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Abstract

Using a sample of 4,500 polarized Z decays to � lepton pairs accumulated with the
SLD detector at the SLAC Linear Collider (SLC) in 1993-95, a search has been
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real and imaginary parts of the WEDM and WMDM.
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Chapter 1
Introduction

The modern theory of Electroweak interactions was �rst proposed by Glashow,

Weinberg, and Salaam in the 1960s[1] and in recent years has been veri�ed with

ever increasing accuracy by the large data samples currently being collected at the

high energy e+e� accelerators running at CERN and SLAC. While this may be

a theoretical triumph for the GWS theory, theorists of today adamantly believe

that there must be something beyond this so called Standard Model (SM) which

is more comprehensive and complete. A number of models have been proposed in

recent years under the general rubric of Supersymmetry which reproduce the basic

attributes of the GWS theory from a more fundamental starting point. Since the

current body of experimental data agrees quite well with the Standard Model, how-

ever, there is no experimental guidance available to distinguish which, if any of the

various avors of Supersymmetry is correct. This has left the particle physics com-

munity quite interested in �nding any sort of experimental signature of something

new that the Standard Model cannot accommodate.

In the spirit of leaving no stone unturned, this thesis describes a measurement of

the anomalous, non-SM, tensor couplings in the decay of Z bosons to tau leptons.

This analysis was performed on a sample of Z boson events produced by polarized
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e+e� collisions at the SLAC Linear Collider (SLC) and observed by the SLAC

Large Detector (SLD) during the 1993 and 1994-95 running periods. This analysis

is somewhat complementary to similar measurements which have been performed

by the LEP collaborations at CERN, and in the absence of any signal for these

anomalous couplings, upper limits have been placed on their relative strengths.

1.1 Background

Long before the GWS theory was proposed, and even before the formulation of rel-

ativistic quantum �eld theory, physicists were measuring the electric and magnetic

dipole moments of the electron and muon.[2] Originally a macroscopic concept de-

scribing a spatial distribution of electric charge or current, in the context of relativis-

tic �eld theory the dipole moment of a point-like lepton represents a measurement

of higher order quantum corrections to the point-like �rst order Born interactions.

Experiments measuring the electric dipole moment of the electron and muon

have been underway for many decades, and the current world average values of

~de = (�0:3� 0:8)� 10�26 e cm

~d� = (3:7� 3:4)� 10�19 e cm

are consistent with zero to astonishing precision.[3] Under the operation of time

reversal (T ), an electric dipole moment will change sign, violating the principle of

T invariance. As all interactions are postulated to be invariant under the combined

reversal of charge, parity, and time (CPT ) by quantum �eld theory, the presence of

an electric dipole moment must also be accompanied by a violation of CP invariance.

The true nature of CP violation in nature is currently not well understood, and

although the Standard Model can phenomenologically account for the CP violation

experimentally observed in the quark sector, it does not provide any fundamental
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Figure 1-1: Higher order Feynman diagrams contributing to the anomalous magnetic
moment of the electron are shown.

guidance to explain why it has not been observed elsewhere. As such, measurements

limiting the electric dipole moments in the leptonic sector provide a useful constraint

when attempting to construct theories beyond the Standard Model.

In contrast to the electric dipole moment, the CP conserving magnetic dipole

moment is known to pick up corrections from higher order electroweak processes.

The leading terms contributing to the anomalous magnetic moment of the electron

are shown in Figure 1-1. Precision measurements of this anomalous part of the

magnetic dipole moment have long been used as a test of theoretical models, and

their accurate prediction was one of the great triumphs of Quantum Electrodynamics

(QED) in the 1960s. The current world average values of

�e = (1:001 159 652 193� 0:000 000 000 010)
e�h

2me

�� = (1:001 165 923� 0:000 000 008)
e�h

2m�

agree well with the predictions of the Standard Model, and a program is currently
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underway at Brookhaven to reduce the error on the magnetic moment of the muon

by another factor of 20.[4] At this precision, purely weak corrections will become

important, and this measurement will provide a nice low energy test of the Standard

Model.

Given that the electric and magnetic dipole moments of the electron and muon

have already been measured to high precision, what is the motivation behind mea-

suring these quantities for the tau lepton? First, the dipole moments involved in

the process Z ! �+�� are weak dipole moments rather than the electromagnetic

dipole moments involved at the  ! �+�� vertex. Considerations of gauge invari-

ance require that these couplings are related, but in principle they are not the same

thing. Second, because all of the elements involved in the Z ! �+�� vertex are

heavy, any new physics which couples to the mass of a particle would be enhanced at

this vertex compared to any of the lighter leptons coupling to a photon. While the

details of this argument depend on the speci�cs of the new physics involved, almost

any plausible new physics which comes from a higher mass scale is not excluded

at the current limits on the weak tau dipole moments by the more precise electron

or muon data. Third, although the Standard Model couplings are universal among

the three lepton families, there is no compelling fundamental reason why this must

be so, and individual measurements of each family are clearly desired. Finally, in

contrast to the anomalous magnetic moment of the lighter leptons, the Standard

Model contribution to the anomalous magnetic moment of the tau lepton has been

calculated to be[5]

dZ� = �(1:2 + 0:3i)� 10�20 e cm; (1.1)

which is many orders of magnitude below the experimental sensitivity of this analy-

sis. One of the leading diagrams contributing to this WMDM is shown in Figure 1-2.

A Standard Model contribution to the CP violating WEDM would require a two
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Figure 1-2: The largest Standard Model contribution to the CP conserving WMDM
is shown. The e�ect of this term is many orders of magnitude below the
experimental sensitivity of this analysis. The leading SM contribution to
the CP violating WEDM is estimated to be considerably smaller.

loop diagram at the decay vertex, and the magnitude of this CP violating ampli-

tude has been estimated to be at least seven orders of magnitude below the tree

level process.[6] As the Standard Model prediction for these anomalous couplings is

vanishingly small, any measured non-zero value is a direct sign of new physics.

Aside from the increased sensitivity to new physics, there are other bene�ts to

performing this measurement at the Z pole with tau lepton pairs. Tau leptons are

readily identi�ed with high e�ciency and low background at the Z pole by the highly

collimated and low multiplicity nature of their observable decay products. As will

be shown in Section 1.2, the dipole couplings of any lepton involve tensor operators

producing spin dependent observables. Since the tau lepton decays shortly after it is

produced, the spin of the original tau can be measured, at least in a statistical sense,

by the momentum spectra of the observed tau decay products. This technique will

be used in this analysis to measure the transverse polarization of the produced tau

leptons which is directly related to the anomalous weak dipole moments of interest.
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1.2 Dipole Moment Formalism

In the process

e+e� ! V ! �+�� (1.2)

the most general Lorentz structure for the coupling of the tau leptons to the neutral

vector �eld V� is described using operators up to dimension six by the Lagrangian

L = �g ��

�
�(FL

1 P� + FR
1 P+)�

i���q�
m�

(FL
2 P� + FR

2 P+)

+ q�(FL
3 P� + FR

3 P+)

�
� V�; (1.3)

where q� is the momentum of the gauge boson V .[7] The couplings are explicitly

written in terms of left and right handed form factors FL=R by use of the projection

operator P� = 1
2
(1� 5) which selects only the left or right handed tau lepton. In

general these couplings can be complex, energy dependent, and will have di�erent

strengths depending upon which vector boson V is being considered.

The F3 form factor represents a contact term which will vanish for the photon

due to considerations of gauge invariance, and will also vanish for a Z boson which

is on shell or coupled to massless fermions. For scattering at the Z pole, these F3

terms can be safely ignored, and explicitly substituting for the projection operators

P�, Equation 1.3 can be re-written as

L = �g
2
��

�
�(A� B5)� i���q�

m�
(C �D5)

�
�V� (1.4)

where

A = (FL
1 + FR

1 ) B = (FL
1 � FR

1 )

C = (FL
2 + FR

2 ) D = (FL
2 � FR

2 ): (1.5)
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At tree level in the Standard Model, these couplings are predicted to be

FL
1 (Z) = (cv + ca)=2 = �1

2
+ sin2 �w

FR
1 (Z) = (cv � ca)=2 = sin2 �w (1.6)

FL
2 (Z) = FR

2 (Z) = 0

FL
1 () = FR

1 () = �ge=gz (1.7)

FL
2 () = FR

2 () = 0

where sin2 �w is the weak mixing angle, and g from Equation 1.3 has been set to

the neutral weak coupling parameter gz. Substituting in these values, the Standard

Model Lagrangian can then be written as

LSM = �gz
2
��
�
�(cv � ca

5)
�
� Z� + ge��

�� A�: (1.8)

For scattering at the Z pole, the terms involving the photon propagator are highly

suppressed with respect to the Z propagator by a factor of O(�Z=mZ) in the relative

amplitudes, such that the cross section from Z boson production is � 800 times the

cross section from pure  exchange. The cross section from the -Z interference

term strictly vanishes at the Z pole, although initial state radiation smears the

collision energy enough to produce a � 2% contribution to the total rate. This small

photon amplitude and other higher order SM corrections to the tree level calculation

can be accommodated with the improved Born approximation where the coupling

parameters cv and ca are de�ned to be collision-energy dependent e�ective couplings

de�ned in terms of the e�ective weak mixing angle sin2 �e�w , which incorporates all

higher order terms which do not modify the basic V �A Lorentz structure.1 Those

1 The exact details of which higher order terms are included into the e�ective couplings can vary
between di�erent theoretical schemes. Usually, the photon amplitudes are not included. A
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Standard Model corrections which do modify the V �A Lorentz structure contribute

directly to the weak dipole moments of interest, although these terms have already

been shown to be extremely small.

In this analysis, the possibility of new vector bosons beyond the Standard Model

directly producing tau pairs through the process

e+e� ! Vnew ! �+�� (1.9)

will not be explicitly considered. New physics of this type would not modify the

underlying Lorentz structure of the vertex, but rather would appear as a modi�ca-

tion to the Standard Model cv and ca couplings in a similar fashion as the presence

of the photon propagator. Evidence for this sort of new physics would be seen in

the precision electroweak measurements of the Z partial width to tau leptons �Z(�)

or the electroweak asymmetry parameter A� . Rather, this analysis is sensitive to

any new physics which enters as a higher order correction to the Z ! �+�� vertex

leading to non-zero F2 couplings. The Lagrangian responsible for these anomalous

couplings can be written as

Lanom =
i

2
��
�
���q�(d� � i ~d�

5)
�
� Z�; (1.10)

where the parameters

d� � gz
m�

(FL
2 + FR

2 ) (1.11)

~d� � �i gz
m�

(FL
2 � FR

2 ) (1.12)

are identi�ed as the Weak Magnetic Dipole Moment (WMDM) and Weak Electric

Dipole Moment (WEDM) in analogy with the equivalent parameters de�ned at the

decent review can be found in PDG 96[3].
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photon vertex.2 The de�nition of the WEDM ~d� as written in Equation 1.10 is

chosen to agree with the convention which is (almost) consistently followed in the

experimental literature. There is no consistent de�nition of the WMDM, and this

de�nition was chosen out of notational simplicity. Some authors choose to write

the WMDM in terms of the dimensionless anomalous contribution to the Weak

Magnetic Moment aZ� where d� = (aZ� e)=(2m� ). Unfortunately, things are even less

standardized in the theoretical literature, and when comparisons are made between

the work of di�erent authors, or even between di�erent papers from the same author,

one must refer to the equivalent of Equation 1.10 to understand just which scale

factors and sign conventions are being employed to de�ne the anomalous coupling

parameters.

Despite the notational di�cultly, the anomalous dipole couplings de�ned in

Equation 1.10 are model-independent phenomenological form factors which describe

the most general next-highest order coupling at the Z ! �+�� vertex, which is pre-

dicted to be e�ectively zero by the Standard Model. As written, the dipole moments

d� ; ~d� are dimensional quantities with units of e � cm. The e�ect of turning on these

anomalous couplings through some new physical process beyond the Standard Model

will be covered in Section 1.3 and Appendix A. In Section 1.4 it will be shown that

a non-zero WEDM ( ~d� ) will produce a CP violating interaction, while the WMDM

(d� ) is an intrinsically CP conserving parameter.

2 Strictly, these should be written as dZ� and ~dZ� , although the weak (Z) dipole moments are always
implied when not explicitly speci�ed.
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1.3 Cross Sections

The di�erential cross section for the production and subsequent decay of tau leptons

at the Z pole can be conveniently be written as

d�L=R

d
 dq+a dq
�
b

/ ��
0��0�

L=R (
) D�0�(q+a ) D�0�(q�b ) (1.13)

where �L=R(
) is the production spin density matrix for a left or right handed

incident electron, and D(q+a ) is the tau decay spin density matrix to a particular

�nal state a with momentum q+a . The production spin density matrix is simply a

compact notation for the squared production amplitudes given by

��
0��0�

L=R =M?(e+e�L=R ! �+�0�
�
�0) M(e+e�L=R ! �+� �

�
� ); (1.14)

while the elements of the tau decay matrix are similarly given by

D�0�(q+a ) =M?(�+�0 ! a(q+a ) +X) M(�+� ! a(q+a ) +X) (1.15)

where the indices (�0; �) / (� 0; �) represent the explicit spin states of the intermediate

�+ / �� amplitudes.

The calculation of this di�erential cross section for both the Standard Model and

the anomalous couplings de�ned in Equation 1.8 and Equation 1.10 is described fully

in Appendix A. The coordinate system used to describe the tau spin direction is

de�ned such that the +ẑ axis points in the direction of the produced �� lepton, while

the +x̂ axis lies in the production plane, pointing in the direction of increasing �.

The �+ hemisphere uses the identical coordinate system as the �� hemisphere as

shown in Figure 1-3, while the spin basis is chosen so that the orthogonal tau spin

states are labeled (+=�) depending on whether the longitudinal spin of the tau is

aligned or opposed to the +ẑ axis.
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Figure 1-3: The tau decay matrix coordinate system is shown. The same coordinate
system is used to describe both tau hemispheres, and the azimuthal de-
cay angle � describes the angle of the tau decay product out of the tau
production plane.

Under the relativistic approximation of a massless tau lepton, there are two

SM production amplitudes and two anomalous coupling amplitudes as shown in

Table 1.1 where the shorthand notation for the production amplitudes

AL=R(�; �) =M(e+e�L=R ! �+� �
�
� ) (1.16)

has been used. For notational clarity, the anomalous couplings have been written

in terms of the dimensionless coupling constants kv �
p
s

gz
d� , ka � i

p
s

gz
~d� , where

p
s = mZ is the collision energy.

As shown in Figure 1-4, the two non-zero Standard Model amplitudes A(++)
and A(��) produce tau pairs with their spins aligned in the same direction, either

along or opposed to the �� momentum vector. In the relativistic limit, these ampli-

tudes are not modi�ed by the addition of the anomalous coupling terms, but rather

the other two amplitudes A(+�) and A(�+) are turned on producing tau pairs

with their spins anti-aligned, as shown in Figure 1-5. These two anomalous ampli-

tudes are CP conjugates of each other, that is to say that under the CP reversal
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Table 1.1: Relativistic Tau Production Amplitudes

Left Handed Right Handed
�g2zE2(cv + ca)� �g2zE2(cv � ca)�

A(++) �(cv � ca)(1� cos �) �(cv � ca)(1 + cos �)
A(��) �(cv + ca)(1 + cos �) �(cv + ca)(1� cos �)
A(+�) +(kv � ka) sin � �(kv � ka) sin �
A(�+) +(kv + ka) sin � �(kv + ka) sin �

The relativistic tau production amplitudes for both Standard Model and
anomalous couplings are shown separately for left and right handed incident
electrons.

operation, A(+�) =)
CP

A(�+).3 From Table 1.1, these two amplitudes will be un-

equal only if the Weak Electric Dipole Moment (ka) is non-zero, giving rise to a CP

violating interaction. If only the Weak Magnetic Dipole Moment (kv) is non-zero,

the spin structure of the produced tau leptons will be modi�ed, but the additional

amplitudes will preserve CP invariance. The two Standard Model amplitudes are

both CP conjugates of themselves, and hence there is no possibility of generating a

CP violating amplitude using only these tree level SM couplings.

It will be assumed for the remainder of this analysis that the initial state electron

beam is an ensemble of longitudinally polarized particles with no coherent transverse

polarization. Under this assumption, the cross section for a given electron beam

polarization Pe can be written in terms of the derived cross sections as

d�(Pe) =
1

2
(1� Pe)d�L +

1

2
(1 + Pe)d�R (1.17)

where the polarization is de�ned by Pe � (nR � nL)=(nR + nL) such that Pe < 0

denotes a left polarized beam.

3 This relation is only strictly true if the initial state is a CP conjugate of itself. This condition
is satis�ed with the production of vector bosons in e+e� collisions.
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Figure 1-4: The StandardModel production amplitudes create tau pairs with their spins
aligned. These two amplitudes can only produce longitudinally polarized
taus.

1.4 Transverse Polarization

The production spin density matrix ��
0��0� is the production cross section for a

�+ lepton into the spin state described by the superscripts (�0; �), and a �� lep-

ton into the spin state described by the superscripts (� 0; �). To explore the basic

phenomenology of the anomalous dipole moments, it is useful to write this matrix

explicitly in the Pauli spin space of the two tau leptons. The spin structure of �

can then be decomposed into the following form

� = �0 [1
 1] +B+
i

�
�̂+i 
 1

�
+B�

j

�
1
 �̂�j

�
+ Cij

�
�̂+i 
 �̂�j

�
; (1.18)

where the 2 by 2 unit matrix is denoted by 1, and �̂i denotes one of the three

Pauli spin matrices.4 The �rst term gives the total di�erential cross section for

tau production independent of the tau spin orientation. The next two terms each

have three components representing the net tau spin polarization of the �+ and ��

respectively, while the �nal term describes the explicitly spin correlated part of the

4 This notation is more fully developed in [8].
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Figure 1-5: The anomalous coupling production amplitudes create tau pairs with their
spins opposed. This allows the production of transversely polarized taus.

tau production cross section.

