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Introduction 

High energy e+e- colliders are currently limited on the way to energies higher than 

100 GeV by synchrotron radiation. When their trajectories are bent by a magnetic field, 

charged particles emit electromagnetic radiation. The power radiated is proportiona. t,o the 

fourth power of the energy of the particles and inversely proportional to the square of the 

bending radius of the trajectory. In order to keep the radiated power down to a manageable 

level, the highest energy e+e- collider ring to date, LEP at CERN, has a circumference of 

about 27 kilometers for a maximum energy of 100 GeV per beam. 

One requirement for colliders in the next twenty years is to increase the energy by an 

order of magnitude and reach the 1 TeV center-of-mass energy for e+e- collisions. The 

scaling of LEP to such energies, keeping a constant radiated power per unit, length, would 

lead to a ring twenty five times larger or about 700 kilometers in circumference. Clearly 

not an economically feasible machine. The other way to build high-energy machines, which 

would not require such a gigantic size, is the linear collider. Here two linea,r accelerators 

facing each other accelerate the two beams. They are brought in collisions at the Interaction 

Point and discarded. The concept of such a machine has been tested at SLAC with the 

Stanford Linear Collider (SLC[“) which has b een a success as such; a number of specific 

problems have been studied, some even discovered (muon shielding, collimat3ion) and for 

others the true complexity of these machines has been unveiled. This is particularly true for 

the problems linked with production and conservation of small emittances as well as for final 

focus systems. However the SLC is not a true linear collider. The beams a,re accelera,ted 

concurrently in a single linac then two arcs and final focus lines bring the beams in collision 

at the IP. The SLC has nonetheless demonstrated the feasibility of such linear machines. 

The lessons learned form the SLC could not have been obtained by any ot,her way. 

The other challenge of high-energy e+e- colliders is the luminosity required t,o investigate 

very rare events. The next generation of machines will require a luminosity bet,ween 1O33 

and 1O34 cmm2s-‘. There are three main parameters to the luminosity: The frequency of the 

collisions, the population of each bunch and the cross-sectional area of the beams at the IP. 

The first two parameters are the strong point of circular machines. The circula,ting current, 
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proportional to the bunch populations times the repetition frequency of the collisions, is fairly 

high albeit subject to limitations. For LEP the revolution frequency is of the order of 10” Hz 

and a typical bunch population in colliding mode is 1012 particles corresponding to a current 

of the order of a milliampere per bunch. On the other hand it is not possible to achieve very 

small beam sizes in circular machines since the beam-beam instabilities (disruption) could 

lead to the loss of the beams. 

This last parameter is the strong point of linear colliders: Since the beams a,re discarded 

after the collision, it is possible to have very small spot sizes at the IP and run in a disruptled 

mode where the beam-beam effects are very strong. On the other hand, the wakefields excited 

by the beams in the linacs, as well as the total “wall-plug” power used by the machine restrict 

the repetition frequency, of the order of 100 Hz, and bunch population, 1011 particles per 

train of ten microbunches. Studies are actively carried out to solve these problems but the 

most promising way of achieving a high luminosity at a future linear collider is to focus the 

beams very strongly at the IP. 

This is the task of the Final Focus System, together with keeping the beams in collision. 

At the SLC the final focus delivers a round beam at the IP with transverse dimensions of 

the order of two microns. Typically a next generation linear collider requires flat, beams 

a third of a micron wide and only a few nanometers high. The experience gained at, t,he 

SLC in building and operating such a line is extremely valuable. However the new scale 

for spot sizes in linear collider projects prompts for more careful studies of such systems. 

The design of the optics calls for more stringent cancellation of stronger aberrations. The 

tight requirements on tolerances and stability, both mechanical and electrical: t,hc precision 

required for the beam instrumentation and more powerful techniques for diagnostics and 

correction of the beamline have to be investigated and tested. 

The Final Focus Test Beam is being built at SLAC by an international collabora- 

tion of physicists and engineers from different laboratories worldwide; SLAC, IcEI<, INP- 

Novosibirsk, LAL-Orsay, DESY and MPI-Munich participate in this enterprise. Using t,he 

50 GeVelectron beam from the SLAC linac, the goal is to form and measure a spot, size 1 pin 

wide and GO nm high at the focal point of the system. Designed with possible paramet,ers 

of a future linear collider in mind, the FFTB is a scaled prototype of most of the hardware, 

software and procedures required for the building and operation of a final focus syst,em for a 

future linear collider. The demagnifications and the values of the betatron functions at, t,he 
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IP are identical to those for the Next Linear Collider (NLC). Tl le emittances a,nd the energy 

of the beam establish the scale of the FFTB compared to the NLC. 

The optics of the FFTB is first presented in chapter 1. The principle of the correction 

of the chromatic aberrations of the final quadrupoles is described. The introduction of 

sextupoles and bending magnets for this cancellation gives rise to new non-linear chromatic 

aberrations. The FFTB layout, section by section, is then detailed and finally the most 

important remaining aberrations are discussed. The intent of this chapter is simply to 

introduce the reader to the FFTB, the layout, main features and the notations used in the 

rest of this thesis. More information can be found in the FFTB design reportf3’ and the 

design handbook in preparation. 

The motivation for the work presented in this thesis is the following. Since we are trying 

to achieve a very small spot size by careful cancellation of some strong aberrations, it is 

important not only to check that the aberration content of the lattice is low enough - this 

can be done with tracking codes - but most importantly to understand the mechanisms by 

which cancellations happen or new aberrations arise. Most mathematical tools for the study 

of theoretical optics go only to second order. They are based on the matrix formulation PI 

of Courant and Snyder that was made popular by the program [‘I Transport. A few good 

references can be found in the bibliography. 

The optics of the FFTB is corrected at second order. The investigation of third and 

higher order effects, which currently limit the performance of our designs, is crucia.1 for the 

optimization of the design of the final focus systems for a next generation linear collider. 

The extension of the Transport formalism to third order has been started[“] but this is not 

an easy task. Also it is not easy to find one’s way in this wealth of coefficients. Alt,hough 

some higher order effects have been identified at the FFTB using an analytical approach 

based on kicks, there is no general way to systematically study these aberrat,ions aLt third 

and higher order. 

There exists a theory based on Differential Algebra which has been in use for some 

time, mostly applied to circular accelerators. Pioneered in this field by, among others, 

E. Forest and M. Berz, DA methods provide so called maps of a given system. A map is the 

representation of the transformation of a function and can be given at very high orders from 

the Hamiltonian of the system. DA techniques are currently being used most,ly, instead of 

tracking, for stability studies for large hadron colliders such as the SSC in the United States 
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and the LHC at CERN. It is indeed possible to concatenate the maps of individual elements 

and form a high order map of one turn of a very large machine. Successive applications of 

this map has then been shown to give results equivalent to tracking results. However the 

concatenation of those high order maps does not provide very much insight on the problem 

and especially on the mechanism by which aberrations cancel or a new aberration arises from 

the interaction of lower order effects. And this is our primary concern in the design of final 

focus systems. 

Another theory has been known for some time. Alex Dragt has proposed in the seventies 

to apply the theory of Lie transformations to some dynamical problems!1g”81 Assuming one 

knows the Hamiltonian of a system the solution is simply and elegantly given by the asso- 

ciated Lie transformation applied to the functions associated with the canonical variables. 

Although this work was known it has not been much applied outside of the comput,er code 

MaI:ylie[13’ developed by Dragt and his team. One reason for this is, I believe, t,he decompo- 

sition chosen in order to separate the effects of different orders in a product of independent 

Lie transformations. This stems directly from the Factorization Tlleorem’1g1 of Dragt and 

Finn. Even for simple elements it is sometimes non-trivial to find this decomposit,ion at order 

higher than three; fifth order contributions for most elements are now being incorporated to 

Marylie. 

A simpler formulation was then proposed[201 by John Irwin and used for the first time at 

the FFTB for the analysis of the optics. The expansion used is simpler since it consists only in 

the separation of linear and nonlinear terms. The design linear terms are then treated using 

the matrix formalism while the non-linear terms are treated sepaiately. The concatenation 

is performed using the CBH theorem. The simplification arises mostly from the fact, that 

the arguments of the Lie transformations are mostly the potentials of the elementjs t,o be 

considered, which are easily accessible. 

Chapter 2 exposes the mathematical basis needed to establish the physics in chapter 3. 

The theory of Lie groups and Lie algebra is generally non trivial. However the subset needed 

for the application to optics is simple. The notions of Lie algebra and operators on these 

algebras are reviewed. Then the central definition of the Lie transformation is presemed. 

The simple examples of the uniform motion and the harmonic oscillator are clet,ailed, using 

both the resolution of the equations of motion derived from Hamilton’s equat,ions, and the 

a,pplication of the Lie transformation. These two examples are very similar t,o t,he case of 
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the motion of a charged particle in a drift space and a quadrupole respectively. Finally the 

theorem of the similarity transformation and the Campbell-Baker-Hausdorff theorem are 

presented. They are the two essential tools on which the methods presented in this thesis 

stand. 

The application of these mathematical concepts to the physics of magnetic optics is the 

subject of chapter 3. I start here from the general electromagnetic Hamilt$onian of a charged 

particle in a magnetic potential typical of accelerator magnets. Some assumptions are made 

at this point that enable us to simplify the analytical calculations. It should be emphasized 

that these restrictions are not essential to the method and should the need arise to remove 

one or more of these assumptions, the same type of analysis would still be possible, albeit 

with a heavier formalism. The potentials used are expressed for dipoles and multipoles. The 

Lie transformation associated to the Hamiltonians with these potentials, when applied to the 

angular position functions of the particle, gives the kick, or change in direction, applied to the 

particle. This is essentially the expression in the thin lens approximation. The long element 

expression is then built using the CBH theorem and linear changes of coordinates. The 

same method lets us build a beamline composed of different long elements. The method is 

described in detail and involves the separation of the design linear optics from the non-linear 

and error-induced effects. 

Finally the last part of this third chapter shows how more elaborate manipulations can 

be done using the methods presented. The example of the Chromat,ic Correction Section is 

taken. The well known cancellation of the geometric aberrations of two sextupoles separa,ted 

by a -1 module is first shown. Then the more complex example of a fourt,h older aberration, 

i.e. a fifth order Hamiltonian, is discussed. The basis for these elaborate manipulations is the 

similarity transformation. A discussion on the errors and induced effects ends the chapter. 

The second part of the thesis consists in an application of the methods t,o the case of 

the Final Focus Test Beam. The aberration content of the FFTB at order up t,o five in the 

Hamiltonian, or fourth order optical effects, is analyzed in chapter 4. The approach is here 

analytical and since the number of potential aberrations is rather high, some arguments are 

derived in order to reduce the number of terms that actually need to be estima,tecl. Several 

arguments are invoked here, including one that uses the characteristic phase a.dvance pattern 

of final focus systems. The aberrations are then studied order by order. I actually make a 

distinction between two types of aberrations. Those that are present by design, in the perfect 
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line, are called inherent aberrations while those that arise because of some error (position, 

strength, etc.) are called induced aberrations. The orders quoted in the next paragraphs are 

the orders in the Hamiltonians which is one more than the actual optical order. 

Since we have already removed the design linear optics as explained in chapter 3, the 

only aberrations present at first and second order are induced. At higher order inherent 

and induced aberrations are mixed. The FFTB is corrected at third order except for one 

identified term for which a correction is proposed. The significant fourth and fifth order 

aberrations are then reviewed. Finally I show how the aberration pattern at the FFTB is 

closed at fifth order. That is there cannot be a significant aberration at order higher than 

five. 

Finally the last chapter reviews some stability tolerances for the FFTB. Alt,hough Lie 

algebra is not needed for this mostly first order study, it shows that it is possible to treat 

linear problems in a very simple way using these methods also. The individual tolerances 

are derived for the position stability of the magnets. The effects of steering a.t t,he IP as 

well as the dispersion, normal and skew quadrupole effects induced by the subsequent orbit 

displacement are reviewed. The tolerances on strength stability and rotation a’re also derived. 

Finally the tolerances on the sextupolar harmonic content of quadrupoles is also given. 

Throughout this thesis I will freely use without further definition some basic concepts of 

accelerator physics such as the betatron functions, the phase advance, etc.. The notations 

are those in use in the United States. The orientation of the axes follows also the american 

convention of the y direction being in the transverse plane and pointing upwards. Directions 

z and s are the longitudinal axes in respectively the Cartesian and curvilinear coordinate 

systems. 
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2. Lie Algebra 

2.1. INTRODUCTION 

I give in this chapter an overview of the mathematical basis on which we will build 

the methods we have applied to accelerator physics. Starting form the definition of a Lie 

algebra, I show how this applies to Hamiltonians with the Poisson bra,cket as the Lie product. 

Lie operators and Lie transformations are then introduced with their ba.sic properties. I 

then show, using two simple examples, how to actually find the equations of motion for 

Hamiltonian systems using Lie transformations. Finally I introduce without demonstration 

two theorems, the Campbell-Baker-Hausdorff theorem and the similarity transformation, 

which are at the center of the methods we use in the next chapter. 

I have tried to keep these mathematical considerations simple and clear. There are a 

number of references on the mathematical theories of Lie groups and Lie algebras where all 

proofs and further development can be found by the interested reader. There is no need 

however to go beyond the concepts presented in this chapter to understand and use the 

methods I present in this thesis. 

2.2. DEFINITION 

I give in this section a formal definition of an algebra and the additional properties 

needed to constitute a Lie -4lgebra. These definitions are purely mathematical and quite 

simple. I have not attempted here to provide a comprehensive set’ of definitions. I assume 

that the reader is familiar with such mathematical notions as fields and vect,or spaces. 

2.2.1. Algebra 

A formal definition of an algebra can be given as follows: 

An algebra over a field F is a vector space U over F together with a I-‘roduct operation 

U x U --+ U written (z,y) --+ x. y, which satisfies the bilineari& prollerties of mu1 tiplication 
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by an element of the field and the distribution (left and rig1rt) of the product with respect 

to the addition: 

a(x.y) = (ax).y = x.(ay) MF (2.1) 

and 

(Xl + 4.y = x1.y + x2.y 

x.(y1+ Y2) = x.Yl+x.Y2 
(2.2) 

In addition, but this is not a required property, the algebra is associative if the product 

satisfies 

x.(y.z) = (x.y).z = x.y.a (2.3) 

We will see later that this property is important for the definition of a Lie algebra. 

2.2.2. Lie Algebra 

Furthermore if the two following properties of antisymmetry and .Ja,cobi Identity are 

verified for the product, the product is called a Lie product and the algebra is a Lie Algebra: 

x.y = -y.x (2.4) 

x.(y.z) + y.(z.x) + z.(x.y) = 0 (2.5) 

We can note here that the property of associativity of the product, not required to form 

an algebra, is sufficient to show that the product is not a Lie product. In other words the 

associativity property on the one hand and the antisymmetry and Jacobi identity on the 

other hand are mutually exclusive and an associative algebra cannot be a Lie algebra. 

2.2.3. Examples 

As simple examples of algebras and Lie algebras we can consider the well known set of 

the ~2 x ~2. square matrices. 

We can first show very easily that this set, with the common matrix product, defines an 

algebra over the field of real numbers. I will not carry the demonstration out here since it is 

trivial. 
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However we can remark that the matrix product is not antisymmetric, namely A.B # 

-B.A which is one of the two properties required for a product to be a Lie product. The 

common matrix product is not a Lie product and the associated algebra is not a Lie algebra. 

It would have been equivalent to state that because the normal matrix product is indeed 

associative, the algebra of the square n x n square matrices with the normal matrix product 

cannot be a Lie algebra 

Let us now consider the commutator of two square matrices as the “product” on the 

same vector field, [A, B] = A.B - B.A where the dot still represents the normal matrix 

product. It can easily be shown that this is indeed an algebra and the commutator product 

is not associative. The commutator product is easily shown to be antisymmetric and the 

Jacobi identity can be verified for all A, B and C in the vector field by a trivial expansion 

of [A, [B, C] + [B, [C,A]] + [C, [A, B]] = 0. Th e commutator product is a Lie product and 

the set of the square n x n matrices with this product is a Lie algebra. 

In accelerator physics this set of the square n x n matrices is well known since its 

introduction by E. Courant and H. Snyder as the mathematical frame for their work on 

strong focusing. It is the basis of the formalism used in the comput,er code Transport[“and 

is the most widely used nowadays. Each element of an accelerator can be represented by a 

matrix mapping the coordinates of a particle (or ray) at the entraace of the element into 

coordinates at the exit. However the product used in this formalism is the common matrix 

product. An exa,mple of the Lie algebra based on the commuta,tor in accelerator physics 

is the set of the symplectic matrices (SPzn). For a detailed discussion on this subject, see 

reference 18. 

2.3. HAMILTONIANS AND POISSON BRACKETS 

The notion of Hamiltonian in a dynamical system arises from the more general formula- 

tion of Lagrangian mechanics. If the equations of motion in Lagrangian formulation consist 

of s, the number of degrees of freedom, equations of second order, there are 2s equations of 

order one to solve in the case of the Hamiltonian formulation. These equations a,re called 

canonical equations because of their simple formulation and their symmetry [“I. In general 

the Hamiltonian of a system is a function that does not depend on t,ime if the pot’ential itself 

does not depend on time. 
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The equations of motion for the canonical variables qi,pi (i = 1,2 . . . , s) are expressed 

by the equations of Hamilton: 

dq dH. dp . i3H 
~=cI;=~, dt=Pi=-aq; (2.6) 

Let f be a function of the q,p and t variables; the total derivative of f with respect to 

the time variable is written using the chain rule for derivation: 

df af 8.f . af . 
dt=at +C&%+FPi 

i 2 (2.7) 

The Poisson Bracket [f, g] of t wo functions f and g of the variables p;, q; is defined as 

[f,g] = c df3L - dfdy 
i 8% aPi aPi aqi 

(2.8) 

Using the equations of Hamilton (2.6) the total derivative off with respect to time (2.7) 

is then rewritten 

df af 
dt= at - + [f, HI (2.9) 

Particularly by taking f = H one gets g = $$ and if H does not explicitly depend on 

time % = 0 which expresses the conservation of some quantity H, usually the energy of the 

system. 

I do not wish to elaborate more on this at this point. I will come back to this subject 

in the next chapter when it comes to building the Hamiltonian of optical magnetic elements 

for an accelerator. 

2.4. THE LIE ALGEBRAS ON HAMILTONIANS 

Consider the vector space of the differentiable functions of the generalized real variables 

(4,P) = (qi,Pi,i = 1,2,.-.7 s} and the time t. The product defined as the Poisson bracket 

f .g = [f, g], is effectively a Lie product and the algebra hereby defined is a Lie algebra. 

The proof is readily obtained: From the linearity and distributivity of the derivative one 

infers the bilinearity and the distributivity of the Poisson bracket. 

34 



if + 9, h] = [f, h] + [g, h] 

and [fdJ+hl = [f,g] +[f,h] 

(2.10) 

(2.11) 

The antisymmetry property results from the minus sign in the definition of the Poisson 

bracket: 

[f, 91 = -[g7 f] (2.12) 

The Jacobi identity is the least obvious from the definition of the Poisson bracket but is 

easily developed. In terms of Poisson brackets it is written 

If 7 [g, 41 + b? [h f 11 + [h, [f 7 g]] = 0 (2.13) 

This Lie algebra is the one on which we will base the rest of the work presented here. 

