
DATA DRIVEN PROCESSING

H. Cunitz, Y. Hsiung, B. Knapp, W. Sippach
Columbia University, New York, NY 10027

ABSTRACT

Herein is described a very high speed
processing method. It is based on the data
driven principle, and depends on constructing
algorithms from hardware operators that are
generally interconnectable. A set of modules
and their application to Fermilab E 605 is
discussed.

INTRODUCTION

In order to deal with the very high in-
formation rates provided by modern detectors,
we are forced to introduce some sequential
processing in the data stream. To achieve
high bandwidth, we must consider the limita-
tions of each part of the system. If we are
willing to treat the system as a pipeline
structure and fully buffer the data stream,
then the time for encoding the data into nu-
merical form can overlap the processing time.
By the same token, we can distribute the pro-
cessing in the pipeline so that only the aver-
age processing time of any section limits the
rate in the data stream. In addition, raw
data can be passed thru the structure for re-
covery to permanent storage. This view leads
to the concept of a data driven structure,
where the natural segmentation of the detector
is imposedonthe data formating and buffering
arrangement, and the processing algorithm
appears in a hardware pipeline.

DATA DRIVEN CONCEPT 1.2

The traditional stored program computer
treats computation as an ordered sequence of
operations to be performed on a set of data.
A data driven processor is based on the prin-
ciple that any operation can proceed when its
operands are available and the destinations
of the results are able to receive them.

The step to a hardware processor is
quite simple. We must build a set of useful
operators that are generally interconnectable,
and then put together computation structures
that match the natural structure of the prob-
lem. This will result in genuine concurrency
of computation, and an enormous increase in
speed.

This structure requires no central con-
trol, except for maintenance. Data words and
blocks are aligned by the operators, so that
quite complex systems involving nested loops
can be constructed that are completely deter-
minate and free of conflicts.

DATA TRANSFER PRINCIPLE

The basis of this scheme is the data

transfer principle that allows generalized
interconnectability.

We define a cable with a 16 bit data
value field, and an 8 bit control field. The
control field contains a bit called valid
that defines a non-empty data word for that
clock cycle, a bit called complete that de-
fines a block boundary, and 4 bits called
name that identify the data subset to which
the valid belongs. A bit called hold is pro-
duced by any destination module on the cable
that is unable to accept the data transfer,
and a bit called block reset allows data
within a block boundary to be destroyed by a
downstream device. Data transfers between
modules, and internal to modules, are regis-
ter to register, synchronous to a central
clock. The hold presents a special problem
since it propagates backwards in the sequence.
The hold is de-skewed with respect to the
clock at the output of each module, where a
normally transparent latch is provided to pre-
vent loss of data because the output register'
sees the hold one cycle too late. A register
that contains no valid data can be loaded re-
gardless of a downstream hold, effectively
blocking the hold for that cycle. The data
flow is optimally controlled in complicated
structures, where the process of data align-
ment generates both empty words forwards and
holds backwards, that annihilate on contact.

More than one module is allowed to re-
ceive the same cable, and branches are con-
structed by pre-programming each module to
accept a subset of the name space.

PROCESSING SYSTEM

A system includes the readout, the data
buffering, the data transfer buses, the pro-
cessor(s), the host, tape units, etc.

Figure 1 shows a fully pipelined system.
Here each readout segment drives a ring buff-
er so that the detector can transfer output
at a rate limited only by the rate data can
be processed and removed from the buffers.
The buffers are truly data driven and require
no communication with the readout except with
their holds, and no part of the detector
readout communicates with any other part, ex-
cept for the readout busy signals that must
merge at the fast trigger source.

Thebuffersindividually feed various in-
puts to the processor structure, and have in-
ternal counters for keeping track of the
event blocks. In general, the buffers will
contain new events awaiting processing, and
old events still in the processing pipeline.
The output of the processor is a decision to
skip or read the earliest event stored in the
ring buffers. All ring buffers attach to a

- 162 -

I .

read bus and are expected to accept this
skip/read command in unison. Hold, on this
read bus, allows any buffer, momentarily un-
able to execute this command, to prevent
other modules from prematurely acting on the
command.

