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Abstract

Since its inception in the late 1970s, anomalous x-ray scattering (AXS) has been

employed for chemically-specific structure determination in a wide variety of non-

crystalline materials. These studies have successfully produced differential distribu-

tion functions (DDFs) which provide information about the compositionally-averaged

environment of a specific atomic species in the sample. Despite the wide success in

obtaining DDFs, there are very few examples of successful extraction of the fully-

chemically-specific partial pair distribution functions (PPDFs), the most detailed

description of an amorphous sample possible by x-ray scattering. Extracting the

PPDFs is notoriously difficult since the matrix equation involved is ill-conditioned

and thus extremely sensitive to errors present in the experimental quantities that

enter the equation. Instead of addressing this sensitivity by modifying the data

through mathematical methods, sources of error have been removed experimentally:

A focussing analyzer crystal was combined with a position-sensitive linear detector

to experimentally eliminate unwanted inelastic scattering intensity over most of the

reciprocal space range probed.

This instrumentation has been used in data collection for the extraction of PPDFs

from amorphous (a)-MoGe3. This composition arises as a phase separation endpoint

in the Ge-rich region of the vapor-deposited Mo-Ge amorphous alloy system but is not
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present at equilibrium. Since the first Ge-rich compound in the Mo-Ge equilibrium

system is MoGe2, previous workers have speculated that perhaps a unique MoGe3

compound exists in the amorphous system. Rather than indicating a distinct MoGe3

compound with definitive local structure, however, the coordination results are more

consistent with a densely-packed alloy having a wide range of solid solubility.

Significant improvement in the quality and reliability of experimental PPDFs from

a-MoGe3 by AXS has been achieved solely through the experimental modifications

to eliminate inelastic scattering. The coordination uncertainties are estimated at 5%

for the Mo-Ge and Ge-Ge coordinations and 15% for the Mo-Mo coordination. These

PPDFs from data collected at a second generation synchrotron source demonstrate

the promise of the technique for routine PPDF extraction from binary alloys when

applied in the future on dedicated beamlines at third generation synchrotron sources.
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Chapter 1

Introduction

1.1 Motivation and Goals

The Mo-Ge amorphous alloy system undergoes a metal-to-insulator transition as

metal concentration is decreased below 10 at% Mo. Contrary to early implicit assump-

tions, vapor-deposited amorphous metal-germanium and metal-silicon samples are not

necessarily single phase. Indications of phase separation in the MoxGe1−x system in

the composition range 0 ≤ x ≤ ∼ 23 at% Mo were first observed by Kortright and

Bienenstock [1, 2] in x-ray data that provided convincing evidence of the coexistence

of amorphous Ge (a-Ge) with a very fine scale Mo-modified amorphous material.

Further work by Rice and Regan [3, 4] verified the presence of two phases, and the

composition of the Mo-modified phase was calculated to correspond approximately

to MoGe3 (23-27 at% Mo). It has been suggested that the insulator-metal transition

in many of these intermetallic systems may be the result of percolation of conductive

islands such as these Mo-rich regions [4, 5, 6].

When alloyed with Si or Ge, a tremendous array of metallic elements, M, across

1
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the periodic table (including M=Mo, Fe) form crystalline disilicides and digermanides

as the Si- or Ge-rich equilibrium phase. It is not surprising, therefore, that other

amorphous metal-germanide and metal-silicide systems studied (for example, Fe-Ge

and Fe-Si) phase separate into a-Ge/a-Si and a-MGe2/a-MSi2 at low metal concen-

trations. The chemical bond typically dominates, and it is presumed that this 1:2

M-to-Ge/Si stoichiometry provides the most stable phase in the amorphous state as

in the crystalline state. (See Figure 1.1.) The 1:3 Mo-to-Ge composition discovered in

the Mo-Ge system is therefore unexpected, and its structure has yet to be elucidated.
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Figure 1.1: The Ge-rich end of the Mo-Ge equilibrium phase diagram. The stable
Mo-Ge compound with the highest Ge concentration is MoGe2.

It is our goal to determine the structure of the a-MoGe3 phase by anomalous x-ray

scattering with the hope of gaining a better understanding of why this composition

arises in the amorphous Mo-Ge system and what role it may play in the metal-

insulator transition.

X-ray scattering in an elemental amorphous material such as a-Ge yields radially-

averaged information (the radial distribution function or RDF) about the atomic
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environment of an average Ge atom due to the inherent lack of long-range order in

the system. The RDF gives the compositionally-weighted average of the number of

atoms at a distance r from another atom. For amorphous alloy systems, anomalous x-

ray scattering (AXS) allows us to extract chemically-specific structural information in

the form of differential and partial distribution functions. The differential distribution

functions (DDFs) provide the chemical environment about a particular species in the

sample in the form of the compositionally-weighted average of the number of atoms a

distance r from an atom of a specific element. The partial pair distribution functions

(PPDFs)1 give the average number of β atoms a distance r away from an α atom where

α and β take on the identity of all atomic species in the sample. The PPDFs fully

characterize the average pair chemical environments in a material: For the Mo-Ge

system, there are three independent PPDFs to be determined containing information

about the Ge-Ge, Mo-Ge, and Mo-Mo correlations respectively.

Our second goal is to improve the reliability of partial pair distribution functions

obtained from x-ray scattering. Since its inception in the late 1970s [7], the AXS

technique has demonstrated its utility for structure determination through DDFs in a

wide variety of materials for which the related isotopic-substitution neutron scattering

approach is inappropriate. Many technologically interesting systems consist of thin

films or contain elements whose isotopes are extremely rare and costly or simply

unavailable. Even where affordable isotopes are available, the neutron scattering

cross-sections for the elements in question may not provide enough contrast. For

these systems, the AXS technique is favored over neutron scattering. Despite the

wide success of differential anomalous scattering in obtaining DDFs, there are very

1Historically, the partial pair distribution functions from structural analysis of non-crystalline
materials have been denoted the PDFs. Recently, the acronym PDF has been used more generally
for pair distribution functions which include RDFs and DDFs. Consequently, we use the acronym
PPDF to distinguish the partial pair distribution functions.
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few examples of successful extraction of PPDFs. We seek to improve the reliability

of PPDFs and the accuracy with which an amorphous material’s structure can be

determined. This, in turn, increases the applicability of AXS to other structural

problems.

1.2 Approach

The technique of AXS for extraction of PPDFs has the potential to be a very powerful

technique for structure determination. It suffers, however, from high susceptibility

to errors in experimentally-measured quantities. This is because extraction of the

PPDFs requires solution of an ill-conditioned equation containing these quantities.

There exist methods of dealing with this suspectibility to error. Mathematical

regularization routines have been devised using a variety of algorithms to stabilize

the matrix equation and provide an approximate, but well-behaved, solution. These

methods can effectively address random noise present in the data, but they do not

deal with systematic error and may actually distort data containing such errors.

We choose a more direct approach: By experimentally reducing the error present

in the x-ray scattering data (elastic scattering and atomic scattering factors), we

begin the analysis with fewer necessary corrections and cleaner data, and we need

not rely on regularization methods. Using a new experimental setup involving a

sagittally-focussing graphite analyzer crystal paired with a position-sensitive detector,

we obtain energy-resolved spectra at each scattering angle allowing us to isolate the

elastic scattering. Instead of using tabulated values, the anomalous scattering factors

are measured experimentally using the sample in the same experimental run with the

same incident energy resolution as the scattering measurements. These changes in



CHAPTER 1. INTRODUCTION 5

experimental method yield significant improvements in the resulting PPDFs without

resort to regularization routines.

1.3 The Metal-Insulator Transition &

Phase Separation

A summary of earlier studies underlying the present work on the amorphous Mo-Ge

alloy system is presented here. The characterizations of the metal-to-insulator (MI)

transition and phase separation that occur at high Ge concentrations are presented

followed by a brief discussion of the bonding between Mo and Ge.

Devenyi and coworkers [8] carried out electrical and x-ray measurements on coevap-

orated samples of amorphous Mo-Ge alloys. They placed the MI transition composi-

tion between 7.5 and 16% Mo (two of their sample compositions) and noted structural

evolution with composition changes. Their results suggested dense local packings

around Mo resulting from strong Mo-Ge interactions. Yoshizumi et al. [9, 10] studied

many cosputtered samples with compositions ranging between 9 and 23% Mo. They

established that the MI transition occurs at 10 at.% Mo and showed that it is due to a

vanishing electron diffusion constant. Specific heat measurements by Mael et al. [11]

demonstrated a continuous and finite density of states through the MI transition.

The lack of a discontinuity despite the MI transition with changing composition is

consistent with the gradual variation in the volume fractions of a metallic phase and

an insulating phase expected with phase separation.

The first indication that two structural environments are present in the Ge-rich

amorphous Mo-Ge alloys arose in Kortright’s work [1, 2]. He applied the complemen-

tary techniques of EXAFS (described in the following chapter) and x-ray scattering
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through RDFs and DDFs to study a wide range of compositions from 0 to 70%

Mo. The RDFs for overall compositions below ∼ 25% Mo were well-represented by a

superposition of tetrahedrally-coordinated a-Ge and a-MoGe3. The DDFs also clearly

indicated the presence of a Mo-modified structure with a distinct local order. EXAFS

results showed that Mo was in the same local environment for all compositions stud-

ied. At high Ge concentrations, the presence of tetrahedral a-Ge was evident from

the EXAFS. Above ∼ 23% Mo, all signs of this tetrahedral a-Ge disappeared from

the EXAFS, and Kortright concluded that the samples were homogeneous.

Rice and coworkers [12] followed this work with anomalous small angle x-ray

scattering (ASAXS) studies that showed the presence of nanometer-scale fluctuations

in Mo composition and an increase in the correlation length of the fluctuation with

increasing Mo content. Additional studies by Regan et al. [3, 4] assumed that one

of the phases present was a-Ge and used the mean-square fluctuation of effective

electron density to show that the composition of the Mo-modified phase was near

MoGe3. The results also revealed an anisotropy in the shape of the second phase

particles in the sputtering growth direction.

The proposal that the MI transition is due to a conductive phase percolating in

an insulating phase is supported by a simplistic calculation: In three-dimensional

percolation based on a variety of continuum models, the critical volume fraction is

always near 0.15 [13]. Since Mo and Ge have similar atomic sizes, a rough, first-

order approximation is that they occupy identical atomic volumes in the alloys. This

allows the calculation of the overall composition of a mixture of 15% MoGe3, the

percolating, conductive phase, and 85% Ge, the insulating phase. The result is 10.3

at.% Mo in agreement with Yoshizumi’s electrical measurements described above.

The actual percolation process is expected to be more complex than that assumed by
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the continuum models due to the effects of the anisotropic growth [4].

The metallic behavior of the MoGe3 phase raises the interesting question of how

the Mo and Ge atoms bond. A strong bonding interaction between Mo and Ge

is evidenced by the numerous intermetallic compounds present in the equilibrium

system. In their theory of bonding of transition metals to non-transition metals,

Gelatt et al. [14] have proposed a covalent-like hybridization between approximately

degenerate transition metal d states and the non-transition metal s and p states.

Mo (5s1 4d5) and Ge (4s1 4p3) both have half-filled valence shells and nearly-equal

Pauling electronegativities of 2.16 and 2.01 respectively, so a low-energy configuration

with filled bonding orbitals and empty antibonding orbitals is conceivable. Such

covalent-like hybridization does not, of course, exclude metallic behavior, and the

Fermi level can lie at non-zero density of states. Khyzhun and coworkers [15] later

studied the electronic structure of crystalline MoGe2 by x-ray emission and absorption

spectroscopies and found a small amount of charge transfer from the Ge atoms to Mo

atoms as expected from their electronegativities. In addition, the Mo d- and p-like

valence states were found to be strongly hybridized with the Ge 4p-like states. The

4p-like states of Mo and Ge are highly delocalized in the crystalline molybdenum

germanides, and the Fermi level lies at non-zero density of states. This attractive

hybridization interaction between Mo and Ge is expected to produce evidence of

short range chemical ordering in the PPDFs for the amorphous MoGe3 phase.

1.4 Synchrotron Radiation

The x-rays used in this work are known as synchrotron radiation. Synchrotron radi-

ation is produced when a charged particle travelling at relativistic speeds interacts
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with a magnetic field. The magnetic fields in a synchrotron storage ring force the

electron (or positron) to accelerate in a direction perpendicular to its velocity. Any

charged particle undergoing an acceleration emits electromagnetic radiation, and for

an electron travelling with such high kinetic energy, photons in the ultraviolet to x-ray

wavelength regimes are emitted at high brightnesses (photons/sec/mm2/mrad2/0.1%

bandwidth).

Synchrotron radiation is uniquely suited to the application of anomalous x-ray

scattering techniques on amorphous structures: In order to extract high-quality DDFs

and PPDFs describing a material’s structure, a high intensity source that can be tuned

about the absorption edges of the elements in the sample is necessary. Laboratory

x-ray tube and rotating anode sources do not provide tunability or enough flux.

High brightness and intensity are necessary for studies of amorphous mate-

rials by AXS. The x-ray beam must undergo monochromatization and scattering by

an amorphous sample and, often, Bragg scattering by an analyzer crystal as well – all

prior to detection. Monochromatization cuts out most of the photons travelling to the

sample, and slits define the beam size and angular acceptance of the sample. In addi-

tion, amorphous samples yield scattering patterns with intensity broadly distributed

across all scattering angles. Without high brightness and intensity, the extremely low

intensity of photons reaching the detector would make AXS experiments impractical.

A continuous spectrum of radiation is also a necessity for AXS studies: The

AXS techniques (described in detail in Chapter 2) require that the source of x-

radiation be tunable. Through the acceleration of charge in the storage ring, a synch-

rotron source provides a continuous spectrum of radiation from which the desired

energies can be chosen near an absorption edge of an atomic species in a sample.

Finally, synchrotron radiation has a well-defined polarization. In the plane of
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Figure 1.2: The continuous spectrum of radiation emitted by a bending magnet source
at SSRL. The beamline 10-2 wiggler source is about 2 orders of magnitude brighter.
(After Figure 1.3 in Reference [16].)

orbit, the electric field vector of the emitted radiation is parallel to the instantaneous

acceleration. Thus, the radiation is nearly linearly polarized in the plane of orbit. The

degree of linear polarization can be measured experimentally, and most synchrotron

AXS experiments have scattering planes perpendicular to the plane of orbit to take

advantage of this known polarization. Since scattering occurs at the monochroma-

tor, at the sample and, in the present experiments, at the analyzer crystal, precise

knowledge of the polarization is required in order to correct for it.

All synchrotron x-ray data for this work were obtained on beamline 10-2 at the

Stanford Synchrotron Radiation Laboratory (SSRL), a 2nd generation light source

within the Stanford Linear Accelerator Center (SLAC) operated by Stanford Univer-

sity for the US Department of Energy (DOE). Beamline 10-2 is an end station for an

insertion device. Insertion devices are based on the same principle that led to the first

observation of synchrotron radiation: In passing through a periodic array of magnets
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Figure 1.3: Schematic of a wiggler insertion device. Periodic arrays of magnets force
the electrons to follow an oscillating path thereby emitting more radiation.

of alternating polarity, the electrons are forced into a tightly oscillating path and emit

even more photons. The type of insertion device used in the present work is a wiggler

which produces intense radiation over a wide spectrum via strong magnetic fields and

a relatively large periodic spacing between individual magnets [16]. The increased

photon flux density of the beamline 10-2 wiggler makes it just feasible to carry out

these experiments at SSRL; AXS to extract reliable PPDFs pushes the limits of what

is currently achievable at SSRL.

1.5 Overview of Dissertation

This dissertation is organized into chapters as follows: Chapter 2 describes the tech-

nique itself: anomalous x-ray scattering formalism and methodology for obtaining

total, differential and partial distribution functions. The complimentary techniques

of EXAFS and ISND are also described, and means of assessing the suitability of



CHAPTER 1. INTRODUCTION 11

AXS for extraction of the partial distribution functions for a given system are pre-

sented. Finally, methods for dealing with the difficulties associated with solution of

the poorly-conditioned matrix problem and their drawbacks are discussed. Chapter 3

gives the specifics of sample preparation, and Chapter 4 details the experimental

procedures used for data collection at SSRL as well as the analyzer instrumenta-

tion. Important considerations of incident and detected energy resolution are also

discussed. Chapter 5 contains the description of the data analysis procedures from

the extraction of the elastic scattering through corrections applied to the final solution

for partial structure factors. The damping function applied in the Fourier transform

to obtain the partial pair distribution functions is discussed in some detail. Chapter 6

describes the results for a-MoGe3 in reciprocal and real space, and Chapter 7 veri-

fies that the partial pair distribution functions are solutions to the matrix problem,

compares their quality to earlier AXS work and presents the structural conclusions

about this alloy in light of previous work on the Mo-Ge system. Chapter 8 presents

conclusions about progress made with the AXS technique and conclusions about the

a-MoGe3 sputter-deposited alloy. Finally, suggestions are offered for future work to

be carried out on the Mo-Ge system and other systems as well as further experimental

improvements to make the AXS technique more widely and more routinely available

for extraction of PPDFs from alloy systems.



Chapter 2

Anomalous X-ray Scattering

Anomalous x-ray scattering (AXS) provides a means of extracting chemically-specific

structural information over intermediate length scales. Since no assumption is made

of periodicity of the atomic arrangements in the sample, the technique can be used to

study non-crystalline materials, such as the amorphous MoGe3 alloy in this work, as

well as short-range deviations from perfect (average) crystal order in crystalline mate-

rials. (See, for example, references [17] and [18].) The formalism and methodology

for AXS are described in this chapter.

2.1 Scattering from Amorphous Materials

To see how the various structure factors and radial distribution functions are obtained

for amorphous materials, we follow the development of Warren [19] beginning with

the amplitude scattered by a single atom:

εn = fne
−ik̄.r̄n (2.1)

12
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where fn is the atomic scattering factor of the nth atom, r̄n is the vector position of

that atom and k̄ is the scattering vector with length

k =
4π

λ
sin θ. (2.2)

(Some authors use q̄ to denote the x-ray scattering vector reserving k̄ for EXAFS,

a technique described later in this chapter.) The intensity (in electron units) of

elastically scattered radiation from several independently scattering atoms can then

be written as

Ieu =
∑
m

εm
∑
n

ε∗n =
∑
m

∑
n

fmf
∗
ne
ik̄.r̄nm (2.3)

where r̄nm = r̄m − r̄n. The coherent self-scattering (m=n) can be separated out as

follows

Ieu =
∑
n=m

|fn|2 +
∑
m

∑
n�=m
fmf

∗
ne
ik̄.r̄nm (2.4)

If we assume r̄nm in our amorphous sample takes all orientations in space with

equal probability, then

〈eik̄·r̄nm〉 =
1

4πr2nm

∫ π

φ=0
eikrnm cosφ 2πr2nm sinφ dφ =

sin(krnm)

krnm
(2.5)

where the distances rnm are scalar quantities. This leads to the Debye scattering

equation:

Ieu =
∑
n=m

|fn|2 +
∑
m

∑
n

fmf
∗
n

sin(krnm)

krnm
(2.6)
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Instead of summing over each atom in the sample, we now sum over each of the

atomic species and introduce a continuous density functions ραβ(r). This density

function describes the atomic number density of β atoms a radial distance r from an

average α atom in the sample and is integrated over the volume of the sample. For

a general sample containing NZ different elements and having N total atoms, we can

write

Ieu = N
NZ∑
α

Nα
N

|fα|2 +N
NZ∑
α

NZ∑
β

Nα
N
fαf

∗
β

∫
S
ραβ(r)

sin kr

kr
dV

This can be further simplified to

Ieu
N

− 〈f 2〉 =
NZ∑
α

NZ∑
β

xαfαf
∗
β

∫
S
ραβ(r)

sin kr

kr
dV (2.7)

where

xα =
Nα
N

and 〈f 2〉 =
NZ∑
α

xα|fα|2.

The compositionally-averaged square of the atomic scattering factor, 〈f 2〉, represents

the self-scattering contribution, and the indices α and β are summed over all the

species in the sample. (For example, α takes on the identity of element 1 while β is

summed over all NZ species, and then α takes on the identity of element 2 while β is

again summed over all NZ species, etc.)

We now define ρβo to be the average β atom density in the sample and add and

subtract a term with this average density:

Ieu
N

− 〈f 2〉 =
NZ∑
α

NZ∑
β

xαfαf
∗
β

[∫
S

[ραβ(r) − ρβo]
sin kr

kr
dV +

∫
S
ρβo

sin kr

kr
dV

]
(2.8)

The second term represents extremely small angle scattering that is generally not
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measured in a wide-angle scattering experiment, and its contribution can be shown

to be completely negligible [19] so that we finally obtain

I − 〈f 2〉 =
I ′eu
N

− 〈f 2〉 = (2.9)

NZ∑
α

NZ∑
β

xαfαf
∗
β

[∫ ∞

0
4πr2 [ραβ(r) − ρβo]

sin kr

kr
dr

]

where I = I′eu

N
represents the elastically scattered intensity per atom neglecting the

second term in Equation 2.8.

2.1.1 Real-Space Structure from Scattered Intensity

Structural information is most commonly presented in the form of the radial distri-

bution function (RDF). The RDF represents the average number of atoms separated

by a distance r from another atom and is defined as 4πr2ρ(r) where ρ(r) is the total

number density of atoms as a function of r. For a polyatomic amorphous sample,

the most complete structural description obtainable by x-ray scattering is the set of

partial pair (radial) distribution functions (PPDFs). There are NZ(NZ +1)/2 unique

PPDFs for a system with NZ atomic species (because A-to-B correlations are related

to B-to-A correlations by xαραβ = xβρβα). The PPDFs describe the average number

of β-species atoms separated by a distance r from an average α-species atom where

α and β take on the identities of all NZ species in the sample.

We define the partial structure factor (PSF) as follows:

Sαβ(k) ≡
∫ ∞

0
4πr2 [ραβ(r) − ρβo]

sin kr

kr
dr (2.10)

To see how the PSFs are related to measurable intensities, we can substitute the
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above equation into Equation 2.9:

I − 〈f 2〉 =
NZ∑
α

NZ∑
β

xαfαf
∗
βSαβ (2.11)

Experimentally, the elastically scattered intensity is measured as a function of scat-

tering vector magnitude k. The intensity is corrected for various effects discussed in

Chapter 5 and normalized to a per-atom basis. Then, the self-scattering contribution

is subtracted out to yield the quantity I − 〈f 2〉 in the equation above. The partial

pair distribution function (PPDF) which provides real space structure information is

obtained by a Fourier transform of the partial structure factor:

PPDF = 4πr2ραβ(r) = 4πr2ρβo +
2r

π

∫ ∞

0
k Sαβ(k) sin(kr)dk. (2.12)

Similarly, the total structure factor (SF) is defined as

S(k) ≡
∫ ∞

0
4πr2[ρ(r) − ρo]

sin kr

kr
dr (2.13)

The total structure factor S(k)1 is also referred to as the interference function and

given the notation i(k) in the literature. It is obtained from the normalized experimen-

tal intensity per atom by removing the self-scattering and dividing by the scattering

per compositionally-averaged atom, 〈f〉2. Dividing by 〈f〉2, sometimes referred to

as a sharpening function, approximately removes the k-dependence of the scattering

1This is the form defined by Zernicke and Prins in 1927 [20] and used by Debye and Menke
to study l -Hg [21]. There are, in fact, several different definitions of structure factors as well as
partial structure factors. The Faber-Ziman [22] and Ashcroft-Langreth [23] forms give essentially
the same physical information as the form used here; both are related to the spatial pair correlations
of number densities. The Bhatia-Thornton [24] form gives one pair correlation of number density,
one pair correlation of concentration fluctuation and a cross term. The inter-relationships between
some of the different forms have been given by Waseda [25]. Note, however, that Waseda incorrectly
states that the Bienenstock group uses the Ashcroft-Langreth form.
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factors effectively placing each atom’s electrons at a point at the center of its dis-

tribution. In this way, the broadening of the atomic distribution by the size of the

atoms is approximately removed:

S(k) =
I − 〈f 2〉
〈f〉2 (2.14)

Because the small-angle scattering contribution is neglected in Equation 2.9, I(k) → 0

as k → 0 and I(k) → 〈f 2〉 as k → ∞. Thus, S(k) → − 〈f2〉
〈f〉2 ≈ −1 as k → 0 and

S(k) → 0 as k → ∞. The radial distribution function is, again, a Fourier transform

relative of the total structure factor:

RDF = 4πr2ρ(r) = 4πr2ρo +
2r

π

∫ ∞

0
k S(k) sin(kr)dk. (2.15)

where ρ(r) is the atomic number density (including all species) as a function of dis-

tance from an average atom in the sample, and ρo is the average atomic number

density in the sample.

2.1.2 Differential and Partial Distribution Functions

With the advent of synchrotron sources, it has become possible to obtain differential

and partial structure factors and distribution functions. From the broadband radia-

tion of a synchrotron source, a desired x-ray energy can be selected by a monochro-

mator. By tuning the incident energy at which the scattered intensities are measured

near the atomic absorption edges of the elements in the sample, the weighting factors

wαβ can be varied for the individual partial structure factors Sαβ.
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For a sample with two atomic species, A and B, Equation 2.11 becomes

I − 〈f 2〉 = xA|fA|2 SAA + 2xA�[f ∗AfB] SAB + xB|fB|2 SBB

using the relationships xA SAB = xB SBA and fAf
∗
B + fBf

∗
A = 2� (fAf

∗
B). To simplify

notation, we rewrite the above equation using weighting factors:

I − 〈f 2〉 = wAA SAA + wAB SAB + wBB SBB (2.16)

wAA = xA|fA|2

wAB = 2xA�[fAf
∗
B]

wBB = xB|fB|2

Since 〈f 2〉 = wAA + wBB, this equation can be written as

I = wAA (SAA + 1) + wAB (SAB) + wBB (SBB + 1) (2.17)

The weighting factors are non-zero, and I → 0 as k → 0, so SAA → −1 and SBB → −1

as k → 0 and SAB → 0 as k → 0. All of the partial structure factors approach 0 as

k → ∞.

DSFs and DDFs

Differential anomalous scattering (DAS)2 was the first form of anomalous scattering

to be effectively implemented. DAS involves taking intensity measurements at two

2Energy-modulated x-ray scattering was first proposed by Shevchik in 1977 [7], and successful
experiments were first carried out by Fuoss et al. in 1980 [26, 27].
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energies below the absorption edge of one atomic species in the sample and subtracting

one from the other. For a sample with two atomic species, the differential is

δ(I − 〈f 2〉)
δE

� (2.18)

2fA

(
δfA
δE

)
xASAA + 2

(
δ [� (fAf

∗
B)]

δE

)
xASAB + 2fB

(
δfB
δE

)
xBSBB

At energies near the A atomic absorption edge, only that species’ atomic scattering

factor is a strong function of energy. Thus, ( δfB

δE
) � 0, and the last term in the

equation is negligible. In a physical experiment, intensities collected at two energies

below the A absorption edge are subtracted:

∆A

[
I − 〈f 2〉

]
= xA∆A

[
|fA|2

]
SAA + 2xA∆A [� (fAf

∗
B)]SAB

= ∆A [wAA]SAA + ∆A [wAB]SAB (2.19)

where ∆A [ ] indicates the difference in the value of the quantity in brackets at the

two energies. This difference is then divided by a weighting factor [27]3, a sharpening

function which, as in the case of the total structure factor, approximately removes

the k-dependence of the scattering factors:

W (k) = xA∆A [f ′A]


∑

β

Γβ � [fβ(k,E1) + fβ(k,E2)]


 (2.20)

where ∆A [f ′A] is the change in f ′ between the two energies, E1 and E2, and Γβ are

estimations of the fraction of β atoms in the first coordination shell. The differential

3Note reference [27] incorrectly contains a factor of 2.
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structure factor (DSF) for a two-component alloy is thus given by

∆A [S(k)] =
∆A [wAA]SAA + ∆A [wAB]SAB

W (k)
(2.21)

Like S(k), ∆A [S(k)] → −1 as k → 0 and ∆A [S(k)] → 0 as k → ∞.

Fourier transforming the DSF produces the differential distribution function or

DDF. In this manner, all BB atom correlations have been removed, and the result is

the average environment for the A atoms.

DDF = 4πr2ρA = 4πr2ρo +
2r

π

∫ ∞

0
k∆A[S(k)] sin(kr) dk (2.22)

The DDF for the A atom is thus a weighted sum of the PPDFs involving the A atom

where the weighting factors depend on the scattering factors of the elements involved.

The technique of DAS has been applied widely with great success. One of the reasons

for this success is that, with care, the difference of two intensity measurements taken

under identical experimental conditions below an absorption edge causes systematic

errors to largely cancel. (This necessitates that all data be taken during the same

beamtime without altering the sample mounting.) Ludwig [28] found that the coor-

dination numbers obtained from his DDFs were as accurate as those from the RDFs

as a result of this error cancellation. However, subtracting two large-valued functions

still requires good precision.

The definition of the DSF assumes that the ∆A[wBB] term is entirely negligible

below each A edge. There are a few cases in which care must be taken to satisfy

this condition: First, when elements present in the sample are neighbors or near-

neighbors in a row of the periodic table, fB may still be changing significantly with

energy below the A edge (especially when ZB < ZA). Second, when the two energies
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Table 2.1: Effects of xB and energy choice below the A element edge on the usually-
neglected ∆A[wBB] term. Values are calculated from Cromer-Liberman values at
k = 0 for a binary Mo-Ge alloy below the Ge K edge.

k = 0 Å
−1

11003 eV & 8088 eV &
11088 eV 11088 eV

xMo = 0.269 ∆Ge[f
2
Ge] 105.8e2 290.5e2

∆Mo[f
2
Mo] 1.1e2 42.3e2

xMo = 0.269 |∆Ge[wMoMo]| 0.15% 2.1%

xMo = 0.731 |∆Ge[wGeGe]| + |∆Ge[wGeMo]| 1.1% 15.4%

below the A edge are chosen to be very far apart to give a large change in fA, the

∆A[wBB] term may become non-negligible. Finally, when the mole fraction of B is

large, the ∆A[wBB] term may also become non-negligible. The top half of Table 2.1

shows the potential tremendous gain in contrast below the Ge edge possible using a

difference between measurements at 3000 eV and 15 eV below the Ge edge compared

with a difference at 100 eV and 15 eV; however, the Mo contribution, assumed to be

zero in the Ge edge DDF, increases as well. The bottom half of Table 2.1 illustrates

the magnitude of |∆Ge[wMoMo]| relative to |∆Ge[wGeGe]| + |∆Ge[wGeMo]|. The 15%

contribution of the ∆Ge[wMoMo] term for a 73 at% Mo sample using measurements

taken 3000 and 15 eV below the Ge edge is big enough that the DSF approximation

breaks down. Typical DAS measurements are taken between 10 and 200 eV below

each absorption edge, and the contribution of the ∆Ge[wMoMo] term is completely

negligible for the present sample using measurements taken 100 and 15 eV below the

Ge edge.
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PSFs and PPDFs

To extract the PPDFs in a two-element sample, elastic intensity measurements at

a minimum of three x-ray energies are required. The Keating [29] method (or the

three-wavelength method) was proposed in the early 60s:



I1 − 〈f 2〉1
I2 − 〈f 2〉2
I3 − 〈f 2〉3


 =



wAA1 wAB1 wBB1

wAA2 wAB2 wBB2

wAA3 wAB3 wBB3






SAA

SAB

SBB


 (2.23)

where the numerical subscripts refer to different incident x-ray energies and the

weighting factors wαβ are defined in Equation 2.16. By inverting the matrix, the PSFs

can be calculated and Fourier transformed to obtain ραβ and the PPDFs, 4πr2ραβ(r).

