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ABSTRACT

A Measurement of Time Dependence of Bd − B̄d Mixing

with Kaon Tagging

September 2001

Jodi L. Wittlin, B.S., N. C. State University

M.S., University of Massachusetts Amherst

Ph.D., University of Massachusetts Amherst

Directed by: Professor Richard R. Kofler

The time dependence of Bd − B̄d mixing has been measured in bb̄ events contain-

ing one or more kaons at the SLD experiment at the Stanford Linear Accelerator

Center. A simultaneous measurement of the “right sign production fraction” of

kaons from Bd decays has also been made. The initial state B hadron flavor was

determined using the large forward-backward asymetry provided by the polarized

electron beam of the SLC in combination with a jet charge technique and informa-

tion from the opposite hemisphere. From a sample of 400,000 Z0 events collected

by the SLD experiment at SLC from 1996 to 1998, the kaon right sign production

vii



fraction has been measured to be 0.797 ± 0.022 and the mass difference between

the two Bd eigenstates has been measured to be ∆md = 0.503±0.028±0.020 ps−1.
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C H A P T E R 1

INTRODUCTION

Since humankind has been able to ask, we have wondered “What is the world

made of? Why is it made in such a way? How does it work?” The Standard Model

is physics’ most recent, and most successful, theory to answer these age-old ques-

tions. This theory, which describes fundamental particles and their interactions,

has been verified by experimentalists to a remarkable degree of accuracy. While it

is not thought to be the “ultimate theory”, it is very good at describing all of the

experimental information currently collected by particle physicists.

Of the 18 fundamental parameters in the Standard Model, there is only one

which has not been measured at all (the mass of the Higgs Boson), and one aspect

which has been poorly measured: CP (Charge Parity) Violation. This dissertation

is a contribution to the measurement of CP Violation. In the Standard Model,

CP Violation is described in terms of the 3x3 Cabibbo-Kobayashi-Maskawa mixing

matrix, which relates the quark mass eigenstates to the quark weak eigenstates.

Two of the important CKM Matrix elements can be measured through the study

of B Mixing, and when combined with other measurements, provide a unique op-

portunity to test the Standard Model.
1



Bd mixing is not a “new” measurement: it has been measured many times and

at many experiments, including 3 measurements using the 1993-1995 data set of

the SLD experiment at the Stanford Linear Collider (SLC). The measurement in

this dissertation however, is still a useful and interesting contribution to the body

of knowledge of Bd mixing. It is the only measurement to be performed on the

larger 1996-1998 SLD data set. The SLD is the only particle collider experiment

to have run with polarized e− as one of its colliding beams, and the uniqueness

of the machine and how that affects analysis techniques will be presented in this

dissertation. The SLD is itself a unique detector, and has the world’s only CCD

vertex detector. This is also the only measurement in the world to use exclusively

kaons as a final state tag, which has its own unique power and challenges.

The method of analysis is fairly straightforward. We wish to measure, as a

function of time, how often a b quark decays as a b̄ quark (or vice versa.) First,

we examine the SLD data set for events with hadrons, which are produce in ap-

proximately 11% of Z0 collisions. We then use powerful techniques to choose only

those events which are like to have b quarks produced from the Z0, and therefore

contain B hadrons. For a time dependent mixing analysis, we must then determine

the initial quark flavor of the B hadron, the flavor of the quark at the decay point

of the B, and the time it took from creation to decay. To determine the initial

flavor, we use the large forward-backward asymmetry provided by the polarized

electrons of the SLC and combine it with information from hemisphere opposite

that of analysis interest. Kaons which are produced from the B decay are used to

2



determine the final state with high accuracy. SLD’s powerful vertex detector and

unique reconstruction techniques are used to reconstruct the point at which the B

decays.

This thesis is organized in the following manner. In Chapter 2, we introduce

the Standard Model, with an emphasis on CP Violation and the relevance of B

mixing. Chapter 3 presents an overview of the SLC accelerator and SLD Detector.

Chapter 4 goes into some detail about kaon identification with the Cherenkov Ring

Imaging Detector (CRID), which is of fundamental importance to this analysis,

and presents investigations of the efficiency and purity of CRID kaon identification.

Chapter 5 discusses hadronic and B event selection, and provides the details of the

analysis techniques, including initial and final state tagging, vertexing and track

attachment. Chapter 6 contains a detailed description of the unbinned maximum

log-likelihood fit, results, cross-checks from both data and Monte Carlo, and error

analysis.
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C H A P T E R 2

OVERVIEW OF THE STANDARD MODEL

The Standard Model, which is based on Quantum Field Theory, provides a de-

scription of the elementary particles and their weak, electromagnetic, and strong

interactions. One can find greater detail about the Standard Model in Refer-

ences [1] and [2]. While many precise tests of the Standard Model have been

made [3], precision measurements of CP Violation are yet to be done, and the dis-

covery of the Higgs Boson remains elusive. This chapter will give an overview of the

Standard Model and will emphasize how a measurement of ∆md is an interesting

contribution to the exploration of CP Violation.

2.1 Electroweak Interactions

Electromagnetic and weak interactions were unified into a single interaction,

described by SU(2)L ⊗ U(1) gauge symmetry, by Glashow, Salam, and Weinberg,

who won the 1979 Nobel Prize in Physics for their ground-breaking work. Leptons

and quarks, which each have spin 1/2, make up the elementary matter particles
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in the Standard Model, while gauge bosons, with spin 1, are force propagators.

The fundamental fermions can be grouped into three families, shown in Table 1.

The leptons and quarks are shown arranged in left-handed weak isospin doublets

and right-handed weak isospin singlets. The right-handed isospins are singlets

because right-handed neutrinos have never been observed. Each doublet has total

weak isospin T = 1/2. The upper member of the doublet is assigned T3 = +1/2

while the lower is assigned T3 = −1/2. Each fermion also has a value of weak

hypercharge,Y , as defined by

Q = T3 +
1

2
Y (2.1)

where Q is the charge of the fermion.

Table 1: The fermions of the Standard Model.

(
νe

e

)
L

(
νµ

µ

)
L

(
ντ

τ

)
L(

u
d

)
L

(
c
s

)
L

(
t
b

)
L

eR µR τR
uR cR tR
dR sR bR

Quarks are the only particles known to interact with all forces; neutral leptons

interact only via the weak interaction, and charged leptons interact via the weak and

electromagnetic interactions. The gauge bosons which mediate these interactions

are listed in Table 2. Photons mediate the electromagnetic force; gluons transmit

the strong force, and W± and Z0 bosons mediate the weak force.
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Table 2: The gauge bosons of the Standard Model.

Boson Charge (e) Mass (GeV/c2) Force Mediated
γ 0 0 Electromagnetic
g 0 0 Strong
W± ±1 80.37± 0.023 Weak
Z0 0 91.187± 0.002 Weak

The Standard Model introduces gauge bosons by requiring local gauge invari-

ance, similiar to the Aµ fields of electromagnetism. One can derive Quantum Elec-

trodynamics (QED [1,2]) from the interaction of spin 1/2 particles:

−iejem
µ Aµ = −ie(ψ̄γµQψ)Aµ (2.2)

where jem
µ is the electromagnetic current, which couples to the Aµ field, e is the

electron charge, Q is the charge operator, γµ are the Dirac matrices, and ψ is the

wavefunction.

Weak interactions are included in the Standard Model by introducing a massless

U(1) isosinglet Bµ and a massless S(2) isotriplet Wµ, which couple with strengths

g′ and g to the hypercharge and isospin currents respectively. After requiring local

gauge invariance, the resulting interaction term is:

−ig(J i)µW i
µ − i

g′

2
(jY )µBµ (2.3)

where Jµ is the weak isospin current and jY is the weak hypercharge current. Thus,
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the physical gauge bosons are defined as combinations of the gauge fields:

Aµ = Bµ cos θW +W 3
µ sin θW

Zµ = −Bµ sin θW +W 3
µ cos θW

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ ) (2.4)

where θW is the experimentally measured electroweak mixing angle. The elec-

troweak neutral current is therefore a sum of electromagnetic and weak neutral

terms:

−igJ3
µ(W 3)µ − i

g′
2
jY
µ B

µ =

−i(g sin θWJ
3
µ + g′ cos θW

jY
µ

2
)Aµ − i(g cos θWJ

3
µ − g′ sin θW

jY
µ

2
)Zµ. (2.5)

As the coefficient on the Aµ term must be iQ, by applying equation 2.1, we obtain:

θW ≡ tan−1

(
g′

g

)
(2.6)

It is now possible to construct expressions for the charged and neutral elec-

troweak currents:

J±µ
L =

√
2ψ̄γµT±L ψ

Jµ
Z = ψ̄γµ[T3L −Q sin2 θW ]ψ. (2.7)
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where T± = (T 1 ± iT 2)/
√

2. ψ consists of left-handed isospin doublets and right-

handed singlets for each of the quark and lepton generations.

For the process Z0 → f f̄ the weak neutral current interaction is given by:

−i g

cos θW
JNC

µ Zµ = −i g

cos θW
ψ̄fγ

µ(
1

2
(1− γ5)T 3 −Q sin2 θW )ψfZµ (2.8)

with γ5 = iγ0γ1γ2γ3. Using the expression for the vertex factor for this process:

−i g

cos θW

γµ

2
(vf − afγ

5) (2.9)

we obtain vf and af , the vector and axial-vector couplings, which are given in the

Standard Model by:

af = T 3
f

vf = T 3
f − 2Qf sin2 θW . (2.10)

The Standard Model values for vf and af for the fermions are given in Table 3.

Table 3 : The neutral vector and axial-vector couplings of the fundamental
fermions to the Z0.

Fermion af vf

νe, νµ, ντ +1
2

+1
2

e, µ, τ −1
2

−1
2

+ 2 sin2 θW

u, c, t +1
2

+1
2
− 4

3
sin2 θW

d, s, b −1
2

−1
2
− 2

3
sin2 θW
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2.1.1 The Higgs Mechanism, Mass Generation, and Symmetry Break-
ing

In the previous section, the fermions and gauge bosons are all massless. Simply

inserting masses would break the gauge invariance of electroweak theory. Instead,

this lack of physical reality is partially resolved by the introduction of the Higgs

Mechanism.

A weak isospin doublet of a complex scalar field, Φ, which has hypercharge

Y = 1/2, is introduced [4]:

Φ =


 φ+

φ0


 . (2.11)

The electroweak Lagrangian then acquires additional terms:

LΦ = |DµΦ| − V (|Φ|2|) + LF
Φ, (2.12)

where Dµ is the electroweak covariant derivative and LF
Φ is the Yukawa coupling of

the fermions to the doublet Φ. The most general renormalizable form for the scalar

potential V is:

V = µ2|Φ|2 + λ|Φ|4 =
v2

2
. (2.13)

By minimizing the potential V with respect to |Φ|2, we find the ground state of

|Φ|2 occurs at:

|Φ|2 = −µ
2

2λ
, (2.14)
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and µ2 < 0. Thus, the vacuum expectation value of |Φ|2 is non-zero, and there is

a continuous set of allowed ground state values. When one of these sets is chosen,

the SU(2) ⊗ U(1) symmetry is “spontaneously broken” by selecting a preferred

direction in weak isospin plus hypercharge space.

It is appropriate to re-express the Φ doublet relative to its ground state:

Φ(x) = exp

(
iξ(x)·τ

2v

) 0

(v +H(x))/
√

2


 (2.15)

The two complex fields φ+ and φ0 have now been replaced by the four real fields

ξ1,2,3 and H , all of which have a zero vacuum expectation value. By applying an

SU(2) gauge transformation with α(x) = ξ(x)/v the phase factor can be removed,

and Φ(x) is expressed in terms of the real scalar field H , known as the Higgs field.

The Lagrangian can now be expressed in terms of H :

LΦ =
1

2
(∂H)2 +

1

4
g2W+W−(v+H)2+

1

8
g2

ZZZ(v+H)2−V [
1

2
(v+H)2]+LF

Φ (2.16)

The v2 terms are the W and Z mass terms. While the photon field A has remained

massless, the Z and W± fields have acquired masses:

MW =
1

2
gv

MZ =
1

2
gZv =

MW

cos θW
. (2.17)
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While the bosons have now acquired mass, the fermions have not. LF
Φ describes

the Yukawa couplings of the Higgs field H to the fermion fields. The fundamental

weak eigenstates for the unbroken gauge theory are assumed to be:

DjL ≡


 uj

dj




L

, ujR, djR (2.18)

where DjL is an SU(2) doublet with Y = 1
3

and ujR and djR are SU(2)L singlets

with Y = 4
3
,−2

3
respectively, representing the up- and down-type quarks. Three

generations are assumed, and j is the generation index. The most general SU(2)L⊗

U(1) gauge invariant Yukawa interaction is:

L = −
3∑

i=1

3∑
j=1

[G̃ij ūiR(Φ̃†DjL) +Gij d̄iR(Φ†DjL)] + h.c., (2.19)

where “h. c.” stands for the hermitian conjugate, Gij and G̃ij represent the 18

different coupling constants between quarks and Φ̃ = iτ2Φ
∗.
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Using the vacuum expectation values of Φ and Φ̃, the quark mass terms which

are produced by the Yukawa couplings can be expressed as:

(u1, u2, u3)RMu




u1

u2

u3




L

+ h.c.,

(d1, d2, d3)RMd




d1

d2

d3




L

+ h.c., (2.20)

whereMu
ij = v√

2
G̃ij andMd

ij = v√
2
Gij are the quark weak eigenstate mass matrices.

To obtain the quark mass eigenstate matrices, the complex electroweak matrices

are transformed to diagonal matrices:

U−1
R MuUL =




mu 0 0

0 mc 0

0 0 mt




D−1
R MdDL =




md 0 0

0 ms 0

0 0 mb




(2.21)

where the diagonal entries are now the quark masses, and UR, UL, DR, and DL are
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unitary matrices defined such that:




u1

u2

u3




= UL,R




u

c

t




L,R

,




d1

d2

d3




= DL,R




d

s

b




L,R

(2.22)

One notes the up (down)-type weak eigenstates are linear superpositions of the

up (down)-type quark mass eigenstates.

Previously, we have seen the charged weak current couples the upper and lower

members of the SU(2) doublets due to the off-diagonal elements in T±. The charged

current can also be written as:

(u1, u2, u3)Lγµ




d1

d2

d3




L

= (u, c, t)LU
†
LDLγµ




d

s

b




L

. (2.23)

This allows for generation mixing of mass eigenstates, which can be described by

the matrix V , defined by V ≡ U †
LDL such that

U †
LDL




d

s

b




= V




d

s

b



≡




d′

s′

b′




(2.24)

The matrix V is the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which describes
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the extent of the couplings between quark generations due to charged weak inter-

actions. The W± couples the up-type mass eigenstates to the rotated down-type

states, which are each linear combinations of the down-type mass eigenstates.

One can express the left-handed neutral weak currents in a similiar way:

(u1, u2, u3)Lγµ




u1

u2

u3




L

= (u, c, t)LU
†
LULγµ




u

c

t




L

. (2.25)

However, U †
LUL = 1, and therefore there is no mixing from the neutral weak inter-

action.

Now that the bosons and quarks have mass, we turn to the leptons. The situa-

tion is simpler as there are no right-handed neutrinos in the Standard Model. This

is a situation in experimental flux, as recent evidence suggests neutrinos have mass,

and if confirmed, right handed neutrinos must exist. In this case, the derivation

follows exactly as that for quarks. For the purpose of this dissertation, it will be as-

sumed right handed neutrinos do NOT exist, and that neutrinos are massless. This

results in no intergenerationa mixing in the lepton sector, and a greatly simplified

Yukawa coupling Lagrangian:

L = −Ge[ēR(Φ†lL) + (̄lLΦ)eR], (2.26)
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where Ge is a coupling constant and

lL =


 νe

e




L

, (2.27)

with equivalent expressions for both the µ and τ . The Lagrangian can then be

reduced to:

L = −Ge(v/
√

2)ēe−Ge(v/
√

2)Hēe (2.28)

From this, the mass of the electron is me = Gev/
√

2 and is coupled to the Higgs

Boson.

With the inclusion of the Higgs Boson, the Standard Model accounts for the

masses of all the known fundamental fermions and bosons. It also acquires a number

of new parameters, such as the Higgs ground state and the Yukawa couplings,

which cannot be calculated from the theory. This leaves finding the Higgs boson

and obtaining precision measurements of the CKM matrix as two of the most

interesting areas of experimental particle physics.

2.1.2 The CKM Matrix

In the previous section, the Cabibbo-Kobayashi-Maskawa (CKM) matrix, V ,

was introduced to parameterize the coupling between different quark families and
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generations. Written explicitly, and with experimental values from Reference [3]

V ≡ U †
LDL =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




(2.29)

=




0.9742− 0.9757 0.219− 0.226 0.002− 0.005

0.219− 0.225 0.9734− 0.9749 0.037− 0.043

0.004− 0.014 0.035− 0.043 0.9990− 0.9993




With three generations of quarks, the CKM matrix is a 3×3 unitary matrix. While

a general 3 × 3 complex matrix has 18 free parameters, the unitary constraint

of V †V = 1 provides 9 constraints, leaving 9 free parameters. By utilizing the

freedom to choose the phase factors of the quark fields, one can remove an additional

5 parameters. Thus, we are left with four parameters: 3 rotational angles and one

complex phase factor. It is this phase factor which will be shown later in this

section to be responsible for CP Violation.

A hierarchy in the magnitude of CKM elements inspired the popular Wolfenstein

parameterization [5]:

V ≈




1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1




+O(λ4) (2.30)

16



where the three real CKM parameters are λ, A, and ρ, and η is the complex

phase. A, ρ, and η are all of order 1, and by expressing the elements in powers of

λ ≡ sin θc ' 0.222, with θC being the Cabibbo angle, the relative magnitudes

of the matrix elements become very apparent.

Figure 1: The Unitarity Triangle.

The CKM matrix is unitary, and therefore, the elements of the matrix are

related by: ∑
k

VkiV
∗
kj = δij, (2.31)

where i and j are generation indices. One of the most interesting forms of this

equation for B physics is the db matrix element:

V ∗
udVub + V ∗

cdVcb + V ∗
tdVtb = 0 (2.32)

This can be represented as a triangle in the complex plane, as seen in Figure 1,

which is known as the unitarity triangle. The apex of the triangle is located at
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(ρ, η). The side running from the origin to the apex has a length equal to
|V ∗

udVub|
|V ∗

cdVcb| ,

and the one running from (1, 0) to the apex has length
|V ∗

tdVtb|
|V ∗

cdVcb| . The Standard Model

explains CP Violation with a non-zero value for the complex phase factor η. If η is

complex, it implies the Standard Model Hamiltonian is also complex, as the CKM

matrix is used in the parameterization of the charged weak currents [2]. If the

Hamiltonian is complex, the Standard Model is not invariant under time reversal.

Since CPT (Charge-Parity-Time) must be a good symmetry for all quantum field

theories, a violation of T implies that CP must also be violated.

The unitarity triangle is the subject of much research in experimental particle

physics at this time. The BaBar (at SLAC) and Belle (at KEK) experiments have

come online and are providing ever-improving measurements of sin(2β). B mixing

measurements being made at SLD and LEP provide the most precise method of

measuring |Vtd|, which is the element of the CKM matrix with the greatest amount

of uncertainty in its value. How these measurements are related will be discussed

in Section 2.3.

2.1.3 Production of Fermions in Z0 Decays

At the SLC, positrons are collided with longitudinally polarized electrons to

study decays of the Z0. As the Z0 decays to all the Standard Model fermion pairs

f f̄ with the exception of the top quark, colliding at the Z0 provides a unique

window into Standard Model interactions, especially the electroweak ones. Some

important properties of the Z0 can be found in Table 4 [3].

18



Table 4: Some interesting properties of the Z0

Mass 91.187± 0.002 Gev/c2

ΓZ0 2.490± 0.007 GeV
Decay Mode Branching Ratio (%)

e+e− 3.366± 0.008
µ+µ− 3.367± 0.013
τ+τ− 3.360± 0.015
µ+µ− 3.366± 0.006

invisible (νν̄) 20.01± 0.16
hadrons 69.90± 0.15

(uū+ cc̄)/2 10.1± 0.6
(dd̄+ ss̄+ bb̄)/3 16.6± 0.6

cc̄ 12.4± 0.6
bb̄ 15.16± 0.09

Figure 2: The Feynman diagrams for the process e+e− → f f̄ .