TRIG BUSY

. .

FIG. 1 PROCESSOR SYSTEM

A property of this system is that it can
be data driven either from the readout, which
is a parallel structure, or from the data bus
where data can be written into ring buffers
from the host, or from tape. The same data
tape that is written from the data bus can be
rewound, written directly into the ring buff-
ers, and processed to produce a reduced tape.
The holds, and alignment of block boundaries
between events guarantees determinancy.

List/Index-Data is written in sequence at the
write port, and assigned an index or word
count. This index defines the data storage
location, so that data can be retrieved from
the read port by index value. The write com-
plete word is held at the write port until
the read port complete is received, at which
point the words are merged to produce the
output complete word, and reset the index.

The processor and readout have a control
bus that attaches to every module, and is
used to maintain the system and to load fixed
data into the modules. All registers, coun-
ters, and memory locations are accessible via
this bus. The internal registers are con-
structed from shift register IC's, so that
these off line operations can be bit serial
on this bus, which requires only one data and
one response bit (in addition to address and
control bits). For system testing, blocks of
code are sent from the host data channel into
the system, and output code from the system
is independently received by an input data
channel, which interrupts the host either
when it is filled or when an interrupt word
appears in the output code. This way the
host requires no special knowledge of the
system state for transfer of data in and out.

- 163 -

List/Counter-Data at the write port passes
thru the output port, and those data elements
that match the pre-assigned name are written
into memory and assigned an index (i.e. word
count) that defines the storage location in
memory. In order to retrieve data via the
input port, a read index is generated by
counting data elements at this port and read-
ing from memory those elements that match a
pre-assigned name. This subset of the data
that entered the write port corresponds to a
relation on the original set. It is assumed
here that all the elements that pass thru the
list counter via the write port are tested by
a processing relation and passed back to the
read port with a name assigned by the test
that indicates which elements pass the test
and therefore belong to the relation. Any
number of list counters can be connected in
series, where there are multiple nested loops
in the relation. The output complete is pro-
duced when all elements sent from the module
have been counted at the read port. The in-
dex counters are reset when the output com-
plete is formed.

The readout bus is based on the data
transfer principles described in the previous
section, except that it has four more control
bits in the name (address) space: a tag con-
trol bit that allows the name to be associ-
ated with the data source or to represent the
address of a destination, and a tag control
bit that defines use of the data field as a

Buffer-This is a FIFO that allows data align-
ment between different parts of the process-
ing structure without causing holds in the
connecting path. Data can be written and
read during the same 25 nanosecond cycle.
Data is available at the output port whenever
the buffer is not empty and there is no hold

value or as command information. These tags
result from merging control and data trans-
fers onto the same physical bus. Because the
bus is synchronous, and all words are fully
specified by the name and tag fields, it is
possible to have interleaved, autonomous com-
munication on the bus. A small number of add-
itional module types allow asynchronous com-
munication to external devices, for example
the host, tape units, etc.

PROCESSOR MODULES

So far we have constructed a set of 14
modules found to be useful in track following
and data organization problems. The modules
are based on ECL 10K logic and operate at a
40 Mhz clock rate. The modules can be organ-
ized into four groups: lists, sequences,
functions, relations.

The list modules are differentiated by
the way the data is organized for access.

c ;T i

on the output. Holds cannot propagate to the
input port if the average output rate is
equal to or greater than the input rate, and
the dynamic space of 128 words is not filled.

Map-This is a storage device that allows asso-
ciative data retrieval. A memory cell is
assigned for each possible write data value,
with all cells initially set to zero. Data
is retrieved via the read port by value in
the form of nine contiguous cells around the
integer part of the input value. An optional
form of the map allows 16 cell access around
the integer read value, but requires two read
cycles. The truncated part of the read value
is passed to the output and concatenated with
the cell data. If data is written as an or-
dered sequence, the read hold is used to pre-
vent reads until the last write value exceeds
the value at the read port. For unordered
write data, a read hold must be present until
the write complete is transferred. When both
write and read completes have been received,
the output complete is sent, and the map is
erased from an internal list containing the
last block of cell numbers loaded into the
map.

