
SLAC-151
UC -34
(EXP) (EXPI)

ON THE USE OF A MACRO PROCESSOR WITH SUMX

JOSEPH C. H. PARK

STANFORD LINEAR ACCELERATOR CENTER

STANFORD UNIVERSITY
Stanford, California 94305

and

MAX-PLANCK-INSTITUT F6R PHYSIK UND ASTROPHYSIK

Munich, Germany

PREPARED FOR THE U. S. ATOMIC ENERGY

COMMISSION UNDER CONTRACT NO. AT(04-3)-515

June 19’72

Printed in the United States of America. Available from National Technical
Information Service, U. S. Department of Commerce, 5295 Port Royal Road,
Springfield, Virginia 22151.
Price: Printed Copy $3.00; Microfiche $0.95.

ACKNOWLEDGEMENTS

I am grateful to Professor R. F. Mozley of the Stanford Linear Acceler-

ator Center for encouragement in writing this report and to Professor
H. Billing of the Max-Planck-Institut fiir Physik und Astrophysik, where part

of the work was done. It was a pleasure to work with Mr. J. Ahern as mem-

bers of the experimental group D at SLAC.

- ii _

TABLE OF CONTENTS

Page

I. Introduction 1

II. AnExample 3

III. Limitations and Errors. 11

Appendix A 14

AppendixB.. 21

AppendixC 24

References 26

LIST OF TABLES

Page
I. Input Text. e 4

II. OutputText.. 5
III. Macro Library . . 0 D : . . . , ‘7

. . .
- 111 -

I. INTRODUCTION

If the SUMX’ control statements are considered as forming a base

~%mguage~~ , then the power of equipping it with a macro facility becomes

obvious. In the following we describe a simple scheme which consists of

making one preprocessing pass through a general purpose (that is, base-

language-independent) macro processor called MACROS. 2 The input text is

prepared using base language statements (preferably in terms of variable

symbols rather than fixed values) interspersed with preprocessor statements,

such as macro definitions, macro calls, and value assignments to symbols.

Prior to processing, this text is “compiled” by MACROS into a target text

consisting entirely of base language statements.

For readers who are not familiar with, for example, macro-assemblers

we list some of the advantages thus gained:

(1) Program parameterization.

This is achieved explicitly through the use of symbols for such quantities
as number of channels, channel width, etc., the value assignments for which

are delayed until the run time so that it is trivial to change them to any desired

values. Furthermore names (symbols) are more convenient than numbers

(BOUT locations).
(2) Shorthand notation and repetitive text generation.

This aspect of a macro processor is like SUBROUTINE in FORTRAN,

apart from in- vs. out-of-line distinction. Many base language statements

can be compressed into one macro call, if necessary, with variable arguments.

(3) Library facility.
Definitions for general purpose or frequently occurring macros may be

collected into an external library to be shared among different jobs.

As discussed in Ref. 3 the advantages listed above are common features

of macro processors. There are further advantages peculiar to our appli-

cation as described below.
For experiments with large statistics it is desirable to minimize the

f’lengthf’ of the input data set (Data Summary Tape). One solution is to have

for each event on a DST only the essential physics information such as the

energy-momentum four-vectors and not the derivable quantities like invariant

-l-

masses, momentum-transfers, and decay angles. They are then calculated

by means of CHARMS during the SUMX run. A peculiar advantage arises in

our scheme because one and the same macro call is used to generate names

for quantities of interest, prepare the corresponding CHARM calls to calculate

them, and assign BOUT locations for storing the named results. The chance

for error is thus greatly reduced and since each run is explicitly self-

contained it is easy to cross-check.
The present scheme was developed by John Ahern and the author as

members of experimental group D at the Stanford Linear Accelerator Center

and has been in use at SLAC since 1968.

As described elsewhere2 MACROS is written in PL/I taking advantage of

its list-processing facility with a small part dealing with the operating system

such as that for requesting core-space in assembler language. All CHARMS

and SUMX related routines are written in FORTRAN IV except those “pots

and pans” ones such as vector- and matrix-manipulating routines which are

coded in assembler language. These programs are running on the IBM system

360/91 as implemented at SLAC and with some minor differences on a similar

system at Max Planck Institut fur Physik und Astrophysik.

The capability of the present version of the macro processor, MACROOl,

is somewhat limited because it lacks macro-time features such as macro-time

variables (to do arithmetic with) and conditional branches (to be able to define

macros recursively).
In Section II our scheme is described by an actual example with enough

variety to illustrate most features of MACROS. Appendix A gives a formal

description of the processor for reference purposes. In Appendix B we

briefly summarize various CHARMS used in the example. In Section III
several examples of errors in using the processor are collected, which also

serve to show the limited capability of MACROOl. Appendix C has models

for Job Control Language statements required to run.

-2-

II. AN EXAMPLE

We illustrate the use of MACROS in SUMX by the example of Table I

(referred to as A), which consists mostly of preprocessor statements (PPS)

mixed with SLTMX control (base language) statements. After one pass through

MACROS this text turns into the target text consisting entirely of the base

language statements as shown in Table II (referred to as B), which is then

used to control SUMX. The macro library used in this example is shown in

Table III (referred to as L).
Each PPS is one card long (columns 2-80) and is identified by the warning

marker y0 in the first column. The use of the warning marker serves to

speed up the processing time, Comments can be added after the marker ; as

in line IA. Line 2A calls for a macro TWINKLE. Since it is not defined in

the text scanned so far the macro library is searched. MACROS being a one-

pass processor macros must be defined and values must be assigned to symbols

before they are used. This has the advantage of allowing local redefinitions

and reassignments.

Lines 96-102L for TWINKLE show how to define a macro. Symbols
(escape names) to be substituted are preceded by the escape character &,

double escape characters && meaning the value must be placed starting at

the specified column (left-justified). In MACROS no distinction is made

between global (inter-macro) and local (within macro) symbols; any of &A,
&B, or &C in TWINKLE may be left out of the parameter list, in which case

values can be assigned by the assignment (=) statement appearing anywhere

before use.
A macro definition is terminated by MEND, except when it is followed by

another macro definition. In such case the missing MEND is assumed by the

processor, since the present version does not allow a nested macro definition.
Returning to TWINKLE the parameter A can be a character string like

11000,1001 or ‘KEEP 2’. Unsigned integers and fixed point numbers (digits

with a decimal point) do not need be surrounded by 1 as in the second argu-

ment in TWINKLE. Line 1A expands into lines l-6B.

