. The values of the 
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average energy loss E: for level i were obtained from the oscillator strength using 
the expression 

00 

In E: = 1 ln(e)fi(e)dc. 

The f ; ( E )  used in the calculation are those given previously. Combining terms, 

The expression used for the most probable energy loss due to Rutherford scattering 
was that of Maccabee and Papworth [69] 

where 
2ae4 1 & = -n;Ax-.  
me2 P2 

From these expressions, and taking into account the gas mixture of the TPC, the 
most probable energy loss as a function of Pr = P / d V  shown in Fig. 5.2 was 
obtained. 

This theoretical curve was then used m the basic functional form in a fit to 
experimental data. The average truncated mean dE/dx as a function of Pr was 
measured for low energy protons and pions from multihadron events, cosmic ray 
muons, conversion electrons, and wide angle Bhabha electrons since all of these 
particles are easily identifiable. The P-y value was extracted from the momentum. 
The fit was of the form 

ln(PY)trunc. mean = A Wy)predicted + 

(dE/dx)trunc. mean = C(dE/dx)predicted + 
and is depicted in Fig. 5.3. The values of A,  B, C, and D giving the minimum x2 
were 

A = 0.986 

B = -0.055 

c = 0.999 

D = 1.532. 

The resulting x2 per degree of freedom was 1.50, indicating a very good parame- 
terization of the truncated mean dE/dx as a function of Pr. A plot of the average 
R =(trunc. mean/prediction) as a function of /?r for pions and cosmic ray muons 
is shown in Fig. 5.4. It indicates the fitted dE/dx vs. /?r curve is accurate to 0.2%. 

The fitted dE/dx vs. Py curve can be easily converted to a dE/dx vs. momentum 
curve for a given particle type by scaling the abscissa with the particle mass. When 
this is done, the solid curves of Fig. 5.5 are generated. The figure also shows our 
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cating the fitted dE/ds  vs. Pr curve is accurate to 0.2%. 
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Figure 5.5: Measured d E / d x  as a function of momentum. The bands of electrons, 
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the fitted truncated mean d E / d x  vs. Py plot (obtained by scaling the abscissa by 
the particle mass) are also shown. 
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Figure 5.6: Plot showing the dependence of the d E / d x  resolution on the number of 
wires. 

measured dE/da:  as a function of measured momentum for tracks with 80 or more 
wire hits (65% of the tracks) for the 1985-1986 data set. The bands of electrons, 
muons, pions, kaons, and protons are clearly visible. A faint deuteron band is also 
visible. 

The distribution of dE/da:  values in a momentum slice is approximately Gaussian 
with a relative width ( d E / d z  resolution) averaged over tracks of 3.6 f 0.2% for 
minimum ionizing pions. Since exact knowledge of the d E / d x  resolution function is 
crucial for proper particle identification, the dE/da:  resolution for minimum ionizing 
pions was measured as a function of the number of dE/da:  samples, the track position 
in the detector, and the time. For the latter, the full sample was divided into 10 
subsets. The resolution as a function of the square root of the number of wires is 
shown in Fig. 5.6. The resolution is well described by 

+ B( 1 + C #wires + D I sin(dip)l). ottmean 

average trmean #wires 

A N 1.7 x lo-' and B 21 4.6 x depending somewhat on the data subset used. 
C 11 -5.5 x and D N -2.6 x lo-' give a small fine tuning of the resolution. For 
particles in the 1/p2 region, the resolution depends on the d E / d x  value (or velocity) 
as ,/=. At large ,B, however, cosmic ray tests indicated the resolution was 
the same as at minimum ionizing, so no further correction was applied. 
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Figure 5.7: Plot showing the distribution in S (as defined in the text) for minimum 
ionizing pions. The distribution is consistent with Gaussian of width 1 out to 3 
S.D. 

For minimum ionizing pions, the distribution in 

trunc. mean - prediction 
predicted resolution 

S =  

is shown in Fig. 5.7 for tracks with at least 80 wires. The distribution is consistent 
with Gaussian of width 1 out to 3 S.D. 

For tracks that use pads to determine the d E / d x ,  the resolution is considerably 
worse than for tracks that use wires. The resolution for tracks with at least 13 pads 
is 7.6%. 

Overall, the average d E / d x  resolution improved in 1984 because of better cor- 
rections. For Bhabhas it improved from 3.5% to 2.9%, and for tracks with 120 or 
more wire hits in jet events the d E / d x  resolution improved from 4.0% to 3.4%. 

Except in regions where the d E / d x  curves cross, the energy loss measurement 
provides a separation between species of many S.D. at low momentum, and of 2- 
3 S.D. in the high momentum region. A plot of relative d E / d x  separation vs. 
momentum is shown in Fig. 5.8 (assuming a nominal resolution of 4%), from which 
the regions of good particle identification are evident. 
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Figure 5.9: At high momentum a sum of Gaussians can be fit to the dE/dx spectrum 
to determine the number of particles of each species present. 

5.2 Particle Identification Algorithms 
In the 1/p2 region of the dE/dx vs. momentum plot, particle identification is easy 
since the dE/dx bands are widely separated (see Fig. 5.5). The measured momen- 
tum and dE/dx value uniquely determine the particle type. Cross sections and 
particle fractions as a function of momentum are easily found in this region by 
counting particles. 

When the dE/dx bands overlap, one dimensional fits to the dE/dx spectrum 
determine the number of particles of each species in fixed momentum intervals. 
The dE/dz spectrum is expressed as a sum of Gaussians, one for each particle 
species. The area under each Gaussian gives the number of particles, from which 
cross sections and particle fractions are easily determined. This is illustrated in 
Fig. 5.9 for particles with momenta between 4.4 and 5.1 GeV/c. Such fits use the 
maximum amount of the information available, but the method is straightforward 
only for momentum distributions; it fails if particles are selected according to some 
other criteria such as rapidity or transverse momentum since the dE/dx spectrum 
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in a rapidity or pt interval is no longer a sum of Gaussians. 
When cross sections in rapidity or momentum transverse to an event axis are 

desired, an unfolding technique provides an attractive alternative to one dimen- 
sional fits. For the distributions presented in this thesis, the same unfolding was 
used. Basically, some algorithm is used to identify particles; the raw rates are then 
corrected for misidentification using a “confusion matrix” derived from a Monte 
Carlo simulation. The procedure is discussed in detail in the following chapter. 
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Chapter 6 

Measurement Of Inclusive Cross 
Sections 

6.1 Definition Of Variables And Choice Of Event 
Axis 

The cross sections presented in this thesis are 

for pions, kaons, and protons (both + and - charges are combined). For each cross 
section the associated particle fractions are also given. E is the particle energy, p 
is its momentum, pll and pt are the components of momentum along and transverse 
to the event axis, respectively, and 4 = 29 GeV at the PEP ring. 

