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ABSTRACT 

This report presents new data on the pion-nucleon scattering, both elastic 

and inelastic, in the energy region (1400-2000) MeV. Specifically, the following 

reactions have been studied: 

71 p+rr-p 80,000 events (1) 

+ 71-pTr” 34,000 events (2) 
-+ -+n 77 n 52,000 events (3) 

-+KOh 1,000 events (4) 

The elastic scattering data (l), was critically compared with existing phase 

shift analysis solutions. A quasi-two-body phase shift analysis was applied to 

a subsample of reaction (3)) x-p-, ~‘a-, where A- refers to the NQ2+(1236) 

resonance, providing new understanding of the inelastic decay modes N* 5/2+(16*8) 9 

NE/2 -( 1700). 

A new phenomenological analysis combining the elastic and inelastic reac- 

tions has been developed. The method and some typical results are presented. 

Finally, the data on strange particle final states, although sparse, fills in 

a hitherto uninvestigated energy region and allows a qualitative understanding 

of the sN interaction in this region. 

. . . 
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I. INTRODUCTION 

The pion-nucleon interaction has been perhaps the most extensively studied 

interaction in particle physics. A wealth of data exists on the elastic scattering 

reactions, nip -+ nip and a-p - Ton. These experimental data have encouraged 

development of rather sophisticated methods of analysis, so that we can now 

describe with a fair amount of confidence the behavior of many of the partial 

waves important in aN interactions. However, this progress has been made 

primarily in studies of the elastic channel below a center-of-mass energy of 

2 GeV. To learn more about aN scattering at this stage requires not only 

extending present techniques to higher energies but also initiating studies of the 

other channels of TN scattering. Many features of the elastic channel are 

reflected more dramatically in these inelastic channels. 

The first measurements of the nN interaction were measurements of the 

elastic and total cross sections. Plots of the elastic cross sections, shown in 

Fig. 1 for r+p and in-p, indicate the presence of resonant behavior in the center- 

of-mass energy regions of 1236, 1520, 1680 and 1920 MeV. Because the T+p 

state is pure isospin 3/2, one can immediately identify the isospin of the 

“resonances”. The first bump apparently has 1=3/2 while the second and third, 

present only in the s-p cross section, have I= l/2. If each one of the bumps 

corresponded to a single resonant partial wave, we could furthermore identify 

its total angular momentum J; unitarity requirements give an upper limit on the 

cross section that depends on J. This upper bound was used to determine that 

the spin of the first resonance is J = 3/2. 

However, life is simple only at this first peak at 1236 MeV; the scattering 

amplitude grows increasingly complex at higher energies where more and more 

partial waves become important. The second and third bumps contain more 
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than a single resonance each, and the absence of any sharp peaks beyond these 

may very well mean that the proliferation of partial wave resonances obscures 

the appearance of any one of them. Thus, at 1920 MeV, the broad, low bump 

probably indicates simultaneous activity of several partial waves. Measure- 

ment of the angular distributions and polarizations in elastic scattering were 

essential for the identification of the spin and parity of partial waves active in 

this area. 

These angular distributions and polarizations can be fit with expansions 

in Legendre polynomials. From the energy dependence of the Legendre coef- 

ficients, one can then draw information regarding the behavior of the various 

partial waves. For example, the coefficients indicated an apparent interfer- 

ence of an s- and a p-wave near 1236 MeV. This observation led to the 

assignment of angular momentum P = 1 for the first resonance (commonly called 

P33, in the notation 1212~). Similar analyses identified the presence of a D13 

wave near 1520 MeV and of both a D15 and F15 near 1690 MeV, with the F15 

being stronger than the D15. Finally, there was evidence that an F37 partial 

wave was active near 1920 MeV. 

Analysis of the Legendre coefficients was valuable in uncovering those 

partial waves primarily responsible for the gross features of elastic scatter- 

ing especially at low energies. However, this type of study is limited to 

qualitative deductions. These deductions are based on assumptions about the 

behavior of other waves and can be deceptive when large numbers of partial 

waves are present. Finally, these arguments have not shed any light on 

highly inelastic partial waves that have small amplitudes for elastic scattering. 

The method of phase-shift analysis has proved far more successful in 

extracting numerical parameters l-11 that describe the behavior of the various 

-3- 



partial waves. We shall discuss the specific methods of parameterization at 

a later stage and focus attention here on the current results, as presented in 

Table I. l2 In this table, the resonances are described by their elasticities, 

masses and widths. Here one sees not only the P33, D13, D15, F15 and F37 

that had been anticipated but also resonant behavior in many other partial 

waves. Table I is remarkable for the agreement among the various groups; 

yet there are still many resonances in dispute. Part of the discrepancies 

result because the groups use different methods and explore a very complex, 

multiparameter space. The discrepancies also arise from fluctuations 

among the data points themselves, which make it difficult to achieve a 

smooth energy dependence for the parameters. Thus one might hope that 

more accurate and systematic data could improve the phase shift solutions. 

Even with improved data, there are inherent limitations in the phase- 

shift analysis, just as in all the methods previous to it. Because the com- 

plexities multiply as one goes to higher and higher energies, any future 

phase-shift analyses may have to incorporate some type of model. Phenom- 

enological guidelines may help eliminate unreasonable parameters and direct 

the search for solutions. Some analyses that incorporate model dependency 

are already in progress; most attempt to relate what we know about high 

energy scattering to this transition region between low and high energy. 

A supplement to the elastic scattering information is a measurement of 

the inelastic channels. A partial wave analysis of these could prove espe- 

cially valuable because many of the partial waves disputed in Table I are 

highly inelastic. 

It is against this necessary historical background that we must discuss 

the role of the present experiment. It is intended to provide systematic 

-4- 



TABLE I 

s = 0 mryon Resonances 
I = l/2 states 

ham Shift’ 
AnZlYSiS 

1 

2 

3 

4 

5 

6 

7 

8 

A".SXg~ 

l 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Average 

* 

Pll(1470) 

