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ABSTRACT 

We examine the formal foundations of quantum electrodynamics and several 

other field theories in the infinite-momentum frame. 

The infinite-momentum frame is interpreted as being given by the change of 

variables 7 = 2-$ (t + z), 3 = 2-9 (t-z). The variable T plans the role of time. 

We discuss the Galilean subgroup of the Poincare group, which results in a non- 

relativistic structure of quantum mechanics in the infinite-momentum frame. 

We derive a ~-ordered perturbation series for quantum electrodynamics 

and show how such a series arises from a canonical formulation of the field theory. 

We quantize the theory directly in the infinite-momentum frame by postulating 

equal-7 commutation relations among the fields. 

We also discuss several other field theories: massive quantum electro- 

dynamics; scalar meson with (PN coupling; neutral pions coupled to protons with 

yS coupling; scalar mesons coupled to protons with unit matrix coupling; and 

electrodynamics of a spin zero boson. 
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CHAPTER I 

Introduction 

The infinite-momentum frame first appeared in connection with current 

algebra1 as the limit of a reference frame moving with almost the speed of light. 

Weinberg2 asked whether this limit might be more generally useful. He con- 

sidered the infinite-momentum limit of the old-fashioned perturbation diagrams 

for scalar meson theories and showed that the vacuum structure of these theories. 

simplified in the limit. Later, Susskind 394 showed that the infinities which occur 

among the generators of the Poincare group when they are boosted to a fast- 

moving reference frame can be scaled or subtracted out consistently. The result 

is essentially a change of variables. Susskind used the new variables to draw 

attention to the (two-dimensional) Galilean subgroup of the Pioncare group. He 

pointed out that the simplified vacuum structure and the nonrelativistic kinematics 

of theories at infinite momentum might offer potential-theoretic intuition in rela- 

tivistic quantum mechanics. 

Bardakci and Halpern’ further analyzed the structure of theories at infinite 

momentum. They viewed the infinite-momentum limit as a change of variables 

from the laboratory time and z coordinates to a new ‘1 timen 7 = 2-% (t +z) and a 

new space coordinate J’.= 2-; (t-z). Chang and Ma6 considered the Feynman 

diagrams for a $J~ theory and quantum electrodynamics from this point of view and 

were able to demonstrate the advantages of their approach in several illustrative 

calculations. 

In this dissertation, we examine the formal foundations of quantum electro- 

dynamics and several other field theories in the infinite-momentum frame. We 

interpret the infinite-momentum frame as being given by a change of variables 
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7 = 2-$ (t+z), 2 = 2-$ (t-z), thus avoiding limiting procedures. We derive a 

~-ordered perturbation series for quantum electrodynamics and show how such a 

series arises from a canonical formulation of the field theory. 

The methods employed here do not involve any high energy approximations. 

However, we believe that the fVexactll field theories in the infinite-momentum frame 

may be well adapted for high energy approximations. 

This dissertation is divided into six chapters, of which this is the first. In 

the second chapter we discuss the infinite-momentum coordinate system, (~,z,g). 

By using these coordinates we obscure the rotational symmetry of the underlying 

physics. However, we will find that other Galilean symmetries more appropriate 

td the description of high energy processes are thereby made manifest. We will 

see, in fact, that the subgroup of the Poincark group consisting of r-translations 

together with those transformations which leave the planes “7 =constant” invariant 

is isomorphic with the symmetry group of nonrelativistic quantum mechanics in 

two dimensions. We will also give a nonrelativistic interpretation to the remaining 

Poincark generators and to the parity and time reversal operators. Finally, we 

iyill discuss the single particle states most natural in the infinite-momentum frame. 

These are the infinitemomentum helicity states, which are eigenstates of helicity 

Bs measured by an observer moving in the - z direction with almost the speed of 

light. 

In the third chapter we examine fields and wave functions for free particles 

of arbitrary mass and spin as they appear in the infinite-momenhun frame. The 

discussion for the most part follows the methods of Weinberg and others except 

for the use of the infinite-momentum helicity basis for the particle states. The 
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main result is that the spinor wave functions for infinite-momentum helicity 

states have a remarkably simple form. 

The fourth chapter forms the heart of this dissertation. It is devoted to the 

reformulation of conventional quantum electrodynamics in the infinite-momenhun 

frame variables. We begin by considering the Feynman perturbation expansion 

for the S matrix, divorced from its field theoretical underpinnings. We write the 

covariant Feynman diagrams using the variables (T ,ZC, 2 ) and then decompose 

each covariant diagram into a sum of old fashioned T - ordered diagrams. The 

results are similar to Weinberg’s results concerning the Pz- ~0 limit of t-ordered 

diagrams, but the appearance of spin results in the emergence of new types of 

vertices. 7 In the second part of the chapter we look at the field theoreticic under- 

pinnings. We quantize the theory directly in the infinite-momentum frame by 

postulating equal-r commutation relations among the fields. We find that these 

equal-r commutation relations make the unquantized field theory into a formally 

consistant quantum field theory; in particular, the canonical Hamiltonian generates 

~-translations of the fields according to their equations of motion. Finally, we 

find that the old-fashioned perturbation expansion for the S matrix derived using 

the canonical Hamil tonian agrees with the 7 -ordered expansion derived directly 

from the covariant Feynman diagrams. 

In the fifth chapter we extend the canonical formulation of quantum electro- 

dynamics in the infinite-momentum frame by replacing the photons by massive 

vector mesons. The structure of the theory remains nearly the same as that of 

quantum electrodynamics except that a new term appears in the Hamiltonian 

describing the emission of helicity zero vector mesons with an amplitude propor- 

tional to the meson mass. 
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In the last chapter we make use of the familiarity gained with the two pre- 

vious model field theories in order to apply the same methods to several other 

theories. These are: scalar mesons with c#? self-coupling; neutral pions coupled 

to protons with a y5 coupling; neutral scalar mesons coupled to protons with a II 

coupling; and electrodynamics of a spin zero boson. Each of these theories has 

the attractive feature that it is simpler than quantum electrodynamics. 
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CHAPTER II 

The Poincare Group in the Infinite-Momentum Frame 

A. Choice of Variables 

In low energy processes the trajectories of particles cluster about a single 

direction in space-time. It is sensible to describe such processes using coor- 

dinates t, X, y, z, with the t-axis chosen in the direction of the particle trajectories. 

This choice of coordinates emphasizes the rotational symmetry of the underlying 

physics. 

In high energy collisions, the particle trajectories will generally lie near a 

plane, which we may take to be the t-z plane. However, the trajectories will not 

cluster about a single time-like line in space-time. Rather, the trajectories of 

energetic right-moving particles cluster about the light-like line t-z = 0 in the 

t-z plane, while the trajectories of energetic left-moving particles cluster about 

the light-like line t+z = 0. Thus it is sensible to describe such particles using 

coordinate axes lying along these lines. Hence we adopt the coordinates 

7 =2-i (t+z), x,y,a” =2-L 2 (t-z), as shown in Figure II-l. We will let the 

variable 7 play the role of 1’ time” in the description of the dynamics of right- 

moving particles, since the trajectories of these particles cluster about the T-axis. 

(Similarly, 2 can play the role of I1 time” for left-moving particles. ) 

By using these ninfinite-momenium frame” coordinates we obscure the 

rotational symmetry of the underlying physics. However, we will find that other 

nGalileanf’ symmetries more appropriate to the description of high ener,gy pro- 

cesses are thereby made manifest. 
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1463A I 

Fig. II-I 

The coordinate axes of the infinite momentum frame. 
. 



-8- 

It will be convenient to use the usual covariant tensor notation for quantities 

in the new coordinate system. Let y = (Go, @. p, Q3) = (t, x, y, z) be the coor- 

dinates of a space-time point in the ordinary coordinate system, 

xc” = (x0, xl, x2, 3 x ) = (7,x, y,g ) = (T, x, 2) be the new coordinates of the same 

point. ’ Then 

9 = cr, 9’ , P-1) 

where 

2 - ‘fr 0 2-‘/z 0 

cy i 0 I. 0 0 
0 010 

1 
(11.2) 

z- ‘I2 o(3.3”~ ' 

In general, we shall use hatted symbols for vectors and tensors in the 

ordinary coordinate system, unhatted symbols for vectors and tensors in the new 

coordinate system. In particular, we shall use gP,, for the metric tensor in the 

new coordinate system: 

We take for the ordinary metric tensor so0 = 1, 211 = e22 = e33 = -1. Then 

0 0 0 L. 

3 F*v = i 0 -i 0 0 
0 0 -i 0 

* i 0 00 I 

(11.3) 

(11.4) 
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We use gcl, to lower indices, so that a0 = a3, a3 = a’; this may seem confusing, 

but it has important consequences. For instance, the wave operator ap8’ =’ 

2aoa3- alal - a2a2 is only first order in a0 = a/a?. 

B. Generators of the Poincark Group 

Let us consider the generators of the Poincark group in the new notation. . 

Cur conventions for the Poinca& algebra in the ordinary notation are 

The generators of rotations and boosts are, respectively, i6, = sijkJk and 

iti, = Ki. Using the matrix cf: to transform from the usual notation to the new 

notation, we obtain 

and 

m.7) 
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where 

W3) 

If we consider 7 to play the role of lrtime”, we will be particularly interested 

in the generator of r- translations in space-time.’ Since exp(iPpxn) = 

exp(i[H~-_P.g + ng]), we see that it is H which generates T- translations and thus 

contains the “dynamics” of quanhlm mechanics in the infinite-momentum frame. 

Similarly, it is easy to verify that the subgroup of the Poincare group generated 

by 7, ??, J3 and 2 consists of those transformations which leave the planes r = 

const. invariant. Thus these operators might be cal.led “kinematical” symmetry 

operators in the infinite momentum frame. 

The commutation relations among the Poincare/ generators are, of course, 

given by (n.5) without the hats. The commutation relations among the operators 

H, 77 ,I?, J3, z$ are particularly interesting. They are the same as the commutation 

relations among the symmetry operators of nonrelativistic quantum mechanics 

in two dimensions with 
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H- hamiltonian, 

9 - mass , 

P hr - momentum, 

J3 - angular momentum , 

I3’ and B2 - generators of (Galilean) boosts in the x 
and y directions, respectively. 

In fact, the subgroup of the Poincare groups generated by 71, ,P, H, J3, ,B, is iso-, 

morphic to the Galilean symmetry groups of nonrelativistic quantum mechanics in 

two dimensions. 2,3 It is instructive to explicate this isomorphism in some detail. 

The mass operator q commutes with all of the other generators, g, H, J3, 

$. Also, [B1, B2] = [P’, P2] = 0. The Hamiltonian H is invariant under rotations 

and translations: 

The momentum 2 and the boost generator $ are vectors under rotations: 



-12 - 

When a system is given a Galilean boost through velocity:, its total momentum 

changes by an amount equal to its mass times v: 

At the same time the I1 internal energy” of the system is unaltered, but its kinetic 

energy, E2/2n, is changed: 

It is also interesting to think of B> as a position operator. In nonrelativistic 

quantum mechanics, the generator of boosts is 5 = - Zm,yi = -(total mass) x 

(position of the center of mass). Thus we are led to define the operator ,R = 

z/n and interprets as the operator giving the position of the center of ~Yn~ass7t 

of the system. In support of this interpretation, we note that [Pk, R’] = - idke 

and that the rate of change of R is equal to the velocity of the system, P/T): 

p = i[H,$] =g/n. 

We can also use ,c to decompose the total angular momentum 1 into a part 

representing the orbital angular momentum of the center of mass about the origin, 

and the remaining ‘1 internal” angular momentum, 
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Just as in nonrelativistic quantum mechanics, the internal angular momentum 

is invariant under translations and boosts and is conserved: 

Finally, it may be worthwhile to note that the Hamiltonian for a free 

particle takes a simple nonrelativistic form. From the mass shell condition 

$P, = Iv? we obtain 

‘where Vi = M2/27, is a constant potential. 

