SLAC-151
UC -34
(EXP) (EXPI)

ON THE USE OF A MACRO PROCESSOR WITH SUMX

JOSEPH C. H. PARK

STANFORD LINEAR ACCELERATOR CENTER

STANFORD UNIVERSITY
Stanford, California 94305

and

MAX-PLANCK-INSTITUT FUR PHYSIK UND ASTROPHYSIK

Munich, Germany

PREPARED FOR THE U. 8. ATOMIC ENERGY
COMMISSION UNDER CONTRACT NO. AT(04-3)-515

June 1972

Printed in the United States of America. Available from National Technical
Information Service, U. S. Department of Commerce, 5295 Port Royal Road,
Springfield, Virginia 22151.

Price: Printed Copy $3.00; Microfiche $0.95.

ACKNOWLEDGEMENTS

I am grateful to Professor R. F. Mozley of the Stanford Linear Acceler-
ator Center for encouragement in writing this report and to Professor
H. Billing of the Max-Planck-Institut flir Physik und Astrophysik, where part
of the work was done. It was a pleasure to work with Mr. J. Ahern as mem-
bers of the experimental group D at SLAC.

-ii -

TABLE OF CONTENTS

- iil -

I. Introduction.

O, AnExample. e e e e v e e e .

II. Limitations and Errors. et e e e e e e
AppendiX A . v . v i v v e e e e e e e s e ae e e
AppendixB . ., ... e e e e e e e c e o e s e e .
Appendix C . . v v ¢ 4 v e st s e e e e e e e e s
References . . . ¢ v v o v v v v o e e e e s .

LIST OF TABLES

I. Input Text. e st e et e e e e . . e .

II. Output Text e e s e e s e e e e s s e e e e e e e .

M. Macro Library . . « « « + « « « & e s s e e a e

I. INTRODUCTION

If the SUMXl control statements are considered as forming a base
"anguage”, then the power of equipping it with a maero facility becomes
obvious. In the following we describe a simple scheme which consists of
making one preprocessing pass through a general purpose (that is, base-
language -independent) macro processor called MACROS. 2 The input text is
prepared using base language statements (preferably in terms of variable
symbols rather than fixed values) interspersed with preprocessor statements,
such as macro definitions, macro calls, and value assignments to symbols,
Prior to processing, this text is "compiled" by MACROS into a target text
consisting entirely of base language statements.

For readers who are not familiar with, for example, macro-assemhblers

we list some of the advantages thus gained:

(1) Program parameterization.

This is achieved explicitly through the use of symbols for such quantities
as number of channels, channel width, etc., the value assignments for which
are delayed until the run fime so that it is trivial to change them to any desired
values, Furthermore names (symbols) are more convenient than numbers
(BOUT locations).

(2) Shorthand notation and repetitive text generation.

This aspect of a macro processor is like SUBROUTINE in FORTRAN,
apart from in- vs. out-of-line distinction. Many base language statements
can be compressed into one macro call, if necessary, with variable arguments.

(3) Library facility. A

Definitions for general purpose or frequently occurring macros may be
collected into an external library to be shared among different jobs.

As discussed in Ref. 3 the advantages listed above are common features
of macro processors. There are further advantages peculiar to our appli-
cation as described below,

For experiments with large statistics it is desirable to minimize the
"length'' of the input data set (Data Summary Tape). One solution is to have
for each event on a DST only the essential physics information such as the

energy-momentum four-vectors and not the derivable quanﬁties like invariant

-1-

masses, momentum-transfers, and decay angles. They are then calculated
by means of CHARMs during the SUMX run, A peculiar advantage arises in
our scheme because one and the same macro call is used to generate names
for quantities of interest, prepare the corresponding CHARM calls to calculate
them, and assign BOUT locations for stofing the named results. The chance
for error is thus greatly reduced and since each run is explicitly self-
contained it is easy to cross-check.

The present scheme was developed by John Ahern and the author as
members of experimental group D at the Stanford Linear Accelerator Center
and has been in use at SLAC since 1968.

As described elsewhere? MACROS is written in PL/I taking advantage of
its list-processing facility with a small part dealing with the operating system
such as that for requesting core-space in assembler language. All CHARMs
and SUMX related routines are written in FORTRAN IV except those '"pots
and pans' ones such as vector- and matrix-manipulating routines which are
coded in assembler language. These programs are running on the IBM system
360/91 as implemented at SLAC and with some minor differences on a similar
system at Max Planck Institut fur Physik und Astrophysik.

The capability of the present version of the macro processor, MACROO1,
is somewhat limited because it lacks macro-time features such as macro-time
variables (to do arithmetic with) and conditional branches (to be able to define
macros recursively).

In Section IT our scheme is described by an actual example with enough
variety to illustrate most features of MACROS. Appendix A gives a formal
description of the processor for reference purposes. In Appendix B we
briefly summarize various CHARMs used in the example. In Section III
several examples of errors in using the processor are collected, which also
serve to show the limited capability of MACRO01, Appendix C has models
for Job Control Language statements required to run. o

II. AN EXAMPLE

We illustrate the use of MACROS in SUMX by the example of Table I
(referred to as A), which consists mostly of preprocessor statements (PPS)
mixed with SUMX control (base language) statements. After one pass through
MACROS this text turns into the target text consisting entirely of the base
language statements as shown in Table I (referred to as B), which is then
used to control SUMX. The macro library used in this example is shown in
Table INT (referred to as L).

Each PPS is one card long (columns 2-80) and is identified by the warning
marker % in the first column. The use of the warning marker serves to
speed up the processing time., Comments can be added after the marker ; as
in line 1A. Line 2A calls for a macro TWINKLE. Since it is not defined in
the text scanned so far the macro library is searched. MACROS being a one-
pass processor macros must be defined and values must be assigned to symbols
before they are used. This has the advantage of allowing local redefinitions
and reassignments.

Lines 96-102L for TWINKLE show how to define a macro. Symbols
(escape names) to be substituted are preceded by the escape character &,
double escape characters && meaning the value must be placed starting at
the specified column (left-justified). In MACROS no distinction is made
between global (inter-macro) and local (within macro) symbols; any of &A,
&B, or &C in TWINKLE may be left out of the parameter list, in which case
values can be assigned by the assignment (=) statement appearing anywhere
before use.

A macro definition is terminated by MEND, except when it is followed by
another macro definition, In such case the missing MEND is assumed by the
processor, since the present version does not allow a nested macro definition.

Returning to TWINKLE the parameter A can be a character string like
11000, 100" or '"KEEP 2'. Unsigned integers and fixed point numbers (digits
with a decimal point) do not need be surrounded by ' as in the second argu-
ment in TWINKLE. Line 1A expands into lines 1-6B.