The di�erential cross section term �0 in Equation 1.18 is given by

�0 = �++++ + ����� + �++�� + ���++

= jA(++)j2 + jA(��)j2 + jA(+�)j2 + jA(�+)j2 (1.19)

which has a component from both the Standard Model and the anomalous coupling

amplitudes. Using the relativistic amplitudes in Table 1.1, the total cross section

terms for left and right handed incident electrons are given as

�0jSML = 2g4zE
4(cv + ca)

2(c2v + c2a)
�
(1 + cos2 �) + 2A� cos �

�
(1.20)

�0jSMR = 2g4zE
4(cv � ca)

2(c2v + c2a)
�
(1 + cos2 �)� 2A� cos �

�
(1.21)

�0janomL = 2g4zE
4(cv + ca)

2(jkvj2 + jkaj2) sin2 � (1.22)

�0janomR = 2g4zE
4(cv � ca)

2(jkvj2 + jkaj2) sin2 �; (1.23)

where the Standard Model and anomalous parts have been written separately, and

A� = 2cvca=(c
2
v + c2a) is the SM electroweak asymmetry parameter. Applying Equa-
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tion 1.17 to account for the electron beam polarization and re-arranging some terms

gives the total di�erential cross section

d�0
d


/ (1 + cos2 �) + 2A�
Ae � Pe

1� PeAe

cos � +

� jkvj2 + jkaj2
c2v + c2a

�
sin2 �: (1.24)

The presence of either anomalous dipole moment will increase the total cross section

by a factor proportional to jdj2. This has been noted by a number of authors to

provide a constraint on the total magnitude of the anomalous couplings by consider-

ing the agreement of the tau partial width �(Z ! �+��)=�0 measured by the LEP

collaborations to the Standard Model prediction.[9] While somewhat indirect, this

provides a fairly decent limit of

q
jd� j2 + j ~d� j2 < 2:1� 10�17 e cm (95% C:L:)

which sets the scale for the desired sensitivity of the more direct measurement

described in this analysis.[10]

The longitudinal (ẑ) polarization of the produced tau leptons is a well known

feature of the Standard Model. In terms of the production spin density matrix, the

longitudinal polarization for the �+ and �� lepton can be written as

P+
z = B+

z =�0 =
(�++++ + �++��)� (���++ + �����)
(�++++ + �++��) + (���++ + �����)

(1.25)

P�
z = B�

z =�0 =
(�++++ + ���++)� (�++�� + �����)
(�++++ + ���++) + (�++�� + �����)

; (1.26)

where the denominator is simply the total cross section �0 computed above.
5 Again,

the numerator can be written in terms of a Standard Model component and an

5 To be completely accurate, the Standard Model component of Pz is entirely correlated between
the two tau hemispheres, and in the notation of Equation 1.18 would show up in the Cij term.
What is meant here is the observed polarization if the opposite hemisphere is ignored.
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anomalous component as

B�
z jSML = �2g4zE4(cv + ca)

2(c2v + c2a)
�
A� (1 + cos2 �) + 2 cos �

�
(1.27)

B�
z jSMR = �2g4zE4(cv � ca)

2(c2v + c2a)
�
A� (1 + cos2 �)� 2 cos �

�
(1.28)

B�
z janomL = �2g4zE4(cv + ca)

2(k?vka + kvk
?
a) sin

2 � (1.29)

B�
z janomR = �2g4zE4(cv � ca)

2(k?vka + kvk
?
a) sin

2 �; (1.30)

resulting in a longitudinal tau polarization given by

P�
z = �

A� (1 + cos2 �) + 2 Ae�Pe
1�PeAe

cos � �
�
k?
v
ka+kvk?a
c2
v
+c2

a

�
sin2 �

(1 + cos2 �) + 2A�
Ae�Pe
1�PeAe

cos � +
�
jkvj2+jkaj2

c2
v
+c2

a

�
sin2 �

: (1.31)

There is very little information to be gained by searching for anomalous longitudinal

tau polarization, since this involves terms of second order in the anomalous coupling

parameters kv and ka.

The transverse (x̂; ŷ) polarization of the produced tau leptons is much more sen-

sitive to the anomalous coupling terms in the generalized Lagrangian. The Standard

Model does predict a small x̂ transverse component resulting from the non-zero tau

mass, but this is suppressed with respect to the longitudinal tau polarization by a

factor of O [cv=(ca)] resulting in a transverse polarization of only a few tenths of a

percent. The component of transverse polarization in the production plane can be

written in terms of the real part of the spin density matrix as

P+
x = B+

x =�0 = 2< ��+�++ + �+���
�
=�0 (1.32)

P�
x = B�

x =�0 = 2< ��+++� + ���+�
�
=�0; (1.33)

while the component transverse to the production plane is given by the imaginary
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part as

P+
y = B+

y =�0 = �2= ��+�++ + �+���
�
=�0 (1.34)

P�
y = B�

y =�0 = �2= ��+++� + ���+�
�
=�0: (1.35)

These numerator terms are zero in the Standard Model for the relativistic amplitudes

shown in Table 1.1, and can be written in terms of the real and imaginary parts of

the anomalous couplings as

B�
x jL = �4g4zE4 sin � [<(kv)(ca cos � + cv)�<(ka)(cv cos � + ca)] (1.36)

B�
x jR = �4g4zE4 sin � [<(kv)(ca cos � � cv)� <(ka)(cv cos � � ca)] (1.37)

B�
y jL = �4g4zE4 sin � [=(kv)(cv cos � + ca)�=(ka)(ca cos � + cv)] (1.38)

B�
y jR = �4g4zE4 sin � [=(kv)(cv cos � � ca)� =(ka)(ca cos � � cv)] : (1.39)

Dividing out the total cross section �0 gives the net transverse tau polarization in

the production plane

P�
x =� <(kv)

2 sin � (ca cos � + cv
Ae�Pe
1�PeAe

)=(c2v + c2a)

(1 + cos2�) + 2A�
Ae�Pe
1�PeAe

cos � +
�
jkvj2+jkaj2

c2
v
+c2

a

�
sin2 �

� <(ka)
2 sin � (cv cos � + ca

Ae�Pe
1�PeAe

)=(c2v + c2a)

(1 + cos2 �) + 2A�
Ae�Pe
1�PeAe

cos � +
�
jkvj2+jkaj2
c2
v
+c2

a

�
sin2 �

; (1.40)

and transverse to the production plane

P�
y =� =(kv)

2 sin � (cv cos � + ca
Ae�Pe
1�PeAe

)=(c2v + c2a)

(1 + cos2 �) + 2A�
Ae�Pe
1�PeAe

cos � +
�
jkvj2+jkaj2

c2
v
+c2

a

�
sin2 �

� =(ka)
2 sin � (ca cos � + cv

Ae�Pe
1�PeAe

)=(c2v + c2a)

(1 + cos2 �) + 2A�
Ae�Pe
1�PeAe

cos � +
�
jkvj2+jkaj2
c2
v
+c2

a

�
sin2 �

: (1.41)

Substituting back in the original de�nition of the dipole moments, this can be written
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Figure 1-6: The transverse �� polarization in the production plane (P�
x ) is shown as

a function of the production angle for a non-zero <[d� ] and =[ ~d� ]. In each
case a dipole strength of 1 � 10�17 e cm is shown for both left and right
polarized electron beams.

more compactly as

P�
x = �

p
s

gz

h
<(d� )f1(�)� =( ~d� )f2(�)

i
P�
y = �

p
s

gz

h
=(d� )f2(�)� <( ~d� )f1(�)

i
;

(1.42)

where in the limit of small anomalous couplings such that the anomalous contri-

bution to the total cross section can be ignored, f1(�) and f2(�) depend only upon

the Standard Model couplings (cv; ca), the electron beam polarization (Pe), and the

production angle (�).

As shown in Figure 1-6, the �rst angular function

f1(�) =
2 sin � (ca cos � + cv

Ae�Pe
1�PeAe

)=(c2v + c2a)

(1 + cos2 �) + 2A�
Ae�Pe
1�PeAe

cos � + (
p
s=gz)2

�
jd� j2+j ~d� j2

c2
v
+c2

a

�
sin2 �

(1.43)

is a nearly odd function of cos � which describes the transverse polarization resulting
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Figure 1-7: The transverse polarizations induced by the Weak Electric Dipole Moment
( ~d� ) reverse under the CP operation resulting in a di�erent polarization
con�guration. This is a CP violating interaction.

from the real part of either dipole moment, while the second angular function

f2(�) =
2 sin � (cv cos � + ca

Ae�Pe
1�PeAe

)=(c2v + c2a)

(1 + cos2�) + 2A�
Ae�Pe
1�PeAe

cos � + (
p
s=gz)2

�
jd� j2+j ~d� j2

c2
v
+c2

a

�
sin2 �

(1.44)

is a nearly even function of cos � which describes the transverse polarization resulting

from the imaginary part. In the limit of large electron polarization (jPej ! 1), a

reversal of the electron beam polarization is equivalent to a parity reversal of these

functions:

f(cos �;Pe) � �f(� cos �;�Pe): (1.45)

This can be seen in Figure 1-6 to have a dramatic e�ect on the transverse polariza-

tion resulting from the imaginary parts of the anomalous couplings, while changing

very little the transverse polarization resulting from the real parts. The bene�t to

this analysis of the polarized electron beam available at the SLC is this increased

sensitivity to the imaginary parts of the anomalous coupling terms.

From Equation 1.42 the CP nature of the two dipole moments originally dis-
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cussed in Section 1.3 can be directly seen. The transverse polarization which results

from both the real and imaginary parts of the WEDM ( ~d�) is opposite for the �
+

and �� leptons. Remembering that the same coordinate system is used for both tau

hemispheres, this results in polarization vectors which are opposed to each other for

the two leptons. Under the CP operation, the polarizations of the two tau leptons

are exchanged, and any di�erence between these two polarization vectors directly

violates CP invariance. The WMDM ( ~d� ), meanwhile, produces a transverse polar-

ization which is the same for both the �+ and �� leptons, resulting in polarization

vectors which are invariant under the CP operation.

1.5 Tau Decay Spectra

The technique of using the momentum spectra of the tau lepton decay products

to spin analyze the underlying tau state is well established in particle physics. At

LEP, for instance, the longitudinal polarization of the tau leptons is measured in this

fashion as a function of the production angle, and used to �t for the Standard Model

coupling parameters using Equation 1.31.6 In this analysis, the tau decay spectra

will be used to analyze both the longitudinal and transverse tau polarizations as

a function of production angle, and used to �t for the strengths of the anomalous

coupling parameters. It is assumed in this analysis that any possible new physics

enters at the Z ! �+�� vertex, and the subsequent decay of the tau leptons is

accurately described by the Standard Model charged current interaction.7

In the tau rest frame, the partial width for a particular tau decay can be written

in terms of a spin independent decay function f(q?) and a spin dependent decay

6 See [9] and the references contained therein.
7 It has recently been noted by T. Rizzo that gauge invariance would require a similar anomalous
coupling to be present at the charged current W ! �� vertex. The e�ect of this additional
charged current anomalous coupling on the observed tau decay spectra is very small, however.[11]
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Table 1.2: Tau Decay Spin Analyzing Powers

Decay Mode Analyzing Power
�� ! ���� +1
�� ! e���e�� -1/3
�� ! ������� -1/3
�� ! ���0�� -0.06

function g(q?) as

d�
dq?

(�� ! b(q?) +X) / fb(q
?) + gb(q

?) �̂ � q̂?
d�
dq?

(�+ ! a(q?) +X) / fa(q
?)� ga(q

?) �̂ � q̂?
(1.46)

where �̂ represents the tau spin direction and q? is the momentum of the observed

tau decay product in the tau rest frame.[12] Not all tau decays retain much useful

spin information about the underlying tau lepton, and in this analysis only two

single-prong hadronic decay modes, � ! ��� and � ! ��� , along with the two

leptonic decays � ! e��e�� and � ! ������ will be identi�ed and analyzed. For these

four decay modes, the decay functions f and g depend only upon the scaled energy

(x? = 2E?=m� ) of the observed charged track in the tau rest frame. An estimate

of the sensitivity of each decay mode can be made by considering the inclusive

analyzing power

� =

Z
g(x?)=f(x?)dx? (1.47)

as shown in Table 1.2. In actuality, somewhat better sensitivities are achieved when

the full x? dependence of the decay functions are explicitly considered, although

experimental e�ects like backgrounds and resolution will degrade this sensitivity

somewhat.

The tau decay matrix D(q?�) is proportional to the tau decay partial widths

given in Equation 1.46 written explicitly in the Pauli spin space of the chosen tau
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spin basis as

D(q?�) =
0
@ f(x?)� g(x?) cos �? �g(x?) sin �?e�i�?

�g(x?) sin �?e+i�? f(x?)� g(x?) cos �?

1
A ; (1.48)

where �? and �? are the polar and azimuthal angles between the the momentum

vector q?� and the +ẑ axis in the �� center of mass frame. In this form, the decay

spectrum for a polarized tau can be written as

d3�

dx?d
?
/ (1+ Pi�̂i) � D(q?); (1.49)

and by contracting both decay matrices with the production spin density matrix �,

the multi-di�erential cross section can be obtained. The advantage of this notation

is that D(q?) depends only upon Standard Model parameters and encapsulates all

of the physics governing the particular tau decay mode, while � contains all of the

dependence upon the anomalous couplings and is completely independent of the tau

decay mode.

Appendix A describes in detail the process of changing variables from the tau

center of mass frame to the lab frame, and writing the matrix D(q?) in terms of

the experimentally accessible variables x and �, which are the scaled energy and

azimuthal decay angle of the single observed charged particle from each tau lepton

decay in the lab frame.

1.6 Likelihood Fitting

The strengths of the anomalous couplings are found by performing a likelihood �t

to the observed hemisphere decay observables (x+; x�; �+; ��) at a given production

angle and electron polarization (cos �;Pe) as a function of the anomalous coupling
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parameters (d� ; ~d� ). The likelihood of each observed event is given by

L(d� ; ~d� j cos �;Pe; x
+; �+; x�; ��) =

~��
0��0�(d� ; ~d� j cos �;Pe) D�0�(x+; �+) D�0�(x�; ��); (1.50)

where D(x; �) is the tau decay matrix for a given identi�ed tau hemisphere, and ~�

is the normalized production spin density matrix given by

~��
0��0� = ��

0��0�=(��
0��0���0���0�); (1.51)

such that the likelihood of each event is normalized over the phase space of all

possible decay parameters (x+; x�; �+; ��):

Z
L(d� ; ~d� j cos �;Pe; x

+; �+; x�; ��) dx+d�+dx�d�� = 1: (1.52)

Normalized in this fashion, the likelihood of the observed data depends only upon

the net spin polarization of the produced tau pairs, and not upon the total rate of

tau production as a function of the production angle cos �. From Equation 1.24 it

can be seen that the di�erential cross section d�0=d
 has a very weak dependence

on the strength of the anomalous coupling terms. Without this normalization,

any di�erence between the observed and expected event rate as a function of the

production angle cos � will cause the likelihood �t to favor very large values for the

the anomalous coupling strengths in an attempt to modify the overall shape of the

di�erential cross section. Any slight misunderstanding of the detector acceptance

can cause these small deviations, and the associated uncertainty becomes greatly

magni�ed in the �nal determination of the anomalous coupling strengths. Since

there is very little physics information to be gained by including this small cross

section dependency anyway, it is far better to divide this information out as shown

in Equation 1.50.
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Chapter 2 presents the equipment used in this analysis, and Chapter 3 explains

the measurement of the electron beam polarization in detail. Chapter 4 describes

the process of selecting and identifying the tau lepton decays using the SLD detector,

while Chapter 5 contains a more complete description of the likelihood formalism

including modi�cations to Equation 1.50 to account for the imperfect identi�cation

and reconstruction of the various tau decay products. The results and a discussion

of the systematic uncertainties is found in Chapter 6.



Chapter 2
The Machine

The pursuit of knowledge in particle physics has, over the past few decades, taken

on a truly inhuman scale. Both in terms of the physical size of the equipment and

the human e�ort necessary, a modern particle physics experiment requires the par-

ticipation and collaboration of many hundreds of physicists, engineers and support

sta�. For this reason, a comprehensive description of the equipment used in this

analysis is beyond the scope of this document. Rather, this chapter will give a broad

overview of the equipment and techniques used in the production and detection of

polarized Z bosons at the SLC.

2.1 SLAC Linear Collider

The SLAC Linear Collider represents a major achievement in particle accelerator

technology. The �rst and only high energy linear collider, at the SLC single bunches

of electrons and positrons are accelerated together down a two-mile linear accelerator

and brought into collision at the center of the SLD detector at a rate of 120 Hz.

O�cially proposed in 1980[13] as a quick and low-cost alternative to the massive

storage ring design of LEP, the SLC has endured a somewhat rocky past, including
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Figure 2-1: The layout of the SLC is shown. The spin of the polarized electron beam
is indicated by the small arrows along the way. Not shown are the beam
dumps, which are just past the outgoing �nal focus section.

the 1989 Loma Prieta earthquake, but has proven to be a useful research tool in its

ability to accelerate polarized electrons.

The layout of the SLC is shown in Figure 2-1. Two bunches of polarized elec-

trons are produced by photoemission from a strained gallium arsenide cathode and

injected into the head of the linac.[14] After a short acceleration section, the 1.2 GeV

electron bunches are injected into the North Damping Ring (NDR) where the phase

space (emittance) of the beam is reduced.[15] After a damping time of 8.3 ms, the

electrons are extracted from the NDR and injected, along with a bunch of positrons

from the South Damping Ring (SDR), into the main accelerating section of the

linac. Two thirds of the way down the linac, the trailing electron bunch is stripped

o� to the positron target, a thick water-cooled chunk of tungsten,[16] to produce the

positrons used on the following machine cycle. These positrons are brought back

up to the head of the linac in a separate beamline and injected into the SDR where

they are stored for 16.6 ms waiting for the next machine cycle. After acceleration

to around 46.5 GeV, the electron and positron bunches are separated in the beam

switchyard and fed into the North and South arcs respectively. The 5.6 kGauss

dipole magnetic �elds in the arcs bend the two beams with a 279 m e�ective radius,

loosing nearly 1 GeV each to synchrotron radiation in the process, and bring them
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Table 2.1: SLC Collision Beam Parameters

Parameter 1993 Run 1994-95 Run
Horizontal beam size �x 2:6 �m 2:1 �m
Vertical beam size �y 0:8 �m 0:6 �m

Horizontal divergence �x0 300 �Rad 300 �Rad
Vertical divergence �y0 200 �Rad 200 �Rad
Energy divergence �E=E 0:30% 0:15%
Bunch intensity ne� 3:0� 1010 3:5� 1010

Electron polarization Pe (63:0� 1:1)% (77:2� 0:5)%
Total Luminosity Ltot 1:6 pb�1 3:5 pb�1

Typical single beam parameters at the SLC interaction point are listed for
the 1993 and 1994-95 running periods. The beam sizes and divergences
shown represent single bunch RMS values. The electron beam polarization
is luminosity weighted over the course of each running period, while the
error represents the overall systematic uncertainty.

to the �nal focus section and the SLD detector.[17] In the �nal focus, the two beams

are compressed by a pair of superconducting quadrupole triplets to a FWHM size of

roughly 4 x 2 �m2 at the center of the SLD detector where the collision takes place.

Most of the beam continues unscathed, traveling upstream through the opposing

�nal focus elements until they are kicked out of the main beamline and dumped.