The Feynman diagrams for the process e+e− → f f̄ are shown in Figure 2. The

process can be mediated by either a γ or a Z0. The differential production cross

section is therefore given by [1]:

dσ

dΩ
=

1

64π2s

pf

pe

|MZ0 +Mγ |2 (2.33)

where MZ0 and Mγ are the matrix elements for the Z0 and γ exchange, respec-

tively,
√
s is the total energy, and pe(f) is the momentum of the incoming electron

(outgoing fermion). Thus we have a Z0 term, a γ term, and an interference term.
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However, at the Z0 resonance, the Z0 exchange dominates the γ exchange by a fac-

tor of nearly 800, and the interference term is negligible. Thus, the electromagnetic

terms can be neglected. Applying the Feynman rules for electroweak interactions,

we obtain:

M = − g2

4 cos2 θw

[f̄γµ(vf − afγ
5)f ]

gµν − kνkµM
2
Z0

k2 −M2
Z0

[ēγν(ve − aeγ
5)e] (2.34)

where f and e represent the fermion and electron spinors, k is the four-momentum

of the virtual Z0, and MZ0 is the Z0 mass.

At this point, the next step would generally be to calculate |M|2, averaging over

initial state spins and summing over final state spins. However, SLC produces a

highly polarized electron beam, and for the case of longitudinally polarized electrons

colliding with unpolarized positrons, the differential cross section can be derived [6]:

dσf

dΩ
∝ (v2

e + a2
e)(v

2
f + a2

f ){(1−AePe)(1 + x2) + 2Af(Ae − Pe)x} (2.35)

where Pe is the polarization of the incoming electron beam, and the coupling pa-

rameters are defined in terms of the vector and axial-vector couplings:

Af =
2vfaf

a2
f + v2

f

(2.36)

.
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2.1.4 Electroweak Production Asymmetries and ALR

An important feature of equation 2.35 is the large production asymmetry in cos θ

for negative and positive electron beam polarizations. A b quark is more likely to

scatter in the positive cos θ direction when Pe < 0 and in the negative cos θ direction

when Pe > 0. This effect is known as the polarized forward-backward asymmetry

(AFB). For a fermion, AFB is defined as:

Af
FB(x) =

σf (x)− σf(−x)
σf (x) + σf(−x) = 2Af

Ae − Pe

1− AePe

x

1 + x2
(2.37)

where x = cos θ. The asymmetry depends on the final and initial state coupling pa-

rameters, as well as the polarization of the beam, and is sensitive to space inversion.

For a polarized electron beam, one can measure the left-right-forward-backward

asymmetry, Ãf
FB(x):

Ãf
FB(x) =

(σf
L(x) + σf

R(−x)− (σf
L(−x) + σf

R(x))

(σf
L(x) + σf

R(−x) + (σf
L(−x) + σf

R(x))
= 2|Pe|Af

x

1 + x2
, (2.38)

where the L(R) subscript refers to the negative (positive) beam polarization with

magnitude Pe. This quantity is sensitive to both space and spin inversion, but not

the initial state coupling. Thus, the final state coupling is isolated and a direct

measurement of Af can be done at SLD.

A second important feature of equation 2.35 is the fact the total cross section is

greater for negative polarizations than for positive ones, and therefore, left-handed
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fermions are more strongly coupled to the Z0. This effect is known as the left-right

asymmetry (ALR). If σL and σR are the total cross sections for e+e− → Z0 where

the electron has left and right handed polarization, respectively, ALR is defined to

be:

ALR =
σL − σR

σL + σR
(2.39)

ALR relates to the weak mixing angle sin2 θw by:

ALR = Ae =
2(1− 4 sin2 θw)

1 + (1− 4 sin2 θw)2
. (2.40)

At SLD, this becomes a simple counting experiment of the number of Z0s produced

with positively vs negatively polarized incoming electrons, excluding the e+e− final

state (which has a large γ contribution):

ALR =
nL − nR

nL + nR

= |Pe|Ae. (2.41)

The SLD result from the 1992-1998 data is [7]:

ALR = 0.15138± 0.00216 (2.42)

From equation 2.40, the weak mixing angle is determined to be:

sin2 θw = 0.23097± 0.00027. (2.43)

This is the world’s most precise single determination of the weak mixing angle.
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2.2 Production of Hadrons in e+e− Collisions

While colored quarks can be regarded as free particles during a hard collision,

they are subsequently organized into colorless hadrons; an event in which this occurs

is called hadronic. Figure 3 shows the stages which occur in the production of a

hadron at the Z0. Only an outline of the process known as hadronization will be

discussed here; further details can be found in References [1] or [4].

e–

q

g

q

e+
γ

–

Z0

D*

π

K
π

K0

φ
K

K

∆
π

n

(i) (ii) (iii) (iv)

Figure 3 : Main stages in the e+e− → hadrons process: perturbative,
hadronization, and decay.

The formation of the qq̄ pair in stage i in Figure 3 can be calculated to a high

degree of accuracy with perturbative electroweak physics. Pertubative Quantum

Chromodynamics (QCD) is used to describe the evolution of the produced parton

(quark and gluon) shower to the point where the partons begin to be bound into

colorless hadrons (stage ii). The QCD process through which the partons become

bound (stage iii) is fundamentally non-perturbative in nature, and a variety of
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phenomenological fragmentation models have been utilized as a description. This

provides an experimental window to the underlying process, (see, for example,

Reference [8]) but means that models, rather than calculation from first principles,

must be relied on to describe the production of hadrons in e+e− collisions.

2.3 Mixing in B Decays

Neutral particle oscillations were first predicted for the K0 system in 1955 by

Gell-Mann and Pais [9], which led them to predict the existance of a long-lived

neutral Kaon, now known as the K0
L. The existance of the K0

L was confirmed at

Brookhaven by Lande [10]. Particle oscillations can only occur for the following

mesons: K0, D0, B0
d , and B0

s . The top quark is too heavy to form stable hadrons,

excited meson states decay via strong or electromagnetic interactions before mixing

can occur, and the π0 is its own antiparticle. Here we focus on the B0
d system.

2.3.1 Phenomenology

B mixing is very similiar to that of the kaon system. B0 and B̄0 mesons are

flavor eigenstates created by the strong interaction production process. When the

charged currents of the weak interaction are introduced to the Hamiltonian, flavor

changing transitions are introduced. The box diagrams shown in Figure 4 describe

how second order weak interactions couple the flavor eigenstates of the B. The

mass eigenstates (the physical particles whose definite mass and lifetime we can
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measure) are no longer the same as the flavor eigenstates, and thus we observe B

oscillations.

Figure 4: The second order box diagrams for B oscillations.

One can write the Hamiltonian matrix for the B0B̄0 system phenomenologically:

H


 B0

B̄0


 =


 H11 H12

H21 H22




 B0

B̄0




=


 M − 1

2
iΓ M12 − 1

2
iΓ12

M∗
12 − 1

2
iΓ∗12 M − 1

2
iΓ




 B0

B̄0


 . (2.44)

M is the mass of the flavor eigenstates and Γ their decay width. The diagonal terms

are equal because CPT invariance requires a particle and its antiparticle to have

the same mass and lifetime. The off-diagonal elements introduce the mixing. M12

corresponds to virtual transitions while Γ12 corresponds to real transitions through

common decay modes, and these can be calculated from theory by evaluation of

the box diagrams. The real transitions are Cabibbo suppressed and therefore the

Γ12 term can be neglected [12].
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By diagonalizing the Hamiltonian and neglecting CP violation, one can obtain

the CP eigenstates B1 and B2:

|B1 > =
1√
2
(|B0 > +|B̄0 >)

|B2 > =
1√
2
(|B0 > −|B̄0 >), (2.45)

which have masses M1,2 and widths Γ1,2:

M1,2 = M ± ∆M

2

Γ1,2 = Γ± ∆Γ

2
, (2.46)

and the mass and width differences are given by:

∆m = 2Re

√
(M12 − Γ12

2
)(M∗

12 −
Γ∗12
2

)

∆Γ = −4Im

√
(M12 − Γ12

2
)(M∗

12 −
Γ∗12
2

). (2.47)

It is now possible to see the time evolution of |B1(2) >:

|B1(2)(t) >= e−iM1(2)te
−Γ1(2)t

2 |B1(2)(0) > . (2.48)

If we create a B0 at time t = 0, its time evolution can be written as a linear
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combination of B1 and B2 by inverting equation 2.45:

|B0(t) >=
1√
2
e−iM1te

−Γ1t
2 |B1(0) > +

1√
2
e−iM2te

−Γ2t
2 |B2(0) > (2.49)

and then writing |B1,2(0) > in terms of |B0 > and |B̄0 >:

|B0(t) >=
1

2
[e−iM1te

−Γ1t
2 + e−iM2te−Γ2t2]|B0 > +

1

2
[e−iM1te

−Γ1t
2 − e−iM2te

−Γ2t
2 ]|B̄0 > .

(2.50)

It is now apparent that the time evolution has resulted in a |B̄0 > component

for a state that was initially pure |B0 >. It is now straightforward to write the

probabilities for a B0(B̄0) to decay as a B0(B̄0) (unmixed):

Punmixed(t) =
1

4
[e−Γ1t + e−Γ2t + 2e−Γt cos(∆mt)], (2.51)

and to write the probability it decays into its antiparticle and has therefore mixed :

Pmixed(t) =
1

4
[e−Γ1t + e−Γ2t − 2e−Γt cos(∆mt)]. (2.52)

Cabibbo suppression allows us to neglect Γ12, and then ∆m ' 2|M12| and ∆Γ = 0.

Thus the probabilities can be further simplified:

Punmixed(t) =
1

2
e−Γt(1 + cos(∆mt))

Pmixed(t) =
1

2
e−Γt(1− cos(∆mt)) (2.53)
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and it is now obvious that the mass difference, ∆m, is in fact the oscillation fre-

quency between the two mass eigenstates.

2.3.2 B Mixing in the Standard Model

A theoretical prediction for ∆m can be obtained by computing the box diagram

contributions [11]. Neglecting Γ12,

∆m ≈ G2
FM

2
W

8π2
< B̄0|jV−A

µ jV−A,µ|B0 >
∑
u,c,t

λiλjAij (2.54)

where the valence quark approximation has been used to factorize the transition

amplitude into a strong and weak part. The λi=u,c,t terms are products of the CKM

matrix elements, defined as λi = V ∗
ibVid. Recalling that the CKM matrix is unitary,

∑
u,c,t λi = 0 and the dependence on the u quark can be removed:

∑
u,c,t

λiλjAij = (λ2
cUcc + λ2

tUtt + 2λcλtUct),

Uij = Auu + Aij −Aui −Auj (2.55)

Evaluation of the functions Aij are done with loop integrals, resulting in a depen-

dence on the quark masses and MW . Because Ucc, Uct � Utt ( [12]), the top quark

transition dominates, with Utt ≈ zF (z), z =
m2

t

M2
W

, and F (z) given by:

F (z) =
1

4
+

9

4(1− z)
− 3

2(1− z)2
− 3z2 ln(z)

2(1− z)3
. (2.56)
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The matrix element < B̄0|jV−A
µ jV−A,µ|B0 > gives the probability that the quarks

inside the B meson are close enough together that W exchange between them is

possible. One can use the vacuum insertion approximation to calculate the matrix

element:

< B̄0|jV−A
µ jV−A,µ|B0 > =< B̄0|[̄bγµ(1− γ5)d][̄bγµ(1− γ5)d]|B0 >

= BBd
< B̄0|[̄bγµ(1− γ5)d]|0 >< 0|[̄bγµ(1− γ5)d]|B0 >

=
4

3
BBd

f 2
Bd
mb (2.57)

where fBd
∼ 200 MeV [13] is the decay constant, which can be calculated using

QCD sum rules or from lattice QCD, and BBd
∼ 1.3 [13] is the “bag parameter” due

to the vacuum insertion approximation. No experimental information is available

for these quantities.

QCD corrections to the box diagram can be taken into account using a multi-

plicative correction factor, η ∼ 1, and is dependent on the QCD parameter λQCD

and the top and bottom quark masses.

If we put this all together, the final expression becomes:

∆md =
G2

F

6π2
BBd

f 2
Bd
mb|V ∗

tbVtd|m2
tF (

m2
t

M2
W

)ηQCD. (2.58)

In the ideal world, we could use this equation to calculate Vtd, one of the least

well-measured elements of the CKM matrix, directly. Unfortunately, the error on
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the theoretical calculation of fBd

√
bB is ∼ 20%, much greater than the errors on

the measurement of ∆m. One solution is to take the ratio of ∆m to its companion

in the Bs system, ∆ms. The Standard Model calculation of ∆ms follows the same

path as that for ∆md, except substituting s quark terms for d quark terms. Thus,

we have:

∆ms =
G2

F

6π2
BBsf

2
Bs
mb|V ∗

tbVts|m2
tF (

m2
t

M2
W

)ηQCD. (2.59)

Taking the ratio, we have [13]:

∆ms

∆md
=
mBsf

2
Bs
BBs

mBd
f 2

Bd
BBd

=
mBs

mBd

· (1.16± 0.05)2 · |Vts

Vtd

|2 (2.60)

. If the value of ∆ms were known, it would be possible to measure Vtd in this

manner. Currently, however, there are only limits on ∆ms [3]. Fortunately, we

may not have long to wait for a measurement, as both CDF and D0 at Fermilab

are expected to be able to measure ∆ms if its value is within the limits predicted

by the Standard Model.
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C H A P T E R 3

EXPERIMENTAL APPARATUS

Chapter 3 presents a brief description of the experimental apparatus used to

make this measurement. The SLAC Linear Collider (SLC) is a unique machine

which accelerates and collides positrons with polarized electrons at the Z0 reso-

nance. The interaction point of this collider is located at the geometrical center

of the SLC Large Detector (SLD), which is a full-coverage multipurpose particle

detector. After an overview of the accelerator and detector, this chapter concludes

with brief descriptions of the SLD event trigger and Monte Carlo simulation.

3.1 The SLAC Linear Collider (SLC)

The SLC, shown schematically in Figure 5, is unique in being both the only

linear accelerator in the world and the only accelerator to use polarized electrons

as one of its colliding particles [14]. Compared to other accelerators like LEP, SLC

has a low beam crossing rate (120 Hz), but an extraordinarily small collision spot.
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Figure 5: Layout of the SLC.

In this section, we describe some of the key features of the SLC, in the order

a particle traversing the accelerator would encounter them: first, the polarized

electron source and the positron source; second, the linear accelerator (linac) and

the damping rings; then the arcs. Finally, we describe two instruments which occur

after the interaction point: the Compton Polarimeter and the Energy Spectrometer.

3.1.1 Polarized Electron Source

The use of polarized electrons makes the SLC a truly unique machine. The elec-

tron source is shown in Figure 6. It consists of a strained-lattice GaAs photocathode

in the electron gun at the linac’s electron injector. A circularly-polarized Nd:YAG-

pumped Ti sapphire laser is used to selectively excite transitions of electrons into

longitudinally-polarized states in the conduction band of the photocathode. The

relevant electron energy level transitions can be seen in Figure 7. A modest voltage

is applied to the source to extract the produced electrons.

Before injection into the linac, the electron bunch is accelerated by a 20kV

electric field. For the 1997-8 physics run, a strained lattice photocathode consisting
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of a 100 µm GaAs deposited on a GaAsP substrate was used. Because of the

difference in lattice spacings of the two materials, a strain is placed on the epitaxials

GaAs layer, which breaks the degeneracy in the valence band and allows for a

theoretical polarization of 100%. In reality, this system resulted in a measured

electron polarization of 73% for the 1997-1998 physics run.

3.1.2 Positron Production

Three particle bunches are accelerated down the linac during each machine cy-

cle: the first two bunches are the positrons and electrons which will be collided at

the IP, and the third is a “scavenger” electron bunch. This bunch is diverted off

the main linac approximately 2/3 down its length into collision with a tungsten-

rhenium alloy target. Photons, electrons and positrons are producted in the result-

ing electromagnetic showers. A yield of approximately one positron per an incident

electron is typical. These positrons are filtered from the shower,and in a separate

beam line, transported to the start of the linac and injected into the South Damping

Ring, where they are stored until the next machine cycle.
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The positron beam polarization, expected to be zero, has been checked with the

Moeller Polarimeter [15] in SLAC End Station A, with a result of Pe+ = (−0.02±

0.07)%.

3.1.3 The Damping Rings and Linear Accerator (Linac)

The produced electrons (positrons) are accelerated to 1.19 GeV in a short section

of the linac before being injected into the the North (South) Damping Ring (NDR

and SDR).
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At the entrance to the NDR, a spin-rotator magnet rotates the electron spin

into a direction which is tranverse to the plane of the daming ring orbit, as shown

in Figure 5; otherwise, the spins of the electrons would be randomized during the

damping process. In both damping rings, the particles experience synchrotron ra-

diation, which reduces both the emittance and longitudinal spread of the beam.

This allows for more stable acceleration in the linac, and lower backgrounds , and

higher luminosities at the interaction point. The electrons are damped for 1 ma-

chine cycle (8.3 msec), during which they settle into stable orbits determined by

the ring parameters. After passing through another spin-rotator magnet, they are

injected into the linac.

A similiar process in the SDR occurs for the positrons, with a few differences.

As the positrons are not polarized, there are no spin-rotator magnets to preserve

their polarization. Because they have a larger energy spread due to their production

from photoconversion, they are damped for 2 machine cycles, then injected into the

linac.

The positron bunch leads the electron bunch and both are accelerated down

the straight segment of the linac to 46.7 GeV. At the end of the accelerator, the

bunches are separated in the Beam Switchyard by dipole bending magnets, which

send the electron bunch into the North arc and the positron bunch to the south

one.
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3.1.4 The Arcs

The North (electron) and South (positron) arcs are each 1 km long, and con-

tain a sequence of dipole magnets, which bend the beams around the arcs, and

quadrupole magnets, which keep the beam focused. The bunches lose about

1.1 GeV of energy due to synchrotron radiation as they travel around the arcs

to the IP. In order to preserve the longitudinal polarization of the electrons at the

IP, the electron beam polarization is rotated to a specific angle before entering the

arc.

Before colliding, both beams travel through final focus sections, where they

are focused by superconducting quadrupole triplets to a transverse size of about

0.5 ( 2.3) µm in the vertical (horizontal). They then collide head-on at the center

of SLD, after which they are dumped.

The SLC luminosity history is shown in Figure 8. It shows a continuing im-

provement in luminosity since SLC saw its first Z0 in 1989. In the 1997-98 data

run, the luminosity peaked at well above 200 Z0/hour.

3.1.5 Compton Polarimeter

The Compton Polarimeter [16], located 33 m downstream from the SLD inter-

action point, is the primary device used to measure the polarization of the electron

beam. The polarimeter makes use of the helicity assymetry in the Compton scat-

tering cross section and consists of a laser with polarizing optics and an electron

spectrometer, and can be seen in Figure 9. A series of Pockels cells and quarter-
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wave plates polarize photons from a frequency-doubled YAG laser, which interact

with the electron beam. At the Compton polarimeter IP, the electron beam in-

tersects these 2.33 eV circularly-polarized photons, and a small fraction of the

electrons Compton scatter off the photons. The scattered electrons are then bent

by a precision dipole magnet and then enter the Compton Cherenkov Detector,

which functions as an electron spectrometer.
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The differential Compton scattering cross section for polarized electrons and

polarized photons can be written as:

dσC

dE
=
dσu

C

dE
[1 + AC(E)] (3.1)

where E is the energy of the scattered electron and
dσu

C

dE
the unpolarized differential

Compton cross section. The Compton asymmetry, AC(E), can be written in terms

of Pe, the electron polarization to be measured:

ACompton(E) =
σJz= 3

2
− σJz= 1

2

σJz= 3
2

+ σJz= 1
2

= adPePγaC(E) (3.2)

where Pγ is the known photon polarization, and the assymetry exhibits its depen-
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dence on the spin-states of the electron and photon. The “analyzing power” of the

detector, ad, is determined from a calibration process [17]. As ACompton(E) can be

calculated precisely from QED, the precision of the polarization measurement is

limited only by detector systematic uncertainties.