Line 3A calls for a macro LITTLE which, as defined in lines 103-108L,
illustrates nested macro calls. Other macro calls up to line TA are similarly

straightforward. As seen in the expansions (lines 7-62B) the main purpose

-3 -

I bt et gt bt et (et o bt et
QOVO~NTWVMPPYPN=O OO NP N

NN
o N

24

TABLE I

INPUT TEXT

%3 BEGIN 3 PRONG SUMX DECK

CALL TWINKLE{'1000420C0"y1,y *PHOTON4P ,ea P + 2 PIONS 4/72')
CALL LITTLE(.005)

CALL T33

CALL MT3{'AND'y141441244,'PION CHANELS?')
CALL STAR

CALL MT4('AND?Y'314314412,4,29,'E>5,51)
CALL C33

*SELECT

% CALL BET(404M45,.6244,86,'RHO!")

*BLOCK 6

£ CALL SYMBOL

T WGT=10

3¢ 20 32 M W N N

MACRD ANGLE(C,4CS4PH)
CALL €OS{C,CS)
CALL PHI(C.PH)
MACRO WONDER(N)

VA 34N
CALI MASS('P PI-*,1.08,M34)
CALL MASS('P PI+t,1.08,M35)
CALL MASS('PI PI',.,28,M45}

NP T=40

CALL DELSQ('RHO?,D45}
CALL ANGLE('RHO IN T-CHAN HEL FRAME',CJ45,P.t45)
CALL ANGLE(*RHD IN S=CHAN HEL FRAME',(H45,PH45)

3 I X 26 2R 3¢ XM 2R X XM

2 NPT=1?
FINISH H

S MEND

% CALL WONDER(26)
2 CALL WONDER({25)
% CALL WONDER(24)
2 CALL WONDERIZ23)
*ALL DONE

DO~ NP N~

*NEW PASS
PHOTON +#
*DISCARD
*TAPE

10
*SELECT
TEST
TEST
TEST

AND
TEST

TEST

TEST

TEST

TEST

TEST

TEST

TEST

TEST

TEST

AND

AND
*CHARM
SE TUP
*SELECT
TEST

TEST
TEST
TEST
TEST
TEST
TEST
AND
AND
AND
*CHARM

M 34
M35

TABLE II

OUTPUT TEXT

10004200

1

14

12

-14

P + 2 PIONS 4/72

816
BIG

TRUE
TRUE

EQU
EQU

EQU
EQU

EQU
EQU

TRUE
TRUE

EQU
EQU

EQU
EQu

TRUE
TRUE

EQU
EQU

TRUE

TRUE
TRUE

BET
BET
BET
BET
BET
BET
TRUE
TRUE

TRUE
TRUE

~N N

+005

301
302

-301
=302

303
304

-303
-304

305
~305

12,

5.5

721
722

rn N

WEIGHT

PROB

RJ4CT BY 1ION
PROTON IDENT BY ION

P Pl+ PI-UNIQUE

P PI+ PI-AMB

P PI+ PI-ALL

P K+ K-UNIQUE

‘P K+ K-AMB

P K+ K=-ALL

P PBAR P

PION CHANELS

E>5.5
34 701
35 701

Table II (continued)

66 M4S 2 723 2 45
67 COSP- 0 3 T24 1 5 1
68 COSP+ 0 3 727 1 4 1
69 COS+- 0 3 730 1 3 2
70 A4S 4 154 2 45 12
71 A34 & . 734 2 34 21
T2 A35 4 T44 2 35 21
73 *SELECT
T4 TEST 40 RHO
75 723 BET 62 +«86
T6 *BLOCKS
77T EVA 26
78 INVARIANT MASS OF P PI-
79 100 «C4 . 1.08
80 T21 10
81 INVARIANT MASS OF P PI+
g2 100 <04 1.08
83 722 10
84 INVARTIANT MASS OF PI Pl
85 100 « 04 .28
86 723 10
87 DELSQ OF RHO
88 100 .02 40
89 731 10
30 COSINE OF RHO IN T-CHAN HEL FRAME
91 40 «05 -1. 40
32 17156 10
g3 PHI OF RHO IN T~CHAN HEL FRAME
95 757 10
36 COSINE OF RHO IN S-CHAN HEL FRAME
97 40 «05 -1. 40
38 758 10
99 PH] OF RHO IN S~CHAN HEL FRAME
100 24 15. -180. 40
101 759 10
102 FINISH 1
103 EVA 25
104 INVARIANT MASS OF P PI-
105 100 +04 1.08
106 721 10
107 INVARTANT MASS OF P PI+
108 100 <04 1.08
109 722 10
110 INVARIANT MASS OF PI PI
111 100 «04 «28
112 723 10
113 DELSQ OF RHO
114 100 .02 40
115 731 10
116 COSINE OF RHO IN T—~CHAN HEL FRAME
117 40 .05 e 40
118 756 10
119 PHI OF RHO IN T~CHAN HEL FRAME
120 24 15. -180. 40
12t 757 10

e ses sse sew

> * e LN) LN

180 FINISH 1
181 *ALL DONE

701
701
701
701
701
701
701

O E -~ -

MACRO SYMBOL
COSL='-1.,"
DCOS=.05
DDEL=.02
DELL="!
DM=.04
DPH]=15-
FAC=1"?
FOLD=1?
NBIT=4
NCOS=40
NDEL=100
NM=100
NPHI=24
NP T=?
NT=1?
NT2= "
NT3=14
NT4=t1
LOG=11
PHIL='~-180."
SGM=11*

TABLE IIT

MACRO LIBRARY

;+ DEFINE DEFAULT VALUES FOR SYMBOLS
; LOWER EDGE FOR COS-HIST.

;i CHANNEL WIDTH FOQR COS-HIST,

;3 CHANNEL WIDTH FOR DELSQ-HIST.

i LOWER EDGE FOR DELSQ-HIST,

;7 CHANNEL WIDTH FOR MASS-HIST.

i CHANNEL WIDTH FOR PHI-HIST,

+ FACTOR TO SCALE HIST.

;3 'FOLD' OR ANYTHING TO FOLD BLOCK?T PLOT,
i NBITS FOR BLOCK? PLOT,.

+ CHANNEL NUMBER FOR COS-HIST.

;7 CHANNEL NUMBER FOR DELSQ HIST.

3 CHANNEL NUMBER FOR MASS HIST.

i CHANNEL NUMBER FOR PHI HIST.

s PRINCIPAL TEST NUMBER

5 TEST ASSOCIATED WITH MULTIPLICITY ELEMENT,
1]

A

H

H

L}

L}

’

H

H

;

'LOG* OR ANYTHING TO GET LOG HIST.
LOWER EDGE FOR PHI HIST,

LOCATION OF ERROR (SIGMA),

SGM2=11
SGM3=tt
SGM4= 11
WGT=" LOCATION OF WEIGHT
WGT2=11
WGT3=11
WGTa= 11
Xe=1" LOWER EDGES FDR BLOCK? PLOT
yL="1?
3 DEFINE BLOCK6 MACRDS =~ ==——=—mcceemeememmoee o ————————————
MACRO ONE {TITLE yN,DX XL 4X)
24 TITLE
2&N 230X 3&XL 3aNPT QAFAC 84L0G
48X BANG T 8N T 2LSGM -
% MACRO MASS{SYSyMLyX)
% CALL ONE(' INVARIANT MASS OF 8SYS',NM,DM,ML,X)
T MACRG COS (SYS4X)
% CALL ONE(' COSINE OF &SYS',NCOS,DCOS,COSLyX)
% MACRO PHI(SYS,X)
% CALL ONE (' PHI OF &SYS',NPHI,DPHI,PHIL,X)
% MACRO DELSQ(SYS,X}
€ CALL ONE ('DELSQ OF &SYS',NDEL,DDEL,DELL,X)

z:

BLOCK7 MACR

0S5

£ MACRO TWO(SYSX,SYSY4X,Y)

485YSX v
&&NPT
3&NX 4ANY
Y34 asY

EH

DEFINE SELE

8&5YSY
L4NBIT
440X
4&NT
CT MACROS

Se.
&4FOLD

440Y &&XL

% MACRD TEST(O+NyMyA4B+C)

TEST 428N

44M
% MACRD BETI(N,
2 CALL TEST{'B
Z MACRD BIG(N,
Z CALL TESTL'B
% MACRD EQU (N,
T CALL TEST{'E
% MACRO EQUZ{N
Z CALL EQU(N,M

4 o8

a44M
MACRO TRUE (N

240
MyAsB,4C)
ET*yNyMsA,8,C)
M,A,C)
IGYyNyMyAy "1 ,4C)
M'A!C)

QU yNgMpA, Y 1,C)
.M,TlvTZ;C)
» T1,C)

a&A 4B

EQu 3872

tMyC)

CALL TEST{YTRUE"sNsM,y' 1,17, C)

Table OI (continued)

66
67
68
69
70
71
72
73
T4
75
76

112
113
114
115
116
117
118
119
120
121

123
124
125
126
127
128
129
130

£ MACRO MTZ2(04NsTl,y T2,C)

% CALL TRUE(N,T1,C)

420 &L T2 TRUE

T MACRD MT3(04N,T1,T2,T34C)
T CALL MT2(DyNyT14T24C}

440 4T3 TRUE

£ MACRO MT4(0sNy Ty T29T3474,C)

% CALL MT3{04N,T1,72,13:C)

&40 24 T4 TRUE

MACRD SET2({Tl,72}

NT=T1

NT2=T2

MACRD SET4(Tls 72,7374}

CALL SET2(TL,T2)

NT3=T3

NT4=Té4

MACRO NULLT

NPT=1"?

CALL SET4(4y4)
+ INCIDENT ENERGY INTEVALS FOR PHOTO-PRODs EXP —e—e—wec——a—cacccaaaa -
MACRO E(N,A,B]}

CALL BETINWEl4A4B4*"])

MACRO EINT

CALL E(2244.+545.5)

CALL E{2345.5¢7.}

CALL E(2447+:9.)

CALL E(ZS’QI’IZC)

CALL E(26412,.+30.}

CALL E{2945.5y 30, .

Z: TWINKLE LITTLE STAR COMMON TD MOST SUMX JOBS e e e e e
% MACRO TWINKLE{A,B+C) 3+ PROLOGUE
*NEW PASS A3A

&C
*DISCARD 4B

*TAPE

10

*SELECT

MACRO LITTLE (A) 3 SELECT BY WEIGHT AND PROBABILITY

CALL BIG{1441040,'WEIGHT!')
CALL BIG(124+T+A,'PROB"}

CALL MT2(*AND'41,14,12)
CALL EQU{16,'=14"y'~1",'RJCT BY ION*}

CALL EQU{1B,*-14',1,'PROTON IDENT BY ION')

MACRO STAR 5 SET UP 4-VECTOR BANK

E1=701

*CHARM

SETuUP 8 44E1

*¥SELECT

¥ CALL EINT + INCIDENT ENERGY INTEVALS

%3 SYMBOLS AND CHARMS FOR 1 + 2 4ae 3 + 4 + 5 rseceecdrercessros——-—=-
2 MACRO MCHM({IX}
MaalXx 2 SAMRAIX &&N 841X 48E1L
% MACRD CCHM{IX)
CRalx 3 &3C881IX &&N 441X &&1 &&E1
T MACRO ACHM({IX,IY}
ARATIX 4 ALARLTX &&N a&IX a31Y &&E1L
MACRO C 23
M34=721
M35=722
M45=723
L24=T724
D34=725
C35=727
D35=728
C4%=7 30

3Q 20 39 3G A% 3G 20 29 20 2Q 28O0 20 2Q 26 20 X9 M XN

36 28 2N 28 I IQ IQ e

INVARIANT MASSES

we

PRODUC TION COSINES AND DELSQ'S

-e

2 3¢ 28 26 28 20 X 024

Table II (continued)

131
132
133
13
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

39 3¢ 32 38 29 30 3¢ 2R 20 2N

D45=731
A34=T734
A35=T44
A45=754
CJ45=756
PJ45=T757
CH45=T758
PH45=759
CH&5=760
PW4S=761
N=2

DECAY ANGLES

-e

J {H)} REFERS TQO T-CHANNEL (S-CHANNEL) HELICITY FRAMES
C (P) FOR COS (PHI)

- ae

NO OF PARTICLES

we

*CHARM

z
S
2

COSP- 0
CospP+ 0
COS+= 0

2
2
z

CALL MCHM(34)
CALL MCHM{35)
CALL MCHM (45)
44034
24C35
38&C45

&83E1
84l
43€1

www
et
[t
N

CALL ACHM({45,12)
CALL ACHM(34,21)
CALL ACHM(35,21)

23 MACROS TO SELECT CHANNELS =--==mn--- D

28 29 3¢ 28 38 26 28 2@

MACRO H2 (N1 ,N2,N3,11,12,D)

CALL EQU2{N1,'-4%'411,12,'4D,UNIQUE")

CALL EQUZ{N2y"~4 "1, '~A111%,'-&]2%,*3D,AMB"Y)
CALL MT2(**,N3,N1,N2,'aD.ALL")

MACRC T33

CALL H2(2,344,5301,302,'P PI+ PI-")

CALL H21{6,748,:303,304,P K+ K=')

CALL EQU21{9,'=41,305,'-305"','P PBAR P'}

of these is to define the master test (TEST 1) to eliminate unwanted events
before CHARM calls are made to calculate various quantities to be SUMXed.
The latter is done by a call (line 8A) to C33 (lines 122-151L). As shown C33
in particular assigns BOUT locations to various names for quantities being
calculated.

MCHM (lines 116-117L) shows how a symbol can be concatenated and
then substituted. Note here that the variable N is not included in the param-
eter list. Since it is comparatively slowly varying it is sei by assignment
(line 141L) rather than explicitly as an argument of the macro. €33 expands
into lines 63-72B. For completeness explanations for CHARMSs used are
given in Appendix B.

Unassigned escape names, i,e., those which are preceded by & but have
not yet appeared in assignment statements are left unchanged in the text, This
choice rather than automatic null-assignment is made because of possible use
in other language such as in FORTRAN IV in which the character & is used to
designate statement labels. The purpose of SYMBOL (lines 1-31L) is to assign
default values to symbols occurring globally as in the BLOCKS6 and 7 macros
(lines 33-50L), any of which may be set and reset before use as in lines 13,
22, and 26A.