The distributions involving rapidity (y) and transverse momentum ( p t )  require 
the definition of an event axis. The two most common choices are the sphericity 
axis and the thrust axis, and w e  present distributions for both. The sphericity axis 
is determined by finding the direction of the unit vector n' that minimizes 

3 p: sin' ei 
2 C P ?  

S(Z) = - 7 

where the sums run over all charged particles. p ;  is the magnitude of the momentum 
of particle i, and & is the angle between the direction of particle i and the vector 
n' that is being varied. The thrust axis is determined by finding the direction that 
maximizes 
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This expression is linear in the particle momenta, and therefore is more stable under 
fluctuations in fragmentation than sphericity. 

As pointed out in [70], rapidity and pt  distributions measured with respect to an 
event axis determined from the tracks themselves is, strictly speaking, not a truly 
inclusive measurement. Almost by definition, the choice of a jet axis will introduce 
some bias. Sphericity and thrust behave rather complementary in this regard, and 
their effect on inclusive distributions can be understood qualitatively as follows [71]. 
Consider the hypothetical case in which all tracks in an event lie in a plane. Suppose 
the direction of n' is close to extremizing S(Z) or T(n'), and consider the sensitivity 
of S(n') and T(n') to changes dB in the direction of n': 

d S  2pf sin Bi COS 8,dB 
i 

and 
d T  - c( *)pi sin Bide, 

i 

where ( z t )  in d T  accounts for the effect of the absolute value in 2'. From these 
relations several facts emerge regarding the final extrema of S and T :  

1. Because of p: ,  the sphericity axis tends to align along fast tracks. 

2. Sphericity tolerates low momentum tracks perpendicular to the axis. 

3. Thrust avoids having particles perpendicular to the jet axis, even at the ex- 
pense of a minor misalignment of fast particles. 

The influence of detector acceptance and momentum measurement errors on the 
direction of the sphericity and thrust axes was studied using a Monte Carlo [71]. The 
reconstructed axis using charged particles was compared to the "true" sphericity 
or thrust axis derived using all generated (charged + neutral) particles, the angle 
between them being 4 (always positive). It was found that the accuracies of the 
sphericity and thrust axes were identical and gave (4) N 9". However, if very poorly 
measured tracks were included, thrust was more reliable than sphericity as might be 
expected since it depends only linearly on the momentum. But for tracks measured 
with the typical TPC resolution, those used for this analysis, both methods were 
well within their range of stable operation. 

Our Monte Carlo studies determined that the errors on the measured values of 
y and pt were due largely to errors in the determination of the jet axis. For the 
older data set, the resolution for measuring rapidity was uy 0.3 for y near zero 
and cy N 0.5 for large y. Of this, the contribution from momentum measurement 
error was uy fi! 0.1 for y near zero and uy N 0.2 at large y. Both sphericity and 
thrust gave similar results. 

It was also determined in our Monte Carlo studies that the dip in du/dy at y = 0 
is more pronounced using the thrust axis than the sphericity axis. This is borne 
out by the data presented here. The dip is easily understood from the previous 
discussion since thrust tends to remove particles perpendicular to the event axis 
(Y = 0). 

. 
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Figure 6.1: The x2 assigned to an identity hypothesis is the “distance” in terms of 
the resolutions from the point (q,(dE/dx),,,eaa), q = pmeas/m,,ypot,,, to the d E / d x  vs. 
q curve. 

6.2 Unfolding Technique To Measure Cross Sec- 
t ions 

The cross sections and particle fractions were determined in two steps. An algorithm 
was used to identify tracks in the TPC as electrons, pions, kaons, or protons. Then 
corrections derived from our fast detector simulation Monte Carlo were applied 
accounting for particle misidentification and detector acceptance. The process is 
described in detail below. 

6.2.1 Particle Identification 
To identify particles, having measured the momentum and d E / d x  in the TPC, 
different particle hypotheses (e,n,k,p) are tried and a x2 is determined for each 
hypothesis. The method for determining the x2 is illustrated in Fig. 6.1. The 
measured momentum divided by the hypothesized mass determines the abscissa 
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and the measured d E / d x  determines the ordinate of a point in the plot. The x2 for 
the mass hypothesis is given by the distance of the point from the fitted d E / d x  vs. 
Pr curve in terms of the d E / d x  and momentum resolutions. The x: ( i  = e, T, k,p) 
are converted to probabilities P; by incorporating guesses for particle fractions f ; ( p )  
based on previous measurements. Our results are very insensitive to the values of 
f ; ( p )  used, since their effect on particle misidentification is corrected for, as discussed 
later. P; is defined as 

P; = Nf;(p>e- M. 
N normalizes the sum of the P;. A particle is “identifiable” and considered of type 
j if the following criteria are met: 

1. The number of d E / d x  samples has to be larger than or equal to 40, and the 
d E / d x  must not have been determined from the pad signals. 

2. The ionization measured must not have saturated the electronics. 

3. The x2 for hypothesis j has to be less than or equal to 10. 

4. The probability of hypothesis j,  P’, must be larger than or equal to 0.7. 

Fig. 6.2 shows the distribution of the number of wires per track for tracks used in 
this analysis. 12.9% of the tracks use pads for d E / d x  and 3.8% of the tracks that 
use wires have fewer than 40 wires, so 16.7% of the tracks are excluded by cut 1. 
This cut and cut 2 are needed to get an accurate d E / d x  measurement. Cut 4 selects 
for the analysis only tracks with a high probability of being from a certain particle 
type. In the Monte Carlo, pions are identified correctly more than 95% of the time 
over the momentum range, while outside of crossover regions, kaons and protons 
are identified correctly more than 85% and 60% of the time, respectively, over the 
momentum range. 

No attempt has been made to separate muons from pions. Since most muons 
come from pion decay, such a separation would rely heavily on the event generator 
Monte Carlo. Thus, our “pion” cross sections are actually pion+muon cross sections, 
including pions and a small number of muons from sources other than pion decay. 

6.2.2 Unfolding 
The particles identified via the method just described are counted for each bin of 
the independent variable. This gives experimentally determined average numbers 
per event of electrons, pions, kaons, and protons M; ( i  = e,T,k,p) for each bin. 
The M; are corrected for particle misidentification, detector acceptance, and initial 
state radiation by the matrix inversion technique we now describe. 

There is some ambiguity regarding particle decays in defining the corrections. 
We correct to a “vertex” where particles with lifetimes shorter than lo-’ sec have 
decayed, leaving only the long lived particles y, v ,  e*, p*, 7r*, k*, kL, p, p, n, and 
n. 