2.5. LIE OPERATORS 

To every function f (q, p, t) we associate a “Lie operator” , : f :, operating on a,iiy function 

g(q,p, t) and defined as 

:f:g = [f,g] (2.14) 

In the words of Alex Dragt, “the Lie operator is a Poisson bracket wa,iting to ha,ppen”. The 

powers of Lie operators are defined as 

:f:Og = g 

:f: g = [f,g] (2.15) 

:f:2g = :f:(:f:g) = [f, [f,g]] 

The set of the Lie operators forms a vector space: 

a: f: + b:g: = :af + bg: with a and b scalars (2.16) 

They act as a differentiation operator with respect to the common product and the Poisson 
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bracket: 

:f: (gh) = (:f: g) h+g (:f: h) (2.17) 

:f: [g,h] = [:f: g , h] + [g , :f: h] (2.18) 

Note here that we can rewrite equation (2.9) using the antisymmetry property of the 

Poisson bracket and the definition of the Lie operator 

df af 
z= at 

- - :H:f (2.19) 

And when the function f does not explicitly depend on the time variable (g = 0), which 

is the case for the functions we will study later in this thesis, the equation can even be 

restricted to the following notation 

d H 
z=-: : 

(2.20) 

showing that the Hamiltonian Lie operator simply consists in a time derivation. 

I can now rewrite equation (2.18) for this particular case as 

-3: [g, h] = ;[g; h] = [$, h] + [g, $1 (2.21) 

which forms the differentiation rule for a Poisson bracket. 

Finally one can also define a product on Lie operators as the commutation between the 

two individual operators: 

{:f:,:g:} = :f::g: - :g::f: (2.22) 

Applying this new operator to any function h(q, p, t) we get 

{:f:,:g:} h = :f::g: h - :g::f: h = [f,[g,h]] - [g,[f,lL]] 

= [[f>g],h] = :[f,g]:h 
(2.23) 

so that we can write {:f:,:g:} = :[f,g]: 

The commutator has already been shown to be a Lie product. The algebra of Lie 

operators with the commutator as a Lie product is a Lie algebra. Notice that this Lie algebra 

of Lie operators is constructed upon the Lie algebra of functions of generalized variables with 

the Poisson bracket as the Lie product and is therefore homomorphic to the later. 
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2.6. LIE TRANSFORMATIONS AND PROPERTIES 

2.6.1. Definition 

Powers of Lie operators belong to the space of Lie operators. It is possible to introduce 

the functions that can be expanded in integral series of Lie operators and these functions 

also belong to the space of Lie operators. In particular the exponential function 

O” 1 
exp(:f:) = C 2 (:f:)” 

n=O . 
(2.24) 

is defined as the Lie transformation and its action on a function g(q,p, t) is the series 

exPcf:)g= 9+ [fdl + $Jf>[f,r/ll + ... (2.25) 

2.6.2. Properties 

The following properties can be verified using the series expansion of equation (2.25) and 

equations (2.17) and (2.18). 

e:f:(gh) = (e’f’g)(&) 
e:f:[g, h] = [&f:g, e:f:17.] 
&g( 2) = g( $,) 

(2.26) 

The first two properties are easily shown. The last one above should be emphasized for 

it will be central in the treatment of optics. It can be expressed as the following rule: 

“to transform a function through a Lie transformation, one needs 0111~~ transform the coor- 

dinates of this function”. 

If we now apply the Lie transformation eVrZH’ where H is the Hamiltonian, to the func- 

tions of canonical variables qi,pi when these functions do not explicitly depend on t,ime but 

are taken at time to, we have 

(2.27) 

which is the usual definition of the translation of a system by a time r using the Taylor series 

expansion of the function at a time to. 
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2.6.3. Examples 

2.6.3.1. Uniform motion 

Let us assume the Hamiltonian H = & for the movement in one dimension of an object 

of mass m with generalized coordinates q and p. This Hamiltonian corresponds to a motion 

with speed 4 = g = c and the motion is uniform since lj = $$ = 0. The solution comes 

then from integrating these two equations and we have, with qo and ~0 the initia,l conditions: 

P = PO; 4 = 40 + pot (2.28) 

If we now try to solve the same problem using Lie algebraic methods, we have to evaluate 

the transformation of the coordinate function f(q) s q evolving according to the Hamiltonian 

H. We see here that the approach is quite different in the two methods. The classical method 

derives an equation of motion and therefore “maps” the input to the output coordinates, 

while the second method attempts to find the transformation of the function representing 

those coordinates. Notice here that physicists are often lax when it comes to making fine 

distinctions of this sort and often overlook these differences. I have found that it is however 

an important point here since the “mapping” approach of the problem, corresponding to the 

first method presented here and relying on coordinates is so obvious and natural and the 

manipulation of functions bearing the same name as the coordinates is often overlooked. 

Following equations (2.27) and (2.25), the solution is simply the Lie transformation: 

t2 
edtIH’q = q - t[H, q] + a[H, [H, q]] + . . s (2.29) 

As one can see the operations involved here are Poisson brackets which involve only 

derivations. There is no integration to perform and we already can see tha,t if a computer 

can be made to analytically perform a differentiation, which is one of the great results of 

the Differential Algebra techniques, it will be very easy to make it calculate analytically the 

evolution of the function q. Note that it results from the assullrptions that the Hamiltonian 

of a classical dynamical system can be differentiated as many times a.s necessary. 
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The individual Poisson brackets to be calculated are: 

(2.30) 

It is seen here that this system is actually closed and replacing the results in equation (2.29), 

we get, assuming that the functions at t = 0 evaluate to ~(t = 0) = ~0 and q(t = 0) = 40: 

q(t) = qo + ff.Jt (2.31) 

In the same way we get the evolution of the momentum function p: 

,-t:Hzp = p - t[H,p] + . . . 

with [H,p] = [&>P] = 0 (2.32) 

giving p(t) = PO 

We have seen here how to get the same result using two different methods. In the usual 

method one needs to integrate the equations of Hamilton tjo get the result. The second 

one makes use of the Lie algebraic properties of the space of physical functions with the 

Poisson bracket as a Lie product. The evolution of any function of position and momentum 

is given by the Lie transformation that only requires the calculation of Poisson brackets of 

the Hamiltonian describing the system with these functions. Moreover a.ccording to the last 

property in (2.26), one needs only calculate the Poisson brackets with the functions position 

q and momentum p. 

I have chosen this elementary example to develop the method in detail. It may appear 

that the first method is simpler but the reader is reminded that in nmny practical cases, 

Hamilton’s equations are not easily integrable. 
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2.6.3.2. The harmonic oscillator. 

I can now present a more elaborate example. The harmonic oscillator is similar to the 

problem of the motion in a quadrupole in accelerator physics and it involves an open system. 

A reduced Hamiltonian for the harmonic oscillator can be written H = i(p” + q2). 

Ones needs to calculate the different powers of the Lie operator associated with the 

Hamiltonian and their action on the functions position q and momentum p: 

[H,q] = :H:q = -p ; :H12q = -:H:p = -q ; :H13q zp ; :Hlbq = q . . . 

:H:p=q ; :HI~~ = :H:q = -p ; :If~~p = -q ; :H;4p = p 
(2.33) 

. . . 

which allows us to write for the solution 

t2 t3 
e-t’H’q = q - t:H:q + 2:H:2q - %:H13q + . . . 

t2 t3 
=q+pt-q~-p+... 

t2 t3 
= q (1 - 2 + . . .) +p (t - 3 + . . .) 

= q cos(t) + p sin(t) 

t2 t3 ctzH’p = p - t:H:p + T:H:2p - 3’:H:3p + . . . 

t2 t3 . 
=p-qt-ppq+.. 

t2 t3 
= p (1 - 2 + . . .) + q (t - F + . . .) 

= p cos(t) - q sin(t) 

(2.34) 

(2.35) 

The last step in (2.34) and (2.35) involves the recognition of the familiar series of the 

sine and cosine functions. 

From this second example it should now be clear how one can treat those problems in a 

very general way given the Hamiltonian of the system. An extension of these examples to 

more than one dimension (two degrees of freedom) is also straightforward. 
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2.7. THEOREMS 

I present here the last two theorems needed for the rest of this work. Any Lie transforma- 

tion is associated to one Hamiltonian. In the case of systems with piecewise Hamiltonians, 

the whole system is represented as a product of the different Lie transformations. It is often 

desirable to combine these into one global transformation or in other words to find the one 

Hamiltonian representing the whole system. 

The general problem of finding the combination of two Lie transformations is solved by 

the Campbell-Baker-Hausdorff theorem: 

e:f: e:g: = e:h: 

with h = f + g + fV,g] + &[f - 91 hl] +. *. (2.36) 

There is no general expression for this series but one important, aspect for computational 

purposes is the fact that the right hand side of equation (2.36) contains only Poisson brackets 

of increasing order, or derivatives of f and g of increasing order but no terms of order higher 

than one in f or g. The demonstration of this theorem is not easy and one can refer for 

example to the one given by A. Dragt and J. Finn in reference 19. 

The algebra of Lie transformation is non-commutative and the reordering of a product of 

such transformations can be performed using the similarity transformation; it is readily seen 

with the CBH theorem that the inverse of a Lie transformation e’f’ is the Lie t~ransformation 

e-‘f’ and inserting the identity e'f'e-'f', one gets 

&g: e:f: = e:f: (e-:f: e:g: e:f:) 

= e:f: e:e-:f:g: 

= e:f:e:g':. 

(2.37) 

Then following the last property in (2.26) we get that g’(z), with s = {q;, p;}, is the same 

function g expressed now in terms of the coordinate functions tra,nsformed by f: g’(z) = 

g(e'f'z). 
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The similarity transformation can be interpreted as a simple coordinate transformation. 

4i + Qi + [f7 4i] + k [f’ [f, qi]] + . . . 

Pi+Pi+[f;Pi]+k[f,[f,Pi]] +... 
(2.38) 

If f is a quadratic polynomial the change of coordinates is linear and can be represented in 

a matrix form. This is the Lie algebra equivalent of the familiar change of coordinates in 

the algebra of matrices M’ = RMR-’ where R-l is the inverse of R. 

Assuming a series of transformations, it is now possible to reorder this series by successive 

applications of the similarity transformation. For example considering a series of mixed 

linear (fi) d an non-linear (9;) transformations, it is possible to move all the non-linear terms 

together by successively moving them through the linear terms as in the following example: 

The non-linear transformations keep the same form although the coordinates on which 

they act are now different. Note that since the fi are linear transformations the familiar t,ools 

of matrix algebra can be applied here to concatenate the linear terms. The CBH theorem 

can be used to find a single non-linear term so that the whole series is reduced to one linear 

transformation times one non-linear term. 

2.8. CONCLUSION 

MJe now have at hand all the mathematical tools necessary to approa~ch the Hamiltonian 

formulation of accelerator optics using Lie algebras. Let me summarize here the essential 

mathematical tools we will use: At the center of the theory is the notion of the Lie algebra 

on Hamiltonians with the Poisson bracket. The evolution of the system is given by the Lie 

transformation associated with the Hamiltonian of the system. Finally the CBH theorem lets 

us concatenate Lie transformations while the reordering of the transformations is achieved 

using the similarity transformation, which can also be seen a,s a, cha,nge of variables. The 

separation of linear and non-linear terms is also easily achieved as shown in the last section. 

The similarity transformation and the CBH theorem are the main tools for the rest of this 
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study. The mathematical basis for Lie algebra is far richer than the very quick presentation 

I have made here. I can only encourage the reader to further investigate this very elegant 

area of mathematics. 

43 



3. Application to Optics 

3.1. INTRODUCTION 

I describe in this chapter the techniques used to apply the mathematical tools previously 

developed to the problem of magnetic optics in accelerators. After transforming the general 

Hamiltonian into a more specific and more manageable form I show how to separate the 

optics into the linear and higher-order parts using coordinate changes and the similarity 

transformation. The treatment of long elements and its extension to the case of beam-lines 

is then shown. 

Two different approaches to finding higher-order effects are presented. One is a straight- 

forward algorithm giving a good global picture of the aberrations in the beamline. The 

other approach is better used for the analysis of specific effects and analytical calculations. I 

present some examples of such analysis based on the case of the CC5 at the FFTB. Finally 

I describe how to take some errors into account. 

3.2. HAMILTONIANS 

3.2.1. The Electra-Magnetic Hamiltonian 

The general Hamiltonian of a particle of rest mass ~no, charge c and canonical position 

and momentum q’ and 6, placed in an electromagnetic field deriving from the scalar and 

vector potentials Q and A is written, with the time t as the independentj variable: 

H = ($,c4 + c2(p’- ei)2)1’2 + eQ 

If the vector and scalar potentials A’ and Q do not explicit)ly depend on time so that 

--ix- dH - 0 the Hamiltonian is a constant of motion (g = 0) as well as an integral of motion 

([H, H] = 0). The H amiltonian in equation (3.1) is a constant and represents the total 

energy of the system (H = E). 
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It is convenient in accelerator physics to change the coordinate system and analyze the 

dynamics of the particles with respect to a design trajectory. The z and y axes lie in the 

plane perpendicular to the trajectory of the reference particle and the s axis is along this 

reference trajectory. This curvilinear coordinate system has been described in many places 

and is very familiar to accelerator physicists. 

The change of coordinates[6’301 generates a new Hamiltonian, still written H however. 

The new constant of motion, H = -p,, is the longitudinal momentum. Denoting by p(s) 

the curvature of the design trajectory along the machine we get the following Hamiltonian: 

H = -e-4 - (1 + z) icE ,,“*j2 - m$z2 - (pz - eA,)2 _ (py _ “~,)2] ’ (3.2) 

I shall now restrict the scope of the problem to the magnetostatic case of typical ac- 

celerator magnets, where QJ = 0 and the vector potential A does not, vary with time. It is 

also convenient and, because of time independence, legitimate to scale the Hamiltonian by 

the total momentum of the particle p. This requires that we scale the coordina.te p, and 
. . 

P, glvlng x ’ = pz/p, the angle that the trajectory of the particle ma.kes with the design 

trajectory in the horizontal direction (x plane) taken in the approximation of small angles. 

Similarly in the vertical plane y’ = p,/p. The new Hamiltonian is 

H = -;As - (1 + ;)[l - (z’ - ;Az)2 - (y’ - ;il,)‘]’ (3-3) 

3.2.2. Approximations 

I assume for the rest of this study that the only non-zero component of the vector 

potential is the longitudinal component A,. Since B’ = V x -x, this assumes that the 

longitudinal component of the magnetic field is zero everywhere. Although I neglect as a 

consequence the fringe fields of magnetic elements, which is a good a,pproximation in our 

case, the formalism is quite general. Including elements with axial magnetic fields and fringe 

fields would not present any additional problem. 

I can now expand the square root in a series since the angles .c’ and y’ are typically very 

small: of the order of a few tenth of a microradian in most elements at the FFTB, and up 

to a maximum of 300 to 500 microradians at the focal point. 
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H = $.A, - (1 + 3) [l - ;(X12 + y’2) - :(x/2 + d2j2 +. . ‘1 (3.4 

Also using the same argument of small angles, we get that the effects of the fourth and 

higher-order terms in x’ and y’ in the above expansion are negligible. Note that some very 

general aberrations, well known to spectrometer designers, do disappear from the calcula- 

tions due to this approximation; for example there are higher-order geometric aberrations 

appearing in quadrupoles if one keeps more terms in the development. They are due to 

large enough x’ and y’ that change the path length inside the magnet. Their effects can be 

calculated as perturbations and shown to be negligible for the FFTB. 

All the terms we have dropped may be included in situation where they are important. 

Note that the first term of the series in (3.4), a constant, does not have any effect on the 

dynamics of the system and can be dropped. Finally I can express the total momentum p of 

the particle in terms of the design momentum po and T8 = 7 a momentum deviation* so 

that the final expression for the Hamiltonian is, given as a function of the vector potential 

A,: 

H = -+ (1 -8) A, - $ + ;(I + ;)(x’~ + t//2) 

The equations of motion can then be obtained from Hamilton’s equations (2.6) and the 

motion, solution of these equations, can be found by integration or alternatively by applying 

the Lie transformation to a given coordinate function, as shown in chapter 2. 

3.2.3. Potentials 

The expression for the vector potential A, can be obtained from Maxwell’s equations 

expressed in curvilinear coordinates. 

* The deviation usually quoted in accelerator physics, 6 = y, would lead to an infinite series of 

chromatic terms at all orders l/(1 + 6) E 1 - 6 + h2 + . . . . Using 3 = & all chromatic effects are 

contained in the linear dependence in 6. 
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3.2.3.1. dipoles 

In the case of bending magnets, horizontal here, the vector potential A, is the solution 

of a differential equation given by Bo = (V x 2) Y where the rotational operator is expressed 

in curvilinear coordinates. The solution [311. 1s of the form 

A, = T (1 + z)2 
P (3.6) 

There are two terms of importance in this potential. The first one, Box, represents the main 

bending field and cancels the term x/p in (3.5) so that, as was expected since we are in 

curvilinear coordinates, the main bending field disappears form the Hamiltonian of dipole 

magnets. The second term of interest is proportional to x2/p2 and is the expression of a 

weak-focusing effect in the horizontal plane. 

Dipole magnets at the FFTB have typically a bending radius /, = 725m and the typical 

excursion from the central trajectory is a few hundreds of microns giving x/p z 10v7. The 

weak-focusing effect is therefore dropped altogether with higher-order effects in x/p. The 

only remaining term in the potential is the dispersion 8x/p and the Hamiltonian we assume 

for dipole magnets has the final form: 

TX H = ;(x12 + Y'~) - p (3.7) 

3.2.3.2. multipoles 

For multipoles, l/p = 0 and the magnetic vector potential is a solution of an equation 

of Laplace in two dimensions. This equation is easily obtained by writing the condition 

V x l? = 0 together with B’ = V x A’. The solution is of the general form Re C,, 3 (:~+iy)~, 

with c, complex, containing all the normal as well as skew multipole terms. The order of 

the solution and the constant for a given magnet are determined by its geometry (number 

of poles, aperture) and the value of the field at the pole tip. By arguments of symmetry 

one can show that the solution of order n corresponds to a magnet with 272 poles and the 

orientation of the poles determines whether the element is “normal” or “skewed”. One is a 

rota.tion of the other by an angle r/2n around the longitudinal axis. 
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A “normal” element is by definition one that has the horizontal midplane symmetry: A 

particle with a trajectory starting in the horizontal plane rema,ins in the horizontal plane 

when passing through this element. The consequence on the symmetry of the transverse 

components of the field is 

&(x7 -Y, s> = --B&G Y, 4 

&4(x7 -Y, 4 = B&G Y, 4 
(3.8) 

The strength of the multipole is given by the boundary condition at dm = a the 

radius of the aperture of the magnet where the field is equal to the pole tip magnetic field 

Bu. The solutions at order n for the normal and skew multipole elements respectively are 

written as the real and imaginary part of the general solution above: 

7 

-i A, = 2 Re (x + iy), 

-i A, = 5 Im (x + iy>‘” 
(3.9) 

The absolute values of the strengths are defined, with the magnetic rigidity (Bp) = t , as 

(3.10) 

For example the following Hamiltonians determine the dynamics of a particle in respectively 

a drift space (no field), a quadrupole, a skew quadrupole and a sextupole: 

drift space: H = i(xj2 + Y’~) 

quadrupole: H = i(x12 + Y’~) + i It-2 (1 - 8) (:x2 - y2) 

skew quadrupole: H = ;(,, + y/2) + IL-; (1 - n) :c-y 
(3.11) 

sextupole: H = i(x12 + Y’~) + k K3 (1 - s) (:I:~ - 3~9~) 
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3.2.3.3. summary 

The following table lists the potential part of all normal and skew multipoles at order up 

to five. I define the potential part of a Hamiltonian as the part deriving from a potential, in 

our case -f A, (1 - s), while the kinematic part exists even in the absence of a potential. 