Macros can, of course, be defined outside the library by the user as in
lines 14-28A. The corresponding calls (lines 29-32A) result in SUMX control
statements for a set of histograms repeated for different incident energy
intervals as shown in lines 77-180B.

It was often asked, "in this scheme how many lines can be produced hy
a single line of typing?'. The answer is obviously, "one-to-all", because all
of the lines say, in this example can be lumped into a single macro. The
need for doing so may conceivably arise in on-line applications,

It is also said that some of these features are available through additional
programming in SUMX. This must be self-evident, because MACROS itself
is a piece of program. The idea being propounded is in the use of a general
purpose macro processor. In this respect it would have been better, if the
""macro part" of the 360 assembler could easily be detached so that it could

also be used elsewhere,

- 10 -

.._'[‘[_

STHT

0@~ Dy N

Pt et et e
ST

205
206
208
209
210
211
212
213
215
216
217
218
219
220
221
222
2213
224
225
226
227
228
229

LEVEL REPLC

[=J=RejoRaRalsl JeoloNoloRsl NeoNelsNoleNoleNoRoRolaNo e Nole)

m m

oomm

*HKERROR IN
SEV= 8§
*XXERROR IN
SEV= 8
=kFERROR IN
SEV= &
FXEERROR N
SEV= 8
*&EERROR IN
SEV= 8
**¥%ERROR IN
SEV= 8
**XERROR IN
SEV= &
*%¥CRROR N
SEV= g8
*¥¥ERROR IN
SEvV= &

L LTI LT RV T

M

PTRL LT

N

e W we wr g

32 38 38 92 1 38 N a8 P o€ IE 3¢ N P 6 N AE M 30 A 30 30 2 N 28 M 3¢ N 3@

¥ME

N e

¥ M ge
Py

STMT
S1G
STMT
S1G
STMT
SIG
STMT
SIG
STMT
SIG
STMT
SIG
STMT
SIG
STMT
$1G
STMT
SIG

SOURCE STATEMENT

MACO1L

Trivial syntax errors are evident from diagnostic messages from MACROS.

In the following we describe examples of errors which require some explanation.

(1) Scanning for escape names is done from left to right,
effect can arise from concatenating names.
MACRO ACHM defined in lines 120-121 of Table IH:

Al2=1234
CALL ACHM(12,34)
4

which is as expected.
A=T¢

CALL ACHM(12434)
A

1234

However,

12

A_&N

&&N

34

34

A peculiar

For example in the use of the

PAGE

85EPOY

LEE1

{2) When a substitution for an escape name is done, the line of text is

rescanned (because the value itself may be an escape name) until all possible

substitutions are carried out.

MACRO M1l{a}
&A STAR

ND (GENERATED]
MACRO M2{a)

CALL M1(*&A LITTLE*)

MEND

CALL M2(TWINKLE")

23LsLEVEL= 24MACRO=M]
PART OF STYI1/KEEPL VALUE
231 4LEVEL= ZyMACRO=M1
PART DF STMT/REPL VALUE
231,LEVEL = 2,MACRN=M]
PART OF STMI1/REPL VALUE
23 sLEVEL= 2,MACPO=M]
PART OF STMTI/REPL VALUE
231.LEVEL= 2,MACRD=M1
PART QF STMTI/REPL VALUE
Z314LEVEL= 2,MACRO=M1
PART OF STVMT/REPL VALUE
2313LEVEL= 2,MACRO=ML
PART OF STYT/RFPL VALUE
231y LEVEL= 2,MACRO=M]
PART OF STMT/REPL VALUE
231 43LEVEL= 2yMACRO=M1
PART OF STMI1/REPL VALUE

LOST
LOST
LOST
LOST
LOST
LOST
LOST
LOST

LOST

This can cause a loop as in the following example:

IN
IN

IN

yMODEL STMT=

PACKED REPL

yMODEL STHMT=

FACKED REPL

yMODEL STMT=

FACKED REPL

+MODEL STMT=

PACKED REPL

LMODEL STMT=

PACKED REPL

fMODEL STMT=

PACKED REPL

+MODEL STMT=

PACKED REPL

yMODEL STMT=

PACKED REPL

fMODEL STMT=

PACKED REPL

223, LAST
2Z3,LAST
223 ,LAST
223,LAST
2234LAST
723,LAST
2z3.LAS5T7
2234 LAST

2234La5T

TOKEM="A"
TOKES="A"
TOKEN=TA!
TOKEN=TAT
TOKEN="A"
TOKEN=TA!
TOKEM=TA®
FrKEM=TAL

TOKEN='A!

2105a%8

1

‘I

SYOYYE ANV SNOILV.LIINIT

STMT

23

234
235
236
237
2138
239
240
241
242
243
245

248

249
250
251

252

253
254
255

256

CONDITION ERR

LFVEL REPLC

*XERROR IN
SEv= 8
*&XERROR IN
SEv= 8
*+xxCRROR IN
SEV= 8
A &ERROR IN
SEv= 8
*EFERROR IN
SEV=s 8
*#EXERROR IN
SEv= 8
*#%¥FRROR IN
SEV= 8
*%x2ERROR IN
SEv= 8
*xkERROR IN
SEV= 8
+k&ERROR IN
SEvV= 8
*xkERROR IN
SEV= 8
*k%ERROR IN
SEvV= 8
*¥XERROR IN
SEv= 8
*¥xERROR IN
SeEv= 8
X ¥ERROR IN
SEV=12
31

SocoNnNOOomMmm COOO0O0ON
[3V]

Qomm

*%¥ERROR IN

SEV=16

STMT
SIG

STMT
SIG

STMT

STMT
SIG
STMT
SIG
STMT
SIG
STMT
SIG
STMT
SiG
STMT
SIG
STMT

STMT
SIG
STMT
SIG
STMT
SIG
STMT
SIG
STMT
T00

we ®F aa Wt

a8 AT 39 29 30 2 IR 29 N

STMT

SOURCE STATEMENT

231 4LEVEL= 2,MACRD=M]
PART OF STMT/REPL VALUE
231 LEVEL= 2,MACRO=M1
PART OF STMT/REPL VALUE
231,LEVEL= ZyMACRO=M1
PART OF STYT/REPL VALUE
231,LEVEL= 2,MACRO=M1
PART OF STMT/REPL VALUE
2312 LEVEL= 2,MACRO=M]
PART OF STMT/REPL VALUE
231 sLEVEL= 2,MACRD=M]
PART OF STMT/REPL VALUE
231 yLEVEL= 2,MACRO=M1
PART OF STMT/REPL VALUE
231,LEVEL= 2,MACRO=M1
PART OF STMT/REPL VALUE
231 ,LEVEL= 2yMACRO=M1
PART OF STMI/REPL VALUE
231, EVEL= 2,MACRO=M1
PART OF STMT/REPL VALUE
231 yLEVEL= 24MACRO=M]
PART OF STMT/REPL VALUE
231 4LEVEL = 2,MACRO=M1
PART OF STMT/REPL VALUE
231 4LEVEL= Z,MACRO=M1
PART OF STMT/REPL VALUE
231,LEVEL= 24MACRD=M1
PART OF STMT/REPL VALUE
2314LEVEL= ZyMACRO=M]
MANY REPLACEMENTS

A LITTLE LITTLE

line is 32.