These modules generate sequences from
the data:

Binary Index Generator-This module generates
the Cartesian cross product of two data sets
in index pair form by counting the data ele-
ments at each of two input ports, and gener-
ating all possible index pairs at the output
port. Outputs are produced as soon as two or
more inputs are counted, under control of two
read counters and two pointer registers. No
input holds are produced except by the input
completes which are held until the full array
has-been generated, at which point the output
complete is sent and the index counters are
initialized.

Unary Index Generator-This module generates
all the unique index pairs of the product of
the set on itself. The diagonal elements of
the set, that is the elements themselves, are
generated with a different name to distin-
guish them. No holds are produced on the in-
put port, except by the input complete which
passes to the output when all index pairs
have been produced.

Page Generator-This module is used to copy
the data elements a pre-selected number of
times. Only data with a pre-specified name
will generate this copy sequence, all other
data elements pass directly thru in one cycle.

The following modules are available for
generating functions;

Arithmetic Operator-This operator performs
any of the standard binary arithmetic and
logical operations on the output data (add,

I

subtract, and, or, exclusive or, etc.) pro-
vided by the ECL 10181 ALU. A plug-in patch
allows the 20 bit name and data space to be
connected in a general way to the two 16 bit
inputs and to the control space of the ALU.
Alignment of data in the input registers
causes data transfer to the output and new
data to be entered at the input registers,
under control of the holds. Alignment of
completes at the input ports produces a com-
plete at the output port.

Normalizer-The normalizer is used to give a
linear function value ax+b of its input value
X. Two internal memories (8 address bits
each) can be preloaded with 16 bit function
values. A plug-in patch allows any 16 of the
bits of input data and name to be connected
to the two 8 bit address tables, and the out-
puts of the tables are added with 16 bit pre-
cision. In order to normalize 16 bit input
words, the 8 high order bits are patched to
the high order table, and the 8 low order
bits to the low order table. For smaller
size values, name bits can be connected in
common to the two tables, resulting in sets
or normalizations. Any function of Fn(Xl) +
Gn(X2) can be produced, where Xl and X2 are '

separate data fields of the input words. The
complete passes thru the normalizer without
producing holds.

Binary Table-The table is used to give a gen-
eral function value of F(Xl,X2) of its two

input values. A plug-in patch for each of
the inputs allows any part of the value, name
space of the two input words to be patched
into the 8 bit address space to produce a 16
bit function value at the output. Alignment
of data in the input registers causes data
transfer to the output under control of the
holds. The table can also be a test if ap-
propriate output function bits are patched
into the output name space.

Unary Table-This is identical to the binary
table, except that only one data input is
provided.

The followinq modules are available for
generating relations involving greater than,
less than tests. A relation results in a
name being assigned to the output data de-
pending on the test result.

Ordered Merge-This binary input module merges
two ordered data sets into a new ordered set.
The data elements at each input port are com-
pared over a selectable part of their data
fields. The larger (or smaller) word is
passed to the output, and the other input is
held until it is larger (smaller) than the
word at the other input port. When the in-
puts are equal, either the value is passed to
the output with a special name, or optionally
both values are passed in sequence with their

- 164 -

I

respective names. The input completes must
be aligned before an output complete is pro-
duced.

Associate-This is a unary input module where
adjacent words in a sequence are subtracted
and their difference compared to a pre-set
number, for greater than or less than. The
result of the compare assigns a name to the
words according to this association. The
complete word passes thru without producing a
hold (unless there is a hold on the output
port).

Cut-This unary device compares the input
zue with two preloaded 16 bit numbers and
names the data word according to whether it
is within the cut, or above or below the cut.
Only holds on the output cable affect the
data flow. All words, including the complete,
pass thru without producing hold.