In addition to the Compton Polarimeter, the Polarized Gamma Counter and

Quartz Fiber calorimeter [18] are also used to measure the electron beam polariza-

tion, and provide a cross check with a precision of better than 1%.

3.1.6 Energy Spectrometer

The SLC beam energy is measured by two Wire Imaging Syncrotron Radiation

Detectors (WISRDs) [19], which are located between the IP and each of the beam

dumps. These enable a measurement of the energies of the electron and positron

beams on a pulse-by-pulse basis. The incoming beam is deflected by two horizontal

bend magnets, thereby producing a swath of synchrotron radiation which can then

be imaged by a multiwise proportional chamber (MWPC). Between the two hor-

izontal magnets is a precisely calibrated vertical bend magnet, which deflects the

beam by an angle inversely proportional to its energy. This angle is inferred from

the distance between the two swathes imaged on the MWPC. A schematic view of

the WISRD can be seen in Figure 10.

A Z0 peak scan was performed near the end of the 1997-98 data run to allow the

WISRD to be calibrated against the precision Z0 peak measurement performed by

LEP. The resulting luminosity weighted mean center of mass energy for the 1997-98
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data run was found to be Ecm = 91.237± 0.029 GeV [20], which is about 46 MeV

from the Z0-pole. While this requires corrections to be applied to measurements

such as ALR, it does not impact this analysis.
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Figure 10: Schematic layout of the WISRD.

3.2 The SLAC Large Detector (SLD)

THE SLC Large Detector (SLD), proposed in 1984 [21], is a general purpose

particle detector with nearly 4π steradian solid angle coverage. It replaced the less

sophisticated Mark II detector and surrounds the sole SLC IP. Figures 11 and 12

respectively show a cut-away and quadrant view of SLD.

The cylindrical design with onion-like layers of detectors is typical of a modern

particle detector. The SLD is made up of two main sections: the cylidrical barrel,

which is about 10 m in length and has a radius of 4.5 m, and the two endcaps,

which mount on large sliders and can be moved for access to the hardware systems.
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Each layer is a sub-detector designed to measure specific aspects of the particles

produced in the collisions. Constrained by the beampipe and support systems, the

detector allows for nearly 98% solid angle coverage.

The detector technologies are similiar for the barrel and endcap detectors. Mov-

ing outwards from the beampipe radially, we first encounter the precision CCD ver-

tex detector (VXD3) and the wire drift chamber (CDC), which allow for precision

charged particle tracking and vertex reconstruction. Outside the main tracking sys-

tem lies the Cherenkov Ring Imaging Detector (CRID), whose particle identification

abilities are critical for the tagging used in this analysis, the Liquid Argon Calorime-

ter (LAC), an 0.6 Tesla conventional solenoidal magnet which also serves as the

outer support system for the detector, and the Warm Iron Calorimeter (WIC), used

for muon identification. To achieve high bandwidth/low noise transmission of data,

all the subsystems use fiber optic transmission cable connections for signal readout.

The standard SLD coordinate system is as follows: the z axis points geographic

north along the positron beam direction, and the x and y axes lie in the plane

perpendicular to the beam, with the horizontal x axis pointing west and the y azis

pointing upwards. In cylindrical coordinates, the radius r is in the x, y plane, the

polar angle θ is defined with respect to the positive z direction and the azimuthal

angle φ defined with respect to the positive x axis.

The remainder of this section discusses each detector subsystem in more detail.

As the endcaps are less understood and less important to the analysis in this thesis,

the barrel detector will take precedence.
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Figure 11 : An isometric view of SLD. The Luminosity Monitor is not shown,
and the encaps have been omitted for clarity.

Figure 12: The SLC Large Detector (quadrant view).
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3.2.1 Vertex Detector (VXD3)

Precision vertexing is provided by the SLD vertex detector [22–24], a unique

detector using charged coupled devices (CCD). Two vertex detectors have been

used in SLD: VXD2, operational during the 1993-95 run periods, and VXD3, from

1996-1998. As this analysis only uses data from the later period, we will focus on

VXD3 in this section.

VXD3 is a three layer device containing 96 CCDs, each of which contain 4, 000×

800 (20 µm)2 pixels. Each layer is constructed of overlapping layers; each ladder

carries 2 CCDs, as seen in Figure 13. The CCDs and ladders were optically surveyed

to a precision of ∼10 µm. Single hit spatial resolutions of 3.8 µm in rφ and 4.2 µm

in rz were achieved after correcting for inner and outer hit resolution. As the

particles produced are expected to be back to back, Z0 → µ+µ−, events can be

used to measure the yz miss distance and give a measure of VXD3 resolution. This

was measured to be about 7.8 µm in rφ and 9.7 µm [25].

VXD3 provides 3-hit (1 hit in each layer) acceptance up to | cos θ| < 0.85,

which allows for “stand-alone tracking”, that is, tracking using only VXD3 hits.

The detector is operated at ∼ 190 K to limit dark currents. Each CCD is read

out serially in 120 ms. The impact parameter resolution of tracks has been studied

for individual cos θ and momentum regions [23]. The measured VXD3 impact

43



4–97 8262A11

Outer CCD

Flex-Circuit
Fiducials

Pigtail
(Kapton/
Copper
stripline)Beryllium

substrate

Inner CCD

South EndNorth End

CCD Fiducials

Figure 13: A VXD3 ladder, showing one CCD on each side.

parameter resolution is:

σrφ =

√
9.02 +

(
33.0

p sin3/2 θ

)2

µm

σrz =

√
17.02 +

(
33.0

p sin3/2 θ

)2

µm . (3.3)

Track impact resolution, comparing data to Monte Carlo as a function of momen-

tum, can be seen in Figure 14 for both VXD2 and VXD3.

3.2.2 Drift Chambers (CDC and ECDC)

The SLD Drift Chamber is composed of a Central (barrel) Drift Chamber [26]

and Endcap Drift Chamber (ECDC). As only the CDC is used for tracking in this

analysis, we shall focus on it.
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Figure 14: VXD2 and VXD3 impact resolutions.

The CDC is the primary SLD tracking device, and has a cylindrical shape with

an inner radius of 0.2 m and an outer one of 1.0 m, and a total length of 2.0 m.

Centered on the SLC IP, it provides tracking coverage for polar angles through

| cos θ| < 0.85, the same as the 3 hit coverage for VXD3. The inner and outer walls

are constructed of an aluminum sheet-Hexcell fiberboard laminate, with the inner

(outer) wall being 1.8% X0 (1.6% X0) thick, where X0 is the radiation length of the

material. The endplates are constructed of aluminum. The CDC is filled with a

gas mixture consisting of 75% C02, 21% AR, 4% isobutane, and 0.2% water. Each

element of the mixture is selected for a purpose: the low electron dift velocity and

low diffusion of the C02 improves spatial resolution and accurate sampling by SLD

electronics; Ar increases the avalanche gain; isobutane assists quenching; and the

water helps surpress wire aging. The entire chamber is immersed in the 0.6 Tesla

uniform solenoidal field.
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The CDC is divided into 10 radial superlayers, as shown in Figure 15. These

layers are then divided azimuthally into cells, each measuring about 6 cm wide and

5 cm high. Each cell has 8 sense wires, 18 guard wires, and 25 field wires, with

a layout as shown in Figure 16. The guard and field wires are made of 150 µm

gold-coated aluminum. The guard wires are held at 3027 V and surround the sense

wires to focus the drifting electrons and to provide uniform charge amplification.

The voltage on the field wires varies with position and averages 5300 V. This

arrangement provies a mean drift field of 0.9 kV/cm. The sense wires, made of

25 µm gold-coated tungsten, are either axial or have a 41 mrad stereo angle with

respect to the beam axis.

A charged tracking passing through a cell experiences energy loss due to the

ionization of atoms in the material. These electrons are directed by the drift field in

the chamber towards the sense wires, as seen in Figure 17. The wire address, drift

time information, and charge ratio at the ends of the wire provide a hit position.

By combining information from other sense wires in the same cell, a vector hit is

formed. As sense wires in a cell are not staggered, an ambiguity in xy arises in

the form of a mirror image. Pattern recognition software combines vector hits into

track candidates, and then a detailed offline fit is performed using individual wire

hit information, more precise z information from the stereo layers, and taking into

account fluctuations in the electric and magnetic fields and energy loss of the track.

One can find details of the track reconstruction in Reference [27]. The momentum
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Figure 15 : The SLD Central Drift Chamber (CDC). An endplate view of the
CDC, showing the axial (A) and stereo (S) superlayers.

resolution of the CDC has been determined to be:

σp⊥

p⊥
=
√

0.0102 + (0.0050p⊥)2 . (3.4)

with p⊥ the track momentum transverse to the beam, measured in Gev/c. When

combined with VXD hit information, the combined momentum resolution improves

to [28]:

σp⊥

p⊥
=
√

0.00952 + (0.0026p⊥)2 . (3.5)
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3.2.3 Cherenkov Ring Imaging Detector (CRID)

The Cherenkov Ring Imaging Detector (CRID) [29] provides SLD with excellent

charged particle identification (e±, µ±, π±, K±, p/p̄) over a wide range of momenta.

As kaon identification is fundamental to this analysis, we will go into significantly

more detail about the CRID in Chapter 4.

The CRID is based on the Cherenkov effect, hence its name. A charged particle

with a velocity, v, traverses a dielectric medium whose index of refraction is n. If

v is greater than the phase velocity of light in that medium, the particle will emit

a coherent wave front of Cherenkov photons with an emission angle to the track,

θC given by:

cos(θC) =
1

nβ
(3.6)

where β = v/c. These photons are imaged by an array of 40 Time Projection

Chambers (TPCs), which are filled with a mixture of C2H6 gas and gaseous tetrakis-

dimethylamino-ethylene (TMAE), a photocathode additive. TMAE is ionized by

photons with energy greater than 5.4 eV and releases photoelectrons into the C2H6.

These photoelectrons then drift to the instrumented ends of the TPCs. The particle

velocity can be determined from the reconstructed ring of photoelectrons, and

conversion positions can be inferred from drift time, the wire address, and the

charge division on the wire. Combined with momentum, the mass of the particle

can be determined, thus giving its identity.
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3.2.4 Liquid Argon Calorimeter (LAC)

The Liquid Argon Calorimeter (LAC) [30] was designed to measure the energy

of charged and neutral particles. Like the CRID and Drift Chamber, it is divided

into barrel and endcap sections. The barrel LAC is a 6 m long cylinder with an

inner radius of 1.8 m and an outer one of 2.9 m, and provides coverage from 35o

to 145o in polar angle. As the endcaps extend the coverage to within 8o of the

beamline, the LAC covers about 98% of the solid angle.

The LAC is a Pb-Ar sampling calorimeter, with Pb plates, separated by plastic

spacers, immersed in liquid argon. Particles which enter the LAC interact with

the Pb plates and produce particle showers which then ionize the argon. The lead

plates are held alternately at ground and -2 kV. As the argon does not amplify the

charge, the observed charge is proportional to the deposited energy.

The LAC is divided into four radial layers, EM1, EM2, HAD1, and HAD2. The

EM sections contain most of the energy from electromagnetic showers (hence the

names of the sections), and consist of 2.0 mm lead plates separated by 2.75 mm

Ar gaps. The HAD sections consist of 6.0 mm lead plates with the same gap size.

A schematic view of a LAC module can be seen in Figure 18. While the EM

layers contain most of the electromagnetic shower energy in 21 radiation lengths of

material, the HAD sections extend containment of hadronic showers to 2 radiation

lengths. In total, the four sections contain 2.8 absorption lengths and 49 radiation

lengths of material. The energy resolution [28, 30] of the LAC is approximately

60%/
√
E for hadronic showers and 15%/

√
E for electromagentic showers. For a
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45 GeV electron, 99% of the energy is contained in the EM sections, and 90-95%

of the total energy of a Z0 [31] is contained by the LAC.
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Figure 18: A schematic view of a barrel LAC module.

3.2.5 Warm Iron Calorimeter (WIC)

The Warm Iron Calorimeter (WIC) [32] is the outermost layer of SLD, and is

divided into endcap and barrel regions which together provide coverage for almost

all of the solid angle. Its primary role is as the flux return for the solenoid and as a

support structure for SLD. It is also instrumented to provide additional calorimetry

information and muon identification. The original intent of using the WIC for

containing the approximately 5% energy leakage through the LAC by hadronic Z0

decays has not been realized due to problems with energy response calibration.
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Figure 19 shows a cutaway view of the WIC. The WIC is consists of 18 layers

of Iarocci streamer tubes [33] contained in 3.2 cm gaps between 5 cm thick steel

plates. The Iarocci streamer tubes are long rectangular plastic tubes with central

100µm Be-Cu wires and are filled with a gaseous combination of 88% CO2, 9.5%

C4H10, and 2.5% Ar. The tubes have external Cu cathode readouts, square readout

pads for calorimetric measurements, and long strips for muon tracking, which are

arranged in separate, perpendicular arrays.
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Figure 19 : A cutaway view of a WIC section, showing details of single layers
and double layers.
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3.2.6 Luminosity Monitor

The SLD Luminosity Montitor (LUM) [34] was designed for two purposes. It

provides a precise measurement of the luminosity deliverd by SLC by measuring

small-angle Bhabha scattering, whose cross-section is precisely derived from QED.

It was also designed to provide an extension of the electromagnetic calorimetry to

small angles. Shown in Figure 20, the LUM is located 1 m downstream from the IP

along the beam axis, and consists of two silicon-tungsten calorimeter modules, the

Luminosity Monitor/Small Angle Trigger (LMSAT) and the Medium Angle Silicon

Calorimeter (MASiC). The LMSATs provide coverage between 28 and 68 mrad

from the beamline and while the MASiCs provide coverage from 68 to 200 mrad.

The projective towers in both calorimeters are highly segmented and each has a

total depth of 21 X0, containing 99.5% of a 45.6 GeV electromagnetic shower.

Using Bhabha events, an energy resolution of approximately 3% at 50 GeV has

been achieved.

Figure 20 : The SLD luminosity monitor, showing the MASiC, the LMSAT
and masks.
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3.2.7 SLD Event Trigger

The SLD event triggers initiate readout of the detector when a potentially

interesting event has occured and determine what events are written to tape for

analysis. The design of these triggers is greatly simplified by the 8.3 ms crossing

time of the SLC. The triggers are described in detail in [35] and [36]; they are

summarized below.

• Bhabha trigger: requires total energy of at least 12.5 GeV simultaneously in

both north and south EM2 sections of the LUM.

• Energy trigger: the EM and/or HAD calorimeters of the LAC must have

at least 8 Gev of total deposited energy in them. Only towers above the

threshold of 246 MeV (1.298 GeV) for EM (HAD) contribute.

• Muon trigger: requires one charged track with 9 CDC superlayers hit and

calorimentric counts in the opposite WIC octant.

• Random trigger: This trigger writes out data for background studies every

20 seconds, without regard to the status of other triggers.

• Tracking trigger: requires at least 2 charged tracks, separated by at least

120o and each passing through at least 9 superlayers of the CDC. A cell hit

is recorded if at least 6 of its 8 sense wires record pulses above a threshold.

Additionally, the CDC cells hit must match a configuration in a pre-calculated

CDC cell pattern map, which contains all the possible trajectories of charged

tracks with p⊥ > 250 MeV/c.
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• WAB (Wide Angle Bhabha) trigger: requires two charged and back-to-back

tracks in the CDC, with no regard to length of track.

• HAD trigger: records hadronic events with a combination of the Energy and

Tracking triggers. One track must traverse at least 9 CDC superlayers and

there must be 2 GeV of energy deposited in the LAC.

All sub-systems are read out for a trigger except for the Bhabha trigger.

The control software for SLD was run on a Digital Equipment Corporation

VAX /VMS computer cluster. A typical SLD event is 250-300 kbytes in size, and

consists of approximately 40% CRID information and 25% each from the CDC

and VXD3. Background conditions, dependent on the tuning of the SLC, strongly

impact event size. A typical trigger rate for low backgrounds during the 1997-

98 data run was 0.5 Hz. It has been estimated that the combined efficiency for

the three hadronic triggers (Energy, Tracking, HAD), exceeded 96% for hadronic

events [35].

3.2.8 SLD Monte Carlo

Like most other modern particle physics experiments, SLD data analysis relies

on detailed Monte Carlo simulations of both fundamental physical reactions in

e+e− collisions (an “event”) and detector response to those events. Simulation of

reconstructed events is a two step process: first, the generation of an e+e− reaction

and all of its daughter products, and then a full simulation of SLD response to that

event.
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The simulation of 1996-98 was generated using the JETSET 7.4 [37] event gen-

erator, which is based on the LUND fragmentation model with parameters tuned

to hadronic e−e+ annihilation data [38]. To simulate beam-induced backgrounds

and electronic hardware noise, random trigger data are overlaid with the results of

the simulation.

The GEANT 3.21 [39] software package is used to track particles through the

detector, accounting for physical effects such as the magnetic field, multiple scatter-

ing, energy loss, and detector response. Calorimeter shower simulations are based

on GEANT EGS4 [40] for electromagnetic interactions and GEANT GHEISHA [41]

for hadronic ones. Finally, all of the simulated events are processed by the same

reconstruction code used to reconstruct data events.
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C H A P T E R 4

KAON IDENTIFICATION USING THE SLD CRID

Kaon identification is an important part of this analysis, and the SLD Cherenkov

Ring Imaging Detector (CRID) [21,29] provides SLD with efficient and pure charged

particle identification. This chapter provides some general properties of Cherenkov

radiation and ring imaging with the CRID. One can find a more thorough discussion

of ring imaging detectors in [42]. The results of efficiency and purity studies for

kaon identification performed by the author conclude this chapter.

4.1 Principles of Cherenkov Ring Imaging

A charged particle which traverses a dielectric medium with a velocity exceed-

ing the phase velocity of light in that medium emits photons in a coherent wave

front, similiar to a shock wave in hydrodynamics. This phenomenon is known as

Cherenkov radiation, named after its discoverer in 1934 [43]. In 1937, this phe-

nomenon was explained within the context of classical electrodynamics by Frank

57



and Tamm [44], and in 1940, Ginzburg provided the quantum theoretical calcula-

tion, which resulted in only minor modifications to the classical one [46].

For a particle travelling with velocity v = βc in a medium with an index of

refraction n, Cherenkov photons are emitted in a cone with an angle θC to the

particle’s direction such that:

cos θC =
1

βn
, (4.1)

and with a uniform azimuthal distribution. From this relation, it is implied that

a particle must exceed a threshold velocity βt = 1
n
, corresponding to a thresh-

old momentum pt = mc√
n2−1

, to produce Cherenkov radiation. The Frank-Tamm

relation ( [44, 45]) gives the spectrum of the Cherenkov radiation:

dN

dλ
=

2π

λ2
αz2L sin2 θC , (4.2)

where dN is the number of Cherenkov photons in a photon wavelength interval dλ,

α the electromagnetic fine structure constant, L the path length of the particle,

and ze is the charge of the particle (with e the charge of the electron). Note that

for a constant n, this relation shows that Cherenkov photons are predominantly

produced at short wavelengths. For a Cherenkov device with detection efficiency

ε(λ), the number of photons detected is given by:

Ndet = 2παz2L

∫
∆λ

ε(λ)

λ2

[
1− 1

β2n2(λ)

]
dλ. (4.3)
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The wavelength dependence of n indicates the medium used in the detection device

is dispersive. For the limit of a constant n (i.e. away from any absorption bands),

the number of detected photons may be approximated by:

Ndet = N0Z
2L sin2 θC , (4.4)

with N0 defined as:

N0 = 2πα

∫
∆λ

ε(λ)

λ2
dλ, (4.5)

which describes the response of a particular Cherenkov detector.