The Hamiltonian of a drift space contains only a kinematic part. 

element normal skew 

dipole s X/P 2 YIP 

quadrupole + (1 -8) (x2 - y2) Ii-4 (1 -3) zy 

sextupole 3 (1 - S) (x3 - 3xy2) 3 (1 - 8) (3s2y - y3) 

octupole +f (1 -8) (x4 - 6x2y2 + y4) J$ (1 - 8) (4:Sy - 4xy3) 

decapole 3 (1 - 8) (x5 - 1ox3y2 + 5x94) $/ (1 - S) (5:c4y - 1ox2y3 + y5) 

Table 3.1. The potential parts, normal and skew, of the Hamiltonians for te first few orders. 
Note that for dipoles and since we are in curvilinear coordinates, only the dispersive part appears 
here and no order one effects are present. 

The Hamiltonians defined contain all the dynamics of the system, considering of course 

the approximations made in the preceding section, and one can now trea.t a multipole element 

in the same way I have treated the two simple examples in the previous chapter. Note that 

the uniform motion example is to be compared to that of a drift here and the example of 

the harmonic oscillator is analogous to the case of the quadrupole. 

Notice here that no Hamiltonians of order one appear in the above table since the main 

bending field disappears by virtue of the curvilinear coordinates. Hamiltonians of order one 

will however a,ppear when considering dipole correctors, which are not a part of the design 

lattice, or errors or misplaced elements. 

3.3. PRINCIPLES 

3.3.1. Thin elements 

The Lie transformation associated with the Hamiltonia,n as defined above is written, 

for a small slice of length ds, exp(-ds:H:). H is in general composed of a linear pa,rt 
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Hz of order two in the generalized coordinates and 8, and a non-linear part H,l of order 

three and higher. It is possible, in the thin-lens approximation (1s -+ 0, to rewrite the Lie 

transformation associated with the slice, as the product 

exp( -ds:H:) = exp(-ds:Hl:) exp( -ds:H,z:). (3.12) 

The linear part Hz contains the kinematic part of the Hamiltonian as well as the potential 

part of order two if present. This is equivalent to neglecting all the terms in ds”, 72 > 1 in 

the CBH expansion since Hz and H,z do not commute. 

3.3.2. Linear Transformations 

A Lie transformation of the form iVl = exp(-E:Hz:) w rere 1 Hz is of order two is a linear 

transformation that can be represented by a linear map. Following section (2.7) this map 

can be represented in a matrix form [Ml. Although maps are used for the transformation of 

functions, the matrix form of a linear map is obviously equal t,o the familiar linear R matrix 

representing the linear optics in the Transport formalism. 

[M] = R (3.13) 

The tools and methods developed for linear optics in any matrix manipulation codes such 

as Transport [‘I can then be used to treat the linear optics in this Lie algebra framework. 

3.3.3. Outline of the Methods 

I have now shown how one can separate the linear optics from the non-linear terms in 

the Hamiltonians developed above. The linear optics is simply treated using the well-known 

Transport matrix theory. The rest of the analysis will consist in taking a series of thin-lens 

transformations and first assemble them into a thick element. Similarly taking a series of 

thick elements, the beamline itself can be assembled. 
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3.4. THICK ELEMENTS 

3.4.1. Method 

Having defined the thin-lens expression of the Lie transformations, I can now concatenate 

the thin slices, taking the product of the transformations, to form a thick element. I choose 

to represent this thick element as the combination of two linear maps Ml,, a,nd a single 

nonlinear transformation at the center: 

n 
Mds, e--dsi:H(si): = M -Z:Ht: 

t z/2 e Mz/2 (3.14) 

The linear transformation Mdsi is the same for all the slices while each slice at location 

s; has a nonlinear Hamiltonians H((x(si), y(q)). By successive application of the similar- 

ity transformation, following the rules defined in the previous chapter, I transform all the 

nonlinear kicks of individual slices to the center of the element: 

n 

M 112 e-z’Ht’ lkfz,2 = (MM ,..M,) He- ~ dsi:Hl,(i): (ndl\,f , ,..A$) (3.15) 
42 i=l 42 

The linear Ml,, is obviously equal to the product of the linear transformation of half 

of the total number of slices, corresponding to the linear map across half the length of 

the thick element. And following the rule for transforming the nonlinear terms, the HAz(i) 

are expressed at the center of the element by simply transforming the coordinates in the 

H(x(s;), y(si)), i.e. writing x(si) and y(s;) as a function of the coordinates at the center. 

The last step is to obtain a single non-linear Hamiltonian Ht using the CBH theorem: 

IHt = 2 H:,z(i)ds; + l$ e[HLz(i), H~,(j)]d~~&j + . . . (3.16) 
i 2~1 j=i 
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3.4.2. First order in CBH 

The first term in the above expansion is simply the kick of the elementary slices summed 

over all the slices or the main effect of the multipole, now expressed at the center of the 

element. In the limit ds + 0 the summation becomes an integral over the length of the 

magnet: 

where H(s) is a function of the elementary coordinate functions X(S) and g(s). The evolution 

of the elementary coordinate functions along the magnet is supposed known from the linear 

matrix theory. 

3.4.2.1. multipoles 

For multipoles of order three and higher, i.e. without a quadrupole part, the linear 

transport is that of a drift space; X(S) = x, + sx: ; y(s) = yc + sy; 

Taking the sextupole as an example the integral yields 

H = $L(x; - 3x,y,2) + gL3(x,2:2 - 2x/,y,y:, - X&L2 >. (3. .18) 

The first term is the main sextupole effect for the magnet, The second term is a higher- 

order effect in the length of the magnet and is typically smaller tha,n the first one by a factor 

(L/p)2. At the FFTB this factor is at least equal to lo-‘. The second t,erm can be neglected 

in our case. 

3.4.2.2. quadrupoles 

For quadrupoles, and all elements with a quadrupole component of strength K, the linear 

transport is given, with 4(s) = ms and for K > 0, by 

1 
X(S) = cos 4(s) x, + 7 sin 4(s) x:‘, 

4-l 
1 

y(s) = cosh#(s) yc + - 
l/n K 

sin11 4(s) y: 
(3.19) 
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The role of x and y are exchanged for K < 0. For a pure qusdrupole the integral yields : 

H = ; IX- L 8 [ x,” ; (1+ y, + x’,” & (l- 2!$) 

- y,2 ;(l+ 
(3.20) 

which can be rewritten 

(3.21) 

For K < 0, one needs only exchange a, with uy as well as b, with b,. 

The a,, b,, uY, b, are corrections to the simple minded Hamiltonian for the quadrupole. 

For most quadrupoles at the FFTB the phase 4 is of the order of 0.3 radians and the following 

approximations are reasonably good: a, E 1, uy M 1 a,nd b, M $, b, M $. The final 

quadrupoles are much stronger and have a phase of the order of one ra,dian. The following 

table lists the FFTB magnets by type and shows the values of the phase and correct,ion 

factors. Note that the final quadrupoles (QC2, QXl, QCl) are sufficiently strong that there 

is a correction of about 10% to the thin-lens approximation chromaticit,y calculation. Since 

the final quadrupoles also produce most of the chromaticity of t,he line, one must take these 

corrections into account. 

3.4.3. second-order in CBH 

The second term in the expansion of the CBH theorem represents the interaction of the 

main multipole term with itself; the effect of the kick produced by a given slice on the kicks 

produced by the subsequent slices. It can also be replaced by integrals over the length of 

the magnet: 

dsidsj [I&(+;), Y(K)), H:,,(x(sjL y(sj))l (3.22) 

L/2 L/2 
1 --f- 

s s 
ds 

2 ds’ [WW Y(S)), H(x(s’), Y(s’))] 
-L/2 s 

Note that the Poisson bracket can be developed and expressed in t,erms of the elementary 
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quad. type 

Q5 

Q6 
Q-40 

QAl 

Q-42 

QNl 

QN2 

QN3 

QMl 
QM2 

QM3 

QTl 

QT2 

QT3 

QT4 

QC5 
QC4 

QC3 

QC2 

QXl 

QCl 

4 h-ad.) 

0.2058 

0.1816 

0.1050 

0.2826 

0.2111 

0.3181 

0.3216 

0.2338 

0.3216 

0.3181 

0.2338 

0.3137 

0.2871 

0.3292 

0.2231 

0.2643 

0.1727 

0.1279 

0.9509 

0.2820 

1.1535 

ax bx UY bY 
1.0035 -0.0035 0.9965 0.0035 

0.9973 0.0027 1.0028 -0.0028 

0.9991 0.0009 1.0009 -0.0009 

0.9934 0.0066 1.0067 -0.0067 

1.0037 -0.0037 0.9963 0.0037 

0.9916 0.0084 1.0085 -0.0085 

1.0087 -0.0087 0.9914 0.0086 

0.9955 0.0045 1.0046 -0.0046 

0.9914 0.0086 1.0087 -0.0087 

1.0085 -0.0085 0.9916 0.0084 

1.0046 -0.0046 0.9955 0.0045 

0.9918 0.0082 1.0082 -0.0082 

1.0069 -0.0069 0.9932 0.0068 

0.9910 0.0090 1.0091 -0.0091 

1.0042 -0.0042 0.9959 9.0041 

1.0058 -0.0058 0.9942 0.0058 

1.0025 -0.0025 0.9975 0.0025 

1.0014 -0.0014 0.9986 0.0014 

0.9280 0.0720 1.0788 -0.0788 

1.0067 -O,.OOGi 0.9934 0.0066 

1.1185 -0.1185 0.8963 0.1037 

Table 3.2. Correction factors to the first order Hamiltonians for the FFTB quadrupoles. The 

factors are defined in the text and are dimensionless. 

[x(s),x(s’)] and [y(s), y(s’)]. In th e case of multipoles of order three and higher for which 

the linear transport is that of a drift, they are 

[x(s), 441 = [Y(S), Y(J)] = s’ - s. (3.23) 

The integral is then easily calculated and gives the long element effect in terms of the 
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coordinates at the center of the magnet. 

Note that since this long-element Hamiltonian involves the calculation of a Poisson 

bracket, its order is (2n - 2) if n is the original multipole order. The long sextupole term 

Hz, = q(x; + y,“)” is of order four (octupole like) and its calculation is given in detail in 

Appendix B. 

In the case of the quadrupole and with & = m(s’ - s), li > 0, the elementary 

Poisson brackets are written, 

[x(s), x’(S)] = -j&j sin A4 
(3.24) 

and M4, Y’(s)] = -& sinh 4 1 

The result of the double integral gives the so called second-order chromaticity, taking H(s) = 

%8(x( s)~ - Ye) and 4 = m L: 

L/2 L/2 

; j- ds / ds’[% 8 (x(s)~ - Ye) , % s (:x(s’)~ - ye)] 

-L/2 s 

=I$2 yq\ 44 4s’) bwA~‘>I + Y(S) Yb’) [Ids)> YWI } 
-L/2 s 

Ii-2 L -2 =- 
2 

6 x;; (14cosi+2y3 

+ xl2 c $ (1+2cos44ye-3 

sinh 4 +y,2 $ (-1+2cosh+2-- sin11 24 
4 

---) 
24 

+ Y’Z !l(1+2cos4m2y-~) } 

and assuming K > 0. This can be rewritten 

Yx2 { 
x; cz + x’; d, + Y: cy + Y’: d, 1 

(3.25) 

(3.26) 

The coefficients c,,dz,cy and d, are those of the second-order chroma.ticity terms in quadru- 

poles. For K < 0, one needs only exchange c, with cy as well as (1,. with dy. The coefficients 
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are approximated for small 4 by c, N $2/6, d, N -44/5!, cy N $2/6 and d, N -4”/5!. The 

effect is very small for most quadrupoles at the FFTB. 

Note that the CBH expansion (3.16) contains terms that involve more Poisson brackets 

which are therefore of even higher order. They are usually negligible but are accessible 

through a simple extension of the formalism. 

3.5. BEAM LINE ANALYSIS 

3.5.1. First approach 

The same methods using the similarity transformation, as a change of coordinates, and 

the CBH theorem can be used to treat a beamline. Starting from the concatenation of all 

the thick elements in the form of the product of alternatively linear and higher-order trans- 

formations, the similarity transformation is applied successively t,o change the coordinates 

of all nonlinear terms and express them at a single common locat,ion, usually the end of the 

line (IP). The total Hamiltonian Ht for the complete beamline is given by 

eYH,: = (Ml ezH1: Ml) . . . (Mn-1 erH-l: n/I& (A/r,, eEHn: MT,) 

= (Ml cH1: Ml) . . . (Mn-1 ezH-l: A/r,l,-lA~~,nr,,)e’Ha: 

= (Ml e:H1: Ml) . . . ~~~~~~~~~~~~~ ,$Ct-,yH:,: (3.27) 

with M = MrMr . . . MnMn = l-J;=, Mf is the linear transformation for the entire line. It is 

known from the linear design and is related, as seen above, to the usual linear R matrices of 

the Transport formalism. The Hamiltonian H;’ is the Hamiltonian of element i transformed 

through M; n,“,i+l Mj, hence H,! is now expressed in terms of IP coordinates. 

The second part contains the product of all the nonlinear transformations now collated 

in one single location, the IP. The nonlinear optics of the entire line is expressed in terms 

of one set of local coordinate functions. Successive applications of the CBH theorem to this 

product of Lie transformations yields a single final Hamiltonian containing the information 

on the nonlinear behavior of the whole line. The calculations are straightforward but tedious 

after a couple of elements. The FFTB has over thirty different elements to take into account. 
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This systematic method is one that can be automated easily and yields the total nonlinear 

Hamiltonian of the line giving a picture of the aberration content of the optics. While it is 

difficult with traditional matrix-based optics methods to get terms at third[l”order and quasi 

impossible to get higher-order[141 terms, the method I described can give results at practically 

any order although I will show later that it is not necessary to go beyond fifth order in 

the case of the FFTB. The maximum order is limited only by how far one carries the CBH 

expansion, provided the long elements effects have been taken into account correctly. 

These methods may then seem like the panacea for getting knowledge on the nonlinear 

optics of accelerators. However since we are trying to carefully cancel harmful aberrations, 

one is also interested in studying these cancellations in detail as well as looking at how 

optical elements interact with each other. It might be possible to design better optics using 

this information. To this end I need to tell exactly which aberration is coming from which 

element or which combination of elements. Some fifth order aberrations that exist at the 

FFTB would certainly be detected with this method but the mechanism of their appearance, 

in short the interaction of the central quadrupole in the CCY, with t,he sextupoles around 

it, would be difficult to guess and possible correction nearly impossible to invent with this 

method alone. Oide[“‘has identified these aberrations using a method based on kicks on 

individual trajectories. I show in the next section how to easily calculate them using Lie 

algebra techniques. 

3.5.2. Looking for insight 

There is a more powerful way to use these Lie algebra techniques, a methodology that 

gives a lot more insight in the optics than the one I have described in t,he previous pa,ragra,ph. 

Note that the two methods are certainly not exclusive but are more coml>lementary: the 

first one might detect a significant aberration in the total nonlinear Ha,miltonian, the second 

method will help in the careful, insightful study of it. 

Let me recall here that the optics of final focus systems is ba,sed on the cancellation by 

sextupoles of the chromaticity introduced by mostly the final quadrupoles. There are five 

large chromatic sources: four sextupoles and the final quadrupoles. The sext’upoles are also 

sources of strong geometric aberrations. 

In the method outlined above these strong Hamiltonians are mixed with weaker ones, 

like the chromaticity of other quadrupoles or the long-sextupole aberration. The approach 
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here is to select only the nonlinearities I am interested in and consider the rest of the optics 

as linear. I therefore treat only a chosen subset of the problem, allowing to treat one effect 

at a time. 

After that the analysis could follow exactly the approach presented in the previous 

section: individual non-linear Hamiltonians are transformed (similarity transformations) to 

a common reference point (e.g. the IP) w h ere they are combined using the CBH theorem. 

Since we are looking at only a few terms, this can be done analytically and the interplay of 

these terms is easily seen. There are other ways to do this refined analysis and as an example 

I use, in the next two sections, the particular symmetry of the CCS at the FFTB. 

The Chromatic Correction Section indeed forms a self consistent section inside the final 

focus. Its purpose being to ideally introduce a single term, the chromaticity needed to cancel 

that of the final quadrupoles. The idea here is to treat the CCS as a beam line by itself, 

reducing it to the now familiar form of a linear transformation (-1) and a global Hamiltonian 

containing all of its nonlinear terms. The entire line can then be built from those reduced 

sections and other individual elements. 

3.5.3. Geometries cancellation in the CCS 

The Chromatic Correction Sections are at first order -I sections. That is they are 

transparent for the linear optics. I consider now the CCS as a small beam line starting 

at the first sextupole and ending at the second sextupole. The separation of the linear 

transformation and the higher-order Hamiltonians is made using the second sextupole as the 

reference location where all Hamiltonians will be transformed. 

I choose to treat only the case of sextupolar aberrations in this s&ion. .411 other elements 

within the CCS are considered 

neglected. The Hamiltonian of 

expressed in local coordinates: 

linear, including the quadrupoles whose chromaticity is here 

a sextupole is, in the presence of 1lorizonta.l dispersion 77 and 

H, = $ ((x + T$)~ - 3(x + $)y2) 

= 2 (x3 - 3xy2) + $ $ (x2 - y2) + 2 q2E2 x + $7/3x3 
(3.28) 

The second line in (3.28) shows the main geometric (Hg = $ (x3 - 3ry2)) and the main 

chromatic (H, = + 7s (x2-y2)) b a errations introduced by the sextupole. I further limit this 
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study to these two terms. The two remaining terms in (3.28) are the second-order dispersion 

and a purely chromatic term with no effect. 

I can now represent the CCS, from sextupole center to sextupole center by the following 

sequence of transformations. Note that in local coordinates the aberrations of a sextupole 

commute and I can reorder them. The goal of this transformation being of course to separate 

the linear optics (-1) from the nonlinear terms: 

e:&CS: =e :H,: e:H,: (q e:H,: e:Hc: 

= (-1) ,:H,: ce:-Hg: e:HY:) e:Hc: 

= (-1) e:2fL: 

(3.29) 

Obviously the (-1) t ransforms H, into H, since it is an even term in x and y and the 

dispersion is the same at both sextupoles, while Hg goes into -Hg since it is an odd term 

in x and y. The geometric aberrations simply vanish at the second sextupole and one is 

left with the sum of the chromaticities introduced by the sextupoles, since they obviously 

commute. This is a well known result, the basis of chromaticity correction for final focus 

systems. 

