
MICROPROCESSORS IN DETECTORS AND ANALYSIS*

Eric J. Siskind
ISABELLE Data Acquisition Group
Brookhaven National Laboratory

Upton, New York 11973

Introduction

The increasing need in high energy physics ex-
periments for computation power for both online and
offline applications, coupled with the current
"microprocessor revolution," has led us to examine
the use of microprocessors in various aspects of REP
computing. The following article is a brief (and
admittedly somewhat biased) review of current hard-
ware products, the costs of developing and producing
hardware systems, and the costs of providing appro-
priate software support tools which allow one to make
effective use of physicists' time, and the applicabi-
lity of certain systems to the various needs of REP
computing.

What is a Microprocessor?

The term "microprocessor" is currently used to
describe two distinct entities which, although some-
what related, have sufficiently different character-
istics, costs, and optimum uses as to merit individ-
ual consideration. The following discussion should
help elucidate the difference between a microproces-
sor and a microprocessor!

The first use of the term describes the process-
ing element of a microcomputer system, as distin-
guished from minicomputers, midicomputers, etc. The
hardware is invariably implemented in LSI or VLSI
chips, with a complete processor occupying one or a
few chips or substrates. Such a processor executes
machine instructions which can be generated via as-
sembly of a program written in a language which is
identical for all examples of this processor (and
often for an entire family of processors, e.g. LSI-
11's use of the same assembly language as all PDP-11
processors), or which can be generated via compila-
tion of programs written in FORTRAN, PASCAL, C, or
other higher level languages. The execution of a
single machine instruction typically requires more
than one basic clock cycle of the processor. The
machine instruction sets typically contain integer
arithmetic, including multiplication and division, as
well as logical operations (e.g. bit manipulation),
and occasionally implement floating point operations
with additional or even integral hardware. The exe-
cution of complicated instructions, implying multiple
clock cycles per instruction, requires the use of
instruction decoding and execution sequencing hard-
ware within the microprocessor. Table I lists sever-
al important characteristics of some of the micro-
processors of this type which are currently available

Table I. Characteristics of General Puroose Micro-
Processors. Source - EDN. 11/11/81 -

Data Word Add.Word Pins Clock Rate Cost
Chip (Bits) (Bits) (D/A) (lfRz> (100 lot)
8080 8 16 8/16 l-3 3.70
8085 8 16 8116 l-5 4.40
6800 8 16 8116 l-2 4.95-6.20
280 8 16 8116 2-6 8.00-15.00

8086 16 16 16 5-10 58.50-127.40
8088 16 16 8 5 14.10
68000 32 23 16123 6-12.5 86.00-149.00
28000 16132 24 16 8 35.90

432 32 24 16 8 1470.00

Table II. Characteristics of Bit-Slice Micro-
Processors. Source - EDN. 11/11/81

Width Clock Rate Price
Chip (Bits) Family Registers m-lz) (100 lot)
2901 4 STTL 16 16.67 9.95

The other use of the term "microprocessor" de-
scribes an engine which executes microcode,' as dis-
tinguished from the usual macrocode instructions.
Microcode is in some sense "closer to the hardware,"
can have instruction formats and widths which differ
from application to application using the same hard-

*Work performed under the auspices of the U.S.
Department of Energy.

- 137 -

2903 4 STTL 16 10 21.00
29203 4 STTL 16 10 ?
29116 16 STTL 32 10 ?

10800 4 ECL 1OK 0 20 48.75
10902 8 ECL 1OK 0 50 100.00

100220 8 ECL 1OOK 1 50 ?

With the notable exception of the SLAC 168/E,3
code for such machines is generated via meta-assembly
of symbolic source code in a form which is unique to
the particular processor, and is quite difficult to
generate. Therefore, such machines rarely employ
programs containing more than a few thousand

