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ABSTRACT 

Herein is described a very high speed 
processing method. It is based on the data 
driven principle, and depends on constructing 
algorithms from hardware operators that are 
generally interconnectable. A set of modules 
and their application to Fermilab E 605 is 
discussed. 

INTRODUCTION 

In order to deal with the very high in- 
formation rates provided by modern detectors, 
we are forced to introduce some sequential 
processing in the data stream. To achieve 
high bandwidth, we must consider the limita- 
tions of each part of the system. If we are 
willing to treat the system as a pipeline 
structure and fully buffer the data stream, 
then the time for encoding the data into nu- 
merical form can overlap the processing time. 
By the same token, we can distribute the pro- 
cessing in the pipeline so that only the aver- 
age processing time of any section limits the 
rate in the data stream. In addition, raw 
data can be passed thru the structure for re- 
covery to permanent storage. This view leads 
to the concept of a data driven structure, 
where the natural segmentation of the detector 
is imposedonthe data formating and buffering 
arrangement, and the processing algorithm 
appears in a hardware pipeline. 

DATA DRIVEN CONCEPT 1.2 

The traditional stored program computer 
treats computation as an ordered sequence of 
operations to be performed on a set of data. 
A data driven processor is based on the prin- 
ciple that any operation can proceed when its 
operands are available and the destinations 
of the results are able to receive them. 

The step to a hardware processor is 
quite simple. We must build a set of useful 
operators that are generally interconnectable, 
and then put together computation structures 
that match the natural structure of the prob- 
lem. This will result in genuine concurrency 
of computation, and an enormous increase in 
speed. 

This structure requires no central con- 
trol, except for maintenance. Data words and 
blocks are aligned by the operators, so that 
quite complex systems involving nested loops 
can be constructed that are completely deter- 
minate and free of conflicts. 

DATA TRANSFER PRINCIPLE 

The basis of this scheme is the data 

transfer principle that allows generalized 
interconnectability. 

We define a cable with a 16 bit data 
value field, and an 8 bit control field. The 
control field contains a bit called valid 
that defines a non-empty data word for that 
clock cycle, a bit called complete that de- 
fines a block boundary, and 4 bits called 
name that identify the data subset to which 
the valid belongs. A bit called hold is pro- 
duced by any destination module on the cable 
that is unable to accept the data transfer, 
and a bit called block reset allows data 
within a block boundary to be destroyed by a 
downstream device. Data transfers between 
modules, and internal to modules, are regis- 
ter to register, synchronous to a central 
clock. The hold presents a special problem 
since it propagates backwards in the sequence. 
The hold is de-skewed with respect to the 
clock at the output of each module, where a 
normally transparent latch is provided to pre- 
vent loss of data because the output register' 
sees the hold one cycle too late. A register 
that contains no valid data can be loaded re- 
gardless of a downstream hold, effectively 
blocking the hold for that cycle. The data 
flow is optimally controlled in complicated 
structures, where the process of data align- 
ment generates both empty words forwards and 
holds backwards, that annihilate on contact. 

More than one module is allowed to re- 
ceive the same cable, and branches are con- 
structed by pre-programming each module to 
accept a subset of the name space. 

PROCESSING SYSTEM 

A system includes the readout, the data 
buffering, the data transfer buses, the pro- 
cessor(s), the host, tape units, etc. 

Figure 1 shows a fully pipelined system. 
Here each readout segment drives a ring buff- 
er so that the detector can transfer output 
at a rate limited only by the rate data can 
be processed and removed from the buffers. 
The buffers are truly data driven and require 
no communication with the readout except with 
their holds, and no part of the detector 
readout communicates with any other part, ex- 
cept for the readout busy signals that must 
merge at the fast trigger source. 

Thebuffersindividually feed various in- 
puts to the processor structure, and have in- 
ternal counters for keeping track of the 
event blocks. In general, the buffers will 
contain new events awaiting processing, and 
old events still in the processing pipeline. 
The output of the processor is a decision to 
skip or read the earliest event stored in the 
ring buffers. All ring buffers attach to a 
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read bus and are expected to accept this 
skip/read command in unison. Hold, on this 
read bus, allows any buffer, momentarily un- 
able to execute this command, to prevent 
other modules from prematurely acting on the 
command. 