Line 3A calls for a macro LITTLE which, as defined in lines 103-108L,

illustrates nested macro calls. Other macro calls up to line 7A are similarly

straightforward. As seen in the expansions (lines 7-62B) the main purpose

-3-

1
2
3
4
5

:
0
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
2-l
26
29
30
31
32
33

TABLE I

INPUT TEXT

%; BEGIN 3 PRONG SUMX DECK
% CALL TWINKLE~‘1o00,200’,1,‘PHOTON+P . . . P + 2 PIONS 4/72’)
% CALL LITTLEL.005)
% CALL T33
% CALL HT3~'ANO'rl,14,12,4,'PION CHANELS’)
$ CALL STAR
Z CALL MT4('ANO',1,14,12,4,29,'E>5.5')
% CALL C33
*SELECT
$ CALL BET(40,H45,.62,.86,‘RHO’)
*BLOCK 6
% CALL SYMBOL
% WGT-10
% MACRO ANGLE(C,CS,PH)
% CALL COS(C,CS)

CALL PHI (C,PHl
MACRO WONDER LN)

EVA b&N
% CALL MASS(‘P PI-‘,1.08.M341

:
CALL MASSL’P PI+‘,l.O8,M35)
CALL HASS('P1 PI',.28,M45)

% NPT=40
x CALL DELSCl(‘RHO’,D45)
% CALL ANGLE(*RHO TN T-CHAN HEL FRAME*,cJ~~,PJ~~T
% CALL ANGLEL’RHO IN S-CHAN HEL FRAME’,CH45,PH45)
% NPT=”
FINISH 1
% MEND
% CALL WONDERL26)
% CALL WONDERL25)
% CALL WONDERL24 I
% CALL WONDER (231
*ALL DONE

-4-

TABLE II

OUTPUT TEXT

1 *NEW PASS 1000,200
2 PHOTON+P . . . P + 2 PIONS 4172
3 *DISCARD
4 *TAPE
5 10
6 *SELECT
7 TEST
8
9 TEST

10
11 TEST
12
13 AND
14 TEST

I

14
10
12
7
1
14
12
16
-14
18
-14
2
-4
-4
3
-4
-4
4
2
3
6
-4
-4
7
-4
-4
8
6
7
9
-4
-4
1

::
4

BIG 0

BIG .OD5

TRUE
TRUE

15
16 TEST
17
18 TEST
19
20
21 TEST
22
23
24 TEST
25
26
27 TEST
28
29
30 TEST
31
32
33 TEST
34
35
36 TfS7
37
33
39 TEST
40
41 AND
42 AND
43 *CHARM
44 SETUP
45 *SELECT
46 TEST
47
40 TEST
49
50 TEST
51
52 TEST
53
54 TEST
55
56 TEST
57
58 TEST
59
60 AND
61 AND
62 AND
63 *CHARM
64 M34
65 M35

22
701
23
701
24
701
25
701
26
701
29
701
1
14
12
4
29

EQU -1

EQU 1

EQU 301
EPU 302

EQU -301
EQU -302

TRUE
TRUE

EQU 303
EQU 304

EPU -303
EOU -304

TRUE
TRUE

EQU 305
EQU -305

TRUE
TRUE
TRUE

8 701

BET

BET

BET

BET

BET

BET

4.5 5.5

5.5 7.

7. 9.

9. 12.

12. 30.

5.5 30.

TRUE
TRUE
TRUE
TRUE

2 721
2 722

WE I GHT

PROB

RJCT BY ION

PROTON IDENT BY ION

P PI+ PI-UNIC’UE

P PI+ PI-AMB

P PI+ PI-ALL

P K+ K-UNIQUE

P K+ K-AMB

P K+ K-ALL

P PBAR P

PION CHANELS

-5 -

2
2

E>5.5

34
35

701
701

Table II (continued)

bb
67
60
69
70
71
72
73
74
75
76
77
70
79
80
81
82
83
84
85
06
07
88
89
90
91
92
93
94
95
96
97
98

1:;:
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

M45 2

COSP- 0 cosp+ 0 z
cos+- 0 3
A45 4
434 4
A 35 4
*SELECT
TEST 40

723 BET
*BLOCK6
EVA 26

INVARIANT MASS OF P PI-
100 .04 . 1.08
721 10

INVARIANT MASS OF P PI+
100 .04 1.08
722 10

INVARIANT MASS OF PI PI
100 .04 .2a
723 10

DELSQ OF RHO
100 .02
7 31 10

COSINE OF RHO IN T-CHAN HEL FRAME
40 .05 -1. 40
756 10

PHI OF RHO IN T-CHAN HEL FRAME
24 15. -180. 40
757 10

COSINE OF RHO IN S-CHAN HEL FRAME
40 .05 -1. 40
758 10

PHI OF RHO IN S-CHAN HEL FRAME
24 15. -180. 40
759 10
FINISH 1
EVA 25

INVARIANT MASS OF P PI-
100 .04 1.08
721 10

INVARIANT MASS OF P PI+
100 .D4 1.08
722 10

INVARIANT MASS OF PI PI
100 .04 .28
72 3 10

OELSP OF RHO
100 .02
731 10

COSINE OF RHO IN T-CHAN HEL FRAME
40 .05 -1. 40
756 10

PHI OF RHO IN T-CHAN HEL FRAME
24 15. -180. 40
757 10
.
.

180 FINISH 1
181 *ALL DONE

723 2 45 701
724 1 5 1 701
727 1 4 1 701
730 1 3 2 701
754 2 45 12 701
734 2 34 21 701
744 2 35 21 701

.62

40

40

.0b
RHO

-6-

TABLE III

MACRO LIBRARY

1 % MACRO SYMBOL
2 % COSL=‘-1.’
3 % DCos=.o5
4 % DDEL=.OZ
5 % DELL=”
6 % DM=.04
7 % DPHI=15.
8 % FAC=”
9 % FOLD=”

10 % NBIT=4
11 % NCOS=4D
12 % NDEL=lOD
13 % NM=100
14 % NPHI=24
15 % NPT=”
16 % NT=”
17 % NT2=”
18 t NT3=”
19 % NT4=”
20 % LOG=”
21 % PHIL='-180.'
22 X SGM=”
23 % SGH2=”
24 % SGM3=”
25 % SGM4=”
26 % WGT=”
27 % WGTZ=”
28 4: WGT3=”
29 % WGT4=”
30 % XL=”
31 % YL=”
32 %; DEFINE RLOCK6 MACROS --
33 % MACRO ONElTITLE,N,DX,XL,X)
34 6ATITLE
35 8&N CLBDX LBXL LdNPT ALFAC A&LOG
36 &6X LAWG T b6N T LLSGH
37 % MACRO MASSlSYS,HL,X)
38 % CALL ONEI’ INVARIANT MASS OF bSYS’.NH,DM,HL,Xl
39 % MACRO COS (SYS,X)
40 % CALL ONE{’ COSINE OF ASYS’,NCOS,DCOS,COSL,XT
41 % MACRO PHI (SYS,X I
42 % CALL ONE (’ PHI OF LSYS’,NPHI,DPHI,PHIL,X)
43 % MACRO DELSQ(SYS,X)
44 % CALL ONE I’DELSO OF 6SYS’,NDEL,ODEL,DELL,XT
45 %; BLOCK7 MACROS --
46 % MACRO TWD(SYSX,SYSY.X,Y)
4-l LdSYSX vs. LBSYSY
48 bLNP T b&NE1 T AdFOLD
49 86NX L&NY ABDX LLDY b&XL LAYL
50 86X b&Y d&NT
51 %; DEFINE SELECT MACROS ------------------__----------------------
52 % MACRO TEST(O,N,M,A,B,C)
53 TEST L&N 86C
54 L&H 660 d&A b&B
55 % MACRO BETlN,M,A,B,C)
56 % CALL TEST(‘BET’,N,M,A,B,C)
57 X MACRO BIG(N,M,A,C)
58 % CALL TES TI 'BIG' N M A , t , r"tC)
59 % MACRO EQU TN ,M ,A ,C 1
60 % CALL TESTl’EQU’,N,M,A,“,t)
61 % MACRO EQUElN,M,Tl,TZ,CT
62 % CALL EQU(N,M,TlrC)
63 dSM EPU A&T2
64 % MACRO TRUE lN,M,C)
65 % CALL TEST(‘TRUE’,N,M,“,“rC)