This result has an important consequence for the analysis of t,he rest of the line. The 

geometric aberrations having vanished locally there is no need to take them into account for 

the building of the Hamiltonian of the whole line. There cannot be any direct effect of the 

interaction between the sextupole geometric aberrations and the chromaticity of the final 

quadrupoles for example. 

3.5.4. Fifth order aberrations 

Other terms arise from the CCS if one considers a more extended model of it. Oide[%as 

shown that some fifth order aberrations originate in the “chromatic breakdown” of the -I: 

Due to the chromaticity of the quadrupoles inside the CCS, the -I is only exact for on- 

momentum particles. The linear optics is slightly different for off-energy particles. Therefore 

the chromatic and geometric aberrations they experience is different from what I have shown 

in the previous section: The net chromatic kick is not exactly twice that, of a single sextupole 

and the geometric aberrations are not strictly cancelled, resulting in fifth order aberrations. 
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Figure 3.1. The model and the method used for the study of the CCS. After linear transport, 

shown in steps here, of all the elements into one location, the linear part. of the line, -I, is virtually 
extracted. One is left with the non-linear kicks. The sextupole geometric kicks cancel and one 
is finally left with the chromaticity correction term, 2H,, and a fifth order residual and inherent 
aberration. 

The model I choose to treat here is that of the full CCS at the FFTB: Two sextupoles 

separated by a --I transformation made of five quadrupoles. 

The first step is to combine the Hamiltonians representing the chromaticity for all five 

quadrupoles into a single Hamiltonian (cf. second line in above figure). The reference location 

I choose is the quadrupole at the center of the CCS. It is located exactly 7r/2 from either 

sextupole. The transformation is linear and is equivalent to a change of coordinates in the 

individual Hamiltonians. Using the CBH theorem one builds the single Hamiltonian Hq 

representing the total chromaticity of all the quadrupoles of the CCS. Expressed at the 

center quadrupole, it is of the general form 

Hq = 8(ux2 + bx12 + cy2 + dy’“) (3.30) 

where a, b, c and d are coefficients functions of the linear lattice in the CCS. Note that the 

end quadrupoles, closest to the sextupoles, contribute mostly to the b and d coefficients while 

the center quadrupoles contribute essentially to a and c. 

Note that no term proportional to xx’ or yy’ appear in this formula. Since the section is 

symmetric the Hamiltonian is the same irrespective of the clirec+ion we use for the calculation. 
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This is equivalent to applying a time reversal for which 2’ is changed to -x’ and y’ to -y’. 

No term of odd order in x’ or y’ can therefore appear. 

The second step of this argument is very similar to the treatment of the geometries of 

the CCS in the previous section: After linear transformation of the three “elements” to the 

center of the second sextupole of the pair ( Hk is the transformed of H,), the situation is 

represented by the following product (cf. third line in above figure): 

,:H,,,: = (-1) ,:H,: ce:-Hg: ,gH;: gHq gHc: 

The first similarity transformation gives 

where 
H; = ,&7,: H; 

= H;(~-:&:~, . . . , e-:H,:y’) 

(3.31) 

(3.32) 

(3.33) 

After insertion of an identity, a second similarity transformation yields 

gHm: = (-1) e:H;r: ,2:H,: (3.34) 

where now 

= H;( aHg aH, x,x’-- - aH, aH, -- 
ax + ax lyyy’- ay + ax ), 

(3.35) 

Equation (3.34) 1 s rows that I have separated the main effect of the CCS, the chromaticity 

correction with the Hamiltonian 2H,, from the effect of the -I breakdown represented by 

HF. The study of this Hamiltonian shows that it indeed contains fifth order aberrations. 

Using (3.30) and the definition of H, and H, one can rewrite (3.35) as 

H:” = 8 ( ,3x2 + a (x’ - :(x2 - y2) + k,$x)2 + dy2 + c (y’ + ksxy + ks7$y)2) (3.36) 

The expansion of Hy shows that the interaction of the quadrupole chromaticity with the 

geometric aberrations from the sextupoles generates three fifth order aberrations: 8x4, 8y4 
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and 8x 2 2 y . The interaction of the quadrupole and sextupole chromaticities generates x3x2 

and s3y2. There are also two cross terms: x2x3 and z2zy2. 

These fifth order aberrations are proportional to the a and c coefficients of (3.30), them- 

selves originating mainly from the center quadrupole. I have also neglected all the terms 

in x’ or y’ since the angles are typically orders of magnitude smaller than the trajectory 

amplitudes at the FFTB sextupoles. 

3.5.5. Other uses of this formalism 

Having reduced the CCS under the form of a linear -I, a fifth order Hamiltonian and 

the main chromaticity term, it is possible to insert it back into the FFTB beamline. Let me 

take the following model for the whole line, assuming only one CCS: 

,:H: = &Hh: ,:Hs: ,:2H,: gH,: (3.37) 

All Hamiltonians are expressed at the IP. The front-end of t,he line is modeled by the non- 

linear Hamiltonian HI, comprising the chromaticity of all element#s from the begimling of the 

line up to the CCS. The part from the CCS to the IP is in Ht and contains the very strong 

chromaticity of the final quadrupoles. Note that Hh is very small compared to Ht. 

The following transformation assumes that the chromaticity cancellation is perfect 
(e:Hh:e:2&:e:Ht: = Unity) and shows that the only remaining part in the total Hamiltonian 

of the line are some higher (fifth) order effects: 

gH: = &Hh: gHs: ,:2H,: e:H,: 

= ,:H;: ,:Hh: ,:2H,: gH,: 

=e :H;: 

(3.38) 

Note that HL has been transformed through Hh, however since t,he front, end of t,he line 

contains very little chromaticity*, the higher-order effects it could trigger combined with the 

fifth order effects are expected to be negligible. In other words HA N H5. I will show in the 

next chapter which are the conditions necessary for high order terms to become significant. 

* I assume here only one CCS in the line 
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There are, in conclusion, residual uncorrected fifth order aberrations at the FFTB. The 

cause of these terms is in the CCS and has been shown to be the interaction of the quad- 

rupoles chromaticity with both the geometric and chromatic aberrations of the sextupoles. 

Another significant term already mentioned is the fourth order long-sextupole aberration. 

This has been established without any numerical calculation, simply by analysis of the struc- 

ture of the beam line and its components. 

A systematic analysis such as that presented earlier in this chapter would give a global 

aberration picture of the line and would quantify the importance of these aberrations. All the 

power of the Lie algebra methods I present is here, allowing both the detailed and analytic 

expression of specific effects and their global sizing through the detailed calculations element 

by element. 

3.6. ERRORS AND OFFSETS 

The previous sections showed how to treat a perfect line. I want to show here how one 

can take into account different displacements and errors in bea,m-line elements. 

The connection between the similarity transformation and the displacement of a.n element 

is obvious: 

and 

= H(x + d,, x’) 
(3.40) 

The Hamiltonian is simply rewritten H(x+d,, x’, y, y’). Recall that x stands for the function 

representing the trajectory and d, is a constant. 

The introduction of offsets in the Hamiltonian gives rise to new terms. The corresponding 

aberrations are of order lower than that of the main term, they a,re called feed-down terms. 

For example the Hamiltonian of a horizontally displaced sextupole shows two new terms. A 

second-order term proportional to dx(x2 - y2) representing a quadrupole effect and a first 

order term proportional to dzx representing some horizontal steering. There is also a constant 

term that has no effect a,nd is dropped here. In the presence of lat,tice dispersion the sa,me 

displacement also generates additional dispersion (d,qx and d,qy), feed-down from the main 
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chromaticity terms. This formalism actually shows clearly that dispersion is a by-product 

of the chromaticity of a displaced element. 

Feed-down terms of order two and one are not a part of the design and cannot be 

included in the design linear optics of the line. They are therefore treated with the non- 

linear Hamiltonians. The part of the optics that remains after the design linear optics 

has been removed now comprises non-linear as well as feed-down terms and is called the 

“rest”. The methods outlined in this chapter are not specific to non-linear optics and can 

accommodate these new terms. 

It was possible to express the displacement formally as a similarity transformation be- 

cause it affects directly one of the coordinate functions. Other errors like strength errors 

cannot be expressed in this way but can still be shown in the Hamiltonian by directly chang- 

ing the constant: Kn -+ Ii;, + AKn. There are now feed-down terms generated by this error: 

an additional term with the same expression of the main term, and superimposed onto it. 

Strength errors for quadrupoles are treated as an additional quadrupole and are not treated 

in the design linear lattice. 

Rotation errors and multipole content of an element can be represented as additional 

Hamiltonians inserted at the same location as the element. In the case of rotation error (4), 

the Hamiltonian of the affected element is also subject to a strength error by reduction of 

the nominal strength K + KCOS~. 

It is of course now possible to study the effect on the optics of a single error in the line. 

The calculation of tolerances for the FFTB has been done using these methods. They are 

the object of chapter 5 of this thesis. 

Note finally that the displacement of a section or even the whole line can be studied 

by inserting the corresponding Hamiltonian in equation (3.39), leading to the calculation of 

tolerances for the section or, in the case of the whole line, to incoming bea,m tolerances. 

3.7. CONCLUSION 

This chapter has taken us from the general formulation of the electromagnetic Hamil- 

tonian to the ability to analyze the optical effects in a beamline with great selectivity. The 

key points are the use of the similarity transformation and the CBH theorem. The similarity 

transformation allows us to change the coordinates of a given Hamiltonian which leads to 
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the possibility to separate the linear and nonlinear optics. It is also helpful in the handling 

of compensation mechanism such as that of the geometries in the CCS. The combination of 

remaining Hamiltonians is handled by the CBH theorem. 

The same method can be applied from within a single element to obtain the Hamiltonian 

that takes into account the length effects, considering a subset of the line to locally eliminate 

some aberrations from the calculation as in the treatment of the CCS, or at the level of the 

whole line to get the global picture of the aberration content of the line. 

The similar treatment applied to the single element and the whole beamline shows how 

scalable these tools are. This is of great help in the understanding of the optics and will 

ultimately prove very helpful for the building of a computer code based on them. 

The introduction of errors 1la.s been mentioned in the la.st section and I now turn in the 

next two chapters to an analysis of the aberration content and the tolerances for the FFTB 

using the now complete set of tools using Lie algebra. 
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4. Aberrations at the FFTB 

4.1. INTRODUCTION 

Using the tools and methods developed in chapter 2 and 3, I analyze here the aberration 

content of the FFTB optics. The order of an aberration is to be understood in this chapter 

as the order of the corresponding monomial in the Hamiltonian. Therefore a third order 

aberration corresponds to a second order optical effect as defined in the Transport formalism, 

represented there by an entry in the T matrix. 

After a few remarks on the classification and the number of aberrations we have to 

consider, I show how one can apply a few simple arguments to find whether the effect of 

a given aberration can be important or on the contrary is negligible. This will allow us to 

effectively analyze only the important aberrations. Then I turn to the systematic analysis 

of all the important aberration terms at up to fifth order for the FFTB. 

Remember that by nature Lie algebra acts on functions, not on coordinates like mapping 

or matrix tools. All references to “coordinates” in the frame of Lie algebra should therefore be 

understood as “coordinate functions”. Let me also recall tha,t I a,m using here three different 

sets of coordinate functions. The usual set {x, x’, y, y’} refers to the local coordinate functions 

in a given beamline element. The usual coordinates at the IF’ are noted {x*, r’*, VJ*, y’*}. 

Finally the set of reduced coordinate functions, or “bar coordinates”, is defined by the linear 

transformation: 

Y* y=--- 
@- !T 

7 Fy = Y’* P,’ J- (4.1) 

and the corresponding formulas for the other plane. The Hamiltonian is unchanged by this 

scaling. Note that although I denote the conjugates of the position functions as p, and l)Y 

they are not momenta. The position and angle functions defined by (4.1) are both in units 

of square root meters ( [L]‘i2). 

The fifth general coordinate is the momentum deviation of the particle s = y. Since I 

do not consider acceleration or radiation effects in this study, ?? is a constant. Its conjugate, 

the time of flight, is not critical at the FFTB so the set of coordinate functions we use for 

the rest of this chapter is {?E,P~,Y,~~,~}. 
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4.2. CLASSIFICATION 

Chapter 3 showed how to “remove” the first optical order from the problem of analyzing 

the optics with Lie algebra based techniques. This manipulation implies that all Hamiltoni- 

ans describing individual elements are now expressed at the IP as polynomials in the set of 

(‘x%,KF 8) Y’ . 

The aberrations arising from the CBH combination of individual non-linear Hamiltoni- 

ans, including the element length effects, exist in the line by design and I classify them as 

“inherent aberrations”. They can be corrected, often by the insertion of specific correction 

lenses in the line. One purpose of final focus systems is to eliminate all such design aber- 

rations that can affect the spot sizes at the IP. The largest, is the chromaticity introduced 

by the quadrupoles. This goal can be summarized by $$ = 0 and g = 0 if H is the total Y I 
non-linear Hamiltonian of the system. 

In practice a beamline camlot be built exactly to design and we have to consider what 

the consequences of errors are on the aberrations, as well as on the linear optics. Errors 

(displacement, strength error, rotation) can be expressed as additional Hamiltonians in the 

line, some of them at first and second order as seen in chapter 3. The consequence is that 

we now find, when combining the Hamiltonians, some terms at first and second order as 

well as new terms at higher order. I call these aberrations tha,t arise because of errors in 

the line “induced aberrations”. The study of the induced aberrations is really a problem of 

tolerances and is the subject of the next chapter. I will however mention some of them in 

the present chapter. 

4.3. NUMBER OF ABERRATIONS 

4.3.1. Symplecticity 

Before looking at the precise number of aberrations we ha,ve to investigate, it, is interesting 

to make a comparison with the number of entries in the matrices representing the optics in 

the Tramport formalism. The matrices must obey the symplectic condition which specifies 

some relations between matrix elements. For a 2n x 212 linear matrix (R) the symplecticity 

condition is written 

RTJR = J. (4.2) 
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where the matrix J 

J= P-3) 

is built using the two n x n matrices: (I) identity or unit matrix and (0) the null matrix. 

It can be shown that for 2 x 2 matrices the symplectic condition is written: DetR = 1. 

At higher orders the relation between matrix elements can also be seen starting from the 

Hamiltonian representation of the optics: As stated by Hamilton’s equations, any non-zero 
-- derivative of H with respect to one of the ??,p,, y,p, represents a change in the conjugate 

variable, and therefore an aberration. The same Hamiltonian can then represent several 

optical aberrations and they are related to each other. For example consider the third order 
-- geometric aberration H = C 7 p,p,. There are three non-zero derivat,ives and three matrix 

elements generated by this Hamiltonian, together with two relations: Tl14 = T224 = T312. 

The three matrix elements constrained by two relations are of course equivalent to one 

coefficient (C) in the Hamiltonian. 

The higher the order, the more relations one has to take into account, and it follows 

that a “catalog of aberrations” using Lie algebra methods requires less terms to keep track 

of, as compared to the Transport notation and methods, and there is no need to carefully 

establish the dependencies between the different optical aberrations in the [341 matrices. 

4.3.2. Numbers 

In order to evaluate the number of aberrations at a given order, one can naively start 

with the idea that all the possible monomials associated with geometric aberrations at order 

~1 are in the polynomial* G, = (Z+& +g+&)“. Tl le chromatic terms at order n are added 

to this collection by taking the product of the energy deviation 8 with all the aberrations 

(chromatic and geometric) at order n - 1. At order n the list of all possible aberrations is 

then given, in the form of a polynomial by the recursive equation showing the separation 

between geometric and chromatic terms: 

H, = (z+& +y+l)J + 8 H,,-I 

with Ho = 1 
P-4) 

* the coefficients of this polynomial do not hold any special meaning here; they are just coming from the 
expansion and can be ignored. 
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The number of all the monomials in the expansion of II, variables at all orders up to 72, is 
N,,, = (n,+n,)! 

n,! n,! . At order up to five and for five variables we get a total of 252 mathematically 

possible terms. This seems like an impressive number if we want to calculate those terms by 

hand but there are some arguments to reduce this number to a more manageable level. 

4.3.3. Significant terms 

The first argument depends on the optical structure of final focus systems with the 

characteristic phase advance pattern; most elements are located (7r/2 + ,nr) away from the 

IP. 

Expressed in local coordinates the aberrations we are looking at, coming from the po- 

tential part of the Hamiltonian, are expressed as polynomia,ls in the {x, g/,8} coordinates. 

Upon linear transformation to the IP, the coordinates are transformed according to x + 

a- + bjix and y-+ay + bpy. The phase pattern however ensures that a/b = cotg L& < 1 

and it is therefore sufficient to consider the leading term in TjJ. In other words an aberration 

X” in local coordinates is transformed into the ~~~ at the IP and we can neglect the other 

terms (pZn-l 5,. . .). The only significant chromatic terms for example are pX26 and py28 
-- -- which happen to be corrected at the IP. The z pz s and y p, 8 are negligible. 

This argument greatly reduces the potential number of aberration one has to investigate. 

In fact we can define the Gk polynomials analogous to the G,, defined above but expressed 

in the set of {~z.Py,~}. Th is now gives a total number of 56 aberrations to be studied at 

order up to five. 

There is finally the case of the two elements at the center of the t,wo CCS which a.re “in 

phase” with the IP, more exactly nr away from the IP. Aberrations from these quadrupoles 

are expressed at the IP as functions of the B and ?j coordinate functions (H(T, ?j)). Since 

they are of order zero in the pZ and pY functions their Poisson bracket with these functions 

are identically zero ( [H(T,~),?c] = [H(T,?j),?j] = 0) and tl lere is no effect from these terms 
-- on the spot size at the IP. One might argue that the next leading tjerm, in this case .?: p, 8 

-- - a,nd y p, 6, do affect the spot size. However their coefficients are smaller than that of the 

main terms by a factor a/b > 1 and they are negligible. 

The only remaining concern for these two elements is their possible interaction with 

other aberrations coming from elements at the other phase, sextupoles for example, as this 
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can lead to higher order effects. 

The second argument to reduce the number of term is the further removal of terms that 

do not have an effect on the beam size at the IP. We are already working with the GL 

polynomials so the only remaining such terms are the purely chromatic r. The conjugate 

of the energy deviation is the time of flight coordinate but since the bunch length is not a 

critical issue at the FFTB we will simply drop these chromatic terms (G terms at order up 

to 5). 

Finally there are a few terms at lower order that we have to consider despite the first 

argument given above. The first order H = 5 and H = g for example represent the angular 

steering of the beam at the IP. They are not too critical for the FFTB where this effect is 

largely dominated by the dispersion correction scheme. Also two geometric terms Zp, and 
- 
ypY must be included. These terms are difficult to produce within the FFTB for the reasons 

exposed above but they could be present in the form of correlations in the incoming beam. 

They represent a p-function mismatch at the IP. The lea,ding terms pX2 and pY2 represent 

a motion of the waist or a-function mismatch at the IP. The Beta-Matching section at the 

entrance of the line will correct for these “aberrations”. 

Finally the count of the aberrations to be studied comes to 54 terms compared to the 

252 we previously envisioned. And this number is only the number of possible terms, the 

number of actual aberrations involved is certainly lower. 

4.4. SUMMARY 

Before turning to the systematic study of the FFTB aberrations the following table shows 

a summary of the situation. At first and second order we have only induced aberrations. 