TRIG BUSY 

. . 

FIG. 1 PROCESSOR SYSTEM 

A property of this system is that it can 
be data driven either from the readout, which 
is a parallel structure, or from the data bus 
where data can be written into ring buffers 
from the host, or from tape. The same data 
tape that is written from the data bus can be 
rewound, written directly into the ring buff- 
ers, and processed to produce a reduced tape. 
The holds, and alignment of block boundaries 
between events guarantees determinancy. 

List/Index-Data is written in sequence at the 
write port, and assigned an index or word 
count. This index defines the data storage 
location, so that data can be retrieved from 
the read port by index value. The write com- 
plete word is held at the write port until 
the read port complete is received, at which 
point the words are merged to produce the 
output complete word, and reset the index. 

The processor and readout have a control 
bus that attaches to every module, and is 
used to maintain the system and to load fixed 
data into the modules. All registers, coun- 
ters, and memory locations are accessible via 
this bus. The internal registers are con- 
structed from shift register IC's, so that 
these off line operations can be bit serial 
on this bus, which requires only one data and 
one response bit (in addition to address and 
control bits). For system testing, blocks of 
code are sent from the host data channel into 
the system, and output code from the system 
is independently received by an input data 
channel, which interrupts the host either 
when it is filled or when an interrupt word 
appears in the output code. This way the 
host requires no special knowledge of the 
system state for transfer of data in and out. 
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List/Counter-Data at the write port passes 
thru the output port, and those data elements 
that match the pre-assigned name are written 
into memory and assigned an index (i.e. word 
count) that defines the storage location in 
memory. In order to retrieve data via the 
input port, a read index is generated by 
counting data elements at this port and read- 
ing from memory those elements that match a 
pre-assigned name. This subset of the data 
that entered the write port corresponds to a 
relation on the original set. It is assumed 
here that all the elements that pass thru the 
list counter via the write port are tested by 
a processing relation and passed back to the 
read port with a name assigned by the test 
that indicates which elements pass the test 
and therefore belong to the relation. Any 
number of list counters can be connected in 
series, where there are multiple nested loops 
in the relation. The output complete is pro- 
duced when all elements sent from the module 
have been counted at the read port. The in- 
dex counters are reset when the output com- 
plete is formed. 

The readout bus is based on the data 
transfer principles described in the previous 
section, except that it has four more control 
bits in the name (address) space: a tag con- 
trol bit that allows the name to be associ- 
ated with the data source or to represent the 
address of a destination, and a tag control 
bit that defines use of the data field as a 

Buffer-This is a FIFO that allows data align- 
ment between different parts of the process- 
ing structure without causing holds in the 
connecting path. Data can be written and 
read during the same 25 nanosecond cycle. 
Data is available at the output port whenever 
the buffer is not empty and there is no hold 

value or as command information. These tags 
result from merging control and data trans- 
fers onto the same physical bus. Because the 
bus is synchronous, and all words are fully 
specified by the name and tag fields, it is 
possible to have interleaved, autonomous com- 
munication on the bus. A small number of add- 
itional module types allow asynchronous com- 
munication to external devices, for example 
the host, tape units, etc. 

PROCESSOR MODULES 

So far we have constructed a set of 14 
modules found to be useful in track following 
and data organization problems. The modules 
are based on ECL 10K logic and operate at a 
40 Mhz clock rate. The modules can be organ- 
ized into four groups: lists, sequences, 
functions, relations. 

The list modules are differentiated by 
the way the data is organized for access. 
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on the output. Holds cannot propagate to the 
input port if the average output rate is 
equal to or greater than the input rate, and 
the dynamic space of 128 words is not filled. 