The PPDFs extracted in this way were not very reliable (in fact, non-physically nega-

tive in places) [30, 28]. Due to the small variation in the weighting factors, the matrix

problem is ill-conditioned, and small errors in the intensity data and atomic scatter-

ing factors result in large errors in the PPDFs. Obtaining reliable PPDFs requires

elimination of sources of error and/or more complicated conditioning techniques.

A second approach to the PPDF problem was proposed by Munro [31]. Improve-

ments in the PPDFs are possible by inserting two differences in the matrix. In this

approach, intensity measurements are needed at five different incident x-ray energies.

Assuming proper care is taken to assure that identical experimental conditions for

measurements below each absorption edge, much of the systematic error cancels in

subtraction. In addition, the differences are already more linearly independent than

the original data sets because they are already species-specific so that the conditioning
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of the matrix improves [31]:




∆A [I − 〈f 2〉]

∆B [I − 〈f 2〉]

I − 〈f 2〉


 =




∆A [wAA] ∆A [wAB] ∆B [wBB] ≈ 0

∆A [wAA] ≈ 0 ∆B [wAB] ∆B [wBB]

wAA wAB wBB






SAA

SAB

SBB




(2.24)

To simplify future references to this much-used equation, it can be written as e = Mp

where e are the measured elastic intensity functions, M is the Munro matrix and p

are the PSFs we seek to extract.

Writing out the matrix elements explicitly4 gives




(I − 〈f 2〉)1 − (I − 〈f 2〉)2

(I − 〈f 2〉)3 − (I − 〈f 2〉)4

(I − 〈f 2〉)5


 =




xA (|fA1|2 − |fA2 |2) 2xA�
(
f ∗B1

[fA1 − fA2 ]
)

xB (|fB1 |2 − |fB2 |2)

xA (|fA3|2 − |fA4 |2) 2xA�
(
f ∗A3

[fB3 − fB4 ]
)

xB (|fB3 |2 − |fB4 |2)

xA|fA5 |2 2xA�(fA5
f ∗B5

) xB|fB5|2






SAA

SAB

SBB




where the numerical subscripts refer to different incident x-ray energies.

In solving for the PSFs (and PPDFs via Fourier transform), there is no require-

ment that a difference below, for example, the A element edge results in a negligi-

ble coefficient for the SBB term (∆A[wBB] ≈ 0). Near-complete elimination of the

4Reference [30] p. 34 and reference [28] have incorrect matrix elements M(1,2), M(2,2) and
M(2,3); however, the proper matrix elements were used in solving for the PSFs in that work [32].
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∆A[wBB] term is unnecessary since the matrix can be solved with non-zero elements.

Even with the improvements of the Munro approach, non-physical regions of nega-

tive atomic density are still seen [30, 33]. The less strongly weighted PSFs and PPDFs

tend to display mirroring, errors that are essentially equal in magnitude and opposite

in sign. This effect is believed to be caused by systematic error [33, 34] and renders

the PPDFs unreliable and difficult to interpret. In a study of l -GeBr4, Ludwig and

coworkers [28] found error levels of 5-10%, 30% and 100% in the Br-Br, Ge-Br and

Ge-Ge PPDFs respectively. Thus even with the Munro approach, the extraction of

PPDFs remains highly sensitive to error.

2.1.3 Anomalous Dispersion

The anomalous x-ray scattering techniques described above in Section 2.1.2 all rely on

the variation in scattering factor, a measure of the “scattering power” of an element,

near absorption edges in the sample to change the weighting factors wαβ. These

changes in weighting factors provide the contrast needed to extract chemically specific

information. Obtaining the most accurate scattering factor possible is, therefore, a

high priority.

Although calculations of Rayleigh scattering from first principles5 can now be

carried out using the second-order S-matrix in quantum electrodynamics and self-

consistent relativistic wave functions [35], these calculations are computationally

costly, and the calculated energies at which absorption edges occur do not agree

with experiment [35]. As such, the use of form factors and anomalous scattering

factor approximations are advantageous.6 Tabulated values are readily available, and

5In the independent particle approximation, all atomic electrons are assumed to move indepen-
dently in a common central potential due to the nuclear charge and the average distribution of all
electrons.

6The S-matrix calculations include the contribution of transitions to unoccupied bound states
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absorption edges arise where expected experimentally.

Form Factor & Anomalous Scattering Factor Approximation

The atomic scattering factor, f , can be written as a form factor in combination with

anomalous scattering factors:

f(k,E) = fo(k) + f ′(k,E) + if ′′(k,E) (2.25)

For a given atom in the sample, the atomic scattering factor represents the ampli-

tude of coherently scattered radiation from the atom relative to that of a single free

electron. (f is sometimes referred to as the scattering amplitude.) The form factor,

fo, is the contribution of a free, unperturbed atom, and the anomalous scattering

factors, f ′ and f ′′, correct for the effects of dispersion near the absorption edges.

In the time-dependent, non-relativistic formulation of scattering, the atomic scat-

tering factor can be written as [26]7

f(k,E) =
∑
n

[
< n|ei(S−S′)·r|n >

]
(2.26)

− 1

h̄m

∑
j

[
< n|eiS′·rε · P|j >< j|eiS·rε · P|n >

]

×

(
Ejn − h̄ω − ih̄γjn

2

)−1

+ (Ejn + h̄ω)−1




where < j| is a wavefunction of the atom, ε is the polarization vector of the photon,

P is the momentum operator, γjn is the convolved width of the j and n states, n

(bound-bound transitions) which have been ignored in the past. These transitions are especially
important for atoms or ions with less than 10 bound electrons. The form factor and anomalous
scattering factor approximations are not sufficient for these low-Z elements.

7after Sakurai [36].
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represents the occupied states in the atom and j, the unoccupied, and the scattering

vector is k = S − S′.

Atomic Form Factor

At energies far from the absorption edges, the first term in Equation 2.26 above,

referred to as the atomic form factor, dominates. It can be written as follows:

fo =
∑
n

< n|ei(S−S′)·r|n >=
∫
ρ(r) ei(S−S′)·r dr (2.27)

Thus, fo is simply the (3-dimensional) Fourier transform of the atomic electron prob-

ability density. It is a function of scattering vector k and independent of energy.8

Calculations of fo are available for free atoms and many ions using a variety of

wave functions: Cromer and Mann [37] parameterized form factors calculated from

numerical non-relativistic Hartree-Fock (HF) wave functions for neutral atoms and

most “chemically significant” ions for 2 ≤ Z ≥ 103. Waasmaier and Kirfel [38] later

developed improved parameterizations for the form factors tabulated in the Interna-

tional Tables for X-Ray Crystallography, Section 2.2. For neutral atoms, these

form factors are all calculated using relativistic Hartree-Fock (RHF) wave functions

from two sources. (The form factors for both Ge and Mo are from Doyle and Turner

(1968) [39] using wavefunctions of Coulthard (1967) which assume the nucleus is a

point.)

8Fuoss [26] notes that fo is, in general, a complex quantity and real only for centrosymmetric
electron density distributions.



CHAPTER 2. ANOMALOUS X-RAY SCATTERING 27

Anomalous Scattering Factors

The anomalous scattering factors, referred to in this work as the ASFs (not to be

confused with the atomic scattering factor, f), provide a correction to the atomic form

factor, fo, to account for dispersion. Near the absorption edge of an atomic species

in the sample, the incident radiation begins to interact resonantly with the electrons

in that atom, and the second term in Equation 2.26 above becomes significant. (The

third term is always small since Ejn + h̄ω is large.) The atomic scattering factor,

f , is no longer simply equal to the Fourier transform of the atomic electron density

distribution, fo; a correction of f ′ + if ′′ must be added.

In the classical theory of dispersion, the atoms are assumed to scatter as damped

electric dipole oscillators interacting with an electromagnetic wave. This dipole

approximation is carried out by using only the leading term in the Maclaurin series

expansion of eiSr in the calculation of the matrix components. Near the absorption

edge, the damping becomes significant.9 The effect of the imaginary part, if ′′, is to

add an out-of-phase component to the scattered wave resulting in a decrease in the

transmitted amplitude, i.e. an absorption. f ′′ can be related to the x-ray absorption

cross-section by the optical theorem

f ′′α(ω) =
mec ω

4πe2
σcsα (ω) (2.28)

or, in terms of the mass absorption coefficient,

f ′′α(ω) = mα
mec ω

4πe2
σα(ω) (2.29)

where ω is the incident photon frequency, σcsα is the photoelectric cross-section of the

9James, Chap. 4 [40].
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α species in units of [area], σα is the mass absorption coefficient in units of [area /

mass], mα is the mass of the α atom, me and e are the mass and charge of an electron

and c is the speed of light.

The real and imaginary ASFs can be related by the Kramers-Krönig dispersion

relationship [41]:

f ′(ωo) =
2

π

∮ ∞

0

ω f ′′(ω)

ω2
o − ω2

dω (2.30)

where ω = 2πE/h and
∮

represents the Cauchy principle value of the integral. It

is important to note that the Kramers-Krönig transform is valid only in the dipole

approximation. In addition, this relationship yields the imaginary part of the ASF in

the forward-scattering direction (2θ = 0◦) only.

For K absorption edges, f ′ and f ′′ have only small variations of magnitude with k

(or θ) which are commonly taken to be negligible [42, 43]. (The dipole approximation

yields k-independent ASFs, but including higher order terms in the calculations leads

to a slight k-dependence.) The angular variation is clearly negligible for f ′′ and on

the order of 0.15 electrons for f ′. (For L edges, which are not examined in this work,

the angular variation of f ′ is much stronger and can be up to 2 electrons for Sm [44].)

Because the angular dependences of the ASF are typically small and experimental

errors have been likely to overshadow this effect, they are ignored in this work:

f ′′(k,E) ≈ f ′′(E) and f ′(k,E) ≈ f ′(E).

See Chapter 8 for further discussion.

Hönl (1933) [45] first calculated the anomalous scattering factors for only the K

shell electrons using hydrogenic wavefunctions, and these data were used in diffraction
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studies for several decades. Cromer and Liberman’s tables of the anomalous scatter-

ing factors [46, 47, 48] are the present standards for calculations. These were car-

ried out using relativistic Dirac-Slater-like wavefunctions computed using the Kohn-

Sham potential rather than the Slater potential and using experimental energy levels

rather than the computed Dirac-Slater eigenvalues. The resulting photoelectric cross-

sections calculated therefore demonstrate experimentally-observed edge positions, a

tremendous advantage for use in experimental work. The cross-section is related by

the optical theorem to f ′′ and f ′ is calculated by the Kramers-Krönig transform (with

the dipole approximation).

In their work, Cromer and Liberman estimated a relativistic correction to the

high energy limit of forward scattering within the framework of the dipole approxi-

mation - a constant of 5
3
(Etot/mc

2) where Etot is the total energy of the atom [47]. It

was first noted by Jensen (1979) [49] that higher multipoles become more relevant at

higher energies and that the dipole approximation omits a significant term for large

ω. Jensen proposed a correction (1980) [50] to Cromer and Liberman’s original cor-

rection; however, Kissel and Pratt (1990) [51] pointed out that Jensen’s suggestion

also does not give the correct high-energy limit. They noted that the correct high

energy limit was obtained in much earlier work by Franz in 1936, and they published

tabulated corrections which have been generally accepted. Free atom f ′′s referred

to in this work are the Cromer and Liberman (CL) f ′′ values with the Kissel and

Pratt correction and the S-matrix-calculation-derived f ′′s of Kissel et al. (1995) [35].

Fitting of experimental f ′′ curves to calculated values is described in Chapter 5.

Figure 2.1 shows the CL f ′′ and f ′ values for Mo. Clearly, the closer to the absorp-

tion edge energy, the larger the magnitude of f ′ and the greater the contrast possible.

However, the slope of f ′ as a function of energy also increases in magnitude giving
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Figure 2.1: The Cromer-Liberman (CL) f ′′ and f ′ values for the Mo K edge. The vari-
ation in f ′ below the absorption edge provides the contrast necessary for anomalous
x-ray scattering.
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Figure 2.2: Kissel’s f ′′ values for the Mo K edge, unedited. The bound-bound tran-
sitions present singularities that make calculations difficult, and the absorption edge
does not appear at experimentally observed energies.
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a greater potential error. Balancing these considerations is discussed in Section 2.3.

In Figure 2.2, the Kissel f ′′ data for the Mo edge are shown. Sharp bound-bound

transitions and edge energies not coincident with experiment make Kissel’s values less

convenient for the experimentalist. Figure 2.3 compares the CL and Kissel f ′′ and f ′

values for Mo. The use of Kissel versus Cromer-Liberman f ′′ values will be discussed

in more detail in Chapter 5.

1.94 1.96 1.98 2 2.02 2.04 2.06 2.08 2.1
x 10

4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

energy (eV)

f "
 (

el
ec

tr
on

s)

CL f "
Mo

K f "
Mo

Figure 2.3: The Cromer-Liberman (CL) f ′′ and Kissel (K) f ′′ values for the Mo K
edge. The Kissel f ′′ data has been shifted to match the CL edge energy, and bound-
bound transitions have been removed.

2.1.4 Necessity of Experimental ASFs

Tabulated values of atomic form factors and anomalous scattering factors are available

for free atoms; however, neighboring atoms in an actual sample affect the potential

of the atom under investigation so that it does not behave exactly as a free atom.

The effects of chemical binding within a given sample will have a large impact on
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the shape and position of the features in the absorption spectrum. In addition, so-

called “white lines” caused by bound-bound transitions are highly sensitive to the

chemical environment of the atom. Thus for the most accurate anomalous scattering

factors, the linear absorption coefficient (µα = ρασα) is directly measured through

each K edge in the sample. From the optical theorem, experimentally measured f ′′

values are obtained. Far from the absorption edge, theoretical values of f ′′ (on a

shifted energy scale so that the absorption edge occurs at the experimental energy)

are used to extend the energy range past the measured f ′′. Using the Kramers-Krönig

transform, f ′(E) is obtained. The energy resolution of the f ′ data is then the same

as for the f ′′ data.

2.2 Potential Error

in the Elastic Scattered Intensity

Since the PPDFs are highly sensitive to error, we need to remove as much error as

possible in the elastic scattered intensity. Inelastic scattering must be removed from

the total intensities included in the data analysis. Resonant Raman and Compton

scattering are two effects that frequently contribute to the total measured intensity.

2.2.1 Resonant Raman Scattering

Near the absorption edge of an element in the sample where the energy of incident

photons is close to, but less than, an atomic inner-shell ionization energy, a type

of inelastic scattering called radiative resonant Raman (RR) scattering occurs. The

intensity of this RR scattering increases dramatically as the excitation energy h̄ω1

approaches the absorption edge energy, and the energy difference between the RR
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peak and the elastically-scattered peak remains constant as the excitation energy

is changed. This constant energy difference is reminiscent of the Stokes peak in

optical Raman scattering - hence the name resonant “Raman” scattering. RR scat-

tering differs, however, from ordinary vibronic Raman scattering in that there are not

only discrete excitations but continuous energy losses as well, and there is negligible

probability that the frequency of the scattered radiation is increased. Radiative RR

scattering was first observed by Sparks [52] in 1974 using Cu Kα radiation from an

x-ray tube on various metallic targets. The first synchrotron radiation experiments

on RR scattering were carried out by Eisenberger and coworkers [53] in 1976 showing

the evolution of K-L RR scattering into Kα fluorescence.

In radiative RR scattering, photoionization and radiationless de-excitation occur

via a single quantum process [54]. (Even at threshhold, ionization and decay cannot

be treated properly as distinct processes.) Radiative RR scattering evolves into the

true x-ray fluorescence as h̄ω1 approaches and exceeds the absorption edge Ii.

Figure 2.4 illustrates the radiative resonant Raman scattering process. The pro-

cess may be thought of in the following manner: Due to the very short core-hole

lifetime, there is an energy broadening of the core state i leading to a finite proba-

bility of photoexcitation by an incident photon of an energy less than the absorption

threshhold energy. One may consider a (virtual) hole formed by the excitation of

an electron sitting slightly above the core level i by a photon with energy h̄ω1. An

electron from a higher-lying state f fills this hole (see the dashed lines in Figure 2.4

a) so that the net result is an excitation of an electron from the state f . The excess

energy is emitted as a photon of energy h̄ω2. The excited electron can end up in

either a bound state or be excited to or above the Fermi energy in Figure 2.4 such
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Figure 2.4: Radiative resonant Raman scattering in the case where a) ε = 0 and b)
ε > 0.

that

h̄ω2 = h̄ω1 − If − ε

where If < Ii and ε is the energy of the excited electron with respect to If . If the

electron is excited into a bound state, ε < 0, and if it is excited above the Fermi level,

ε > 0. The probability of h̄ω2 > h̄ω1 is negligible.

In AXS experiments, the Kβ RR scattering often falls uncomfortably close to the

elastic peak. For the case of incident radiation approaching the Ge K edge (from

below), the Kβ peak lies only 121 eV below the elastic peak. For the Mo edge, the

spacing is 394 eV. Without sufficient detected energy resolution, the inelastic Kβ RR

scattering peak cannot be differentiated from the elastic peak.

2.2.2 Compton Scattering

A second source of inelastic scattering that must be removed in AXS experiments

is the Compton scattering (sometimes called modified scattering) resulting from the

inelastic collision of an incident x-ray with an electron in the atom. We can obtain an
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approximation for the position of the Compton peak in energy as a function of scat-

tering angle by treating the incident x-ray as a particle in a billiard ball calculation:

λCompton − λincident =
h

mc
(1 − cos 2θ) (2.31)

This is a simplification since it ignores binding effects, but it shows that the peak in

Compton scattering shifts to lower energies as k is increased. This behavior is shown

in Figure 2.5 for Ge.
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Figure 2.5: Position of the peak in Compton scattering as a function of the scattering
vector, k, for an incident energy 100 eV below the Ge K edge.

Because of the distribution of momenta of the electrons in an atom, the Compton

scattering is not a narrow peak but rather a low, broad distribution of intensity as a

function of energy. (This makes it all the more difficult to remove.) The integrated

intensity of this Compton distribution is zero at k = 0 and increases as k increases.
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For an atom, the Compton scattered intensity is

IC(k) = Z −
∑
n

f en(k)
2 (2.32)

where Z is the atomic number of the atom, f e is the scattering factor for each electron

and n is the number of electrons in the atom. Comprehensive theoretically calculated

Compton cross-sections are available; however, the free atom Compton scattering is

modified when the scattering atom is in a solid. Figure 2.6 shows the contribution of

the calculated, free atom Compton scattering to the total scattering for MoGe3 as a

function of k.10
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Figure 2.6: The total scattering, elastic scattering and Compton scattering from an
independent atom with an average composition of MoGe3 are plotted on the left-hand
axis as a function of the scattering vector, k. The Compton scattering as a percentage
of the total scattering is plotted on the right-hand axis.

Since the Compton scattering is inelastic and occurs over a range of energies, the

10Elastic scattering calculated using the parameterized fits of Cromer and Mann [37]; Compton
scattering calculated using the fits of Balyuzi [55]
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detector energy resolution as well as the detector efficiency as a function of energy

must be well-characterized in order to properly remove it. For high detected energy

resolution, the intensity of Compton scattering included in the elastic peak can be

negligible. For low energy resolution, the Compton scattering must be subtracted

using calculated values, preferably modified by the detector bandpass function [56].

It is a common and often incorrect assumption that the detector response is identical

at all energies, elastic and inelastic.

2.3 Energy Selection

There are several competing considerations in choosing energies for AXS data collec-

tion. One would like to take advantage of the greatest contrast available by taking

data close to an absorption edge; however, the accuracy with which the anomalous

scattering factors are known decreases on approach to the edge energy from lower

energies. In addition, the energy resolution with which the sample is being probed

must be taken into account. Finally, a large k-range is desirable for proper normal-

ization of the elastic scattering and for good spatial resolution.

2.3.1 Contrast

From the simplest viewpoint, the greatest difference in the total scattering factor at

two energies (near the absorption edge for the element of interest) will provide the

greatest change in the weighting factors involved in Equations 2.21 and 2.24 and,

therefore, the greatest contrast. From this viewpoint, energies both below and above

the edge can be considered. From a more practical stance, however, taking data using

incident energies above the absorption edge gives excessively high count rates due to
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fluorescent radiation. Although the fluorescent radiation is at a different energy than

the elastically-scattered radiation from the sample, the logistics problem of collecting

a small elastic signal in the vicinity of a large fluorescent signal is difficult to solve.

From these considerations alone, it is common to choose widely-spaced energies below

the absorption edge for AXS.

2.3.2 Accuracy

The accuracy of the nominal energy of the incident radiation depends on the cali-

bration of the monochromator crystals as well as thermal stability. The ASFs are

determined from experimental x-ray absorption spectroscopy data obtained by scan-

ning the monochromator energy through the absorption edge. Since the real part of

the dispersion correction f ′ varies rapidly with energy about the edge, a small error

in the energy scale for the ASFs or in the incident energy for collecting scattering

data can result in a very large error in the ASFs used in analyzing the scattering

data. With this in mind, it is best not to work at energies too near the edge where

the slope of f ′ with energy becomes large.

2.3.3 Energy Resolution & Scattering Geometry

Since it is not possible to achieve a truly monochromatic beam of x-rays, an important

consideration is the incident energy resolution and the scattering geometry which

dictate what is physically measured. The incident energy resolution indicates the

range of energies that the sample is actually “seeing” about the nominal energy at

the centroid of the distribution, assumed to be Gaussian for our purposes. At energies

too near the absorption edge, part of the distribution of energies can fall above the

absorption edge exciting fluorescent radiation. Narrow incident energy resolution
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permits a closer approach to the edge energy (assuming good thermal stability of the

monochromator crystals), but generally reduces count rates slowing data collection.

The scattering geometry (see Chapter 4) used to analyze the emitted radiation in

this work places a linear detector at a slightly defocussed position in a parafocussing

geometry. This leads to a broadening of any given monochromatic beam of radiation

on the linear detector. While fluorescent radiation can be, in theory, distinguished

from the major elastic and inelastic scattering processes occuring in the sample by the

energies of the emitted photons, this physical broadening of a single, monochromatic

energy leads to a small degree of overlap between the elastic, resonant Raman and

fluorescent peaks. The limitations on the present experiments are discussed further

in Section 5.5.

2.3.4 k-Range

Finally, one must consider the maximum attainable scattering vector magnitude. kmax

is determined by the incident energy which is near the absorption edge energy:

kmax = 4πE/hc (2.33)

or kmax[Å
−1

] ≈ E [keV ]

Thus, the higher the incident energy, the larger the k-range available. This is advan-

tageous for several reasons: Higher kmax means better real space resolution and fewer

termination oscillations that must be damped with additional loss of resolution. Also,

the elastic scattering approaches the coherent scattering at high k so that normaliza-

tion of the data to a per-atom basis is less ambiguous. A final consideration is that
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the absorption correction, the most significant of the corrections applied to the exper-

imental intensity data (discussed in Chapter 5), has its greatest slope at high k for

the transmission scattering geometry employed in this work. This creates a catch-22

in which the data are typically normalized by reference to the highest k region where

the potential impact of error is greatest.

A drawback to a high incident energy is that it is more difficult to collect scattering

data in the low-k range. Since k =
(

4π
hc

)
E sin θ, a plot of k versus sin θ (Figure 2.7)

illustrates that for higher incident energies, the low-k range occurs at lower scattering
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Figure 2.7: The relationship between the scattering vector magnitude, k, and sin θ
for incident photon energies of 11 and 20 keV. It is experimentally more difficult to
collect the low-k range of scattering data at 20 keV because it occurs at such small
scattering angles.

angles. This presents experimental difficulties since, generally, care must be taken to

prevent the direct, transmitted beam (at 2θ = 0◦) from entering the sensitive detector.

In solving for the PPDFs, the upper limit in k for calculations is set by the lowest

Z element (Ge, in this case). For low Z elements, it is therefore advisable to take

additional data at a high energy (but away from fluorescence peaks) in order to have
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high-kmax data which can be well-normalized. This well-normalized data set is then a

useful reference for normalizing scans taken at lower energies. In these experiments,

the incident energies near the Mo K edge at 20 keV approach the limits of the energies

presently available at SSRL with reasonable count rate, so the normalized Mo edge

data were referenced in normalizing the Ge edge data.

2.4 Complementary Techniques to AXS

Methods other than AXS can be used to determine chemically-specific local structure

in materials. The various advantages and disadvantages of two widely-used tech-

niques, EXAFS and ISDN, are discussed below.

2.4.1 EXAFS

The extended x-ray absorption fine structure (EXAFS) is the oscillatory structure in

the x-ray absorption coefficient well above an absorption edge. This structure is due

to the interference of the outgoing and backscattered photoelectron waves and, thus,

reflects the local structure about the absorbing species. (For a more detailed review

of the technique, the reader is referred to references [57] and [58].) The information

about local environment obtained from EXAFS is analogous to that from differen-

tial anomalous scattering (DAS): Both techniques give the structure about a single

atomic species, but there are key differences as well. EXAFS is experimentally much

simpler and quicker than AXS experiments. It is particularly useful in examining

the first (and sometimes the second) nearest neighbor environment of dilute species

in a multi-atom sample where x-ray diffraction fails. AXS techniques, which extend

to larger radial distances, are better suited for more concentrated alloy systems such
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as a-MoGe3 in several ways. One drawback of EXAFS is that it requires complex

data analysis involving backscattered phases and amplitudes normally obtained via

theoretical ab initio calculations. It also cannot provide the fully-chemically-specific

atomic distribution information available in the PPDFs from AXS.

The fundamental differences between EXAFS and DAS arise from the different

k-regions they access. Due to the pathlength 2r travelled by a backscattered photo-

electron, there is a factor of 2 relating the k scales typically used in the two techniques:

2 kEXAFS = k

where k refers to the familiar x-ray scattering vector magnitude. The useful EXAFS

are typically collected from kEXAFS = 2 − 15 Å
−1

. This corresponds to k = 4 −

30 Å
−1

. Thus, EXAFS lacks the low k data and extends to much higher k than AXS

experiments involving any element with Z < 50. It is therefore primarily sensitive to

very near neighbors.

The lack of low k data is a major handicap of the EXAFS technique for the

study of non-crystalline materials. (See [1] and references therein.) Since information

about farther and more disordered density distributions (shells of atoms) is present

at low k, EXAFS misses this information entirely. Even materials with a disordered

first shell of neighbors produce difficulties in EXAFS analysis due to the decay of

correlations. In fact, the low k limit puts an effective upper bound on the width of a

distribution detectable by EXAFS. Asymmetric density distributions also are “seen”

differently by the two techniques. AXS misses the high k components and smears

out the distribution while EXAFS misses the low k components and shows only the

sharpest edge of the distribution. These issues are of particular concern in the study

of amorphous materials.



CHAPTER 2. ANOMALOUS X-RAY SCATTERING 43

AXS and EXAFS are thus often complimentary techniques for providing chemically-

specific information on the local atomic arrangements in non-crystalline materials.

While AXS techniques give information in the intermediate regime with limited res-

olution, EXAFS accesses a higher-k region and can give accurate near neighbor dis-

tances and coordinations for the first shell of neighbors – provided the atomic near

neighbor shells are distinct and reasonably sharp.

There have been a few studies combining AXS and EXAFS measurements ([59,

60]) to extract PSFs and PPDFs; however, the k-range available is then severely

limited by the lower k-range of the EXAFS and the upper k-range of the scattering.

2.4.2 Isotopic Substitution Neutron Diffraction

An alternate, and sometimes complimentary, means of obtaining partial pair dis-

tribution functions is through isotopic substitution neutron diffraction, ISND. This

technique requires the preparation of samples structurally identical and differing by

the substitution of a constituent element by an isotope. The technique is founded

on the assumption that the structure is not effected by isotopic substitution. The

basic concept is similar to anomalous x-ray scattering: Rather than obtaining con-

trast through the change of the anomalous scattering factors with energy, the contrast

mechanism is the change in the neutron scattering length as a function of the isotope.

The most fundamental difference between neutron and x-ray diffraction is the

object that is physically probed: x-rays interact with the electron cloud about the

nucleus whereas neutrons interact directly with the nucleus. X-ray diffraction pat-

terns thus yield the distribution of electron density within a solid while neutron

diffraction patterns yield the distribution of nuclei. For structural determinations,

these techniques probe the same structure, but the sensitivity of each technique to
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different elements is very different due to the different physics of scattering. X-ray

scattering is roughly proportional to the local electron density, and neutron scatter-

ing is nucleus-dependent and varies seemingly arbitrarily through the periodic table.

As a result, structural information from metal-oxides is more readily obtained from

neutron diffraction analysis while x-ray diffraction analysis will yield information pri-

marily about the metal atoms [61].

ISND requires preparation of several samples of the same composition differing

only in isotope. Depending on the element, isotopes may be extremely expensive,

rare or simply unavailable. In addition, neutron reactors produce low brightness, and

neutron cross-sections are much smaller than x-ray cross-sections leading to lengthy

experiments limited to bulk samples. (Since the samples for this work are sputter

deposited, preparation of sufficiently thick films is not feasible.) For isotopes available

with oppositely-signed scattering lengths (specific to the isotopes), isotopic substitu-

tion can produce larger changes in neutron scattered intensity than can be achieved

through the anomalous scattering effect in x-ray scattered intensity. Table 2.211 shows

the natural abundance and neutron scattering lengths of Mo and Ge.