ALGORITHMS

Because the system is modular, the pro-
cessing algorithm can be flexibly adapted to
the experiment. Each module and the complete
algorithm is emulated in Fortran so that the
algorithm can be pre-tested both with Monte
Carlo data, and with data tapes produced by
the readout. These data tapes can be direct-
ly off loaded into the ring buffers and pro-
cessed, with no modification to the system.

An example of a simple binary loop
structure for track finding is shown in Fig-
ure 2. This structure is designed to predict
the location of hits in wire chamber 2, all
possible pairs from chambers 1 and 3, and
then generate information needed for testing
the trajectory past the magnet by using hits
in chamber 5 to test chamber 4.

The symbols are defined as follows: a
module is indicated by a circle containing an
identifying symbol, and lines connecting the
modules represent the interconnecting cables.
Inputs are of two types, a read input, indi-
cated by an arrow, forms part of the active
processing path thru the output, while a
write input, indicated by a solid blob, di-
rectly affects only internal storage within
the module.

The binary index generator (I) counts
valid transmissions and generates all index
pairs over the accumulating counts. The
lists (L) sequentially store incoming data
which is later retrieved by index. The nor-
malizers (N) generate linear mappings of
their inputs which are then added to define a
projection of chamber 2. Data written into
the map from chamber 2 is retrieved in the
form of the 9 contiguous cells around the
prediction, and concatenated with the non-
integral part of the prediction. A table (T)
transforms this data into a weighted value
and a name is assigned to the data. This
causes the index pair associated with the
test to be retrieved from the list counter

LINEAR COMBINATIONS OF Xl, X3

FOR DOWNSTREAM CALCULATIONS

FIG. 2 TYPICAL BINARY LOOP STRUCTURE

and reinserted into the calculation if the
test was passed. The new name is used to
look up another set of normalizations for
calculations needed in the downstream struc-
ture. The copy device (P) allows any number
of calculations to be generated in sequence
for the same index pair.

This type of structure indicates how
quite complicated loop structures can often
be decomposed into binary structures. In
this example, instead of N XN XN cycles 123
(where N is the number of hits), we have only

N1XN3 cycles because of the use of the map.

Whenever we re-use the structure, as in this
example, we create a loop. This is worth-
while here, since the test only causes infre-
quent re-use, but considerable savings in
hardware. Because the data elements are dis-

- 165 -

I
tinguished by name, they are allowed to co-
exist in the sequence without causing con-
flicts. The computation proceeds at the
highest possible speed since the operations
take place concurrently at the 40 Mhz clock
rate, moderated only by holds and data align-
ment in the modules. Any amount of parallel-
ism can be added to the computation part of
the structure by expanding the number of nor-
malizers and other arithmetic devices, or
alternatively the structure can be re-used by
adding more nested loops where we use list
counters to close the loops. The use of a
buffer (B) at the table output allows data
from the table to be automatically aligned
with the downstream data without producing
holds.

We can duplicate this structure for each
of 3 or 4 wire plane views, and fold them
onto each other to reduce hardware, or unfold
them to gain speed. If we consider the more
complete problem of finding tracks in three
views, the nested loop structure decomposes
into loops for lines in front of the magnet,
those for tracking to the back, and those for
matching tracks found in each view. This de-
composition leads to a high degree of con-
currency, where the delay thru the structure
is irrelevant since the new events keep the
pipeline optimally filled.

TRIGGER PROCESSOR FOR FERMILAB E605

We have built a small trigger processor
for E605. The detector configuration is
shown in Figure 3. The target is in the
field of a focusing magnet which focuses high
mass pairs around a beam dump into the detec-
tor. There are two WY MWPC chambers in
front of an analyzing magnet, and two drift
chamber stations behind it, with staggered
pair UVY planes. In addition to this track-
ing system, there is an imaging Cerenkov
counter between the drift chambers, and there

MF

are electron, hadron and muon detectors in the
back.

Three planes of x.y hodoscope counters
are used to define a fast trigger for gating
the readout systems. The data subset required
for the trigger processor transfers thru the
ring buffers to the processor inputs.