M r x 

1470 255 0.66 

1505 205 0.68 

Definite 
1466 211 0.658 

1410 211 0.66 

1466 211 0.66 

L462 391 0.49 

1436 224 0.46 

1468 244 0.61 

+lB 562 i.09 

sll(lw 

M r x 

1710 260 - 

1665 110 - 

1709= 3008 0.7E6a 

_ - - 

1110 300 0.79 

1109 300 0.19 

1766 404 0.56 

1671 121 0.51 

1706 256 0.69 

l 31 l 9e 1.13 

~~~(1520) 

M r x 

1510 125 0.54 

1615 110 0.54 

1526a 1148 0.578 

1541 149 0.509 

1520 114 0.51 

1526 115 0.51 

1512 106 0.45 

1512 125 0.49 

1520 120 0.53 

a10 t13 i.04 

P1pw 

M r x 

Probable 

Probable 

Probable 

1151 321 0.32 

1150 327 0.32 

1860 270 0.32 

1170 445 0.43 

(1667) (525) 0.30 

Sll(l535) 

M r x 

1535 155 - 

1515 105 - 

15468 116= 0.326a 

1591 w-33) 0.696 

1550 116 0.33 

1540 160 0.3 

1502 (36) 0.36 

1499 53 0.35 

1535 118 0.39 

*28 *25 a.14 

'13(1860) 

M r x 

AmbigUOUSb 

Ambiguousb 

Ambiguousb 

1663 296 0.207 

1660 296 0.21 

1900 325 0.25 

1644 448 0.40 

1854 307 0.26 

1660 - - 

1783 350 0.34 1664 335 0.27 

+45 +63 t.05 +17 t66 t.07 

D13(lV 

M r x 

Possible 

Passlble 

_ _ 

1730 

1680 

Not Present 

riot Present 

1105 

A25 

F1,(1990) 

M r x 

b 

b 

b 

1983 225 0.128 

1995 250 0.09 

c 

c 

2000 - 

1989 238 0.109 

+6 t12 a."19 

D15WW 

M r x 

1630 135 0.41 

1655 105 0.41 

milnite 

1678 173 0.391 

1630 173 0.391 

1678 175 0.391 

1669 115 0.50 

1667 115 0.43 

1672 142 0.42 

*lo t29 *.04 

D13(2040) 

M r x 

b 

b 

b 

2057 293 0.26 

2030 290 0.11 

2040 240 0.15 

b 

b 

2030 - - 

2039 214 0.17 

t11 +24 +.06 

F15W8) 

M r 7. 

1690 110 0.64 

1680 105 0.84 

169%' 13P 0.68a 

1687 177 0.56 

1690 132 0.68 

1692 130 0.68 

1686 104 0.54 

1684 123 0.54 

1688 127 0.62 

+4 a22 f.08 

G,,WO) 

M r x 

b 

b 

b 

2265 298 0.349 

2190 300 0.35 

2265 300 0.35 

1906)c (31S)C (0.190 

c 

2000 

2180 299 0.350 

*35 t2 l .001 

1wm 



Table I: S = 0 Baryon Resonances (cont’d.) P.GI 2 or 2 

I = 3/2 States 

?ha.%! Shift’ 
Analysis 

531(1650) P33(1690) D33w70) F35P89”) P31ww D35(1960) 

M r x M r x M r x M r x M r x M r x 

1 1695 250 - Ambiguous Possible Possible Ambiguouab Ambiguousb 

2 1650 130 - Ambiguous POLWiblE Possible Ambiguousb Ambiguousb 

3 Definite PoIWible Ambiguous Probable Probableb b 

4 1635 177 0.234 1688 281 0.098 1691 269 0.14 1913 350 0.16 1934 339 0.30 1954 311 0.154 

5 1640 117 0.26 1690 281 0.1 1690 269 0.14 1910 350 0.16 1930 339 0.3 - 

6 1635 180 0.26 1690 240 0.08 1690 300 0.13 1910 360 0.15 1930 425 0.25 1910 400 0.12 

1 1670 141 0.28 Not Present 1649 188 0.12 1641 136 0.2 1914 290 0.18 b 

8 1623 140 0.25 Not Present 1650 114 0.13 1852 150 0.19 1834 231 0.24 b 

9 1950 - 

AVlXage 1650 151 0.27 1689 267 0.93 1674 240 0.13 1865 273 0.17 1908 325 0.25 1953 356 0.14 

* +23 *a9 a.12 l 2 f19 i.09 l 20 +50 l . 01 a32 t101 A.02 i38 164 k.04 l 9 +44 l .02 

F37(1950) P33W60) *See Fiefs. 1- 11 for various phase shift analyses. 

M r x M r x () Values in parentheses have not been used in the averages. 

1 1915 160 0.57 b a. Values quoted by Lovelace, rapporteur talk at Heidelberg Conference (1969, p. 109. 

2 1960 140 - b b. This state is very oloose to or beyond their highest energy. 

3 Definite PoasibIeb c. Glasgow A hae a G1, state at this mam; Glangow B may have an F17 and 6 G17. however, 

4 1946 221 0.366 this energy is very close to their highest energy. 

5 1950 221 0.39 

6 1946 220 0.39 2160 260 0.25 

1 1935 221 0.51 b 

8 1935 212 0.39 b 

AVerage 1952 2lJ2 0.44 2160 260 0.25 

l 119 l 29 i.01 - - - 
I.",. 



measurement of both the elastic channel and inelastic ~TN channels in r-p 

scattering from 1400 to 2000 MeV in center-of-mass energy. The elastic 

data should provide new input to the elastic phase-shift analysis. We antici- 

pate such a use by comparing the predictions of the current phase shifts to 

our data. 

We measured the inelastic reactions in order to study the branching 

ratios of the partial waves into these channels. Analysis of the three-body 

final state is more complex than that for the elastic reaction and we have 

taken basically two approaches to the problem. The first approach, along the 

lines of the isobar model, considers all possible quasi-two-body final states 

and the interactions among them. The second consists of a partial wave 

analysis of the Aa final state. Both approaches are sensitive to the sign as 

well as the magnitude of the coupling of various waves and thus afford infor- 

mation not available in the elastic channel alone. 

One extension of the quasi-two-body approach is to couple this An chan- 

nel to the elastic channel by the requirements of unitarity. The branching 

ratios into these two channels should simultaneously be consistent with 

unitarity. We outline such an approach and give preliminary results of this 

method applied to the elastic and inelastic data in our experiment. The 

coupled-channel analysis gives added sensitivity to the phase-shift type of 

analysis by including more information in the fits. 

We also investigated the associated production reaction, ?T-p -+ AoK’. 

This data falls in a region where very little data existed previously. 

Although the limited statistics preclude any quantitative analysis of partial 

waves, the behavior of the Legendre coefficients contains qualitative infor- 

mation regarding the partial waves. Finally, in light of the predictions of 
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exchange degeneracy, it is interesting to compare this data to the line- 

reversed reaction, ifop 4 Aon’. 

The second chapter deals with the details of the experiment and of the 

data analysis. Chapters III and IV present the results of the elastic and 

inelastic reactions, respectively. In Chapter V the technique of partial wave 

analysis in general is discussed and the predictions of elastic phase shifts 

are compared to our data. Chapter VI discusses the results of a partial wave 

analysis to our inelastic data. Chapter VII is devoted to a development of the 

coupled-channel approach and a presentation of preliminary results. Chapter 

VIII discusses the data analysis of the strange particle reaction, n-p -+ AoK’, 

and contains the experimental results. 
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II. EXPERIMENTAL DETAILS AND DATA ANALYSIS 

We studied elastic and Inelastic n-p scattering, using the 30-inch hydro- 

gen bubble chamber at the Argonne National Laboratory and the 72-inch 

Alvarez HBC at Berkeley. The Argonne exposure consists of approximately 

500,000 pictures taken at 26 momenta between 550 and 865 MeV/c and 

between 1060 and 1600 MeV/c. The Berkeley exposure comprises about 

200,000 pictures taken at 9 momenta between 925 and 1175 MeV/c . This 

latter film had been taken ten years previously, to study strange particle 

events above the h,C threshold, 13 but had not been used to investigate the 

two-prong events. Figure 2 illustrates the scope of the experiment. At each 

of the 35 momenta, the following reactions were measured: 

7r-p ---) n-p 

+- -+n7r 77 

(2.1) 

(2.2) 

-0 
+pll 71 P-3) 

-+A 0 K 0 (2.4) 
0 0 

-+ z-K+ (2.5) 

A. Beam 

The Argonne film was taken during three separate exposures in 1967. 

The beam was the “7”’ separated beam 14 of the ZGS. The higher momentum 

exposures used the mode shown in Fig. 3a and b. Here the first stage pro- 

vided at slit 1 both a momentum focus in the horizontal plane and an image of 

the target in the vertical plane. The second stage provided a momentum 

focus at the final slit together with an image of the target in both planes. A 

simplified version of the beam, Fig. 3c, was used for the low momentum 
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(a) VERTICAL PLANE 

TARGET SEPARATOR I S;T I SEPARATOR 2 

SEXiUPOLE SEXTUi’OLE 
SLli 2 

(b) HORIZONTAL PLANE 
I LI L5 
r’ 
I f+J 

II 
BENDING BENDING 
MAGNET MAGNET 

(c) 

VERTiCAL HORIZONTAL 
1264849 

FIG. ’ 3--Argonne beam optics. (a)-(b) Vertical and horizontal planes of the optics used for the 
second and third exposures. (c) Simplified mode used for the first exposure. 



exposures (i.e. , p s < 1 GeV/c) . The low energy pion flux was found to be 

much less than expected, and as a result it was not possible to obtain a useful 

beam below 580 MeV/c. 

To produce an ideal shape (5” wide and 6” high) for the beam trajectory 

in the chamber further quadrupoles were used after the final slit. Since the 

image at the final slit had little vertical divergence, it was most effective to 

rotate the first quadrupole 45’ to optically couple the vertical and horizontal 

planes. The second quadrupole then increased the vertical divergence and 

decreased the horizontal divergence. 

The high field of the 30-inch HBC and the low momentum of the beam 

made it necessary to raise the center of the chamber 7” above the center 

beam line and then to pitch the beam downwards into the fringe field of the 

bubble chamber magnet to obtain a good trajectory of the beam through the 

chamber. Finally, for momenta below 870 MeV/c it was further necessary 

to lower the HBC magnet current from 20,000 amps to 12,000 amps, to 

maintain this trajectory. 

The proton beam of the ZGS gave a pulse of pions once every 2.9 sec- 

onds . For part of the exposure, the bubble chamber was triple pulsed during 

each beam spill, allowing a rate of nearly 1 picture per second. 

The x- beam used for the Berkeley exposure is sketched in Fig. 4. It 

has been previously described l5 for a momentum setting of 1030 MeV/c. 

The characteristics remain the same at the momenta used in the present 

experiment. In particular the beam is characterized by good momentum 

resolution, the fractional momentum bite Ap/p being on the order of * .50/o. 

All beam interactions within the volume 34 cm wide, 122 cm long and 

9 cm deep were accepted from the 72-inch chamber, while for the 30-inch 
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chamber, the fiducial volume was defined as 58 cm long, 58 cm wide and 

16 cm deep. 

The coordinate system for both chambers is defined with the camera axis 

as the z-axis and the beam coincident with the y-axis. In the Alvarez cham- 

ber, the camera axis is tilted 7%’ with respect to the vertical axis. 

B. Magnetic Field 

The magnetic fields of both chambers were determined by extrapolating 

from previously measured field maps. These existed for the 72-inch cham- 

ber at magnet current settings of 2400A, 3500A, and 4600A. The measured 

values of the Bz at these currents were fitted with a 27-term polynomial 

expansion 16 and the horizontal components were calculated to satisfy 

Maxwell’s equations to third power in xy. These coefficients were scaled 

where necessary to the settings of 3102A, 3690A, 2600A, and 4600A used in 

the present experiment. The value of BZ at the center of the chamber was 

determined by looking at K” decays (K” + 7;’ + 7~~) and elastic scatters. We 

required that the distribution in the unfit invariant mass of the r’ and 7~~ 

agree with the accepted K” mass. We also required that the distributions in 

measured and fitted values of the momenta of each track in the four constraint 

(4C) elastic events agree. We found that both of these criteria were simulta- 

neously satisfied in most regions of our film rather easily. 

The same procedure was adopted to determine the field of the 30-inch 

chamber . It was necessary to scale from the field map measured at 

20, OOOA down to 12, OOOA. Two precautions were taken here. The field 

measurement at 20,000 A agreed with the design calculations to within 1%. 

Furthermore the field shape was predicted to remain the same at lower cur- 

rent settings. As au additional check, the film taken at 853 MeV/c was 
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divided between the two values of the field. The elastic scatters from the two 

fields were compared and no discernible differences were detected. The 

unfit invariant mass of the 7;’ and n- from this film is plotted in Fig. 5, and 

agrees well with the accepted value of M = 497 MeV for the K’mass. 

Table II summarizes the currents and central values of the fields used. 

C . Optical Constants 

The optical constants required by the fitting programs were determined 

by making a 12 parameter least squares fit of measured fiducials to their 

known positions, using the program WEASEL. For the 72-&h HBC, 13 

fiducials were measured, with many sets of measurements being obtained 

throughout the entire exposure. Several sets of measurem.ents were aver- 

aged whenever appropriate with the program MONKEY. Each set of constants 

was checked by comparing measured quantities with corresponding fitted 

quantities of 4~ elastic scattering events in all parts of the chamber. 

Although there was poor agreement at the edges of the chamber, satisfactory 

results were obtained within the fiducial volume. The pull distributions re- 

flect the quality of spatial reconstruction. We plot the pulls on the beam 

track for the three final states, n-p, nn+n-, p*-P, in Figs. 6d, 7d, and 8d, 

respectively. 

The same procedure was used to determine the optical constants for the 

30-inch MURA BBC. However, the reconstruction was slightly less satis- 

factory, because there were not enough visible fiducials to enable determin- 

ation of the high order distortion parameters. The pull distributions are 

given in Figs. 6a-c , 7a-c, and 8a-c . 
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FIG. 5--Invariant mass of (T”T-) from K” decays. 
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Chamber 

72-&h 

30-inch 

TABLED 

Magnet Currents and Central Field Values 

ItamPs) Field (kG) 

2,400 10.254 

2,600 11.025 

3,102 13.85 

3,690 14.54 

4,600 17.77 

12,000 20.98 

20,000 32.566 

MomentumRange(MeV/c) 

956 - 995 

1004 - 1024 

924 

1024 - 1042 

1125 - 1174 

556- 853 

853 - 1602 
IEaJlA: 
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(a)30” HBC (I) (@so” HBC (II) (C)30” HBC (III) (d)72” HBC 

2400 2000 

1200 1000 

0 0 

& (tan X) 

2400 2000 

1000 

0 

E (xJ= tXmeas -xfit) 

<x meas -xfit > 

FIG. B--Beam track pull quantities in elastic events for each exposure. 
(a)-(c) 30-inch HBC. (d) 72-inch HBC. 
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FIG. ‘7--Beam track pull quantities in the reaction a-p 4 n7;‘?r- 
for each exposure. 
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FIG. 8--Beam track pull quantities in the reaction r-p -+ pn-~’ 
for each exposure. 
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D. Measurement 

The bubble chamber film was scanned at SLAC and measured by the 

Spiral Reader at LRL. The scanners recorded all two-prong events and all 

zero-prong events with one or two associated vees . Events in which the beam 

track disappeared for more than a projected length of 3mm before the vertex 

were classified as O-prong, 1-vee events. Events were rejected if obscured 

in any way or if the beam track was less than 3 cm long. No bias is intro- 

duced by these rejects. Events in which both outgoing tracks were less than 

1 cm were also rejected, introducing a loss of reactions with short protons. 

Such events correspond to C.M.S. scattering angles which are not included 

in our results and analysis (see Chapter III). However, a further bias is 

expected due to loss of short, dipping protons, and correction for this bias 

will be discussed in Section F. The scanning efficiency was evaluated by 

rescanning approximately 20 percent of the Argonne film and 10 percent of the 

Berkeley film. The master lists from the first and second scans were then 

compared by the computer program CONFLICT, which lists all discrepan- 

cies. These discrepancies were examined again on the scan table to deter- 

mine whether they were valid events. Following this procedure, the com- 

bined scan efficiency was found to be 97 percent. 

The film was measured on an LRL Spiral Reader, 
17 

a semiautomatic 

film digitizing machine. It has three major components. The first is the 

movable XY encoding stage of the conventional measuring machines such as 

the Frankenstein. The operator uses this stage to locate and record the 

position of the fiducials. The second component is the periscope through 

which light from the scan table is focused onto a photocell. The operator 

centers the slit of the periscope on the vertex of an event. Then the mirror 
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of the periscope moves in a combination of rotational and translational motion, 

causing measurement to proceed in a spiral path centered on the vertex. The 

photocell registers all track segments crossed and digitizes them in polar 

coordinates. The Spiral Reader records not only the position but also the 

pulse height of the track segments and hence affords valuable information on 

track ionization. 

The third component of the Spiral Reader is the PDP4 on-line computer. 

This computer reads the scan information, controls the film advance, stores 

and packs the digitisations and pulse heights and writes an output tape for 

further processing. Measurement of this machine proceeded at a rate of 

approximately 100 - 200 events/hour. 

The measurements are then processed by a FORTRAN filter program 

PCCH18 which requires about 3 seconds per event on a CDC 6600. POOH 

sorts out the tracks associated with the vertex and then matches correspond- 

ing tracks found in the three views. The sorting is accomplished by first 

examining all data points lying within a small radius of the vertex. POOH 

tries to fit these points to the equation: 

9 = Q. + or + P/r + yr3 

This equation describes a circular track passing through the vertex and 

includes corrections for finite setting accuracy at the vertex. The derivation 

of this equation involves a small angle approximation (6 - 0 o <. 1). Thus, it 

is difficult to fit steeply dipping tracks and the loss of such tracks constitutes 

a bias that will be discussed in a subsequent section. 

The efficiency for passing events through the measuring process and the 

filtering program was found to be 97 percent after the first measurement of 

the 72-&h bubble chamber film. We made a repeat measurement of about 
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17,000 events and found the combined efficiency then to be 99 percent. All of 

the 30-inch bubble chamber film was measured twice except for 43% that had 

unambiguous fits on the first measurement. The combined efficiency after the 

second measurement for aI1 events in the JO-inch chamber was 93 percent. 

Those events that failed twice were examined on the scan table, and no evi- 

dence for topological bias was found apart from the bias against short protons 

mentioned previously. 

E. Fitting Programs 

The measured two-prong events are processed by the SIOUX-ARROW 

system of programs. SIOUX consists of a three-view geometry program that 

tries, in this experiment, each of the following hypotheses: 

=P-+=P 
+- --+nx r 

-0 -+pr x 

(2-l) 

(2.2) 

(2.3) 

Because the four-constraint elastic hypothesis is more difficult to fit than the 

remaining one-constraint hypotheses, all events that satisfied this hypothesis 

with a value of chisquared for the kinematic fit, X:, less than 25 were 