2.1.1 Polarized Electron Source

It has long been known that polarized electrons can be photoemitted from the surface

of a semiconductor, but through the use of a strained-lattice GaAs photocathode,

polarizations in excess of 80% have been achieved at the SLC.[18] Figure 2-2 shows

the energy levels at the top of the valence band and the bottom of the conduction

band in strained gallium arsenide (GaAs). An incident circularly polarized photon

near the band gap energy of 1.52 eV will excite only the transitions from the top

of the valence band into the conduction band as shown. In conventional GaAs,

two transitions producing opposite spin electrons are possible from the degenerate
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Figure 2-2: The energy levels are shown at the top of the valence band and the bottom of
the conduction band for conventional (top) and strained (bottom) Gallium
Arsenide. The Clebsh-Gordon coe�cients for the various spin transitions
are also shown for a right handed incident photon. In bulk GaAs, spin-
orbit interactions separate the P1=2 and P3=2 energy levels to provide a
maximum polarization of 50%. With a strained lattice, the degenerate P3=2
energy levels can also be separated and a polarization of nearly 100% can
be achieved.

P3=2 energy level at a rate of 3 to 1 as given by the Clebsh-Gordon coe�cients. By

growing a small layer of GaAs on top of a substrate of gallium arsenide phosphide

(GaAsP), which has a di�erent lattice spacing than bulk GaAs, the degeneracy in

the P3=2 energy levels can be broken and polarizations above 50% can be achieved.

The exact dimensions of the various cathode layers has a signi�cant e�ect on the

performance of the source, and an improvement in the beam polarization from 63%

in 1993 to over 77% in 1994 can be directly attributed to reducing the active layer

from 300 �m to 100 �m in thickness.[19]

By applying a thin coating of cesium to the face of the photocathode, the work

function of the surface can be reduced, and a modest voltage will extract the polar-

ized electrons from the conduction band. Applying cesium improves the quantum
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e�ciency for producing electrons from the cathode, but as more charge is extracted

there is a corresponding loss in net beam polarization. To provide the 6 � 1010

electrons needed to drive the SLC, the cathode is maintained near a QE of 0.4%.

A pair of YAG pumped Ti:Sapphire lasers provide linearly polarized photons

which are circularly polarized by use of a of Pockels Cell. These electro-optic crystals

can be used to select left or right handed light on a pulse by pulse basis by reversing

the drive voltage applied. In normal SLC operations the polarization of the incident

photons, and hence the polarization of the produced electrons, are selected by a

pseudo-random sequence on each machine cycle in an e�ort to average out any

periodicities in the accelerator performance between the two polarization states.

The wavelength of the drive laser is empirically set near 850 nm to maximize the

polarization of the produced electrons.

2.1.2 Linear Accelerator

The linear accelerator (linac) used at the SLC is a 3 km long sequence of 30 con-

ventional copper S-band waveguides each driven by eight 60 MWatt peak power

RF klystrons. An accelerating gradient of 17 MeV/m is achieved in the copper

structures, providing a possible single beam energy of up to 50 GeV.

2.1.3 Spin Transport

Electrons are produced longitudinally polarized at the source, and special care must

be taken to preserve this polarization as the electrons travel through the accelerator

to the SLD. In a magnetic �eld, the spin precession of a relativistic particle is

described by the BMT equation,1 which for planar motion through a transverse

1 See any graduate-level electromagnetism text.
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Figure 2-3: The polarization history of the SLC is shown. The measured electron beam
polarization is plotted versus the number of hadronic Z decays observed.

bending �eld can be written as

d�spin
d�bend

= 
g � 2

2
; (2.1)

where �spin is the precession angle of the component of the spin vector perpendic-

ular to the magnetic �eld with respect to the momentum vector, and �bend is the

revolution angle of the particle along its circular path in the bending plane. Note

that if g were exactly equal to 2, the longitudinal polarization of an electron would

be maintained as the precession frequency would exactly match the cyclotron fre-

quency. Alternately, for a mono-energetic beam of electrons at some integer multiple

of the `magic energy'  = 2n
g�2 , the spin orientation at any particular point along the

circular beam orbit will remain unchanged during subsequent revolutions. This is,

in fact, the technique used to measure the muon magnetic moment to high precision.

Because this spin precession is energy dependent, and the SLC electron bunch

always has some energy width, any polarization component lying in the bending
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plane as the electrons enter the North damping ring will be quickly averaged away

to zero. To preserve the electron polarization, the combination of a 164� bend

followed by a 6.34 Tesla-meter solenoidal magnetic �eld region are used to precess

the incoming electron polarization vector �rst transverse to the direction of motion,

and then up into the vertical plane. Because this spin rotation was designed for

a 1.21 GeV incident electron bunch, but the actual injection is performed at 1.19

GeV, the spin rotation transverse to the bending plane is not perfect. This results

in a 1% polarization loss by the time the electrons are extracted from the NDR.

An additional pair of spin rotation solenoids were built to allow arbitrary control

of the polarization vector at the SLD, however these have not been used since

the advent of at beam running in 1993. A signi�cant increase in luminosity was

realized by abandoning a symmetric beam pro�le and colliding at the SLD with

beams which are much broader in the horizontal plane.[20] As a result, however,

any solenoidal �elds after the damping rings, where the at beams are created,

introduce skew correlations between the horizontal and vertical planes which are

generally undesirable. As a result, the electron polarization is left in the vertical

plane through the acceleration process, and the magnetic �elds in the North arc are

used to align the �nal polarization vector at the SLD.

The mechanism for aligning the electron polarization in the arcs is colloquially

known as spin bumps.[21] The SLC North arc is composed of 23 achromats, each

containing 20 combined function magnets to provide both bending and focusing of

the beam. Due to a design aw, the spin precession frequency in each achromat is

nearly resonant with the betatron oscillation frequency.2 As shown in Figure 2-4,

this near resonance can be exploited to precess the polarization vector out of the

vertical plane and into the horizontal plane. Two large betatron oscillations, or spin

bumps, are applied to the electron beam late in the arc to rotate the polarization

2 Betatron oscillations are the vertical displacements from the ideal orbit the electrons experience
as they are corrected by the quadrupole focusing �elds.
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Figure 2-4: The spin orientation of a vertically polarized electron is schematically
shown. The �rst example shows vertical betatron oscillation through a
chain of quadrupoles. The spin precession induced by every quad element
cancels out preserving the original spin orientation. In the second example,
the intermediate vertical dipole �elds precess the spin vector so that the
next quad precession adds coherently. In this manner, the spin vector can
be rotated into the dipole bending plane. The rate of this rotation depends
upon the amplitude of the vertical oscillation.

vector into the bending plane where it begins precessing. The amplitude of these

two bumps is phenomenologically chosen to maximize the longitudinal polarization

at the SLD.

Because the spin precession frequency is energy dependent, the longitudinal po-

larization of the electron bunch at the SLD is also energy dependent, which causes

some problems as discussed in Chapter 3. This energy dependency grows with the

number of spin precessions experienced by the electrons in the North arc, so by

keeping the spin orientation vertical for as long as possible the magnitude of this ef-
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Figure 2-5: The energy dependence of the electron beam polarization was directly mea-
sured a number of times during the 1994-95 SLD run. This particular scan
was taken in February 1995, near the end of the run. The measured polar-
ization dependence (circles) is weaker than the dependence expected from
the spin precession of an electron bunch launched into the arc horizontally
polarized (dashed line).

fect can be reduced. At 46 GeV, the spin of an electron launched into the North arc

longitudinally polarized will precess a total of 26 times over the net 90 degree bend.

Unfortunately, the SLC arcs are not at, but rather were constructed to follow the

bumps and rolls of the surrounding terrain. This convoluted geometry makes an

accurate prediction of the spin dynamics through the North arc spin bumps nearly

impossible to simulate, and direct measurements must be made. A second set of

spin bumps, set earlier in the North arc, are used to reduce the observed polarization

dependence on beam energy. A polarization versus energy scan, shown in Figure 2-

5, shows an e�ective turn number of 12 on the low energy side, although the high

energy side shows a much steeper dependence with an e�ective turn number of 24.

As shown, the longitudinal electron polarization is maximized at the beam collision

energy near 45.6 GeV.
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2.1.4 Energy Spectrometer

The beam energy at the SLC is measured on each machine pulse with a pair of wire

imaging synchrotron radiation detectors (WISRD).[22] These devices are located in

the extraction lines immediately before the beam dumps. Each WISRD consists

of three dipole magnets and a pair of copper wire screens. The vertical separation

between the synchrotron light swaths emitted by the beam in the �rst and third

horizontally bending dipoles is measured by the wire arrays. Combined with the

precisely measured �eld strength of the intermediate vertically bending analyzing

dipole, the beam energy can be deduced. On each machine cycle, the instantaneous

energy of each beam can be determined to an error of 22 MeV, which is dominated

by electronics noise. Averaging over many beam pulses, this error can be reduced

to about 12 MeV per beam where the remaining irreducible error is dominated by

the uncertainty in the wire plane geometry and orientation. Taking this error to be

correlated between the two detectors results in a 25 MeV total error on the center

of mass collision energy at the SLD. The energy measured for each beam at the

WISRD must be corrected by +45 MeV to account for synchrotron radiation losses

between the SLD and the dump, and by +5 MeV to account for additional photons

radiated in beam-beam interactions related to the collision process. The luminosity

weighted center of mass collision energy for the 1993 and 1994-95 running periods

was measured to be (91:26� 0:02) GeV and (91:28� 0:02) GeV respectively.

2.2 Compton Polarimeter

Located 33 meters downstream from the SLD, the Compton polarimeter is the

primary instrument used in measuring the electron beam polarization at the SLC.

A circularly polarized 2.33 eV photon beam is Compton scattered o� the exiting

45.6 GeV electron bunch just before the beam enters the �rst set of dipole magnets

of the SLC South arc heading towards the electron beam dump. These magnets
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act as a spectrometer sweeping the scattered electrons out of the main SLC beam

line and into a multichannel Cherenkov detector where the momentum spectrum

of the electrons is measured in the interval from 17 to 30 GeV/c. Data from the

Compton polarimeter are acquired continuously during normal operations of the

SLC, providing a � 1% statistical measurement of the electron beam polarization

approximately every three minutes. The calibration and analysis of the Compton

polarimeter data will be described in more detail in Chapter 3.

2.2.1 Compton Laser

The scattering `target' used in the Compton polarimeter is a� 30 mJ per pulse beam

of circularly polarized photons produced at 532 nm by a Q-switched, frequency

doubled Nd:YAG laser running at 17 Hz. The circular polarization state of the

photon target is selected with a pair of Pockels Cells similar to those used at the

electron source, and the polarization of the laser at production is measured with

a series of diagnostic photodiodes installed on the laser bench. The laser beam is

brought down into the SLC South �nal focus tunnel through a vent shaft by means of

a transport line consisting of four pairs of phase-compensated mirrors. The photons

enter the SLC beamline through a low birefringence window, and collide with the
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Figure 2-7: The components of the Compton Polarimeter are shown.

outgoing electrons at a crossing angle of 10 mRad. The timing of the 8 ns long

laser pulse must be carefully maintained to optimally coincide with the 3 ps long

electron bunch, and a series of lenses and other optical elements are used to keep

the � 1 mm in diameter photon beam centered on the outgoing � (1:0� 0:4) mm2

electron bunch. The laser beam continues out of the SLC vacuum enclosure and

into an analysis box in the SLC tunnel where the polarization of the photons can

be analyzed on a series of photodiodes.

2.2.2 Electron Transport

Due to the large boost from the incident 45.6 GeV electron bunch, the scattered

electrons remain with the main outgoing beam until the �rst bending element of

the SLC South arc is reached. The Compton scattering cone in the lab frame of

� 10 �Rad is, in fact, insigni�cant when compared to the � 80 �Rad horizontal and

� 25 �Rad vertical beam divergence at the Compton interaction point. Two dipole
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quadrupole was added before the 1994-95 run as part of an SLC �nal focus
upgrade. This �gure is not drawn to scale.

and one quadrupole magnet are used as an analyzing �eld to sweep the scattered

electrons out of the main SLC beam line, exiting the SLC vacuum enclosure through

a thin stainless steel window, and into the Compton Cherenkov Detector (CKV).

The path of the Compton scattered electrons through the spectrometer elements

and into the CKV detector is shown schematically in Figure 2-8. The exact param-

eters of the spectrometer beam elements are listed in Table B.3.

2.2.3 Compton Cherenkov Detector

Shown in Figure 2-9, the CKV is a segmented threshold Cherenkov counter with

nine readout channels instrumented with Hamamatsu R1398 photomultiplier tubes.

Originally �lled with cis- and trans-2-butene, the radiating gas was changed near the

start of the 1994 run to propane which provides better resistance to radiation dam-

age and polymerization which was believed to be fouling the detector in 1993. At a

slight overpressure of 1.1 atmospheres, this gas provides a Cherenkov threshold for

relativistic electrons at roughly 10 MeV which is crucial for avoiding the abundance

of low energy (< 2 MeV) background associated with the main electron beam. Rela-

tivistic electrons passing through the CKV detector produce UV Cherenkov photons

at a characteristic polar angle of 55 mRad which are reected by thin aluminum
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vanes away from the beamline and into the heavily shielded photomultiplier tubes.

To boost the signal seen in the CKV, a 6.86 mm (1.2 �0) preradiator is placed imme-

diately in front of the detector face, providing a signal ampli�cation factor of � 4.

The proportional tube detector seen immediately behind the CKV in Figure 2-9 was

not used in the 1994-95 data taking, and has since been removed.

2.2.4 Compton Data Acquisition

The data acquisition for the Compton polarimeter is separate from the main SLD

data acquisition system, and consists of a variety of modules housed in three Camac

crates. These three crates are linked by a Kinetic Systems Serial Highway driver

controlled by an M2ELN microVax minicomputer, allowing for a list-based readout

at the beam rate of 120 Hz. This system is not triggered in any way, but rather

takes data from all polarimeter channels on each and every SLC beam crossing. As

the Compton laser is only running at 17 Hz, this provides six laser-o� background

measurements in each channel for every laser-on signal measurement. The microVax

bu�ers the raw polarimeter data for a few seconds, and ships this raw data to the

SLDACQ Vax where the online data analysis is performed and the data is eventually

logged to tape. The helicity of each Compton laser pulse is determined according to

a pseudo-random sequence so that CKV data from all four electron-photon helicity

combinations can be recorded.

This system had been in place since 1992 and performed admirably until early

December 1994, when the list readout function of the Kinetic Systems Serial High-

way driver failed. Unable to repair or replace this somewhat obsolete piece of hard-

ware, the polarimeter channels were pared down to the bare minimum necessary

to perform the polarization measurement, and a standard Camac block transfer

was employed for readout. This operation is signi�cantly slower than the list-based

readout around which the system was designed, and this crippled system could only

keep up an acquisition rate of � 30 Hz. With the Compton laser slowed down to
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13 Hz, this allowed for only one laser o� background measurement for each laser on

pulse, although this is adequate for performing the polarization measurement. The

Compton data was acquired in this fashion for the remainder of the 1994-95 SLD

run. Before the start of the 1996 SLD run, this entire system was replaced by a

Vax-based Camac controller which provides the same crate readout and bu�ering

functions previously provided by the microVax system directly from the backplane

of the SLDACQ computer.

2.3 SLD Detector

Originally proposed in 1984[23] and completed in 1991, the SLC Large Detector

(SLD) is a general purpose solenoidal particle detector intended to be the main

instrument for detecting Z boson decays at the SLC. The various SLD subsystems

shown in Figure 2-10 provide simultaneous measurements of the charge, momentum,

and energy of the observable particles created by the decay of Z bosons. The

event triggering and physics reconstruction procedure will be described more fully

in Chapter 4.

2.3.1 Data Acquisition

Monitoring and control of the SLD data acquisition, as well as other detector func-

tions, is performed `on-line' by various independent processes running on the SLD

Vax cluster. The real work of the SLD data acquisition, however, is performed

`below-line' by an assortment of FASTBUS based processing modules which typi-

cally provide both event bu�ering and processing by means of embedded Motorola

68020 CPUs.[24] While the details of the data acquisition system vary somewhat

for each SLD subsystem, in general the analog signals are conditioned and digitized

by hybrid front end electronics modules mounted directly on the detector, and this

data is then shipped serially over optical �ber links to the FASTBUS based pro-
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Figure 2-10: The SLD detector is shown in quadrant view with the IP at the lower left
corner. The detector is designed to be both radially and longitudinally
symmetric.

cessing modules. These FASTBUS modules apply various calibrations to the raw

data, and then perform a wide variety of basic analysis tasks including waveform hit

�nding, rudimentary particle tracking, and the calculation of other useful quantities

to provide information for the trigger decision. A trigger decision is made on every

SLC beam crossing, and for all triggered interactions the data is collected from the

various subsystems, packaged into an event, and written to a shared event pool on

the SLDACQ Vax. At this stage, the various on-line processes can access this in-

formation to provide monitoring information and graphical one-event displays, and
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from this pool the events are eventually written to tape.

The FASTBUS modules for the various subsystems generate and store their own

calibration constants by injecting reference charges into the front end electronics

modules to generate an observed channel response curve. This calibration procedure

cannot be performed while the detector is taking data, but rather the detector

subsystems are recalibrated on a roughly daily basis when the opportunity presents

itself.

Since the beginning of the 1994-95 SLD run the below-line data acquisition

system has been fully pipelined, allowing the various subsystems to acquire data in

an autonomous fashion so that the faster subsystems and the trigger do not incur

any appreciable dead-time from the slower wire chamber subsystems which can take

many beam crossings to complete the processing of a triggered event.

2.3.2 Vertex Detector

At the heart of the SLD, wrapped immediately around the beampipe at the Inter-

action Point (IP), is the SLD silicon vertex detector (VXD).[25] Based on the same

charged coupled device (CCD) technology found in modern video cameras, this in-

strument provides full three dimensional pixel-based measurements of the passage of

ionizing (charged) particle tracks with an intrinsic � 5 micron resolution. Built out

of 480 individual 9 mm by 13 mm CCD wafers with (22 �m)2 pixel size, the VXD

consists of 60 ladders arranged in four radial layers to provide position measure-

ments from a radius of 3.0 cm to 4.2 cm from the incoming beam axis. Due to the

somewhat convoluted geometry required by these small individual CCD elements, a

typical track will hit two of the four radial layers providing an absolute resolution

on the three dimensional track origin near the IP of 10 �m in the r-� plane and

36 �m in the r-z plane. With an overall length of 20 cm, this detector provides

nearly uniform coverage out to a production angle of j cos �j < 0:71.

