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ABSTRACT

We examine the formal foundations of quantum electrodynamics and —several
other field theories in the infinite-momentum frame.

The infinite-momentum frame is interpreted as being given by the change of
variables 7 = 2—% t+z), &= 2"% (t-z). The variable 7 plans the role of time.
We discuss the Galilean subgroup of the Poincare group, which results in a non-
relativistic structure of quantum mechanics in the infinite-momentum frame.

We derive a T-ordered perturbation series for gquantum electrodynamics
and show how such a series arises from a canonical formulation of the field theory.
We quantize the theory directly in the infinite-momentum frame by postulating
equal-7 commutation relations among the fields.

We also discuss several other field theories: massive quantum electro-
dynamics; scalar meson with ¢N coupling; neutral pions coupled tc protons with
Ys cogpl ing; scalar mesons coupled to protons with unit matrix coupling; and

electrodynamics of a spin zero boson.
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Much of the material in this report is based on previously published work.
Chapter IV and parts of Chapter II are contained in "Quantum Electrodynamics
in the Infinite Momentum Frame" (D. E. Soper and J. B. Kogut, Phys. Rev.
D1, 2901 (1970)). Chaptér V is based on '""Massive Quantum Electrodynamics
in the Infinite Momentum Frame" (D. E. Soper, SLAC-PUB-918, May 1971, to

be published in Phys. Rev.).
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CHAPTER I

. Introduction

The infinite-momentum frame first appeared in connection with current.
algebra1 as the limit of a reference frame moving with almost the speed of light.
Weinberg2 asked whether this limit might be more generally useful. He con-
sidered the infinite-momentum limit of the old~fashioned perturbation diagrams
for scalar meson theories and showed that the vacuum structure of these theories.
simplified in the limit. Later, Susskinds’4 showed that the infinities which occur
among the generators of the Poincaré group when they are boosted to a fast-
moving reference frame can be scaled or subtracted out consistently. The result
is essentially a change of variables. Susskind used the new variables fo draw
attention to the (two-dimensional) Galilean subgroup of the Pioncaré group. He
pointed out that the simplified vacuum structure and the nonrelativistic kinematics
of theories at infinite momentum might offer potential-theoretic intuition in rela-
tivistic quantum mechanics. _

Bardakei and Halpern5 further analyzed the structure of theories at infinite
momentum. They viewed ﬁhe infinite-momentum iimit as a change of variables
_ f‘rom the laboratory time and z coordinates to a new "'time" 7 = 2_% (t+z) and a
new space coordinate 7= 2—% (t-z). Chang and Ma6 considered the Feynman
diagrams for a ¢3 theory ar;d guantum electrodynamics from this point of view and
were able to demonstrate the advantages of their approach in several illustrative
calculations.

In this dissertation, we examine the formal foundations of guantum electro-
dynamics and several other field theories in the infinite-momentum frame. We

interpret the infinite-momentum frame as being given by a change of variables



DO

T=2"2(t+z), 5= 2—% (t-2z), thus avoiding limiting procedures. We derive a
7-ordered perturbation series for quantum electrodynamics and show how such a
series arises from a canonical formulation of the field theory.

The methods employed here do not involve any high energy approximations.
However, we believe that the "exact' field theories in the infinite~-momentum frame
may be well adapted for high energy approximadtions.

This dissertation is divided into six chapters, of which this is the {irst. In
the second chapter we discuss the infinite-momentum coordinate system, (%,ﬁ,g).
By using these coordinates we obscure the rotational symmetry of the underlying
physics. However, we will find that other Galilean symmetries more appropriate
to the description of high energy processes are thereby made manifest. We will
see, in fact, that the subgroup of the Poincaré group consisting of 7- translations
together with those transformations which leave the planes "7 =constant” invariant
is isomorphic with the symmetry group of nonrelativistic quantum mechanics in
two dimensions. We will also give a nonrelativistic interpretation to the remaining
Poincaré generators and to the parity and time reversal operators. Finally, we
will discuss the single particle states most natural in the infinite-momentum frame.
These are the infinite-momentum helicity states, which are eigenstates of helicity
as measured by an observer moving in the -z direction with almost the speed of
light. .

In the third chapter we examine fields and wave functions for free particles
of varbitrary mass and spin as they appear in the infinite-momentum frame. The

discussion for the most part follows the methods of Weinberg and others except

for the use of the infinite-momentum helicity basis for the particle states. The



main result is that the spinor wave functions for infinite-momentum helicity
states have a remarkably simple form.

The fourth chapter forms the heart of this dissertation, It is devoted to the
reformulation of conventional quantum electrodynamics in the infinite-momentum
frame variables. We begin by considering the Feynman perturbation expansion
for the S matrix, divorced from its field theoretical underpinnings. We write the
covariant Feynman diagrams using the variables (7, %5) and then decompose
each covariant diagram into a sum of old fashioned 7-ordered diagrams., The
results are similar to Weinberg's results concerning the Pz—- « limit of t-ordered
diagrams, but the appearance of spin results in the emergence of new types of
vertices. 7 In the second part of the chapter we look at the field theoreticic under-
pinnings. We quantize the theory directly in the infinite-momentum frame by
postulating equal-T commutation relations among the fields., We find that these
equal-7 commutation relations make the unquantized field theory into a formally
consistant quantum field theory; in particular, the canonical Haniiltonian generates
7-translations of the fields according to their equations of motion. Finally, we
find that the old-fashioned perturbation expansion for the S matrix derived using
the canonical Hamiltonian agrees with the 7-ordered expansion derived directly
from the covariant Feynman diagrams.

In the fifth chapter we extend the canonical formulation of quantum electro-
dynamics in the infinite-momentum frame by replacing the photons by massive
vecfor mesons. The structure of the theory remains nearly the same as that of
quantum electrodynamics except that a new term appears in the Hamiltonian
describing the emission of helicity zero vector mesons with an amplitude propor-

ticnal fo the meson mass.



In the last chapter we make use of the familiarity gained with the two pre-
vious model field theories in order to épply the same methods to several other
theories. These are: scalar mesons with <;b"l self-coupling; neutral pions coupled
to protons with a s coupling; neutral scalar mesons coupled to protons witha 1
coupling; and electrodynamics of a spin zero boson. Each of these theories has

the attractive feature that it is simpler than quantum electrodynamics.
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CHAPTER I

The Poincare Group in the Infinjite-Momentum Frame

A. Choice of Variables

In low energy processes the tr_ajectories of particles cluster about a singlé
direction in space-time. It is sensible to describe such processes using coor-
dinates t, x,y, z, with the t-axis chosen in the direction of the particle trajectories.
This choice of coordinates emphasizes the rotational symmetry of the underlying
physics.

In high energy collisions, the particle trajectories will generally lie near a
plane, which we may take to be the t-z plane. However, the trajectories will not
cluster about a single time-like line in space-time. Rather, the trajectories of
energetic right-moving particles cluster about the light~like line t~z = 0 in the
t-z plane, while the trajectories of energetic left-moving particles cluster about
the light-like line t+z = 0. Thus it is sensible to describe such particles using
coordinate axes lying along these lines. Hence we adopt the coordinates
T = 2—% (t+z), X,v,5 = 2'% (t-z), as shown in Figure II-1. We will let the
variable 7 play the role of "time'" in the description of the dynamics of right~
moving particles, since the trajectories of these particles cluster about the 7-axis.
(Similarly, # can play the role of "time" for left-moving particles.)

By using these "infinite-momentum frame" coordinates we obscure the
rotational symmetry of the underlying physics. However, we will find that other
"Galilean' symmetries more appropriate to the description of high energy pro-

cesses are thereby made manifest.
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Fig. -1

The coordinate axes of the infinite momentum frame,



It will be convenient to use the usual covariant tensor notation for quantities
in the new coordinate system. Let® = (QO, Ql 3\12, 323) = (t, x,y, z) be the coor-
dinates of a space-time point in the ordinary coordinate system,

= (xo, xl, xz, x3) =(T,X,¥,4) = (7,X, 5) be the new coordinates of the same

poini:.1 Then
x*=C*, X (1)
where
2"12 O O e-'/a
O i o O
c”, =
g O ©0 41 O . (IL2)
2% o g -2

In general, we shall use hatted symbols for vectors and tensors in the
ordinary coordinate system, unhatted symbols for vectors and tensors in the new
coordinate system. In particular, we shall use gpv for the metric tensor in the

new coordinate system:
Gur = (¢4, (Y, gmﬁ _ (1L.3)

. . A1 DN DD L .
We take for the ordinary metric tensor 80 = 1, 811 = B2 ~ 833 1. Then

Il

s

(11.4)

OO0
OO0+ O0
o~ OO0
O 00 =



We use gw to lower indices, so that ag = a3, ag = ao; this may seem confusing,
but it has important consequences. For instance, the wave operator a#a“ =

28083—3 8 —3282 is only first order in 8, = 8/87.

11 0

B. Generators of the Poincare Group

Let us consider the generators of the Poincaré group in the new notation.

Our conventions for the Poincaré algebra in the ordinary notation are

[—‘5#,—1‘)»’] =0 [MN a/'?olr L(Q#ﬁ/@“’/\ﬂf”‘sﬂ) |

~ ~

[ﬂﬁv y ‘:\1,061 = i(%,us,My/a + %»,70 Rf&ws —%p,op]fc’gye {:4/-‘/5\

(11.5)

A
The generators of rotations and boosts are, respectively, Mij = Eiijk and

A
Mio = Ki' Using the matrix C‘; to transform from the usual notation to the new

notation, we obfain

P = (PP P = (PP u) (11.6)

and

O -s* -g K,
- S o I B aL7

M/u)/ Sa "53 O Bz
.--.\,ﬁ‘3 -’B.L _B2 O
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where

(0 +93) /=
H (P -+2) /2
B = (x,+3.)/V2
B = (K.-3,)/Vve (1L.8)
(K- I2)/V2
(K, +3,)/V2

3
i

i

it

v w
n -~
| i\

== If we consider T to play the role of "time", we will be particularly interested
in the generator of 7-translations in space-—time.' Since exp(iP”x“) =

exp(i [H-r— E&E + T)g’] ), we see that it is H which generates 7- translations and thu_s
contains the "dynamics" of quantum mechanics in the infinite-momentum frame.
Similarly, it is easy to verify that the subgroup of the Poincaré group generated

by 7, '_12, J. and E consists of those transformations which leave the planes 7 =

3
cons{. invarianf. Thus these operators might be called '"kinematical" symmetry
operators in the infinite momentum frame.

The commutation relations among the Poincaré generators are, of course,
given by (II.5) without the hats. The commutation relations among the operators
H,7,2, J3, Br are particularly interesting.- They are the same as the commutation

relations among the symmetry operators of nonrelativistic quantum mechanics

in two dimensions with
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H -+ hamiltonian,

n -+~ mass,

3 — momentum ,

J3 ~ angular momentum ,

B1 and B2 ~~ generators of (Galilean) boosts in the x

and y directions, respectively.

In fact, the subgroup of the Poincaré groups generated by 7, -g, H, J3, B is iso-,
morphic to the Galilean symmetry groups of no‘nrelativistic‘ql_lantmn mechanics in
two dimensions, 2,3 It isr instructive to explicate this isomorphism in some detail.
The mass operator n commutes with all of the other generators, b, H, J3,
2. Also, [Bl,Bz] = [Pl, Pz:] = 0. The Hamiltonian H is invariant under rotations

and translations:

[qua‘]‘""[H,E\ O

1l

The momentum X and the boost generator '13 are vectors under rotations:

e ots
e‘.‘p 3 ’p‘% e SDJ- — MKQ »Pf
e Bk o9 - M, B

Codyp  ~dm@

Mm = -
A @ o Cod P
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When a system is given a Galilean boost through velocity Y, its total momentum

changes by an amount equal to its mass times v:

o ¥ ¥ P ¥ - P4y

A

At the same time the " internal energy" of the system is unaltered, but its kinetic

energy, 32/271, is changed:

¥B | o ¥B oy, (Ben) o B

]
T
ﬁ
=
=
2

It is also interesting to think of ”]3_ as a position operator. In nonrelativistic
quantum mechanics, the generator of boosts is B = - Emi?i = — (total mass) x
(position of the center of mass). Thus we are led to define the operator ‘R =
vB’/n and interpret R as the operator gi\.ring the position of the center of "mass"
of the system. In support of this interpretation, we note that [Pk, Rﬂ] = _wk!z
and that the rate of change of R is equal to the velocity of the system, P/7:

B =gl -2/
We can also use § to decompose the total angular momentum ,{ into a part

representing the orbital angular momentum of the center of mass about the origin,
1 2 ~ 2 1
J. = R«xP = R'P*-R"P

and the remaining "internal’” angular momentum,

I

A s

,3)3 \Tg_ - /R)“P
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Just as in nonrelativistic quantum mechanics, the internal angular momentum

is invariant under translations and boosts and is conserved:

igB @k c¥E - B

e éf:—;eh =& T4, 0 =é’3

z‘[H,af;J =0

Finally, it may be worthwhile to note that the Hamiltonian for a free

particle takes a simple nonrelativistic form. From the mass shell condition

Pu.P.u=M2weobtain B _
H=Er N

g
Lan [}M]

:where \ Mz/zn is a constant potential.

The op'erator K3, which generates Lorentz boosts in the z-direction, can
also be given a simple inferpretation in the analogy to nonrelativistic quantum
:mechanics. Suppose that we were to formulate ordinary nonrelativistic quantum
;mechanics using length and mass as the basic units, with the unit of time chosen

-2 Tom em>. ) Then we would find that our

so that § =1. (Thus1 sec =1.05 x 10
theory was invariant under rescaling of the unit of mass. In the "nonrelativistic™
interpretation of quantum mechanics in the infinite-momentum frame, this
symmetry is built in as a consequence of Lorentz invariance. A simple calculation

shows that exp(~ in3) simply rescales each of the other group generators according

to the number of powers of "mass" each contains:
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G)i'l:C'Jf(s 77 @'C'OJIYS —

.t S
eaiw A3 B @-—iwl{g - P
e et o ey
@+iwk3 B @-ka'3 = Q¥ ;’3
@uw L JB @s"w Ky - J-3
@4,;w K § Qe Kz = QW §

The fact that the operators P and M”V in the infinite momentum frame
transform under z-boosts according to simple scaling laws suggests that the

infinite momentum frame may be particularly adapted for high energy approxi-

mations.

We come now to the final operators in our menagerie of Poincaré generators,
1

5 and Sz. These operators commute with H, form a vector under rotations, and

scale under z~boosts like n_l. The commutation relations of § with 7, “13, and

Bare
"
Ls*, n] = -iPp*
p
o Ny - .
[ J ) ,P ] - < »‘?f H
o e ~y 8 _ .
[s%,B'] =-ig, J, +i8§, K,
where €12 =~ €91 =1, €1 = €o9 = 0. We can give these commutation relations an

interpretation in the nonrelativistic analogy if we write S as the sum of an "internal
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part s associated with the internal dynamics of the system and a remaining

"external' part as follow35:

ko _ PRk H P
S“Ka"z’*B”’( Ao ke 7 °

where j3 is the internal angular momentum discussed earlier. Simple computation
shows that‘&; is indeed an "internal' operator in the sense that it is invariant
under {ranslations and Galilean boosts and commutes with the total "mass"
operator . Furthermore, § commutes with the Hamiltonian H, Thus&plays

the same role as the "dynamical™ symmetry operators sometimes encountered

.in nonrelativistic quantum mechanics, 6 In this interpretation, S-invariance is an
éxtra symmetry of the Hamiltonian in addition to its Galilean invariance which is
needed to insure the full Poincaré invariance of the theory.

It will come as no surprize that the "internal” operators j3 and ‘i provide
just anofher description of the spin of the system. The connection between these
operators and more conventional spin operators can be clarified by means of a few
simple observations.

First, we notice thatj3 measures the helicity of the system as viewed ina

reference frame moving in the -z direétion with (almost) the specd of light:

) oLe T_‘T”ﬁ i K;
n Q W e T

w oo Gl
: ks T, (- 42 (BN 6, P i
= & Soovst B Coag U~k
) - ou [é(ﬁIi’H)d + Ee J/._
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Second, we compute the covariant spin vector7’8
o 1 TS AN D
W = 7 € A% ™ v/ Fq’ >
and find
o
] = /d’/ 3 '72

L .