ware, can describe multiple operations (in different
execution units) in a single instruction, and typi-
cally specifies instructions which execute in one
machine clock cycle (although the instruction may
contain a field which indicates that it is to be
executed multiple times in a row), with each instruc-
tion capable of less powerful manipulations than
that of macrocode. As an example, it is rare machine
of this type which can execute an integer multiply
operation without instruction repetition, although
exceptions to this rule exist (e.g. FNAL M72). The
hardware for such machines varies quite considerably,
with the data paths often built out of MS1 chips with
SSI control gates in order to obtain a configuration
optimized for certain types of calculations. When
built in this fashion, a microprocessor may contain
hundreds or even thousands of integrated circuit
packages. However, LSI chips containing a "slice"
several bits wide of either standardized data paths
or sequencing logic are commercially available, and
are typically expandable to configure machines of
arbitrary word width. Such machines are referred to
as "bit-slice microprocessors," and a sampling of
characteristics of such devices is included in Table
II. It should be noted that even with the use of
such chips, the instruction format ‘is still dictated
by the hardware designer.

instructions. A typical estimate is that microcode
is an order of magnitude more difficult to generate
than typical machine assembly language macrocode.
This results from the need to specify multiple opera-
tions in each instruction, timing problems associated
with different propagation delays (i.e. varying
number of transfers) associated with moving data into
distinct registers, the need to consider the fre-
quently pipelined nature of microcode execution, and
the typical lack of sophisticated debugging tools.
The 168/E differs from the norm in that its microcode
is generated by the translation of the object modules
(or load modules) produced by the compilation of
FORTRAN programs on the host machine, and so fre-
quently large volumes of microcode are produced,
often requiring overlaying in the relatively large
program memory.

Although such machines were first developed as a
means of implementing the central processors of newer
computers with more complicated instruction sets and
formats without proportional increase in the amount
of hardware in such a processor, they also find ap-
plications wherever special processing requirements
exist. Table III includes characteristics of the
central processors of various computer systems. Note
that faster microprocessor clock speed does not nec-
essarily imply faster macroinstruction execution, but
that memory access times and the presence of special
hardware or additional connectivity in the micropro-
cessor data paths may have far more profound effects
(e.g. the VAX-11/780 is around 5 times more powerful
than a PDP-11/34, yet the latter machine has the
faster microprocessor clock speed). Also, note that
the fastest processing units prefer the route of more
hardware rather than microcoding instructions (e.g.
CDC 7600, Cray I and II). Table IV indicates the
variety of microprocessors found in a typical VAX-
11/780 system, while Table V gives a sampling of
microprocessors which have been developed for use in
high energy physics.

Bardware Costs

We now turn to the costs of developing and pro-
ducing microprocessor systems. There is an implicit
assumption in the following discussion that the
microprocessor has very little in the way of private
peripherals outside of the hardware directly under
its control, but instead talks to humans or media via
a connection to a host computer. I note in passing
that if this is not so, but instead the micro is
equipped with a complete set of support peripherals,
including terminal, printer, floppy disks, etc., then
the cost of such a development system is currently in
the range of $25K.

In developing a hardware configuration for a
typical microcomputer such as an 8086 or 68000, a
standard estimate might be of order a man-year of
engineering plus prototyping costs, or a figure of
order $lOOK. Considerable design savings may be
effected by careful use of existing hobbyist develop-
ment cards or crate/bus systems such as S-100 or
Multibus (or ultimately Fastbus!). On the other
hand, the engineering of a bit-slice system involves
somewhat higher development costs. A crude estimate
for the SLAC BADC system* was 3 man-years of engi-
neering plus $lOOK of prototype hardware construc-
tion, for a total of $25OK.

The final product board of either type of micro-
processor system, containing both processor and mem-
ory, has an estimated cost in the neighborhood of'
$lK. The estimated processing power of a current 16
bit micro is of order a few times lo5 instructions
per second, for a cost effectiveness of order a few
hundred instructions per second per dollar, while the
power and cost effectiveness of bit-slice systems for
those applications which can be programmed effec-
tively on them is about an order of magnitude higher
than those for the single chip processor. For com-
parison, note that the cost effectiveness of the best
of the current midis or mainframes is only around 10

Table III. Micromachines in Commercial CPUs instructions per second per dollar (e.g. VAX's run
Cycle Time uC Width uC Length around $lOOK for a cpu executing around one million

Machine (Nanoseconds) (Bits) (Kwords) instructions per second (MIPS) while the IBM 3081
LSI-11/2 400 22 1 runs a couple of megabucks for around 15 MIPS of
PDP-11104 260 40
PDP-11134 180 48
PDP-11/45 150 64
PDP-11160 170 48
VAX-111750 320 80
VAX-111780 200 96
IBM-3081 26 ?
CDC-7600 25 Not Microcoded
CRAY I 12.5 Not Microcoded

0.25
0.5
0.25
2.5

4+%Aw
?

processing power).