Let V,  (i = e, 7r, k,p) be the actual average number of particles per event of type 
i produced at the e+e- interaction “vertex” with no initial state radiation and after 

- 

. 
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Figure 6.2: Distribution of the number of wires per track for tracks used in this 
analysis. A negative number of wires indicates pads were used for dE/dx .  



72 

short lived particles have decayed. Particles and antiparticles have been lumped 
together, and T stands for pions+muons as discussed earlier. The V,  are the desired 
quantities. 

We define Ii (i = e, T ,  k,p) as the average number per event of particles of type 
i in the TPC which are “identifiable”, meaning the cuts of the previous subsection 
were passed. The I* and the V, are related by an expression I; = DijV,, or in matrix 
form 

I = DV. 

Dij is the probability that a particle of type j at the vertex produces an identifiable 
particle of type i in the TPC. Note that D is diagonal to a good approximation, and 
that Dii is essentially the probability that a particle of type i at the vertex makes it 
into the TPC and passes the cuts to be identified as something. (Small corrections 
and nondiagonal elements arise e.g. from nuclear interactions whose secondaries 
reach the TPC.) 

Since the particle identification is imperfect, a particle of type j is labeled as 
type i with probability Cij. The average measured number per event M; of particles 
called i is Mi = CijIj, or in matrix form, 

M = C I .  

Note that the columns of C sum to 1. Combining equations gives 

M = CDV, 

and multiplying by the inverses of the matrices gives the desired result 

V = D-’C-’M. 

The C matrix describing particle misidentification depends on well-measured 
detector properties such as the separation in dE/da: between species and the dE/ds  
and momentum resolutions, and on the algorithm used for identification. Any 
dependence on the physics generator is very indirect (the angular width of jets, etc. 
influences track overlap in the TPC, and hence the average number of wire samples 
and the dE/dz resolution); in particular, the C matrix is independent of the particle 
composition created by the event generator. Changing the fractions f;(p) changes 
the Mi’s, and the C;j’s and Dij’s, but not the resulting X’s.  This was in fact tested 
by using several sets of f;(p), among those a set of constant fractions fe = 0.05, 
fT = 0.75, fk = 0.15, and fp = 0.05 for all momenta. The resulting z distributions 
were computed and agreed with the distributions presented here within errors. 

The D matrix is diagonal to a good approximation. Small nondiagonal elements 
are due e.g. to nuclear interactions in the beam pipe with a secondary in the TPC. 
Also, such effects as momentum smearing and initial state radiation, move tracks 
into different kinematical bins. Since all these corrections are small, instead of 
unfolding the data, we define an effective diagonal D matrix for a given bin as 
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follows: 

# of particles of type i 
identified as something in the TPC 

per generated event including initial state radiation 
# of generated particles of type i after decays 

per event with no initial state radiation 

D.. - 
t t  - 7 

, 

D;j = 0 for i # j .  
D;i is the average number of particles of type i in the TPC in the given bin identified 
as something, divided by the average number of particles of type i in the given bin 
at a generator vertex with no initial state radiation. Thus the D matrix does 
the acceptance correction, the initial state radiation correction, and corrects for 
mismeasurement of the independent variable. A reliance on the physics generator 
is introduced since the particle fractions must be right to account for non-diagonal 
effects such as kaon decay before the TPC, although such effects are small. (If pions 
were separated from muons, the corresponding off diagonal term would be required 
since it would be large.) One possible large non-diagonal effect is pions, for instance, 
knocking protons from the beam pipe into the TPC. Only negative particles from 
the TPC were used in the analysis to avoid this problem, since the cross sections 
for such processes are not perfectly simulated. 

When the generator is run without initial state radiation for determining D;i, the 
rapidity and pt bins a particle goes in are determined from the event axis calculated 
using only charged stable particles. So no correction is made to find the distributions 
using all particles (or some other scheme) to determine the event axis. 

Figure 6.3 shows plots of the C and D matrix elements as a function of z = 
2p/&. The d E / d x  crossover regions are clearly visible in the plots of Cij as dips in 
Cii and peaks in Cij, i # j .  The close p-n and p-k crossover regions leave nothing 
called a proton from z cx 0.12 to z N 0.22 making the C matrix singular in this 
region. Otherwise, the particle identification is very good. Since only negative 
particles from the TPC are used in the analysis, the maximum value of Di; in 
principle is 0.5. The electrons knocked out of the material in front of the TPC, 
however, make Del,e[ > 0.5 at low z. The effects of the crossover regions are visible 
in Dii since it includes a correction for the requirement that the particle be identified 
as something. Plots of the C and D matrix elements as a function of other variables 
are given in Figures 6.4 to 6.7. In these plots the pion mass was used compute the 
energy and rapidity, and the sphericity axis was used as the event axis. 

A very important problem in the unfolding process is that the bin a particle goes 
in must not depend on the identity assigned to that particle, otherwise misidenti- 
fication could move particles between bins. The bin a particle goes in should only 
depend on its measured momentum, even for variables like x which depend on mass. 
To see how this was done, consider the variable x = 2E/& which depends on the 
particle’s identification through the mass in the energy. First, the T ,  k, and p cross 
sections were determined for bins in x, (xT G 2 d p q ! & ) .  The full analysis 
was then repeated for xk and xp. Only the pion cross sections were used from the 
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xT binning, only the kaon cross sections were used from the z k  binning, etc. The xi 
values used in each case were the correct x values for the particles kept. Thus the 
bins did-not depend on the identity we assigned to the particle. 

In areas where one particle species is absent, such as for x p  < 2 r n p / f i ,  the 
dimensions of the C and D matrices are reduced correspondingly. 

A place where the unfolding method fails is in the d E / d x  crossover regions. For 
instance, all the kaons might be called pions in the .rr-k crossover leaving no particles 
called kaons. In this case a row of the C matrix has all zeros and it can not be 
inverted. A partial fix to this problem is to combine the species whose d E / d x  bands 
are crossing, allowing the cross section for the remaining species to be found. Thus, 
the proton cross section was found in the .rr-k crossover region, etc. 

. 
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Figure 6.3: Plots of C;j and D;; as a function of scaled momentum. The effect of 
the dE/dz  crossover regions is apparent. 
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Figure 6.4: Plots of Cij and Dj; as a function of xT = 2ET/,/Z, where the pion mass 
was used to compute the energy. 
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Figure 6.5: Plots of C;j and D;i as a function of yr, the rapidity computed using 
the pion mass and the sphericity axis. 
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Figure 6.6: Plots of C;j and D;i as a function of p ,  using the sphericity axis. 
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Figure 6.8: Systematic error oc,, as a function of Cij, and systematic error Q D ~ ,  as 
a function of D;;. 