LOST
LOST
LOST
LOST
LOST
LasT
LOST
LOST
LOST
LOST
LOST
LOsST
LOST

LOST

IN
IN
IN
IN
IN
IN
IN
IN
IN
iN
iN
N

IN

yMODEL STMT=

PACKED REPL

yMODEL STMT=

PACKED REPL

yMODEL STMT=

PACKED REPL

+MODEL STMT=

PACKED REPL

fMODEL STMT=

PACKED REPL

pMODEL STMT=

PACKED REPL

+MODEL STMY=

PACKED REPL

sMODEL STMT=

PACKED REPL

yMODEL STMT=

PACKED REPL

yMODEL STMT=

PACKED REPL

yMODEL STMT=

PACKED REPL

+MODEL STMT=

PACKED REPL

sMODEL STMT=

PACKED REPL

+MODEL STMT=

PACKED REPL

+MODEL STMT=

2234 LAST
223y LAST
2234LAST
2234+ LAST

223,LAST

223,LAST

223,LAST
2231 LAST
2234LAST
2234, LAST
223 yLAST
223 9LAST
2234 LAST
223,LAST

223, LAST

MACO1
TOKEN='A?
TOKEN='4?
TOKEN='A?
TOKEN='A?
TOKEN=TA?
TOKEN='A"
TOKEN='A"
TOKEN="A"
TOKEN='A?
TOKEN='A"®
TOKEN="A?
TOKEN="A?
TOKEN='A?
TOKEN="A!
TOKEN="A"'

PAGE

6SEP69Y

LITTLE LITTLE LITTLE LITTLE LITTLE LITTLE LITTLE LITT

which also serves to indicate that the maximum number of replacements per

The solution is, of course, io redefine the MACRO as

MACRO M3(B)

CALL M1({*'8B LITTLE'}

MEND

CALL M3 ('TWINKLE")

TWINKLE LITTLE

STAR

(3) Processor statements are not subject to replacements as in

MACRO M{1.+C}
CALL M&I (C)
MEND

CALL M3, '"TWINKLE"}

266,LEVEL=10,MACRO=M

MACRO DEPTH EXCEEDS MAXIMUM

s MODEL STMT=

DCCURRED IN STATEMENT 00322 AT OFFSET +00266 FROM ENTRY POINT

253,LAST

MACROCALL

TOKEN='M!

2105417

4

p— 81 -

STAT

LEVEL REPLC

CALLED,

267
268
269
270
271
272
273
274
275
276
277
278
279
281
283
285
287
289
291
293
295
297

CONDITION ERR

[sNeRaloRalio]

Vo~ P gN=OOMMM

10
ek 3k

CALLFED,

299
300
301
302
303

o000

PAGE

SOURCE STATEMENT MACO1l BSEP69

IN STATEMFNT 00789, FROM PROCENURE WITH ENTRY POINT MACROS

ELRF I L O R]

3¢ ¢ 28 ¢

Pt et el et s el et et et s

ERROR IN STMT

(4) Because of the lack of MACRO-time arithmetic and conditional GOTO
statement, it is obvious that a MACRO cannot be defined recursively. This is

what happens:

MACRO R{A,B,C}

I aM AT LEVEL &A
CALL R(ByC'v)
MEND

CALL R(142,3)
AM AT LEVEL
AM AT LEVEL
AM AT LEVEL
AM AT LEVEL
AM AT LEVEL
AM AT LEVEL
AM AT LEVEL
AM AT LEVEL
AM AT LEVEL

I AM AT LEVEL
298 LEVEL=104MACRO=R +MODEL STMT= 275,LAST TOKEN='R!

W

et e Pt

SEV=16 MACRO DEPTH EXCEEDS MAXIMUM

OCCURRED IN STATEMENT 00322 AT OFFSET +00266 FROM ENTRY POINT MACROCALL

IN STATEMENT 00789, FROM PROCEDURE WITH ENTRY POINT MACROS

E
%5
E
%3
z;

which also serves to show that the maximum level of nested MACRO call is 10.

-—=M A C R O S PROCESSING COMPLETED,HIGHEST SEVERITY=16 2105418

APPENDIX A

The following is reproduced from Ref. 2,

III. BACROS Language Description PAGE
STMT LEVEL REPLC SOURCE STATERENT MACO1 8SEPS9
365 0 %; This section vill describe the elesents of the HACROS
366 0 X; language in detail. The exasples of preceding sections wvere
367 0 LB of an introductory nature, while this section is desigoned for
368 0 EH reference purposes.
369 0 % The syntax notation uses names of items enclosed in < >
370 0 L H syabols to denote syntactic entities. Definitions of them are
37] % either given in words or im terms of other entities. This is
372 0 L jndicated by an <item> folloved by :1:= and definitions. The
373 0 1; syabol |} is used to indicate alternates,
s 0 L H
375 [} b B I. ELENEATS
376 0 1;
m 0 %; <identifier> — 1-16 alphanumeric characters, the first of
378 0 % which aust be alphabetic. Letters are A-Z,$,#,3; digits
379 o L H are 0-9. TIdentifjers are unsed to denote processor
380 0 L variables and macros.
381 0 x;
382 4] } ¥ <integer> — 1-9 digits. 1Its usage in NACROS is identical to
383 0 % strings, since this version has no macro-time arithmetic.
384 0 L H <¢string> -~ there are two foras:
18s 0 % {1) Text string— 0-80 characters enclosed in guotes,
386 0 X A quote within a string is represented by 2 consec-
387 0 %; ative gquotes. The string of mo length,or null string
388 0 L H is represented by '°.
B9 0 %; (2) Pixed point number--string of digits preceded by, or
390 0 X followed by, or containing a decimal point. This
391 0 %3 construct is included for convenience in writing
392 0 % HACEOS statements; but it is not a number and does
393 b] L H not possess a numeric value. It shonld be thought
39y 0 %3 of as if it vere enclosed ia gquotes,
395 0 L H
396 0 X; <constant> ::= {integer> | <string>
397 0 b H
lgg 0 %5 <forsal parameter> ::= <(identifier>
399 s} X: The formal parameter is declared by appearance in a
w00 0 % HACRO statesent. Its value is defined vhen the macro
401 0 X; is expanded-—rules are given helow.
402 0 EH
303 4 %; <simple variable> ::= Jidentifler>
4oy o] %: Simple variables are declared and assigmed values
] 0 L by appearance on the left side of an assignsent statesent.
406 0 % They assuse the type of the right side of the statement-—-
407 0 1 in this version of MACBOS it can always be comsidered
408 0 %; string type simce no macro~time arithmetic is permitted.
409 0 %; .
410 0 % ¢processor variable> ::= <simple variable> | <formal rarameter>
i 3 %
492 0 %; {processor exprassion> ::= {coanstant> | <{processor variable>
413 o3 x; The processor expression is used on the right side of
414 0 L H assignment statements or in actual parameters of CALL
415 3} % statements. Its value is either the string value of
416 0 %3 the constant or the value currently associated with
417 1] %; the processor variable. If the variable has no valoe
?18 0 LB associated with it, then the expression is erroneous,

- 14 ..