AXS, on the other hand, requires only one sample since the energy dependence

of the scattering factor provides the means of contrast. Because the technique is not

limited by the availability and cost of isotopes, more elements are readily accessible.

However, AXS has the disadvantage for low atomic number elements. Since the

maximum scattering vector magnitude is determined by the incident energy near the

absorption edge energy in AXS, low Z elements typically yield anomalous scattering

data that terminates before the structural oscillations have approached the coherent

scattering making normalization difficult and giving strong termination oscillations

11from Table 1, p. 21 of reference [62].
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Table 2.2: Naturally-occurring isotopes of Mo and Ge. The abundance and neutron
scattering lengths are listed. In general, heavy isotopes with natural abundances less
than 1% are prohibitively expensive.

element mass no. ave. isotopic b (fm)
abundance (%)

70 20.5 10.0
72 27.4 8.51

Ge 73 7.8 5.02
74 36.5 7.58
76 7.8 8.2
92 14.84 6.93
94 9.25 6.82
95 15.92 6.93

Mo 96 16.68 6.22
97 9.55 7.26
98 24.13 6.60
100 9.63 6.75

that obscure the structure.

With AXS, synchrotron sources offer high brightness which translates into rela-

tively quick experiments on small volume samples. Structure in technologically rel-

evant thin film samples can be examined, and new generation synchrotrons provide

even higher brightness. Although ISND has the clear advantage over AXS for the few

sample systems in which isotopes of oppositely-signed neutron scattering lengths are

readily available, AXS using the Munro matrix method generally yields comparable

results to ISND [30].

There have been recent studies (see references [63, 64, 65, 66]) combining AXS

and ISND to obtain differential and partial pair distribution functions with reasonable

results. The advantage of this approach is that the weighting factors for each element

are usually very different in the two techniques giving stronger contrast than may be
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available from a single technique. There are two potential issues in combining methods

in such a manner. First, the different corrections and additional sources of systematic

error involved will not cancel out as they will in a differential measurement using one

method. Second, the methods do not probe the same things: neutron diffraction

probes the nucleus while x-ray diffraction probes the electron distribution about the

nucleus. Finally, neutron scattering techniques are generally inapplicable to thin films

which are often of technological importance.

2.5 Predicting the Outcome of AXS for

Extraction of Partials

For a given system, the potential success of the AXS technique for extracting partial

structure factors can be predicted – even before any experiments are carried out – by

considering a few measures discussed below.

2.5.1 Weighting of Species

The weighting of the different atomic species in the alloy affects the ability to extract

all of the partial structure factors reliably. For the MoGe3 system, a quick back-of-

the-envelope check on the weighting factors (see Equation 2.16) can be carried out by

simply approximating the atomic scattering factors with the atomic numbers of the

elements:

S = 42%SGeGe + 35%SMoGe + 23%SMoMo.

This indicates that the weighting factors of the three partials are of similar magnitude

so that one correlation does not completely overshadow the others. As such, we can
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reasonably expect to extract all three.12

2.5.2 SVD Analysis and Conditioning of the Matrix

Singular value decomposition (SVD) is a well-known algorithm [67] that provides a

more rigorous means of examining the extraction problem for MoGe3. In this type of

matrix factorization, an mxn matrix M is effectively rotated in domain and range to

make it diagonal:

M = UΣVT

where U and V are mxm and nxn orthogonal matrices and Σ is an mxn diagonal

matrix with elements σij = 0 for i �= j and σii = σi ≥ 0. The σi are called the

“singular values” of the matrix M.

A measure of the stability of the matrix problem is the conditioning of the matrix.

This is defined as the ratio of the largest to the smallest singular value of the matrix

cond(M) =
σmax
σmin

.

The Turing number, T , is the condition number for the normalized matrix. The Tur-

ing number can be interpreted as a relative error magnification factor: A large Turing

number indicates that the PSFs are highly susceptible to errors in the intensities and

weighting factors.

As the atomic scattering factor varies as a function of k and incident energy, so

does the Turing number for our Munro matrix. Figure 2.8 shows the conditioning

calculated using Cromer-Liberman ASF values for the cases of GeBr4 studied by

12Other definitions of the partial structure factors give different ratios; however, the most heavily
weighted partials are always the Ge-Ge and Mo-Ge partials while Mo-Mo is the least heavily weighted
partial.
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Ludwig [28] and discussed briefly in Section 2.1.2, MoGe3 in this case (Mo27Ge73, to

be more precise) as well as Mo14Ge86 and Mo42Ge56, some of the compositions studied

by Kortright [2]. The conditioning for the MoGe3 system is similar to that of the

GeBr4 system.13 For MoGe3, the calculated matrix conditioning begins at T = 224

at k = 0 and decreases to T = 21 by k = 10 Å
−1

. The actual matrix conditioning

using experimental ASFs is slightly better at T = 192 at k = 0 Å
−1

and T = 19 at

k = 10 Å
−1

.
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Figure 2.8: The calculated Turing number as a function of k for several different
systems. The differences for the GeBr4 system were taken between 11003 and 11098
eV below the Ge edge and between 13374 and 13469 eV below the Br edge, and
the final measurement was taken at 20000 eV. The differences for the Mo-Ge system
were taken between 11003 and 11088 eV below the Ge edge and between 19900 and
19985 eV below the Mo edge, and the final measurement was taken at 19900 eV. The
Cromer-Liberman ASFs were used for these calculations.

13As noted in Section 2.1.2, Ludwig used incorrect matrix elements in calculating the Turing
number and obtained T = 45 at k = 0 for the Munro matrix solved for the GeBr4 structure. The
correct value is near 195 at k = 0.
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It is interesting to note that, of the sample compositions (0 ≤ xMo ≤ 0.65) studied

by Kortright [1], the Mo42Ge56 sample gives the best conditioning.14 However, he was

unable to extract reliable partials. His measurements for that sample were acquired

during two different experimental runs. This difficulty emphasizes the importance of

taking measurements in a single run to ensure that systematic errors are as similar

as possible for all of the data below a given edge.

We can take a closer look at the matrix decomposition for Sample 2 following the

SVD analysis by Ludwig [30]. The singular values, σi, of the matrix are the positive

square roots of the eigenvalues and the columns of V are the eigenvectors of MTM.

For the Munro matrix we have constructed at k = 0, we find

M =




762.5 1759.9 373.5

−0.1 102.3 42.4

86.0 134.8 0.3




This gives

V =




0.37 −0.77 0.51

0.90 0.21 −0.38

0.19 0.61 0.77


 and Σ =




1962.7 0 0

0 60.4 0

0 0 10.2




These indicate that the experimental results are most sensitive in the 33-direction,

the Mo-Mo direction, and the errors in the solutions will tend to take the form of the

third column vector of V. Thus, we find that the Mo-Mo PSF will be about twice as

sensitive to error than the Ge-Mo PSF. In addition, errors in the Ge-Mo PSF will be

opposite in sign to errors in the Mo-Mo and Ge-Ge PSFs. The Ge-Ge PSF is expected

14For the Mo-Ge system at the energies chosen, optimum conditioning occurs at xMo = 0.46.
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to be about 30% more sensitive to error than the Ge-Mo PSF; however, since there

are about three times more Ge about Ge than Mo about Ge in the sample, we may

expect the relative accuracy of the Ge-Ge PSF to be near that of the Ge-Mo PSF.

2.6 Conditioning, Regularization and Modelling

There are several mathematical regularization methods for countering the effects of

ill-conditioning on the PSF extraction problem. These methods reduce the influ-

ence of noise on the solution by forcing the solution to conform to certain bound-

ary conditions. In spite of some impressive results (for examples, see references

[33, 68, 69, 70, 71, 72]), there remains some hesitation about using these methods:

In forcing physical behavior in certain regions, they have the potential for intro-

ducing distortions in others. In other words, there is some error introduced into

the solution by the regularization procedure itself [71]. In addition, the resulting

solutions will appear deceptively well-behaved even with errors present because the

constraints applied are generally also those used to judge the quality of the function.

The application of the methods is not without complications as well: The statistical

precision of the experiment must be determined in order to choose the appropriate

regularization parameter, λ. A value of λ too large results in incorrect solutions while

λ too small gives the least squares solution. Finally, regularization techniques can

stabilize systems with significant random error but can not successfully treat system-

atic errors which are likely to be present in experimental data [33, 34, 73] (hence

the improvement in moving from the Keating to the Munro approach). Because of

the potential pitfalls, regularization methods should not be viewed as a panacea for

the ill-conditioned problem of PSF extraction. We believe reliance on regularization
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techniques should be minimized by first obtaining the cleanest experimental elastic

scattering data possible. To the author’s knowledge, well-behaved PPDFs yielding

new structural information, without resort to regularization methods, have not been

obtained prior to this work.

A second resource in extracting useful physical information from structure factors

or distribution functions is modelling. Reverse Monte Carlo simulations, in par-

ticular, have been frequently used to determine real-space models that best repro-

duce the experimental structure factors. (See, for example, references [74, 75, 76].)

These methods also have limitations. Naturally, simulations do not provide a unique

physical arrangement of atoms for given experimental structure factors or distribu-

tion functions. Reverse Monte Carlo simulations, for example, tend to produce the

most disordered physical arrangement of atoms that fits the experimental functions.

Having good quality PSFs or PPDFs for an amorphous system, however, provides

more explicit local structure information than typically is available and considerably

reduces the field of possible solutions.



Chapter 3

Sample Preparation

The specifics of the deposition process impact the structure of amorphous films pre-

pared by vapor phase deposition: The kinetics involved in condensation of the vapor

onto the substrates at extremely rapid quench rates play a critical role in establishing

the structure and properties of the film. As such, the sample preparation techniques

established in the work of Jeffrey Kortright [1, 2] and Michael Regan [3, 4, 77] were

closely followed to allow interpretation of the present results in the context of their

work. The goal was the production of a free-standing amorphous Mo-Ge alloy film

with a composition near 25 at% Mo of sufficient thickness to give reasonable mechan-

ical stability and x-ray scattering signals. The details of sample preparation are given

in this chapter.

3.1 Sputtering

All samples for this work were prepared in the 3-inch sputtering system (described in

reference [1]) at the Vapor Phase Synthesis Lab in the Center for Materials Research

at Stanford University. Mo (99.95% or purer) and Ge (99.999%) were cosputtered
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Table 3.1: Sample deposition: gun parameters and deposition rates.

sample Mo gun (A) Ge gun (W) rate (Å/s)
1 0.105 400 1.26
2 0.135 400 1.79
3 0.140 400 2.04

from 2” diameter, 1/8” thick elemental targets1 using dc and rf magnetron sputtering,

respectively. By controlling the rf and dc power, the relative sputtering rates, and

therefore the composition of the final film, could be adjusted. For this work, the rf

power to the Ge target was held at 400 W while the dc current to the Mo target

was varied from 0.1 to 0.2 A. Table 3.1 contains sputtering parameters for the three

samples nearest the target composition of MoGe3.

The sputtering chamber was equipped with a cryopump yielding base pressures

typically in the mid-10−7 torr range and never exceeding 8.0x10−7 torr. The argon

sputtering pressure was 2 mtorr. A sputter-down geometry was employed with the

targets mounted in water-cooled sputter guns above the substrates. A shutter shielded

the substrates during startup of the guns. The substrates (secured on the sample

table by mounting rings which permitted deposition over a 2.5 inch diameter circle)

were rotated at a rate of 3 revolutions/second. This is a sufficient rotation rate

to ensure that the samples undergo several rotations under both sputter guns per

deposited monolayer preventing multilayer structures. Both stationary and swivel

sputter guns were available for the 3-inch system. The swivel guns allowed a certain

degree of focussing of the sputtered material so that the highest deposition rate occurs

1The feasibility of sputtering from an alloy target was investigated; however, the high cost and
difficulties in achieving stoichiometry near 25 at% Mo (compositions tended toward MoGe2) were
prohibitive.
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Figure 3.1: The target and substrate configuration for the magnetron sputtering
deposition system.

over a larger area of the rotating sample table. Figure 3.12 is a schematic of the

sputtering system indicating source-substrate distances and the tilt angle of the guns.

All samples analyzed were taken from a 2.5 inch swath on the substrate table centered

at a radial distance of approximately 4.5 inches.

A UTI Model 100C quadrapole mass analyzer was frequently used to verify that

there were not significant quantities of contaminant gasses. Water desorbing from

the chamber walls was the primary contaminant present. Samples typically 5µm or

thicker were produced from 8 to 10 hours of continuous sputtering. These thicknesses

were necessary in order to obtain films of sufficient mechanical stability that the Si

substrate could be etched away to produce free-standing films. All films grown under

these conditions demonstrate a stress gradient as evidenced by the slight curvature

of the free-standing films released from the substrates.

Although the chamber was not equipped with a quartz crystal rate monitor, the

2after Kortright’s Ph.D. thesis p. 31 [1].
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deposition rates could be determined by masking off a small area of a substrate dur-

ing timed sputtering and subsequently using an Alphastep profilometer to determine

thickness. By measuring deposition rates of each element individually, the appropri-

ate parameters for the desired composition were determined. Because of interactions

between plasmas during cosputtering, individually determined rates are only approx-

imate. A rough estimate of the composition of the film was determined using the

deposition rates of the pure elements and the final film thickness, but compositions

had to be verified by other means (see below).

There were no provisions for heating or cooling of the sample table, and there

were no means available for measuring or controlling substrate temperature during

deposition. Both the table and substrates were commonly warm to the touch (∼ 40◦C)

at the end of a deposition run.

3.2 Substrates

Films were initially deposited on a variety of substrates including glass slides, 0.001”

Kapton film (DuPont) and 3-inch (100) p-type Si wafers. Although thinner Kapton

films are available, they do not have enough mechanical rigidity to allow easy handling

during or after sputtering. Small pieces of glass slide also were used as substrates for

electron microprobe analysis. Various substrate cleans were carried out to ensure good

film adhesion since the processing conditions generally yield films in compression.

Kapton is a polyimide film well known for its excellent stability over a wide tem-

perature range. In addition, it has a smoothly varying scattered intensity as a function

of scattering vector magnitude, and it shows a peak at a scattering vector magnitude

below that of the sample. As such, the substrate scattering can be subtracted with
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reasonable success; however, we found that the Kapton-backed samples were more

useful during early data collections as a means of verifying and, if necessary, adjusting

the edge energy to account for shifts due to thermal loading on the monochromator.

The Kapton was cleaned in soapy water, rinsed in deionized water and dried under

a dry N2 gun prior to deposition. Glass slides were soaked in acetone followed by

methanol, rinsed in deionized water and dried in dry N2. Samples on glass could

only be studied in the reflection scattering geometry due to the thickness of the glass

substrate.

The p-type (100) prime Si wafers became the substrate of choice for their com-

patibility with the KOH etch described below and were used as-received with good

adhesion of sputter-deposited films. They were kept under dry N2 after opening.

Surface contaminants on the Si wafer that may remain on the alloy film after etching

of the Si were assumed to be negligible.

3.3 Free-Standing Films

As many sources of error as possible must be eliminated in order to obtain reliable

partial distribution functions. By collecting x-ray scattering data from free-standing

films, we avoid the potentially significant errors introduced in subtracting substrate

contributions from the total scattering. The free-standing films resulting from the

procedure described below are the primary samples used in this work and doubled as

the edge energy calibration samples between scans in final data collections as well.

To produce free-standing films [78], the Si wafers were etched from under the alloy

films using a KOH etch which anisotropically etches Si in the 〈100〉 direction. An etch

of 33 wt.% KOH (45%, IC grade) in deionized H20 was prepared and held at 80◦C in a
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water bath. Approximately 4 hours were necessary to etch the 15 mils (0.015 inches)

of Si underlying the alloy film. The end result was large pieces of film floating in the

KOH bath. These were thoroughly rinsed in deionized water to remove the KOH.

The fragile pieces of film were mounted in aluminum supports for transmission x-ray

studies. From prior work done on the Mo-Ge system [78, 77], it has been determined

that the KOH etch does not severely attack the alloy films so that no carbon etch stop

or protective capping layer was added to the Si substrate/alloy film samples. Visual

inspection indicated no change upon etching; films remained smooth and reflective.

Although previous work by Lane Wilson on free-standing Ge/Mo multilayer films

found evidence for precipitates presumably formed by reaction of Si with the KOH

etchant, no crystalline diffraction peaks or visual evidence of precipitates were found

in the present work.3

3.4 Preliminary Characterization

Following deposition, visual inspection of samples was immediately carried out to

ensure that the samples showed no obvious signs of crystallization (flaking), surface

particulates or oxidation. Most films appeared smooth and shiny as desired. Using a

profilometer, preliminary thickness measurements (from the same radial distance as

the center of the substrates) identified which samples were thick enough to provide

mechanical stability upon removal of the silicon substrate. In order to confirm that

the appropriate sample compositions had been achieved prior to requesting valuable

synchrotron beamtime, sample compositions were determined to ∼ ±2 at% using

electron probe microanalysis (EPMA), commonly referred to as electron microprobe.

3It is possible that the precipitates on Wilson’s multilayer films were deposited in the RCA clean
of the Si wafers rather than by reaction between the KOH etchant and the Si substrate as he has
suggested.
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For the electron energies used, the depth sampled was a few microns. Table 3.2

contains the values from these initial characterizations. Most of the analysis has been

carried out on Sample 2 as discussed in Chapter 5.

Table 3.2: Preliminary measurements of composition and thickness. Composition
was determined by electron microprobe and thickness, by profilometer.

sample at% Mo ±2% (µprobe) tprof ± 10% (µm)
1 20.52 6.6
2 24.04 6.5
3 30.10 6.9



Chapter 4

Experimental Procedures

The anomalous x-ray scattering technique is notoriously difficult. The experimental

requirements for successfully carrying out an AXS experiment to obtain differential

and partial distribution functions are extremely demanding. Excellent alignment,

beam stability, mechanical stability, careful design and an exact knowledge of all

instrumental parameters are necessary. We sought to optimize the experimental con-

ditions taking into account the need for reasonable count rates, energy resolution,

energy stability and removal of inelastic scattering. These considerations led to the

construction of a 2-circle analyzer system mounted on a standard diffractometer and

employing a variable-sagittal-focus graphite analyzer and a linear position-sensitive

detector. By dispersing the scattered energies onto a detector, low background and

sufficient resolution in energy were obtained to isolate the elastic scattering from the

inelastic scattering over most of the k-range investigated. Experimental elimination

of inelastic scattering yields a significant gain in the accuracy of the distribution func-

tions as discussed in Chapter 6. This chapter describes the experimental optics and

resulting energy resolutions as well as the procedures followed.
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Figure 4.1: The x-ray optics of BL 10-2. (after Figure 3.1 in Reference [80])

4.1 Synchrotron Beamline

Scattering data were acquired at the Stanford Synchrotron Radiation Laboratory

(SSRL) in the rear hutch of beamline (BL) 10-2, a 30-pole wiggler beamline (1.45

Tesla, 12.85 cm device period). Its rear hutch is equipped with a 6-circle Huber

diffractometer and associated electronics. The 2-circle analyzer system built for these

experiments (and described in more detail below) is mounted on the 2θ arm. A data

collection program, SUPER [79], controls the relevant parameters for the scatter-

ing and absorption experiments including the monochromator energy, diffractometer

table motion and diffractometer angles. The data presented here were taken with

nominal ring energy and current of 3 GeV and 100 mA at beamfill which occurred

every 24 hours.

BL 10-2 was chosen for its high cut-off energy, large flux to the sample and large

hutch size. In order to attain the maximum range of k-space, the 2θ arm of the x-ray

diffractometer (at the end of which the analyzer crystal and linear detector arm are

mounted on a 2-circle goniometer) must be able to swing through nearly 180◦. Due

to energy resolution considerations, the total length of the 2θ arm with detector is

quite long requiring the large hutch size.

The photon path is shown in Figure 4.1. The broad spectrum of photons emerging

from the source pass through vertical and horizontal acceptance slits to reduce beam
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divergence before impinging on a Pt-coated bent cylindrical mirror with a cut-off

energy of 22 keV (corresponding to a reflectivity drop of 50%). The mirror focusses

the x-rays horizontally and vertically and results in approximately 0.5◦ increase in

the angle of the reflected beam relative to the plane of the storage ring electron orbit.

A water-cooled, non-dispersive, double crystal monochromator is tuned to select the

energies for the experiment. For the present work, Si(220) monochromator crystals

were used to pass energies near the Ge and Mo edges at 11 and 20 keV. (Si(220)

crystals were chosen for the improved energy resolution over Si(111) crystals. The

disadvantage is the increased power loading of the first crystal due to the higher inci-

dent angle.) The second monochromator crystal was slightly detuned—rotated out

of parallel alignment with the first crystal—to reject higher-order harmonic reflec-

tions with minor loss of intensity. The resulting monochromatic x-rays enter the

experimental hutch.

4.2 X-ray Scattering Setup

In the experimental hutch, the focussed beam of x-rays from the wiggler passed

through slits as shown in Figure 4.2 to define the beam footprint on the sample.

A piece of Kapton film positioned at an angle of 45◦ to the incident beam reflected

a tiny fraction of the x-rays into a photomultiplier tube (located at Io in Figure 4.2)

to monitor the incident intensity before the beam reached the sample mounted in

the center of the Huber 6-circle diffractometer. Figure 4.3 illustrates the angular

relationships between the incident beam, scattered beam and scattering vector.

Scattered intensity was collected as a function of the magnitude of the scattering

vector, |k̄| (in general, written as k in this work). This was achieved by symmetric
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Figure 4.2: The experimental optics: Focussed and defined beam strikes the transmis-
sion sample in the center of the diffractometer and is scattered onto a bent graphite
analyzer crystal resulting in dispersion of scattered intensity along the position sen-
sitive detector.
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Figure 4.3: The transmission scattering geometry used in this work. The scattering
vector, k̄, lies in the plane of the sample.
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scans using the φ-circle (acting as θ) and the 2θ-circle of the diffractometer. The

other angles were not employed since there is no crystallographic reason to orient

the amorphous sample in a particular direction with respect to the incident beam.1

The scattered radiation was Bragg-reflected from a bent graphite analyzer crystal to

disperse it along a linear position sensitive detector (PSD).

The flight path to the sample was evacuated, and the sample was mounted in

a “can” filled with He to reduce air scatter. The analyzer crystal can and flight

path from the analyzer to the PSD were also He-filled; however, it was not practical

to mount a He-filled flight path from sample to analyzer crystal. Scatter slits were

mounted in front of the PSD, and an aluminum horizontal scatter shield was placed

just above the transmitted beam to absorb any air-scattered photons that might find

their way to the analyzer crystal.

4.2.1 Analyzer Scattering Geometry

The analyzer geometry used in this experiment, the von Hámos geometry [81], takes

advantage of the dispersive parafocussing properties of a mosaic crystal such as

graphite. The mosaic spread of the graphite crystal (FWHM value of ωm = 0.3◦

for the analyzer used in this work) provides a bandpass large enough at the ener-

gies used that both elastic and inelastic scattering can be detected simultaneously.

At the Mo edge, the bandpass is nominally 1100 eV; at the Ge edge, 340 eV. The

ideal parafocussing geometry is illustrated in Figure 4.4 for a sample acting as a point

source. Different wavelengths of radiation are dispersed by the graphite analyzer crys-

tal according to Bragg’s Law to different positions on the detector. These focal points

1It is not always the case, however, that amorphous samples have the same average structure in
all directions as Mike Regan [3, 77] illustrated in his work on phase-separation in amorphous films.
Particularly in deposited films, anisotropy can be present in the growth direction.
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Figure 4.4: Dispersive parafocussing by a mosaic crystal analyzer for a point source
of x-rays at the sample position. This ideal parafocussing geometry requires a 1:1
magnification where F1 is the focal length and rR is the radius of the Rowland circle
for radiation of wavelength λo. Different wavelengths of radiation are dispersed to
different focal points.

of the meridional focussing fall along the curve delineated by sweeping out a circle

centered at the graphite analyzer with radius equal to the focal length, F1. The actual

scattering geometry differs from the ideal geometry in that the crystal used in this

work does not lie completely on the Rowland circle which results in some meridional

focussing error. The crystal is instead bent to focus radiation in the sagittal plane

which results in higher count rates than a flat analyzer crystal. This is illustrated in

Figure 4.5.

4.2.2 Analyzer

Different wavelengths (energies) of radiation Bragg-reflect at different angles from a

set of planes with a given d-spacing according to Bragg’s Law,

nλ = 2dhkl sin(θB) where λ =
hc

E
. (4.1)
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Figure 4.5: Dispersion of scattered radiation by the graphite analyzer crystal. The
upper schematic is a side view of a scattering plane. It illustrates the meridional
focussing of different wavelengths of radiation to different positions on the detector.
The lower schematic is a top view looking down on the experiment, and it illustrates
the sagittal focussing provided by the variable crystal bend which allows the collection
of a range of scattering planes. Note that there will be some meridional focussing
error since the crystal is not bent to lie on the Rowland circle.
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Thus, an analyzer crystal, or exit-beam monochromator, can be used to disperse

scattered intensity as a function of wavelength. (See Figure 4.5.) A linear PSD

placed downstream of the analyzer records the scattered intensity. Position along the

PSD corresponds to the energy of the x-rays as a result of the dispersion of scattered

radiation by the analyzer crystal.

Highly oriented pyrolytic graphite (HOPG) has been used in high-flux x-ray

monochromators and analyzers for decades [82]. Ice and Sparks [83] described a

fixed-radius bent graphite analyzer for successfully resolving inelastic background.

More recently, Freund, Munkholm and Brennan [84] developed and characterized a

variable-curvature bent graphite analyzer. We have used this analyzer as a dispersive

exit-beam monochromator to collect anomalous scattering data.

HOPG is comprised of crystallites having relatively well-aligned c-axes (out-of-

plane) and randomly oriented a-axes. In one dimension, therefore, HOPG is a non-

perfect single crystal with “mosaic blocks” in a range of orientations defined by the

mosaic spread in degrees. The mosaic quality of graphite allows a larger bandwidth

of radiation to pass than would a perfect crystal so that greater count rates may be

obtained from amorphous samples. For the analyzer and energies used, the full width

at half max (FWHM) of the mosaic spread is about 0.3◦, and the peak reflectivities

are 45 − 55%. The lower peak reflectivity of the mosaic crystal in comparison to a

single crystal is more than compensated by the increased integrated peak reflectivity.

The combination of a focussing analyzer and linear detector has been used success-

fully in the past to obtain good energy resolution and low background in diffuse x-ray

scattering experiments [83, 85]. Previously, focussing analyzers have been created by

hot-pressing thick sheets of HOPG into molds to a fixed radius of curvature. The

bent graphite analyzer used in the present work has variable curvature allowing it to



CHAPTER 4. EXPERIMENTAL PROCEDURES 67

curvature-adjusting mechanism

parallel machined grooves

mount
stem

HOPG sheet
on spring steel

Figure 4.6: Schematic of the bent graphite analyzer.

be bent to a minimum radius of 10 cm. This freedom gives a distinct advantage in an

experiment involving data taken below different absorption edges. Since the proper

radius of curvature is R = F1 sin θB, the sagittal focus can readily be adjusted for

different energy photons scattering from the graphite analyzer. The analyzer was con-

structed by cleaving a thin (200 µm) sheet of HOPG and affixing it to a spring steel

plate. Parallel grooves were machined into the top of the HOPG to allow the sheet

to be bent without cracking the HOPG. The spring steel plate was mounted atop

two supports. By adjusting the distance between the supports via two screws, the

plate can be bent to approximate a parabolic cylinder with the desired focal length.

Figure 4.6 illustrates the bending mechanism.

The bent analyzer is rotated to Bragg-reflect the elastically scattered radiation

near the center of the PSD. By adjusting the bending mechanism, the focal point is

set at the PSD using visible light through a pinhole at the center of the diffractometer.

The graphite (002) reflection was used for data taken at both the Ge and Mo edges.

(The original intention was to use the (004) reflection for the Mo edge data to collect

the scattered intensity over a greater solid angle; however, in addition to the low
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elastic intensity passed by the graphite (004) planes, the Ge fluorescence was passed

by the (002) planes resulting in a large peak in close proximity to the elastic peak.)

For experiments that are not limited by photon flux, narrower bandpass analyzers

can be used. We did initially consider a simple single crystal analyzer2 and a point

detector, but ultimately decided against it for several reasons: First, data can be

collected more efficiently from a range of scattering vectors in the plane of the trans-

mission sample using a wide bandpass, bent, mosaic crystal analyzer. Second, the

long arm upon which the detector is mounted (following the analyzer) may have some

flexure if not very carefully designed. Any mechanical bending would mean a risk of

the detector not measuring the peak of elastic scattering. In addition, any motion

of the analyzer crystal itself as a function of scattering angle would lead to errors in

the measured elastic intensity. Finally, a single crystal analyzer would require careful

readjustment of the Bragg angle at each incident energy below even a single absorp-

tion edge. For these reasons, a wide bandpass, focussing analyzer and linear detector

have proven a better choice for our experiments since the entire energy spectrum can

be monitored even if it shifts slightly in position on the linear detector as the incident

energy is changed by 5-100 eV or as the 2θ arm bends slightly.

4.2.3 Detector

The linear position sensitive detector (PSD) is a “jeu de jacquet” or “backgammon”

style detector [86]. It consists of an anode wire along the length of the detector

and a cathode plate divided into two half-cathodes electrically separated from each

other by a narrow saw-tooth-shaped insulating gap. The two half-cathodes thus form

a backgammon-board pattern giving the detector its name. The anode wire and

2Such a system is available on Beamline ID01 at the European Synchrotron Radiation Facility,
for example.
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cathode backplate are enclosed in a gas-filled chamber with a beryllium window to

allow photons to pass. Figure 4.7 is a schematic of the detector. A photon entering

the chamber ionizes the gas freeing electrons which accelerate toward the anode wire

ionizing more gas molecules along the way. The ionization cascade at the anode causes

an image charge on the half-cathodes at the position of the photoionization event.

The induced charge signal in each of the half-cathodes is measured individually as

Q1 and Q2. For a small saw-tooth pitch relative to the induced charge distribution,

the ratios of
(

Q1

Q1+Q2

)
and

(
Q2

Q1+Q2

)
are linearly proportional to the position along the

anode wire axis of the centroid of the induced charge distribution.