% = f + - £y

<
!
Q.

o, (7 BT-H) - 5P

Then we can compute the Poincaré group Casimir operator W = - w‘uwu. We
recall that for a single particle with mass M > 0 and spins, W = M2 S(S+1). For
mass zereo irreducible representations of the Poincaré group, W is zero except

for the unphysical " continuous spin" representations.) We find

W = (23 H-2%) (df'ﬁs\f /A
{

Finally, we compute the commutation relations among the " internal™

operators:

[43 , 8% ] = ce, sf
c

/
~ 4 — N -Q,!‘ "”)2 ;
[b S ] = L7 2rn- ¢t )/;v
> ;! &
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Thus, as long asthe spectrum of MZ =27 H_£2) is strictly positive, the operators
y= 'nsz/M, ig = —nsl/M, Jg are well defined and obey the SU(2) algebra [jk’jﬂ] =
iekﬂnjn' Therefore, it is quite plausible that j = (jl,j2,j3) measures the angular
momentum of the system in its rest frame. To prove this, note first that T
commutes with P, BandK,. Let |4,> be a state with definite momentum P*
and U_be a Lorentz transformation of the form Up = exp(~ iB-v) exp(- icuKS) con-
structed so that [ > = Upl $ > is at rest. Then

7 1%

i

Ut (0, 707 19
%

I

S

But for a state at rest we have n = H :2'% M, P =0, so
.: A
é} Qf‘%) = J3 i 7‘%>
Y !
4 [hy = 2% 2 [
= 2 (T IR
= Jg 19D
. /
de 15> = -2 st 1%
-1 1 77
T = " (BL‘S)HD
= Ja }@2>
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Thus

70U

7 U T U, 1%y

g

as we claimed. We will meet the operators j and Up again when we construct
free particle states appropriate to the infinite-momentum frame. But first we

turn to a short discussion of the parity and time reversal operators.

C. Parity and Time Reversal in the mfinite-Momentum Frame

In the infinite-momentum coordinate system the ordinary parity trans-
formation is

M

X+ = (v.x,3) — N\, » X = (g,—zs,’f)

If parity is a symmetry of the theory under discussion, there will be a unitary

operator Up with

Uyt P U, = NSy P
A" «

|

UP-L ‘v‘p.v UF‘ }\PY/J M«P

The details of this transformation are presented in the first column of Table II-1.
We see there that the parity transformation has the effect of interchanging the
roles of 7 and H, ;;31 andn§, K3 and --K3 (as well as changing the sign of transverse
vector operators). This transformation is uscful for comparing the dynamics of

left-moving and right-moving systems.
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If, on the other hand, we are more interested in the internal dynamics of

right-moving sysiems, the "parity' operator

Ua

I

enp (-ir 3,) U,

is more useful. We see from Table I that the operators n, H, and K3 are
"scalars" under this parity operator. The operators E, g and 'Eiare "yectors'
and transform according to (Vl, Vz) - (- Vl, Vz). The rotation operator J3 isa
"pseudo-scalar! and changes sign under this parity transformation. In addition,
"pseudo-vector' objects like Fk = ekﬂVa (where VQ is a vector) somestimes occur;
these transform according to (Fl, F2) — (Fl, - F2).

We come now to time reversal. The ordinary time reversal operator UT

does not seem to be very useful in the infinite momentum frame. A much more

natural operator is
U, = e/xﬁo(—m:g) Up U, )

which we might call the " 7-reversal" operator. The corresponding Lorentz

transformation matrix AT is given by

AV SR A CL I SEF D

However, since UT is antiunitary, the transformation law for the Poincare

generators under 7-reversal is

U, PP,
UT',‘L M/W UY — /\rﬂ:x /\yy/s M“’G,

i

- /\',M,) _p‘l
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This lgads to the last column of Table 1I-]. We see fhere that U‘r acts just like
the time-reversal operator of nonrelativistic quantum mechanics. The mass 7
and energy H of a2 system are unchanged under 7-reversal; the momentum :l; is
reversed; and the boost operator .;% (and the position operator 2 =- .E/ 1) is
unchanged.

The final discrete symmetry operator which we will find useful later is the
for the charge conjugation operator which

PCT operator U K we write U

PCT -C
interchanges particles with antiparticles but commutes with the Poincare

generators, then

Uper = U U, Uo = €77 Uy U

i

- . . [ 3N s sl .
Since the Lorentz transformation matrix APT y 1s simply (-1)6, and UPCT is
antiunitary, the transformation law for the poincare generators under UP CT is
simply

UP-i ’"p/“ U‘PCT = pF

cr

-4 MY . v
UPCT lvi UPCT = 7 ‘Jl#
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TABLE II-1

Behavior of the Poincaré Generators under

Parity and Time-Reversal Transformations

-1 -1 -1
UL 0U, us'ou, v 'ou,
H n
- n H
-P P, 5% -p
Ay A
-8 - B, B%) B
e ol
I3 -J3 -J3
~K3 K3 ~Kg
B -5, 8%) s
wA e
- R, R R
i3 -ig

(- Sl,sz)
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D. Single Particle States

[

The states of a single particle with mass M, spin S are generally repré—
sented by state vectors | P, A >, where Pu is the momentum of the particle and
the discrete index A labels its spin state. Many definitions of "spin state" are
available: helicity, z-component of spin in the ﬁarticle rest frame, ete.
Unfortunately, the familiar kinds of spin states are ill adapte=d for use in the
infinite momentum frame; hence we devote this section to yet another variation
of the description of particle spin.

We will use an informal version of the famous Wigner const;ruction9 to
define the states | P, A >. Consider first the case M > 0. We let Pg be the

momentum of a particle at rest,

B =27 M (410,0,1)

Then for any other momentum on the particle's mass shell, we choose a standard

transformation 8 (P) in SL{Z2,c) 1o which transform PO into P:

M - ¥ ‘
| /\( IQ(“P)) v = P~
We define the states | P, A > for P # P, by

P, 2) = Uls®) IR, A

Then we will know how the states | P, A > transform under all Lorentz trans~
formations when we give the transformation law of the rest states | PO,' A >

under rotations (which leave P, invariant). If we want states with spin S, we have

0

only to require that the states | PO’ A > transform under rotations according to
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the spin S representation of SU2): -

UR) IR A = D@y, (v, %)

'Fo»- R < SUl@)

When we combine these two equations, we get the general transformation law for

the states | P, A >. H A is in SL(2,C) and we denote ﬁ = A(A)P, we find
UR) 1P, % = Ulse) Uler figm) 1R,AY

= 9wt R g 19,90

Note that the Lorentz transformation A(B (ﬁ)-lA,B (P)) is a rotation, since it maps
P back into itself; thus D) (g @) A>(P)) is well defined.

This is the Wigner construction. All that remains for us to do is to specify
the ""standard transformation" g (P) which carries PO into P. The natural ap-

pearance of an internal angular momentum operator, =J,~ ‘IE X ‘13, in the infinite-

I3 =J3
momentum frame suggests that we should choose 8 (P) so that is [P, A >=
Al P, A >. We alrcady have j 1 Py, A >= Al Py A >, so our reguirement

will be met if U(8(P)) commutes with j3. Since 3',3 commutes with K3 and .1,?'\', we

choose

_‘g/r-I_; . .
[Py = @ FFFE e

1
with v =‘E/n and e” =22 17/M.
Finally, we note that the states | P, A > must be covariantly normalized

if the operators U(A) are to be unitary. Thus we take
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P, NP, A = Sy, (2w) 27 6(’7’—7) SH(P-P)

This gives the covariant phase space integral

I

(PI¥Y = e [ (42 % (@leadeal

Let us turn to the description of mass zero particles. Since we are now
unable to consider the states of a particle at rest, we must choose another

" standard momentum? PO. A convenient choice is
Y = (4,00, 0)

We choose for the standard transformation ¢ (P) which transforms P, into P

0

Y RN , .
x® = exp-iy.B) oo l-ink,)
where now ‘\;=£/T) and e” = 7. As before, we define

P4y = Ula@®) 2.5

We are now left with the well-known problem of deciding how the states | PO’ A >

should transform under the groups of transformations which leave PO unchanged —
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the so-called "little group" of PO’ It is easy fo see that this little group is the
subgroup of SL{2,C) generated by J3 and .‘%. We demand that the states | PO’ A >
transform under this group according to one of its unitary finite dimensional
irreducible representations. But the only such representations are the one-

dimensional representations
I 12,20 = A AR

S B, = O

where A (the helicity) canbe 0, 21, £ 2, ... .

Let us for the moment call the helicity A representation 1D, :
~ -L\(P 1
DR = @€
i R =@

Then the complete {ransformation law for the states | P, A > is

U 7,2 = D, (a@ ™ R am) 17,07

where B = A(A)“V 128

Finally, we normalize the states | P, A > for mass zero just as for M > 0:

CPOATPAY) = (en) 21 &1y S B

At this point in his trek through the group theoretiz jungle, the reader may

wish to pause to ask whether the spin states described above have any special
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properties which made them well suited to a description of physics in the infinite-~
momentum frame. Two closely related properties can be named. First, when.
the transformations generated by 7, R,H,g, J3, K3, act on the states | n,}:, A>,
these states transform just like states with mass n, momentum &3 , and spin A

in nonrelativistic quantum mechanics in two dimensions. All of these operators
except J3 act only on the variables ;7, .I; and leave A unaffected; under a rotation
exp(-i¢J3) the momentum P is rotated and the state receives an extra phase

exp{-igA). Secondly, the "internal" Lorentz generators j3 and s discussed in

Section B act in a simple way on these states, For either M > 0 or M = 0 we find

A, APLAY = AP

d‘
)f SIS ‘ = - - n
s VP, A € s (d,(

~X

) g\ lp} Y

where the matrices are the standard angular momentum matrices for the appro-
.ﬂ O

priate spin.

E. Transformation of Single Particle States under Parity and Time Reversal

It is sometimes necessary to know how the states | P, A > transform under
the parity and time reversal operators discusscci in Section C. let us consider
first the states | P, A > describing massive spin-s particles.

How do the states | P, A > transform under the infinite-momentum frame
"parity' operator Ua = exp(—irrJX) UP? It is éasy to give the rule if we sta¥t frem
the transformation law of the states at rest, | Py A >, under the ordinary parity

operator, namely

U, 1B,2) = ¢ 1B.a)
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‘Here CP is the intrinsic parity of the particle, with | CPI =1. To derive the
desired transformation law for a general state | P, A > we write Ual P,A>in

the form

U 1P = U U(Bw) IR, 4)
= U Ulgen Ut €™ U, 13,2
=Co U U@ U ™ |w )

By definition, the states | PO’ A > transform under rotations according to the

spin-s representation of SU{2); thus

e R, A) = BT, B,
(O 8, ., P o)

]

If we use Table II-1 in Section C and the definition of 8 (P) we can write

U. Ulge) U
= V. eip < BpA) @W(zk3 ,;[Fy/n])\)‘
= o (-0 B BA) op ik blED/M)
= Ulst®) )
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where/ﬁ =17 and:é = (—pl,pz). Putting these results together, we have
U V1, ot 500 = Co G -, %5 -0

Thus £he action of U, on the single particle states is very simple: it changes the
transverse momentum fromg t:ol:é~ =_.(-pl,p2) and flips the spin. In addition, the
state vectors are multiplied by an overall phase factor Ca = Cp(—i)zs.

We can similarly derive the transformation law for the states | P, A >
und‘er the 7-reversal operator U,,- = exp(-im J3)UPUT. We begin with the trans-

formation law for states at rest under the ordinary time-reversal operator UT’

UT I,B])\> - CT @G)(@qiﬁ‘;@)gg !f'pﬁd>

 Then if we also use the formula UPI PO’ A>=C.| PO’ A > and proceed in the

P

same manner as before, we obtain

' - -~ 3
U+ 1P, 40 = U, U'\EG(”P)) u* e " UpUr [R,2)
= U’('Qbf,—/‘?)) CoCr @(S)<Q-Mrjj)pu'
O (e 7),, |, 00
= GGy £ (e )/o" ‘ v-® }/o>

25 )
= CpCy (+4) 5/0,-;\ ’7/’",~6Jg,'!o>
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Thus finally

)

U‘Y IV,@Q,/X) = C, “7,“63,"90 »

where C'r = CPC )2S is a phase factor. This is just what we would expect for

T'(i
a nonrelativistic time reversal operator — U_r simply reverses the particle
momentum and flips its spin.

The action of the PCT operator on the states | P, )\ > is also quite simple, '

If we define the charge conjugation operator U . by

C

U 1P partcle) = Co 1P, N anlipanliche) |
then we find

UPCT IKP) ’)\) 3051/5&\/@7>
= G ga(.S}(.@%TT'J"')(;’,\ G ;WJ(;deA&'J%>

= Cper -2)°"* HD,—’X;amﬁécuﬂ&Q?) :

So far, we have discussed the parity and 7- reversal properties of the states
for massive particles only. If we want to extend the discussion to cover massless
particles, we must assume that thevmassless spin 8 particle can be found with
both possible helicities, A ==+ S. This is because the inversion operators Ua
é.nd u_ both change the sign of the spin operator j3.

Let us therefore assume that the space of single particle states contains



-30-

states | p,s > and states |p,-s >. Since the states Ual Py 8 > and

U'r | Py 8 > have helicify - s and momentum p” = pg, we further assume that11

Us IR, = c 1B, -n
U’;’l?;,,}\) = C'r ‘,'po,")\>

Using this assumption and a short calculation similar to that for massive particles,

it is easy to show that

U2y = Co i
Uy 1P %)

A N

i

e
Cr l’?

) T8 )ﬂi)
ird

N _ Imdg .
Since UPCT =e UTUC’ we also obtain

UPCT I’P} A ér?wuo&) = Ceoer (‘-i\)s-% \'P)—"}\’ G.f.’:uof:}ﬂfutjﬁ)

Note that all of these results are exactly the same as the corresponding results

for massive particles,
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Chapter I) on the construction of Hamiltonians in the infinite-momentum
frame.

Cf. L. 1. Schiff, Quantum Mechanics, 3rd Ed. (McGraw-Hill, New York,
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Note that the completely antisymmetric matrix HPT is a pseudo tensor.

If in the ordinary coordinate systém 45\0123

0123 =-€593 = +1 since the determinant of the trans-

formation matrix between the two systems, C"‘y , is -1,

= +1, then in the infinite mo-

mentum system €

E. P. Wigner, Amnals of Math., 40, 139 (1939).
We regard SL(2, C), the group of 2 x2 compléx matrices with unit determinant,
as being nearly synonymous with the Lorentz group. To be precise, the

matrices A‘; of the proper Lorentz group provide a representation
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A — A(A) of SL(2, C).. The representation is two to one: A(A) = A(B) if
and only if A =+ B. The group SU@) of 2 x 2 unitary matrices for a sub-
group of SL(2, C), and the corresponding A‘uv matrices are just the rotation

matrices, Cf. R. F. Streater and A. S. Wightman, PCT, Spin and

Statistics, and All that (Benjamin, New York, 1964); V. Bargman, Annals

of Math. 59, 1 (1954). ’
It should be pointed out that this is an assumption; it does not follow from
the previous discussion, although it is consistant with the previous dis-

cussion.
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. CHAPTER III

Wave Functions and Free Fields

In subsequent chapters, we will develop several _interécting field theories
using a canonical quantization procedure in the infinite-momentum frame. We
prepare ourselves here by investigating free field theories. Fortunately, it is
not necessary to use the canonical p;'ocedure to discuss free fields; one can write.

down an exact free field for particles with any mass and spin once one knows how

to write wave functions describing the particlesl. (For example, the free Dirac field

has the for_'m

{ U m &% b, w

Yl ny @ AT

(M},
where, for instance, Ua(p, M) exp(-ip.x) is the wave function in coordinate space
for the electron state | p, A > destroyed by b(p,x ).)
The free fields constructed here will be useful for checking the results of
the canonical quantization procedure of later chapters when the interactions between

the fields arc turned off. In addition, free fields and wave functions are useful by

themselves for discussing the general form of scattering amplitudes.

