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Abstract

In this thesis we investigate several problems which have their roots in both topolog-
ical string theory and enumerative geometry. In the former case, underlying theories
are topological �eld theories, whereas the latter case is concerned with intersection
theories on moduli spaces. A permeating theme in this thesis is to examine the close
interplay between these two complementary �elds of study.

The main problems addressed are as follows: In considering the Hurwitz enu-
meration problem of branched covers of compact connected Riemann surfaces, we
completely solve the problem in the case of simple Hurwitz numbers. In addition,
utilizing the connection between Hurwitz numbers and Hodge integrals, we derive
a generating function for the latter on the moduli space Mg;2 of 2-pointed, genus-
g Deligne-Mumford stable curves. We also investigate Givental's recent conjecture
regarding semisimple Frobenius structures and Gromov-Witten invariants, both of
which are closely related to topological �eld theories; we consider the case of a com-
plex projective line P1 as a speci�c example and verify his conjecture at low genera.
In the last chapter, we demonstrate that certain topological open string amplitudes
can be computed via relative stable morphisms in the algebraic category.
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Chapter 1

Introduction

Over the past two decades, the close interplay between mathematics and physics has

been very fruitful, often leading to many far-reaching consequences in each discipline.

A subject which encompasses such an intricate mixture of physics and mathematics is

string theory. Aside from being the best candidate for the theory of quantum gravity,

string theory has branched o� many new and exciting ideas in mathematics. String

theory would not, of course, have seen its success without all the important concurrent

developments in mathematics. A general theme that runs through this thesis is to

elucidate the aforementioned interplay between string theory and mathematics by

investigating a few intriguing connections between the two �elds of study. In this

introductory chapter, we shall lay out some elementary concepts in topological string

theory and discuss the relevant physical motivations that underlie the succeeding

chapters.

Mathematical implications of string theory become most clear in the context of

topological string theory, which consists of a two-dimensional \matter" topological

�eld theory coupled to two-dimensional topological gravity. A very important and

interesting fact is that two-dimensional topological gravity, which is associated to the

algebraic topology of the suitably compacti�ed moduli spaceM g;n of n-pointed, genus-

g Riemann surfaces, is but one of several equivalent formulations of two-dimensional

quantum gravity [W3, W4]. In the matrix model approach, two-dimensional quantum

1



2 CHAPTER 1. INTRODUCTION

gravity is studied by counting inequivalent triangulations of Riemann surfaces, and

this formulation sometimes leads to complete solvability. The so-called \one matrix

model," for example, is a solvable theory which is related to integrable hierarchies of

the KdV-type.1 Since correlation functions of topological gravity encode intersection

numbers of cohomology classes of the moduli space M g;n, that topological gravity is

proposed to be equivalent to the one matrix model has far-reaching mathematical

consequences. In particular, it suggests that the intersection theory on the moduli

spaceM g;n of stable curves
2 is governed by the KdV hierarchy, a conjecture originally

put forth by E.Witten [W4].

As the stable intersection theory on M g;n had not been known to have any al-

gebraic structure, Witten's conjecture came as a surprise. The conjecture was later

proved by mathematician M.Kontsevich, who constructed a combinatorial model to

study the intersection theory as sums of tri-valent graphs on Riemann surfaces. The

tri-valent graphs were interpreted as Feynman diagrams that arose in a new matrix

model, and the KdV equations were then derived by analyzing the matrix integral

[Kont1]. The combinatorial formula that appears in Kontsevich's proof is, however,

quite diÆcult to digest, and many mathematicians have tried to understand the proof

using di�erent approaches. Recently A.Okounkov and R.Pandharipande have used

the enumeration problem of Hurwitz numbers to provide a new path between matrix

models and the intersection theory on M g;n [OP].

1.1 Appearance of Hurwitz Numbers in Physics

The Hurwitz enumeration problem, which concerns counting the number of inequiva-

lent branched covers of a compact connected Riemann surface by compact connected

Riemann surfaces with speci�ed rami�cations, was �rst posed by Hurwitz more than

100 years ago [Hur], and has been receiving renewed interest recently. In fact, Hurwitz

numbers arise naturally in topological string theories obtained by coupling topologi-

1The N matrix model is related to the N th generalized KdV hierarchy[W7].
2The moduli space of stable curves is de�ned in x1.2.
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cal sigma models [W1] to topological gravity. In Chapter 2 of this thesis, we compute

all simple Hurwitz numbers �g;nh;n, which count the number of inequivalent degree-n

branched covers of a genus-h Riemann surface by genus-g Riemann surfaces with

no non-simple branch points, for arbitrary g, h, and n. We also derive generating

functions|which, in the case of h = 1, reproduce the partition function, the expo-

nential of the free energy, of topological string theory with an elliptic curve target

space|for the simple Hurwitz numbers �g;nh;n.

There is another physical motivation for studying the Hurwitz enumeration prob-

lem. Before the discovery of AdS/CFT correspondence [Mal, W8, GuKP] and holog-

raphy [Su, tH], physicists were interested in �nding a possible connection between a

gauge theory in d dimensions and a string theory with a target space also of d dimen-

sions. In particular, in two dimensions, there exists a rigorous connection between

a two-dimensional gauge theory on a Riemann surface and a string theory with the

same manifold as its target space. Recall that in two dimensions pure Yang-Mills

theory has no propagating degrees of freedom and is locally trivial. But, if the theory

is de�ned on a compact manifold, global geometry plays an important role and gives

the theory nontrivial characters.

One of the remarkable things about the two-dimensional Yang-Mills theory is that

it is exactly solvable. This fact was established by Migdal [Mig], Rusakov [Rus] and

Witten [W5]. The �rst two authors used a renormalization group invariant lattice

formulation, and Witten explained it in terms of localization of path integrals in

topological Yang-Mills theory to a moduli space of classical con�guration. Migdal

and Rusakov showed that the partition function of the Euclidean SU(N) or U(N)

Yang-Mills theory on a genus-h Riemann surface of area A can be expressed in terms

of the group theory of the gauge group as follows:

ZYM2
(h; �A;N) =

Z
[DA�]e�SYM =

X
R2R

(dimR)2�2h exp

 ��A
2N

C2(R)

!
:

Here, � is the 't Hooft coupling related to the gauge coupling g by � = g2N , R

denotes the set of all irreducible representations of the gauge group, and C2(R) is the

quadratic Casimir. Another breakthrough came in 1993 when D. Gross and W. Taylor
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explained how the 1=N expansion of this expression can be given an interpretation as

a string theory partition function to all orders in 1=N [GroT]. More precisely, they

expanded the free energy F = lnZ in powers of 1=N and obtained

F =
1X
g=0

N2�2g
1X
n=0

2(g�1)�2n(h�1)X
i=0

!n;ig;he
�n�A

2 (�A)i:

Furthermore, they showed that the coeÆcients !n;ig;h, up to normalization, in the ex-

pansion have a geometric interpretation of counting the number of topologically in-

equivalent maps from the source Riemann surface to the target Riemann surface, i.e.

the Hurwitz numbers. The index n is interpreted as the winding number and the

index i is supposed to specify the number of branch points. For i saturating the up-

per limit|which would give the Riemann-Hurwitz formula 2(g � 1)� 2n(h� 1) = i,

where i is the number of simple branch points|!n;ig;h counts the number of topologi-

cally inequivalent simple branched covers. For smaller values of i, the corresponding

covering maps have certain degenerations. It turns out that when the gauge group is

U(N), the non-vanishing coeÆcients are precisely the ones with the index i saturating

the upper limit. And, therefore, the free energy of two-dimensional U(N) YM-theory

encodes the number of branched covers of a Riemann surface by another Riemann

surface.

1.2 Hodge Integrals and Topological String The-

ory

We have discussed in the previous section why physicists have recently become in-

terested in the Hurwitz numbers. Before we elaborate further on this point, let us

consider in parallel some of the mathematical motivations for examining anew the

Hurwitz enumeration problem. One of the most fascinating results in this respect

is that the Hurwitz numbers are closely related to the intersection theory on the

moduli space of stable curves. As we mentioned before, the underlying physical the-

ory in the latter case is topological gravity. In a topological string theory with a
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target space X, the physical operators are the cohomology classes of X and their

gravitational descendants. In particular, if one considers the pure topological gravity

without coupling any matter topological sigma model, then the only observables are

the gravitational descendants of the identity. We now briey describe what they are

in terms of mathematics.

A point in the moduli space M g;n corresponds to a projective, connected, nodal

curve Cg of arithmetic genus g, with n distinct marked points fp1; : : : ; png which are

nonsingular. In addition, it satis�es the stability condition 2g � 2 + n > 0, which

guarantees that there are no in�nitesimal automorphisms �xing the marked points.

For each marking i, there is an associated cotangent line bundle Li ! Mg;n whose

�ber over the point [Cg; p1; : : : ; pn] 2 M g;n is T
�Cg(pi). Then, the observables in the

pure topological gravity are the �rst Chern classes

 i = c1(Li) 2 H2(M g;n;Q):

Therefore, for a Riemann surface with n marked points, there are n distinct  -classes.

We can now restate Witten's conjecture as follows: Starting from the intersection

h�0�0�0i0 :=
Z
M0;3

 0
1 

0
2 

0
3 = 1 ;

all other intersections of the  -classes

h�k1�k2 � � � �knig :=
Z
Mg;n

 k11 � � � knn ; (1.2.1)

where
Pn
i=1 ki = 3g � 3 + n = dim(M g;n), can be completely determined using the

KdV equations and the so-called string equation.

To relate the Hurwitz numbers to the intersection theory on M g;n, we actually

need to generalize the integral in (1.2.1) by considering a new class of objects; that

is, in addition to the cotangent line bundles described above, we need to consider the

Hodge bundle E !M g;n. The Hodge bundle is the rank-g vector bundle whose �ber

over [Cg; p1; : : : ; pn] is H
0(Cg; !Cg), spanned by g independent holomorphic 1-forms

on Cg; g > 1. The �-classes are de�ned as �j = cj(E ), the jth Chern class of E , and
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a Hodge integral is an integral over M g;n of products of the  and � classes3.

So far we have not said anything to motivate studying Hodge integrals. Let us

now try to �ll in this gap. The importance of Hodge integrals is most apparent

in Gromov-Witten theory, which is a study of intersection theory on the moduli

space M g;n(X) of stable maps. Physically, Gromov-Witten theory corresponds to

coupling a topological sigma model with target space X to topological gravity. If

X = fptg, then M g;n(X) is naturally isomorphic to M g;n and we end up with pure

topological gravity. In Gromov-Witten theory the virtual localization formula of

T.Graber and R.Pandharipande in [GraP] reduces the computation of intersection

numbers on Mg;n(X) to explicit graphical sums involving only Hodge integrals over

M g;n. Moreover, if the stable map to the target X has degree zero, the so-called

Gromov-Witten invariants of X are given by the classical cohomology ring of X and

Hodge integrals over Mg;n.

Let us now consider a speci�c example in topological string theory that demon-

strates the importance of Hodge integrals. In [FabP1] C.Faber and R.Pandharipande

have derived the following generating function for Hodge integrals:

F (t; k) := 1 +
X
g�1

t2g
gX
i=0

ki
Z
Mg;1

 2g�2+i �g�i =

 
t=2

sin(t=2)

!k+1

; (1.2.2)

where t and k are some formal parameters. This generating function F (t; k) has a

direct application in string theory. For instance, consider the topological A-model on

the local Calabi-Yau manifold OP1(�1)�OP1(�1). Its free energy has an expansion

of the form

Fg =
Z
Mg;0

�3g�1 +
1X
n=1

C(g; n)e�nt̂;

where t̂ is the K�ahler parameter of the �xed rational curve, i.e. the base P1, and the

quantities C(g; n) are given by degree-n multiple covers of that �xed P1. For n � 1,

the genus-0 answer was obtained in [AsM, CdGP] to be

C(0; n) =
1

n3
;

3The total degree of these cohomology elements should equal the dimension 3g � 3 + n of the

moduli space Mg;n.
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whereas the genus-1 answer

C(1; n) =
1

12n

was independently obtained by mathematicians [GraP] and physicists [BerCOV].

A signi�cant progress in this line of research was made when C.Faber and

R.Pandharipande [FabP1] used the method of virtual localization [Kont2, GraP] to

show that, for all g > 1, C(g; n) are given by the expression

C(g; n) = n2g�3
X

g1 + g2 = g

g1; g2 � 0

 Z
Mg1;1

 2g1�2
1 �g1

Z
Mg2;1

 2g2�2
1 �g2

!
;

which can be evaluated using the Hodge integral generating function F (t; 0) in (1.2.2).

After expressing the right hand side of (1.2.2) in terms of Bernoulli numbers Bn, Faber

and Pandharipande showed that

C(g; n) =
jB2gjn2g�3
2g(2g � 2)!

:

Inspired by the impressive usefulness of Faber and Pandharipande's generating

function F (t; k) for Hodge integrals, we have extended their result and obtained a

generating function for Hodge integrals over the moduli space Mg;2. This work is

described in detail in Chapter 2 of this thesis. We only mention here that we use the

idea of T.Ekedahl, S.Lando, M.Shapiro and A.Vainshtein [ELSV] which relates the

Hurwitz numbers to Hodge integrals. After �rst obtaining a generating function for

appropriate Hurwitz numbers, we then �nd a closed-form generating function for the

Hodge integrals over Mg;2.

1.3 Frobenius Structures of 2-Dimensional Topo-

logical Field Theories

Topological �eld theories have well-de�ned properties which can be formulated as

axioms. In particular, in two-dimensional topological �eld theories, a beautiful un-

derlying structure emerges from the axiomatic approach of M.Atiyah, in which one
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associates a Hilbert space to a connected boundary component and certain opera-

tions to cobordisms [At]. One very important result of such constructions is that in

two-dimensional topological �eld theories|whose necessary data are encoded in the

genus-0 surface with one, two or three holes|the Hilbert space H associated to a

circle carries an algebra structure. More precisely, the algebra structure is that of a

commutative Frobenius algebra, which is de�ned as follows:

De�nition 1.1 (Frobenius Algebra) Let (A; �) be a commutative, asso-

ciative algebra with a unit 1. If there exists a non-degenerate inner product h�; �i on
A, such that

ha � b; ci = ha; b � ci (1.3.3)

for all a; b; c 2 A, then (A; �) is called a commutative Frobenius algebra.

The disk gives a unit 1 of the algebra, and the cylinder gives the non-degenerate inner

product h�; �i on H. The sphere with three holes gives rise to a bilinear map

H 
H !H;

which gives the product � onH. Moreover, it follows from the axioms of topological

�eld theory that the product � is commutative and associative, and that (1.3.3) is

satis�ed.

Let fO(0)g denote the set of local physical observables, which can be taken as

operator-valued zero-forms on the domain manifoldM. Topological invariance of the

theory then implies that fO(0)g are in fact closed up to BRST commutators, that is

dO(0) = fQ;O(1)g;

where Q is a BRST symmetry generator. The above equation, in turn, implies that

O(1) is an operator-valued one-form on M that is BRST-invariant up to an exact

form. Hence one can now construct a new class of non-local physical observables as

Z
C1
O(1)(x);
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where C1 is a one-dimensional closed submanifold of M. Topological invariance fur-

ther implies the descent equations

dO(k) = fQ;O(k+1)g

for 1 � k � dim(M)� 1, and O(k) can be given a similar interpretation as above. In

particular, one can construct a non-local physical observableZ
Ck
O(k)(x)

for Ck 2 Hk(M).

Let us now restrict our attention to the case where the domain manifold M is

a Riemann surface �g. A very important class of non-local observables in this case

takes the form Z
�g
O(2)(x);

and they can be used to perturb the two-dimensional topological �eld theory by

modifying the action as

S 7! S �X
�

t�
Z
�g
O(2)
� :

Such a perturbation preserves the topological invariance [DiVV], and therefore the

coupling constants t� parametrize a family of two-dimensional topological �eld theo-

ries; that is, t� are coordinates on the parameter space of two-dimensional topological

�eld theories. Another important fact is that the perturbed algebra Ht still has a

Frobenius algebra structure. The associativity of the product on Ht is equivalent to

the fact that the free energy Fg(t) of the two-dimensional topological �eld theory

satis�es a very complicated system of di�erential equations, often called the WDVV

equations after their discovery in [W3, DiVV].

In a topological sigma model with target space X, the Hilbert space H is isomor-

phic to H�(X; C ) as a vector space and the product � is identi�ed with the quantum

cup product Æ. Quantum cohomology is an important subject that arises in the

mathematical formulation of mirror symmetry, and is de�ned using the genus-zero

Gromov-Witten invariants, which, as we have mentioned before, are closely related
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to topological sigma models. The associativity of the quantum cup product Æ is

equivalent to the condition that the genus-zero Gromov-Witten potential, a gen-

erating function for the genus-zero Gromov-Witten invariants, satis�es the WDVV

equations. In the context of topological �eld theory, the genus-g Gromov-Witten

potential is identi�ed with the genus-g free energy Fg(t), which is de�ned as follows:

Let f�[�g] = � 2 H2(X), where f is a holomorphic map f : �g ! X. Then,

Fg(t) :=
X
�

hexpX
�

t�
Z
�g
O(2)
� ig;� ;

where O(2)
� is a H�(X; C )-valued two-form on �g.

Recently a remarkable conjecture was put forth by A.Givental regarding the

Gromov-Witten potentials of semisimple Frobenius manifolds4 [Giv2]. Givental's con-

jecture expresses higher genus Gromov-Witten invariants in terms of the genus-0 data

and the intersection theory on the moduli spaceM g;n of stable curves. In Chapter 3 of

this thesis, we investigate the conjecture in the case of a complex projective line, whose

cohomology H�(P1; C ) is, when viewed as a super-manifold, a semisimple Frobenius

manifold. Although we are not able to prove Givental's conjecture, we do make some

simple checks supporting his conjecture.

1.4 String Instanton Amplitudes from Algebraic

Geometry

A supersymmetric non-linear �-model whose target space is a K�ahler manifold has

an extended N = 2 supersymmetry, of which the extra supersymmetry generator is

constructed from the complex structure of the K�ahler manifold. Of particular interest

to string theorists is the case where the source manifold is a Riemann surface � and

the target manifold X is a Calabi-Yau manifold, which of course is K�ahler. It is

well-known that an N = 2 supersymmetric non-linear �-model with maps � : �! X

4The de�nition of Frobenius manifold is given in x3.1.1.
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can be twisted5 in two inequivalent ways to yield a pair of topological �eld theories,

often called the A-model and the B-model. Furthermore, under mirror symmetry,

the A-model and the B-model of X are related to the B-model and the A-model,

respectively, of the mirror manifold (See [W6] for a very clear exposition on this

point).

The twisted theories have many intriguing properties, one of which is that phys-

ical answers can be obtained purely from geometrical considerations. In the parent

untwisted theories, it follows from the non-renormalization theorems of N = 2 super-

symmetry that certain correlation functions do not get corrected from their classical

values to all orders in perturbation theory. One of the important results of twisting is

that the twisted theories focus on these special correlation functions. For example, the

correlation functions in the A-model are topological invariants of the target manifold

X, and they receive only non-perturbative corrections from world sheet instantons,

which are characterized by the holomorphic maps

@�z�
i = 0 = @z�

�i

minimizing the bosonic part of the �-model action. Instanton amplitudes in the A-

model also admit a geometrical interpretation, this time as intersection numbers on

the space of maps, and it is in this context that mathematical implications become

most transparent. As briey mentioned before, the study of the intersection theory

on the moduli space of stable maps is the subject of Gromov-Witten theory. In x3.1.2
we will de�ne the so-called Gromov-Witten invariants that arise in the theory.

Various closed string instanton amplitudes have been computed from the algebro-

geometric point of view. As already discussed in x1.2, a concrete example, in which

the usefulness of algebraic geometry is manifest, is the problem of multiple covers of

a �xed rational curve P1 with the normal bundle OP1(�1)�OP1(�1). In that case,

using the method of virtual localization and the generating function for Hodge inte-

grals obtained by Faber and Pandharipande, one can completely solve the multiple

5Physically, twisting involves changing the spins of the quantum �elds and performing a projection

on the Hilbert space.
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cover problem. There are many equally impressive results in the link between topo-

logical closed string theories and intersection theories on moduli spaces. One of the

factors responsible for the emergence of such a beautiful link is the recent advances

in mathematics regarding Gromov-Witten theory. When one tries, however, to ex-

tend the picture to topological open string theories, one immediately faces the lack

of complementary development in mathematics for studying maps between manifolds

with boundaries.

In [LS] J.Li and the present author try to narrow the gap between topological

open string theories and intersection theories on moduli spaces6. In the paper we

show how topological open string theory amplitudes can be computed by using rel-

ative stable morphisms in the algebraic category. We achieve our goal by explicitly

working through an example which has been previously considered by Ooguri and

Vafa from the point of view of physics. In fact, the example is a variant of the multi-

ple cover problem mentioned above. By using the method of virtual localization, we

successfully reproduce Ooguri and Vafa's results for multiple covers of a holomorphic

disc, whose boundary lies in a Lagrangian submanifold of a Calabi-Yau 3-fold, by

Riemann surfaces with arbitrary genus and number of boundary components. In par-

ticular we show that, in the case we consider, there are no open string instantons with

more than one boundary component ending on the Lagrangian submanifold. In [LS]

we de�ne the moduli space of relative stable morphisms, investigate the obstruction

theory of the moduli space, and describe how multiple covers of a holomorphic disc

can be viewed as a problem regarding relative stable morphisms. In Chapter 4 of this

thesis, we will discuss in detail the computational part of that paper.

(Remark: Chapters 2, 3 and 4 of this thesis are based on the preprints [MSS], [SS]

and [LS], respectively. The present author was intimately involved with each joint

research.)

6From a di�erent perspective, Katz and Liu also address the same problem in [KL].



Chapter 2

The Hurwitz Enumeration

Problem and Hodge Integrals

In this chapter, we use algebraic methods to compute the simple Hurwitz numbers for

arbitrary source and target Riemann surfaces. In the case of an elliptic curve target

space, we reproduce the results previously obtained by string theorists. Motivated by

the Gromov-Witten potentials, we �nd a general generating function for the simple

Hurwitz numbers in terms of the representation theory of the symmetric group Sn.

We also �nd a generating function for Hodge integrals on the moduli space M g;2 of

genus-g stable curves with two marked points, similar to that found by Faber and

Pandharipande [FabP1] for the case of one marked point.