STHT LEVEL REPLC

819
§20
421
422
823
n2u
825
u26
827
428
29
430
439
432
5133
434
435
436
437
o 38
4139
Jug
ag1
452
853
Gag
445
su6
&g?
448
uuyg
450
as1
4§52
us3
354
455
456
457
458
459
i60
L61
462
863
464
465
466
457
468
469
470
471
472
873

CC 00000000000V AC0A0000CO0CoRIVVIVRVINIVOCOOORITRIAROO
auaaaaannnhanuauauuannauaauaaaaﬁnaﬂuuuﬂnuaananaﬂanuuaﬂu

O a ah ae me mt ms mp ®a me we me ms ws ma e me Bk S5 B+ WO WP Bé W3 AL B4 BI P G0 @ Wo W Wk 90 e we ms HE ML b WS S0 43 AT 00 Nr @2 A0 W0 an o

III. MACROS language Deacription PAGE
SOURCE STATENENT MACOY 8SBPAY9

and its value is taken to be the nall string.

Examples:
<identifier> -- ABCD E31] OTHER1
<integer> -~ 0 123 123456789
<string> -- *TEXT STRING' ‘PEQOPLB''S PARK' *!
.123 12.3 4§56, (rixed point namber)
{processot expression> -- ABCD 123 .9 'STRING!

I1. PROCESSOR STATEMENTS

General:

Processor statements alvays have the charactar *%' in
column 1. The body of the statement must be in columns 2-72.
No continmation statements are allowed. With the exception of
assignment and null statesents, they begin with a reserved word
followad by an operand field. Cosaments may follow the
logical end of the statement when separated by a semi-colon
{;}- Blanks may be used freaely between elemeats and keywords,
they are only required to separate alphanumeric iteas.

Procegsor statements are not subject to replacement (section
I¥) or may they be generated by replacement. Thus if a *%' is
generated by replacement in colamn 1, MACROS will not cecognize
the statement as a processor statesent.

Processor statements are always printed at top level and
vhile a macro is being edited. They are pever printed at lover
levels (i.e. vwithin a macro expansion).

Wull or comment Statement—
Porm: % ;: coaments
The null statement is ignored by MACROS., %hen io a macro,
it is not encoded, sc no space is required for it inm the
editad macro.
Exasple:
X;The report you are reading is mostly null atatesents

MACRO statement
Pora: % HACRO <msacroname> (<formal parameter list>)
or X MNACRO <macroname>
<sacroname> ::= <identifier>
<formal parameter list> ::= <forsal patameter> |
<formal parameter list> , <formal parameter>

The NACRO statement heads a sacro definition. The macro
name is used in CALL statements to reference the macro. It may
be the Same as a processor variable identifier. ¥o two pacros
may have the sase nade.

The foraal parameter list, if supplied declares the
jdentifiers as formal parameters. A maximum of tem may be given.
Details of their interpretation are in the next section.

Macros may not be nested. The macro definition eads at
a MEND statement, the next MACRO stateament, or end-of-file.
Examples:

% HMACRO PFIBORACCI (I)

% RMACRO SDECLARATIONS

-15 -

STHAT LEVEL REPLC

474
u7s
476
477
478
479
480
481
482
uB3
484
485
486
487
888
489
490
491
492
193
B9y
495
496
597
598
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
51
515
516
517
518
519
520
521
522
523
524
525
526
527
528

A R O R e T B o av we s wu ov vt e e we ws mé wh So ub 55 45 T2 92 @1 99 B4 B0 20 %o e S5 Ws vs Wl Be mE WS 40 mE HP ke W0 T @0 w0 Wowy

P N R e = N - R R R - R R - R e e e e e e e Do
Aaaaanaunauuaﬁau-nﬂaﬂnuanannanaaauuﬂannunuauﬂnnaannﬂnua

III. MACRBOS Language Description PAGE
SODRCE STATEMENT MACOY BSEP69

% NACRO PONCTION { TYP,ARG)

MEND statement
Form: %X HMEND

The BEND statesment tersminates a macro definition that
has not been othervise ended.

CALL Statement
FOLm: % CALL <macroname> (<actual parameter list)>)
or % CALL <macronase>
¢actual parameter list> ::= <(actual parameter> |
<actual parameter list> , <actual parapeter>
<actual parameter> ::= <{processor expression>

The CALL statemept invokes the macro <macronase>,
which must have been previously defined or be available on file
SYSLIB.

The actual paraseter list if present is used to assign
values to the formal paraneters. Details are given in the next
section.

Examples:

* CALL PIBONNACI (1)

4 CALL SDECLARATIORS

% CALL TUNRCTION (*SIN' , *X+Y')

TITLE statement

Form: % TITLE <string>

or % TITLE

The TITLE statement sets the page title to <string> if
present and causes a page eject. Oaitted operand leaves the
title unchanged and causes a page eject only. The statement
is not processed vwithin a macro definition--only when it is
expanded. The TITLE statement is never priated.
Example:

% TITLE *III. MACROS Language Description*

The above was used to get the current page title.

Assignment Stateaent
Pora: % <leftside> = <{processor expression>
<leftszide> ::= <(processor variable>
The assignment statement is used to set the value of the
leftside to the value of the processor expression. If the
leftside is a processor variable, then the stateaeat also
declares the identifier as such if it has not been usad
pefore. If it is a forsal parameter, then the assignment
is only retained during this expansion of the macro. The
actual parameter, if it was a processor variable, will not
be changed by the assignnment.

IXI. MACRO EXPANSIONS

When a macro is expanded using the CALL statement, the
following actions take place: -
(1} If any formal parameters were declared, any ralues curremtly

assigned to the formal parameter identifiers are saved on a

-16 -

III. MACROS Langnage Description PAGE 25

STET LEVEL REPLC SOURCE STATEMENT MACO1 BSEPE9
529 o] % gnshdovn stack.

530 0 % (2} he values of the actyal parameters supplied ip the

531 ¢ % CALL statement are assigned to the formal parameter

532 o] i H jdentifiers. If amy or all of the actunal parameters are
5313 0 %; omitted, then the corresponding formal parameters are

534 [+] L H set to the null string. Excess actual parameters are

535 0 h] ignored. Thus a call statement of the forms

536 0 %; % CAaLL PUNCTION({(,J))

537 0 L H for the macro FPORCTION above, vwill set TYP='' and ARG='3".
5138 0 L H {3} HBACROS begins fetching input from the body of the macre
5139 o] X; definition. The processor variables that are cuarrently
540 0 11 active vill be used during processing--this includes

541 o LB any variables set by macros that called this one.

5642] %3 {(4) Vhen the end of the sacro definition is reached, the

543 0 x; values previously associated with the formal parameter

544 0 L identifiers are restored with the values saved on the

545 0 LH pushdovn stack, if any. HACROS then resumes fetching

546 0 % statements in the environment of the imvoking CALL

547 0 R: statement; but changes made to variables global to the

548 [} %5 called macro are retained.

549 0 %; The saximum depth of macro calls is 10 levels.