At higher orders the distinction can be made between the geometries and the chromatics. 

Recall that the chromatics can be built from the aberrations at one order lower times the 

momentum deviation s. The geometric aberrations introduced a,t order n correspond to the 

2n-multipole principal term and all its variations (cf the polynomia,l G, above). 

I have mentioned in broad terms the main aberration or the main source for each entry 

above. For example quadrupole under the term G2 means not only the normal quadrupole 

aberrations (strength error, etc.) but also the skew quadrupole terms. The geometric term 

G5 comes from decapolar fields and should not be present a,t the FFTB as will be shown 
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order 1 

steering 

G/, 

2 

quadrupole 

G/2 

dispersion 

G; 8 

3 4 5 

sextupole long sextupole ? 

Gi G  G/5 

chromaticity second order chrom. chromatic breakdown 

G; 8 G; 5 G; $ 

G/, z2 G; s2 Gb z2 

G’, s3 G’, z3 

G; 2 

Table 4.1. The classification of aberrations at the FFTB up to fifth order in the Hamiltonians. 
The G, are polynomial at order n representing the geometric aberrations only. The source or the 
main effect for these aberrations is also mentioned at each order for both the geometries and the 
chromatics. The geometric fifth-order terms figure in this table since they are mathematically 

possible at this point; The analysis will show that none of these terms can appear. 

later in this chapter. In the case of chromatic terms I quote only the dominant aberration 

at each order. The following discussion now details these aberration term by term. 

4.5. FIRST AND SECOND ORDER 

The linear, first and second order, design lattice of the line ha,s been removed already so 

that the aberrations listed in this section are all induced, appea,ring only because of errors 

and misalignments. 

At first order we have to consider not only the F, and pY terms which represent the 

steering of the beam at the IP, but also the ?i! and ij terms representing the angular steering. 

The angle of the beam at the IP is not very important at the FFTB since we have a one-beam 

experiment. In a real collider like the SLC where both beams sha,re part of the machine this 

is an important parameter. At the NLC with separate exit channels for the spent beams, 

this parameter is not so important in the point of view of the optics. It is however a cause 

of luminosity degradation and potential source for high backgrounds as experienced at the 

SLC and therefore should not be neglected. 

At the FFTB we have correctors close to the final quadrupoles in order to steer the beam 

at the IP, or control the ?5, and & terms. The angular steering terms will be dominated by 

the dispersion control mechanism. 
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The number of geometric effects to consider at second order is also increased with respect 

to the rules laid out in the previous sections: On top of the three terms representing the 

waist motion and the principal coupling term (first three lines in table 4.2), I have added 

two terms representing the change of p-function at the IP. Finally two chromatic terms are 

present and can be built from the first order geometries times the energy deviation. They 

represent the dispersion terms. 

monomial status origin 

Fzc2 quadrupole quad. strength 
-2 
PY quadrupole or sext. Horiz. offset 

-- 
PZP, coupling quad. rotation or sext. V offset 
-- 
x PY negligible 
-- 
Y P, negligible 

PJ dispersion quad. offset 

FyS dispersion or dipole strength 

Table 4.2. Catalog of the second order aberrations at the FFTB. The terms shown as negligible 

should not appear at the FFTB IP. They are beta-matching terms and should be treated in the 
appropriate section at the head of the beamline. 

Let me now detail the origin and cure for these aberrations. 

The leading geometric terms (pZ2, py2 -- and pzpy) are caused by strength errors in quad- 

rupoles, rotation of quadrupoles or offsets in sextupoles. The first two are /3-matching terms, 

the last one is a coupling term. 

The pX2 term for exa,mple represents a motion of the waist, a.way from the nominal focal 

point; its effect is to introduce here correlations between ?E and jj, or to tilt the phase ellipse. 
-- In terms of twiss parameters it is a change of the a-function. The x p, t,erm on the other 

hand changes the widths of the distributions without affecting the orientation of the ellipse. 

This is interpreted as a change of the p-function in the corresponding plane. 

The P-matching section (BM) and a skew quadrupole in the final transformer correct 
- for these effects at the FFTB. The two terms xp, and mY are small per the argulllent of 
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the preceding sections, although they could arise from a mismatched beam at the entrance 

of the line. They can be corrected in the BM section. 

--. The main coupling term p,p, 1s corrected by placing a skew quadrupole in the dispersion- 
-- free region of the FT where both p-functions are high. The next two terms for coupling (x p, 

-- and p,y) correspond to a rotation of the beam in physical x - y space but are small as we 

have shown. 

They too can appear however in the incoming beam although, as mentioned in chapter 1, 

it is expected that they will be small. Note that even in the BM section there is no location 

where we could place skew quadrupole to control this rotation of the beam in phase space 

efficiently. 

The second order chromatic effects can be obtained by multiplying all the first order 

terms by 8. Only two significant terms appear here: the dispersion in both planes. This 

induced effect appears from offsets in quadrupoles, or other multipoles or if dipoles depart 

from their nominal setting. Generally dispersion arises whenever the beam is offset in a 

chromatic element. It is easy to see this by calculation of the similarity transformation 
e--:d,x’:e:HE: e’dz2” where Ht is the chromaticity Hamiltonian. Of course, as shown in chapter 

2, this is equivalent to intuitively replacing the function x by the function x + d, in Hr. 

Following this remark, dispersion correction can be applied by intentionally creating 

an orbit offset in a region with high chromaticity quadrupoles. At the FFTB we use this 

technique in the final triplet, creating a bump with maximum offset at the final quadrupoles 

and zero position offset, but some angular offset, at the IP. Large amounts of incoming or 

internally generated dispersion can be corrected using this technique; the equivalent of seven 

sigmas at the IP for the FFTB. 

These second order terms are all induced effects and we can see that after careful analysis 

we have to really worry about five of them: two for the motion of the waists, one coupling 

term and dispersion in both planes. 
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4.6. METHOD OF ANALYSIS 

Before embarking for the third and higher orders, let me outline here the general approach 

one might use for this kind of systematic studies. The mechanism can be divided in three 

steps. 

l The background lattice 

Consider first a lattice containing only simple bending magnets and quadrupoles. I first 

suppose that the chromaticity of any given quadrupole is not too strong. The study of 

the aberrations introduced here is simple as we can limit ourselves to the first order of the 

expansion of the CBH theorem when combining elements together. In other words there is 

no need to consider the interactions between elements, the sum of the different Hamiltonians 

is sufficient to represent the beamline. At this point most of t’he aberrations present are 

induced; They are mostly a first and second order problem as will be outlined in chapter 5. 

Table 4.3 lists the aberrations that can possibly be present in the line according to this 

model, separated in inherent and induced terms. 

monomial status 

P, 

FY 

TX2 

1 
-2 
PY 

-- 
PXP, 

PXS 

induced 

induced 

induced 

induced 

induced 

induced 

origin 

dipole setting, quad offset 

dipole rotation, quad offset 

quad setting error 

(idem) 

quad rotation 

quad offset, dipole setting 

quad offset, dipole rota,tion 

quadrupoles 

quadrupoles 

Table 4.3. The aberrations arising from the presence of the background lattice. The only 
higher order term is the chromaticity of the quadrupoles. 

0 Chromaticity correction 
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If we now assume that we have to worry about the very strong fina, quadrupoles, let us 

add to this picture two pairs of sextupoles in a dispersive region. They have to be placed 

and set so that their geometric effects cancel and the total chromaticity of the line is zero 

in both planes. This can be achieved by looking at the simple sum of the Hamiltonians, in 

other words there are still no interactions between elements in this picture. This is the work 

realized by most matrix based optics code that perform a “matching” of the T matrix to 

cancel a few terms. 

Since the high chromaticity terms are laid out in view of this cancellation, they are all 

located at the same phase with respect to the IP. In other words, their Poisson brackets 

vanish and they camrot generate higher order terms. 

0 Interactions 

Since the background lattice and the large terms themselves cannot generate higher order 

effects, it has to be their interactions that trigger those unwanted aberrations. 

Let me first mention a general rule that is obvious when considering the Poisson bracket. 

The interaction of two Hamiltonians of order IZ and m respectively gives, through the Poisson 

bracket, a Hamiltonian of order n + m - 2. 

This simple rule shows for example that the cross terms between the sextupole geometries 

and a quadrupole chromaticity are of order (3 + 3 - 2 = 4) or octupole-like. Similarly, in 

order for a given Hamiltonian to trigger lower order terms, one has to take its Poisson bracket 

with a term of order one to effectively “degrade” the resulting order. 

Since it is the interaction of those large terms with the background lattice that generates 

the unwanted higher order aberrations, the number and importance of such higher order 

terms is limited by the number and importance of the large t,erms present in the first place. 

In particular once we have shown the presence of a new term coming from this Poisson 

bracket interaction, we could in principle take again the Poisson bracket of this new term 

with other elements and generate even higher order terms. But since this new term has for 

coefficient the product of the coefficients of its generators and one of them is not large, the 

resulting aberration is not expected to have a very significant effect. However this moderate 

effect could, if coupled to a very strong third term generate another moderate effect but at 

even higher order. 
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But obviously there has to be an end to this argument since there are only a limited 

number of very strong elements in this lattice, mostly the four sextupoles and the final 

quadrupoles. 

With these essential ideas laid out, let me turn back to the systematic study of the FFTB 

lattice. 

4.7. THIRD ORDER 

The only significant sources of third order geometric aberrations at the FFTB are sex- 

tupoles. For this reason they are placed in pairs separated by a -I module as shown in 

chapter 1 and 3. There are no third order geometric aberrations remaining at the IP. They 

cannot inherently appear from interactions between elements since we have removed the 

linear optics, second order, already. They can appear if induced by a detuned quadrupole 

inside the -I modules. The tolerances are estimated in the next chapter. 

Third order chromatic aberrations are built from the aberrations at second order times 

8. The main terms are of course the chromaticities in both planes, pX26 and pY28, arising in 

quadrupoles as well as sextupoles located in a dispersive region. Chromaticity correction at 

the FFTB ensures that these terms vanish. 

A careful study of the aberration picture at the FFTB shows that the above statement 

about the chromaticity terms vanishing is not true for the horizontal plane. There is some 

residual horizontal chromaticity at the IP. This is needed to achieve the maximum bandwidth 

and is found using a computer-based optimization. Since the chromaticity alone would reduce 

the bandwidth, this shows that there must be one or more other terms which are not exactly 

cancelled a,nd whose effect counteracts to some extent that of t.he chromaticity term. 

A likely candidate is the so-called second-order dispersion p,x2 which appears from the 

chromaticity of a quadrupole placed in a dispersive region. The main chromaticity term is, 

in local coordinates, x28 where x is really the transverse displacement of the particle which is 

composed of a geometric as well as a dispersive part. Changing x into x+r$ in this chromatic 

term reveals the second-order dispersion. This term is small but not negligible. Since there 

is no vertical dispersion in the line, there camlot be a vertical second-order dispersion term. 

The following shows the value of the dispersion function &cross the energy bandwidth at the 

FFTB, clearly revealing the second as well as third order dispersion. 
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Figure 4.1. Horizontal dispersion at the FFTB IP across the energy bandwidth of the line. 
The slope at the origin indicates a second-order dispersion term while the curvature shows a third- 
order dispersion effect. 

Note that there is some linear dispersion present at the IP according to this graph. 

The beamline used to obtain this data was an early version (FFTBG8) and was not exactly 

matched. The contribution of this dispersion pattern to the IP spot size is only 0.01 p2 or 

an increase of the horizontal spot size of about 0.5%. The vertical spot size is not affected. 

This second order dispersion is indeed the only inherent third order aberration in the 

FFTB design. All other aberrations are cancelled or simply do not appear. Note finally that 

this aberration is inherent to the design of the FFTB and ca,nnot be eliminated. In other 

designs by I<. Brown and R. Helm, this effect is cancelled by adding t)o the symmetry of the 

system. The formation of 27r modules for the CCS in the Brown-Helm design allows for the 

suppression of the BX section, so that the CCS are the only sections with non-zero horizontal 

dispersion. Inside the CCS all the quadrupoles are paired with a -I transform in between 

and the same dispersion function at both quadrupoles. Each pair of quadrupoles locally 

cancel the second order dispersion and the net effect disappears. This is essentially the case 

at the FFTB inside the CCS. Outside the CCS however every quadrupole in a dispersive 

region contributes to the second-order dispersion. 
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The suppression of this term using the symmetry of Brown-Helm allows for a simpler 

optics design where one does not have to rely on a cancellation of two different effects to 

achieve the desired momentum bandwidth. The number of elements is higher and the overall 

length is increased however, one reason why this design was not chosen for the FFTB in the 

first place. It seems that final focus systems for the next generation of linear colliders would 

benefit from a more symmetric design, allowing the total cancellation of all inherent third 

order aberrations. 

4.8. FOURTH ORDER 

There are no octupole or higher order multipole at the FFTB so geometric fourth order 

effects have to arise from interactions. The only possibility is the interaction of two sextupolar 

geometric ff t e ec s. More exactly it is the effect of the length of the sextupoles that appears 

here. This effect has already been discussed in chapter 1 and is described in detail in appendix 

B. Since it is exactly of octupolar form it could be easily corrected by the insertion of an 

octupole in the final tranformer for example. The effect is small enough however that we 

have decided not to implement the correction. 

The skew octupole terms on the other hand camlot appear at the FFTB, except as 

induced by multipole errors in quadrupoles or other magnets. 

In principle a fourth order geometric effect could also arise from the interaction of two 

different sextupoles but since they are placed in pairs at the FFTB, such an interaction is 

impossible. Another possibility would be the feed-down of a decapolar field in conjunction 

with a first order steering effect, effectively steering the beam off-axis in the decapole. But 

there are no such magnets at the FFTB. 

Fourth order chromatic aberrations are a little more complicated. There are several 

potential sources: 

l Quadrupole-Quadrupole interaction 

The chromaticities of two quadrupoles located at different, phases can trigger a term of 

the form b228,~28] = -4 p, F x2 but due to the presence of the : this effect is expected 

to be small. This new term is a variation of the second-order chromaticity term 7JX2s2. The 

same term in the other plane appears also. 

l Quadrupole-Sextupole interaction 
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The same effect can appear from the interaction of a quadrupole with the chromaticity 

of the sextupoles, with the same comment on the strength. 

Actually this result is obvious when one considers the treatment of the CCS using simi- 

larity transformation presented in chapter 3. Equation (3.36) shows five fourth order terms 

arising in the CCS: Z p, x2 and ?&x2 have already been identified. Also appearing are the 

interactions with the sextupole geometric aberrations: Z pZ2 8, 5 pY2 8 and v pZ pY 8. 

But following arguments presented earlier in this chapter, the effects of these fourth order 

aberrations will be small owing to the fact that they all contain a 7: or 3 component. 

4.9. FIFTH ORDER 

As I recalled in the preceding paragraph, the whole CCS has a,lready been treated in 

chapter 3 and equation (3.36) h s owed already the apparition of the fifth order aberrations. 

They are all important in the sense that none of them contains a Z or ?j factor. 

The other way to see those aberrations appear is to consider the fourth order aberra- 

tions of the preceding section and write their Poisson brackets with the strong chromatic 

aberrations of the final quadrupoles. 

The two treatments are of course equivalent and correspond to two different ways to take 

the chromaticity into account. From the source point of view with the final quadrupoles or 

from the correction point of view with the analysis of the CCS. 

Of course we have no decapoles at the FFTB and therefore no geometric fifth order 

aberrations are present. 

4.10. HIGHER ORDER 

In order to get even higher order effects, we need to identify another strong source of 

aberrations. However the fifth order we have just described already takes into account all 

the large aberrations at the FFTB: the sextupoles and the final quadrupoles with the central 

quadrupoles of the CCS. There is just no possible combination t,hat would give a sizable 

aberration of order higher than five in this line. Of course it is in theory possible to get 

very high order terms given a sufficient number of aberrations at third and higher order 

and these terms certainly exist in the case of the FFTB if one ta,kes into account the exact 
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phase advance of all the elements. However the precise phase advance adjustment required 

for the chromaticity correction and to avoid the geometric aberrations form the sextupoles 

is enough to guarantee that these terms at order higher than five are minuscule, by ensuring 

that the large terms are in the right location, at the “right phase”. 

4.11. CONCLUSION 

This chapter has exposed the approach made at the FFTB in order to evaluate the 

aberration content of the line. Some important results have been given, both for the FFTB 

and in view of a NLC: 

At third order, the imperfect symmetry of the FFTB leaves the second order horizontal 

dispersion term uncorrected. I have mentioned that a, solution to this problem is to adopt 

a higher symmetry lattice using 27r modules for the CCS and suppress the non-symmetric 

parts of the line: the dispersive parts of the Beta-Matching and the Final Transformer as 

well as the Beta Exchange section. 

This would allow the correction of all inherent third order terms. At fourth order the 

long-sextupole aberration seems impossible to avoid. The correction of this aberration could 

be done with an additional octupole corrector. Other fourth order aberrations could be 

suppressed if we could change the linear lattice in order to avoid having a quadrupole placed 

at the wrong phase with respect to other elements. This would also suppress the fifth order 

terms. It is interesting to see that to some extent the high-order aberration content of the 

line is so much dominated by the linear lattice. The same is true for tolera,nces which we 

will consider in the next chapter. 
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5. Stability Tolerances. 

5.1. Tolerance Budget. 

We have chosen a criterion for the allowed increase in spot size from the FFTB aberra- 

tions. Since we expect about five aberrations in each plane and the experience with measuring 

small spots at the interaction point of the SLC shows that it is possible to measure a relative 

change of 10% in the size of the beam, the maximum allowed increase per aberration is set 

at 2%. We believe, following recent SLC experience, that with the ability to detect a 10% 

change in the spot size it is possible to tune out an aberration down to the 2% level. 

This 2% IP spot size increase criterion, with ~0 the nominal spot size and Aa the 

contribution of some aberration, can be expressed as 

(0; + (AcJ)2)1/2 2 1.02 au (5.1) 

which translates into 

It is convenient to apply a linear transformation to the preceding formula back to the 

location where the aberration appears, i.e. where the kick occurs, which leads to an equivalent 

condition to the 2% criterion: 

(5.3) 

Now the coordinates are local and we compare an RMS value of the kick to the local diver- 

gence of the beam. 

In terms of Hamiltonians, a kick is the action of a Hamiltonian on the coordinates of the 

particle through the Lie transformation: e:*‘x’ = x’ + [H,:r’] + . . . = x’ + (Ax’) + . . . 

Therefore if the Hamiltonian form of an aberration is known, one can derive the condition 

ensuring that this aberration does not enlarge the spot, size by more than 2% of the linear 

value. 
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At the FFTB the total beam size growth above design is then expected to be 8% in 

the horizontal plane (4 contributing terms) and 14% in the vertica,l plane (7 contributing 

terms). In the following discussion we will quote tolerances according to this 2% criterion for 

individual elements. However as different elements can contribute to the same aberration and 

if one assumes that their departures from design are not correlated, one must combine their 

tolerances in quadrature to find the tolerance for this group, t,, which give a 2% increase in 

spot size: 

where ti is the 2% tolerance for each individual element. We also refer to t, as the RMS 

tolerance for the group. 