2.1 Introduction

Many classical problems in enumerative geometry have been receiving renewed in-

terests in recent years, the main reason being that they can be translated into the

modern language of Gromov-Witten theory and, moreover, that they can be con-

sequently solved. One such classical problem which has been under recent active

investigation is the Hurwitz enumeration problem of branched covers. Let �g be a

compact connected Riemann surface of genus g, and �h a compact connected Rie-

13
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mann surface of genus h. Here, g � h � 0. A degree-n branched covering of �h by

�g is a non-constant holomorphic map f : �g ! �h such that jf�1(q)j = n for all

q 2 �h except for a �nite number of points called branch points. A branched covering

f is called almost simple if jf�1(p)j = n� 1 for each branch point, with the possible

exception of one degenerate point, often denoted by 1 2 �h. The rami�cation type

of that special degenerate point's pre-images are speci�ed by an ordered partition �

of the degree n of the covering. Let � = (�1; : : : ; �w) be such an ordered partition

of n, denoted by � ` n, of length `(�) = w. Then, the number r of simple branch

points is determined by the Riemann-Hurwitz formula to be:

r = (1� 2h)n+ w + 2g � 2 ; (2.1.1)

where g and h are the genera of the source and the target Riemann surfaces, respec-

tively. Two branched coverings f1 and f2 are said to be equivalent if there exists a

homeomorphism � : �g ! �g such that f2 = f1 Æ �. We de�ne �g;nh;w(�) to be the

number of inequivalent, almost simple, degree-n branched covering of �h by �g with

rami�cation type � = (�1; : : : ; �w). The problem of determining �g;nh;w(�) is the Hur-

witz enumeration problem. Many mathematicians and physicists have contributed to

determining �g;nh;w(�) explicitly, and we here list some of their works:

Mathematicians Cases Considered

J. D�enes (1959) [De] g = h = 0; `(�) = 1

V.I. Arnol'd (1996) [Ar] g = h = 0; `(�) = 2

I. Goulden & D. Jackson (1997-1999) [GouJ] g = 0; 1; 2; h = 0

R. Vakil (1998) [V] g = 0; 1; h = 0

Physicists Cases Considered

R. Rudd (1994) [Rud] g = 1; : : : ; 8; h = 1; � = (1n)

M. Crescimanno & W. Taylor (1995) [CT] g = h = 0; � = (1n)

In the �rst part of this chapter, we mostly restrict ourselves to simple Hurwitz

numbers �g;nh;n(1
n), for which there is no rami�cation over1. Hurwitz numbers appear
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in many branches of mathematics and physics. In particular, they arise naturally in

combinatorics, as they count factorizations of permutations into transpositions, and

the original idea of Hurwitz expresses them in terms of the representation theory of

the symmetric group. Indeed in this respect, the most general problem of counting

covers of Riemann surfaces by Riemann surfaces, both reducible and irreducible, with

arbitrary branch types, has been completely solved by Mednykh [Med1, Med2]. His

formulas however generally do not allow explicit computations of the numbers, except

in a few cases.

It turns out that one can successfully obtain the simple Hurwitz numbers using

Mednykh's works, and in the �rst part of chapter, we shall compute them at low

degrees for arbitrary target and source Riemann surfaces. Hurwitz numbers also

appear in physics: when the target is an elliptic curve, they are1 the coeÆcients

in the expansion of the free energies of the large N two-dimensional quantum Yang-

Mills theory on the elliptic curve, which has in fact a string theory interpretation [Gro,

GroT]. The total free energy and the partition function, which is its exponential, can

be thought of as generating functions for simple Hurwitz numbers �g;n1;n. Generalizing

this analogy, we have determined the generating functions for target Riemann surfaces

of arbitrary genus in terms of the representation theory of the symmetric group Sn.

In the framework of Gromov-Witten theory, simple Hurwitz numbers can be con-

sidered as certain cohomological classes evaluated over the virtual fundamental class

of the moduli space of stable maps to P1 [FanP]. By exploiting this reformulation,

many new results such as new recursion relations [FanP, So] have been obtained. Fur-

thermore, a beautiful link with Hodge integrals has been discovered, both by virtual

localization [FanP, GraV] and by other methods [ELSV]. It is therefore natural to

expect that the knowledge of Hurwitz numbers might be used to gain new insights

into Hodge integrals. This line of investigations has previously led to a closed-form

formula for a generating function for Hodge integrals over the moduli space M g;1 of

curves with one marked point [ELSV, FabP1]. Similarly, in this thesis, we consider

1Up to over-all normalization constants.
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the following generating function for Hodge integrals over M g;2:

G(t; k) :=
1

2
+
X
g�1

t2g
gX
i=0

ki
Z
Mg;2

�g�i
(1�  1)(1�  2)

:

For negative integral values of k, we have managed to compute G(t; k) in a closed form

by relating the integrals to the almost simple Hurwitz numbers �g;2k0;2 (k; k). We then

conjecture a simpli�ed version of our rigorously obtained result, and this conjectural

counterpart can then be analytically continued to all values of k. We have checked that

the conjectural form of our formula holds true for �60 � k � 1, but unfortunately,

we have not been able to prove it for arbitrary k: The success of the computation

makes us speculate that in more general cases, similar results might be within reach,

and the simplicity of the results suggests that new yet undiscovered structures might

be present.

This chapter is organized as follows: in x2.2, we briey explain the work of Med-

nykh and apply it to compute the simple Hurwitz numbers; in x2.3, we �nd the

generating functions for all simple Hurwitz numbers; x2.4 discusses our closed-form

formula for the generating function for Hodge integrals over M g;2; and, we conclude

in x2.5 by drawing the reader's attention to some important open questions.
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NOTATIONS: We here summarize our notations to be used throughout this chap-

ter:

�g;nh;n The usual degree-n simple Hurwitz numbers for covers of a

genus-h Riemann surface by genus-g Riemann surfaces.

~�g;nh;n; Nn;h;r Mednykh's de�nition of simple Hurwitz numbers, including

the �xed point contributions of the Sn action. (See x2.2.2 and
x2.2.6 for details.)

Rn The set of all ordinary irreducible representations of the sym-

metric group Sn.

�(1
�1 � � �n�n) The character of the irreducible representation  2 Rn evalu-

ated at the conjugacy class [(1�1 � � �n�n)]. For those �i which
are zero, we omit the associated cycle in our notation.

f  The dimension of the irreducible representation  2 Rn.

Bn;h;� See (2.2.3).

Tn;h;� Subset of Bn;h;�, generating a transitive subgroup of Sn.

Hg
h Generating functions for �g;nh;n, for �xed g and h. See (2.4.19).

fHg
h Generating functions for ~�g;nh;n, for �xed g and h.

Hg;n Simpli�ed notation for �g;n0;n. Not to be confused with Hg
h.

tpk Entries of the branching type matrix �.

t̂ij Coordinates on the large phase space in the Gromov-Witten

theory.

In this chapter, all simple Hurwitz numbers count irreducible covers, unless speci�ed

otherwise.
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2.2 Computations of Simple Hurwitz Numbers

This section describes our computations of the simple Hurwitz numbers ~�g;nh;n. The

simple covers of an elliptic curve by elliptic curves are actually unrami�ed, and we

obtain the numbers ~�1;n1;n by using the standard theory of two-dimensional lattices2.

For other values of g and h, we simplify the general formulas of Mednykh [Med1] and

explicitly compute the numbers for low degrees.

2.2.1 Unrami�ed Covers of a Torus by Tori

For covers of an elliptic curve by elliptic curves, the Riemann-Hurwitz formula (2.1.1)

becomes

r = w � n ;

but since n � w, there cannot be any simple branch points and the special point

1 also has no branching. As a result, the computation for this case reduces to

determining the number of degree n unbranched covers of an elliptic curve by elliptic

curves. Equivalently, for a given lattice L associated with the target elliptic curve,

we need to �nd the number of inequivalent sublattices L0 � L of index [L : L0] = n.

Lemma 2.1 Let L = he1; e2i := Ze1 + Ze2 be a two-dimensional lattice generated

by e1 and e2. Then, the number of inequivalent sublattices L
0 � L of index [L : L0] = n

is given by �1(n) :=
P
djn d.

Proof: Let f1 = de1 2 L0 be the smallest multiple of e1. Then, there exists f2 = ae1+

be2 2 L0; a < d; such that L0 is generated by f1 and f2 over Z. It is clear that the index

of this lattice is db. Thus, for each d dividing the index n, we have the following d in-

equivalent sublattices: hde1; (n=d)e2i; hde1; e1+(n=d)e2i; : : : ; hde1; (d�1)e1+(n=d)e2i.
The lemma now follows.

2We thank R. Vakil for explaining this approach to us.
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It hence follows from the above lemma that

~�1;n1;n = �1(n) ;

where, as usual, �k(n) =
P
djn d

k. Note that we are doing the actual counting of dis-

tinct covers, and our answer ~�1;n1;n is not equal to �
1;n
1;n which is de�ned by incorporating

the automorphism group of the cover di�erently. This point will become clear in our

ensuing discussions.

The generating function for the number of inequivalent simple covers of an elliptic

curve by elliptic curves is thus given by

fH1
1 = �1(n)q

n = �
 
d log �(q)

dt
� 1

24

!
; (2.2.2)

where q = et̂ is the exponential of the K�ahler parameter t̂ of the target elliptic curve.

Up to the constant 1=24, our answer (2.2.2) is a derivative of the genus-1 free energy

F1 of string theory on an elliptic curve target space. The expression (2.2.2) can also

be obtained by counting distinct orbits of the action of Sn on a set Tn;1;0, which will

be discussed subsequently. The string theory computation of F1, however, counts

the number �1;n1;n := jTn;1;0j=n! without taking the �xed points of the Sn action into

account, and it is somewhat surprising that our counting is related to the string theory

answer by simple multiplication by the degree. It turns out that this phenomenon

occurs for g = 1 because the function �1(n) can be expressed as a sum of products

of �(k), where �(k) is the number of distinct partitions of the integer k into positive

integers, and because this sum precisely appears in the de�nition of Tn;1;0 = jTn;1;0j.
We will elaborate upon this point in x2.2.6. In other cases, the two numbers �g;nh;n and

~�g;nh;n are related by an additive term which generally depends on g; h, and n.

2.2.2 Application of Mednykh's Master Formula

The most general Hurwitz enumeration problem for an arbitrary branch type has

been formally solved by Mednykh in [Med1]. His answers are based on the original

idea of Hurwitz of reformulating the rami�ed covers in terms of the representation
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theory of Sn [Hur]. Let f : �g ! �h be a degree-n branched cover of a compact

connected Riemann surface of genus-h by a compact connected Riemann surface of

genus-g, with r branch points, the orders of whose pre-images being speci�ed by the

partitions �(p) = (1t
p
1 ; : : : ; nt

p
n) ` n; p = 1; : : : ; r: The rami�cation type of the covering

f is then denoted by the matrix � = (tps). Two such branched covers f1 and f2 are

equivalent if there exists a homeomorphism � : �g ! �g such that f2 = f1 Æ �.
Let L = fz1; : : : ; zrg � �h be the branch locus, consisting of all branch points

of f : �g ! �h. Then, there exists a homomorphism from the fundamental group

�1(�hnL) to the symmetric group Sn. A presentation of the fundamental group

�1(�hnL) is given by

(�1; �1; �2; �2; : : : ; �h; �h; 1; : : : ; r :
hY
i=1

[�i; �i]
rY
j=1

j = I);

and we can de�ne the set Bn;h;� of homomorphisms of the above generators as

Bn;h;� =
n�
a1; b1; : : : ; ah; bh; (1

t11; : : : ; nt
1
n); : : : ; (1t

r
1; : : : ; nt

r
n)
�
2 (Sn)

2h+r
���

hY
i=1

[ai; bi]
rY

p=1

(1t
p
1 ; : : : ; nt

p
n) = I

o
: (2.2.3)

Furthermore, we can de�ne Tn;h;� � Bn;h;� as the subset whose elements are free

sets of generators that generate transitive subgroups of Sn. Then, according to Hur-

witz, there is a one-to-one correspondence between irreducible branched covers and

elements of Tn;h;�. Furthermore, the equivalence relation of branched covers gets

translated into conjugation by a permutation in Sn; that is, two elements of Tn;h;�

are considered equivalent if and only if they are conjugate to each other. Thus, the

Hurwitz enumeration problem reduces to counting the number of orbits in Tn;h;�

under the action of Sn by conjugation.

Let us denote the orders of the sets by Bn;h;� = jBn;h;�j and Tn;h;� = jTn;h;�j.
Then, using the classical Burnside's formula, Mednykh obtains the following theorem

for the number Nn;h;� of orbits:
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Theorem 2.2 (Mednykh) The number of degree-n inequivalent branched cov-

ers of the rami�cation type � = (tps); for p = 1; : : : ; r; and s = 1; : : : ; n is given by

Nn;h;� =
1

n

X
`jv

m` = n

X
1

(t;`)
jdj`

m( `
d
) d(2h�2+r)m+1

(m� 1)!

264X
js
k;p

Tn;h;(sp
k
) �

�
dX

x=1

Y
s;k;p

"
	(x; s=k)

d

#js
k;p Y

k;p

 
spk

j1k;p; : : : ; j
md
k;p

!35 (2.2.4)

where t := GCDftpsg, v := GCDfs tpsg, (t; `) = GCD(t; `), spk =
Pmd
s=1 j

s
k;p, and the

sum over jsk;p ranges over all collections fjsk;pg satisfying the condition

X
1 � k � st

p
s=`

(s=(s; d))jkjs

k jsk;p =
s tps
`

where jsk;p is non-zero only for 1 � k � stps=` and (s=(s; d))jkjs. The functions m(n)

and 	(x; n) are the M�obius and von Sterneck functions de�ned below.

In the following de�nitions, let n be a positive integer.

De�nition 2.3 (M�obius Function) The M�obius function m(n) is de�ned

to be (�1)k if n is a product of k distinct primes, and 0 if n is divisible by a square

greater than 1.

De�nition 2.4 (Euler's Totient Function) The Euler's totient function

'(n) gives the number of positive integers m < n such that GCD(m,n)=1.

De�nition 2.5 (Von Sterneck Function) The von Sterneck function

	(x; n) is de�ned in terms of the M�obius function m(n) and Euler's totient func-

tion '(n) as

	(x; n) =
'(n)

'(n=(x; n))
m(n=(x; n));

where (x; n) = GCD(x; n).
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As is apparent from its daunting form, the expression in (2.2.4) involves many

conditional sums and does not immediately yield the desired numerical answers. Med-

nykh's works, even though quite remarkable, are thus of dormant nature for obtaining

the closed-form numerical answers3 of the Hurwitz enumeration problem.

Interestingly, the general formula (2.2.4) still has some applicability. For example,

in [Med2], Mednykh considers the special case of branch points whose orders are all

equal to the degree of the cover and obtains a simpli�ed formula which is suitable for

practical applications. In a similar vein, we discover that for simple branched covers,

Mednykh's formula simpli�es dramatically and that for some low degrees, we are able

to obtain closed-form answers for simple Hurwitz numbers of rami�ed coverings of

genus-h Riemann surfaces by genus-g Riemann surfaces.

The Simpli�cations for Simple Hurwitz Numbers

We consider degree-n simple branch covers of a genus-h Riemann surface by genus-g

Riemann surfaces. A simple branch point has order (1n�2; 2), and thus the branch

type is characterized by the matrix � = (tps), for p = 1; : : : ; r; and s = 1; : : : ; n; where

tps = (n� 2)Æs;1 + Æs;2:

To apply Mednykh's master formula (2.2.4), we need to determine t = GCDftpsg and
v = GCDfs tpsg, which are easily seen to be

t = 1 and v =

8<: 2 for n even ,

1 for n odd .

Because v determines the range of the �rst sum in the master formula, we need to

distinguish when the degree n is odd or even.

3Recently, closed-form answers for coverings of a Riemann sphere by genus-0,1,2 Riemann surfaces

with one non-simple branching have been obtained in [GouJ, GouJV].
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Odd Degree Covers

For degree-n odd, we have ` = d = (t; `) = 1 andm = n. The constraints (s=(s; d))jkjs
and X

1�k�s tps=`
k jsk;p =

s tps
`

then determine the collection fjsk;pg to be

jsk;p = tps Æk;s :

Noting that 	(1; 1) = 1, we see that the master formula now reduces to

Nn;h;� =
Tn;h;(sp

k
)

n!
(n odd) ; (2.2.5)

where

spk =
nX
s=1

jsk;p = tpk = (n� 2) Æk;1 + Æk;2 : (2.2.6)

Even Degree Covers

For degree-n even, v = 2 and thus ` = 1 or 2.

` = 1: The variables take the same values as in the case of n odd, and the ` = 1

contribution to Nn;h;� is thus precisely given by (2.2.5).

` = 2: In this case, the summed variables are �xed to be

m =
n

2
and d = ` = 2 :

Then, one determines that

jsk;p =
tp1
2
Æs;1Æk;1 + tp2Æs;2Æk;1 ;

from which it follows that

~spk =
n

2
Æk;1 ;
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where we have put a tilde over spk to distinguish them from (2.2.6). Using the fact

that the number r of simple branch points is even, and the values 	(2; 1) = 	(2; 2) =

�	(1; 2) = 1, one can now show that the ` = 2 contribution to Nn;h;� is

2(h�1)n+1

(n
2
� 1)!

�
n

2

�r�1
Tn

2
;h;(~sp

k
) :

The sum of both contributions is �nally given by

Nn;h;� =
1

n!
Tn;h;(sp

k
) +

2(h�1)n+1

(n
2
� 1)!

�
n

2

�r�1
Tn

2
;h;(~sp

k
) (n even) : (2.2.7)

NOTATIONS: For simple branch types, i.e. for � = (tpk) where t
p
k = (n�2)Æk;1+Æk;2,

for p = 1; : : : ; r and k = 1; : : : ; n, we will use the notation Tn;h;� =: Tn;h;r.

The computations of �xed-degree-n simple Hurwitz numbers are thus reduced to

computing the two numbers Tn;h;(sp
k
) and Tn

2
;h;(~sp

k
), only the former being relevant when

n is odd. We now compute these numbers for some low degrees and arbitrary genera

h and g. The nature of the computations is such that we only need to know the

characters of the identity and the transposition elements in Sn.

The term Tn
2
;h;(~sp

k
) can be easily computed:

Lemma 2.6 Let ~spk = nÆk;1. Then,

Tn;h;(~sp
k
) = n!

nX
k=1

(�1)k+1

k

X
n1+���+nk=n

kY
i=1

24 X
2Rni

 
ni!

f 

!2h�235 :

where ni are positive integers, Rni the set of all irreducible representations of Sni,

and f  the dimension of the representation .

For h = 0, we can explicitly evaluate this contribution:

Lemma 2.7 Let ~spk = nÆk;1. Then,

Tn;0;(~sp
k
) =

nX
k=1

(�1)k+1

k

X
n1 + � � �+ nk = n

ni > 0

0@ n

n1; : : : ; nk

1A =

8<: 1; for n = 1

0; for n > 1 :
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Proof: The �rst equality follows from the fact that the order of a �nite group is

equal to the sum of squares of the dimension of its irreducible representations. The

second equality follows by noticing that the expression for Tn;0;(~sp
k
)=n! is the n-th co-

eÆcient of the formal q-expansion of log(
P1
n=0 q

n=n!), which is a fancy way of writing

q.

Using (2.2.5) and (2.2.7) we have computed closed-form formulas for the simple

Hurwitz numbers for arbitrary source and target Riemann surfaces for degrees less

than 8. For explicit computations of ~�g;nh;n = Nn;h;r, we will need the following relation

among the numbers of irreducible and reducible covers [Med1]:

Tn;h;� =
nX
k=1

(�1)k+1

k

X
n1 + � � �+ nk = n

�1 + � � � �k = �

 
n

n1; : : : ; nk

!
Bn1;h;�1 � � �Bnk;h;�k (2.2.8)

where

Bn;h;r = (n!)2h�1
0@ n
2

1Ar 24 X
2Rn

1

(f )2h�2

 
�(2)

f 

!r35 :
Furthermore, in these computations, we assume that r is positive unless indicated

otherwise.

2.2.3 Degree One and Two

It is clear that the degree-one simple Hurwitz numbers are given by

~�g;1h;1(1) = Æg;h :

The number of simple double covers of a genus-h Riemann surface by by genus-g

Riemann surfaces can be obtained by using the work of Mednykh on Hurwitz numbers

for the case where all branchings have the order equal to the degree of the covering

[Med2].

Proposition 2.8 The simple Hurwitz numbers ~�g;2h;2(1; 1) are equal to 22h for

g > 2(h� 1) + 1.
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Proof: For g > 2(h� 1) + 1, the number r of simple branch points is positive, and

we can use the results of Mednykh [Med2]. Let p be a prime number and Dp the set

of all irreducible representations of the symmetric group Sp. Then, Mednykh shows

that the number Np;h;r of inequivalent degree-p covers of a genus-h Riemann surface

by genus-g Riemann with r branch points4 of order-p is given by

Np;h;r =
1

p!
Tp;h;r + p2h�2[(p� 1)r + (p� 1)(�1)r] ;

where

Tp;h;r = p!
X
2Dp

 
�(p)

p

!r  
p!

f 

!2h�2+r
;

where �(p) is the character of a p-cycle in the irreducible representation  of Sp and

f  is the dimension of . For p = 2, S2 is isomorphic to Z2, and the characters of

the transposition for two one-dimensional irreducible representations are 1 and �1,
respectively. It follows that

N2;h;r = T2;h;r =

8<: 22h for r even ,

0 for r odd ,

and therefore that

~�g;2h;2(1; 1) � N2;h;r = 22h ;

which is the desired result.

Remark: The answer for the case g = 1 and h = 1 is 3, which follows from

Lemma 2.1. For h = 1 and g > 1, we have ~�g;21;2(1; 1) = 4.

2.2.4 Degree Three

The following lemma will be useful in the ensuing computations:

Lemma 2.9 Let tpk = 2 Æk;1
Pj
i=1 Æp;i + Æk;2

Pr
i=j+1 Æp;i. Then,

B2;h;(tp
k
) =

8<: 22h for j even ,

0 for j odd .

4The Riemann-Hurwitz formula determines r to be r = [2(1� h)p+ 2(g � 1)].
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Proof: The result follows trivially from the general formula for Bn;h;� by noting

that the character values of the transposition for the two irreducible representations

of S2 are 1 and �1.
We now show

Proposition 2.10 The degree-3 simple Hurwitz numbers are given by

~�g;3h;3 � N3;h;r = 22h�1(32h�2+r � 1) = 22h�1(32g�4h+2 � 1);

where r = 6(1� h) + 2(g � 1) is the number of simple branch points.