A. Finite Dimensional Representations of SL(2,C)

We pause to recall the finite-dimensional fepresentations of SL(Z,C). 2 These
(5;55)

are named < , where Sl and 82 are 0,% , 1,...; the individual matrices

(51, 8,)
representing an SL(2,C) transformation A in the representation & Sl 2 are

(55 55)
written @Sl 2(A)a'ﬁ'
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The representations QZJ(S’ 0) can be specified as follows: the rotation

generators J are the standard (28 +1) x (25 +1)~ component angular momentum

(S)
af

Lorentz boosts and simply i times these angular momentum matrices, E=1M.

matrices M defined in quantum mechanics textbooks; the generators of

1
Note that according to this definition, a2 0)(A)a;3 =A It is also useful

af’
to note that @S DTy = @G0 4yT g G0 Ak o §E0 a4

The representations (05) can be specified by defining ’@(0’ S)(A) =

g®D@™h. (rhos note that @5 a) = 9 V4 it A represents a

rotation, AT= A" 1.) The infinitesimal generators in the (0, S) representation are

(5, ,)

Finally, the representation &
(S ,0) (0, 8,)
product £ D :

(81152‘ | (S O) \ ao (0) Se) ¥
% (9) 0\’;3,0(19’ g} kF? o(u( f)ﬁ (H)/,g/g'

can be obtained by forming the Kronecker

B. 2S+1)-Component Wave Functions for Mass M > 0, Spin 8

Consider the space of states | ¥ > of a single particle with mass M > 0,
spin 8. The amplitude < p, A ¢ > for‘ the particle to have momentum p“ and
infinite-momentum helicity A might be considered to be a wave function repre-
senting the state | ¢ >. However, such amplitudes have a very messy trans-

formation law under SL(2, C): the "wave function" representing the transformed

state UA) ] ¥ > is

<g<>> A | U(Q‘)\?})
D (st Ray),s ()3 %)

¢
i

I
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where p Ll A(Anl)‘u v pv , @(S) is the spin S representation of the rotation group ,
SU(2), and B(p) is the "standard SL(2, C) transformation" which carries the rest
momentum po‘“ into p”

In order to define wave functions whicﬂ have a simple transformation law,
we need only recall that the representation @(S) of SU(2) can be extended to give

the representation QD(S’ 0) of SL(2,C). Thus we can write the matrix in (IILl) as
(s) (s,9)
| o = » y -4 AT
% (‘8(@) F‘{:’)(G")) 9 (i3(¢oj ] ,@(30 ))
(97 ot OYED iy DS
= 5 { Byt P (w D ((3%0)) ,

Now the ugly momentumn dependent matrices @ (8 (p)-l) can be absorbed -into the
definition of the wave functions, leaving only the matrix @(A) in the trans-
formation law.

We are therefore led to define a (28 +1) - cdmponent wave function (lla(p)

| representing the state | ¢ > by

/ ' (s 0) . : !

- 3 7)
‘G (po) = o (@) e <108 19

(TIL2)

' A
Then under a Lorentz transformation | ¢ > — | ¥ > =U(A)| ¥ >, the wave

function transforms simply according to the _@(S’ 9) representation of SL(2,C):

. z?}% () ~—> 2{2(0@) = 9(5’0)(/57)0(/9 %2’(50,) ' (1L.3)
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C. (28+1)-Component Free Fields for Mass M > 0, Spin S

Now that we know how to write wave functions, it is easy to construct a free
field. We note that the wave function in coordinate space corresponding to the

state [ ¢ > = |k, A > is ¥, (x) = um(k,)\)e'ik'X where
Uk, ) = M %7 (B8R an (1L

A particle destruction field can be formed by multiplying the particle destruction
operators b(p, A ) by the corresponding wave functions, then summing over the

complete set of single particles states:

*) - e K o
L = (em 3]"209[, %,?; Uylgo, ) €7 BN

It is easy to see that the ficld so constructed transforms according to the repre-

sentation @(S’ ) of SL2,C):
! !
f oYL D / (s,0} / /) () -
LKR) 93’( & R = 09 ’ (F‘)o{p r%é (ANay* x) . @Le)
An_antiparticle creation field tp(—)(x) can be constructed in a similar fashion:

/) s [ [y o HEX AT
2w = @ fag] ST wen S @y,

where the creation operator bgCT(p, A ) creates the antiparticle state

' \ i -+
/%LT ((‘p, Mloy =2 UPCT \ &, N; é?aﬂ,uc)?o 7. (IIL.8)

PoT
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Here U is the PCT operator discussed in Chapter 1I and C is the

»CT CPT
"PCT phase" of the particle (which is normally arbitrary unless the particle is
its own antiparticle). If we recall that UPCT is antiunitary and commutes with
Lorentz transformations U(A), we can show quite simply that !I!OS-)(X) also trans-
forms according to the repreéentation @7(8,0) of SL(2,C).

The creation field tlfof—)(x) can be written without the explicit appearance

of the PCT operator if desired. We recall frpm Chapter II that
U . \ 5N GDM )
= CPCT %(s,o)( f-lj)dx \ﬁ()@ anmii éJaqu Zi)

Thus if we write df(p, o)} for the creation operator which creates the state

| p,o; antiparticle >, we have

" J‘ / ' ¢ [ on Al
Ualgo, ) ’6%‘@9\) - 2“«‘@15‘) D Pon & (GO’G)

<

'il‘h_erefore, an alternate form of \P(—) (x) is

i ’/ (.) R Nl /“1 oj e ' / +'!0k 1‘
2’)0( (i) = (&) 3Ja‘£dg£ :}-{L; ?fxqﬁ,)\) e A a) (I11.9)
where

U (gﬁ, N = 7 Unlg, 2) oy oy ae (IIL10)
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The complete (28 +1) - component field ¢ (x) is the sum of ¢‘(+) (x) and
v )

Doy = ) [Jdp

{u((fo,ﬁ)ﬂ ‘e B, i) + Uga) +'md(qb A)}

b

A=2Ys
(IIL11)

It is an instructive (although by no means novel) exercise to compute the free field

commutator or anticommutator [1# (x), ¥ (0)1-] i-. Simple calculation gives

[(er((/k) (OJJ = (271’)'3IJG@£ -~+ [ociox,,.@ﬂp x ]

. < ' . ¥, (IL12)
25 Ui 1) Ug ()

/

The spinor sum is 2 U (p, A )U;(p, A) = M2S (5, 0) (ﬁ(p)ﬁ(p)T)aﬂ. We can see
that 8 (p)B (p)T is quite a simple matrix if we recall the formula defining the
relationship between a2 matrix A € SL(2,C) and the corresponding Lorentz {rans-

formation A(A)’; : 3

PL,Z.}Q RT - AR

mu/
where
T
- A5 ol -2
g2 = " , e = 2 i)
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-1
Since A(ﬁ(p)) p0 -"p , where pg 2 2 (M,0,0, M), this relation gives

, : vz [T A
/G(UAO)/S('{J)T = "r'ii{g T ™ (35+ 6:) ;

Fmally, we recall that the matrix elements @(S 0 (A) af are polynomials of degree

2s in the matrix elements of A, Thus the matrix elements

- (Soj
5—’ MLP,)UUUJA = P (v @)

are polynomials of degree 28 in the momentum components p¥. Integration by

parts in (II1.12) then gives

{?,2(1.) .. o)} ( a*) A(O{)M) )

Kp (IL13)

where A(X,M) is the ordinary scalar commutator function — provided we made

the right association between spin and statistics.

D. 2 x (28 +1) -Component Wave Functions and Free Fields

In the last two sections, we chose to use the (S, 0)- representation of SL(2,C),

but we could just as well have used the (0, S)- repreéentation. Had we done so, we

would have defined wave functions
4
%c (g:)) = (‘G(do))oﬂg (@O, R 1Py (ITL14)

The relation between the (S, 0)-wave functions  (p) and the (0, S)~wave functions

¢’ @) is
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%(t/p) = -@(S’O)(@(do))d‘@ 9“””(@@)"@ 'Vj’(ao)

This relation can be simplified if we recall that @(O’S)(A) - g 0)(AT'I) and that
Tl
BPEP) =3B!

(I1L.15)

% () = DGR, D)
The inverse if this is

?’ba(’(do) - 0@{5,0)(# 6—5)“? %%(50) (LIL16)

where
o~ R -p |
60 = N2 (_/(P* n) . (IIL17)

One can then use the wave functions §” (p) to form a free field ¥ (x) which

transforms according to the (0, S)—represehlation of SL(2,C):

Yo = (?W)'Bj&dgim%? 2.

. (111.18)
x { WigN € FF b + € Ulgne

i.p-X
by (0N
Pcr (dq,
(The factor (- 1)2S is superﬂuoué of ¢’ (x) is being considered by itself, but is

- needed to insure that \;b' (x) has a causal commutator with Y (x).) Apparently

the fields ¥/(x} and ¢’ (x) are related to one another by
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M* Yo = £°(i3) P
M2 Py = D9 (73,) Y

An elementary calculation will show that the two fields ¥, ¢ are
. -1 _ .
parity transforms of one another: Uy ¢(x)Up = Cyp lp'(A_Px). Thus, if we want
to discuss a theory invariant under the parity transformation, it makes sense to

use a combined 2 x (25 +1) component field

Vi
Y(x) = ) . (IIL19)
| P | a

Since Y(x) and Y " (x) are related, Y (x) satisfies an equation of motion in addition

to [a“a“-Mz] ¥ =0:
o O3B

- M‘?s ]L UJ(X) = . @20
i © |

We recall that the matrix elements & (p) ap’ @(ﬁ)a 8 are polynomials of degree
28 in the momentium components pn. Thus (III.lQ) is a differential equation of the

form .

oYy T 1} -0

where the TFY*** 7 are certain matrices which can be easily computed. For
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instance, for S = 1 the I‘“‘“form a certain representation of the Dirac ¥ -matrix
algebra, and Eq. (III.20) is just the Dirac equation.

Using our previous results, we can write out the Fourier expansion of the

2(28 +1)~component field Y (x):

As-s

Hfg/(x) = (ev)afcﬂggfomf’% 3.

(IIL21)

x { U,V S F B + Yo €% L, 9\)}

where the spinors U(p, )\ ) are

e (D)
u((/}{), A) = = M 05 (I1.22)
W, (o3 B el

and the charge conjugate spinors V(p, Aj are

| ‘ ']L ‘ O : 50 ' ”
’UJ((}O, 9\) =\ o CF A u(&ﬁ)@\ @’(')(-L'T;)N _ (111.23),

When the free fields P (x) are used in applica@ions, either as in~ and out-
fields or as !"bare fields"” in bérturbation theory, matrix elements of covariant
operators will consist of the spinors U(p, A), V(b, A ) tied together with such
covariant objects as the matrices g s ‘momenta p‘u, and scalar form factors.
Thus it is quite generally useful to have explicit expressions for these spinors.

Such expressions will be derived in the next section.
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E. Evaluation of the Spinors U(p, A ).

The observant reader will have noticed that the well-known formalism which
we have briefly outlined in this chapfer can be used with any choice of the type of
spin states. In this section, we will specialize to the choice of states useful in
thl_e‘infi.pite—mqn}gnmm frame — namely the infinite-momentum helicity states
! P,)\> We willi 'obtain explicit expressions for the spinors ua(p, A) and
uL @A)

We begin
Pl d

) - <

by constructing the "standard Lorentz transformation” 8 (p),

| BUo) = o ‘Y B ik

where v = "1‘3'/71‘ and ” = 2 1n/M. We recall that the generators of rotations in
SL(2,C) are the Pauli spin matrices, T = 17, and that the generators of Lorentz

boosts are K = 1 7. Thus the generators B and K
J SN - EEE

P 331'8
L 2 (oo
ce B = 23 (eT) =2t (29) -
‘- (111.24)
T e _ o3 (00
" .:]3 = 2 (Ka':(,.) = 2 (-j_ O)

BUREE i (1 O
<= (6 3)
The exponentials exp(—ix-g) and exp(—in3) can be easily worked out, giving

s = (Bt L0

™ )
501._ = (IT.25)

I



—44 -

t-1 M o\s | & -
(1) = \% .
@ X | (rqz) O 17 (IIL.26)

Now we need an expression for the matrix elements of @{S’O) (A) in terms
of the matrix elements of A. To obtain such an expression we consider the 7

1 1
D% a@ % . xa® " o 510,c) with 28

1
reducible representation @(2 ’

N _
factors of otz 0). This representation acts on the space of spinors

§

@@+« Olpg, Where each index o takes the values + +, according to the rule

—_
g%-'-‘xes a ?—f;) R“-F.“- Q%Pes g@r'-ﬁzs . man)

It is not difficult to see that the subspace of totally symmetric spinors is left
invariant under these operatdrs, and that the representation of SL(2,C) defined
in the symmetric subspace by (IIL27) is @(S’O). A suitable4 orthonormal basis
for the symmetric subspace consists of 2S+1 vectors £ (1), A=-8,...,85,

defined by

S(Q\)q‘ ey, T | (es)! (S+9\)!(qu«"/a bY

permulations

oY the o
(I1.28)
xgdl...gq Y AT
138 Saa ¥ E Sthti =3 251" 2
\____,._..-\/_______) N —
(S‘VA\ ‘Fo.c"ll'ors (SJ,"O ";Qc'kors

[ 8
o‘? 60::’47;: o7 So(, -~ Yz
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The desired matrix elements of @(S,O) (A) are simply

(111.29)

(s,0) | ¥ AN
9 (ﬂ)ka = f(?\)“nﬁzs FB“.P; H S‘Mﬁa“'ﬁes

Thus the matrix elements @(S’o)(A)h,A are polynomials in the matrix elements

Uy (Bas

A

++’A A

o A ofA. Itis not difficult to compute the coefficient of the

!
general term (A _H_)a(A " )b(A__ +)c(A_ _ )d in this polynomial by a simple counting

argument. The result is

O (R) s = [+t Gt som s}

(II1.30)

5 (@t bt dyt R, R Y (RTRS

abed

J e

7

where the sumincludes all those values of a,b, ¢,d in the range 0,1,...,28 which

satisfy
Q+/6_+C+o’2 = 25 7
G+ -c-~d =2% (IL.31)
a~Ab +c-K =24 '

N?)W we are ready to evaluate @(S’O)(ﬁ 1)) NS where B (p) is given by (I1.25).
Since the component 8 (p) 4 is zero, the only nbh—zero terms in. (IIL30) are those
with b = 0; but there is only one solution of (IIL.31) with b =0, namely a =S + A",
b=0, ¢ =A-A', d =s-A. Since the sum in (IIL.30) includes only non-negative
values of the exponents a,b, ¢,d, this solution leads {o a non-zero matric element

DAy 1y only if ¢ = A-2A'= 0,
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Thus we obtain for the spinor u, (P A) = MS@(ﬂ ®)

/2
= oA st ey 27 /
ud (30150 (S+a)! (s-2M _(—;:o()_l @\Wg A)
' (1IL.32)
’ S-A A-
<t ()7 (%)
. 1
where (e = A)islfora = A, zero if ¢ > A. We {find in a similar fashion
that the spinor ur Ps2) = MS@ (B (p)T'l)M is
; (i (somi 2 e E(Asw)
] — ol H - . \ A3 /
Q’{“(é{'/ ;\3 (s-o)! (S+ A4} (0(-?.)!
(II1.33)

. /)75 (_%,_)%ﬁ\' (_—%j-_)oc-’)\

It is remarkable that these infinite-momentum helicity spinors are so
simple. The spinors for Jacob and Wick helicity states, by way of contrast,

have the form

. S

Uldy ~ €% PP [yal® 3. e,y Len2]”
where (@, ¢) are the polar angles of p and cosh w =\) -52 + Mz/M. One specific
effect of this general simplicity of spinors for mfmite—mon1entum helicity states
may be seen in calcﬁlations of scattering amplitudes in quantum electrodynamics
using ' old-fashioned" perturbation theory in the infinite-momentum frame. 5

In such practical calculations, it is generally easy to sum over the intermediate

spin states directly to product the scattering amplitude; one is not forced to
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avoid the spinors by casting the problem in such a way as to make the answer
proportional to a trace.