:
:

;
i
:
:

:
:
:
:
:

:

:

:
;
i

DEFINE DEFAULT VALUES FOR SYMBOLS
LOWER EDGE FOR COS-HIST.
CHANNEL WIDTH FOR COS-HIST.
CHANNEL WIDTH FOR DELSQ-HIST.
LOWER EDGE FOR DELSQ-HIST.
CHANNEL WIDTH FOR MASS-HIST.
CHANNEL WIDTH FOR PHI-HIST.
FACTOR TO SCALE HIST.
‘FOLD’ OR ANYTHING TO FOLD BLOCK7 PLOT.
NBITS FOR BLOCK? PLOT.
CHANNEL NUMBER FOR COS-HIST.
CHANNEL NUMBER FOR DELSQ HIST.
CHANNEL NUMBER FOR MASS HIST.
CHANNEL NUMBER FOR PHI HIST.
PRINCIPAL TEST NUMBER
TEST ASSOCIATED WITH MULTIPLICITY ELEMENT.

‘LOG’ OR ANYTHING TO GET LOG HIST.
LOWER EDGE FOR PHI HIST.
LOCATION OF ERROR (SIGMA).

LOCATION OF WEIGHT

LOWER EDGES FOR BLOCK7 PLOT

-7-

Table III (continued)

66
67
68

. . 69
70
71
72
73
74

E
77
70
79
80
81
02
83
84
85
86
87
88
09
90
91
92
93
94
95
96
97
90
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

% MACRO MT2(0,N,Tl,T2,C)
% CALL TRUE(N,Tl,C)
Lb0 66 T2 TRUE
% MACRO MT3(0,N,TlrT2,‘13pC)
% CALL HTZ(O,N,Tl~TZvC)
b&O b&T3 TRUE
% MACRO HT4(0,N,Tl,TZ,T3~T4~C)
% CALL MT3lOvN,TlrTZvl3*C)
&AD LL 14 TRUE
% MACRO SET2lTlrT2)
% NT=Tl
% NTZ=T2
% MACRO SET4(Tl,TZ,T3~T4)
% CALL SET2(Tl,T2)
% NT3=T3
% NT4=T4
% MACRO NULLT
% NPT=”
X CALL SET4ttt.l
%; INCIDENT ENERGY INTEVALS FOR PHOTO-PROD. EXP --__----__------------

% MACRO E(N,A,Bl
% CALL BETfN,El,A,B~“)
% MACRO EINT
% CALL E(22.4.515.5)
% CALL Et2315.5.7.)
% CALL E(24,?.~9.)
% CALL EL25.9.112.1
% CALL E(26,12.,3D.)
% CALL El29.5.5,30.)
%; TWINKLE LITTLE STAR COMMON TO MOST SUMX JOBS -----------_--_-------

% MACRO TWINKLELAvB~Cl i PROLOGUE
*NEW PASS ALA

bC
*DISCARD b&B
*TAPE

10
*SELECT
X MACRO LITTLE(A) ; SELECT BY WEIGHT AND PROBABILITY
% CALL BIGl14,10,D,‘WEIGHT’)
% CALL BIG~12,?,A,‘PRO~‘)
% CALL MTZI’AND’,1,14r12)
% CALL EQU(16,‘-14’,‘-l’,‘RJCT BY ION’)
X CALL EQUl18, ‘-14’11,‘PROTON IDENT
% MACRO STAR ; SET
% El=?01
*CHARM
SETUP 8 6&E 1

BY ION’)
UP 4-VECTOR BANK

*SELECT
4 CALL EINT ; INCI DENT ENERGY INTEVALS
%; SYMBOLS AND CHARMS FOR 1 + 2 . . . 3+4+5 --_-------------------
% MACRO MCHMfIX)
Mb&IX 2 A6Mb8IX 6&N d&IX L8El
%M;;RO CCHMfIX)

3 8ACBbIX d&N BBIX 861 66El
% MACRO ACHMIIX, IY 1
A&&IX 4 L&A&.41X b8N LBIX b8IY 6LEl
% MACRO Ct3
% M34=?21 ; INVARIANT MASSES
% M35=?22
% M45=723
% C14=?24 ; PRODUCTION COSINES AND OELSQ’S
% D34=?25
% C35=?2?
% D35=?2R
% c45=730

-8-

Table III (continued)

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

: J (HI REFERS TO T-CHANNEL (S-CHANNEL) HELICITV FRAMES
; C LPI FOR COS (PHI)

% D45=?31
% A34=?34 ; DECAY ANGLES
% A35=?44
X A45=?54
% CJ45=?56
% PJ45=757
% CH45=?50
% PH45=?59
% CW45=?6D
% PW45=?61
% N=2 i NO OF PARTICLES
*CHARM
% CALL MCHM(34)
% CALL MCHHl35)
% CALL HCHM(45)
COSP- 0 3 dLC34 5 1 .&&El
cosp+ 0 3 A&C35 : 4 AdEl
cos+- 0 3 d&C45 1 3 : AgEl
% CALL ACHM(45,12)
f CALL ACHM(34,21)
% CALL ACHM(35.21)
%: MACROS TD SELECT CHANNELS --_-------__------------------------------

% MACRO H2lNlrN2,N3,11,12,D)
% CALL EOU2lN1,'-4',Il,I2,'8D.UNIQUE')
% CALL EOU2lN2,‘-4’r’-dIl’r’-AI2’,‘AD.AM5’~
% CALL HT2l”,N3,Nl,N2,‘bD.ALL’)
% MACRO T33
% CALL H2(2,3,4,301,302,‘P PI+ PI-‘)
% CALL H2(6,?,8,303,304,‘P K+ K-‘T
% CALL EQU2(9,‘-4’,305,‘-30511’P PEAR P’)

-9-

of these is to define the master test (TEST 1) to eliminate unwanted events

before CHARM calls are made to calculate various quantities to be SUMXed.

The latter is done by a call (line 8A) to C33 (lines 122-151L). As shown C33

in particular assigns BOUT locations to various names for quantities being

calculated.

MCHM (lines 116-117L) shows how a symbol can be concatenated and

then substituted. Note here that the variable N is not included in the param-

eter list. Since it is comparatively slowly varying it is set by assignment

(line 141L) rather than explicitly as an argument of the macro. C33 expands

into lines 63-72B. For completeness explanations for CHARMS used are

given in Appendix B .