Proof: T3;h;r receives non-zero contributions from the following partitions of 3: (3)

and (1; 2). There are three irreducible representations of S3 of dimensions 1,1, and

2, whose respective values of their characters on a transposition are 1;�1; and 0.

Taking care to account for the correct combinatorial factors easily yields the desired

result.

2.2.5 Degree Four

The degree-4 answer is slightly more complicated:

Proposition 2.11 The degree-4 simple Hurwitz numbers are given by

N4;h;r = 22h�1
h
(32h�2+r + 1)24h�4+r � 32h�2+r � 22h�3+r + 1

i
+ 24h�4+r(22h � 1)

= 22h�1
h
(32g�6h+4 + 1)22g�4h+2 � 32g�6h+4 � 22g�6h+3 + 1

i
+

+22g�4h+2(22h � 1):

(2.2.9)

Proof: The last term in (2.2.9) comes from the second term in (2.2.7) by applying

Lemma 2.6. To compute T4;h;r, we note that the only consistent partitions of 4 and

� are when 4 has the following partitions: (4); (1; 3); (2; 2); and (1; 1; 2). The only

non-immediate sum involves

X
�1+�2=�

B2;h;�1 B2;h;�2 ;
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which, upon applying Lemma 2.9, becomes 24h+r�1.

Higher degree computations are similarly executed. But, one must keep track

of some combinatorial factors arising from inequivalent distributions of � in (2.2.8),

and we thus omit their proofs in our presentation and summarize our results in Ap-

pendix B.1.

2.2.6 Cautionary Remarks

Hurwitz numbers are sometimes de�ned to be Tn;h;�=n!, counting orbits as if there

were no �xed points of the action Sn on Tn;h;�. The master formula obtained by

Mednykh uses the Burnside's formula to account for the �xed points. In the case

of simple Hurwitz numbers, this will lead to an apparent discrepancy between our

results and those obtained by others for even degree covers, the precise reason being

that for even degree covers, say of degree-2n, the action of (2n) 2 S2n on T2n;h;� has

�xed points which are counted by the second term in (2.2.7). Consequently, to obtain

the usual even degree Hurwitz numbers, we just need to consider the contribution of

the �rst term in (2.2.7). For odd degree cases, there is no non-trivial �xed points, and

our formula needs no adjustment. The following examples of the discussion would be

instructive:

Example One

Let us explicitly count the double covers of an elliptic curve by genus-g Riemann

surfaces. The set T2;1;2g�2 is given by

T2;1;2g�2 =
n
(a; b; (2)2g�2) 2 S2g

2 k aba�1b�1(2)2g�2 = 1
o
:

Since S2 is commutative and (2)2 = 1, any pair (a; b) 2 S2 � S2 satis�es the required

condition. Hence, the order of T2;1;2g�2 is four. Now, to count non-equivalent cover-

ings, we need to consider the action of S2 on the set T2;1;2g�2 by conjugation. Again,

since S2 is Abelian, it is clear that it acts trivially on the set and thus that there are

4 inequivalent double covers of an elliptic curve by genus-g Riemann surfaces. The



2.2. COMPUTATIONS OF SIMPLE HURWITZ NUMBERS 29

commonly adopted de�nition of Hurwitz number, however, speci�es that we should

take the order of the set T2;1;2g�2 and divide it by the dimension of S2, yielding 2 as

its answer. This number 2 is precisely the �rst contribution in the Burnside's formula:

N2;1;2g�2 =
1

jS2j
X
�2S2

jF�j = F(12)

2!
+
F(2)

2!
= 2 + 2 = 4

where jF�j is the order of the �xed-point set under the action of � 2 S2. For odd n, Sn

acts freely on the set Tn;h;r, but for even n, it has �xed points and our formula (2.2.7)

accounts for the phenomenon, truly counting the number of inequivalent covers.

To avoid possible confusions, we thus use the following notations to distinguish

the two numbers:

�g;nh;n :=
Tn;h;r
n!

; for all n;

and

~�g;nh;n := Nn;h;r :

It turns out that current researchers are mostly interested in �g;nh;n; for example, it is

this de�nition of simple Hurwitz numbers that appears in the string theory literature

and in relation to Gromov-Witten invariants. In this thesis, we will compute the

numbers ~�g;nh;n and indicate the ` = 2 contributions which can be subtracted to yield

�g;nh;n. We will however �nd generating functions only for the case �g;nh;n.

Example Two

The above discussion shows that the two numbers ~�g;nh;n and �
g;n
h;n di�er by the second

term in (2.2.7) and thus are not related by simple multiplicative factors. For h = 1

and g = 1, however, we have previously observed that fH1
1 given in (2.2.2) is equal to

@tF1, up to an additive constant, implying that

~�1;n1;n = n�1;n1;n : (2.2.10)

Since we know that ~�1;n1;n = �1(n) and since one can show that

�1;n1;n :=
Tn;1;0
n!

=
nX
k=1

(�1)k+1

k

X
m1+���+mk=n

 
kY
i=1

�(mi)

!
;

the following lemma establishes the special equality in (2.2.10):
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Lemma 2.12 Let �(m) be the number of distinct ordered partitions of a positive

integerm into positive integers. Then, the function �1(n) has the following expression:

�1(n) = n
nX
k=1

(�1)k+1

k

X
m1+���mk=n

 
kY
i=1

�(mi)

!
:

Proof: As is well-known, the functions �(m) arise as coeÆcients of the expansion

of q1=24 �(q)�1, i.e.
q1=24

�(q)
= 1 +

1X
m=1

�(m) qm : (2.2.11)

We take log of both sides of (2.2.11) and q-expand the resulting expression on the

right hand side. Now, using the fact that

log
�
q1=24�(q)�1

�
=

1X
n=1

�1(n)

n
qn ;

we match the coeÆcients of qn to get the desired result.

2.2.7 Recursive Solutions to Tn;h;r for an Elliptic Curve (h = 1)

Elliptic curve is the simplest Calabi-Yau manifold and is of particular interest to

string theorists. The free energies Fg count the numbers �
g;n
h;n, and string theorists

have computed Fg for g � 8 [Rud]. Using the approach described in the previous

subsection, we have obtained the closed-form formulas for Nn;h;r for n < 8. For

h = 1, its ` = 1 parts agree with the known free energies Fg. Although our results

are rewarding in that they give explicit answers for all g and h, further computations

become somewhat cumbersome beyond degree 8. For higher degrees, we therefore

adopt a recursive method to solve Tn;1;r on a case-by-case basis.

The number of reducible covers Bn;h;�=n! and that of irreducible covers Tn;h;�=n!

are related by exponentiation [Med2]:

X
��0

Bn;h;�

n!
w� = exp

0@X
��0

Tn;h;�
n!

w�

1A ; (2.2.12)

where w� denotes the multi-product

w� :=
rY
p=1

nY
k=1

w
tp
k
pk
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in the indeterminates wpk and � � 0 means tpk � 0; 8 p; k. From (2.2.12), one can

derive

Bn;h;� =
nX
k=1

1

k!

0@ n

n1; : : : ; nk

1A X
n1 + � � �+ nk = n

�1 + � � �+ �k = �

Tn1;h;�1 � � �Tnk;h;�k :

In particular, for simple covers of an elliptic curve, partitioning � appropriately yields

Tn;1;r
n!

=
Bn;1;r

n!
�

nX
k=2

1

k!

X
n1 + � � �+ nk = n

2`1 + � � �+ 2`k = r

0@ r

2`1; : : : ; 2`k

1A kY
i=1

Tni;1;2`i
ni!

; (2.2.13)

where ni and `i are positive and non-negative integers, respectively. For �xed degree

n, (2.2.13) expresses Tn;1;r in terms of lower degree and lower genus Hurwitz numbers,

and Bn;1;r. The number Bn;1;r in this case reduces to

Bn;1;r =
n!

2r

nX
k=1

X
n1 + � � �+ nk = n

n1 � n2 � � � � � nk

24X
i2I

pi(pi � 1)
Y
j 6=i

 
pi � 2� pj
pi � pj

!35r ;

where pi = ni + k � i and I = fi 2 f1; : : : ; kg k (pi � 2) � 0g: In Appendix B.2, we

provide the explicit values of Bn;h;r for n � 10.

We have implemented the recursion into a Mathematica program which, using our

results from the previous subsection as inputs, computes Tn;1;r for n � 8. For the

sake of demonstration, we present some numerical values of Tn;1;r=n! for n � 10 in

Appendix B.3.

2.3 Generating Functions for Simple Hurwitz Num-

bers

Recently, G�ottsche has conjectured an expression for the generating function for the

number of nodal curves on a surface S, with a very ample line bundle L, in terms of

certain universal power series and basic invariants [Gott]. More precisely, he conjec-

tures that the generating function T (S; L) for the number of nodal curves may have
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the form

T (S; L) = exp (c2(S)A+K2
S B +KS � LC + L2D) ;

where A;B;C;D are universal power series in some formal variables and KS the

canonical line bundle of S.

In a kindred spirit, it would be interesting to see whether such universal structures

exist for Hurwitz numbers. For a curve, the analogues of KS and c2(S) would be the

genus of the target and L the degree of the branched cover. It turns out that for

simple Hurwitz numbers, we are able to �nd their generating functions in closed-

forms, but the resulting structure is seen to be more complicated than that for the

case of surfaces.

2.3.1 Summing up the String Coupling Expansions

The free energies Fg on an elliptic curve have been computed in [Rud] up to g = 8,

and their q-expansions5 agree precisely with our results shown in Appendix B.3.

For a �xed degree n < 8, we know Fg for all g, so we can sum up the expansion

F =
X
g

�2g�2Fg ; (2.3.14)

up to the given degree n in the world-sheet instanton expansion. That is, we are

summing up the string coupling expansions, and this computation is a counterpart of

\summing up the world-sheet instantons" which string theorists are accustomed to

studying.

Consider the following generating function for simple Hurwitz numbers:

�(h) =
X
g;n

Tn;h;r
n!

�r

r!
qn =

X
g;n

�g;nh;n
�r

r!
qn ; (2.3.15)

which coincides with the total free energy (2.3.14) for h = 1. For low degree simple

covers of an elliptic curve, we can use our results (B.3.1) to perform the summation

5Here, q = exp(t̂), where t̂ is a formal variable dual to the K�ahler class of the elliptic curve.
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over the number r of simple branch points and get

�(1) =
X
g

�2g�2Fg

= � log(q�1=24 �(q)) + 2 [cosh(�)� 1] q2 + 2 [cosh(3�)� cosh(�)] q3

+2

�
cosh(6�) +

1

2
cosh(2�)� cosh(3�) + cosh(�)�

3

2

�
q4

+2 [1 + cosh(10�) � cosh(6�) + cosh(5�)� cosh(4�) + cosh(3�)� 2 cosh(�)] q5

+2

�
cosh(15�) � cosh(10�) + cosh(9�) � cosh(7�) +

1

2
cosh(6�)� cosh(5�)

+ 2 cosh(4�)�
2

3
cosh(3�) +

1

2
cosh(2�) + 2 cosh(�)�

11

3

�
q6 +O(q7) :

The partition function Z = e�(1) is then given by

Z = 1 + q + 2 cosh(�) q2 + [1 + 2 cosh(3�)] q3 + [1 + 2 cosh(2�) + 2 cosh(6�)] q4

+ [1 + 2 cosh(2�) + 2 cosh(5�) + 2 cosh(10�)] q5

+ [1 + 4 cosh(3�) + 2 cosh(5�) + 2 cosh(9�) + 2 cosh(15�)] q6

+ [1 + 2 cosh(�) + 2 cosh(3�) + 2 cosh(6�) + 2 cosh(7�) + 2 cosh(9�) + 2 cosh(14�)

+ 2 cosh(21�)] q7 + 2 [1 + cosh(2�) + 2 cosh(4�) + cosh(7�) + cosh(8�) + cosh(10�)

+ cosh(12�) + cosh(14�) + cosh(20�) + cosh(28�)] q8 +O(q9):

At this point, we can observe a pattern emerging, and indeed, the partition function

can be obtained to all degrees from the following statement which, we subsequently

discovered, was also given in [Dijk]:

Proposition 2.13 The partition function Z, or the exponential of the generating
function for simple Hurwitz numbers, for an elliptic curve target is given by

Z = 1 + q +
X
n�2

0@ X
2Rn

cosh

240@n
2

1A �(2)

f 
�

351A qn : (2.3.16)

Proof: From (2.2.13), we see that

Bn;1;r

n! r!
=

nX
k=1

1

k!

X
n1 + � � �+ nk = n

2`1 + � � �+ 2`k = r

kY
i=1

(F`i+1)qni ; (2.3.17)
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where, as before, ni and `i are positive and non-negative integers, respectively, and

(Fg)qm is the coeÆcient of qm in the genus-g free energy. The numbers Bn;1;r are

determined to be

Bn;1;r =

8>>>><>>>>:
n!

0@ n
2

1Ar hP
2Rn

�
�(2)
f

�ri
, for n � 2

Ær;0 , for n � 1 .

Now, multiplying both sides of (2.3.17) by �rqn and summing over all even r � 0 and

all n � 0 proves the claim.

The argument of hyperbolic-cosine is known as the central character of the irreducible

representation  and can be evaluated as in (A.1.4).

Further Recursions for Closed-Form Answers

The above explicit form of the partition function gives rise to a powerful way of

recursively solving for the simple Hurwitz numbers �g;n1;n for a given degree n, similar

to those given in (B.3.1). Let us consider this more closely. Suppose that, knowing

closed-form formulas for �gi;ni1;ni for all ni < n and arbitrary gi, we are interested in

deriving a closed-form formula for �g;n1;n, where g is again arbitrary. The key idea is

to match the coeÆcient of �2g�2qn in the expansion of the partition function Z with

the coeÆcient of the same term in the expansion

exp[�(1)] = 1 + �(1) +
1

2
[�(1)]2 + � � �+ 1

k!
[�(1)]k + � � � :

The coeÆcient of �2g�2qn in �(1) contains precisely what we are looking for, namely

�g;n1;n. On the other hand, the coeÆcients of �2g�2qn in [�(1)]k, for k > 1, are given in

terms of �gi;ni1;ni , where ni < n and gi � g. But, by hypothesis, we know �gi;ni1;ni for all

ni < n, and therefore we can solve for �g;n1;n in a closed-form. Using this method, we

have obtained the degree-8 Hurwitz numbers, and the answer agrees with the known

results as well as the computation done by our earlier recursive method.

This recursive method also works for determining the general simple Hurwitz

numbers �g;nh;n, upon using the general \partition function" (2.3.18) in place of Z.
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2.3.2 The Generating Functions for Target Curves of Arbi-

trary Genus

For arbitrary genus targets, there is a natural generalization of the above discussion

on the generating functions. We have previously de�ned the generating function �(h)

to be

�(h) =
X
r;n�0

�g;nh;n
�r

r!
qn ;

and seen that for h = 1, it coincides with the total free energy of string theory on

an elliptic curve target, where � is identi�ed with the string coupling constant. For

h 6= 1, however, the formal parameter � should be actually viewed as the parameter6

t̂11 dual to the �rst gravitational descendant of the K�ahler class. We do not need an

extra genus-keeping parameter, because for simple covers of a �xed target space with

a given number of marked points r, choosing the degree of the map �xes the genus

of the source Riemann surface uniquely. For the purpose of �nding a nice generating

function, it is thus convenient to treat r and n as independent indices, with the

requirement that they be both non-negative.

For r = 0, our previous computations of the simple Hurwitz numbers need to be

modi�ed as

Tn;h;0
n!

=
nX
k=1

(�1)k+1

k

X
n1 + � � �+ nk = n

ni > 0

kY
i=1

(ni)!
2h�2

24 X
2Dni

(f )2�2h
35 :

Also, note that N1;h;r = Ær;0. Then, we have

Proposition 2.14 The generalized \partition function" Z(h) = exp(�(h)) for

all h is given by

Z(h) = 1 + q +
X
n�2

X
2Rn

 
n!

f 

!2h�2
cosh

240@ n
2

1A �(2)

f 
�

35 qn: (2.3.18)

6Unfortunately, we have previously used the notation tpk to denote the branching matrix. Here,

to avoid confusions, we use t̂ for the coordinates that appear in the Gromov-Witten theory.
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Proof: The proof is exactly the same as that of Proposition 2.13. One just needs

to keep track of extra factors in the general form of Bn;h;r. For genus h = 0, when

applying the Riemann-Hurwitz formula, we must remember to use the correctly de-

�ned arithmetic genus of reducible curves and, as a result, sum over all even r � 0 in

Bn;0;r; doing so takes into account the degree-1 covers in the exponential.

2.4 Hodge Integrals onM g;2 and Hurwitz Numbers

In the modern language of Gromov-Witten theory, the simple Hurwitz numbers are

equal to

�g;nh;n :=
Tn;h;r
n!

= h� r1;1ig;n ;

where r = 2(1 � h)n + 2(g � 1) and �k;1 is the k-th gravitational descendant of the

K�ahler class of the target genus-h Riemann surface. We can organize these numbers

into a generating function as follows:

Hg
h :=

X
n

1

r!
h� r1;1ig;n (t̂11)r ent̂ =

X
n

1

r!

Tn;h;r
n!

(t̂11)
r ent̂ ; (2.4.19)

where t̂11 and t̂ are coordinates dual to �1;1 and �0;1, respectively. In this thesis, we

have determined (2.4.19) for all g and h up to degree n = 7.

For h = 0 and h = 1, these generating functions arise as genus-g free energies of

string theory on P1 and an elliptic curve as target spaces, respectively, evaluated by

setting all coordinates to zero except for t̂11 and t̂. For de�nitions of Hodge integrals,

see [FabP1, FabP2].

2.4.1 Generating Functions for Hodge Integrals

The Hurwitz enumeration problem has been so far investigated intensely mainly for

branched covers of the Riemann sphere. In this case, the almost simple Hurwitz

numbers for covers with one general branch point can be expressed explicitly in terms

of certain Hodge integrals. An interesting application of this development is to use
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the generating function for Hurwitz numbers �g;d0;1(d) to derive a generating function

for Hodge integrals over the moduli space M g;1. More precisely, consider the formula

F (t; k) := 1 +
X
g�1

t2g
gX
i=0

ki
Z
Mg;1

 2g�2+i
1 �g�i =

 
t=2

sin(t=2)

!k+1

; (2.4.20)

where the  and � classes are de�ned as in x1.2. That is,  1 = c1(L1 ) 2 H2(M g;1;Q),

where L1 is the cotangent line bundle L1 ! M g;1 associated to the single marked

point, and �j = cj(E ), where E ! M g;1 is the Hodge bundle. This formula was

�rst obtained by Faber and Pandharipande in [FabP1] by using virtual localization

techniques and has been re-derived by Ekedahl et al. in [ELSV] by using the generat-

ing function for Hurwitz numbers for branched covers whose only non-simple branch

point has order equal to the degree of the cover.

In this thesis, we speculate a possible connection between the Hurwitz numbers

for P1 and generating functions for Hodge integrals onM g;n; n � 1. For this purpose,

let us rewrite F (t; k) as

F (t; k) = 1 +
X
g�1

t2g
gX
i=0

ki
Z
Mg;1

�g�i
1�  1

: (2.4.21)

Now, recall that the simple Hurwitz numbers �g;n0;n(1
n), henceforth abbreviated Hg;n,

have the following Hodge integral expression [FanP]:

Hg;n := �g;n0;n =
(2g � 2 + 2n)!

n!

Z
Mg;n

1� �1 + � � �+ (�1)g�gQn
i=1(1�  i)

(2.4.22)

for (g; n) 6= (0; 1); (0; 2). The degree-1 simple Hurwitz numbers are Hg;1 = Æg;0, thus

(2.4.22) yields the relation

Z
Mg;1

1� �1 + � � �+ (�1)g�g
1�  1

= 0; for g � 1.

which implies from (2.4.21) that F (t;�1) = 1, in accord with the known answer

(2.4.20). Naively, we thus see that the simple Hurwitz numbers are coeÆcients of

F (t; k) evaluated at special k.
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In a similar spirit, we can speculate a crude generating function for Hodge integrals

with two marked points:

G(t; k) =
1

2
+
X
g�1

t2g
gX
i=0

ki
Z
Mg;2

�g�i
(1�  1)(1�  2)

:

Our goal is to �nd a closed-form expression for this generating function G(t; k). With-

out much work, we can immediately evaluate G(t; k) at certain special values of k:

Proposition 2.15 The generating function G(t; k) can be evaluated at k = �1
to be

G(t;�1) = 1

2
� 1

t2

 
cos t+

t2

2
� 1

!
=

1

2

 
sin(t=2)

t=2

!2

;

and similarly at k = 0 to be

G(t; 0) =
1

2

�
t

sin t

�
=

1

2

t=2

sin(t=2)

1

cos(t=2)
:

Proof: At k = �1, we can use (2.4.22) to get

G(t;�1) = X
g�0

(�1)g 2 t2g

(2g + 2)!
Hg;2 : (2.4.23)

We have previously computed Hg;2 = N2;0;2g+2=2 = 1=2, and we can then perform

the summation in (2.4.23) and get the desired result. To evaluate G(t; 0), we use the

following �g-conjecture, which has been recently proven by Faber and Pandharipande

[FabP2]: Z
Mg;n

 �11 � � � �nn �g =

0@ 2g + n� 3

�1; : : : ; �n

1A Z
Mg;1

 2g�2
1 �g :

One can now computeZ
Mg;2

�g
(1�  1)(1�  2)

=
(22g�1 � 1)

(2g)!
jB2gj

and obtain the result.

To extract the terms without �k insertions, consider the scaling limit

G(t k
1
2 ; k�1) =

1

2
+
X
g�1

t2g
gX
i=0

kg�i
Z
Mg;2

�g�i
(1�  1)(1�  2)

k!0�! 1

2
+
X
g�1

t2g
gX
i=0

Z
Mg;2

1

(1�  1)(1�  2)
: (2.4.24)



2.4. HODGE INTEGRALS ON Mg;2 AND HURWITZ NUMBERS 39

The asymptotic behavior (2.4.24) can be explicitly evaluated as follows:

Proposition 2.16 The asymptotic limit of G(t; k) is

G(t k
1
2 ; k�1) k!0�! exp (t2=3)

2 t

p
� Erf

�
t

2

�
;

and thus, the integrals can be evaluated to beZ
Mg;2

1

(1�  1)(1�  2)
=

1

2

gX
m=0

1

m! 12m
(g �m)!