We usually separate the elements into two or more sets from most sensitive to least 

sensitive, and can allocate a fraction of the 2% budget to each group, the largest fraction to 

the most sensitive group. Within each group, g, we can then calculate an RMS tolerance for 

the group, t, according to 

(5.5) 

where fg is the fraction of the 2% allocated to this group. 

5.2. Steering. 

Our tolerances on steering permit beam centroid motion at the interaction point to be 

one standard deviation of the horizontal and vertical distributions i.e. we allow the spot to 

move by Ax* M U: and ny* M a;. 

This criterion is different from the one quoted above and would clearly not be sufficient 

for a collider where the beams could miss each other by too much. However at the FFTB we 

have only one beam and the Orsay Beam Size Monitor[“’ is insensitive to the position of the 

beam at the IP. Other methods such as the Laser-Compton monitor proposed by T. Shintalte 

(KEK) or the liquid wires developed by F. Villa (SLAC) are sensitive to the spot position 

at the IP and a movement of no more than a fifth of the spot size should be allowed. The 

scaling of tolerances for steering aberrations is linear. 
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The expansion of the quadrupole Hamiltonian, in the presence of a displacement d,, 

Hq = + k, ((x + dx)2 - y2), g’ Ives the Hamiltonian of the “steering aberration”: H,t = kqdzx 

and the corresponding kick [H,t, ~‘1 = k,d, giving the condition k,d, 5 oyt or 

(5.6) 

and similarly 

(5.7) 

The individual tolerances are presented on figure 5.1 for the horizontal plane and figure 

5.2 for the vertical plane. Ignoring for now the final lenses (QC2, QXl, QCl and FQ on 

the graphs) the tolerances range from 1 to 10 microns in the horizontal plane and from 0.5 

to 5 microns in the vertical. Note that the two quadrupoles located at the midpoints of 

the two CCS have loose tolerances due to their phase relations (nr) with the IP. Taking 

the RMS value as defined above for these tolerances the RMS tjolerances for all quaclrupoles 

except the final triplet are 0.75 microns and 0.2 microns for the horizontal and vertical planes 

respectively. 

The case of the final quadrupole triplet can be treated separately a.s these lenses are 

strongly tied together13’and the dominant motion will be one of all quadrupoles moving in 

the same direction and by the same amount. 

A very simple model of this final triplet is that of a non-realistic single optical lens 

focusing a parallel beam in both planes. The tolerances on t,he motion of the lens is then 

equa,l to the criterion we choose, in other words a given movement of the final lens moves the 

beam by the same amount at the focus ((d,)fq z a: and (dy)fq E a;). This simple model 

gives estimates for the tolerances on the final quadrupoles motions of the order of 1 micron 

and 60 nanometers for the FFTB. 

A more detailed calculation uses the fact that steering is a linear effect and one can 

simply sum, or actua,lly integrate, the effects of all three lenses when displaced by the same 

amount: 

ax* = s 
dS &(S) 4 dm sinLh#js-)* = 

s 
ds kq(s) d, R;;* (5.8) 

and a similar expression for the other plane. The tolerances for the final quadrupoles taken 
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Horizontal Steering Tolerances 

Figure 5.1. Horizontal steering tolerances at the FFTB, in meters. These values for individual 
elements stability tolerances correspond to a steering of one sigma of the beam distribution at the 
IP. The value quoted for the final quadrupoles taken as a single lens (FQ) correspond to the simple 
minded optical model ment,ioned in the text, approximating the final lenses t,o a parallel-to-point 

focusing system. 

as a single unit are extremely close to those obtained through the simple model above or 

d, 5 1,~ and d, < 6077,772. 

The steering tolerances are indeed very tight but it should be emphasized that at least 

one of the foreseen method of determining the spot size at t,he FFTB, the Orsay BSM, is 

insensitive to the beam position. The Compton-Laser spot size monitor will be attached 

directly to the final quadrupole support table so motion of the final lenses should not affect 

it either. Excluding the final doublet we expect that the spot position at the IP will be 

dominated by the beam jitter from the linac. We have the ability a,t the FFTB to control 

this position jitter at the level of one fifth of the spot size by means of a feedback system 

after the end of the linac. Slower drifts of the spot position at t,he IP can be controlled by 
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Vertical Steering Tolerances 
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Figure 5.2. Vertical steering tolerauces at the FFTB, in nlet,ers. These values for iudividual 
stability tolerances correspond to a steering of oue sigma of the beam distribution at the IP. The 
value quoted for the fiual quadrupoles takeu as a single leus (FQ) correspond to the simple miuded 
optical model mentioned in the text. 

feedback using a pair of air-core correctors close to the final quadrupoles. 

5.3. Dispersion. 

Dispersion a,rises from an offset of the beam in quadrupoles and is a consequence of 

the chromaticity of the quadrupole. The Hamiltonian of a quadrupole including chromatic 

effects is H Q = l-!%- 2 1+6(x2 + y2) = &(. . . - x28 + y2;8 + . . .) with the second form showing 

only the chromaticity terms. In the presence of a displacement &, the Hamiltonian becomes 

Hq = $kq(. . . - x28 - 2cl,x?i + . . .), which shows the dispersive term Hd = k,&x8. 

The 2% criterion is then written k,&x(x6)1.1,Ls 2 fa,~ or, since there are no more corre- 
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lations between the geometric part of the position of the particles and their energies, 

10-2 k 

Horizontal Alignment Tolerances 
(dispersion and normal quad. effects) 

10-3 E- 

10-d F 

c 

10-S F 

10-G E- 

10-T - 

Figure 5.3. Horizontal alignment tolerances at the FFTB, in meters. These values include 

the effect of dispersion both created directly and as a consequence of the orbit oscillation launched 
by a displaced quadrupole. Also included is the normal quadrupole effect induced by a horizontal 

offset in sextupoles. This second effect dominates the tolerances for sext,upoles and the elements 
within both CCS. 
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Vertical Ali nment Tolerances 
(dispersion an 2 skew quad. effects) 

Figure 5.4. Vertical alignment tolerances at the FFTB, in meters. These values include the 
effect of dispersion both created directly and as a consequence of the orbit oscillation launched by 
a displaced quadrupole. Also included is the skew quadrupole effect induced by a vertical offset 

in sextupoles. This second effect dominates the tolerances for sextupoles and the elements within 
both CCS. 

5.3.1. Final quadrupoles 

Under the same model of a single lens focusing parallel to point, we have k, - 4 the 

inverse focal length of the system and the above expression can be approximated by 

(5.10) 

Note that even the formula (5.9) a ove is only an approximation of the correct expression b 

because the Hamiltonian we considered in the first phace is a kick approximation and does 

not take into account the thick lens effects which are particularly important for the final 
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quadrupoles. Taking this into account one gets 

(5.11) 

where gz is taken at the center of the final quadrupole and & = J’ k,,&.(s)& is the horizontal 

chromaticity of the final quadrupole. 

5.3.2. Other quadrupoles 

The offset at the final quadrupole can be created by a direct movement of the final 

quadrupole or by a displacement of another quadrupole upstream steering the beam off-axis 

in the final lens. To study this second effect we introduce t,hc notjion of lattice multipliers 

defined as the amplification factor between the offset of a given quadrupole and the centroid 

offset in the final quadrupole. Note that the two displacements have opposite signs in the 

hamiltonian, hence the minus sign in the following formula. 

(5.12) 

Lattice multipliers depend only on the lattice structure, not on the focal point parameters 

or the beam properties. The greater this multiplier the tight,er the dispersion tolerances on 

the element. 

For most quadrupoles at the FFTB this second part is dominant over the direct dispersion 

generated by the displaced quadrupole itself. In fact the lattice multipliers are so large in the 

FT that we use this property to globally cancel dispersion at the II’: Intentionally creating a 

controlled orbit offset in the final lenses gives us the ability to generate up to seven sigmas of 

dispersive contribution to the beam at the IP. Of course this bump is not closed across the 

IP and the beam is at an angle there. The closure is easily done in the dump line. This is not 

a problem for the FFTB where we have only one beam. It would cause a loss of luminosity 

for a real collider. The SLC is very sensitive to this effect for masking reasons since the 

outgoing beam must travel on the same path as the opposite incoming beam. Future linear 

colliders will have separate exit paths for the outgoing beam and therefore the situtaion is 

very similar to that of the FFTB. 
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5.3.3. Sextupoles 

Sextupoles are also chromatic elements in the presence of a main dispersion term and 

their displacement, either directly or by orbit offset, is therefore source of dispersion. The 

Hamiltonian of a sextupole in a dispersive region is H, = $(. . . + 3~32~~ - 3rl,&~~ + . . .) 

and translates into H, = b(. . . + 6q,sd,s - Grl,~d,y + . . .) in the presence of displacements 

d, and d,. 

This effect through orbit offsets is to be added to the previous ones when determining 

the alignment tolerance of a given quadrupole. 

The figures 5.3 and 5.4 present the results of these tolerances calculations. For quadru- 

poles outside the CCS, these numbers are those for dispersion only. One notices that the 

front quadrupoles have very loose tolerances. This is obvious since the chromaticity from 

these front quadrupoles to the IP is corrected, therefore an orbit oscillation will produce 

dispersion in each chromatic element but these different contributions also cancel each other 

at the IP. On the other hand, as already mentioned, the tolerances for a few elements in 

the FT are very tight since the chromaticity from there to the IP is only that of the final 

quadrupoles and is not cancelled. 

For quadrupoles inside the CCS, these graphs present also another effect which is an- 

alyzed later. Horizontal and vertical beam offsets in sextupoles also produce quadrupole 

and skew quadrupole components. These effects in fact dominate the tolerances for those 

elements situated within a sextupole pair and the associated tolerances are derived in section 

5.52 and 5.7.2 . 

5.4. Normal Quadrupole. 

A change in quadrupole strength will result, for most quadrupoles at the FFTB, in a 

movement of the waist away from the focal point and cause an increase of the spot size at 

the focal point. The Hamiltonian representing this aberration is H = $ Ak (x2 - y2) giving 

a kick Ax’ = Ak x. The 2% increase criterion for the horizontal plane is 

(5.13) 
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and finally the strength tolerance is, considering both planes: 

y< 1 
5 k Max(Px, P,> 

(5.14) 

Relative Strength Tolerances 

1 

3-92 
7056All 

Figure 5.5. Strength stability tolerances at the FFTB. Not,e that the expression of these t,ol- 

erances for sextupoles is not derived in the text and corresponds to individual sextupole tolerances. 

Placing each pair of sextupole on a single power supply would increase the tolerances accordingly. 

Individual tolerances a.re shown on figure 5.5. The film1 quadrupoles ha.ve the tightest 

tolerances as expected; the strength of QC2 and QCl must be controlled at the level of 

Ak/k = 2. 10W5, requiring special power supplies. Other quadrupoles in the line typically 

have tolerances of the order of a few 10F4 up to a few 10m3. The tightest tolerances for 

quadrupoles other than the final lenses are achieved for those elements around the sextupoles 

in the CCY with Ok/k N 1.7 10m4. The RMS tolerance for all quadrupoles except the final 

triplet is Ak/k = 7.3 lob5 which is a tight value for usual magnet power supplies. 
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However these tolerances may be relaxed in the specific case of the Orsay BSM. This 

device is not sensitive to the longitudinal position of the waist within the length of a slit of 

typically 400 microns, and the depth of focus at the FFTB is of the order of /3; = lOOpm, 

allowing the waist to move around the nominal position without affecting the measurement 

of the minimum spot size. A 2% increase in spot size corresponds to a waist movement of 

20 microns for the nominal /3,* = 100~. In the case of other spot size monitors such as the 

liquid wires, we will have to meet these tight tolerances. 

The FFTB power supplies have been specified according to these values. The goal for 

their stability is 0.001% or 10m5 of the full power for both long and short term stability. 

Some magnets do not solicit the full power from the power supplies so this value will not be 

as good for the real current delivered. It is expected however that the tolerances presented 

here will be met. 

Finally some higher order effects are also triggered by strength errors of quadrupoles 

within the CCS. The tolerances ‘561for these effects are at the level of y < 10V3 and therefore 

should not be a problem. 

5.5. Horizontal Sextupole Alignment. 

5.5.1. Sextupoles 

The same quadrupole effect (waist motion) appears when the beam is horizontally offset 

in a sextupole. The Hamiltonian of a sextupole in the presence of a horizontal displacement 

is 

H, = $((x + dJ3 - 3(x + d&‘) 

= $(. . . + 3d,x2 - 3d,y2 + . . .) 

which shows a quadrupole aberration of the form 

(5.15) 

Ha = !$!qx2 - $7 

The condition for the 2% criterion is then 

1 
dx ’ 5 ks Max(Pz,Py) 

(5.16) 

(5.17) 

The tolerance for horizontal sextupole alignment in the CCX is 3.5~ while it is only 0.9p 
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for the CCY where the vertical ,&function is very large (cf. figure 5.3). 

5.5.2. Orbit offset 

Similar to the dispersion case, a sextupole offset can be the consequence of an actual 

sextupole displacement or a quadrupole upstream steering the beam off-axis in the sextupole. 

The notion of multipliers applies also here with the reference being now at the sextupole. 

(5.18) 

The tolerance on quadrupole alignment regarding 

over the subsequent sextupoles: 

this effect is obtained by summing 

(5.19) 

Two sextupoles of the same pair have the same CE, tolerance and are separated by a -I 

transformation, therefore if the beam is off-axis in the first sextupole the effect will be 

cancelled by the equal and opposite displacement in the second sextupole of the pair. This 

means that quadrupole a,lignment within a sextupole pair is of special importance and the 

orbit jitter or a quadrupole displacement before entering the chromatic correction section is 
* not crucia,l for this aberra,tion . 

This effect is reflected in figure 5.3. The horizontal aligmnent tolerances of quadrupoles 

within t(he CCS are dominated by this effect. Notice tha,t the central quadrupole in the 

chromatic correction section is especially ill-placed with rega,rd to this effect since its position 

maximizes the multiplier to the second sextupole. This leads to very tight tolerances for these 

central qua,drupoles: 0.7,~ for QNl in the CCX and 1.0~ for QM2 in the CCY 

* It is of importance for other aberrations like dispersion. 
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5.5.3. Bending magnets 

Finally another source of orbit offset at the sextupoles are the fluctuations of the field, 

through power supply jitter, in bending magnets. Because of the length of these magnets 

and the fact that optical functions vary a lot across them, we define the multipliers as an 

average across the magnet; The R12 is the average value of the R12 between the value at 

the entrance and the value at the exit of the bend. Several bending magnets connected in 

series to one power supply are treated as one large bend. The displacement induced at the 

sextupole, 

(&), = Ml q+,, (5.20) 

yields the tolerance on power supply stability since 0 c( B: 

e< 1 
B- - 5 ks R12 6~ Max(&, &), (5.21) 

Notice that since, by design of the CCS, we have Rl2 0 = 2~. at the sextupole, the preceding 

formula can be rewritten, with & = 2 k, qz /3X and ly = 2 k, 71~: py the horizontal and vertical 

chromaticities introduced by the sextupole pair: 

g< 
1 

B - 5 Max & , t,) 
(5.22) 

Here also only the bends between the sextupoles of a pair are significant for this effect. Field 

jitter of bending magnets outside these sections contribute to other aberrations such a,s 

dispersion. The stability on the power supplies for the bends has to be better than 3.3 10e5 

for the CCX and only 1.0 10m5 for the CCY. This last value corresponds to the goal set for 

the power supply stability at full power. It is also the tightest requirement for power supplies 

at the FFTB, even tighter than the tolerances set for the stability of the final lenses. 

Note finally that this calculation accounts only for the geometric effect of the sextupoles. 

The change in bending angle also creates additional dispersion at the sextupole and therefore 

an additional chromatic ltick. The change in dispersion from a bending field error is actually 

equa,l to the beam offset at the sextupole R12 do. This chromatic effect is however smaller 

than the geometric effect by a factor s, so that the tolera.nce is looser by a factor l/&.ms or 

about 400. 
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5.6. Skew Quadrupole. 

The roll, rotation around the longitudinal axis, of a quadrupole by an angle 0 intro- 

duces a skew-qua,drupole component of strength k,, = k, sin 20 which couples the horizontal 

and vertical planes. In the limit of small angles the Hamiltonian of the skew-quadrupole 

aberration is 

Hsq = i k, sin 28 (2 ~9) z 2 k, 8 xy (5.23) 

giving one kick in each plane. However in the flat beam regime, which is the case for most 

fkl focus systems, i.e. with 6, >> cy, the effect of coupling x -+ y is dominant so we can 

consider the vertical kick only. The tolerance criterion is 

(5.25) 

Except for the final quadrupoles, all lenses in the line have tolerances better than 

100 /~rncl when taken individually. The RMS value however is only 40 p-ad. Note that 

the two high values for QNl a,nd QN2 are not significant since the above formula was ob- 

tained in the approximation of small angles. However these two magnets are located at a 

multiple of T in phase away from the IP and therefore their rotations does not affect the 

fina, spot size. 

The final doublet has much tighter roll tolerances with a lowest for QC2 where the 

product p2pY is very high. Note that for a general final doublet, it, has been shown by 

John Irwin tha,t the rotation tolerances of both lenses are the same. In our case, with the 

split final lens (QXl-QCl), this property is verified if we consider this split final lens to 

be one unique element. This tolerance is of the order of 10 pad. However for practical 

purposes the last three lenses can be considered to be one single rigid body, tied together 

by the stabilization table designed by KEK. Using this model, the rotation tolerance for the 

QC2-QXl-QCl group is 33 p-ad. 

A skew quaclrupole has been placed in the final transformer where the product pZpY is 
-- maximum. This element can correct only one phase of the coupling, the p,p, term. I have 

96 



Rotation Tolerances 
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Figure 5.6. Quadrupole rotation (roll) tolerances. Note that the formula used here assumes 
a small angle approximation so the two peaks obtained for QNl and QN2 are meaningless. These 
two magnets being (71~) away in phase from the IP do not influence t-he size of the beam through 

this effect, which is the real meaning of these large values. For the sextupoles, the tolerances are 
estimated for the geometric skew-sextupole effect. 

argued already* that, clue to the phase advance pattern at the FFTB, this term is the only 

one that can arise significantly in this line. Incoming coupling from the linac is corrected in 

the Beta Matching section using two skew quadrupoles. 

Also on figure 5.6 are the tolerances for sextupole rotat,ion. The effect considered here 

is that of the geomet*ric skew sextupole. The tolerances are higher than those for the quad- 

rupoles, a,t the level of one to two milliradians. 

* cf. chapter 4. 
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5.7. Vertical Sextupole Alignment. 

5.7.1. Sextupoles 

The same coupling effect arises when the beam is vertically offset in a sextupole. Similar 

to the normal quadrupole case this can be caused by a sextupole displacement, vertical 

steering from a quadrupole offset or dipole rotation inside the CCS. The Hamiltonian of a 

sextupole in the presence of a vertical displacement is 

H, = $(x3 - 3x(y + dy12) 

= $(. . . - Gd,xy + . . .) 

showing a skew-quaclrupole aberration of the form 

ksd, H, = -xy 
2 

Using only the vertical kick again, the condition for the 2% criterion is then 

d, 5 

(5.26) 

(5.27) 

(5.28) 

As shown on figure 5.4, the tolerances are 3.5 pm and 1.4~“nz for respectively CCX and 

CCY. 