In this chapter we have not discussed wave functiohs or fields for massiess
particles. Such a discussion would be quite simple and would run along the same
lines as the present discussion of massive particles. However we will be content
merely to state the result: the spinors and fields for massless particles can be
obtained from those for massive particles by simply setting M = 0. In particular,
note tl;xat the massless spin-S fiéld Y (x) transforming according to the z®:0)
representation of SL(2,C) destroys only parricles with helicity A =S. Similarly,
the fiéid l})'(ﬁ)_transforming according to the 93(0-’ 5) representation destroys only

particies with helicity A =- S.

F. Fields Transforming under Other Representations of SL({2,C).

We have described fields for massive particles witﬁ spin S which transform
accorciing to the representations > 0) and a5 of 8L{2,C). Itis, of course,
also possible to describe such particles using a field which transforms under any
of the representations @(a,b) withS= [a-bl, la-b|+1,... or | a+b}. For
example, spinl particl es can be described by a 4-vector field (which transforms
according to @(%’%)). For the sake of completeness — and since we will make
use of 4-vector fields in later chapters — we will recall here how such fields can
be constructed.

| We note that the irreducible representation @(a,b) - 9@ 0)>< @(O’b) of
SL(Z,C) is reducible when it is considered as a representation of SU@2). If
S= la-bl, la-bl+1,..., or | a+b] then the spin-S representation of SU(2)

will be contained in this representation. We let the (2S5 +1) vectors w(A) be the
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basis vectors in the representation space of @(a, b) for the spin~S representation

of SU@2). Thus for A € SUR) ,

O (Al W = 2w, (10 By, m.34)

For example, if we are using the (3, 3)-representation of SL{2,C) to describe

massive spin one particles, the w(A) are 4-vectors (in infinite-momentum

coordinates) :
WH(+1) = TJ'—“ (o 0)
K -
1% (o) ( 0,0,-1) s,
wWwen = g (0 (,0)

Spinors to describe a state with momentum p, helicity A can now be defined

U (po,0) = @(q'é)(@(ao))q.p W (0) (. 365)

These spinors can be used to construct the field

x { U (0,3 @"""O'Kﬁ(éo,g\) - (IIL37)

+ (1) Uglion) &F7 8L (100 } .
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1t is a simple exercise to use (I1.37) and the transformation laws for the states
| p, A > to show that this field does indeed transform according to the (2,b)-
-representation of SL{2,C). 6

In our example of a massive vector field, the vectors U(p, \) are

U, A) = ABEN Bt @y

. [ .
u”tgo,ﬂ) =-\z (O, i,t,[,'.findoa]/?)
(II1.38)

u’(‘do) O) = —;T (Yll ) 601) ’(‘pa; [(Ejz_ﬂz]/g?)

~ ;Y .—'-— ¢ ’ 7
W0 = w (o1, ‘h[{s@i‘“‘”“f)

1t is instructive to notice that the massive spin one field constructed using the
(3,3 )-representation of SL{2,C) does not have a nice limit as M — 0 since the
polarization vector for helicity zéro blows up instead of vanishing as M — 0.

We will see in the next two chapters that this problem can be overcome in massive

and massless quantum electrodynamics by the use of gauge invariance.



~50-

References — Chapter III

Cf. S. Weinberg, Phys. Rev. 133, BI318 (1964).

See, for example, R.F. Streaterand A. S. Wightman, PCT, Spin and

Statistics, and All That (Benjamin, New York, 1964) and references quoted

therein; our notation differs slightly from that of Streater and Wightman.
Cf. Streater and Wightman, op. cit.
This choice of basis bakes the angular momentum magrices T in the

representation @(S’ 9 obey the standard phase conventions (i. e. the matrix

Jz is diagonal and the matrix elements of JX * in are real and positive).

Cf. J. D. Bjorken, J. B. Kogut, and D. E. Soper, Phys. Rev. D3, 1382
(1971).

The factor (- 1)b in (IIL.37) insures that all of the free fields which might be
used to describe the same particle have causal commutation relations with

one another.
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CHAPTER IV

Quantum Electrodynamics in the Infinite-Momentum Frame

This chapter is devoted to a reformulation of conventional quantum electro-
dynamics in the infinite-momentum frame variables. The chapter is divided into
two parts. In the first part, we consider the Feynman perturbation expansion for
the 8 matrix, divorced from its field theoretic tmderpinnings. We write the co-
variant Feynman diagrams using the variables (7, %, #) and then decompose each
covariant diagram into a sum of " old-fashioned" 7-ordered diagrams. The
results are similar to Weinberg's results concerning the infinite-momentum 1imit
of t-ordered diagrams, but the appearancé of spin results in the emergence of new
types of vertices. In the second part, we look at the field theoretic under-
pinnings. We guantize the theory directly in the infinite-momentum frame by
postulating equal-7 commutation relations among the fields. We find that these
equal- 7 comimutation relations make the unquantized field theory into a formally
consistent quantum field theory; in particular, the canonical Hamiltonian generates
1~ translations of the fields according to their equations of motion. Finally, we
find that the old-fashioned perturbation expansion for i:he S-matrix derived using
the canonical Hamiltonian agrees with ﬂie T-ordered expansion derived directly
from the covariant Feynman diagfams in Part1,
| In subsequent chapters, we will discuss several other field theories in the
infinite~-momentum frame. However, none of these theories will present any new
difficulties not already present in quantum electrodynamics. Thus the experience
gained from a detailed discussion of quantum electrodynamics will enable us to

develop the other theories in a more compact fashion.



-52 -

Partl: Scattering Theory

In this section, we regard the theory of quantum electrodynamics as being
defined by the usual perturbation expansion of the S-matrix in Feynman diagrams.
We rewrite the theory in the infinite momentum frame by systematically decom-
posing each covariant Feynman diagram into a sum of non-covariant 7-ordered
diagrams. We consider the Feynman expansion as a formal expansion; thus we
shall not be concerned in this paper with the convergance of the perturbation series,

or convergence and regularization of the integrals.
A. Proparators

If we wanted to derive t-ordered diagrams from the Feynman diagrams we

w ould begin by writing the Feynman electron propagator in the form

SF(X) = @1t SWxy + @) S . (Iv.1)

We will try to do the same thing using @(7) instead of ®(t).

We start by considering the Klein-Gordon propagator

N ‘ e
By = emr [lip &ENT L, ot el
- /O _'\‘-q ( } i\__) X)
21 ju{f) l?’ =

4o - "iH‘r‘ - 1 i . —-1
X fuﬁ 2 [’2);‘ y -d;’l-,.*vavle +t&;] »
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We can do the H~-integral by contour integration. If 7 > 0 we close the contour
in the lower half H-plane. The integrand has one pole at H = (-5 ,1‘? + mz- ie)/27,

which is in the lower (upper) half plane if 7 is positive (negative). Thus we get

’ _:._‘.i.__ r\ . d’)" _Zr (_3+’,/“ 7 oe ]
D) = e Ay ) B T TET T
{

Similarly, if 7 < C we get
2
/- — ______.,__ --(- C»Q_f '7‘ ) (e
A (%) (27)® YJ Y S [ =7 VX 7Aj

Thus (with the change of variable"ﬁT — and 77 — -7 for 7 < 0) we have the

required decomposition for AF(X) 1

- D:{r J’ {1, x" ]
S 7 AT N A - 2 +( »
Aplﬂ = —(Eff)s e Qf =t o) @ u & +E-Y) gl J(IV2)
J o =7 1
where
9 _ { Am L — _St_":——--—‘—-"‘”‘"
(s ~ H\/)?; &) a”l“

is the free particle hamiltonian. Notice that

AP S AR d &3_:

) ,}, - "/“'_f_:;:.; .....

is the invariant differential sufrace element on the mass shell.
We can use the decomposition (IV.2) of AF(X) to derive a decomposition for

the electron propagator,
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: I
SF(O() = (LE}ES +/W{) NelR) . a3

(In keeping with our convention, the yF are the y-matrices in the new notation.

We shall use 'y# for the y-matrices in the ordinary notation; thus 7 =27 "% (AO +$3)
etc. Table I in Part 2 contains some useful identities for the new y-matrices. )
When we differentiate A (x) in (IV.2) we get a term proportional to ®(7), a term
proportlonal to @(-7), a third term proportional to 8(7) = 8 @('r) As we will see,

this th1rd term results in an extra term in the infinite momentum frame Hamil tonian.

Doing the differentiation we get

= So lAe L34 1[ Aoy [ 1 o2
S K) = Gy f-*jﬁj; g,i;‘ \g'*/ll’) [ﬁ_,+,-mj S

,' ‘] Q'H'(/Or‘;(}/ }
f{

~

8Ly

""‘ﬁ

fl"\

i

X

A a0 RN LA P
.- +- sb(:’;h”j,xfgj Sk ooraRe)

(IV.4)

-—

We will also need a decomposition for the photon propagator. We start with

) PR 3!
4 /“V Ve \_q { ‘[‘1' ""‘-L/ff"il ___L’:‘ /"‘
Al — Ll I " ; L] ¥, 3 GO s
D) = 2l ol € e (Iv.5)
¢ €, Jortie
As we will see, a great simplification in the theory will result if we choose the

gauge A0= 0, which might be called the infinite momentum gauge. To write the

propagator in this gange we define the polarization vectors
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Vs . M L ]/, y . . ; .
S = -3 (0,8, yher1/7)
Iy L J___‘,, / . . i (IV.6)
U0 = i (0,40, [t il /)

(Cf. Eq. (IIL37) in Chapter IIL ) These polarization vectors satisfy the ortho-

*
gonality conditions e(p, A) “e(p, At )# = - 6)0\' s p#e(h, p),u = 0.” By direct calculation,

we find
MY n foa M X v
_3/“ _— }_.J @\GO)A) @{53) ,‘A)
A=ty
~d M L Y 27H0R o o
T O ot 00, ava

Let us make the replacement (IV.7) in our integral for DF(}i)ﬂV . We note that the
gauge terms n"lé‘u 3pv and 7~ Ip‘u GVS will not contribute to any physical process
because of current conservation. Thus we may drop these terms without changing

the theory. This leaves us with

0 ey L v ‘v
o el v, ~CH0, K DAY A
L0 = (&%) Jrck ch‘] S & _.._L__.,E_'_L._'_.__Z.ﬁ.é-_-:fy,.;l‘.'}_)._.,_
A
.Yy A3, A
oyt S KT TR i SR A
" § Q3 jHhpov [~ g goTeiE

We can do the H~integration in the first term by contour integration, just as

we did for AF(X). The result is
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x>

)
. = 5‘? .~ __d]f/;_ ( ) Y M ~ A Y
first term (o) ﬁldﬁ' ﬁ 2**7 S; Nas (G:CJ Al @tdﬂ /) ).) )

L)

s .
% {Uﬁ’) @—L{pﬂ\ i vy ot g

In the second term p p /(p p“+ ie)—1 as € ot so that the H-integral is

D
Lo o~ (HY g S
/ a2 = 27 2\7)

Thus the second term is

w
A
A A
o

.. {
OV 2 Q4 O, J

This term will result in an extra term in the hamiltonian which is analogous to the

Coulomb force term which appears in quantum electrodynamics in the Coulomb

gauge,

In sum, then, our photon propagator takes the form

e A7 (S ae i o X
‘JDF(/\) = (ei_, f U”\/ ""' r-:) w\é-’,/\} \—t\, nl J

PRS-y M +ELAT
‘Jsdu’jf} Tage?y T
{ J
. [N
| SN (TG R )
R o e R Lt ="
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where

= .’ ) = ¢ 'l, i
70 HU{”,W &2

B. Diagrams

We start with the usual Feynman rules in coordinate space, For definiteness
let us consider a particular diagram, say the one shown in Figure IV-la. We fix -

our conventions by writing out the contribution of this diagram to the S-matrix:
M = el [d's % % [ T e Y]
7 . . 5y snr
X [%{ﬂﬂfz) X/ L SF (X2~ X3) h}o’ 2)2 (5{3)] (IV-9)
v DKk €KY

The electron wave functions used here are ‘ ‘

. Y
Qr/ﬁ(;t,) — e"cg,’ouﬁ ?’((/J/O; ,)‘)

where p and A are the momentum and spin of the electron and the spinors U(p, A)
are normalized to Uu = 2m. For positrons we use the charge conjugate wave

functions

/) . S, ;t”' s
/;U(ﬁ’)c = e+%0 2{(0;0) A)c

where p and A are the physical momentum and spin of the positron. The photon

wave function is

N> oY SN
€ = 8 el N
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1463A2

| Fig. 1v-1
Typical Feynman diagram in coordinate space (a), and in momentum space after
T-ordering (b). '
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where e(p, h)u is one of our'infinite—momenmm gauge polarization vectors.
Finally, it may be useful to note that although the y-matrices appearing explicitly
in Eq. (IV.9) are, as always, the "new" y-matrices, the old !y\o still plays a role
in y =150,

o We begin the program of deriving the rules for 7-ordered diagrams by
inserting the comentum expansions (IV.4) and (IV.8) for the propagators into (IV.9).

Let us, for the moment, ignore the contributions to S and D;y proportional to

F
6(T1). Thén each of the 3! possible 7-orderings of the vertices determines a
T7-ordered diagram; let us consider, say, the ordering Ty< Tg < Tge For this
diagram we draw the picture in Figure IV-lb. The corresponding contribution to
the S-matrix is obtained by inserting @)(73- 12)6)(72-71) into (IV.9). Thus only
one of the ®(7) or ®(-7) terms survives from each propagator. We can do the

. . . 3,2~ —
X~ and g-integrations to give 27) 6 (pT in~Pp out)é(nm- T'Iout) at each vertex,

The 7 - integrals in this example are

: jom A% d, @) Elr-m)
Qo (O L (H-Hy-Hoy 3 + (- Hy- ) o CRUAEEN))

With the change of variables

-~ ~7 = rot
I =7, ) ls
- I ~.7 - T =
’T: = Ja-= 12 I t 1
- o~ ~/ ”‘?’3 e f‘i‘; + 7 4 'T-l
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The 7-integrals become

[am a7 d7n etn) am) ©

where ;/é’l = E[1 + I—I2 is the total "enefgy" of the initial state, yfl = H3 + H6 -+ H2

is the total "energy! of the first intermediate state, Jf‘z = H3 + H4 -+ H7 + H2 is
the total "energy'" of the second intermediate state, and Jff = H3 + H4 + H5 is the

total "energy' of the final state. The integrals can now be done using

3
| . \
[ ar T e sem

oo

53

. ‘. 7?’;1 : (4

T
od'r’_é =

Thus we get an overall factor of (27r)6(,‘/¢9f— H3) and a factor of i( H- H + ie)'_1
for each intermediate state. With a little thought, one can convince himself that
this result is completely general.

We now have to consider the effect of the 8(7) terms in the propagators,
yvhich we have so far omitted. The contributions to the S-matrix from a particulé.r
Feynman diagram so far obtained, we should add the contributions obtained by
replacing the 7 # 0 parts of SF(x) and DF(x)” ¥ with the 6(7) part in any of the
internal lines. We will use the pictures in Figure IV-2 for the 6(7) parts of
SF(xz—xl) and DF(xz-xl)'u v Diagrams containing one or more of these 8(7)
internal lines are then treated as before except that we consider structures such
as those shown in Figure IV-3 as single vertices when we do the 7-ordering. Thus
we get (21r)362 ('i)*T in:ﬁ'l‘ out)é (nin-' nout) at each end of a 6 (1) internal line, an

overall (27)6 (:/{’f— e i), and a factor i( Jg’fu P+ e )"1 for each intermediate state

between two different " times".