This set of%umbers leads to two distinct con-
elusions. The first is that microprocessors are
sufficiently more cost effective than current main-
frames to merit serious study of their use in conven-
tional compute bound REP applications such as offline
production and Monte Carlos. In addition, their cost
effectiveness will shortly bring the use of high

CRAY II 4.0 Not Microcoded level trigger processors constructed from arrays of

Table IV. Microcoded Processors in a VAX-111780
microprocessors programmed in FORTRAN or some equiv-
alent language and providing instruction processing

System powers of order LO5 instructions per event on data
uC Width pC Length streams of order lo3 events per second into an af-

Model Description ALU (Bits) (Kwords) The second conclusion is that once
KA-780 Central Processor 745181 96 4+1mAM)

fordable regime.
you have engineered the hardware for a system, you

FP-780 Floating Point Unit 748381 48 0.5 should stick-with the hardware until there is a clear
DW-780 Unibus Adapter None 44 0.5 need to engineer a new system. As an example, given
DR-780 I/O Channel 2901 40 1 an engineered 8086 in a Fastbus crate with a cost
RX-02 Floppy Disk 2901 16 1 effectiveness of 200 instructions per second per ___
DMC-11 Serial I/O Unit 74S181 16 1

Table V. Microcoded Processors Developed for HRP
uC Width uC Length

Model Description ALU (Bits) (Kwords)
M7L Trieeer Processor 10181 64 4
BADC" 2901 48 0.5
TDS5

Digriixer Controller

168/E3
Digitizer Controller 10181 32 1
Mainframe Finulator 2901 24 32

vcc6 CAMAC Channel 2903 64 4
UPI' Fastbus Channel 2901 80 2

dollar, one should not be tempted to develop a more
cost effective piece of bit-slice hardware until that
enhanced cost effectiveness will offset the $250K
development, i.e. until the processing requirement
exceeds 50 MIPS (50 VAX or 5 CDC 7600 equivalents!)
even assuming that the new hardware has infinite cost
effectiveness. In real life, there obviously may be
some other overriding consideration which necessi-
tates such a hardware development project, but it
should not be cost. Similarly, one should typically

- 138 -

I

not bow to the desires of your hardware engineer to
play with the latest new chip which is twice as fast
as the old one (and is NOT a plug-in replacement)
unless he is willing to pay the development costs out
of his pocket. This conclusion will gain even more
strength when one adds the costs of software support
to the hardware development.

Software Costs

A number of system architectures have been pro-
posed for multi-microprocessor systems for various
applications in high energy physics.g,lo These ar-
chitectures all have the cormnon feature that they
contain a number of computers connected by some form
of bus to a common host node which is responsible for
code development and some of the I/O handling. Each
computer can talk to its own local memory and possi-
bly to local peripherals without tying up the multi-
processor bus, and in some cases can talk to other
peripherals for I/O purposes via the bus but without
the aid of the host. This architecture is also that
of the CM*,11 a multiprocesor built from 50 LSI-11's
at Carnegie-Mellon University to study such configur-
ations and their operating systems. The unique fea-
ture which RBP adds to the CM* is the knowledge that
either an application is consigned for all time to a
particular processor because of a need to access
peripherals that are only connected to that processor
(e.g. distributed controls systems), or else that
the computing load is naturally divided into "events"
which can be distributed among the processors with a
time scale which is known to the application program-
mer , and thus the distribution of work is never han-
dled by the multiprocessor operating system.

Having listed the similarities among such sys-
tems, note that such systems differ in whether the
slave processors execute the same instruction set as
the host and in whether a particular application must
be forced into a particular slave or is free to be
located in any slave or set of slaves. The software
developments necessary to support two particular
systems will now be described.