accepted as elastic scattering events. Furthermore, we required that the 

ionization measured by the Spiral Reader be consistent with the fitted track 

momentum. A plot of missing mass determined by fitting these elastic 

events to the reaction 

ap-,rpmm 

is shown in Fig. 9 and illustrates that there is negligible contamination in 

this sample. (The histogram is sharply peaked at zero, with a slight pull to 

the negative side, as expected in plots of this type. 
19 ) 
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If an event satisfied hypothesis (2.2) or (2.3) only, with a value of Xi less 

than a prescribed maximum (XE = 7 for the Argonne film and XE = 8 for the 

Berkeley film), that hypothesis was unambiguously selected. However, if an 

event satisfied both of these hypotheses, we adopted certain criteria to select 

the “best” fit. Again we used the pulse height information recorded by the 

Spiral Reader. We computed a Xfon to describe the fit of the calculated 

bubble density to that determined experimentally from the pulse height. At 

the relatively low energies involved in the present experiment, the difference 

in bubble density between a proton and a positive pion should be decisive. 

For the 72-inch bubble chamber film, we used the following criteria: 

1. We chose the hypothesis that gave the lower value Xfon, provided 

this difference was larger than 3. 

ii. If the difference in 2 ion for the two fits was less than 3, we chose 

the hypothesis that gave the lower value of kinematic chisquared, 

X12, provided this difference was larger than 1.5. 

. . . 
111. If the difference in XE was less than 1.5, we selected the hypoth- 

esis that gave the lower value of XFon. 

For the 30-inch HBC film, we decided upon a simpler selection criterion. 

We formed a linear combination of Xi and XFon, which we call the combined chi- 

squared, Xzomb. It was sometimes necessary to multiply XFon by a factor a! 

before forming XEomb because the pulse height information varied in relia- 

bility. We set CY = 2/<Xfon> where <X”,,> is the average over 100 events in 

a region of film. We classified an event as either reaction (2.2) or (2.3), de- 

pending on which hypothesis gave the lower value of Xzomb. To compare the 

results of the two selection procedures, we made the selection both ways for 

a sample of events. The resulting classifications were essentially identical. 
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As in the elastic events, we can illustrate the low contamination of our 

samples of n?;‘n- and pr-no final states by plotting the square of the missing 

mass in the reactions 

T-P -+ n-tmm 

X p -+ r-p mm 

These mass plots are shown in Fig. 10 and peak at the square of the masses 

of the neutron and the neutral pion, respectively. 

To study whether events have been correctly assigned to a reaction type 

(nn+*- or p~-r’) in the sample of ambiguous events, we can plot the square 

of the missing mass, as above, for both the “right” and “wrong” choice of 

events. Figures 11 and 12 contain these plots and show that the distributions 

for the “wrong” choice appear far too broad, especially in comparison with 

the corresponding plot for the “right” choice. The shaded histograms corre- 

spond to the samples of these events with Xfon less than 12 for the wrong 

hypothesis. The distributions are not improved by this cut; this provides 

further evidence that these events are not examples of the reaction corre- 

sponding to the “wrong” choice. 

One indication of the quality of the fits is the distribution of X2 for all 

the events. In most bubble chamber experiments, the experimental distri- 

butions match the theoretical distribution 

once the scale factor a has been determined. The necessity for this scale 

factor usually arises from non-Gaussian errors. In Fig. 13, we plot the 

chisquared distribution for all elastic events, together with a curve that 
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FIG. 10--(a) Missing mass squared in the reaction n-p-r Pn-mm 
for the 1C reactions n-p-+n+7r-. 

(b) Missing mass squared in the reaction T-P --+ n-p mm 
for the 1C reactions n-p--+ pn-p. 
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FIG. 11--(a) Missing mass squared in the reaction r-p -+ n+n-mm 
for ambiguous events selected as T-P-+ n7itr-. 

(b) Missing mass squared in the reaction n-p -+ a-p mm 
for ambiguous events selected as r-p + nir%r-. 
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for ambiguous events selected as n-p-, pa-+. 
Missing mass squared in the reaction 7-p + n-p mm 
for ambiguous events selected as n-p-tpa-4’. 
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represents the theoretical distribution for a four-constraint fit. Rather than 

cutting off events with high x2 and then correcting for those lost, we kept all 

events with X2 < 25. To check whether we thus bias the sample, we com- 

pared Legendre coefficients that describe the angular distributions for events 

with X2 I 25 and X2 < 10, and found the coefficients unchanged within their 

errors. 

In Figs. 14a-c and 15a-c, we plot the distributions for X12, Xfon and 

‘fornb 
for reactions (2.2) and (2.3)) respectively. The nfn- and pn-n” angular 

distributions are computed from events with Xi below the maximum described 

above. As a further study of the resolution of ambiguous events, we display, 

in Figs. 16 and 17, the XFon and X2 comb distributions corresponding to the 

“wrong” choice of events. They do not display the correct characteristics 

of two- and three-constraint fits. From these observations we have concluded 

that the selection criteria we have adopted are reasonable and introduce 

negligible contamination in the total sample of events. 

The fitted distribution of center-of-mass energies from the elastic 

events are used to determine the energy values for each region of film. A 

sample distribution of fitted center-of-mass energies is shown in Fig. 18. 

The beam has a low energy tail. Thus we apply an energy cutoff to the data 

when we determine the mean value of the c.m. energy in each region. These 

cutoffs are listed in Table VI. 

Because of the high momentum resolution of the Berkeley film, the 

technique of beam averaging was used in processing this film. This tech- 

nique pulls the value of measured momentum from an individual event closer 

to the ‘beam average” value, pB A . First, all events are processed with- 

out beam averaging. Then pB A and its error, ApB A , are determined . . . . 
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FIG. 14--Kinematic, ionization and combined chisquared distrib tions 
for the reaction r-p+n if+n-. 3 Formation of Xfon and Xcomb 
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from the elastic events that have X2 I 10. AI1 events are then reprocessed, 

the momentum for each event now being a weighted average of ‘beam average” 

and measured momenta, according to the formula: 

P 
P= 

meas’(Apmeas)2 + PB.A.‘(ApB.A.)2 

~/(AP~,,,)~+~/(APB.A.)~ 

After the events were measured, processed and separated according to 

reaction type, we obtained a total of approximately 80,000 events in the r-p 

final state, 51,000 in the nn+n- final state and 34,000 in the pn-no final state. 

The statistics, broken down by energy regions, are listed in Table III and 

illustrated in Fig. 19. 

F. Correction for Biases 

As we mentioned earlier, there is a scan bias against short protons and 

a bias in the filtering program against steeply dipping tracks. To investigate 

these biases in the elastic events, we define (Y as the angle between the nor- 

mal to the scatter!ng plane and the camera axis. We expect to see a deple- 

tion of events near (Y = 90°, where tracks are sharply dipping. We further 

expect this effect to be worse at forward pion production angles where protons 

have a short range. Typical distributions of this azimuthal angle o are 

shown in Fig. 20 for backward, middle and forward production regions. The 

losses are evident in each region but are especially severe in the forward 

region. Corrections for this bias were made separately for production angu- 

lar region and for energy region. These corrections are listed in Table IV. 

To study the bias in inelastic events we examined the angle that the 

normal to the plane of the charged outgoing tracks makes with the camera 

axis. A small loss of events is observed when this angle is near 90’. The 
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Exposure 

30" HBC(l) 

3O"HBC(lq 

30” HBC(In) 

12" HBC 

TOTAL3 79,911 51,477 

E C.rn. WV 

1406 

1440 

1472 

1496 

1527 

1556 

1666 

1709 

1730 

1762 

1611 

1643 

1612 

1904 

1635 

1720 

1761 

1767 

1606 

1621 

1353 

1665 

1616 

1933 

1663 

1960 

P;; WV/c) 

556 

606 

660 

696 

750 

797 

653 

106, 

1105 

1165 

1256 

1322 

1381 

1444 

1509 

1064 

1161 

1212 

1250 

1276 

1340 

1404 

1466 

1503 

1567 

1602 

4-c Ehnts 

X2514 

646 

500 

1110 

1654 

2337 

626 

991 

1141 

1954 

2230 

1544 

2771 

2920 

3160 

1606 

667 

1200 

1210 

292 

1740 

2213 

2392 

3792 

1972 

4113 

3951 

1626 924 539 

1647 966 5462 

1660 979 2697 

1666 995 5127 

1674 1004 4666 

16R5 1024 4396 

1695 1042 2206 

1740 1125 3594 

1766 1174 1733 
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FIG. 19--Number of events of the three reaction types processed at each energy. 

- 39 - 



iL HtlL 
0.9 5 cos 43 10.95 -0.8lcos@ 10.7 -l.O1cos81-0.8 

30” HBC 
200- 

50- 25 

0 I 0 I 0 
0” 90” 180’ 0” 90” 180” 0” 90” 180” 

a! (unfolded ) 147282 

FIG. 20--Azimuthal angle for forward, middle and backward regions of pion 
production angle in elastic events. Q! is defined as the angle between 
the normal to the scattering plane and the camera axis. 
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TABLEIV 

Azimuthal Correction Factors and Errors 

E c.m. tMevl 

1406 

1440 

14'72 

1496 

152'7 

1556 

1569 

1628 

1647 

1660 

1669 

1674 

1685 

1695 

1709 

1720 

1730 

1740 

o.sto 0.95 0.8 to 0.9 0.7ta 0.8 -0.8toO.7 -l.Ota -0.6 

1.50 

to.20 

1.50 

io.20 

1.50 

*0.20 

1.45 

so.16 

1.45 
HI.14 

1.60 

Lt0.22 

1.60 

to.22 

1.30 

+0.20 

1.28 

iO.06 

1.14 

io.07 

1.22 

+0.05 

1.17 
a.05 

1.29 

iO.07 

1.25 

+o. 08 

1.30 
io.10 

1.22 
+0.10 

1.30 
io.10 

1.24 

+0.06 

1.25 
*0.10 

1.25 
+O.lO 

1.25 
aO.10 

1.20 
iO.08 

1.13 
*0.07 

1.25 

M.10 

1.25 
aO.10 

1.08 
+0.12 

1.06 
a0.04 

1.02 

io.05 

1.07 

+0.04 

1.06 
a0.04 

1.07 

io.05 

1.13 

Ml.06 

1.06 
to.05 

1.04 

io.07 

1.06 
ti.05 

1.10 
a0.04 

1.10 1.06 
*o. 08 a0.04 

1.10 1.08 

+o. 08 iO.04 

1.10 1.03 
clc0.08 +0.04 

1.02 1.05 

+0.07 io.04 

1.10 1.01 
a0.07 a0.03 

1.12 1.06 
io.10 a0.04 

1.12 1.06 

a.10 io.04 

1.12 1.0 
a0.20 a.07 

1.05 1.05 

hO.05 io.03 

1.01 1.05 

da.07 +0.04 

1.04 1.04 

10.05 +0.03 

1.00 1.11 
to.05 M.03 

1.07 1.05 

+0.06 +0.04 

1.07 1.02 

a0.08 +0.04 

1.05 1.03 

to.06 ab.04 

1.02 1.10 
hO.08 +0.07 

1.05 1.03 

&I.06 io.04 

1.05 1.07 

io.05 AO.03 

1.02 
ho.08 

1.02 

iO.08 

1.02 

iO.08 

1.02 

+0.10 

1.10 
K). 10 

1.10 
*to.13 

1.10 
HI.13 

1.16 
M.18 

1.14 
ho.06 

1.17 

+0.08 

1.16 

HI.07 

1.15 
M.07 

1.12 

iO.06 

1.04 

+o.oa 

1.10 
~.OS 

1.00 
*0.11 

1.10 
+=o.os 

1.20 
kO.09 

lwll 
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Table lV (cont'd.) PACE I OP I 

c.m. lMevl 0.9 to 0.95 0.8 to 0.9 0.7 to 0.8 -0.8to 0.7 -l.Oto -0.8 

1761 1.22 1.04 1.02 1.10 1.00 
l 0.10 -10.07 i0.08 io.07 a.11 

1762 1.19 1.13 1.03 1.07 1.17 
a0.07 l 0.07 ~0.06 a0.04 +o. 10 

1766 1.16 1.06 1.04 1.01 1.20 
iO.08 a0.06 i-o.07 io.05 io.15 

1767 1.11 1.08 1.05 1.05 1.01 
*0.07 io.05 zkO.06 l 0.04 *o. 10 

1806 1.11 1.06 1.05 1.05 1.01 
*o. 07 +0.05 ho.06 io.04 a0.10 

1811 1.18 1.05 1.09 1.00 1.00 
io.11 a0.07 a0.09 to.05 ao.11 

1821 1.11 1.08 1.05 1.05 1.01 
10.07 a0.05 a0.06 a.04 aO.10 

1643 1.17 1.07 1.10 1.06 1.07 
+0.06 io.05 hO.08 +0.05 l 0.11 

1853 1.10 1.02 1.07 1.06 1.04 
a0.07 *0.05 iO.08 +0.05 l 0.13 

1672 1.10 1.05 1.10 1.03 1.05 
MO.06 =to.o4 a0.07 a.04 M.10 

1685 1.12 1.05 1.04 1.06 1.10 
io.07 a0.06 hO.08 rO.06 a0.14 

1904 1.05 1.06 1.09 1.04 1.11 
10.05 io.04 a0.07 a0.04 a0.14 

1916 1.25 1.08 1.15 1.11 1.00 
a0.06 io.05 +o.oa M.05 io.11 

1933 1.16 1.13 1.16 1.10 1.12 
iO.08 *to.06 iO.10 ho.06 M.20 

1935 1.08 1.00 1.08 1.10 1.15 
i0.08 *0.06 ho.09 Lto.07 MO.25 

1963 1.12 1.07 1.01 1.05 1.15 
zto.05 10.05 aO.O1 La.04 a0.15 

1980 1.22 1.20 1.10 1.09 1.05 
ho.06 io.07 iO.08 *0.04 a.15 
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loss is independent of production angle and hence is primarily caused by the 

bias in POOH against steeply dipping tracks. The corrections, made by 

energy regions, are listed in Table V. 
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TABLEV 

&imuthal Correction Factors and ErI-Ors 

C.M.S. Energy 
?r+sf-n n-Rp 

correction El-l-Or COlTSCtiOIl Error 

1406 1.09 0.10 1.00 0.15 

1440 1.08 0.10 1.00 0.15 

1471 1.15 0.09 1.07 0.08 

1496 1.15 0.06 1.06 0.06 

1527 1.10 0.06 1.01 0.05 

1556 1.08 0.09 1.08 0.09 

1589 1.08 0.07 1.05 0.07 

1629 1.09 0.07 1.05 0.09 

1647 1.03 0.02 1.02 0.03 

1660 1.05 0.03 1.01 0.04 

1669 1.04 0.02 1.01 0.03 

1674 1.10 0.03 1.03 0.03 

1685 1.06 0.03 1.00 0.03 

1695 1.07 0.04 1.06 0.05 

1709 1.07 0.06 1.10 0.09 

1720 1.05 0.07 1.08 0.10 

1730 1.12 0.05 1.03 0.05 

1740 1.05 0.03 1.05 0.03 

1761 1.10 0.06 1.00 0.06 

1762 1.07 0.05 1.00 0.04 

1766 1.02 0.04 1.02 0.04 

1767 1.03 0.05 1.02 0.07 

1606 1.00 0.09 1.00 0.11 

1611 1.05 0.04 1.02 0.05 

1821 1.04 0.04 1.02 0.05 

1843 1.05 0.03 1.01 0.03 

1853 l.Ul 0.03 1.03 0.05 

1873 1.06 0.04 1.00 0.03 

1884 1.07 0.04 1.00 0.04 

1904 1.01 0.03 1.02 0.03 

1916 1.06 0.03 1.02 0.03 

1932 1.06 0.04 1.04 0.04 

1935 1.03 0.04 1.05 0.05 

1963 1.07 0.03 1.02 0.03 

1980 1.06 0.03 1.02 0.03 

IMI 
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III. EXPERIMENTAL RESULTS - ELASTIC CHANNEL 

A. Cross Sections 

We normalized our data to the counter-experiment data of Duke e& &. , 20 

Helland et al 21 
- -* ’ and Ogden g 2.) 22 in a limited region of production angle, 

-0.8 I cos 0 < 0.7. In this region, corrections for biases are not severe 

for either counters or bubble chambers. Also, this angular region contrib- 

utes only 20 - 3OYo of the total cross section and it varies slowly with energy, 

as seen in the bottom curve of Fig. 21. Thus the sharp structure in the 

elastic cross section measured in our experiment should be largely inde- 

pendent of the experiments to which we normalized. 

We do not have an accurate measurement of the total number of elastic 

events because we lose events corresponding to stopping protons in the very 

forward direction, 0.95 < cos e 5 1.0. To calculate the total elastic cross 

section, we must first fit the angular distributions with an expansion in 

Legendre polynomials. The cross section is given in terms of the resulting 

Legendre coefficient A0 according to the relation 

o- el = 47rAo (3-I) 

This cross section is shown in Fig. 21 along with the cross sections meas- 

ured by the counter experiments. 20,21,22 

The same normalization procedure is followed for the inelastic events. 

We believe that the same cross section/corrected event should apply because 

the efficiencies for fitting the elastic and inelastic events are nearly the 

same. The cross sections for the mr’n- and p7-7r” final states are plotted in 

Figs. 22 and 23 together with data from other authors. 23 In Fig. 24, we add 

these two inelastic cross sections to the elastic cross section and compare 
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them to the total cross section of A. A. Carter et al. 
24 Finally, in Fig. 25, -- 

we present the ratio of cross sections, ,(&a’-) to ~(px-r’) as determined in 

our experiment and others. Table VI lists the cross sections for all three 

reactions. 

B. Elastic Scattering Angular Distribution 

The differential cross sections for elastic scattering events are presented 

in Fig. 26. (The data is also available in tabular form. 
25 ) The distributions 

extend up to cos B = 0.90 below 1555 MeV and up to cos B = 0.95 at higher 

energies; beyond these forward pion angles, the recoiling proton has nearly 

zero range. The production angle 0 in these graphs is the angle between the 

outgoing and the incoming pion. 

The smooth curves superposed on the data of Fig. 26 represent the best 

fit by a series expansion in Legendre polynomials, given by 

da/da = C, AnPn (cos 0) (3.2) 

In order to decide the order of fit required we looked for that fit where the 

confidence level rose to a significantly high value. Because of fluctuations in 

the quality of these fits, we kept that order which seemed to be required by 

most of the distributions in a given energy region. Below 1674 MeV an 

expansion to order n=5 was sufficient; above this order n=6 was required. 
n 

Table VII lists the Legendre coefficients, the X‘ and the confidence level for 

each of the 35 energies. 

In Fig. 27, we plot the Legendre coefficients from our experiment and 

others.20’ 22 We can make qualitative deductions about the behavior of the 

partial waves based on these coefficients, as we mentioned in the introduction. 

The coefficients An can be expressed in terms of the partial-wave amplitudes 
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TABLEVI 

Cross Sections 

C.M.S. Energy 

1406 

1440 

1411 

1496 

1521 

1556 

1589 

1629 

1641 

1660 

1669 

1614 

1685 

1695 

1709 

1120 

1130 

1140 

1761 

1762 

1166 

1101 

1606 

1611 

1621 

1843 

1853 

1813 

1884 

1904 

1916 

1932 

1935 

1963 

1960 

“-P 
mm 
10.24 

12.86 

15.32 

19.01 

19.91 

14.91 

14.41 

18.80 

21.62 

23.16 

26.42 

24.22 

26.30 

26.01 

23.65 

19.48 

11.95 

18.29 

13.66 

15.01 

15.13 

12.45 

13.31 

13.80 

12.60 

13.09 

12.38 

12.53 

12.34 

11.95 

10.87 

11.69 

10.39 

10.21 

9.82 

r-P 
Sa(mb) 

0.62 

0.94 

0.80 

0.14 

0.71 

0.96 

0.84 

1.32 

0.46 

0.66 

0.58 

0.54 

0.15 

0.86 

1.10 

1.35 

0.74 

0.41 

0.78 

0.50 

0.61 

0.59 

1.08 

0.61 

0.55 

0.45 

0.45 

0.39 

0.50 

0.36 

0.36 

0.49 

0.41 

0.29 

0.33 

l- 
L n-p - n-n+n 

I dmb) 
3.61 

4.19 

5.25 

5.84 

6.12 

5.30 

6.83 

12.38 

10.10 

10.41 

10.16 

10.92 

12.11 

11.45 

9.46 

9.33 

8.01 

1.64 

1.56 

6.49 

1.95 

6.92 

7.22 

8.30 

6.76 

8.33 

1.40 

8.13 

8.68 

1.84 

1.31 

1.91 

6.16 

1.43 

6.36 

iu(mb) 

0.46 

0.62 

0.55 

0.47 

0.41 

0.60 

0.64 

1.41 

0.41 

0.64 

0.50 

0.54 

0.69 

0.11 

0.83 

1.06 

0.59 

0.40 

0.14 

0.41 

0.61 

0.55 

0.98 

0.64 

0.41 

0.54 

0.50 

0.55 

0.61 

0.41 

0.45 

0.61 

0.58 

0.42 

0.36 

1.06 

1.69 

2.86 

3.98 

4.14 

4.24 

4.44 

6.66 

6.21 

6.19 

6.54 

6.00 

6.96 

1.60 

6.65 

6.41 

5.93 

6.04 

4.26 

4.43 

6.06 

4.09 

4.68 

4.19 

4.15 

4.93 

4.48 

5.19 

4.86 

5.13 

4.62 

5.21 

4.14 

4.85 

4.40 

0.21 

0.33 

0.32 

0.35 ~- 

0.35 

0.49 

0.44 

0.93 

0.33 

0.43 

0.35 

0.32 

0.42 

0.58 

0.13 

0.81 

0.46 

0.32 

0.45 

0.31 

0.47 

0.40 

0.15 

0.41 

0.33 

0.34 

0.36 