6.2.3 Error Analysis 
The error analysis becomes fairly laborious when using the matrix inversion tech- 
nique. Each term in both the C and D matrices has an error associated with it, and 
these errors have to be propagated through the matrix inversion. This was done 
using standard techniques for small errors. Statistical errors enter in the measured 
number of particles and in the C and D matrix elements since they were computed 
with large, but limited statistics. Systematic errors enter in both the C and D 
matrix elements and these will be discussed further below. All errors were assumed 
to be uncorrelated except for the C matrix elements since the columns sum to 1. 
The resulting correlations were taken into account. 

The systematic error on the C matrix elements is controlled by how well the 
detector simulator Monte Carlo mimics the experimental data in assigning dE/dz  
and momentum values to tracks so the misidentification probabilities are correct. 
The shape of the average truncated mean vs. ,Llr curve used in the Monte Carlo 
has the largest effect. To estimate the systematic error on the C matrix elements, 
the shape of this curve was varied within an uncertainty of 0.3% and the changes 
in the C;j were noted. For both C;j 21 0 and C;j N 1 there was very little change 
(5  0.005), and for intermediate Cij the largest change was - 0.04. The systematic 
error as a function of the value of Cij shown in Fig. 6.8 was used. In general, the 
final errors were found to be insensitive to the error on the intermediate Cij values 
because the errors on the D;; dominated. 

There are three major contributions to the error on a D matrix element. D;; is 
the probability that a particle of type i goes through the beam pipe and is identified 
(correctly or incorrectly). The probability to go through the beam pipe depends on 
nuclear cross sections which are accurate in the detector simulator to 10%. This puts 



81 

. 

approximately 1.6% error on the probability of a particle to interact in the beam 
pipe in the Monte Carlo. Once a particle is in the TPC it has to be found by pattern 
recognition programs. The track finding efficiency is N (97 f 2)%, determined by 
scanning events. Once the track is found it has to be identifiable, meaning that it has 
to pass cuts on the number of wires, can not be a conversion electron (determined 
by track reconstruction), and has to have a probability larger than 0.7 of being a 
particular particle type. In comparisons of the Monte Carlo to the data, the Monte 
Carlo reproduced the probability to pass these cuts to 2.1%. Adding these errors in 
quadrature gives a systematic error to the D;; of (uD,, /D;;)  = 3.3%. Small values of 
Di; indicate larger losses and are generally accompanied by increased uncertainties. 
The resulting systematic error can be represented as UD,, = 0 . 0 3 3 a .  Note that 
typically 0 5 D;; 5 0.5 since only negative particles are included in the analysis. 

6.3 Comparison Of Results To Previous Work 
No experiment so far  has measured the r,k,p cross sections as a function of all 
the variables explored here. However, measurements of .rr,k,p cross sections as a 
function of momentum exist from TPC using the older data set, from TASSO for 
the large x region based on TOF and Cherenkov techniques, and from several other 
detectors for the low x region using TOF only. Furthermore, rapidity distributions 
have been published assuming that all charged hadrons are pions. In this section 
we compare our data with these limited existing measurements. In all cases where 
pion, kaon, and proton cross sections appear in the same plot, the kaon cross section 
has been divided by 10 and the proton cross section by 100 so that the distributions 
are clearly separated. All points are placed in the centers of the bins. The choice 
of binsizes is discussed in the following chapter. 

The TPC group previously published the invariant cross section (l/pa)(da/dz), 
where z = 2E/Js, and the particle fractions as a function of momentum for the 
1982/84 data sample [72]. A technique of fitting the d E / d x  distribution in fixed 
momentum intervals was used for the analysis. Fig. 6.9 shows comparisons of the old 
cross sections and the present ones. The newer 1985/86 data set with the improved 
momentum resolution allows much finer binning. Overall, the agreement is very 
good. Fig. 6.10 shows the particle fractions as a function of z = 2p/& for the old 
and new data sets. Again, the results are entirely consistent. 

A comparison of our pion, kaon, and proton cross sections ( l /pa) (da/dz)  to 
those of TASSO, HRS, and Mark I1 is shown in Fig. 6.11. All errors are statistical 
and systematic combined. The TASSO [73] (s /P)(da/dz)  cross sections were con- 
verted to (l/pa)(da/dz) using s = (34 GeV)2, a(e+e- + p+p-)  = 0.0868/s pb (s 
in GeV2), and the MAC [12] value of R = 3.96 (error neglected). The momentum 
bins were converted to r, k, and p s-bins, where x = 2E/&. In the low energy 
region, HRS [74] has published r,k,p cross sections and Mark I1 [75] has published 
k cross sections. Overall, the agreement is good. 

Fig. 6.12 compares our particle fractions as a function of scaled momentum 
z = 2p/& to those of TASSO [73] and HRS [74]. TASSO’s kaon fraction is higher 
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at low z than ours and HRS’s. 
The TPC and TASSO 1731 T, k, and p momentum distributions ( l / a ) ( d a / d z ) ,  

z = 2 p / f i ,  are shown in Fig. 6.13. The errors are statistical and systematic com- 
bined. The TASSO ( s ) ( d a / d p )  cross sections were converted to (l/a)(da/dz) in 
the manner indicated above for the energy distribution. The discrepancy in the low 
momentum kaon cross section is clearly visible, although the overall agreement is 
very good. 

Other detectors have made measurements of inclusive charged hadron momen- 
tum distributions with no particle identification, but with very high precision. We 
compare with those measurements by adding our corrected numbers of T*,  k*, and 
p(p) before we compute the cross sections. Fig. 6.14 compares our charged hadron 
cross section (l/a)(da/dz) as a function of z = 2 p / &  to that of TASSO [76] and 
Mark I1 [77]. The TASSO errors are statistical only, with the systematic errors 
estimated to be of the same order. The Mark I1 errors are also statistical only. 
Their systematic error is estimated to be between 6% at low z and 10% at high z. 
The agreement is very good. 

Our charged hadron rapidity distribution ( l / a ) ( d a / d ) y ( )  using the thrust axis 
is compared to that of TASSO [76] and Mark I1 [78] in Fig. 6.15. We used the yT 
bins and added the numbers of T*, k*, and p(p) before computing the cross section. 
Thus, all particles were considered pions when computing the rapidity in all three 
analyses. The TPC errors are statistical and systematic combined. The TASSO 
errors are statistical only. Their systematic errors are estimated to be of the same 
order as the statistical errors. The Mark I1 errors are statistical and systematic 
combined. The TASSO cross section extends to higher y, consistent with their 
higher energy of 34 GeV. 