(2g � 2m + 1)!
:

Proof: This is an easy consequence of the following Dijkgraaf's formula which ap-

peared in the work of Faber [Fab1]:

h�0�(w)�(z)i = exp

 
(w3 + z3)�h

24

!X
n�0

n!

(2n+ 1)!

�
1

2
wz(w + z)�h

�n
: (2.4.25)

Here, �(w) :=
P
n�0 �nw

n, where �n are de�ned as in x1.2, and �h is a formal genus-

expansion parameter de�ned by

h i = X
g�0
h ig �hg :

Setting w = z = �h�1 = t in (2.4.25) and noting that

X
n�0

1

(2n+ 1)!!
t2n+1 = et

2=2

r
�

2
Erf

"
tp
2

#

gives the result, upon using the string equation on the left-hand side.

For future reference, it would be desirable to �nd an explicit series expansion of

G(t; k). Using Faber's Maple program for computing the intersection numbers on

M g;n [Fab2], the generating function can be seen to have an expansion of the form

G(t; k) =
1

2
+
�
1

12
+
1

8
k
�
t2 +

�
7

720
+

73

2880
k +

49

2880
k2
�
t4 +

+
�

31

30240
+

253

72576
k +

983

241920
k2 +

1181

725760
k3
�
t6 +

+
�

127

1209600
+

36413

87091200
k +

37103

58060800
k2 +

38869

87091200
k3 +

467

3870720
k4
�
t8 +

+
�

73

6842880
+

38809

821145600
k +

122461

1437004800
k2 +

86069

1094860800
k3+

+
53597

1437004800
k4 +

33631

4598415360
k5
�
t10 +O(t12) : (2.4.26)
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2.4.2 Relation to the Hurwitz Numbers �g;2kh;2 (k; k)

We now relate the generating function G(t; k) to the Hurwitz numbers �g;2kh;2 (k; k),

which we are able to compute explicitly. This connection allows us to evaluate G(t; k)

for all k 2 Z<0. In [ELSV], T.Ekedahl, S.Lando, M.Shapiro and A.Vainshtein have

proved the following useful relation between Hurwitz numbers and Hodge integrals:

�g;n0;w(�) =
(2g � 2 + n + w)!

jAut(�)j
 

wY
i=1

��ii
�i!

!Z
Mg;w

Pg
j=0(�1)j�jQw

i=1(1� �i i)
:

For � = (k; k), which means n = 2k and w := `(�) = 2, this relation reduces to

�g;2k0;2 (k; k) =
(2k + 2g)!

2

k2k

(k!)2

Z
Mg;2

Pg
j=0(�1)j�j

(1� k 1)(1� k 2)
;

which we can rewrite as

�g;2k0;2 (k; k) =
(2k + 2g)!

2

k2k+2g�1

(k!)2

gX
i=0

ki
Z
Mg;2

(�1)g�i �g�i
(1�  1)(1�  2)

:

This implies that for integers k > 0,

G(it;�k) = 1

2
+
X
g�1

2 t2g

(2k + 2g)!

(k!)2

k2k+2g�1 �
g;2k
0;2 (k; k) : (2.4.27)

By using the expansion (2.4.26) and matching coeÆcients with (2.4.27), one can thus

obtain the Hurwitz numbers �g;2k0;2 (k; k). We have listed the numbers for g � 6 in

Appendix B.4.

It is in fact possible to determine the Hurwitz numbers �g;2k0;2 (k; k) from the work of

Shapiro et al. on enumeration of edge-ordered graphs [ShShV]. According to theorem

9 of their paper7, the Hurwitz numbers �g;2k0;2 (k; k) are given by

�g;2k0;2 (k; k) = N(2k; 2k + 2g; (k; k))�
 
2k

k

!
(2k + 2g)!

(2k)!
k2k�2+2g �

� 1

2

24g+1X
s=0

Æk2s Æ
k
2g+2�2s

35 ; (2.4.28)

7Actually, their formula has a minor mistake for the case when n = 2k is partitioned into (k; k)

for odd genus. More precisely, when the summation variable s in their formula equals (g+1)=2, for

an odd genus g, there is a symmetry factor of 1=2 in labeling the edges because the two disconnected

graphs are identical except for the labels.
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where the numbers Æk2g are de�ned by

1X
g=0

Æk2g t
2g =

 
sinh(t=2)

t=2

!k�1

and can be written explicitly as

Æk2g =
1

(k + 2g � 1)!

k�1X
m=0

 
k � 1

m

!
(�1)m

 
k � 1

2
�m

!k+2g�1
:

The number N(2k; 2k + 2g; (k; k)), which counts the number of certain edge-ordered

graphs, is given by

N(2k; 2k + 2g; (k; k)) =
jC(k; k)j
[(2k)!]2

X
�`2k

f �(h(�0)� h(�))2k+2g��(k; k); (2.4.29)

where jC(k; k)j is the order of the conjugacy class C(k; k), �0 is the partition conjugate
to �, and h(�) =

Pm
i (i�1)�i for � = (�1; : : : ; �m) ` 2k. Hence, the problem of �nding

�g;2k0;2 (k; k) reduces down to evaluating (2.4.29).

Proposition 2.17 For k � 2,

N(2k; 2k + 2g; (k; k)) =
(k � 1)!

2 k � k! (2 k)!
(
2 [k (k � 2)]2 g+2 k (2 k)!

k! (1 + k)!
+

+
k�1X
m=0

 
2 k � 1

m

!
(�1)m [k (2k � 2m� 1)]2 k+2 g +

+
2k�1X
m=k

 
2 k � 1

m

!
(�1)m�1 [k (2k � 2m� 1)]2 k+2 g +

+ 2
k�3X
m=0

k�m�1X
p=1

 
k � 1

m

! 
k � 1

m+ p

!
�

� p2

k2 � p2
(2k)!

(k!)2
(�1)p+1[k (k � 2m� p� 1)]2 k+2 g

)
:

Proof: To each irreducible representation labeled by � = (�1; : : : ; �j) ` 2k, we can

associate a Young diagram with j rows, the ith row having length �i. According

to the Murnaghan-Nakayama rule, which we review in Appendix A.2, the diagram
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corresponding to an irreducible representation � for which ��(k; k) 6= 0, must be

either (a) a hook or (b) a union of two hooks. After long and tedious computations,

we arrive at the following results:

(a) There are 2k \one-hook" diagrams.

(i)

m+1 � � � k�1 k 1 2 � � � k�1 k

m

...

2

1

A diagram of this kind with leg-length m for

0 � m � k � 1 gives

f � =

 
2k � 1

m

!
; ��(k; k) = (�1)m ;

h(�0)� h(�) = k(2k � 2m� 1) :

(ii)

m0+1 � � � k�1 k

m0

...

2

1

k

k�1
...

2

1

A diagram of this kind with leg-length m = m0 + k

for 0 � m0 � k � 1 gives

f � =

 
2k � 1

m

!
; ��(k; k) = (�1)m�1 ;

h(�0)� h(�) = k(2k � 2m� 1) :
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(b) There are k(k � 1)=2 \two-hook" diagrams.

(i)

k k

k�1 k�1
...

...

2 2

1 1

One diagram has 2 columns and k rows. It corresponds

to the irreducible representation with

f � =
(2k)!

k!(k + 1)!
; ��(k; k) = 2 ;

h(�0)� h(�) = k(k � 2) :

(ii)

m+1 m+2 m+3 � � � k�p+1 � � � k�1 k

m p+m+1 p+m+2 � � � k

...
...

2 p+3

1 p+2

p p+1

p�1
...

2

1

For each value of m and p satisfying 0 � m � k � 3

and 1 � p � k �m � 1, respectively, there is a diagram

with k�m columns and p+m+1 rows. Such diagram has

f � =

 
k � 1

m

! 
k � 1

m + p

!
p2

k2 � p2
(2k)!

(k!)2
;

��(k; k) = 2(�1)p+1 ; h(�0)� h(�) = k(k� 2m� p� 1) :

Furthermore, after some simple combinatorial consideration, we �nd that jC(k; k)j =
(2k)!(k � 1)!=(2k � k!). Finally, substituting in (2.4.29) the values of f �; ��(k; k) and
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h(�0) � h(�) for the above k(k + 3)=2 irreducible representations gives the desired

result.

By using (2.4.27) and (2.4.28), we can now rewrite G(it;�k) as

Proposition 2.18 For integral k � 2,

G(it;�k) =
2 (k � 1)!

(k + 1)! t2k
cosh[(k � 2)t]

+
2 (k!)2

k (2k)! t2k

k�1X
m=0

 
2k � 1

m

!
(�1)m cosh[(2k � 2m� 1)t]

+
2

k t2k

k�3X
m=0

k�m�1X
p=1

 
k � 1

m

! 
k � 1

m+ p

!
p2

k2 � p2
(�1)p+1 cosh[(k � 2m� p� 1)t]

�
1

k t2

�
sinh[t=2]

(t=2)

�2k�2
:

Proof: By substituting the expression (2.4.28) into (2.4.27) and summing over the

Æ terms, we get

G(it;�k) =
1

2
+
X
g�1

2 (k!)2 t2g

(2k + 2g)! k2k+2g�1 N(2k; 2k + 2g; (k; k))

�
1

kt2

�
sinh(t=2)

t=2

�2k�2
+

Æk0Æ
k
0

kt2
+

2

k
Æk0Æ

k
2

=
1

2
+
X
~̀�0

2 (k!)2 t2
~̀�2k

(2~̀)! k2~̀�1
N(2k; 2~̀; (k; k)) �

kX
`�0

2 (k!)2 t2`�2k

(2`)! k2`�1
N(2k; 2`; (k; k))

�
1

kt2

�
sinh(t=2)

t=2

�2k�2
+

Æk0Æ
k
0

kt2
+

2

k
Æk0Æ

k
2 :

(2.4.30)

Before we proceed with our proof, we need to establish two minor lemmas. As in

[ShShV], let N(n;m; �) be the number of edge-ordered graphs with n vertices, m

edges, and � cycle partition, and Nc(n;m; �) the number of connected such graphs.

Then,

Lemma 2.19 N(2k; 2`; (k; k)) = 0 for ` � k � 2.
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Proof: These constraints follow from Theorem 4 of [ShShV] which states that the

length l of the cycle partition must satisfy the conditions c � l � min(n;m� n+ 2c)

and l = m� n(mod 2), where c is the number of connected components. In our case,

l = 2 and the second condition is always satis�ed. The �rst condition, however, is

violated for all ` � k � 2 because c � 2 and thus min(2`� 2k + 2c) � 0.

Similarly, one has

Lemma 2.20 Nc(2k; 2k � 2; (k; k)) = 0.

Proof: This fact again follows from Theorem 4 of [ShShV]. Here, c = 1 and

min(n;m� n+ 2c) = 0, whereas ` = 2, thus violating the �rst condition of the theo-

rem.

By Lemma 2.19, the third term in (2.4.30) is non-vanishing only for ` = k�1 and

` = k. But the ` = k � 1 piece and the �fth term in (2.4.30) combine to give

� 2(k!)2

(2k � 2)!k2k�3t2
N(2k; 2k � 2; (k; k)) +

Æk0Æ
k
0

kt2
/ Nc(2k; 2k � 2; (k; k)) = 0;

which follows from Lemma 2.20. Furthermore, the ` = k piece and the last term in

(2.4.30) give

� 2(k!)2

(2k)! k2k�1
N(2k; 2k; (k; k)) +

2

k
Æk0Æ

k
2 = � 2(k!)2

(2k)! k2k�1
�0;2k0;2 (k; k) = � 1

2
;

where we have used the known fact [ShShV] that

�0;2k0;2 (k; k) =

 
2k

k

!
k2k�1

4
:

Thus, we have

G(it;�k) =X
~̀�0

2 (k!)2 t2
~̀�2k

(2~̀)! k2~̀�1
N(2k; 2~̀; (k; k))� 1

kt2

 
sinh(t=2)

t=2

!2k�2
;

and the �rst term can now be easily summed to yield our claim.
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It turns out that there are some magical simpli�cations, and we �nd for a few low

values of k that

G(t;�1) =
1

2

 
sin(t=2)

t=2

!2

;

G(t;�2) =
1

6
[2 + cos(t)]

 
sin(t=2)

t=2

!4

;

G(t;�3) =
1

30
[8 + 6 cos(t) + cos(2t)]

 
sin(t=2)

t=2

!6

;

G(t;�4) =
1

140
[32 + 29 cos(t) + 8 cos(2t) + cos(3t)]

 
sin(t=2)

t=2

!8

;

G(t;�5) =
1

630
[128 + 130 cos(t) + 46 cos(2t) + 10 cos(3t) + cos(4t)]

 
sin(t=2)

t=2

!10

;

G(t;�6) =
1

2772
[512 + 562 cos(t) + 232 cos(2t) + 67 cos(3t) + 12 cos(4t)

+ cos(5t)]

 
sin(t=2)

t=2

!12

;

G(t;�7) =
1

4(3003)
[2048 + 2380 cos(t) + 1093 cos(2t) + 378 cos(3t) + 92 cos(4t)

+ 14 cos(5t) + cos(6t)]

 
sin(t=2)

t=2

!14

;

and so forth. We have explicitly computed G(t;�k) for k � 60, and based on these

computations, we conjecture the following general form:

Conjecture 2.21 For integers k � 1, the generating function is given by

G(t;�k) =
2(k � 1)! k!

(2k)!

 
sin(t=2)

t=2

!2k "
22(k�2)+1 +

k�1X
n=1

"
k�n�1X
i=0

 
2k � 1

i

!#
cos(nt)

#
:

Let us rewrite the summation as follows:
k�1X
n=1

"
k�n�1X
i=0

 
2k � 1

i

!#
cos(nt) =

k�2X
`=0

 
2k � 1

`

! 
k�1�`X
n=1

cos(nt)

!

=
1

2

k�2X
`=0

 
2k � 1

`

!"
sin [(2k � 1� 2`)t=2]

sin(t=2)
� 1

#
:

(2.4.31)
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The last expression in (2.4.31) can now be explicitly summed, leading to an expres-

sion which can be analytically continued to all values of k. After some algebraic

manipulations, we obtain the following corollary to Conjecture 2.21:

Conjecture 2.22 For all 8 k, the generating function as a formal power series

in Q[k][[t]] is given by

G(t;�k) =
22k�1p
�

�(k) �(1
2
+ k)

�(2k + 1)

 
sin(t=2)

t=2

!2k
1

sin(t=2)

�
h
sin(t=2) + <

�
i ei t=2 2F1(1;�k; k;�e�i t)

�i
; (2.4.32)

where < denotes the real part and 2F1(a; b; c; z) is the generalized hypergeometric func-

tion de�ned as

2F1(a; b; c; z) :=
1X
k=0

(a)k(b)k
(c)k

zk

k!
;

where (a)k := �(a + k)=�(a).

We have checked that our conjectural formula (2.4.32) indeed reproduces all the terms

in (2.4.26).

2.4.3 Possible Extensions

Motivated by our results, let us consider a similar generating function for the case of

more marked points:

Gn(t; k) :=
n!

(2n� 2)!
H0;n +

X
g�1

t2g
gX
i=0

ki
Z
Mg;n

�g�i
(1�  1) � � � (1�  n)

:

At k = �1, it can be evaluated in terms of simple Hurwitz numbers as

Gn(t;�1) = n!
1X
g=0

(�1)gHg;n

(2g + 2n� 2)!
t2g:

8For k non-positive integers and half-integers, the below expression of G(t;�k) appears to be

divergent. For these cases, one might try �rst expanding G(t;�k) in t and setting k equal to the

desired values.



48 CHAPTER 2. THE HURWITZ ENUMERATION PROBLEM AND HODGE INTEGRALS

Interestingly, our previous generating function for simple Hurwitz numbers (2.3.15),

with � = it, is related to Gn(t;�1):

�(0)j
�=it

= logZ(0) = X
n�1

(it)2n�2

n!
Gn(t;�1) qn :

Hence, we have

Gn(t;�1) = n!

t2n�2

nX
k=1

(�1)k�n
n

X
m1 + � � �+mk = n

mi > 0

Wmi
� � �Wmk

where W1 = 1 and

Wmi
=

X
2Rmi

 
f 

mi!

!2

cos

240@mi

2

1A �(2)

f 
t

35 :
This relation might suggest a possible connection between the symmetric group Sn

and the geometry of the moduli space of marked Riemann surfaces.

Of course, Gn(t;�1) can be also explicitly computed from our previous computa-

tions of the simple Hurwitz numbers Hg;n. For example, we �nd that

G3(t;�1) =
(2 + cos(t))

3

 
sin(t=2)

t=2

!4

;

G4(t;�1) =
(20 + 21 cos(t) + 6 cos(2 t) + cos(3 t))

12

 
sin(t=2)

t=2

!6

;

G5(t;�1) =

 
sin(t=2)

t=2

!8
1

60
[422 + 608 cos(t) + 305 cos(2 t)+

+120 cos(3 t) + 36 cos(4 t) + 8 cos(5 t) + cos(6 t)] ;

G6(t;�1) =

 
sin(t=2)

t=2

!10
1

360
� [16043 + 26830 cos(t) + 17540 cos(2 t)+

+9710 cos(3 t) + 4670 cos(4 t) + 1966 cos(5 t) + 715 cos(6 t) +

+220 cos(7 t) + 55 cos(8 t) + 10 cos(9 t) + cos(10 t)] :

Similarly, Gn(t; 0) can be computed by using the �g-conjecture. For example, one can

easily show that

G3(t; 0) =
(3t=2)

sin(3t=2)
;
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et cetera. Although we are able to compute the generating function Gn(t; k) at these

particular values, it seems quite diÆcult{nevertheless possible{to determine its closed-

form expression for all k. It would be a very intriguing project to search for the

answer.

2.5 Conclusion

To recapitulate, the �rst part of this chapter studies the simple branched covers of

compact connected Riemann surfaces by compact connected Riemann surfaces of arbi-

trary genera. Upon �xing the degree of the irreducible covers, we have obtained closed

form answers for simple Hurwitz numbers for arbitrary source and target Riemann

surfaces, up to degree 7. For higher degrees, we have given a general prescription for

extending our results. Our computations are novel in the sense that the previously

known formulas �x the genus of the source and target curves and vary the degree as

a free parameter. Furthermore, by relating the simple Hurwitz numbers to descen-

dant Gromov-Witten invariants, we have obtained the explicit generating functions

(2.3.18) for the number of inequivalent reducible covers for arbitrary source and tar-

get Riemann surfaces. For an elliptic curve target, the generating function (2.3.16) is

known to be a sum of quasi-modular forms. More precisely, in the expansion

Z =
1X
n=0

An(q)�
2n ;

the series An(q) are known to be quasi-modular of weight 6n under the full modular

group PSL(2;Z). Our general answer (2.3.18) for an arbitrary target genus di�ers

from the elliptic curve case only by the pre-factor (n!=f )2h�2. Naively, it is thus

tempting to hope that the modular property persists, so that in the expansion

Z(h) =
1X
n=0

Ahn(q)�
2n;

the series Ahn(q) are quasi-automorphic forms, perhaps under a genus-h subgroup of

PSL(2;Z).
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Throughout the chapter, we have taken caution to distinguish two di�erent con-

ventions of accounting for the automorphism groups of the branched covers and have

clari�ed their relations when possible. The recent developments in the study of Hur-

witz numbers involve connections to the relative Gromov-Witten theory and Hodge

integrals on the moduli space of stable curves. In particular, Li et al. have obtained

a set of recursion relations for the numbers �g;nh;w(�) by applying the gluing formula to

the relevant relative Gromov-Witten invariants [LiZZ]. Incidentally, these recursion

relations require as initial data the knowledge of simple Hurwitz numbers, and our

work would be useful for applying the relations as well.

Although we cannot make any precise statements at this stage, our work may

also be relevant to understanding the conjectured Toda hierarchy and the Virasoro

constrains for Gromov-Witten invariants on P1 and elliptic curve. It has been shown

in [So] that Virasoro constraints lead to certain recursion relations among simple

Hurwitz numbers for a P1 target. It might be interesting to see whether there exist

further connections parallel to these examples. The case of an elliptic curve target

seems, however, more elusive at the moment. The computations of the Gromov-

Witten invariants for an elliptic curve are much akin to those occurring for Calabi-

Yau three-folds. For instance, a given n-point function receives contributions from

the stable maps of all degrees, in contrast to the Fano cases in which only a �nite

number of degrees yields the correct dimension of the moduli space. Consequently,

the recursion relations and the Virasoro constraints seem to lose their eÆcacy when

one considers the Gromov-Witten invariants of an elliptic curve. It is similar to the

ine�ectiveness of the WDVV equations for determining the number of rational curves

on a Calabi-Yau three-fold.



Chapter 3

Semisimple Frobenius Structures

and Gromov-Witten Invariants

This chapter is devoted to an investigation of Givental's recent conjecture regarding

semisimple Frobenius manifolds. The conjecture expresses higher genus Gromov-

Witten invariants in terms of the data obtained from genus-0 Gromov-Witten in-

variants and the intersection theory of tautological classes on the Deligne-Mumford

moduli space M g;n of stable curves. We limit our investigation to the case of a com-

plex projective line P1, whose Gromov-Witten invariants are well-known and easy to

compute. We make some simple checks supporting Givental's conjecture.

3.1 Introduction

In the �rst two subsections of this rather long introduction, we de�ne semisimple

Frobenius structures and Gromov-Witten invariants. Givental's conjecture and our

investigation of it are summarized in the last subsection.

3.1.1 Semisimple Frobenius Manifold

In x1.3 we de�ned Frobenius algebra. In this subsection, we de�ne what it means for

a manifold to have a semisimple Frobenius structure.

51
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De�nition 3.1 (Frobenius Manifold) [Du, Giv2]

H is a Frobenius manifold if, at any t 2 H, a Frobenius algebra structure, which

smoothly depends on t, is de�ned on the tangent space TtH such that the following

conditions hold:

(i) The non-generate inner product h�; �i is a at pseudo-Riemannian metric on H.

(ii) There exists a function F whose third covariant derivatives are structure con-

stants ha � b; ci of a Frobenius algebra structure on TtH.

(iii) The vector �eld of unities 1, which preserve the algebra multiplication �, is
covariantly constant with respect to the Levi-Civita connection of the at metric

h�; �i.