The principle of Cherenkov ring imaging, based on the focusing of the conical

Cherenkov surfaces into a focal plane and using the radius of the Cherenkov ring

and the measured particle momentum for particle identification, was first propsed

by Roberts in 1960 [47]. The first practical detector was built by Séguinot and Yp-

silanti in 1977 [48], and utilized an admixture of benzene in a gas-filled multiwire

proportional chamber. This technique made it practical to resolve single photons

with good spatial resolution. In 1980, Anderson explored a new photocathode

material, tetrakis(dimethylamino)ethylene (TMAE), which is sensitive to the dom-

inant UV photon energies [49], and enabled the use of time projection chambers

(TPCs) with transparent windows. The Delphi RICH [50] and SLD CRID [51],

which are of similiar design, represent the first large scale use of Cherenkov ring

imaging in multi-purpose particle detectors.
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4.2 SLD CRID Design

The SLD CRID consists of a barrel detector, which provides particle identifi-

cation in the region | cos θ < 0.68|, and an endcap detector, designed to provide

coverage for 0.82 < | cos θ| < 0.98. The barrel CRID was completed two years

before the endcap CRID, and due to problems with endcap tracking, the endcap

CRID never reached its full physics potential. As it is not used in this analysis, we

will focus exclusively on the barrel CRID; details of the hardware performance of

the endcap CRID can be found in References [51]- [53].
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Figure 21 : A sector of the Barrel CRID, shown in an axial view (top) and a
transverse view (bottom).
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The barrel CRID is shown in Figure 21. It is constructed with two Cherenkov

radiators, one liquid and one gas, to provide charged particle identification over

a wide momentum range. The liquid C6F14 radiator is contained in 40 quartz-

windowed trays, each with a 1 cm liquid thickness. The photons from the liquid

radiator pass directly into the 40 Time Projection Chambers (TPCs), each of which

is filled with C2H6 and 0.1% TMAE. The gaseous radiator, filled with 85% C5F12

and 15% N2, relies on an array of 400 spherical mirrors to focus the photons into

rings on the TPCs. In both cases, the Cherenkov photons ionize the TMAE, and

the photoelectrons are drifted to multiwire proportional chambers (MWPC) located

at the outer end of the TPCs.

4.2.1 Cherenkov Radiators

The SLD barrel CRID was designed to provide particle identification for mo-

menta up to 6 GeV/c (e/π) or 30 GeV/c (π/K/p), thus requiring a combination of

liquid (C6F14) radiators to cover the lower momentum region, and gaseous (C5F12)

radiators to cover the higher momentum region. These fluorocarbon radiators were

chosen for their refractive indices (to provide coverage in particle identification with

a minimal gap in momentum), their transmission at relevant UV wavelengths, rela-

tively low chromatic dispersion, and compatibility with other CRID materials. For

λ = 190 nm, the indices of refraction for the liquid and gas radiators, respectively,

are nliq = 1.2723 [54] and ngas = 1.0017 [55]. The Cherenkov angle curves for the

most important particles for this analysis, K± and π±, along with curves for p/p̄,
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are shown in Figure 22. Figure 23 shows the separation ability for the two barrel

CRID radiators for the combinations of e/π, π/K, and K/p. Separation at the

3σ level for the π/K combination is available from 0.3 to almost 30 GeV/c.
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Figure 22 : The Cherenkov angle for the liquid (solid lines) and gas (dashed
lines) radiators in the Barrel CRID as a function of momentum
for the three hadronic particle hypotheses.

4.2.2 Single Electron Sensitive Detector

An array of 40 (TPCs) detects the Cherenkov photons. Each TPC is filled with

the C2H6 drift gas and an 0.1% admixture of the photocathode TMAE, which is in-

troduced to the drift gas by bubbling the gas through liquid TMAE. UV Cherenkov

photons ionize the TMAE and release photoelectrons into the drift gas. A 400 V/cm

electric field inside the TPC causes the photoelectrons to drift parallel to the SLD
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magnetic field to a multiwire plane. Figure 24 shows a single TPC box, which

is 126.6 cm in length and 30.7 cm wide. The thickness goes from 9.2 cm at the

instrumented detector end to 5.6 cm at the high voltage (HV) end, which prevents

electrons from being lost near the TPC readout face due to transverse diffusion.

The two windows of the TPC box consist of fused quartz, and the sides are con-

structed from G-10 fiberglass epoxy.

Figure 25 shows the TMAE quantum efficiency and the transmission of fused

quartz. The applied high voltage sweeps the photoelectrons to the TPC anode wire

plane, and is set for the best time to distance resolution in order to reconstruct

the z coordinate. The x coordinate is determined by the wire address, and the

y from the charge division on the wire. Each coordinate has a resolution within
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1 mm, resulting in an approximately 4 mrad resolution on the Cherenkov angle.

Figure 26 shows the detector end of a TPC in more detail. The array of field

shaping wires and blinds is designed to direct electrons to the anode wires. The

blinds help prevent photon feedback ionization. The anodes collect the signal and

pass it to the front end electronics.

The preamplifier signals are sampled in 67.2 ns “buckets”, stored in Analog

Memory Units (AMUs), and then digitized in Analog to Digital Converters (ADCs)

when an event trigger occurs. Data Correction Units (DCUs) zero suppress the

amplitudes and apply a pedestal correction. Waveform Sampling Units (WSMs) are

used to correct the bucket by bucket AMU characteristics and apply a pulse-finding

algorithm. The digitized amplitude is then sent to ALEPH Event Builders (AEBs)

which format the data for permanent storage on tape. The CRID information

stored consists of the pulse leading edge time, the pulse heigh and width, and

a 32 bit quality word characterizing the pulse. More detail on CRID readout

electronics and processing can be found in Reference [56].

Information about the long-term operational performance of the Barrel CRID,

including studies of wire aging and breakage, gas and liquid circulation and pu-

rification, electronics performance, CRID hardware monitoring, estimates of the

Cherenkov N0, and numbers of photoelectrons for gas and liquid rings, can be

found in Reference [57].

66



4.3 Particle Identification Using A Maximum Likelihood
Method

For particle identification using CRID information, a maximum likelihood

method [58, 59] is used to distinguish between the five possible particle candidates

(e±, µ±, π±, K±, p/p̄). This method has the advantages of best use of available

information, smooth behaviour as a particle’s momentum crosses the Cherenkov

threshold for a particular particle, and a simple framework for combining gas and

liquid radiator information. The sum of the five particle identification likelihoods is

normalized to 1. Particle identification is based on the logarithms of the differences

between these likelihoods.

For any given hypothesis, a likelihood function L is the probability of observing

the given data distribution for that hypothesis. For particle identification, a hy-

pothesis is a specific set of particle assignments, {hk}, for each track k in an event,

and using a background model B(~x). Poisson statistics gives the probability to

observe n photoelectrons in the CRID when n̄ is the expected number for a given

hypothesis {hk}:

P (n|n̄) =
n̄n

n!
e−n̄. (4.6)

Information from the spatial distribution of photons is also available. If P (~x) is

the probability for a given photoelectron to be in a differential volume d~x3, we can

define the expected density of photoelectrons in that volume to be ρ(~x) = n̄P (~x).

After taking the permutations of the n photoelectrons into account, the overall
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likelihood is given by:

L = P (n|n̄)P ({~xi}) (4.7)

= n̄ne−n̄

n∏
i=1

P (~xi)

= e−n̄
n∏

i=1

ρ(~xi)

where the index i runs over all observed photoelectrons. The photoelectron density

consists of the track-independent background term and a term representing each

track’s produced Cherenkov ring:

ρ(~x) = B(~x) +
∑

k

ρk,hk
(~x), (4.8)

where ρk,hk
(~x) represents the density due to track k for the particle hypothesis hk,

and B(~x) is a function representing background signal.

Theoretically, it is now straightforward to calculate L for all 5 hypotheses for

each track. The set {hk} which maximizes the likelihood function is the best an-

swer. However, it is not practical to compute such a large number of combinations.

Instead, it is assumed that the most likely hypothesis hk for track k is largely in-

dependent of the hypotheses for other tracks {hj}j 6=k. Iteration through the tracks

in an event continues until the set {hk} is stable. The likelihood for a hypothesis
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hk can be written as:

Lk,hk
≡ e−Mk,hk

∏
i

(Bk + ρk,hk
(~xi)), (4.9)

where Bk is the track-independent background and Mk,hk
is the number of photo-

electrons expected after accounting for total internal reflection. It is the logarithm

of the relative likelihood, L′k,hk
, that is used for physics analysis:

logL′k,hk
= −Mk,hk

+
∑

i

log

(
1 +

ρk,hk
(~xi)

Bk(~xi)

)
. (4.10)

The method uses a simplified, uniform, background Bk(~xi). The iterative procedure

begins with the pion hypothesis and converges for most events in only 2-3 iterations.

4.4 Particle Identification Performance

As particle identification is a significant factor in this analysis, it is important to

understand the performance of the SLD CRID in selecting and identifying particles,

particularly kaons and pions. Pions are significant because a pion which is mis-

identified as a kaon is almost always “wrong-sign” and serves to dilute the kaon tag

(discussed in detail in Chapter 5.) The author has performed a number of checks

and calculations on CRID performance which are of interest to this analysis and

which will be discussed in this section.
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4.4.1 Quality Kaon Track Selection

Previous to this analysis, quality track selection criteria for CRID identifica-

tion had been fixed to values resulting from studies performed previous to the

installation of the new SLD Vertex Detector (VXD3) in 1996. Tracking has been

significantly upgraded since 1996; hence it is interesting to revisit the track quality

cuts to verify that they are optimal for use with VXD3, and that they result in the

highest possible purity and efficiency for kaon identification.

For a track to be considered for identification in the CRID, a combination of

track-related requirements (to ensure good reconstruction of the track in the SLD

tracking volume) and CRID-related requirements (to ensure that the CRID could

make a quality relationship between the Cherenkov rings and tracks in an event),

are used. It is useful to note the previously used cuts to discuss which were updated

and the reason. The following are the previously used CRID selection cuts [60]:

• NCDChits > 40. There must be more than 40 CDC hits on the track. This

ensures there are enough points to have a good momentum measurement.

• ptot > 0.8 GeV/c. This cut on the total reconstructed momentum of a track

reduces the contamination from fragmentation and other tracks which were

not produced as part of the hadronic decay of the Z0.

• χ2
CDC/DOF < 5. This requirement on the quality of the CDC track fit

excludes poorly found and spurious tracks.

• CRID Status: The barrel CRID High Voltage must be on and the detector

operational.
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• Track Polar angle | cos θ| ≤ 0.68. This cut was motivated by the acceptance

region of the gas radiator and mirrors, as well as to decrease the likelihood of

misidentification due to total internal reflection in the liquid radiator at low

polar angles.

• CDC last hit radius rlast ≥ 90 cm. Since the CRID is dependent on a reli-

able extrapolation of the particle trajectory to link a track to its produced

Cherenkov ring, it is important to select the highest quality tracks. This cut

requires a hit in the outermost layer of the CDC, which minimizes the lever

arm for extrapolation. It also reduces the likelihood the track is a particle

that scattered or decayed in flight, and therefore unlikely to be identified

properly.

Additionally, in the liquid region for CRID particle identification, the following

standard CRID reconstruction flags are used:

• BADID: This flag is set if there is no valid liquid identification information.

This subsumes the requirements that tracks pass through the liquid radiator

trays, the TPC containing the majority of the expected liquid ring to be

active and functional, and that the track transverse momentum be above

0.150 GeV/c.

• TPCBAD or TPCSICK: While BADID removes tracks for which the primary TPC

is on and functioning, this additional flag is used to indicate whether the two

TPCs containing most of the expected liquid ring are functional.
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• NOMIP: Because of a concern about mistracked tracks, and because there is

no tracking volume outside the radius of the CRID, a requirement that an

ionization deposit (saturated hits) be present in a CRID TPC within a loose

region of 3 cm from the extrapolated position of the track is imposed. This

requirement is in place only if a track has passed through the active volume

of the TPC.

All of the flags must be unset for a track using the liquid information for it to be

considered a quality CRID track. In the liquid region, a log-likelihood difference of

5 is required for particle identification (i.e. a pion must have logLπ − logLK > 5

and logLπ − logLp > 5. In the region 3 < p < 5 GeV/c, only protons can be

identified and there is no attempt to distinguish between the π and K hypotheses.

In the gas region for CRID particle identification, a similiar set of criteria to

that of the liquid region are applied:

• BADID: This flag is set if there is no valid gas identification information. This

subsumes the requirements that the image not reflect from any known bad

mirrors, the TPC onto which the ring image is reflected be active and func-

tional, the track transverse momentum be above 0.150 GeV/c, and that the

gas Cherenkov ring be isolated from saturated hits due to minimizing ionizing

pulses (MIPs).

• TPCSICK: While BADID removes tracks for which the primary TPC is on and

functioning, this additional flag removes TPCs which are known to have re-

duced detection efficiency.
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• NOMIP and NOLIQR: Because the gas momentum regime is above that of the

liquid, all gas candidate tracks are above threshold in the liquid and should

have liquid rings detected. Thus, one can look for the presence of 4 or more

hits with signal weight above background for the liquid Cherenkov angle.

This cut can be combined with the NOMIP flag above to obtain a more-efficient

selection of CDC tracks which are also present in the CRID.

All of the flags must be unset for a track using the gas information for it to be

considered a quality CRID track. For the gas region, a log-likelihood difference of

3 is required, instead of 5. Additionally, in the momentum regime from 2.5 < p <

10 GeV/c, both the p and K hypotheses are below threshold and there is no ability

to discriminate between the two with the gas radiator alone, although combining

liquid and gas radiator information can provide some separation.

Using the SLD Monte Carlo, a “base” efficiency, ε, and purity, π, using the

cuts above for kaon identification were found to be 37.4% and 82.1% respectively.

This gives a “sensitivity” of 0.252, with sensitivity being defined as S = επ2. For

all possible tracks, the requirements on the number of CDC hits (NCDChit), the

χ2
CDC/DOF of the CDC track fit, the outermost hit radius in the CDC (rlast),

track polar angle (| cos θ|), minimum total momentum (ptot), and log-likelihood

differences (logLK − logLπ and logLK − logLp), were investigated individually.

Additionally, the liquid ring requirement for gas tracks (NOLIQR) and the MIP flag

for all tracks (NOMIP) were investigated separately as well.
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The studies showed that, in fact, most of the requirements were optimal in

spite of the improved tracking and significantly different hardware. Two cuts were

loosened: the CDC hit requirement, NCDChit, was relaxed from 40 hits to 23, and

the radius of the outermost hit in the CDC, rlast, was relaxed from 90 cm to 50.

Additionally, the χ2
CDC/DOF of the CDC track fit was loosened, from 5 to 8. These

cuts brought the CRID tracking selection into line with the standard hadronic track

cuts used by various B analyses on VXD3 data. The result was a slight increase in

efficiency to 39.6%, and a slight decrease in purity, to 81.0%. Combined, a marginal

improvement in sensitivity, to 0.260, was seen for overall kaon identification using

the SLD CRID.

4.4.2 Identification Efficiencies

An important measurement of CRID performance is the efficiency of identi-

fying kaons. It is particularly important to have direct tests in both data and

Monte Carlo. Two studies have been performed to investigate CRID identification

efficiencies: kaons from D∗ decays, and protons from Λ decays.

Efficiency from D∗ Decays

One pure source of kaons in both data and Monte Carlo is the decay D∗ →

D0 → ππK. These events can be selected by calculating both the ∆mD∗,D0 and

the ππK invariant mass peaks, and then placing a cut on ∆m. The D0 is recon-

structed by searching for a kaon and a pion which, when combined into a single
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vertex, have the invariant mass of the D0. To reconstruct the D∗, a slow pion (one

with total momentum of greater than 1 GeV/c) is combined with the D0 vertex,

and the invariant mass calculated. Because this is a low statistics test of efficiency,

the sample is divided into only two bins based on the tagged kaon momentum:

one bin of 2.5-10 GeV/c, and the other for tracks above 10 GeV/c. Distributions

for the ππK invariant mass and ∆m for the low (high) bin can be seen in Fig-

ures 27 and 28 (29 and 30), respectively.

The kaon identification efficiency is extracted by comparing the areas of the

background subtracted peak with and without the standard kaon log-likelihood

requirements of LK −Lπ > 5(3) in liquid (gas) and LK −Lp > −1 in both types of

radiators. The resulting efficiencies can be found in Table 5. The efficiencies from

data and Monte Carlo are in good agreement, with an overall kaon identification

efficiency of over 80% in the data.

Table 5: Kaon efficiencies from D∗ decays. Given errors are statistical only.

Momentum Bin (GeV/c) Monte Carlo (%) Data (%)
2.5-10.0 86.0± 1.7 88.2± 1.5

Above 10.0 88.3± 4.0 82.6± 4.0

Efficiencies from Λ0 Decays

A known source of protons is the decay Λ0 → π−p and its charge conjugate.

These protons can be used to estimate kaon efficiencies for track momentum from

2.5 to 9 GeV/c, as both kaons and protons are separated from pions in this region
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Figure 27 : The D∗ mass peak for 2.5-10 GeV/c. The dots are data, while
the histogram is Monte Carlo simulation.

Figure 28 : The ∆mD∗,D0 peak for 2.5-10 GeV/c. The dots are data, while
the histogram is Monte Carlo simulation.
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Figure 29 : The D∗ mass peak for above 10 GeV/c. The dots are data, while
the histogram is Monte Carlo simulation.

Figure 30 : The ∆mD∗,D0 peak for above 10 GeV/c. The dots are data, while
the histogram is Monte Carlo simulation.
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by an absence of a gas ring, but there is no discriminating power between kaons

and protons in this momentum range if only the gas radiator is used.

Λ0 decays can be well-separated from other decays by looking for displaced

neutral vertices formed with only 2 tracks (referred to as V 0 decays) and cutting

on the helicity angle | cos θ∗| > 0.80 to eliminate K0
s decays. The resulting proton

purity, from Monte Carlo studies, is about 85%. The Λ0 invariant mass peak,

showing good agreement between data and Monte Carlo, can be seen in Figures 31 -

33.

The proton identification efficiency is extracted by comparing the areas of the

background subtracted peak with and without the standard proton log-likelihood

requirements of Lp − Lπ > 5 and Lp − LK > −1. The sample of Λ0 decays

was divided into 3 bins by momentum of the identified proton. The resulting

efficiencies can be found in Table 6. The efficiencies from data and Monte Carlo

are in agreement, with an overall proton identification efficiency of over 80% in

the data. Additionally, the efficiencies determined from the Λ0 sample are in good

agreement with those determined from the D∗ sample in the low momentum bin.

Table 6: Proton efficiencies from Λ0 decays. Given errors are statistical only.

Momentum Bin (GeV/c) Monte Carlo (%) Data (%)
2.5-4.0 76.2± 0.5 81.4± 0.8
4.0-6.0 90.2± 0.4 88.4± 0.9
6.0-9.0 88.2± 0.6 82.6± 1.3
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Figure 31 : The Λ0 mass peak for 2.5-4 GeV/c. The dots are data, while the
histogram is Monte Carlo simulation.

Figure 32 : The Λ0 mass peak for 4-6 GeV/c. The dots are data, while the
histogram is Monte Carlo simulation.

Figure 33 : The Λ0 mass peak for 6-9 GeV/c. The dots are data, while the
histogram is Monte Carlo simulation.
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4.4.3 Pion Misidentification as Kaons

A major concern for this analysis is the amount of pion misidentification as

kaons. There are two primary reasons for this. First, because a pion which is

misidentified as a kaon will be “wrong-sign” half of the time for the final state

tag, which will be discussed in the next chapter. Second, since the kaon right-sign

fractions for the analysis are parameterized from Monte Carlo, it is important that

the data and Monte Carlo agree well.

To study these issues, a high-purity source of pions is required. K0
s → π+π−

decays are easily identified and are a high purity and copious source of pions in both

data and Monte Carlo. V0 decays are again used to select events, but the helicity

angle cut is instead | cos θ∗| < 0.80. Monte Carlo studies show a pion purity of over

99% if a cut of ±3σ is made on the K0
s invariant mass peak after the helicity angle

selection is applied. The invariant mass peak for both data and Monte Carlo can

be seen in Figure 34, and the pion purity as a function of track momentum (from

Monte Carlo) can be seen in Figure 35. The kaon momentum spectra (for kaons

used in this analysis) in both data and Monte Carlo can be seen in Figure 36.