= [ (W WTy + (W= 5T, + (- )

0y
2
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Fig. v-2

Pictures used for the §(7) terms in the electron propagator (2) and the
photon propagator (b)
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1463A4

Fig. 1v-3

Structures considered as single vertices. Structures like (c) and (d) give zero.
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At this point let us notice that diagrams in which two or more 6 (7) parts of
propagators are linked together give a zero contribution to the S-matrix. Indeed,
consider a diagram containing a part like that shown in Figure IV.3c. The cor-
responding contribution to the S-matrix confains 'yo'y‘u-yo times D;V or ¢. Because
of our choice of gauge, only ¢ =1,2,3 occurs; but, since 'yo'yo = goo =0, we have
vowl ¥’ =- "rovoyl =0, Y2y57% == 77"y, =0, and y%y 477 =%y " =0
Hence 'yoy.u'yoeu = 'yo'y‘u’yo D‘;V= 0. Now consider a diagram in which the structure
shown in Figure IV-3d occurs. The corresponding contribution to the S-matrix con-
tains a factor 5“ 3( ¥, ¥ ) :5%(...)/3'}/ ) =8 50+ %% ) =0,

We are now in a position to summarize the rules for 7-ordered diagrams.
With our choice of gauge there are three types of interactions as shown in Figure
IV-4. These interactions are to be 7-ordered in all possible ways. We then asso-
ciate the following factors with the parts of the di.f.igra.lcn:2

i) spinors U(p, A), T(p, M), T, (P, M), U,(p, A}, and e(p, AP, e, ) for
external lines;

ii)  +m)=2 U(p, MU (p, A) for electron propagators; —p! +m) =
_EA U, AT (p, A) for positron propagators; Z A e(p, )\)ue(p, A) for photon pro-
pagators.

iii) eyu(27r)36(n0ut- nm) (pout D, ) for each vertex as shown in Figure IV.4a;

iv) e-y‘u for each ordinary vertex as shown in Figure IV-4a ;
: o? . X
X/A L ] 8 3 T' Z 3 . - P ))

for each ! Coulomb force" vertex as shown in Figure IV-4b, where N is the fotal

11 transferred across the vertex;

SR XDX/ (71—)
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|1463A5

Fig. wv-¢

Vertices in the infinite momentum frame.
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for each " instantaneous electron exchange™ vertex as shown in Figure IV-4c;
V) @“)Zﬁ(nout— Min)? (P =Pin) for each vertex;

vi}) an overall factor of (-2#i)é ( g Jt’i), and a factor of ( Jff— e+ ie)"1

waoul

for each intermediate State;
vii) the usual overall sign from the Wick reduction, determined by the structure
of the origional Feyn:rnan dlagram,
viii) an integration (217) j ﬁﬂ for each infernal line.
Note that since eachline carrloed positive 1 and 7 is conserved in each inter-
action, vacuum diagrams like those shown in Figure IV-5 cannot occur.
In the next section we shall develop the canomcal field theory for quantum
electrodynamlcs in the infinite momentum frame. As we will see, the hamil tonian

we will obtam reproduces the scattermg theory we have developed here.
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1463A86

Fig. -5

Typical diagrams that vanish because of - conservation.
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Part 2: Canonical Field Theory

A. Eguations of Motion

We base our field theory on the usual lagrangian density3

56(90 = ?{(_g‘é’ “@PVBXM'/M}W —I:"FWF/'W (IV.10)

where the electromagnetic field tensor F*¥ is related to the potential A¥ by

I3

F V- a¥ AF. a'uAV . Variation of the fields V¥, ‘T’, and A* give the Dirac egua-

tion and Maxwell's eguations:

{(L@u "-9@)5,"‘. */m} v =0 (Iv.11)
ax F/‘m = Q W Y = J* (IV.12)

It will be convenient to work in the infinite momentum gauge, Ao(x) =0. In

this gauge the field tensor is related to the potential by
S M o M
Fo* = -3 R = , ‘ (IV.13)

In order to completely specify the gauge, we must choose boundary conditions for

AH (X). For reasons of symmetry, we will require that AP (xo, xl,xz, o+ ) =

- a# (xo, xl, xz, -2). With these boundary conditions, the solution of (IV.13) is

F?’“(“) = - éfig e’- S) qu(xoz 'X;KZ) g) 3 (IV.14)
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where C . { X >0
€)=
-1 X<O

It is perhaps not chvious that the gauge conditions we have imposed are con-
sistent with Maxwell's equations. Thus it is reassuring to note that the definition
(IvV.14) of AP (x) works for the classical electromagnetic ﬁeld.: If the field FH*” (%)
is produced by a current which, say, is non-zero only in a bounded space-time
region, then the components Foy(x) go tc; zero like (x:‘)')'_2 as | x3 | =, Thus the
integral (IV.14) is well defined. Using the homogeneous Maxwell's equations,

VA A pt? = 0, one can easily show that the potential A¥ defined

ehF™ 4" FM 4
i)y (IV.14) satisfies 8" Ak~ s 4Y for all iﬁdices By V.

We have eliminated one component of AP (x) by our choice of gauge. Only two
of the remaining three components can be independent dynamical variables, since
the three components of AP (x) are related at any "time" x° by the differential

equation

83(8'9‘ + 9 R* + Oy HS),___@“[.__O,;(
| . ge

(IV.15)

L ' 3
1t will be convenient to regard A1 and Az as the independent components. Then A

satisfies

«

0:0,R° = -0, 9, Rt - J°

(We adopt the convention that Latic indices are to be summed from 1 to 2.) The

solution of this equation which equals A3 as defined by (IV.14) is
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HB(X) =“é"fol§ |'X3-§\{838J- ﬂi(’/{‘j;})i‘)«t\'}”\'?\"’,ﬁ,’{)} . (Iv.e)

To see that this equation reproduces our definition of A3 in terms of F°3, write

it :a.s4

R AP - R PNY 3 e
==z _Dg (a-,;'o' \As“fi) F '\”/\ih)i) (IV.17)

Thus only two components, Al(x) and A2 (x), of AF (x) are dynamical variables.
1

Ao(x) is identically zero, and A3 (x) is determined at any "time'" x2 by A (x), A2 (X},
and Y (x) at that x° by means of Eq. (IV.16). This reduction in the number of
independent components of AP is a familiar feature of quantum electrodynamics in
any reference frame. |

In the infinite momentum frame, we fiﬁd that the number of independent
components of the electron field ¥(x) is also reduced from four to two. In order

to show this we pause briefly to examine the proporties of the infinite momentum

y-matrices, -ﬂl =C‘L; ?”. The "ordinary' y-matrices -?‘u are chosen to satisfy

A“, QV} = 2@‘“” and @”T =Yy Thus the infinite momentum y-matrices satisfy
Y

3

oF ”} _aghr, M v, From ihis it follows easily that P, =} v ° and

-

P =3 yo'ya are hermitial projection operators with P+P_ =0 and P+ P_=1
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These facts, as well as some others that we will need later, are listed for con-

venient reference in Table IV-l.

1t will be helpful to have a specific representation of the y~matrices in

- mind, We will consistently use

™o O 1 & Q '0’“)
- (1 0) , o =(s‘°‘ o) “as o, P

where ol, 02, 03 are the usual 2 x 2 Pauli matrices. With this choice for the

yu, we find that

,1500 OO0 45 o
00 0o P =0+ 0 19
= -~ P -)
L 0000 OO‘LO} &
O 00 1§ o 0 O 0

By applying the projection matrices Pi to the electron field ¥ (x) we obtain

two two-component fields which we call ¥ L) and ¥ (x):
I o)
|

YeRY =5 Y-RYs g

¥

With this preparation completed, we are ready to examine the dynamics of

O

sL

l‘ (IV.20)
| |

O

the electron field ¥(x). If we multiply the Dirac equation by yo and recall that

yo'yo = 0, we obtain

/. D DN N
‘(‘ a2 Q‘,)\) a



v v
vH g } =2gﬂ ),HT':,Y#
= 3,0 _ 0 3
P, =37y P = 3y'y
o 2 _
?ﬁ: =®) =F,
P++P_ =1 p+p_ = p_p+=
3p - 8 _ 3. _
YP =Py =0 Yy'P_ =Py
o - o
0 1 3 1 3
¥ = =@ +y)) = = ®_y'P, +P P )
vz VR

-7l

TABLE IV-1

¥—Matrix Identities
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Using our y-matrix identities, this becomes

- | . - W A “ Jo -
(L' 83~9F33>(.Zt’i = “é'[(/u:g;—e@)d”v“mijc‘) ql/+

 This differential equation is considerably simplified because of our choice of

gauge, Ag = A% =0. Thus

-~ by ; T, i Iy

(Iv.21)
For reasons of symmetry, we write the solution of Eq. (IV.21) as
‘ .—' l’( f". - [: (\ P o~ "3. : '. J’r' s - _" ,J (Xl 1
Z—'Zuu =7 23 EW3-8) {[L a; - eﬁu \A",é,s)ﬁ ] (Iv.22)

XY WA K, 5)

Thus the two components of ¥_ (x) are dependent variables in the infinite
momentum frame. They are determined at any "time™ x° by the independent
fields ‘P+(x) and Aj (x} atthe samex . We recall that the dependent variable A3 (x)
is determined at any x° by Aj and J° at that x°. It is reassuring to note that the

dependence of JO(X) on the independent fields ‘P_'_, Al is vefy simple:

VIRV
I -

‘,‘/3 ~— ,_;-' .-'J fa -~ — 3= y
T = YT = 2/: 7i/+ i (IV.23)

N
Nl

P To
sd =

What are the equations of motion for our independent fields Aj (x) and lI’_]_(x)?

For A (x) we have the Maxwell's equations

ay(ayﬁw'_-ad'ﬁy) = JY ,
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or

29,9,k = I+ 'R - 2,0° Y
J9+ TR + T3 R -3, A
= J' +9'g,R* + 9, FU

|

(IV.24)

Using the definition (IV.14) of Aj in terms of Foj » we have
J. . i PN o oo
LR = 2&5 ER*-3) 0, R'ixsx,5) . avas)
Substituting into (IV.25) from (IV.24), we obtain
; .J' B .!__r*\). ~ . <
G, RK =w73 fdlé €N*-§) %R (xy,

q fi% € (R3- 3){\?’& A, 8)
Y oG5}

v
S

Since the integral in the first term is just 2A3(x) because of Eq. (IV.14), we have,

finally,
O RK) = 2%
o f (IV.26)
Y T

We can obtain the equation of motion for l11+(x) by multiplying the Dirac equation by
3 After making use of some of our y~matrix identities, we obtain

v .
/(33 ’2:;/—"- =~ L2 h. (A.) 1‘+(A)
(IV.27)

“él\v’) '““FJ\A))J *”qun\"g YA
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B. Momentum and Angular Momentum

The invariance of the Lagrangian under the Poincare group provides us, using
Noether's theorem, with a conserved momentum tensor 'I;f‘(x) and a conserved

angular momentum tensor JMD(X):

= S < A A - A A L _
T = V“Eé:'dd?fuy + (@/a Q“) [ —gﬂd‘f’ (IV.28)

H
I S N <
\]/-“V Auty ™ = Ayt T Oy (IV.29)
where

Iy ey \"A ’ < A ) -
S = TS H) Y

+F“ARVI‘FFAV F‘x

/

(Iv.30)

If the fields satisfy the equations of motion, then T:: and J‘uj are conserved:

" - 4 Pl — . ;:\
-~ A .- [y o
C)n v = O d)\ \}M / = () ] (Iv.31)
/
Thus the total momentum,

’e‘ == Jﬁa/ A u{g 7. (Iv.32)

and the total angular momentum,

: l"l e ] — o
Moo = [ugds D0,

(IV.33)
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are constants of the motion. In our quantum theory, P,u and M,uv are the
generators of the Poincare group.

We recall from our discussion of the Poincare group in Chapter II that the
operators Pl’ PZ,P3,M12,M13, and M23 are "kinematical” symmetry operators
in that the subgroups of the Poincaré group which they gencrate leaves the planes

7-constant invariant. Thus we might expect that they take a particularly simple

form. Indeed, we find that

T.° = EWAS Y - GRDER)

: | W=1,2,3

J.° = XL -%KT°+ ?l.’ff £ A (IV.35)
+ GH{E,R%) - R RY) |

irneo = X T - ’);3'7', © V(IV.36)

NP :_'xedtso - X rao

Note that these operators involve only the independent fields ¥ + and Al, and thus

do not depend on the coupling constant e.

The most important operator in the theory is, of course, the Hamiltonian

H =P, From the definition (IV.28) we have
ey O AT L T2 - Jen g N e A
-:3 = é‘ RV ot "j.:a h/\) r~

(IV.34)

Iv.37)
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The first two terms cancel the terms in the Lagrangian containing 8,, and we are

O’
left with

,°=-Y(5

Y - Ao s e
5 0,8 =m )Y + R, T
V= : A

A te L /e EAYES 3 ! 3% i )
tT FUR, - R ,RT - BR NORT) . avss)

-

C. Momentum Space Expansions of the Fields; Commutation Relations

Let ‘P+(n,13, T) be the Fourier transform, at the "time™" 7, of \P+(x), so that
W,

%('V,gg,},) = (2rr)'3fa?0@ dy o 7525 "K(?Jgg, Y) . @v.39)

It will be useﬂﬂ to define operators b(n,p, A;7) and d(n ,3, A;7), where A takes the
| )

values =3 , by

)(M,ﬁ’) //:2 72e
/ - T
¢ (8'7)’2)6\.77 2,7))" %q(%f(p,’?’ /n }'770
B IV.40)
- C? ¥ 2&(1’7 e R = 1{4(—%-‘@)’)’) /-ﬁ?")a (
™ (’27)‘ “ el 0,74 57) = Woalp,-i0,7) 27>
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Then the Fourier expansion of ¥ +(x) takes the form

2% Ww = ey fdof B, Ve

7 A=t Yo
"{ W) Q@ Y3-&x) jg(d{(% 2 ) (Iv.41)
' +UEs) @M TEED Qg A ) } ,
where the spinors w()) are
} O
O v
1 )
ey =1 . 1= =
G3)=1o ¢3)= | 5 vz
o l
Let us see what the electron parts of the momentum operators Pl’ Py P3

look like in momentum space. Taking the operators Poz from (IV.32) and (IV.34),

and doing a little algebra, we get

P ~-Yrt. . L2 Y
R(eit’cflﬂaa\) = fd% dg‘ \}é ‘-)I!/.;. (?L) 2 09( 'Mkk) w=123

< e A Y IRY B, w0 L0, ilrp ;\;ﬂ} _
Up until now we have not mentioned the commutation relations of our independent
fields. The form of (IV.44) makes a very clear suggestion as to what commutation
relations to choose. We are led to interpret b(pis;7) and d{p;s; ) as destruction
operators for electrons and positrons, respectively. (The minus sign in (IV.45)
can then be disposed by a normal ordering.) We thus postulate the covariant anti-

commutation relations
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{ﬁ(ﬁd’x UBCIA R ERPR 'j:f,:,w} av.s4

with all other anticommutators vanishing., Transforming back to coordlnate space,

we obtain the following equal-7 anticommutation relations:

| S S | (IV.45)

We will use the same procedure to find commutation rules for the field AJ (x).