If the algebras (TtH; �) are semisimple at generic t 2 H, then H is called semisim-

ple. For example, if X is a complex projective space, then H = H�(X;Q) carries a

semisimple Frobenius structure de�ned by the genus-0 Gromov-Witten potential F0

[Giv2].

3.1.2 Gromov-Witten Invariants

Let X be a smooth projective variety. In [Kont2] Kontsevich introduced the com-

pacti�ed moduli space M g;n(X; �) of stable maps (f : C ! X; p1; p2; : : : ; pn), where

C is a connected, projective curve of arithmetic genus g = h1(C;OC), possibly with

ordinary double points, which are the only allowed singularities; p1; p2; : : : ; pn are

pairwise distinct non-singular points of C; and f is a morphism from C to X such

that f�([C]) = � 2 H2(X;Z). The stability of (f : C ! X; p1; p2; : : : ; pn) means that

it has only �nite automorphisms. Equivalently, (f : C ! X; p1; p2; : : : ; pn) is stable

if every irreducible component C 2 C satis�es the following two conditions:

(i) If C ' P1 and f is constant on C, then C must contain at least three special

points, which can be either marked points or nodal points where C meets the

other irreducible components of C.
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(ii) If C has arithmetic genus 1 and f is constant on C, then C must contain at

least one special point.

The expected complex-dimension of the moduli space M g;n(X; �) is

Æ := (3� dim(X))(g � 1) +
Z
�
c1(X) + n; (3.1.1)

but in general M g;n(X; �) may contain components whose dimensions exceed the

above expected dimension. A crucial fact in Gromov-Witten theory is thatM g;n(X; �)

carries a canonical perfect obstruction theory which allows one to construct a well-

de�ned algebraic cycle [BehF, LT2]

[M g;n(X; �)]
vir 2 A2Æ(M g;n(X; �);Q)

in the rational Chow group of the expected dimension. [M g;n(X; �)]
vir is called the

virtual fundamental class, and all intersection invariants of cohomology classes in

Gromov-Witten theory are evaluated on [M g;n(X; �)]
vir.

Cohomology classes of M g;n(X; �) can be constructed from that of X as follows.

For 1 � i � n, let

evi :Mg;n(X; �) �! X

be the evaluation map at the marked point pi such that

evi : (f : C ! X; p1; p2; : : : ; pn) 7�! f(pi):

Then a cohomology class  2 H�(X;Q) can be pulled back by the evaluation map

to yield ev�() 2 H�(M g;n(X; �);Q). For 1; : : : ; n 2 H�(X;Q), Gromov-Witten

invariants are de�ned as

Z
[Mg;n(X;�)]vir

ev�1(1) [ ev�2(2) [ � � � [ ev�n(n);

which are de�ned to vanish unless the total dimension of the integrand is equal to the

expected dimension in (3.1.1). Let ~1; : : : ; ~m be a homogeneous basis of H�(X;Q ),
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and de�ne ~ :=
Pm
i=0 t

�~�, where t
� are formal variables. Then, the genus-g Gromov-

Witten potential, which is a generating function for genus-g Gromov-Witten invari-

ants, is de�ned as

Fg(~) :=
1X
n=0

X
�2H2(X;Z)

q�

n!

Z
[Mg;n(X;�)]vir

ev�1(~) [ ev�2(~) [ � � � [ ev�n(~); (3.1.2)

where q� := e
2�i
R
�
!
for a complexi�ed K�ahler class ! of X.

3.1.3 Brief Summary

Let X be a compact symplectic manifold whose cohomology space H�(X;Q) carries

a semisimple Frobenius structure, and let Fg(t) be its genus-g Gromov-Witten po-

tential. Then, Givental's conjecture, whose equivariant counter-part he has proved

[Giv2], is

e
P

g�2
�g�1Fg(t) =

24e�2 Pk;l�0

P
i;j
V ij
kl

p
�i

p
�j@qi

k
@
q
j
l

Y
j

�(��j; fqjmg)
35������
qjm=T jm

; (3.1.3)

where i; j = 1; : : : ; dimH�(X;Q ); V ij
kl ;�j; and T jn are functions of t 2 H�(X;Q)

and are de�ned by solutions to the at-section equations associated with the genus-

0 Frobenius structure of X [Giv2]; and � is the KdV tau-function governing the

intersection theory on the Deligne-Mumford space M g;n and is de�ned as follows:

�(�; fqkg) = exp

24 1X
g=0

�g�1Fpt

g (fqkg)
35 ;

where

F
pt

g (fqkg) =
1X
n=0

1

n!

Z
Mg;n

q( 1) [ � � � [ q( n):

We have used the notation q( i) :=
P1
k=0 qk 

k
i , where qk are formal variables. The  

classes are the gravitational descendants de�ned in x1.2, i.e. the �rst Chern classes

of the universal cotangent line bundles over M g;n.

Givental's remarkable conjecture organizes the higher genus Gromov-Witten in-

variants in terms of the genus-0 data and the � -function for a point. The motivation
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for our work lies in verifying the conjecture for X = P1, which is the simplest exam-

ple whose cohomology space H�(X;Q) carries a semisimple Frobenius structure and

whose Gromov-Witten invariants can be easily computed.

We have obtained two particular solutions to the at-section equations (3.3.7),

an analytic one encoding the two-point descendant Gromov-Witten invariants of P1

and a recursive one corresponding to Givental's fundamental solution. According to

Givental, both of these two solutions are supposed to yield the same data V ij
kl ;�j;

and T jn. Unfortunately, we were not able to produce the desired information using our

analytic solutions, but the recursive solutions do lead to sensible quantities which we

need. Combined with an expansion scheme which allows us to verify the conjecture at

each order in �, we thus use our recursive solutions to check the conjecture (3.1.3) for

P1 up to order �2. Already at this order, we need to expand the di�erential operators

in (3.1.3) up to �6 and need to consider up to genus-3 free energy in the � -functions,

and the computations quickly become cumbersome with increasing order. We have

managed to re-express the conjecture for this case into a form which resembles the

Hirota-bilinear relations, but at this point, we have no insights into a general proof.

It is nevertheless curious how the numbers work out, and we hope that our results

would provide a humble support for Givental's master equation.

We have organized this chapter as follows: in x3.2, we review the canonical coor-

dinates for P1, to be followed by our solutions to the at-section equations in x3.3.
Our computations are presented in x3.4, and we conclude with some remarks in x3.5.
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3.2 Canonical Coordinates for P1.

We here review the canonical coordinates fu�g for P1 [Du, DZ, Giv1]. Recall that

a Frobenius structure on H�(P1;Q ) carries a at pseudo-Riemannian metric h�; �i
de�ned by the Poincar�e intersection pairing. The canonical coordinates are de�ned

by the property that they form the basis of idempotents of the quantum cup-product,

denoted in the present thesis by Æ. The at metric h�; �i is diagonal in the canonical

coordinates, and following Givental's notation, we de�ne �� := 1=h@u�; @u�i.
Let ft�g ; � 2 f0; 1g be the at coordinates of the metric and let @� := @=@t�.

The quantum cohomology of P1 is

@0 Æ @� = @� and @1 Æ @1 = et
1

@0:

The eigenvalues and eigenvectors of @1Æ are

� et1=2 and (�et1=4 @0 + e�t
1=4 @1);

respectively. So, we have

(�et1=4 @0 + e�t
1=4 @1) Æ (�et1=4 @0 + e�t

1=4 @1) = �2 et1=4 (�et1=4 @0 + e�t
1=4 @1);

which implies that

@

@u�
=

@0 � e�t
1=2 @1

2
;

such that

@u� Æ @u� = @u� and @u� Æ @u� = 0 :

We can solve for u� up to constants as

u� = t0 � 2 et
1=2 : (3.2.4)

To compute ��, note that

1

��
:= h@u�; @u�i = � 1

2et1=2
:
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The two bases are related by

@0 = @u+ + @u� and @1 = et
1=2 (@u+ � @u�) :

De�ne an orthonormal basis by fi = �
1=2
i

@
@ui

. Then the transition matrix 	 from

f @
@t�
g to ffig is given by

	 i
� =

1p
2

0@ e�t
1=4 �i e�t1=4

et
1=4 i et

1=4

1A =

0@ �
�1=2
+ �

�1=2
�

1
2
�

1=2
+

1
2
�

1=2
�

1A ; (3.2.5)

such that
@

@t�
=
X
i

	 i
� fi:

We will also need the inverse of (3.2.5):

(	�1) �i =
1p
2

0@ et
1=4 e�t

1=4

i et
1=4 �i e�t1=4

1A =

0@ 1
2
�

1=2
+ �

�1=2
+

1
2
�

1=2
� �

�1=2
�

1A : (3.2.6)

3.3 Solutions to the Flat-Section Equations

The relevant data V ij
kl ;�j and T

j
n are extracted from the solutions to the at-section

equations of the genus-0 Frobenius structure for P1. We here �nd two particular

solutions. The analytic solution correctly encodes the two-point descendant Gromov-

Witten invariants, while the recursive solution is used in the next section to verify

Givental's conjecture.

3.3.1 Analytic Solution

The genus-0 free energy for P1 is

F0 =
1

2
(t0)2t1 + et

1

:

Flat sections S� of TH�(P1;Q) satisfy the equations

z @� S� = F��� g
�� S� ; (3.3.7)
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where z 6= 0 is an arbitrary parameter and F��� := @3F0=@t
�@t�@t�. Since the only

non-vanishing components of F��� for P
1 are

F0
�
0
�
1
�
= 1 and F1

�
1
�
1
�
= et

1

;

(3.3.7) gives the following set of equations:

z @0S0 = S0 ;

z @0S1 = S1 ;

z @1S0 = S1 ;

z @1S1 = et
1

S0:

The �rst two equations imply

S0 = A(t1) et0=z and S1 = B(t1) et0=z ;

while the last two imply

zA0(t1) = B(t1) and z B0(t1) = et
1A(t1) :

These coupled di�erential equations together imply

z2A00(t1) = et
1A(t1) and z2B00(t1) = z2B0(t1) + et

1B(t1) ;

and we can now solve for A(t) and B(t) as follows:

B(t) = et
1=2
h
c1 I1(2e

t1=2=z) + c2K1(2e
t1=2=z)

i
;

A(t) = c1 I0(2 e
t=2=z)� c2K0(2 e

t=2=z) ;

where In(x) and Kn(x) are modi�ed Bessel functions, and ci are integration constants

which may depend on z. Hence, we �nd that the general solutions to the at-section

equations (3.3.7) are

S0 = et
0=z

h
c1 I0(2 e

t1=2=z)� c2K0(2 e
t1=2=z)

i
(3.3.8)
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and

S1 = et
0=z et

1=2
h
c1 I1(2e

t1=2=z) + c2K1(2e
t1=2=z)

i
:

We would now like to �nd two particular solutions corresponding to the following

Givental's expression:

S��(z) = g�� +
X

n�0;(n;d)6=(0;0)

1

n!
h�� � ��

z �  
� (t0�0 + t1�1)

nid ; (3.3.9)

where S�� denotes the �-th component of the �-th solution. Here, f��g is a ho-

mogeneous basis of H�(P1;Q ), g�� is the intersection paring
R
P1
�� [ �� and  2

H2(M 0;n+2(P
1; d);Q) is the �rst Chern class of the universal cotangent line bundle

over the moduli space M 0;n+2(P
1; d). In order to �nd the particular solutions, we

compare our general solution (3.3.8) with the 0-th components of S0� in (3.3.9) at

the origin of the phase space. The two-point functions appearing in (3.3.9) have been

computed at the origin in [So] and have the following forms:

S00jt�=0 = �
1X
m=1

1

z2m+1

2 dm
(m!)2

; where dm =
mX
k=1

1=k ; (3.3.10)

and

S01jt�=0 = 1 +
1X
m=1

1

z2m
1

(m!)2
: (3.3.11)

Using the standard expansion of the modi�ed Bessel function K0, we can evaluate

(3.3.8) at the origin of the phase space to be

c1 I0

�
2

z

�
� c2K0

�
2

z

�
= c1 I0

�
2

z

�
� c2

"
� (� log(z) + E) I0

�
2

z

�
+
X
m=1

cm
z2m(m!)2

#
;

(3.3.12)

where E is Euler's constant. Now matching (3.3.12) with (3.3.10) gives

c1 = �c2 log(1=z)� c2E and c2 =
2

z
;

while noticing that (3.3.11) is precisely the expansion of I0(2=z) and demanding that

our general solution coincides with (3.3.11) at the origin yields

c1 = 1 and c2 = 0 :
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To recapitulate, we have found

S00 = �2et
0=z

z

"
(E � log(z)) I0

 
2 et

1=2

z

!
+ K0

 
2 et

1=2

z

!#
;

S10 =
2et

0=z et
1=2

z

"
K1

 
2et

1=2

z

!
� (E � log(z)) I1

 
2et

1=2

z

!#
;

S01 = et
0=z I0

 
2 et

1=2

z

!
;

S11 = et
0=z et

1=2 I1

 
2et

1=2

z

!
:

We have checked that these solutions correctly reproduce the corresponding descen-

dant Gromov-Witten invariants obtained in [So].

If the inverse transition matrix in (3.2.6) is used to relate the matrix elements S i
�

to S�� as S
i
� = S��(( 

�1)t)�j Æ
ji, then we should have

S �
� =

p�2 et1=4
 
1

2
S�0 � e�t

1=2

2
S�1

!
: (3.3.13)

3.3.2 Recursive Solution

In [Giv1, Giv2], Givental has shown that near a semisimple point, the at-section

equations (3.3.7) have a fundamental solution given by

S i
� = 	 j

� (R0 + zR1 + z2R2 + � � �+ znRn + � � �)jk [exp(U=z)]ki ;

where Rn = (Rn)jk, R0 = Æjk and U is the diagonal matrix of canonical coordinates.

The matrix R1 satis�es the relations

	�1@	
@t1

= [
@U

@t1
; R1] (3.3.14)

and "
@R1

@t1
+	�1

 
@	

@t1

!
R1

#
��

= 0 ; (3.3.15)

which we use to �nd its expression. From the transition matrix given in (3.2.5) we

see that

	�1@	
@t1

=
1

4

0@ 0 i

�i 0

1A ;
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while taking the (+�) component of the relation (3.3.14) gives

i

4
=
@U++

@t1
(R1)+� � (R1)+�

@U��
@t1

= 2et
1=2(R1)+� ;

where in the last step we have used the de�nition (3.2.4) of canonical coordinates.

We therefore have

(R1)+� =
i

8
e�t

1=2 ;

and similarly considering the (�+) component of (3.3.14) gives

(R1)�+ =
i

8
e�t

1=2:

The diagonal components of R1 can be obtained from (3.3.15), which implies that

@(R1)++

@t1
= (R1)+�

@U��
@t1

(R1)�+ � @U++

@t1
(R1)+�(R1)�+ =

exp(�t1=2)
32

= �@(R1)��
@t1

:

Hence, (R1)++ = � exp(�t1=2)=16 = �(R1)�� and the matrix R1 can be written as

(R1)jk =
1

16
e�t

1=2

0@ �1 2i

2i 1

1A : (3.3.16)

In general, the matrices Rn satisfy the recursion relations [Giv1]�
d+	�1d	

�
Rn = [dU;Rn+1] ; (3.3.17)

which, for our case, imply the following set of equations:

@Rn

@t0
= 0 ; (3.3.18)

@(Rn)++

@t1
= � i

4
(Rn)�+ ; (3.3.19)

(Rn+1)�+ = �1

2
e�t

1=2

"
@(Rn)�+
@t1

� i

4
(Rn)++

#
; (3.3.20)

@(Rn)��
@t1

=
i

4
(Rn)+� ; (3.3.21)

(Rn+1)+� =
1

2
e�t

1=2

"
@(Rn)+�
@t1

+
i

4
(Rn)��

#
: (3.3.22)
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Proposition 3.2 For n � 1, the matrices Rn in the fundamental solution are

given by

(Rn)ij =
(�1)n
(2n� 1)

�n
2n

e�nt
1=2

0@ �1 (�1)n+1 2n i

2n i (�1)n+1

1A ; (3.3.23)

where

�n = (�1)n 1

8nn!

nY
`=1

(2`� 1)2 ; �0 = 1:

These solutions satisfy the unitarity condition

R(z)Rt(�z) := (1+zR1+z2R2+� � �+znRn+� � �)(1�zR
t
1+z2Rt

2+� � �+(�1)nznRt
n+� � �) = 1

and the homogeneity condition and, thus, are unique.

Proof: For n = 1, �1 = �1=8 and (3.3.23) is equal to the correct solution (3.3.16).

The proof now follows by an induction on n. Assume that (3.3.23) holds true up to

and including n = m. Using the fact that

�m+1 = �(2m + 1)2

8(m + 1)
�m;

we can show that Rm+1 in (3.3.23) satis�es the relations (3.3.19){(3.3.22) as well as

(3.3.18).

To check unitarity, consider the zk-term Pk :=
Pk
`=0(�1)`Rk�`Rt

` in R(z)R
t(�z)

=
P
k=0 Pkz

k. As shown by Givental, the equations satis�ed by the matrices Rn

imply that the o�-diagonal entries of Pk vanish. As a result, combined with the anti-

symmetry of Pk for odd k, we see that Pk vanishes for k odd. Hence, we only need to

show that for our solution, Pk vanishes for all positive even k as well. To this end, we

note that Givental has also deduced from the equation dPk+[	�1d	; Pk] = [dU; Pk+1]

that the diagonal entries of Pk are constant. The expansion of P2k is

P2k = R2k +Rt
2k + � � � ;

where the remaining terms are products of R`, for ` < 2k. Now, we proceed induc-

tively. We �rst note that R1 and R2 given in (3.3.23) satisfy the condition P2 = 0, and
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assume that R`'s in (3.3.23) for ` < 2k satisfy P` = 0. Then, since the o�-diagonal

entries of Pn vanish for all n, the expansion of P2k is of the form

P2k = Ae�2k t
1=2 +B;

where A is a constant diagonal matrix resulting from substituting our solution (3.3.23)

and B is a possible diagonal matrix of integration constants for R2k. But, since the

diagonal entries of Pn are constant for all n, we know that A = 0. We �nally choose

the integration constants to be zero so that B = 0, yielding P2k = 0. Hence, the

matrices in our solution (3.3.23) satisfy the unitarity condition and are manifestly

homogeneous. It then follows by the proposition in [Giv2] that our solutions Rn are

unique.

Let R := (R0 + zR1 + z2R2 + � � �+ znRn + � � �). Then, we can use the matrices

Rn from Proposition 3.2 to �nd

S +
0 = (R++ � iR�+)

exp(u+=z)p
�+

=

"
1 +

1X
n=1

�n
2n

exp

 �nt1
2

!
(�z)n

#
exp(u+=z)p

�+
; (3.3.24)

S �
0 = (R�� + iR+�)

exp(u�=z)p
��

=

"
1 +

1X
n=1

(�1)n�n
2n

exp

 �nt1
2

!
(�z)n

#
exp(u�=z)p

��
; (3.3.25)

S +
1 = (R++ + iR�+)

p
�+

2
exp(u+=z)

=

"
1�

1X
n=1

(2n+ 1)

(2n� 1)

�n
2n

exp

 �nt1
2

!
(�z)n

# p
�+

2
exp(u+=z) ; (3.3.26)

S �
1 = (R�� � iR+�)

p
��
2

exp(u�=z)

=

"
1�

1X
n=1

(�1)n (2n+ 1)

(2n� 1)

�n
2n

exp

 �nt1
2

!
(�z)n

# p
��
2

exp(u�=z) : (3.3.27)
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Using the above expressions for S i
� (z), we can also �nd V ij(z; w), which is given by

the expression

V ij(z; w) :=
1

z + w
[S i
� (w)]

t [g��] [S j
� (z)]:

If we de�ne

Ap;q :=
(4p q � 1)

(2p� 1)(2q � 1)

�p �q
2p+q

e
�(p+q)t1

2

and

Bp;q :=
2(p� q)

(2p� 1)(2q � 1)

�p �q
2p+q

e
�(p+q)t1

2 ;

then after some algebraic manipulations we obtain

V ++(z; w) = eu+=w+u+=z

8<: 1

z + w
+

1X
k;l=0

"
kX

n=0

(�1)nAl+n+1;k�n

#
(�1)k+l wkzl

9=; ; (3.3.28)

V ��(z; w) = eu�=w+u�=z

8<: 1

z + w
�

1X
k;l=0

"
(�1)k+l

kX
n=0

(�1)nAl+n+1;k�n

#
(�1)k+l wkzl

9=; ;

V +�(z; w) = eu+=w+u�=z

8<:
1X

k;l=0

"
i (�1)l

kX
n=0

Bl+n+1;k�n

#
(�1)k+l wkzl

9=; ; (3.3.29)

V �+(z; w) = eu�=w+u+=z

8<:
1X

k;l=0

"
i (�1)k

kX
n=0

Bl+n+1;k�n

#
(�1)k+l wkzl

9=; :

3.3.3 A Puzzle

Incidentally, we note that in the asymptotic limit z ! 0,

S +
0 = <

24s2�

z
et

0=zI0

 
2et

1=2

z

!35
and

S �
0 = �i

s
2

�z
et

0=zK0

 
2et

1=2

z

!
reproduce the expansions in (3.3.24) and (3.3.25). This is in contrast to what was

expected from the discussion leading to (3.3.13). Despaired of matching the two

expressions, it seems to us that the analytic correlation functions obtained in x3.3.1
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do not encode the right information that appear in Givental's conjecture. In the

following section, we will use the recursive solutions from x3.3.2 to check Givental's

conjectural formula at low genera.