Unassigned escape names, i.e., those which are preceded by & but have

not yet appeared in assignment statements are left unchanged in the text. This

choice rather than automatic null-assignment is made because of possible use

in other language such as in FORTRAN IV in which the character & is used to

designate statement labels. The purpose of SYMBOL (lines l-31L) is to assign

default values to symbols occurring globally as in the BLOCK6 and 7 macros

(lines 33-5OL), any of which may be set and reset before use as in lines 13,

22, and 26A.

Macros can, of course, be defined outside the library by the user as in

lines 14-28A. The corresponding calls (lines 29-32A) result in SUMX control

statements for a set of histograms repeated for different incident energy

intervals as shown in lines 77-180B.

It was often asked, “in this scheme how many lines can be produced by

a single line of typing?“. The answer is obviously, “one-to-all”, because all

of the lines say, in this example can be lumped into a single macro. The

need for doing so may conceivably arise in on-line applications.

It is also said that some of these features are available through additional

programming in SUMX. This must be self-evident, because MACROS itself

is a piece of program. The idea being propounded is in the use of a general

purpose macro processor. In this respect it would have been better, if the
“macro part” of the 360 assembler could easily be detached so that it could

also be used elsewhere.

- 10 -

5 TM1 CFVEL REPLC SflURCE S TATFMENT

1
2
3

4
5
6
7
R
9

10
11
12
13
14

205
206
208
209
210
211
217
213
215
216
217
21R
219
220
221
222
223
224
275
22b
221
228
229

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0

E
E

E
E
0
0

Trivial syntax errors are evident from diagnostic messages from MACROS.

In the following we describe examples of errors which require some explanation.

(1) Scanning for escape names is done from left to right. A peculiar

effect can arise from concatenating names. For example in the use of the

MACRO ACHM defined in lines 120-121 of Table III:

A12=1234
CALL ACHkll7.34)

4 1234

which is as expected. Ilowever,

A=‘I
CALL ACHHl12,34)

4

(2) When a substitution for an escape name is done, the line of texl is

rescanned (because the value itself may be an escape name) until all possible

substitutions are carried out. This can cause a loop as in the following example:
%l
% MACRO FnlI41

.?.A STAR
XMENO lGENFR.ATEDl

MACRO M2l4) %
‘L
%
%:
x

CALL Mll’84 LITTLE’1
MENO

CALL MZ(‘Th’IN&LE’I
2 31 rLEVEL= Z,MACRfl=Ml

PAGt 1

MAC01 fJSEPbY

RAN 12 34 LiEl

12 aaN 12 34 L&El

***ERROR IN STMT
SEV= fi SIG

***ERROR IN (TMT
SEV= 8 SIG

***ERROR IN STMT
SE”= e SIG

***ERROR IN STMT
SEV= X SIG

***ERROR IN STYT
SEV= e SIG

***ERROR IN STMT
SEV= 6 SIG

***FRROR IN STMT
SEV= e SIG

***ERROR IN 5 TMT
SEV= e SIG

***ERROR IN STMT
SEV= I! SIG

PART OF STYl/CFPL VALUE
231 rLEVFL= Z,MACRfl=Ml
PART OF STMl/REPL VALUE
231 ,LEVEL= Z,Mb.CRO=ul
PART OF SlMl/REPL VALUE
231 ,LEVEL= Z,MACPfl=Ml
PA<T OF STYl/RFPL VALUE
231,LEVEL= Z,MACRfl=Ml
PART OF STYT/REPL VALUE
231tLEVEL= Z,MACRO=Ml
PAXT OF STWl/RFPL VALUE
231 ,LEVEL= Z,MACRfl=Ml
PART OF STYl/RFPL VALUE
231rLEVfL= Z,MACRfl=Ml
PART OF STYlIREPL VALUE
231 ,LEVEL= Z,MACRfl=Ml
PAiT OF STClIREPL VALUE

,llClDEL STMT=
LOST IN PACKED REPL

.MODtL STMT=
LOS1 IN PACKED REPL

,M@DEI. 51 MT=
LljST Iii FACKkD REPL

,MO@EL STMT=
LOST IN P4CKEU REPL

,MOl!EL STrT=
LUST IN PACKED REPL

,MOOEL STMT=
LOST IN P4CKFD KEPL

,MflOEL <Tii,T=
LOST IN PACKEO REPL

,MflOEL STWT=
LOST IN PACKtD REPL

.XIlUEL STMT=
LOST IN PACKEU REPL

223vLA’iT TflKEFI=‘A’

723,LAST TCKt’d=‘A’

223,LAST TIIKEU=‘A’

223,LAYT TvKEN=‘A’

223,LA(T TIIKE”I=‘A’

723rLAST TIlKEV=‘A’

Zi3rLAST TOKEi\!=‘A’

723,LAST T’IKEk’=‘A

723,l~AjT TOKEN=‘A’
1101A16

PAGE 2

STMT LFVEL REPLC

2 31
234
2 35
2 36
2 37
2 38
2 39
240
241
242
243
245
240
249
250
251
252
253
254
255
256

***ERROR IN STMT
SEV= u SIG

***ERROK IN STMT
SEV= 8 SIG

***ERROR IN STMT
SEV= 8 SIG

***ERROR IN STMT
SEV: R SIG

***ERROR IN STMT
SEV= 8 SIG

***ERROR IN STMT
SEV= 8 SIG

***ERROR IN STMT
SEV= 8 SIG

***ERROR IN STMT
SFV= 8 SIG

***ERROR IN STMT
SFV= 8 SIG

***ERROR IN STMT
SEV= B SIG

***ERROR IN STMT
SEV’ 8 SlG

***ERROR IN STMT
SFV= 8 StG

***ERROR IN STMT
SFV= 8 SIG

***ERROR IN STMT
SEV= R SIG

***ERROR IN STMT
SEV=lZ TOO

2 31
0 %:
0 “d:
0 %;
0 %;
0 %;

%
E %
E %
0 x:
0 %
2 2
0 ‘g:
0 %:

0”
I:
x:
x

E %
F %
0 %:

SOURCE STATEMENT

23l,LEVEL= ZrMACRO=Ml
PART OF STMT/REPL VALUE
23l,LEVEL= Z,MACRO=Ml
PART OF STMT/REPL VALUE
231 ,LEVEL= Z,MACRfl=Ml
PART OF STYT/REPL VALUE
231,LEVEL= 2rMACRO=Ml
PART OF STMT/REPL VALUE
231,LEVEC= Z,NACRO=MI
PART OF STMTIREPL VALlJE
231,LEVEL= Z,MACRO=Ml
PART OF STMTIRFPL VALUE
231,LEVEL= Z,MACRO=Ml
PART OF STMlIREPL VALUE
231rLEVEL= Z,MACRO=Ml
PART OF STMTlRFPL VALUE
231,LEVFL= Z,MACRO=Ml
PART OF STMT/RFPL VALUE
231 ,LEVEL= Z,MACRO=Ml
PART OF STMT/RFPL VALUE
231 ,LEVFL= Z,MACRO=Ml
PART OF STHTlREPL VALUE
231,LEVEL= Z,MACRO=Ml
PART OF STMT/REPL VALUE
I”. ~>I,LEVEL= Z,MACRO=Ml
PART OF STMT/REPL VALUE
231,LEVEL= Z,MACRO=Ml
PART OF STNT/REPL VALVE
231 ,LEVEL= 2,MACRO:Ml
MANY REPLACEMENTS

&A LITTLE LITTLE LITTLE LITTLE LITTLE LITTLE LITTLE LITTLE LITTLE LITT

which also serves to indicate that the maximum number of replacements per

line is 32.