Since Al {x) is to be Hermitian field, we write its Fourier expansion as

. A7
Yoo < .
Q (?L) T \9“ ) fJ L 2)" A=4

{
~e(ry-iTeNy ‘ '
e HEER i (1v.46)
:,,“' +£:- o S .

where . J - ,____l"a s N N - .
SQUAls = F 2 Vi Re) or AR

In terms of the operators a{p;A;7), the photon part of the momentum Pa is

A

?x‘(Pnoton‘) =T J‘AJJ (9 h LA))\S (m\ k=42 3

- i g[S, o

. . -t
-7 oN j‘ Qufes, 2, v) ;:ug;, x)

+‘*l‘/"/“’ \J\l 5oaY
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The interpretation of (IV.47) is clear if we let the operators a(p;2;7) be destruction
operators for photons and normal order the expression for Poz' Thus we are led

to postulate the covariant commutation relations

P PRI B 3 - I
[akﬁﬁ,.&, v)y U \Jf, X r;] = Oa ) 27 E)U;—"g’) SNV
' (IV.48)

s :", *r ~y PN IS = {
[«(LGG, AT, A, :)] O

Transforming back to coordinate space, we obtain easily the equal-7 commutation

relations
3 { BN d o r'E __.._i:_ < ' 2
[ d; A 7, "'J"' 3 R O, A, 30 T T e i 5\3'7') O AR (IV.49)

Ai = - FOi, we obtain

Utilizing the relation (IV.14) between Al and 8,

¥

| ‘: ' ‘A; o A Y — ‘: o T “ -—‘21}- -
L0, R ) = -5 5y ei3-3) OGwy . @

o

We also assume, of course, that the photon creation and destruction operators

commute (at equal 7) with the fermion creation and destruction operators. Thus

N ";".V,- 5 f . R \_\ e
1_ & (7 é.)é) s lli(‘:",?:’,g'” = O - v

Our field theory in the infinite momentum frame is based on the equal-7
commutation relations (IV.45), (IV.50), and (IV.5l). We would expect, a priori,

that dynamical effects could propagate from one point to another in a plane 7 =
E3

7= constant (i. e. along a light cone). Thus we might expect

constant along a line
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fhat the commutation relations would depend on the coupling constant e. The
commutation relations among the independent fields of the theory are in fact in-
depenaent of e. However, the electrodynamic interaction does affect in the equal-T
commutation relations among the components of the complete fields A (x) and ¥(x),
since the charge e appears in the definition of the "auxiliary" components, A3 and
¥, of the fields., We find, for insténce, that
P O g
[FL’B(?, X, K, (’3:’)] =z ]
We can gain further confidence in the equal~-7 commutation relations by

using them to show that the operators Pp and M,uv actually generate translations
and Lorentz transformations when commuted with the independent fields of the

theory. The verification for the "kinematical" operators is particularly simply

because these operators involve only the independent fields. One finds
‘ﬁ? > FZ;(X')] = ad- Q‘(A) L[’P % uu] 8 y’fu\,') |
iy, Riw) =0,R% iy, Yiwl =9, ¥w
i[ 3, i) = (K,0-%,8) Rl - € R0

(IV.52)

-,

L[Jz, j:(hxa /\2 .t) +(A)+8X5 +(%)
if’BJ-) H)"Q(}] = (?\'3 ad- 6 Y RS m)

i[BJ) Q:n'tf(‘/\';} = (K30 -A. ’d\;.‘z

\./
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It is considerably more tedious to show that the operators H, Sl’ Sz, and K3 have
the proper commutation relations with the fields. We present in the Appendix at

the end of this chapter some details of the calculation which verifies the crucial

assertion

[[H,’ 9‘.(1’)} = 0, P(i'u’

L. [}—i, ’Z;/-;(K)J = o f(!\J . (Iv.53)
Similar but lengthier algebra gives
. s ~ N
{ [K;} 3 sLL/\.’)] - \Aoag A:iao) p‘L )
e, Vo) = (e dJ N3 Q) ”&fm)

(IV.54)

J r,:;\ ' _, £yt

Ot ﬁou\.) * \; \AJ

A :l) = \/rA-‘_((jg f(LO '/4./ 'f/Z?L)

Lo o by . A . ‘7:7‘ .o
+Z 0,0, Yiny - il LAl

where Ai(x) =1 fdt e(x3-£ )Ai(xo,_:fT, £) is that function which preserves the

gauge during the Lorentz transformation. 6
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D. Free Fields )

Let us see how the methods of the preceeding sections work if the interaction
is turned off. Consider first the electron field ¥ (x). With no interaction, each

component of ¥(x) satisfies the Klein-Gordon equation
/ f'; ‘. e - P — - -
(28,2, + 3,9 +.mf) @) = O (1v.55)

Using this in the Fourier expansion (IV.41) of \IJ+(X), we find that the operators

b(p;s; 7), dT(p;S;T) satisfy the differential equations

o 2 N
= 4 n 2 ,,"\ T o ¥ -
k C)c- oyt \j'*::) G /J&-L","\)) A ) = O
(+f>'r'a‘ + T+ A )X SR vy = O
Z L (/ C_) ~ i < L A ¢ .

Solving these equations, we get

E | ~ AT .
‘-, ’- ~J = o A SN
—Z)\‘r Ay ) C.;} /é\é’)‘g} )\.) ‘3)
(IV.56)
,’)T Pl - '\ o -~ +[':j i ; h!
( ’*/ /L)- T2 gve (-r’*- ( o AJ ) >

where Py = (p2 + mz)/217 is the free particle Hamiltonian. Thus the Fourier ex-

" pansion of ‘1’+(X) takes the form

( ' 1 f om0 Y . T
My E . N TN I s S S S V.57
12 RIARFICVINCIE T SR GIRY (av.57)

L oty P +L 2 Ky T e
+ el‘f q( [ F= ?,'_,Tt"‘(\) ;;':) Yl \j tg’c’ A \),) J -
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The auxiliary field ¥_ (x) is given in terms of \P+(x) by Eq. (IV.22):

W) =~ £ [ds <=9 (0847 em] ¥ Tt x,5)

Substituting the Fourier expansion of ‘}’+(x) into this expression and doing the £ -

integration we obfain the Fourier expans ioh of ¥ (x). We have now only to add

Y. x) and ¥_(x) to obtain the complete field ¥(x):

R | k!
e o3 | IS
& = {2w) JA2 BT
O T A=y (IV.58)
UL Ay &Y DI, Ay D)
N X S I
+Uv(f,ﬂ, QU LD A /S‘
/s 7 J 4
where
FENT)
i A [ VIS TR R ILUOTEVE
?4\\}\/, nJ S T —t"‘“:';z“‘"' 8 \) IYY
» (IV.59)
I's ; U™ ‘ .-'{ &0, N A "J\'
"}\’; m :)I\‘ - [2__ . E u‘:)“— ..I L_ \ W ,,Y _ D \ .
2 ANV o ; \‘L+ A G}W\ N

Recalling the definition of the spinors w(s) from Eq. (IV.42), we can calculate

U(p, A) and V(p, ), We find
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2 7"’ o
’ N L "q,—'la 'fin . | i K it
U(Cpﬁe - e 7 g U%C)-E)nz "16 Hl-eie
O iz
(IV.60)
O . .
t/, N \ . ¥ -~ - . . /d‘é’({
/U—Klf)‘f‘vL\:’D"‘f'V,"’- R o AN oAty o)
a2 & iV *‘éf-"*'[du" KU'\Q'J/ ) 2 ¢ ); 2 ('&.9‘*1‘6
~ Y
\2)4:
e ”

If the field ¥(x) which we have obtained in the infinite momentum frame is to
be equal to the usual free Dirac field, they the spinors u(p, s) should be solutions
of the Dirac equation normalized to u (p, s)u(p, §") =2m ﬁss' and the spinors v(p, §)
should be related to u{p, s) by charge conjugation. A quick check shows that this is
indeed the case. In fact, the spinors u and v which arose here from a canonical
formalism in the infinite-momentum frame are exactly equal to the infinite-
momentum helicity spinors derived in Chapter IIL

Apparently the destruction operator b(p, s, 7) destroys an electron with
momentum p and infinite~momentum helicity A .

We can also check to see that, with the interaction turned off, our fie;ld AH (4]
is just the usual free photon field (in the appropriate gauge). The calculation is
completely analogous to the calculation for ¥(x), so we just state the result. With

e =0, we find

, ‘ - - A ~
R = @aT® f di0 e 2

) A=t
| . o "l "L?""-?\; 2 .. (IV‘G]‘)
elga” FE a0
- ¥~ A
NS TS O . T
+ \__.\d’._;l/\) [ i A ku\r/ AI J)) )
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where the e{p, A)” are just the infinite momentum gauge polarization vectors defined

in Eq. (IV.6).

E. Scattering Theory

We have seen that infinite momentum quantum electrodynamics is the same
as ordinary quantum electrodynamics in the trivial case e = 0. The two theories
can be compared for e # 0, atleast formally, by constructing the S-matrix in
old-fashioned perturbation theory in the infinite momentum frame and comparing
it with the S-matrix given by the 7-ordered diagrams of Part 1.

The perturbation expansion of the S-matrix takes a familiar form once we
have divided the Hamiltonian into a free part and an interaction part. To make

this division, we start with the Hamiltonian density Ta)(x):

G g Yy ,l‘}' - A=~ ping \,,’3 -
T, = - éf([éq-—e@}g ﬂmz)qrf - 40,8
2 ST 1D ey ) —-[2 =
ORI TYT Y+ 5 FRF, (IV.62)

- 4 7 .37, ,: 37 e -3 Y, ,.\j
z(OR NI R ) - \O\,’H J 05 K ) .
The integrated Hamiltonian can be somewhat simplified if we realize that the first

term is equal to -2 times the second term after an integration by parts in the

transverse variables xl,xz. To see this, write -2 times the second term as
_ sy )39~ - N5 g3 .= aa
. 7/49.)&; = T ¥ io, ¥

Using Eq. (IV.21) for 3, W_, this is
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- “-—:‘2 '?:Tb)o[(té:—ea)xd—/”l] ?zy.;
i V5 R-m] ¥

With an integration by parts in the transverse variables, we can replace i9, and

-id. b —i-‘g.‘and obtain
iV

& V(RERRYR) GG - om ] ¥ .

But P_o°P, +P +73P_ = 4%+9° =v24°, 5o this is just
L8 _, N_ o |
V(£ -eR)V -m | ¥
Thus the Hamiltonian density can be rewritten as

s TLEQSY reRPTY Y +2F2F,
- s(0; RHER?) - (9 3)&631?*') i

(IV.63)

At this point we realize that part of the interaction is bur1ed in the dependence
of ¥ and A on e. In order to bring out this dependence we write VY as the sum

of a ""free™ part l/f_ and an "interaction part * T, where

D) = -£[ds et-s) [0 emb W0, 0

(IV.64)

Y = fi,gjdg O) HM 7\,% 6 @( | (IV.65)

A

i A AR S
* Pk K, 5
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We also define ¥/, = ¥, and ¥/= ¥, + Qb_; Similarly, we write A% = w2® + ¢,

where

(IV.66)

Ox) =~ ;%fds” [i3- €l 0,9, /(x> %, §)

Py ! PR Py O/ .vg r . ‘
D) = -2 fa’s Ix3-8f I°(x %, 5) e

andweput.ﬂ'j=Aj, 2% =0, Letusinsert ¥=¥+ T and A =t s 6’;¢ into

our Hamiltonian density (IV.63) and simplify the result.

From the first term in Tg we get four terms

N LR V3 - T L8
v3836/ 4 «-'\Eléf. 283% (IV.68)
oty e - A I g . 1L7 o
= GG WA YTES P R YTEL T 1R YTEATE.
The first two terms can be left as they stand. The integrated form of the third

term can be integrated by parts t{o that :;_‘—‘é; is replaced by i.é':;. This integration

by parts can be justified simply by using the definitions (IV.64) and (IV.65) to write
i ~ i T . A P b T ‘-—/ 9 - o
—ﬁ’z;}) ( 05 %! (5)) 7’[5) = “2Ja{3 AS (93{51}' lé)} €3-5) (Osy‘tf))
-+ fids (9:5) et (8719)
=+ g Iy (o) .
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Similarly, we can replace —% '5; by - -21— :9_3 in the fourth term. Then, making use
of the definition (IV.65) of T, we obtain for the sum of the third and fourth terms

of (IV.68)

——

= P [pys vy el Y - e P

(IV.69)
Turning now to the second term in Tg, we write simply
' 3 A= - N3 T SO
CRPYTLY =eRY Y Y
, (IV.70)

5 ; I HT\J‘?’
=@ VLY ragPI V.

The third term in Tg can be left unchanged since it involves only Al = 2,
The fourth term requires some work. With an integration by parts we can make

the replac ement7

Writing A3 = .}Z3 + ¢, we obtain the sum

| 3y 48, ey oa b i A3, 4 530 4
= a a,zc}sas +—5P8“gdﬂfg +'§{)8‘3C)3a +2 \.)333';)

- (Iv.71)
We write the first and second terms simply as
] aﬁ,"\ T 3 -— 3 . ".-—\ 3N
= o C = -2 Ty L
& Od 2 (L 3 v (IV.72)
and
L ‘ L T o
T PGy =T PN
— . © & oy .73)
=~& &8 V5 (IV.73)
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We see, with the use of the definitions (IV.66) and (IV.67), that the integrated forms

of the third and fourth terms in (IV.71) are equal. Indeed,

J
- iy o Gasat)

Thus we can write for the sum of the last wee terms in (IV.7})

2§ (9,05 0(5)) Q%) = F|dEd= (B35.0(50) 13-8) {88,575
. g\ J

1

. - r." o A J.
- - p dg d\.‘ VL

Finally, we consider the fifth term of Tg, which we write, using an integration

(IV.74)

by parts of the variables xl, xz, as

AT AN = RP O RY

(IV.75)
p @ a aq 4 a 338 fw\f
The integrated Hamiltonian is now in the form we wanted. Adding up the
pieces, we have
H = Ho+V
’ (IV.76)
where
i _ \l‘ , ?;—-C‘)TL?—T" rs) ‘L R e
ho "fu('ﬁ., J'T'/]‘ e Y Ed, L + 5 F o F, (AIV.77)
¢
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V= fo&’cﬂj{ J’“?} HEYTEE T
t5e B PP f

If we work in the Schroedinger picture, we can evaluate all Heisenberg operators

(IV.78)

at "time" 7 = 0. We note that the Fourier expansion of ‘the fields ¥(x) and NYia (%)

at 7 =0 in terms of creation and destruction operators are the same as the ex-

pansions (IV.58) and (IV.61) for free fields. Thus the free Hamiltonian Hy generates

the free motion of the quanta created by aT(P 1A 0), bT(p; A;0), dT(p; A;0).  The

remaining part of the Hamiltonian, V, gives rise to the scattering of these quanta.
We can formally calculate the scattering matrix with the aid of the " old-

fashioned" perturbation theory expansion

S‘Fi = :{L ~ 2 6(%;&'/«‘5)
vevslave }

rf “L&.

(IV.79)

In a field theory in an ordinary Lorentz frame, this formula leads to a set of rules
for calculating scattering matrix elements using time ordered diagrams. In the
present case, we are led in the same way8 to rules for 7-ordered diagrams.
These rules are the same as the rules developed directly from the covariant
Feynman rules in Part 1, This can be seen by calculating a few matrix elements

of the interaction Hamiltonian V. One finds that the interaction term

). ' . ‘e ' r‘.:-‘— ""A ) '
Ve = f vy d(;«;, @—%; G i (IV.80)

gives the "ordinary" vertices of Figure IV-4a. The second term in V, when

written out in full using the definitionof 7T, is
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vez__‘_ef JA‘JZJJS })(OX,JJ(Y /\JAJ)

X'é(}..g")-a} thy('o,g,f) ?‘Q(CJ,:&,gj S (Iv.81)

Using .
7 1w 3 i
- ; ¢ R = A
one finds that the interaction V2 gives the vertices of Figure IV.4c.

The third term in V, written out in full, is

V; = *—E“ fﬂli": d/dz'ogg ij(o’gf}) XOZQ(O’K’Q)

: = , 5 O O s L V.82
-1 P05, )8 Piox ) . P

J A}

Using ,
(v 2 |
f dg’r Q¢ J l g l = 'qza B
it is easily shown that the interaction V3 gives the "Coulomb" vertices of Figure
IV-4b.
Thus when we formally calculate the S-matrix from canonical field theory
developed in the infinite momentum frame, we get the same results as when we

directly transform the S-matrix for ordinary quantum electrodynamics to the

infinite momentum frame.
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APPENDIX

In this appendix we will show that the canonical hamiltonian presented in section
II-B generates the correct equations of motion for the independent field operators

Ai(y). We begin with expression (IV.63) for the hamiltonian,
(el o172 gt 30 1y .3y 43,112 31 4] '
H—fdxglz ¥ 33‘}’-_+A I -3 a3A aSA +5 FUF, ajA asA . (AD

In order to compute [H,Al(yi] we need to first compute two rather complicated

equal-7 commutators which we list here,

: 'i" = ‘le Lo 3, 3 -, io0 O
[ﬂux),{s ) oo™ T “[ @t e(>-€) ¢y ELTP VY, 00T
3 108 8|2 = | |
4 9. ] oo "1 1R (A2)

These relations follow from the definitions of the auxiliary fields, ¥ (y) and A3(y) ,
and the basic equal-r commutators of the independent fields.