0.32 

0.39 

0.31 

0.30 

0.41 

0.44 

0.28 

0.26 

- 

1 
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FIG. 26--n-p differential cross sections measured in this 
experiment. Smooth curves represent the best 
fit by an expansion in Legendre polynomials. 
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FIG. 26 cont’d. 
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TABLE VII 

Legendre Coefficients 

’ 

E c.m. (Mew 

Low Energy 
Cutoff 

High Energy 
CUtOff 

A0 

Al 

A2 

Al3 

x2 

<x2> 

Confidence 
Level (%) 

1406 

1394 

1418 

0.82 

io.05 

0.61 

to.12 

0.54 

+o. 17 

-0.46 

io.21 

-0.16 

+o. 19 

0.00 

l 0.17 

13.31 

13 

42.0 

1440 1412 1496 1521 1556 1589 1628 1641 1660 

1428 1456 1482 1514 1544 1516 1616 1632 1648 

1452 1486 1510 1540 1566 1602 1640 1862 1612 

1.02 1.22 1.52 1.58 1.19 1.15 1.50 1.72 1.84 

iO.08 +0.06 l 0.06 to.06 to.08 +o. 01 to.11 *0.04 +0.04 

1.09 1.48 2.23 2.45 1.45 1.22 1.43 1.85 1.85 

10.19 iO.16 l 0.15 io.15 *o. 19 +o. 11 a0.26 +o.os 10.13 

1.31 1.66 2.42 2.61 1.52 1.69 3.04 3.65 4.06 

+0.21 *0.22 io.21 zko.20 l 0.21 to.24 iO.36 io.12 -to. 11 

-0.04 -0.08 0.41 0.69 0.36 1.04 

+0.31 iO.25 to.24 io.22 r0.30 +0.25 

3.11 

l 0.12 

3.51 

+o. 11 

0.00 

+0.21 

0.03 

zto.21 

0.01 

so. 19 

0.20 

f0.15 

9.21 

13 

15.1 

-0.10 

iO.18 

0.01 

fO.14 

14.00 

13 

31.4 

-0.30 -0.14 

to.25 io.21 

0.39 

io.21 

10.31 

13 

66.9 

0.39 

l o. 18 

2.21 

to.38 

0.18 

io.30 

1.11 

to.30 

9.15 

13 

11.4 

1.16 1.26 

aO.10 ao. 14 

0.20 0.08 

iO.23 ao. 11 

1.72 

+0.10 

1.92 

Lto.14 

16.16 

13 

23.9 

6.85 12.1 11.89 4.66 

13 

91.0 

13 14 

41.2 61.5 

14 

98.8 

laJlll 



Table VII (cont'd.) 

E c.m. WV) 

Low Energy 
CUtOff 

High Energy 
CUtOff 

.90 

*1 

A2 

A3 

*4 

A5 

A6 

x2 

<x2> 

Confidence 
Level (40) 

1669 1614 1685 1695 1109 1120 1130 1140 1161 

1656 1658 1610 1660 1696 1108 1716 1722 1150 1146 

1662 1690 1100 1110 1720 1132 1144 1158 1772 1776 

2.10 1.93 2.09 2.01 1.68 1.55 1.43 1.46 1.09 1.19 
a0.05 to.04 ho.06 +0.01 to.09 aO.ll 10.06 l 0.04 ho.06 +0.04 

2.42 2.13 2.44 2.69 2.61 2.35 2.01 2.30 1.68 1.89 
+0.11 io.11 +0.16 i0.18 iO.24 a0.28 +0.16 50.10 io.11 aO.ll 

4.94 4.38 5.07 5.22 4.15 3.95 3.40 3.65 2.61 2.86 

a0.15 -to.15 a0.21 +0.24 io.31 a0.38 io.21 +0.13 io.22 AO.15 

4.50 4.04 4.44 4.71 4.10 3.45 2.98 3.01 2.26 2.38 

io.15 to.11 +0.23 +0.21 io.34 +0.44 to.23 l 0.15 iO.25 ztO.16 

1.83 1.64 
a0.12 a0.11 

2.00 

a0.22 

2.08 

io.15 

-0.04 

a0.15 

14.91 

13 

31.3 

2.18 2.01 1.69 1.37 1.62 1.08 1.29 
ztO.25 *0.31 iO.42 to.21 to.14 AO.24 ho.16 

2.13 

+0.12 
1.96 

to.13 

0.14 
a0.13 

14.75 

13 

32.3 

2.16 1.53 1.20 1.01 1.06 0.89 

+0.11 *0.22 +0.30 -to.16 so.10 iO.18 

0.11 
50.11 

9.23 

13 

75.5 

-0.28 0.32 -0.37 

io.21 ao. 29 io.14 

-0.14 

l 0.10 

10.45 

13 

65.1 

-0.14 

+0.16 

20.09 

14 

12.7 

9.86 14.18 6.52 8.83 

13 

10.5 

13 13 13 

32.2 92.5 78.5 

0.72 

a0.12 

-0.11 
aO.ll 

15.1 

13 

30.2 

1)01.1 



1904 

1890 

1918 

0.95 
10.03 

1.74 
*o. 08 

2.36 
10.11 

2.40 
*0.11 

1.67 
*o. 10 

0.76 
*0.0* 

0.25 
10.01 

10.67 

13 

63.9 

--iz 
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Table VII (cont'd.) PAGE 4 OF 4 

E c.m.(MeV) 1916 1933 1935 1963 1980 

Low Energy Cutoff 1902 1917 1920 1948 1966 

High Energy Cutoff 1930 1947 1950 1978 1994 

*0 0.87 0.93 0.83 0.81 0.78 

io.03 10.04 *0.04 *to.02 10.03 

*1 1.59 1.79 1.53 1.56 1.56 

iO.08 +0.10 i-o.10 *0.06 *0.07 

*2 2.05 2.40 2.02 2.09 2.01 

*0.11 10.14 io.14 *to.09 io.10 

*3 2.13 2.55 2.13 2.20 2.15 

hO.11 10.15 l 0.15 SO.09 *0.10 

*4 1.37 1.79 1.47 1.65 1.59 

hO.10 10.13 *to.13 so.09 10.09 

A5 0.52 0.87 0.68 0.84 0.80 

SO.08 10.10 io.11 io.07 io.07 

*6 0.20 0.41 0.34 0.45 0.37 

iO.06 10.09 *to.09 *0.05 10.05 

2 X 13.96 7.82 3.00 12.44 7.31 

<x2> 13 13 13 13 13 

Confidence Level (%) 37.6 85.5 99.8 49.2 88.5 

.^^., 
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fpJ where l is the angular momentum and J is the total spin. 

An = 
c R;J, e ‘J’ Re fn JRe fat J, + Im fp Jh fp ,J, (3.3) 
PJ 1 B ‘J’ 

The numerical factors RiJ, p, J, are listed in Table VIII. When a given 

R;J, I ‘J’ is nonzero we expect An to show interference of partial waves fp J 

andf B ,J, if this interference is significant. Note that we cannot distinguish 

the value of the isospin when we are looking only at the r-p final state; that 

determination requires data on the charge-exchange reaction or r’p elastic 

scattering. Rigorously, the unambiguous determination of the parities fur- 

ther requires polarization data. Nevertheless, we can still learn something 

from the ~-p data alone. 

The coefficient A0 is the elastic cross section, reflecting the coherent 

sum of individual partial waves. There is a sharp peak in coefficients AI and 

A2 near 1520 MeV, while A3 changes sign and higher coefficients are zero 

here. Table VIII indicates that the structure in A2 is most likely caused by 

a D3 wave and that structure in AI probably reflects interference of D3 with 

a Pl wave. The change of sign in A3 then represents interference of the D3 

with the tail of the P33 resonance. (The sign changes because the real part 

of the D3 wave goes from positive to negative as the wave goes through 

resonance.) The fact that the interference in A1 does not shift the peak from 

the D3 resonant energy is evidence that the Pl wave is purely imaginary. 

The next region of activity lies near 1690 MeV, where all coefficients 

up through A5 show structure. This implies that both D5 and F5 may be 

resonant. The odd coefficients Al, A3, and A5 must reflect the interference 

of D5 and F5 waves. The absence of any change in sign or rapid variation of 
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the coefficients here indicates that these two waves must have a constant 

phase difference. Below 1690 MeV, AI manifests interference between F5 

and D3. A4 should be very sensitive to any interference between D5 and D3 

because of the large value of Rk5 D3 here. Its value is near zero, most 

likely indicating that these two waves are 90’ out of phase. 

Above 1690 MeV, we can look for interference effects of the D5 and F5 

waves with other possible resonances. All coefficients up through A5 show 

a constant positive value in this region. There is a slow rise in both A4 and 

A6 after 1900 MeV. This behavior could arise from the onset of either an 

F7 or a G7 resonance. One might construe the slight negative value of A6 

below 1920 to indicate the interference of F7 with the F5 wave. A5, which 

should show any G’7-F5 interference, has no sharp structure in this region. 

Thus there is a tendency to prefer the F7 wave. The ~+p data, being pure 

isospin 3/2, offer more evidence in favor of the F7 interpretation. However, 

polarization data was historically required clearly to resolve this parity 

ambiguity. 

The elastic differential cross sections thus confirm the presence of the 

D13(1520), D15(1670), F15(1688), and F37(1950) that are by now well estab- 

lished from the phase-shift analyses. They also suggest the Pll(1470) 

“Roper” resonance. 
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IV. EXPERIMENTAL RESULTS - INELASTIC THREE-BODY 

A. Mass Distributions 

Because of the additional particle involved in the three-particle final 

state, three more parameters are required fully to specify the scattering. 

Information contained in these final states is more difficult to present and to 

interpret. The Dalitz plots give an indication of interactions between any two 

of the three particles. In Fig. 28 we plot M2(Nnl) against M2(N?i,) at four 

representative energies for both nr+;tn- and p71-n’ final states. In Figs. 29 

and 30 we present the corresponding projections as well as the M2(r122) 

distribution. These plots indicate strong production of A-a+ throughout the 

energy region. At higher energies p’nbecomes increasingly important. Production 

of A’T- is also apparent but is not nearly as dominant. In the pa-?P state, 

A0 and Ai are only weakly produced and decrease at higher energies. The 

previously observed 26 enhancement in the ?rn mass at low energies is evi- 

dent in the nr’=- state but not in the pn-no state. 

The Clebsch-Gordan coefficients favor the strong A-r+ production that 

is observed. With interference effects neglected, the ratio A-/A’ = 9/l for 

nr+n- and A”/A+ = 2/2 for ~~‘71~ in a pure isospin l/2 state. These ratios 

are 18/8 and l/16, respectively, for a pure 3/2 state. 

The dominance of the quasi-two-body intermediate states - A-r+, A’T- 

and P”n - implies that the n?r’=- final state might be described by an incoherent 

sum of these three processes plus phase space. We tried to fit the Dalitz 

plots with this description, taking the mass and width of the A and the p to be 

M(A) = 1236 MeV r(A) = 130 MeV 

M(p) = 765 MeV r(p) = 130 MeV 
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FIG. 28--Dalitz plots for the reactions r-p - nr’+- and n-p-+pT-~’ 
at four representative energies. 
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We used the maximum likelihood program, MURTLEBURT, 27 in which the 

resonance amplitudes are given the form of a relativistic Breit-Wigner 28 

wo r(w) 

(w2-w,2)2 + w; r2(w) 
. . . 

with decay width 

2L+l BL(qr) 

BL(qOr) 

(4.3) 

(4.4) 

Here w = the diparticle mass 

q = the momentum of the decay particles in the diparticle rest 

frame 

L = orbital angular momentum of the decay particles 

BL(qr) = barrier penetration factor 29 with the radius of interaction 

taken to be 1 fermi 

The subscript 0 refers to the values of these quantities at the resonance mass 

w 0 . Note that this amplitude is normalized to unity at resonance. 

The results of the fitting program are summarized in Table IX and in 

Fig. 31, which present the fractions of the various intermediate states that 

contribute at each energy. Of note are the decrease in A- above 1750 MeV 

and the rapid rise of the p” above 1700. Production of pan was ignored 

below 1600 MeV in the fits. The program failed to fit data below 1496 MeV 

because of the large overlap of the A’ and A- bands in the Dalits plots. The 

mass distributions predicted by this program are represented by the smooth 

curve in Fig. 29. 
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Fractions of Resonance and Phase Space Production in the Reaction r-p- n+nmn 

C.M.S. Energy A- A+ PO Phase Space 

1496 0.529 + 0.087 0.052 l 0.079 0. 0.419 * 0.118 

1527 0.500 +0.069 0.187 * 0.066 0. 0.313 l 0.095 

1556 0.565 l 0.066 0.337 *o.oaz 0. 0.098 * 0.119 

1589 0.639 * 0.056 0.157 10.050 0. 0.204* 0.075 

1629 0.357 + 0.072 0.017 -L 0.064 0.091t 0.049 0.535 * 0.108 

1647 0.55110.024 0.036 iO.020 0.01110.015 0.402 * 0.035 

1660 0.545 * 0.035 0.0511 0.030 0.003 * 0.021 0.401* 0.045 

1669 0.535 * 0.026 0.025 '0.021 0.010 t 0.016 0.430 * 0.037 

1674 0.537 l 0.026 0.016 iO.021 0.0311 0.015 0.416 i 0.037 

1685 0.576+ 0.027 0.072 + 0.023 0.003 i 0.016 0.349 l 0.039 

1695 0.554~~ 0.036 0.006 h 0.029 0.004+ 0.020 0.564 * 0.050 

1709 0.440 * 0.068 0.000 i 0.052 0.011-t 0.034 0.451* 0.092 

1720 0.590 * 0.064 0.114 io.055 0.000 i 0.037 0.296* 0.092 

1730 0.452 * 0.039 0.00110.031 0.082 t 0.025 0.465 * 0.056 

1740 0.569 10.026 0.075 * 0.020 0.057 l 0.017 0.299i 0.037 

1761 0.590* 0.043 0.1111 0.036 0.097 '- 0.030 0.202 + 0.064 

1762 0.431* 0.036 0.096+0.030 0.108 l 0.025 0.365 l 0.052 

1766 0.346 A 0.038 0.000 f 0.028 0.225 * 0.027 0.427 l 0.054 

17H7 0.412 i 0.044 0.067 * 0.034 0.173* 0.033 0.326 -t-O.065 

18Oti 0.363 *0.082 0.056+0.068 0.278 IO.071 0.303 * 0.126 

1811 0.330 * 0.034 0.0?31* 0.028 0.231* 0.029 0.358 + 0.053 

1821 0.279 + 0.034 0.006 i 0.026 0.29310.029 0.422 * 0.053 

1843 0.245 a0.023 0.045 -L 0.019 0.307* 0.029 0.403 +0.042 

1853 0.250 i 0.025 0.069 l 0.022 0.337 + 0.024 0.344* 0.041 

1873 0.179 3 0.020 0.042 +0.017 0.364t0.020 0.413 * 0.033 

1884 0.249*0.022 0.030 +0.017 0.411* 0.022 0.310 l 0.035 

1904 0.164*0.016 0.079 * 0.017 0.377 l 0.020 0.360 l 0.032 

1916 0.174*0.016 0.057*0.014 0.424i 0.016 0.345 f 0.028 

1932 0.149 * 0.021 0.061t 0.019 0.412 f 0.024 0.376 * 0.037 

1935 0.154+ 0.024 0.109 10.023 0.404* 0.028 0.333 + 0.043 

1973 0.142 * 0.014 0.075 -10.013 0.426t 0.017 0.357 * 0.026 

1980 0.125 l 0.087 0.087 +0.013 0.426t 0.017 0.362i 0.090 

18011 
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Is. Production Angular Distributions 

There is little structure in the production angular distributions of the 

three final-state pnrticlcs. Distributions at four representative energies are 

prcscntcd in Figs. 32 and 33. Most of this region is dominated by s-channel 

rcsonanccs whose decays arc characterized by fairly symmetrical or iso- 

tropic distributions. However, the Sorward peaking of the final nucleon, 

cspccinlly at higher encrgics, is the earmark of peripheral interactions. A 

less promimant forward peak is also present in the distribution of the final 

it in the n?r’ K- reaction. If this peaking indicates a t-channel effect, it 

might bc caused by the exchange of an exotic resonance with 1=2. (See dia- 

gram of Fig. 34.) It would also contradict the observation that A- production 

is falling rapidly at higher energies. An explanation is more likely to exist 

in terms of s-ch,annel effects. 

C. Moments Analysis 

The mass distributions and production angular distributions display the 

behavior of only one or two of the five possible variables; information is lost 

by summing over the rest. Without building a model, a complete description 

of the data is practically impossible. However, we can examine the data in 

one final way that yields information on the states of total angular momentum 

that are present. We found the moments involved by fitting the data to the 

form 

(4.5) 
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FIG. 34--Diagram for the production of forwa:d 
T’ mesons in the reaction TT-p -+ A-s . 
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(Dividing by u normalizes the coefficients to 1.) The beam coordinates 0 and 

C#J are defined in the system where 

4 = Gr- x 6, (4.6) 

;=; 
N (4.7) 

$=4x2 (4.8) 

s 71-, fi, and bN are unit vectors in the directions of the outgoing particles 

measured in the center-of-mass system. 

The coefficients WE contain the interference terms between 

TAP TAP* F(JT.4, J’, L’, L) 6M h-e&f 2(2L+l) JA J’A’ (4.9) 
hp JJ’ 

Ah’ 

J = total angular momentum 

A = z-component of J 

h = z-component of final nucleon spin 

1-1 = helicity of initial state 

The factors F are products of Clebsch-Gordan coefficients relating the 

product of states with JA and J’A’ to give a state with LM. Because of parity 

requirements on the amplitudes TA Jh, the .coefficients obey the rule 

M WL =o if L+M is odd (4.10) 

We can further deduce that states with the same parity contribute to 

coefficients with L even and those with opposite parity to L odd. The parity 

of a state is given by (-1) A-h . For states to have the same parity, A and .4’ 
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must differ by an even integer, so that M =A-A’ is even. According to rule 

(4. lo), L must also be even. A similar argument applies to states of oppo- 

site parity. 

A partial wave of total angular momentum J contributes to all Wr coef- 

ficients up to L I 25-l. The terms with J I 3/2 contributing to Wi through 

Wi are listed in Table X. With these coefficients and the above rules in 

hand, let us examine the experimentally determined moments displayed in 

Figs. 35 and 36. The coefficients for L > 5 were all zero. Even WY are 

nearly zero below 1800 MeV, where we would expect to see interference 

between the D15 and F15. Apparently the integration over the Dalitz plots 

led to cancellation of these interference effects. The moments for L = 4 

should show the presence of the D15 and F15, and they are nonzero in the 

neighborhood of 1700 MeV. However, the small size of these coefficients 

may indicate either small coupling to the nT++R- channel (unlikely) or again 

cancellations. The structure of Wl in Table X illustrates how such cancel- 

lation may occur. In this case, the cancellation obscures the presence of the 

D13 wave, but the structure of Wi from nT’=- in the region of 1550 MeV 

probably signals interference of the D13 and Pll waves. The fact that a 

similar effect is not present in the pn-a0 coefficients might be explained by 

the existence of an I=0 71~ effect at low mass values. 23 

Clearly a model is required to extract the information lost in the inte- 

gration over the Dalitz plot. One such model now being applied attempts to 

describe the three-body final state in terms of two-body interactions and 

their interference effects. A maximum likelihood fit is made to all variables 

of the data. 
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TABLE X 

Contributions of Partial Wave Amplitudes to WT 

W; (Bll12 + lBle112 + IB3+312 + lB3112 + tB3m112 + lB3p312 

1 1 
w1 3 42 BllB;-1 - $ B33B;l - 2 $ B3lB;-1 - G B3-lB;-3 

+ h B33B;l + B3&m1 - BllB;ml - 4-i B1-1B;-3 I 

0 1 
w2 5 I - 1f333t2 + l’33112 + 1B3m1i2 - 1B3v312 

+ Jz x 

C B 31 B*+B 11 11 Bzl -B 3-lBT-1- Bl-lB;-l II 
2 1 

w2 5 i [ - Ji B33BZ-l+ B3lB$-3 1 [ -2 B33BT-1 - BllB$_3 II 
1 16 

W3 ‘?s 1 B33 Bzl - J3 B3lBg-l+ B3-l BZ-3 I 

3 6d5 
W3 7.5 B33Bk3 

N. B. Each term of these expressions contains an implied sum over h . 

(See text.) 1801Kl6 
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FIG. 35 cont’d. 
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FIG. 36 cont’d. 
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V. ELASTIC PHASE SHIFT ANALYSIS 

A. Formalism 

Let us start by writing general expressions for the scattering of a spin 0 

meson by a spin l/2 baryon into a final state consisting of a spin 0 meson and 

a baryon. We may then consider the particular cases of elastic n-p scatter- 

ing and, in the next chapters, inelastic A-r+ production. The formalism for 

a three particle final state, leading to Eq. (4.5), will not be developed in 

this thesis. 

1. Differential Cross Sections 

The differential cross section can be expressed in terms of the helicity 

amplitudes ThJh , (34’ 35) for the scattering of a state with total angular mo- 

mentum J and helicity A into a state with helicity h’. 

dr/dR = 2 (+$ CA,, l<h’lTlh>/2 

where 

<h’lTh> = &.c, (2J+l) diA,(@) Tzh, 

(5.1) 

(5.2) 

and 

q = center-of-mass momentum 

&= rotation matrix elements 36 

It is more customary to work with states having definite values of orbital 

angular momenta L and L’ in the incoming and outgoing channels so we must 
J expand Thh, in terms of the amplitudes T J 

LL’ * (For elastic scattering, 

L’=L but for AT, L’=L and L’ = L+2, J=L+ l/2 L-2 J=L-1,2.) Using the relationship34 

<JM; LSIJM; hlh2> = CSlSZS 
wl4p1-Q Al’ -h2G5-9 

(5 * 3) 

- 83 - 



where 

CLSJ 
w,-yy2) 

= Clebsch-Gordan coefficient 

hl’ h2 = helicities of the two particles 

Sl’ s2 = spins of the two particles 

we find that 

<h’l’dA> = & c,c,,, d 
J LSJ L’S’J’ J 

G=+1)(2L’+l) dAh,W COhh COh,h, TLL, (5.4) 

The elastic scattering amplitudes <&ITI+> and <-$IT~$> are related to 

the familiar spin-nonflip and spin-flip amplitudes, f and g 