Q
2

Q
1

2
1

Be window

high voltage anode wire

insulating interfacehalf-cathodes

Figure 4.7: One-dimensional backgammon design for position-sensitive detection of
photons. Differences in charge signal from the two half-cathodes are used to locate
the photoionization event along the anode wire.

Because the scattered intensity in our experiment is passed through the bent

graphite analyzer crystal before reaching the detector, position along the length of

the detector corresponds to energy. The exact correspondence depends on the path

length from sample to detector, but it can easily be determined by using an incident

energy above the absorption edge to compare the position of the elastically scattered

and fluorescence peaks or simply scanning the incident energy and monitoring position

on the PSD. In this manner, both elastic and inelastic scattering are recorded and
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can be separated in the spectra obtained from the PSD.

The position of the elastic peak intensity on the PSD moved by as much as 1.0

mm during an individual scan through the entire 2θ range due to mechanical bending.

Because of the method of elastic peak integration described below (Section 4.4), this

slight motion of the PSD did not effect the final data.

The linear PSD (Reflection Imaging, Inc.) has a 2-inch-long window, 90 µm

spatial resolution at 8.1 keV and a deadtime of 5 µs. The PSD chamber is sealed

with a counter gas of 90% xenon - 10% (proprietary) quenching gas at 4 atmospheres.

4.3 Incident and Detected Energy Resolutions and

Energy Dispersion

Because the experimental incident and detected energy resolutions are important for

later data interpretation, the various energy widths in the scattering experiments are

considered here. It is shown that the incident energy resolution is considerably smaller

than the detected energy resolution at the PSD due to geometric considerations in

the experimental optics; however, the detected energy resolutions are sufficient for

separating the elastic and inelastic resonant Raman scattering at the experimental

energies.

4.3.1 Incident Energy Widths

For photons of a single energy at a given scattering angle, the magnitude of the

scattering vector |k̄| is constant; however, the angular acceptance of the analyzer

crystal defines a range of k-vector directions, k̂, that are probed in the sample (see

Figure 4.8). For an isotropic, amorphous sample, this range of directions does not
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Figure 4.8: The acceptance of the analyzer crystal defines bounds for the range of
directions that the scattering vector, k̄, can take. k̄i and k̄s are the incident and
scattered wave vectors.
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Figure 4.9: The divergence of x-rays exiting the monochromator determines the range
of incident energies of the x-rays striking the sample which, in turn, establish the range
of magnitude that the scattering vector takes.

result in a loss of information due to the spherical symmetry of the atomic structure.

For the sample and wavelengths probed, the assumption of isotropy is valid.

On the other hand, a spread in the incident energy of the photons leads to a

variation in the magnitudes of the k-vectors probed (see Figure 4.9), and this gives a

broadening or “smearing out” of the measured intensity versus |k̄| data. The spread

in scattering vector magnitudes correspond to an energy width as follows:

dk =
4π

hc
sin θ dE

dk

k
=
dE

E
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Therefore, since k varies with sin θ, ∆k also varies with sin θ.

The maximum spread of energies arriving at the sample is equal to that pass-

ing the monochromator. The angular divergence of the radiation is first defined

by acceptance slits upstream of the Pt-coated mirror. The focussing action of the

mirror then causes a coupling of the horizontal and vertical divergences before the

beam reaches the monochromator. The intrinsic width of a Bragg reflection from

the Si(220) monochromator crystals, the Darwin width, will be significantly smaller

than the vertical divergence arriving at the monochromator and, since the diver-

gences add in quadrature, the divergence due to the Darwin width can be ignored.

(ωD = 12.5 µrad at the Mo edge and 23.3 µrad at the Ge edge.) The energy spread

of the beam incident upon the sample is calculated below.

Bragg’s law can be differentiated to give an expression for energy resolution of the

monochromator

λ = 2d sin θ

∆λ

λ
= ∆θmono cot θ = −∆E

E

where ∆θmono is the vertical divergence of the beam at the monochromator and θ is

the Bragg angle on the monochromator crystals.

For the bent-cylindrical Pt-coated mirror, the geometry of the mirror (see Fig-

ure 4.10) introduces a divergence given by

∆θfocus ≈
2θmirror∆θ

2
horz

8θ2mirror + ∆θ2horz

where ∆θhorz is the horizontal acceptance of the mirror and θmirror is the angle of

incidence on the mirror [87]. This vertical divergence is combined in quadrature

with the vertical acceptance of the mirror to yield the vertical divergence at the
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monochromator:

∆θ2mono = ∆θ2vert + ∆θ2focus

The vertical and horizontal acceptances are set by slits upstream of the mirror. For

our experiment, ∆θmono = 245 µrad.3

The resultant energy widths for the Mo and Ge edges are

∆EMoinc = 30.8 eV and ∆EGeinc = 8.9 eV.

side view of mirror

θ
∆θfocus

focus

mirror

cylindrical Pt mirror

∆θhorz

Figure 4.10: The x-ray optics determining the vertical divergence at the BL 10-2
monochromator.

4.3.2 Factors Affecting Width of Detected Peaks

Due to the scattering geometries utilized in this experiment, there are a number of fac-

tors affecting the width of the elastic and inelastic peaks eventually measured at the

linear detector. In general for independent sources of uncertainty with Gaussian dis-

tributions, the total uncertainty is the square root of the independent errors summed

3Unfortunately, there is no simple means of determining ∆θmono from the nominal mirror slit
settings on BL 10-2, so the experimental absorption edge width of Mo was compared to a measure-
ment not limited by energy resolution (courtesy of Dr. Graham George, SSRL). The incident energy
width was deconvolved to calculate ∆θmono.
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in quadrature. Assuming such uncertainties, we can write the energy resolution as

∆E =

(∑
i

∆E2
i

) 1
2

where ∆Ei represents the uncertainty from a single source. Each of the relevant

contributions is discussed below frequently following the more thorough analyses of

Ice and Sparks [83].

Energy width of incident radiation

The energy widths of the incident radiation for the Mo and Ge edges are given in the

previous section.

Intrinsic width from analyzer crystal

Variation in d-spacing of the graphite (002) planes gives rise to an intrinsic energy

resolution [84] of ∆E
E

= 1.94x10−4 due to the range of k-vector magnitudes which

satisfy the Bragg condition for a single incident energy. For the edges of interest, this

yields

∆EMointr = 3.88 eV and ∆EGeintr = 2.15 eV.

Error due to extended source size

The graphite crystal sees scattering from the portion of the sample illuminated by

x-rays. In order to obtain reasonable count rates necessary to carry out anomalous

scattering experiments in the lifetime of a graduate student, the rectangular slits

upstream of the sample defined a beam size of 1.0 mm horizontal x 1.0 mm vertical.

These slits establish the effective source size seen by the graphite analyzer. In the
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parafocussing geometry, the effective source is imaged so that each point on the

image is a focal point. As long as the convergence angle, β = (source height / focal

length), is less than the mosaic width, the entire source can be imaged in a single

energy of radiation, and no geometric correction for partial imaging is needed. (In

this particular case, β = 0.066◦ which is much less than the FWHM mosaic width,

ωm = 0.3◦.) The image of the beam on the sample elongates as the scattering angle

θB increases. This, in turn, results in a range of foci falling in a plane (for a planar

sample) which may not be coincident—or, in general, even parallel—with the wire

of the linear detector depending on whether the focus is in front of or behind the

detector and depending on the size of the beam on the sample. The intersection

of the detector wire with the first-converging, then-diverging rays which form the

image gives a spatial distribution of radiation on the detector – a broadening of the

peak for a single incident energy. This is illustrated in Figure 4.11. For a detector

placed perpendicular to the second focal distance and at a distance from the graphite

analyzer, F2 = F1, the focal length for parafocussing, this broadening is given by

D =
∆y

cos θ

∆θa
2

where ∆θa, the vertical angular range accepted by the analyzer, is given by

∆θa
2

= sin−1


 lgr2 sin θgr√

F 2
1 +

(
lgr

2

)2 − lgrF1 cos θgr


 ,

where ∆y is the vertical slit height, θ is half of the scattering angle in the sample,

lgr is the length of the graphite crystal, F1 is the focal length for parafocussing and

θgr is the Bragg angle for the graphite (002) reflection in the analyzer crystal. For
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Figure 4.11: An (exaggerated) extended source is imaged by parafocussing. Because
the graphite analyzer is actually a flat crystal, there are additional focussing errors
for a single energy from positions off the Rowland circle.

the transmission scattering geometry, the largest source size occurs at high scattering

angles.

The peak broadening is DMo = 0.0055 mm and DGe = 0.0099 mm at the maxi-

mum scattering angle. These values correspond to negligible maximum energy broad-

ening of ∆EMosource = 0.76 eV and ∆EGesource = 0.42 eV (using experimentally measured

dispersion values).

Additional sources of error

Other errors that affect energy resolution of the graphite crystal analyzer are focussing

errors, penetration of the x-rays into the crystal, surface roughness of the crystal and

some mixing of sagittal and meridional focussing due to the bent-cylinder geometry

(in the same manner as that resulting from the bent Pt-coated mirror upstream of the

sample). For a detector anode wire at the focal point for parafocussing, additional

errors due to parallax should be considered [83]. Finally, the linear resolution of the

detector must be taken into account (in this case, 90 µm).
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In fact, all of the energy widths due to the sources of error described above in

this section are significantly smaller than the effect (described below) of placing the

linear detector in front of the meridional focus.

4.3.3 Effect of Defocussing on Detected Energy Resolution

Ideally, one chooses a long focal length, F1, for good separation of energies on the

detector and places the detector at the focal point for the incident (and elastically

scattered) energy. For the present experiments, the experimental hutch size for BL

10-2 limited the range of motion for a long F1 = F2, and a compromise was made:

F1 was chosen for reasonable dispersion, and F2 < F1 was chosen to retain maximum

angular range of the 2θ arm of the Huber diffractometer (necessary to obtain the

full range of k-space available for any given energy). Since F2 < F1, the detector

was located at a defocussed position, and the parafocussing geometry led to a finite

spot size for a detector placed off the focal plane. The resulting geometry is shown

in Figure 4.12. Shown schematically are the combined effects of defocussing and

extended source size (greatly exaggerated for purposes of illustration).

Theoretical dispersion and defocussing

The dispersion at the focus for parafocussing geometry is given by

N =
∆E

F1∆(2θgr)
=
E cot θgr

2 F1

where E is the incident energy, θgr is the Bragg angle on the analyzer crystal, F1 is

the meridional focal length and ∆(2θgr) is the angular dispersion of the energy by

the analyzer. Accounting for geometry, Ndetector = N focus (F1/F2). For F1 = 85.1 cm
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Figure 4.12: The effects of positioning the linear detector at a defocussed position
and extended source size. The solid lines on the detector indicate schematically the
width of the peak resulting from scattering of two wavelengths of x-rays.

and F2 = 68.6 cm, the theoretical dispersions are

NMo
theor = 157.2 eV/mm and NGe

theor = 48.0 eV/mm.

Since the detector was not at the focus, the defocussed spot diameter must be

found geometrically using the mosaic width to define the convergence cone:

s = 2(F1 − F2) tan
ωm
2

which gives s = 0.86 mm corresponding to

∆EMotheor = 120 eV and ∆EGetheor = 37 eV.
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Measured peak width and dispersion with defocussing

The nominal experimental dispersion was measured from PSD spectra at energies

above the K-shell absorption edge (or near enough to the edge to excite resonant

Raman inelastic scattering). Note that since the curve of foci for different wavelengths

is approximated by a line (the detector wire), the true dispersion varies slightly over

the wire. At the Mo and Ge edges, the following dispersion values were measured:

NMo
expm = 151.9 eV/mm and NGe

expm = 42.6 eV/mm

These agreed well with those calculated above.

FWHM values of the elastically scattered peak were

∆EMoexpm = 130 eV and ∆EGeexpm = 42 eV

The measured values agreed fairly well with those calculated above indicating that

although the sagittal focus was at the detector, the defocussing in the meridional

direction dominated the physical spread for a given energy.

The peak widths and dispersions attained were sufficient for separating the elas-

tic scattering and inelastic resonant Raman scattering in this experiment although

simultaneous fits were needed at energies near the absorption edges due to slight peak

overlap. These procedures are discussed in Chapter 5.

4.4 Scattering Data Collection

Scattering data from the sample nearest the MoGe3 composition (Sample 2 at 26.8%

Mo) were collected over the following k-ranges: k = 1 – 10 Å
−1

at energies below the
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Ge edge and k = 1.6 – 18 Å
−1

at energies below the Mo edge. The lower and upper

k values were set by the minimum and maximum attainable 2θ angles. These angles

were limited by the presence of components (evacuated flight path, photomultiplier

tube, slits and beamstop) up- and down-stream of the sample.

Because amorphous samples are weak scatterers even in the high intensity of

synchrotron radiation, k-space scans require long counting times. This experimental

setup has additional losses of signal due to the analyzer crystal and the limited effi-

ciency of the linear detector at the Mo edge energies. In order to reduce the effects of

beam motion, beam fills and monochromator heating while still obtaining sufficient

counts for good statistics, several scans were taken over the same k-space range for

a given energy. Near the Mo edge at 20 keV, the incident count rate on the sample

was particularly low because the wiggler critical energy is near 9 keV. (BL 10-2 has

a mirror cut-off energy of 22 keV.) There are simply less photons available at these

higher energies and this fact, coupled with the poor detector efficiency near 20 keV,

led to much longer data collection times near the Mo edge than near the Ge edge.

The limited lifetime of the electrons orbitting in the ring requires that data be

taken in constant signal mode. Often, synchrotron data are acquired in constant

time mode or constant dose mode by fixing the count time or monitor counts for

each point in k space; however, by instead fixing the total detected counts at each

k value (constant signal mode), the counting statistics are uniform over the entire

k-range explored, and the effects of decaying current in the storage ring (and thus

decaying incident counts per second) are eliminated.4 Intensity data were analyzed

in units of [detected counts / monitor counts] vs. k. Even for the highest signal

4A further improvement suggested for future studies is the use of a single channel analyzer set
to exclude most of the Kβ resonant Raman scattering for energies near the absorption edge. Thus,
the detected elastically-scattered counts are uniform over the k-range explored.
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count rates, there were sufficient monitor counts so that statistical fluctuation in the

monitor counts was negligible. Obtaining sufficient signal-to-noise at each energy is

a concern since the final “signal” to be analyzed in AXS is often a difference between

two similarly-valued I versus k scans.

Beamfills, to refill the decaying current in the synchrotron storage ring, occurred

once a day for the data presented here. They present a problem since the thermal

loading on the monochromator (upstream of the experimental hutch) varies during

a fill and the precise beam position on the monochromator can change between fills.

Thus, a scan interrupted by a beamfill must usually be discarded.

Thermal distortion of the monochromator, due to the large flux density of photons

impinging on the first crystal, was another experimental problem encountered. This

can lead to gradual small changes in the incident energy as a function of time and

beam fill. To compensate, the position of the absorption edge nearest the incident

energy at which data was to be acquired was checked between every scan of intensity

versus k (symmetric θ − 2θ scans). Since the edge positions in energy are constant

for a given sample, any shift of the edge energy indicated a shift in the incident

energy which was then adjusted. These incident energy checks were carried out in a

procedure similar to the more careful absorption measurements described below. The

monochromator energy was rapidly scanned through the edge energy (11.103 keV for

the Ge edge and 20.000 keV for the Mo edge) while recording the transmitted intensity.

A routine written into SUPER takes the second derivative of the intensity vs. energy

data to determine the nominal edge energy from the zero-crossing.5 A single command

allows the user to move the monochromator to that energy; subsequent commands

move the energy a fixed number of electron volts below or above the nominal edge

5The algorithms for determining derivatives are given by Savitzky and Golay [88]. Corrections
have been published by J. Steiner et al. [89] and by H.H. Madden [90].
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energy.

Linearly interpolating to obtain the zero-crossing of the second derivative rather

than simply looking at the maximum of the first derivative ensures that the energy

increments of the edge determination algorithm are significantly smaller than the

limiting energy step, dE, of the monochromator stepper motor. The limiting dE of

the monochromator at, for example, the Ge edge energy of 11103 eV can be calculated

from the steps/degree for the monochromator motor, 8000 steps/degree on BL 10-2.

For Si (220) monochromator crystals, dSi(220) = 1.92011 Å giving θB = 16.9048806◦.

One monochromator step corresponds to dθ = 1◦/8000, and the resulting dE is 0.080

eV. At the Mo edge, dE is significantly larger at 0.95 eV. This step size is a good

reason not to work at energies too near the absorption edge.

Finally, for removal of systematic error via differences below the absorption edges

in the sample, all data must be taken during the same beamtime for identical exper-

imental conditions. A large and contiguous amount of experimental time at SSRL

was thus necessary to collect the data.

4.5 X-ray Absorption Data Collection

The x-ray absorption as a function of incident energy provides information vital to

this work: the anomalous scattering factors. To collect these data, the same sample

used for scattering data was simply rotated to θ = 0◦ so that the x-rays hit the

sample at normal incidence. The χ-circle of the diffractometer was positioned so

that the plane of the circle was parallel to the incident beam—out of the paths of

the incident, transmitted and, for scattering experiments, elastically scattered beams.

SSRL-standard 6-inch ion chambers filled with nitrogen were mounted on either side
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Figure 4.13: Schematic of the equipment for absorption data collection.

of the χ-circle to monitor the incident and transmitted intensities as the x-rays passed

through the sample. See Figure 4.13. Scans of incident energy were taken through

both the Ge and Mo K absorption edges of all samples. The absorption is normally

plotted as incident energy, E, versus ln( Io
I
) where Io and I are the intensities before

and after the sample.

As discussed in Chapter 2, the same sample must be used in absorption mea-

surements to obtains ASFs as was used in the scattering measurements (rather than

theoretical ASFs or measured ASFs from another sample) because of chemical shifts

in the edge energy and shape of the absorption spectrum. In addition, we have found

that it is vital that these data be collected during the same experimental run as the

scattering data. In that way, the measured f ′′ as a function of energy are represen-

tative of the experimental incident energy resolution, and the ASF values inserted
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Figure 4.14: Schematic of f ′ for two different incident energy resolutions. (Values
given are σ).

in the matrix equation to solve for the PSFs are properly weighted over the distri-

bution of incident energies. Consider, for example, x-ray absorption scans collected

with σ = 3.8 eV versus σ = 9 eV where σ is the Gaussian standard deviation of

the incident energy width. The resulting f ′ curves are shown schematically in Fig-

ure 4.14. First, the K edge energy determined by the inflection point is 2 eV lower in

the lower resolution measurement. Second, measurements taken at the same energy

on the absolute scale give different f ′ values: At 11098 eV, the higher resolution mea-

surement gives f ′ = −8.49 electrons while the lower resolution measurement gives

f ′ = −8.22 electrons. Therefore, it is very important that the same incident energy

resolution be used for collection of both the scattering and x-ray absorption data.



Chapter 5

Data Analysis

Scattered intensity versus scattering vector magnitude, the raw data from an amor-

phous material, do not immediately reveal physically meaningful information about

the system. In order to extract real-space results in the form of distribution func-

tions, a significant amount of data analysis must be carried out. The data analysis

procedures are particularly important to the partial (and differential) distribution

functions in which two large-valued functions are subtracted to obtain a small differ-

ence containing the desired structural information.

The data analysis steps are crucial to obtaining quality distribution functions since

it is here that the data are corrected and normalized. A brief roadmap of the steps

taken in moving from raw data to a real-space distribution function follows:

• Determine sample constants (composition, thickness, anomalous scattering fac-

tors and µt absorption coefficients).

• Extract the elastic scattering from raw data.

85
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• Correct for experimental effects (detector non-linearity, absorption, polariza-

tion, multiple scattering and substrate scattering, if necessary).

• Normalize the corrected, elastic scattering to an absolute scale to calculate

structure factors.

• Fourier transform structure factors to obtain real-space distribution functions.

This chapter describes each of these steps, the impact of experimental limitations

on the final data and the damping function applied in the Fourier transform to real

space. Finally, a description is given of the computer code used to carry out these

critical steps.

5.1 Sample Constants

There are several quantities intrinsic to the samples probed which must be determined

and entered into the analysis. These include the exact sample composition and thick-

ness as well as the absorption coefficients (µ) and anomalous scattering factors or

ASFs (f ′, f ′′) at each energy probed. These quantities can be obtained by fitting

absorption data with calculated atomic absorption curves and assuming an average

sample density. Each sample constant is discussed in more detail below.

5.1.1 Composition

Preliminary measurements of sample composition by electron probe microanalysis are

described in Chapter 3. The edge jump method of determining sample composition

in transmission synchrotron x-ray experiments (Wilson [78]) samples the entire film

thickness and is, therefore, a better technique for composition determination. Using
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the edge jump method, the x-ray absorption through an absorption edge is measured

via ion chambers recording the intensities before and after the sample as incident

photon energy is scanned. The transmitted intensity I can be written as a function

of the incident intensity Io, the linear absorption coefficient µ and the sample thickness

t through which the x-rays have passed:

I = Io exp(−µt) (5.1)

More explicitly, we can sum over each element in the sample and add a detector

function, C(E), to describe the effect of slight variations in detector response between

the two ion chambers:

I = Io C(E) exp

(
−

∑
α

σαmα(ρt)α

)
(5.2)

where σα is the absorption cross-section [ cm
2

g
], (ρt)α is the areal number density [ 1

cm2 ]

or the number of α atoms in a unit area of sample, and mα is the atomic mass of

atom α. Rewriting the expression yields

ln
(
Io
I

)
=

∑
α

σαmα(ρt)α + C ′(E). (5.3)

The detector function, C(E) is a slowly varying function of x-ray energy, so C ′(E) =

ln (C(E)) is an even more slowly varying function of energy.

Each sharp jump in the absorption as a function of energy is due only to the

absorption cross-section σ of the element corresponding to the edge in question since

the other σα are smoothly varying with energy. Thus, the detector function and

absorption from other edges can be combined in a background function, B(E), and
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the measured intensities near an edge can be written as

ln
(
Io
I

)
= σαmα(ρt)α +B(E) (5.4)

where the background function is fit well by the functional form

B(E) =
3∑
n=0

CnE
−n. (5.5)

From the areal densities of each atom, ραt, the overall sample composition is given

by

xMo =
ρMot

ρMot+ ρGet
(5.6)

(±1% based on application of the method to molecular liquids). constants for each

sample and each edge, the absorption edge data were fit simultaneously in the regions

outside the edge region (100 eV below to 500 eV above the Ge edge and 200 eV below

to 500 eV above the Mo edge). The slowly varying background B(E) was fit and

removed, and the absorption data were normalized to theoretical values for the free

atom absorption cross-section from the Cromer-Liberman calculations [46, 47, 48].

Fitting far above and below the edge ensured that the sample-specific EXAFS and

near edge structure-induced variations in absorption were not included in the fit.

To remove B(E) and to normalize the experimental data to the Cromer-Liberman

values far from the edge, the program fppfit.m was used (Matlab version, Hope Ishii;

original FORTRAN version FPPFIT.FOR, Karl Ludwig with modifications by Lane

Wilson). Section 1 of Appendix A describes the algorithms involved. fppfit.m was

modified to also read in Kissel’s values [35] (with bound-bound transitions removed
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and absorption edge energies shifted to experimental values) for fitting far from the

edge. The Cromer-Liberman values provide a better fit to the experimental data taken

at the Ge edge, and the Kissel and Cromer-Liberman values give similar quality fits

at the Mo edge. Thus, the tried-and-true Cromer-Liberman values were used for all

calculations.

Table 5.1 contains the sample compositions determined by preliminary electron

microprobe measurements as well as by the edge jump method. The discrepancies

between composition values from the two methods may arise from several sources.

Although the nominal error in composition from electron microprobe is about 2%, the

accuracy is worse because the software program used for analysis calculates the density

of the sample based on a weighted average of the crystalline elemental densities. As

a result, the presumed Mo density is too high, and we expect Mo composition values

from this technique to be too low. Indeed, they are lower than the values obtained

by the absorption edge jump method. In addition, electron microprobe samples only

the top micron or so of a 6-7 µm thick film, whereas the x-ray edge method samples

the entire film.

Table 5.1: Initial and final measurements of composition and thickness. Compositions
were determined by electron microprobe and x-ray edge jump measurements and
thicknesses, by profilometer and by edge jump.

sample at% Mo ±2% at% Mo ±1% tprof ± 0.5 (µm) tedge (µm)
(µprobe) (edge)

1 20.52 22.59 6.6 5.11
2 24.04 26.87 6.5 6.62
3 30.10 33.11 6.9 8.42

Since the edge jump values are consistantly higher than the microprobe values,

the question of uniformity of the film composition profile arises. Due to the changing
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shape profiles of the targets as they are sputtered away, the relative amounts of

the two elements may change slightly during sputter deposition. All targets were

presputtered to remove any surface contamination and to initiate sputtering grooves.

More important than target shape profile, the target thins as sputtering progresses

which would tend to increase the magnetic field and, thus, the flux of Ar+ ions on

the target. The sputtering power, however, was held constant, and neither of these

considerations were expected to have a significant effect on the sample composition.

Microprobe results indicates that oxygen did not account for more than 1 at.% of the

overall composition.

In fact, an advantage of using wide-angle x-ray scattering is that even with a

sample of overall composition slightly off that of the MoGe3 phase endpoint (and

assuming the MoGe3 composition is a homogeneous phase as prior work indicates),

the scattering signal from the potential second phase (a-Ge) is negligible. Sample 2

at ∼ 27 at% Mo is nearest to the 25 at% Mo of the MoGe3 phase. Due to slow x-ray

scattering data collection rates for amorphous samples, particularly at the Mo edge,

Sample 2 alone is used for all of the analysis in the chapters that follow.

5.1.2 Thickness

Once the areal densities were determined by the edge jump method described above,

the thicknesses could be calculated by assuming an average density for the film:

t =
ρMot+ ρGet

ρave
(5.7)

The average amorphous sample density was assumed to be 95% of the weighted aver-

age of the number densities for crystalline Ge and α-MoGe2 [91]. The assumption
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that the amorphous density is 95% of the linear combination of the crystalline den-

sities is widely used and has proven to be reasonable. The resulting distribution

functions in Chapter 6 show physically reasonable behavior. At distances less than

the first nearest neighbor distance, the neighboring atoms repel each other, and the

distribution functions should be, and are, essentially zero. An average density too

high or too low would yield a positive or negative slope in the low-r region below

the first nearest neighbor peak. The average density can be obtained via a fit to the

low-r region of the reduced distribution functions, 4πr[ρ(r) − ρo], following all data

analysis. This method was used to validate the densities initially chosen. Table 5.1

contains the thicknesses of the films determined by profilometer and by edge jump

measurements. The thicknesses measured by these two methods differ, sometimes

significantly, because the preliminary profilometer measurement was carried out on

a test piece positioned at a specific radial position on the sample table correspond-

ing to the center of the silicon substrate while the actual sample on which all x-ray

measurements were made may have been as much as 1.25 inches from that radial

position. Deposition rates varied by 18% radially over one inch near the center of the

substrates. Thicknesses from edge jump measurements (estimated accurate to within

a few percent) were used in the data analysis.

5.1.3 Anomalous Scattering Factors

As discussed in Chapter 2, at energies near the absorption edge of an atom in the

sample, the free atom scattering factor, fo, must be modified to include real and imag-

inary correction terms, the anomalous scattering factors (ASFs). By fitting the edge

jumps to Cromer-Liberman theoretical values far above and below the α atom’s K

absorption edge energy and extracting the areal densities, we obtained the absorption
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Table 5.2: Experimental anomalous scattering factors (ASFs) for the energies probed
obtained by scaling the absorption data to theoretical values far from the edge and
applying a Kramers-Krönig transform. ASFs are given in electron units.

Energy Ge f ′ Ge f ′′ Mo f ′ Mo f ′′

11.003 keV -4.3212 0.5096 -0.4749 1.5807
11.088 keV -6.5367 0.5678 -0.4875 1.5592
11.098 keV -8.0797 0.8526 -0.4890 1.5567
19.900 keV 0.2739 1.4411 -4.6910 0.5523
19.995 keV 0.2764 1.4291 -7.5026 1.6963

cross-section, σα, in the region of the absorption edge. The absorption cross-section

is related to the imaginary ASF, f ′′, by the optical theorem (See Equation 2.28.) A

Kramers-Krönig transform of f ′′ yields the real ASF, f ′, and the full atomic scattering

factor is then

f = fo + f ′ + if ′′

as described in Chapter 2, Section 2.1.3. The ASF values used in this work are given

in Table 5.2. The Kramers-Krönig transform was carried out using a second pro-

gram, kramkron.m (Matlab version, Sean Brennan; original FORTRAN program

FPCL.FOR, Karl Ludwig [30]). This program evaluates the integral via the method

described by Hoyt and coworkers [41]. Section 2 of Appendix A describes the algo-

rithm for implementing the transform. Using this technique, uncertainties in absolute

f ′ values due to extrapolation on the energy axis are of the order of 0.2 electrons.

5.1.4 Absorption Coefficient

The µt product is necessary to correct for the effects of absorption of incident and

scattered x-rays in the sample. A simple method for determining the µt constant is
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Table 5.3: Sample 2 µt constants obtained by θ-scans compared with those obtained
by back-calculating µ from the edge jump and assuming theoretical amorphous den-
sities. cabs is the multiplicative absorption correction.

Sample 2 11.000 keV 19.900 keV 19.985 keV
(µt)exp [cm−1] 0.1887 0.1557 0.1634
(µt)calc [cm−1] 0.1874 0.1562 0.1654

difference in cabs at kmax 0.16% 0.08% 0.23%

to place the transmission sample in the x-ray beam and rock the sample in the beam

so that the beam pathlength varies as the angle is changed. The directly-transmitted

intensity is related to the incident intensity and the angle θ between the incident

beam vector and the surface normal by

I = Io exp−( µt
cos θ

) . (5.8)

Thus, a plot of ln( I
Io

) versus 1
cos θ

can be fit with a line of slope −µt. Fitting in

this manner removes the effects of differences in detector response and absorption by

the ambient gasses. θ-scans were carried out on the sample at a few representative

energies.