3.4 Checks of the Conjecture at Low Genera

The T in that appear in Givental's formula (3.1.3) are de�ned by the equations [Giv2]

S �
0 :=

"
1�

1X
n=0

T�n (�z)n�1
#
exp(u�=z)p

��
:

From the computations of S +
0 and S �

0 in (3.3.24) and (3.3.25), respectively, one can

extract T in to be

T+
n =

8>><>>:
0 ; n = 0; 1 ;

� �n�1
2n�1

exp

"�(n� 1)t1

2

#
; n � 2 ;

(3.4.30)

T�n =

8>><>>:
0 ; n = 0; 1 ;

� (�1)n�1�n�1
2n�1

exp

"�(n� 1)t1

2

#
; n � 2 :

(3.4.31)

Notice that

T�n = (�1)n�1 T+
n : (3.4.32)

The functions V ij
kl are de�ned

1 by the expansion [Giv2]

V ij(z; w) = eu
i=w+uj=z

24 Æij

z + w
+

1X
k;l=0

(�1)k+l V ij
kl w

kzl

35 ;
and from (3.3.28) and (3.3.29) we see that

V ++
kl =

kX
n=0

(�1)nAl+n+1;k�n =
kX

n=0

(�1)n(4(l + n + 1)(k � n)� 1)

(2l + 2n + 1)(2k � 2n� 1)
T+
l+n+2T

+
k�n+1 ;

V +�
kl = i(�1)l

kX
n=0

Bl+n+1;k�n = i(�1)l
kX

n=0

2(l + 2n+ 1� k)

(2l + 2n+ 1)(2k � 2n� 1)
T+
l+n+2T

+
k�n+1:

1There seems to be a misprint in the original formula for V ij
kl in [Giv2], i.e. we believe that w

and z should be exchanged, as in our expression here.
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Now, the � -function for the intersection theory on the Deligne-Mumford moduli

space Mg;n of stable curves is de�ned by

�(�; fqkg) = exp

0@ 1X
g=0

�g�1F pt

g (fqkg)
1A

and has the following nice scaling invariance: consider the scaling of the phase-space

variables qk given by

qk 7! sk�1 qk (3.4.33)

for some constant s. Then, since a non-vanishing intersection number h�k1 � � � �kni
must satisfy

nX
i=1

(ki � 1) = dim(Mg;n)� n = 3g � 3 ;

we see that under the transformation (3.4.33), the genus-g generating function Fpt

g

must behave as

F
pt

g (fsk�1 qkg) = (s3)g�1Fpt

g (fqkg):

Hence, upon scaling the \string coupling constant" � to s�3 �, we see that

�(s�3�; fsk�1qkg) = �(�; fqkg) : (3.4.34)

Now, consider the function

F (fq+n g; fq�n g) :=
"
e
�
2

P
k;l�0

P
i;j2f�g

V ij
kl

p
�i

p
�j@qi

k
@
q
j
l �(��+; fq+n g)�(���; fq�n g)

#
:

(3.4.35)

Then, since the Gromov-Witten potentials of P1 for g � 2 all vanish, Givental's

conjectural formula for P1 is

F (fT+
n g; fT�n g) = 1 ;

where it is understood that one sets qik = T ik after taking the derivatives with respect

to qik. Since T+
n and T�n are related by (3.4.32), let us rescale q�k 7! (�1)k�1q�k in

(3.4.35). Then, since �+ = ���, we observe from (3.4.34) that
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F (fT+
n g; fT

�
n g) =

8<:exp

24�
2
�+

X
k;l�0

�
V ++
kl @q+

k
@q+

l
+ i(�1)l�1 V +�

kl @q+
k
@q�

l
+

+i(�1)k�1 V �+
kl @q�

k
@q+

l
� (�1)k+lV ��

kl @q�
k
@q�

l

�35 �(��+; fq
+
n g)�(��+; fq

�
n g)

9=;
������
q+n ;q

�
n=T+

n

:

But, the V ij
kl satisfy the relations V ��

kl = �(�1)k+lV ++
kl and V +�

kl = V �+
lk , so

F (fT+
n g; fT�n g) =

8<:exp
24�
2
�+

X
k;l�0

�
V ++
kl (@q+

k
@q+

l
+ @q�

k
@q�

l
) +

+2i (�1)l�1 V +�
kl @q+

k
@q�

l

� 35 �(��+; fq+n g)�(��+; fq�n g)
9=;
������
q+n ;q

�
n=T+

n

:

(3.4.36)

Now, consider the following transformations of the variables:

q+k = xk + yk and q�k = xk � yk

so that

@q+
k
=

1

2
(@xk + @yk) and @q�

k
=

1

2
(@xk � @yk) :

Then, in these new coordinates, (3.4.36) becomes

F (fT+
n g; fT�n g) = G(fT+

n g; f0g);

where the new function G(fxkg; fykg) is de�ned2 by

G(fxng; fyng) = (3.4.37)

exp

24�
4
�+

X
k;l�0

(Vkl@xk@xl +Wkl@yk@yl)

35 �(��+; fxn + yng)�(��+; fxn � yng);

where

Vkl := V ++
kl + i(�1)l�1 V +�

kl ;

Wkl := V ++
kl � i(�1)l�1 V +�

kl :

2We have simpli�ed the expression by noting that the mixed derivative terms cancel because of

the identity V +�

kl = (�1)k�l V +�

lk :
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Remark: The conjecture expressed in terms of (3.4.37), i.e. that G(fT+
k g; f0g) = 1;

is now in a form which resembles the Hirota bilinear relations, which might be indi-

cating some kind of an integrable hierarchy, perhaps of Toda-type.

Because the tau-functions are exponential functions, upon acting on them by the

di�erential operators, we can factor them out in the expression of G(fxkg; fykg). We

thus de�ne

De�nition 3.3 P (��+; fxkg; fykg) is a formal power series in the variables ��+,

fxkg and fykg such that

G(fxkg; fykg) = P (��+; fxkg; fykg) �(��+; fxk + ykg) �(��+; fxk � ykg):

Hence, Givental's conjecture for P1 can be restated as

Conjecture 3.4 (Givental) The generating function G(fT+
k g; f0g) is equal

to one, or equivalently

P (��+; fT+
k g; f0g) =

1

�(��+; fT+
k g)2

: (3.4.38)

This conjecture can be veri�ed order by order3 in �.

Let us check (3.4.38) up to order �2, for which we need to consider up to �6

expansions in the di�erential operators acting on the � -functions. Let h = ��+.

The low-genus free energies for a point target space can be easily computed using

the KdV hierarchy and topological axioms; they can also be veri�ed using Faber's

program [Fab1]. The terms relevant to our computation are given by the following

expression:

3This procedure is possible because when q0 = q1 = 0, only a �nite number of terms in the

free-energies and their derivatives are non-vanishing. In particular, the genus-0 and genus-1 free

energies vanish when q0 = q1 = 0.
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F
pt

0

h
+F pt

1 + hFpt

2 =
1

h

"
(q0)

3

3!
+

(q0)
3q1

3!
+ 2!

(q0)
3(q1)

2

3! 2!
+ 3!

(q0)
3(q1)

3

3! 3!
+

(q0)
4q2

4!
+

+3
(q0)

4q1q2
4!

+ 12
(q0)

4(q1)
2q2

4! 2!
+

(q0)
5q3

5!
+ 4

(q0)
5q1q3
5!

+

+6
(q0)

5(q2)
2

5!2!
+ 30

(q0)
5q1(q2)

2

5! 2!
+

(q0)
6q4

6!
+ 10

(q0)
6q2q3
6!

+

+ 90
(q0)

6(q2)
3

6! 3!
+ � � �

#
+

+

"
1

24
q1 +

1

24

(q1)
2

2!
+

1

12

(q1)
3

3!
+

1

4

(q1)
4

4!
+

1

24
q0q2 +

1

12
q0q1q2+

+
1

4

q0(q1)
2q2

2!
+

q0(q1)
3q2

3!
+

1

6

(q0)
2(q2)

2

2! 2!
+

10

3

(q0)
2(q1)

2(q2)
2

2! 2! 2!
+

+
2

3

(q0)
2q1(q2)

2

2! 2!
+

1

24

(q0)
2q3

2!
+

1

8

(q0)
2q1q3
2!

+
1

2

(q0)
2(q1)

2q3
2! 2!

+

+
7

24

(q0)
3q2q3
3!

+
35

24

(q0)
3q1q2q3
3!

+ 2
(q0)

3(q2)
3

3! 3!
+ 12

(q0)
3q1(q2)

3

3! 3!
+

+
1

24

(q0)
3q4

3!
+

1

6

(q0)
3q1q4
3!

+ 48
(q0)

4(q2)
4

4! 4!
+

59

12

(q0)
4(q2)

2q3
4! 2!

+

+
7

12

(q0)
4(q3)

2

4! 2!
+

11

24

(q0)
4q2q4
4!

+
1

24

(q0)
4q5

4!
+ � � �

#
+

+h

"
7

240

(q2)
3

3!
+

29

5760
q2q3 +

1

1152
q4 +

7

48

q1(q2)
3

3!
+

7

8

(q1)
2(q2)

3

2! 3!
+

+
29

1440
q1q2q3 +

29

288

(q1)
2q2q3
2!

+
1

384
q1q4 +

1

96

(q1)
2q4

2!
+

+
7

12

q0(q2)
4

4!
+

49

12

q0q1(q2)
4

4!
+

5

72

q0(q2)
2q3

2!
+

5

12

q0q1(q2)
2q3

2!
+

+
29

2880

q0(q3)
2

2!
+

29

576

q0q1(q3)
2

2!
+

11

1440
q0q2q4 +

11

288
q0q1q2q4 +

+
1

1152
q0q5 +

1

288
q0q1q5 +

245

12

(q0)
2(q2)

5

2! 5!
+

11

6

(q0)
2(q2)

3q3
2! 3!

+

+
109

576

(q0)
2q2(q3)

2

2! 2!
+

17

960

(q0)
2q3q4
2!

+
7

48

(q0)
2(q2)

2q4
2! 2!

+

+
1

90

(q0)
2q2q5
2!

+
1

1152

(q0)
2q6

2!
+ � � �

#
:

This expression gives the necessary expansion of �(��+; fxk � ykg) for our consider-
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ation, and upon evaluating G(fT+
k g; f0g), we �nd

P (h; fT+
k g; f0g) = 1� 17

2359296
e�3t

1=2h+
41045

695784701952
e�3t

1

h2 +O(h3): (3.4.39)

At this order, the expansion of the right-hand-side of (3.4.38) is

�(h; fT+
k g)�2 = 1� 2Fpt

2 h+ 2
h
(Fpt

2 )
2 �Fpt

3

i
h2 +O(h3):

At qn = T+
n , 8n, the genus-2 free energy is precisely given by

F
pt

2

����
qin=T

+
n

=
1

1152
T4 +

29

5760
T3 T2 +

7

240

T 3
2

3!
=

17

4718592
e�3t

1=2;

and the genus-3 free energy is

F
pt

3

����
qin=T

+
n

=
1

82944
T7 +

77

414720
T2T6 +

503

1451520
T3T5 +

17

11520
(T2)

2T5 +

+
607

2903040
(T4)

2 +
1121

241920
T2T3T4 +

53

6912
(T2)

3T4 +
583

580608
(T3)

3 +

+
205

13824
(T2)

2(T3)
2 +

193

6912
(T2)

4T3 +
245

20736
(T2)

6

= � 656431

22265110462464
e�3t

1

:

Thus, we have

�(h; fT+
k g)�2 = 1� 17

2359296
e�3t

1=2 h +
41045

695784701952
e�3t

1

h2 +O(h3);
which agrees with our computation of P (�; fT+

k g; f0g) in (3.4.39).

3.5 Conclusion

It would be very interesting if one could actually prove Givental's conjecture, but

even our particular example remains elusive and verifying its validity to all orders

seems intractable using our method.

Many confusions still remain { for instance, the discrepancy between our analytic

and recursive solutions. As mentioned above, Givental's conjecture for P1 can be re-

written in a form which resembles the Hirota-bilinear relations for the KdV hierarchies

(see (3.4.37)). It would thus be interesting to speculate a possible relation between

his conjecture and the conjectural Toda hierarchy for P1.



Chapter 4

Open String Instantons and

Relative Stable Morphisms

In this chapter, we describe how certain topological open string amplitudes may

be computed via algebraic geometry. We consider an explicit example which has

been also considered by Ooguri and Vafa using Chern-Simons theory and M -theory.

Utilizing the method of virtual localization, we successfully reproduce the predicted

results for multiple covers of a holomorphic disc whose boundary lies in a Lagrangian

submanifold of a Calabi-Yau three-fold.

4.1 Introduction

The astonishing link between intersection theories on moduli spaces and topologi-

cal closed string theories has by now taken a well-established form, a progress for

which E.Witten �rst plowed the ground in his seminal papers [W1, W3, W4]. As a

consequence, there now exist rigorous mathematical theories of Gromov-Witten in-

variants, which naturally arise in the aforementioned link. In the symplectic category,

Gromov-Witten invariants were �rst constructed for semi-positive symplectic mani-

folds by Y.Ruan and G.Tian [RT]. To de�ne the invariants in the algebraic category,

J.Li and G.Tian constructed the virtual fundamental class of the moduli space of

71
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stable maps by endowing the moduli space with an extra structure called a perfect

tangent-obstruction complex [LT2].1 Furthermore, Gromov-Witten theory was later

extended to general symplectic manifolds by Fukaya and Ono [FO], and by J.Li and

G.Tian [LT1]. In contrast to such an impressive list of advances just described, no

clear link currently exists between topological open string theories and intersection

theories on moduli spaces. One of the most formidable obstacles that stand in the way

to progress is that it is not yet known how to construct well-de�ned moduli spaces

of maps between manifolds with boundaries. The main goal of the work described in

this chapter is to contribute to narrowing the existing gap between topological open

string theory and Gromov-Witten theory. In so doing we hope that our work will

serve as a stepping-stone that will take us a bit closer to answering how relative stable

morphisms can be used to study topological open string theory.

In order to demonstrate the proposed link between topological open string theory

and Gromov-Witten theory, we will focus on an explicit example throughout this

chapter. The same example was also considered by string theorists H.Ooguri and

C.Vafa in [OV], where they used results from Chern-Simons theory and M-theory to

give two independent derivations of open string instanton amplitudes. A more detailed

description of the problem will be presented later in the chapter. We just mention

here that, by using our mathematical approach, we have successfully reproduced their

answers for multiple covers of a holomorphic disc by Riemann surfaces of arbitrary

genera and number of holes. In fact we show that there are no open string instantons

with more than one hole, a result which was anticipated in [OV] from their physical

arguments.

The invariants we compute are a generalization of absolute Gromov-Witten in-

variants that should be more familiar to string theorists. Our case involves relative

stable maps which intersect a speci�ed complex-codimension-two submanifold of the

target space in a �nite set of points with multiplicity. It will become clear later in the

chapter that the theory of relative stable maps is tailor-made for studying topologi-

cal open string theory. The construction of relative stable maps was �rst developed

1Alternative constructions were also made by Y.Ruan [Rua] and by B.Siebert [Si].
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in the symplectic category [LiR, IP1, IP2]. Recently in [Li1, Li2] J.Li has given an

algebro-geometric de�nition of the moduli space of relative stable morphisms and

has constructed relative Gromov-Witten invariants in the algebraic category. The

foundation of our work will be based on those papers.

The organization of this chapter is as follows: In x4.2 we give a brief description

of the multiple cover problem that arose in [OV] and state what we wish to reproduce

using relative stable morphisms. The basic idea of localization is reviewed in x4.3.
In x4.4 we describe the moduli space of ordinary relative stable morphisms and its

localization, compute the equivariant Euler class of the virtual normal complex to

the �xed loci, and obtain the contribution from the obstruction bundle that arises

in studying multiple covers. In x4.5 we evaluate the relevant invariants which agree

with the expected open string instanton amplitudes. We conclude in x4.6 with some

comments.

4.2 A Brief Description of the Problem

The notion of duality has been one of the most important common threads that

run through modern physics. A duality draws intricate connections between two

seemingly unrelated theories and often allows one to learn about one theory from

studying the other. A very intriguing duality correspondence has been proposed in

[GopV], where the authors provide several supporting arguments for a duality between

the large-N expansion of SU(N) Chern-Simons theory on S3 and a topological closed

string theory on the total space of the vector bundle OP1(�1) � OP1(�1) over P1.2

The equivalence was established in [GopV] at the level of partition functions. We

know from Witten's work in [W2], however, that there are Wilson loop observables

in Chern-Simons theory which correspond to knot invariants. The question then is,

\What do those invariants that arise in Chern-Simons theory correspond to on the

topological string theory side?"

The �rst explicit answer to the above question was given by Ooguri and Vafa in

2See [GopV] and references therein for a more precise account of the proposal.
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[OV]. In the case of a simple knot on S3, by following through the proposed duality in

close detail, they showed that the corresponding quantities on the topological string

theory side are open string instanton amplitudes. More precisely, in the particular

example they consider, the open string instantons map to either the upper or the

lower hemisphere of the base P1.3

According to [OV], the generating function for topological open string amplitudes

is

F (t; V ) =
1X
g=0

1X
h=0

1X
d1;:::;dh

�2g�2+hFg;d1;:::;dh(t)
hY
i=1

trV di; (4.2.1)

where t is the K�ahler modulus of P1; V is a path-ordered exponential of the gauge

connection along the equator and trV di arises from the ith boundary component which

winds around the equator jdij-times with orientation, which determines the sign of

di; � is the string coupling constant; and Fg;d1;:::;dh is the topological open string

amplitude on a genus-g Riemann surface with h boundary components. Furthermore,

by utilizing the aforementioned duality with Chern-Simons theory, Ooguri and Vafa

concluded that

F (t; V ) = i
1X
d=1

trV d + trV �d

2d sin(d�=2)
e�dt=2; (4.2.2)

which they con�rmed by using an alternative approach in the M-theory limit of type

IIA string theory.4 By comparing (4.2.1) and (4.2.2), one immediately sees that there

are no open string instantons with more than one boundary component ending on

the equator; that is, Fg;d1;:::;dh = 0 for h > 1. To extract the topological open string

amplitude on a genus-g Riemann surface with one boundary component (h = 1), we

need to expand (4.2.2) in powers of �. After some algebraic manipulation, we see

3We clarify that the geometric set up in the present case is no longer that described above.

There is a unique Lagrangian 3-cycle CK in T �S3 which intersects S3 along a given knot K in S3.

Associated to such a 3-cycle CK in T �S3 there is a Lagrangian 3-cycle ~CK in the local Calabi-Yau

three-fold X of the topological string theory side. For the simple knot S considered by Ooguri and

Vafa, the latter 3-cycle ~CS intersects the base P1 of X along its equator. It is the presence of this

3-cycle that allows for the existence of holomorphic maps from Riemann surfaces with boundaries

to either the upper or the lower hemisphere. See [OV] for a more detailed discussion.
4We refer the reader to the original reference [OV] for further description of this approach.
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that

F (t; V ) = i
1X
d=1

0@ 1

d2
��1 +

1X
g=1

d 2g�22
2g�1 � 1

22g�1
jB2gj
(2g)!

�2g�1
1A e�dt=2 �trV d + trV �d� ;

where B2g are the Bernoulli numbers de�ned by

1X
n=0

Bn
xn

n!
=

x

ex � 1
:

Hence, topological open string amplitudes, which correspond to multiple covers of

either the upper or the lower hemisphere inside the local Calabi-Yau three-fold de-

scribed above, are

�iFg;d1;:::;dh(0) =

8>>>>><>>>>>:
d�2; g = 0; h = 1; jd1j = d > 0;

d 2g�2
 
22g�1 � 1

22g�1
jB2gj
(2g)!

!
; g > 0; h = 1; jd1j = d > 0;

0; otherwise:

(4.2.3)

In the remainder of this chapter, we will work towards reproducing these results

using relative stable morphisms.

4.3 Mathematical Preliminaries

In this section, we describe the method of localization, which is an indispensable tool

in Gromov-Witten theory. We will closely follow [OP, CK] in our presentation.

4.3.1 The Localization Theorem of Atiyah and Bott

Let X be a smooth algebraic variety with an algebraic C � -action. Then, the C � -

�xed locus X f is a union of connected components fXig, which are also smooth

[Iv]. The gist of the Atiyah-Bott localization theorem is that integrals of equivariant

cohomology classes over X can be expressed in terms of equivariant integrals over

fXig [AtB]. Let us now try to make this statement a bit more precise.

Let BC � be the classifying space of the algebraic torus C � , andM(C �) its character

group. Then, there exists an isomorphism ! : M(C �) '�! H2(BC � ;Q), from which
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results a ring isomorphism H�(BC � ;Q) ' Q [t], where t := !(�) is called the weight

of � 2 M(C �). Note that the equivariant cohomology ring H�
C� (X;Q ) of X is a

H2(BC � ;Q )-module.

Each C � -�xed component Xi is mapped to X by the inclusion �i : Xi ,! X. Let

Ni denote the equivariant normal bundle to Xi in X, and let e(Ni ) 2 H�
C�
(Xi;Q)

denote its equivariant Euler class. Then, the Atiyah-Bott localization theorem [AtB]

says that

[X] =
X
i

�i�[Xi]

e(Ni )
2 H�

C� (X;Q) 
 Q [t;
1

t
] :

A direct consequence of the localization theorem is that, if � 2 H�
C�
(X;Q ), thenZ

X
� =

X
i

Z
Xi

��i (�)
e(Ni )

: (4.3.4)

4.3.2 Localization of the Virtual Fundamental Class

We now describe how the localization theorem of Atiyah and Bott extends to virtual

classes. Let V be an algebraic variety which may be singular. Furthermore, let V

admit a C � -action and carry a C � -equivariant perfect obstruction theory. We de-

note by fVi g the connected components|which may also be singular|of the scheme

theoretic C � -�xed locus. In [GraP] it was shown that each C � -�xed component Vi

carries a canonical perfect obstruction theory, which allows one to construct its virtual

fundamental class [Vi ]
vir.

Analogous to the equivariant normal bundle of Xi in the previous subsection, in

the present case there is a normal complex Ni associated to each connected compo-

nent Vi . The normal complex Ni is de�ned in terms of the dual complex Ei� of a

two-term complex E�
i of vector bundles that arises in the perfect obstruction theory

of Vi. More precisely, Ni is de�ned by the \moving" part Em
i� , which have non-zero

C � -characters. As before, we denote the Euler class of Ni by e(Ni ).

Let �i : [Vi ]
vir ,! [V ]vir be the inclusion. Then, the virtual localization formula of

T.Graber and R.Pandharipande is [GraP]

[V ]vir =
X
i

�i�[Vi ]vir

e(N vir
i )

2 A�
C�
(X;Q ) 
 Q [t;

1

t
] ; (4.3.5)
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where A�
C�
(X;Q) is the equivariant Chow ring ofX with rational coeÆcients. In prov-

ing the above formula, the authors of [GraP] assume the existence of a C � -equivariant

embedding of V into a nonsingular variety. In the usual context of Gromov-Witten

theory, the algebraic variety V of interest is the moduli space M g;n(X; �) of stable

morphisms de�ned in x3.1.2. If the smooth target manifold X is equipped with a

C � -action, then there is an induced C � -action on M g;n(X; �), and the authors of

[GraP] have proved the existence of a C � -equivariant embedding of M g;n(X; �) into

a smooth variety. Hence, as in (4.3.4), the virtual localization formula (4.3.5) al-

lows one to evaluate equivariant integrals in Gromov-Witten theory by summing up

contributions from the C � -�xed components of the virtual fundamental class.