Map-This is a storage device that allows asso- 
ciative data retrieval. A memory cell is 
assigned for each possible write data value, 
with all cells initially set to zero. Data 
is retrieved via the read port by value in 
the form of nine contiguous cells around the 
integer part of the input value. An optional 
form of the map allows 16 cell access around 
the integer read value, but requires two read 
cycles. The truncated part of the read value 
is passed to the output and concatenated with 
the cell data. If data is written as an or- 
dered sequence, the read hold is used to pre- 
vent reads until the last write value exceeds 
the value at the read port. For unordered 
write data, a read hold must be present until 
the write complete is transferred. When both 
write and read completes have been received, 
the output complete is sent, and the map is 
erased from an internal list containing the 
last block of cell numbers loaded into the 
map. 

These modules generate sequences from 
the data: 

Binary Index Generator-This module generates 
the Cartesian cross product of two data sets 
in index pair form by counting the data ele- 
ments at each of two input ports, and gener- 
ating all possible index pairs at the output 
port. Outputs are produced as soon as two or 
more inputs are counted, under control of two 
read counters and two pointer registers. No 
input holds are produced except by the input 
completes which are held until the full array 
has-been generated, at which point the output 
complete is sent and the index counters are 
initialized. 

Unary Index Generator-This module generates 
all the unique index pairs of the product of 
the set on itself. The diagonal elements of 
the set, that is the elements themselves, are 
generated with a different name to distin- 
guish them. No holds are produced on the in- 
put port, except by the input complete which 
passes to the output when all index pairs 
have been produced. 

Page Generator-This module is used to copy 
the data elements a pre-selected number of 
times. Only data with a pre-specified name 
will generate this copy sequence, all other 
data elements pass directly thru in one cycle. 

The following modules are available for 
generating functions; 

Arithmetic Operator-This operator performs 
any of the standard binary arithmetic and 
logical operations on the output data (add, 
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subtract, and, or, exclusive or, etc.) pro- 
vided by the ECL 10181 ALU. A plug-in patch 
allows the 20 bit name and data space to be 
connected in a general way to the two 16 bit 
inputs and to the control space of the ALU. 
Alignment of data in the input registers 
causes data transfer to the output and new 
data to be entered at the input registers, 
under control of the holds. Alignment of 
completes at the input ports produces a com- 
plete at the output port. 

Normalizer-The normalizer is used to give a 
linear function value ax+b of its input value 
X. Two internal memories (8 address bits 
each) can be preloaded with 16 bit function 
values. A plug-in patch allows any 16 of the 
bits of input data and name to be connected 
to the two 8 bit address tables, and the out- 
puts of the tables are added with 16 bit pre- 
cision. In order to normalize 16 bit input 
words, the 8 high order bits are patched to 
the high order table, and the 8 low order 
bits to the low order table. For smaller 
size values, name bits can be connected in 
common to the two tables, resulting in sets 
or normalizations. Any function of Fn(Xl) + 
Gn(X2) can be produced, where Xl and X2 are ' 

separate data fields of the input words. The 
complete passes thru the normalizer without 
producing holds. 

Binary Table-The table is used to give a gen- 
eral function value of F(Xl,X2) of its two 

input values. A plug-in patch for each of 
the inputs allows any part of the value, name 
space of the two input words to be patched 
into the 8 bit address space to produce a 16 
bit function value at the output. Alignment 
of data in the input registers causes data 
transfer to the output under control of the 
holds. The table can also be a test if ap- 
propriate output function bits are patched 
into the output name space. 

Unary Table-This is identical to the binary 
table, except that only one data input is 
provided. 

The followinq modules are available for 
generating relations involving greater than, 
less than tests. A relation results in a 
name being assigned to the output data de- 
pending on the test result. 

Ordered Merge-This binary input module merges 
two ordered data sets into a new ordered set. 
The data elements at each input port are com- 
pared over a selectable part of their data 
fields. The larger (or smaller) word is 
passed to the output, and the other input is 
held until it is larger (smaller) than the 
word at the other input port. When the in- 
puts are equal, either the value is passed to 
the output with a special name, or optionally 
both values are passed in sequence with their 
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respective names. The input completes must 
be aligned before an output complete is pro- 
duced. 

Associate-This is a unary input module where 
adjacent words in a sequence are subtracted 
and their difference compared to a pre-set 
number, for greater than or less than. The 
result of the compare assigns a name to the 
words according to this association. The 
complete word passes thru without producing a 
hold (unless there is a hold on the output 
port). 