The operator K3, which generates Lorentz boosts in the z-direction, can 

also be given a simple interpretation in the analogy to nonrelativistic quantum 

mechanics. Suppose that we were to formulate ordinary nonrelativistic quantum 

mechanics using length and mass as the basic units, with the unit of time chosen 

so that )r = 1. (Thus 1 set = 1.05 x lO-27 gm cm2. ) Then we would find that our 

theory was invariant under resealing of the unit of mass. In the “nonrelativistic” 

interpretation of quantum mechanics in the infinite-momentum frame, this 

symmetry is built in as a consequence of Lorentz invariance. A simple calculation 

shows that exp(- iwK3) simply rescales each of the other group generators according 

to the number of powers of f~rnass~~ each contains: 
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The fact that the operators P” and M 
W 

in the infinite momentum frame 

transform under z-boosts according to simple scaling laws suggests that the 

infinite momenhlm frame may be particularly adapted for high energy approxi- 

mations. 4 

We come now to the final operators in our menagerie of Poincare generators, 

S1 and S2. These operators commute with H, form a vector under rotations, and 

scale under z-boosts like 71 -1 . The commutation relations of S with 9, ,P, and 

g are 

F ‘j,h , 72 ] = -L ‘/.I+ 

1: ‘je, vy = -i &-kg H 

where E 12 =-E 21 = 1, 41 = E.22 = 0. We can give these commutation relations an 

interpretation in the nonrelativistic analogy if we write S_ as the sum of an llinternall’ 
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part2 associated with the internal dynamics of the system and a remaining 

nexternalfl part as follows5: 

where j 3 is the internal angular momentum discussed earlier. Simple computation 

shows that s is indeed an “internal” operator in the sense that it is invariant * 

under translations and Galilean boosts and commutes with the total “mass.71 

operator n . Furthermore, &commutes with the Hamiltonian H. Thus zplays 

the same role as the “dynamical” s ymmetry operators sometimes encountered 

in nonrelativistic quantum mechanics. 6 In this interpretation, i-invariance is an 

extra symmetry of the Hamiltonian in addition to its Galilean invariance which is 

needed to insure the full Poincare’ invariance of the theory. 

It will come as no surprize that the It internal’! operators j, and s provide 
w 

just another description of the spin of the system. The connection between these 

operators and more conventional spin operators can be clarified by means of a few 

simple observations. 

First, we notice that j, measures the h&city of the system as viewed in a 

reference frame moving in the -z direction with (almost) the speed of light: 

, 
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Second, we compute the covariant spin vector 798 

and find 

Then we can compute the Poincare group Casimir operator W = - gw pm We 

recall that for a single particle with mass M > 0 and spin s, W = 2 S(S+l). For 

mass zero irreducible representations of the Poincak group, W is zero except 

for the unphysical ~~continuous spin” representations. ) We find 

Finally, we compute the commutation relations among the ‘linternal” 

operators: 
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_. Thus, as long as the spectrum of I? = .2 (2t7H-g ) is strictly positive, the operators 

jl = qs2/M, j, = - q&/M, j, are well defined and obey the W(2) algebra [j,, jl] = 

kkenjn. Therefore, it is quite plausible that 7 = (jl, j,, j,) measures the angular 

momentum of the system in its rest frame. To prove this, note first that r 

commutes with #, I& and %. Let I qp> be a state with definite momentum p 

and Up be a Lorentz transformation of the form Up = exp(- ig.2) exp(- iwK3) con- 

structed so that I %> = Up I $> is at rest. Then 

But for a state at rest we have 17 = H =2-i M, l 5 = 0, so 
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as we claimed. We will meet the operators 3 and Up again when we construct 

free particle states appropriate to the infinite-momentum frame. But first we 

turn to a short discussion of the parity and time reversal operators. 

C. Parity and Time Reversal in the Infinite-Momentum Frame 

In the infinite-momentum coordinate system the ordinary parity trans- 

formation is 

If parity is a symmetry of the theory under discussion, there will be a unitary 

The details of this transformation are presented in the first column of Table II-l. 

We see there that the parity transformation has the effect of interchanging the 

roles of q and H, 2 and,:, K3 and -Kg (as well as changing the sign of transverse 

vector operators). This transformation is useful for comparing the dynamics of 

left-moving and right-moving systems. 
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_. If, on the other hand, we are more interested in the internal dynamics of 

right-moving systems, the ttparity’l operator 

is more useful. We see from Table I that the operators 7, H, and K3 are 

‘“scalars” under this parity operator. The operators ,P, g and 1s, are 17vectors11 

and transform according to ($, ?) + (- $, 4). The rotation operator J3 is a 

“pseudo-scalar” and changes sign under this parity transformation. In addition, 

“pseudo-vector” objects like Fk = l tiV@ (where Vm is a vector) somestimes occur; 

these transform according to (Fl, F2) - (Fl, - 8). 

We come now to time reversal. The ordinary time reversal operator UT 

does not seem to be very useful in the infinite momentum frame. A much more 

natural operator is 

which we might call the IIT- reversaltt operator. The corresponding Lorentz 

transformation matrix A7 is given by 

However, since U7 is antiunitary, the transformation law for the Poincark 

generators under r- reversal is 
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This leads to the last column of Table II-I. We see there that U7 acts just like 

the time-reversal operator of nonrelativistic quantum mechanics. The mass n 

and energy H of a system are unchanged under r-reversal; the momentum fp, is 

reversed; and the boost operator 2 (and the position operator g = -g/n) is 

unchanged. 

The final discrete symmetry operator which we will find useful later is the 

PCT operator UpCT. If we write UC for the charge conjugation operator which 

interchanges particles with antiparticles but commutes with the Poincare 

generators, then 

PCT 

Since the Lorentz transformation matrix A P$!V is simply (-1)6’V and UpCT is 

antiunitary, the transformation law for the poincare generators under UpCT is 

simply 
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TABLE II-1 

Behavior of the Poincarg Generators under 

Parity and Time-Reversal Transformations 

0 

j3 

S 
q-4 

$10 up u;*oua u;lou7 
H tl 71 

-9 

-,P 

-s A&* 

J3 

-53 

-B 
ti 

H 

(-PI, P2) 

(- B’ , B2) 

-J3 

K3 

ds2, 

(- R1, R2) 

-j, 

(- 2, s2) 

H 

-P \u 

B WC* 

-J3 

-K3 

s 

R r*ca 

-j, 

4 
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D. Single Particle States 

The states of a single particle with mass M, spin S are generally repre- 

sented by state vectors I P, h >, where $” is the momentum of the particle and 

the discrete index )\ labels its spin state. Many definitions of “spin state” are 

available: helicity, z-component of spin in the particle rest frame, etc. 

Unfortunately, the familiar kinds of spin states are ill adapted for use in the 

infinite momentum frame; hence we devote this section to yet another variation 

of the description of particle spin. 

We will use an informal version of the famous Wigner construction’ to 

define the states I P, h 2. Consider first the case M > 0. We let P! be the 

momentum of a particle at rest, 

Then for any other momentum on the particle’s mass shell, we choose a standard 

transformation p (P) in SL(2,c) lo which transform PO into P : 

We define the states I P, A > for P # PO by 

Then we will know how the states I P, A > transform under all Lorentz trans- 

formations when we give the transformation law of the rest states I PO,. h 7 

under rotations (which leave PO invariant). If we want states with spin S, we have 

only to roquirc that the states I PO, h > transform under rotations according to 
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the spin S representation of SU(2): 

When we combine these two equations, we get the general transformation law for 

the states I P, A >. If A is in SL(2,C) and we denote f; = A(A)P, we find 

Note that the Lorentz transformation A(/3 ($)‘lAp (I?)) is a rotation, since it maps 

P[ back into itself; thus a(‘)@ &)-lA> (P)) is well defined. 

This is the Wigner construction. All that remains for us to do is to specify 

the “standard transfonnationl’ ,B(P) which carries PO into P. The natural ap- 

pearance of an internal angular momentum operator, j, = J3-,R xl?, in the infinite- 

momentum frame suggests that we should choose B(P) so that j, 1 P, h > = 

h I P, A >. We already have j, I PO , h > = hl PO, A >, so our requirement 

will be met if U(fi(P)) commutes with j,. Since j, commutes with K3 and E& we 

choose 

with 2 =,z/n and ew = 2$ n/M. 

Finally, we note that the states I P, h > must be covariantly normalized 

if the operators U(A) are to be unitary. Thus we take 
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This gives the covariant phase space integral 

Let us turn to the description of mass zero-particles. Since we are now 

unable to consider the states of a particle at rest, we must choose another 

“standard momentum11 PO. A convenient choice is 

We choose for the standard transformation a(P) which transforms PO into P 

where now L = lop/q and ew = 7. As before, we define 

I?,>) = u(c((p); I?>,) “x) 

We are now left with the well-known problem of deciding how the states I PO, h > 

should transform under the groups of transformations which leave PO unchanged - 
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the so-called “little group’; of PO. It is easy to see that this little group is the 

subgroup of SL(2,C) generated by J3 and% We demand that the states I PO, h > 

transform under this group according to one of its unitary finite dimensional 

irreducible representations. But the only such representations are the one- 

dimensional representations 

where h (the helicity) can be 0, f 1, it 2, . . . . 

Let us for the moment call the helicity h representation m, : 

Then the complete transformation law for the states 1 P, A > is 

where p = A(A)‘,, Pv. 

Finally, we normalize the states I P, A > for mass zero just as for RI > 0: 

At this point in his trek through the group theoretis jungle, the reader may 

wish to pause to ask whether the spin states described above have any special 
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. . properties which made them well suited to a description of physics in the infinite- 

momentum frame. Two closely related properties can be named. First, when 

the transformations generated by n, I?, H, s,, J3, K3, act on the states I n ,E, A > , 

these states transform just like states with mass n, momentum $, and spin h 

in nonrelativistic quantum mechanics in two dimensions. All of these operators 

except J3 act only on the variables 7, 2 and leave h unaffected; under a rotation 

exp(-i$J3) the momentum P is rotated and the state receives an extra phase 

exp(-i$A). Secondly, the ninternalll Lorentz generators j, and s discussed in 

Section B act in a simple way on these states. For either M > 0 or M = 0 we find 

where the matrices 
d 1 are the standard angular momentum matrices for the appro- 

priate spin. 

E. Transformation of Single Particle States under Parity and Time Reversal 

It is sometimes necessary to know how the states I P, A > transform under 

the parity and time reversal operators discussed in Section C. Let us consider 

first the states I P, A > describing massive spin-s particles. 

How do the states I P, A > transform under the infinite-momentum frame 

Itparity” operator Ua = exp(-i”Jx) Up? It is easy to give the rule if we staP\ &X&n 

the transformation law of the states at rest, 1 PO, A >, under the ordinary parity 

operator, namely 
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Here CP is the intrinsic pa:ity of the particle, with 1 CPl = 1. To derive the 

desired transformation law for a general state 1 P, A > we write Ua 1 P, A > b 

the form 

By definition, the states I PO, h > transform under rotations according to the 

spin-s representation of W(2); thus 

If we use Table II-1 in Section C and the definition of p(P) we can write 
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_- where $’ = 1) and $ = (-p1,p2). Putting these results together, we have 

= C,(-i)2’ Ilj,--@,@;-A) 

Thus the action of Ua on the single particle states is very simple: it changes the 

transverse momentum from2 tog = (-p’, p2) and flips the spin. In addition, the 
. 

state vectors are multiplied by an overall phase factor Ca = Cp(-i) 2s . 