With these preliminaries done, we can compute

[ ) =212 [ az [q'*(x) 33, w_(x),Ai(y)]

XO=Y0

+ f az% 3°%x) [A?‘(x),Ai(y)]xo:yo

T 9 I 3 i
_-2-fdx L8'31'-\ {x) B3A (x), A (Y):]x":y

+-;— f 4z |F 2% Flz(x),Ai(y)Lo

L

X =

- f d% [a_Af’(;;) 3 Aj(x),Ai(y)] ) (A3)
] 3 o_yo
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For convenience we label these five terms (1), (II.), (IO.), (IV.), (V.), and

compute each in its turn:

(A4d)

_ g1/2 T S
= 2 faz[wlo 15,0 9.4 (y)]xozyo

_i27V2 ax{qﬁ( )[a W (0, A (yﬂ +[wleo, 41m) ojo 23809

...yO
~ayt i o wlix, Al ' |
3, ¥ v .4 (y)]xoz'yo [35 ¥, 4] ooy W_(X);
<1272 gz } -2 (v 682G, T VY
"ifdé‘ e(x>-£) (6 -y)) ST T w0 % 6) v e, v 4
16 ) y ) (xT yT) + !XT’ ) Yy 83 _(x)
= fag -6 (6 -y PG TP 3wl 419 W, 00,5 6)
+ £ ey 675, T Wl o W_(x)i
—ie2” /2[4 e(x3-y3)§wf(y°.‘§T,x3)v°vi ARG B AT S Jea ,x3)}
L s9/2 3 - ' ~ - R
-ie 2 9/-/:11{7&15 €(X "&) €(£Hy3)§q!_-[(yop YT!{: )‘ya'ylasqj_(yos YT,X3)+33‘1’_1_.(y°, yTsxs)}Oqu;_(yc: YT, é- )}

[ «r®-6 80,58 (45)

We have observed in this calculation that

W =3 fa 5’ 3,000 530
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and - _
ﬁwﬂﬂﬁﬁﬂmfﬁﬂm+ﬂmf#%m
Continuing,
= O 3 i .
(m%fﬁJmEmnmﬂfﬁ) (A6)
= -41—1 f dx Jg(x)|x3—y3l- at 62(—£T—?T)_
= —%fdx?.lx3—y31 3 °°F yT,X) . A
Next,
(mdbéfﬁﬁf%q%ﬁm,EQ}oo |  (A8)
xO=y

fo ol o

1 (o . .3 9w —= . 3 3
‘t?i—i_[dx d4A(x) aié (xT-YT) €(x -y )

1 i 3 3 3 3 0= .3

1
=~ 38 (A9)
We have applied here the definition (Iv.14)of A3(x).
The fourth term becomes
_1 f,.[.12 i
(w.) = zfdx[l" (%) Flz(x), A (y)] oo | | (A10)

x0=y

= f az %) [azAl(x) - 3%, Ai(y)] o0
x%=y
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=-41—i-[ wE (x);élia ST ety - 6,367y T €(2‘13-y3)g

1 8 8 8. .12 o .3 3 3. 21 0 .3
=5261de €x"-y) 0, F (y°,yTsX)+62i/;ix €(>_<3-y)81F (y°,yT,x )g

=—-él-i- f xS e(y3-x3) aj Fij(yo,.fT, x3) . (A1)
Finally,
g =-faz[3.43x 3,4)x), al
V)= -fax[ 4% 34000, 4 (y)]xozyo N
__[oals a3 j i 3 i j
dxiajA (%) 83[5 (x), A (Y)]xo_:yf’ + _aJ_[.& (x), A (y)]xo:yo 354 (x)g

I I — e 3 = '
=1 dx%ajA (8, 62(xT-yT) dg €(x -y )+ajaiéz(xT—yT)|x3-y3| 83A](X)§

1 - - . . — —
=-q dx izaiA:*(x)aa(x-y) + ‘ x3—y3| 31 o 3 ajA}(x)az(xT—yT)f

1.3 1df, 3713 3 i o— 3
=-5 aiA (y)-aa fdx |x -y |83ajAJ(y°,yT,x) . : (A1.3)

Collecting these five terms, we have the result

[H,Ai(y)] = -‘:'—1 f x> e(ya—x3)

i o— .3 i, o= .3

Ty X) + 3F (5% VX )(

1.if,.3/.3 3 o= 3 .0 o= _3

.‘418 dx lx -~y i,a38jA (yo,yT,x )+ I Y X )i . (A14)

Recalling the relation (IV.16) forA3(x), we have, more simply,

| [H,Ai(y)] - L fad e(y3~x3)gaj<y°,"§T.x3) . aiji<y°,"§T,x3)£ r234%y . (a9
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Referring to (IV.26), we see that we have indeed verified our claim,
[Lalw] = 324'm - (A16)
The verification of the Heisenberg relation

[y,0] = 33,4 (A17)

is also tedious but straight-forward.
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References — Chapter IV

Here and elsewhere, we encounter a singularity at n = 0. In this paper it
will not be necessary to specify the precise nature of these singularities.

We have done the momentum integrations over the §(7) lines and rearranged
the factors of 7, i, etc.

We use the notation a18_';b for a(aub) -~ (Bua)b. |

For classical fields, the integral (IV.1’7) cbnverges because 83F03 goes to
zero like (x3)'_3 as x3 ~ 00, Furthermdre, no surface term arises in the
integration by parts since F03 falls off like (x3)_2 as x3—- ., Note, however,
that it is not permissible to. integrate by parts of Eq. (IV.16).

Of course, this remains to be verified using the commutation relations of the
fields, which we discuss in Part C.

Cf. J. Bjorken and S. Drell, Relativistic Quantum Fields, (McGraw Hill Inc.,

New York, 1965); p. 88ff.

We may find some reassurance about this in the fact that, in classical elec-

3

trodynamics, the surface term A3 83A vanishes like & -2 as z— %,

Of course, we encounter most of the usual problems too. Cf. W. Heitler,

. The Quantum Theory of Radiation," (Oﬁ:ford University Press, New York,

1966); p. 276 ff, Third Edition.
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CHAPTER V

Massive Quantum Electrodynamics

~In this chapter we extend the canonical formulartion of quantum electro-

dynamics in the infinite-momentum frame by replacing the photons by massive
véctor mesons. The resulting theory is interesting in its own right, and also has
useful applications to the work of Cornwall and Jackiwl, of Dicus, Jackiw and
Teplitzz, and of Gross and Trieman3 on current commutators on the light cone
ina quark‘—vector gluon model.

We find that the required generalization is quite simple if we consider, in
addition to the vector field AP , a scalar field B in the manner of Stiickelberg's

4,5 The results confirm the belief of Cornwall and Jackiw

1938 paper on gluons.

that terms in the vector meson propagator which inight cause trouble in the

infinite-momentum frame can be eliminatéd because of current conservation.

The structure of the theory remains nearly the same as that of quantum electro-

dynamics except that a new term appears in the Hamiltonian describing the emission

of helicity zero vector mesons with an amplitude proportional to the meson mass.
We will make free use of the results of the last chapter and devote most of

our attention to the changes made necessary by going from massless to massive

vector mesons.

A.. Equations of Motion

The canonical thedry of quantum electrodynamics in the infinite-momentum

frame was based on the Lagrangian
LN qep = PLE QBN -m] ¥
-7 (R - AN B, Fu- 9 Ry

P
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where A¥ (x) is the real véctor field of the massless vector meson and ¢ is a four-
component Dirac field. In order to introduce a meson mass « > 0 and allow for
meson with helicity zero while maintaining gauge invariance, we introduce a real
scalar field B(x) in addition to A,u and V. Then we begin with the modified

Yagrangian

) = f[(é'?'@"@@)(}/’“—m]?&
- T;’L /ayﬁmﬂ_- 3'“5’/)(8}, ﬁ/)‘( ) a/“ E)V) (V.1)
+ 3 (KR - Bt A 0.B) .

Variation of the fields ¥, V¥, AM’ and B give the equations of motion

[0, + 1) R* - 04 [8,R” +kB] =34 =
it O R - 8/‘8/“ B =0 (V.3)

[(Zaﬂ-e@‘)dﬂ( —/m]/é/) = W'Q

where we have defined J = e Uy F W, (JNotice that BHJ ¥ = 0 as a consequence of
the Dirac equation (V.4), and thus that equation (V.3) is merely the divergence of
equation (V.2).)

The reason for introduction of the seemingly superfluous scalar field B is
that the gauge invariance of quantum electrodynamics is thereby preserved.
Indeed, the Lagrangian, and hence the equations of motion, is left invariant by

the gauge transformation
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R (x> =~ FLG) + 9, A
Bix) —= By + K AXK)

; . N - (V.5)

We could, if we wanted, use this gauge invariance to choose the "ILorentz

gauge" B = 0. In this gauge the equations of motion would take the familiar form

(after some simplifications) ,

(3,37 +ic7] @R = J#

However, it turns out that it is very difficult to quantize the theory in the infinite-
momentum frame in this gauge,

Instead, we choose the "infinite-momentum gauge",

o, ‘
%) =0 g (V.6)
Then the p = 0 component of the equation of motion (V.2) reads

0: [0, R+, R° +kB] =-J°

This eguation can be solved for A3 as follows:
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5 (V.7)

: L | A o
FZS-S“‘?[@@Q& + KB +72(T’

where (1/1) and (1/772) are the integral operai:ors6

I

(7 #H160) =-£ [ds is) Fee,x,0)

[7}3%](7‘0 = —éfdg |'X3;S| Tk, x,5)

Thus if we regard Al, Az, and B as independent dynamical variables, then A3 is
;gduced to the status of a dependent field since it is determined at any ' time" x°
by the other fields at that xb according to the constraint equation (V.7).

The equations of motion for the independent fields Ak and B can now be
simplified by substituting the expression (V.7) for A3 back into the equations of

motion (V.2) and (V.3). From (V.7) we have

. OR =KkB-53°

If we substitute this info (V.3) and remembér that ByJ H= 0 we get the equation of

(V.8)

motion for B,

-

[@u a” +lf?] B =-(K 7}‘ J° (V.9)

If we substitute {V.8) into equation (V.2) with u =1 or 2 we get the equation of motion

for A,



-102 -

[a})aﬁ{_ K’g] Fzﬁe =_\T"e f é_ a,le N

(V.10)

The equations for the Dirac field are changed very litfle from those developed
in Chapter IV for quantum electrodynamics. The two components ¥ L= %-yS yol]!
are independent dynamical variables. The two components ‘}'_ =1 yo'y3\ll are

dependent variables, to be determined by the constraint equation

?

(R O T LA

which follows from the Dirac equation. The equation of motion for Y 18

, . - ) /
. ' _ 3| N '_L - R ’4.:) 3 I
(0, = eRPY +5[(i9,-e RV * om ] Y. | wa
The only difference between this equation of motion and the corresponding equation
in quantum electrodynamics is that A3 depends on B through the constraint

equation (V.7).

- B. Equal-T1 Commutétion Relations and Fourier Expansions of the Fields

" 'In order to make quantum fields out of the independent fields ‘{'+, é, B we
must specify their commutation relations at equal 7. By analogy with Chpater IV

we choose
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I N T | B 2/’
E{hw,, Bl = &, 80 s
[RG) , R0 4y = % 9y €G) S
[B(x‘))B(o‘)]%o = —rf— €3) S(K),
[t Bo ], = [R&), %], = (B, %] ..,

= {Qp{-(”&) ,Qrfi(o)},},:o = O

(V.13)

‘Using these c‘ommutation relations we can derive the commmutation relations among
‘the creation and destruction operators appearing in the Fourier expansion of the
fields. Furthefmore, the transformation properties of the fields under space
translations in the transverse and #-directions and under rotation in the (xl,xz)—
plane_ determine the momentum and " infinite-momentum helicity™ of the states
created and destroyed by these operators. Since the calculation is elementary,
we only state the results. Let bT(n s Ps A)s [dT(n ’R’ A)] be creation operators for
electrons, [positrons] with momentum (n,g) and helicity AA =+ ). Let |
t

a(n, b A) be creation operators for mesons with momentum (7, R) and helicity

A(A=-1, 0, +1). These operators have covariant commutation relations

{Bin, B, ={dpn, dlen)

[a({;@,’x),ﬂ(@’, 0} = O,y @1V 2

~33
N
oS
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The expansion of 'I’+(x) at 7 = 0 in terms of b(p, s) and dT(p, 8) is
SY
—

2!/4{ "ZT%(,A:-‘) —_ (2‘{') fd(”o & 8? A=+, (V.15)
‘{VE_? lUjL’S) e-ié@xﬁ('}ﬂ,m“"’w )43 {ord(d‘}ld)"(

where the spinors w(}) are

Lo g

I
" ..L A - o ‘.—"‘- \ =
Witz) > Wez) (V.16)

The expansion of “%(x) at 7 = 0 contains creatibn and destruction operators for
mesons with helicity +1 and -1; the expansion of B{x) at 7 = 0 contains creation

and destruction operators for mesons with helicity zero:

[, ~ifaex ik (V.17)
e B Taiggh + GUU Qg al o,
o0
A A ~ifo-x
BX) = (2 i) fad-\’; £ e {‘L & Y i o) (V.18)
o 7 _ '
L, otp Kd’r({f,d))
The vectors €(A) appearing in (V.17) are
Y i v 4 ) iy 1) 4 __.'_ ;’i ‘r) ~
PE €{-~1I) =tyzd, ) _
S > Vet (V.19)

g‘(ﬂ

C. Hamiltonian

The invariance of the Lagrangian under T - translations provides us, using

Noethert's theorem, with a conserved canonical Hamiltonian
3
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o~

H = fohag» ’?/u)it’,j,) (V.20)

where

+(3,B}°.B) - A . (v.2)

The first three terms in (V.21) cancel the terms in the Lagrangian containing BO’

and we are left with

It is apparent that this form for the Hamiltonian is not very useful. However, if
we substitute the expressions for A3 and ¥_ given by the constraint equations (V.7)
and (V.11) into (V.22), then integrate the resulting expression to form H, and finally

integrate by parts freely, we obtain a useful expression:
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Here p is the differential operator pk = iak and y = (yI, yz). For the sake of
variety, we have not made us.e of the fields ¥, Ys a“, ¢ uséd in Chapter IV, but
instead have written H directly in terms of thé independent fields ¥, A, B.

By using the egual-7 commutation relations (V.13}, 611e can verify that the
canonical Hamilton (V.23) actually generates 7~ translations in the theory. One
finds, indeed, that [iH, A] By [in,b] = 5,B and [iH, ¥.] = 8o ¥, where
the 7~derivatives of A, B and ¥, are given by the equations of motion (V.9),

(V.10) and (V.12).

An examination of the Hamiltonian (V.23) shows that the theory is changed
very little when the vector meson mass is changed from « =0 to ¢« > 0. One must,
of course, introduce a helicity zero meson into the theory and adjust the free meson
Hamiltonian from 22/217 to (2.2 + icz)/z'q. But the interactions among the electrons
and helicity + 1 mesons are unchanged, and the helicity zero mesons interact with

the electrons only through a very simple coupling - iek V2 ‘P (1/1))B As

k — 0 this coupling vanishes — so that the helicity zero mesons are never produced.
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We can jllustrate the dynamics more vividly by writﬁg out the rules for old-
fashioned (7-ordered) diagrams using the Hamiltonian (V.23). (These rules are
written in a form which facilitates practical calculations: the matrix elements of
the Hamiltonian between infinite-momentum helicity states have been evaluated
explicifly so that one can sum directly over the helicities of particles in intermediate
states rather than write strings of v -matrices and perform a trace.) I k is set
equal to zero in these rules, they are equivalent to the rules for quantum electro—‘
dynamics given in Chapter IV in an alternate form.

@) A factor (Hi-H +ie )_1 for each intermediate state.