Cut-This unary device compares the input 
zue with two preloaded 16 bit numbers and 
names the data word according to whether it 
is within the cut, or above or below the cut. 
Only holds on the output cable affect the 
data flow. All words, including the complete, 
pass thru without producing hold. 

ALGORITHMS 

Because the system is modular, the pro- 
cessing algorithm can be flexibly adapted to 
the experiment. Each module and the complete 
algorithm is emulated in Fortran so that the 
algorithm can be pre-tested both with Monte 
Carlo data, and with data tapes produced by 
the readout. These data tapes can be direct- 
ly off loaded into the ring buffers and pro- 
cessed, with no modification to the system. 

An example of a simple binary loop 
structure for track finding is shown in Fig- 
ure 2. This structure is designed to predict 
the location of hits in wire chamber 2, all 
possible pairs from chambers 1 and 3, and 
then generate information needed for testing 
the trajectory past the magnet by using hits 
in chamber 5 to test chamber 4. 

The symbols are defined as follows: a 
module is indicated by a circle containing an 
identifying symbol, and lines connecting the 
modules represent the interconnecting cables. 
Inputs are of two types, a read input, indi- 
cated by an arrow, forms part of the active 
processing path thru the output, while a 
write input, indicated by a solid blob, di- 
rectly affects only internal storage within 
the module. 

The binary index generator (I) counts 
valid transmissions and generates all index 
pairs over the accumulating counts. The 
lists (L) sequentially store incoming data 
which is later retrieved by index. The nor- 
malizers (N) generate linear mappings of 
their inputs which are then added to define a 
projection of chamber 2. Data written into 
the map from chamber 2 is retrieved in the 
form of the 9 contiguous cells around the 
prediction, and concatenated with the non- 
integral part of the prediction. A table (T) 
transforms this data into a weighted value 
and a name is assigned to the data. This 
causes the index pair associated with the 
test to be retrieved from the list counter 

LINEAR COMBINATIONS OF Xl, X3 

FOR DOWNSTREAM CALCULATIONS 

FIG. 2 TYPICAL BINARY LOOP STRUCTURE 

and reinserted into the calculation if the 
test was passed. The new name is used to 
look up another set of normalizations for 
calculations needed in the downstream struc- 
ture. The copy device (P) allows any number 
of calculations to be generated in sequence 
for the same index pair. 

This type of structure indicates how 
quite complicated loop structures can often 
be decomposed into binary structures. In 
this example, instead of N XN XN cycles 123 
(where N is the number of hits), we have only 

N1XN3 cycles because of the use of the map. 

Whenever we re-use the structure, as in this 
example, we create a loop. This is worth- 
while here, since the test only causes infre- 
quent re-use, but considerable savings in 
hardware. Because the data elements are dis- 
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tinguished by name, they are allowed to co- 
exist in the sequence without causing con- 
flicts. The computation proceeds at the 
highest possible speed since the operations 
take place concurrently at the 40 Mhz clock 
rate, moderated only by holds and data align- 
ment in the modules. Any amount of parallel- 
ism can be added to the computation part of 
the structure by expanding the number of nor- 
malizers and other arithmetic devices, or 
alternatively the structure can be re-used by 
adding more nested loops where we use list 
counters to close the loops. The use of a 
buffer (B) at the table output allows data 
from the table to be automatically aligned 
with the downstream data without producing 
holds. 

We can duplicate this structure for each 
of 3 or 4 wire plane views, and fold them 
onto each other to reduce hardware, or unfold 
them to gain speed. If we consider the more 
complete problem of finding tracks in three 
views, the nested loop structure decomposes 
into loops for lines in front of the magnet, 
those for tracking to the back, and those for 
matching tracks found in each view. This de- 
composition leads to a high degree of con- 
currency, where the delay thru the structure 
is irrelevant since the new events keep the 
pipeline optimally filled. 

TRIGGER PROCESSOR FOR FERMILAB E605 

We have built a small trigger processor 
for E605. The detector configuration is 
shown in Figure 3. The target is in the 
field of a focusing magnet which focuses high 
mass pairs around a beam dump into the detec- 
tor. There are two WY MWPC chambers in 
front of an analyzing magnet, and two drift 
chamber stations behind it, with staggered 
pair UVY planes. In addition to this track- 
ing system, there is an imaging Cerenkov 
counter between the drift chambers, and there 

MF 

are electron, hadron and muon detectors in the 
back. 