The first system is one in which the slave pro-
cessor is of a different type than the host, and the
application is constrained to live in a particular
slave. This is the classic case of microprocessor
support using development tools on a remote system.
The system in question is the controls upgrade for
the SLC linac,* which uses Sytek system 40 as the
multiprocessor bus. However, an essentially identi-
cal specification has been promulgated for a BNL-LBL-
SLAC collaboration12 which is attempting to introduce
Fastbus as the multiprocesor bus to existing PEP
experiments, starting with the Mark II. The software
specification is as follows: (1) a FORTRAN cross-
compiler implementing FORTRAN 77 extended to be es-
sentially compatible with VAX FORTRAN will be provid-
ed; (2) a suitable cross-linker and downline loader
will be provided; (3) the run-time support system at
the slave node will support FORTRAN FORMAT statements
(i.e. the programmer need know nothing about the
internal machine representation of floating point
numbers), timer services (What time is it? Execute a
specified routine at a specified time. Execute a
specified routing a specified time from now), and
connect to interrupt services (execute a specified
routine whenever a specified interrupt driven event
occurs); (4) an interactive symbolic cross-debugger
will be provided. The last item, which is definitely
the most important, will allow a programmer sitting
at a terminal on the host machine to place break-
points in any program executing in any slave proces-

sor , and to investigate variables in the slave pro-
gram by their symbolic names. It is estimated that
the development of such a software support system
will cost between $25OK and $5OOK.

The second system is one in which the slave
processor is assumed to have an instruction set iden-
tical to that of the host, and in which the entire
set of slave processors is used to boost the proces-
sing capacity of the host system. An application can
be moved from the host system into the slaves, re-
questing, at the time of the move, the use of any
number of identical slaves available in the slave
pool maintained by the host system. The use of an
identical instruction set allows the debugging of any
new application by developing code with the aid of
the host symbolic debugger, followed by transfer to
the slave processors with no code changes. A cross-
debugger is not provided. The software specification
allows any process running on the host machine to
perform the following actions: (1) allocate a clus-
ter of slave processors; (2) specify a program to run
in any of its slave clusters; (3) get the status of a
cluster; (4) wait for the status of a cluster to
change (e.g. wait for slave program execution to
terminate); (5) connect any logical unit (e.g.
FORTRAN device 6) of any cluster of slaves to any
file or device on the host, to any logical unit of
the host process which owns the cluster, or to any
logical unit of another cluster owned by the same
host process. This system is being built at BNL to
allow a VAX host system to access slave LSI VAX pro-
cessors through a Fastbus multiprocessor link. A
slight modification of this system may be used in the
Fermilab Colliding Detector Facility to allow mange-
ment of LSI VAX processors via Fastbus for use as a
programmable trigger filter. The estimated software
development cost is of order $25OK.

This seems to lead us to another pair of conclu-
sions. The first is that given a sufficient initial
software effort, it seems possible to develop support
tools which can manage microprocessors connected to a
host system to perform essentially arbitrary tasks,
as long as there is sufficient capacity on the multi-
processor bus and in the host system. In particular,
it is not unreasonable to expect that after initial
development costs of $lOOK for hardware and $250K for
software, a $lM investment in microprocessors can add
of order 100 MIPS of manageable processing capacity
(e.g. 10 CDC 7600 equivalents) to any current online
VAX system in an experimental pit. In an age of $5OM
experiments, this is not a large price to pay for
such an outstanding amount of computing. The second
conclusion concerns development of software support
tools such as those mentioned in the first example
above. In general, the $25OK minimum software cost
necessary to support a new microprocessor far out-
weighs the hardware development effort (estimated at
$lOOK above), and thus again it pays even more to
restrain your engineer from his desire to play with
the latest chip. In the extreme, the software devel-
opment cost and software production cost so far ex-
ceed the hardware cost that the method of choosing
hardware is to find that hardware for which the soft-
ware development costs will be minimized. Typically,
a reasonable additional constraint is that the soft-
ware support system be designed so as to be immedi-
ately compatible with any new hardware releases the
manufacturer has in mind for the next 5-10 years.