f(e) =; CL [G+l) TL++TL-] PL(COS 0) (5.5) 

g(e) = + CL (TL+ - TL) sin 0 P;;(cos 0) (5.6) 

in terms of which the differential cross section becomes 

du/dn = lfl2 + lg12 (5.7) 

Equation (5.1) reduces to Eq. (5.7) when the appropriate values for Clebsch- 

Gordan coefficients are substituted and the rotation matrices are written in 

terms of the first derivatives of Legendre polynomials, according to 
34 

J 1 
d&e’ = L+~ 

e cos 5 (PL+l - PL) for J=L+i (5.8) 

for J=L+% (5.9) 
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2. Polarization 

The polarization of the final baryon is usually measured with respect to 

the normal to the production plane, defined as 

s=;ix;,/I;ixgl (5.10) 

where 6/i and 4 are initial and final c.m. momenta. In the helicity frame, 

we are free to choose $ as the y-axis. Then we may construct states with 

“spin up” and “spin down” as linear combination of the helicity states 

“spin up ” IT>= i (IA> + i I-A> ) (5.11) 

“spin down” ll>= $ (IA> - i I -A> ) (5.12) 

The differential cross section for scattering into a state of spin up (down) is 

given by 

dcr,‘dn(;) = 2(9)zc, I<IITiA>12 

= ($ CA [l<AlTh>12 + I<-hlTlh>l 2 (5.13) 

F 2 Im (<h!Tlh>* <-AITIA>)] 

Polarization experiments measure the difference between the number of 

protons scattered with spins up and those with spin down. The expression 

for polarization thus becomes 

p(e) = 
do/da(f) -do/do(l) 

do/da 

Im( < -AITlh>* < A)TIA>) 
du/dR (5.14) 
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In terms of the usual spin-flip and spin-nonflip amplitudes, this becomes 

P( 0) = BIm(g*f)/(do/dO) (5.15) 

3. Total Cross Sections 

Integration of Eq. (5.1) over the angle B yields the total cross section. 

u = % c J (J+1/2) CLL’ lT”,,‘12 
q 

(5.16) 

4. Isospin 

The differential cross section (5.1) refers to states of pure isospin. We 

are interested in physical processes which are combinations of these. In 

particular, the x-p incoming channel could lead to elastic, charge exchange 

or An production. 

du/dfi 1 a-p ~ a-p = 213 Ie 1/2(e) + i/3 Ie3/2(o) 

dddfil 9-p e+ 7Pn = - &/3 Y2 e (6)) + vG3 1y2w 

du/dnIx-P+ A+x- = fiI~‘2(e) - vEI~‘2P) 

du/dfll,-p 4A-n+ = 1/3 Ir li2(e) + J8/45 rzi2(e) 

(5.17) 

(5.18) 

(5.19) 

(5.20) . 

I1/2, I3/2 are the cross sections for elastic scattering into isospin states e e 

with 1=1/2, 3/2 respectively. Ir i/2, I3/2 r are the isospin cross sections for 

scattering into the reaction channel AT. The same isospin coefficients apply 

to total cross sections. 
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B. Methods 

The goal of phase-shift analyses is to describe the behavior of the matrix 

elements TLL,. The method is to select a particular parameterization, then 

to adjust the parameters until the predicted values of physical measurables 

best fit the experimental quantities. The parameters may be simultaneously 

constrained by theoretical input. For example, all phase-shift analyses 

impose some form of unitarity on the amplitudes. 

Naturally each group attacks the problem differently but there are two 

basic types of approach; energy dependent and energy independent. The 

energy independent fits represent the partial wave amplitudes by a phase 

shift 6 and an absorption parameter v, according to 

2i ’ J=Li l/2 (5.21) 

A search is made for the set of 0;‘s and 8;‘s that best fits the data and 

satisfies the theoretical constraints. Usually there are numerous ambiguous 

solutions at each energy. Each group must develop a method to select the 

‘best” fit and to match it to fits at different energies by applying some type 

of smoothing criterion. 

Four out of the five phase-shift analyses 1,6,7,8,9 that span the region 

of our data are energy independent analyses. The group at Saclay, 1 which 

made the first analysis at these higher energies, eliminated ambiguous SO~U- 

tions by requiring that certain functions of the amplitudes TL as well as the 

amplitudes themselves have continuous behavior with energy. 

The Berkeley phase-shift analysis’ covers the same range as the Saclay 

analysis with essentially the same results. To select the best fits, Berkeley 
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defines a type of distance between the amplitudes as a function of energy. 

The “best” solutions at each energy are those that are connected by the 

shortest distance and have smallest changes in direction. A more recent 

analysis performed at Saclay, 9 also uses the criterion of minimal distance 

to select the best solution. 

These two solutions still exhibit some fluctuations with energy, caused 

largely by inaccuracies or inconsistencies in the experimental data. The 

phase shift group at CERN7 found a solution with much smoother energy 

variation by using constraints from partial wave dispersion relations. They 

fold the theoretical information back into the fit as data with large errors in 

an iterative procedure. As a result they obtain not only the largely experi- 

mental set of amplitudes (referred to hereafter as CERN-EXPT) but also a 

theoretical solution (referred to hereafter as CERN-TH) calculated from 

dispersion relations using the parameters of the final fit. 

The plots of Fig. 37 show that the CERN-TH solution provides a reason- 

able (and smooth) fit to the phase shifts and absorption parameters of CERN- 

EXPT shown in 37(al-rl) and 37(a2-r2). However, the partial wave cross 

sections shown in 37(a3-r3) and 37(a4-r4) predicted by these solutions are 

often in serious disagreement, as in the Sll, D13, and F15 partial waves. 

A fourth, limited, energy-independent analysis was made by a group at 

Rutherford Labs. They fit to their own ~6 elastic scattering data in the 

c . m. energy region 1’780 - 2000 MeV. 8 Because their data was confined to 

this one elastic channel they could not undertake an independent phase-shift 

analysis. Instead they sought to compare their data to the smoothed CERN- 

TH solution. The starting values were the CERN parameters. The param- 

eters were constrained to lie near these starting values but the program had 
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FIG. 37 cont’d. 
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FIG. 37 cont’d. 
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FIG. 37 cont’d. 
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FIG. 37 cont’d. 
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FIG. 37 cont’d. 
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enough freedom to make significant alterations in the parameters where the 

data required it. 

The final phase shift solution, performed at Glasgow, 10 is an energy 

dependent one. This type of analysis seeks to avoid the problems of un- 

smooth energy variation by building an energy dependence into the param- 

eterization. An historical example of this method is the analysis by Roper 

and colleagues, 4 which resulted in the discovery of resonance-like behavior 

in the Pll wave near 1470 MeV. In this fit the P33 and D13 waves were 

parameterized as Breit-Wigner resonances while the phase shifts of all other 

waves were given a polynomial momentum dependence. Rutherford Labora- 

tory2 has also published some results in which the dispersion relations are 

used to provide an energy dependence. Although such methods provide 

smooth variation for the partial wave amplitudes they may bias the results by 

forcing nature to assume a prescribed behavior. 

One of the Glasgow solutions (Glasgow A) attempts to minimize this 

forced behavior by using the “method of splines”. They make a fit in a nar- 

row energy region, expanding each phase shift or absorption parameter as a 

series about the central momentum. The end point of the fit in one region 

must be continuous with the starting point in the next region. The resulting 

parameters are then fit over the entire energy region by Breit-Wigner reso- 

nances and backgrounds. Finally a fit is made to the data itself with the 

resonance and background parameters free to vary. Glasgow B follows a 

similar procedure but uses the phase shifts and absorption parameters of 

CERN-TH as the starting point for the all-energy fit. 
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C. Comparisons and Results 

The elastic and differential cross sections predicted by four of these 

five phase shift solutions are presented in Figs. 38 - 41. The agreement is 

good for all solutions except for the CERN-TH fit. As we might expect from 

the discrepancies in Fig. 37, this solution misses much of the sharp structure 

in the data. Thus this particular solution, while valuable as a smooth fit to 

phase shift parameters and useful as a starting point (as we have seen) for 

other fits, should not be taken as a valid representation of the data itself. 37 

It is convenient to discuss the various phase shift results in terms of the 

resonance parameters - masses, widths and elasticities. In an energy 

dependent analysis, such as the Glasgow solution, these parameters are 

directly determined. However, in an energy independent analysis these 

parameters must be extracted from the energy variation of the absorption 

and phase-shift parameters. Here lies another source of differences among 

the phase-shift groups. 

One method of estimating the resonance parameters is to study the be- 

havior of the partial wave amplitudes on an Argand diagram. The real part 

of the amplitude is plotted against the imaginary part, as illustrated on 

Fig. 42. A pure resonance will describe a counter-clockwise circular path 

on such a diagram. The radius of curvature is proportional to the elasticity; 

the energy at which the phase shift passes through O” or 90°, or equivalently 

the energy at which the amplitude has its most rapid variation, is the mass 

of the resonance and the rapidity with which the phase shift changes deter- 

mines the width of the resonance. 

This method is called the ‘speed” method or “highest velocity criterion”. 

In principle it gives a very specific formula for identifying resonance 

- 96 - 



32 

24 
25 
E 

F 16 

8 

0 

x Duke et til. 
0 Hel land et a 
A Ogden et al. 

l This Experiment (72” Alvarez HBC) 

0 This Experiment (30” MURA HBC) 

CERN 
I. ~ Experimental 

--- Theoretical 

- 

A 
A 

0 

1500 1600 1700 1800 1900 

Ec.m. (MeV) 
FIG. 38--n-p elastic cross section measurements of Duke & &. , 2o Helland $ &. , 21 Ogden & @. , 22 

and this experiment. Solid and dashed lines represent the r-p elastic cross section predicted 
by CERN-MPT and CERN-TH phase shift, respectively. The arrows indicate the energies 
chosen for differential cross section comparison. 



- - 

\ \+ \ 
a a 

- - 

- - - - C
 6 

( I ( 
_ 

( ( t I I 3 x) 
- E - 0 g - 0 0 If-l 
- 0 $ - 0 

c5 

8 
El 

- 

0 

- 98 - 



0 

FIG. 40--7r-p differential cross section at six energies 
measured in this experiment. Solid and dashed 
lines are the predictions of CERN-MPT and 
CERN-TH phase shifts, respectively. 
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parameters. In practice, the task is far more difficult because the reso- 

nance circle is displaced and distorted by background and other effects. The 

amplitudes themselves may also exhibit “experimental” fluctuations despite 

the efforts to obtain fairly smooth phase-shift parameters. The group at 

Rutherford Labs used this method to find the resonance parameters listed in 

Table I. 

A second method is to plot the partial-wave cross sections as functions 

of energy. The energy where the cross section peaks is taken as the reso- 

nance mass. The Saclay group applied both this criterion and the velocity 

criterion to the same phase-shift solution. The two sets of resonance param- 

eters that resulted are listed in Table I. 

The CERN group uses a third method. They examine the plots of absorp- 

tion and phase shift as functions of energy and search for behavior charac- 

teristic of resonances. For example, the onset of a fairly inelastic reso- 

nance is accompanied by a dip in the absorption and a simultaneous rapid 

change in the phase shift. The three sets of resonance parameters that have 

been reported at different times by CERN are also listed in Table I. 

Let us now compare these various resonance parameters. All solutions 

listed in Table I show the P33 (1236)) P11(1470), D13 (1520), D15 (1670)) 

F15 (1688) and F37(1950) that were seen in the studies of the Legendre coef- 

ficients and in the lower energy phase shifts. In addition to these resonances, 

first Saclay then Berkeley found evidence for resonances in the Sll partial 

wave at 1535 and 1700 MeV and also in the S31 near 1650 MeV. The CERN 

analysis, which extended to higher energies, claimed evidence for nine new 

resonances - P33 (1688)) D33 (1670), F35 (1890)) P31(1910), D35 (1960)) 

P11(1780), P13 (1860)) F17 (1990) and D13 (2040). (The resonance masses 
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, 

quoted are not necessarily the original values but the average of all values 

listed.) In subsequent communications, 12e, f CERN also added to the list the 

Sll(l700) that was seen by Saclay and Berkeley, a P33 (2160) and a mass 

value for D13 (1700). 

Both Glasgow solutions confirm the resonances announced by CERN 

except for the P33 (1690)) D13 (1700), D35 (1960)) P33 (2160) and D13 (2040); 

the latter three are close to or beyond the highest energy of the Glasgow fits. 

In addition, Glasgow A and Glasgow B differ with one another and with CERN 

on whether there is a G17 or F17 or both near 2000 MeV. 

The Rutherford fit strengthens the resonance interpretation of the 

P13 (1860). They find an anomalous behavior of the elasticity and absorption 

of the D13 (2040) that weakens the resonance interpretation. Finally, the 

Rutherford group finds both a G17 and an F17 resonance near 2000 MeV and 

proposes a possible parity doublet like the D15/F15 doublet at 1680 MeV. In 

the I = 3/Z partial waves, they see a D35 (1950) and a P33 near 2000 MeV . 
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VI. PARTIAL WAVE ANALYSIS OF A-x+ 

A. Method of Analysis 

In the reaction x-p -+ nn+n- the mass plots (Figs. 28 - 30) appear to be 

dominated by A-=+ production from 1647 to 1766 MeV, as seen from the 

MURTLEBURT results in Fig. 31. In this region it is feasible to isolate 

events belonging to the intermediate state 

-+ 
rp-+Aa (6.1) 

and to make a partial wave analysis of this quasi-two-body reaction. The 

method used was an energy dependent phase shift analysis. 

The events belonging to reaction (6.1) were those for which the value of 

(nn-) mass fell within the range 

1140 L M(n7i-) 5 1320 MeV (6.2) 

The selection includes background events which were estimated, on the basis 

of the MURTLEBURT results, to comprise about 250/o of the sample. These 

events do not proceed through the A-?: intermediate state and are not ex- 

pected to change the resonance parameters determined in the fit, although 

they might influence the background terms. The selection also excludes 

some true A-?: events and the fitted branching ratios were later corrected 

for this effect, as discussed below. 

The analysis followed the procedure developed by Brody and Kernsn. 38 

Each final state is characterized by its value of outgoing orbital angular 

momentum L and total angular momentum J in the notation L2J. Thus D15 

and F15 contribute to D5 and P5, respectively (outgoing states of higher 

orbital angular momentum - G5 and F5 in this case - have been ignored; 

barrier penetration factors prevent them from playing a very large role). 
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The D5 and P5 waves were parameterised as resonances and the rest - S3, 

Pl, Dl and F7 - were parameterized as backgrounds. 

The resonances were given the shape of a nonrelativistic Breit-Wigner 

amplitude : 

1 hepI q#3 
T =z (MO-E) - i F,,(E)/2 

The widths have an energy dependence of the form 

BLcq 
ri(E) = xi rtot - ‘i MO 

BL(q;) T 
E 

(6.3) 

(6.4) 

Here, 

xi = the branching ratio I’~/I& with i referring to the elastic (el) 

or delta-pi (An) reaction 

qi = center-of-mass momentum 

E = center-of-mass energy 

BL(q) = barrier penetration factor 29 with radius of interaction equal 

to 1 fermi 

L = orbital angular momentum in the particular channel 

The superscript o refers to the values of these quantities at the resonance 

mass E=M 0’ 

The total width is the sum of partial widths 

rtotm = rep + rA,tq + r,(E) (6.5) 

With the approximation that the other reaction channels, collectively denoted 

by r, have the same energy dependence as the Ar channel, the total decay 
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width may be written as 

rbttE) = reltE) + rAT 
(1 - Xel) 

x (6.6) 
A’IT 

The representation of the resonance described thus far has four free 

parameters: I&, xel, xAs and the resonance mass MO. However, we may 

reduce the number of parameters by assuming for x el the value determined 

by elastic phase shift analysis. The form of parameterization then becomes 

T$ cot JGG f(El 
BLt4) 

tMO-q -$ rt”ot Xel BL(qO) qO . c 
_g; + (l-xel) 

BL(qA~) qA?r MO -- 
BL(q;,J qln 1 E 

(6.7) 

where 

MO f(E) = 7 
BL(g, p BL(qAn) ‘An 

BL(qo) q. BL(q&) qir 
(6.8) 

The free parameters are dc, MO and rLt. 

The backgrounds are given the momentum dependence 

T=(a+bqAa)+i(c+dqA,,) (6.9) 

with the real numbers a, b, c, and d as the four independent parameters. 

All these parameters are adjusted to fit the experimental distributions by 

minimizing the chisquared function 

F=y y 
[(%)ob;ii%)pred]:C 

- 
energies 

F;s$kdr (6. 1o) 

obs 
/1 
energies %!angular 1 * t&l/obs 

distributions 

with the minimization program MINFUN. 
39 
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B. Results 

After random starts from numerous parameter values, the program 

found two distinct solutions, A and B, corresponding to the parameter values 

listed in Table XI. A differs from B in two striking ways: The relative sign 

of coupling for D15 and F15 is negative and the size of F15 coupling is con- 

siderably smaller. The Argand plots in Fig. 43 show the differences dra- 

matically. The P5 wave for solution A falls below the real axis and the 

backgrounds are located in very different regions of the plots. Figure 44 

displays the partial-wave cross sections predicted by the two sets of param- 

eters. Their sum is compared to the experimental cross section u,~+~- 

within the cut region. In solution A the large Dl and S3 backgrounds appear 

to compensate for the low value of the P5 resonance. In Fig. 45 the pre- 

dictions of the two solutions are compared to the differential cross sections 

at three energies, where they give essentially the same result. 

The fits were extended to lower energies in an attempt to determine the 

sign of the D13 coupling relative to the D15 and F15. However, the D13 con- 

tributes to the same channel as the s-wave background so the fits were 

inconclusive. 

The errors associated with these parameters are determined by varying 

each parameter in turn and reminimizing. The amount by which the param- 

eter value can be varied before it changes the chisquared function by a cer- 