In Fig. 6.16 our charged hadron pt distribution is compared to TASSO [76] and 
Mark I1 [78] using the sphericity axis. At low pt the agreement is very good, but at 
higher pt the TASSO cross section is larger, consistent with their higher energy. The 
TPC and Mark I1 errors are statistical and systematic combined, and the TASSO 
errors are statistical only with the systematic errors estimated to be of the same 
order as the statistical errors, although the error bars in the plot are smaller than 
the symbols and are not visible. 

. 
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Figure 6.9: Comparison of the ( l / p a ) ( d a / d s )  cross sections from the 1982/84 run- 
ning period and the more recent 1985/86 running period. The kaon cross sections 
have been divided by 10 and the proton cross sections by 100 for separation. 
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Figure 6.11: Comparison to TASSO and HRS of the (l / ,Ba)(da/dz) cross sections 
for pions, kaons, and protons. Also shown is the kaon cross section from Mark 11. 
The kaon cross section has been divided by 10 and the proton cross section by 100 
for separation. 
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Figure 6.12: Comparison to TASSO and HRS of the pion, kaon, and proton fractions 
as a function of scaled momentum z = 2p/&. 
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Figure 6.13: Comparison to TASSO of the T ,  k, and p momentum distributions 
( l / a ) ( d a / d z ) ,  z = 2p/&. The kaon cross section has been divided by 10 and the 
proton cross section by 100 for separation. 
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Figure 6.15: Comparison to TASSO and Mark I1 of the total charged hadron cross 
section (l/a)(da/d(yl) as a function of rapidity using the thrust axis. 
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Figure 6.16: Comparison to TASSO and Mark I1 of the charged hadron cross section 
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Chapter 7 

Results 

7.1 Values Of Cross Sections And Particle F'rac- 
t ions 

The results of the cross section and particle fraction measurements are presented 
below. In order to avoid an additional unfolding of the experimental resolution, 
the bin widths in the various variables were chosen such that at least 70% of the 
particles measured in a certain bin actually belonged in the bin as determined by 
the Monte Carlo'. Remaining small corrections are included in the acceptance 
correction factors. For the s and z distributions, the bin widths were dominated 
by the momentum resolution, whereas for the y, p t ,  and ypt distributions, the bin 
widths were determined largely by the error in the direction of the event axis. 

Table 7.1 contains the measured s-distributions (1//?)( l / a ) (da /ds ) ,  where x = 
2 d m / f i .  The minimum kinematically allowed 5 values for pions, kaons, and 
protons are respectively 0.0096,0.0341, and 0.0647. With the p 2 0.15 GeV cut, the 
minimum measured s values for pions, kaons, and protons are respectively 0.0141, 
0.0356, and 0.0655. The (l /p> in each bin was obtained from a fit to the data and 
was included to remove phase space effects. Table 7.2 contains the values used. 
Also shown in Table 7.1 are the measured particle fractions for each bin. The T-k, 
T-p, and k-p crossovers occur at x N 0.08, x z 0.13, and 2 N 0.17, respectively, 
accounting for the missing data points. 

The results for the r-distributions ((r)/a)(da/dz), where z = 2p/&, are given 
in Table 7.3 along with the particle fractions. With the p 2 0.15 GeV cut, the 
minimum measured z value is 1.03 x lo-*. Kaons are missing for z < 0.02 and 
protons are missing for r < 0.03 because they are in the 1/p2 region of the dE/dz 
curve and producing enough ionization to saturate the electronics. The z range from 
0.070 to 0.085 is the .Ir-k crossover region, from 0.12 to 0.15 is the T-P crossover 
region, and from 0.15 to 0.20 is the k-p crossover region. The ( z )  values were 
determined by a fit to the data. The values used are given in Table 7.4. 

The measured rapidity distributions ( l / a ) ( d a / d l y l )  and particle fractions as a 

'The 70% criteria applied to the sphericity axis for y and p t .  The same bins were used for thrust 
as for sphericity, violating the criteria in some cases. 
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function of Iyl, where y = (1/2)1n((E + ~ I I ) / ( E  - pll)), are given in Table 7.5. The 
sphericity axis computed from the charged particles was used as the event axis. The 
absolute value of the rapidity is used to improve statistics, since the distribution is 
symmetric about y = 0. Table 7.6 is the corresponding table for the thrust axis. 
The large dip at y = 0 is expected from the discussion of section 6.1. 

Table 7.7 contains the cross sections ( l / a ) ( d a / d p ; )  and particle fractions as a 
function of p t  using the sphericity axis. The denominator of the cross section was 
computed by taking the difference of the squares of the endpoints of each bin, giving 
the distribution in dp: even though the independent variable is pt .  A combination 
of particle misidentification and few high-pt particles using the sphericity axis made 
the maximum pt values for which the cross section could be measured 3.0 GeV and 
1.8 GeV, respectively, for kaons and protons. The corresponding table using the 
thrust axis is Table 7.8. 

The values of the double differential cross sections (l/a)(da/dlyldp:) and particle 
fractions as a function of pt  for different ranges of Iyl are given in Tables 7.9(a-d). 
The event axis is the sphericity axis. At low IyI the improved resolution allowed 
finer binning than at large Iy I. The binsizes were chosen so pt bins with 0 < IyI < 1 
could be combined to give the cross section in the bins used for Iyl > 1. At high 
Iyl, much of the pt range is excluded as shown in Fig. 7.1, where the shaded regions 
are kinematically forbidden. The corresponding numbers using the thrust axis are 
given in Table 7.10(a-d). 

The hadron multiplicities were determined from the unfolding technique by sum- 
ming the corrected number of particles at the vertex in each bin V,  (i = r,k,p) over 
all bins. The rapidity and pt distributions (with bins at large JyI and pt so the 
full kinematically allowed range was covered) were used, and they gave consistent 
results. We determined the x * ,  k*, and p(p) multiplicities to be 10.57 f 0.20, 
1.43 f 0.06, and 0.53 f 0.07, respectively. Both statistical and systematic errors are 
combined. 

c 
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. Table 7.1: Table of the measured cross sections (l/P)(l/a)(do/ds) and particle 
fractions for pions, kaons, and protons as a function of 2 = 2E/,/Z. 
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12-range 
0.0150.020 