550 o %

551 0 %;

5%2 0 E H I¥. BEPLACERENT IN BASZ LANGUAGE STATESENTS

553 0 x;

554 0 H] Every base language statement (i.e. no '%* in col 1)

5%% o L H oatside of a sacro definition is scanned by MACROS for the

556 0 X escape character '6', which signals a potential replacement,
557 0 L H If the "£' is followved by an identifier or by another *£* and
558 o] L H an identifier, and if the identifier is that of a processor

559 0 %; variable that is currently active, then a replacement is per-
560 0 %; foraed. The single amnpersand is csed to denote “packed™

561 0 b 5 replacement, for free format applicatiomns; and the double

562 1} LK aspersand for "nom-packed" replacement, for use where colusmn
561 0 1; positions are critical.

564 0 %; The ters "ascape name® is used to refer to the escape

565 0 1 character(s) and the immediately following ldeatifier. Por one
566] %; case of packed replacement, a period delimiter is included in
567 0 1; the escape name.

568 0 }] Scanning for an escape character proceeds froa left to

56% 0 x; right. The scanning field is the entire Portran statesent,

570 0 X: including coatincation lines, 1f the FORT=1 option is used;

5N 0 % else it is the columns between the bagin and end columns (inclu-
572 0 L H sive) of the 80 character record. The default scanning columns
573 0 %; are 1 thru B80; they may be changed by the user if needed.

578 0 L 3 ¥hea an escape name if found, and replacement is done (the
575 o L H identifier has a value), then the scam is restarted from the bagin
576 0 % column. If the identifier does not have a value, then the scan
577 0 L H proceeds to the right. Rescanning comtinues until no

578 0 L §1 more escape characters remain, or no more replacesents can bhe
579 0 %: done. The rescanning mechaniss allowvs comstruction of escape
580 0 LH names by replacement. The marimum number of replacements alloved
581 1] < in a base language statesent is 30.

582 0 %; specific raules for the replacement modes are as follows:
583] 1;

- 17 -

III. MACROS language Description

STMT LEVEL REPLC SOURCE STATERENT MACO1
584 0 1; {1) Packed replacement-—This is indicated by a single "&*
585 [; folloved by an identifjier, delimited by any special

586 [R character. If it is delimited by '.*, then the period
587 0 % will also he resoved from the text--this allows concat-
588 0 1 enation of a replacement value with a letter or digit.
589 0 L H Replacement is done by removing the escape character

590] L H and the ideatifier {and period, if necessary) from the
591 0 % text, and inserting the value associated with the iden-
592 0 i tifler in its place. The remainder of the statement to
593 0 %; the right of the escape name , extending to the end of the
594 0 % scanning field, is shifted right or left as needed to
59% 0 % accommodate the replacement value. Blanks will be added
596 0 L1 at the end of the statement if the value is shorter than
597 0 L5 the escape pame, or truncation will be preformed if the
98 0 L H value is lomger. 1In the latter case, loss of non-blank
599 0 % charactecs will be noted by MACROS.

600 0 53

601 D % {(2) VYon-packed replacement--This is denoted by a double

602 ¢ LT escape character '6&' followed by an identifier. The
603 0 LH identifier is delimited by any special character {(mc

604 0 b H special rule for period applies). The replacexent

605 0 % of the escape name is done without any shifting of the
606 0 %3 part of the statesent to the right of the escape name.
607 0 %: If the replacesent value is shorter than the escape

608 [v] % name, then blanks are added to it. If the value is loager,
609 0 % then blank positions followving the escape name are used
610 0 x: to hold the trailing non-blank characters of the value.
311 o b H 1f there is still not enough room, even using the blank
€12 0 L H positions, and discounting trailing blanks of the value,
613 0 %; then NACROS notes the truncation of the value.

-18 -

PAGE

ASEP6Y

26

STET LEVEL REPLC

615
616
617
618
613
620
621
622
623
624
625
626
627
628
629
630
631
632
631
634
6135
636
6137
638
6139
640
6u1
642
643
644
64%
646
647
648
619
650
651
652
651
654
65%
656
657
658
659
660
661
662
663
664
665
666
667
668

-F 48 me ev @B BE BE WE W I BE RO BE US UE My We e W we W WP @b wa W Wi me Sb wé WS W My W5 #y W we @2

00 POOCOOC00C0000U00000000T0000DCORELR000C00000R0a0aI300
uanninunuuanuuanauunauxaaﬁannﬂunnunﬁnﬂunnnnnaaaaahuanh

ws me we we ww we Wy Wb ws Wi S 4D WE WL WE g0 @

IV. Using MACROS—options and JCL requireaments

SOURCE STATENENT BACOY

MACROS i3 a load module named MACROO?! vhich can be used
from the library PUB.JEA.LOADNODS. It uses the following
ddnanmes:

SYSPRINT -- output listing. DCB information is supplied by the
progran~~RECPE=V¥B,LRECL=125, BLKSIZE=3425. The PGEN option
may be set to suppress the ontput listing in vhole or part.

SYSIN -- primary input file., May be any sequential dataset
or partitioned dataset membar (or concatenation) with
logical record leangth 80 bytes.

SYSOOT -— BACROS processed output. DCBs must be supplied by
user such that LRECL=80 is used. Generally, this file
i3 associated with a tesporary dataset that is used later
in the job. AR option may be givem to HEACROS to suppress
writing on SYSOUT.

SYSLIB ~— secondary iaput file for macro definitions. This
is used to make a library of macro definitions available
to MACROS. If not required, then the DD statement can be
omitted. If used, the DD statement must define a seguential
dataset or partitiomed dataset member. Coancatenations of
these two items are acceptable if the DCBs are the sanme.
The logical record length must be B0 hytes.

Options are passed to BACROS using the PARH field om the
PIEC statesent. The format iz a list of keyverds followed by
an equal sign and an integer, separated by commas. The options
and their Adefault values arae:

BEGC (1) Begin column for scarning of base language state-
ments. This is ignored if the PFORT=1 option is
used.

BNDC (80) End column for scaaning of base lanugage state-
sents. Also ignored if PORT=1.

®OUT (V) If not zero, then the MACROS oatput is vritten
on SYSOUT.

PGEN (2} If zero, then no output listing is produced.

If one, then top level statemants only are listed.
If two, then base language statements froa wacro
expansions are listed in addition to top level

statements.

PLIB (D) If not zero, them the macro definitions edited
fron SYSLIB are listed vhen it is opened.

FORT (0) If not zero, then the PORTRAN statement conven-

tions are used--columns 1-72 of the first card of
a statement and columns 7-72 of any continmation
cards are treated as a single base language
statesent for replacement scanmning. If thete ara
no Hollerith literals in quotes in the stateasnt,
then trailing blamks at the end of each line are
resoved. There is a limit of 270 characters that
may be retained, discounting trailing blanks.
Thus, in the worst case,) continuation cards are
allowed.