,MOOEL STMT=
LOST IN PACKED REPL

,MODEL STMT=
LOST IN PACKEU RFPL

,MOOEC STMT=
LOST IN PACKED RFPL

.MODEL STMT=
LOST IN PACKED REPL

,MODEL STMT=
LOST IN PACKED REPL

,MOOEL STMT=
LOST IN PACKED REPL

,MODEL STMT=
LOST IN PACKED REPL

,MODEL STMT=
LOST IN PACKED REPL

,MODEL STNT=
LOST IN PACKED REPL

,MODEL STMT=
LOST IN PACKED REPL

,MODEL STMT=
LOST IN PACKED REPL

,MODEL STMT=
LOST IN PACKED REPL

,MODEL STMT=

MAC01 BSEP69

223rLAST TOKEN=‘A’

223,LAST TOKEN=‘A’

223,LAST TDKEN=‘A’

223,LAST TOKEN=‘A’

223rLAST TOKEN=‘A’

223,LAST. TOKEN=‘A’

223,LAST TOKEN=‘A’

223,LAST TOKEN=‘A’

223,LAST TOKFN=‘A’

223,LAST TOKFN=‘A’

223rLAST TOKEN=‘A’

223,LAST TOKFN=‘A’

223,LAST TOKEN=‘A’

223,LAST TOKEN=‘A’

223,LAST TOKEN=‘A’

LOST IN PACKED REPL
,MODEL STMT=

LOST IN PACKED REPL
,MODEL STMT=

The solution is, of course, to redefine the MACRO as

MACRO M3lB)
;,*i; Mll’6B LITTLE’)

CALL M3t’TWINKLE’)
TWINKLE LITTLE STAR

(3) Processor statements are not subject to replacements as in

MACRO Ml1.C)
CALL M&I CC)
MEND

+*:ERROR IN STMT
% CALL MI3,‘TWINKLE’J

266,LEVEL=lO.NACRO=M
SEV=lb MACRO DEPTH EXCEEDS MAXIMUM

, MODEL STrT= 253rLAST TOKEN=‘M’

CONDI TION ERR OCCURRED IN STATEMENT 00322 AT OFFSET +00266 FROM ENTRY POINT MACROCALL 2,05*17

STMT LEVEL REPLC SOIJRCE STATFMENT

CALLED, IN STATEMFNT 007a9, FROM PROCEOURE WITH ENTRY POINT MACROS

267
26R
269
270
271
272
273
274
275
276
277
278
279
281
28 3
285
287
289
291
293
295
297

0
0
0
0
0
0

E
E
E
0
0
1 1

x:
7;
z;
%:
X:
X:
f

x
%
X:
%

(4) Because of the lack of MACRO-time arithmetic and conditional GOT0

statement, it is obvious that a MACRO cannot be defined recursively. This is

what happens:

MACRO RlArR,Cl
I AM AT LFVEL LA
CALL R(R,C,. I
MEND

2
3 :

4 1
5 1
6 1
7 1
a 1
9 1

CALL R(1,2,31
I AM AT LEVEL 1
I AM AT LEVEL 2
I AM AT LFVFL 3
I AM AT LEVEL
I AM AT LEVEL
I AM AT LEVEL
I AM AT LEVEL
I AM AT LEVEL
I AM AT LFVEL

10 1 i AM AT LEVEL
***ERROR IN STMT 29arLEVEL=lO,MACRO=R

SEV116 MACRO DFPTH EXCEEDS MAXIMUM
,MOOEL STMT= 275,LAS.T TOKEN=‘R’

PAGE 3

MAC01 aSEP69

CONDITION ERR OCClJRRED TN STATEMENT 00322 AT OFFSET +00266 FROM ENTRY POINT MACROCALL

CALLFD, IN STATEMFNT 00789, FROM PROCEDURE WITH ENTRY POINT MACROS

299 0 x;
300 0 2:

X:
which also serves to show that the maximum level of nested MACRO call is 10.

301 0
302 0 X;
303 0 %;

---M A C R 0 S PROCESSING COHPLETED,HIGHEST SEVERITY=16

APPENDIX A

The following is reproduced from Ref. 2.

STIIl

365
366
367
368
369
370
371
372
373
379
37s
376
377
370
379
380
381
182
383
384
385
386
387
388
389
390
391
392
393
39u
395
396
397
198
399
400
401
402
403
40"
UO5
'406
407
408
409
410
411
1112
113
D 14
415
II 16
417

3 18

LEVEL BEPLC

0
0

0
0
0
0
0
0
0
D
0
0
0
D
0
3
0
0
0
0
0

III. "NXOS Language Description PICE 22

SOOPCB STITERENT RACOl BSEP69

This section will describe the elements of the IUXDS
langtlage in detail. The exaeples of preceding SectioDs rsre
of an introductory nature, while this section is designed for
reference purposes.

The syntax notation PSOS names of items enclosed in < >
symbols to denote syntactic entities. Definitions of then are
either given in words or in terms of other entities. This is
indicated by an <item> follored by ::= and definitions. The
symbol , is used to indicate alternates.

II. ELEIIEIITS

<identifier> - l-16 alphanumeric characters, the first of
which must be alphabetic. Letters are A-S.&t, a: digits
(Lte o-9. Identifiers are used to denote processor
variables and .acros.

<integer> - l-9 digits. Its osage in RKBOS is identical to
strings, since this version has rm aacrc-tine arithmetic.

-- there are t10 forms: <string;
IO

12)

Text string- O-80 characters enclosed in gmotes.
I quote within a string is represented by i consec-
atire quotes. The string of no 1ength.m null string
is represented by I'.
Pixed point number--string of digits preceded by, or
followed by, or containing a decimal point. This
constract is included for coorenience in writing
IIACBOS statements: but it is not a bunbet arid does
not possess a numeric ralue. It should be thought
of as if it were enclosed ia quotes.

<consta*t> ::= <integer> 1 <string>

(formal parameter> ::= <identifier>
The formal parameter is declared by appearance in a
"ACE0 stata.ent. Its value is defined when the macro
is expanded- rules are given below.

<simple variable> ::= <identifier>
Simple variables are declared and assigned *alms
by appearance OD the left side of an assignment statemnt.
They assu.e the t,pe of the right side of the state.ent--
in this version of IIACBOS it cm alrays be coasldered
string type rimce no macro-tima arithmetic is permitted.