tain amount is a measure of the error associated with this parameter. 

The fit can be extended to include the distributions of the T- and the n 

from the decay of the A-. When these data were included in the fits, solu- 

tions A and B were basically the same. The decay distributions are more 

sensitive than the angular distributions to the nr+‘iT- background and 
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FIT PARAMETERS 

I 

MC%% 

1.690 

l 0.005 

1.686 

* 0.009 

P5 (F,S 

Width 

0.077 

* 0.022 

0.130 

+ 0.035 

- 0.053 

{ 

0.112 

* 0.017 

0.158 

1 

+ 0.090 

- 0.020 

D5 P15) 

Width , JXel 
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of the various partial waves in solutions A and B. 
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interference with the A’. Thus we feel that the fits without the decay distri- 

butions are more reliable. 

One of the fitted parameters is the product of branching ratios, /Ki. 

The elastic branching ratios for D15 and F15 are relatively well established 

from the phase-shift analyses. For these ratios we take the average of all 

the phase-shift resultsllb (xel=0.42*.04 for D15 and xel=0.62i .06 for Fl5) 

and then solve for x A* and the partial width. These values will be under- 

estimates of the actual values because the mass region in which the analysis 

was made excluded some events that proceed through the intermediate state. 

To determine the number of events lost outside this region it is desirable to 

express the shape of the distribution in terms of the empirical A(1236) phase 

shift, 6 33. The form used was 

2 

ITAl = sin ‘33 M _gi 2L 
ww -T 90 

where l?(M) is given by 

MA NW 
tan s33 = 2 

MA-M 
2 

(6.11) 

(6.12) 

In these equations, q and M are the momentum and mass in the decay frame 

of the delta. One may use this formula together with the appropriate value 

of orbital angular momentum to estimate the fraction of events lying outside 

the mass cuts. The correction factors determined in this way are 1.22 and 

1.20 for the p-wave decay of the F15 and the d-wave decay of the D15, 

respectively. The branching ratios listed in Table XII, include these cor- 

rections. 
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C. SU3 Predictions 

The D15 and F15 resonances are classified by SU3 as members of the 

5/2- and 5/2+ baryon octets. The coupling constants for the decays of these 

resonances into the A-(1236) and the x’ should be the same as those for other 

members of the octets into the 3/2 baryon decuplet and the O- meson octet. 

The branching ratio measured in this experiment can thus be used to calcu- 

late the coupling constant characterizing these octets. 

The prescription for relating the coupling constant g to the partial widths 

for particular members of the multiplets is 
40 

(6.13) 

where 

c = Clebsch-Cordan coefficient for 181-+ 1101 x 181 

Mp = proton mass 

%= resonance mass 

<BL(qR)qR> = product of the barrier penetration factor, with radius of 

interaction equal to 1 fermi, and momentum of the decay 

particles. The product is averaged over the width of the 

resonant e . 

Table XII lists the values of g2 determined from the two sets of solutions A 

and B. These coupling constants are used to predict the partial widths and 

branching ratios for the other members of the octets. Comparison with 

experimentally observed branching ratios is possible only in two cases, for 

x(1765) -+ C(1385)~(~l) and A(1815) -+ 2(1385)~.~l Solutions A and B lead 

to comparable predictions for the former but only solution A agrees with the 
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latter. One might hope that a partial-wave analysis of the reaction 

K-p -+X(1385)9 -+ Alrr (6.14) 

would yield branching ratios for the A(1830) and X(1915) resonances as well 

as additional measurement of the C( 1765) and A( 18 15) branching ratios. The 

relative coupling of A(1830) and A(1815) to the C(1385)~ channel must be the 

same as the D15-F15 coupling; measurement of this would distinguish be- 

tween our two solutions. 
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VII. COUPLED CHANNEL ANALYSIS 

A. Introduction 

The elastic and delta-pi channels considered separately in Chapters V 

and VI are related to one another through the requirements of unitarity. This 

condition is usually expressed in terms of the scattering matrix S. 

s+s=1 

If we write S in terms of the T-matrix as 

S=I+ 2iT 

then the unitarity condition on the T-matrix becomes 

(7.1) 

(7.2) 

Im(T) = T+T (7.3) 

In partial-wave analyses of one channel alone, unitarity is imposed on the 

amplitudes in the form of an upper limit. For example, the S-matrix ele- 

ment for elastic scattering is often represented by 

s = rle-2iS (7.4) 

In order not to violate unitarity, the absorption parameter is required to be 

less than one. If there is an appreciable scattering into a second channel, 

however, unitarity would require q to be significantly smaller than one and 

the upper limit imposed in the one-channel fit does not sufficiently restrain 

the amplitude. 

In a coupled-channel analysis, two or more channels must simultaneously 

satisfy unitarity. In particular, let us consider the elastic and delta-pi chan- 

nels of nN scattering. The formalism that will be developed can be extended 

to include the effects of other channels such as the Nnx background, or 

strange particle channels, but the aN and aA channels will account for a large 
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percentage of the total amplitude. Furthermore the data itself and the large 

number of parameters involved in the fits prevent one from distinguishing the 

effects of these other channels. We may lump them all together a one col- 

lective “background” channel. 

The delta-pi channel must actually be considered as two channels; for 

each value of L in the incoming state there can be two values of L’ (orbital 

angular momentum) in the final AZ state. We thus seek a parameterization 

for a T matrix that describes TN scattering with four open outgoing channels 

and that satisfies (7.3). Actually, (7.3) applies to each 4x 4 submatrix, 

TJLL” corresponding to each set of the quantum numbers J (total angular 

momentum), L (orbital angular momentum in the incoming channel), and 

L’ (orbital angular momentum in the outgoing channel). 

To summarize, the four channels considered in the coupled-channel 

analysis are 

7r-p -a IT-p 

-+ -+A r 
-+ -A ?T 

+ background 

L=L’ (7.5a) 

L = L’ (7.5b) 

LfL’ (7.5c) 

L = L’ (7.5d) 

B. Formalism 

1. K-Matrix Approach 

R. H. Dalitz42’43 has formulated an approach to the coupled-channel 

problem in K-p scattering. He chose to work with the reaction matrix, or 

K matrix, rather than the T matrix. The K matrix describes a process in 

which the scattered waves are standing waves rather than travelling waves. 

Naturally, the K matrix does not correspond to any physical process but is 
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simply related to the T matrix that does describe physical scattering: 

T = (I-~IcC)-~ K (7.6) 

The great advantage of the K matrix is that if K is hermitian, the T matrix 

determined from it according to (7.6) will automatically satisfy unitarity. In 

addition, if K is real,both K and T will be time-reversal invariant. Thus 

instead of selecting n(n+l)/2 complex parameters to represent the T matrix 

then imposing the restraining equation, (7.3)) one can simply choose n(n+l)/2 

real parameters of the K matrix. 

Dalitz worked extensively in the K matrix to describe the K-p scattering 

near threshold. However, most of his techniques are inapplicable to r-p 

scattering in the region of this experiment because the near-threshold approx- 

imations used are not valid so far above threshold. The rest of this section 

is therefore devoted to using the K matrix only to develop an appropriate 

parameterization for the T matrix. 

Suppose we wish to calculate the T matrix for a process involving only 

two channels. First we select three real parameters - Q, ,f?, and y - to 

define an arbitrary K matrix. 

o! P 
K= [ 1 P Y (7.7) 

Rather than calculating the T matrix directly from this K matrix we can 

simplify the computation by first diagonalizing K. If U is the unitary trans- 

formation that takes K into the diagonal K matrix K D , that is, if 

KD = U-l KU (7.8) 
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then it is easily shown that the T matrix can be written in terms of KD as 

U-l 

Let the eigenvalues of K be tan Sa and tan 6P so that 

P I 

The unitary matrix II may have the form 

cos 6 

[ 

-sin 0 
u= 

sin 0 cos e 1 
Then the T matrix resulting from (7.9) will have the following form: 

(7.9) 

(7.10) 

(7.11) 

1 cos 9 sin 0 ( ctn 6 1 sin2 9 cos2 8 -i + ctn 1 S 
-i 

. + 
-i 

o! P > ctn fia! -1 ctn 6 
P 

(7.12) 

The three parameters of the K matrix have been replaced by three new 

parameters, So!, Sp, and 0. The two sets are related by the following 

equations : 

tan sa = C-Y cos2 8 - y sin2 9 
cos2 e - sin2 e 

(7.13a) 

tan s = y cos2e- (Y sin2e 
P cos2 0 - sin2 0 

(7.13b) 

tan 28 = ZP/(a! -y) 
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2. Resonance Parameterization 

At this stage we must make some assumptions and lose generality in the 

interest of deriving a convenient and manageable parameterization for the T 

matrix. The result will not be the most complete expression for T but will 

be one that nevertheless satisfies unitarity and that has a suitable form for a 

computerized fit to the data. 

Thus we assume that one of the eigenvalues of the K matrix is near zero. 

If tan Sp is near zero then the second term in each of the matrix elements of 

(7.12) is also near zero and may be neglected. We are left with a T matrix 

of the form 

(7.14) 

Near a resonance in the elastic (Tll) channel, the phase angle 8o must 

pass rapidly through 90’. The eigenvalue, tan Scr, may be expanded about the 

resonance energy, ER, as follows: 

(7.15) 

Let us call the expression 2(ER- E)/F by the term e. Furthermore we can 

define cos2 0 to be the elasticity x, or Tel/F. Then the amplitude in the 

elastic channel has the appearance of a simple Breit-Wigner resonance and 

the T matrix assumes the familiar form: 

(7.16) 
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c 

3. Resonance Plus Background 

If there is background in the same channel as the resonance, the phase 

shift may be written as the sum of two angles, one of which (6,) passes 

rapidly through 90’ while the other (&& remains nearly constant as E 

approaches ER. 43 

(7.17) Tan Sa =tan PR+sB) 

When this expression is substituted into l/(ctn Sty-i), the result is 

1 
2iSB 

e + 1 
ctn Sa, - i = ctn 6R - i ctn6 -i (7.18) 

B 

The effect of the background is thus to shift the position of the resonance by 

an angle of 2 6B and to add a constant background term. 

4. Background Parameterization 

Away from resonance the phase shift Sa, is small and the background 

amplitude for elastic scattering is simply 

T cos 2e 
ll= ctnaa,-i 

or, equivalently, 

where 6 = f + 8o (7.19) 

In general the backgrounds have a slight energy dependence. This energy 

dependence can be put into the parameterization by giving the angles 6 and 9 

a linear dependence on momentum 

9 = e1+qe2 (7.2Oa) 

(7.2Ob) 



5. Extension to Four Dimensions 

The 4x 4 T matrix may be found using a procedure similar to that fol- 

lowed in the case of the 2x2 T matrix above. The most general 4x4 unitary 

transformation U has 6 independent variables. Together with the 4 param- 

eters needed to describe the K matrix, this makes ten parameters to describe 

the four open channels; only three were required to describe the scattering 

with two open channels. One would expect, however, that only two param- 

eters need be added to represent the effects of the two additional channels. 

Again we can assume that only one eigenvalue of the K matrix is nonzero. 

Then, it is found that only three of the variables that represent the unitary 

matrix U will enter the first row of the T matrix. Because we look only at 

physical scattering with T-p in the incoming channel, we are only concerned 

with this first row. Thus it is sufficient to select a unitary matrix repre- 

sented by three independent variables. 

Let us write this unitary matrix U as the product of successive rotations 

in a four-dimensional space. The rotation angles are the three parameters 

6’, (Y, and /3. Using this matrix U in the Eq. (7.9) we find the following 

1 (7.21) 
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We are concerned only with the first row of this matrix, which contains the 

scattering amplitudes for r-p in the incoming channel. Comparison with (7.16) 

reveals that the elastic term is still cos2 6 = x. The inelastic terms are still 

proportional to &i$ but they are now modulated by the terms cos (Y, 

sin (Y cos p, and sin o! sin p. Obviously ar=@O corresponds to the situation 

where channels (3) and (4) are closed and returns us to the 2x2 T matrix. 

C. Fitting Program 

The formalism above is used to predict the amplitude for scattering in the 

three physical channels aN --+ TN and TN + rA. Depending on whether a par- 

ticular partial wave is assumed to contain resonance, resonance plus back- 

ground or background alone, the amplitude for scattering is proportional to 

T= 1 1 
ctn So-i = - c -i resonance 

2i 6D 
e 1 resonance 

= ctn SR - i + ctn ?jB-i plus background 

1 
= -t-s-i ’ 6 = 61+q62 background 

(7.22a) 

(7.22b) 

(7.22c) 

with the constant of proportionality varying according to the channel in 

question: 
2 x = cos e 

cos 8 sin 0 cos a 

cos 9 sin 0 sin o! cos .B 

cos e sin 6 sina sinp 

(7.23a) 

(7.23b) 

(7.23~) 

(7.23d) 

Thus for each partial wave there are five parameters - ER, F , 0, (Y, and 

p - to describe a resonance with a sixth additional parameter - SB - to 
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include a background with the resonance. There are six parameters - el, e2, 

a,, S2, CY, and p - to describe a pure background. 

For a particular set of parameters, the T-matrix amplitudes may be cal- 

culated and substituted into Eqs. (5.1) , (5.14)) and (5.16) to yield the differ- 

ential cross section, polarization and total cross section for a particular 

channel and a particular value of isospin. The isospin amplitudes are then 

combined according to (5.17) through (5.20) to obtain predictions of the physi- 

cal measured quantities. Note that (5.1) , and (5.16) are general enough to 

apply to aN ---) ah reactions as well as to TN - TN; one merely changes the 

limits on the summation over final-state helicities to run from -3/2 to +3/2. 

The value of the various quantities (xialc) predicted with a given set of 

parameters are compared to the experimentally determined values (xmeas) . 

The quality of the fit is described by the value of chisquared, defined as 

(x1 -x1 ) 2 
x2 = meas talc 

tA&eas)2 
(7.24) 

The computer program MINFUN 39 then conducts a search in the parameter 

space for the minimal value of X2, The details of the subroutine FCN - flow 

chart, format of input cards, list of arrays and listing of the program itself - 

of MINFUN are given in Appendix I. 

The input data to which the predictions are compared includes not only 

the elastic n-p 4 n-p and inelastic n-p d A-T+ channels measured in the 

present experiment but also the charge-exchange 44,45 data and polarization 

data46 measured in other experiments. The charge-exchange data helps to 

distinguish the isospin of the various partial waves and the polarization data 

helps to determine the correct parity. 
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The proper normalization of the differential cross section u _ IT ,--+A+ is 

not accurately known in the present experiment so an additional set of param- 

eters was included in the fits to correct for the uncertainty in normalization. 

First the cross section was approximated by multiplying the nn+n- cross sec- 

tion in the region of the delta mass cut by the AT fraction found in the 

MURTLEBLJRT fit (see Chapter IV). The AT fraction really applies to events 

both inside and outside the mass cut. But the mass cut includes events that 

may not be true delta-pi events. These two errors tend to cancel one another 

but the cancellation may not be exact. Thus we correct for possible normali- 

zation errors by including a set of parameters ei where 

X1 talc = E. x1 i talc (7.25) 

and i denotes a measurement at a particular energy. 

The fit was restricted to the energy region from 1640 to 1760 MeV in the 

center-of-mass because this is the only region where there is an appreciable 

cross section for the reaction IT-P -+ A-?;t . Only partial waves up to F7 were 

included in the fits although the program is written to allow for waves up 

through G waves. 

Table I indicates that the strong candidates for resonance in this energy 

region are S11(1700), D13 (1700), Pll (1780), D15 (1670), F15 (1688), 831 (1650), 

P33 (1690), and D33 (1670). Of these the D13, P33, and D33 are seen very 

weakly in the elastic phase-shift analyses. The coupled-channel analysis is 

more limited in scope than the phase-shift programs and can not be expected 

to detect these weaker resonances. The Pll(l780) is a very broad resonance 

beyond the highest energy so the program can not distinguish between the tail 
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of this resonance and a background. Thus only Sll, D15, F15, and S31 

remain as candidates to be parameterized as resonances. 

The starting values for resonance parameters were taken from the results 

of the various phase-shift solutions. Many sets of starting values were tried. 

In general, the fits with all four waves above treated as resonances gave 

better fits than those with only D15 and F15 resonances. 

Initially it was hoped to include all channels in a simultaneous fit. How- 

ever, it was soon found that because the errors on the An channel were large 

compared to those on the elastic, charge-exchange and polarization data that 

this channel had little influence on the fit. A better procedure was to fit the 

elastic channels alone. The parameters, Q and p, which determine the rela- 

tive amounts of amplitude in the inelastic channels, were unaffected by this 

fit. Then the delta-pi channels alone were fit with the resonance and back- 

ground parameters fixed at the best fit to the elastic channels and only CY and 

p free to vary. Finally, all data was included in a last step, with most of the 

parameters free to vary. 

D. Results 

Only preliminary results are available so far. An examination of them 

reveals some interesting features but also suggests some improvements that 

should be tried before one might have full confidence in the results. 

The X2 for the fit to the elastic data was 1476 for 459 data points and 42 

parameters. The parameters - 0, M, l?, and 6R for resonances and 0 l, 

O2’ 6 1, a2 for backgrounds - were fixed at values from this fit. Then the 

An data was fitted with only the parameters CY and j? free to vary. The X2 was 