4.4 Solutions via Algebraic Geometry

Before we address the problem of our interest involving open strings, let us recall how

multiple cover contributions are computed in close string theory. Consider multiple

covers of a �xed rational curve C ' P1 � X, where X is a Calabi-Yau three-fold. The

rigidity condition implies that the normal bundle of C is N = OP1(�1)� OP1(�1).
The contribution of degree d multiple covers of C to the genus-g Gromov-Witten in-

variant of X is given by restricting the virtual fundamental class [M g;0(X; d[C ])]
vir to

[M g;0(P
1; d)]vir. This restriction of the virtual fundamental class is represented by the

rank 2g + 2d � 2 obstruction bundle R1��e�1N , where � :M g;1(P
1; d)!M g;0(P

1; d)

and e1 : M g;1(P
1; d)! P1 are canonical forgetful and evaluation maps, respectively,

from the universal curve over the moduli stack Mg;0(P
1; d). In summary, the contri-

bution from degree d multiple covers is given by the integralZ
[Mg;0(P1;d)]vir

ctop(R
1��e�1N) :

In the case of open string instantons, it is proposed in [LS] that multiple covers of

a holomorphic disc embedded in X can be studied using relative stable morphisms.

In that paper, the problem is reduced to looking at the space of maps to P1 with

speci�ed contact conditions. More precisely, the topological open string amplitudes
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we want to reproduce are computed by the expressionZ
[Mrel

g;�(P
1)
o
]vir
ctop(V ); (4.4.6)

where, as we will de�ne presently, Mrel
g;�(P

1)o is the moduli space of ordinary relative

stable morphisms and V is an appropriate obstruction bundle.

4.4.1 The Moduli Space of Ordinary Relative Stable Mor-

phisms

Let � = (d1; : : : ; dh) be an ordered h-tuple of positive integers. � is said to have

length `(�) = h and degree deg(�) = d1+d2+ � � �+dh = d. Throughout this chapter,

we �x two points q0 := [0; 1] 2 P1 and q1 := [1; 0] 2 P1. A genus-g ordinary relative

stable morphism of rami�cation order � consists of a connected h-pointed nodal curve

(C; x1; x2; : : : ; xh) and a stable morphism f : C ! P1 such that

f�1(q1) = d1x1 + � � � + dhxh

as a divisor [LS]. The moduli space of such ordinary relative stable morphisms is

denoted by Mrel
g;�(P

1)o, where the subscript \o" is used to indicate \ordinary."

As discussed in [LS], there exists an S1-action that leaves invariant the boundary

condition associated with the Lagrangian submanifold where the disc ends. This

action, in turn, induces a natural S1-action on Mrel
g;�(P

1)o, and the idea is to use this

S1-action to carry out localization.

We now describe this group action. Given a homogeneous coordinate [w1; w2] of

P1, de�ne w := w1=w2 such that [w; 1] ' [w1; w2] for w2 6= 0. If we denote by gt the

S1-action, then

gt � [w; 1] = [tw; 1] ;

where t = e2�i�, � 2 R. When w is viewed as a section, we will use gt�(w) = g�t�1w =

t�1w to de�ne the weight of the S1-action on w. If we use ~t to denote the weight

of the S1-action, then the function w has weight �~t. The two �xed points of the

S1-action on P1 are q0 = [0; 1] 2 P1 and q1 = [1; 0] 2 P1.
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In the above notation, considering source Riemann surfaces with one hole corre-

sponds to setting h = 1, and in the remainder of this section that is what we will do.

In this case � = (d) and f�1(q1) = d � x. For genus g = 0, there is only one S1-�xed

point in Mrel
0;�(P

1)o. It is given by the map

f : P1 �! P1 ; f : [z; 1] 7�! [zd; 1]:

For genus g > 0, the �xed locus of the S1-action is given by the image of the embed-

ding

M g;1 �!Mrel
g;�(P

1)o;

where M g;1 is the smooth moduli stack of genus-g, 1-pointed Deligne-Mumford stable

curves. Under the embedding, any (C2; p) 2M g;1 is mapped to the ordinary relative

stable morphism f : (C; x) �! P1, where the curve C is given by gluing a rational

curve C1 � P1 with the genus-g curve C2 along [0; 1] 2 C1 and p 2 C2. Furthermore,

if we use fi to denote the restriction of the map f to the component Ci, then f1 sends

[z; 1] 2 C1 to [w; 1] = [zd; 1] 2 P1 and f2 is a constant map such that f2(y) = q0 2 P1,

8y 2 C2. As before, f
�1(q1) = d � x. Since w = zd and the weight of the S1-action

on w is �~t, the weight on the function z is given by �~t=d. In what follows, we will

use p to denote the node in C.

In [LS] the full moduli spaceMrel
g;�(P

1) of relative stable morphisms is de�ned and

is shown to contain Mrel
g;�(P

1)o as its open substack. A relative stable morphism in

Mrel
g;�(P

1) consists of a connected h-pointed algebraic curve (C; x1; x2; : : : ; xh) and a

morphism f : C ! P1[m] such that

f�1(q1) = d1x1 + � � � + dhxh :

Here, P1[m] is de�ned to have m ordered irreducible components, each of which being

isomorphic to P1, and q1 is contained in the �rst component of P1[m]|the reader

should refer to [LS] for a more precise de�nition. If we consider the full moduli

space Mrel
g;�(P

1), there are S1-�xed loci other than the ones described above. The

S1-action extends to P1[m] with two �xed points on each of its components, and

there exists an induced S1-action on Mrel
g;�(P

1). The moduli space of relative stable
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morphismsMrel
g;�(P

1) thus has two classes of �xed locus. Henceforth, the S1-�xed loci

in Mrel
g;�(P

1)o will be denoted by �I , and we will be only interested in those loci.

4.4.2 The Equivariant Euler Class of Nvir
�I

As discussed in [LS], Mrel
g;�(P

1) admits a perfect obstruction theory and hence it

is possible to de�ne the virtual fundamental class [Mrel
g;�(P

1)]vir. Furthermore, the

S1-equivariant version of [Mrel
g;�(P

1)]vir can be constructed and one can apply the lo-

calization formula of [GraP]. The connected component �I of the �xed point loci

carries an S1-�xed perfect obstruction theory, which determines the virtual funda-

mental class [�I ]
vir. In this section, we will compute the equivariant Euler class

e(Nvir
�I
) of the virtual normal complex Nvir

�I
to the �xed loci �I .

The tangent space of the moduli stack Mrel
g;�(P

1) at (f; C; x) is

Ext1C([f
�
P1(log q1)! 
C(x)];OC);

whereas the obstructions lie in

Ext2C([f
�
P1(log q1)! 
C(x)];OC):

These two terms �t into the perfect tangent-obstruction complex [LT2]

Ext�C([f
�
P1(log q1)! 
C(x)];OC):

As in [GraP], we let A�I
be the automorphism group of �I and de�ne sheaves T 1

and T 2 on �I=A�I
by taking the sheaf cohomology of the perfect obstruction theory

on Mrel
g;�(P

1) restricted to �I=A�I
. Then, we have the following tangent-obstruction

exact sequence of sheaves on the substack �I=A�I
:

0 �! Ext0C(
C(x);OC) �! Ext0C(f
�
P1(log q1);OC) �! T 1 �!

�! Ext1C(
C(x);OC) �! Ext1C(f
�
P1(log q1);OC) �! T 2 �! 0: (4.4.7)

In the notation of Graber and Pandharipande [GraP], the equivariant Euler class

e(Nvir
�I
) is given by

e(Nvir
�I
) =

e(Bm
II)e(B

m
IV )

e(Bm
I )e(B

m
V )

; (4.4.8)
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where Bm
i denotes the moving part of the ith term in the sequence (4.4.7).

We now proceed to study the individual terms that appear in the above de�nition

of e(Nvir
�I
). First, we let i1 : C1 ! C and i2 : C2 ! C be inclusion maps. Then


C = i1�
C1 � i2�
C2 � C p :

e(Bm
I ): The �rst term in the sequence (4.4.7)

We will �rst carry out our analysis for genus g > 0. The genus-zero case will be

discussed subsequently. For g > 0, we have

Ext0C(
C(x);OC) = HomC(i1�
C1(x);OC)� HomC(i2�
C2(x);OC)� HomC(C p ;OC)

= HomC1(
C1(x);OC1(�p)) = H0
C1
(TC1(�p� x)):

A basis of H0
C1
(TC1) is given by (

@

@z
; z

@

@z
; z2

@

@z

)
;

and recalling that the weight of the S1-action on z is �~t=d, we see that the weights
on the above basis elements are f~t=d; 0;�~t=dg, respectively. H0

C1
(TC1(�p � x)) is

1-dimensional and its basis is z @
@z
, whose weight under the S1-action is 0. The second

arrow in (4.4.7) is injective, and when we compute the equivariant Euler class e(Nvir
�I
)

using (4.4.8), the above-mentioned zero weight contribution will cancel the zero weight

term that appears below in e(Bm
II).

In the genus g = 0 case, C = C1 and there is no node p. Hence, Ext
0
C(
C(x);OC) =

H0
C1
(TC1(�x)). Its basis is f @

@z
; z @

@z
g, on which S1 acts with weights f~t=d; 0g. Again,

the zero weight term will cancel out in the computation of e(Nvir
�I
).

e(Bm
II): The second term in the sequence (4.4.7)

Note that

Ext0C(f
�
P1(log q1);OC) = H0

C1
(f �1TP1(�d � x)):

H0
C1(f

�
1TP1(�dx)) has dimension d+ 1 and its basis is given by(

@

@w
; z

@

@w
; z2

@

@w
; : : : ; zd�1

@

@w
; zd

@

@w

)
;
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whose S1-action weights are(
~t ;
d� 1

d
~t ;
d� 2

d
~t ; : : : ;

1

d
~t ; 0

)
:

Thus, modulo the zero weight piece, the Euler class e(Bm
II) is given by

e(Bm
II) =

d�1Y
j=0

d� j

d
~t =

d!

dd
~td: (4.4.9)

e(Bm
IV ): The fourth term in the sequence (4.4.7)

In this case we have

Ext1C(
C(x);OC) = Ext0C(OC ;
C(x)
 !C)
_

= Ext0C2(OC2 ; !

2
C2

(p))_ � Ext0C(OC ; C p 
 !C)
_

= Ext1C2(
C2
(p);OC2)� T_C1;p 
 T_C2;p:

Ext1C2(
C2(p);OC2) gives deformations of the contracted component (C2; p) and

lies in the �xed part of Ext1C(
C(p);OC). Therefore, it does not contribute to e(B
m
IV ).

The moving part is T_C1;p 
 T_C2;p and it corresponds to the deformations of C which

smooth the node at p for g > 0 (There is no node in the genus-zero case). The total

contribution to e(Bm
IV ) is

e(Bm
IV ) =

1

d
~t�  =

~t� d �  
d

; g > 0; (4.4.10)

where ~t=d comes from the tangent space of the non-contracted component C1.  is

de�ned to be the �rst Chern class c1(Lp) of the line bundle Lp ! M g;1 whose �ber

at (C2; p) is T
_
C2;p

.

In genus zero there is no node and e(Bm
IV ) is simply 1.

e(Bm
V ): The �fth term in the sequence (4.4.7)

It is straightforward to compute that

Ext1C(f
�
P1(log q1);OC) = H1

C2(OC2)
 Tq0P
1 :
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H1
C2
(OC2) gives the dual of the Hodge bundle E on M g;1. After twisting by Tq0P

1,

we can compute the equivariant top Chern class of the bundle H1
C2(OC2)
 Tq0P

1 as

follows. Let E be a rank k vector bundle which admits a decomposition into a sum

of k line bundles, i.e. E = L1 � L2 � � � � � Lk. If we use �i to denote c1(Li) and let

� be the �rst Chern class of a line bundle L, then the splitting principle implies that

the equivariant top Chern class of E 
 L is

ctop(E 
 L) = (�+ �1)(�+ �2) � � � (�+ �k)

= �k + s1(�)�
k�1 + s2(�)�

k�2 + � � �+ sk(�)�
0

= �k
�
1 + c1(E)��1 + c2(E)��2 + � � �+ ck(E)��k

�
; (4.4.11)

where si(�) := si(�1; �2; : : : ; �k) is the ith elementary symmetric function. In the

present case, E = E_ and L = Tq0P
1. Since the induced S1-action on L = Tq0P

1 at

q0 has weight +~t, the equivariant top Chern class of H1
C2
(OC2)
 Tq0P

1 is

e(Bm
V ) = ctop(E

_ 
 Tq0P
1) (4.4.12)

=
�
~tg + c1(E

_) ~tg�1 + c2(E
_) ~tg�2 + � � �+ cg(E

_)
�
: (4.4.13)

We now have all the necessary ingredients to obtain e(Nvir
�I
) in (4.4.8). For later

convenience, we summarize our �nal results in the following form:

1

e(Nvir
�I
)
=

8>>>>>><>>>>>>:

1

d
� d

d

d!
~t1�d ; g = 0;

dd

d!

 
~t�d d

~t� d �  

!�
~tg + c1(E

_) ~tg�1 + c2(E
_) ~tg�2 + � � �+ cg(E

_)
�
; g > 0:

(4.4.14)

4.4.3 Contribution from the Obstruction Bundle

Now that we have analyzed the moduli space Mrel
g;�(P

1)0, we need to investigate the

obstruction bundle that arises in (4.4.6). In [LS], the obstruction bundle V is found
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to be a vector bundle over Mrel
g;�(P

1)o whose �bers over (f; C; x1; : : : ; xh) are

H1(C;OC(�
hX
i=1

dixi)�OC(�
hX
i=1

xi)):

We can evaluate the integral in (4.4.6) using the localization theorem [Kont2, GraP],

which implies that"Z
[Mrel

g;�(P
1)
o
]vir
ctop(V )

#
=

1

jA�I
j
Z
[�I ]vir

��(ctop(V ))
e(Nvir

�I
)
; (4.4.15)

where � is the inclusion map � : �I !Mrel
g;�(P

1)o . Incidentally, we note that by the

Riemann-Roch theorem,

dimC M
rel
g;�(P

1)o = 2d+ (1� g)(dimC P
1 � 3)� (deg (�)� `(�))

= 2g � 2 + h+ d

= dimC H
1(C;OC(�

hX
i=1

dixi)�OC(�
hX
i=1

xi)):

In this subsection, we focus on source Riemann surfaces with one hole (h = 1),

in which case we need to �nd the weights of the S1-action on H1(C;OC(�dx)) �
H1(C;OC(�x)). As described in [LS], the sheaf OC in the �rst cohomology group

has weight 0, while the sheaf OC in the second cohomology group has weight �~t. We

will work out the genus-zero and higher genus cases separately.

Genus g = 0 (C ' P1)

The dimension ofH1(C;OC(�x)) is zero and we only need to considerH1(C;OC(�dx)).
To obtain the contribution from the latter, we use the exact sequence

0 �! OC(�dx) �! OC �! Odx �! 0

and the induced cohomology exact sequence

0 �! H0(OC) �! H0(Odx) �! H1(OC(�dx)) �! 0:
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A basis of H0(OC) is just f1g and that of H0(Odx) is f1; z�1; z�2; : : : ; z�(d�1)g. This
information lets us construct the following explicit basis of H1(OC(�dx)):�

1

z
;
1

z2
; : : : ;

1

zd�1

�
:

S1 acts on the above basis with weights(
1

d
~t ;
2

d
~t ; : : : ;

d� 1

d
~t

)
: (4.4.16)

Thus the equivariant top Chern class of the obstruction bundle V is

ctop(V ) =
d�1Y
j=1

j

d
~t =

(d� 1)!

dd�1
~td�1: (4.4.17)

Genus g � 1

For genus g > 0, C is a union of the two irreducible components C1 = P1 and

C2 = �g which intersect at a node, denoted by p. Then there is the normalization

exact sequence

0 �! OC(�dx) �! OC1(�dx)�OC2 �! OC(�dx) p �! 0; (4.4.18)

which gives the following long exact sequence of cohomology:

0 �! H0(C2;OC2)
'�! H0(C;OC(�dx) p) �! H1(C;OC(�dx)) �!

�! H1(C1;OC1(�dx))�H1(C2;OC2) �! 0:

Therefore, H1(C;OC(�dx)) is given by

H1(C;OC(�dx)) = H1(C1;OC1(�dx))�H1(C2;OC2): (4.4.19)

We have already computed in (4.4.16) the contribution of H1(C1;OC1(�dx)) to the

equivariant top Chern class ctop(V ). Since the linearization of OC2 in (4.4.19) has

weight zero, the contribution of H1(C2;OC2) to ctop(V ) can be obtained from (4.4.11)

by letting � = 0 and E = E_ . This gives cg(E_) = (�1)gcg(E ) as the contribution of
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H1(C2;OC2). Combining this result with (4.4.16), we see that the total contribution

of H1(C;OC(�dx)) to ctop(V ) is

(�1)g (d� 1)!

dd�1
cg(E ) ~t

d�1 :

We can use a similar line of reasoning to determine the weights onH1(C;OC(�x)).
Examining the long exact sequence of cohomology that follows from the exact nor-

malization sequence

0 �!OC(�x) �! OC1(�x)�OC2 �! OC(�x) p �! 0;

we obtain

H1(C;OC(�x)) = H1(C1;OC1(�x))� H1(C2;OC2):

As discussed in the genus-zero case, H1(C1;OC1(�x)) is of zero dimension and does

not contribute. Moreover, as we have mentioned in the beginning of this subsec-

tion, since the S1-action lifts to the present OC with weight �~t, the contribution of

H1(C2;OC2) to the equivariant top Chern class ctop(V ) is

(�1)g
�
~tg � c1(E

_) ~tg�1 + c2(E
_) ~tg�2 + � � �+ (�1)gcg(E_)

�
:

Thus the �nal expression for the equivariant top Chern of the obstruction bundle is

ctop(V ) =
(d� 1)!

dd�1
cg(E ) ~t

d�1 �~tg � c1(E
_) ~tg�1 + c2(E

_) ~tg�2 + � � �+ (�1)gcg(E_)
�

=
(d� 1)!

dd�1
cg(E ) ~t

d�1 �~tg + c1(E ) ~t
g�1 + c2(E ) ~t

g�2 + � � �+ cg(E )
�
:

(4.4.20)
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4.5 Evaluation of Invariants

We are now ready to evaluate the integral (4.4.15) in the case of h = 1. For h > 1,

an inductive argument can be used to show that all open string instanton amplitudes

vanish in the particular problem we are considering.

4.5.1 Invariants for h = 1

Genus g = 0

After taking into account the automorphism group A�I
, which has order d, the

genus-zero answer is obtained by multiplying the expressions in (4.4.14) and (4.4.17).

This gives the genus-zero invariant

1

d
� 1
d

dd

d!
~t1�d � (d� 1)!

dd�1
~td�1 =

1

d2
; (4.5.21)

which agrees with the expected answer (4.2.3).

Genus g � 1

We need to use the results in (4.4.14) and (4.4.20) to compute higher genus in-

variants. It follows from Mumford's formula

(1 + c1(E
_) + c2(E

_) + � � �+ cg(E
_)) � (1 + c1(E ) + c2(E ) + � � �+ cg(E )) = 1

that

(~tg+c1(E
_) ~tg�1+c2(E

_) ~tg�2+� � �+cg(E
_))�(~tg+c1(E ) ~t

g�1+c2(E ) ~t
g�2+� � �+cg(E )) = ~t2g:

Hence we have"Z
[Mrel

g;�(P
1)
o
]vir
ctop(V )

#
=

"
1

jA�I
j
Z
Mg;1

d � ~t2g�1
~t� d �  cg(E )

#

= d2g�2
Z
Mg;1

 2g�2cg(E ); (4.5.22)

where in the last equality we have used the fact that the moduli spaceM g;1 of Deligne-

Mumford stable curves has dimension dimC M g;1 = 3g� 2. The above Hodge integral
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can easily be evaluated by using C.Faber and R.Pandharipande's generating function

for Hodge integrals over the moduli space M g;1 [FabP1]. Taking the result from

[FabP1], we conclude that"Z
[Mrel

g;�(P
1)
o
]vir
ctop(V )

#
= d 2g�22

2g�1 � 1

22g�1
jB2gj
(2g)!

: (4.5.23)

As promised, (4.5.23) is precisely equal to the expected result in (4.2.3).

4.5.2 Invariants for h > 1

As mentioned before, all invariants for h > 1 vanish. The main idea that underlies our

argument is that at least one of the weights of the S1-action on the obstruction bundle

is zero. We will present our argument for genus-zero and higher genus cases separately.

Genus g = 0

We will �rst consider the genus-zero case. Assume that h = 2, in which case

� = (d1; d2), where d1 + d2 = d. In genus zero C = C1 tp C2, where C1 and C2 both

are rational curves and p is a node that gets mapped to q0. For i = 1 or 2, di > 0 is

the degree of the map fi that maps Ci to P
1. If we denote the pre-images of q1 by

x1 2 C1 and x2 2 C2, then we have the normalization exact sequence

0 �! OC(�d1x1�d2x2) �! OC1(�d1x1)�OC2(�d2x2) �! OC(�d1x1�d2x2) p �! 0;

which gives the long exact sequence of cohomology

0 �! H0(C;OC(�d1x1 � d2x2) p) �! H1(C;OC(�d1x1 � d2x2)) �!
�! H1(C1;OC1(�d1x1))� H1(C2;OC2(�d2x2)) �! 0:

From this we immediately see that one of the weights of the S1-action on

H1(C;OC(�d1x1 � d2x2)) is zero, since the weight on H0(C;OC(�d1x1 � d2x2) p) is

zero. This means that the contribution of H1(C;OC(�d1x1�d2x2)) to the equivariant
top Chern class of the obstruction bundle vanishes, thus rendering the invariant to

vanish as well.
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For h = 3, C contains a contracted genus-zero component ~C0 which is connected

to 3 rational curves, say C1; C2; C3, at 3 nodes, say p1; p2; p3. Note that since ~C0

contains 3 special points, it is stable and can be contracted to q0. Each Ci maps to

P1 with degree di > 0 and contains a special point xi that gets mapped to q1. As

usual there is the exact normalization sequence

0 �! OC(�
3X
i

dixi) �!
3M
i=1

OCi(�dixi)�O ~C0
�!