Of course, these observations are not really
new. In fact, in perusing the proceedings of the
1979 Data Acquisition Conference I noted several
papers in which the management of arrays or networks

- 139 -

of cheap computers was presented as the outstarj$iyt
problem of REP computing for the next decade. ,
One speaker also indicated that all of his comments
had already been made at a conference ten years ear-
lier. The only new development is that a few at-
tempts to build complete integrated hardware/software
systems are finally in progress. However, I person-
ally find it exceedingly distressing that, given the
exceedingly large development costs for a complete
system including the necessary support tools, so many
distinct and noncommunicating microprocessor develop-
ment projects exist in the various laboratories and
universities. In my view, the high energy physics
community can afford (especially in the light of the
current budget problems) to support one 16 bit micro-
processor system, and (at the appropriate later date)
one 32 bit microprocessor system. Given the extreme
difference in costs between an engineer's perception
that development requires a hundred dollars or so for
the cpu and a few hundred dollars at most for memory,
and the total project costs including all overheads
and software support of many hundreds of thousands of
dollars, anyone who believes that they should start
yet another microprocessor development project should
be firmly directed towards employment in the private
sector.

REP Computing

Table VI presents a list of some of the comput-
ing tasks associated with high energy physics experi-
ments. Of particular importance is the column which
indicates whether a task is proportional to the num-
ber of physicists on the experiment or the volume of
data taken (event size multiplied by trigger rate),
or to neither of these. In the last case, the magni-
tude of the problem is typically still proportional
to the overall scale of the experiment. A sumnary of
microprocessor applicability to the tasks follows.

Table VI. Experimental REP Computing Tasks
Task Scale Comp. Rqmt. for Hadron Collider
Control NeitherlO'-103 inst./sec./application
Zero Sup~.~,~ Data lo5 channels/event- lb3 events/s
Calibration4 Data lo4 channels/event lo3 events/s
Trigger2,15,16Data lo4 analog channels/event 105e/s
Event Filter Data lo5 inst./event lo3 eventslsec.
Online Mon. Data lo7 inst./event loo eventslsec.
Production3 Data lo7 inst./event lo* events/year
Simulation Data Identical to Production
Code Dev. People 105instructions/second/physicist
Physics People lO%nstructions/second/physicist

Controls

Control of high voltage, gas systems, cryo-
genics, etc. was one of the first areas of experimen-
tal REP in which single chip microprocessors were
applied. These systems are typically quite limited
in computational power requirements, but require
special applications coding for each new usage. This
is clearly an area in which the availability of a
complete development package for a slave of identity
distinct from that of the host, complete with inter-
active symbolic cross-debugging aids, would be most
helpful.

Zero Sunoression

Intelligent digitizers have now been around for
several years, with the SLAC BADC4 as the logical
culmination of attempts by commercial manufacturers
to make "smart" ADC units.
as the FNAL TDS/RABBIT'

Recent developments such
system have concentrated on

improving conversion speed, channel density, and
dynamic range, as well as adding redundant paths for
fault tolerance in applications with limited hardware
accessibility. Given the need to custom design a
digitizer controller, as well as frequent constraints
on overall speed to minimize deadtime, this has been
an area where microcoded hardware rather than general
purpose microprocesors have traditionally been
applied.

Calibration and Transformation

This function has frequently (e.g. BADC) been,
but is not necessarily contrained to be, combined
with the zero suppression function. The application
typically requires a very small algorithm, and would
seem to be a natural for bit-slice implementations.
In general, it seems that if the functionality can be
added to an existing zero suppressing digitizer, it
should be, but if the task requires development of an
additional microcoded calibration processor, one
should do a careful analysis to see if the use of an
existing packaged general purpose microprocessor
coded in assembly language would be more cost
effective.

Event Filtering

In this category, I include processing which
makes a trigger cut based on consideration of an
entire event's data buffer, rather than the restric-
ted subset used by most trigger processors (which may'
even make their decisions before digitization of the
majority of the data has commenced). To my knowl-
edge, this type of processing has yet to be attempted
in any large, high data rate experiment, probably
because the processing power requirements are so
immense, although the FNAL Colliding Detector
Facility17 is showing a strong interest in including
such an option. The basic requirement here is the
need to execute a large algorithm which is probably
coded in FORTRAN so that personnel on shift can both
understand the trigger and rapidly modify it for
changing running conditions and physics needs. This
would seem to require an array of 32 bit general
purpose microprocessors, although a bit-slice solu-
tion along the lines of the 168/E (i.e. equipped with
FORTRAN programming tools) is also a possibility.