975 for 180 data points and 16 parameters but came down to 643 when normali- 

zation parameters were included. The normalization parameters were on the 
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order of 10% or less. The branching ratios into An for DD5 and FP5 partial 

waves agree well with those of solution A (except for the sign) of the Ar partial 

wave analysis discussed in Chapter VI. The parameter p is essentially zero 

for all waves, an indication that the effects of a fourth channel are negligible - 

(Y is fixed at n/2 for Sll and S31 partial waves because there is only one out- 

going channel open to them. Table XIII lists the parameters of the best fit 

obtained in the initial experimentation with the program. The parameters give 

rise to the amplitudes displayed in the Argand diagrams of Fig. 46. The 

resonant waves - Sll, D15, F15, and S31 - are compared here to the results 

of elastic phase-shift analyses. The predicted cross sections are compared 

to the data for several representative energies in Figs. 47 - 50. 

The partial waves D15 and F15 agree nicely with the results of phase- 

shift analysis. The partial waves that show the largest deviation from 

expected behavior are the S31 and Sll resonances. The phase-shift solutions 

find the Sll to be a pure resonance centered at 1710 MeV and the S31 to be 

highly inelastic and to move clockwise on the Argand diagram (pure resonances 

move counter-clockwise) as energy increases. However, in the preliminary 

coupled-channel solutions, the Sll rather than the S31 had the large back- 

ground. The background in the Sll wave makes it look like a pure resonance 

at a lower energy. 

Thus the weakness of this fit is its inability to correctly describe the 

behavior of the backgrounds in the lower partial waves. However, it is a 

reasonably good fit to the data, except at lower energies, where the back- 

grounds do not have the right shape. 

These discrepancies might be eliminated by judicial choice of initial 

parameters. In most fits the background phase angles SD were started at 
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TABLE XII, 

Parameters from Coupled Channel Analysis 

A. Resonances 

L 2125 
0 M r 6B 01 P 

2% LpL1 

(radians) WeV) U-V) (radians) %l 
GG JXelXan 

531 ,106 1640 180 - .os 1.57 0 .58 0 ,495 

Sll ,116 1710 300 ,663 1.57 0 .97 0 .I68 

D15 .861 16P2 116 0 - ,318 0 .42 .466 -.153 

F15 ,622 1676 115 0 1.054 0 .66 .232 ,410 

B. Backgrounds 

Ol 

P31 1.06 

P33 1.39 

D33 1.41 

D35 

F35 1.17 

Pll 1.17 

PI3 1.61 

D13 1.38 

i= 

;+I4 ’ l.:, I.“,, I:06 I.13 1.1, l.“,, I.“,1 1.08 

x 2 = 647 for 180 data points (fit to &.n channel) 

X2 = 1476 for 459 data points (fit to elastic channels) 
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FIG. 46--Variation of the partial-wave amplitudes in a preliminary coupled- 
channel fit to the data of the present experiment. Resonant waves 
are compared to results of the Glasgow phase-shift analyses. 
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FIG. 48--The experimental polarization compared to the 
predictions of the coupled-channel program. 
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FIG. 50--The experimental nn+Ir- differential cross 
section in the mass cut region 1140 L M(a-n) 
I 1320 MeV compared to the predictions of 
the coupled-channel program. 
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zero. However, more appropriate behavior for the S31 results only when the 

phase angle lies in a certain restricted angular region where the criterion of 

clockwise motion for the S31 is satisfied. This criterion can also be stated as 

a requirement that the imaginary part of the amplitude increase with energy 

when the real part is negative. For a resonance plus background the amplitude 

has the form 

E cos 2 6, - sin 2 6 
Re(T) = 

ctn 6R 

l-l- l 2 
g-k 

ctn2 6R + 1 
(7.26a) 

E sin 2 
6R 

+ c0S 2 6 
Im(T) B+ 1 = 

l+ l 2 ctn2 
(7.26b) 

6R+ 1 

Over the energy region of the fit, E goes from nearly 0 to approximately -1.3. 

Thus we must select an angle 6R such that Im(T) at e=O is less than Im(T) at 

e=-1. This condition is satisfied if 6R lies between 45’ and 67’. If 6R is 

in this range, the real part of the amplitude will automatically be negative. 

If this guide for an initial guess at 6R for S31 is tried, it might lead to more 

reasonable behavior for both the S31 and the Sll. 

The backgrounds in this fit remain more constant than they really are. 

Apparently the energy dependence of the parameterization is too weak in the 

region of the starting values to produce much variation. To force a stronger 

energy dependence on the amplitudes the coefficients 62 and 82 of the mo- 

mentum should be made as large as possible. Again a study of the form of 

the amplitudes may suggest the most appropriate region for these parameters. 

The background amplitudes are proportional to terms of the form: 

Re(T) QC x 
1 -t x2 

(7.27a) 
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and 

where 

Im(T) a: 1 
1+x2 

(7.27b) 

x=tan(s1+qs2) . 

These two functions are sketched in Fig. 51 where it is clear that the most 

rapid variation of the function occurs for 0 < x < 1. We should select S1 and 

62 so that tan ( S1 + q S2) covers a large portion of this range as q goes from 

.8’7 to .96 (corresponding to the energy range 1640 to 1730 MeV). This condi- 

tion is satisfied if S2 is around 3.0 and if 6, is approximately -2.3. This 

educated guess to the background parameters might help to adjust the param- 

eters of the resonant waves. 
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VIII. STRANGE-PARTICLE CHANNELS 

A. Introduction 

In addition to the elastic TN and inelastic Nxx outgoing channels dis- 

cussed so far, there are several strange-particle channels for nN scattering. 

In fact, the section of film exposed in the 72-inch HBC was originally 

exposed for the purpose of studying the following associated production 

resonances47: 

It seemed fruitful to complement these studies with measurements of the 

same reactions at the higher energies of the film taken in the 30-inch HBC 

at Argonne. Only the results of the AoK reaction will be presented in this 

thesis. 

B. Data Processing 

The scanners were instructed to look for all events of the following 

topologies : 

a. zero prong, one vee 

b. zero prong, two vee, 

as illustrated in Fig. 52. To insure that none of the vees corresponded to 

an electron pair, the scanners rejected those vees where 

1. the vertex had zero opening angle in all 3 views 

2. the tracks were minimum ionizing and 

3. the tracks were highly curved. 

Furthermore, the scanners checked that the vee was truly associated with 

the zero-prong beam track. 
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(a) Zero- prong, two-vee topology 

(b) Zero-prong, one-vee topology 5 

FIG. 52 
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Because some two-prong events can be confused with a zero-prong, one- 

vee event where the vee lies close to the end of the beam track, we applied a 

minimum cutoff on the length of the neutral tracks. The vertex had to lie at 

least 0.3 cm (on the scan table, corresponding to 0.8 cm in space) from the 

end of the beam track. Correction for this cutoff as well as for the maximum 

length cutoff caused by decays outside the chamber will be discussed later. 

The original scan yielded 1343 events of topology (a) and 398 events of 

topology (b) . The events were measured on the Vanguard measuring 

machines at SLAC, and then processed by the TVGP-SQUAW fitting pro- 

grams. All of the events that failed in any portion of the fitting programs 

were remeasured. Those events that failed twice were examined on the scan 

table. Many were found to be wrong event types - electron pairs, two- 

prong events, unassociated vees, etc. Others were classified as unmeas- 

urable because of faint tracks, gappy beam tracks, etc. The remaining 

events were measured for a third time. There was no evidence for any topo- 

logical bias within this sample. 

After remeasuring, the efficiency for passing events through the fitting 

programs was 95% for the one-vee events and 89% for the two-vee events. 

C. Fitting Logic 

The logic within the fitting program was a rather complex one; we were 

anxious not to lose events because statistics are already rather low for this 

reaction. 

In the case of one-vee events, we first fit the vertex treating the neutral 

mass as an unknown but knowing its direction and assuming the charged 

tracks to be a 7r+ and a s-. Jf the mass determined by this fit fell within 

25 MeV of the K” mass, we went on to fit the entire event to the 
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reactions 

71-p + AoK , f- K0-+7T 71 (8.3a) 

n-p --$ mmK” , K” +- --‘T 71 (8.3b) 

We repeated the same procedure, assuming the charged tracks to be a proton 

and a T-. If the mass determined by this fit lay within 15 MeV of the A” mass, 

we tried to fit the event to the hypotheses 

a-p-+ AoKo , A” + pn- 

r-p -+ A’mm , A” - --+p= 

(8.4a) 

(8.4b) 

If an event fit both (8.3a) and (8.4a) , the program predicted the values of 

ionization for the outgoing tracks from the neutral decay corresponding to the 

two hypotheses. The ionizations were examined on the scan table, where the 

difference in ionization between the 1;’ and p tracks afforded definite resolu- 

tion of the ambiguities. There appeared to be no topological bias involved in 

this sample of ambiguous events. 

In the case of two-vee events we still tried to fit each vertex alone in 

order to identify the neutral particle corresponding to the decays. If an 

event fit only one vertex satisfactorily it was then treated as a one-vee event. 

All other events were then fit to the following hypotheses: 

n-p --t AoK , 

+- K’-,?r T 

A0 --) pn- 1 
(8.5a) 

r-p -$ C°Ko , 

+- K”dn in 

co -+ A0y, ii”- Pr -1 
(8.5b) 

+ - K”dn T 
“-p + A°Komm , 

A” +pr -1 
(8.5~) 
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71 p-,A’mm, A0 - -) Pn 

?r-p -+ K’mm , 

(8.5d) 

(8.5e) 

D. Resolution of Ambiguities 

If a two-vee event fit both the AoKo and C°Ko hypotheses we accepted it 

as a true AoKo event. The A’K’ hypothesis is a four-constraint fit and it is 

unlikely that a true C°Ko event can be fit with this hypothesis. On the other 

hand a true AoK event can be readily fit to the one-constraint C°Ko hypoth- 

esis because the program is free to adjust the momentum and direction of the 

gamma ray. The gamma ray from such a forced fit will lie nearly parallel to 

the direction of the sigma whereas it would normally be distributed isotropi- 

tally about the direction of the sigma. The angular distribution of the gamma 

ray thus provides a convenient test for the resolution of AoK’- C°Ko ambiguities. 

We can define ey as the angle that the gamma makes with the y-axis in 

the rest frame of the sigma. 

where 
P-6) 

and&andi; 
c 

are the laboratory momenta of the pion beam and the neutral 

sigma, respectively. In Fig. 53a we plot the distribution of this angle for 

events that fit the C°Ko hypothesis unambiguously. It is isotropic as 

expected. In Figs. 53b and 53c we plot the distribution for ambiguous events 

that have lower and higher confidence level, respectively, for the fit to the 

x°Ko hypothesis. Roth distributions are strongly peaked at cos Qy = 0, 

which corresponds to a gamma ray lying parallel to the sigma. It appears 

that these events, regardless of confidence level, are true AoK reactions. 

Our assignment of all these ambiguous fits to AoKo is well justified. 
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FIG. 53--Angle of gamma ray in rest frame of sigma in the reaction ~-p-rC~p. 
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Events that were ambiguous between the four-constraint AoKo and one- 

constraint A°Komm hypotheses were also assigned to be A”K” reactions. To 

show that this selection introduces no contamination we plot in Fig. 54 the 

missing mass from fit (8.5~) for il°Ko - A°Komm ambiguities. The peak Iies 

near zero with the slight pull to the negative characteristic of plots of this 

sort, as we observed in Chapter II, Section E. 

The separation of AoKo and C°Ko events is more difficult in the samples 

of single-vee events. A guide for the selection is the plot of missing mass 

recoiling against the n” as determined from fit (8.5d) for two-vee events that 

have been unambiguously identified as AoKo events. As seen in Fig. 55a the 

distribution is clearly peaked at the value of K” mass. A similar plot for 

unambiguous C°Ko events, shown in Fig. 55b, has a broad, flat distribution 

starting at approximately 525 MeV. It appears that the AoKo reactions can be 

separated fairly cleanly by making a mass cut of 

440 5 mm C 530 MeV (8.7) 

on the fit to reaction (8.4b) for events where only the A” is seen. The dis- 

tribution for missing mass in this reaction is displayed in Fig. 55c for one- 

vee events. The cut appears to have been made low enough on the upper end 

to avoid contamination from C°Ko events. 

A similar selection procedure was followed for events in which only the 

K” decay is seen. Here we clearly see the peak in two-vee AoKo events (in 

Fig. 56b) corresponding to the A” and the peak in two-vee C°Ko (Fig. 56a) 

events corresponding to the Co. The two peaks are clearly resolved and a 

cut on missing mass for one-vee events of 

lG60 I mm I 1155 MeV 

should give a clean sample of AoKo events, as shown in Fig. 56c. 

(8.8) 
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FIG. 54--Missing mass in the reaction s-p-+A” K”mm for all two-vee 
events that fit the hypothesis n-p -+ A°Ko. 
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The pull distributions for the three topologies (one-vee A” decays, one- 

vee K” decays and two-vee decays) are shown in Fig. 57 and the X2 distribu- 

tions are shown in Fig. 58. The broad distributions in X2 indicate that the 

errors were underestimated, perhaps by 60%. In calculating AoKo cross 

sections and angular distributions we used only those two-vee events with X 2 

less than 15 and only those one-vee events with X2 less than 8. 

The resulting sample of A’K’ events with X2 cutoff applied contained 

155 events where the K” was seen, 471 events where the A0 was seen and 

217 events where both the A” and K” were seen. After correcting for the 

differences in measuring efficiencies we find that the events lie in the ratio 

.179/. 546/. 274, compared to the theoretical ratio of .143/. 570/. 286 (or 

i/4/2). 

E. Corrections for Biases 

1. Decay Time 

The events had to be corrected for events lost because the neutrals 

decayed before reaching the minimum length of the scanning criterion or after 

they left the chamber. The probability that a particle decays in a time t is 

given by 

-t/r l-e , r = half-life of the particle (8.9) 

In terms of the distance travelled B and the particle velocity v, this expression 

becomes 

(8.10) 

c = speed of light 
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and r is 0.862 x 10-l’ secfortheK”and2.51x10 -10 set for the A”. Each 

event is weighted by the probability that the neutral particle does not decay 

before the minimum length Pmin = 0.8 cm and the probability that it does decay 

before the maximum length Bmax = 30 cm. The weighting factor was 

w= 1 
-~,,/Pyc T -lrnax/PYc T 

e -e 

(8.11) 

Logarithmic plots of the number of events (weighted) vs. J/Fh/ are shown in 

Figs. 59 and 60. The theoretical slopes are superimposed for comparison. 

2. Scanning Bias 

There are two possible sources of scanning bias in the one-vee and two- 

vee topologies. One is a loss of events where the outgoing tracks from a 

neutral decay lie in a plane that is nearly parallel to the camera axis; this 

bias is most severe when the tracks are steeply dipping. A second is a loss 

of so-called “hockey-stick” vees, in which the proton from a lambda decay 

has a very short range. 

To search for evidence of bias of the first type, it is convenient to study 

the angular distribution of an angle that should be independent of reaction dy- 

namics and hence isotropic. In two-prong elastic events, such an angle was 

the azimuthal angle. In the present case, however, it is more difficult to find 

an appropriate angle. 

Parity arguments imply that the lambda cannot be polarized within the 

production plane. Let us work in the helicity frame of the lambda, where the 

z-axis lies along the A0 line of flight and the y-axis lies in the direction of the 

normal to the production plane. If we write the angular distribution for the 

decay proton in terms of an incoherent sum of h” helicity states, the 
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FIG. 60--Lifetime curve for K” decay. The abscissa is the lifetime of 
the particle observed or the length of the track P divided by 
Straight line is based on accepted K” half life of 0.862~ 10 
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distribution will be isotropic. However, if the lambda is polarized, then we 

get a term proportional to sin 0 sin #, where 9 and $I are the spherical coor- 

dinates of the decay proton in this frame. Nevertheless, when averaged over 

all angles @, the distribution should be isotropic as a function of 0. We 

examined histograms of cos 9 for different regions of lambda production angle 

and found the distributions to be isotropic, with no evidence of bias. 

To search for a bias caused by hockey sticks we plotted a scatter diagram 

of the angle that the proton makes with the lambda (0 as defined above) 

against the lambda laboratory momentum. Because the proton scattered back- 

wards should have the shortest range, we expect a depletion of events in this 

plot at cos = -1, especially at low values of lambda momentum. No strong 

bias was observed. 

F. Results 

1. Total Cross Section 

The AoKo cross sections were normalized to the elastic data in the same 

way that the inelastic two-prong data was normalized. The efficiency for 

passing events through the fitting routines is on the same order for the AoKo 

reaction as for the elastic events so the procedure should still be valid. The 

total cross section based on weighted events is shown in Fig. 61 and listed 

in Table XIV. The new data appear shifted in energy with respect to the cross 

sections from the 72-inch chamber. 47 They do agree in general with other 

measurements and fill a gap in the existing data 48-59 as shown in Fig. 62. 

The most striking feature of the cross section is the sharp rise from 

threshold at 1613 MeV to a peak near 1700 MeV. At first glance it is tempting 

to associate this peak with the Dl5 and F15 N* resonances seen in elastic 

scattering. However, the angular momentum barrier factor is too high for 
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TABLEXIV 

AoKo Cross Sections 

Number of 

Weighted Events 

39.55 

6.75 

78.06 

37.58 

88.81 

36.63 

12.99 

39.87 

39.73 

79.56 

28.98 

78.53 

23.30 

66.21 

56.40 

51.53 

42.14 

69.05 

70.19 

Energy 

WV) 

1709 

1720 

1730 

1761 

1762 

1787 

1806 

1811 

1821 

1843 

1853 

18?2 

1885 

1904 

1916 

1932 

1935 

1963 

1980 