3M
i=1

OC(�
3X
i

dixi) pi �! 0;

and the associated cohomology long exact sequence

0 �! H0( ~C0;O ~C0
)

 �!
3M
i

H0(C;OC(�
3X
i

dixi) pi) �! H1(C;OC(�
3X
i

dixi) �!

�!
3M
i=1

H1(Ci;OCi(�dixi))� H1( ~C0;O ~C0
) �! 0:

Here,  is not surjective and it follows that not all of the zero weights onL3
i H

0(C;OC(�P3
i dixi) pi) get cancelled in

H1(C;OC(�
3X
i

dixi)) =
3M
i=1

H1(Ci;OCi(�dixi))� H1( ~C0;O ~C0
)� H0( ~C0;O ~C0

) +

+
3M
i

H0(C;OC(�
3X
i

dixi) pi):

Therefore, the equivariant top Chern class of the obstruction bundle in the localiza-

tion theorem vanishes. We can perform induction on h and conclude that genus-zero

invariants vanish for all h > 1. We will now sketch how that works. For h � n,

assume that the S1-action on H1(C;OC(�Ph
i dixi)) has at least one zero weight and

that therefore the invariants vanish. At h = n + 1, an S1-�xed stable map can be

constructed from that at h = n by attaching a rational curve Cn+1 to the contracted

component, such that deg(f jCn+1) = dn+1 > 0. Cn+1 contains the point xn+1 that gets

mapped to q1 and is joined to the contracted component at a new node. Such an

operation increases the number of nodes by 1, and analyzing the exact normalization

sequence and its associated cohomology long exact sequence shows that the number

of zero weights on H1(C;OC(�Ph
i dixi)) has increased by one. Therefore, the total
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number of zero weights on H1(C;OC(�Ph
i dixi)) is again non-zero. This shows that

the equivariant top Chern class of the obstruction bundle vanishes at h = n + 1.

Genus g � 1

Now assume that g � 1 and h = 2. In addition to the two rational curves C1

and C2, we introduce a stable genus-g curve ~Cg, which gets contracted to q0. There

are two nodes p1 and p2 where C1 and C2, respectively, intersect ~Cg. In our usual

notation, the normalization exact sequence in the present case is

0 �! OC(�d1x1�d2x2) �!
2M
i=1

OCi(�dixi)�O ~Cg
�!

2M
i=1

OC(�d1x1 � d2x2) pi �! 0:

This implies the following long exact sequence of cohomology:

0! H0( ~Cg;O ~Cg
)

'�! H0(C;OC(�d1x1 � d2x2) p1)� H0(C;OC(�d2x2 � d2x2) p2)!

�! H1(C;OC(�d1x1 � d2x2)) �!
2M
i=1

H1(Ci;OCi(�dixi))� H1( ~Cg;O ~Cg
) �! 0:

Unlike in the h = 1 case, ' is not surjective and we need to compute

H1(C;OC(�d1x1 � d2x2)) =
2M
i=1

H1(Ci;OCi(�dixi))� H1( ~Cg;O ~Cg
)� H0( ~Cg;O ~Cg

) +

+H0(C;OC(�d1x1 � d2x2) p1)� H0(C;OC(�d2x2 � d2x2) p2):

The zero weight term from H0( ~Cg;O ~Cg
) will cancel only one of the two zero weight

terms from the second line, thus leaving a zero weight term in H1(C;OC (�d1x1 � d2x2)).

Hence the equivariant top Chern class of the obstruction bundle again vanishes, and

so does the invariant.

The vanishing of the invariants for g � 1 again follows from induction on h. As in

the genus-zero case, a S1-�xed stable map at h = n+1 can be constructed from that

at h = n by attaching a non-contracted rational curve, say Cn+1, to the contracted

component ~Cg at a new node. This addition of a node increases the number of zero

weights of the S1-action on H1(C;OC(�Ph
i dixi)), and therefore the equivariant top
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Chern class of the obstruction bundle vanishes at h = n + 1 as it does at h = n.

Hence, all higher genus invariants vanish for h > 1.

To recapitulate, we have just established that"Z
[Mrel

g;�(P
1)
o
]vir
ctop(V )

#
= 0 ; 8g � 0; d � h > 1;

in perfect agreement with what was expected from x4.2.

4.6 Conclusion

In this chapter we have made an explicit connection between topological open string

theory and relative stable morphisms. In the particular example we consider, we

have successfully reproduced open string instanton multiple cover answers as invari-

ants of relative stable maps. So far several interesting proposals for studying open

string instanton e�ects have been made [OV, KKLM, AgV], but direct computational

methods involving integrals over moduli spaces of stable morphisms have been hith-

erto lacking. This is in marked contrast to the closed string case, where there exist

well-developed techniques in the context of Gromov-Witten theory [GraP, FabP1].

Open string instantons play an important role in string theory. For example, in the

Strominger-Yau-Zaslow conjecture of mirror symmetry, open string instanton e�ects

are crucial for modifying the geometry of D-brane moduli space [StYZ]. Also, genus-

zero topological open string amplitudes are important for computing superpotentials

in N = 1 supersymmetric theories in 4-dimension|see [KKLM, OV] and references

therein. It is clear that many illuminating implications can stem from understanding

better how one can directly compute open string instanton amplitudes. We hope

we have made it clear in our work that relative stable morphisms could be the right

framework for studying open string instantons in general, and that the proposed link

between topological open string theory and relative stable maps well deserve further

investigations.

Applying the theory of relative stable morphisms to topological open string theory

is in the incipient stage. In a sense we have studied here what could be considered



92 CHAPTER 4. OPEN STRING INSTANTONS AND RELATIVE STABLE MORPHISMS

the simplest example. As mentioned in x4.2, the quantities we have reproduced

correspond to the invariants of a simple knot in S3. The authors of [LaMV] have

extended the results in [OV] to more non-trivial knots and links, and have described

how to construct Lagrangian submanifolds, for torus links at least, on the topological

string theory side of the duality. It will be interesting to apply our method to those

cases as well. Also, M.Aganagic and C.Vafa have recently announced some interesting

results on counting holomorphic discs in Calabi-Yau 3-folds [AgV], and we would like

to understand their results by means of relative stable morphisms.



Appendix A

Rudiments of the Symmetric

Group Sn

We here review some useful facts regarding the representation theory of the symmetric

group Sn. We refer the reader to [FuH] for an in-depth introduction to the subject.

The symmetric group Sn is the group of all permutations on a set S of n letters.

The set S may be partitioned into disjoint subsets such that a permutation � 2 Sn

is decomposed into disjoint cycles, each acting on a particular subset. Furthermore,

two permutations are conjugate if and only if they can be decomposed into the same

number of cycles of each length.

Denote by [�] = (1�1 : : : n�n) the conjugacy class of a permutation that can be

decomposed into �k disjoint k-cycles, where 1 � k � n and 0 � �k � n. Then, since

we must have
nX
k=1

k � �k = n;

we see that a partition of the integer n determines a particular conjugacy class in Sn.

A.1 Irreducible Characters

The character �(g) = tr �(g) of an irreducible representation � is called simple or

irreducible. We now describe how one can compute the irreducible characters �([�])

93
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for [�1] = (1n) and [�2] = (1n�22). Proofs and details can be found in group theory

textbooks which discuss the Frobenius' formula for the characters of Sn. The number

of inequivalent irreducible representations of any �nite group is equal to the number

of conjugacy classes in the group. For the symmetric group Sn, there is a one-to-one

correspondence between its conjugacy classes and inequivalent partitions of n, so we

may label the irreducible representations of Sn by the latter.

Let us consider an irreducible representation of Sn labeled by the ordered partition

 = (n1; : : : ; nm) ` n , where n1 � n2 � : : : � nm > 0. Let pi = ni+m� i and de�ne

the Van der Monde determinant

D(p1; : : : ; pm) �

�����������

pm�11 pm�21 � � � p1 1

pm�12 pm�22 � � � p2 1
...

...
...

...
...

pm�1m pm�2m � � � pm 1

�����������
: (A.1.1)

Then, the irreducible characters evaluated at the conjugacy classes (1n) and (1n�22)

can be written respectively as

� (1
n) =

n!

p1! p2! � � � pm!D(p1; : : : ; pm) (A.1.2)

and

�
�
1n�22

�
= (n� 2)!

X
i2I

D(p1; : : : ; pi�1; pi � 2; pi+1; : : : ; pm)

p1! � � �pi�1! (pi � 2)! pi+1! � � � pm! ; (A.1.3)

where the index set I is de�ned as fi 2 f1; : : : ; mgk(pi � 2) � 0g. Furthermore, these
irreducible characters satisfy the simple relation 

n

2

!
� (1

n�22)
� (1n)

=
1

2

mX
k=1

nk(nk + 1)�
mX
k=1

k � nk ; (A.1.4)

which we utilize in Chapter 2 of this thesis. Incidentally, note that the character

�(1
n) is equal to the dimension f  of the representation associated to .

A.2 The Murnaghan-Nakayama Rule

To each ordered partition � = (n1; : : : ; nm) ` n, where n1 � n2 � : : : � nm > 0,

there is an associated Young diagram of m rows, ith of which has ni boxes. A skew
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hook is a connected region of boxes on the boundary of a Young diagram such that

deleting it yields a new Young diagram of smaller size. The length of a skew hook

is de�ned to be the total number of its constituent boxes, whereas its leg-length is

de�ned to be the number of rows minus 1.

Let a 2 Sn be a permutation which can be decomposed as a product of two

disjoint elements, namely an n0-cycle and a permutation b 2 Sn�n0. If � is a partition

of n and � is a partition of (n � n0) that is obtained by deleting a skew hook of

length n0 and of leg-length r(�) from the Young diagram associated to �, then the

Murnaghan-Nakayama rule states that

��(a) =
X
�

(�1)r(�) ��(b):



Appendix B

Computation of Hurwitz Numbers

B.1 Higher Degree Computation of Simple Hur-

witz Numbers

� Degree Five:
For the degree 5 computation, we need

Lemma B.1 Let tpk = 3 Æk;1
Pj
i=1 Æi;p + (Æk;1 + Æk;2)

Pr
i=j+1. Then,

B3;h;(tp
k
) =

8>>><>>>:
22h 32h�1+r�j for j < r even ,

0 for j odd ,

2 � 32h�1 (22h�1 + 1) for j = r ,

from which follows

Claim B.2 The degree 5 simple Hurwitz numbers are given by

N5;h;r = 22h�1 (22h+r�2 � 24h+r�4 � 1)� 32h�2 22h�1 (1 + 22h+r�2 + 22h+2r�2) +

+ 32h+r�2 22h�1 (1� 24h+r�4) + 26h+r�5 32h�2 +

+ (1 + 24h+r�4) 22h�1 32h�2 52h+r�2:

� Degree Six:
Similarly, by using

96
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Lemma B.3 Let tpk = 4 Æk;1
Pj
i=1 Æi;p + (Æk;1 + Æk;2)

Pr
i=j+1. Then,

B4;h;(tp
k
) =

8>>><>>>:
3 � 2r�j+6h�2 (32h�2+r�j + 1) for j < r even ,

0 for j odd ,

3 � 24h�1 (22h�132h�2 + 22h�1 + 32h�2) for j = r ,

and we obtain

Claim B.4 The degree 6 simple Hurwitz numbers are given by

N6;h;r =
1

720

24360 � 22 h � 135 � 24h+r � 40 � 22h � 32h+r �
5 � 22h � 34h+r

�
8 + 22 h+r

�
9

+20 � 22h � 32h
�
4 + 22 (h+r) + 22h+r

�
+

15 � 26h (3 + 3r)

2

+
5 � 26 h+r

�
9 + 32h+r

�
2

�
22h � 32 h

�
25 � 24 h+r + 16 � 52h+r + 24 h+r � 52h+r

�
10

+
26h (100�34h+r+25�22h34h+r+25�22h34h+2 r+81�22h52h+r+22h34h+r52h+r)

360

�
5 � 26h

�
9 � 22h + 4 � 32 h + 9 � 22h3r + 22h32h5r + 22h32 h7r

�
8

35
+26h�53r�1

h
32h�1(22h�1 + 1)� 3(22h�1) + 1

i
:

� Degree Seven:
Claim B.5 The degree 7 simple Hurwitz numbers are given by

N7;h;r =
�22h

2
�

3 26 h

32
+

28h

64
+

24h+r

4
�

26h+r

32
�

22h 32 h

6
+

26h 32 h

96

�
28h 32 h

576
�

24h+r 32h

36
�

24 h+2 r 32 h

24
+

26h+r 5
2

r
32 h

288
�

28 h+r 5
2

r
32h

1152

�
26h 3r

32
+

28h 3r

64
+

22h 32 h+r

18
+

26 h 32h+r

144
�

28h 32 h+r

1152
�

26 h+r 32 h+r

288

+
22h 34 h+r

81
�

26 h 34h+r

1296
�

28h 34 h+r

10368
+

24 h+r 34 h+r

648
�

26h+r 34h+r

2592

�
28h 34 h+2 r

5184
�

26 h 52h

800
+

28 h 32h 52 h

28800
�

24 h+2 r 32h 52 h

1800
�

28 h 32 (h+r) 52h

28800

�
24h+r 32h+r 52 h

1800
+

26 h+r 34h+r 52h

64800
+

26 h 34h+2 r 52h

64800
+

28 h 32h 5r

576



98 APPENDIX B. COMPUTATION OF HURWITZ NUMBERS

�
28h 52 h+r

3200
+

22 h 32h 52 h+r

450
+

26 h+r 32 h 52h+r

7200
�

28h 34 h+r 52h+r

259200

+
28h 32 h 7r

576
+

28 h 32h 72 h+r

56448
+

26 h+r 32 h 52h 72 h+r

352800
+

28 h 34h+r 52h 72 h+r

12700800

�
28h 32 h 52h 11r

28800
:

B.2 Reducible Covers

Bn;h;r = (n!)2h�1
0@n
2

1Ar 24 X
2Rn

1

(f )2h�2

 
�(2)

f 

!r35 ;
B2;h;r = 2 � 22h�1 ;

B3;h;r = 2 � 3!2h�1
0@ 3

2

1Ar ;
B4;h;r = 2 � 4!2h�1

0@ 4

2

1Ar �1 + 1

32h�2+r

�
;

B5;h;r = 2 � 5!2h�1
0@ 5

2

1Ar �1 + 2r

42h�2+r
+

1

52h�2+r

�
;

B6;h;r = 2 � 6!2h�1
0@ 6

2

1Ar �1 + 3r

52h�2+r
+

3r

92h�2+r
+

2r

102h�2+r
+

1

52h�2+r

�
;

B7;h;r = 2 � 7!2h�1
0@ 7

2

1Ar �1 + 4r

62h�2+r
+

6r

142h�2+r
+

5r

152h�2+r
+

4r

142h�2+r

+
5r

352h�2+r
+

1

212h�2+r

�
;

B8;h;r = 2 � 8!2h�1
0@ 8

2

1Ar �1 + 5r

72h�2+r
+

10r

202h�2+r
+

9r

212h�2+r
+

10r

282h�2+r

+
16r

642h�2+r
+

5r

352h�2+r
+

4r

142h�2+r
+

10r

702h�2+r
+

4r

562h�2+r

�
;

B9;h;r = 2 � 9!2h�1
0@ 9

2

1Ar �1 + 6r

82h�2+r
+

15r

272h�2+r
+

14r

282h�2+r
+

20r

482h�2+r
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+
35r

1052h�2+r
+

14r

562h�2+r
+

14r

422h�2+r
+

36r

1622h�2+r
+

20r

1202h�2+r

+
21r

1892h�2+r
+

14r

842h�2+r
+

14r

1682h�2+r
+

6r

2162h�2+r

�
;

B10;h;r = 2 � 10!2h�1
0@ 10

2

1Ar �1 + 7r

92h�2+r
+

21r

352h�2+r
+

20r

362h�2+r
+

35r

752h�2+r

+
64r

1602h�2+r
+

28r

842h�2+r
+

34r

902h�2+r
+

91r

3152h�2+r
+

55r

2252h�2+r

+
70r

3502h�2+r
+

14r

1262h�2+r
+

14r

422h�2+r
+

64r

2882h�2+r
+

70r

4502h�2+r

+
63r

5672h�2+r
+

35r

5252h�2+r
+

28r

2522h�2+r
+

20r

3002h�2+r
+

14r

2102h�2+r

�
:

B.3 Simple Hurwitz Numbers for an Elliptic Curve

Target

We can compare our answers in the case of an elliptic curve target with those obtained

from string theory. To do so, we organize Tn;1;2g�2=n! into a generating functionHg
1(q),

which is de�ned as

(2g � 2)!Hg
1 =

1X
n=1

�g;n1;n q
n =

1X
n=1

Tn;1;2g�2
n!

qn:

This is equivalent to Hg
1 in (2.4.19) with t̂

1
1 = 1. Our explicit formulas for Tn;1;2g�2=n!,

n � 7, from xB.1 and the recursive method discussed in x2.2.7 give rise to the following
q-expansions of Hg

1(q):

2!H2
1 = 2q2 + 16q3 + 60q4 + 160q5 + 360q6 + 672q7 + 1240q8 + 1920q9 + 3180q10 +

+O(q11) ;

4!H3
1 = 2q2 + 160q3 + 2448q4 + 18304q5 + 90552q6 +

+341568q7 + 1068928q8 + 2877696q9 + 7014204q10 +O(q11) ;

6!H4
1 = 2q2 + 1456q3 + 91920q4 + 1931200q5 + 21639720q6 +
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+160786272q7 + 893985280q8 + 4001984640q9 + 15166797900q10 +O(q11) ;

8!H5
1 = 2q2 + 13120q3 + 3346368q4 + 197304064q5 + 5001497112q6 +

+73102904448q7 + 724280109568q8 + 5371101006336q9 +

+31830391591644q10 +O(q11) ;

10!H6
1 = 2q2 + 118096q3 + 120815280q4 + 19896619840q5 + 1139754451080q6 +

+32740753325472q7 + 577763760958720q8 + 7092667383039360q9 +

+65742150901548780q10 +O(q11) ;

12!H7
1 = 2q2 + 1062880q3 + 4352505888q4 + 1996102225024q5 + 258031607185272q6 +

+14560223135464128q7 + 457472951327051008q8 + 9293626316677061376q9 +

+134707212077147740284q10 +O(q11) ;

14!H8
1 = 2q2 + 9565936q3 + 156718778640q4 + 199854951398080q5 +

+58230316414059240q6 + 6451030954702152672q7 +

+360793945093731688960q8 + 12127449147074861834880q9 +

+274847057797905019237260q10 +O(q11) ;

16!H9
1 = 2q2 + 86093440q3 + 5642133787008q4 + 19994654452125184q5 +

+13120458818999011032q6 + 2852277353239208548608q7 +

+283889181859169785013248q8 + 15786934495235533394850816q9 +

+559374323532926110389380124q10 +O(q11) ;

18!H10
1 = 2q2 + 774840976q3 + 203119138758000q4 + 1999804372817081920q5 +

+2954080786719122704200q6 + 1259649848110685616355872q7 +

+223062465532295875789024000q8 + 20519169517386068841434851200q9 +

+1136630591006374329359969015340q10 +O(q11) ;

20!H11
1 = 2q2 + 6973568800q3 + 7312309907605728q4 + 199992876225933468544q5 +

+664875505232132669710392q6 + 555937950399900003838125888q7 +
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+175116375615275397674821996288q8+26643243663812779066608784102656q9+

+2307123097757961461530407199135164q10 +O(q11) ;

22!H12
1 = 2q2 + 62762119216q3 + 263243344926609360q4 + 19999741489842287527360q5 +

+149618514702670218774465960q6 + 245271669454107089851705983072q7 +

+137402588289598470102013264291840q8 +

+34572266592868474818152471335048320q9 +

+4679534045992767568052180827613155020q10 +O(q11) :

The free energies Fg of string theory on the target space of an elliptic curve are

known to be quasi-modular forms of weight 6g� 6. They have been computed up to

genus 8 in [Rud] and have the same expansions in q = exp(t̂), where t̂ is the K�ahler

parameter of the elliptic curve, as what we have above for Hg
1.

For convenience, we also summarize the simple Hurwitz numbers for an elliptic

curve target and arbitrary source Riemann surfaces up to degree 7:

�g;11;1(1) = Æg;1 ;

�g;21;2(1
2) = 2 ;

�g;31;3(1
3) = 2 [3r � 1] ;

�g;41;4(1
4) = 2

h
6r + 2r�1 � 3r + 1

i
;

�g;51;5(1
5) = 2 [10r � 6r + 5r � 4r + 3r � 2] ;

�g;61;6(1
6) = 2 � 15r � 2 � 10r + 2 � 9r � 2 � 7r + 6r � 2 � 5r + 4 � 4r � 4 � 3r�1 + 2r + 4 ;

�g;71;7(1
7) = 2 [21r � 15r + 14r � 11r + 10r � 2 � 9r + 3 � 7r � 6r + 2 � 5r � 4 � 4r +

+2 � 3r � 2r � 4] ;

(B.3.1)

where r = 2g � 2.
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B.4 The Hurwitz Numbers �
g;2k
0;2 (k; k)

�1;2k0;2 (k; k) =
(2k + 2)!

48 (k!)2
(3k � 2) k2k+1 ;

�2;2k0;2 (k; k) =
(2k + 4)!

2 (k!)2

 
28� 73 k + 49k2

2880

!
k2k+3 ;

�3;2k0;2 (k; k) =
(2k + 6)!

2 (k!)2

 �744 + 2530 k � 2949 k2 + 1181 k3

725760

!
k2k+5 ;

�4;2k0;2 (k; k) =
(2k + 8)!

2 (k!)2

 
18288� 72826 k + 111309 k2 � 77738 k3 + 21015 k4

174182400

!
k2k+7 ;

�5;2k0;2 (k; k) =
(2k + 10)!

2 (k!)2
k2k+9 1

22992076800

�
�245280 + 1086652 k� 1959376 k2

+1807449 k3 � 857552 k4 + 168155 k5
�
;

�6;2k0;2 (k; k) =
(2k + 12)!

2 (k!)2
k2k+11 1

753220435968000
(814738752� 3904894152 k

+7889383898 k2 � 8650981635 k3 + 5462073347 k4

�1892825445 k5 + 282513875 k6
�
:
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