With a total of 120 Megapixels, it takes nearly 160 ms (19 beam crossings) to read
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Figure 2-11: The radial layout of SLD Vertex Detector is shown. This device provides
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all of the pixel data out of this device. Although CCDs are an unsuitable technology

for higher rate machines, this readout time does not contribute any dead-time to

the data acquisition system at the SLD, as the device is continuously integrating

charge and being read out. With a typical trigger rate of 0.3 - 0.5 Hz, the random

coincidence rate for hits from overlapping triggers is extremely low. Single pixel

noise thresholds and a clustering algorithm are applied by the FASTBUS based

readout electronics to reduce this data stream to a more manageable size of 50-80

kilobytes per triggered event.
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2.3.3 Central Drift Chamber

Immediately surrounding the Vertex Detector is the Central Drift Chamber (CDC)

which provides charge and momentum measurements for each of the charged tracks

present in an event.[26] The CDC consists of a 2 m long by 1 m radius cylinder of

gas which is instrumented with � 35; 000 thin tungsten wires. A charged particle

passing through the drift chamber will ionize the drift chamber gas along its path,

depositing on the order of 5 keV/cm for a minimum ionizing track. The 150 �m

�eld wires in the CDC, arranged as shown in Figure 2-12, have high voltage applied

to create evenly spaced cells of parallel electric �eld. The electrons liberated in the

ionization process drift with a uniform velocity of 8 microns/ns within the 0.9 kV/cm

�eld of each cell towards a plane of instrumented 25 �m sense wires. Immediately

on either side of the sense wires is a plane of guard wires which de�ne the boundary

of the drift cell. A voltage di�erence of 3 kV between the guard and sense wires

provides some signal ampli�cation as the individual electrons avalanche down onto

the sense wires. The CDC gas is a mixture of 75% carbon dioxide, 21% Argon, 4%

isobutane, and 0.3% water chosen to provide good ionization properties and drift

velocity, while being resistant to electrical breakdown and charge di�usion.

The electrical pulse resulting from the charge deposited on both ends of each

sense wire is sampled at 119 MHz and stored in a 512 channel switched capacitor

array. A discriminated charge sum for each wire is also provided on every beam

crossing to the FASTBUS based trigger logic algorithm. For triggered events, these

waveforms are digitized by 12 bit Analog to Digital Converters (ADCs) and shipped

to the FASTBUS based waveform analyzing processor (WASM). This processor

calculates the time, charge, pulse height, and pulse width of the observed waveform

which, when combined with the known drift time of the gas and detector geometry,

allows a track position in space to be reconstructed. Double hits observed on a single

wire can be resolved with reasonable e�ciency down to a transverse track separation

of 1 mm. The CDC data acquisition requires 80 ms (10 beam crossings) to fully
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digitize, read out, and analyze the CDC waveforms. Due primarily to budgetary

constraints, multiple CDC events cannot be bu�ered, and during this readout time

the CDC electronics are insensitive to any new incoming data. A small number of

complete waveform shapes are also preserved on each event to provide a check of

the WASM algorithm.

Each CDC cell consists of eight sense wires sensitive to an volume of roughly 6

cm by 5 cm in cross section along the entire 2 m length of the chamber. The 640

cells are arranged in 10 radial superlayers to measure the curvature of a charged

track, and hence its momentum, as it passes through the 0.6 Tesla solenoidal mag-

netic �eld provided by the SLD's 6.6 kAmp, 5.0 MWatt conventional magnetic

coil. The transverse distance of a track from an individual sense wire is measured

to an intrinsic resolution of approximately 70 microns in each cell, although un-

certainties in the wire locations and changes in the drift velocity degrade this to

an e�ective resolution of around 100 microns. While the longitudinal location of

a track can be roughly estimated to a few centimeters by the amount of current

produced at either end of the highly resistive tungsten wires, a more precise de-

termination is made by combining the data from several layers which are slightly

skewed with respect to the longitudinal axis of the chamber. There are six of these

so called stereo layers, skewed by �41 milliradians with respect to the remaining

axial layers. The relative inverse momentum resolution provided by the CDC alone

has been measured to be �2p�1=p
�2 = (0:95%)2 + p2(0:49%=GeV )2, while the rela-

tive resolution of the combined CDC and VTX systems has been measured to be

�2p�1=p
�2 = (0:95%)2 + p2(0:26%=GeV )2.[27]

The CDC can detect tracks with a uniform 96% e�ciency with a momentum

above 4 GeV/c, degrading only to 93% at 100 MeV/c. The geometry of the CDC

provides uniform acceptance out to a production angle of j cos �j < 0:65, and some

tracks can be reconstructed out to a production angle of j cos �j < 0:87. To extend

the reach of the SLD tracking, two planar endcap drift chambers were installed at



2.3 SLD Detector 63

either end of the CDC, although the analysis of the data from these chambers has

proven to be di�cult and will not be used in this analysis.

Drift chambers are somewhat sensitive devices in that excessive charge deposition

can weaken and eventually break the �ne sense wires. This would be a catastrophic

failure in a chamber the size of the CDC, and some care is taken not to apply voltage

to the chamber when SLC beam conditions are particularly bad. For this reason,

the CDC was turned on for only 95% of the 1993-95 SLC running period.

2.3.4 Cherenkov Ring Imaging Detector

Particle identi�cation is one of the most challenging experimental problems in any

particle physics experiment. The high momentum tracks produced in Z boson de-

cays are particularly ill suited to conventional techniques which measure the energy

loss (dE=dx) or time of ight of an observed track in an attempt to identify the

particle type through an estimate of its mass. Situated just outside of the CDC,

the Cherenkov Ring Imaging Detector (CRID) identi�es particles by observing the

cone of Cherenkov light produced by the track as it traverses either a gas or liquid

radiating medium.[28] The radius of this cone of Cherenkov light, or the absence

of this cone altogether, as a function of track momentum provides the information

necessary to identify various particle species.

In order to extend the useful momentum range of the device, two radiating ma-

terials are used. A liquid radiator composed of C6F14 provides good �=K=p particle

identi�cation in the momentum range from 0.5 to 3.0 GeV/c, while a gas radia-

tor composed of C5F12 covers the higher momentum range up to 35 GeV/c.[29] As

shown in Figure 2-13, the Cherenkov photons from both radiators are detected in a

time proportional chamber (TPC) which is little more than a really long drift cham-

ber. Each TPC cell is �lled with an ethane drift gas doped with a 0.1% concen-

tration of the photoreactive substance tetrakis(dimethylamino)ethylene (TMAE),

which provides good quantum e�ciency for converting Cherenkov photons into elec-
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trons. These electrons drift the length of the TPC and are detected by an array of

93 sense wires which are read out by identical electronics as those used in the CDC.

A typical track will have on the order of 10 detected photoelectrons from which to

reconstruct a ring radius and make a particle identi�cation, although the high quan-

tum e�ciency of the TMAE doped gas makes these chambers extremely sensitive

to beam-related backgrounds. The possibility of high backgrounds breaking CRID

sense wires is a constant concern during SLD operations, and while not catastrophic

in the same sense that breaking a CDC wire would be, it does put that particular

CRID module out of commission until it can be �xed. This was observed to happen

a handful of times during the 1994-95 running period, and to protect the device it

was typically turned o� during periods of particularly bad backgrounds. For this
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reason, CRID data is only available for 80% of all data taken with the drift cham-

ber on. The CRID data has a comparable readout time as that of the CDC, and

typically generates 200 k of data for hadronic Z events.

The barrel CRID has 40 modules arranged azimuthally around the CDC cylin-

der to provide complete particle ID coverage for the barrel region. Each module

is divided into two independent longitudinal sections, each of which is read out in-

dependently at its outer end. The 1.2 meter long drift boxes provide particle ID

coverage out to a production angle of j cos �j < 0:72 which is well matched to the

CDC tracking coverage.

The endcap CRID modules, sandwiched between the endcap drift chambers,

were designed to extend the particle ID capabilities of the SLD into the forward

region. Unfortunately, without a mature endcap tracking system these chambers

are largely unusable, and will not be considered in this analysis.

2.3.5 Liquid Argon Calorimeter

The workhorse of the SLD detector is the Liquid Argon Calorimeter (LAC).[30]

Located just inside the SLD coil from 1.8 m to 2.9 m of radius in the barrel, the

LAC is a sampling calorimeter which provides an energy measurement of neutral and

charged hadronic as well as electromagnetic particles over 98% of 4� in solid angle.

A calorimeter works by putting enough radiating material in the way of an incoming

particle to stop that particle through interactions and energy loss. In a sampling

calorimeter, instrumented layers of some ionizing medium are interspersed with the

radiator material to sample the energy deposited as a function of shower depth.

The sum of this sampled energy is proportional to the total energy of the incident

particle. The choice of liquid argon and lead was made to provide the most cost

e�ective large area coverage with uniform energy response, good radiation resistance,

and �ne spatial segmentation.

The LAC is constructed in modules out of lead sheets and tiles as shown in
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Figure 2-14, bathed in a common volume of liquid argon. The barrel LAC section

and two endcap LAC sections are each housed in a separate cryostat containing a

combined 35,000 liters of liquid argon. The innermost module consists of 56 lead

plates, each 2 mm thick, spaced 2.75 mm apart to provide space for the liquid argon

to �ll the active layer. This electromagnetic (EM) section provides a total of 21

radiation lengths (21 �0) of material which will absorb 98% of the energy from a

50 GeV electron. High voltage applied between the lead sheets and tiles collects the

ionization from the liquid argon onto the lead tiles which are electrically connected

to form a single readout layer. In the EM section, the �rst 16 and remaining 40

planes are connected in this way to provide two longitudinal readout layers of 6 �0
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and 15 �0 respectively. The energy resolution of the EM section to either electrons

or photons is measured to be 15%=
p
E(GeV).

The outer module consists of 26 lead plates, each 6mm thick, spaced 2.75 mm

apart. This hadronic (HAD) section is evenly divided into two longitudinal readout

layers of 1 absorption length (1 �0) each, which when combined with the EM section

provides a total of 2.8 �0 of material. This calorimeter will contain around 90%

of the energy from a hadronic shower providing a hadronic energy resolution of

65%=
p
E(GeV).

The spatial resolution of the LAC is determined by the segmentation of the
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readout tiles, which are arranged in a roughly projective tower geometry. The 6 m

long barrel LAC is divided into 96 polar and 192 azimuthal towers in the EM section

with each EM tower subtending an angle of �� = 33 (mRad) in azimuth and ranging

from �� = 36 (mRad) in polar angle at the center of the barrel to �� = 21 (mRad)

at the end of the barrel to maintain a constant projective area. The HAD towers

match the projective geometry of the EM section, although more coarsely segmented

by a factor of two in both the polar and azimuthal dimensions. The barrel LAC

provides full coverage in production angle out to j cos �j < 0:84, while the endcap

LAC provides coverage in the forward region from 0:82 < j cos �j < 0:99. The endcap

LAC modules are wedge shaped with a tower size adjusted with polar angle to keep

the towers roughly square.

There are a total of 32,448 individual channels in the barrel LAC with an ad-

ditional 8,640 channels in the endcap. Each channel is digitized after a dual gain

charge sensitive preampli�er by a multiplexed 12 bit ADC to provide an e�ective

15 bit dynamic range. The digitized data, along with baseline information, is then

shipped by serial �ber link to one of the 32 FASTBUS based Calorimetry Data

Modules (CDMs) where the raw data is converted into a single measured energy per

channel. Energy sums are also calculated by detector region and readout layer to

be used in the trigger decision. The entire LAC can be read out and analyzed in

� 4 ms providing a nearly dead-time free acquisition system.

2.3.6 Warm Iron Calorimeter

Outside of the magnetic coil is the Warm Iron Calorimeter (WIC).[31] The massive

WIC structure provides muon tracking with 18 layers of Iarrochi tubes sandwiched

between the 1 inch plates of WIC steel, some amount of additional calorimetry

information, as well as a ux return path for the solenoidal magnetic �eld. The

Iarrochi tubes used are small 1 cm square plastic wire chambers operated in limited

streamer mode with a single wire running the length of the 6.8 m barrel modules.
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The wires themselves are not instrumented, but rather capacitive strips and pads

immediately outside the Iarrochi tubes detect the current streamers produced by

muons passing through the tubes. In the barrel, there are 14 layers of longitudinal

strips parallel to the beam axis, and 4 layers of transverse strips used to track muons

as they pass through the WIC steel. The endcap modules have a similar thickness

with half of the tubes running vertically and the other half running horizontally.

The WIC strips are a binary system, with each strip being discriminated to provide

a true or false hit record on every beam crossing.

The barrel chambers provide an overall e�ciency of 85% for detecting penetrat-

ing muons (above about 2.5 GeV) out to a production angle of j cos �j < 0:6. Due

to constraints imposed by strict earthquake standards at SLAC, there is something

of a hole in the WIC coverage before the endcap module becomes useful between

0:74 < j cos �j < 0:95. For this reason, muon identi�cation in this region must rely

upon LAC shower information only, with a corresponding loss in e�ciency.

The WIC pads were designed to be an extension of the calorimetry system,

providing information on the tails of hadronic showers which have leaked from the

LAC. This information has not been used in this analysis, however.

2.3.7 Luminosity Monitor

The SLD luminosity monitor (LUM) is a pair of compact, �nely segmented silicon-

tungsten calorimeters installed immediately around the beampipe on either side of

the SLD IP.[32] The LUM is used to identify low-angle Bhabha scattering between

23 mr and 68 mr in polar angle, which is dominated by the well understood elec-

tromagnetic process of t-channel photon exchange. The LUM is triggered and read

out at 120 Hz as part of the LAC data acquisition to provide a nearly dead-time

free count of the number of low-angle bhabha events which can then be used to esti-

mate the total luminosity delivered by the SLC. As the SLD data does not have the

statistics necessary to make competitive measurements of absolute cross sections,
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this luminosity information is used more as a diagnostic tool than as an input to

physics results.

2.3.8 Detector Simulation

Due to the complexity of modern particle physics detectors, it has become common

practice to generate simulated data, generally referred to as Monte Carlo, to aid in

the understanding of a variety of instrumental and systematic e�ects. The process

of generating Monte Carlo data is typically divided into three distinct phases.

The �rst step, known as the generation phase, involves simulating some real

physical process by generating momentum four vectors representing the produced

particles from a set of theoretical cross sections. A number of packages are available

to simulate the most common physics processes at the Z pole. The most heavily

used in this analysis is the KORALZ tau pair generator which simulates both the

production and decay of tau pairs using the TAUOLA decay simulation package.[33, 34]

Limitations of the KORALZ generator for simulating tau production in the presence

of the anomalous dipole couplings will be discussed in Chapter 5.

The second step, known as the simulation phase, involves tracking these pro-

duced particles through a model of the SLD detector and simulating the interactions

between these particles and the various detector components. Most of the work of

the simulation phase is performed by the widely used GEANT detector simulation

package.[35] For any simulated particle traversing an instrumented region of the

detector, simulated raw data is generated at the individual hit level to match as

closely as possible what would be observed in the real detector.

In the third step, known as the reconstruction phase, the simulated detector

hits are overlayed with real detector noise sampled from a set of random detector

triggers to produce simulated events. One random trigger is taken every 20 seconds

during normal SLD data logging and provides a snapshot of the typical beam-

related background present in the detector. These simulated events are then run
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through the full SLD reconstruction package so that a direct comparison can be

made between the reconstructed or `observed' quantities and the generated or `true'

values produced by the event generator.

As will be seen, the SLD Monte Carlo provides a crucial tool for understanding

the sensitivity and accuracy of this analysis.



Chapter 3
Compton Polarimetry

The single most important attribute of the SLC program is the ability to acceler-

ate polarized electrons. Consequently, the accurate measurement of this electron

beam polarization is of fundamental importance to almost every physics analysis

performed by the SLD collaboration. The Compton polarimeter system has evolved

considerably since its conception in 1985, and currently represents the most accu-

rate high energy electron polarimeter in the world. This chapter will describe how

this polarization measurement is performed, and the techniques used to continually

calibrate and monitor the polarimeter over the course of many months of SLD data

taking. This chapter explicitly describes the polarization analysis applied to the

1994-95 SLD run, and further details can be found in[36, 37]. The 1993 analysis has

been described previously.[38, 39]

3.1 Compton Scattering

The elastic scattering of photons from electrons is a well understood QED process

known as Compton scattering. The tree-level polarized di�erential Compton cross
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section can be written in the electron rest frame as [40]
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where r0 = 2:82 fm is the classical electron radius, k and k0 are the momenta

of the incoming and outgoing photons, �0 is the photon scattering angle, P is the

circular polarization of the incident photon, and Pe is the polarization of the incident

electron. The asymmetry function Ae(k;k
0) is then given by

Ae(k;k
0) =

�
1
k0
� 1

k

�
[k cos �0 + k0] � �

(k�k0)2
kk0

+ (1 + cos2 �0)
; (3.2)

where � is the spin vector of the electron.

In order to write this cross section in terms of lab frame variables, it is useful to

de�ne two kinematic variables (x; y) in terms of the incident and scattered electron

(E;E 0) and photon (K;K 0) energies as

y �
�
1 +

4KE

m2
e

��1
=
E 0

min

E
(3.3)

x �
"
1 + y

�
E�K
me

�2
#�1

=
K 0

K 0
max

; (3.4)

where �K is the photon emission angle in the lab frame. At the SLC, a K = 2:330 eV

photon is collided with an E = 45:64 GeV electron resulting in a kinematic limit

(x = 1) of

E 0
min = y E = (0:3804)(45:64 GeV) = 17:36 GeV (3.5)

K 0
max = (1� y) E = 28:28 GeV; (3.6)

which represents a complete backscatter (�0 = �) in the electron rest frame.
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After a change of variables to the lab frame, Equation 3.1 can be written as[41]

d2�

dxd�
=

d2�

dxd�

����
unpol

f1� P [Pz
eA

z
e(x) + P t

eA
t
e(x) cos�]g; (3.7)

where � is the azimuthal angle of the scattered photon with respect to the transverse

electron polarization vector, P is again the circular polarization of the incident

photon, and now the electron polarization has been decomposed into a longitudinal

component (Pz
e ) and a transverse component (P t

e). The unpolarized cross section

in the lab frame can be written in terms of the kinematic variables as

d2�

dxd�

����
unpol

= r20y

(
x2(1� y)2

1� x(1� y)
+ 1 +

�
1� x(1 + y)

1� x(1� y)

�2)
; (3.8)

while the asymmetry functions are given by

Az
e(x) = r20y[1� x(1 + y)]

�
1� 1

[1� x(1� y)]2

�
� d2�

dxd�

����
�1

unpol

(3.9)

At
e(x) = r20xy(1� y)

p
4xy(1� x)

1� x(1� y)
� d2�

dxd�

����
�1

unpol

: (3.10)

These functions are shown in terms of the kinematic variable x in Figure 3-1.