The following table summarizes the sextupole aligmnent tolerances for both the horizon- 

tal and vertical displacements. 

I 1 Horizontal 1 Vertical 1 

Table 5.1 Sextupole alignment tolerances at the FFTB. 
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5.7.2. Orbit offset 

The same effect we have seen for dispersion and normal quadrupole tolerances appears 

here: a quadrupole offset upstream of the sextupoles can generate an orbit offset in the 

sextupoles leading to a skew-quadrupole effect. Similarly to the case of horizontal sextupole 

offset, this can only happen for quadrupoles located in the CCX or the CCY, within a 

sextupole pair. The effects from the two sextupoles cancel each other for a quadrupole offset 

in the BM or BX sections. 

The multipliers for quadrupole vertical alignment tolerances are 

(5.29) 

Here also the two quadrupoles at the midpoint of the CCS maximize these multipliers 

and this leads to tolerances of 4 pm for CCX and only 0.3 ~772 for the CCY. The latter is 

the tightest aligmnent tolerance at the FFTB. This quadrupole is physically located inside 

the Beam Switch Yard where the temperature is expected to be stable. Special care must 

however be given to the alignment of this critical lens. Some diagnostic and correction tools 

to control this skew quadrupole effect are also being designed. 

5.7.3. Bending magnets 

The rotation of bending magnets within the CCX and CCY also leads to an orbit offset 

in the sestupoles. The multipliers for bending magnet rotation, defined a.s the ratio of t,he 

orbit offset a,t the sextupoles to the dipole rotation angle Ad leads to the following tolerances, 

(5.30) 

where R34 is the average value of the R 34 across the bends taken separately. 

The rotation tolerances are A$ 5 37 pram! for the CCX but only A4 5 14 prna! for the 

CCY. This is the tightest rotation tolerance at the FFTB. 

99 



5.8. Sextupole and Skew Sextupole. 

The tolerances on the sextupole and skew sextupole content of quadrupoles are usually 

expressed as a ratio of the allowed sextupole or skew sextupole field component to the nominal 

quadrupole field taken at some reference point (usually 70% of the aperture of the magnet) 

(B,,,/Bq)a=aT. One can also express this in terms of some equivalent sextupole strength t’~,, 

given by 

(5.31) 

The general sextupole Ha,miltonian, neglecting chromatic effects as well as the effect of 

dispersion, H,,, = $(x3 - 32y2), can give rise to three different kicks, two in the horizontal 

plane and one in the vertical plane. We first derive the 2% criterion condition for each kick. 

l :C kick from the x3 term Ax’ = *x2 

0 x kick from the my2 term Ax’ = *y2 

0 y kick from the xy2 term Ay’ = -knsxy 

k,, uxuy 5 57 
5 y’ 

k,,, < -L = 
50, Py ty 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

(5.37) 
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For the compounding of these conditions, one notices that the effect of the x and y kicks 

are orthogonal in the sense that they affect respectively the horizontal and vertical spot size; 

therefore we can take the minimum of the two conditions - one in each plane - as the final 

expression for sextupole field tolerances. 

For the two conditions related to the z kick, one can consider that they are separate 

aberrations &ecting the same parameter and that their effects a,re therefore to be added in 

quadrature. The tolerance t, is then given by l/t: = l/t”,, + l/tz2 and we finally have 

(5.38) 

The sa,me calculation can be made for the skew-sextupole component, with the Hamilto- 

nian H,, = &$(3~“y - y3), giving two vertical and one horizontal kicks, and yields 

k,, < Min Jz 1 *- (5.39) 
5OYPY J 

1+ ayg; ’ 5OYPX 1 
Although these numbers represent tight tolerances, the quadrupole magnets received at 

SLAC from INP (Novosibirsk) have all met or exceeded these tolerances, according to the 

magnetic measurements carried out at INP and SLAC. 

The final quadrupoles represent an additional challenge with even tighter tolerances, es- 

pecially for QC2. Recent results from KEK have shown that it is possible to meet and exceed 

these tolerances by using trim windings: In order to suppress the drift of the quadrupole 

center with magnet excitation, the use of trim windings has been suggested by Nakayama at 

KEK. The excit,at’ion of the trims being proportional to that of the main coils. A side effect 

of this met,hod, observed on the prototype magnet, is the ca,ncellation of the sextupole and 

skew sestupole terms in these final quadrupoles to a level better than the required tolerances. 

Additionally we have proposed a global correction of these terms by use of two sextupole 

and two skew-sextupole correctors in the Final Transformer. These four small magnets 

would allow us to tune out the four terms appearing in the two Ha,miltonians quoted above. 

If the trim windings of the final quadrupoles to be installed in the tunnel also suppress the 

sestupolar componcnt,s of these lenses, these correctors might, not be needed. 
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Sextupole Content Tolerances 
El 

Figure 5.7. Sextupole and skew sextupole harmonic tolerances in quadrupoles. The worst 
of the t)wo compouent,s is shown here. The tolerance is expressed iu t.erms of equivalent integrated 
strength. The main sestupoles at the FFTB have an integrated st,rcngth of about 20 m-‘. 

5.9. CONCLUSION 

I have shown in this chapter how we obtained stability tolerances for the FFTB. The use 

of Lie algebra based methods is here limited to the expression of the kick in most cases. The 

study of sextupolar tolerances however is one where the combination of the different terms 

is greatly simplified by the use of the Hamiltonian formulatjion of the source of the effects. 

For a,11 these calculations however it would be possible to derive the same results without 

Lie algebra forniula,tion. However it is my experience that Lie algebra based methods, as 

presented in t,he previous chapters, provide here also a very convenient and clear fra,mework 

for this type of studies. 

For a,11 practical purposes the stability tolerances are very tight a,t the FFTB. The SLC 

fina,1 focus 1la.s looser tolerances by typically an order of magnit,ude when compared to the 
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FFTB. StudiesLz3’have shown that tolerances for a final focus system for a next generation 

linear collider, typically a 500 GeV per beam machine, will he tighter by another order of 

magnitude. 

Of particular importance in the results of this chapter is the notion of lattice multipliers. 

The optics of final focus systems typically alternate very high and very low p-functions. This 

leads naturally to high lattice multipliers. It is not always possible to limit the values of 

these p-functions but it should be possible, at least very desirable, to suppress the ill-placed 

elements such a,s the two central quadrupoles located at the symmetry points of both CCS. 

The position tolerances of these two elements are the tightest of all at the FFTB. 

Another important result is the level of stability required for the bending magnets, 

especially in the CCY. They hold the tightest tolerances for strength and roll stability, aside 

from t,lie fina, lenses of course. 

Much is to be learnt from the tuning and operation of the FFTB and this is especially true 

for tolerances. Whether one can achieve the stability levels required here is one issue. The 

other question is, if the stability tolerances camlot be achieved, do we have a mechanism by 

which one can go around the limitations by using simple feedback systems a.nd careful tuning 

stra,tegies for esample? MJe believe that it is possible to relax some initial tolerances at the 

FFTB by a,s much a,s an order of magnitude by using beam-based alignment techniques and 

bump-ba,sed qua.drupole tuning schemes. Global correctors such as the dispersion suppression 

and the sextupole corrector magnets are other techniques that are being investigated at the 

FFTB. 
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Conclusion 

The Final Focus Test Beam is now well underway and the first beam should be delivered 

by spring 1993. This will be the start of a very interesting period on the way to future linear 

colliders. We will test on a full scale machine the hardware we think is critical for the NLC. 

The beam position monitors, magnet movers, wire scanners and a number of stabilization 

and monitoring devices will be commissioned. The software side will also be scrutinized 

with the correction and tuning techniques that are now being developed at SLAC. These 

are especially important for their potential impact on the tolerances. The optics itself will 

be probed of course, and once the tuning and corrections are applied, the measurements 

techniques will be commissioned: the Orsay-Beam Size Monitor, but also the liquid wires 

and the Laser-Compton device. I think we can expect a great harvest of information with 

the FFTB and certainly learn even more than we did with the SLC final focus. Parallel to 

this design work on NLC final focus lattices is being pursued. 

The FFTB is also unique in the sense that it is the first beamline for which Lie algebra 

ba.secl techniques were used from the design up to the derivation of correction and tuning 

procedures. They have certainly proven helpful in all the areas of the work. The mecha- 

nisms of cancellation a,nd the generation of new higher order aberrations is now very well 

understood. The fa,ct that the list of aberrations at the FFTB is closed at fifth order has 

been shown using these t,ools. Finally the tolerances have been analyzed with those same 

metjhods and already some ideas have emerged in order to reduce some of them. Part of 

the problem 1la.s been identified as coming from the first order design of the line. Work is 

underway in different laboratories to confirm this. Some ideas have also been proposed to 

design ways to cope with others, or find techniques for monitoring the stability of the line 

with a precision better than the tolerances. Quadrupole tuning at the FFTB is one of these 

techniques that uses bumps to precisely test the local latt,ice and detect a strength error in 

quaclrupoles with a, precision better than the tolerances. The potential consequences on the 

specification of tolera,nces for future machines could be very important; The relaxation of 

most tolerances by a factor two, and possibly as high as ten, is of great significance at the 

very tight levels we deal with. 
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It is my hope that the techniques exposed in this thesis will become a popular design and 

analysis tool for accelerator opticians. They have been around for some time but although 

they were known it is only recently that they have started to gain fame and momentum. 

I believe there are two necessary ingredients for this trend to continue: The methods need 

to be more widely publicized and explained and there is a need for a computer based tool. 

The first part is mostly a task of education and explanation. Although they are not very 

difficult in their mathematical basis as shown in this thesis, the learning curve for these 

new methods is fairly steep for newcomers and especially for people who have been using 

the matrix formalism for some time. It is a totally different way of seeing the basic same 

mechanisms although, as shown in this thesis, the two complement each other very well. 

Expklations and exa,mples still need to be provided and this thesis is one attempt at this. 

The other pa’rt required for the wide acceptance and use of these methods is the ability 

to use a computing tool that will free the user of the sometimes tedious calculations involved. 

Since the methods presented are so much oriented towards analytical results a code should 

be designed that preserves that option and allows analytical studies of a beamline as much 

as possible. There are a few codes that implement already some close variations of these 

methods. I mentioned already Marylie which implements Lie Algebra methods at up to third 

order currently. A fifth order version is being developed. A very interesting code is Cosy- 

Infinity written by M. Berz. Although it implements only Differential Algebra methods, it 

has been envisioned for some time to adapt it for our techniques. The originality of this 

code is that it provides the user with a meta-language that can be used to literally program 

the physics. That is the user is no longer constrained to using the physics “ca,nned” by the 

programmer in a preset command; on the contrary, all the variables a,re accessible to the user 

who can define his own algorithms. Following a slightly different path and using the new, 

a,t lea,st in our field, ideas of object oriented programming, the code MXYZPTLK written 

by L. Michelotti at Fermilab uses C++ as the programming language. The software is now 

reduced to a simple “cla.ss library” that the user can incorporate to his own C++ code. The 

cla.ss library takes care of all the implementation details and the user can concentrate on the 

physics. 

None of these tools was found to be the ideal basis to implement the Lie Algebra methods 

as derived in this thesis. Marylie for it is a closed code that camlot be modified easily, 

Cosy-Infinity was found to be too much geared towards Differentia.1 Algebra methods and 

106 



MXYZPTLK was not tested but C++ is known to have a rather steep learning curve. 

The last direction of investigation to be mentioned, which I believe stands the best chance 

to provide us with the needed tool is Mathematica.[331 This code was designed to perform 

analytical as well as numerical calculations on computers and is much in use worldwide. 

This ability of analytical manipulation together with a strong object oriented programming 

environment, the possibility for the user to define his own programs on top of the package, 

and the much desirable feature of interactivity makes it the ideal candidate for these studies. 

At SLAC, the effort is led in this direction by J. Irwin and N. Walker. Some basic optics 

package is already developed and a Lie Algebra tool should soon come out. On top of being a 

good tool for accelerator physics analysis, this should also be the ideal support for newcomers 

to explore these techniques through tutorials. 

There is one area that has been mentioned in the first chapter of this thesis and is not 

solved yet by the methods that have been described. Synchrotron radiation is an essential 

process in final focus systems since it is the source of the main limiting terms. The stochastic 

nature of the process makes it impossible to describe it through a Hamiltonian formulation. 

The only way a,t present to check for this effect is, except for analytical calculations as 

shown in a.ppendix A, the use of tracking methods. Most tracking codes now implement 

different simulations of the synchrotron radiation process. But we are back here to the 

“blind” approach of designing a system and checking a posteriori its validity. This area is 

one where some ef?ort and new ideas are needed. 

After the excellent work of Dragt and the big step made under the impulse of John Irwin, 

I believe that these techniques based on Lie algebra will soon become a standard tool for the 

accelerator physicist. There is however still a lot of room for improvements and new ideas. 
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Appendix A 

Chromatic effects due to synchrotron radiation at the FFTB 

I review here two effects induced by synchrotron radiation and their consequences on the 

final spot size at the Final Focus Test Beam. The first one is the chromaticity unbalance 

generated in a final focus system by the energy loss in bending magnets between the sex- 

tupoles and final quadrupoles. The second more general effect is the emittance growth from 

radiation fluctuations. The latter has already been studied’s21by Matthew Sands and I will 

use his results to derive a somewhat simpler and more practical formulation of this effect. 

An application t,o the case of the FFTB is given in both cases. 

CHROMATICITY UNBALANCE 

In a final focus system the chromaticity introduced by the very strong final lenses is can- 

celled at the interaction point by placing sextupoles in a dispersive region giving a chromatic 

kick which can be ma,de equal and opposite to that of the final lenses. 

However one needs some bending magnets inside and after the chromatic correction 

section to manipulate the dispersion. In these bending magnets, the particles lose energy 

through synchrotron radiation; the energy of the particle in the sextupoles is slightly different 

from its energy when it reaches the final quadrupoles. As a result the chromatic kicks do 

not bala,nce each other exactly and there is an increase in the spot size at the focal point. 

I<a.tsunobu Oicle has already estimated this effectL5’lmtj I give here a more extended 

derivation of it. 
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Basic formulation 

The chromatic kick given by the final quadrupoles is given by Ay’ = A~~8y and is balanced 

by the chromat,ic kick at the sextupole, under the hypothesis that there is only one sextupole 

correcting all the chromaticity, Ay’ = Ic,$y. If the particle loses energy* between the two 

we have s --+ s - $ at t(he final quadrupole and the net chromatic kick is 

where Eo is the energy of the beam and du is the energy lost through radiation. The change 

in position at the IP is written, with yq the particle position at the final quadrupole: 

a,nd the increase in spot size a,t the IP is generally written 

(2) 

Lb; = &Ay*2) - (ay*)2 (3) 

Because the two variables y/q and du are not correlated in first approximation as there is no 

design vertical dispersion, a,ncl since this effect does not change the centroid of the beam (ys) 

which remains zero we have 

PY*) 0; hw(Y,) = 0 (4) 

a11cl 

(5) 

= k$3~~o;2(du2) 
0 

Finally if we replace k,,!?, in the previous expression by cY = hilLe Ic,p( s)ds; i.e. if we assimi- 

late the chromsticit,y of the final quadrupoles to that of the entire line+ we have for the spot 

size increase at the focal point: 

* Note that I define 6 = y 
t this is a valid assumption in final focus systems where most of the quadrupole chromaticity comes from 

the final quadrnpoles 
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(6) 

Energy loss considerations 

There are two terms in the energy loss through synchrotron radiation. The first one is 

the so-called “classical or average energy loss” (du); the second one is a consequence of the 

quantum nature of synchrotron radiation and leads to an increase in the energy spread and 

quantum excitation of oscillations; it is stochastic in nature. 

The average energy loss in our case has for a consequence that the energy of the beam at 

the entrance of the final quadrupoles is slightly lower than the design value, the quadrupole 

then focuses this beam a little upstream of the nominal IP, hence some “spot size increase” 

a,t the IP. This effect ca,n be compensated for by retuning the quadrupoles for the new beam 

energy. 

Also the sextupoles need retuning since the chromatic kick now given by the quadrupoles 

is smaller as the beam energy and the quadrupole strengt,h are now lower than the design 

value. This effect will be a,utomatically corrected for in the sextupole strength optimization 

procedure during the tuning of the final spot size. 

We see here that the average energy loss can be compensated for and should therefore be 

removed from the present calculation. The stochastic component of synchrotron radiation 

cannot be corrected due to its very nature and this is the effect of interest to us. 

One can then rewrite equation (6) as 

Lq2 - = 
*2 

gY 
&;u + W2, 

and dropping the second term which is correctable, 

(7) 

Note that adlL represents here the fluctuations in the emission of energy with respect 

to the mean value (du) and is composed of two terms since the energy radiated can be 
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affected by two variables, the energy of the individual photons emitted and the number of 

photons enlitted!531 Ea,ch emission of a photon being independent of the others the first term 

is simply the quadratic sum over the average number of photons of the spread in the energy 

distribution of the photons. The second term is characterized by the spread in the number 

of emitted photon times the average photon energy. Since the number of emitted photon 

is distributed according to a Poisson distribution with mean N, the mean square of the 

distribution is also N 

CT& = (kN)g; + (u)~$T; 
C 

= ;N(o; + (u)~) 

= ;N(u2) 

and fina.lly, 

Result 

The final result for the increase of the spot size at the Interaction Point is then 

fq2 55 83 - = 
*2 

gY 
-re X,E;r5 - 
24fi l2 b 

(9) 

(11) 

With a chromaticity tY - 17 x 103, a beam energy of 50 GeV giving y - lo5 and a 

bending magnet with length lb = 5.2 nz a.nd bending angle 0 = 7.4 narad one gets s = 

0.06, corresponding to a’n increase in the spot size of 3 = 1 - Jl + .06 - 3.% 

THE WHOLE LINE 

Note tha,t the preceding calculations were made assuming one bending magnet between 

a single sestupole and the final quadrupoles. At the FFTB we have two pairs of sextupoles 

and six (groups of) bending magnets arranged in the following way: 
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Beam direction 

Figure 7.1. The disposition of bending magnets at the FFTB. 

It is clear that magnet Br does not contribute to the process we describe since the total 

chromaticity of the line from Br to the interaction point) is zero by design. Magnet B4 

contributes the most to this effect as it affects the full chromaticity of the final quadrupoles. 

Most of the vertical chromat,icity is corrected in the CCY and even if we assume that 10% 

of it is corrected by the CCX, the effect on y is down to the 1% level due to the square of 

the chromaticity appearing in the final formula. Assuming then that the whole chromaticity 

of the line is corrected in the CCY (we neglect the CCX altogether), each of B3 sees only 

half of the total chromaticity, contributing only a factor one-fourth to the total result. 

For the FFTB line we therefore have 

-- “:;’ 55 I33 - (1 + A+ 1, -re - 
OY 4 4 24&i 

M ,2T5 
l2 b 

55 83 = -r, X,$y5- 
16fi 1; 

Finally for the whole FFTB line we have 

*2 Aoy - 0.09 - - 
rF2 Y 

corresponding to 

A0; 
- N 4.5% 

G 

(12) 

(13) 

(14) 

This is the dominant remaining “design aberration” at the FFTB. By design aberration 

I mean an aberration which is inherent to the design and not induced by errors of any kind. 

The second dominant one is the thick sextupole effect which has been derived somewhere 

else. 