We can similarly derive the transformation law for the states 1 P, ?, > 

under the r-reversal operator Ur = exp(-in J3)U U p T. We begin with the trans- 

formation law for states at rest under the ordinary time-reversal operator UT, 

Then if we also use the formula Up I PO, h > = Cp I PO, h > and proceed in the 

same manner as before, we obtain 

= C, C, (+i)*’ S,a)-, I yl -&? ; ,O) 
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_. Thus finally 

where C7 = CPCT(i) 2s is a phase factor. This is just what we would expect for 

a nonrelativistic time reversal operator - U7 simply reverses the particle 

momentum and flips its spin. 

The action of the PCT operator on the states I P, h > is also quite simple. . 

If we define the charge conjugation operator UC by 

then we find 

So far, we have discussed the parity and T- reversal properties of the states 

for massive particles only. If we want to extend the discussion to cover massless 

particles, we must assume that the massless spin S particle can be found with 

both possible helicities, h = f S. This is because the inversion operators U, 

and U,. both change the sign of the spin operator j,. 

Let us therefore assume that the space of single particle states contains 
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.- states I p,s > and states I P,-s >. Since the states Ua I po, s > and 

UT 1 po, s > have helicity -s and momentum p’ = pi, we further assume tha? 

Using this assumption and a short calculation similar to that for massive particles, 

it is easy to show that 

Since UpCT = e 
inJ3 

U7Uc, we also obtain 

4, 15 ?I ; @JdQ ) = c,, (-iis-” I,?,-$ ) aJq&tiA) 

Note that all of these results are exactly the same as the corresponding results 

for massive particles. 
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CHAPTER III 

Wave Functions and Free Fields 

In subsequent chapters, we will develop several interacting field theories 

uslng a canonical quantization procedure in the infinite-momentum frame. We 

prepare ourselves here by investigating free field theories. Forhmately, it is 

not necessary to use the canonical procedure to discuss free fields; one can write 

down an exact free field for particles with any mass and spin once one knows how 

to write wave functions describing the particles’. (For example, the free Dirac field 

has the form 

$&- k)nje3 j&g lM$ z*,, { tiK (g-7, x) @+’ &p, A) 

+ ?&$I, “h) P@ L&q A) ] , 
where, for instance, Uo(p, A) exp(-ip.x) is the wave function in coordinate space 

for the electron state I p, h > destroyed by b(p, h ). ) 

The free fields constructed here will be useful for checking the results of 

the canonical quantization procedure of later chapters when the interactions between 

the fields are turned off. In addition, free fields and wave functions are useful by 

themselves for discussing the general form of scattering amplitudes. 

A. Finite Dimensional Representations of SL(2,C) 

We pause to recall the finite-dimensional representations of SL(2,C). 
2 These 

are named 9 
q’s21 

, where Si and S2 are O,$ , 1,. . . ; the individual matrices 

representing an SL(2,C) transformation A in the represciltation 
(9,S2) 

g are 
($9 s2, 

written GZ WaB- 
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The representations %@’ ‘) can be specified as follows: the rotation 

generatorsJ are the standard (2s +1) x (2s +1)-component angular momentum 

matrices 5Phg defined in quantum mechanics textbooks; the generators of 

Lorentz boosts and simply i times these angular momentum matrices, g= i z. 

Note that according to this definition, &‘“)(A)cUB = AaB. It is also useful 

b note that C27(s’o)(At) = gts7 o)(A)t and CBfss ‘)(A*) = katsy ‘)(A)* . 

The representations g(09 ‘) can be specified by defining ‘g to, %(A) = 

G5(” ‘)(Atwl) . (Thus note that g(” ‘)(A) = G&S’ ‘)(A) if A represents a 

rotation, A t = A -1 . ) The infinitesimal generators in the (0, S) representation are 

Finally, the representation 53 
(33 S2) 

can be obtained by forming the Kronecker 
CS’, 0) 

product 63 
(0, fy 

X G@ : 

B (s8,sz’ (Q) c;a Nvg’ = gp~“‘(U) xd’ $g’“s+~)j3,3, 
I’ 1 

B. (2s + 1) -Component Wave Functions for Mass M > 0, Spin S 

Consider the space of states I $ > of a single particle with mass M > 0, 

spin S. The amplitude < p, ?,I $J > for the particle to have momentum p’” and 

infinite-momentum helicity A might be considered to be a wave function repre- 

senting the state I $ >. However, such amplitudes have a very messy trans- . 

formation law under SL(2, C): the “wave function I1 representing the transformed 

state U(A) I $ > is 
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_ 
where p -1,Ll v 

+=NA )VP , , g(S) * is the spin S representation of the rotation group , 

SU(2), and ,9(p) is the *‘standard SL(2, C) transformation” which carries the rest 

momentum poP into rJ”. 

’ In order to define wave functions which have a simple transformation law, 

we need only recall that the representation 9 (9 of SU(2) can be extended to give 

the representation $B(” ‘) of SL(2,C). Thus we can write the matrix in (III.1) as 

Now the ugly momentum dependent matrices 9 (p @)-I) can be absorbed into the 

definition of the wave functions, leaving only the matrix s(A) in the trans- 

formation law. 

We are therefore led to define a (28 +l) -component wave function $a@) 

representing the state I $ > by 

?$ (pl 5 

Then under a Lorentz transformation I $ > - I 8 > = U(A) 

,p)$) 

I 9 >, the wave 

function transforms simply according to the GB(” ‘) representation of SL(2,C): 

(IILB) 

(III.3) 
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C. (2s +1) -Component Free Fields for Mass M > 0, Spin S 

Now that we know how to write wave functions, it is easy to construct a free 

field, We note that the wave function in coordinate space corresponding to the 

state 1 $J > = I k, h > is $J~(x) = uc,(k, h)e -ik.x where 

(III.4) ’ 

A particle destruction field can be formed by multiplying the particle destruction 

operators b@, A) by the corresponding wave functions, then summing over the 

complete set of single particles states: 

It is easy to see that the field so constructed transforms according to the repre- 

’ sentation B(” O) of SL(2,C): 

An antiparticle creation field e(-)(x) can be constructed in a similar fashion: 

g”)(J)0 = (i)jj+)-'J~#[~f F U,@,J 2+i’F’h At,, C&7, 1) , (lII.7) 
0 

‘ 

where the creation operator b&+p, A ) creates the antiparticle state 
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Here UPCT is the PCT operator discussed in Chapter II and CCpT is the 

nPCT phase” of the particle (which is normally arbitrary unless the particle is 

its own antiparticle). If we recall that UPCT is antiunitary and commutes with 

Lorentz transformations U(A), we can show quite simply that e,(-)(x) also trans- 

forms according to the representation kz,(“‘) of SL(2,C). 

The creation field $J-) (x) can be written without the explicit appearance 

of the PCT operator if desired. We recall from Chapter II that 

Thus if we write dt@, u) for the creation operator which creates the state 

I p, u ; antiparticle >, we have 

Therefore, an alternate form of v(-)(x) is 

where 

(III. 9) 

(111.10) 
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_. 
The complete (2s +1) -component field $J (x) is the sum of q(+)(x) and 

g-‘(x): 

It is an instructive (although by no means novel) exercise to compute the free field 

commutator or anticommutator Simple calculation gives 

The spinor sum is Xx o1 U (p, x)Ui@, A) = Iv?’ g(” o)(B(p)B@)t)og. We can see 

that /I @)p (p)? is quite a simple matrix if we recall the formula defining the 

relationship between a matrix A E SL(2,C) and the corresponding Lorentz trans- 

formation A(A): : 3 

R&/y+ = 

where 
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Since 1’~(/3(p))~~pi = p’, where pi = 2’; (M, 0, 0, RI), this relation gives 

Finally, we recall that the matrix elements 9(s’o)(A) 
QB 

are polynomials of degree 

2s in the matrix elements of A. Thus the matrix elements 

are polynomials of degree 28 in the momentum components pp. Integration by 

parts in (III.12) then gives 

(lII.13) 

where A(X, M) is the ordinary scalar commutator function - provided we made 

the right association between spin and statistics. 

D. 2 X (28 +l) -Component Wave Functions and Free Fields 

In the last two sections, we chose to use the (S, 0)-representation of SL(2,C), 

but we could just as well have used the (0, S)- representation. Had we done so, we 

would have defined wave functions 

(III.14) 

The relation between the (S, 0)-wave functions I/J (p) and the (0, S)-wave functions 

Jlv (PI is 
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This relation can be simplified if we recall that gao9S)(A) = $%(‘, ‘)(At-‘) and that 

B;)Bot = &I?: 

The inverse if this is 

where 

(111.15) 

(IIL16) 

(111.17) 

One can then use the wave functions +II’ (p) to form a free field $ ’ (x) which 

transforms according to the (0, S)-representation of SL(2,C): 

(The factor (-l)2s . 1s superfluous of I,!J’ (x) is being considered by itself, but is 

needed to insure that Q’ (x) has a causal commutator with 9(x).) Apparently 

the fields 9(s) and $!J’ (x) are related to one another by 
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An elementary calculation will show that the two fields $, 9’ are 

parity transforms of one another: U: q(x) UP = Cp $($,x). Thus, if we want 

to discuss a theory invariant under the parity transformation, it makes sense to 

use a combined 2 x (2S+l) component field 

(111.19) 

Since e(x) and $’ (x) are related, v(x) satisfies an equation of motion in addition 

We recall that the matrix elements g (P)~~, GB@)~~ are polynomials of degree 

2s in the momentum components pP. Thus (III.16) -is a differential equation of the 

form 

where the I’lrv * ’ ’ u are certain matrices which can be easily computed. For 
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instance, for S = 4 the I”‘.form a certain representation of the Dirac y-matrix 

algebra, and Eq. (III.20) is just the Dirac equation. 

Using our previous results, we can write out the Fourier expansion of the 

2 (2s +I)-component field y(x): 

where the spinors U(p, J,) are 

and the charge conjugate spinors V(p, J, ) are 

When the free fields y(x) are used in applications, either as in- and out- 

fields or as “bare fields” in &kurbation theory, matrix elements of covariant 

operators will consist of the spinors U(p, A), V@, J,) tied together with such 

covariant objects as the matrices I” ’ ’ ‘u, momenta p 
P’ 

and scalar form factors. 

Thus it is quite generally useful to have explicit expressions for these spinors. 

Such expressions will be derived in the next section. 
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E. Evaluation of the Spinors U(p, J, ). 

The observant reader will have noticed that the well-known formalism which 

we have briefly outlined in this chapter can be used with any choice of the type of 

spin states. In this section, we will specialize to the choice of states useful in 

the infinite-momentum frame - . namely the infinite-momentum helicity states 

j p, A >. -_ . We will obtain explicit expressions for the spinors u,(p, A) and 

$p, A). _-. 