The procedure for studying misidentification is similiar to that of studying ef-

ficiency: after cutting on the invariant mass of the K0
s to obtain a pure sample of

pions, the CRID selection cuts are applied both with and without the log-likelihood

requirements for separating kaons from pions in the given momentum region. A

plot of the data and Monte Carlo misidentification rates as a function of track mo-

mentum can be seen in Figure 37. While there is good agreement between data and
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Figure 34 : The K0
s mass peak. The dots are data, while the line is Monte

Carlo simulation.

Figure 35: Pion purity in K0
s decays, from Monte Carlo.
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Figure 36 : Kaon momentum in B decays. The dots are data, while the line
is Monte Carlo simulation.

Monte Carlo in the low momentum region, one immediately notes the significant

disagreement that occurs as CRID liquid radiator information is lost at higher mo-

menta. This is a known issue for the SLD CRID and has been studied [60]. An ad

hoc algorithm to compensate for the difference by smearing the Monte Carlo was

developed [60], and has been applied to the 1996-98 Monte Carlo. Misidentification

rates after the smear was applied can be seen in Figure 38, and vary from 2.5-10%

as a function of track momentum.

.

82



Figure 37 : Pion misidentification as a kaon before applying the Monte Carlo
correction. The dots are data, while the line is Monte Carlo sim-
ulation.

Figure 38 : Pion misidentification as a kaon after applying the Monte Carlo
correction. The dots are data, while the line is Monte Carlo sim-
ulation.
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C H A P T E R 5

EVENT SELECTION AND TAGGING

This chapter covers an essential part of the analysis: the selection of hadronic

events containing B mesons, the tagging of their initial and final state b quark

flavor, and reconstruction of the boost and decay length of the presumed B meson.

The order of the chapter follows the same progression the analysis does: first, we

describe hadronic event selection, and then the B event selection. Then, we provide

a detailed description of the SLD Initial State Tag, and an explanation of the Kaon

Tag for the final state, with a number of cross-checks of these tags which have been

performed on the data. The reconstruction of the boost and decay length of the

secondary (B) vertex, resulting in a proper time calculation, are discussed in the

last sections of this chapter.

5.1 SLD Hadronic Event Selection

The triggers described in Section 3.2.7 are designed to keep data acquisition

rates to a manageable level; however, their thresholds are kept low enough that
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they accept many events which do not involve the production of Z0 bosons. The

hadronic event filter is used to eliminate a large fraction of those events before

the offline reconstruction. After offline reconstruction, the hadronic event selec-

tion requirements are used to provide the best sample of events which are well-

reconstructed in the detector.

5.1.1 Hadronic Event Filter

The first (PASS 1) filter enhances the selection of hadronic events which have

initially passed the HAD trigger. The PASS 1 filter, also know as the Energy

Imbalance Trigger (EIT), imposes cuts based on 3 LAC quantities and their com-

binations:

• NEMHI ≥ 10, where NEMHI is the number of LAC EM towers above the

high threshold of 60 ADC counts, equivalent to ∼ 250 MeV from minimum

ionizing particles.

• EHI > 15 GeV of energy from minimum ionizing particles, where EHI is the

sum of the energy deposited in all LAC EM (HAD) towers above the high

threshold of 60 (120) ADC counts (∼ 250 (1.3 GeV) MeV.)

• ELO < 140 GeV of energy from minimum ionizing particles, where ELO is

the sum of the energy deposited in all LAC EM (HAD) towers above the low

energy threshold of 8 (12) ADC counts (∼ 33 (130) MeV).

• 2 ·EHI > 3 · (ELO − 70)
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• NEMHI > 0 for both hemispheres

The first and third requirements are to reject SLC-based (beam-gas) background

events, where one of the incoming beams interacts with residual gas in the hemi-

sphere, yielding tracks which enter the detector and trigger readout. The third

and fifth requirements combine to ensure that an event does not satisfy the first

two requirements by depositing large amounts of background energy. This removes

beam-wall events, which have large numbers of muons.

The EIT filter rejects ∼ 97% of background events which were written to tape.

The combined readout triggers and EIT filter results in a selection efficiency for

hadronic Z0 events of ∼ 92% [35]. The events which pass this filter are sent

to a second (Pass 2) filter where they are sorted into hadronic, µ-pair, or WAB

candidates. The hadronic requirements are discussed next.

5.1.2 Hadronic Event Selection

Standard cuts [27, 61] are applied to events which pass the EIT filter to de-

termine if they are hadronic events; these cuts are summarized in Table 7, and

distributions of some of the selection variables are shown in Figure 39. Together,

they provide a hadronic event selection with well reconstructed tracks and well

contained within the SLD.
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Figure 39 : Distributions of the Hadronic event selection variables after all
cuts have been applied. There is reasonable agreement between
the Monte Carlo (line), and the data (dots).
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Table 7: Hadronic Event Selection Requirements

EIT filter passed
VXD, CDC, and LAC operating
e− beam polarization measurement available
Precisely determined interaction point (IP)
At least 7 charged tracks whose p⊥ > 0.2 and distance of closest approach to

the IP in the rz plane < 5 cm
At least 3 charged tracks with at least 2 VXD hits each
At least 18 GeV of visible energy, with the π± mass assumed for each track
| cos θthrust| < 0.85, where θthrust, the thrust axis polar angle, is measured with

respect to the e+ beam direction.

The thrust axis, T̂ , is determined using the LAC energy clusters and is defined

as the axis that maximizes the thrust T of an event:

T =

∑
clusters

|~p · T̂ |∑
clusters

|~p| (5.1)

where ~p, the momentum of the energy cluster, is determined using the IP as the

origin and assuming the particle that caused the energy deposition is a pion.

So that the event is well reconstructed in the barrel of the detector, we require

| cos θthrust| < 0.85. T̂ is generally a good indicator of the initial quark direction,

and this will be important for the initial state tagging which will be described later

in this chapter.

These requirements eliminate all but 0.2% of possible backgrounds. Leptonic

events, which tend to have fewer tracks than hadronic events, are removed by the

combination of track requirements; the total energy requirement eliminates most
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beam related backgrounds. The remaining background is dominated by higher

multiplicity Z0 → τ+τ− events. After hadronic event selection, there remain

310,254 events in the 1996-98 data out of an estimated 400,000 hadronic Z0 decays.

5.2 SLD B Event Selection

The hadronic event sample is a mix of udsc and bb̄ events. A selection process

involving three neural network algorithms [62] has been developed: the first allows

for cleanly choosing reconstructed seed vertices (other than the IP) for track at-

tachment, and the other two attach tracks to the choosen seed vertex. It can then

be determined if that vertex is more likely to be a b or a c decay.

5.2.1 Topological Vertexing

The first step to bb̄ event selection is to use a method developed at SLD called

topological vertexing to reconstruct secondary vertices for analysis. This unique

statistical method treats tracks as probability tubes, rather than lines, to perform a

more accurate vertex fit by summing the track probabilities in 3-D space, where the

vertices will then appear as regions of high overlap probability [63]. This analysis

uses the topological vertexing technique with various sets of tracks for b selection,

initial state tagging, and reconstruction of the B decay vertex.

The construction of the Gaussian tube fi(~r) can be seen in Figure 40. The

width of the tube is the uncertainty in the measured track location near the IP,
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and the 3-D trajectory of the tube can be described:

fi(~r) = exp

{
−1

2

[(
x′ − (x′0 + κ(y′)2)

σT

)2

+

(
z − (z0 + tan(λ)y′)

σL

)2
]}

. (5.2)

The z axis is defined as the beam axis with the positive direction given by the

e+ beam, and the x, y coordinates of the track have been transformed into x′, y′ for

each track such that the momentum of the track is parallel to the positive y′ co-

ordinate axis in the xy plane at the point of closest approach to the IP; σT and σL

are the track position errors in the xy plane and the z direction, respectively; κ is a

function of the magnetic field, track charge, and track’s transverse momentum; λ is

the angle between the track momentum and the positive y′ axis, and the tan(λ)y′

term accounts for track propagation along the z axis. The constructed Gaussian

tube is represented by the parallel dotted lines in Figure 40. A figure showing the

probability functions projected into the xy plane for a typical Monte Carlo bb̄ event

can be seen in Figure 41a.

It is reasonable to expect that vertices are most likely to occur in areas where at

least two tracks overlap; thus, the first step is to calculate analytically the spatial

locations of the maxima of the product fi(~r)fj(~r). This significantly reduces the

3-D search area, and we will designate the located maxima ~rij . To further reduce

the number of potential vertices, both tracks are required to pass a cut of χ2 < χ2
0,

where χ2
0 is an input parameter from Monte Carlo and χ2 is the square of the

distance of the track from ~rij normalized by the track error. Once these seed
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Figure 40 : The construction of the Gaussian tube to be used in topological
vertexing for a given track.

Figure 41 : The track (a) and vertex (b) functions projected onto the xy
plane for a typical Z0 → bb̄ Monte Carlo event.
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vertices have been selected, the total vertex probability is defined as:

V (~r) =

N∑
i=0

fi(~r)−
∑N

i=0 f
2
i (~r)∑N

i=0 fi(~r)
, (5.3)

where N is the number of tracks in the hemisphere. This function is a smooth,

continuous function so the maxima can be found. Note that for a region with a

single significant track, V (~r) = 0. The first term gives a measure of the multiplicity,

and the second ensures that the probability is signicant only in areas of high vertex

probability. An example of the projection of this function for a bb̄ event can be

seen in Figure 41b.

The next step is to locate the nearest maximum in V (~r) for each ~rij . These

adjusted ~rij are then clustered to produce the final reconstructed vertices. We begin

with the maximum that produces the largest V (~r) and merge in other maxima

which are unresolved. Two locations are considered resolved if

min{V (~r) : ~r ∈ ~r1 + α(~r2 − ~r1), 0 ≤ α ≤ 1}
min{V (~r1), V (~r2)} < R0, (5.4)

where min{V (~r1), V (~r2)} is the lower of the two values and the numerator is the

minimum of V (~r) on a straight line joining ~r1 and ~r2; in practice, V (~r) is determined

for a finite number of points on this line. The value R0 is a tunable parameter

which determines the number of vertices found and varies between 0 and 1. If any

remaining maxima remain unresolved, the one producing the largest V (~r) is used

to begin a new cluster and the clustering process above is repeated. This process is
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iterated until all maxima ~rij are included in a cluster; these clusters then become

the reconstructed vertices.

5.2.2 Secondary Vertex Selection and Track Attachment

Tracks satisfying minimal quality cuts of p⊥ > 0.25 GeV/c and NV XD
hit ≥ 3

are fed into the topological vertexing routine to produce seed vertices. Any track

with a 3-D impact parameter relative to the IP > 3 mm, or one consistent with

production from a γ, K0, or Λ0 decay is removed as well.

Events are divided into two hemispheres using the thrust axis, and the vertex-

ing procedure described above is performed on the tracks in each one separately.

Reconstructed vertices are required to be within a 2.3 cm radius of the center

of the beam pipe to remove false vertices due to interactions with detector ma-

terials. To remove any K0 decays which escaped the track cuts, a mass cut of

|Mvtx −MK0| < 0.015 GeV/c2 is applied. Vertices are then passed into a neural

network to further improve background rejection [62]. Input variables for the neural

network are the vertex to IP flight distance, that distance normalized by its error,

and the angle between the flight direction and the total momentum vector of the

tracks included in the vertex. Distributions of the selection variables and the neural

network output can be seen in Figure 42. The output of the neural network is a

real number between 0 and 1, and vertices with a neural network output of > 0.7

are retained. According to Monte Carlo studies, at least one good vertex, where

“good” is defined as being a vertex constructed with only B daughter tracks, is
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Figure 42 : Distributions of seed vertex selection variables. (a) distance from
IP, (b) normalized distance from IP, (c) angle between flight di-
rection and vertex momentum, (d) neural network output. The
arrow indicates the accepted region.
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found in 72.7 % of b hemispheres, and more than one good vertex in about 16 %

of b hemispheres.

b
T

Beam Axis

Vertex Axis

Track

IP
L

D

α

Figure 43 : Schematic illustration of the quantities used in the track-
attachment procedure described in the text (not to scale).

As B decays often result in tracks displaced from the decay vertex all of the

tracks from the heavy hadron may not originate at the same point. To recover

this information, a second neural network has been developed to attach tracks

to the secondary vertex. Four of the inputs are defined at the point of closest

approach (POCA) of the track to the axis joining the secondary vertex to the IP.

These are the transverse distance from the track to that axis (T ), the distance from

the IP along that axis to the POCA (L), that distance divided by the flight distance

of the secondary vertex from the IP (L/D), and the angle between the track and

the IP-secondary vertex axis (α). The final input is the 3-D impact parameter of

the track to the IP normalized by its error (b/σb). A schematic diagram of these

quantities can be seen in Figure 43, and distributions of the variables, along with
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Figure 44 : Distributions of cascade track selection variables. (a) T , (b) L,
(c) L/D, (d) α, (e) b/σb, (f) neural network output. The arrow
indicates the accepted region.
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the neural network output, can be seen in Figure 44. The network is trained to

accept only tracks from a B or D decay, and to reject tracks from the IP or strange

particle decays. To optimize the charge reconstruction, any tracks not already a

part of an accepted secondary vertex and with NV XD
hit ≥ 2 are tried, including those

which were removed from the secondary vertex finding procedure described earlier.

Tracks with a neural network output of > 0.6 are denoted as a secondary vertex

track.

Even for a secondary vertex reconstructed with only B decay products, some

B decay products will be not found and therefore will be missing track charge and

momentum information. From Monte Carlo simulation, we know that about 90 %

of the charged decay products will produce a track with VXD hits that link to

a track reconstructed in the CDC. To recover part of the inefficiency, we can use

vectors made of VXD hits that are not associated with a CDC track. This raises

the SLD tracking efficiency to ' 97 % in Monte Carlo simulation for B decays. We

require a VXD-only vector to have at least one hit in each of the 3 VXD3 layers.

A helix fit to the VXD hits is performed to construct a trial track. We then use a

third neural network to associate these trial tracks with a reconstructed secondary

vertex. This neural network uses the first four inputs noted in the paragraph on

full reconstructed track attachment. Vectors which have a neural network output

of > 0.5 are designated as a secondary vertex track. Distributions of the selection

variables, along with the neural network output, can be seen in Figure 45. Once

the VXD-alone vector has been attached to a vertex, the helix fit is performed one
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Figure 45 : Distributions of VXD-vector selection variables. (a) T , (b) L, (c)
L/D, (d) α, (e) neural network output. The arrow indicates the
accepted region. The probability to assign the correct charge to
a vector based on its fitted curvature is shown in (f), both with
and without the secondary vertex as a constraint.
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more time, but with the secondary vertex as a fourth helix point to improve the

curvature determination. Using this procedure, the charge reconstruction is correct

for about 85 % of attached VXD-alone tracks.

5.2.3 Selecting B Vertices

After the tracks have been attached using the neural net, it is necessary to de-

termine whether the vertex is a b quark decay or not. The invariant mass of the

secondary vertex is calculated, with each track assigned the mass of a π±. To ac-

count for missing neutral particles, this invariant mass is corrected and transformed

into what is called the pT -corrected mass. It is assumed that the true B meson

momentum should be in the same flight direction of the vertex, and therefore a

minimum amount of missing transverse momentum is added to the invariant mass.

For a given vertex, its invariant mass is simply:

M2
invtotal =

∑
i

m2
i +

∑
i

|~pi|2, (5.5)

where the sums are over the mass and momentum vectors of each daughter particle

in the decay. Assuming all the visible daughter tracks are π±s, the visible invariant

mass is:

Mtrks =
√
E2 − p2, (5.6)

where E, p are the reconstructed quantities for the vertex. It is now assumed that

all visible energy not associated with a track, as calculated in the center of mass
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of the vertex, is from unidentified neutral particles. The invariant mass of the

vertex is therefore M = En +Etrks, where E2
trks = M2

trks + P 2
T , is the vertex energy

from charged tracks in the track center of mass, and pT is the vertex transverse

momentum. In the vertex center of mass, ~pn, the momentum of the unseen neutral

particles, must be equal and opposite that of the visible charged particles (see

Figure 46). In reality, the value used is that which will align the charged momentum

to within the errors of the determined IP-vertex flight direction. Thus,

MpT
=
√
M2

trks + p2
T + |pT | (5.7)

where MpT
is the minimum mass the secondary vertex could have in order to

produce a vertex with an invariant mass M . A plot of this quantity for all events

passing the hadronic event selection can be seen in Figure 47. By requiring MpT
>

2 GeV/c2 a sample of Z0 → bb̄ events which is 98 % pure is acquired with 55 %

overall efficiency for hadronic b selection.

In addition to the MpT
requirement, we require the reconstructed vertex to have

a total track charge of 0 after vx-alone vector attachment. This significantly en-

hances the Bd fraction, as can be seen in the charge distribution shown in Figure 48,

and reduces the systematic errors resulting from Bu mesons. The distribution of

reconstructed secondary vertex charge shows that the data and Monte Carlo are in

good agreement.
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Figure 46 : A sketch of the momentum vectors for calculating the pT -
corrected mass. The sum of the charged particles measured mo-
mentum must be equal and opposite that of the unseen (and un-
measured) neutral particles.

A method of comparing charge resolution between data and Monte Carlo is

to calculate AFB using the charge of the reconstructed vertex. This has been

done using the charge of the vertex combined with the electron polarization to

determine the direction of the b quark in the event, although these charged vertices

are normally eliminated from the analysis. Figure 49 shows a plot of the fraction

((eventsq=−1 − eventsq=1)/sum) for 1997-98 data and Monte Carlo. Additionally,

this distribution has been fitted to the Standard Model function for AFB:

AFB = −2AbPe(1− 2W )
cos(θ)

1 + cos2(θ)
, (5.8)

where the Standard Model value of Ab = 0.935 and the 1997-98 average e− po-

larization of 0.73 have been used; W , which is in this case the probability to re-

construct the wrong direction for the b quark, is fit for, with a result of W =

0.197± .011(0.195± .005) for data (Monte Carlo). Both the plot and the fit show
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Figure 47 : The calculated pT -corrected mass for hadronic events. Dots in-
dicate data; the solid line indicates all-flavor SLD Monte Carlo.
b events are the dark-shaded histogram, while the white is udsc
background.
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Figure 48: The distribution of reconstructed secondary vertex charge.
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agreement for data and Monte Carlo, and enhance the confidence in the Monte

Carlo charge reconstruction modelling.

Figure 49 : AFB plotted using the charge of the secondary vertex as the b
quark tag for charged events which also have a kaon tag. Dots are
data, while the solid line is Monte Carlo.

5.3 The SLD Initial State Tag (IST)

Once we have selected bb̄ events, it is necessary to tag the flavor of the initial

state b quark for a given hemisphere. SLD has a number of different methods to

do this, which are then combined into a powerful initial state tag.
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5.3.1 The Polarized Forward-Backward Asymmetry Tag

The polarization IST exploits the large polarized forward-backward asymmetry

of the b quark. The differential cross section for the process e+e− → Z0 → bb̄ can

be written as:

dσb(Pe)

dz
∝ (1−AePe)(1 + z2) + 2Ab(Ae − Pe)z ≡ σb(z) (5.9)

where z = cos θ, θ is the angle between the incident electron direction and the

final state b, and Pe is the incident electron polarization. (Pe is positive for right-

handed polarization and negative for left-handed polarization.) In the Standard

Model, Ae and Ab are determined from the vector and axial coupling constants of

the fermion to the Z0; they express the degree of parity violation in the coupling

between the Z0 and the fermions. This parity violation results in an asymmetry

in the produced fermion direction. For negative polarization, the b quark is more

often emitted in the positive (e− beam) direction, and b̄ in the backward direction.