PRBS (0) If not zero, then *'PRint Bafore Substitution®,

- 19 -

STHMT

669
670
671
672
671
674
675
676
6717
678
679
680
681
682
683
&84
685
686
687
688
689
690
691

LEVEL REPLC

OO OROOoOOORAVOOOOOODOD
M Al R 2u A A 2N 8 MR M WA A M R WA L A AR

@t we Wb wa wa wa Bb GY mé B4 WE WP AL Ws 4T e wr We

I¥. Using NACROS—options and JCL requirements PAGE
SOURCE STATEMENT BACD1 BSEP69

vhich causes hase languaig statesents coptaining
escape characters to be listed before replacement

is done. Normally, they are listed after replace-
aent only.

SIZS (100G00) The amount of space (ir bytes} to be allocated to
storage of the values of variables. Should one
find that he has run out (error aessage), he can
rerun vith a larger value (up to 32767). Space
could run out if a large number of variables are
all active at the same time.

When MACROS is run, the first page of the listing gives the
options used, and a number °*SIZ¥!, which is the amount of free
space in bytes that NACROS thibks it has for storage of strings,
macro definitions and control information. MACROS will use all
the free space in the region in which it is run. Minimua region
size is about 100k bytes.

Brrors in MACROS input are flagged with a text message
indicating the type of error,digpasition, and location.
Severities are associated with the errors ranging from 4-16,
The highest severity is passed back to 0S5 as a return code
that can be tested in JCL to suppress subseguent job steps.

- 20 -

APPENDIX B

CHARMS

An event in our SUMX is represented by a FORTRAN array P(4, N) con~
sisting of four-vectors, one for each participant of an N-particle reaction,

1+2~3+4+ ...

where numbers correspond to the second index of the array P. As discussed
in the text the purpose of the CHARMSs to be described here is to calculate
from P various quantities of interest, which are to be specified at the SUMX

Tun time,
As described in the SUMX manual1 a CHARM control-card allows five
parameters, L1, L2,...,L5, by means of which user can communicate with

the requested CHARM subroutine. In the descriptions below 'pointer! means
BOUT location, a group of particles is denoted by ij..., the total number in
this group by N. The CHARM parameter L5 is always the base pointer for
the array P.

(1) CHARM2

Invariant mass and four-momentum transfer for a group of particles.

L1 ; pointer for answer

L2: N
L3 :1ij...
14 : 0{oget M=SQRT [(P1+Pj+ ..9)2],

2 2
-n to get A ——(Pi+P].+... —Pn)

(2) CHARM3
Four-momentum transfer (Az), production cosine (COS) and momentum
(Q) for a group of particles in the overall center-of-mass.
1.1 : base pointer for answer vector A
A(L)=COS,
A(.‘Z)=A2 - %in (kinematic minimum),
A(3)=Q (calculated only if L1 is negative).
L2:N
L3 :ij...
14 : 1 or 2 to specify with respect to beam or target.

_21 -

(3) CHARM4

Two or three body decay angles.

L1 ; base pointer to answer vector A

L2: N (2or 3)

L3 : ij...

14 : ab (12 or 21 depending on where 1 or 2 is to be incident)

The calculated decay angles have the following meaning. Let
R=P. +P.+...
X]

and T be such that
a+b=R+T |,

Let {r be the normal to the production plane,
y // Tx2a inthe R-rest frame, or
// xR in the laboratory frame .

Then in the rest frame of R define the t-channel helicity (Gottfried-Jackson)

axes as

and

X=yXZ2z.

The s-channel helicity axes are related to the above by a rotation about the

common y-axis. Let

-~ A

Zy = R in the overall center-of-mass,

or
= —'}‘ in the R-rest frame ,
and
Sas v
;‘H = SA’H x ;‘H .
Then using i as the analyzer CHARM4 calculates the following

A~

Al = Zy " 2

1 -~ -~ A ~

A(2) = tan (zH . x/zH < y),

- 22 -

A@) =iz ,
A@) = tan™t a-x/i-vy,
AB)=1 - Zy
S Nl
A(6) =tan " (i XH/I vy
where the angles are in degrees.

It appears in this scheme that because SUMX treats L3, L4 as integers
particle index greater than 9 cannot be accommodated. One solution, as long
as they need not be addressed at once, is to move base pointer L5 within P or
to rearrange members of P before use. Far better solution is to "ask"
SUMX to regard these parameters as character strings, so that a number

system of arbitrary base can be employed.

-23 -

APPENDIX C
JCL EXAMPLES

We give examples of JCL statements necessary for runs on the System
360/91 as implemented at SLAC and at MPI. Catalogued procedures used
are current ones in May 1972.

(1) AtSLAC

// JOB card

//JOBLIB DD DSN=WYL. ED.PUB. LIB9, DISP=(SHR, PASS)

//MACRO EXEC PGM=MACROO01

//SYSPRINT DD SYSOUT=A

//SYSOUT DD DSN=&MOUT, DISP=(NEW, PASS), UNIT=SYSDA,

// SPACE=(TRK, (200, 10)), DCB=(REC FM=FB, LRECI1=80, BLKSIZ E=3200)
//SYSLIB DD DSN=WYL. ED. JAP. SRC9(SMCR1), DISP=SHR

// DD user macro library

//SYSIN DD *

input fext

//SUMX EXEC FORTHCLG, PARM. FORT='0PT=2'
//FORT.SYSIN DD *

user FORTRAN source, if any

//LKED. SYSLIB DD DSN=WYL, ED. PUB, LIB9, DISP=SHR

// DD DSN=SYS1. FORTLIB, DISP=SHR
// DD DSN=8YS3. FORTLIB, DISP=SHR
// DD DSN=SYS4. FORTLIB, DISP=SHR

//LKED.SYSIN DD *
INCLUDE SYSLIB(SUMZX)
ENTRY MAIN
//GO.FT10F001 DD user DST description
//GO. SYSIN DD DSN=&MOUT, DISP=(OLD, DELETE)

- 24 -

(2) At MPI

// JOB card

//D EXEC PGM=MACRO01, REGION=300K

//STEPLIB DD DSN=LOAD. JHP, DISP=SHR

//SYSLIB DD DSN=SOR. JHP(MACLIB), DISP=SHR

// DD user macro library

//SYSPRINT DD SYSOUT=A

//SYSOUT DD DSN=MOUT, DISP=(NEW, PASS), UNIT=DISK,
// SPACE=(TRK, (200, 10)), DCB=SOR. JHP

//SYSIN DD *

input text

//S EXEC SUMX
//C.SYSIN DD *

user FORTRAN source, if any 1

//L.SYSLIB DD DSN=LOAD. JHP, DISP=SHR

DD DSN=SYS1, FORTLIB, DISP=SHR
//G.FT10F001 DD user DST description
//G.SYSIN DD DSN=MOUT, DISP=(OLD, DELETE)

-~ 95 -

REFERENCES

Although the technique is evidently general, we discuss a particular
application to the CERN version of the SUMX described in J. Zoll,
CERN Track Chamber Program Library Manual (1970).

John Ahern, MACROS-Statement Oriented Macro Processor, SLAC
Computation Group User Note 29 (1969).

P. J. Borwn, A Survey of Macro Processors, Annual Review in Auto-

matic Programming, Vol. 6, Part 2 (Pergamon Press, New York, 1969).

- 26 -