We begin by constructing the “standard Lorentz transformation” p @), 

where 2 4$./q. and ew = & n/M. We recall that the generators of rotations in 

SL(2,C) are the Pauli spin matrices, 7 = 3 7, and that the generators of Lorentz 2.. 
\oos+ are Z = $7. Thus the generators 2 and K3 are . 

i.::. .-.. :’ : . .- 
I,.- L- c +-ly- s. 2-s (I(,+ ;5,) = 2-i 

-, -.. cc:_ I. 
(III.24) 

i 23” = 2-2 (K, e J,) = 2-f (-‘: 00) 

The exponentials exp(-izg) and exp(-iwK3) can be easily worked out, giving 

(IlI.25) 
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-.. M_ G -P- 
0 r 

(IIi.26) 

Now we need an expression for the matrix elements of g w+*) in terms 

of the matrix elements of A. To obtain such an expression we consider the 

reducible representation G%?($ ) ‘) x ,(*I ‘)x . . : x G&y ‘) of SL(2,C) with 25 

factors of GBtb3 O). This representation acts on the space of spinors 

5 a1cY2. * . a2S , where each index LY takes the values f &, according to the rule 

It is not difficult to see that the subspace of totally symmetric spinors is left 

invariant under these operators, and that the representation of SL(2,C) defined 

in the symmetric subspace by (III.27) is GB WJ) . A suitable4 orthonormal basis 

for the symmetric subspace consists of 2S +l vectors 5 (h), h = -S, . . . , S, 

defined by 
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The desired matrix elements of C@“)(A) are simply 

Thus the matrix elements @‘o)(A) h,A are polynomials in the matrix elements 

A ++’ A,2 A.&, A-- of A. It is not difficult to compute the coefficient of the 

general term @*Ia (A+- lb (A- +)‘(A- _ Id in this polynomial by a simple counting 

argument. The result is 

where the sumincludes all those values of a, b,c, d in the range O,l, . . . ,2S which 

satisfy 

(III.31) 

Now we are ready to evaluate ~(syo)@ @)),,, , where /3(p) is given by (III.25). 

Since the component p(p)+- is zero; the only non-zero terms in (III.30) are those 

with b = 0; but there is only one solution of (iII.31) with b = 0, namely a = S + 1’ , 

b=O, c=A-h’, d=s-h. Since the sum in (111.30) includes only non-negative 

values of the exponents a, b, c, d, this solution leads to a non-zero matric element 

Qt5(A)h,h only if c = h-A’? 0. 
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Thus we obtain for the spinor uo@, A) = MS $.B(,9(p))oh 

where @(a, I A) is 1 for (Y 5 h , zero if (Y > h. We find in a similar fashion 

that the spinor II;@, A) = Msg (/3 (p)‘-‘)oh is 

It is remarkable that these infinite-momentum helicity spinors are so 

simple. The spinors for Jacob and Wick helicity states, by way of contrast, 

have the form 

M--S 

where (0, +) are the polar angles ofy and cash w = JqjM. One specific p 

effect of this general simplicity of spinors for infinite-momentum helicity states 

may be seen in calculations of scattering amplitudes in quantum electrodynamics 

using “old-fashioned” perturbation theory in the infinite-momentum frame. 
5 

In such practical calculations, it is generally easy to sum over the intermediate 

spin states directly to product the scattering amplitude; one is not forced to 
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avoid the spinors by castin,g the problem in such a way as to make the answer 

proportional to a trace. 

In this chapter we have not discussed wave functions or fields for massless 

particles. Such a discussion would be quite simple and would run along the same 

lines as the present discussion of massive particles. However we will be content 

merely to state the result: the spinors and fields for massless particles can be 

obtained from those for massive particles by simply setting M = 0. In particular; 

note that the massless spin-S field $ (x) transforming according to the 53 (fh 0) 

representation of SL(2,C) destroys only parricles with helicity h = S. Similarly, 

the field 4’(x) transforming according to the 9 (0, S) representation destroys only 

particles tiith’helicity A =-S. 
:. 

F. Fields Transforming under Other Representations of SL(2,C). 

We have described fields for massive particles with spin S which transform 

according to the representations 9J 6% 0) and GB(” ‘) of SL(2, C). It is, of course, 

also possible to describe such particles using a field which transforms under any 

of the representations ,(a’ b, with S = 1 a-b I, 1 a-b 1 + 1,. . . or I a+b I . For 

example, spin 1 particles can be described by a 4-vector field (which transforms 

according to 9@‘;) ). For the sake of completeness - and since we will make 

use of 4-vector fields in later chapters - we will recall here how such fields can 

be cons true ted. 

We note that the irreducible representation 9 (a,b) = a@lO)x 9(Otb) of 

SL(2,C) is reducible when it is considered as a representation of SU(2). If 

S= la-bl, I a-bl +l,..., or I a+b 1 then the spin-S representation of SU(2) 

will be contained in this representation. We let the (2S+l) vectors w(h) be the 
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basis vectors in the representation space of CB(aJ b, for the spin-S representation 

of SU(2). Thus for A E SU(2) , 

For example, if we are using the (&,+)-representation of SL(2,C) to describe 

massive spin one particles, the wih) are 4-vectors (in infinite-momentum 

coordinates) : 

(m.34) 

W.35) 

Spinors to describe a state with momentum p, helicity A can now be defined 

(m-36) 

These spinors can be used to construct the field 
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It is a simple exercise to use (l’lI.37) and the transformation laws for the states 

I p, X > to show that this field does indeed transform according to the (a, b)- 

representation of SL(3,C). 6 

In our example of a massive vector field, the vectors U(p, A) are 

uy @, x ) = NBdhJP(~): 

It is instructive to notice that the massive spin one field constructed using the 

(f ,$ )-representation of SL(2,C) does not have a nice limit as M + 0 since the 

polarization vector for helicity zero blows up instead of vanishing as M -+ 0. 

We will see in the next two chapters that this problem can be overcome in massive 

and massless quantum electrodynamics by the use of gauge invariance. 

. 
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CHAPTER IV 

Quantum Electrodynamics in the Infinite-Momentum Frame 

This chapter is devoted to a reformulation of conventional quantum electro- 

dynamics in the infinite-momentum frame variables. The chapter is divided into 

two parts. In the first part, we consider the Feynman perturbation expansion for 

the S matrix, divorced from its field theoretic underpinnings. We write the co- 

variant Feynman diagrams using the variables (~,a 2) and then decompose each 

covariant diagram into a sum of 11 old-fashioned” T- ordered diagrams. The 

results are similar to Weinberg’s results concerning the infinite-momentum limit 

of t-ordered diagrams, but the appearance of spin results in the emergence of new 

types of vertices. In the second part, we look at the field theoretic, under- 

pinnings . We quantize the theory directly in the infinite-momentum frame by 

postulating equal- 7 commutation relations among the fields. We find that these 

equal- T commutation relations make the uuquantized field theory into a formally 

consistent quantum field theory; in particular, the canonical Hamiltonian generates 

~-translations of the fields according to their equati.ons of motion. Finally, we 

find that the old-fashioned perturbation expansion for the S-matrix derived using 

the canonical Hamiltonian agrees with the r-ordered expansion derived directly 

from the covariant Feynman diagrams in Part 1. 

In subsequent chapters, we will discuss several other field theories in the 

infinite-momentum frame. However, none of these theories will present any new 

difficulties not already present in quantum electrodynamics. Thus the experience 

gained from a detailed discussion of quantum electrodynamics will enable us to 

develop the other theories in a more compact fashion. 



Part 1: Scattering Theory 

In this section, we regard the theory of quantum electrodynamics as being 

defined by the usual perturbation expansion of the S-matrix in Feynman diagrams. 

We rewrite the theory in the infinite momentum frame by systematically decom- 

posing each covariant Feynman diagram into a sum of non-covariant r-ordered 

diagrams. We consider the Feynman expansion as a formal expansion; thus we 

shall not be concerned in this paper with the convergance of the perturbation series, 

or convergence and regularization of the integrals. 

A. Proparators 

If we wanted to derive t-ordered diagrams from the Feynman diagrams we 

w ould begin by writing the Feynman electron propagator in the form 

We will try to do the same thing using O(T) instead of O(t). 

We start by considering the Klein-Gordon propagator 

A&, 5 ~~.~jm4 
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We can do the H-integral by contour integration. If r > 0 we close the contour 

in the lower half H-plane. 
-2 

The integrand has one pole at H = @ T + m2- ie)/2t), 

which is in the lower (upper) half plane if q is positive (negative). Thus we get 

e 

similarly, if 7 < 0 we get 

Thus (with the change of variableyT - -TT and 7 + -q for T < 0) we have the 

required decomposition for A,(x):’ 

where 

is the free particle hamiltonian. Notice that 

is the invariant differential s&ace element on the mass shell. 

We can use the decomposition (IV.2) of A,(x) to derive a decomposition for 

the electron propagator, 
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(W.3) 

(In keeping with our convention, the # are the y-matrices in the new notation. 

We shall use cfl for the y-matrices in the ordinary notation; thus y” = 2-i (q” + Q3) 

etc. Table I in Part 2 contains some useful identities for the new y-matrices. ) 

When we differentiate AF(x) in (IV.2) we get a term proportional to O(r), a term 

proportional to a(-~), a third term proportional to a(~) = BOO(r). As we will see, 

this third term results in an extra term in the infinite momentum frame Hamiltonian. 

Doing the differentiation we get 

We will also need a decomposition for the photon propagator. We start with 

As we will see, a great simplification in the theory will result if’we choose the 

gauge A’= 0, which might be called the infinite momentum gauge. To write the 

propagator in this gauge we define the polarization vectors 
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_. 

(Cf. Eq. (III.37) in Chapter IIL ) These polarization vectors satisfy the ortho- 

gonality conditions e(p, h)*Pe(p, hl)P = - 6hh, , pPe(k,p)P = 0.’ By direct calculation, 

we find 

Let us make the replacement (IV.7) in our integral for DF(x)PV. We note that the 

gauge terms q-16P3pV and q-‘~“6’~ will not contribute to any physical process 

because of current conservation. Thus we may drop these terms without changing 

the theory. This leaves us with 

We can do the H-integration in the first term by contour integration, just as 

we did for A,(x). The result is 
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. . 

In the second term pPpP/(pPpP+ ic)- 1 as E - O+ so that the H-integral is 

Thus the second term is 

This term will result in an extra term in the hamiltonian which is analogous to the 

Coulomb force term which appears in quanhun electrodynamics in the Coulomb 

gauge. 

In sum, then, our photon propagator takes the form 
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where 

B. Diagrams 

We start with the usual Feynman rules in coordinate space. For definiteness 

let us consider a particular diagram, say the one shown in Figure IV-la. We fix 

our conventions by writing out the contribution of this diagram to the S-matrix: 

The electron wave functions used here are 

where p and A are the momentum and spin of the electron and the spinors U&I, A) 

are normalized to ?iu = 2m. For positrons we use the charge conjugate wave 

functions 

where p and h are the physical momentum and spin of the positron. The photon 

wave function is 
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1463A2 

Fig. IV-I . 

Typical Feynman diagram in coordinate space (a), and in momentum space after 
T- ordering (b). 
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where e@, # is one of our infinite-momentum gauge polarization vectors. 

Finally, it may be useful to note that although the y-matrices appearing explicitly 

in Eq. (lV.9) are, as always, the 11new” y-matrices, the old 9’ still plays a role 

We begin the program of deriving the rules for T- ordered diagrams by 

inserting the comentum expansions (IV.4) and (IV.8) for the propagators into (N.9). 

Let us, for the moment, ignore the contributions to SF and Dr proportional to 

a(T). Then each of the 3! possible r-orderings of the vertices determines a 

~-ordered diagram; let us consider, say, the ordering 71 < ~2 < TV. For this 

diagram we draw the picture in Figure IV-lb. The corresponding contribution to 

the S-matrix is obtained by inserting O(r3- ~2)0(~2- rl) into (IV.9). Thus only 

one of the O(7) or O(-T) terms survives from each propagator. We can do the 

‘;f T- and 2- integrations to give (2n)3625 T h-~Tout)d(‘)hl- qout) at each vertex. 

The T- integrals in this example are 
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r- The T- integrals become 

where ,%I = H 1 + Hz is the total uenergyn of the initial state, xl = H3 + H6 + H2 

is the total “energy” of the first intermediate state, Zf2 = H3 + H4 + H7 + H2 is 

the total uenergyff of the second intermediate state, and Xf = H3 + H4 + HS is the 

total uenergyn of the final state. The integrals can now be done using 

Thus we get an overall factor of (27r)S(.-/ef- ,“/ei) and a factor of i( =/ef- 3’ + ie) -1 

for each intermediate state. With a little thought, one can convince himself that 

this result is completely general. 