113 



EMITTANCE GROWTH 

Introduction and conditions 

In this section I rely on the results developed by Sands in reference [52] and I use them 

without further proof or explanation. However I will recall here the three conditions under 

which those results were obtained. 

- the transport system is linear. 

This is essential to the method since a linear system allows one to apply a solution superpo- 

sition principle; namely the displacement of the trajectory as a consequence of the emission 

of a number of photons is just the sum of the individual displacements each emission would 

generate by itself. Non linea,r lenses complicate the process of adding the displacements at 

the end of the line. .Uthough the FFTB is intrinsically non-linear (strong sextupoles are 

present in the lattice and the chromaticity of the final quadrupoles is very important) I will 

assmlre for the moment that this first condition is verified. 

- there is no coupling in the optics 

This condition simplifies the treatment of the problem by assuming that there exists every- 

where in the line a midplane symmetry. Then the emittance growth takes place only in the 

horizontal plane, leaving the vertical emittance untouched (if we neglect the energy spread 

increase which affects both planes of course). This condition is verified in the case of the 

FFTB clcsign in the absence of errors. 

- the radiation epects can be described by their characteristics on the centrul design 

trajectory. 

The main implication for the FFTB is that we neglect the radiation in yuadrupoles and other 

lenses since the cent,ra,l trajectory, on-axis in those lenses assuming that we compensate this 

tra,jectory for the average energy loss along the line, sees no field hence experiences no 

radktion. The case of radiation in quadrupoles and the resulting limitation on the beam 

size at the focal point, ha,s been studied [541for final focus systems by Katsunobu Oide. Also 

t,he weak focusing effect in bending magnets is ignored. 
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Results and 5esiclual dispersion” 

Sands calculates the contribution to the second moments of the beam distribution in 

respectively equations (lo), (11) and (12) in SLAC/AP-47, where Cp is a constant C2 = 
55 I-,tLC - 4.13 x 10-11m2(GeV)-5. 
24fi(mc"j6 - 

C2E; 
lb 

G3 E5 D2 ds = - 
s 

IQ3 0 

D2(s) ds 

0 

(d2) = CJ G3E5Dt2ds = @i 

lb 

P3 s 
Dt2(s) ds 

0 0 

(m’) = C2 jG3 E5 D D+ ds = 7 J D(s) Of(s) ds 

0 0 

(15) 

The main assumption used to get the final form in the above equations are that the energy 

E(s) and therefore the local trajectory curvature G(s) = l/p(s) (in a uniform bending 

magnet) do not change significantly along the path of the eleckon. This is actually equivalent 

to the third condition of Sands approximating the characteristics of the ra,diation to that of 

a,n ideal particle on the central trajectory. The integrals have also been written assuming 

one bending magnet of length lb followed by a region where l/p is uniformly zero. 

The functions D(s) and Dt( ) s are the “residual dispersion” functions, i.e. the dispersion 

function from point s in the bend to the end of the line, and its derivative. In TRANSPORT 

notation, they a,re the RIG and R26 terms calculated for the partial tra,nsport system from 

s to the end of the line. End of the line here refers to some arbitrary point where we want 

the emittance growth calculated. In the case of the FFTB this point is the final focal point 

UP). 

To calculate these second moments, Sands expresses the residual dispersion functions in 

terms of the betat*ron a,nd off-energy functions (p(s) and T](S)) as well as the phase advance 

along the line. I find it more convenient to use the following argument using only the 

knowledge of the optics in terms of linear matrices. 

I can split the partial transport system (from point s to the IF’) into t,wo pa,rts. The first 

one is from point s inside the bending magnet (the origin s = 0 is at the entra,nce) to the 
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‘b > 

Figure 7.1. The transport system used for the calculation of emittance growth created by a 
single bend along with the notations used in the text. 

end of the magnet and the second part is from the end of the bending magnet to the end of 

the line as represented on the figure below. 

Let Rb and R be the respective first order transport matrices for these two parts and Rt 

be the first order matrix for the whole line from point s to the end so that we have Rt = R.& 

and 

D(s) = (&)lG = &I(&)16 + &2(&)2G + RlG 

o+(s) = (&)26 = R21(&)16 + R22(&)26 + R2G 
(16) 

Now we assume that we know the design of the line to first order and therefore the R;j 

are known. We also know that, upon the assumption that the energy is not varying too 

much when the particle emits a photon and therefore p does not change along the magnet, 

the dispersion functions have the following expression inside the bending magnet of length 

zb: 

and (&,)26 = (lb - ‘) 
P 

It is then trivial to carry out the integrals in equation (15). We have obtained here the 

second moments of the distribution of particles induced by the the energy loss process in 

one single ma,gnet, and observed at some point in the line. The formula depends only on 

the physic4 characteristics of the bend (length L and radius of curvature p on the central 

tra,jectory) the energy of the beam Eo and the linear optics between the bend and the point 
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of observation (I? matrix) : 

+ 
L2Ra+hw 

G + 
L2Rdh~ L&~&P L&&GP 

G + 2 + 2 + R&sP~ 1 

(18) 

Emittance growth 

The calculation of the emittance growth from these formula,s is justified by Sands in 

the definition of the RMS emittance as the three quantities (x~),(:c’~) and (XX’) combined 

according to 

Ez2 = (x2)(x’2) - (22’) (19) 

The folding of two RMS emittances E, and Eb, mlder t,he assumption that the transport 

system is linear, is given by the addition in quadrature of the individual elements defining 

the emittance: 

(x2)f = (x2), + (x2)b 
(d2)f = (d2)a + (d2)b 
(“d).f = (t?d), + (“d)b 

(20) 

Finally we get for the total line the following formula defining the emittance increase, 

where the 0 subscript denotes the nominal emittance and the t subscripts the total emittance: 
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(x2)t = (x2)0 + c b2)n 
n 

(x’2)t = (d2), + c (x’2)n (21) 
n 

(Z2gt = (cm’)0 + x (zz’),, 
n 

with the (X2),, (2’2)n. and (XX’), defined in equation (18). 

Note that with the introduction of the nominal beam (subscript zero) I have introduced 

not only the nominal emittance of the beam but also the design values of the optical functions 

at the IP. It is a remarkable fact that the contributions of the bending magnets does not 

depend on the beam but depends only on the design of the line, including the design energy. 

I introduce here the sigma matrix 

with the condition that the determinant is equal to one giving y = (1 + a2)/p. It is simply 

another representation of the set of the three second-order moments of the beam distribution 

in one plane, the three variables being now the emittance E and the optical functions ,D and 

Application to the case of the FFTB 

The FFTB line contains six main bending magnets arranged in four groups. The fol- 

lowing table lists the individual contributions of each of these bends at the final focal point 

and the la.st line lists the resulting emittance including emittance growth. The version of 

the optics used for this calculation is FFTBSOF and the nominal horizontal emittance is 

3.0 10-lOnz.l-nd. 

The most interesting result for the FFTB is the beam size increase at the IP. It is directly 

obtained from gZ = m, assuming* (2) = 0. For the FFTB I get % = 2.6%. 

From the definition of the RMS emittance (19) one can also obtain the emittance growth 
LJs = 2.7yo. E 

-f The beam is supposed t.o be on axis since the average energy loss can be corrected for. 
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element (x2> (2’2) (xx’) emittance 

BOl 1.7311 lo-l4 2.8735 lo-l3 -7.0502 lo-l4 1.9452 lo--l5 

B02 2.0580 lo-l4 1.3887 lo-l3 5.1064 lo--l4 1.5829 lo-l4 

B02 4.1179 lo-l5 4.5616 lo-l3 4.0916 lo-l4 1.4293 lo-l4 

B03 7.9982 lo-l6 5.3104 lo--l4 6.3063 lo-l5 1.6443 lo-l5 

B03 1.5954 lo-l5 5.9703 lo-l4 -9.3029 lo-l5 2.9505 lo-l5 

B04 3.8719 lo-l5 3.7801 lo-l4 -1.1852 lo-l4 2.4264 lo-l5 

nominal 9.0 lo-l3 1.0 10-7 0. 3.0 lo-lo 

total 9.4828 lo-l3 1.0 1O-7 6.6293 lo--l5 3.0794 10-l’ 
I 

Table 7.1. The contribution to the emittnace growth of the different FFTB bends. The 
folding of the different second order moments is described in the text. 

Since we have gZ = fi, the emittance growth alone accounts for only about 1.3% of the 

spot size increase. The calculation of the emittance and optical functions using the sigma 

ma,trix definition above shows that there is also a change in the optical functions at the IP 

due to this effect. In the case of the FFTB the relative change 7 is about equal to the 

emittance growth or 2.6 %. 

The spot size increase at the IP is therefore due to an increase of the emittance as well 

as as increase of the p-function. The emittance increase cannot be compensated for. The 

change in the optical functions can be compensated by retuning the line, lowering the linear 

beta a,t the IP. The iucreased beta can be made equa,l to the p-function we designed the line 

for in the first pla,ce. The effect has not disappeared but it would not impact the goal of 

obtaining a given spot size at the IP. 

Lowering the P-function at the IP entails that it should increa,se at the final quadrupoles. 

However the same effect that increases the P-function at the IP must reduce it at the final 

quaclrupoles since there is only a linear transport system between the two and the phase 

difference is 7r/2. From (21) it is obvious that (x2) = PE camlot decrease but’ it is possible 

for E a,ncl ,0 to va,ry in opposite directions. The emittance can increase while the P-function 

decrea,ses; the net effect still being that all second moments of the beam actually increase. 

One sl~oulcl look in more details at this effect. A direct calculation taking the final quadrupole 

as the end of the line would I believe confirm the above analysis. 
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Note that there is also a rotation of the beam in phase space shown by a non-zero (xx’). 

The beam ellipse is not upright at the nominal focal point. This however is a negligible effect 

at the FFTB. 
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Appendix B 

Long sextupole aberration at the FFTB 

INTRODUCTION 

In a final focus system the chromaticity introduced by the very strong final lenses is can- 

celled at the interaction point by placing sextupoles in a dispersive region giving a chromatic 

kick which can be made equal and opposite to that of the final lenses. 

Sextupoles are non-linear magnetic lenses giving rise to strong geometric aberrations at 

the focal point of a final focus system. In order to cancel some of these aberrations we 

place the sextupoles in pa,ir separated by a -I transformation. The third-order geometric 

aberrations then cancel out. However, because of the finite length of the sextupole itself, 

higher order geometric aberrations (fourth and higher) do appear. 

Katsunobu Oide has already estimated this effectL5’for the FFTB but I give here a more 

detailed derivation of it. In addition I present another way of deriving the same result based 

on Lie a,lgebra techniques. 

FIRST ORDER TRANSPORT AND KICKS 

Inside a sextupole the first order transport is that of a drift space; the coordinates are 

changing according to the following equations: 

2, = x0 + s XL ) Ys = YO + s Yh (1) 

and the nonlinear kick for an elementary slice ds of the sextupole of strength K = az(i;, is 

of the form: 

ax’ = $i- (2 - y2) ds ) Ay’ = -Ii x y cls (2) 

We can now take into account this non-linear kick in order to find the true positions x, 

and ys along the sextupole. In effect it is this slight departure from the linear trajectory 

coupled to the non-linear kick given by the remaining part of the sextupole that gives rise 

to this fourth order effect. Assmlring zero slope in the trajectory a.t the entrance we have 
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s 

= x0 + 
s 

(s - s’) ; (xi - y;) ds’ 

0 
(3) 

= x0 + : s2 (x; - y;) 

and similarly IT 
Y(S) = Yo - 2 s2 XOYO 

Replacing x and y in equation (2) by their expression in equation (3) and integrating over 

the length of the sextupole we get the total change in angle or equivalent kick. We evaluate 

here only the vertical kick as this is the critical plane for flat bea,m final focus systems. 

1s 
Ayl = 

s 
-K x(s) y(s) ds 

0 
1s 

zz --I( l-1 
KS2 1 , x0 + q,x; - ii”,] [ YO - 2 ---x0 YO as J 

0 

(4) 

= -It-l, xoyo - 
IPP K31.5 
-yf yo (x; + Y,“, + 40 XOYO (4 - Y3 

The first term in the above equation is the normal sextupolar kick (second order) that 

we use to correct the chromaticity*. It is also the reason why we introduce the sextupoles 

in pairs so that their purely geometric parts cancel when considering the entire chromatic 

correction section. [5511ndeed all geometric terms of even order, such as the third term (order 

four) above, do cancel across the -I. 

The second term is that of interest to us and represents the long-sextupole, octupole-like 

kick of order three. 

Considering finally the global kick given by a pair of sextupoles separated by a -I 

transformation we get the long-sextupole non-linear kick at the end of the second sextupole 

* the sextupoles are placed in a dispersive region so just change 2 into x + q6 to see the chromatic term 
appear. 
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of the pair 

(5) 

or with k, = K1, the integrated strength of the sextupole: 

Ay’ = - @s 
6 Y (x2 + Y2) 

LIE ALGEBRA DERIVATION 

(6) 

I will now use Lie algebra based techniques to derive the same result. I hope that 

the reader will profit from this parallel derivation and will catch a glimpse of the ease and 

possibilities of this method for higher orders. 

The hamiltonian of a slice ds of sextupole can be given by 

Hds = $ds(r3 - 32~~) (7) 

The effect of a long sextupole is obtained by combining the hamiltonians of these ele- 

mentary slices into one global hamiltonian for the whole magnet according to the Campbell- 

Baker-Hausdorff theorem which can be expressed in our case 

H whole = xH(si)dsi+ ~~C[H(si)dsi,H(si)dsji+ .a. 
i 2 J>2 

The first term in the above formula is simply the total sextupole kick we use for chro- 

maticity correction. The second term represents the interaction of the slices of sextupole 

two by two and is the term we are interested in. Note that there are more terms in this 

expansion and although they are not significant here they are also very easy to calculate, 

involving only more Poisson brackets. 
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Upon transforming the sums into integrals over the length of the magnet the long sex- 

tupole term is written 

L/2 L/2 

Hl, = ; 
s s 

ds ds’[H(s), H(s’)] 

-L/2 s 

L/2 L/2 
Ii? =- 
72 s s 

ds ds’[z(s)3 - ~~(s)~(s)~,~(s’)~ - 3~(s’)y(s’)~] 

-L/2 s 

(9) 

Using relations like 

[x(s)3,+‘)y(s’)2] = 3x(s)2y(s’)2[~(s),m(s’)] = 3x(s)2y(s’)2(s’ - s) (10) 

the Poisson bracket can be expressed in terms of the elementary [xi(s), zj(s’)] which are 

evaluated from the linear optics in the element: e.g. [x(s),zE(s’)] = [X(S), z(s)+(s’-s)z’(s)] = 

s’ - s. 

Integrating over the lengths one needs only keep the lowest order in L which is equivalent 

to approximating z(s) by its value at the magnet center x, before integrating. This is justified 

by the fact that terms of higher order in L involve also the angles of the trajectory at the 

center of the magnet, xlC and ylC which are typically two or more orders of magnitude smaller 

than the x, a.nd yC due to very high beta functions at the sextupoles in final focus systems. 

We finally have the following hamiltonian for the long sextupole effect: 

& = 
Ii-2 L3 
,,-cxf + z/f)” (11) 

In order to find the effect of this hamiltonian on the trajectory, one needs only take its 

Poisson bracket with the corresponding coordinate function. For example the long sextupole 

vertical kick is given by 

a& 
AY' = [&> ~‘1 = ay 

Ii-213 
- = +(Y3 + Yc& (12) 

Taking into account a sextupole pair separated by a -I transformation one finds the 

same kick we had in equation (6). 
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CONSEQUENCE ON SPOT SIZE INCREASE 

I<. Oide making an estimate of this effect (cf. SLAC-Pub 4953) argues that since the 

contribution of the horizontal plane is small compared to that of the vertical plane at the 

second pair of sextupoles, we can retain only the term in y3 in equation (6). Since the beam 

sizes are comparable in our case (ay - 1.6 gZ) this statement may not be obvious at first 

glance. I carry out here the detailed calculation. 

The displacement at the interaction point corresponding to this kick is 

ny* = 
d- 

k,2 pyspy* jy 1s Y(X2 + Y2) (13) 

and the spot size increase is given by 

Aui2 = (AYES) - (AY*)~ (14) 

We assume in the following that there is no coupling in the optics so that the variables 

x and y are not correlated. The two terms of equation (14) then evaluate to the following, 

neglecting the change in centroid position induced by the sextupoles 

and 

(Y(X2 + Y2)) = (Y3) + (Y)(X2) = 0 

(Y2(X2 +y212) = (YY +2(y4)(x2) + (Y2)(X4) 
(15) 

Using the formula (z2”) = (272 - l)!! (i2)” for Gaussian distributions we get 

(y2(x2 + Y~)~) = 150; + 6+; + 3cr;cr~ (16) 

Finally for the spot size increase we have, with the quantities on the right hand side 

evaluated at the sextupoles 

*2 
Au, = pd& 36 ‘G(l50; + 6c+; + 3c+,4) 

or equivalently 

(17) 

If we neglect the contribution of the horizontal plane, the final result for the pair of sextupoles 

125 



is 

RESULTS FOR THE FFTB 

In the case of the FFTB we anticipate that the largest contribution comes from the 

second pair of sextupoles where the beta functions are much larger than at the first pair. 

We consider here the two pairs of sextupoles as independent and giving rise to independent 

aberrations that need to be added in quadrature to find the overall effect. 

CCY 

Let us first examine the second pair of sextupoles, located in the second chromatic 

correction section or CCY*. The integrated strength of the sextupoles is k, = 21.30 mV2 

with a length 1, = 0.25 m and the vertical beta function is ,Dy = 10135 m with a vertical 

emittance of ey = 3. lo-l1 m.rad. Finally the ratio of the horizontal to vertical spot size is 

gZ/gy = 0.66 and we have 

A0*2 
---IL = 0.051 x (1 + .174 + .038) 

‘32 Y 

= 0.062 
(20) 

which gives rise to a A,;/cT; = 1 - dm = 3% increase in the final vertical spot size. 

Neglecting the contribution of the horizontal plane we have Au;/cJ~ KZ 2.5%. We see 

here that the approximation of neglecting the horizontal contribution is justified a posteriori. 

ccx 

The parameters for the first pair of sextupoles are k, = 21.57 mS2, 1, = 0.25 nz, ,LIy = 

* The values quoted here are those for the FFTBSlD version of the FFTB optics 
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268 m and IJ%/~~ = 10.27 giving 

A@ 
‘92 

= 2.62 1O-8 (1 + 42 + 2225) 
Y (21) 

= 6. 1O-5 

which is negligible compared to the CCY. Here the horizontal contribution is far dominant 

over the vertical one as was expected. 

CONCLUSION 

We have estimated the effect of the length of the sextupoles on the final spot size at the 

FFTB. This aberration comes quasi exclusively from the second sextupole pa,ir and taking 

into account only the vertical contribution is a good approximation. The effect is expected 

to increase the vertical spot size by about 3% of the linear size. It could be corrected by 

introducing an octupole in the line, presumably just before the final quadrupoles since it has 

to be in a dispersion free region in order to avoid introducing new chromatic aberrations. 

Although the effect is not very important at the 3% level, it is giving a higher contribution 

than the limit we establish to estimate the tolerances of the elements of the beam line to 

different errors! 
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