The preliminary form of the processor
selects tracks that are consistent with the
target and constrains P .

Y
The system modular-

ity will allow development of the trigger as
running experience accumulates.

Wire hits from the staggered pair drift
chambers are merged with ordered merge mod- I
ules. Adjacent wire pairs and singles are
encoded by associator modules which assign a
low order bit to the wire number corresponding
to one-half wire space.

Wire hits from the MWPC chambers are
written into separate maps. A binary loop
structure, similar to the one described in the
previous section, forms lists of the associ-
ated signals from the two drift chambers and
generates all possible line projections for
the MWPC plane maps. Both projections are
calculated simultaneously to gain speed.

A binary table transforms the output
road data from the maps into a cut. If the
test is met, a new name causes the list coun-
ter module to retrieve the index pair for the
track, and the linear combinations of Y3, Y4,

for calculating the Pz and P momentum
Y

components are simultaneously accessed in the
normalizers (the test name is used to address
the appropriate pages of the normalizer
memory). Log tables are used to generate logs
of these two quantities which are subtracted
to give the log P . A table forms a cut on

Y
P.

Y
The projections on the calorimeter, muon

detector, and counter hodoscope are also

WA

l////I

m cl CER e

III
h P

WC WC DC DC
1 2 3 4

FIG. 3 E605 DETECTOR

- 166 -

copied out during this pass of the loop. The
various cuts are buffered, to eliminate holds,
and concatenated to form a paraUIetri.ZatiOn

for each track candidate. A unary index
generator module forms all track pairs and
singles, and a trigger cut is produced in a
binary table. The trigger output word
assigns trigger identification to 12 unique
bits, and a frequency which is matched a-
gainst an event counter in the event genera-
tor module. A match sets a flag that causes
the ring buffers to transfer the last event
in the ring to the readout. If the flag is
not set when the event boundary passes out of
the processor, the event generator causes the
last event in the ring to be skipped. The
identification bits are accumulated in flip-
flops and sent with the event count whenever
the ring buffers are read. Track parameters
from the processor are also sent, and all
data is transferred to a mega-byte

3 memory , at a 10 Mhz word rate for PDP-11
processing during the beam-off time. The
system deadtime due to the trigger processing
is 1 to 2 ps.

NEW MODULES

For economy, we wish to vary the amount
of hardware for a particular computation to
match the desired speed of computation. For
the modules described so far, this can be
accomplished in an obvious but limited manner
by varying the degree to which modules are
repeated. For less frequently performed cal-
culations we use another family of modules in
which data transfer is serial rather than
parallel, i.e., rather than transmitting one
word each clock period with a 24 bit cable,
we transmit n bit words on one bit of cable
in n clock periods. Communication and com-
putation thus require less hardware to oper-
ate more slowly.

Another feature of previously outlined
computations was the presence of frequent
decisions based on simple computations, which
then alter the sequence of subsequent opera-
tions. Large computations with fixed sets of
operations permit additional optimization of
the hardware, because more operations may be
performed in parallel.

An interesting'arithmetic structure with
serial communication, but performing normally
distinct computations in parallel, is the C
module used to provide linear combinations of
several variables:

Yn=CAniXi+Ano

The variables Xi are transmitted simultane-

ously but bit serially on a narrow bus cable
which may have several c modules. Each
transmission provides an 8 bit address for a
256 word table of sums of all constants Ani

for which the corresponding bit of the add-
ress is one. The table entry is added to a

shifting accumulator. If the 8 bit address
is inadequate, the computation must be dis-
tributed over more than one I module and the
results added. Bit serial addition is suffi-
ciently simple that C modules can simply be
cascaded with increased propagation delay, or
another simple module can add up to eight
pairs of numbers in parallel. For large com-
putations, we can quite freely vary speed
with module count. A single Z module, for
example, could provide 8 different linear
combinations of five variables.