We now have to consider the effect of the C?(T) terms in the propagators, 

which we have so far omitted. The contributions to the S-matrix from a particular 

Feynman diagram so far obtained, we should add the contributions obtained by 

replacing the T # 0 parts of SF(x) and DF(x)PV with the a(7) part in any of the 

internal lines. We will use the pictures in Figure IV-2 for the C?(T) parts of 

SF(x2-xl) and DF(x~-x~)~~. Diagrams containing one or more of these 6(r) 

internal lines are then treated as before except that we consider structures such 

as those shown in Figure TV-3 as single vertices when we do the r-ordering. Thus 

we get (2~)~6~($ . j!Y T u.,- T ou,)6 (nin; qout) at each end of a 6 (T) internal’ line, an 

overall (2a)6 (.~pf- gf i), and a factor i( gff- gf + ic) -1 for each intermediate state 

between two different I1 times”. 
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(a) 43 h I @ 

*I x2 

1463A3 

Fig. w-2 

Pictures used for the 6 (7) terms in the electron propagator (a) and the 
photon propagator (b). 
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1463A4 
. 

Fig. w-3 

Structures considered as single vertices. Structures like (c) and (d) give zero. 
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At this point let us notice that diagrams in which two or more 6 (T) parts of 

propagators are linked together give a zero contribution to the S-matrix. Indeed, 

consider a diagram containing a part like that shown in Figure IV.3c. The cor- 

responding contribution to the S-matrix contains y”/cay ’ times DiY or 8. Because 

of our choice of gauge, only p = 1,2,3 occurs; but, since y”yo = g O” = 0, we have 

y”yl y” = - y”yoyl = 0, Y0Y2Y0 =- 
y”yoy2=0, andy”y3yo= O” ‘=O. Y-Y-Y 

Hence y”ypyoeP = y”yPyoD~= 0. Now consider a diagram in which the structure 

shown in Figure IV-3d occurs. The corresponding contribution to the S-matrix con- 

tains afactor 6!$81(... y,yO... ) =6;(... y3y0...) =6;(... yOyO...) =o. 

We are now in a position to summarize the rules for r-ordered diagrams. 

With our choice of gauge there are three types of interactions as shown in Figure 

IV-4. These interactions are to be r-ordered in all possible ways. We then asso- 

ciate the following factors with the parts of the diagranl:2 

i) spinors Ucp, A), n@, A), E,(P, A), Uc(p, h), and e(p, A?, e@, A) *II for 

external lines; 

ii) (rd + m) = Zh U(p, h)iJ@, h) for electron propagators; (-$ + m) = 

-Eh U(p, L)v(p, h) for positron propagators; Zh e(p, h)‘e@, A) 
*V for photon pro- 

pagators. 

iii) eyp(2~)3~t~out- ‘linld2$out;,,in p ) for each vertex as shown in Figure IV.4a; 

iv) eyP for each ordinary vertex as shown in Figure IV-4a ; 

for each nCoulomb forcen vertex as shown in Figure IV-4b, where q. is the total 

q transferred across the vertex; 
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1463A5 

Fig. w-4 

Vertices in the infinite momentum frame. 
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for each “instantaneous electron exchange” vertex as shown in Figure IV-4c; 

v) (Zn)2b(qout-qin)82~out-~~~) for each vertex; 

vi) an overall factor of (-2~~6 ( gef-; Xi), and a factor of ( rpf- s + ie) -1 

for each intermediate state; 

vii) the usual overall sign from the Wick reduction, determined by the structure 

of the origional Feymnan diagram; 

viii) an integration (2~) for each internal line, 

Note that since eachline carried positive 7] and 11 is conserved in each inter- 

action, vacuum diagrams like those shown in Figure lV-5 cannot occur. 

In the next section we shall develop the canonical field theory for quantum 
I r 

electrodynamics in the infinite momentum frame. As we will see, the hamiltonian 
I , . . 

we will obtain reproduces the scattering theory we have developed here. 
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Fig. IV-~ 

Typical diagrams that vanish because of q - conservation. 
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Part 3 : Canonical Field Theory 

A. Equations of Motion 

We base our field theory on the usual lagrangian density3 

where the electromagnetic field tensor -clv F is related to the potential A’ by 

FPV c au AP- aPAv . Variation of the fields y, q, and AC” give the Dirac equa- 

tion and Maxwell’s equations: 

~(IV.11) 

(rv.12) 

It will be convenient to work in the infinite momentum gauge, A’(x) = 0. In 

this gauge the field tensor is related to the potential by 

(IV.13) 

In order to completely specify the gauge, we must choose boundary conditions for 

A’(x). For reasons of symmetry, we will require that Ac1(xo,x1,x2, + “) = 

-A’(x”,x1,x2,- m). With these boundary conditions, the solution of (I~.13) is 
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where 

It is perhaps not obvious that the gauge conditions we have imposed are con- 

sistent with Maxwell’s equations. Thus it is reassuring to note that the definition 

(IV.14) of A’“(x) works for the classical electromagnetic field. If the field FIzV (x) 

is produced by a current which, say, is non-zero only in a bounded space-time 

region, then the components Fop(x) go to zero like 3 -2 (x ) as 1x31--. Thus the 

integral (IV.14) is well defined. Using the homogeneous Maxwell’s equations, 

apFvA v Al-l +a F f ah Fpv = 0, one can easily show that the potential A’ defined 

by (IV.14) satisfies aVAC1- aPAV fo,r all indices p, v . 

We have eliminated one component of AP(x) by our choice of gauge. Only two 

of the remaining three components can be independent dynamical variables, since 

the three components of AP(x) are related at any (1 time” x0 by the differential 

equation 

- 0 (IV.15) 
z- J 

It will be convenient to regard ‘A’ and A2 as the independent components. Then A2 

satisfies 

, 

(We adopt the convention that Latic indices are to be summed from 1 to 2.) The 

solution of this equation which equals A3 as defined by (IV.14) is 
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To see that this equation reproduces our definition of A3 in terms of F 03 , write 

(IV.17) 

Thus only two components, Al(x) and A2(x), of Act(x) are dynamical variables. 

A’(x) is identically zero, and A3 (x) is determined at any I1 time” x2 by A’(x), A2 (x), 

and \I, (x) at that x0 by means of Fq. (IV.16). This reduction in the number of 

independent components of A’ is a familiar feature of quantum electrodynamics in 

any reference frame. 

In the infinite momentum frame,. we find that the number of independent 

components of the electron field Y(x) is also reduced from four to two. In order 

to show this we pause briefly to examine the proporties of the infinite momentum 

y-matrices, fl =c$ y The rl ordinary” y-matrices $’ are chosen to satisfy 

I 1 
p,y =2g WV wt = and y y 

PL’ 
Thus the infinite momentum y-matrices satisfy 

I 1 
yp,yv =2g W , ,cz ycl. From this it follows easily that P, = $ y3 y” and 

P- E 8 y”y3 are hermitial projection operators with P+P- = 0 and P+ + P- = 1. 
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. . These facts, as well as some others that we will need later, are listed for con- 

venient reference in Table IV-l. 

It will be helpful to have a specific representation of the y-matrices in 

mind. We will consistently use 

where (r’, o2 3 , u are the usual 2 x 2 Pauli matrices. With this choice for the 

P y , we find that 

By applying the projection matrices P* to the electron field q(x) we obtain 

two two-component fields which we call Y+(x) and Y- (x): 

With this preparation completed, we are ready to examine the dynamics of 

the electron field y(x). If we multiply the Dirac equation by y” and recall that 

TOY0 = 0, we obtain 
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TABLE IV-1 

y-Matrix Identities 

P 03 Ee g, y 

P + = (P*f = P* f 

P++P = I P+P- = P-P+= 0 

Y3P+ = P-y3 = 0 y3P- = P+y3 = y3 

YOP- = P+yO = 0 TOP+ = P-y0 = y” 

A0 = r (yO+ y3) = 
y fi 

1 (P-YOP+ + P+Y3PJ 
h 

A0 0 
YY 

A0 3 =JzP+ YY =fiP- 
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. . 
Using our y-matrix identities, this becomes 

This differential equation is considerably simplified because of our choice of 

gauge, A3 = A0 = 0. Thus 

(lv.21) 

For reasons of symmetry, we write the solution of Eq. (IV.21) as 

Thus the two components of v,_ (x) are dependent variables in the infinite 

momentum frame. They are determined at any 11 time” x0 by the independent 

fields Y+(x) and AI(x) at the samex’. We recall that the dependent variable A3 (x) 

is determined at any x0 by AJ and Jo at that x0. It is reassuring to note that the 

dependence of J”(x) on the independent fields Y+, AI is very simple: 

What are the equations of motion for our independent fields A’(x) and Y+(x)? 

For A’(x) we have the Maxwell’s equations 



-73- 

= Jj t ‘$ a,Q’ + 3; F’; (IV.24) 

Using the definition (IV.14) of AJ in terms of F’j, we have 

Substituting into (IV.25) from (IV.24), we obtain 

+ 3; F’“‘j~;~&,S) 1 

Since the integral in the first term is just 2A3(x) because of Eq. (N-14), we have, 

finally, 

(IV.26) 
$ 

We can obtain the equation of motion for W,(x) by multiplying the Dirac equation by 

Y3. After making use of some of our y-matrix identities, we obtain 

$3, pl$+ I= -1s fZZ”(kj 3;-;;r(~j 

(rv.27) 
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,. B. Momentum and Angular Momentum 

The invariance of the Lagrangian under the Poincare group provides us, using 

Noether’s theorem, with a conserved momentum tensor Tt (x) and a conserved 

angular momentum tensor J,:(x): 

where 

. 

(rv.29) 

(rv.30) 

If the fields satisfy the equations of motion, then Ti and J,; are conserved: 

Thus the total momentum, 

and the total angular momentum, 

(rv.31) 

(lV.32)’ 

(Tv.33) 
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are constants of the motion. In our quantum theory, Pp and M are the 
P 

generators of the Poincare group. 5 

We recall from our discussion of the Poincare group in Chapter II that the 

werators P1, P2, P3, M12, M13, and M23 are f’kinematical?t symmetry operators 

in that the subgroups of the Poincare group which they generate leaves the planes 

7 - constant invariant. Thus we might expect that they take a particularly simple 

(IV.34) 

(IV.35) 

(IV.36) 

O7.37) 

Note that these operators involve only the independent fields Y+ and A’, and thus 

do not depend on the coupling constant e. 

The most important operator in the theory is, of course, the Hamiltonian 

H=Po. From the definition (IV.28) we have 
- ..- 

r--7 3 
Ia 

= yc$ ;i &‘” p +, (‘;& &) fT” x 
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The first two terms cancel the terms in the Lagrangian containing a,, and we are 

left with 

C. Momentum Space Expansions of the Fields; Commutation Relations 

Let Y+(q,p, 7) be the Fourier transform, at the f!time’t T, of W,(x), so that 
C, 

It will be usefid to define operators b(q, p, h;~) and d(q ,s, h;~), where h takes the 
P 

values 6 $ , by 
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Then the Fourier expansion, of v+(x) takes the form 

where the spinors W(A) are 

(IV.42) 

Let us see what the electron parts of the momentum operators Pl, P2, P3 

look like in momentum space. Taking the operators Po from (IV.32) and (IV.34), 

and doing a little algebra, we get 

Up until now we have not mentioned the commutation relations of our independent 

fields. The form of (IV.44) makes a very clear suggestion as to what commutation 

relations to choose. We are led to interpret b(p;s;T) and d(p;s;T) as destruction 

operators for electrons and positrons, respectively. (The minus sign in (lV.45) 

can then be disposed by a normal ordering. ) We thus postulate the covariant anti- 

commutation relations 
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(IV.44) 

= 6 A%r iFiij3 2”;: S(-;-T’j s2(z-g’) 

with all other anticommutators vanishing. Transforming back to coordinate space, 

we obtain the following equal-T anticommutation relations: 

(IV.45) 

We will use the same procedure to find commutation rules for the field A’(x). 