0.020-0.025 
0.025-0.030 
0.030-0.035 
0.035-0.040 
0.040-0.045 
0.045-0.050 
0.05@0.055 
0.055-0.060 
0.060-0.065 
0.065-0.070 
0.070-0.075 
0.075-0.080 
0.080-0.085 
0.085-0.090 
0.090-0.095 
0.095-0.100 
0.100-0.105 
0.105-0.110 
0.11 0-0.120 
0.12&0.130 
0.130-0.140 
0.140-0.150 
0.150-0.160 
0.160-0.170 
0.170-0.180 
0.180-0.200 
0.200-0.220 
0.220-0.240 
0.240-0.260 
0.260-0.290 
0.290-0.320 
0.320-0.350 
0.350-0.400 
0.400-0.450 
0.450-0.500 

Pion (i) 
1.204 
1.108 
1.068 
1.047 
1.035 
1.027 
1.021 
1.017 
1.015 
1.012 
1.011 
1.009 
1.008 
1.007 
1.006 
1.006 
1.005 
1.004 
1.004 
1.004 
1.003 
1.003 
1.002 
1.002 
1.002 
1.002 
1.001 
1.001 
1.001 
1.001 
1.001 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1.000 

kaon Cji) 

1.683 
1.438 
1.316 
1.242 
1.193 
1.159 
1.133 
1.114 
1.098 
1 .OS6 
1.076 
1.067 
1.060 
1.054 
1.047 
1.039 
1.034 
1.029 
1.025 
1.022 
1.020 
1.017 
1.013 
1.011 
1.009 
1.008 
1.006 
1.005 
1.004 
1.003 
1.003 

1.827 
1.6 16 
1.488 
1.401 
1.338 
1.290 
1.253 
1.211 
1.170 
1.140 
1.118 
1.101 
1.087 
1.076 
1.064 
1.051 
1.042 
1.035 
1.029 
1.023 
1.019 
1.015 
1.012 
1.009 

Table 7.2: Table of the (l/@ values used in Table 7.1. 
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Table 7.3: Table of the measured cross sections (z)(l/a)(da/dz) and particle frac- 
tions for pions, kaons, and protons as a function of z = 2p/&. 

.. , 
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z-range 
0.0 10-0.0 15 
0.015-0.020 
0.020-0.025 
0.025-0.030 
0.030-0.035 
0.035-0.040 
0.040-0.045 

0.050-0.055 

0.060-0.065 
0.065-0.070 
0.070-0.075 

0.045-0.050 

0.055-0.060 

0.075-0.080 
0.080-0.085 
0.085-0.090 
0.090-0.100 
0.100-0.110 
0.1 10-0.120 
0.120-0.130 
0.130-0.140 
0.140-0.150 
0.150-0.160 
0.160-0.180 
0.180-0.200 
0.200-0.220 
0.220-0.240 
0.240-0.270 
0.270-0.300 
0.300-0.330 
0.330-0.360 
0.360-0.400 
0.400-0.450 
0.450-0.500 

pion (2) 
0 .O 13 
0.018 
0.022 
0.027 
0.032 
0.037 
0.042 

0.052 

0.062 
0.067 
0.072 

0.047 

0.057 

0.077 
0.082 
0.087 
0.095 
0.105 
0.115 
0.125 
0.135 
0.145 
0.155 
0.170 
0.190 
0.2 10 
0.230 
0.254 
0.284 
0.314 
0.344 
0.379 
0.423 
0.474 

kaon (z) 

0.013 
0.018 
0.023 
0.028 
0.033 
0.037 
0.042 
0.048 
0.053 
0.057 
0.062 
0.067 
0.072 
0.077 
0.082 
0.087 
0.095 
0.105 
0.115 
0.125 
0.135 
0.145 
0.155 
0.170 
0.190 
0.210 
0.230 
0.254 
0.285 
0.314 
0.344 
0.379 
0.424 
0.473 

proton ( z )  

0.013 
0.018 
0.023 
0.028 
0.033 
0.038 
0.042 
0.048 
0.053 
0.057 
0.062 
0.068 
0.072 
0.077 
0.082 
0.088 
0.095 
0.105 
0.115 
0.125 
0.135 
0.145 
0.155 
0.170 
0.190 
0.210 
0.230 
0.254 
0.285 
0.314 
0.345 
0.379 
0.424 
0.474 

Table 7.4: Table of (2) values used in Table 7.3. 
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Table 7.5: Table of the measured rapidity distributions ( l / o ) ( d a / d l y l )  and particle 
fractions for pions, kaons, and protons as a function of y = (1/2) ln((E+pll)/(E-pII)) 
using the sphericity axis. 

Table 7.6: Same as Table 7.5 only using the thrust axis. 
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Table 7.7: Table of the pt-distributions (l/a)(da/dp:) and particle fractions for 
pions, kaons, and protons as a function of pt  using the sphericity axis. 

e+e- -+ I* + X e+e- -+ kf + X e+e- + p* + X e+e- -+ I* + X e+e- -+ kf + X e+e- + p* + X 

Table 7.8: Same as Table 7.7 only using the thrust axis. 
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c 

2.4 - 3.2 11 - I (1.10 f 0.46) x I1 
yl range 1. to 2. Sphericity Axis 

e+e- - z* + X e+e- -.ti + X e+e- -, p* + X 

I 1.6 - 2.4 1 - I (7.46 f 4.08)-x lo-' 71 - I (3.86 3 4.30) x IO-' 1 - U 
yl range 2. to 3. Sphericity Axis 

e+e- - r* + X e+e- --. ti + X 

Table 7.9: Table of the cross sections (l/a)(da/dlyldp:) and particle fractions for 
pions, kaons, and protons as a function of p t  in the rapidity intervals 0 < Iyl < 1, 
1 < IyI < 2, 2 < IyI < 3, and 3 < IyI < 4. The sphericity axis was used as the event 
axis. 
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Table 7.10: Same as Table 7.9 only using the thrust axis. 
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I I I ,  I I 
0 
0 1.5 3 4.5 

pt 
PIONS 

5 

4 

3 

2 
> 

0 1.5 3 4.5 

pt 
KAONS 

lL 0 .*> 1.5 3 4.5 

pt 
PROTONS 

Figure 7.1: The shaded itreas show the kinematically forbidden simultaneous IyI 
and pt values (upper right) and values excluded by the acceptance cuts (lower left) 
for pions, kaons, and protons. 
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7.2 Comparison With Hadronization Models 
The tabulated results of the previous section are plotted in figures 7.2-7.11. Each 
data point is placed at the center of the appropriate bin. These results should 
be of interest to hadronization model builders because of the number of different 
distributions for pions, kaons, and protons, the particle fractions, and the quality of 
the data. The figures show the predictions of three Monte Carlos, the Lund Monte 
Carlo V5.3 [79] (solid line), the Webber Monte Carlo V3 [43,40] (dashed line), and 
the Gottschalk Monte Carlo V2 [44] (dotted line). Closed form expressions for the 
hadron spectra also exist using the assumption of Local Parton-Hadron Duality 
[80]. Comparisons to these predictions are also presented. 