The �rst order radiative corrections to polarized Compton scattering have been

calculated at a variety of collision energies.[42] These results have been extrapolated

to the SLC beam energy and the inclusion of the higher order terms are found to

modify the asymmetry function by less than 0:1%.[43]

The longitudinal Compton asymmetry function Az
e has a number of nice features

from an experimental point of view. The kinematic limit at x = 1 provides a sharp

Compton edge beyond which no scattered electrons will be produced. This proves to

be an invaluable calibration tool, as the CKV detector position can be measured to

a precision of � 100�m by measuring the signal drop in the outer channels while the

detector is moved transversely from its nominal position. Calibrating the detector
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Figure 3-1: The unpolarized cross section and asymmetry functions in polarized Comp-
ton scattering are shown as a function of the kinematic variable x.

with this table scan technique will be described in more detail in Section 3.5. Another

nice feature comes from the relatively large asymmetry seen in Compton scattering.

The asymmetry at the Compton kinematic endpoint is given by

Az
e(1) =

1� y2

1 + y2
(3.11)

which gives an endpoint asymmetry of 74:7% at the SLC. This is much larger than

the � 5% asymmetry typically seen in polarized M�ller scattering for instance, and

provides a statistically precise measurement in a relatively short amount of time.

The Compton polarimeter is designed to measure the longitudinal polarization

of the electron beam only. The CKV detector has a uniform acceptance in the

azimuthal scattering angle �, and all transverse polarization information is lost.

A device that could measure the transverse electron polarization has been built
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and is currently being commissioned. It consists of a �nely segmented Quartz �ber

calorimeter sitting in the neutral beamline to detect the backscattered photons from

the Compton process. A transversely polarized electron beam would produce a

shift of 25 microns in the centroid of the scattered photons as the incident laser

polarization is reversed. Measuring this small displacement in the high background

environment of the SLC �nal focus is challenging at best, and work on commissioning

this detector continues.

3.2 Polarization Calculation

The Compton asymmetry in each CKV detector channel Ai
C is de�ned to be the

asymmetry in the scattering cross section when the electrons and photons collide

with their polarization vectors aligned forming a Jz = 3=2 spin state, and colli-

sions with their polarization vectors opposed forming a Jz = 1=2 spin state. This

asymmetry can be written as

Ai
C �

�i(Jz = 3=2)� �i(Jz = 1=2)

�i(Jz = 3=2) + �i(Jz = 1=2)

= jPejjPjai (3.12)

where it is understood that Pe denotes the longitudinal electron polarization, and

ai is the analyzing power of each CKV channel which is given by

ai =

R
d�
dx

��
unpol

Az
e(x)Ri(x)dxR

d�
dx

��
unpol

Ri(x)dx
: (3.13)

This analyzing power ai is the cross section weighted asymmetry integrated across

the response functionRi(x) for the particular channel, normalized to the total chan-

nel response.

From Equation 3.12, the measurement of the electron polarization requires three
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Figure 3-2: Raw data from the CKV channel 7 is shown for the Jz = 3=2 and Jz = 1=2
helicity con�gurations. The common laser o� background is also shown.
Channel 7 contains the kinematic endpoint and thus displays the largest
raw asymmetry.

components:

� The raw asymmetry Ai
C measured in a particular CKV detector channel;

� The channel response function Ri(x), determined by a calibration procedure;

� The circular polarization P of the incident laser beam.

The remainder of this chapter will describe in detail the process of determining

these three quantities as well as the systematic uncertainty associated with each.

Since the Compton polarimeter can make a polarization measurement to a statistical

precision of �Pe=Pe � 1% in about three minutes, the uncertainty in the electron

beam polarization measurement is entirely dominated by these systematic errors.

3.3 Experimental Asymmetry

Experimentally, the Compton asymmetry in channel i is formed from the mean

channel responses hNi measured separately for the four possible electron-photon

helicity combinations. The two spin aligned con�gurations are combined to give the
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mean channel response in the Jz = 3=2 state hNii3=2, while the two spin opposed

con�gurations are similarly combined to provide hNii1=2. As shown in Figure 3-1,

the Jz = 3=2 cross section is larger at the kinematic endpoint than the Jz = 1=2

cross section, resulting in a positive asymmetry. Since the Compton system acquires

data at the SLC beam rate of 120 Hz, while the Compton laser only �res at 17 Hz,

the mean channel response is also measured in the intervening six beam crossings

when the laser does not �re. This laser o� channel response hNiio� measures the

sometimes substantial background present in each CKV channel due to the passage

of the outgoing SLC electron bunch. The resulting measured asymmetry

Ai
m =

hNii3=2 � hNii1=2
hNii3=2 + hNii1=2 � 2hNiio�

(3.14)

is then equal to the compton asymmetry Ai
C aside from small corrections which are

applied to account for electronics noise and detector linearity issues as discussed in

Section 3.7.

3.4 Polarimeter Operations

Not every beam pulse observed by the Compton system goes into calculating the

mean channel responses used in Equation 3.14, but rather an attempt is made to

remove any beam crossings which would clearly not produce Z bosons at the SLD.

This includes the obvious case of when the SLC is not delivering beam at all, but

also includes various garbage pulses which are usually far o� the Z pole energy and

could bias the beam polarization measurement. The �ve online vetoes which are

applied to the data have the following selection criteria:

� Electron Toroid: The current measured in the inbound North Final Focus

beam toroid must be above a threshold selected to ensure that nearly the full

beam current is being delivered;
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� Positron Toroid: The equivalent current measured in the South Final Focus

beam toroid must also be above a threshold;

� CKV Channel 9: The signal seen in this channel, which is well beyond the

Compton kinematic endpoint, must be below 1000 ADC counts to reject pulses

saturated with beam noise;

� Electron Dumper: The electron dumper module must not have �red, signaling

SLC's intention to dump the beams at the end of the linac;

� Beam Deection Scan: The �nal focus beam optics must be set for collisions

at the SLD, rather than scanning the beams across each other.

Only those beam crossings which pass these �ve requirements are used in the po-

larization measurement.

To reduce the amount of data written to tape by the polarimeter, as well as

to aid the o�ine calculation of the observed Compton asymmetry, the channel re-

sponse sums, squared channel response sums, and total number of non-vetoed beam

crossings are accumulated separately for each electron-photon helicity state over the

course of a polarimeter run. This data is then written to tape as a summary data

bank, along with a variety of monitoring information reecting the current operating

conditions of the polarimeter, and it is from this data that the measured asymme-

tries are calculated o�ine. In order to allow for a re-processing of the data o�ine,

the raw data from all of the laser on beam crossings and one of the intervening six

laser o� pulses are also written to tape as a raw data bank.

Each polarimeter run nominally covers 20,000 SLC beam crossings, although a

run will be stopped early if the electron beam disappears for an extended period of

time. This run length was chosen so that the statistical error of any single run is

comparable to the overall systematic accuracy to which the system can be calibrated.

Each polarimeter run is then treated as an independent measurement of the electron

beam polarization at that particular moment in time.
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In order to achieve a systematically precise measurement, approximately two

out of every three polarimeter runs takes data with some attribute of the system

set outside of its nominal operating range. One example is taking data with the

CKV detector moved transversely from its normal operating position to calibrate

the detector location. Another example is varying the Compton laser Pockels cell

voltages which allows a measurement of the laser polarization to be performed.

These calibration runs are automatically interspersed with the nominal polarization

measurements by a list-based scheduling algorithm in the Compton data acquisition

software. Each calibration cycle is completed in about three hours of data taking,

providing many independent calibration measurements each day with only minimal

manual intervention. The data from these o�-nominal calibration runs are removed

in the o�ine polarimeter analysis, and are not used to directly measure the electron

polarization. As a result, a good beam polarization measurement is recorded by the

system approximately every 10 minutes, which is more than adequate to track the

slow drifts in the electron beam polarization observed at the SLC. Primarily due to

changes in the electron beam orbit through the North SLC arc, these drifts tend to

have a time scale on the order of hours rather than minutes.

3.5 Cherenkov Detector Calibration

As shown in Equation 3.13, the analyzing power of a particular CKV detector chan-

nel depends upon three functions. The unpolarized cross section d�
dx

��
unpol

and the

Compton asymmetry function Az
e(x) are both well known theoretical functions

listed in Section 3.1. The channel response function Ri(x), however, must be deter-

mined for each CKV channel in order to calibrate the detector. The acceptance of

a given detector channel as a function of scattered energy is primarily a function of

two free parameters:
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Figure 3-3: The three functions needed to calculate the analyzing powers are shown
as a function of transverse distance from the neutral beam line. A scale
representing the nine CKV detector channels is also shown.

� The energy to position mapping determined by the combination of dipole and

quadrupole magnetic �elds in the analyzing spectrometer magnets;

� The location of the detector with respect to the neutral (undeected) beam

axis.

The magnetic quadrupole �eld, not a tremendously advantageous feature in spec-

trometer design, was added before the beginning of the 1994-95 SLD run as part

of an SLC Final Focus upgrade. Although this �eld makes the functional form of

the energy to position mapping much more complex with respect to a purely dipole

�eld, it does not in any way change the overall function of the spectrometer in the

polarization analysis.

To �rst order, the projective CKV detector channels provide a uniform accep-

tance over the transverse width of each detector channel. This idealized detector
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response must be modi�ed, however, to account for the real life smearing of the

detector response which is exacerbated by the presence of a 1.2 �0 lead preradiator

immediately in front of the detector. The true detector response function is esti-

mated with a Monte Carlo simulation of high energy electrons incident on the CKV

detector. Based on the EGS4 electromagnetic shower simulation package,[44] this

model includes a complete simulation of the electron transport into the detector, a

detailed description of the CKV detector geometry, as well as a full simulation of

the Cherenkov light transport through the detector to the photomultiplier tubes. A

description of this detector simulation can be found in Appendix B. The inclusion

of the complete detector response functions modi�es the derived analyzing powers

by only � 1%, although this is signi�cant when compared to the few tenths of a

percent accuracy to which the analyzing powers are calibrated.

Table Scan

The CKV detector is accurately calibrated at one point in time by taking a special

set of polarimeter runs called a table scan. A typical table scan consists of con-

secutive polarimeter runs taken while stepping the detector position transversely

from its nominal position with respect to the neutral beamline. Data is recorded

at 16 scan points with detector translations spanning the range from 0 to 2.5 cm.

With 7 channels observing the backscattered electrons at 16 positions, there are 112

independent measurements of both the total cross section and the Compton asym-

metry function at various spatial locations. This combined data set is �t using input

from the EGS4-generated response functions to simultaneously determine 1 relative

detector position, 1 free spectrometer parameter, 1 polarization product (PeP),

6 relative channel gains, and 16 overall luminosity normalizations. The detector

position measured is the relative position of the kinematic endpoint with respect

to the CKV channel walls, while the one free spectrometer parameter used is the

relative transverse location of the quadrupole element in the spectrometer bending
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�eld. Since a quadrupole �eld increases linearly with transverse distance, shifting

this �eld has the e�ect of changing the total dipole strength seen by the scattered

electrons.

Although all of the data is used in the table scan �t, the detector position is

primarily determined by the drop in total signal seen in CKV channels 6 and 7 as

the kinematic endpoint sweeps through, while the spectrometer strength is primarily

determined from the shape of the asymmetry observed across all of the CKV detector

channels. Typical data from a table scan are shown in Figure 3-4. Once the detector

position and spectrometer strengths are known, the integral in Equation 3.13 can

be performed to generate a set of calibrated analyzing powers for the detector.

Table scans were performed approximately twice a week during the 1994-95 SLD

run, with each scan determining the relative detector position to � 100�m, which

corresponds to a statistical determination of the analyzing power of ' 0:1%. The

typical �2=d :o:f : for each table scan �t is between 1.5 and 2.0, indicating that the

systematic uncertainties are comparable to the statistical precision.

Analyzing Power Tracking

While each table scan provides a precise analyzing power determination at one point

in time, some e�ort must be made to monitor this calibration during the interval

between scans. The most likely cause of a calibration shift is a real displacement

of the outgoing electron bunch trajectory with respect to the CKV detector and

the Q6.5 axis. The presence of this quadrupole �eld ampli�es any displacement of

the on-energy beam, so that a 100 �m shift in the outgoing electron trajectory will

result in a 310 �m shift in the kinematic endpoint. As the relative analyzing power

will change by roughly 1%=mm in the inner channels (1-6), and around 0:5%=mm

in channel 7 (which contains the kinematic endpoint), even very small beam motion

can have an observable e�ect on the polarization measurement.

To track the CKV detector calibration over time, two asymmetry ratios A4
C=A

7
C
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Figure 3-4: Results from a single table scan �t are shown. Figure 3-4a shows the ob-
served asymmetry in each detector channel at the nominal table position,
while Figure 3-4b shows the Channel 6 response as a function of table po-
sition. Also plotted are the residuals from the table scan �t results, where
the errors are statistical only. This is only a small amount of the total
data available in this table scan as there are asymmetry curves from 15
table positions and channel responses from 7 CKV channels which are all
�t simultaneously.
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and A5
C=A

7
C are considered. Because the Compton asymmetry function has a non-

zero curvature, especially near the kinematic endpoint, each of these two ratios will

change as the Compton spectrum is shifted with respect to the detector channels

providing two redundant monitors of the detector calibration. The dependence of

the analyzing powers on these asymmetry ratios can be empirically measured by con-

sidering data taken close in time (within 3 hours) of a table scan, and the observed

dependence agrees well with the theoretical expectation predicted by the EGS4 de-

tector model. The relative change in the asymmetry ratio observed is roughly a

factor of 2 larger than the relative change in the analyzing power, providing ample

statistical power to track the detector calibration over time. Using this technique,

the analyzing powers for channels 5 through 7 are interpolated between the table

scan points to provide a continuous time-dependent detector calibration for the en-

tire 1994-95 SLD run. The di�erence in the interpolated analyzing powers found

using the two asymmetry ratios is less than 0.1%.

Calibration Systematics

The primary systematic uncertainty in the calibration process arises from the ac-

curacy of the EGS4 generated response functions. Without direct test beam data,

the best way to test the accuracy of these response functions is through the table

scans themselves. A number of ad-hoc parameterized response functions were used

in the table scan �ts, such that the response function was actually �t to the data

itself. In addition, �ts were performed to the EGS4 generated response functions

with an additional scaling factor applied to the tails. The goodness of �t achieved

by modifying the response functions in this way was never signi�cantly improved,

and the variation of 0.20% observed in the derived channel 7 analyzing power is

taken as an estimate of the systematic uncertainty.

The radiative corrections to the tree level Compton scattering cross section have

not been applied in this analysis. The expected relative change in the asymmetry
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function is less than 0.1% near the endpoint, and is being assumed as a systematic

error.

The question of whether low asymmetry signal is being rescattered into the outer

detector channels in a manner that is not properly modeled can be addressed with

the observed channel 8 asymmetry. Since the kinematic endpoint lies in channel 7,

the signal observed in channel 8 comes entirely from the tails of the resolution

function, and amounts to roughly 7% of that seen in its inner neighbor. Assuming

that any additional low asymmetry signal is roughly uniform between these two outer

channels, the asymmetry measured in channel 8 is then 14 times more sensitive to

this possible contamination than channel 7. For a ten day period in January 1995,

a preradiator for a neutral beamline counter got stuck in the inserted position,

and the channel 8 asymmetry was observed to drop by over 5%. Presumably, the

backscattered Compton photons were showering into the CKV detector at high
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Table 3.1: Systematic uncertainties a�ecting the CKV channel 7 calibration

Systematic Uncertainty �P 7
e =P

7
e

Response Function 0.20%
Analyzing Power Tracking 0.10%
Radiative Corrections 0.10%

BSM Preradiator Correction 0.09%
Residual Contamination 0.12%

Total Uncertainty 0.29%

angle, although the detector simulation was never able to adequately model this

e�ect. The beam polarization measurement was corrected by nearly 1% during this

period to account for the observed contamination, and a systematic uncertainty

equal to 100% of this correction has been assumed. Since less than one tenth of the

total 1994-95 SLD data was collected in this period, the overall error is less than

0.1%.

Table 3.1 lists the systematic uncertainties associated with the detector cali-

bration for the 1994-95 run. While each detector channel makes an independent

measurement of the electron beam polarization, the calibration uncertainties grow

for channels away from the well determined kinematic endpoint. For this reason,

only CKV channel 7 is used exclusively to measure the electron beam polarization,

while the relative agreement of 0.3% between channels 6 and 7 provides a nice cross

check of the overall calibration procedure. Other cross checks, such as the asymme-

tries observed when the lead preradiator is removed, further verify this calibration

accuracy.

3.6 Laser Polarization

As the asymmetry seen in the CKV detector is the product of the electron and

photon polarizations, an accurate measurement of the Compton laser polarization

must be performed in order to determine the electron beam polarization. The
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Figure 3-7: The linear polarization states of the Compton laser beam are shown at
various points along the laser transport line. Phase shifts added by the
CP and PS Pockels cells cancel out the phase shifts in the �rst part of the
transport line, resulting in circular laser polarization at the Compton IP.

circular polarization of a laser can be measured in a straightforward manner on

an optics bench using a quarter-wave plate and a calcite prism to separate the two

orthogonal circular polarization states of the incident beam. The relative intensities

of the two beams separated by the prism, measured with a pair of photodiodes or

other suitable optical detectors, then gives a direct measurement of the left and right

handed components present in the original beam. In the Compton polarimeter, the

laser polarization is measured in this fashion both before and after the collision

process. The laser polarization of interest, however, is at the Compton IP inside

the SLC vacuum enclosure where a direct measurement of this type is impossible.

Due to phase shifts induced by the laser transport line, the laser beam polarization

at the CIP can vary by up to a few percent compared to the polarization directly

measurable at the Compton laser bench and the analysis box.1

A block diagram of the Compton laser system is shown in Figure 3-7. The linear

polarization state produced by the frequency doubled Nd:YaG laser is converted into

circular polarization by means of a Pockels cell. This electro-optic crystal produces

a phase shift between the two linear polarization components de�ned by the optical

1 The phase compensated mirrors in the laser transport line keep this di�erence to only a few
tenths of a percent between production and collision. In exiting the SLC vacuum, however, the
beam must pass through a large window stressed by the pressure di�erential. This is the only
element between the CIP and the analysis box, although it causes a polarization di�erence of
over a percent.
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axis of the device. The magnitude of the phase shift is determined by the applied

Pockels cell drive voltage, and in this case a large voltage (� 1700V) is applied

to create an e�ective quarter-wave plate. As in the polarized electron source, the

sign of the applied voltage determines the helicity of the circular polarization state

produced. A second Pockels cell, rotated by 45� with respect to the �rst, is operated

at a voltage near zero to provide an additional phase shift so that light with an

arbitrary elliptical polarization can be generated. If the phase shifts produced by

the Pockels cells are chosen to compensate for the net phase shift induced by the

�rst laser transport line, the photons will arrive completely circularly polarized at

the Compton IP. The two Pockels cells are denoted the CP cell and the PS cell

respectively.

Pockels Cell Scans

Since the asymmetry seen in the CKV detector is proportional to the Compton laser

polarization, and lasers can be routinely polarized to nearly 100%, the change in the

observed CKV asymmetry as a function of the Pockels cell voltage settings can be

used to measure the deviation from an optimally polarized laser beam at the CIP.