<processor variable> ::= <sinpla variable, I <formal parameter>

<processor expression> ::= <constant> 1 <processor variable>
The processor expression is used on the right side of
assignment statements or in actual parameters of CALL
statements. Its value is either the string value of
the constant or the value currently associated vith
the processor variable. If the variable has Do ralne
associated vith it, then the expression is erroneous,

- 14 -

ST"T LEVEL RKPLC

P19 0
4 20 0
421 0
u22 0
923 0
42Y 0
P25 0
426 0
427 0
428 0
429 0
4 30 0
431 0
4 32 0
933 0
43" 0
4 35 0
436 0
4 37
9 38 !Y
4 39 0
440 0
441 0
442 0
443 0
44" 0
4Y5 a
4U6 0
447 0
"US 0
449 0
450 0
451 0
us2 0
us3 0
454 0
455 0
US6 0
457 0
458 0
459 0
a60 0
461 0
Y62 0
463 0
lhll 0
465 0
"66 0
467 0
468
969 i
470 0
471 0
u72 0
413 0

III. IACNOS Larlgaage Description PAGE 23
SOOBCE STATESENT n~co i 6~~~69

and its value is taken to be the am11 string.

Examples:
<identifier> -- LBCD SIS OTBLBl
<intemc> -- 0 123 123456789

PABK' "
point namber)

.9 'STNING'

<stri;g> -- ‘TEXT STEING 'PIIOPLE"S
-123 12.3 956. (l'ixed

<ptocessor expression> -- ABCD 123

II. PBOCISSOB STATEIENTS

ceDeral:
Processoc statements aLrays nave the cnaracter 'X' in

co1um 1. The body of the statement must be in colnans 2-72.
wo continuation statements are allowed. Bitb the exception of
assignaent and null statements. they begin with a reserved word
followed by an operand field. Comments .ay follow the
logical end of the statenent rhea separated by a semi-colon
1;). Blanks .a~ be used freely between elements and keyrorda,
the, are only required to separate a.lphantmeric items.

~rocessoc stateaents are ioat subject to raplacenent (section
I,) or ,a, they be generated by replacemnt. Thus if a 'X' is
generated by replacement in colom 1, IIACNOS will not recognize
the state.ent OS 0 processor statement.

P~OCBSISOI statements are always printed at top level and
while a macro is being edited. They are ne.ec printed at lower
levels (i.e. within a nacro expansion).

lull or co..ellt Statement-
*or.: x ; comments

The null statement is ignored by MACROS. stten in 0 mcro,
it is not encoded, so no space is required for it in the
edited .acro.
Example:

X;The report ,oa are reading is mostly null st&te.ents

,,ACBO Statement
?OSm: X (IACEO <~acroname> (<form1 parameter list>)

or X llCB0 <macroname>
<macroname> ::= <ideetlfier>
<formal parameter list> ::= <foraal parameter> I

<formal parameter list> , <formal parameter>
The IIACRO state.mnt heads ., ..%cro definition. The 11acro-

name is used in CALL StateBents to reference the m(LCr0. It say
be the sa,e as a processor variable identifier. No t"0 nacros
,a~ hare the sale na.8.

The formal parameter list, if supplied declares the
identifiers as formal paeaaeters. A maximrtm of ten may be given.
Details of their interpretation are in the next section.

naldcros my not be nested. The nacm definition ends at
a "END StOtP.elt, the next "ACRO statement, or end-of-file.
IlX*.ClleS: ----r--m

X "ACBO ?IBONACCI(IJ
X RACBO SDECLABATIONS

-15 -

EEPLC

III. RACEGS tangoage Description PAGE 24

SGGSCE STAZERENT n~col 85~~69

'x; 1 “ACNO FWNCTION (TTP,ARG)
. .

STIlT LEVEL

474
475
476
417
478
479
480
481
482
483
484
4R5
486
487
488
489
490
491
U92
493
494
495
496
491
498
499
500
501

ItEND statement
FOP.: X "END

The ilEND statement terminates a macro definition that
has not been otherwise ended.

CALL Statement
For.: X CALL <macroname> (<actoal parameter list>)

Or X CALL <maCromame>
<actual parameter list> ::= <act.al parameter> I

toctual parameter list> , <actual parameter>
<actual parameter> ::= <processor expression>

The CALL statement invokes the macro <macroname>,
rhich must hare been rrreriouslr defined or be available on file
SViiIB.

0
0
0
0 The actual parameter list if present is used to assign

raloes to the formal Parameters. Details are given in the next 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

exomp1es:
x CALL PIBOWmACI (1)

:
CALL JDECLAltATIOlS
CALL FWNCTION ('SIN' , 'I+T')

TITLE statement
Par.: I TITLE <string>

x TITLE
Thoi TITLE statement sets the page title to <string> if

present and causes a page eject. Omitted operand leaves the
title unchaaged and causes a page eject only. The Statement
is not processed within a l mcro definitiov-only when it is
expanded. The TITLE statement is never printed.

502
503
504
505
506
507
508
309
5 10

Exbmple:
x TITLE 'III. HACBOS Language Description'
The above 1.6 used to get the current page title.

0
0
0 I:

%; Assignmemt statement
'I; Rx.: X <leftside> = <processor expression>
1: <leftsIde> ::= <processor variable>
1: The assignment statement is used to set the rmlue of the
1; leftside to the value of the processor expression. If the
X: leftside is a processor variable, then the statement also
S: declares the identifier as such if it has mot been used
I; before. If it is a formal parameter, then the assignment
1; is only retained during this expansion of the macro. The
1: actual parameter, if it mms m processor variable, vi11 not
x: be changed by the assignment.
1:
:; III. IACRO EXPANSIONS

0
0

515
516
5 17
5 I8
519
520
521
522
523
524
525
526
527
52R

0
0
0
0
0
0

1;
1; When a macro is expanded using the CALL statement, the
I: following actions take place:
'x; (1) If any formal parameters mere declared, any walues currently
1; assigned to the formal parameter identifiers are saved on a

0
0
0
0

-16 -

5111-r

529
530
531
532
533
534
535
536
537
538
539
590
591
5 u2
543
59u
545
546
507
548
599
550
551
552
553
55u
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583

LEVEL REPLC

0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0

0”
0
0
0

i
0
0
0
0
0
0
0
0
0
0
0
0

III. “lCAO.5 Language Description

SOUBCE S?ATcntBT

PICK 25

IlACOl 851P69

(2)

(3)

14)

P ashdora stack.
he raloes of the actoal para.eters supplied in the

CXLL stateeeat are assigned to the formal parameter
identifiers. If a.y or all of the actual parmeters are
omitted, then the corresponding formal parameters are
set to the DQll string. Excess actual para.eters *Ire
ignored. ThllS o cell statement Of the for*

X ClLL PUXCTIOX(.3)
for the macro PUIICTIOII above, will set TIP=" and ABG=‘3’.
MCBOS begins fetching inpot fro* the body of the mcro
definition. The processor variables thet are correntl~
active will be used during processing--this includes
any variables 8et by macros that called this one.
When the end of the .acro definition is reached, the
raloes previously associated with the for-1 parmeter
identifiers are restored with the values seved oo the
pushdown stack, if any. ll).CBOS than resumes fetching
statements in the environment of the invoking CALL
statement: but chaages made to variables global to the
called macro are retained.