The forward-backward asymmetry can be formed using the differential cross-section

from above:

Ab
FB(z, Pe) =

σb(z)− σb(−z)
σb(z) + σb(−z) = 2Ab

Ae − Pe

1− AePe

z

1 + z2
. (5.10)

The asymmetry is sensitive to space inversion, and that sensitivity is stronger for

left-handed electrons.
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The event thrust axis is used to estimate the initial direction of the bb̄ pair. This

thrust axis is signed to point in the direction of the momentum of the reconstructed

secondary B vertex in the hemisphere of interest. The probability the initial state

quark was a b is therefore:

P pol
b =

1

2
(1 + Ab

FB). (5.11)

The calculation uses the Standard Model values of Ab = 0.935 and Ae = 0.15.

Figure 50 shows the distribution of P pol
b for both data and Monte Carlo for the

events in this analysis. A hemisphere with probability of greater (less) than 0.5 is

tagged as a b (b̄). The polarization IST is nearly 100% efficient, and has a purity

of 70% for the events selected for this analysis. It is completely uncorrelated with

any of the other ISTs described below.

5.3.2 The Jet Charge Tag

The jet charge technique exploits the fact that in a Z0 → bb̄ event, the two

quarks are of opposite charge and emerge from the IP back to back, usually form-

ing a jet in each hemisphere of the detector. The B decay products reflect this

charge and can be cleanly separated from fragmentation tracks due to their higher

momentum. The momentum-weighted jet charge is defined as:

QJet =
∑

qi|~pi · T̂ |κ, (5.12)
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Figure 50 : The initial state b probability using only the electron polarization.
Dots indicate data; the solid line indicates all-flavor Monte Carlo.
The b quark Monte Carlo is the right-leaning hatched histogram,
while the b̄ is the left-leaning. The hatched histograms show the
clear separation of b from b̄.

where the sum is over all of the tracks with charge qi and momentum ~pi in the

opposite hemisphere meeting the quality cuts in Table 8. T̂ is the thrust axis of

the event and κ = 0.5, which is determined from the Monte Carlo to maximize

the separation between b and b̄. Although this method is called “jet” charge, it

would more accurately be called hemisphere charge: QJet is determined for each

hemisphere, using the thrust axis (instead of using the jet), and the tag is taken

from the hemisphere opposite that of analysis interest. The opposite hemisphere is

used so there is no correlation between the final state and initial state tag.
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Table 8: Qjet Track Quality selection cuts

p < 50 GeV/c
p⊥ > 0.15 GeV/c
2-dimensional impact parameter with respect to the IP less than 2 cm
Distance between the IP and distance of closest approach to the beam axis less

than 10 cm| cos θtrack| < 0.87

After calculating the jet charge, the probability that the tagged hemisphere

contains an initial b quark can be approximated by:

P JetQ
b =

1

(1 + eα(Qjet−δ)+β(Qjet−δ)3)
(5.13)

where α = −0.328, β = 0.0014, and δ = 0.068, determined from Monte Carlo.

The parameter δ is an offset to account for an excess of reconstructed positive

tracks; these tracks result not from the b decay, but from interactions with detector

material which tend to produce more positive tracks than negative ones. Figure 51

shows the distribution of P JetQ
b for both data and Monte Carlo for the analysis

events. As with the polarization, a probability of greater (less) than 0.5 is tagged

as a b (b̄). The jet charge IST is nearly 100% efficient for this analysis, and has a

purity of 66% as a stand-alone IST.
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Figure 51 : The initial state b probability using only the quantity of jet
charge. Dots indicate data; the solid line indicates all-flavor Monte
Carlo. The b quark Monte Carlo is the right-leaning hatched his-
togram, while the b̄ is the left-leaning. The hatched histograms
demonstrate the separation of b from b̄.

5.3.3 Other Initial State Tags

SLD uses four other event quantities to enhance the polarization and jet charge

initial state tags. These quantities have high purities, but relatively low efficien-

cies, as they all require a topological vertex to be reconstructed in the hemisphere

opposite that of analysis interest.

The vertex charge IST uses the charge of the reconstructed secondary vertex

in the hemisphere opposite the hemisphere of interest. As noted in the jet charge

section, the b and b̄ quarks are produced in essentially opposite directions; thus, if a

positively charged vertex is produced in the opposite hemisphere, it can be assumed

to be a B+ meson, containing a b̄ quark, and the analysis hemisphere can be tagged
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as a b quark. Conversely, a negative vertex in the opposite hemisphere tags a b̄ in

the hemisphere of interest. As this tag purity is dependent on the pT -added mass

of the vertex, it is parameterized as a fourth order polynomial with respect to MpT
,

separately for |Qvtx| = 1 and |Qvtx| > 1.

The kaon charge IST works exactly like the final state tag for this analysis,

except it is applied to the opposite hemisphere, and then that hemisphere is as-

sumed to have the opposite flavor b quark of the analysis hemisphere. By applying

it to the opposite hemisphere, it remains uncorrelated from the final state tag used

in this analysis. Kaon reconstruction has been described in detail in the previous

chapter; details of how a kaon is used to tag events will be described in detail in

the next section. A K+ (K−) in the opposite hemisphere tags an initial state b (b̄)

in the analysis hemisphere. If there are multiple kaons, their charges are summed

and that sum is used as the tag.

The high pT lepton tag works much the same way as the initial state kaon

tag, using a positive (negative) lepton in the opposite hemisphere to tag a b (b̄)

in the hemisphere of interest, and then the hemisphere of interest is assumed to

have the opposite flavor b quark of the analysis hemisphere. Leptons are required

to have pT > 2 GeV/c, where pT is the momentum transverse to the reconstructed

IP to vertex direction; for multiple leptons in a hemisphere, the lepton with the

highest pT is used. The purity of the tag increases as a function of lepton pT , and

is parameterized with a third order polynomial with respect to that quantity.
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The final tag is the charge dipole tag. This tag uses the cascade b→ c decay

topology to tag the b quark flavor. To calculate the dipole, one locates two well

separated topological vertices, with the one closer to the IP assumed to be the B

decay and the more distant one a D decay. The charge dipole is defined as

δq = sign(qD − qB) · lBD, (5.14)

where lBD is the distance between the reconstructed B and D vertices and qB

and qD their respective reconstructed charges. A positive (negative) charge dipole

indicates a b̄ (b) in the hemisphere of interest. The probability for an initial state b

in the analysis hemisphere is parameterized as a third order polynomial, separately

for Qvtx neutral and charged.

5.3.4 The Combined Tag

All of the initial state tags are combined into one “kitchen sink” tag, with cor-

rections applied to take into account the correlations amongst the various charged

ISTs. Figure 52 shows the distribution of P all
b for both data and Monte Carlo for

the analysis events. A probability of greater (less) than 0.5 is tagged as a b (b̄).

The tag is 76.3% pure and nearly 100% efficiency for this analysis, and the Figure

shows good agreement between data and Monte Carlo.
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Figure 52 : The SLD initial state b probability using all if the possible tag-
ging quantities. Dots indicate data; the solid line indicates all-
flavor Monte Carlo. The b quark Monte Carlo is the right-leaning
hatched histogram, while the b̄ is the left-leaning. The hatched
histograms demonstrate the clear separation of b from b̄.

5.3.5 Cross Checks on the Charged ISTs: Double tagged events and
AFB

Two independent cross-checks have been performed on the Charged ISTs: one

investigating the correlation between the ISTs in the two hemispheres of a single

event, and the other looking at the forward-backward asymmetry calculated in

a single hemisphere. For both checks, the usual analysis requirement that the

reconstructed vertex be neutral was dropped for the dual purposes of enhancing

statistics and checking that charge reconstruction was not a significant factor in

the analysis.
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As a check on the initial state tagging in data, the correlation between the

initial state flavor for events where both hemispheres have final state kaon tags has

been investigated. It is expected that the fraction of events where one hemisphere

is tagged with the opposite b flavor of the other hemisphere is approximately:

f = R2
qIST + (1− RqIST )2, (5.15)

where RqIST is the purity of the combined charged ISTs (that is, the combined

probability of all the ISTs excluding polarization. As the polarization tag is cor-

related for the two hemispheres, it has been excluded from this test.) Using this

formula, one can estimate from the data the analyzing power of the IST.

Figure 53 : The opposite-sign charged IST fraction for all double tagged
events. Dots are data, while the solid line is Monte Carlo.
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Figure 54 : The opposite-sign charged IST fraction for double tagged events
where one hemisphere has a charged reconstructed vertex and the
other a neutral one. Dots are data, while the solid line is Monte
Carlo.

Figure 55 : The opposite-sign charged IST fraction for double tagged events
where both hemispheres have a charged reconstructed secondary
vertex. Dots are data, while the solid line is Monte Carlo.
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Figure 56 : The opposite-sign charged IST fraction for double tagged events
where both hemispheres have a neutral reconstructed secondary
vertex. Dots are data, while the solid line is Monte Carlo.

The distribution of “opposite-tag” double tags with respect to cos(θ), where

θ is the angle between the incident electron and the thrust axis, can be seen in

Figures 53 - 56. Table 9 shows the integrated fraction for each distribution for data

and Monte Carlo. The sample where both hemispheres are charged has a slightly

greater purity due to the availability of the vertex charge IST, which is not usable

when the reconstructed vertex in the opposite hemisphere is neutral. The results

are in good agreement between data and Monte Carlo, thus giving confidence to

the results of the initial state tagging parameterizations in the Monte Carlo. The

extrapolated correct tag probability for the overall possible sample is 68 % (71 %)

for data (Monte Carlo). It should be noted that these results slightly over-estimate

the purity of the charged tags, as the SLD code does not take all of the correlations
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between the tags into account for this quantity, which it does for the Combined

Initital State Tag described in the previous section.

Table 9: The Integrated Charged IST Double-tag Fraction

Type of Event Monte Carlo Data
Both reconstructed vertices neutral 0.565± 0.013 0.517± 0.031
Both reconstructed vertices charged 0.616± 0.010 0.633± 0.021

Mixed reconstructed vertices 0.583± 0.008 0.542± 0.020
All possible events 0.590± 0.006 0.567± 0.012

A second check on the charged ISTs is to calculate AFB using the charged IST

to calculate the asymmetry. Figures 57 - 59 show plots of the fraction ((eventsbtag−

eventsb̄tag)/sum) for 1997-98 data and Monte Carlo. Additionally, these distribu-

tions have been fitted to the Standard Model function for AFB, given in equa-

tion 5.8, where the Standard Model value of Ab = 0.935 and the 1997-98 average

SLD e− polarization of 0.73 have been used. The fit result is W , the misidentifi-

cation rate of the tag; the results for both data and Monte Carlo can be seen in

Table 10. Both the plots and t he fits show agreement for data and Monte Carlo,

and enhance the confidence in the SLD Initial State Tag.

Table 10: Results of Charged IST AFB Fit to Misidentification Rates

Type of Event Monte Carlo Data
Neutral Secondary Vertex 0.351± 0.0025 0.377± 0.0064
Charged Secondary Vertex 0.355± 0.0030 0.368± 0.0054
All Reconstructed Vertices 0.344± 0.0004 0.358± 0.0008
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Figure 57 : AFB plotted using the charged IST for all events with a kaon tag.
Dots are data, while the solid line is Monte Carlo.

Figure 58 : AFB plotted using the charged IST for charged vertices with a
kaon tag. Dots are data, while the solid line is Monte Carlo.
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Figure 59 : AFB plotted using the charged IST for neutral vertices with a
kaon tag. Dots are data, while the solid line is Monte Carlo.

5.4 Kaon Tagging

This analysis uses charged kaons to tag the final state b quark flavor. SLD is

fortunate to have excellent charged particle identification using the CRID subsys-

tem; the previous chapter has gone into the CRID and kaon identification in great

detail. This section will discuss the details of how we tag using the kaons, and the

numerous checks we have done to ensure the parameterizations of the kaons in the

likelihood fit (described in the next chapter) are well-modelled for the data in the

SLD Monte Carlo. These checks are particularly important as the kaon right sign

fractions (the fractions of hemispheres for which the B flavor tag are correct) are

the least well-measured input parameters for this analysis; therefore, we have used

three completely independent methods of looking at the agreement of the kaon tag
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between data and Monte Carlo. For all of these methods, we have waived the anal-

ysis requirement that the secondary vertex be neutral; this both increases statistics

and allows a check on the charge resolution between data and Monte Carlo.

5.4.1 Principles of Kaon-Tagging

The Kaon Final State Tag (FST) exploits the dominant b→ c→ s decay chain

of the B meson. This chain results in a correlation between the charge of the b

quark and the charge of the decay kaon. Wrong sign K’s can be produced via the

popping of ss̄ pairs from the vacuum or the decay of charm mesons produced by the

virtual W± boson by the transition b→ cc̄s with c̄→ s̄. The Bd and Bu right sign

fractions for kaons have been measured to be 82±5 % and 85±5 %, respectively,

thus making them tags [64] to discriminate between the B and B̄ decays. The Bs

and Λb right sign fractions are not so well known.

Kaons used in the tag are required to be attached to either a secondary or

tertiary vertex in the hemisphere of interest and must be well-identified in the

CRID, as described in the previous chapter. Tertiary kaons are used preferentially,

and if multiple kaons are attached to the same vertex, their charges are summed

and that sum is used as the tag. A position total kaon charge tags a B meson and

a negative one tags a B̄. The efficiency and purity of the tag varies by B type;

overall efficiencies will be discussed in Section 6.1.3, as they are parameterized

with respect to proper time and implemented in an integral table; however, the

fraction of neutral events with kaons (kaon efficiency) and the right sign fractions,

parameterized from Monte Carlo, can be seen in Figure 11.
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Table 11: Monte Carlo Kaon Efficiencies and Right Sign Fractions

B Type Kaon Efficiency Right Sign Fraction (Rtype)
Bu 0.247 0.776
Bd 0.272 0.797
Bs 0.263 0.497

b-baryons 0.215 0.614
udsc N/A 0.50

5.4.2 Double-Tagged Events Using Kaons

As a cross-check on the final state tagging in data, the correlation between

the final state flavor for events where both hemispheres have final state kaon tags

has been investigated. Naively, it is expected that the fraction of events where

one hemisphere is tagged with the opposite b flavor of the other hemisphere is

approximately:

f = R2
kFST + (1− RkFST )2, (5.16)

where RkFST is the purity of the kaon FST. However, this does not take into account

that different B types have different kaon analyzing powers, nor does it take into

account Bd and Bs mixing. Even so, investigating this fraction can give insight

into whether the Monte Carlo models the data well.

The fraction of “opposite-tag” double tags with respect to cos(θ), where θ is the

angle between the incident electron and the thrust axis, can be seen in Figures 60 -

63. Table 12 shows the integrated fraction for each distribution for data and Monte

Carlo. The charged sample shows a larger fraction of opposite tags due to there
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Figure 60 : The opposite-sign kaon FST fraction for all double tagged events.
Dots are data, while the solid line is Monte Carlo.

Figure 61 : The opposite-sign kaon FST fraction for double tagged events
where one hemisphere has a charged reconstructed vertex and the
other a neutral one. Dots are data, while the solid line is Monte
Carlo.
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Figure 62 : The opposite-sign kaon FST fraction for double tagged events
where both hemispheres have a charged reconstructed secondary
vertex. Dots are data, while the solid line is Monte Carlo.

Figure 63 : The opposite-sign kaon FST fraction for double tagged events
where both hemispheres have a neutral reconstructed secondary
vertex. Dots are data, while the solid line is Monte Carlo.
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being significantly fewer Bd and Bs decays, which dilute the tag due to mixing.

The data and Monte Carlo show good agreement and lend confidence to the kaon

tagging method.

Table 12: The Integrated Kaon FST Double-tag Fraction

Type of Event Monte Carlo Data
Both reconstructed vertices neutral 0.555± 0.013 0.521± 0.031
Both reconstructed vertices charged 0.651± 0.010 0.612± 0.021

Mixed reconstructed vertices 0.586± 0.008 0.584± 0.017
All possible events 0.601± 0.006 0.582± 0.012

5.4.3 Kaon and Lepton Tag Correlations

A second check on the Kaon FST is to compare the final state tag generated by

the kaon method to one generated by a lepton attached to the secondary vertex.

The high-pT lepton IST is discussed in Section 5.3.3. The use of the lepton here is

similiar; it is particularly useful that the lepton tags the final state of the B in the

hemisphere of interest, and they have a high right sign fraction across most of the

momentum spectrum, as seen in Figure 64. As the lepton tags the final state, this

provides a check on the kaon tagging independent of mixing, and is the only check

we have that does so.

The agreement fraction between the lepton and kaon FSTs is shown in Fig-

ures 65- 67. Although the plots show a bin from 0-0.8 GeV/c, these events are not

included in the integrated fractions given in Table 13 due to the low lepton right

sign fraction in this bin. The data and Monte Carlo show good agreement for the

neutral, charged, and combined reconstructed vertices.
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Figure 64 : The lepton right sign tag fraction with respect to lepton trans-
verse momentum to the reconstructed B vertexas determined from
the Monte Carlo. The high right sign fraction across the spectrum
makes the leptons ideal for checking the kaon FST.

Table 13: Kaon-Lepton Integrated Agreement Fractions

Type of Event Monte Carlo Data
Neutral Secondary Vertex 0.779± 0.009 0.752± 0.022
Charged Secondary Vertex 0.871± 0.006 0.877± 0.014
All Reconstructed Vertices 0.830± 0.005 0.824± 0.013

5.4.4 AFB Using the Final State Kaon Tag

A third check on the Kaon FST is to calculate AFB using the kaon charge tag to

calculate the asymmetry. Figures 68 - 70 show plots of the fraction ((eventsbtag −

eventsb̄tag)/sum), where eventsb(b̄)tag is the number of events tagged as having a

b(b̄) quark in the final state, for 1997-98 data and Monte Carlo. Additionally, these
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Figure 65 : The kaon-lepton agreement fraction for all events. Dots are data,
while the solid line is Monte Carlo.

Figure 66 : The kaon-lepton agreement fraction for charged vertices. Dots
are data, while the solid line is Monte Carlo.
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Figure 67 : The kaon-lepton agreement fraction for neutral vertices. Dots are
data, while the solid line is Monte Carlo.

distributions have been fitted to the Standard Model function for AFB, given in

equation 5.8, where once again the Standard Model value of Ab = 0.935 and the

1997-98 average SLD e− polarization of 0.73 have been used. W , the misidenti-

fication rate, is fit for; the results for both data and Monte Carlo can be seen in

Table 14; errors given are fit statistical errors only. One sees evidence for the dilu-

tion from mixing in the neutral sample in the large difference between the mis-tag

rates for the neutral and charged only samples. Both the plots and the fits show

good agreement for data and Monte Carlo, and enhance the confidence in the kaon

Final State Tag.
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Figure 68 : AFB plotted using the kaon FST for all events. Dots are data,
while the solid line is Monte Carlo.

Figure 69 : AFB plotted using the kaon FST for charged vertices. Dots are
data, while the solid line is Monte Carlo.
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Figure 70 : AFB plotted using the kaon FST for neutral vertices. Dots are
data, while the solid line is Monte Carlo.

Table 14: Kaon FST AFB Fit Wrong Tag Fractions

Type of Event Monte Carlo Data
Neutral Secondary Vertex 0.362± 0.006 0.378± 0.013
Charged Secondary Vertex 0.238± 0.006 0.265± 0.012
All Reconstructed Vertices 0.290± 0.004 0.313± 0.009

5.5 The Proper Time Calculation

As noted in Chapter 2, one must know the proper time of the B decay to study

time-dependent mixing. In principle, the proper time calculation is quite simple:

t =
l

cb
, (5.17)
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where l is the decay length, c is the speed of light, and b is the boost. The boost of

a B meson with mass mB, total energy EB, and momentum ptotal respectively is:

b =
ptotal

mB
=

√
(
EB

mB
)2 − 1. (5.18)

The error on the proper time measurement is therefore:

σ2
t =

(σl

cb

)2

+

(
tσb

b

)2

, (5.19)

where σl(b) is the resolution of the decay length (boost) measurement. The boost

and decay length reconstruction methods, resolutions, and comparisons of Monte

Carlo results with data are described in the next sections.