This technique is implemented through a procedure known as a Pockels cell scan.

First, the CP cell voltage is set to produce optimal circular polarization on the

laser bench where it can be measured with a prism and photodiodes. This voltage

is typically near �1700 volts, while the PS cell voltage is held near zero. Compton

polarimeter runs are then taken at di�erent voltage settings for the CP and PS cells.

To �rst order, the observed CKV asymmetry will have a sinusoidal dependence on

the Pockels cell voltages, with the peak indicating the optimal operating point.

These scans are performed automatically as part of the list driven scanning se-

quence as described in Section 3.4, and an example is shown in Figure 3-8. This

provides two important pieces of information. First, the nominal operating voltages

for the Pockels cells can be monitored and adjusted to account for slow drifts in the
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Figure 3-8: Data from a CP Pockels cell scan is shown. The observed CKV channel 7
asymmetry is shown as a function of CP voltage setting. The nominal CP
cell voltage in this case was 1700 volts, while the optimal setting is measured
to be 1690 � 50 volts.

Compton laser system. These adjustments to the nominal setpoints typically do not

have to be performed more often than a few times a month, and this constant mon-

itoring ensures that the Compton laser is always operating very close to its optimal

polarization at the Compton IP. Second, every scan makes a direct measurement

of what laser polarization is being generated by the nominal operating voltages by

measuring the di�erence between the nominal and optimal settings. Diurnal tem-

perature variations in the laser and the transport line can cause changes on the

order of a few tenths of a percent which must be measured. A single Pockels cell

scan can measure the optimal operating voltages to a statistical precision of � 50

volts which measures the di�erence between the nominal and optimal laser polar-

ization to better than 0:1% at the peak. As this error grows quadratically as the

nominal operating voltage is moved o� peak, an added bene�t of keeping the laser

polarization optimized is a better measurement of its value.



3.6 Laser Polarization 93

Unpolarized Fraction

While the Pockels cell scan technique can make a relative polarization measurement

with respect to the maximum achievable laser polarization, an absolute measurement

is not being performed. In order to determine the absolute polarization of the

laser beam at the Compton IP, some estimate must be made of the unpolarized

fraction present in the laser beam at that point. The initial linear polarization

state before the CP cell is produced with a precision linear polarizer. At this point

the unpolarized fraction is less than 1 � 10�4. The unpolarized fraction present

after the Pockels cells can be directly observed on the laser bench by measuring the

extinction of the circularly polarized beam by the helicity selecting waveplate-prism

combination. In practice, the left and right photodiode signals are measured while

scanning the Pockels cell voltages across their entire operating range. No evidence for

any unpolarized component is seen, and the residuals from zero near the extinction

point provide a measurement accuracy of better than 0.1%. To limit the possibility

that the laser beam becomes unpolarized on its way through the transport line, an

identical measurement is made at the same time with photodiodes in the analysis

box after the Compton IP. These photodiodes also measure complete extinction,

although with somewhat worse accuracy due to the noisy environment in the SLC

tunnel where the analysis box is located.

These extinction scans only take ten minutes to complete, and are performed

every few hours immediately after a Pockels cell scan as a part of the normal Comp-

ton polarimeter running. The systematic uncertainty associated with measuring the

unpolarized fraction is estimated to be 0:2% over the course of the 1994-95 SLD run

from the observed residuals of these extinction scans on the analysis box photodi-

odes. This turns out to be the dominant systematic uncertainty in the entire laser

polarization measurement, as the Pockels cell scan method has been shown to be an

unbiased measurement to better than its inherent statistical precision of 0:1%. The

individual Pockels cell scans are then used as a time dependent measurement of the
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laser beam polarization over the course of the entire 1994-95 running period. The

luminosity weighted laser polarization in 1994-95 was found to be (99:63� 0:20)%

where the uncertainty is entirely systematic. A more complete treatment of the

laser polarization measurement can be found in[39, 37].

3.7 Asymmetry Corrections

There are a number of small, instrumentation related corrections which must be

applied to the raw asymmetry measured by the Compton polarimeter. In addition,

while knowledge of the overall gain is not important in making an asymmetry mea-

surement, the extent to which the CKV detector response is linear directly limits

the accuracy of the overall measurement.

The CKV Cherenkov signal is directly measured with highly linear Hammamatsu

R1398 photomultiplier tubes. The signals from these tubes are transported out of

the SLC �nal focus on 60 meter lengths of RG-214 signal cables which are terminated

into PE-8304 decoupling transformers to suppress common-mode noise and ground

loops. The signals are then ampli�ed by LeCroy 612A �xed-gain (�10) current

ampli�ers which directly drive the Lecroy 2249W AC coupled ADCs. The ampli�ers

and isolation transformers were added before the 1994-95 SLD run in an attempt to

better match the linear output of the photomultiplier tubes to the dynamic range

of the Lecroy ADCs. While all of this hardware is, in principle, highly linear across

its normal operating range, it is important to measure and directly test the entire

readout system under normal operating conditions.

Laser Pickup

The �rst correction which must be applied results from electronic noise generated in

the readout electronics by the fast, high-voltage pulse used to Q-switch the Compton

YaG laser. The power supply driving the Compton laser is not perfectly isolated
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from the rest of the system, and as a result an observable shift of the ADC pedestals

can be seen when the laser �res. Since the laser-o� machine pulses are used to

subtract the beam related background present in the CKV channels, this laser pickup

of a few tenths of an ADC count directly biases the asymmetry measurement.

It is a fact of life at the SLC that not every machine pulse brings beam all the

way through the machine to the SLD. Aside from the periods of time when the beam

is actually shut o�, even when SLC is nominally delivering luminosity running there

are always a large number of machine cycles in which the electrons are absent. These

SLC beam dropouts provide the ability to directly measure and monitor the laser

pickup in every CKV detector channel during the course of normal operations. The

observed di�erence in ADC pedestals for the laser-on and laser-o� dropout data is

used o�ine as a time-dependent correction to the measured asymmetry. The laser

pickup is reasonably stable in Channel 7 with a value around -0.25 ADC counts

over the course of the entire 1994-95 run. The associated systematic uncertainty on

asymmetry measurement due to this correction is much less than 0:1%.

Electronic Cross Talk

Other sources of electronics noise can come from cross talk between the various CKV

detector channels, either in the ampli�er or in the ADC directly. To check for this

sort of noise the following two tests were performed.

In the �rst test, the voltage on one CKV photomultiplier tube was turned up

to provide a large signal while the remaining channels were turned o�. The cross

talk from this channel into the other eight was then measured by comparing the

pedestals observed with and without signal present, after correcting for laser pickup.

This procedure was repeated for all nine CKV detector channels to map out the `one

to many' cross talk characteristics. No observable e�ect was measured at the level

of a few tenths of an ADC count.

In the second test, the `many to one' cross talk characteristics were tested by
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consecutively turning o� only one CKV photomultiplier tube and measuring the

signal leakage into this channel from the other eight. Again, no clear evidence

for any channel cross talk is seen beyond the 0.2 - 0.3 ADC count level, which

corresponds to a systematic uncertainty on the measured CKV asymmetry of 0:2%.

Detector Linearity

The Compton asymmetry formed in Equation 3.14 implicitly assumes that the ob-

served detector response has a linear dependence on the actual input signal. Any

deviation from a linear response will directly e�ect the measured asymmetry, and it

is important to limit or correct any non-linearities in the system to a few tenths of

a percent. Unfortunately, this is always easier said than done.

The electronics component of the readout chain can be tested to high precision

through the use of an electronics linearity tester. For this test, a Phillips 7120

Precision Charge/Time Generator was inserted into the Compton data acquisition

to provide a controlled reference pulse with the approximate rise time and pulse

width of the actual CKV PMT signal. In special tests running at 120 Hz, this

device was used to map out the linearity response of each of the electronics channels

to a fraction of an ADC count.[45] All of the electronics channels display some

deviation from linear behavior especially at the low end, an example of which is

shown in Figure 3-9. The high end linearity is not really an issue as the CKV signal

plus background levels are typically below 500 ADC counts. To verify that this is a

real problem with the electronics, and not a problem with the linearity tester itself,

a number of additional tests were made using a variety of signal attenuators and

di�erent hardware con�gurations.

It is not enough to simply measure these linearity curves, as they do not directly

indicate what the net e�ect might be on the measured asymmetry. Correction

functions based on these measured electronic linearity responses are applied directly

to a uniform sampling of the raw polarimeter data, and the di�erence between the
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Figure 3-9: The deviation from a linear response for the CKV channel 6 readout elec-
tronics is shown as a function of ADC response. The solid curve is the
result of a polynomial �t. Some deviation is seen at the low end near the
80 ADC count pedestal, along with the expected ADC saturation at large
pulse heights.

corrected and uncorrected asymmetries were calculated for channels 6 and 7. Since

a full reprocessing of the raw data is a somewhat painful (although not impossible)

task, the observed di�erence in this sampling of the raw data has been applied

as a global correction the raw asymmetries calculated from the summary banks.

The corrections applied are listed in Table 3.2, and were not observed to have any

signi�cant time dependent structure over the course of the 1994-95 run.

While this technique provides a nice test of the electronics themselves, it does

not test the entire (PMT + electronics) readout system. A scheme is currently

under development to test the full system to high precision using a UV laser to

inject reference pulses directly into the CKV detector, however the commissioning

of this calibration system is still in progress. In the absence of a direct comprehen-

sive test, two data based methods have been developed to limit the size of possible
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non-linearities in the system. Both of these methods involve taking data automati-

cally using the list-based scanning technique employed successfully to measure the

Compton laser polarization.

The �rst test, a laser power scan, involves taking consecutive polarimeter runs

while adjusting the laser power transmitted to the Compton IP. As the observed

signal size is directly proportional to the laser spot intensity, the measured Compton

asymmetry can then be compared at di�erent signal sizes to test the linearity of the

entire system. The main problem with this technique is that while the signal size

can be reduced, the beam-related background response remains constant, limiting

the ability of this technique to probe the lowest end of the ADC dynamic range.

One can argue that this is somewhat irrelevant since it is the di�erential linearity

between the background and the two signal states which really matters, although

this is only approximately true. The data for channel 6 is shown in Figure 3-10,

with no apparent change in the measured asymmetry beyond � 0:3% across the

accessible dynamic range.

The second test, a PMT voltage scan, involves taking consecutive polarimeter

runs while adjusting the applied photomultiplier tube voltage. Normally, changing

the voltage applied to a PMT merely changes the gain of the tube. The PMT bases

used in the Cherenkov detector, however, are constructed with a two stage design

whereby the front end voltage can be varied while the voltage across the last few

dynodes is held �xed. In the 1993 SLD run, before the �10 ampli�er was installed,
the largest linearity problem in the system was with the high end saturation of

the photomultiplier tubes caused by space-charge e�ects in these last few dynodes.

In this case, changing the front end voltage provides a direct measurement of this

saturation. The addition of the �10 ampli�er for the 1994-95 SLD run eliminated

this source of non-linearity, however, and the applicability of the voltage scan data

for exploring the remaining linearity problems at low pulse height is not clear.

For each voltage scan run a ratio is formed between the asymmetry measured in
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Figure 3-10: The normalized channel 6 asymmetry is shown as a function of the pedestal
subtracted J=3/2 ADC response for data taken during a laser power scan.
The measured asymmetry observed at various levels of incident laser power
are normalized to the asymmetry measured at nominal power close in time
to the power scan data to take out real changes in the beam polarization.

the channel of interest and a reference channel, typically channel 4, the voltage of

which is held �xed. The data, shown if Figure 3-11, shows reasonable behavior at

high pulse height, but exhibits a large deviation of a few percent at lower response.

To assess the impact of this possible non-linearity over the course of the run, an ad-

hoc response function was generated to e�ectively atten out the observed voltage

scan asymmetry ratios. These ad-hoc functions are then applied to the sampling of

raw data in the same way as the electronic corrections to calculate the net e�ect

on the measured raw asymmetry. The results, shown in Table 3.2, show a large

-0.5% e�ect on the asymmetry measured by CKV Channel 7. The RMS width of

the asymmetry correction associated with the ad-hoc linearity correction is 0:2% in

Channel 7.

With a -0.22% correction already being applied to account for the precisely
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Figure 3-11: The normalized asymmetry measured in CKV channel 6 during a voltage
scan is shown as a function of the pedestal subtracted J=3/2 ADC re-
sponse. During a voltage scan, the front end PMT voltage in a particular
channel is varied while the channel 4 voltage is held �xed to normalize
out any real polarization drifts. Excursions of up to 4.5% are seen at
low pulse heights, although all of the data used in the beam polarization
measurement are taken above 100 ADC counts.

measured electronics-only linearity deviations, a systematic uncertainty of 0.5% is

conservatively estimated to bound the maximum possible size of any additional

linearity problems in the system. At the present time, the low pulse height voltage

scan anomaly is believed to be a relic of the low PMT voltages, and not a real

linearity problem at low pulse height. Without any data to prove otherwise, however,

the systematic uncertainty associated with the detector linearity can not be reduced

below the 0.5% level.

Table 3.2: CKV Linearity Test Results

Correction Applied Pe (Ch. 6) Pe (Ch. 7)
None 0.77325 0.76860

Electronic Only 0.77232 (-0.12%) 0.76692 (-0.22%)
Volt Scan ad-hoc 0.77279 (-0.06%) 0.76481 (-0.49%)
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3.8 Compton - SLD Di�erences

The Compton polarimeter system sits 30 meters downstream from the SLC interac-

tion point, and it is important to determine how closely the longitudinal polarization

measured at the Compton polarimeter corresponds to the polarization of the elec-

trons colliding at the SLD. While there are no dipole magnetic �elds between the

SLC interaction point and the Compton IP to precess the polarization vector away

from a longitudinal orientation, there are a number of small e�ects which are im-

portant at the level of a few tenths of a percent accuracy.

Final Focus Spin Precession

The electron motion through the various quadrupole and sextupole magnets between

the SLC IP and the Compton IP has been studied to determine the size of any

possible net spin precession.[46, 47]

The single largest spin precession e�ect in the SLC Final Focus involves the

strong focusing provided by the pair of superconducting quadrupole triplets imme-

diately on either side of the SLC IP. The angular beam divergence at collision is

approximately 350� 250�Rad which, when combined with the factor of (g � 2)=2

leads to a spin precession of roughly 36 � 26 mRad. A direct spin rotation of 30

mRad will reduce the longitudinal spin polarization of the 45.6 GeV electron beam

by only 0:05%. To determine the actual size of this e�ect, the spin precession must

be integrated across a realistic Gaussian beam divergence pro�le to arrive at the

net depolarization factor. In this calculation, the non-zero beam divergence at the

Compton IP is taken into account, while the possibility of pulse to pulse jitter in

the incident electron position determines the systematic uncertainty. Since the elec-

tron transport is operationally tuned to optimize the polarization measured at the

Compton polarimeter, the longitudinal polarization present at the SLC IP is less
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than the measured value by a factor of

PSLC
e

PCIP
e

� 1 ' �(0:112� 0:012)%; (3.15)

which is directly applied as a correction to the electron polarization measurement.

The possible spin precession resulting from the outgoing electron beam traveling

o� center through the remaining quadrupole lattice elements due to beam steering

e�ects is found to be negligible.

Depolarization E�ects

The possible depolarization of the electron beam by the collision process itself has

been calculated in terms of the observed beam disruption.[48] Using the typical

disruption observed in the collision process, the predicted electron depolarization is

less than 0:1%. This depolarization was directly measured towards the end of the

1995 run with a special test. For a four hour period, the beams were taken out of

collision every 20 seconds by dumping the positron beam at the end of the linac for

a duration of 10 seconds. The measured polarization di�erence is consistent with

zero, and has been used to set a depolarization limit of

PSLC
e

PCIP
e

� 1 < 0:08% (95% C:L:): (3.16)

Chromaticity E�ects

While the Compton polarimeter measures the polarization of the entire electron

bunch, chromatic aberrations in the SLC �nal focus optics reduce the luminosity

generated from the o�-energy beam tails. Because of the energy-dependent spin

precession experienced by the electrons in the SLC North Arc, these o�-energy

beam tails have a systematically lower net longitudinal polarization than the beam

core. This e�ect, known as the chromaticity e�ect, was the single largest correction
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Figure 3-12: The three functions contributing to the chromaticity e�ect are shown as
a function of relative energy. The �rst �gure is an example of a measure-
ment of the polarization dependence on energy. The second �gure, on a
logarithmic scale, is wire scan data measuring the energy pro�le of the
electron beam. The third �gure shows the most conservative model-based
luminosity prediction resulting from the �nal focus optics design. While
the polarization producing Z bosons at the SLC IP can be found by in-
tegrating the product of all three �gures, the Compton polarimeter has a
much larger energy acceptance and the measured polarization is essentially
the product of the �rst two �gures only.

applied to the 1993 beam polarization measurement and contributed a 1:1% relative

systematic uncertainty to the knowledge of the beam polarization at the SLC IP in

that year.

For the 1994-95 SLD run, a number of measures were taken to control the chro-

maticity e�ect both in terms of reducing the overall size of the e�ect through ma-

chine operations, as well as better monitoring procedures so that the size of the e�ect

could be directly measured. The three components needed to produce a polarization

di�erence are shown in Figure 3-12. Improving any of the three distributions will

reduce the size of the chromaticity e�ect, either attening the polarization depen-

dence on energy, reducing the energy tails in the electron bunch, or improving the

energy acceptance of the SLC Final Focus.

A signi�cant low energy tail on the electron beam, present in the 1993 run,

was eliminated in the 1994-95 run by adjusting the bunch compression provided

at the exit of the North damping ring. The energy pro�le of the electron beam is

now directly measured approximately every two hours by a wire scanner located
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in the North Final Focus at a point of high dispersion where the transverse beam

position is highly correlated with energy. A total of four measurements of the

polarization dependence on beam energy were performed to characterize the electron

spin transport through the North Arc. Additionally, extra care was taken during the

1994-95 running in the North arc spin bump setup to keep this energy dependence

as low as possible.

The �nal focus improvements installed before the start of the 1994 run were sup-

posed to reduce the luminosity-limiting, third-order chromatic aberrations present

in the �nal focus optics. While accurately measuring this luminosity dependence on

beam energy is tricky at best, an approximate comparison can be made between the

observed rate of Z boson production as a function of beam energy, and an optics

motivated luminosity model. Additional measurements of the beam spot sizes as a

function of energy also support the optics motivated model. The actual cross section

dependence on energy determined by the Z boson lineshape is small compared to

the predicted luminosity cuto� and can be safely ignored.