The Lund Monte Carlo V5.3 generates an initial parton state from fixed 2nd 
order QCD. Color strings are formed between the initial state quarks and gluons. 
The strings break by the formation of quark-antiquark pairs with flavor chosen ac- 
cording to prescribed probabilities. Values of and -6 are generated for the pair 
quark and antiquark, respectively. A meson is formed from the endpoint quark 
(antiquark) and the pair antiquark (quark). The meson 6 is the vector sum of the 
constituent &’s, and the spin is chosen according to a vector to pseudoscalar ratio 
parameter. The quark content and spin identify the meson. The meson’s longitudi- 
nal momentum is obtained from the Lund symmetric fragmentation function [30]. 
The pair quark or antiquark not used in the meson forms the new string end and 
the process is repeated. Baryons are produced by generating diquaxk-antidiquark 
pairs in the string instead of quark-antiquark pairs. The Lund Monte Carlo was 
tuned using the older data set [81]. The non-default parameters we used were 
Q, = 0.183, a = 0.955 ( a  is a parameter in the symmetric fragmentation function), 
and a, = 0.350 GeV (a, controls the pt distribution). 

The Webber Monte Carlo V3 generates parton showers which lead to clusters, 
which in turn decay to form the observed particles. The parton showers are done 
in QCD using the leading infra-red and collinear singularities. They also include 
interference effects leading to an angular ordering of the emitted gluons and a dip in 
the rapidity plateau near y = 0. The partons of the shower form color singlet clusters 
of limited extension in both coordinate and momentum space (preconfinement). 
These clusters undergo phase-space-dominated decays to known resonances, which 
in turn decay to form the observed particles. We used the default values of the 
parameters when we ran the Monte Carlo. 

The Gottschalk Monte Carlo “Caltec-11” breaks hadronization into three dis- 
tinct phases. The first phase is a parton shower including coherence effects as in 
the Webber Monte Carlo. In the second phase color strings connect the partons 
produced in the shower, and the strings then break according to a covariant model 
analogous to the Lund model. However, the string breaking is terminated when 
the string pieces (clusters) are within 1-2 GeV of particle production threshold. 
The third phase involves decaying these clusters using a phenomenological fit to 
low mass data. The parameters in the Gottschalk Monte Carlo were left at their 
default values. 

The pion, kaon, and proton multiplicities for the Lund, Webber, and Gottschalk 
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Lund 
r* k* p* 

10.4 1.47 0.67 
Webber 

Gottschalk 

Table 7.11: The charged pion, kaon, and proton multiplicities in the Lund, Webber, 
and Gottschalk Monte Carlos. The statistical errors are small and are neglected. 

10.6 1.41 0.51 
10.3 1.34 0.71 

Monte Carlos are summarized in Table 7.11. The statistical errors are small, and 
are neglected in the table. 

Overall, the three Monte Carlos reproduce the data fairly well, although there 
are several discrepancies. For example, in all three Monte Carlos too many protons 
are produced at high momentum. Also, the Webber and Gottschalk Monte Carlos 
are not able to reproduce the pt distributions as well as the Lund Monte Carlo. 
Finally, the proton multiplicity in the Gottschalk Monte Carlo is somewhat higher 
than the measured value. It is not clear, at present, whether the Monte Carlos can 
be tuned to fit the data, or whether changes to the Monte Carlos need to be made. 

An interesting difference in the three Monte Carlos is that Lund V5.3, which 
does not have coherent parton showers, does not have a dip in the rapidity plateau 
at y = 0 using the sphericity axis, whereas both the Webber V3 and Gottschalk V2 
Monte Carlos do. The data tend to indicate a dip, although it is not statistically 
significant. 

Recently, several authors have obtained closed form expressions for the hadron 
spectra [80]. They start by calculating the parton (quark and gluon) spectra in per- 
turbative QCD using the modified leading log approximation. Then they assume 
a Local Parton-Hadron Duality, which means there is a direct correspondence be- 
tween parton and hadron differential distributions (inclusive spectra, correlations, 
etc.). 

An interesting consequence of this is that perturbative QCD predicts a “hump- 
backed” structure to the parton plateau due to interference effects [80]. Thus, if 
the Local Parton-Hadron Duality exists, the hadron spectra should have the same 
characteristics of rising at low momenta, peaking, and falling at high momenta. Fig. 
7.12 compares the predictions to our momentum distribution for pions, kaons, and 
protons. Both the shape and position of the peaks seem to agree with the data. 
Furthermore, the shape is obtained from a universal function for all hadron species, 
which is an interesting prediction that seems to agree with the data. Confirmation 
of these ideas would add new information on the hadronization mechanism and 
allow model-independent predictions of observable quantities from QCD. 
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Figure 7.2: Plot of the measured cross sections (l/P)(l/a)(da/dz) and particle 
fractions for pions, kaons, and protons as a function of z = 2E/,/Z. Also shown 
are the predictions of the Lund (solid line), Webber (dashed line), and Gottschalk 
(dotted line) Monte Carlos. 
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Figure 7.3: Plot of the measured cross sections ( ( z ) / a ) ( d a / d z )  and particle fractions 
for pions, kaons, and protons as a function of z = 2p/&. Also shown are the 
predictions of the Lund (solid line), Webber (dashed line), and Gottschalk (dotted 
line) Monte Carlos. 
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Figure 7.4: Plot of the measured cross sections (l/a)(da/dlyl) and particle fractions 
for pions, kaons, and protons as a function of rapidity using the sphericity axis. 
Also shown are the predictions of the Lund (solid line), Webber (dashed line), and 
Gottschalk (dotted line) Monte Carlos. 
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Figure 7.5: Same as Fig. 7.4 only using the thrust axis. 
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Figure 7.6: Plot of the measured cross sections (l/a)(da/dp:) and particle fractions 
for pions, kaons, and protons as a function of p ,  using the sphericity axis. Also shown 
are the predictions of the Lund (solid line), Webber (dashed line), and Gottschalk 
(dotted line) Monte Carlos. 
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Figure 7.7: Same as Fig. 7.6 only using the thrust axis. 
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Figure 7.8: Plot of the measured cross sections (l/a)(do/dJyIdp:) for pions, kaons, 
and protons as a function of pt in the rapidity intervals indicated. The event axis 
was the sphericity axis. Also shown are the predictions of the Lund (solid line), 
Webber (dashed line), and Gottschalk (dotted line) Monte Carlos. 
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Figure 7.9: Plot of the particle fractions as a function of p t  in the rapidity intervals 
indicated. The sphericity axis was used as the event axis. Also shown are the 
predictions of the Lund (solid line), Webber (dashed line), and Gottschalk (dotted 
line) Monte Carlos. 
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Figure 7.11: Same as Fig. 7.9 only using the thrust axis as the event axis. 
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Figure 7.12: Comparison of the cross section (z/a)(da/dz),  z = 2p/,/Z, to the 
predictions of Azimov e t  al. Ref. [80]. 
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Figure 7.13: Comparison of the inclusive cross sections (l/a)(da/dlyldp:) as a func- 
tion of p t  in the central rapidity region for Ti, kf, p and p. The ISR data comes 
from reference [83]. 