Online Monitoring

This again requires the use of a FORTRAN coded
system handling large algorithms for a sampling anal-
ysis of complete events. Recent modular software
techniques which divide this analysis into a number
of cooperating independent tasks, some being parts of
a "standard" analysis, and some being interactive
based searches for special characteristics of a re-
stricted class of events, rather than the traditional
single large "background" analysis, might slightly
favor a uniform architecture cpu booster implemented
in 32 bit general purpose microprocessors, which have
extensive easily programmed I/O capabilities, over a
microcoded emulator approach, but the latter alterna-
tive has the virtues both of being a proven performer
and of having a better cost effectiveness of the
final hardware.

Offline Data Reduction and Simulation

The offline production problem for the SLAC LASS
experiment was the original motivation for the 168/E
development project. Again, the requirements are
FORTRAN and large program memories, and can be met

- 140 -

:* .

both by 32 bit general purpose LSI microprocessors or
by translated microcode bit-slice systems. Careful
analysis of costs is necessary to determine whether
or not the better cost efectiveness of the microcoded
system is outweighed by the relative ease of program-
ming and upward compatibility with new faster hard-
ware releases of the general purpose microprocessor
systems.

A few moments' reflection will hopefully con-
vince you that the vast majority of the tasks which
are proportional to the volume of data taken can be
tackled with microprocessor based solutions, leaving
only the highly interactive problems of code genera-
tion and physics results preparation for the types of
processors currently in use in the field. Given that
the volume of data taken in REP experiments has been
growing considerably faster than the number of physi-
cists, microprocessors can make meeting our future
computing needs considerably less painful.

Actually, bit-slice microprocessors have already
found considerable use in the areas of zero suppres-
sion and data calibration, as well as in some aspects
of trigger processing and data reduction. The next
major advance will hopefully be the harnessing of
current and future generations of complete one chip
or few chip processors to the tasks of high level
trigger processing, online analysis, and offline data
reduction and Monte Carlo generation.

References

1. M.V. Wilkes, Manchester Univers
Inaugural Conference, July, 1951
M.V. Wilkes, J.B. Stringer, Proc
sot., pt. 2, 49, 30 (1953).

ity Computer
, 16 (1953);
. Cambridge Phil.

2.

3.

4.

5.

6.

7.

8.
9.

T.F. Droege et al., IEEE Trans. Nucl. Sci., NS- -
2, 698 (1978). .,
Paul F. Kunz et al., IEEE Trans. Nucl. Sci., NS-
27, 582 (198Or

-

M. Breidenbach et al., IEEE Trans. Nucl. Sci.,
NS-25 706 (1978r
T. Droege, paper presented at this conference;
T.F. Droege et al., Fermilab Redundant Analog Bus
Based Inform-Transfer system document PIN-
72. -

-

D.J. Nelson et al., IEEE Trans. Nucl. Sci., NS- -
28, 336 (19811.
M. Larwill et al., IEEE Trans. Nucl. Sci., NS-28,
385 (1981).
M. Breidenbach, private communication.
R. Manner, B. de Luigi, IEEE Trans. Nucl. Sci.,
NS-28, 390 (1981).

10. L.O. Hertzberger, Amsterdam Report NIKHEF-H/81-3
(1981).

11. R.J. Swan 't al., AFIPS Conf. Proc. 46, 637
(1977); ibid, AFIPS Conf. Proc. 46, 645 (1977).

12. E. SiskicS. Loken. M. Breidenbach.
13. Marvin Johnson, IEEE-Trans. Nucl. Sci., NS-26,

4433 (1979).
14. John L. Brown, IEEE Trans. Nucl. Sci., NS-26,

4438 (1979).
15. C. Halatsis et al., CERN Report DD/79/7 (1979).
16. T. Lingjaerde, CERN Report DD/75/17.
17. A.E. Brenner et al., Fermilab Colliding Detector
. Facility note CDF-108; ibid, paper presented at

the 1981 IEEE Nuclear Science Symposium.

- 141 -