Tbe maximum depth of macro calls is 10 levels.

IV. BLPL*cE”K”r Ill BAS1 L,IcDIc* STITElIllTS

Xrer, base languaqe statement (i.e. no 'X' in co1 1)
ootside of a macro definition is scanned by IACBOS for the
escape character 'b', which signals a potential replacement.
If the *t' is followed by aa identifier or by another '6' and
an identifier, and if the identifier is that of a processor
variable that is currently active, then a replacement is per-
formed. The single ampersand is osed to denote "packed"
replacement, for free format applications: and the double
ampersand for -non-packed" replacement, for ose where colom
positions are critical.

The ter. "escape name" is used to refer to the escape
character(s) and the immediately following identifier. rot one
case of packed replacement, a period delimiter is included in
the escape na.e.

scanning for am escspe character proceeds fro* left to
right. The scanning field is the entire PoEtran state.ent,
including continuation lines, if the POET=1 option is used:
else it is the columns between the begin and end columns (inclu-
sive) of the 80 character record. The default scanning Columns
are 1 thru 80: they may be changed by the user if needed.

when an escape ns.e if found, and replacement is done (the
identifier has a Value), then the scm is restarted from the begin
co1nmn. If the identifier does not hare a value, then the sea?,
proceeds to the right. Bescanning co!Itinues until 110
.ore escape characters remain, or no .ore replaceeents can be
done. The rescanning mechanism allows construction of escape
rm.es by replacement. The eaximum number of replaceeeats allowed
in a base languege statement iS 30.

specific rules for the replacement modes are as follows:

- 17 -

z
STRT

584
585
586
587
588
589
590
591
592
593
594
595

597
59R
599

LO, __.
602
603
60’4
605
606
607
608
609
6 10
.5 1 1
612
613

III. IACEOS Language Description PmiE 26

L!dVEL REPLC SOUBCC STITEHENT UK0 1 RSEP69

i
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D
0
0
0
0
0
0
0
0
0
"
0
0

;I (1) Packed re
followed t

laceeent--This is indicated by a single '6'
y an identifier, delimited by any special

x; character. If it is delimited by '.', then the period
I: will also be removed from the text--this allows concat-
x; enation of a replacement raloe with a letter or digit.
X: Replacement is done by removing the escape character
I: and the identifier (and period, if necessary) from the
X: text, and inserting the value associated with the iden-
X: tifier in its place. The remainder of the statement to
x; the right of the escape name , extending to the and of the
x: scanning field, is shifted right or left as needed to
X; accommodate the replaceeent value. Blanks will be added
X: at the end of the statement if the value is shorter than
x: the escape name, or truncation will be preformed if the
X: value is longer. In the latter case, loss of non-blank
X: characters nil1 be noted br RACBOS.
X:
'I: (2) Non-packed replacement--This is denoted by a double
X: escape character 'bE* followed by an identifier. The
I; identifier is delimited br say special character (880
x; special rule for period applies). The replacement
I: of the escape name is done without any shifting of the
X: part of the statement to the right of the escape name.
X; If the replacement raloe is shorter than the escape
x; name, then blanks are added to it. If the value is longer,
x; then blank positions folloring the escape name are used

:i
to hold the trailing non-blank characters of the valo4.
If there is still not enough room, even using the blank

x: positions, and discounting trailing blanks of the value,
x; then OICBOS notes the truncation of the raloe.

-18 -

IV. using arcaos-options and JCL requirements PAGE 27

SOURCE ST1TE1ENT RKOl aSCP69 STRT LEVE L REPLC

615
6 16
6 17
618
619
620
621
622
623
6211
625
626
627
62R
629
630
631
632
633
6 34
635
63b
637
638
639
6UO
641
642
613
649
695
646
647
698
6’49
650
651
652
653
654
655
656
657
678
659
660
661
662
663
664
665
666
667
668

0
0
0
0
0
0
0

0
0

Ii
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

X:
Xi
1:
5;
a:
x:
X;
x:
x:
x:
x:
XI
X;
x:
s:
s:
x:
3;
x:
x:
Xi
I:
x:
X:
x:
x:
3;
X;
a;
x:

IIKBOS is a load module named IACaOOl which can be used
from the library PDa.JaI.LOlDaODS. It uses the folloriag
ddnames:

STSPaINT -- Outpot listing. DCB information is supplied by the
progrss--EaC?a=V6,LRaCL=l25,aLKSIZE=3P25. The P6LN option
may be set to suppress the aotput listing in whole or part.

SVSIS -- primary input file. Say be any segoeotial dataset
or partitioned dataset member (or corvzatenatioa) with
logical record length 80 bytes.

SVSOIJT -- IACBOS processed outpllt. DCBs must be sopplied by
user such that LBSCL=dO is wed. Generally, this file
is associated with a temporary dataset that is used later
in the job. An option may be giten to II*CBoS to soppress
writing 01 STSOUT.

SVSLIB -- secondary input file for macro definitions. This
is used to make a library of awxo defioitions available
to "Kaos. If sot required, them the DD statement can be
omitted. If used, the DD statesent aoat define a sequential
dstseet or partitfooed dataset member. Coacatenstioas of
these two items are acceptable if the DCas me the s(Lme.
The logical record length must be 80 bytes.

Options are passed to BACPOS using the PASS field on the
KICC statement. The format is a list of keyrordo followed by
an egoal sign and an integer, separated by COYPU%. The options
and their default valoes are:

BKGC (1) Begin column for scanning of b&se language St*tt
merits. This is ignored if the IOBT-1 option is

XI
x: ---- .--. NNDC leoI
x;

ROUT (0

axed.
End colrren for scanning of base lanogaqe state-
merits. Also ignored if YORT-1.
If oat zero, then the I(ACROS ootput is written

X;
x:
x;
x:
X;
x:
x:
Xi
x:
x:
S:
x:
x:
X;

PGEl (2)

PLIB 101 . .

FORT (0)

pa85 (0)

on STSOUT.
If zero, t&n no otltput listing is produced.
If one. then top lore1 statements only are listed.
If t.0; then baie langoage statements~froa macro
expansions are listed in addition to top level
statements.
If not zero, then the macro definitions edited
from SVSLIB are listed when it is opened.
If not zero, then the PORTRIB statement conVen-
tions are used--columns 1-72 of the first card of
a statement and columns 7-12 of any continuation
cards are treated as a single base language
statement for replacement scanniog. If there *re
no Rollerith literale in quotes in the statement.
then trailing blanks at the end of each (inn We
removed. There is a limit of 270 characters that
may be retained, discounting trailing blanks.
Thus, in the worst case, 3 continuation cards ale
allowed.
If not zero, then *Paint Before Sabstitution',

- 19 -

611 0
672 0
673 0
67Y 0
675 0
676 0
677 0
678 0
679 0
680 0
681 0
682 0
hA3 0
684 0
685 0
686 0
ii87 0
688 0
689 0
690 0
691 0