The linear absorption coefficient µ can also be determined from the imaginary

part of the scattering factor, f ′′. µ is related to f ′′ through the optical theorem:

µ =
∑
α

2 ραe
2hc

mec

f ′′α
E

[cm−1] (5.9)

Thus, from the f ′′ values (obtained from the full EXAFS measurements at each energy

of interest and the theoretical amorphous densities), the absorption coefficient can be

calculated. Absorption corrections using µt constants determined by this method



94 CHAPTER 5. DATA ANALYSIS

differ from those using µt constants extracted from θ scans by less than 0.5% at the

highest attainable k (where error would be greatest) and result in at most 0.1% error

in the intensity at high k. Table 5.3 contains the µt values from both methods at

select energies. Note that the correction is applied by multiplying it with the intensity

at each k value. As the correction is largest at high k where the intensity is smallest,

the potential overall effect is small. Since θ-scans were not carried out at every energy

of interest, the absorption coefficients used in the analysis are those obtained from

the f ′′ values assuming theoretical amorphous atomic densities.

5.2 Extraction of Elastic Scattering

With the appropriate sample constants in hand, the elastic portion of the x-ray scat-

tering can be extracted. The experimental removal of inelastic scattering, made pos-

sible by the diffracted-beam graphite analyzer and position sensitive detector (PSD),

has proven to be a tremendous improvement to the AXS technique. As discussed

in Chapter 2, there are two sources of inelastic scattering which must be excluded:

Compton and resonant Raman scattering.

The Compton scattering has a low, broad distribution in energy, and the total

intensity integrated over all energies increases with scattering angle. Section 2.2.2

discusses this process in more detail. In a typical AXS experiment, the Compton scat-

tering is calculated using parameterized values appropriately weighted for the sample

composition, corrected for absorption and subtracted from the total experimentally-

measured scattering. Detector sensitivity to different energies of Compton scattered

photons is usually assumed to be a constant. Errors resulting from this method

can impact the normalization, described later, of the RDFs and DDFs. The highly
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sensitive PPDFs are expected to be strongly effected by such errors.

Resonant Raman scattering appears in the spectra as well-defined peaks at con-

stant energy differences ∆E below the incident energy. As the incident energy

approaches the edge energy for an element in the sample, the resonant Raman scat-

tering evolves into the characteristic x-ray fluorescence for that element. In a typical

AXS experiment with very limited energy resolution, the Kβ resonant Raman and

elastic scattering intensities are both collected together as a single integrated inten-

sity, and the Kα resonant Raman scattering is recorded separately. The ratio of Kα

to Kβ fluorescence is then applied to calculate the expected Kβ resonant Raman con-

tribution which is subtracted from the measured intensity. See Section 2.2.1 for a

discussion of the resonant Raman scattering process.

By recording an energy spectrum (corresponding to position on the linear detector

wire) of sufficient energy resolution at each k-value, both Compton and resonant

Raman scattering have been excluded down to k ≈ 3 Å
−1

for energies near the Ge

K edge and k ≈ 5 Å
−1

near the Mo K edge. The raw intensity versus position

data were imported into Matlab, and the resonant Raman and elastic peaks were

simultaneously fit by Gaussians to select the boundaries for a 3.5σ peakwidth within

which the experimental data were integrated. It was determined that the resonant

Raman scattering does not contribute to the signal in this peakwidth. Since the

peak in Compton scattering shifts away from the elastic peak position in energy

(see Figure 2.5), the significant Compton contributions at high k were sufficiently far

away from the elastic peak that they were completely excluded. At k values for which

the Compton shift was less than the elastic peak width on the PSD, the Compton

intensity was small enough that we neglect it. (Even in data taken at energies just

above the absorption edge of the element of interest, the fluorescent and elastic peaks
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Figure 5.1: Signal versus position on the PSD (corresponding to energy of the
scattered radiation) for three incident energies below the Ge K absorption edge at

k = 8.5 Å
−1

. As the incident energy approaches the edge energy, the resonant Raman
peaks increase in intensity. Data are from Sample 2.
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can be distinguished; however, the detector response is strongly non-linear for such

high count rates. In addition, the sample would be absorbing more than it would be

scattering so that elastic count rates would be very low.) In this way, we exclude most

of the inelastic contributions from Compton and resonant Raman processes without

relying upon calculated values.

Examples of signal vs. position spectra from the PSD are shown in Figure 5.1.

The Kα and Kβ resonant Raman peaks are clearly visible at 5 and 15 eV below the Ge

K absorption edge. The low, broad Compton distribution is difficult to distinguish.

Note that the detector function, the transmission and detection efficiency of scattered

intensity by the analyzer crystal and PSD, is not a constant as a function of energy.

It is a strongly peaked function of the energy of the scattered x-rays with the peak

position determined by the scattering angle of the analyzer crystal. As a result,

inelastic x-ray intensity is strongly and increasingly damped as the energy decreases

below the incident x-ray energy. This is evident in the Kβ:Kα ratio in Figure 5.1

which is much larger than the 0.15 value expected.

5.3 Corrections

In general, the elastic scattering must be corrected for several experimental effects:

• detector non-linearity

• substrate scattering, when relevant

• absorption

• polarization

• multiple scattering
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Figure 5.2: Comparison of data before (dashed line) and after (solid line) corrections
have been applied for Sample 2 (27 at% Mo).

These corrections are discussed separately below. The combined effect of corrections

is illustrated in Figure 5.2 for elastic scattering [detected counts / monitor counts]

from Sample 2 (27 at% Mo) collected below the Ge K absorption edge.

5.3.1 Detector Non-Linearity

When the measured count rate is not proportional to the incident count rate, the

detector response is non-linear, and the detector is said to have a deadtime. This rate

limitation is largely due to the shaping time of the amplifier: A photon arriving in the

detector sends a pulse into the shaping amplifier. For a period of time τ , the deadtime,

any additional pulses arriving may be corrupted or lost in a phenomenon called pileup.

As a result, the detector behaves non-linearly at high count rates. Using an incident

count rate monitor that provides an accurate measurement of incident photon rate

(without energy resolution), data can be corrected for counts lost due to pileup. The
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data are fit to the form

Imeas = Itrue exp(−τItrue) (5.10)

where Imeas is the measured scattered intensity (in counts per second, cps), Itrue is

the true intensity and τ is the detector deadtime. The correction function Itrue

Imeas
(k)

is thus determined iteratively. For the present data, the linear position-sensitive

detector deadtime was τ = 5µs. Figure 5.3 illustrates the detector nonlinearity for a

5µs deadtime.
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Figure 5.3: Nonlinearity of the linear position-sensitive detector used in the present
experiments. The deadtime is τ = 5µs.

5.3.2 Substrate Scattering

For the samples initially studied on Si substrates in reflection scattering geometry,

a substrate correction was necessary. The high energy synchrotron x-rays were not

absorbed and diffracted completely by the film, and scattering from the underlying
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substrate also contributed to the final detected signal. To determine the contribution

from the substrate, scattering from a bare substrate can be measured and adjusted for

the absorption of the incident intensity travelling through the film. This correction

relies on accurate knowledge of the absorption of the film and can be the source of sig-

nificant error. For the data presented here, the substrate was etched from beneath the

films, and the free-standing films were measured in symmetric transmission geometry.

As a result, no substrate correction was necessary for these data.

5.3.3 Absorption

Because incident and elastically scattered photons must travel through the sample

before detection, a sample absorption correction must be applied. (If He-filled beam

flightpaths are not used, the air absorption should also be accounted for.) Depending

on the Bragg angle sampled, the path length travelled by the photon and the scatter-

ing volume in the sample vary. For symmetric transmission geometry, the measured

intensity is modulated by a factor

A = t
e

−µt
cos θ

cos θ

where t is the sample thickness, µ is the linear absorption coefficient and θ is the

scattering angle. The correction function applied to the measured data is proportional

to the inverse of this factor:

cabs ∝
cos θ

t e
−µt
cos θ

(5.11)

The absorption correction is a slowly varying function of k and strongly dependent

on the µt constant for the sample. It is also the largest magnitude correction factor
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for these data, so obtaining accurate µt constants is well worth the investment of time

and effort. Figure 5.4 contains the correction factor normalized to 1 at k = 0 Å
−1

for

several µt constants. Note that for the transmission scattering geometry used here,

the largest x-ray pathlength (biggest magnitude correction) occurs at high k.
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Figure 5.4: Normalized absorption correction factor for the Samples 1, 2 and 3 at 11
keV. (Only results from Sample 2 are presented in the following chapters.)

5.3.4 Polarization

The acceleration of electrons in a storage ring in the plane of orbit results in synchro-

tron x-rays with nearly-linear polarization. In fact, the polarization is elliptical with a

very small vertical component (approximately 4% at SSRL after monochromatization
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at 11 keV [92]1). This elliptical polarization leads to a correction term of

cpol =
1

(1 − v) + v cos2(2θ) cos2(2β)
(5.12)

where v = 0.04 is the fraction of vertical polarization present in the incident beam,

θ is the scattering angle in the sample and β is the Bragg scattering angle for the

incident energy photons on the exit beam graphite analyzer crystal. (Each additional

scattering event in the vertical plane leads to a reduction in the vertical component

by a cosine-squared term.) Figure 5.5 illustrates the behavior and magnitudes of the

polarization corrections for incident energies of 11.0 and 19.9 keV.
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Figure 5.5: Polarization correction factor for incident energies of 11 and 20 keV
as a function of scattering vector magnitude, k, in the sample. (The correction is
symmetric about 90◦ in scattering angle.)

1The vertical component is somewhat dependent on the position from the center of the beam.
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5.3.5 Multiple Scattering

The primary contribution to the detected scattered intensity is from x-rays scattered

once by a volume element in the sample. However, there is also a small multi-

ple scattering contribution from scattered x-rays that rescatter in additional volume

elements: Itotal = I1 + I2 + .... Scattering of order higher than two is negligible,

so we consider only double scattering of x-rays. Warren and Mozzi [93] originally

derived an exact expression (a double integral) for the ratio of the intensity of dou-

ble scattering to single scattering (I2/I1) for an amorphous sample with effectively

infinite thickness in reflection geometry using unpolarized radiation. They made the

approximation that the scattered intensity from the sample equals the independent

scattering (
∑
α xαfαf

∗
α) which contains no structural features. This assumption, while

not strictly accurate, is reasonable for amorphous materials. For the case of unpolar-

ized radiation, Dwiggens and Park [94, 95, 96] derived equations involving numerical

integration over only a single variable for any thickness sample and various scatter-

ing geometries. They presented parameterized results in tabular form for symmetric

reflection, symmetric transmission and asymmetric transmission. For the symmetric

transmission case in which we are interested, the ratio of (I2/I1) is already small (less

than 0.03 at k = 10 Å
−1

for 11 keV incident photons) for unpolarized radiation.

Because complete rederivation is required to adjust the polarization factors, we

turn to Malet and coworkers [97] who present a clear and concise derivation of the

double to single scattering ratio for the symmetric transmission case. Their general

derivation of the polarization factor has been simplified for linearly polarized inci-

dent radiation (see Appendix C of reference [80]). The resulting double integral was

implemented in Matlab for the present work (multscat.m, Hope Ishii). The double

to single scattering ratio (I2/I1) was calculated as a function of the scattering angle
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2θ for the relevant samples and incident photon energies. These values were used to

determine the multiple scattering correction which can be written as [98]:

cmult =
1

(1 + I2/I1)
(5.13)

0 20 40 60 80 100 120 140 160
0.9992

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1

2θ (°)

c m
ul

t

Sample 2, E=11.0 keV, µ t=0.187
Sample 2, E=19.9 keV, µ t=0.156
Sample 3, E=11.0 keV, µ t=0.227
Sample 3, E=19.9 keV, µ t=0.167

Figure 5.6: Multiple scattering correction factors for Sample 2 and Sample 3 at
different energies. The correction is larger (in relative magnitude) at 11.0 keV than
at 19.9 keV.

Since the contribution of multiply-scattered x-rays is small, the correction factor

also is small as shown in Figures 5.6 as a function of scattering angle 2θ. These

corrections were included although they are small enough relative to the uncertainties

in µt constants to be entirely negligible. It should be noted that the transmission

geometry used here results in a much smaller multiple scattering correction than the

reflection geometry. This reduces the impact of errors in the correction function on

the normalization of the elastic scattered intensity.
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5.4 Normalization

Normalization of the elastically scattered, corrected intensity is arguably the most dif-

ficult and most critical aspect of the data analysis. In order to extract structural data

(number densities of atomic species as a function of radial distance), the data must

be normalized to an absolute scale, independent of the data-collection techniques, by

a multiplicative factor, Knorm. This absolute scale is chosen as the atomic structure-

independent (coherent) elastic scattering for the particular composition of the sample

〈ff∗〉. In other words, the measured intensity is normalized to a ‘per average atom’

basis. There are two general historical approaches to this normalization:

The first approach is the method proposed by Warren [19]. Rexamining Equa-

tion 2.9 in Chapter 2, we note that, for an amorphous material, the excursion of

the atomic density from the average density in the sample approaches zero rapidly

with r: [ρ(r) − ρo] → 0, and the sin(kr)
kr

term oscillates with decreasing amplitude as

k increases. Therefore, the experimental elastic intensity approaches the structure-

independent coherent scattering as k increases (S(k) → 0 at high k). The large-angle

normalization method therefore constrains the experimental data to oscillate about

the structure-independent elastic scattering
∑
α xαf

2
α(k) at high k values. For data

taken at lower energies, unfortunately, the available k-space often does not extend to

the region where the structure-dependent oscillations have died out. This is certainly

the case for data taken near the Ge K edge. In such cases, the normalization obtained

is highly dependent on the exact range of k-space chosen.

The second approach is the method of Norman [99] and Krogh-Moe [100] which

relies on the fact that there is no overlap in real space between neighboring atoms.

Thus, the Fourier transform evaluated at r=0 of the structure-dependent term, S(k),

represents the atomic distribution function at r=0 and must equal zero. Noting that
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sin(kr)
kr

→ 1 as r → 0, we obtain

ρ(r) = ρo +
1

2π2

∫ ∞

0
k2S(k)

sin(kr)

kr
dk (5.14)

ρ(0) = 0 = ρo +
1

2π2

∫ ∞

0
k2S(k)dk (5.15)

This holds for any arrangement of atoms, so we can assume that each atom scatters

independently. Following Norman, the following relationship for the normalization

factor is obtained using the free atom scattering factors:

Knorm =

∫ ∞
0 k

2[Icoh(k) + Iinc(k)]dk − (2π2ρo)(
∑
α xαZα)

2∫ ∞
0 k

2Iobs(k)dk
(5.16)

where Icoh(k)+Iinc(k) =
∑
α[xαf

2
α(k)]+Iinc(k).

2 Icoh is the coherent (elastic) scattered

intensity, Iinc is the incoherent scattered intensity and Iobs is the measured (corrected)

intensity. In previous work, values for Iinc were commonly obtained from tables or

calculated and then subtracted. By using a position sensitive detector, Iinc can be

2For the interested reader: This arises from KnormIobs = Icoh + Iinc + Im − Io where Im is the
structure-dependent term and Io is the zero-angle scattering (which we must include in an integral
over all k-space). Norman begins by writing an electron distribution function

D(r) =
∫

I(k)e−2πik·r k2

2π2
dk.

Since x-ray measurements typically do not go down to zero-angle, we subtract out that contribution
where the entire sample acts as one particle of average density:

Dm(r) − Do(r) =
∫

(Im − Io)e−2πik·r k2

2π2
dk

We can substitute in our expression for Im − Io now and recognize that for spherical symmetry, the
exponential term becomes sin(kr)

kr . At r = 0, sin(kr)
kr → 1, Do(0) = ρo (

∑
α xαZα)2, and Dm(0) = 0.

The final result is equivalent to Equation 5.16:

0 − ρo

(∑
α

xαZα

)2

=
Knorm

2π2

∫
Iobsk

2 dk − 1
2π2

∫
(Icoh + Iinc) k2 dk.
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excluded from the observed intensity down to very small k values.

Combining these two contraints, Fuoss [26, 27] developed a third normalization

method which is applied in this work. Assuming the presence of significant back-

ground intensities, the scattering can be written as

Icoh + Iinc = Knorm [Iobs − Ib] (5.17)

where Ib is a background intensity. From Warren’s method, we have the relationship

Knorm =
Icoh(kmax) + Iinc(kmax)

Iobs(kmax) − Ib
(5.18)

And from Norman and Krogh-Moe, we can write

Knorm =

∫ kmax
kmin

k2[Icoh(k) + Iinc(k)]dk − 2π2ρo
∑
α (xαZα)

2∫ kmax
kmin

k2[Iobs(k) − Ib]dk
(5.19)

By solving these two equations simultaneously, we can obtain the two unknowns,

Knorm and Ib. Figure 5.7 contains the corrected elastic intensity (collected below the

Ge K absorption edge) normalized to the coherent independent intensity for Sample

2 (27 at% Mo).

It should be noted here that the correction functions discussed in Section 5.3 are all

largest at high angles where the x-ray pathlength through the sample is largest. (This

is true even for transmission data which, as discussed earlier, generally require smaller-

magnitude corrections decreasing the impact of potential errors in the correction

process.) As a result, choosing the highest k-region available for the normalization

is not necessarily the most prudent choice since this region will also be the most

susceptible to the corrections applied to the data.
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Figure 5.7: Normalized data (solid line) and the coherent independent intensity
(dashed line) for Sample 2 (27 at% Mo).

In practice, the data taken at the highest energy, and therefore having the largest

kmax, were normalized first. Since the experimental elastic intensity approaches the

structure-independent coherent scattering as k increases, these data were more readily

well-normalized. They were then used as a guide for normalizing data taken at lower

energies. For example, the optimal kmin and kmax limits of integration for the large-

angle normalization equation were selected by referring to the already-normalized

high energy total structure factor, S(k).

5.5 Impact of Experimental Limits

While the data analysis is, in theory, straight-forward, complexities lie in the details.

The majority of the inelastic scattering can be experimentally eliminated using our

diffracted-beam analyzer and PSD setup, but we must consider the effect of the limited

incident and detected energy resolutions discussed in Chapter 4. The limited detected
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energy resolution means the Compton scattering peak can be nominally removed only

down to k ∼3 Å
−1

for energies near the Ge K edge and ∼5 Å
−1

near the Mo K edge.

The Kβ resonant Raman (RR) scattering and elastic scattering are also broadened by

the limited resolution. As a result, they must be fit simultaneously for energies near

the absorption edges since the tails of the peaks overlap. With an improvement in

the degree of parafocussing between sample and PSD, the detected energy resolution

can be sharpened. This will, however, result in some loss of dispersion of energies on

the PSD because the total length from sample to PSD is limited by the experimental

hutch at the present beamline.

The final potential source of background scattering in the collected data is true

fluorescent radiation. One means by which fluorescence finds its way into the elastic

peak is when the monochromator crystals are not sufficiently detuned to prevent the

passage of higher-order harmonics in the incident beam. Another means arises when

the incident energy is close to the edge energy and the incident energy resolution is

not sufficient to prevent some sampling above the edge energy. This is the situation at

5 and 15 eV below the Mo K edge energy for the incident energy resolutions obtained

experimentally. Figure 5.8 illustrates schematically the two situations encountered.

EnergyEK

inc∆E

Einc

a)

EnergyEK

inc∆E

Einc

b)

Figure 5.8: Possible distributions of incident photons near an absorption edge: a)
The entire distribution lies below the threshhold energy and b) the centroid of the
distribution lies close enough to the threshhold energy that part of the distribution
is above the edge resulting in fluorescence as well as resonant Raman scattering.
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100 eV below the Mo K edge is given by case a) where the entire incident energy

distribution is below the edge energy, so photons are mostly scattered elastically and

inelastically. For energies nearer the K absorption edge, some photons produce res-

onant Raman peaks with widths related to ∆Einc, the incident energy peakwidth.

For each discrete incident energy located dE below the edge energy, there is a cor-

responding resonant Raman peak located dE below the fluorescent line energy. For

a distribution of incident energies, a distribution of resonant Raman energies results.

15 and 5 eV below the Mo edge are given by case b). (Recall that the FWHM incident

energy peakwidth below the Mo edge is ∼ 31 eV.) Here, the centroid of the incident

energy is close enough to the edge energy that part of the distribution lies above the

edge. Those photons that are above the edge contribute to fluorescent radiation occur-

ring in narrow lines. The result is a broad peak of resonant Raman scattering beneath

a sharper, more intense peak due to true fluorescence. Although these inelastic and

fluorescent peaks occur at lower energies than the elastic peak, the limited detected

energy resolution of this experiment requires simultaneously fitting them with the

elastic peak rather than simply windowing them out. This illustrates the importance

of experimentally measuring the incident energy resolution and considering its width

in selecting energies at which to collect data as discussed in Section 2.3.3.

To explore whether the inelastically scattered intensities (and fluorescence) have

been completely eliminated, we must see if Ib is negligibly small. This is the case 100

eV below the Mo edge where Ib is at most 1% of the normalized scattering at kmax.

Data taken 15 and 5 eV below the Mo edge display significant background intensity

that increases as the incident energy approaches the edge. This is most likely due

to the influence of fluorescent radiation on the two-peak Gaussian fits of the elastic

and Kβ resonant Raman scattering. Due to the relatively wide peakwidth of the
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incident energy at the energies near the Mo edge (see Chapter 4), some fluorescence

was excited by the upper tail of the incident energy peakwidth lying above the K

absorption edge. This fluorescence atop the Kβ resonant Raman peak can shift the

peak fits giving extra counts in the elastic peak.

15 and 5 eV below the Ge edge, Ib is only a few percent at kmax, but the data taken

100 eV below the Ge have a larger background of 11% at kmax. This significant back-

ground so far below the Ge edge is puzzling. Although the incident energy resolution

at the Ge edge was narrow enough that no fluorescence should have been excited, it

is possible that a higher-order harmonic was able to pass the monochromator crystals

at that energy. In that case, Kβ fluorescence (∼ 120 eV below the K edge) would be

indistinguishable in energy from the elastic peak (100 eV below the K edge) at the

present detected energy resolution.

These considerations have led to the redesign of the experimental setup for improved

parafocussing at the PSD. Additional experiments will allow the assessment of the

quality of the PPDFs extracted from still-cleaner, elastically scattered intensity obtained

with narrower incident energy resolution. Further discussion of experimental improve-

ments may be found in Chapter 8.

5.6 Solution for Distribution Functions

The elastically scattered, corrected and normalized intensities are now used to obtain

total or differential structure factors or inserted into the Munro matrix (Equation 2.24)

to solve for the partial structure factors at each k point. It would seem that a Fourier

transform is all that is required to produce the real space distribution functions.
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However, the upper integration limit in k in the sine Fourier transform from recip-

rocal space to real space is intrinsically limited by the data taken below the lowest

absorption edge, in this case, the Ge K edge: kmax = 4π/λ. This, in turn, limits the

real space resolution of the PPDFs: The experimental kmax = 10 Å
−1

implies a real

space resolution of ∆r = 0.16 Å. The limited k-space data (missing high frequencies)

yield real space termination oscillations that can obscure physical information. These

effects can be mitigated to some degree by multiplying k S(k) by a damping function

before applying the sine Fourier transform.

5.6.1 A Comparison of Damping Functions

Determining the appropriate damping function is important since too little damping

results in high amplitude termination oscillations that obscure the true structural

peaks and too much damping unnecessarily degrades the r-space resolution of the

distribution functions. In addition, the choice of damping function and degree of

damping (damping factor) effects not only oscillations about a peak but also nominal

peak position. This can result in erroneous conclusions if damping is not uniformly

applied.

Gaussian damping

The simplest damping function is a Gaussian, DG(k) = e−αk
2
, where the strength of

damping is determined by α: The larger α, the stronger the damping effect. (This

functional form does not guarantee that the function being damped approaches zero

at kmax.) Increasing the strength of α smears out the distribution function rapidly.

An indication of this is the behavior of the low-r region below the first peak and the

first peak itself. As α is increased, the termination oscillations quickly die out below
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Figure 5.9: Simple Gaussian damping functions DG(k) with various values of α are
shown on the left and the resulting RDFs are shown on the right.

the first peak, but the onset of the first peak comes earlier as the peak broadens

and loses height. Since real space peaks in distribution functions are generally not

comprised of a single Fourier component, an additional effect of any damping function

is some shift in the real space peak position. For the Gaussian function, increasing

α from 0 to 0.02 results in an upward shift in first peak position by 0.07 Å in 4πrρ.

Figure 5.9 illustrates the effect of this form of damping on the RDF.

Delayed-onset damping

A second damping function is designed to remain at unity until a kmin value at which

damping begins: D2(k) = e−α(k−kmin)2 . To investigate the behavior of this delayed-

onset function, a value of α was chosen and the kmin values were varied. In other

words, the shape of the damping function was not changed, but its position was

shifted along the k-axis: As kmin increases, the damping function at kmax reaches
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Figure 5.10: Delayed-onset Gaussian damping functions D2(k) with α = 0.02 and
various k onset values are shown on the left and the resulting RDFs are shown on the
right.

larger positive values. The effect (shown in Figure 5.10) is very similar to simply

decreasing α in the e−αk
2

case.

Variable-α damping

A third damping function establishes the damping factor, α, depending on the chosen

values of kmin and kmax: D3(k) = e−α(k−kmin)2 where α = log(100)/(kmax−kmin)2. The

advantage of setting α in this manner is that the damping function always approaches

zero at kmax. Figure 5.11 illustrates this for different kmin values. Again in this case,

however, setting kmin to anything greater than zero only increases the termination

oscillations. Disadvantages to using the D3 damping function are (1) comparisons

of data from two different k-ranges have different damping and (2) this damping

function is very strong - unnecessarily so, particularly for high-Z element edges.
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Figure 5.11: Variable-α damping functions D3(k) with various k onset values are
shown on the left and the resulting RDFs are shown on the right.

Consider the effect of setting kmin to a value greater than zero in the D3 damping

function by examining the total function that is multiplied by S(k) prior to the sine

Fourier transform: k times the damping function, D3(k). For a damping function that

begins far above k = 0, k D3(k) rises linearly and then begin falling discontinuously

as seen in Figure 5.12. This leads to spurious features in the distribution functions

rendering interpretation suspect. As a result, damping is applied over the entire

k-range in this work.

Lorch damping

A frequently used damping function that, like the simple Gaussian damping function

DG(k), is applied over the entire experimental k-range is the Lorch function: DL(k) =

kmax

πk
sin( πk

kmax
). Recent work by Laaziri and coworkers [101] indicates that this form of

damping yields errors in coordination numbers similar in magnitude to the Gaussian
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Figure 5.12: k times D3(k), the variable-α damping function, with several k onset

values: Discontinuity occurs for kmin much greater than 2 Å
−1

.

damping function for kmax < 30 Å
−1

. Based on these comparisons, the best choices

for reducing termination oscillations while maximizing real-space resolution are the

Gaussian and Lorch functions, DG(k) and DL(k).

5.6.2 To Real Space

Because its effect in the Fourier transform is readily understood, the simple Gaussian

damping function is used in this work with a carefully-chosen α for sufficient damping.

For all work presented in the following chapters, the k Sαβ(k) in all integrands of

Equations 2.12, 2.15 and 2.22 are multiplied by the Gaussian damping function,

DG(k) = e−0.02k2 , prior to the Fourier transform to real space. This function broadens

a delta function to a real space peak with FWHM of 0.38 Å for kmax = 10 Å
−1

.

Figure 5.13 demonstrates this effect.
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function DG(k) with α = 0.02 and ∆k = 0.025 Å
−1

. For the extraction of PPDFs,

kmax = 10 Å
−1

.

5.7 Data Analysis Code

The data analysis for anomalous scattering from amorphous samples described in this

chapter is quite complex due to the vast quantities of data necessary for statistically-

relevant results, the numerous corrections applied and the many variables in the

normalization process. The analysis could not be completed in a graduate student’s

lifetime without the use of computer programs to accomplish these tasks in the appro-

priate order carrying through the relevant variables. All data analysis in this work

has been carried out using Matlab (The MathWorks, Inc.), an advanced mathemati-

cal programming language. Programs of executable commands (macros) are referred

to in this work as filename.m. Appendix B contains a flowchart of the data analysis

macros with brief descriptions of each.
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Many of the fundamental x-ray diffraction macros accessed by the anomalous

scattering code have been written, transferred from other programming languages,

rewritten, expanded and updated by Sean Brennan [102]. Students in the Bienen-

stock group have written much of the code for analysis of scattering from amorphous

materials in FORTRAN. That code was later moved into Matlab and expanded by

Ritva Serimaa, a postdoc in the group in the early 1990s [69, 103]. The students

who followed continued to expand and refine the Matlab code. I have made several

modifications including adding a master program to make the data analysis more

straightforward and transparent to the user.



Chapter 6

Results

The results of the synchrotron experiment and data analysis described in the previous

chapter are the total, differential and partial structure factors and pair distribution

functions. The improvements in experimental data collection have produced much

higher quality partial pair distribution functions (PPDFs) than previously obtainable

by anomalous x-ray scattering (AXS) without using regularization methods. The

complete chemical specificity of the PPDFs offers extremely valuable information

frequently unattainable by other techniques.

This chapter presents the structure factors and distribution functions of increas-

ing degree of chemical specificity for the sample with composition nearest a-MoGe3

(Sample 2 at 27% Mo). The total and differential structure factors are shown to fit in

the appropriate order in the progression of these functions with composition produced

by Kortright [2] in his earlier work on the amorphous Mo-Ge system.

119
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6.1 SF and RDF

The total structure factor, SF, for a-MoGe3 is shown in Figure 6.1 for data taken

100 eV below the Mo K absorption edge. These data extend to kmax = 18 Å
−1

. At

this large kmax, the oscillations in the SF have damped nearly to zero, so proper

normalization of the data to a per atom basis is more easily accomplished than in

the data taken below the Ge edge. The SF has been smoothly extended from k =

1.6 Å
−1

to k = 0 with a cubic function. (Previous workers have frequently linearly

extrapolated to k = 0, and we find negligible differences in the radial distribution

functions resulting from the two extrapolations.)

0 2 4 6 8 10 12 14 16 18

-1

-0.5
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S(
k)

k (Å  )-1

Figure 6.1: The SF from data taken 100 eV below the Mo edge (19.900 keV).

The radial distribution function, RDF, describes the average coordination of an

atom in the sample and is the sine Fourier transform of the SF plotted above. Fig-

ure 6.2 contains the RDF from data taken 100 eV below the Mo edge with two different
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damping factors giving a real space resolution of 0.33 Å for α = 0.020 and 0.20 Å for

α = 0.005. The low-α RDF is plotted to illustrate the improved real space resolution.