Since A’(x) is to be Hermitian field, we write its Fourier expansion as 

(IV.46) 

? 
+ 2 &fi 2 +‘q 

where 
Q;,AjJ = T :J - -22 <‘*,+ i’) p,, $ = + i 

In terms of the operators a$;h;r), the photon part of the momentum P, is 
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The interpretation of (IV.47) is clear if we let the operators a(p;h;~) be destruction 

operators for photons and normal order the expression for pa. Thus we are led 

to postulate the covariant commutation relations 

Transforming back to coordinate space, we obtain easily the equal-7 commutation 

relations 

Utilizing the relation (IV.14) between Ai and a3Ai = - Foi, we obtain 

We also assume, of course, that the photon creation and destruction operators 

commute (at equal T) with the fermion creation and destruction operators. Thus 

(IV.51) 

Our field theory in the infinite momentum frame is based on the equal-r 

commutation relations (IV.45), (IV.50), and (IV.51). We would expect, a priori, 

that dynamical effects could propagate from one point to another in a plane 7 = 

constant along a line; T = constant (i. e. along a light cone). Thus we might expect 
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that the commutation relations would depend on the coupling constant e. The 

commutation relations among the independent fields of the theory are in fact in- 

dependent of e. However, the electrodynamic interaction does affect in the equal-r 

commutation relations among the components of the complete fields Ap(x) and Y(x), 

since the charge e appears in the definition of the “auxiliary* components, A3 and 

Y _, of the fields. We find, for instance, that 

We can gain further confidence in the equal-7 commutation relations by 

using them to show that the operators PG and M 
w 

actually generate translations 

and Lorentz transformations when commuted with the independent fields of the 

theory. The verification for the f~kinematicalf~ operators is particularly simply 

because these operators involve only the independent fields. One finds 

(IV.52) 
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It is considerably more tedious to show that the operators H, Sl, S2, and K3 have 

the proper commutation relations with the fields. We present in the Appendix at 

the end of this chapter some details of the calculation which verifies the crucial 

assertion 

Similar but lengthier algebra gives 

(Iv.53) 

(Iv.54) 

where hi(x) = 4 I dg e(x3-S ) Ai(xo,TT, 5) is that function which preserves the 

gauge during the Lorentz transformation. 6 
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. . D. Free Fields 

Let us see how the methods of the preceeding sections work if the interaction 

is turned off. Consider first the electron field V(x). With no interaction, each 

component of y(x) satisfies the Klein-Gordon equation 

(IV.55) 

Using this in the Fourier expansion (IV.41) of Y+(x), we find that the operators 

b(p;s; T), d?(p;s;T) satisfy the differential equations 

(IV.56) 

where p6 = (p2 + m2)/2n is the free particle Hamiltonian. Thus the Fourier ex- 

pansion of Y+(x) takes the form 
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The auxiliary field y- (x) is given in terms of y+(x) by Eq. (lV.22): 

Substituting the Fourier expansion of Y+(x) into this expression and doing the 5 - 

integration we obtain the Fourier expansion of y- (x). We have now only to add 

y+(x) and y- (x) to obtain the complete field Y(x): 

Recalling the definition of the spinors w(s) from Eq. (P/.42), we can calculate 

U@, A) and V(p, A)! We find 
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(IV.60) 

If the field Y(x) which we have obtained in the infinite momentum frame is to 

be equal to the usual free Dirac field, they the spinors I.+, s) should be solutions 

of the Dirac equation normalized to E (p, s)u(p, st) = 2m 6ss, and the spinors v@, s) 

should be related to u@, s) by charge conjugation., A quick check shows that this is 

indeed the case. In fact, the spinors u and v which arose here from a canonical 

formalism in the infinite-momentum frame are exactly equal to the infinite- 

momentum helicity spinors derived in Chapter III. 

Apparently the destruction operator b@, s, r) destroys an electron with 

momentum p and infinite-momentum helicity h . 

We can also check to see that, with the interaction turned off, our field A’(x) 

is just the usual free photon field (in the appropriate gauge). The calculation is 

completely analogous to the calculationfor Y(x), so we just state the result. With 

e = 0, we find 

(IV.61) 



-85- 

where the e@, JQP are just the infinite momentum gauge polarization vectors defined 

in Eq. (IV.6). 

E. Scattering Theory 

We have seen that infinite momentum quantum electrodynamics is the same 

as ordinary quantum electrodynamics in the trivial case e = 0. The two theories 

can be compared for e # 0, at least formally, by constructing the S-matrix in 

old-fashioned perturbation theory in the infinite momenkun frame and comparing 

it with the S-matrix given by the r-ordered diagrams of Part 1. 

The perturbation expansion of the S-matrix takes a familiar form once we 

have divided the Hamiltonian into a free part and an interaction part. To make 

this division, we start with the Hamiltonian density T:(x): 

+ e p Q&ql- + -$ /I’* f-y* (IV.62) 

- -,$ [~3~3),~j, R”) _ ('ad. I;")i <dLG Aj) - 

The integrated Hamiltonian can be somewhat simplified if we realize that the first 

term is equal to -2 times the second term after an integration by parts in the 

transverse variables x1, x2. To see this, write -2 times the second term as 

Using Eq. (lV.21) for a3 y-, this is 
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With an integration by parts in the transverse variables, we can replace iTj and 

- izj by A r and obtain 
2 J 

but P- yOP+ + P+=q = y”+ y3 = J2 $?, so this is just 

Thus the Hamiltonian density can be rewritten as 

(IV.62) 

At this point we realize that part of the interaction is buried in the dependence 

of y- and A3 on e. In order to bring out this dependence we write ‘IJ- as the sum 

of a 11free7r part G- and an ninteraction part I7 T, where 
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We also define $+ = ‘v+ and fi= Y+ + fi-. Similarly, we write A3 = &Z3 + C#J, 

where 

(rv.66) 

’ (IV.67 

and we put dj = Aj , &Z’=O. Letusinsert y=G+ TandAP=.&‘+6i$into 

our Hamiltonian density (IV.63) and simplify the result. 

From the first term in To” we get four terms 

The first two terms can be left as they stand. The integrated form of the third 

term can be integrated by parts to that ks is replaced by ig3. This integration 

by parts can be justified simply by usin, r the definitions (IV.64) and (IV.65) to write 



i- Similarly, we can replace 2 a3 by - k g3 in the fourth term. Then, making use 

of the definition (IV.65) of T, we obtain for the sum of the third and fourth terms 

Turning now to the second term in T$ we write simply 

The third term in Ti can be left unchanged since it involves only A’ = dj. 

The fourth term requires some work. With an integration by parts we can make 

the replacement7 

Writing A3 = A3 + 4, we obtain the sum 

We write the first and second terms simply as 

-- 
-= - e -,r ? 

i ‘rl 
“+,’ $3 7-’ , (rv.73) 
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We see, with the use of the definitions (lV.66) and (lV.67), that the integrated forms 

of the third and fourth terms in (N.71) are equal. Indeed, 

Thus we can write for the sum of the last wee terms in (IV.71) 

(Iv.74) 

Finally, we consider the fifth term of Ti, which we write, using an integration 

by parts of the variables x1, x2, as 

The integrated Hamiltonian is now in the form we wanted. Adding up the 

pieces, we have 

l-1 -- 
(N.76) 

where 
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If we work in the Schroedinger picture, we can evaluate all Heisenberg operators 

at rltimefl 7 = 0. We note that the Fourier expansion of the fields g(x) andJP(x) 

at 7 = 0 in terms of creation and destruction operators are the same as the ex- 

pansions (IV.58) and (IV.61) for free fields. Thus the free Hamiltonian Ho generates 

the free motion of the quanta created by at(p ;h;O), bt(p; h;O), dt(p; A;O). The 

remaining part of the Hamiltonian, V, gives rise to the scattering of these quanta. 

We can formally calculate the scattering matrix with the aid of the “old- 

fashioned” perturbation theory expansion 

(IV.79) 

In a field theory in an ordinary Lorentz frame, this formula leads to a set of rules 

for calculating scattering matrix elements using time ordered diagrams. In the 

present case, we are led in the same way’ to rules for r-ordered diagrams. 

These rules are the same as the rules developed directly from the covariant 

Feynman rules in Part 1. This can be seen by calculating a few matrix elements 

of the interaction Hamiltonian V. Chre finds that the interaction term 

(Iv. 80) 

gives the 11 ordinary 1’ vertices of Figure IV-4a. The second term in V, when 

written ollt. in full using the definition of T , is 
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(IV. 81) 

one finds that the interaction V2 gives the vertices of Figure 1V.4~. 

The third term in V, written out in full, is 

(IV.82) 

Using 

it is easily shown that the interaction VQ gives the tfCoulomb~~ vertices of Figure 

TV-4b. 

Thus when we formally calculate the S-matrix from canonical field theory 

developed in the infinite momentum frame, we get the same results as when we 

directly transform the S-matrix for ordinary quantum electrodynamics to the 

infinite momentum frame. 
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_ 
APPE NDM 

In this appendix we will show that the canonical hamiltonian presented in section 

II-8 generates the correct equations of motion for the independent field operators 

Ai( We begin with expression (IV.63) for the hamiltonian, ‘ 

H = i Z-1/2 ‘$i, II, + A’J’- $ d3A3 ??,A3 + $ F12Ft2 - ajA3 a3Aj[. (Al) ’ 

ln order to compute [H, Ai we need to first compute two rather complicated 

equal-s commutators which we list here, 

.O=yO 
=$ 1x3-y31 aid2q-TT) . 

These relations follow from the definitions of the auxiliary fields, Y-(y) and A3(y), 

and the basic equal-s commutators of the independent fields. 

With these preliminaries done, we can compute 

- $ dx’ d3A3(x) a3A3(x),Ai(y) J[ I, x”=y” 
-t- + d?T F12(x) F12(x),Ai(y) J[ I x”=p 
- dx’ ajA3(x) a3Aj(x), Ai J[ 3 

. 
xO=y” 

(AZ? 

(A3) 
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For convenience we label these five terms (I.), (II.), (III.), (IV.), (V.), and 

compute each in its turn: 

(I.)= 29+~(x) a x3 Y-(x), Ai( 
x0-y” 

iA4) 

-6 
J 

d( E(X3-<) E({ -y3) 62(+?$?T)Yl(yo,+ 6) r3&, Y-u(x) 

d6 E(X3-%) E(t -Y3) 626&) a3 Y:(x) +v” Y+(y”&’ 6) 

= ie 2-7/2 J dx3 E(X3-y3) Y~(y”,~T,x3)r”v’Y+(yo,j?~,x3) +Y;(y%T’x3)y3$ y-(y”&.,x3) 
I. 

= $j& E(Y~-%) J’(Y’,;~,& . (A51 

We have observed in this calculation that 



. . 
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and 

Ji(y) = f112 &y) yoyi Y (y) + Y:(Y) y"Yi w_w 
- _ 

+ 
I 

Continuing, 

(II.) = Js J”(x) [A3G4, Ait~ljxoE~ 

=- ii 
/ 

di? Jo(x)1 X3-Y3i ai~2@T-$) 

= --$Jti~jx3-y31 ai30(yo,YTsX3) . 