5.5.1 Boost Reconstruction and Resolution

SLD utilizes two different methods to achieve the most accurate possible recon-

struction of the boost. Both methods of reconstruction focus on reconstructing the

energy of the B meson in order to calculate the boost. The two boost results are

then combined, taking into account the correlations between the methods, to give

a single boost result for the reconstructed B vertex.
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The Mass Method

The first method looks to calculate the energy of the B by using the known

invariant mass of the B vertex. The energy of the B, EB is:

EB = Ech + Eν + Eneut. (5.20)

Ech is the total energy of all charged tracks attached to the secondary vertex (as-

suming they are all pions), and Eneut is the energy taken away by neutral particles

which are seen in the calorimeter but are not tracked, and Eν is the unseen energy

in the event due to neutrinos.

To determine Eν , the total energy in the jet containing the B meson, Ejet,

must be calculated [65]. At the Z0 resonance, the total energy in the event is mZ .

For events with two jets, it is assumed the bb̄ pair is produced back to back, and

therefore we simply have Ejet = mZ/2. For a three jet event, the jet direction can

be used to estimate the energy in each jet by using the conservation of energy and

momentum. The energy is therefore:

E1,2,3
jet = mZ

sin θ23,13,12

sin θ12 + sin θ13 + sin θ23
, (5.21)

where θij is the angle between jets i and j [65]. For the small fraction of events

with four jets, the event is divided into two hemispheres and treated as a two jet

event. The unseen energy in the event is therefore Eν = Ejet − Ech − Ecal, where
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Ecal is all of the energy which is measured in the calorimeter for the hemisphere of

interest but is not associated with a charged track.

The final task in determining EB via the mass method is to determine which

energy clusters in the calorimeter are associated with B decay products but are not

associated with one of the charged tracks. To do this, each unattached cluster is

added to the secondary vertex, while keeping the direction of the vertex momentum

unchanged, starting with the cluster which is closest to the secondary vertex flight

direction. The invariant mass of the vertex is then recalculated. If the mass remains

below 5.3 GeV/c2, the “test” cluster is considered associated with the B. If it is

above 5.3 GeV/c2, the “test” cluster is removed from the vertex and is considered

unassociated. This process continues until all of the clusters in the hemisphere have

been tested.

The Maximum Missing Mass Method

This method seeks to determine the Eν and Eneut by determining the miss-

ing invariant mass, M0, longitudinal and transverse momentum, p2
0l and p2

0t, to

reconstuct the neutral energy:

E0 = Eν + Eneut = M2
0 + p2

0t + p2
0l. (5.22)

As SLD has excellent resolution for transverse momentum, the challenge is to de-

termine the other two elements [8]. One kinematic constraint on the missing quan-
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tities can be obtained by requiring the B decay vertex mass to be equal to the B

hadron mass, M2
B = E2

B − p2
B, where the total momentum of the secondary vertex

is pB = pchl + p0l, and pchl is the longitudinal momentum of the vertex-associated

charged tracks (i.e., the component along the vertex flight direction). This reduces

the problem of determining the longitudinal momentum and missing invariant mass

to simply determining the missing invariant mass.

It is possible to further constrain the missing invariant mass to

√
M2

ch + p2
T +

√
M2

0 + p2
T ≤MB. (5.23)

where the inequality is valid in the limit where both p0l and pchl vanish in the B

rest frame. This effectively sets an upper bound on the missing mass, with the

lower bound being 0, and the upper bound is

M2
0max = M2

B − 2MB

√
M2

ch + p2
T +M2

ch. (5.24)

It has been shown that for small M2
0max, one can approximate M2

0 to be simply

equal to M2
0max for M2

0max ≥ 0, and to be 0 for M2
0max ≤ 0 [8]. It is then possible

to calculate p0l using:

p0l =
MB −Mch⊥

Mch⊥
pchl, (5.25)

where M2
ch⊥ = M2

ch + p2
T . It is now possible to calculate E0, and hence EB.
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Reconstruction Results and Resolutions

Figure 71 : The reconstructed secondary vertex boost for analysis events.
Dots indicate data; the solid line indicates the Monte Carlo.

The distribution of reconstructed boost measurements for data and Monte Carlo

analysis events can be seen in Figure 71. Rather than fit for the boost resolution,

σb, we instead fit for the relative boost resolution, σb/b, and the distributions of this

quantity, separated by B type, can be seen in Figure 72. The distributions of the

relative boost residuals, where the relative residual=
breconstructed−bgenerated

bgenerated
is fit with

the sum of two gaussian functions, with a constraint that 55% of the total area is in

the core gaussian and 45% of the area is in the tail gaussian. The fitted resolutions

are shown in Table 15. One notes that the resolutions of the Bu relative boost is

worse than that of the other B’s due to the neutral charge requirement discussed

earlier; any Bu that remains in the analysis sample has been misreconstructed, as

the Bu is a charged hadron. This results in a degraded reconstruction of the boost.
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Figure 72 : Distributions of the relative boost residuals by B type. The fit is
a double gaussian with a 55% core fraction.
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Table 15: Fitted Relative Boost Resolutions by B Type.

B Type Core Resolution (%) Tail Resolution (%)
Bu 10.2 26.8
Bd 6.80 20.6
Bs 7.34 23.0

b-baryons 8.87 22.4

5.5.2 Decay Length Reconstruction and Resolution

While it is not straightforward to measure decay length, it is straighforward to

calculate it:

l =
3∑

i=1

(xi − x0
i ), (5.26)

where xi denotes the coordinates of the decay vertex and x0
i denotes those of the

origin of the particle. Thus, one must determine both the origin, which at SLD

can be assumed to be the interaction point (IP) and the decay point of the B.

Fortunately, the extremely small IP and high precision of the Vertex Detector

(VXD3) allow for good determination of the decay length of a secondary vertex.

Interaction Point Determination

The IP determination is a two step process: one step to determine the location

of the IP in the xy plane, and another to determine the z-coordinate of the IP.

For the x−y coordinate, we first determine a single event IP position by extrap-

olating all charged tracks in a hadronic event to the center of the beam pipe, and

fitting them to a common vertex. However, due to the extremely small and stable
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SLC interaction region, it is possible to make a more accurate determination of the

IP by averaging over a set of 30 sequential hadronic events. A seed IP position

is chosen and all tracks with VXD hits which pass within 3σ of the seed are fit

to a common vertex. This vertex is taken as the new seed and the fit is iterated

until it converges and the χ2/dof < 1.3. This method leads to an IP precision for

a single event of σxy ' 3.5 µm for VXD3 data. It has been cross-checked using

the xy impact parameters from tracks in Z0 → µ+µ− events, shown in Figure 73.

The two muon tracks were extrapolated to the IP and their extrapolation errors

subtracted, resulting in a fitted width of 3.5± 2 µm.
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Figure 73 : xy impact parameter of tracks in µ+µ− events. A resolution of
' 3.5 µm is obtained using VXD3 data after track extrapolation
corrections.

The longitudinal position cannot be determined as accurately and must be done

on an event-by-event basis. For each track with a VXD hit, the point of closest
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approach to the transverse IP is determined. Tracks which pass within 3σ of the

IP and have an xy impact parameter of less than 500 µm are then selected, and

the median of the zPOCA coordinate distributions is used as the z position of the

IP. The resolution on the z position of the IP is about 17 µm for bb̄ events.

Secondary Vertex Reconstruction

The topological vertexing method described in Section 5.2.1 is used to recon-

struct all of the vertices in a hemisphere of interest. If only primary (IP) and

secondary (presumed to be the B) vertices are present, the secondary vertex given

by this method is used as the decay vertex. If a tertiary vertex is also found,

a second iteration of vertexing using a Kalman Filter method [66] is performed.

This refines the knowledge of the position of the secondary vertex by assuming the

tertiary vertex is from the decay of a daughter particle of the secondary vertex.

Thus, one can create a “track” by drawing a vector from the secondary to tertiary

vertex, giving that track the reconstructed momentum of the tertiary vertex, and

then refitting the secondary vertex with that “track” included. This allows for sig-

nificant improvement in the resolution of the secondary vertex, especially for low

track multiplicity vertices.

Decay Length Resolution

The distribution of reconstructed decay length for data and Monte Carlo for

the analysis events can be seen in Figure 74. The two distributions are in good
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agreement, and lends confidence to parameterizing the decay length resolutions

from Monte Carlo. The decay length residual (= lreconstructed− lgenerated), separated

by B type, can be seen in Figure 75. The decay length residual distributions are

fit with the sum of two gaussian functions, with a constraint of having 67% of the

area in the core gaussian and 33% of the area in the tail. The fitted resolutions are

shown in Table 16. One notes that the resolutions of the Bu decay length is worse

than that of the other B’s due to the neutral charge requirement discussed earlier;

any Bu that remains in the analysis sample has been misreconstructed, as the Bu

is a charged hadron.

Figure 74 : The reconstructed secondary vertex decay length for analysis
events. Dots indicate data; the solid line indicates SLD Monte
Carlo.
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Figure 75 : Distributions of the reconstructed decay length residuals by B
type. The fit is a double gaussian with 67% in the core.
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Table 16: Fitted Decay Length Reslutions by B Type

B Type Core Resolution (µm) Tail Resolution (µm)
Bu 90.0 533.3
Bd 79.9 426.0
Bs 85.9 394.4

b-baryons 68.6 342.4

Proper Time

Combining the computed decay length and boost, it is possible to calculate the

proper time as described in the introduction to this section. The distribution of

reconstructed proper time for data and Monte Carlo for events in the analysis can

be seen in Figure 76, and there is good agreement between the two.

Figure 76 : The reconstructed secondary vertex proper time for analysis
events. Dots indicate data; the solid line indicates SLD Monte
Carlo.
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C H A P T E R 6

LIKELIHOOD FITTING AND RESULTS

This chapter covers the heart of this dissertation: it describes the analysis used

to measure ∆md, the Bd oscillation frequency. We begin with an in-depth discussion

of the likelihood fit function and the fitting process. The results of the fit for both

data and Monte Carlo are presented, as are a number of cross-checks to the fit

results. We conclude with a discussion of potential systematic errors.

6.1 The Likelihood Function

In Chapter 2, we saw that, theoretically, the mixing probability for a Bd mea-

sured at time t after its creation is quite straightforward:

Pmix =
Γd

2
e−Γdt(1− cos(∆mdt)) (6.1)

where Γd = 1/τd, τd is the Bd lifetime, and Punmix = 1− Pmix. In a real detector,

of course, life is not so simple:
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• Bd mesons are produced along with other b hadrons (Bu, Bs, and b-baryons),

which have similiar topological and kinematical properties as the Bd mesons.

• The short lifetime of the B hadron makes difficult the task of identifying its

decay vertex and determing its time of decay.

• Detector effects, mostly due to the analysis requirement to have separated

vertices from the IP with some level of significance, can cause measurement

efficiences to vary with decay time.

• Finite resolutions that must be measured and included in the analysis.

• Both the initial and final state tags are correct less than 100% of the time.

To perform the Bd mixing analysis, we use an unbinned maximum log-likelihood

fit which provides us with the ability to write a straightforward function to measure

the mixing while explicitly accounting for the various detector and physics effects

mentioned above. It also allows us to use each event independently to get the most

information out of the SLD data.

The probability density function (pdf), Pmix, for a mixed event can be written

as the sum of five terms, one for each of the B types present at the Z0 resonance,

and one to describe the non-B background, which consists of udsc events:

Pmix = fBd
Pmix,Bd

+fBsPmix,Bs +fBuPmix,Bu +fb−baryonsPmix,b−baryons+fudscPmix,udsc

(6.2)
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where fx represents the fraction of events in the sample which is of the particular

B type (or the fraction of events which are background udsc events which fake a Bd

event). The condition that
∑
fx = 1 is imposed. These fractions are determined

in the SLD Monte Carlo, and can be seen in Table 17. All of the parameterizations

from Monte Carlo are treated as possible sources of systematic error later in the

analysis. Once the pdf has been defined, the likelihood function is a product of

individual event probabilities,
∏Nmix

i=1 P i
mix.

Table 17: Monte Carlo parameterizations used in the Likelihood Fit

B Type Right Sign Fraction (Rtype) Fraction (ftype)
Bu 0.776 0.146
Bd 0.797 0.607
Bs 0.497 0.170

b-baryons 0.614 0.067
udsc 0.50 0.012

In the following two subsections, we write the likelihood function in terms of true

proper time, t′. Reconstructed proper time relies on measuring the decay length

and boost, and has a finite resolution. The efficiency of the detector is a function

of both B type and proper time and these functional dependences are determined

from the SLD Monte Carlo, and will be described later. To accommodate all of the

possible detector effects, we parameterize all of the time elements of the fit, with

the exception of the background term, as an integral table which takes into account

the finite detector resolutions and time-dependent efficiencies for each B type. The

efficiency functions used in the integral table will be discussed in Section 6.1.3, and

the construction of the complete integral table will be discussed in Section 6.1.4.
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In this section, we will describe only the mixed likelihood, as the pdf for unmixed

events is simply Punmix = 1 − Pmix. An event is called “mixed” if the measured

final state quark is the anti-particle of the measured initial state quark. One sees

that due to mis-tagging, it is possible to have “mixed” Bu and b-baryon events,

even though these particles are not known to mix.

6.1.1 The Bd and Bs Terms

The Bd and Bs terms are similiar in nature, as both these hadrons are known to

mix. Taking into account the uncertainty in the initial and final state tags, these

terms are of the form:

P
Bd(s)

mix =
Γd(s)

2
e−Γd(s)t

′
(iRd(s) + (1− i)(1− Rd(s)))(1− cos(∆mdt)) + ((1− i)Rd(s) + i(1− Rd(s)))(

=
Γd(s)

2
e−Γd(s)t

′
(1− (1− 2Rd(s) − 2i+ 4iRd(s)) cos(∆md(s)t

′)),

where Rd(s) is the kaon right sign fraction for the Bd(s), determined as a single

value for each B type from the Monte Carlo (noted in Table 17), and i is the initial

state right sign probability on an event by event basis, given by the initial state

tag described in Section 5.3. The likelihood fit is used to determine both ∆md

and Rd. Although the frequency for Bs mixing is unmeasured, we use a value of

∆ms = 10 ps−1. This matches the SLD Monte Carlo, and due to the fact Rs ' 0.5,

it does not affect the analysis; we are fundamentally insensitive to Bs mixing. Even

so, we treat the uncertainty in ∆ms as a possible systematic error.
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We have compared the fraction of events tagged as mixed in SLD Monte Carlo

with that generated by the probability parameterization for Bd and Bs separately,

and the results can be seen in Figure 77. The fraction of events tagged as “mixed”

is simply the fraction of events which have a final state b tag which is the opposite

flavor of the initial state b tag as a function of reconstructed proper time. The Bd

fraction probability is generated using the fitted 2-D Minuit fit which is described

later in the chapter. The fraction probability describes the Monte Carlo fraction

well for both mixed B types and gives confidence that the parameterizations are

appropriate.

6.1.2 The Bu and b-baryon Terms

The b-baryon and Bu terms are similiar to one another, as b-baryons are not

known to mix, and Bu are charged and cannot mix. As noted earlier in this sec-

tion, all Bu and b-baryon events that are tagged as “mixed” must have either the

initial or final state tag incorrect. Using the subscript of “a” to label the b-baryon

parameterization, the terms used for these species in the likelihood function are of

the form:

P
Bu(a)

mix = Γu(a)(Ru(a)(1− i) + i(1−Ru(a)))e
−Γu(a)t

′
(6.5)

= Γu(a)(Ru(a) + i− 2iRu(a))e
−Γu(a)t

′
, (6.6)
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Figure 77 : Individual B mixed fractions. The Monte Carlo fractions of de-
cays tagged as “mixed” as a function of proper time for each sepa-
rate B type with the parameterized likelihood term. Monte Carlo
mixed fractions are represented by open circles while the line rep-
resents the fraction produced by the probabilities described in
Sections 6.1.1 and 6.1.2.
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where Ru(a) is the kaon right sign fraction for the Bu(a), determined as a single

value for each B type from the Monte Carlo (noted in Table 17), and i is the initial

state right sign probability on an event by event basis, given by the initial state

tag described in Section 5.3.

We have compared the fraction of events tagged as mixed in Monte Carlo with

the fraction generated by the probability parameterization for Bu and b-baryons

separately, and the results can be seen in Figure 77. The fraction probability de-

scribes the Monte Carlo fraction well for both unmixed B types and gives confidence

that the parameterizations are appropriate.

6.1.3 Selection Efficiency

The efficiency to select events for the analysis is dependent on two important

variables: first, the effects that our selection cuts have on the event pool, and

second, the ability of SLD to reconstruct a secondary vertex at a given proper

time. This must be taken into account in the fit; to do so, we use the Monte Carlo

to measure the event selection efficiency as a function of Monte Carlo true proper

time, t′ of decay, with a separate distribution for each B type. These distributions

are fit with a function of the form:

ε(t′) = p1
1− ep2t′

1 + ep2t′ + p3 + p4t
′ + p5t

′2 + p6t
′3, (6.7)

where the pi represent the variables determined by the fit.
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Bu

b-baryons

Bd

Bs

Figure 78 : Event selection efficiency vs Monte Carlo true proper time sepa-
rated by B type. Monte Carlo points are represented by crosses,
while the smooth curves represent the fit described in the text.
The x-axes are in units of ps.
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The efficiencies overlaid with the fitted functions can be seen in Figure 78. True

proper time is used because we will integrate over it in the integral table discussed

in the next section; four efficiency functions are used because the requirement of a

neutral secondary vertex greatly reduces the efficiency for accepting contaminating

Bu events, which are actually charged, and to obtain a more accurate description

of each of the neutral B hadrons. The function includes a sharp dropoff at low

proper time due to the inability to identify secondary vertices that are close to the

SLC interaction point.

To check how well the fitted efficiency functions describe the Monte Carlo they

are fitted to, we have compared the true proper time distribution of individual

B types to the function

f(t′) =
1

τ
e−

t′
τ ε(t′) (6.8)

where τ represents the particular B lifetime that the Monte Carlo is generated

with. These comparsions are shown in Figure 79.

6.1.4 The Integral Table for Parameterizing Time-related Quantities

We have written the physics parameterizations above in terms of true, not

reconstructed, proper time. Now we turn to transforming them into what we

measure: the reconstructed time of the decay. This parameterization takes into

account the efficiency functions discussed in the previous section, and the finite

decay length and boost resolutions discussed in Section 5.5.
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Bu Bd

Bs b-baryons

Figure 79 : The lifetime distribution predicted by the parameterized effi-
ciency functions compared to Monte Carlo true proper lifetimes
separated by B type. Monte Carlo points are represented by as-
terisks, while the smooth curves represent the modelled lifetime
distributions. The x-axes are in units of ps.
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In Section 5.5, we showed the double gaussian fits to the relative boost (Fig-

ure 72 and Table 15) and decay length (Figure 75 and Table 16) residuals, which

resulted in a total of four fitted resolutions: σcore
relboost, σ

tail
relboost, σ

core
length, and σtail

length.

In this section, for simplicity, we will refer to these as σ(L,B)α, where the L and

B subscripts refer to decay length and relative boost, respectively, and superscript

i, j = 1 for the core and 2 for the tail. By propagating errors, we can write the

resolution for the proper time measurement:

σi,j
t′ =

√√√√( σi
L

cγβ

)2

+

(
σj

B,absolutet
′

γβ

)2

(6.9)

=

√(
σi

L

cγβ

)2

+ (σj
Bt

′)2 (6.10)

where γβ is the reconstructed boost and t the reconstructed time. One notes that

as proper time increases, the resolution on the measurement becomes worse. We

also see that this results in four different components to σt, one resulting from each

possible combination of core and tail resolutions. With this, we can now construct

a gaussian resolution function for the reconstructed proper time:

G(t′, t) =

2∑
i=1

2∑
j=1

f i
Lf

j
B

1√
2πσij

t

e
− 1

2

(
(t′−t)

σ
ij
t

)2

(6.11)

where t′ is the true proper time, t the reconstructed time, and f i
L and f j

B are the

core and tail fractions of the decay length and boost residual fits. This function

reproduces the proper time residual distribution reasonably well; an overlay of
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the function with the residuals from the Monte Carlo event sample can be seen

in Figure 80, divided into six bins of true proper time. The solid histogram is

a representation of G(t′ = 0, t) from equation 6.11, and the points represent a

histogram for t − t′ (i.e. (Monte Carlo true- Monte Carlo reconstructed)) proper

time values.