Since the PPDFs are terminated at the kmax = 10 Å
−1

associated with the lower

energy Ge K edge, they are subject to larger termination errors. As such, all data

comparisons will be made using the stronger of these damping factors, α = 0.020.

The average number density of the sample is taken to be ρ0 = 5.585x10−22 cm−3 as

discussed in Section 5.1.2.
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Figure 6.2: The radial distribution function from data taken 100 eV below the Mo
edge (19900 eV). The solid line is the RDF obtained with a damping factor α = 0.020
in the Fourier transform; the dashed line, with α = 0.005.
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The simplest measure of quality of the real-space distribution functions is the

low-r behavior. Physically, there should be no atomic density at distances less than

the first nearest neighbor (NN) distance. The low-r region of the RDF is smooth and

flat, an indication of good quality.
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Figure 6.3: The radial distribution function obtained 100 eV below the Ge edge (11003
eV) is plotted as a solid line. Overlaid as a dashed line is the radial distribution
function from 100 eV below the Mo edge (19900 eV) cut off at the same kmax of

10 Å
−1

as the data taken below the Ge edge. Ideally, these functions would overlay
exactly.

Figure 6.3 shows the RDFs taken 100 eV below the Ge and Mo K edges where the

normalized reciprocal space data have been truncated at the same kmax of 10 Å
−1

.
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Ideally, these functions would overlay exactly. The disagreement is most likely caused

by the lower quality of the Ge edge normalization. Since there are still significant

oscillations about the coherent independent scattering at kmax = 10 Å
−1

, the best

normalization constants are difficult to determine. For normalization of the Mo edge

data to a per atom basis (prior to truncation at k = 10 Å
−1

), the data extended to

kmax = 18 Å
−1

where oscillations about the coherent scattering have largely died out.

Thus, the data collected below the Mo K edge are expected to be better-normalized.

The differences in the first peak area and position are 3% and 0.01 Å respectively

and provide some indication of the uncertainties in the RDF. (These are in good

agreement with the uncertainties in RDFs found by Ludwig in a study of l -GeBr4

[28] discussed in the following chapter.)

The lack of complete agreement between the RDFs from the two absorption edges

points to the presence of systematic errors in normalization of lower-energy measure-

ments (lower-Z elements). Such errors are particularly troublesome when present in

the final row of the Munro matrix which does not involve a difference of measurements

below an edge. For this reason, measurements taken at higher energy (higher kmax)

should be chosen for that final row when solving for the PSFs and PPDFs. Since the

two RDFs described above should be identical, a potential means of improving nor-

malization for data taken below the lower-energy edge may be to iteratively vary the

normalization parameters so as to minimize the differences between the two RDFs.

It should be emphasized, however, that because the lower-energy measurements are

typically included as a difference, the same limits for normalization should be applied

to both measurements comprising the difference.
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6.2 DSFs and DDFs

The differential functions provide a means of corroborating results from the partials

and allow for direct comparison of the present scattering results with those obtained

by Kortright (discussed below in Section 6.4). The DSFs for a-MoGe3 are shown

in Figure 6.4. DSFMo is from measurements taken 100 and 5 eV below the Mo K

absorption edge, and DSFGe is from measurements 100 and 15 eV below the Ge edge.

DSFGe is offset vertically for visibility, and both structure factors oscillate about

zero. The Γ values used in the weighting function, W (k), were initially chosen to

match the mole fractions of the respective elements. (The choice of Γ has almost no

effect in the Mo differential functions; however, increasing Γ results in changes in the

magnitude of oscillations in the Ge DDF, an effect similar to what one would expect

from an improvement in real-space resolution. This added variable of Γ leads to some

arbitrariness in the Ge DDF.) The Mo DSF is much noisier than its Ge counterpart

due to 4-5 times fewer counts at the Mo edge.

The DDFs calculated via sine Fourier transforms are shown in Figure 6.5. The

standard damping factor of α = 0.02 was included in the transform. Due to the

different kmax values for the two DDFs, the Mo DDF has better real space resolution

than the Ge DDF; however, it is of somewhat lower quality exhibiting some oscillations

at low-r below the first NN peak.

Although these oscillations are not of sufficient magnitude to interfere with phys-

ical interpretation of the Mo DDF, it is nevertheless desirable to investigate their

origin in order to improve the design of subsequent experiments. By sine Fourier

tranforming only the low-r region between r = 0 and r = 1.5 Å, the results in Fig-

ure 6.6 were obtained. This gives the general form of the error causing the low-r

oscillations, and a close look at the Mo edge DSF in Figure 6.4 confirms that the
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Figure 6.4: The differential structure factors, DSFGe and DSFMo, from measurements

taken 100 eV and 15 eV below the Ge edge (kmax = 10 Å
−1

, Γ = 0.25) and 100 eV

and 5 eV below the Mo edge (kmax = 18 Å
−1

, Γ = 0.75).
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Figure 6.5: The Ge (dotted line) and Mo (solid line) differential distribution functions,
DDFs, from the DSFs plotted above in Figure 6.4 (α = 0.02).
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Figure 6.6: The S(k)-like function resulting from a sine Fourier transform of the low-r
region from r = 0 − 1.5 Å of the Mo DDF. This function indicates that error in the
DSF was not fully removed by the Fuoss normalization.

structure oscillations follow a broad curve peaking near k = 6 Å
−1

. At first glance,

one might suspect a polarization correction error that has been partially-compensated

by the Fuoss normalization. (Partial compensation of error is discussed in more detail

in the following chapter.) A comparison of Figure 6.6 with Figure 5.5 reveals that

the peak (k = 14 Å
−1

) for a pure polarization correction error occurs at the wrong

position in, for example, the data taken nearest the Mo edge. A difference of the

polarization corrections for the two energies involved has a peak near k = 10 Å
−1

;

however, it is possible that partial compensation of a polarization correction error

with background and normalization constant errors might shift the peak to lower k.

Another possibility is that the error is an artifact due to insufficient statistics in the

scans taken below the Mo edge. The low incident count rates and low detector effi-

ciency at these high energies precluded collection of more data. Sufficient statistics

are particularly important in calculating the DSFs (and PSFs) which involve sub-

traction of similarly-valued functions. The most probable source of the error in the

Mo edge DDF, however, is Compton scattering. Although the Compton scattering
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peak is nominally eliminated down to k = 5 Å
−1

, the peak shape is low and broad in

energy. While the Compton scattering peak may be excluded, some Compton inten-

sity from the high energy tail can still be included in the energy window of interest.

In data collection of intensity as a function of k, the entire Compton peak would be

included in the energy window at low k. Above some k value, the Compton scattering

would begin to be excluded as the peak moves to progressively lower energies. Far

from the edge (100 eV below), only the elastic peak must be fit by a Gaussian, but

for the data collected nearest the Mo edge, a wider range including both the elastic

and Kβ resonant Raman scattering were fit by two Gaussians. It is possible that this

nominally-elastic intensity data from near the Mo K edge contained some Compton

scattering that was not included in the intensity data taken 100 eV below the edge.

Thus, partial Compton scattering may be contained in the difference below the Mo

edge. Improved detected energy resolution can aid in eliminating this issue.

6.3 PSFs and PPDFs

The PSFs, Sαβ(k), for a-MoGe3 obtained by direct solution of the Munro matrix are

shown in Figure 6.7. The Mo-Ge and Mo-Mo PSFs are offset vertically for visibility.

Data taken at 19.900 and 19.995 keV comprise the difference below the Mo edge, data

taken at 11.003 and 11.088 keV comprise the difference taken below the Ge edge, and

the final measurement was taken at 19.900 keV. (The data taken at 19.900 keV as

the final measurement provide better Munro matrix conditioning than would data

taken at any intermediate energy far from both absorption edges.) The PSFs have

also been smoothly extended to their low-k limits with a cubic function. Since the

low-k limit for the entire matrix problem is the largest kmin from data collected at
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Figure 6.7: The partial structure factors, Sαβ(k), obtained by solution of the Munro
matrix. Data taken at 19.900 and 19.995 keV comprise the difference below the Mo
edge, data taken at 11.003 and 11.088 keV comprise the difference below the Ge edge,
and the final measurement was at 19.900 keV.



130 CHAPTER 6. RESULTS

both edges, it is clear that improving the experimental setup to allow collection of

data below the current kmin = 1.6 Å
−1

near the Mo K edge would be very valuable

since, at present, the precise low-k behavior of the PSFs is unknown.

All three PSFs display the proper limiting behavior approaching the appropriate

high- and low-k limits. A close examination of the Ge-Ge PSF reveals that, at high

k, its average value is slightly less than zero. Since the Mo DDF is clearly the worst-

behaved of the three distribution functions whose scattering data enter the Munro

matrix, error introduced in the difference below the Mo edge (like partial Compton

scattering discussed in the previous section) is likely to be a primary cause of errors in

these PSFs and the final PPDFs. Note that because the high-frequency noise present

in k-space influences the PPDFs primarily at large r beyond the region of study, no

smoothing of the PSFs is necessary. In fact, smoothing is generally inadvisable since

inadvertent introduction of lower frequencies may impact the region of study.

The PPDFs, 4πr2ραβ(r), for a-MoGe3 resulting from the sine Fourier transform of

the PSFs (via Equation 2.24 as described in Chapter 2) are shown in Figure 6.8. The

damping factor is again α = 0.02 and kmax = 10 Å
−1

. The average number densities of

Ge and Mo used are ρGe0 = 4.084x10−22 cm−3 and ρMo0 = 1.501x10−22 cm−3 (obtained

from the areal densities in Section 5.1.1). The Mo-Mo and Mo-Ge PPDFs are again

offset for ease of viewing, and the dashed lines indicate the zero levels for the three

PPDFs. To our knowledge, this is the first complete set of reasonable-quality PPDFs

obtained from the Mo-Ge system and the first study of the fully-chemically-specific

structure of the a-MoGe3 phase in particular.

The quality of the PPDFs is, again, indicated by their low-r behavior. Although

we do find some fluctuations below the first NN peak, especially in the Mo-Mo PPDF,
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ture factors plotted above in Figure 6.7 (α = 0.02).
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these PPDFs, obtained by direct solution of the Munro matrix equation without reg-

ularization, are reasonably well-behaved, and we may expect to extract some physical

results from them. This is a significant improvement in the capabilities of the AXS

technique that will be discussed further below.

With PSFs and PPDFs in hand, we can now return to the predictions of SVD

analysis from Section 2.5. We find that those predictions are in excellent agreement

with the results. The Mo-Mo PPDF, predicted to be most sensitive to error, contains

the most non-physical negative atomic density. In addition, a small amount of mir-

roring is present between the Ge-Ge and Mo-Ge PPDFs as expected from the SVD

analysis. The agreement of these predictions with the PPDF behavior indicate that

the remaining prediction that the Mo-Ge PPDF is the most reliable of the PPDFs can

also be expected to be true. We will use these SVD results in the following chapter

in interpreting the coordination results from a-MoGe3.

6.4 Comparison with Previous X-ray Scattering

Results

Kortright [1, 2] carried out AXS on Mo-Ge sputtered amorphous alloys over a wide

range of compositions and presented the early evidence for phase separation in the

system. He measured total and differential structure factors for a range of composi-

tions. Figures 6.9 and 6.10 were scanned from Kortright’s PhD thesis, relabelled and

overlaid with the properly scaled results from the current sample with composition

near a-MoGe3. They show 1) that the current sample (26.9% Mo overlaid in red) falls

in the proper position in the composition progression of Kortright’s SFs and DSFs (in

black), and 2) that comparisons with Kortright’s work on the amorphous sputtered
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Mo-Ge alloy system are valid.
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Figure 6.9: The total structure factor from the present sample overlaid on those from
Kortright’s work [1].

The progression of Mo DSFs shows little change between 14 and 42% Mo indicating

that the Mo environment does not change drastically. The progression of Ge DSFs,

in particular, illustrates how the scattering profile for the present 26.9% Mo sample

is nearly identical to Kortright’s 42% Mo sample and completely unlike a-Ge. The

disappearance near 23-25% Mo of the tetrahedral distance characteristic of a-Ge is

in agreement with the disappearance of phase separation in Ge-rich compositions at

∼ 25% Mo seen using small angle x-ray scattering (SAXS) on this amorphous alloy

system by Regan [3, 4].
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Figure 6.10: The differential structure factors (DSFs) from the present sample overlaid
on plots of the Mo and Ge DSFs from Kortright’s work [1].



Chapter 7

Discussion

In the previous chapter, the total, differential and partial structure factors and pair

distribution functions were presented for Sample 2 which, at 27% Mo, is nearest to

the MoGe3 endpoint composition for the amorphous phase separation. The present

data were also shown to agree well with earlier work done by Kortright on the system.

In this chapter, we demonstrate that the extracted PSFs satisfy the original Munro

matrix equation and then illustrate the improvements in the PPDFs extracted with-

out regularization procedures by comparisons to previous results. The neighboring

crystalline compounds are presented, and tests for the presence of a-Ge show that the

sample is not a phase-separated mixture of a-Ge and a-MoGe2. The physical coor-

dination results from the alloys are presented and compared with those obtained by

Kortright using EXAFS to illustrate the utility of the AXS technique for amorphous

alloys with high static disorder. The stability of the coordination results with respect

to introduced errors is explored, and estimates of the coordination number uncertain-

ties are presented. Finally, the role of the MoGe3 composition in the amorphous alloy

system is addressed.

135
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7.1 Internal Comparisons

An important first step is to verify that the extracted PSFs satisfy the original matrix

problem. This verification of the internal consistency of the data can be carried out

by constructing various structure factors from the appropriately-weighted sum of the

partial structure factors (PSFs). This allows us to confirm that the extracted PSFs

are solutions of the original matrix problem. These constructed structure factors and

the resulting real space distribution functions can then be compared with measured

structure factors and the resulting distribution functions. Comparisons are made only

over the experimental k-range.

7.1.1 Sum of PSFs to Give SF

The total structure factor (SF) can be written as a weighted sum of partial structure

factors (PSFs) by combining Equations 2.14 and 2.16:

S(k) = CAA(k)SAA(k) + CAB(k)SAB(k) + CBB(k)SBB(k) (7.1)

CAA(k) =
xA|fA|2
〈f〉2

CAB(k) =
2xA� (fAf

∗
B)

〈f〉2

CBB(k) =
xB|fB|2
〈f〉2

This sum, calculated at the appropriate incident energy, is compared to a measured

SF. The results are illustrated in Figure 7.1 where the constructed SF is overlaid as

a dotted line on the measured SF at 100 eV below the Mo edge. The agreement



CHAPTER 7. DISCUSSION 137

-1

-0.5

0

0.5

1

1.5

k (Å  )-1

S(
k)

S(k)         - S(k)
m

eas
constr

weighted sum of PSFs
SF at 19.900 keV

0      1      2      3      4      5      6      7      8      9     1 0

0.01

-0.01

0
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between the measured SF and that constructed from the PSFs is excellent. The

RDFs resulting from the measured and constructed SFs at 19.900 keV are shown in

Figure 7.2. Again, the agreement is superb.
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Figure 7.2: The RDFs from the measured and constructed SFs at 19.900 keV (100
eV below the Mo edge).

It is informative to plot the k-dependence of the three weighting factors for the

PSFs as shown in Figure 7.3. Although the factor of 〈f(k)〉2 approximately removes

the k-dependence of the scattering factors in the total structure factor, it also con-

tributes to gradual changes in the relative weighting of the partial structure factors
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within the total structure factor as a function of k. Thus, the RDF gives only an

approximate picture of the physical atomic distribution.1
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Figure 7.3: The k-dependence of the weighting factors for the three PSFs comprising
the SF for a-MoGe3 at 19.900 keV.

7.1.2 Sum of PSFs to Give DSFs & Testing the DSF Approx-

imation

The differential structure factors (DSFs) can be similarly expressed as weighted sums

of the appropriate partial structure factors (PSFs):

∆SA(k) = DAA(k)SAA(k) +DAB(k)SAB(k) (7.2)

1Note that the Ge-Mo PSF is more heavily-weighted than the Mo-Mo PSF in this alloy. In typical
80:20 transition metal-metalloid glasses such as Ni80P20 or Pd80Si20, the metal-metal interactions
overwhelmingly dominate the RDF.
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DAA(k) =
∆A [xA|fA|2]

W

DAB(k) =
∆A [2xA� (fAf

∗
B)]

W

whereW is defined in Equation 2.20. The constructed DSFs are compared to the mea-

sured DSFs in Figure 7.4 and 7.5 for the same energies and Γ values. The constructed

DSFs are overlaid as dotted lines on the measured DSFs below each absorption edge.
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Figure 7.4: The measured DSF at the Ge edge (100 and 15 eV below the edge) is
plotted in grey, and the constructed DSF from the appropriate PSFs and weighting
factors is plotted as the dashed line.

The DDFs resulting from Fourier transform of the above DSFs are again indis-

tinguishable by eye. Like the RDF, the DDF is also an approximation of the sum of

PPDFs involving a given element; however, the DDF is even less accurate due to the

added factor of Γ.
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Figure 7.5: The measured DSF at the Mo edge (100 and 5 eV below the edge) is
plotted in grey, and the constructed DSF from the appropriate PSFs and weighting
factors is plotted as the dashed line.
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The capability to construct the DSF from the extracted PSFs allows the testing

of the approximation inherent in the definition of the DSF. The DSF involves taking

a difference of two measurements below an element’s absorption edge and assuming

that those pair correlations that do not involve that element will cancel out so that

those contributions can be ignored completely. See Section 2.1.2. (It is not necessary

to make this assumption in extracting PSFs.) By comparing the DSF constructed

according to Equation 7.2 with the same constructed DSF including the additional

term

DBB(k) =
∆B [xB|fB|2]

W
,

we test how sensitive the DSF and DDF are to the normally-neglected third pair

correlation. For the sample composition and energies used here, including the DBB(k)

term gives DSFs differing by at most 0.6% from the the DSF without the DBB(k)

term. The difference is not discernable to the eye for the energies explored in the

DSFs or DDFs; however, as one might expect, the DSF constructed with all three

terms is in better agreement with the measured DSF than the DSF constructed with

only two terms. (DBB(k) itself is at most of the order 10−3 for the present sample

and k-range. It has the largest contribution at low k for the Mo DSF and at high k

for the Ge DSF.)

Figure 7.6 shows the relative strengths of the weighting factors for PSFs used to

construct the DSFs over the k-range available. The third weighting factor, normally

neglected in the definition of the DSF, is also included for comparison. As shown

above, the third weighting factors are completely negligible in the DSFs at both

edges.
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Figure 7.6: The weighting factors that are multiplied by the relevant PSFs to con-
struct the DSF are plotted here for each element edge, Mo and Ge. The third weight-
ing factor is nearly zero and completely negligible for the sample composition and all
energies studied here.
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7.2 Comparison with Results from l-GeBr4

The improved quality of the PPDFs obtained with experimental elimination of inelas-

tic scattering is evident upon comparison with the careful studies of l -GeBr4 carried

out by Ludwig and coworkers [28]. They studied a molecular liquid, l -GeBr4, as

a model system with well-defined local structure. They were thus able to evaluate

the AXS techniques for obtaining state-of-the-art DDFs and PPDFs at that time.

The high accuracy of first NN positions and coordination numbers was confirmed for

the differential functions, but they found that some of the PPDFs were completely

unreliable, as discussed below. The a-MoGe3 studied here and l -GeBr4 are similarly

conditioned for the energies selected (as illustrated in Section 2.5.2), and both were

solved using the Munro matrix (Equation 2.24). It should be emphasized that both

the present a-MoGe3 data and the l -GeBr4 data were not subjected to any regular-

ization methods.

Ludwig’s data [30, 28] were collected using a Ge solid-state detector with suf-

ficient energy resolution to discriminate against the Kα resonant Raman scattering

but not against the Kβ resonant Raman or Compton inelastic scattering. His data

were corrected for detector nonlinearity, air scattering, absorption, multiple scatter-

ing and 4% vertical polarization of the incident beam. It is not clear from his writing

whether Ludwig subtracted a calculated Compton intensity; however, it was common

practice at the time to do so with the assumption that the detector collected elastic

and inelastic photons with equal efficiency. By using Fuoss’ normalization procedure

discussed in Section 5.4, Ludwig removed a constant (after correction for absorption)

representing the contribution of the Kβ resonant Raman scattering and obtained a

scaling constant to place the coherent intensity on a per atom scale.

The present data, on the other hand, were obtained using a graphite analyzer
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crystal and a position-sensitive detector that provided sufficient energy resolution

to discriminate against the Kβ resonant Raman scattering and against most of the

Compton scattering - in particular, against the significant Compton contribution at

high k values. Thus, no subtraction of Kβ resonant Raman or Compton scattering

was necessary.

Figure 7.7 gives a side-by-side comparison of the PPDFs obtained from the two

systems. Ludwig found that the Br-Br PPDF agreed well with the GeBr4 molecule,

but the Ge-Ge and Ge-Br PPDFs showed rotation of results in solution space, the

mirroring effect that is a symptom of systematic error present in the matrix prob-

lem. This leads to regions of negative atom density, a non-physical result. (Ludwig

estimated the error levels to be 30% and 100% for the Ge-Br and Ge-Ge PPDFs,

respectively.) These regions of negative atom density reach amplitudes up to 75% of

the height of the first nearest neighbor peak in the Ge-Br PPDF.

The a-MoGe3 PPDFs also show some regions of non-physical behavior. The worst

offender is the Mo-Mo PPDF; however even there, the negative atom density ampli-

tude has been greatly reduced to 22% of the height of the first nearest neighbor peak.

We attribute this improvement to the removal of most of the inelastic scattering in

the experiment and believe that further efforts to achieve even cleaner data will yield

further improvements.

It should be noted that the use of the Fuoss normalization procedure on data con-

taminated with significant inelastic contributions from more than one source or with

correction errors is risky. The Fuoss normalization assumes that there is a constant

background signal (a fluorescence-like signal) contaminating the nominally elastic

scattering. Other errors with k-dependent behavior may be partially-compensated
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Figure 7.7: On the left are the PPDFs from a-MoGe3, and on the right, the PPDFs
from l -GeBr4 obtained by Ludwig et al. [28] and a model of the GeBr4 molecule. The
arrows indicate the largest magnitude of non-physical negative atom density relative
to the magnitude of the first nearest neighbor peak in each set of PPDFs. The GeBr4

PPDFs have been scaled to approximately match the ordinate and abscissa of the
MoGe3 PPDFs.
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by the scaling factor resulting in an incorrect overall shape for the final normal-

ized elastic intensity. Examples of potential pitfalls include incorrect or incomplete

removal of Compton scattering, application of the wrong absorption correction to

the elastic scattering (or to the Kβ resonant Raman scattering if it is calculated and

subtracted based upon the Kα contribution), incorrect polarization correction and

alignment problems. An incorrect shape for the normalized elastic intensity will lead

to unreliable PSFs and PPDFs, and thus, the cleaner the initial elastic signal, the

better the results.

7.3 Crystals of Neighboring Compositions

As a basis for comparisons, the nearby crystal structures are presented here. Crys-

talline Ge has the diamond-cubic structure, and there are two crystal structures for

MoGe2. The lower symmetry α-MoGe2 phase displays a large range of near neigh-

bor distances and is thus inherently more structurally disordered, even as a perfect

crystal, than the high temperature, high symmetry β-MoGe2 phase. The crystal

structures [104, 105] and crystalline PPDFs are shown in Figures 7.8, 7.9 and 7.10.

In β-MoGe2, Mo has 4 Mo nearest neighbors at 3.32 Å and 10 Ge nearest neighbors

at 2.72 Å. Ge has 5 Mo nearest neighbors at 2.72 Å and 5 Ge nearest neighbors also

at 2.72 Å. The α-MoGe2 nearest neighbor coordination is not so simple. Mo in the

α phase has 4 Mo near neighbors near 3.5-3.6 Å and 2 more at 4.0 Å. It has 10 Ge

near neighbors distributed between 2.4 and 3.4 Å. Ge in the α phase has 10 Ge near

neighbors lying between 2.8 and 3.5 Å and 5 Mo near neighbors between 2.4 and

3.4 Å.
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Figure 7.8: The crystal structure and crystal PPDFs for the α phase of c-MoGe2.
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Figure 7.10: The crystal structure and crystal RDF for c-Ge.

7.3.1 Testing for Phase Separation

Since no MoGe3 crystalline analogue to the amorphous state exists, one might expect

an amorphous sample of this composition to be phase-separated into a-Ge and a-

MoGe2. Phase separation, however, is not supported by prior anomalous small-angle

scattering or EXAFS studies [1, 2, 3, 4] which indicate that MoGe3 is the endpoint for

phase separation in the amorphous sputter-deposited system. Despite this evidence to

the contrary, we must address the question of whether Sample 2 studied here (∼ 27%

Mo) is actually a phase-separated mixture of MoGe2 and Ge as would be expected

from the equilibrium phase diagram.

A simple and often-useful first approach for understanding the structure of an

amorphous alloy is to consider the local structures of nearby equilibrium compounds.

(See, for example, [106] and [107].) This is sometimes referred to as the quasi-

crystalline (qc) model and falls between what can be considered two extremes of

amorphous material models: dense random packing of hard spheres which ignores

any short range chemical ordering and the microcrystalline model which assumes the

material is comprised of very small, well-defined crystals with random orientations.
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The foundation for the qc model was first explicitly described by Warren [108] in his

work confirming Zachariasen’s continuous random network model for network glasses

[109] such as silica. In silica, the strong atomic interactions lead to a basic structural

unit (a “building block”) identical to that found in the crystal, the SiO4 tetrahedron.

The qc model, therefore, assumes that the local bonding within the amorphous alloy

is similar to that found in the nearby crystal(s). For the metal-metalloid systems

that display hybridized bonding with preferred bond orientation, this is often a rea-

sonable approach. Crystalline PPDFs may be broadened by a function representing

the increasing disorder with distance in the system to yield qc-PPDFs. For a hypo-

thetical, phase-separated mixture of Ge and MoGe2 with an overall composition of

MoxGe1−x, the Mo-Mo PPDF is equal to the Mo-Mo PPDF from MoGe2, and the

Mo-Ge PPDF is equal to the Mo-Ge PPDF from MoGe2. (There are no Mo-Mo

or Mo-Ge correlations contributed by pure Ge.) The Ge-Ge PPDF is equal to 2x
(1−x)

times the Ge-Ge PPDF from MoGe2 plus (1−3x)
(1−x)

times the Ge-Ge RDF from Ge where

x is the atomic fraction of Mo atoms in the sample. These relationships are given

below in terms of the number densities:

ρMoMo(MoxGe1−x) = ρMoMo(MoGe2) (7.3)

ρMoGe(MoxGe1−x) = ρMoGe(MoGe2)

ρGeGe(MoxGe1−x) =
2x

(1 − x)
ρGeGe(MoGe2) +

(1 − 3x)

(1 − x)
ρGeGe(Ge)

As will be shown in the following sections, the local structure in this amorphous

system differs from the local structure in the crystalline MoGe2 phases. As such,

comparisons of the experimental PPDFs with quasi-crystalline mixtures of equivalent

total composition can not be used to determine whether phase separation is present.
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(Such comparisons demonstrate only that the experimental a-MoGe3 structure is

inconsistent with a phase-separated mixture of qc-Ge and qc-α-MoGe2 or with a

phase-separated mixture of qc-Ge and qc-β-MoGe2.) We can, however, verify whether

the experimental Ge-Ge PPDF is consistent with the presence of a-Ge, an indicator

for phase separation. Pure a-Ge has 4 nearest neighbors and, using Equation 7.3, we

expect to find 1.0 Ge atom at the tetrahedral distance 2.45 Å in the PPDF if the

experimental data are representative of a phase-separated mixture of Ge and MoGe2.

(This peak arises at 2.47 Å in 4πrρGeGe(r), the function which is fit with Gaussians.)

Because disorder in the amorphous sample quickly washes out the correlations with

distance, and the third peak in the crystalline Ge RDF is not present in amorphous

Ge, we focus only on the low-r region.

Using this approach, the best fit depends on the r-range included in the fit.

Table 7.1 contains the results of fitting the Ge-Ge PPDF with two Gaussians, one con-

strained to lie at the tetrahedral Ge distance. A sample of the two-peak fit is shown

in Figure 7.11. With a low-r limit of 2.2 Å and varying the upper limit between 3.3

and 3.1 Å, we find that the number of near neighbors at the tetrahedral distance

varies from 0 to 0.7 atoms, considerably less than the expected average coordination

number for Ge in a-Ge for a phase-separated mixture of a-Ge and a-MoGe2. These

results are not consistent with phase-separation into a-Ge and a-MoGe2 in agreement

with the previous work using anomalous small-angle scattering and EXAFS.

Since the possibility of phase separation has been considered and found incon-

sistent with these and previous results, we can be confident of an interpretation of

coordination results for a-MoGe3 assuming a single phase.
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Table 7.1: Results of fitting two Gaussians to the first peak of the GeGe PPDF
divided by radial distance (4πrρGeGe(r)) for a variety of rmax values. rmin = 2.2 Å.
Areas are the area of the Gaussian multiplied by the peak position. The number
1 refers to the Gaussian at the tetrahedral Ge distance (2.54 Å in the PPDF), and
the number 2 refers to the second Gaussian at a longer distance. (A goodness of fit
parameter is not presented since it simply reflects the r-range included in the fit.)

rmax d1NN area1 FWHM1 d2NN area2 FWHM2
(Å) (Å) (atoms) (Å) (Å) (atoms) (Å)
3.1 2.47 0.69 0.58 2.98 6.5 0.78
3.2 2.47 0.48 0.61 2.98 7.0 0.84
3.3 2.47 0.01 0.27 2.97 7.9 0.95
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Figure 7.11: The two-Gaussian fit to the first peak of 4πrρGeGe(r) over the range
r = 2.2−3.1 Å. The solid line is the experimental Ge-Ge PPDF for a-MoGe3, dashed
lines are the two Gaussians, and the dotted line is the residual.
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7.4 Coordination Results

Having verified that 1) the extracted PSFs solve the initial Munro matrix equation, 2)

the PPDFs are more reliable than those obtained previously on a similarly-conditioned

system and 3) there is no evidence for phase separation, we now turn our attention

to the interpretation of the PPDFs. To our knowledge, this is the first time physical

interpretation of amorphous alloy structure has been feasible from a complete set of

PPDFs obtained by AXS without regularization.

Table 7.2 contains the local coordination parameters for a-MoGe3. The area under

a peak in a PPDF gives the number of near neighbors (NNs) at that distance, the peak

position. The local coordination parameters were obtained by fitting the first nearest

neighbor peak in each function, 4πrραβ(r), to single Gaussians to extract the NN

position, dNN, coordination number, N, and the full-width at half-max, FWHMtot.