Next, 

(III.) = - $E[a,A3(x~ a3A3(x), Ai(Yd 
X0-y” 

=- J df a3A3(x) 
X0-y” 

1 aiJdx3 qy3-x3) a3A3ty0,Tl,X3) = - - 
4i 

= - & $A3(y) . 

We have applied here the definition (IV.14)of A3(x). 

The fourth term becomes 

(IV.) = $+12(” F12(x), &~xo_p 

w3) * 

(A? 

W) 

W) 

(Al’4 

= - a1A2(x), Ai 1 x%yo 
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=-y-d? Fyx)/dli a2a2(TT-FT) qx3-Y3) - d2iald2c;TT-?JT) r(x3-Ys/ 

’ =- 
iJ 
d 4i li dx3 c(x3-y3) a, F12(yo,&,x3) + dziJdx3 qx3-y3) a, F21(yo,;J,,x3) 

i . 

Z-7 4', J 

. . 
dX3 qy3-X3)3, F11(yo,+X3) . (All) 

Finally, 

(V.) = -/d?~jA3(~) a,Aj(x), Ai( 
x"-yyO 

VW 

ajA3(x) a3[Aj(x), Ai 
x%yo 

+ a. A3(x), Ai(Y) 
J C 3 o o a3Aj(x) 

x =y t 

ajA3(x)kj d”(z,&,) a3 E(X3-Y3) + ajai d”(‘;$$) 1X3-y31 a3Aj(x) 

z-7 l., 
/I 

dI?f 2aiA3(x)d3(%g) + 1 X3-Y3i a’ a3 ajA’(x)d2(;;T-$) 
. 

Z-7 21. diA3(y)--$ ai~~31x3-y3ia3ajd~y~,~T,X3~ . (AI3) 

Collecting these five terms, we have the result 

~,d(y)l =&Jdx3 c(y3-x3) \Ji(yo,$,x3) + ajFJi(yo&,x3)/ 

- -& ai/dx3 /X3-Y3 a3ajAj(y$&,x3) + ~‘(y’,-j$,X~) 
‘1 I 

. (Al4) 

Recalling the relation(IV.16).forA3(x), we have, more simply, 

. . 
J+~~,$X~) + ajFJ1(yo,j$,,x3) $ aiA3(y) . (-415) 
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,. 

Referring to (IV..%), we see that we have indeed verified our claim, 

[ 1 H, Ai = + a,Ai(y) . 

The verification of the Heisenberg relation 

[I 1 H,Y+(Y) = f q?+(Y) 

is also tedious but straight-forward. 



-97- 

References - Chapter IV 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Here and elsewhere, we encounter a singularity at 71 = 0. In this paper it 

will not be necessary to specify the precise nature of these singularities. 

We have done the momentum integrations over the a(~) lines and rearranged 

the factors of n, i, etc. 

We use the notation a%b for a(apb) - (9 
,p 

a)b. 

For classical fields, the integral (IV.1’7) converges because a3F 03 goes to 

zero like (x 3 -3 as x3 --L m ) . Furthermore, no surface term arises in the 
03 integration by parts since F falls off like (x 3 -2 as x3- *. Note, however, ) 

that it is not permissible to integrate by parts of I$q. (I’V.16). 

Of course, this remains tc be verified using the commutation relations of the 

fields, which we discuss in Part C. 

Cf. J. Bjorken and S. Drell, Relativistic Quantum Fields, (McGraw Hill Inc., 

New York, 1965); p. 88ff. 

We may find some reassurance about this in the fact that, in classical elec- 

trodynamics, the surface term A3 a3A3 vanishes like 3”-2 as 3-- 00. 

Of course, we encounter most of the usual problems too. Cf. W. Heitler, 

The Quantum Theory of Radiation, (Oxford University Press, New York, 

1966); p. 276ff, Third Edition. 
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CHAPTER V 

Massive Quantum Electrodynamics 

In this chapter we extend the canonical formulation of quantum electro- 

dynamics in the infinite-momentum frame by replacing the photons by massive 

vector mesons. The resulting theory is interesting in its own right, and also has 

1 useful applications to the work of Cornwall and Jackiw , of Dicus, Jackiw and 

Teplitz2, and of Gross and Triernan on current commutators on the light cone 

in a quark-vector gluon model. 

We find that the required generalization is quite simple if we consider, in 

addition to the vector field Ap, a scalar field B in the manner of Stiickelberg’s 

1938 paper on gluons. 425 The results confirm the belief of Cornwall and Jackiw 

that terms in the vector meson propagator which might cause trouble in the 

infinite-momentum frame can be eliminated because of current conservation. 

The structure of the theory remains nearly the same as that of quantum electrb- 

dynamics except that a new term appears in the Hamiltonian describing the emission 

of helicity zero vector mesons with an amplitude proportional to the meson mass. 

We will make free use of the results of the last chapter and devote most of 

our altention to the changes made necessary by going from massless to massive 

vector mesons. 

A.. Equations of Motion 

The canonical theory of quantum electrodynamics in the infinite-momentum 

frame was based on the Lagrangian 
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where AI”(x) is the real vector field of the massless vector meson and 6 is a four- 

component Dirac field. In order to introduce a meson mass K > 0 and allow’for 

meson with helicity zero while maintaining gauge invariance, we introduce a real 

scalar field B(x) in addition to AP and y. Then we begin with the modified 

Lagrangian 

Variation of the fields Y, v, AP, and B give the equations of motion 

07.2) 

where we have defined f = evy’ Y. (Notice that aPJP = 0 as a consequence of 

the Dirac equation (V.4), and thus that equation (V.3) is merely the divergence of 

equation (V.2). ) 

The reason for introduction of the seemingly superfluous scalar field B is 

that the gauge invariance of quantum electrodynamics is thereby preserved. 

Indeed, the Lagrangian, and hence the equations of motion, is left invariant by 

the gauge transformation 
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(V-5) 

We could, if we wanted, use this gauge invariance to choose the uLorentz 

gauge” B = 0. In this gauge the equations of motion would take the familiar form 

(after some simplifications) , 

However, it turns out that it is very difficult to quantize the theory in the infinite- 

momentum frame in this gauge. 

Instead, we choose the *I infinite-momentum gauge”, 

Then the p = 0 component of the equation of motion (V-2) reads 

(V.6) 

This equation can be solved for A3 as follows: 
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(V-7) 

where (l/r]) and (1/q2) are the integral operators’ 

Thus if we regard A’, A2, and B as independent dynamical variables, then A3 is 

reduced to the status of a dependent field since it is determined at any (1 time” x0 

by the other fields at that x0 according tc the constraint equation (V.7). 

The equations of motion for the independent fields Ak and B can now be 

simplified by substituting the expression (V.7) for A3 back into the equations of 

motion (V.2) and (V.3). From (V.7) we have 

c 
0’3) 

If we substitute this into (V.3) and remember that aPJP= 0 we get the equation of 

motion for B, 

(V.9) 

If we substitute (V.8) into equation (V.2) with ,s = 1 or 2 we get the equation of motion 

for A, 
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The equations for the Dirac field are changed very little from those developed 

in Chapter IV for quantum electrodynamics. The two components Y+ = 3 r3yoY ( 

are independent dynamical variables. The two components Y = i y”y3Y are 

dependent variables, tc be determined by the constraint equation 

(V.11) 

-which follows from the Dirac equation. The equation of motion for Y+ is 

The only difference between this equation of motion and the corresponding equation 

in quantum electrodynamics is that A3 depends on B through the constraint 

equation (V.7). 

B. Equal-7 Commutation Relations and Fourier Expansions of the Fields 

In order to make quantum fields out of the independent fields Y+, ,A, B we 

must specify their commutation relations at equal T. By analogy with Chpater lV 

we choose 
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(V.13) 

-Using these commutation relations we can derive the commutation relations among 

the creation and destruction operators appearing in the Fourier expansion of the 

fields. Furthermore, the transformation properties of the fields under space 

translations in the transverse and g-directions.and under rotation in the (x1,x2)- 

plane determine the momentum and uinfinite-momentum helicity” of the states 

created and destroyed by these operators. Since the calculation is elementary, 

we only state the results. Let b’(r] ,;, A), [d’(q ,& A)] be creation operators for 

electrons, [positrons] with momentum (n ,g) and helicity A@ = + &). Let 

a’(, ,&, A) be creation operators for mesons with momentum (q ,p) and helicity rw 
A (A= -1, 0, +l). These operators have covariant commutation relations 

-p3(@,~) ) .&p;‘h’))+ -p&xi) &p:l’)} 

IZE zrsf (Pi;)” 2’2 Sic?-7’) Z;‘p-@‘) 

(V.14) 
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. . The expansion of v+(x) at T = 0 in terms of b@, s) and dt(p, s) is 

where the spinors w(h) are 

(V.16) 

The expansion of .A(x) at r = 0 contains creation and destruction operators for 

mesons with helicity + 1 and -1; the expansion of B(x) at T = 0 contains creation 

and destruction operators for mesons with helicity zero: 

The vectors $A) appearing in (V.17) are 

C. Ham il tonian 

The invariance of the Lagrangian under r- translations provides us, using 

Noethcr’s theorem, with a conserved canonical Hamiltonian 



r 
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(V.2 0) 

where 

+(a,Cj(mj - 2, - 
(V.21) 

The first three terms in (V.21) cancel the terms in the Lagrangian containing a,, 

and we are left with 

it’is apparent that this form for the Hamiltonian is not very useful. However, if 

we substitute the expressions for A3 and ‘?- given by the constraint equations (V.7) 

and (V.11) into (V.22), then integrate the resulting expression to form H, and finally 

integrate by parts freely, we obtain a useful expression: 
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Here p is the differential operator pk = iak and x = (G, :). For the sake of 

variety, we have not made use of the fields $, y, aP, cp used in Chapter IV, but 

instead have written H directly in terms of the independent fields Y+, A, B. 

By using the equal-7 commutation relations (V.13), one can verify that the 

canonical Hamilton (V.23) actually generates T- translations in the theory. One 

finds, indeed, that [iH,&] = a,/~, [iH, b] = aoB and [iH, Y+] = a,Y+, where 

the ~-derivatives of&, B and Y+ are given by the equations of motion (V.9), 

(V.10) and (V.12). 

An examination of the Hamiltonian (V.23) shows that the theory is changed 

very little when the vector meson mass is changed from K = 0 to K > 0. One must, 

of course, introduce a helicity zero meson into the theory and adjust the free meson 

Hamiltonian fromi2/2q to (z2 + K~)/Z~. But the interactions among the electrons 

and helicity + 1 mesons are unchanged, and the helicity zero mesons interact with 

the electrons only through a very simple coupling - ieK (2 YI ‘Y+(l/?l)B. As 

K - 0 this coupling vanishes - so that the helicity zero mesons are never produced. 
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We can illustrate the dynamics more vividly by writing out the rules for old- 

fashioned (T- ordered) diagrams using the Hamiltonian (V.23). (These ruIes are 

written in a form which facilitates practical calculations: the matrix elements of 

the Hamiltonian between infinite-momentum helicity states have been evaluated 

explicitly so that one can sum directly over the helicities of particles in intermediate 

states rather than write strings of y-matrices and perform a trace.) If K is set 

equal to zero in these rules, they are equivalent to the rules for quantum electro- 

dynamics given in Chapter IV in an alternate form. 

(l) A factor (Hf- H + iE )-’ for each intermediate state. 

(2) An overall factor -2n6 (Hf-Hi). 