The slight offset between the resolution function and the distribution of the

residuals is due to the fact there are slight biases in the proper time reconstruction,

which are not explicitly described by the resolution function. This will be addressed

in the study of systematic errors.

By summing over all of the possible core/tail combinations and integrating over

true proper time, we can now write Pmix in terms of reconstructed proper time t:

Pmix(t) =
∑

x

fx

∫ ∞

0

Pmix,x(t
′)εx(t′)Gx(t

′, t)dt′, (6.12)

where the x subscript represents the four types of B hadrons in the analysis, and

εx(t
′) are the efficiency functions described in the previous section. To complete

the parameterization, we ensure normalization of the function by dividing by the

normalization integral, In
x :

In
x =

∫ 10ps

0

[Punmix,x(t) + Pmix,x(t)]dt. (6.13)

For a small quantity of events, it is possible to perform these calculations during

analysis on an event by event basis. However, due to the relatively large quantity of
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Figure 80 : The proper time residuals (dots) shown with the resolution func-
tion (smooth curve) described in the text, showing all b hadrons
combined. The x-axis is in units of ps.
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events in this analysis, we instead construct a table which contains the values of the

integrals over the necessary range in reconstructed proper time. To provide a check

on the construction, we can calculate a “lifetime” distribution of the proper time

of decay from the integral table, and compare it to the distribution of the values

in both data and Monte Carlo. To obtain the “lifetime” in the integral table, we

take a proper time t′ and the four typical resolution measurements of the time,

σαβ(t′), extract the value of the integral tables at those points, and sum over α and

β. These distributions are shown in Figure 81, and we see reasonable agreement

between data and the integral table and Monte Carlo and the integral table.

Monte Carlo Data 

time (ps) time (ps)

Figure 81 : Proper time distributions from the integral table (the histogram
in each plot) shown with Monte Carlo generated events (left
points) and data events (right points).
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6.1.5 Background Parameterization

Due to the excellent B event selection described in Section 5.2, background

events, consisting of light flavor udsc decays, are less than 1.5% of the selected

analysis sample. The background events term in the mixed pdf is:

Pmix,udsc = (1− Rudsc)Pudsc(t). (6.14)

As background events are equally likely to be tagged as mixed as they are to

be tagged as unmixed, we use Rudsc = 0.5, as determined from the Monte Carlo

simulation. Instead of using a complex integral table, we parameterize the udsc

distribution in reconstructed proper time, using a gaussian function with power law

tails:

Fudsc(t) =

p1e
− 1

2

(
t−p2

p3

)2

l1 ≤ t ≤ l2

p1
e
p5 ln( p3p5

p4 )e−
1
2 p2

4

e
p5 ln(p2+

p3p5
p4

−p3p4−t)
t ≤ l1

p1
e
p7 ln( p3p7

p6
)e−

1
2 p2

6

e
p5 ln( p3p7

p6
−p3p6−p2+t)

t ≥ l2

(6.15)

where l1 = p2 − p3p4, l2 = p2 + p3p6 and pi represent the values of the fit. The

function can be seen overlaid on the Monte Carlo distribution in Figure 82. While

the function is quite complicated, it has the benefits of being smooth and is in-

herently normalized. The normalization constant is fit as p1, and therefore the

probability which goes into the likelihood function is simply Pudsc(t) = Fudsc(t)/p1.

Additionally, by parameterizing in reconstructed proper time, we take into account

detector resolution and efficiency.
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Figure 82 : The Monte Carlo udsc background distribution as a function of
reconstructed proper time. Monte Carlo is represented by the
histogram, while the smooth curve shows the fit described in the
text.

6.1.6 The Complete Mixed PDF For A Single Event

To summarize this section, we present the complete probability distribution

function for a single event which has been tagged as mixed:

P i
mix(t) = fudscFudsc(t)

+ fBd
Γd

∫∞
0

1
2
e−Γdt′(1− (1− 2Rd − 2i+ 4iRd) cos(∆mdt

′))εBd
(t′)GBd

(t′, t)dt′∫ 10ps

0
[Punmix,Bd

(t) + Pmix,Bd
(t)]dt

+ fBsΓs

∫∞
0

1
2
e−Γst′(1− (1− 2Rs − 2i+ 4iRs) cos(∆mst

′))εBs(t
′)GBs(t

′, t)dt′∫ 10ps

0
[Punmix,Bs(t) + Pmix,Bs(t)]dt

+ fBuΓu

∫∞
0

(Ru + i− 2iRu)e
−Γut′εBu(t′)GBu(t′, t)dt′∫ 10ps

0
[Punmix,Bu(t) + Pmix,Bu(t)]dt

+ fBaΓa

∫∞
0

(Ra + i− 2iRa)e
−Γat′εBa(t

′)GBa(t
′, t)dt′∫ 10ps

0
[Punmix,Ba(t) + Pmix,Ba(t)]dt

(6.16)

155



6.2 Results of the Fit

We use the likelihood function described previously, with constants determined

either from world average measurements [3] or from the Monte Carlo, to fit to

∆md and, in the two-dimensional case, to Rd as well. There are three types of fits

which have been implemented; the main mode of analysis is the two-dimensional

MINUIT [67] fit, which returns values for both ∆md and Rd. To ensure the integrity

of the fit, two other types of fits have been performed: a one-dimensional fit in

MINUIT to ∆md, and a “scan” fit, which calculates the value of the log-likelihood

at 80 different values of ∆md from 0.40 to 0.60 ps−1. These two one-dimensional

fits use the Monte Carlo value for Rd, and are expected to agree exactly. They are

reported used as cross-checks on the two-dimensional fit.

6.2.1 Monte Carlo

After all selection requirements are applied, there remains a total of 35796 re-

constructed secondary vertices. The three ∆md fits were performed on this Monte

Carlo analysis set, and the results, with statistical errors only, can be seen in Ta-

ble 18. The generator level Monte Carlo values for ∆md and Rd are given in the

Table for comparison. We see good agreement between all four values for ∆md and

the two values for the RSF, giving confidence that the parameterization of the fit

adequately describes the Monte Carlo.

As a further check on the parameterization, we have performed a fit using all

three methods to only the Bd portion of the sample using only the Bd terms in
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Table 18: Results of the Likelihood Fit in Monte Carlo

Fit Description ∆md (ps−1) Rd

1-D Scan 0.465± 0.015 N/A
1-D Minuit 0.464± 0.015 N/A
2-D Minuit 0.462± 0.015 0.790± .010

MC Generator 0.484 0.797

the likelihood. The results, with statistical errors only, can be seen in Table 19.

The generator level Monte Carlo values for ∆md and Rd are given in the Table for

comparison. We see excellent agreement between all four values for ∆md and the

two values for the RSF, giving additional confidence that the parameterization of

the fit describes the Monte Carlo well.

Table 19 : Results of the Likelihood Fit in Monte Carlo for an Exclusively
Bd Sample.

Fit Description ∆md (ps−1) Rd

1-D Scan 0.480± 0.010 N/A
1-D Minuit 0.480± 0.011 N/A
2-D Minuit 0.481± 0.011 0.797± .007

MC Generator 0.484 0.797

6.2.2 Data

After all selection requirements are applied, there remains a total of 7844 re-

constructed secondary vertices for analysis purposes. The three ∆md fits were

performed on this data analysis set, and the results, with statistical errors only,

can be seen in Table 20. The data vs Monte Carlo fraction of events tagged as

“mixed” can be seen in Figure 83; the Monte Carlo fraction is shown with the
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Monte Carlo generated value of ∆md = 0.484ps−1. The plot shows reasonable

agreement between data and Monte Carlo. A plot of the fitted two-dimensional

likelihood function with the data fraction of events tagged as “mixed” can be seen

in Figure 84. The fit is in good agreement with the data with a χ2 = 18.9 for

18 degrees of freedom.

We see excellent agreement between the three values for ∆md and note that

the statistical error has scaled appropriately from the larger Monte Carlo analysis

set to the fata set. Systematic errors will be discussed in the final section of this

chapter.

Table 20: Results of the Likelihood Fit for the Selected Data Sample

Fit Description ∆md (ps−1) Rd

1-D Scan 0.505± 0.030 N/A
1-D Minuit 0.504± 0.030 N/A
2-D Minuit 0.503± 0.028 0.797± .022

6.2.3 Cross-Checks of the Fit

In order to enhance confidence in the fitted results given in the previous two

subsections, we have performed a number of checks involving smaller samples of

data and/or Monte Carlo to verify that there are no biases due to event selection,

or tagging. These investigations and their results are given in this section.
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Figure 83 : The data and Monte Carlo mixed fraction plots. Monte Carlo is
represented by the histogram, while data are points.
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Figure 84 : The data and two-dimensional likelihood fit mixed fraction plots.
The mixed fraction from the two-dimensional likelihood fit is rep-
resented by the histogram, while data are points.
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Stability Checks

To investigate possible biases in the fit due to detector resolution and perfor-

mance, we have performed fits on data and Monte Carlo sets with varying selection

cuts. These selections isolate physical sections of the detector, tag performance, or

areas of reconstructed time. The various cuts and their two-dimensional fit results

for ∆md for both data and Monte Carlo can be seen in Table 21. There are no

significant discrepancies between these fits and the full sample fits.

Table 21 : Results of Data and Monte Carlo Fits with Various Cuts Applied
to Samples.

Selection Applied ∆md (ps−1) ∆md (ps−1)
Data Monte Carlo

Only use polarization initial state tag 0.536± 0.040 0.431± 0.020
Only use charged initial state tags 0.531± 0.046 0.483± 0.021

Only use events with b initial state tag 0.487± 0.041 0.463± 0.018
Only use events with b̄ initial state tag 0.523± 0.034 0.509± 0.023
Only use events with b final state tag 0.545± 0.045 0.497± 0.019
Only use events with b̄ final state tag 0.468± 0.040 0.436± 0.017

Only events with no VXD alone tracks 0.491± 0.031 0.473± 0.014
Only events with kaons from the tertiary vertex 0.496± 0.030 0.478± 0.017
Events with reconstructed proper time < 6 ps 0.496± 0.031 0.442± 0.014
Events with reconstructed proper time < 8 ps 0.494± 0.036 0.439± 0.015

Events with reconstructed proper time > 0.25 ps 0.504± 0.032 0.464± 0.015
Events with reconstructed proper time > 0.5 ps 0.504± 0.034 0.464± 0.019

Events with cos θthrust > 0 0.525± 0.048 0.481± 0.020
Events with cos θthrust < 0 0.495± 0.034 0.447± 0.018

Events with | cos θthrust| < 0.7 0.495± 0.030 0.465± 0.016
Nominal 2-D Minuit Fit 0.503± 0.028 0.462± 0.015
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Mini-fits on Data-sized Monte Carlo Sets

To investigate the statistical error returned by the two-dimensional fit, the

Monte Carlo was divided into 25 data-sized subsamples. The individual ∆md re-

sults and their statistical errors can be seen in Table 22. The resulting distribution

of the fit results, and the “pull plot” (where pull =
∆md,recon−∆md,mctrue

σ∆md

) for the

errors can be seen in Figure 85. The width of the “pull” plot is expected to be

RMS = 1 if the errors are properly determined; we see that in Figure 85 that

the width is in reasonable agreement with 1, implying that the statistical error is

properly calculated. The mean should be at 0, and we see reasonable agreement

with that, indicating no bias towards either high or low values of ∆md in the fit.

Figure 85 : The distribution of fitted ∆md for the 25 mini-fits (left) and the
“pull” distribution (right).
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Table 22 : Results of Monte Carlo fits for statistically independent data-sized
samples

Sample ∆md (ps−1) Fit Statistical Error (ps−1)
1 0.482 0.030
2 0.424 0.033
3 0.540 0.041
4 0.537 0.041
5 0.463 0.035
6 0.483 0.038
7 0.460 0.023
8 0.414 0.030
9 0.477 0.024
10 0.437 0.027
11 0.436 0.034
12 0.490 0.031
13 0.491 0.033
14 0.528 0.031
15 0.456 0.030
16 0.514 0.029
17 0.443 0.023
18 0.485 0.028
19 0.475 0.033
20 0.462 0.032
21 0.463 0.035
22 0.493 0.030
23 0.503 0.031
24 0.428 0.024
25 0.488 0.033

Mean 0.478 0.0312
RMS 0.0315 0.0048
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Table 23: Monte Carlo Generator and World Average B Fractions.

B Type World Average Fraction SLD Monte Carlo Generator
Bu 0.4005± 0.010 0.4064
Bd 0.4005± 0.010 0.4064
Bs 0.100± 0.012 0.1148

b-baryons 0.099± 0.017 0.0724

6.3 Potential Systematic Errors

We have studied systematic uncertainties due to physics effects and modelling,

detector resolution, and reconstruction effects. In Table 24, each possible source of

error considered is shown, along with the variation used and the resulting error on

the data value of ∆md. Here we will briefly discuss each possible error:

• B Hadron and udsc Fractions: The amount of contamination from non-Bd

events affects the evolution of the oscillation as well as the overall background

of the measurement. The input fractions are determined from the Monte

Carlo analysis sample. For the B hadrons, the central value of each fraction is

varied independently by the error on the measured world average values scaled

to the Monte Carlo generated values. Both the Monte Carlo generator values

and the world averages, taken from Reference [3], can be seen in Table 23.

For the udsc background, we use a conservative variance of ±50 % on the

central value.

• B Hadron Lifetimes: As the lifetime affects the evolution of the data sample,

it is a possible source of systematic error. The input values are taken from the
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world average [3]. We have varied the central value of each lifetime separately

by the error on the world average.

• Hadron Right Sign Fractions (Rd, Ru, Rs, and Ra): The hadron right sign

fractions are determined from the Monte Carlo analysis sample. We use a

variance of ±0.05, which is the error on the only experimental determinations

of the B right sign fractions [64].

• ∆ms: The oscillation frequency of the Bs has yet to be measured, but is

known to be higher than the Monte Carlo value of 10 ps−1. As a conservative

estimate of the error, we double the value of ∆ms to 20 ps−1. Fortunately,

as the RSF for Bs is essentially 0.50, this results in no variance on the ∆md

result, and so is not included in Table 24.

• Relative Boost Resolution: To estimate the systematic error due to the finite

resolution of the calorimeter, we use a very conservative variance of ±20 % on

the values of σb/b discussed in Chapter 5. The core and tail σb/b are varied

at the same time and in the same direction. Due to the large central values of

the relative resolutions and the linear dependence of σt on σb/b, this results

in a significant systematic error for the analysis.

• Decay Length Resolution: We use a very conservative variance of ±20 % on

the values of σl discussed in Chapter 5. The core and tail σl are varied at the

same time and in the same direction.
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• Initial State Tag : Although SLD has excellent right sign probability resolution

for the initial state tag, there are possible errors on it from the calculation

of AFB and measurement of the e− polarization for the polarization tag, and

from Monte Carlo parameterizations and data measurements in the various

charged tags. We use a conservative variance of ±0.02 on the IST correct tag

probability, applied on an event by event basis.

• Track Multiplicities : Tracking studies have shown the SLD reconstruction to

be more efficient at reconstructing tracks in Monte Carlo compared to data.

A correction has been developed to determine the systematic error on SLD

analyses due to this effect, with the nominal result having the correction on,

and the systematic being the analysis result with it off.

• Track Resolutions : Tracking studies have shown the SLD reconstruction to

be better at measuring the momentum of tracks in Monte Carlo compared to

data. A correction has been developed to determine the systematic error on

SLD analyses due to this effect, with the nominal result having the correction

on, and the systematic being the analysis result with it off.

• π Misidentification: As discussed in Chapter 4, there is a discrepency in the

amount of π → K misidentification between the data and Monte Carlo. The

calibration applied to Monte Carlo statistics was derived from the K0
s →

π+π− data samples, and thus the calibration is affected by the limited statis-

tics available in these samples. We treat this as a systematic error. The
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misidentification is increased and decreased by 1σstat across the entire mo-

mentum region, and the analysis is again performed, with the difference being

treated as a systematic error.

After the calculation of all systematic errors, they are combined in quadrature

for a result with an overall error due to systematic effects of ±0.020 ps−1.

Table 24: Systematic Errors in the measurement of ∆md

Error Central Value Variation δ(∆md) (ps−1)
Bu Fraction 0.146 ±0.004 ±0.005
Bd Fraction 0.607 ±0.015 ∓0.003
Bs Fraction 0.170 ±0.014 ∓0.002

b-baryon Fraction 0.067 ±0.011 ±0.001
udsc Fraction 0.012 ±0.006 ±0.001
Bu Lifetime 1.640 ps ±0.027 ps ±0.002
Bd Lifetime 1.550 ps ±0.024 ps ∓0.002
Bs Lifetime 1.47 ps ±0.057 ps ±0.000

b-baryon Lifetime 1.22 ps ±0.051 ps ±0.001
Bu RSF 0.776 ±0.005 ±0.012

b-baryon RSF 0.614 ±0.005 ±0.006
∆ms 0.010 ps−1 +10 ps−1 ±0.000

Initial State Tag Event by Event ±0.020 ±0.004
Boost Resolution See Table 15 ±20% ±0.006

Decay Length Resolution See Table 16 ±20% ±0.001
Track Resolution N/A on/off ±0.005
Track Efficiency N/A on/off ±0.004
π Misidentification N/A Statistics ±0.003
Detector Modelling N/A on/off ±0.007

Proper Time Residuals N/A on/off ±0.000
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C H A P T E R 7

CONCLUSIONS

In this dissertation, we have presented a measurement of ∆md performed on a

sample of 7844 events selected from the 400,000 hadronic Z0 decays collected by

the SLD at SLC in 1996-98, with a result of

∆md = 0.503± 0.028 (statistical) ±0.020 (systematic) ps−1.

Bd mixing is not a “new” measurement: it has been measured many times and

by many experiments, including 4 measurements using the 1993-1995 data set of

the SLD experiment at the Stanford Linear Collider (SLC). The measurement in

this dissertation (labelled “SLD K/Qjet+pol (1996-98)” in Figure 86), however, is

still a useful and interesting contribution to the body of knowledge of Bd mixing,

and it is one of the most precise measurement to come from accelerators running at

the Z0 resonance. It is the only measurement to be performed on the larger 1996-

1998 SLD data set. The SLD is the only particle collider experiment to have run

with polarized e− as one of its colliding beams; this feature allowed an initial state

tag that is novel among all of the other experiments. Another distinctive feature
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of the SLC was the small size of the interaction region (σx ' 1.5µm, σy ' 0.7µm),

whose location was stable over time to better than 5 µm. The SLD is itself a

unique detector, and has the world’s only CCD vertex detector. The exceptional

tracking resolution of the vertex detector allowed the identification of secondary

vertices with an accuracy better than any other experiment. This feature, along

with the accurate primary interaction point determination, gave superior resolution

for the decay time of the B meson. This is also the only measurement in the world

to use exclusively kaons as a final state tag, which has its own unique power and

challenges. The vast majority of other ∆md measurements use semileptonic decays,

whereas this measurement is fully inclusive.

The experimental constraints on the unitarity triangle first presented in Chap-

ter 2 can be seen in Figure 87, with this result highlighted. Bd mixing is an

important constraint as it measures the VtdV
∗
tb side of the triangle.

To truly constrain the unitarity triangle of Chapter 2 and enhance our under-

standing of CP Violation in the Standard Model, it is crucial that Bs mixing be

measured. With experiments at the Fermilab Tevatron beginning their new data

runs, which will enable us to determine whether Bs oscillations are properly han-

dled in the Standard Model, the next few years promise to hold interesting and

exciting measurements in the study of CP Violation.
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Figure 86 : Current Measurements of ∆md, as of July, 2001. The measure-
ment in this analysis is the dot labelled “SLD K/Qjet+pol (1996-
98)”.
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