7.3 Comparison With Other Fragmentation Pro- 
cesses 

With the results of section 7.1, interesting comparisons can be made between hadron 
production in e+e- annihilation and in other processes. Consider, for instance, 
hadron production in soft proton-proton interactions. Both high energy e+e- an- 
nihilations and soft p-p collisions exhibit a jet structure of the final state hadrons. 
Once leading particle effects are removed, one would expect the properties of the 
jets to be similar if the underlying particle production mechanism is the same. This 
idea was tested by comparing cross sections and particle fractions from the TPC 
and the ISR [82]. The results are summarized below. 

Fig. 7.13 shows the inclusive T* ,  k*, p, and p cross sections (l/a)(da/d(yldp:) at 
y -N 0 as a function of p ,  from the TPC and the ISR [83]. Leading particle effects were 
removed by considering only particles in the central rapidity region in both cases. 
For proton-proton interactions, this removed remnants of the original protons, and 
for e+e- annihilation, this removed the effect of producing strange, charm, and 
bottom initial states not present in soft p-p interactions. The ISR data has center 
of mass energy f i  = 53 GeV giving an effective energy to the hadronic system, 
once leading particles are removed, similar to our energy of f i  = 29 GeV. For the 
soft p-p collisions, the beam direction was chosen as the direction of the event axis, 
while for the e+e- annihilations, the sphericity axis was used. The normalizing cross 
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0 TPC K-/n- 0 TPC P/n- 
0.6 0 ISR K'/w' 0 ISR P/n' t o ISR P/n- 0 ISR K-/n- 

Pt Pt 

Figure 7.14: Comparison of the k / r  and p / r  production ratios as a function of pt 
in the central rapidity region. The ISR data is from reference [83]. 

section (l/a) for the TPC data is the total hadronic cross section, while for the ISR 
data, the non-diffractive cross section was used since diffractive events contribute 
few particles at y = 0. The particles at the ISR were detected in a spectrometer 
placed at 90" with respect to the beam pipe, so they came in a narrow window at 
y = 0; whereas, the TPC data is averaged over 0 5 Iyl 5 1, ie. over the plateau 
region. Fig. 7.13 shows that for the pions and kaons, the pt  dependence of the cross 
section in the central rapidity region is similar for e+e- annihilation and soft p-p 
collisions. At pt > 1 GeV/c, charm and bottom decay products start contributing 
to the e+e- cross section (according to the Lund Monte Carlo), accounting for the 
discrepancies in the pion and kaon cross sections in this region. For the ISR data, 
the positive and negative pion and kaon production rates agree within 20% in the 
central rapidity region, indicating little memory of the p-p initial state. In contrast, 
the p and p production rates differ, indicating a memory of the initial state. The j,j 
cross section should be used for the comparison, and it agrees fairly well with the 
e+e- cross section. 

The similarities between particle production in soft p-p interactions and e+e- 
annihilation are further emphasized in Fig. 7.14 which shows the k / r  and p / r  
production ratios. In both reactions the fraction of heavy particles rises significantly 
with pt ,  and the rate of increase is very similar. 

A number of hadronization models predict this similarity between particle pro- 
duction in soft p-p interactions and e+e- annihilation, most notably the Lund model 
[84] and dual or multiple chain models [85]. In these models one or more gluons 
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exchanged between the protons leaves them in a color octet state. Two color triplet 
fluxtubes then join the protons. The fluxtubes (or strings, chains, etc.) break, cre- 
ating hadrons in the same manner as the fluxtubes between the partons in e+e- 
annihilation. Away from the ends, the particle composition and shape of the pt 
spectra would then be expected to be the same for the two processes. 
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Chapter 8 

Summary And Conclusions 

The Time Projection Chamber allows particle identification by simultaneous mo- 
mentum and dE/dz  measurements. The nominal momentum resolution of the TPC 
is ( ~ , / p ) ~  = (0.015)2 + ( 0 . 0 0 7 ~ ) ~  (p in GeV/c), and the nominal dE/dz  resolution 
is 3.6%. Outside the crossover regions, pions, kaons, and protons are identified 
correctly more than 95%, 85%, and 60% of the time, respectively, for 0 5 p 5 7.5 
GeV/c. The overall particle identification capabilities of the TPC are better than 
any other existing detector. 

An unfolding technique was used to measure cross sections and particle fractions 
for pions, kaons, and protons as a function of several variables: Feynman-z, rapidity, 
transverse momentum, etc. Many of these were first measurements. The measured 
multiplicities for pions, kaons, and protons are 10.57 f 0.20, 1.43 f 0.06, and 0.53 f 
0.07, respectively. 

Overall, the Lund V5.3, Webber V3, and Gottschalk V2 Monte Carlo models 
reproduce the data fairly well, although there are some discrepancies. For example, 
too many protons are produced at high momentum in all three Monte Carlos, and 
the proton multiplicity in the Gottschalk Monte Carlo is somewhat high. It is not 
clear, at present, whether tuning the Monte Carlos can provide overall agreement 
with the data, or whether some more fundamental changes are needed. The Local 
Parton-Hadron Duality model of Azimov e t  al. does surprisingly well at reproducing 
the pion, kaon, and proton momentum distributions, considering the small number 
of assumptions and parameters in the model. 

Comparison of my measurements in the central rapidity region to corresponding 
measurements from the ISR showed similarities in the shape of the p,-distribution 
and similarities in the particle composition. Such agreement, is predicted by string 
models and is in agreement with the hypothesis of a universal mechanism of particle 
production. 

Future inclusive measurements should provide sensitive tests of fragmentation 
models. With higher statistics, this analysis could be repeated on tagged jets, for 
example. Jets containing a D or D* could be used to study c fragmentation in much 
greater detail than has been done previously. 

Quark hadronization is still far from understood, although progress is being 
made through the interpretation of various models. This thesis provided a test of 
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current models and a coherent data set with which to test future models. Continued 
progress in constructing models and testing them should eventually lead to a clear 
picture of the hadronization process. 
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