Using the data acquired during the course of the 1994-95 SLD run, the size of the

chromaticity e�ect can be computed entirely from measured quantities. Ultimately,

the systematic uncertainty for determining the size of the chromaticity e�ect in the

1994-95 SLD run is found by comparing the size of the e�ect using the most extreme

distributions for both the polarization dependence on energy and the luminosity

dependence on energy. The luminosity weighted polarization due to the chromaticity

e�ect in the 1994-95 SLD run is determined to be

PSLC
e

PCIP
e

� 1 = (0:20� 0:14)%; (3.17)

which is applied as a correction to the beam polarization as measured by the Comp-

ton polarimeter.[49] The equivalent correction to the 1993 polarization measurement
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was

PSLC
e

PCIP
e

� 1 = (1:7� 1:1)%; (3.18)

which was much larger both in terms of the size of the e�ect as well as the accuracy

to which it was measured.[50]

3.9 Polarimeter Summary

Every aspect of the Compton polarization measurement has been improved for the

1994-95 SLD run. The complete list of systematic uncertainties can be found in

Table 3.3. Currently, the single largest uncertainty is due to the ability to mea-

sure the linearity of the entire Cherenkov detector readout chain. Improvements in

the near future, including a laser-based linearity calibration system, will probably

reduce this error to the level of 0:3%. The luminosity weighted beam polarization

determined by matching individual polarization measurements to hadronic Z boson

decays observed over the course of the 1994-95 SLD run is found to be

< Pe >= (77:23� 0:52)%; (3.19)

where the uncertainty is purely systematic due to the various e�ects summarized in

this chapter.[51] The interchannel consistency uncertainty applied to the 1993 data

is due to an observed discrepancy in the beam polarization measured by the various

CKV detector channels which was larger than the expected calibration uncertainty.

In the 1994-95 data, the polarization measured by the two outer channels agrees

quite well, and this additional source of systematic uncertainty has been eliminated.
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Table 3.3: Total systematic uncertainties for the electron polarization measurement

Systematic Uncertainty �Pe=Pe (1993) �Pe=Pe (1994-95)
CKV Detector Calibration 0.4% 0.29%

Laser Polarization 1.0% 0.20%
Electronics Noise 0.2% 0.20%
CKV Linearity 0.6% 0.50%

Interchannel Consistency 0.5% -
IP to CIP Di�erences 1.1% 0.17%
Total Uncertainty 1.7% 0.67%



Chapter 4
Event Selection and Reconstruction

The SLD is a general purpose particle detector designed to e�ciently detect all in-

teresting physics processes generated by e+e� collisions near the Z pole energy. For

the most part, the triggering and reconstruction of the events observed by the SLD

is shared among the various physics analyses performed on this data. From this

common pool of interesting `physics' events, an event selection is then performed by

each particular analysis to isolate only that set of data which is useful in each par-

ticular instance. This chapter will briey summarize the general detector triggering

and reconstruction process, as well as describe the particular selection used in this

analysis to identify and classify the various observed decays of tau lepton pairs.

4.1 Detector Trigger

The expected rate of interesting physics events produced by the SLC is on the order

of one per minute. With a collision rate of 120 Hz, it is infeasible to record every

beam crossing seen by the SLD, and some amount of detector triggering logic is

employed to reduce the amount of data written to tape. Compared to other particle

physics experiments, the demands on the SLD trigger logic is quite mild, and a
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straight forward set of criteria are su�cient to reduce the detector trigger rate to an

acceptable 0.3 - 0.5 Hz. A variety of di�erent triggers are independently evaluated

to ensure the e�cient detection of interesting physics events.

For the selection of tau pair events, there are four triggers which have a signi�cant

probability of being satis�ed:

� The track trigger, which requires a minimum of two tracks at least 120� apart

in the CDC;

� The energy trigger, which requires at least 6 GeV of total energy observed in

the LAC;

� The hadron trigger, a hybrid of the energy and track triggers, which requires

at least one track plus over 2 GeV of LAC energy;

� The wide-angle Bhabha (WAB) trigger, which requires at least 15 GeV of

energy to be deposited in the LAC EM section;

As the trigger decision is made on every beam crossing, there is only a rudimentary

amount of information available on which to base the trigger algorithm.

At the trigger level, tracking is performed by comparing the pattern of CDC

wire hits with a lookup table stored in the memory of the below-line FASTBUS

modules. If nine out of the ten possible layers contain hits on at least six of the

possible eight sense wires, that sequence of hit cells is de�ned to be a track. For the

observed LAC energy, a threshold is applied to each tower to reject electronics and

beam related noise. Only those towers recording energies above this threshold, set

at approximately twice the energy which would be deposited by a minimum ionizing

particle, can contribute to the energy sum. Each of the four triggers listed above

also contain vetoes to reject clearly unusable events. The track trigger, for instance,

will be vetoed if more than 275 of the 640 CDC cells satisfy the six hit criterion.
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Every triggered event observed by the SLD is written to tape for future pro-

cessing. While knowledge of the absolute trigger e�ciency is not required in this

analysis, it has been estimated that the combination of the four triggers listed above

are e�ectively 100% e�cient for triggering tau pair events produced within the �du-

cial volume of j cos �j < 0:7 where nine out of ten CDC layers can be intersected.[52]

4.2 Tau Filter and Reconstruction

The rate of triggered data which is written to tape is still a factor of at least 30

larger than the expected interesting physics rate. As the full reconstruction of an

event is a tremendously resource intensive operation in terms of computing time, a

preselection process known as �ltering is applied to the triggered data to determine

which events to reconstruct.1 Of the variety of �lters applied to the data, only

those events which pass the Tau selection �lter are used in this analysis, although

all �ltered events are treated identically by the reconstruction process. At the �lter

stage, a somewhat more sophisticated fast tracking algorithm is applied, although

still far short of the full tracking reconstruction that will eventually be performed.

The only requirement to satisfy the tau �lter is that the scalar momentum sum from

all observed tracks is greater than 1 GeV/c. This simple �lter is adequate to reduce

the triggered data sample by a factor of around ten, and all �ltered events are then

fully reconstructed by the o�ine reconstruction package.

The process of reconstruction involves turning the observed raw detector hits

into physically motivated objects like tracks representing the passage of charged

particles. Each detector component is �rst reconstructed individually: tracks are

found in the CDC, energy clusters are formed in the LAC, Cherenkov rings are

found in the CRID, etc. After all of these fundamental objects are found, the data

1Reconstruction times vary widely, primarily due to the track �nding pattern recognition algo-
rithm used in the CDC. The reconstruction of a typical hadronic Z decay can take up to several
seconds of computer time.
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from the various detectors which appear to be related to the same physical particle

are connected, or linked, across all of the detector components into one logically

grouped data structure.

In the resulting data, there are two distinct classes of objects: tracks and unasso-

ciated clusters. A track represents a single charged particle traversing the detector,

and will include information from at least the CDC, and quite possibly every detec-

tor component. Unassociated clusters, meanwhile, are individual clusters of energy

observed in the calorimeter which are not linked to a CDC track segment. These

clusters mostly correspond to neutral particles such as individual photons, although

there is always some amount of calorimeter noise which will create extra clusters.2

Additionally, the track-cluster association algorithm is not perfect and there is al-

ways a chance that a cluster produced by a charged track will not get linked properly

and an extra unassociated cluster will be found instead.

4.3 Tau Event Selection

At this point the event has been reconstructed, and all of the physics information

of interest is now available to select and classify the tau pair decays. As Z bosons

decay to tau pairs only 3% of the time, most of the events selected by the tau �lter

are not tau pair events at all. The dominant process of hadronic Z decays are quite

distinct from the low multiplicity tau pair events, and a general purpose set of tau

selection criteria is applied to isolate a pure sample of tau pair events.

To perform this selection, a number of event quantities are calculated from the

reconstructed data. First, the event is divided into two hemispheres based upon its

2One particular source of calorimeter noise unique to the SLC environment are muons created
upstream of the IP by the incoming beams scraping o� collimators and other structures. A set
of large toroids deect these muons away from the main beamline, and most of these particles
end up traveling longitudinally through the LAC. Depending on beam conditions, there can
be several of these SLC muons per event, and a special algorithm is used in the calorimeter
reconstruction to identify and ignore the energy deposited from this source.[53]



4.3 Tau Event Selection 111

thrust axis. The thrust axis is the vector from which the transverse momentum sum

of all observed tracks in the event is minimized. Around the thrust axis, a cone of

15� is de�ned, within which tracks from a real tau pair event are expected to be

found. The particles in each hemisphere lying within this cone are de�ned to be jets,

and each jet direction is iterated to minimize the transverse track momenta in each

hemisphere independently. The invariant mass of each jet is calculated assuming

that the charged tracks are pions and the unassociated clusters are photons. The

following selection criteria are then applied to select tau pair events:

� At least one track is found in each hemisphere;

� At least one jet has a charge sum jPQj = 1;

� Total visible energy of the event is greater than 10 GeV;

� Number of tracks in jets is less than 7;

� Number of unassociated clusters in jets is less than 9;

� No tracks are found outside of the jet cones;

� Total visible energy outside jets is less than 5 GeV;

� Acolinearity angle between the jets is less than 20�;

� Multi-track jets have invariant mass less than 2.3 GeV/ c2;

� 1-1 events have a track acolinearity angle greater than 10 mrad;

� Scalar sum of two largest track momenta less than 65 GeV/c;

� Total EM LAC energy less than 62.5 GeV;

� Missing momentum vector in the event satis�es j cos �missj < 0:88.
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Figure 4-1: The number of events passing the generic tau selection are shown as a
function of production angle. The expected distribution as estimated by
Monte Carlo data shows good agreement. The total number of Monte Carlo
events has been normalized to the data.

For the tau event selection, visible energy is de�ned as the observed track momenta

plus the energy deposited in the LAC from unassociated clusters.

Using samples of tau Monte Carlo data, this selection procedure is estimated to

be nearly 80% e�cient for selecting true tau pair events out to a production angle of

j cos �j < 0:65, and then tails o� as the tracking e�ciency drops. Using Monte Carlo

generated samples of other physics processes, the selected events are estimated to

be 98% pure, with the dominant contamination coming from wide-angle Bhabha

events (0.9%) and muon pair production (0.7%).[52]

The number of selected events are shown in Table 4.1 along with a Monte Carlo

estimate of the selection e�ciency and non-tau background. Using these Monte

Carlo estimates, the e�ective luminosity can be found using 1.467 nb as the cross

section for tau pair production at the Z pole. The total e�ective luminosity of

5.14 pb�1 is approximately 96% of the 5.34 pb�1 value directly measured by the
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Table 4.1: Tau Selection Results

Run Period Events E�ciency Purity Le� [pb
�1]

1993 1,295 0.527 0.979 1.64
1994 Summer 544 0.512 0.979 0.71
1994 Fall 1,494 0.577 0.979 1.73
1995 950 0.596 0.979 1.06
Total 4,283 0.556 0.979 5.14

luminosity monitor for the same running period. This di�erence agrees well with

the estimated CDC duty factor of � 95%.

Since the electron beam polarization is an important component of this analysis,

an accurate measurement of the electron beam polarization is required to have been

made within one hour of each event considered. For every selected tau event, the

polarimeter run closest in time is associated with that event to provide a measure

of the electron beam polarization at the time when the event was recorded. This

polarization matching is successful for 95.4% of all selected tau events.

4.4 Particle Identi�cation

In order to spin analyze the produced tau leptons, the decay products of the taus

must be properly identi�ed. Four spin-sensitive one prong decay modes are used

in this analysis, while the remaining unidenti�ed decays are classi�ed according to

their track topology. The muonic decay mode � ! ������ is readily identi�ed by the

penetration of the muon through the WIC tracking planes. The electronic decay

mode � ! e��e�� is also readily identi�ed by considering the characteristic large

energy deposition of the electron in the EM section of the LAC.

The two hadronic decay modes are somewhat more di�cult to isolate from other

processes. The single pion decay channel � ! ��� is identi�ed by considering the

penetration and shape of the hadronic shower produced in the LAC. No attempt is
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Figure 4-2: The measured beam polarization associated with each selected tau event is
shown. The polarization values below 70% all come from the 1993 data.
The electron beam polarization during the 1994-95 SLD run was very stable
near 77%.

made to separate the pion decay modes from the kaon decay modes in this channel,

and in fact both are selected with reasonable e�ciency. Rather, a small admixture

of kaon decays is then assumed to be present in the identi�ed sample. The rho decay

mode is actually the process � ! ��0�� which is dominated by the rho resonance.

This mode is separated from the single pion and non-resonant multi-pion channels

by attempting to reconstruct the invariant mass of the underlying rho meson.

The identi�cation of the fully leptonic and hadronic tau decay modes has been

largely the work of J. Quigley and N. Allen respectively, and has been used in an

analysis measuring the Lorentz structure of the tau decay.[54] A more complete

description of the identi�cation method can be found in their respective theses,[52,

55] and while the selection strategy used in this analysis has not been modi�ed from

their original work, the actual steps of the analysis itself are slightly di�erent so that

minor di�erences in the performance of the selection algorithm can be expected.
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For each selected tau event, the decay mode of each hemisphere is determined

independently. As these are all single prong decay modes, a single charged track in

the hemisphere is an initial requirement common to all four selection criteria. In

addition, the single charged track must have been produced within a �ducial tracking

volume of j cos �j < 0:74. This number is somewhat arbitrary, although it provides

a nice clean cuto� just before the tracking e�ciency falls steeply. The identi�cation

criteria are then sequentially applied to perform an exclusive classi�cation, meaning

that each hemisphere will at most be identi�ed as only one of the four possible decay

channels.

Muon Decays

The SLD reconstruction package provides some amount of muon identi�cation for

all observed tracks by means of an integer status word MUSTAT. Based primarily on

the matching of the CDC track to observed hits in the WIC, the MUSTAT selection

alone does a very good job for tracks produced within the barrel WIC coverage of

j cos �j < 0:62. For these hemispheres, the following selection criteria are su�cient:

� MUSTAT = 0 or MUSTAT = 2;

� Measured track momentum p0 > 1 GeV=c.

For tracks produced in the region between 0:62 < j cos �j < 0:74, the muon

identi�cation must rely upon the observed energy deposition in the LAC. For this

region, the following selection criteria are used to identify muon decays:

� Energy to momentum ratio E=p0 < 0:3;

� Number of associated EM LAC towers hit Ntow < 4;

� No unassociated neutral clusters are within the jet cone;

� Pseudo mass < 180 MeV=c2;
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� p0 > 2 GeV=c.

The E=p0 ratio is the deposited KAL energy of the associated cluster, calculated

according to the MIP energy scale, divided by the measured track momentum. The

pseudo mass is the invariant mass of the track and its associated cluster assuming

that the track is a pion and the associated cluster is a photon which has been

incorrectly associated with the track.

The muon selection is estimated by Monte Carlo data to have an absolute e�-

ciency of 42% with a total purity of 93%. This selection e�ciency includes all tau

selection and geometrical e�ciency factors, while the background is evenly split be-

tween mis-identi�ed tau decays (mostly pions) and non-tau background from dimuon

production.

Electron Decays

The SLD reconstruction package also provides an integer status word ESTAT to

identify electrons. Based primarily on the E=p0 ratio as well as the shower shape in

the LAC, the ESTAT selection was primarily designed to identify electrons with high

e�ciency in hadronic jets. In the sparsely populated tau events, the ESTAT selection

is fairly loose, and additional cuts are applied to clean up the selected events. The

following criteria are then used to select electron decays:

� ESTAT < 4 or CRID likelihood di�erence L(e)� L(�) > 20;

� No energy deposited in outermost LAC layer HAD2;

� Number of EM LAC towers hit 3 < Ntow < 25;

� No unassociated clusters with Pseudo mass < 500 MeV=c2, or

1 or 2 unassociated clusters with Jet mass < 500 MeV=c2;

� p0 > 1 GeV=c.



4.4 Particle Identi�cation 117

This selection is estimated to be 34% e�cient with a purity of 97%. The primary

background comes from hadronic tau decays (1.6%), as well as the other physics

processes with real electrons in the �nal state which pass the tau selection like wide

angle Bhabhas (0.5%) and two photon events (0.5%).

Pion Decays

After the muon and electron hemispheres have been identi�ed, the more di�cult

task of selecting the hadronic tau decays is attempted. Even though the e�ciency

for identifying the fully leptonic decays from the sample of selected tau events is

around 70%, there is still a substantial amount of electron and muon background

present to separate from the pion channel. Hemispheres which pass the following

criteria are then classi�ed as pion decays:

� MUSTAT 6= 0 and MUSTAT 6= 2;

� ESTAT > 2;

� No unassociated clusters within the jet cone;

� EEM=p0 < 0:42 using LAC EM energy only;

� For j cos �j < 0:6, 0:14 < E=p0 < 0:62;

� For j cos �j > 0:6, 0:31 < E=p0 < 0:62;

� Pseudo mass < 300 MeV=c2;

� p0 > 3 GeV=c.

In addition there is an electron veto so that if p0 < 30 GeV=c and no energy

is deposited in HAD2 and the CRID likelihood di�erence L(e) � L(�) > 20, the

hemisphere is not classi�ed as a pion. The total e�ciency of the pion selection is

20% with a purity of 81%. The background is almost entirely from the rho channel

where the photons from the extra neutral pion have been lost.
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Rho Decays

To separate the rho decays from the non-resonant multi-pion background, an at-

tempt is made to fully reconstruct the invariant mass of the underlying rho meson.

The gold-plated rho decay will have one track with a pion-like associated cluster,

as well as two unassociated clusters from the neutral pion decay to two photons.

Often, however, there are either extra clusters found by the clustering algorithm, or

some of the real clusters have been merged together. To keep the selection e�ciency

reasonable, the invariant mass is calculated for all hemispheres with up to four ob-

served neutral clusters, although the algorithm used is di�erent for each topology.

For instance, in the gold plated case the two unassociated neutrals are combined to

form a neutral pion, which is then combined with the charged track to reconstruct

the rho mass. With only one unassociated cluster, however, the two neutral clusters

from the neutral pion are assumed to be merged, and the unassociated neutral clus-

ter is combined directly with the momentum of the charged track. The following

criteria are then used to select rho decays:

� MUSTAT 6= 0 and MUSTAT 6= 2;

� ESTAT > 2;

� Total neutral clusters in hemisphere 1 � Nclu � 4;

� Reconstructed rho mass 440 MeV=c2 < m� < 1:2 GeV=c2;

� Calorimeter-based event thrust axis j cos �KALj < 0:74;

� p0 > 1 GeV=c.

The rho selection is estimated by the Monte Carlo data to have a total e�ciency of

29%, with a purity of 75%.
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Figure 4-3: The invariant mass distribution is shown for the rho candidate hemispheres.
The Monte Carlo prediction is also shown, including the expected back-
ground from non-rho tau decays.