The intrinsic peak width, FWHM, was obtained by removing, by quadrature, the

experimental broadening (0.38 Å) caused by the finite integration limit and damping

function. (The Ge-Mo coordination number is given by xMo

xGe
multiplied by the Mo-Ge

coordination number.)

Figure 7.12 shows examples of single Gaussian fits to the first peaks of the exper-

imental PPDFs and the residual. The Mo-Ge and Mo-Mo PPDFs display a distinct,

well-defined first NN peak. The first NN peak in the Ge-Ge PPDF, however, is broad

and poorly defined on the high-r side. As such, it will be more difficult to inter-

pret. All three peaks display apparent asymmetry evidenced by the negative dip in

the residual on the low-r side of the first peak. Since there are small magnitude

oscillations at low-r below the first peaks in the PPDFs, one may be suspicious of

an assertion of peak asymmetry; however, the fact that all three are broader on the

high-r side of the first NN peak, which occurs at different distances, lends support
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Table 7.2: Local coordination parameters for a-MoGe3. The numbers of near-
est neighbors, N1 and N2, are obtained by two different means. Note that
PPDFMoGe(r) = xGe

xMo
PPDFGeMo(r). The error estimates given are based solely upon

the variability of each parameter with the range included in the fit. (Uncertainties in
N1 are discussed further in Section 7.6.4.)

a-Mo27Ge73 dNN N1a FWHMb N2c

≈ a-MoGe3 (Å ± 0.02) (atoms ±0.1) (Å ±0.02) (atoms)
DDFMo (Γ = 0.75) 2.66 7.6 10.81
DDFGe (Γ = 0.25) 2.73 8.3 11.65
DDFGe (Γ = 0.55) 2.72 8.5 11.71
PPDFGeGe (2.96) (7.9) (0.86) 8.34
PPDFGeMo 2.67 3.0 0.39 3.40
PPDF∗

MoGe 2.67 8.0 0.39 9.24
PPDFMoMo 3.21 1.8 0.35 1.67

aN1 is obtained from a single Gaussian fit to the first peak in 4πrρ(r) multiplied
by the nearest neighbor distance, (dNN), the position of this Gaussian. Parentheses
indicate that the coordination values were strongly dependent on the r-range included
in the Gaussian fit due to the broad and asymmetric shape of the Ge-Ge first NN peak.

bFWHM is obtained from the Gaussian fit and has been corrected for the experi-
mental broadening caused by finite k-range and damping.

cN2 is simply the area under 4πr2ρ(r) (the PPDF) from r = 0 to 3.7 Å with the
appropriate density, ραβ or ρo.
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Figure 7.12: Representative single Gaussian fits (dashed lines) to the first near neigh-
bor peaks of the experimental PPDFs (solid lines) and the residual (dotted line). The
exact parameters depend on the range fitted, and the central values for the best fits
are in Table 7.2 above.
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to the assertion. The exact coordination parameters for each PPDF depend on the

r-range fitted, and the central values for the best fits are given in Table 7.2 above.

The Ge-Ge PPDF coordination parameters are strongly dependent on the r-range

included in the single Gaussian fit due to the broad high-r side of the first peak. This

is a clear indication that there are numerous Ge-Ge NN distances present.

The final coordination number included in Table 7.2 is N2, the area under the

PPDF from r = 0 − 3.7 Å. N2 provides a common basis for comparing the present

data with Kortright’s earlier scattering work on the system. In addition, the areas

under the DDFs can be shown to be consistent with the areas under PPDFs for

identical r-ranges as expected from the internal consistency tests in Section 7.1: The

sum of N2 for the Ge-Ge PPDF and Ge-Mo PPDF gives 11.7 near neighbor atoms for

Ge which agrees well with N2 for the Ge DDFs, 11.7 atoms. Similarly, the sum of N2

for the Mo-Mo PPDF and Mo-Ge PPDF is 10.9 atoms which is in good agreement

with the 10.8 atoms from the Mo DDF. The Mo DDF, as expected, shows the sharp,

well-defined Mo-Ge correlations at low r followed by the Mo-Mo correlations about

0.5 Å further out in r. The Ge DDF, on the other hand, is comprised of broad Ge-

Ge correlations and sharper Mo-Ge correlations, and it shows an average first NN

distance intermediate to the Mo-Ge distance and the nominal Ge-Ge distance. The

high number of near neighbors for both Mo and Ge indicate that a-MoGe3 is quite

densely packed relative to the open tetrahedal network found in a-Ge.

The Mo-Ge first NN distance is the shortest distance present in the alloy and

is well-defined. This is consistent with the strong attractive interaction known to

exist between Mo and Ge from the Mo-Ge equilibrium phase diagram which contains

many line compounds exibiting negligible solid solubility of both Mo and Ge. The

Ge-Ge first NN distance is intermediate to the other NN distances and is very broad
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indicating a large degree of disorder in the local Ge-Ge NN distances. The Mo-Mo first

NN distance is the longest, concurrent with Mo-Mo avoidance, and this distribution

is also relatively well-defined. The Mo-Mo coordination is most likely determined by

the constraints of the strong Mo-Ge interactions. Kortright was able to successfully

extract the Mo-Mo PPDF from a 65% Mo sample [1]. (It was the most heavily

weighted partial and least sensitive to error). The Mo-Mo first NN distance for that

alloy composition is dMoMoNN = 2.78 Å ≈ 2 · rMometallic indicating the presence of Mo-Mo

nearest neighbors in the 65% Mo sample. In the present 27% Mo sample, the Mo-Mo

first NN distance is dMoMoNN = 3.21 Å > 2 · rMometallic. This lends further credence to the

assumption that the Mo-Mo coordination is determined by the Mo-Ge interaction in

a-MoGe3.

From the singular value decomposition analysis described in Section 2.5.2, the Mo-

Ge distribution is expected to be the least sensitive to error and most trustworthy.

The Mo-Mo PPDF is expected to be most prone to error. In addition, the error in

the Mo-Ge PPDF is expected to be opposite in sign to the error in the Mo-Mo and

Ge-Ge PPDFs. With this in mind, the puzzle of the local structure can approached

by beginning with the Mo-Ge PPDF.

The most definitive feature of the Mo-Ge distribution is the sharp NN peak

(FWHM=0.39 Å after correction for broadening from finite k-range and damping).

The position, 2.67 Å, and area of the peak (N1=8.0 Ge atoms) are consistent with

a regular eight-fold coordination of Mo by Ge. This is less than the regular ten-fold

coordination of Mo by Ge found in crystalline β-MoGe2 at 2.72 Å. The a-MoGe3

Mo-Ge coordination is more regular than that of the lower symmetry α phase which

has 10 Ge NNs over distances ranging from 2.4-3.4 Å.
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This decrease in the Mo coordination from 10 to 8 Ge atoms in going from crys-

talline MoGe2 to amorphous MoGe3 is counterintuitive and not yet fully understood.

There are several possible ways to arrange 8 Ge atoms about Mo. One can consider

regular arrangements such as a cube or tetragonal antiprism or even completely non-

regular arrangements such as in the Mo[CN]4−8 complex in which four ligands lie at

34◦ from a vertical axis and four at 73◦. Looking to the crystal structures for possi-

ble clues to explain this counterintuitive trend, we find that the β-MoGe2 structure

is characterized by repeated trilayers consisting of sheets of Mo atoms sandwiched

between two sheets of Ge atoms as drawn schematically in Figure 7.13 a). The two

sheets of Ge atoms above and below a Mo sheet give rise to 8 of the 10 Ge NNs to

Mo. The final 2 Ge NNs reside in neighboring trilayers. We may consider pulling

the trilayers apart and, in the process, losing the two Ge NNs from the neighboring

trilayers as illustrated in Figure 7.13 b). This leaves 8 Ge NNs to Mo which can relax

and reorganize within the trilayer. The Mo-Ge distance in the amorphous alloy is

about 0.05 Å shorter than in the β-MoGe2 crystal, a significant, measurable differ-

ence. As a final step, the layered structure is disordered, and additional Ge is added

to reach the MoGe3 composition shown schematically in Figure 7.13 c). Evidence

that a layered structure is not retained in a-MoGe3 include an average Mo-Ge-Mo

bond angle (74◦) > 70.5◦, a Mo-Mo NN distance dMoMo > 3.08 Å, and a Mo-Mo

coordination number NMoMo < 4 where the values cited are those expected for the

layered structure. (The Mo-Ge-Mo bond angle is determined from the experimental

Mo-Mo and Mo-Ge distances.) In addition, previous work [3, 4] shows that the Ge

atoms are uniformly distributed throughout these materials. Although this is a very

simple, initial picture, it offers some useful insight into the 8-fold coordination of Mo

by Ge in the a-MoGe3 phase.



160 CHAPTER 7. DISCUSSION

Ge
Mo
Ge}

a)

b)

c)

Figure 7.13: Schematics illustrating the possible transition from (a) 10-fold coordi-
nation of Mo by Ge atoms in the trilayer structure found in β-MoGe2 through an
intermediate structure (b) in which the trilayers are pulled apart so that Mo loses
two of its Ge nearest neighbors to the final structure (c) in which the layer structure
is disrupted by disorder and the insertion of additional Ge atoms to achieve the 8-fold
coordination of Mo by Ge atoms and the total composition of a-MoGe3.
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Interestingly, Kortright obtained similar coordinations for Mo. Since the first

peaks in the Ge and Mo DDFs occur at the same position, he was able to infer that the

first peak in his Mo DDFs corresponded to the Mo-Ge coordination and found about

8 or 9 Ge atoms about Mo in samples of 14 and 42% Mo. These compositions bracket

both the a-MoGe2 and a-MoGe3 compositions indicating that 8-fold coordination of

Mo by Ge is a characteristic of these sputter-deposited Ge-rich amorphous alloys.

This eight-fold coordination of Mo by Ge, in turn, necessarily implies that the

average Ge has 3.0 Mo neighbors at the same distance (provided the material is not

phase separated, an assumption tested above). Determining the precise Ge coordina-

tion from the PPDFs has not been possible thus far because the initial Ge-Ge peak

at ∼ 3.0Å is broad and poorly resolved on its high-r side. In β-MoGe2, each Ge is

coordinated by 5 Mo and 5 Ge atoms at 2.72 Å. This implies that excess Ge can be

accomodated by additional Ge neighbors and fewer (3.0) Mo neighbors about Ge.

If the Ge atoms coordinating a Mo atom were arrayed on a cube, the Ge-Ge

separation would be 3.08 Å. When the first Ge-Ge peak is fit with two Gaussians,

one constrained to lie at 3.08 Å, we find 3.5 Ge atoms at that distance and 3.0 Ge

atoms at 2.69 Å (close to the Mo-Ge NN separation of 2.67 Å). This implies that

the average Ge nearest neighbor coordination (3.0 Ge atoms plus 3.0 Mo atoms) is

less than its ten-fold value in β-MoGe2. There are a number of ways this could be

achieved through various combinations of Ge coordinations, and further elucidation

of the Ge coordination will require modelling.

The first Mo-Mo distance at 3.21 Å corresponds well to the shortest Mo-Mo dis-

tance, 3.32 Å, in β-MoGe2. The peak is rather sharp (FWHM=0.35 Å) with an area

of about 1.8 atoms (examined in Section 7.6.4). As discussed earlier, the Mo-Mo

coordination is thought to be determined by the attractive interaction between Mo
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and Ge.

For a three-dimensional representation of this chemically-specific one-dimensional

data, a modelling method like Reverse Monte Carlo (RMC) will be required. While

RMC modelling can provide a physical model for this structure that agrees with the

scattering data, it will not be a unique solution, and it will tend to be the most

disordered solution that agrees with the data as discussed in Section 2.6. The present

PPDFs provide a much more detailed set of initial conditions for such modelling

than the RDFs typically available for an amorphous structure, and they considerably

narrow the field of solutions available.

7.5 Comparison of PPDF Results with Previous

EXAFS Results

Because of the relative ease of sample preparation and experiment, EXAFS is a more

widely used technique for examining the atomic-scale, local structure of amorphous

materials than the anomalous x-ray scattering techniques. The results from this

technique have frequently been questioned, however, because of its limitations in

dealing with disorder and asymmetry in atomic near neighbor distributions. (For

examples, see Reference [110] and citations therein.) Kortright and coworkers [1, 2]

carried out a systematic study of the amorphous sputter-deposited Mo-Ge system over

Mo concentrations ranging from 0% (a-Ge) to 70% Mo using both EXAFS and DDFs

from AXS. In this section, the results from the experimental PPDFs of a-MoGe3 are

compared with Kortright’s EXAFS results.

Although both AXS and EXAFS yield chemically-specific coordination informa-

tion, the results are frequently complementary because the techniques access different
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k-ranges as discussed briefly in Section 2.4.1. Scattering from an amorphous material

generally consists of a few strong peaks at low k containing information about distant

and disordered coordinations and a more-or-less single frequency oscillation at high k

arising from the first NN distance [1]. For the anomalous x-ray scattering techniques,

the available k-range is between ∼ 1 Å
−1

and kmax. This region encompasses the

low-k region, but the extent of the high-k region available depends on the energy at

which data are collected since kmax = 4π
hc
E. For the present work, kmax = 10 Å

−1
.

Kortright’s EXAFS data encompass the high-k region extending from k = 6−30 Å
−1

where k is the scattering vector as defined in AXS. (k = 2kEXAFS since the backscat-

tered photoelectron in EXAFS travels twice the distance to a neighboring atom.)

These differences in the collected k-range lead to different sensitivities: The EXAFS

is primarily sensitive to very near neighbors in narrow, well-defined coordination

shells. The lack of low-k data means that information about more distant coordina-

tion shells is missing entirely. Oscillations from a broad, disordered or asymmetric

first coordination shell are strongly damped in the k-range sampled by EXAFS so

that information may be lost even about the first coordination shell. Anomalous

scattering samples the overall shape of the atomic distribution functions but, lacking

the high-k data, the sharper detail of the features are missing. Kortright found that,

for a short, well-defined first coordination shell such as that present in a-Ge, the

EXAFS and DDFs gave nearly identical results for NN distances and coordination

shell widths. For the amorphous Mo-Ge alloys, however, EXAFS results generally

indicated shorter and narrower coordinations than the DDFs. Kortright surmised

that those differences were due to asymmetric first coordination shells about Mo and

Ge. Difficulties in studying amorphous materials with broad or asymmetric coordi-

nations have been noted by previous workers [110, 111].
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Like the DDFs, EXAFS provides information about the nearest neighbors of a

given species. Unlike the DDFs, this information can be obtained by modelling of

the EXAFS oscillations directly in k-space as well as through a Fourier transform to

real space. The absorption data, collected at both elements’ edges, is normalized to

the Cromer-Liberman values far from the edge. Using only the data above the edge

energy, the data are converted to k-space by

E − Eo =
h̄2k2

2m

where Eo is the zero of the photoelectron energy scale and k, in this context, refers

to kEXAFS. The data are then weighted by kn (where n = 3 in Kortright’s work)

to emphasize the high-k oscillations. Polynomial fits are subtracted leaving only the

oscillations or EXAFS, k3χ(k). The EXAFS are then fit with the following equation:

knχα(k) = kn−1
∑
β

Nβ
R2
αβ

e−2σ2
αβk

2|fβ(π, k)| sin (2kRαβ + φαβ(k)) (7.4)

The absorbing atom is designated α and the backscattering atom, β. Rαβ is the

distance between α and β, Nβ is the number of β atoms at a distance Rαβ from

α, σαβ is the Gaussian standard deviation of the coordination shell due to static and

thermal broadening. The backscattering amplitude of the β atom is given by fβ(π, k),

and the total phase shift of the backscattered photoelectron, by φαβ(k). Kortright

allowed R, N and σ2 to vary using Gaussian shells to model the data. Gaussians are

appropriate for materials with symmetric, relatively-narrow coordination shells. Mean

free path, many-body and multiple-scattering effects were neglected in Kortright’s

analysis. These effects were expected to cause the coordination numbers, N , to be

smaller than the actual coordination numbers.
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Table 7.3: The coordination parameters from EXAFS from Kortright’s 25% Mo sam-
ple. The best self-consistent fits were a two-shell fit of Ge and Mo to the Ge EXAFS
and a one-shell fit of Ge to the Mo EXAFS.

R(Å) NMo FWHM (Å)a Σb

Ge-Ge 2.69 0.75 0.279
Ge-Mo 2.59 0.64 0.178 0.128
Mo-Ge 2.59 3.59 0.212 0.043

aFWHM is obtained from Kortright’s σ2 values.
bΣ represents the goodness of the fit defined as the sum

of squares of the residuals between the model and data
divided by the sum of squares of the data.

At the Ge K edge, Kortright found that the best self-consistent fit to the data was

a two-shell fit with one Mo shell and one Ge shell. For his 25% Mo sample, the Mo

shell had a distance of 2.6 Å, a coordination number of 0.6, and a narrow FWHM of

0.19 Å. The Ge shell was located at 2.7 Å with 0.8 atoms and a much wider FWHM of

0.28 Å. Mo continued to be the nearest neighbor to Ge from 25% Mo to at least 65%

Mo. Below 23% Mo, the Ge EXAFS was well-fit by a narrow first shell of Ge atoms

at 2.45 Å, the tetrahedral Ge distance, a piece of the evidence for phase separation

in the Ge-rich compositions.

At the Mo K edge, Kortright found a one-shell fit of Ge atoms gave the best self-

consistent fit to the data for the 25% Mo sample. He found a nearest neighbor distance

of 2.6 Å for the 3.6 Ge atoms about Mo. The FWHM of this Mo-Ge shell, at about

0.21 Å, was much smaller than the Ge first shell about Ge. These results are given

in Table 7.3 with the results for the Ge K edge EXAFS described above. Kortright

found that the Mo nearest neighbor environment remained the same between ∼ 25

and ∼ 42% Mo. Below 23% Mo, the 2.6 Å distance to Ge nearest neighbors was

still present, but the number of Ge atoms about Mo increased with decreasing Mo



166 CHAPTER 7. DISCUSSION

Table 7.4: Local coordination parameters for a-MoGe3 excerpted from Table 7.2 and
with total FWHM values not corrected for experimental broadening.

a-Mo27Ge73 dNN N1a FWHMtot
b

≈ a-MoGe3 (Å ± 0.02) (atoms ±0.1) (Å ±0.02)
PPDFGeGe (2.96) (7.9) (0.94)
PPDFGeMo 2.67 3.0 0.54
PPDF∗

MoGe 2.67 8.0 0.54
PPDFMoMo 3.21 1.8 0.52

aN1 is a single Gaussian fit to the first peak in 4πrρ(r),
and the nearest neighbor distance (dNN) is obtained from
the position of this Gaussian. Parentheses indicate that
the first peak was not fit well by a single Gaussian distri-
bution.

bFWHMtot is obtained from the Gaussian fit and has
NOT been corrected for the experimental broadening.

content.

For direct comparison with Kortright’s EXAFS coordination results in Table 7.3,

a portion of Table 7.2 which contains the coordination parameters for the present

a-MoGe3 sample is reproduced in Table 7.4 with FWHMtot not corrected for experi-

mental broadening. These comparisons are presented below.

Of the possibilities, the Mo-Ge coordination shell, with the shortest NN distance

in the amorphous alloy and one of the narrower NN peak widths, should be best

represented by modelling the EXAFS. A comparison of Tables 7.3 and 7.4 shows

that the EXAFS predicted a coordination shell 21
2
− 3 times narrower than in the

PPDFs obtained by anomalous scattering. Kortright showed that the experimental

broadening of his EXAFS and RDF were nearly the same (0.42 Å and 0.38 Å) for

a-Ge, and the experimental broadening for the present PPDFs is 0.38 Å as well. So,

the narrower coordination obtained by EXAFS is not due simply to differences in

experimental broadening but likely arises because the EXAFS sees only the low-r
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part of this somewhat broad, likely-asymmetric coordination shell. As a result, the

peak width is too narrow, and the position, perhaps too short by 0.1 Å.

The situation worsens for the Ge-Ge coordination shell. Here, the Ge-Ge PPDF

clearly shows a broad, highly disordered first coordination shell. It has a poorly

defined high-r side making it difficult to fit with a single Gaussian. Since it is quite

asymmetric (broader on the high-r side), it is no surprise that the EXAFS gives a

NN distance significantly shorter than the PPDF distance by 0.3 Å. The EXAFS

peak width is three times narrower than the scattering peak width indicating that

the EXAFS misses all but the sharper, low-r side of the coordination shell.

The Mo-Mo coordinations seen in the PPDFs near 3.2 Å are evidently too far

away for the EXAFS to reproduce reliably. In addition, the coordination numbers

from the EXAFS analysis are far too small to be accurate for any of the coordinations

discussed. In modelling tests on Ge and Mo3Ge, Kortright found that the coordination

numbers he obtained were 30-56% too low due to neglected effects and, perhaps, error

in calculated values of the backscattered amplitudes. As such, we ignore the EXAFS

coordination numbers.

Thus, in part because the EXAFS and AXS techniques sample complementary

regions of k-space, Kortright’s EXAFS results do not give an accurate representation

of the local and intermediate structure in a-MoGe3, a material with high static disor-

der because of the broad, probably asymmetric (certainly asymmetric in the case of

Ge-Ge) first NN coordination shells. Rigorous modern analysis methods [57, 112, 113]

of EXAFS data incorporating lower k data (strongly affected by the effects, such as

multiple-scattering, neglected in Kortright’s analysis) and permitting asymmetry of

distributions are now available, and the efficacy of these methods has been tested by

comparing EXAFS and neutron diffraction studies of a-Ge [113]. The Mo-Ge alloys,
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however, display much longer and less well-defined coordination shells than a-Ge. In

fact, Kortright found reasonable agreement between the coordination distances from

his EXAFS and DDFs for a-Ge. Although it is likely that more rigorous EXAFS

analyses would yield improved agreement between the scattering and EXAFS coor-

dination results for a-MoGe3, it is not clear how complete the agreement would be.

Such a study is beyond the scope of the present work; however it offers the interesting

possibility of comparing the information about coordination widths and asymmetry

from EXAFS to that obtained from high-quality PPDFs on a sample with large aver-

age static disorder like a-MoGe3.

7.6 Stability of Coordination Results with Respect

to Error

It is no simple task to determine how errors in the elastic intensity, which is measured

in k-space, propagate into the PPDFs in real space, but we hope to be able to deter-

mine how sensitive the coordination results from the extracted PPDFs are to error

in the intensity measurements. To do so, we observe the effect of error purposefully

introduced into the intensity measurements.

There are two types of easily introduced error: an error in the normalization con-

stant and an error in the background constant. Note that both of these types of errors

should ideally be removed by the Fuoss normalization discussed in Section 5.4; how-

ever, the precise normalization parameters depend on the k-ranges selected for the

integral and large-angle normalization equations. As such, small errors are possible

in both background and normalization constants even using the Fuoss normalization.

There are, of course, other k-dependent errors potentially present in the elastically
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scattered intensity from any given AXS experiment. (For example, using a wide

detected energy window can lead to Compton scattering that is only partially dis-

criminated against. This would give rise to an error that increases and then decreases

as a function of increasing k.) One of the dangers of the Fuoss normalization method

mentioned earlier in this chapter is that some error with a different k dependence

may be partially-compensated yielding an incorrect overall shape for the final nor-

malized intensity. As such, beginning with the cleanest possible elastic scattering

data is vital. Since the functional form of such k-dependent errors is very specific

to the experimental setup, only the normalization constant and background constant

errors are explored here.

The corrected and normalized experimental intensity, Io (assumed to be relatively

error-free for the purpose of addressing the question of coordination result stability),

is modified to include an introduced error as follows:

Imod = Io(1 + δ) + b.

For simplicity, only the cases of δ = 0, b �= 0 and δ �= 0, b = 0 are considered. This

error-contaminated intensity can then be introduced into the Munro matrix to observe

the impact on the final PPDFs.

7.6.1 Background Error

It is clear that applying identical background errors in both of the intensities com-

prising the difference below the Mo or Ge edge will have no effect on the final PPDFs

since the backgrounds will simply subtract out. Non-equal background errors in the
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intensities comprising a difference are expected to have the same effect as a back-

ground error in the final row of the Munro matrix (see Equation 2.24) which does

not involve a difference, so we apply a background error only in the final row of the

Munro matrix while keeping δ = 0.

A background error of ±1% of the maximum intensity in the final row of the Munro

matrix results in ±3% change in N1 (the number of near neighbors from a Gaussian

fit to the first peak) for the Mo-Mo PPDF and ±1% change for the Mo-Ge PPDF.

(Since the Ge-Ge first near neighbor peak is not well-fit by a single Gaussian, it is not

considered here.) The first peak position, dNN, does not change for the Mo-Ge PPDF

with this low level of background error, but dMoMoNN varies by ±0.01 Å. Figure 7.14

shows the effect of a background error on the total structure factor measured 100 eV

below the Mo edge: a smoothly varying function, b/〈f〉2, is added to the structure

factor. The magnitude of error seen for a ±1% background error could easily arise

if inappropriate limits of integration were chosen for normalization of data that does

not extend to high k where the elastic scattering approaches the coherent scattering.

The graph on the left in Figure 7.15 contains the three PPDFs extracted from the

Munro matrix with ±1% background error. The visual appearance of the PPDFs is

not strongly affected by this level of background error.

Increasing the background error to ±3% of the maximum intensity results in a

dramatic degradation of the quality of the PPDFs. Both the Mo-Mo and Ge-Ge

PPDFs have such strong oscillatory behavior that fitting a single Gaussian to the

first NN peak is not meaningful. The Mo-Ge PPDF has a ±5% change in N1 and

a ±0.03 Å change in dMoGeNN . The graph on the right side in Figure 7.14 shows the

obvious impact of this large error on the normalization of the total structure factor.

The graph on the right side in Figure 7.15 contains the three PPDFs extracted from
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Figure 7.14: The total structure factor 100 eV below the Mo K edge obtained for
positive, negative and no purposefully-introduced background error in the intensity.
±1% background error is on the left side and ±3%, on the right.
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Figure 7.15: The PPDFs extracted from the Munro matrix containing the
background-error-contaminated intensity in the final row of the Munro matrix. Pos-
itive, negative and no background error are considered. ±1% background error is
presented in the graph on the left side and ±3%, on the right.
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the Munro matrix with this error-containing intensity in the final row of the Munro

matrix. The lower sensitivity of the Mo-Ge PPDF to error, and the mirroring between

the Mo-Ge PPDF and the Mo-Mo and Ge-Ge PPDFs are now very clearly seen.

7.6.2 Normalization Constant Error

An error in the normalization constant will have the effect of adding a factor of

(δ Io(k))/〈f〉2 to the structure factor. Unlike an error in the background constant,

this error is not a simple, smoothly-rising function of k: It will be modulated by the

oscillations of the intensity as a function of k. As before, we begin by applying this

type of error only in the final row of the Munro matrix. A normalization constant

error of ±1% corresponds to δ = 0.01 and gives a ±3% change in N1 for the Mo-Ge

PPDF and ±5% for the Mo-Mo PPDF. The first peak position, dNN, does not change

for the Mo-Ge PPDF with this level of normalization constant error, but dMoMoNN varies

by ±0.02Å.

Increasing the normalization constant error to ±3% naturally increases the errors

seen in the PPDFs (relative to the experimental PPDFs). The number of near neigh-

bors in the first coordination shell, N1, from the Mo-Ge PPDF changes by ±10%.

For the Mo-Mo PPDFs, the change is ±16%. dNN varies by only ±0.01 Å for the

Mo-Ge PPDF, but dMoMoNN varies by ±0.06 Å. As with the background constant error,

the Mo-Ge PPDF is demonstrably least sensitive to introduced normalization con-

stant error, and the mirroring between the Mo-Ge PPDF and the Mo-Mo and Ge-Ge

PPDFs is evident.

Another possibility to explore is the presence of a normalization constant error in

the intensities comprising one of the differences below an edge. Since identical limits

of integration are usually chosen for normalizing data taken below a given edge, it
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Figure 7.16: The total structure factor 100 eV below the Mo K edge obtained for
positive, negative and no purposefully-introduced normalization constant error in the
final row of the Munro matrix. ±1% normalization constant error is presented in the
graph on the left side and ±3%, on the right.
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is most likely that a normalization constant error would be present in the intensities

from both energies below that edge. Introducing ±1% normalization constant error

in the intensities below the Ge edge results in ±2% error in N1 for the Mo-Ge PPDF

and ±5% error in N1 for the Mo-Mo PPDF. dMoGeNN does not change, and dMoMoNN

changes by ±0.02 Å. Increasing the error to ±3% gives ±7% change in N1 for the

Mo-Ge PPDF and ±10% change in N1 for the Mo-Mo PPDF. The change in NN

distances also increases: ±0.01 Å for the Mo-Ge peak and ±0.04 Å for the Mo-Mo

peak. Figure 7.18 contains the PPDFs extracted from the Munro matrix with the two

levels of introduced normalization constant error in both intensities measured below

the Ge edge.
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Figure 7.18: The PPDFs extracted from the Munro matrix containing the intensities
contaminated by a normalization constant error. Positive, negative and no normaliza-
tion constant error are considered. The error is introduced into both of the intensities
comprising the difference below the Ge K edge. ±1% normalization constant error is
presented in the graph on the left side and ±3%, on the right.
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7.6.3 Conclusions about the Impact of Introduced Error

It is gratifying to note that nearly all errors introduced lead to a degradation of

the quality of the final PPDFs extracted from the Munro matrix. If a variation in

the background or normalization constants had yielded a significant improvement in

PPDF quality, it would suggest that the optimal values had not been used in the

earlier analyses. Possible exceptions are the addition of +1% normalization constant

error in the final row of the Munro matrix and −1% normalization constant error in

both intensities comprising the difference below the Ge edge. Although the catalog

of errors tested is by no means complete, we may estimate the coordination number

uncertainties to be ∼ 3% for the Mo-Ge PPDF and ∼ 5% for the Mo-Mo and Ge-Ge

PPDFs based upon the variation of coordination number with these 1% normalization

constant errors.

The uncertainties for the various introduced errors are only valid for the specific

Munro matrix equation studied here, but the trends in PPDF behavior response to

the introduced errors allow us to draw some general conclusions about the impact

of errors. First, the differences of intensities below each edge are highly effective at

removing background constant errors, and they greatly reduce the impact of nor-

malization constant errors provided the two intensities in the difference have been

normalized similarly. Errors in the final row of the Munro matrix (which does not

involve a difference of two intensities) are the biggest liability to PPDF reliability.