(3) For each internal line, a sum over spins and an integration 

(4) For each vertex 

(4 a factor (zn)36(170ut-9in)62~out-~in), 
(b) a factor [2?~]’ for each fermion line entering or leaving the 

vertex. (The factors [27)]” associated with each internal 

fermion line have the effect of removing the factor l/277 from 

the phase space integral. ) 

(5) Finally, a simple matrix element is associated with each vertex as a 

factor. There are three types of vertices, as shown in Figure V-l. The cor- 

responding factors are 

(a) for single meson emission (Figure V-la), a factor eM, where M 

is given by Table V-l. 



(b) for instantaneous electron exchange as shown in Figure V-lb, a 

factor e2/qo if all the particles are right handed or if all the 

particles are left handed (otherwise, a factor zero); 

(c) for the “Coulomb force” vertex as shown in Figure V-lc, a factor 

e2 (770)-2 6 6 
"lS2 s3s4' 

D. Free Fields 

In this section and the next we will examine the question of whether the 

infinite-momentum formalism presented here is equivalent to the usual formalism 

for massive quantum electrodynamics developed in an ordinary reference frame. 

We begin with a short discussion of the free fields. 

If the coupling constant e is zero, the equations of motion for the meson 

fields & and B are simply 

(V.24) 

These equations can be solved exactly, given initial conditions at T =O. If (V.17) 

and (V.18) are the Fourier expansions of L%(X) and B(x) at time 7 =O, then these 

same expansions will give A(x) and B(x) for all T if we put ew 

in the exponentials exp(* ipfixP) inside the integrals. 
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, 

( > 
(p,s)- 

a 

FIGURE V-l 

Electron-Meson Vertices 
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TABLE v 

Matrix Elements for Meson Emission 

p* 
= 2+ (p’ * ip2) 

S S’ h M L 

I 2 . a 1 -cl-hq +P;h’ 

8 Q 0 - K/V 4 

s? 8 -1 +q+h q - P+h 

i -6 1 

t -8 0’ 0 

$ -Q -1 0 

-4 + 1 0 

-$ 6 0 .O 

-4 3 -1 2-- ; m 17q/~rl’ 

-3. -$ 1 -s-/a, + P-h 

-Q -Q 0 - K/17 q 
-$ -1 -1 +q 117 - Pp + q 

. 
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With the solutions for b(x) and B(x) in hand, we can write down A3(x) using 

the constraint equation (V.7). Finally, we recall that A’(x) = 0. Thus we have the 

complete solution (Al”(x), B(x)) for the free vector meson field in the infinite- 

momentum gauge. We can use the gauge transformation (V.5) to transform this 

solution back to the more familiar Lorentz gauge. To do this, we let 

be the fields in the new gauge, and require that B’(x) = 0. Then 

(Note that this gauge transformation becomes sin,gular in the limit K -. 0.) 

(V.26) 

The free field Alp(x) which results from these operations can be written as 

where the polarization vectors eP(p, A) are 

(V.26) 
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This is exactly the form for the free vector meson field developed in Chapter III, 

Section F. 
r 

One can also show, just as in Chapter IV, that the free Dirac field obtained 

in the infinite-momentum frame is equal to the usual Dirac field. We will not 

comments on this proof here except to note that the gauge change discussed above 

does not affect the Dirac field if e = 0. 

E. Scattering Theories Compared 

We have seen that massive quantum electrodynamics in the infinite-momentum 

frame is the same as ordinary massive quantum electrodynamics in the trivial case 

e = 0. We cannot demonstrate that the two theories are the same for e # 0 since we 

are unable tosolve for the exact interacting Heisenberg fields in either theory. 

However, it is possible to show that the perturbation expansions of the S matrix in 

the two theories are formally identical. 

What we have to show is that the ordinary Feymnan rules for massive quantum 

electrodynamics lead to the same expression for scattering amplitudes as the rules 

for old-fashioned diagrams given in Section C. Since the same demonstration has 

been given for quantum electrodynamics in Chapter IV, we will indicate here only 

how the argument can be modified to account for a non-zero meson mass and the 

contributions from helicity zero mesons. 

To that end, we examine the Feynman propagator for massive vector mesons 
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One can show (by simple computation if necessary) that 

+ s”, 6: 1<2/~ ts”, 6’: (/cc”“- ic2 ji7 2 
(V.30) 

- (I+- j 6.B JJ* - ()$j pz” Zy3 t ($5 ‘~$/KZ 

where the vectors e(n,& A) are the polarization vectors for helicity + 1 defined in 

Eq. (V.28). If one uses this expression in the numerator of the meson propagator, 

the last three terms will not contribute to any scattering process because of 

current conservation, Thus one is left with an effective propagator 

The H integral in the first term can be done by contour integration as in Chapter IV. 

h the second term, (p2-~2)(p2-~2+ ie) -1 - 1 as E -CO so that the H integral gives 

a factor 6(r). Thus the meson propagator takes the form 
, 

where 
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,. 
Note that this expression for the vector meson propagator is nearly identical 

to the corresponding expression for the photon propagator derived in Chapter IV. 

In particular, the ~~Coulomb force 11 term proportional to L?(T) remains unchanged. 

There are only two changes in #i, which account for the corresponding 

changes in the perturbation theory rules of Section C between K =0 and K > 0. 

First, the free meson Hamiltonian is changed from H =_p2/2n to H = (p2+ ~~)/2n. 
m 

Second, a new term describing the propagation of helicity zero mesons is added 

to D:” ; namely 

where the fleffective polarization vector” for helicity zero mesons is 

This is also the effective polarization vector for helicity zero mesons in the initial 

and final states, since e(p,O)P= K -1 CL p - (K/Tj)6!, and the term ~-‘.lp’@ does not 

contribute to scattering amplihtdes because of current conservation. 

From here on, one can continue the argument just as in Chapter IV to show 

that the covariant Feymnan rules are equivalent to the rules for old-fashioned 

perturbation theory in the infinite-momentum frame given in Section C. 
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from integrations by parts. 
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CHAPTER VI 

Some Other Field Theories 

Now that we have gained some familiarity with two model field theories in 

the infinite-momentum frame, it is easy to apply the same methods to other model 

theories. In this final chapter we will outline four such theories: scalar mesons 

with $N self-coupling; neutral pions coupled to protons with a ~6 coupling; neutral 

scalar mesons coupled to protons with a n coupling; and electrodynamics of a spin 

zero boson. Each of these theories has the attractive feature that it is simpler 

than quantum electrodynamics. Since no new difficulties arise, we will be content 

with a very brief discription of each theory. 

, A. Neutral Scalar Mesons with $N Self-Coupling 

This is the theory first discussed by Weinberg in 1966 using the P - 00 frame.’ 

We begin with the Lagrangian 

which leads to the equation of motion 

W-2) 

The canonical momentum 

--p 4 CX = I, 2, 3 ) 
cx (VI.3) 
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will generate translations in the ,x- or 2 -directions if we choose the commutation 

relations 

The Fourier expansion of the field at r =0 is 

where the destruction operators a(p) obey the usual commutation relations, 

[a($,a(p)‘] = (27r)32qd($-9)62@-_p). The canonical Hamiltonian is 

If one uses this Hamiltonian and the expansion (V1.5) of the field, one can obtain the 

rules for old-fashioned perturbation theory. These .are the same as the general 

rules (l), (2), (3), (4) given in Chapter V-C, together with a new rule for the simple 

matrix element to be associated with each vertex. In this case, there is only one 

’ kind of vertex - an N-meson vertex with an associated simple matrix element g. 

These are exactly the rules obtained by Weinberg by starting with time- 

ordered diagrams and boosting each time-ordered diagram to infinite momentum. 
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D. Pions and Nucleons with y5 Coupling 

We use a Dirac field $(x) and a real pseudoscalar field C+(X). The Lagrangian 

is 

Thus the equations of motion are 

Just as in quantum electrodynamics, we find that two components of the Dirac field 

are dependent variables. Indeed, we find when we multiply (VI.8) by y ’ that 

(Note that the projection matrices P, commute with y5. ) 

The canonical momentum 

will generate translations in thex- P and %-directions if we choose the commutation 

relations 
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Thus we can use the Fourier expansions (VI.5) and (V.15) of the independent fields 

G(x) and ~+Cx)- 

The c&nical Hamiltonian is (after some integrations by parts) 

(VI.12) 

Apparently, the old-fashioned perturbation theory rules derived from this Hamiltonian 

will have two types of vertices as shown in Figure VI-l. The l~simple matrix 

elements” to be associated with these vertices can be worked out by explicit cal- 

culation: 

; - for single pion emission as in Figure VI-la, a factor (ia’- g M), where M 

is given in Table VI-l. 

- for instantaneous proton exchange, as shown in Figure VI-lb, a factor 

6 s4s3g2/2q 0’ 
The rest of the rules are just the general rules given in Chapter V-C. 



. 

FIGURE VI-l 

Pion-Nucleon Vertices 
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TABLE VI-l 

Matrix Elements for Pion Eknission 

with y5 Coupling 

p* = 2-& (p’* ip2) 
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C. Scalar Mesons and Nucleons with d Coupling 

We use a Dirac field ti (x) and a real scalar field g(x) with a Lagrangian 

The equations of motion are unchanged from Section B except for the substitution 

iy5 - ll . The Hamiltonian is 

Again, the old-fashioned perturbation theory rules derived from this Hamiltonian 

will have the two types of vertices shown in Figure VI-l. The corresponding simple 

matrix elements are 

:. - for single meson emission as in Figure VI-la, a factor (2-- gM), where 

M is given in Table VI-2. 

- for instantaneous proton exchange as in Figure VI-lb, a factor 

(6 s4s3 g2/2s,). 

D. Electrodynamics of a Scalar Meson2 

We use a charged scalar meson field G(x) and an electromagnetic potential 

AI”(x). The Lagrangian is 
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TABLE VI-2 

Matrix Elements for Scalar Meson ’ 

Emission with II Coupling 

p* =2-$(p1* ip2) 

S’ M 

PJO - Py D ’ 

P-/rl -Pi/V’ 
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. . 

(vI.15) -c ( c;$ -gy &i;a,+F]g) 
- /:2pfj) i 

This Lagrangian leads to the equations of motion 

(vLl7) 

As in spinor electrodynamics, it is convenient to choose the infinite-momentum gauge, 

A’= 0. In this gauge, the ~1 = 0 component of (VI.17) is 

This equation can be solved at any 11 timers r to give A3 in terms of the independent 

fields&, Cp at that T: 

where pk k = ia , 7j = i3 ,,T=iT-i% 
3 

3, and l/n2 is the familiar integral operator 

with kernel - 4 I I- gl 1 . 

We calculate the canonical momentum operators P, (a! = 1,2,3) and find that 

they are simple in the infinite-momentum gauge: 

i’ 
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These momentum operators will apparently generate space displacements of the 

fields if we choose the commutation relations 

(vI.19) 

The corresponding Fourier expansions of the fields at r =0 are 

where a, b, d destroy photons, mesons, anti-mesons respectively with the usual 

normalization [b$‘),bt(p)] = (2s)2q6 (n-$)62(& etc., and the polarization 

vectors$(A) are, as before, $2 1) = 7 2-$ (1, + i). 
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\. 

When the canonical Hamiltonian is written in terms of the independent fields 

and several integrations by parts are performed, we get 

The matrix elements of H can be obtained by using the field expansions (VI.20). 

Apparently, there are three hinds of vertices, asshown in Figure VI-2. The 

corresponding simple matrix elements are: 

- for single photon emission, as shown in’Figure VI-2a, a factor 

- for photon absorption and emission, as shown in Figure VI-2b, a factor 

- for a nCoulombn interactions as shown in Figure VI-2c, a factor 

e2(vl +v 3 -+ (‘12 + Q,). 1 
170 



(4 
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\ 6. 
\L 

\ 
\ 

\ 

FIGURE VI-2 

Vertices for Scalar Electrodynamics 
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