Three planes of x.y hodoscope counters 
are used to define a fast trigger for gating 
the readout systems. The data subset required 
for the trigger processor transfers thru the 
ring buffers to the processor inputs. 

The preliminary form of the processor 
selects tracks that are consistent with the 
target and constrains P . 

Y 
The system modular- 

ity will allow development of the trigger as 
running experience accumulates. 

Wire hits from the staggered pair drift 
chambers are merged with ordered merge mod- I 
ules. Adjacent wire pairs and singles are 
encoded by associator modules which assign a 
low order bit to the wire number corresponding 
to one-half wire space. 

Wire hits from the MWPC chambers are 
written into separate maps. A binary loop 
structure, similar to the one described in the 
previous section, forms lists of the associ- 
ated signals from the two drift chambers and 
generates all possible line projections for 
the MWPC plane maps. Both projections are 
calculated simultaneously to gain speed. 

A binary table transforms the output 
road data from the maps into a cut. If the 
test is met, a new name causes the list coun- 
ter module to retrieve the index pair for the 
track, and the linear combinations of Y3, Y4, 

for calculating the Pz and P momentum 
Y 

components are simultaneously accessed in the 
normalizers (the test name is used to address 
the appropriate pages of the normalizer 
memory). Log tables are used to generate logs 
of these two quantities which are subtracted 
to give the log P . A table forms a cut on 

Y 
P. 

Y 
The projections on the calorimeter, muon 

detector, and counter hodoscope are also 

WA 
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FIG. 3 E605 DETECTOR 
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copied out during this pass of the loop. The 
various cuts are buffered, to eliminate holds, 
and concatenated to form a paraUIetri.ZatiOn 

for each track candidate. A unary index 
generator module forms all track pairs and 
singles, and a trigger cut is produced in a 
binary table. The trigger output word 
assigns trigger identification to 12 unique 
bits, and a frequency which is matched a- 
gainst an event counter in the event genera- 
tor module. A match sets a flag that causes 
the ring buffers to transfer the last event 
in the ring to the readout. If the flag is 
not set when the event boundary passes out of 
the processor, the event generator causes the 
last event in the ring to be skipped. The 
identification bits are accumulated in flip- 
flops and sent with the event count whenever 
the ring buffers are read. Track parameters 
from the processor are also sent, and all 
data is transferred to a mega-byte 

3 memory , at a 10 Mhz word rate for PDP-11 
processing during the beam-off time. The 
system deadtime due to the trigger processing 
is 1 to 2 ps. 

NEW MODULES 

For economy, we wish to vary the amount 
of hardware for a particular computation to 
match the desired speed of computation. For 
the modules described so far, this can be 
accomplished in an obvious but limited manner 
by varying the degree to which modules are 
repeated. For less frequently performed cal- 
culations we use another family of modules in 
which data transfer is serial rather than 
parallel, i.e., rather than transmitting one 
word each clock period with a 24 bit cable, 
we transmit n bit words on one bit of cable 
in n clock periods. Communication and com- 
putation thus require less hardware to oper- 
ate more slowly. 

Another feature of previously outlined 
computations was the presence of frequent 
decisions based on simple computations, which 
then alter the sequence of subsequent opera- 
tions. Large computations with fixed sets of 
operations permit additional optimization of 
the hardware, because more operations may be 
performed in parallel. 

An interesting'arithmetic structure with 
serial communication, but performing normally 
distinct computations in parallel, is the C 
module used to provide linear combinations of 
several variables: 

Yn=CAniXi+Ano 

The variables Xi are transmitted simultane- 

ously but bit serially on a narrow bus cable 
which may have several c modules. Each 
transmission provides an 8 bit address for a 
256 word table of sums of all constants Ani 

for which the corresponding bit of the add- 
ress is one. The table entry is added to a 

shifting accumulator. If the 8 bit address 
is inadequate, the computation must be dis- 
tributed over more than one I module and the 
results added. Bit serial addition is suffi- 
ciently simple that C modules can simply be 
cascaded with increased propagation delay, or 
another simple module can add up to eight 
pairs of numbers in parallel. For large com- 
putations, we can quite freely vary speed 
with module count. A single Z module, for 
example, could provide 8 different linear 
combinations of five variables. 