Background constant errors in the final row have a strong negative impact on PPDF

quality, but these errors are also easy to detect in the total structure factor, SF, for

that intensity measurement and therefore are unlikely to be pass unnoticed into the

Munro matrix. Normalization constant errors in the final row of the Munro matrix are

less noticeable in the SF but have a strong effect on the PPDFs. It is thus best to use
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data collected at high energy in the final row of the Munro matrix since normalization

to a per-atom basis is less ambiguous for data extending to high kmax.

7.6.4 A Conservative Estimate

A more conservative approach to uncertainty estimation considers the magnitude of

the oscillations at distances shorter than the first NN peak. If the oscillations were to

continue into the first peak, the maximum change they might cause in the first peak

area is assumed to be the area of the largest oscillation (positive or negative peak)

before the first NN peak. This gives ∼ 4% uncertainty in the Mo-Ge coordination

number, ∼ 2% uncertainty in the Ge-Ge coordination number and ∼ 14% uncertainty

in the Mo-Mo coordination number. This Mo-Mo coordination number uncertainty

is larger than cited above, and this results in 1.5 − 2 Mo atoms about the average

Mo atom in a-MoGe3. Thus, final conservative estimates of coordination number

uncertainties are ∼ 5% for the Mo-Ge and Ge-Ge PPDFs and ∼ 15% for the Mo-Mo

PPDF. These uncertainties are greatly reduced from those in previous work [28] on

a similarly-conditioned system.

7.7 Role of MoGe3

In the equilibrium Mo-Ge phase diagram, there are many line compounds with no

appreciable solid solubility. Kortright’s earlier comparisons of the Mo and Ge DDFs

from > 23% Mo samples with the PPDFs of the crystalline line compounds led

him to believe that the local order in the amorphous alloys was like that of the

Ge-rich intermetallics. Perhaps then, there exists a unique MoGe3 compound in

the amorphous system. The present data offer sufficiently reliable, low uncertainty
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coodination information that this question can be answered: Taken as a whole, the

PPDFs for a-MoGe3 are not indicative of a locally well-ordered amorphous compound.

Although the attractive Mo-Ge interaction introduces some local short-range chemical

ordering, as a whole, the alloy displays very high static disorder especially in the Ge-

Ge correlations. While some of the intermetallics also have high local disorder, a more

apt description of the structural information available for MoGe3 is a solid solution of

Ge and Mo in which the relaxation of crystallographic constraints allows a high range

of solid solubility in the alloy. The MoGe3 endpoint is then simply the solubility

limit beyond which additional Ge added to the amorphous sputter-deposited alloy

precipitates out as a second phase, a-Ge.



Chapter 8

Conclusions and Future Work

The original goals of this work were two-fold. We sought to improve the reliability of

partial pair distribution functions obtained from anomalous x-ray scattering (AXS),

and specifically, to elucidate the structure of a-MoGe3, the endpoint for phase sepa-

ration in Ge-rich amorphous sputter-deposited Mo-Ge alloy films. In the process, a

number of specific questions have been answered:

• Can experimental removal of inelastic scattering improve the quality of partial

pair distribution functions (PPDFs) obtained by anomalous x-ray scattering?

• Are these PPDFs, extracted without regularization methods, reliable?

• What can be said of the structure of a-MoGe3?

• Does the MoGe3 composition correspond to a new compound in the amorphous

material with strong local ordering as suspected by previous workers?

• What new questions are raised by these results?

The answers to these questions are summarized in this chapter followed by a discussion

of future work which will address the following two questions:

179
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• What specific experimental improvements can be undertaken to obtain cleaner

elastic scattering data from a-MoGe3?

• Anomalous x-ray scattering experiments are notoriously difficult. How can the

technique of PPDF extraction be made more universally-available in the future?

8.1 Experimental Removal of Inelastic Scattering

Although there are mathematical regularization methods designed to stabilize the ill-

conditioned matrix equation which must be solved in order to obtain the final product,

the PPDFs, these methods address only random errors and completely neglect sys-

tematic errors. In forcing physical behavior of the distribution functions in certain

regions, they may distort the results in others. As such, it is preferrable not to rely on

regularization methods as a means of extracting reasonable PPDFs. Such methods

should instead be applied to reduce the impact of statistical errors on data already

free of systematic errors.

By experimentally reducing the error in the initial data, much cleaner data requir-

ing few corrections were obtained in these anomalous scattering experiments. The

partial structure factors (PSFs) for a-MoGe3 extracted from the Munro matrix with-

out regularization were shown to be solutions of the original matrix equation by

reconstructing the total and differential structure factors. The PPDFs were obtained

by sine Fourier transform of the PSFs.

Experimental removal of inelastic scattering yields marked improvements in the

reliability of these PPDFs obtained from anomalous x-ray scattering. Prior work

relied on subtraction of calculated values of inelastic scattering which implicitly

assume detector response is constant over all photon energies. Direct comparisons



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 181

between an earlier PPDF study [28] using the Munro matrix on a similarly-conditioned

system, l -GeBr4, and the present study of a-MoGe3 show that the maximum ampli-

tude of non-physical atomic density is reduced from 75 to 22% of the height of the

first nearest neighbor peak. The l -GeBr4 study involved subtracting calculated values

for Compton scattering which assume the detector is equally efficient at collecting all

energies of scattered photons. In addition, the Kβ resonant Raman scattering was

removed as a constant in the Fuoss normalization. Neither of these systems were

solved using regularization methods. Since there remain additional modifications

that can be implemented in the experimental system, it is expected that the qual-

ity of the PPDFs can be even further improved through experimental improvements

alone.

Key steps in the collection and analysis of the scattering data which contributed

to the improved quality of the PPDFs are summarized below:

• Use of a graphite analyzer crystal and position-sensitive detector allowed col-

lection of energy-resolved scattered intensity as a function of the scattering

vector magnitude, k. Detected energy resolutions were ∆EMo = 130 eV and

∆EGe = 42 eV at energies below the Mo and Ge K absorption edges respec-

tively. This energy resolution allowed the separation of the elastic scattering

from the inelastic contributions at each k-point.

• Removal of the sample substrate prior to data collection eliminated the need

for an additional correction.

• The appropriate edge energy was verified between scattering data collection

scans to ensure good energy stability particularly when working close to the

absorption edge where the anomalous scattering factors vary strongly with
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energy.

• All data entering the matrix equation were collected during a single synchrotron

experiment so that any systematic errors present were as similar as possible, and

data interrupted by a beamfill were not included in the data analysis.

• Absorption data, which yield the anomalous scattering factors (ASFs), were

collected on the same sample and with the same incident energy resolutions as

the scattering data to minimize errors in the ASFs.

• Correction constants were carefully measured, and corrections for absorption,

detector nonlinearity, polarization and multiple scattering were applied to the

elastically scattered intensity data.

• The Fuoss normalization, which combines the methods of Warren and Norman/

Krogh-Moe, was applied to the corrected elastic scattering data. Data taken at

the highest energy (having the highest kmax) were more readily well-normalized

and were referred to in normalizing data taken at lower energies.

• Finally, a Gaussian damping function that acts smoothly over the entire k-range

was applied in the sine Fourier transform to real space.

8.2 Coordination Results and Their Reliability

Although there remain regions of small, non-physical, negative atomic density (par-

ticularly in the Mo-Mo PPDF) and some mirroring as predicted by singular value

decomposition analysis, the magnitude of these effects is small enough that local

coordination results can be extracted from the three PPDFs with small uncertainties.

Because no MoGe3 compound exists in the equilibrium phase diagram, tests were first
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conducted for the presence of a phase-separated mixture of a-Ge and a-MoGe2 by

fitting an a-Ge component in the Ge-Ge PPDF. The results were inconsistent with

phase separation, and the coordination results from the PPDFs were interpreted as

arising from a single phase as expected from previous studies on this system [2, 3, 4].

Comparisons of total and differential structure factors with those from Kortright’s

work [2] verified that the sample falls in the appropriate position in the progression of

compositions in the amorphous, sputter-deposited Mo-Ge system. Thus, the present

results were interpreted in light of the previous studies.

The coordination results are briefly summarized here: Simple Gaussian fits to the

first nearest neighbor peaks in the PPDFs indicate that Mo is closely coordinated by

about 8 Ge nearest neighbors at a distance of 2.7 Å. This short, reasonably-ordered

Mo-Ge distance is consistent with the strong attractive interaction known to exist

between Mo and Ge. The Mo-Mo coordination, the longest at 3.2 Å, is most likely

determined by the constraints of the Mo-Ge interactions. Ge, on the other hand,

has a very broad and disordered coordination by other Ge atoms peaking near 3.0 Å.

Due to the large degree of disorder in Ge-Ge PPDF and limited real-space resolution

inherent to the AXS technique applied near the Ge K absorption edge, more detailed

structural information than that presented in Chapter 7 will require modelling.

Despite the local short-range order introduced by the attractive Mo-Ge interac-

tion, all three PPDFs display apparent asymmetry in the first nearest neighbor peak,

the Mo-Mo first near neighbor peak occurs at long distances, and the Ge-Ge first near

neighbor peak is quite broad. These considerations lead to disagreement between

coordination results from the PPDFs and from previous EXAFS studies carried out

by Kortright and coworkers on sputter-deposited a-MoGe3: Coordination distances

given by EXAFS are too low and the coordination shell widths, too narrow. These



184 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

effects are due to the differing k-ranges sampled by the two techniques and highlight

the importance of quality PPDFs for determining the local and intermediate struc-

ture in highly-disordered amorphous materials having broad, potentially-asymmetric

coordination shells.

Introduced errors in the PPDFs provide a measure of the uncertainties in the

coordination numbers. Errors introduced in the row of the Munro matrix which does

not involve a difference of two intensities were found to be most detrimental to PPDF

quality, and normalization constant errors were more difficult to detect than back-

ground constant errors in the normalization process. Based upon the normalization

and background constant errors tested, we estimate the coordination number uncer-

tainties to be ∼ 3% for the Mo-Ge PPDF and ∼ 5% for the Mo-Mo and Ge-Ge

PPDFs. More conservative means of estimation give coordination number uncertain-

ties of ∼ 5% for the Mo-Ge and Ge-Ge PPDFs and ∼ 15% for the Mo-Mo PPDF.

These are remarkably low uncertainties for PPDFs obtained by AXS.

8.3 Relevance of the MoGe3 Composition

Regan’s work [3, 4, 77] on the amorphous, sputter-deposited Mo-Ge system indicated

that at the Ge-rich compositions, samples were phase-separated into two phases with

compositions of approximately pure Ge and MoGe3 (23-27% Mo). Why do we find

the MoGe3 composition as the phase separation endpoint in the amorphous system

rather than the MoGe2 composition found in the crystal system? Is there a unique

MoGe3 compound with a distinct local atomic structure?

The amorphous, sputter-deposited a-MoGe3 displays as its defining correlation

the strong Mo-Ge interaction present in all of the crystalline Mo-Ge compounds.
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This observation led earlier workers to wonder if this composition corresponded to a

unique MoGe3 intermetallic compound present only in the amorphous system. We do

not, however, find a distinct intermetallic compound with definitive local ordering.

The PPDFs obtained by AXS on a-MoGe3 indicate that, despite the local ordering

of Ge about Mo, the alloy has a very high degree of static disorder not consistent

with an intermetallic compound. A more appropriate view of the MoGe3 endpoint

for phase separation in the Ge-rich amorphous sputter-deposited Mo-Ge alloy films is

that of a densely-packed alloy with a wide range of solid solubility for which ∼ 75%

Ge (∼ 25% Mo) happens to be the solubility limit. The addition of more Ge results

in the precipitation of a second phase of a-Ge. We speculate that such a wide range

of solid solubility (30 − 75% Ge) in this system is made possible by the removal

of crystallographic constraints and by the specific kinetics of the non-equilibrium

deposition process.

8.4 New Questions

New questions are raised by these results on a-MoGe3 that suggest new directions of

research:

Since these amorphous alloy films are created by a highly non-equilibrium sput-

tering process, it would be interesting to see the effect of variations in deposition

parameters or the deposition method on the phase separation endpoint in the sys-

tem. Regan has already shown that the precise deposition parameters have an impact

on the small angle x-ray scattering spectra obtained [77]. In addition, the critical com-

position for phase separation has been found to be different in the Fe-Ge amorphous
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system than in the Mo-Ge system [4]. The Fe-Ge system phase separates at a com-

position of 32 − 38% Fe nearer the digermanide compositions which is found in the

equilibrium phase diagram. Since both Mo and Fe have partially-filled d shells, it

would be interesting to investigate what leads to these differences in solid solubility

in the amorphous systems.

Another interesting possibility for future work is a comparison of crystalline MoGe2

with amorphous MoGe2. The present results, when taken in context with Kortright’s

earlier work, indicate that the amorphous MoGe2 alloy likely displays the 8-fold coor-

dination of Mo by Ge atoms found in a-MoGe3. This is in contrast to the 10-fold

coordination in crystalline MoGe2. Perhaps a 10-fold coordination is also possible in

amorphous MoGe2. Polymorphism or, more appropriately, polyamorphism is known

to exist in many amorphous materials including ice and silica as well as some transi-

tion metal-metalloid alloys [114, 115]. A more direct, side-by-side comparison of the

amorphous and crystalline forms of the same composition prepared using a variety

of deposition parameters may provide insight into the different local environments

possible in these alloys.

8.5 Future Work on a-MoGe3

As noted in Chapter 6, the primary source of error entering the Munro matrix (from

which the PPDFs were extracted) was the difference in intensities below the Mo edge.

The functional form of this error suggested a few possible sources: incomplete removal

of inelastic scattering due to have less-than-optimal detected energy resolution, a

polarization correction error or an artifact introduced by insufficient statistics below

the Mo edge.
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Specific improvements in the experimental design to produce cleaner elastic scat-

tering data with higher statistics, better detected energy resolution and more accurate

corrections are listed here. These improvements have, in fact, already been under-

taken in a synchrotron experiment carried out in November and December of 2001.1

The analysis of these data will provide a critical second test of the reliability of the

PPDFs for a-MoGe3.

Improved mechanical design of the post-sample instrumentation allows accurate

and repeatable adjustment of the analyzer crystal position and curvature as well as

the detector position. The total weight of the instrumentation is reduced, and the

mechanical stability improved.

Due to limited hutch size, the position-sensitive detector (PSD) in the present

work was placed at a defocussed position short of the focus. Working in parafocus

geometry provides improved detected energy resolution without significant decrease

in the dispersion of energies with position on the PSD. The improvement in detected

energy resolution will allow the elimination of inelastic scattering down to lower k-

values and more complete separation of the Kβ resonant Raman scattering peak from

the elastic scattering peak for data taken near an absorption edge.

A second PSD optimized for efficiency at 20 keV provides better statistics at the

incident energies below the Mo edge by allowing the collection of more data in less

time. This will decrease the noise levels in the Mo DSF and, hopefully, the PSFs.

Collecting data over a wider k-range beginning at kmin = 0.8 Å
−1

makes the

extrapolation of structure factors to k = 0 a less variable process and increases

confidence in the final real space distribution functions. In addition, the normalization

1There was some concern about the stability of the sample since it was grown many years earlier;
however, the preliminary RDFs look identical to those presented in Chapter 6. (Earlier scattering
studies on Regan’s samples also showed no crystallization or evolution of scattering profiles after 5-6
years of storage indicating that these amorphous alloys are very stable.)
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for the data collected below the Ge edge can be improved by minimizing the difference

between the resulting RDF and the RDF from data collected far below the Mo edge

(assumed to contain negligible systematic error and to be well-normalized) cut off at

the Ge edge kmax.

The conditioning of the Munro matrix is improved with scattering data taken 200

eV below the Mo edge instead of the 100 eV used in the present experiment. Figure 8.1

shows the improved conditioning expected. This will translate into smaller errors in

the extracted PSFs and the PPDFs obtained by subsequent sine Fourier transform.
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Figure 8.1: The condition number for the Munro matrix for various schemes of data
collection at different sets of energies for MoGe3. In the legend, the notation ‘Mo
d100-d15’ refers to a difference in the Munro matrix between data taken at 100 and
15 eV below the Mo K edge, and ‘Ge d100’ refers to a single measurement taken
100 eV below the Ge K edge. Notice that using data taken at the Mo edge rather
than the Ge edge for the 3rd equation in the Munro matrix problem gives a strong
improvement in conditioning. Using an energy nearer the absorption edge as the high
energy in the difference also provides rapid improvements.



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 189

The scattering plane was horizontal in the present experiment, but the percent

horizontal polarization was a source of some uncertainty since the exact polarization

of the synchrotron x-rays depends on the position from the center of the beam and

the x-ray energy (through the scattering by the monochromator crystals). Measuring

the polarization of the incident x-rays with the same experimental system during the

same beamtime provides a check on the proper value.

Finally, the effect of errors in the ASFs entering the Munro matrix were not

explored in this work; however, they clearly have an impact on the quality of the

PPDFs obtained. Until now, the experimental errors have been significant enough

that error due to the angular dependence of the ASFs has been negligible. Now that

we have decreased the levels of error present in the PSF extraction problem, this may

no longer be the case. See, for example, the discussion in Reference [116]. Future work

may benefit from careful measurement of the angular dependence, particularly the

change in f ′ which is of the order of 0.1-0.2 electrons, in addition to the traditionally-

measured energy dependence.

8.6 Improvements for Future AXS

Anomalous x-ray scattering for extraction of PPDFs has the potential to be an

extremely powerful technique for structure determination in many systems. Because

of its susceptibility to errors in experimentally-measured quantities, the experiment

requirements are very stringent, and accurate knowledge of all instrumental param-

eters is necessary. As a result, the technique is not widely used, and experiments

are often limited by necessary compromises and incomplete knowledge of the exper-

imental instrumentation. This final section offers recommendations for future AXS
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experiments to make the technique more routinely available.

First, longer focal lengths (larger available hutch dimensions) than used in the

present study would be advantageous. They will permit greater dispersion of energies

on the PSD giving greater separation of the elastic and inelastic contributions to the

scattering; however, additional care must be taken to eliminate air scatter through

He or vacuum paths.

Second, anomalous scattering experiments can be more efficiently performed at

brighter 3rd generation sources such as SPEAR3. Such sources offer more focussed

flux density providing better scattering statistics in less time. The added flux density

also will allow experimenters to work at narrower incident energy resolutions (∆E
E

)

without resulting in unreasonable count times for the experiment. Coupled with

good energy stability from the monochromator, this will permit measurements closer

to the absorption edge energies for higher contrast. In addition, the higher energies

accessible will provide higher resolution RDFs and allow the study of alloys containing

heavier elements.

Because of the considerable amount of time required to set up the instrumen-

tation for anomalous x-ray scattering experiments, the compromises that frequently

must be made due to experimental limitations (such as hutch size) and the need

for accurate knowledge of all instrumental parameters, experiments could be readily

and repeatedly carried out at a dedicated beamline specifically designed for anoma-

lous x-ray scattering at a 3rd generation source. To benchmark the progress made

with these experimental improvements, a model compound such as l -GeBr4 should

be characterized.

Through optimization of the experimental instrumentation for energy resolution

at a third generation source on a dedicated beamline, AXS may be used routinely in
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the future to extract PPDFs from binary alloys without the need for mathematical

regularization methods.



Appendix A

Algorithms

Computer programs are essential to this work on anomalous scattering. The algo-

rithms for carrying out the calculations necessary for data analysis have been in use

for a few decades and have been ported and transferred and translated into various

languages as more sophisticated programming languages have become available. The

current code was moved from FORTRAN to Matlab which is especially efficient at

matrix math. Because the original “intent” of the FORTRAN code, lacking sufficient

comments, had to be deciphered in order to debug the present Matlab version, it is

the purpose of this appendix to document the fundamental algorithms used so that

future generations can easily decipher code – and potentially improve methods of

calculation.

A.1 Fitting Experimental f ′′

The theory behind the fit has been described in Chapter 5. The Matlab version of this

program is called fppfit.m and has a graphical user interface driver named fppfitg.m.

192
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A.1.1 Input

• E vs. ln(Io/I) – experimental data (energy versus natural logarithm of the ratio

of the intensities upstream and downstream of the sample) about the K-edge of the

atom of interest

• Z – atomic number for the atom of interest

• region about the edge (in energy) to exclude from the fit to theoretical f ′′theor values

• n – maximum degree of polynomial to fit to the background,

B(E) =
3∑
n=0

CnE
−n

which contains the natural logarithm of the detector function and the absorption tails

from lower energy absorption edges. (1 < n < 6)

A.1.2 Fit

Theoretical values of f ′′theor (with units of electrons) are obtained for the atom and

energies of interest. The equation

ln
(
Io
I

)
= C1 +

C2

E
+
C3

E2
+ · · · + Cn+1

En
+
Cn+2 f

′′
theor

E
(A.1)

is set up in matrix form where the coefficients, Cn, are sought:




ln( Io
I
)E1

ln( Io
I
)E2

ln( Io
I
)E3

...

ln( Io
I
)Emax




=




1 1
E1

1
E2

1
· · · 1

En
1

f ′′theor(E1)

E1

1 1
E2

1
E2

2
· · · 1

En
2

f ′′theor(E2)

E2

1 1
E3

1
E2

3
· · · 1

En
3

f ′′theor(E3)

E3

...
...

... · · · ...
...

1 1
Emax

1
E2

max
· · · 1

En
max

f ′′theor(Emax)

Emax







C1

C2

C3

...

Cn+2




(A.2)
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where the region near the absorption edge is excluded. (Note: Fitting the data to the

theoretical values in this manner takes advantage of Matlab’s matrix manipulation

capabilities. Previous code has used linear least-squares methods.) The coefficients

are now used to reconstruct the total fit and the background function. The back-

ground is then subtracted out of the experimental data, and the last coefficient is

used to scale the data (multiplicative factor) to the per atom basis of the theoretical

f ′′theor values yielding f ′′exp, the experimental f ′′ for the sample. From the optical the-

orem, the scaling factor also yields the areal number density of the atom in question

for the sample:

ln
(
Io
I

)
− B(E) = σαmα(ρt)α

σα =

(
2he2

mec

)
1

mα

f ′′α
E

(ρt)α =
mec

2he2
Cn+2 (A.3)

where σα is the mass absorption coefficient

A.1.3 Output

• E vs. f ′′αexp – experimental values of the imaginary part of the ASF as a function of

energy for the α atom in the sample [eV, electrons]

• (ρt)α – the areal number density of the α atomic species [Å
−2

]

The present code multiplies the Cn+2 coefficient by mec
2he2

to yield (ρt)α with units of

[Å
−2

]. This output has been the source of some confusion in the past – primarily due

to notation. n has been used to refer to the number density, and ρ has been used to

refer to both mass and number densities. For example, in the expression for the mass
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absorption coefficient, σ = µ
ρ
, ρ refers to a mass density, and in the expression for

the linear absorption coefficient, µ = 2he2

mec
f ′′

E
ρ, ρ refers to a number density. For this

reason, the mass density is written expressly as mαρα here. In addition, σ has been

used to refer to both the absorption cross-section [cm2] and to the mass absorption

coefficient [ cm
2

g
].

A.2 Kramers-Krönig Transform

The Kramers-Krönig transform (or Kramers-Krönig dispersion relationship) is dis-

cussed in Chapter 2. The transform has the following form:

f ′(ωo) =
2

π

∮ ∞

0

ω f ′′(ω)

ω2
o − ω2

dω (A.4)

The Matlab version of the program which carries out this calculation is called kramkron.m.

The procedure follows that outlined by Hoyt et al. [41]

A.2.1 Input

The user may input either

• E vs. f ′′αexp – experimental values of f ′′ as a function of energy for the sample and

element of interest [eV, electrons]

–or–

• E vs. ln( Io
I
) – experimental x-ray absorption spectroscopy (XAS) data as a function

of energy

–and–

• E vs. C(E) – the detector response function
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as well as

• the sample composition

• Z – the atomic number of the atom of interest

• region (in energy) over which to carry out the transform (f ′ values are only output

from this region)

A.2.2 Calculation

The calculation of the transform involves integrating over a singularity at the edge

energy. We first simplify the integral as much as possible:

f ′(ωo) =
2

π

∮ ∞

0

ω f ′′(ω)

ω2
o − ω2

dω (A.5)

=
2

π




∫ a

0

ωf ′′(ω)

ω2
o − ω2

dω︸ ︷︷ ︸
ans6

+
∫ ∞

b

ω f ′′(ω)

ω2
o − ω2

dω︸ ︷︷ ︸
ans5

+
∮ b

a

ω f ′′(ω)

ω2
o − ω2

dω︸ ︷︷ ︸
A




2
π

∮ b

a

ω f ′′(ω)

ω2
o − ω2
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A

= 1
π


−

∫ b

a

f ′′(ω)

ω + ωo
dω︸ ︷︷ ︸

ans3

−
∮ b

a

f ′′(ω)

ω − ωo
dω︸ ︷︷ ︸

B




∮ b

a

f ′′(ω)

ω − ωo
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B

=
∫ ao>a

a

f ′′(ω)

ω − ωo
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ans1

+
∫ b

bo<b

f ′′(ω)

ω − ωo
dω︸ ︷︷ ︸

ans2

+
∮ bo

ao

f ′′(ω)

ω − ωo
dω︸ ︷︷ ︸

ans4

The quantities ans1, ans2, ans3, ans5 and ans6 are all numerically integrable.

The integrals ans5 and ans6 are carried out using a numerical integration built-in

Matlab function using theoretical values of f ′′ in the regions from b to 50 ×K-edge

energy and from the LIII-edge to a. The integral ans4 contains the singularity.
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We will first address ans3 which contains no singularities:
∫ y
x
f ′′(ω)
ω+ωo

dω. Carrying

out a Taylor Series expansion of f ′′(ω) about ωo and inserting it into the integral, we

obtain

∫ y

x

f ′′(ω)

ω + ωo
dω = f ′′(ωo)

∫ y

x

dω

ω + ωo
dω +

df ′′

dω
(ωo)

∫ y

x

ω − ωo
ω + ωo

dω (A.6)

+
1

2

d2f ′′

dw2
(ωo)

∫ y

x

(ω − ωo)2

ω + ωo
dω + · · ·

∫ y

x

f ′′(ω)

ω + ωo
dω ≈ f ′′(ωo) [ln |y + ωo| − ln |x+ ωo|] (A.7)

+
df ′′

dω
(ωo) [(y − x) − 2ωo (ln |y + ωo| − ln |x+ ωo|)]

+
1

2

d2f ′′

dω2
(ωo)

[
(y + ωo)

2 − (x+ ωo)
2

2
− 4ωo(y − x)

+ 4ω2
o (ln |y + ωo| − ln |x+ ωo|)

]

The integrals ans1 and ans2 are carried out using the following integral:
∫ y
x
f ′′(ω)
ω−ωo

dω.

In the same manner as Equation A.6, a Taylor Series expansion is substituted in the

integral to yield

∫ y

x

f ′′(ω)

ω − ωo
dω = f ′′(ωo)

∫ y

x

dω

ω − ωo
dω +

df ′′

dω
(ωo)

∫ y

x
dω

+
1

2

d2f ′′

dw2
(ωo)

∫ y

x
ω − ωo dω + · · ·∫ y

x

f ′′(ω)

ω − ωo
dω ≈ f ′′(ωo) [ln |y − ωo| − ln |x− ωo|] (A.8)

+
df ′′

dω
(ωo)(y − x)

+
1

2

d2f ′′

dω2
(ωo)

[
(y − ωo)2 − (x− ωo)2

2

]

The integral ans4 is the integral about the singularity and is carried out by again
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Taylor Series expanding f ′′(ω) about ωo and recognizing that

∮ y

x

dω

ω − ωo
= ln |y − ωo| − ln |x− ωo|.

This leads to

∮ bo

ao

f ′′(ω)

ω − ωo
dω = f ′′(ωo) [ln |bo − ωo| − ln |ao − ωo|] +

df ′′

dω
(ωo)(bo − ao)

+
∞∑
n=2

1

n · n!
dnf ′′

dωn
(ωo) [(bo − ωo)n − (ao − ωo)n)] (A.9)

This integral is carried out numerically by fitting a 5th order polynomial to the f ′′(ω)

data. Again using the matrix form described in the previous section, the following

equation is solved for the coefficients Cn:

∆f ′′ =
4∑
n=1

Cn ∆ωn (A.10)

This is a clever way to fit the derivative of f ′′: The Taylor Series expansion of df ′′(ω)
dω

expanded about ωo is

df ′′

dω
(ω) =

df ′′

dω
(ωo) +

d2f ′′

dω2
(ωo)(ω − ωo) +

1

2!

d3f ′′

dω3
(ωo)(ω − ωo)2

+
1

3!

d4f ′′

dω4
(ωo)(ω − ωo)3 + · · · (A.11)

So, dividing both sides of Equation A.10 by ∆ω, the fitting coefficients are given by

C1 =
df ′′

dω
(ωo)

C2 =
d2f ′′

dω2
(ωo)
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C3 =
1

2

d3f ′′

dω3
(ωo)

C4 =
1

6

d4f ′′

dω4
(ωo) (A.12)

These coefficients are substituted back into Equation A.9 to calculate the value of the

integral.

For each energy, the total Kramers-Krönig integral is calculated according to

Equation A.5.

A.2.3 Output

• E vs. f ′αexp – experimental values of the real part of the ASF as a function of energy

for the α atom in the sample [eV, electrons]



Appendix B

Data Analysis Code

This appendix provides the filename and primary purpose of some of the major com-

ponents (macros) of the Matlab data analysis code. Figure B.1 contains a flowchart

describing the data analysis. Macros in shaded boxes are called independently by the

user.

200
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Figure B.1: Flowchart for Matlab data analysis code to obtain radial, differential and
partial pair distribution functions.
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Absorption von Röntgen-Strahlen in Germanium und Silicium. Z. Naturforsch.,

28a:588–600, 1973.

[43] P. Suortti, J.B. Hastings, and D.E. Cox. Powder diffraction with synchrotron

radiation. II. Dispersion factors of Ni. Acta. Cryst., A41:417–420, 1985.



BIBLIOGRAPHY 207

[44] L.K. Templeton and D.H. Templeton. L3-edge anomalous scattering by gadolin-

ium and samarium measured at high resolution with synchrotron radiation.

Acta. Cryst., A38:74–78, 1982.
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