Cross Section (mb) 

.765 * .144 

Statistics too low 

.685 * .098 

.418 i.094 

.563* .071 

.394* .085 

Statistics too low 

.366* .083 

.300* .065 

.370 * .053 

.164k .039 

.331& .056 

.075 i .030 

.251-+ .067 

.156*.037 

.279*.058 

.276* .058 

.175 * .027 

.158 f .026 
1801A 
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these resonances to play a large role so close to threshold. More likely can- 

didates are the resonances with lower angular momentum. Because the peak 

also coincides with the opening of the C°Ko channel, one might further expect 

this channel to influence the AoKo reaction at this energy. 

2. Differential Cross Section 

Because the statistics at each one of the 19 energies are fairly low, 

neighboring energy regions were grouped into eight regions for the purpose of 

studying the angular distributions. These groupings are listed in Table XV. 

They have an average spread of about 30 MeV and contain around 100 events 

each. The angular distributions change very slowly in the energy region 

from 1700 to 2000 MeV so it is unlikely that this procedure will obscure any 

real structure. The central energy value in each region was found by cutting 

the regions at the bounds indicated in Table XV and calculating the central 

value of events within this cut region. 

In Fig. 63 we display the differential cross sections for these eight energy 

regions. The distribution is strongly peaked in the region of backward scat- 

tered lambdas. The distributions were fit with a Legendre polynomial expan- 

sion of the form 

du/dn = Cn A,Pn (cos 6:;) 

For most energies a fit to order n=4 is sufficient. The ratios of Legendre 

coefficients An/A0 are plotted in Fig. 64 and listed in Table XVI. For com- 

parison the data of other experiments 47-52 was also fit to the Legendre poly- 

nomial expansion and the resulting coefficients are also plotted in Fig. 64. 

Note that the kinematic formalism for r-p -+ A”K” is the same as that for 

n-p -+ T-P; in both cases the final state consists of a O- meson and l/2” baryon. 
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Region 

1 1709 

1720 

1730 

2 1761 

1762 

3 1787 

1806 

1811 

1821 

4 1843 

1853 

5 1873 

1885 

6 1904 

1916 

7 1932 

1935 

8 1963 

TABLEXV 

Combined Energy Regions - A'K'Reactions 

Energy kergy Cuts 

WV WV) 

700 - 1740 1721* .2 124 

740 - 1780 1763* 9 126 

780 - 1830 1806 i 15 129 

830 - 1860 1845 * 11 108 

,860 - 1890 1874* 9 102 

390 - 1920 

L920 - 1950 

1950 - 1990 

1980 

Central Energy 
Value f rms 

Deviation 
WV) 

1908 * 10 123 

1936 * 10 

1971* 12 

Number of Events 

(Weighted) 

94 

139 

180 
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FIG. 63--Differential AoKo cross section. The 
smooth line represents the best fit by 
an expansion in Legendre polynomials. 

- 159 - 



1.6 

1.2 

AI/Ao 0 $3 

0.4 

0 Elertanza et al. 
. Crawford et al. A Keren 
v Eisler et al. l Doyle 
0 This Experiment + Leipuner & Adair 

3.2 

2.4 

0.8 

I I I I 

-0.4 - 
-0.4 I I I I I I I 

1600 1800 2000 1600 1800 2000 
Ec.m. (MeV) 1101c21 

FIG. 64--Legendre polynomial coefficients An/A0 measured in this 
experiment and others as a function of energy. 
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TABLE XVI 

Legendre Polynomial Coefficients for Fits to Angular Distribution of the Reaction "-p ---( AoKo 

Energy 

WeV) 
A1’AO A?/AO d A3/Ao A4/Ao 

1721 1.20 i .22 .78 f .22 .09 f .25 - .65 zk .30 

1763 1.19 + .22 .53 * .25 .58 * .29 .49 * .28 

1806 1.38 * .22 .47 * .23 - .03* .27 - .18-+ .25 

1845 1.16 * .24 .78 + .28 .25 * .30 .37 f .33 

1874 1.36 * .30 1.61 f .39 1.04 * .37 .74 l .35 

1908 1.93 * .33 2.00 * .38 .86 i .29 .64 * .31 

1936 1.30 rt .28 1.36 * .34 .37 * .33 .43 f .36 

1971 1.17 f .22 1.63 * .30 .04 * .26 .37 * .27 

Confidence 

Level (%) 

54 

31 

63 

18 

3 

0 

45 

48 
18OlP 



The only difference is that the AoKo final state is pure isospm l/2. Thus the 

Legendre coefficients may be written, as they were for elastic scattering, in 

terms of the amplitudes ffJ and the coefficients R:J l,J,, listed in Table VIII. 

An = c RFJ,ntJT RefpJ Ref,,,, + ImfpJ I”fn,J, I 
&JI P’J’ 

With the aid of Table VIII we may make a few rough deductions from the struc- 

ture of the Ants. The coefficient Al/A0 rises rapidly to a plateau starting at 

1700. This activity most likely reflects interference of Sl with Pl or P3 wave. 

From elastic scattering we expect a Pll N* resonance near 1780 MeV but see 

no evidence for a P13 in this region so Sl-Pl interference seems more 

probable. The coefficient A2/A0 has a small bump in the region of 1700, per- 

haps reflecting a small D3 amplitude here. The coefficient rises more 

rapidly near 1900, where we do see a P13 NC resonance in elastic scattering. 

The errors on the coefficients A3/Ao and A4/Ao are too large for us to make 

any reliable deductions. 

In recent years, several authors 47a, 60,61 have attempted partial wave 

analyses of AoK data. Deans et aI 60 
--* made an energy-dependent fit, assum- 

ing the N* resonances based on CERN’s set of elastic phase shifts. 7 They 

find that Sll(l710) and Pll partial waves are dominant, where both Pll(l460) 

and Pll(l785) resonances contribute to the Pll wave. Small contributions 

come from P13 (1855) and D13. 

Doyle 47a and Lovelace et al. 61 
-- both undertook energy-independent analy- 

ses, connecting the solutions at each energy by a type of shortest distance 

criterion. Lovelace et al. confirm the results of Deans & &. , that the Sll -- 

and Pll dominate, with small contributions from P13 and D13. However, 
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Lovelace et al. find that all the Pll comes from Pll(l750). The difference -- 

is that the parameterization of Deans et al. does not allow for a background in -- 

Pll or Sll resonances although elastic phase shifts show that the backgrounds 

are certainly present in the elastic channels. Doyle finds that the Sll domin- 

ates in one solution and the Pll dominates in the other, with possible enhance- 

ment in P13 and D13. In all three fits, the D15 and F15 are small. The gen- 

eral trends seen in the Legendre coefficients agree well with these partial 

wave analyses. The present data may provide valuable input to these analyses 

because it falls in a region where there were previously large gaps in the 

data. 61 

3. Polarization 

Another well known feature of the reaction a-p -AoK is the polarization 

of the lambda, which is strongest for backward scattered lambdas. The angu- 

lar distribution of the proton from the decay of the lambda gives a measure of 

the lambda polarization P . 
A0 

The proton distribution is proportional to 

P(BP) = 1 -(Y P cos e P 
A0 

where 0’ 1s the angle between the proton momentum and the normal to the 

production plane A measured in the rest frame of the A’. Q! is the asymmetry 

parameter of the A’. (Y = -. 62. 

:=P Ync xi?Ao/l~i”nc x G 
A0 

1 

cos ep =.P - Pl/l/lr;l 

(8.14a) 

(8.14b) 

471 P. C 
lnc' A0 

and P’ are the momenta of the pion beam, the A” and the decay 

proton. The quantity aPA can be estimated by measuring the number of 
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protons decaying in the forward (F) direction and the number decaying in the 

backwards (B) direction with respect to the normal to the production plane. 

In terms of F and B the A0 polarization is 

(8.15) 

Experimentally the number of protons decaying backwards exceeds those 

decaying forward. The lambda polarization is a function of A” production angle 

and is largest for lambdas produced in the backwards direction. The polari- 

zation is usually antiparallel to the normal to the production plane. Thus pro- 

tons like to go in the direction of A” polarization. 

We determined crP 
Ilo 

by measuring (F-B)/(F+B) in three regions of lambda 

production angle and four-energy regions over the interval of the experiment. 

The results are summarized in Table XVII. Despite the large errors, the 

data show the general trend of large polarization for backward scattered 

lambdas. 

4. Possible Test of Exchange Degeneracy 

If a high-energy scattering process is dominated by the exchange of Regge 

trajectories that are exchange degenerate, then certain relations should hold 

between this s-channel and its crossed u-channel reaction. In the present 

case, n-p-+A°Ko may be related to the crossed-channel reaction g”p-+Aolr+ 

if it is dominated by K*(890) and K*(1420) exchanges. The predicted relation- 

ships depend on the type of exchange degeneracy postulated. 62,63 Under 

“weak” exchange degeneracy, the differential cross sections du/dt should be 

equal at high center-of-mass energies squared s and small values of momen- 

tum transfer It I. In particular, the differential cross sections should have the 
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TABLEXVII 

Lambda Polarization CWP 0 A0 
A0 

as a Function of Lambda Production Angle 

mew 
W=V) 

-1.OScos e&-.5 -.5<cos f3A000.0 o.<cos eAOrl.o 

1700 - 1780 .32i .21 .67 * .27 .6'7i .29 

1780 - 1860 .65 f .19 .48 * .30 .69*,37 

1860 - 1920 .65 * .18 - .13 * .36 .06* .35 

1920 - 1990 .59 f .19 .40*.33 - .70* .30 
1801A2 
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form 

du/dt = aebt P-16) 

For weak degeneracy to hold, at least two of the three quantities - intercept a, 

slope b and integrated cross section u - must be equal for the two reactions. 

Under the “strong” form of exchange degeneracy, the differential cross 

sections should still be equal but in addition there should be no polarization of 

the final baryon. The observed polarization of the A” at lower energies con- 

tradicts this prediction but comparison of the sign of polarization from 

T’-p -+ A’K’ to that from the reaction Fop --) Aor’ may indicate whether the 

polarization arises from interference of Regge trajectories of opposite signa- 

ture or from interference of trajectories of the same signature but different 

slopes. 62 

Although the data of the present experiment is at relatively low energies 

and, according to the results of the phase-shift analyses, is still governed by 

s-channel resonances, the peak in the A” distribution at cos f3 (g, r) = 180’ 

indicates that t-channel exchanges are nevertheless already playing an impor- 

tant role. It was interesting to compare the slope of the momentum-transfer 

distribution do/dt from the present experiment to that from the preliminary 

results of the measurement of Fop --+A”=+ in the region 1800-2100 MeV. 64 

In Fig. 65 the momentum-transfer distribution is shown for all energies of 

the present experiment the slope did not change appreciable over this energy 

interval. The slope is 4.07 _. o8 ‘* l5 (GeV)-2, +1.2 compared to the slope of 2.65 -o 5 

for the crossed-channel reaction. This result agrees with results at higher 

energies, where the reaction r-p -+ AoKo has a slope of 7.3 * 0.8 (GeV)-2, 

significantly higher than the slope of 4.0 i 0.6 (GeV)-2 for the reaction 

K-N+iln. 63 
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FIG. 65--Momentum-transfer distribution for all events in the 
reaction T-P --+ AoK’. 
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APPENDIX 

MINFUN PROGRAM FOR COUPLED-CHANNEL ANALYSIS 

A. Format of Input Cards 

1. Control Cards for MINFUN (39) 

2. Input Data 

a. MAXEXP format 110 

This card specifies the number of experiments to be read in. Each 

measurement of an angular distribution or polarization at one energy 

counts as one experiment. 

b. (REFER (l), I = 1, 20) format 20A4 

This is the reference to the next experiment. 

c. ITYPE (N), ECM(N), TXS(N), DTXS(N) format 110, 3FlO. 3 

The first number specifies the type of experiment, whether elastic, 

charge exchange, inelastic angular distribution, or polarization. 

(See Section V, No. 14.) The next three quantities are the center-of- 

mass energy, cross section and error on the cross section, 

respectively. 

d. NPTS (N), SCALEX, XLCW format 15, 2FlO. 3 

This card defines the values of cos 0 (TO,, xLnc) at which angular 

distributions are measured. Since measurements are usually given 

in bins of equal size in cos 9, it is necessary only to specify the 

number of bins, the bin size and the lower edge of the first bin, 

respectively. 

For polarization measurements, the values of cos B are not equally - 

spaced and must be read in explicitly, as described in (f) . 
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e. ((Z(N,KJ, DZtN,K)), K=l, NPTS (N)) format 16F5.2 

This card contains the value of the measured quantity along with its 

error. N is the order of the experiment and K is the number of the 

bin in cos 0. 

f. (X(N, K) , K=l, NPTS(N)) format lOF5.3 

Used for polarization experiments only. This card specifies the 

values of CDS 0 where measurements exist. 

g- Repeat cards 2 through 6 for N=l, MAXEXP 

3. Initial Values of Parameters 

a. (TITLE (I), I = 1, 20) format 20 A4 

b. IWAVE (J), (PP (I), I= 1, 6) format 110, 6FlO. 3 

The array IWAVE specifies the type of parameterization to be used 

for the Jth wave. (See Section V, No. 15.) The array PP contains 

the starting values for the parameters describing this partial wave. 

Resonance Background I 

PP (I) = e e1 1 

r 
e2 2 

32 6 

c. (IPP (I), I = 1, 6) format 615 

This array tells which of the preceding parameters are to be varied 

by MINFUN and which are to be held fixed. 

IPP (I) = 0 if PP (I) is constant 

= 1 if PP (I) is variable. 
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d. Repeat cards 2 and 3 for each partial wave J = 1, 18 in the following 

order: 

J=l,2, .o., 9, 10, . . . 18 for Sll, Pll, . . . , Gig, S31, . . . , G3g. 

B. Definition of Arrays 

1. BOXDB (K) 

K = 1, 20 

2. C(J, L 1s) 

J= 1, 9, 2 

L=l, 5 

IS=l, 8 

3. CG (I, W 

1=1,2 

M=l, 5 

4. D(N, K, MQ 

N= 1, 25 

K = 1, 20 

MK=l, 72 

5. DTXS(N) 

N=l, 25 

6. DZ(N, K) 

N=l, 25 

K = 1, 20 

Value of the measured quantity in the Kth bin. 

Used for plotting every 1000 steps. 

jsQ Clebsch-Gordon coefficient COAA , where: 

J = 2j 

L=l+l 

IS = 4 (S-i) + LMBDA 

LMBDA = h + 5/2 

Isospin Clebsch-Gordon coefficient. Isospin is 

l/2, 3/2 for I = 1, 2, respectively. M = ITYPE 

is the type of experiment as defined in (14) below. 

The rotation-matrix element dik, (6’) for the Kth 

bin of the Nth experiment, where: 

MK = 8* (2j-1) + 4* (LMBIN-1) + LAMBDA 

LMBIN = h + 3/2 

LAMBDA = h’ + 5/2 

Error on the cross section for the Nth experi- 

ment . 

Error on the measured quantity in the Kth bin of 

the Nth experiment. 
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7. ECMtN) 

N = 1, 25 

8. EPS (25) 

N = 1, 25 

9. F 

10. FP (K, LMBIN, 

LAMBDA) 

K = 1, 20 

LMBIN = 1, 2 

LAMBDA = 1, 4 

11. G (MPAR) 

MPAR = 1, 108 

12. IFLAG 

13. IPARAM (MPAR) 

MPAR = 1, 108 

Center-of-mass energy of the Nth experiment. 

Normalization parameter for experiment N. 

Set equal to 1 if not read in. 

Value of X2 returned to MINFUN after call to 

FCN. 

Value of <h’lTlh> for the Kth bin, where: 

LMBIN = h + 3/2 

LAMBDA = A’ + 5/2 

Derivatives of F with respect to the parameters 

P (MPAR). These are currently set to zero on 

the first call to FCN. MINFUN then estimates 

the derivatives numerically. 

Flag which is set as follows: 

IFLAG = 1 first entry to FCN 

2,4 normal entry to FCN 

3 terminating entry to FCN 

Array specifying whether the MPARth parameter 

is to be varied or to remain fixed. See No. 18 

below for order in which parameters are stored. 
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14. ITYPE (N) 

N= 1, 25 

15. IWAVE (JJI) 

JJI = 1, 18 

Type of quantity measured by experiment N. 

ITYPE (N) = 1 for do/d0 (x-P+r P) 

2 for du/dfl (?r-p -+ Ton) 

3 for do/da (n-p -+ .-A+) 

4 for du/d/dR (n-p 4 ?;‘A-) 

5 for polarization (x-p --+ n-p) 

Type of parameterization used for JJIth wave 

where: 

IWAVE= 1 for resonance, some parameters 

variable 

2 for resonance, aII parameters 

fixed 

3 for background, some parameters 

variable 

4 for background, all parameters 

fixed 

and JJI = 1, . . . , 9, 10, . . . 18 for Sll, . . . , Gig, 

S31, . . . G3g 

16. NPTS (N) Number of bins in the distribution for the Nth 

N = 1, 25 experiment. 

17. P (MPAR) Parameters to be varied by MINFUN in search 

MPAR = 1, 108 of a minimum. 
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18. PARAM (MPAR) All parameters (variable or fixed). These are 

MPAR = 1, 108 stored in the following order: 

19. PCM (N) , Incoming and outgoing center-of-mass momentum 

PCMOUT (N) respectively, for Nth experiment. Expressed in 

N=l, 25 MeV/c . 

20. PPRINT (MPAR) 

MPAR = 1, 108 

A(Sll), A(Pll), . . . , A(G3g)> B(Sll)y ... , B(G39), 

C(Sll), *‘a, CtG3g)’ Wllh --a Y W3g), 

E(Sll), . . . > E(G3g) where: 

Resonance Background MPAR 

A=8 e1 1, 18 

B=F e2 19, 36 

C=E r % 37, 54 

D=a! ff 55, 72 

E=P P 73, 90 

F =sB 62 91, 108 

Parameters converted to convenient form for 

printout every 500 entries to FCN. 

Resonance Background MPAR= 

PPRINT(MPAR) = cos2 0 c0s2(el+qe2) 1, 18 

r tan e2 19, 36 

Er taq 37, 54 

cos o! cos o! 55, 72 

cos p cos p 73, 90 

ctn 6 B tan s2 91, 108 
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21. QCM(N), 

QCMOUT(N) 

N = 1, 25 

22. TmN) 

N=l, 25 

23. V(N, LIN, LOUT) 

N=l, 25 

LIN= 1, 5 

LOUT = 1, 5 

24. VRl(JJI, LIN) 

VR2(JJI, LIN, LOUT) 

JJI = 1, 18 

LIN= 1,5 

LOUT = 1, 5 

25. X(N,K), ZW,K) 

N= 1, 25 

K = 1, 20 

Incoming and outgoing center-of-mass momentum, 

-l/2 expressed in (mb) . 

I 

Cross section for experiment N. 

Barrier penetration factor for Nth experiment. 

where: i 

R is the radius of interaction, set equal to the 

pion Compton wavelength. 

k, k’ are incoming and outgoing wave numbers, 

respectively. 

D&kR) are functions given in Ref. 29. 

LIN =8-l 

LOUT = !.I-1 . 

Barrier penetration factor at resonance, for a 

resonance in the JJIth partial wave. The formula 

is similar to that for 23 above, with k and k ’ 

replaced by kR, k&, the wave numbers at reso- 

nance. VRl is for elastic channels; VII.2 for 

inelastic. 

Values of cos 0 and measured quantity f(cos .9) 

for the Kth bin of the Nth experiment. 
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26. ZCALC(N,K) Value of the calculated quantity for the Kth bin 

N = 1, 25 of the Nth experiment. 

K = 1, 20 

C . Description of Subroutines 

1. Barrier (L,X,V) 

This subroutine computes the barrier penetration factor V as described 

in (23) and (24) of Section V. L is the orbital angular momentum and 

X=kR. 

v - tkR?-+’ 

DQtkR) \ 

2. COEF (5, L, MS, M, CC) 

This subroutine computes the Clebsch-Gordon coefficients CC = CriI 

according to the formula given on p. 39 of Rose. 36 J = Zj, L =8, M = 2h, 

and MS = 2s. 

3. ROTATE (J, M,X, DD) 

This subroutine computes the rotation matrix elements DD( 1) , 

DD(2) = dj 1 ,(e), d&,(e) according to the formula given on p. 52, Rose. 36 
-%A 

J=2j, M=2A, X=cos 8. 

4. PLOT 1 (PNT) 

This subroutine plots histograms of.the measured distributions with 

curves of the fitted distributions superposed. 

5. HIGH 

This subroutine is called by PLOT 1 to adjust the scale for plotting. 
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