Examples of large computations without
branches are plentiful in the processor which
we are building to reconstruct charged parti-
cle trajectories measured in a magnetic
spectrometer. A measurement consists of one-
dimensional projections of particle trajec-
tories in 24 drift chamber planes inside a
moderately non-uniform magnetic field. Each
of the 24 measurements of a single trajectory
is a separate nonlinear function of a single
set of 5 parameters. A moderately accurate
initial estimate of these parameters is five
linear combinations of 6 measurements found
in the initial pattern recognition.

To accurately determine the five param-
eters with a least-square fit of 24 measure-
ments, we generate an initial parameter
estimate, using 2 modules to provide the
linear combinations of 6 measurements, then
carry out nine multiplications to form 6
higher order products of these parameters.
An eleven term polynomial expansion of the
predicted track coordinates is then carried
out for each of the 24 planes. Generation of
the initial estimate of the 5 parameters and
the 24 measurements implied, can be performed
for a new track every 300 nanoseconds with
about 70 modules, or more slowly with corre-
sponding reduction in the number of modules.

READOUT MODULES

High speed data driven processing may
well require data to be supplied in numerical
form at very high rates. Detector systems
developed at Nevis consist of several small
subsystems, each capable of supplying encoded
measurements at tens of Mhz. By buffering
these subsystems in parallel, a single meas-
urement consisting of several hundred numbers
can be completely transferred in less than a
microsecond. These subsystems attach to a
control bus, so that each readout module can
be addressed from the host for testing time
and charge. Signals can be automatically
injected into modules for calibration and
testing.

The following readout modules have been
built:

MWPC System-This is a coincidence register
system that has been in use for many years,
consisting of chamber mounted discriminators,
flat polyethylene signal delay cables to 32

- 167 -

channel coincidence register cards. These
cards attach to a read bus segmented by wire
plane. A newly designed wire number encoder
allows sparse readout at a 20 Mhz word rate
onto our standard processor cable, where the
word format is the binary encoded 10 bit wire
number and crate name. The encoder also gen-
erates a word count for limiting the block
size to a pre-set number of words, and a
truncated event number in the complete word.

Drift Chamber System-This is a single hit
time recording system designed for relatively
close wire spaced drift chambers. The time
is directly encoded into 6 bit gray code for
time bins greater or equal to 4 nanoseconds,
or 5 bit code for 2.5 nanosecond time bins.
32 signal TDC cards attach to a read bus seg-
mented by wire plane. The sparse data can be
transferred to a standard processor cable
with a valid word every 25 nanoseconds. The
data word contains a 10 bit wire number, a
6 bit time, and the plane number. A word
counter in the readout allows the block size
to be limited to a pre-set number, and a
truncated event count is sent with each com-
plete word.

ADC Readout4 -This 8 channel ADC was developed
by a member of the E 605 group for readout
into our system. The ADC has 8 bits of
square root encoding, and a digital cut for
each channel to sparsify the data. The
sparsified data can be transferred at a 20
Mhz rate to the processor cable.

Unencoded Register Data-This system consists
of 16 bit fast coincidence registers. The
data is read out in an unencoded, fixed block
size form, at a 20 Mhz rate to the processor
cable.

SUMMARY

Data driven machines have no natural
scale association. The computation time does
not have to increase as more computation is
added, and the physical size of the system
is not constrained since there is no central-
ized communication.

The cost per operation. per second seems
to be much lower than any other method. This
is a result of the property of concurrency,
the close match of the operators to the cal-
culation, and to the simplicity of the oper-
ators.

REFERENCES

1. "A Hardware Architecture For Processing
Detector Data In Real Time", G. Benenson,
B. Knapp, W. Sippach, in Proceedings of
1978 Summer Workshop, Brookhaven National
Laboratory.

2. "Real Time Processing of Detector Data",
W. Sippach, G. Benenson, B. Knapp, IEEE
Transactions of Nuclear Science, Vol.
NS-27, No. 1, Feb. 1980

3. J. Rutherfoord, University of Washington
4. D. Kaplan, Fermi National Laboratory

- 160 -