(2) An overall factor -27d (Hf- Hi)‘

@) For each internal line, a sum over spins and an integration

(21)2 f d g f “g‘;; |

(4) For each vertex

(a) a factor (217)36(n0ut— nm)é2 gout'ﬁin)’

() a factor [27]]-12_ for each fermion line entering or leaving the
vertex. (The factors [27)]% associated with each internal
fermion line have the effect of removing the factor /27 from
the phase épace integral.) |

(5) Finally, a simple matrix element is associated with each vertex.as a
factor. There are three types of vertices, as shown in Figure V-1. The cor-
responding factors are

(a) for single meson emission (Figure V-la), a factor eM, where M

is given by Table V-I.
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(b) for instantaneous electron exchange as shown in Figure V-lb, a
factor ez/n0 if all the particies are right handed or if all the
particles are left handed (otherwise, a factor zero);

(c) for the "Coulomb force" vertex as shown in Figure V-lc, a factor

2, -2 |
e, 6. _ 6 .
0 5189 8384

D. Free Fields

In this section and the next we will examine the question of whether the
infinite-momentum formalism presented here is.equivalent to the usual formalism
for massive quantum electrodynamics developed in an ordinary reference frame.
We begin with a short discussion of the free fields.

If the coupling constant e is zero, the equations of motion for the meson

fields é and B are simply
[9,9"+ «?] R =0
(8,97+K? | By = O

(V.24)

These equations can be solved exactly, given initial conditions at T=0. If (V.17)
and (V.18) are the Fourier expansions of é(x) and B(x) at time 7 =0, then these

same expansions will give g(x) and B(x) for all 7 if we put
- | ) — 2 2 ,
50 = H“Z’(Q) (ég + K )/2:7

in the exponentials exp(x ipyx‘u‘ ) inside the integrals.
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S
\9‘2)

FIGURE V-1

Electron-Meson Vertices

llllll
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TABLE Vv
Matrix Elements for Meson Emission

1
-1 2
p, =2 2 @'+ ip%)

S s' A M
1 1 1 —q_/nq +p!' /0
1 i 0 - fc/nq
2 3 -1 +a,/m, - p,/n
1 -1 1 278 m /M’
1 -1 0 0
% -3 -1 0
-1 1 1 0
-1 1 0 .0
-3 1 -1 2% m ng/ '
-3 -1 1 -q_/ng+p_/n |
-1 -1 0 - x/nq
-3 -4 -1 +q,/n, - py/n’




-1l -

Wwith the solutions for Ax) and B(x) in hand, we can write down A3 {x) using
the constraint equation (V.7). Finally, we recall that Ao(x) = 0. Thus we have the
complete solution (A‘u(x),B(x)) for the free vector meson field in the infinite-
momentum gauge. We can use the gauge transformation (V.5) to transform this

solution back to the more familiar Lorentz gauge. To do this, we let

Ral) = R + 9 Al

(V.25)
Blx) = Bx) + &k Al
be the fields in the new gauge, and require that B'(x)‘ =0, Then
i) = Rux)- K™ Q. B (V.26)

(Note that this gauge transformation becomes singular in the limit « — 0.)

The free field A'F (x) which results from these operations can be written as

Ry = @y [fdp| 2 2

o 27 A=
(V.27)
: /‘(,’ -i‘ux s N e ¥ + o X
"{ S il e # aig,w + g xSt "aﬁp,au
where the polarization vectors e“(p, A) are

A, (a4 i Trteiee] /o)
4 (Gb,f-i)*:—@ )4, &y Lot +ig J/—;,-

M - -2 ( R 2
e (-1 = «27 (04,4, (i1 7)

(V.28)

=4

= K

My — -4 e P | 2 P I/E/,_
€ \H, 0) K ({J ~ ”u@ , T I ‘/)
&
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This is exactly the form for the free vector meson field developed in Chapter IIJ,
Section F.

One can also show, just as in Chapter IV, that the free Dirac field obtained
in the infinite-momentum frame is equal to the usual Dirac field. We will not
comments on this proof here except fo note that the gauge change discussed above

does not affect the Dirac field if e = 0.

E. Scattering Theories Compared

We have seen that massive quantum electrodynamics in the infinite-momentum
frame is the same as ordinary massive quantum electrodynamics in the trivial case
e = 0. We cannot demonstrate thdt the two theories are the same for e # 0 since we
are unable to solve for the exact interacting Heisenberg fiélds in either theory.
However, it is possible to show that the perturbation expansions of the 8 matrix in
the two theories are formally identical.

What we have to show is that the ordinary Feynman rules for massive quantum
electrodynamics lead to the same expression for scattering amplitudes as the rules
for old-fashioned diagrams given in Section C. Since the same demonstration has
been given for quantum electrodynamics in Chapter IV, we will indicate here only
how the argument can be modified to account for a non-zero meson mass and the
contributions from helicity zero mesons.

To that end, we examine the Feynman propagator for massive vector mesons

K< +(E

:DF( = (27 [d 5’0 @_4'5_;.): =y fl/—”i _ (v.29)
30
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One can show (by simple computation if necessary) that

gl e = 2 el et

(V.30)

7 Y M bd 2 - )
¥8 &% W/ +85 8% (0 i) /ye
AT M Y S VARV it 4 NN 2

4 =/ t 20K
| (/1')63(}3 L) 0% 03 & /K

where the vectors e(n, b A) are the polarization vectors for helicity + 1 defined in
Eq. (V.28). If one uses this expression in the numerator of the meson propagator,
fhe last three terms will not contribute to any scattering process because of

current conservation. Thus ore is left with an effective propagator
Vs e "'4"./ ‘X 2 - 4
(" = il fd"’ ((;O -Ke+ig)

"[;’ S¥ e’ 5467 wiye |

(v.31)
P=4
MoV ey [y T <2 W RS Bl S '

The H integral in the first term can be done by contour integration as in Chapter IV.

» In 'the second term, (pz—xz)(pz— xz + ie)_l-» 1 as € -0 so that the H integral gives

a.. factor 6(7). Thus the meson propagator takes the form

LAY L A [ . Y
j)F V) - {5.'317 3\()-43 o i Ht. 2 @( \/,J\) \_‘\G'.J,’;\l
' e
+ 5“ )ﬁ_ ]

where
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Note that this expfession for the vector meson propagator is nearly identical
to the corresponding expression for the photon propagator derived in Chapter IV.
In particular, the '"Coulomb force'" term proportional to 6(7) remains unchanged.

There are only twd changes in D';,V , which account for th‘e corresponding
changes in the perturbation theory rules of Section C between k =0 and k > 0.
First, the free meson Hamiltonian is changed from H =£2/27? toH = (£2+ K2)/27‘,'.
Second, a new term describing the propagation of helicity zero mesons is added

to Difp; namely

o3 [ ) " dy S
-/ (?({) faé/gf :_'?",';' ee%'g (Cp’ O)ﬂ @e?“:.'a (JO, O)K
< ey r_‘:d'\g_)g' foagh - +~‘:U"O'7c
L& e + 8Cvi @

where the "effective polarization vector' for helicity zero mesons is

* /u -—

This is also the effective polarization vector fo;c' helicity zero mesons in the initial
and final states, since e(p, 0)'u= K—lp‘u- (K/'i‘})ﬁg , and the term fc—lp“ does not
contribute to scattering amplifudes because of current conservation.

From here on, one can continue the argument just as in Chapter IV to show
that the cqvariant Feynman rules are equivalent to the rules for old-fashioned

perturbation theory in the infinite-momentum frame given in Section C.
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CHAPTER VI

Some Other Field Theories

Now that we have gained some familiarity with two model field theories in
the infinite~-momentum frame, it is easy to apply the same methods to other model
theories. In this final chapter we will outline four such theories: scalar mesons
with qu self-coupling; neutral pions coupled to protons with a; s coupling; neutral
scalar mesons coupled to protons with a 1 coupling; and electrodynamics of a spin
. zero boson, Each of these theories has the attractive feature that it is simpler
_than quantum electrodynamics. Since no new difficulties arise, we will be content

with a very brief discription of each theory.

A. Neutral Scalar Mesons with ¢N Seif-Coupling

This is the theory first discussed by Weinberg in 1966 using the P — < frarne.1

We begin with the Lagrangian

L(x) = ?{(@“Q}(aﬂgﬂ) “'réagﬁe} gy X (VLI)

which leads to the equation of motion

K‘\L‘ .2 P — .—’.-,'.--‘,A‘N.J'
[ a,‘,{ O + t(\. ] 51) k/¥} - - i\) :i (:‘:;‘ k/‘\’l' _l . (VI-Z)
The canonical momentum
- 1) "~ “ — .\ 4 — -
T.) a u{(\‘ \X—’i (g‘\)}\d&&/)) (X‘(/%j >

o SRt v (V1.3)
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will generate translations in the X-or ¥ - directions if we choose the commutation

relations
[P, p0il,., =4 €Y 8Ty (VL

The Fourier expansion of the field at 7 =0 is

P = (27 3[u06[ A7

! (VL5)
If@—‘/‘) L) * ST o i@‘” J

where the destruction operators a(p) obey the usual commutation relations,

[a@, a(p)T:] = (27r)32n 6(@—17)62(@—2). The canonical Hamiltonian is

W) = & { ;,)Aa bﬁ) Y } gjf - (VL)

If one uses this Hamiltonian and the expansion (V1.5) of the field, one can obtain the
rules for old-fashioned perturbation theory. These are the same as the general
rules (1), ), (3), (4) given in Chapter V-C, together with a new rule for the simple
matrix element to be aSSOCiatéd with each vertex, In this case, there is only one
kind of vertex — an N-meson vertex with an associated simple matrix element g.
These are exacily the rules obtained by Weinberg by starting with time-

ordered diagrams and boosting each time-ordered diagram to infinite momentum,
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B. Pions and Nucleons with v Coupling

We use a Dirac field ¥/(x} and a real pseudoscalar field ¢(x). The Lagrangian

is
. N =YL L R L,
T6) = P20 8" -m] T 2@ oK) - ke ]
‘ — . (VLT)
- 20 &
vy Ay r
Thus the equations of motion are
- ¥ o = Ay P v .'7 "
["— OC\Y ey 7/ - ‘J ¢ ds -”) (VL8)
[0.0% i =iy PUH o

Just as in quantum electrodynamics, we find that two components of the Dirac field

are dependent variables. Indeed, we find when we multiply (VI.8) by vy © that

@ ELJ N _ | (VL10)

%);‘5% bja[@g +.m, +{

(Note that the projection matrices P, commute with -ys.)

1+

The canonical momentum

Ty T—-27 = 7, o ) -
- Jdx dy {C WIET U+ (8,008,.0)
)

o

K=
will generate translations in the i and y~directions if we choose the commutation

relations
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[, )35, =4 @) 97
N .!’ S R ('.v.'.) Tr } _ — T < 3_-r . 11
E { 4% (Kl %4 (/U/?; Y=o bu‘r- U‘é) O\ oo (Vi

Thus we can use the Fourier expansions (VL5) and (V.15) of the independent fields

¢(x) and ',0+(x).

The canonical Hamil tonian is (after some integrations by parts)

vl Ul
e R T (VLI2)
2 -sz:f Ay S5 2% : .

g o - Vo B
fcgg_{ + I +¢E;,?§?<Ss J ;

Ty

Apparently, the old-fashioned perturbation theory rules derived from this Hamiltonian
will have two types of vertices as shown in Figure VI-l. The "simple matrix
elements" to be associated with these vertices can be worked out by explicit cal-

culation:

21
for single pion emission as in Figure VI-la, a factor (i2 ® gM), where M
is given in Table VI-l.
for instantaneous proton exchange, as shown in Figure VI-lb, a factor

2
6 g°/2n .
5,484 0

The rest of the rules are just the general rules given in Chapter V-C.
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rsS ‘
| (70,5) —> -f
(a) - <
| ~_
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S

(8) T

FIGURE VI-1

Pion-Nucleon Vertices
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TABLE VI-1

Matrix Elements for Pion Emission
with s Coupling

T
p, =2 2(p £ ip")

g M

—l.
3 2 2mnq/nn'
-3 p,/n-pl/n’
3 p_/n-p' /1’

1
ey t
nq/n y

1
| ST
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C. Scalar Mesons and Nucleons with 1 Coupling

We use a Dirac field ¢ (x) and a real scalar field ¢(x) with a Lagrangian

B - TIEBA m]? +
)7//

‘
= f‘ 2 42
*2[{ G.900%)-1*¢?] s
GF
The equations of motion are unchanged from Section B except for the substitution

iyg—~1. The Hamiltonian is

H ﬁlm AZ

s L o
+2 Oril[—(}gg( i 3 ) o7 Lig-¥ v +<Cffbv] ¥ )C.

=Py

(VL14)

Again, the old-fashioned perturbation theory rules derived from this Hamiltonian

will have the two types of vertices shown in Figure VI-1. The corresponding simple

matrix elements are

ot

— for single meson emission as in Figure VI-la, a factor (2”2 gM), where

‘Mis given in Table VI-2.

— for instantaneous proton exchange as in Figure VI-lb, a factor

2
(6 g7/2n.).
8483 0

D. Electrodynamics of a Scalar Meson2

We use a charged scalar meson field ¢(x) and an electromagnetic potential

A"C(x). The Lagrangian is
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TABLE VI-2

Matrix Elements for Scalar Meson

Fmission with 1 Coupling

-3 1, .2
p, =2 %@ #1ip)

S st M
l 1
3 3 2Z2mn+n"/nn’
% -3 p/n-p/ 7
-3 3 p_/n-p'/n
.
-3 ~% 22m(n+n")/71"
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([i’d/;eﬁ ]p) (VL15)

This Lagrangian leads to the equations of motion

(Zau"@pu (é@’“—@f?”)gj =HE@® | (VL16)

:
O ("R -7 ) = 22 PT[E5 ek ] . (1D

As in spinor electrodynamics, it is convenient to choose the infinite~-momentum gauge,

A%=0. In this gauge, the p =0 component of (VL17) is

' <

~95(0, R+ R*) = 20 P74 0, @

This equation can be solved at any ! time" 7 to give A3 in terms of the independent

fields A, ¢ at that 7:
xRy

i - <
RY = { N F)+ e (of ’I”-g))}

{ L i~ ~ { 3 (VL1L8)
k_ ..k . -~ e 2, s
wherep = 87, n = 183, N = 183—183, and 1/97° is the famlhar integral operator

with kernel -3 | 5~ ' 1.
We calculate the canonical momentum operators Poz (¢ =1,2,3) and find that

they are simple in the infinite-momentum gauge:



2 = [elx [y / (2 ") (Qugp) + 5.9 (2:)
- (3, R* )(85(@?) i

These momentum operators will apparently generate space displacements of the

fields if we choose the commutation relations

Rk, Rl -8 e 5
Lo, ¢lo),., = "%_6‘(3)62@)

. (VL19)
[g@), 9], = Lgw, 2’ mL - |
The corresponding Fourier expansions of tile fields at 7 =0 .are
= (o i
R = (ewy ﬁiG@f 2? B {@m e Qo, X
+ o) ettP c\)}

(V1.20)
P(xy = (" fJgg 27 {@“f" “Jé (o) |
_*.Q-r-r.fo x Oz 60)}

where a,b, d destroy photons, mesons, anti-mesons respectively with the usual
normalization [b(f)\),bf(p)] = @2m2nd (n-%)52(‘g—/§> ete., and the polarization

- R . . - _l R
vecfors 'S,(A) are, as before, e(t I)=+22(1, +1i).
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When the canonical Hamiltonian is written in terms of the independent fields

)

and several integrations by parts are performed, we get

+z e (¢'79) 7 (97 9)
)

+e (g o)y (gr)

+ QT (gg-2R)-(g-em) 9 }

(VL.21)

The matrix elements of H can be obtained by using the field expansions (VI.20).
Apparentily, there are three kinds of vertices, as shown in Figure VI-2. The
corresponding simple matrix elements are:

— for single photon emission, as shown in.Figure VI-2a, a factor

a @7:3?: (ﬁat-/'r - dﬂ(/’?’) For N=a{

i
(g (
Ny’ o A
2B (i sy + g0 /) Fer A=t
4, X ¢ (
— for photon absorpltion and emission, as shown in Figure VI-2b, a factor
' 2
2e’ 6 .
AZA 4

— for a "Coulomb" interactions as shown in Figure VI-2¢c, a factor

2 1
€ (7?1 "’773) '_2 (7]2 + 714)
.7]0 .
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FIGURE VI-2

Vertices for Scalar Electredynamics
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