Iv. Using nACROS-options and JCL requirements PACE 28

SOURCE STATElENT IACOI RSEP69

x;
x:

rbich causes base las ua e statements containing

X:
%;

;~~~~ecba!z~~z;;to 8, %.sted before replacement
, they are listed after replace-

nent only.
x: SIZS (10000) The amount of space (in bytes) to be allocated to
x; storage of the values of variables. Should one
x: find that he has run out (error nessagej, he can
xz rerun vith a lacaer value (UP to 32767). Space ~,
x: could run oat if-a large n&ber of variable; are
'I; all active at the same time.
5:
X: when iucaos is run, the first page of the listing gives the
x: options used, and a number 'SIZY', which is tbe amonnt of free
%;
X:

space in bytes that IIACBOS thinks it has for storage of strings,
macro definitions and control iofornation. n*cNos will use all

X: the free space in the region in which it is run. Sinimsn region
I; size is about IOOk bytes.
X;
X; Errors in IIACROS input are flagged with a text message
x: indicating the type of error.disposition, and location.
X: Severities are associated with the errors ranging from U-16.
x: The highest severity is passed back to OS as a return code
X; that can be tested in JCL to suppress subsequent job steps.

- 20 -

APPENDIX B

CHARMS

An event in our SUMX is represented by a FORTRAN array P(4, N) con-
sisting of four-vectors, one for each participant of an N-particle reaction,

1+2 -3+4+ a..

where numbers correspond to the second index of the array P. As discussed

in the text the purpose of the CHARMS to be described here is to calculate

from P various quantities of interest, which are to be specified at the SUMX

run time.
As described in the SUMX manual’ a CHARM control-card allows five

parameters, Ll, L2,. . D, L5, by means of which user can communicate with

the requested CHARM subroutine. In the descriptions below t’pointertl means

BOUT location, a group of particles is denoted by ij. , . , the total number in

this group by N. The CHARM parameter L5 is always the base pointer for

the array P.

(1) CHARM2
Invariant mass and four-momentum transfer for a group of particles.

Ll : pointer for answer

L2 : N
L3 : ij. -.

L4 : 0 to get M = SQRT (Pi f Pj +
[

..d23’

-n to get A2= -(Pi + Pj + . . . -Pn)2 .

(2) CHARM3
Four-momentum transfer (A2), production cosine (COS) and momentum

(Q) for a group of particles in the overaH center-of-mass.
Ll : base pointer for answer vector A

A(l)=COS ,
A(2)=A2 - dn (kinematic minimum),

A(3)=Q (calculated only if Ll is negative) .

L2 :N
L3 : ij.. .

L4 : 1 or 2 to specify with respect to beam or target.

- 21 -

(3) CHARM4

Two or three body decay angles.

Ll : base pointer to answer vector A

L2 : N (2 or 3)
L3 : ij.. .
L4 : ab (12 or 21 depending on where 1 or 2 is to be incident)

The calculated decay angles have the following meaning. Let

R = Pi f Pj + . . .

and T be such that
a+b=R+T .

Let i be the normal to the production plane,
.
y // ??xz in the R-rest frame, or

// zxg in the laboratory frame .

Then in the rest frame of R define the t-channel helicity (Gottfried-Jackson)

axes as A .
z=a

and ,. A *
x=yxz.

The s-channel helicity axes are related to the above by a rotation about the
common y-axis. Let

4 ,.
ZH = R in the overall center-of-mass,

or

and

= -T in the R-rest frame ,

A ,.
YH=Y 3

Then using i as the analyzer CHARM4 calculates the following

A(1) = lH . ;

A(2) = tan-’ (lH . ;//ZH * ;) ,

- 22-

A(3)=;. ,^ ,

A(4) = tan-’ (2 . i/i - j) ,

A(5) = i . iH ,
LI A A

A(6) = tan-l (I . x# - y,),

where the angles are in degrees.

It appears in this scheme that because STJMX treats L3, L4 as integers

particle index greater than 9 cannot be accommodated. One solution, as long

as they need not be addressed at once, is to move base pointer L5 within P or

to rearrange members of P before use. Far better solution is to TTask11

SUMX to regard these parameters as character strings, so that a number

system of arbitrary base can be employed.

- 23 -

APPENDIX C

JCL EXAMPLES

We give examples of JCL statements necessary for runs on the System

360/91 as implemented at SLAC and at MPI. Catalogued procedures used

are current ones in May 1972.

(1) At SLAC

// JOB card

//J~BLIB DD DSN=WYL. ED. PUB. Ln39, DISP=(SHR, PASS)
//MACRO ExEc PGM=MAcROO 1

//SYSPRINT DD SYSOUT=A

//SYSOUT DD DSN=&MOUT, DISP=(NEW, PASS), UNIT=SYSDA,

// SPACE=(TRK, (ZOO, lo)), DCB=(RECFM=FB, LRECG-80, BLKSIZE=3200)

,‘/SYSLIB DD DSN=WYL. ED. JAP. SRCS(SMCRl), DISP=SHR

// DD user macro library

//SYSIN DD *

i
input text

1
//SUMX EXEC FORTHCLG, PARM. FORT=‘OPT=2’

//FORT. s~sm DD *

user FORTRAN source, if any
I

//LKED. SYSLIB DD DSN=WYL. ED. PUB. LIBS, DISP=SHR

// DD DSN=SYSl. FORTLIB, DISP=SHR

// DD DSN=SYSS. FORTLIB, DISP=SHR

// DD DSN=SYS4. FORTLIB, DISP=SHR

//LKED. SYSIN DD *

INC LUDE SYSLIB (SUMX)

ENTRY MAIN

//GO. FTlOFOOl DD user DST description

//GO. SYSIN DD DSN=&MOUT, DISP=(OLD, DELETE)

- 24 -

(2) At MPI

// JOB card

//D EXEC PGM=MACROO 1, REGION=300K

//STEPLIB DD DSN=LOAD. JHP, DISP=SHR

//SYSLIB DD DSN=SOR. JHP(MACLIB), DISP=SHR

// DD user macro library

//SY SPRINT DD SYSOUT=A

//SYSOUT DD DSN=MOUT, DISP=(NEW, PASS), UNIT=DISK,

// SPACE=(TRK, (200, lo)), DCB=SOR. JHP

//SYSIN DD *

input text

//S EXEC SUMX

//C . SY SIN DD *

user FORTRAN source, if any I
I /

//L. SYSLIB DD DSN=LOAD. JHP, DISP=SHR

DD DSN=SYSl. FORTLIB, DISP=SHR

//G. FTlOFOOl DD user DST description

//G. SYSIN DD DSN=MOUT, DISP=(OLD, DELETE)

- 25 -

REFERENCES

1. Although the technique is evidently general, we discuss a particular

application to the CERN version of the SUMX described in J. Zoll,
CERN Track Chamber Program Library Manual (1970).

2. John Ahern, MACROS-Statement Oriented Macro Processor, SLAC

Computation Group User Note 29 (1969).

3. P. J. Borwn, A Survey of Macro Processors, Annual Review in Auto-
matic Programming, Vol. 6, Part 2 (Pergamon Press, New York, 1969).

- 26 -