Examples of large computations without 
branches are plentiful in the processor which 
we are building to reconstruct charged parti- 
cle trajectories measured in a magnetic 
spectrometer. A measurement consists of one- 
dimensional projections of particle trajec- 
tories in 24 drift chamber planes inside a 
moderately non-uniform magnetic field. Each 
of the 24 measurements of a single trajectory 
is a separate nonlinear function of a single 
set of 5 parameters. A moderately accurate 
initial estimate of these parameters is five 
linear combinations of 6 measurements found 
in the initial pattern recognition. 

To accurately determine the five param- 
eters with a least-square fit of 24 measure- 
ments, we generate an initial parameter 
estimate, using 2 modules to provide the 
linear combinations of 6 measurements, then 
carry out nine multiplications to form 6 
higher order products of these parameters. 
An eleven term polynomial expansion of the 
predicted track coordinates is then carried 
out for each of the 24 planes. Generation of 
the initial estimate of the 5 parameters and 
the 24 measurements implied, can be performed 
for a new track every 300 nanoseconds with 
about 70 modules, or more slowly with corre- 
sponding reduction in the number of modules. 

READOUT MODULES 

High speed data driven processing may 
well require data to be supplied in numerical 
form at very high rates. Detector systems 
developed at Nevis consist of several small 
subsystems, each capable of supplying encoded 
measurements at tens of Mhz. By buffering 
these subsystems in parallel, a single meas- 
urement consisting of several hundred numbers 
can be completely transferred in less than a 
microsecond. These subsystems attach to a 
control bus, so that each readout module can 
be addressed from the host for testing time 
and charge. Signals can be automatically 
injected into modules for calibration and 
testing. 

The following readout modules have been 
built: 

MWPC System-This is a coincidence register 
system that has been in use for many years, 
consisting of chamber mounted discriminators, 
flat polyethylene signal delay cables to 32 
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channel coincidence register cards. These 
cards attach to a read bus segmented by wire 
plane. A newly designed wire number encoder 
allows sparse readout at a 20 Mhz word rate 
onto our standard processor cable, where the 
word format is the binary encoded 10 bit wire 
number and crate name. The encoder also gen- 
erates a word count for limiting the block 
size to a pre-set number of words, and a 
truncated event number in the complete word. 

Drift Chamber System-This is a single hit 
time recording system designed for relatively 
close wire spaced drift chambers. The time 
is directly encoded into 6 bit gray code for 
time bins greater or equal to 4 nanoseconds, 
or 5 bit code for 2.5 nanosecond time bins. 
32 signal TDC cards attach to a read bus seg- 
mented by wire plane. The sparse data can be 
transferred to a standard processor cable 
with a valid word every 25 nanoseconds. The 
data word contains a 10 bit wire number, a 
6 bit time, and the plane number. A word 
counter in the readout allows the block size 
to be limited to a pre-set number, and a 
truncated event count is sent with each com- 
plete word. 

ADC Readout4 -This 8 channel ADC was developed 
by a member of the E 605 group for readout 
into our system. The ADC has 8 bits of 
square root encoding, and a digital cut for 
each channel to sparsify the data. The 
sparsified data can be transferred at a 20 
Mhz rate to the processor cable. 

Unencoded Register Data-This system consists 
of 16 bit fast coincidence registers. The 
data is read out in an unencoded, fixed block 
size form, at a 20 Mhz rate to the processor 
cable. 

SUMMARY 

Data driven machines have no natural 
scale association. The computation time does 
not have to increase as more computation is 
added, and the physical size of the system 
is not constrained since there is no central- 
ized communication. 

The cost per operation. per second seems 
to be much lower than any other method. This 
is a result of the property of concurrency, 
the close match of the operators to the cal- 
culation, and to the simplicity of the oper- 
ators. 
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