Unidenti�ed Decays

The remaining tau decays are classi�ed into inclusive categories according to their

track topology. Hemispheres with one or two charged tracks are classi�ed as uniden-

ti�ed one prong or two prong hemispheres respectively. Hemispheres with three

charged tracks are required to have a charge sum equal to either +1 or �1, and if

the invariant mass of the three tracks is greater than 950 MeV=c2 the hemisphere

is classi�ed as an a1 decay, while the remaining are classi�ed as unidenti�ed three

prong decays.

There are then a total of eight possible classi�cations for each hemisphere (e,

�, �, �, 1pr, 2pr, 3pr, a1), which encompasses almost all possible tau lepton decay

modes.3 For an event to be useful to this analysis, at least one of the hemispheres

3 The branching fraction for a tau lepton decaying to �ve charged hadrons has been measured to
be under 0.2%.
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must be identi�ed as one of the four spin-sensitive tau decay channels, while the

other hemisphere must be classi�ed into one of the eight categories listed above.

4.5 Kinematic Tau Reconstruction

To determine the azimuthal decay angle of the observed charged track with respect

to the tau production direction, the momenta of the underlying tau pairs must be

reconstructed from the visible tracks. The four momentum of the underlying tau

(p�) can be written in terms of the observed track four momentum (q�) and the

unobserved missing decay momentum (k�) as

p� = q� + k�: (4.1)

For the two body tau decays like � ! ��� , k is nothing more than the momentum

of the unobserved neutrino, and k2 = 0 can be used as a constraint. Two other

constraints are available from p2 = m2
� and the assumption that the tau energy is

half of the collision energy. When combined with the four measured components of

q, there is only one free parameter left per hemisphere.

The remaining free parameter is the azimuthal decay angle (�) of the observed

track about the tau which produced it, so that the tau momentum is constrained

to lie on a cone of opening angle cos = f(k2; q0) around the observed charged

track. A similar cone is de�ned by the track observed in the opposite hemisphere,

and under the assumption that the two taus are produced back-to-back with equal

momentum, the intersection of these two cones determines the tau production di-

rection up to a two-fold ambiguity, as illustrated in Figure 4-4. This ambiguity can

be resolved by considering the track impact parameters as measured by the vertex

detector, although in practice this does not dramatically improve the resolution on

the azimuthal decay angle �.
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Figure 4-4: The underlying tau momentum vector is reconstructed by considering the
decay kinematics of the two observed charged tracks. Each hemisphere
constrains the tau momentum vector to lie on a cone of opening angle
 about the observed charged track. The intersection of the two cones
determines the tau momentum up to a two-fold ambiguity, which can be
resolved using the precision vertex detector.

For the three body leptonic decay modes where the additional missing neutrino

spoils the k2 = 0 constraint, the tau direction can still be reconstructed with some-

what reduced resolution by using the most likely value of k2 for each particular

decay mode as the constraint. If both tau hemispheres decay leptonically, the two

cones describing the most likely tau momentum vector will not actually intersect,

and so in practice a �t is performed using the predicted Monte Carlo k2 distribution

to provide a likelihood for each hemisphere as a function of tau direction. This like-

lihood �t technique is, in fact, used with all eight hemisphere categories so that the

underlying tau direction, and hence the azimuthal decay angle �, can be determined

for every selected tau event.

As will be more completely discussed in Chapter 5, the resolution on the angle

� depends strongly upon the particular decay modes observed, along with the mo-

menta of the tracks involved, but in general the three body decay modes contain

nearly as much useful information as the pure two body modes. To improve the �

resolution somewhat in those decay modes which are likely to contain neutral pi-

ons (�; 1pr; 2pr; 3pr), the unassociated neutral clusters are added into the observed

hemisphere four momentum q� for the purposes of �tting the tau momentum vector.
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Figure 4-5: The invariant mass of the missing momentum vector (k2) is shown for each
of the eight hemisphere categories as predicted by the Monte Carlo data.
These distributions are used to perform a likelihood �t for the unobserved
tau production momentum so that the azimuthal decay angle � can be
calculated for each identi�ed hemisphere.
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Table 4.2: Selected Events by Identi�ed Decay Topology

e � � � 1pr 2pr 3pr a1
e 43 135 60 163 224 25 38 96
� 87 58 225 308 28 49 133
� 15 83 118 16 24 50
� 120 425 47 58 158

4.6 Event Selection Summary

The assignment of which hemisphere contains the �+ or �� lepton is made based

on the charge of the observed decay products. The 2pr hemispheres are assumed to

have the opposite charge of the opposing identi�ed hemisphere, but of the remaining

events, only 1.0% have the same charge reconstructed in both hemispheres. These

events are removed from the selected data sample, and assuming that the probability

of mis-identifying the charge is uncorrelated between the two hemispheres, one would

expect 0.01% of the remaining events to have the charge in both hemispheres mis-

identi�ed. This amounts to less than 0.3 events in the selected data sample, and it

is assumed that the remaining events have their charge correctly reconstructed.

One �nal selection cut which is applied to ensure that the event is well con-

tained within the tracking acceptance of the detector is that the reconstructed tau

momentum vector must lie within the j cos �j < 0:74 �ducial volume. This only

removes a handful of events, and the �nal data sample which is used in this analysis

is shown in Table 4.2. The selection e�ciency and purity as predicted by the Monte

Carlo data in each usable event topology is summarized in Table 4.3 and Table 4.4

respectively. Complete energy dependent e�ciency and background distributions

which are necessary to properly calculate the likelihood of each observed event will

be presented in the next chapter.
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Table 4.3: Monte Carlo E�ciency Estimate by Identi�ed Decay Topology

e � � � any
e 23.4% 28.2% 14.4% 19.9% 34.2%
� 32.4% 17.1% 25.1% 41.7%
� 7.9% 11.3% 20.0%
� 16.0% 28.8%

Table 4.4: Monte Carlo Purity Estimate by Identi�ed Decay Topology

e � � � other
e 94.2% 94.9% 82.0% 75.6% 96.7%
� 77.7% 79.1% 73.5% 95.4%
� 68.1% 61.3% 79.5%
� 55.0% 74.9%

For topologies where both hemispheres are identi�ed, the purity gives the
percentage of events where both identi�cations are correct. For the re-
maining topologies, the purity gives the percentage of events where the
(e; �; �; �) hemisphere has been identi�ed correctly.
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Figure 4-6: The observed scaled energy distributions are shown for the identi�ed lep-
tonic and hadronic decay modes. These data samples have been separated
into left and right longitudinally polarized tau samples by combining de-
cays from forward left-handed events (cos � > 0;Pe < 0) with decays from
backwards right-handed events (cos � < 0;Pe > 0), and vice versa. The
expected Monte Carlo distributions show good agreement with the data,
and the underlying background is also shown.



Chapter 5
Likelihood Function

Each selected and identi�ed tau decay provides useful information which can be

used in the likelihood �t for the anomalous couplings of interest. In principle, the

observed track four vectors could be plugged into the partial di�erential cross sec-

tion to give an event probability as a function of the anomalous dipole moments.

In practice, however, there are a number of experimental issues like the background

from mis-identi�ed tau decays and the imperfect tracking resolution which all must

be properly accounted for. This chapter describes the various corrections and ap-

proximations which must be applied to the theoretical likelihood function to obtain

an accurate �t result.

5.1 Likelihood Formalism

The theoretical likelihood function has been introduced in Chapter 1 as the product

of the normalized production spin density matrix and the tau decay matrices,

L(d� ; ~d� j cos �;Pe; x
+; �+; x�; ��) =

~��
0��0�(d� ; ~d� j cos �;Pe) D�0�(x+; �+) D�0�(x�; ��); (5.1)
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where the normalized production spin density matrix is given by

~��
0��0� = ��

0��0�=(��
0��0���0���0�); (5.2)

such that the likelihood of each event is normalized over the phase space of all

possible decay parameters (x+; x�; �+; ��):

Z
L(d� ; ~d� j cos �;Pe; x

+; �+; x�; ��) dx+d�+dx�d�� = 1: (5.3)

The two experimentally available observables in each hemisphere are the scaled

energy of the observed decay product x and the azimuthal decay angle of the ob-

served track with respect to the tau production plane �. As there is some amount

of measurement uncertainty present in each of these observables, the base likelihood

function must be convoluted with a resolution function to take into account the

possible `true' values (x0; �0) given the measured values (x; �). In addition, there is

some amount of mis-identi�ed tau and non-tau background present in each identi�ed

decay topology which must also be accounted for.

Formally, the likelihood for each event observed in the decay topology (ij) is

given by

Lij =

Z
~�(d� ; ~d� j cos �;Pe) Di(x

+
0 ; �

+
0 ) Dj(x

�
0 ; �

�
0 )�

Rij(x
+; x�; �+; ��; x+0 ; x

�
0 ; �

+
0 ; �

�
0 ) dx

+
0 dx

�
0 d�

+
0 d�

�
0 + Background (5.4)

where R is a resolution function describing the probability that an event pro-

duced with the `true' values (x+0 ; x
�
0 ; �

+
0 ; �

�
0 ) is observed with the measured values

(x+; x�; �+; ��).1

1 In principle the production angle cos � should also be a part of this resolution function, although
in practice as long as the anomalous coupling terms are near zero the resolution on cos � can be
safely neglected.
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Clearly there are a number of problems with implementing the resolution func-

tion in this formal fashion as it would require performing a four dimensional integral

over an eight dimensional resolution function. Even if the integration could be nu-

merically performed, calculating the resolution function, which will be di�erent for

every observed decay topology, is nearly impossible even with the bene�t of a Monte

Carlo simulation. Rather, a number of simplifying assumptions must be applied to

reduce this formal integration to a more tractable number of parameters.

The actual likelihood for an observed event is calculated in this analysis as the

product of each hemisphere likelihood, given by

Li =

Z
~��

0��0�(d� ; ~d� j cos �;Pe) D�0�
i (x+0 ; �

+
0 ) ��0� �

Ri(x
+; x+0 ) Ri(�

+; �+0 ) Ei(x+0 ) dx+0 d�+0 (5.5)

for the �+ hemispheres, and similarly for the �� hemispheres. The resolution func-

tion has been factored into two normalized resolution functions for x and � sepa-

rately, as well as an overall e�ciency function (E) which describes the probability

that a given `true' event will actually pass the tau selection criteria. The motivation

for and consequences of this particular likelihood function will be discussed through-

out the remainder of this chapter. The correction for background contamination will

be discussed in Section 5.6.

5.2 Scaled Energy Resolution

The �rst simpli�cation applied in Equation 5.5 is the assumption that the resolution

on the scaled energy x is a purely instrumental e�ect arising from the ability of the

SLD tracking system to measure the observed track momentum. Each track in an

event will then have an individual resolution function Ri(x; x0) which depends only

upon the particular species (i) of the track measured, and is independent of all other
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event parameters. In principle, this tracking resolution can vary as function of the

track production angle cos �, although within the �ducial volume which has been

de�ned for this analysis the observed tracking resolution is quite uniform.

This resolution function is then a two dimensional function describing the prob-

ability that a track of scaled energy x0 will be reconstructed with scaled energy x.

This resolution function is normalized according to

Z
R(x; x0) dx = 1; (5.6)

so that there is unit probability of detecting each true scaled energy value x0. The

energy-dependent selection e�ciency is handled by a separate e�ciency function E .
The resolution function for each identi�ed tau decay mode can be estimated

directly from the Monte Carlo data where both the true generated x0 and observed

x are known. It is well known that the momentum resolution of a drift chamber

depends strongly upon the momentum of the track involved, and a particularly

convenient parameterization can be written in terms of the inverse momentum as

�21=p = a2 + b2=p2: (5.7)

As the scaled energy x is nothing more than the track momentum (up to a small

mass correction) divided by half of the collision energy, the resolution on 1=x should

also follow this simple parameterization.

To calculate the energy resolution, a two dimensional distribution of the Monte

Carlo data is made as a function of the true generated energy (u = x0) and the

relative residual given by

v = (x�1 � x�10 )=(x�10 ) = (x0=x� 1): (5.8)

This distribution is then normalized to unity in every bin of x0, and �t to the
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Figure 5-1: The resolution on the electron scaled energy x0 is shown in four di�erent
ranges of the scaled energy. A single six parameter �t is performed to
the two dimensional resolution function, which is shown as the solid curve.
The Monte Carlo data which has been used in the �t is shown in each
scaled energy range as the crosses. Except for in the highest scaled energy
range, the �t gives a very good description of the Monte Carlo data. The
measured momentum resolution for real tracks is somewhat worse than the
Monte Carlo prediction.

function

f(u; v) = 1=
p
2��2 exp

�
�(v � c3)

2

2�2

�
; (5.9)

where

�2 = c21u
2 + c22; (5.10)

and ci are the parameters which are being �t for. This three parameter �t does

a very good job describing the distribution predicted by the Monte Carlo for the

muon, pion, and rho hemispheres.
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Table 5.1: Scaled Energy Resolution Parameters

e � � �
c1 .085 .083 .080 .087
c2 .018 .017 .017 .017
c3 .010 .005 .004 .004
c4 2.3 - - -
c5 6.3 - - -

�2=dof 0.98 1.18 0.99 1.16

The energy resolution for electron �nal states is somewhat more complicated, as

the light electrons tend to radiate photons as they traverse the detector, leading to

a logarithmic tail in the resolution function. This radiative tail is parameterized in

an ad-hoc fashion by adding the function

c4
�
e�c5v � e�(10+c5)v

�
; (5.11)

to the function in Equation 5.9 to describe the electron resolution. The results of

the resolution parameter �ts are shown in Table 5.1.

One valid question is how well the Monte Carlo simulation describes the true

tracking resolution seen in the data. An estimate of the resolution parameters in

Equation 5.7 has been made by considering the resolution observed in the data for

Bhabha and dimuon events. The measured resolution parameters can be converted

to values of c1 = 0:12 and c2 = 0:010, which is around 40% worse in the data for the

momentum dependent term c1, while the momentum independent term c2 is much

better. A systematic uncertainty related to this di�erence is included in the �nal

result.
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5.3 Azimuthal Decay Angle Resolution

A signi�cant simpli�cation which is made in Equation 5.5 is to calculate the likeli-

hood for each hemisphere independently. The likelihood function is then obtained

from the di�erential cross section by integrating out all possible decay angles in

the opposing hemisphere, and only those hemispheres which have been identi�ed as

one of the four spin sensitive decay modes will then contribute to the overall result.

There are many advantages to handling the data in this fashion with only a few

obvious disadvantages.

The �rst disadvantage is a loss of statistical precision which comes from ignoring

the correlation terms in the transverse polarization cross sections. In contrast to

the Standard Model longitudinal polarization correlation which is nearly 100%, the

transverse polarization correlations which are described by the �+��+ and ��++�

matrix elements in Table A.3 are proportional to jdj2 and hence quite small.

The second disadvantage to treating each hemisphere independently is that for

the events where both tau decays are identi�ed and used in the analysis, the in-

formation being provided will be treated by the likelihood �t as being statistically

independent, which is not strictly true. The amount of statistical correlation be-

tween the hemispheres, as already argued in the previous paragraph, is quite small

and will have an insigni�cant e�ect on the outcome.

This is certainly not true if an attempt is made to measure the longitudinal po-

larization of the produced tau leptons, as here the statistical correlations are nearly

100%. Since almost all of the useful information on the anomalous dipole moments

comes from the uncorrelated transverse polarization terms, where the dependence is

�rst order in d, and not the correlated terms, where the dependence is second order

in d, any resulting statistical correlation is very small and can be safely ignored.

Meanwhile, there are tremendous advantages to be gained by treating the two

hemispheres independently. The single most important advantage comes from be-
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Figure 5-2: Two examples which lead to decay angle correlations are shown. In both
cases the most likely probability cones from the kinematic tau �t algorithm
do not intersect. The most likely tau momentum vector is then found
to be in the plane which contains the two observed tracks, leading to an
unphysical correlation in the quantity j�+ � ��j.

ing able to avoid the large unphysical correlations between the two reconstructed

azimuthal decay angles (�+; ��) which result from the kinematic �t used to recon-

struct the underlying tau production vector. Since the tau pairs are assumed to be

produced back-to-back, any error made in one hemisphere is going to be directly

correlated with the error made in the other hemisphere. In addition, if one or both

hemispheres have additional missing momentum, as is the case with the fully lep-

tonic decays, the two cones of most likely tau momentum used in the kinematic �t

will not necessarily intersect. The kinematic �t will then �nd the most likely tau

momentum vector to lie in the plane which contains both observed decay momenta,

and the quantity j�+ � ��j will then tend to pile up at the values of 0 and �. Note

that as long as the decay angle in the opposing hemisphere is integrated out, and

the correlated physics information contained in the two hemispheres is small, these

non-physical correlations in the measured values of � are irrelevant.

By treating each hemisphere independently, the remaining resolution function

simply describes the probability of observing a given decay angle � independently

from the angle measured in the opposing hemisphere. As might be expected, the

resolution on � depends entirely on how well the underlying tau momentum vector is

reconstructed, and there are a number of factors which contribute to this accuracy.

The �rst factor is the topology of the event. Clearly a �+�� ! �+��X event
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will be more accurately reconstructed than a fully leptonic �+�� ! e+e�X event

due to the additional missing momentum present in the leptonic decay. To keep the

number of independent parameterizations reasonable, the topology of the opposing

hemisphere is broken down into two categories: those hemispheres with extra missing

momentum (e; �; �; 1pr; 2pr), and those hemispheres which are most likely 2 body

decays (�; 3pr; a1). The � resolution is then parameterized separately for each of

the four identi�ed decay types for the two possible opposite hemisphere categories.

The second factor is the observed momenta of the two hemispheres which were

used in the kinematic tau �t. Clearly if the observed hemisphere has a very low

momentum track, while the opposing hemisphere has a very sti� track, there is a

very large lever arm available from the opposing hemisphere to determine the tau

direction and the error on � will be small. Conversely, if the observed hemisphere has

a very high momentum track, the opening angle between the tau and the observed

track must be very small and the error on � will be large.

Since the resolution of the kinematic tau �t is dominated by the real physics e�ect

of the missing neutrino momentum, and is only secondarily e�ected by the tracking

resolution, the parameterization of the � resolution is explicitly written as a function

of the measured scaled energy (x+; x�), and not the true scaled energy which would

need to be integrated over in the likelihood function. Even so, this still leaves a three

dimensional resolution function R(�� �0; x; xother), where x is the scaled energy of

the identi�ed hemisphere and xother is the scaled energy of the track in the opposing

hemisphere. Rather than try to deal with a three dimensional function, which is

di�cult to parameterize and even more di�cult to visualize, the single parameter

(x�xother) is used to reduce this to a more tractable two dimensional function. This
one particular parameter was found to qualitatively have a larger e�ect on the �

resolution than any other linear combination of x and xother.

This resolution function is then estimated from the Monte Carlo data in a similar

manner as the scaled energy resolution. A two dimensional distribution is formed
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from the � residual v = ���0 as a function of the scaled energy di�erence between

the two hemispheres u = x � xother. Without any physically motivated parame-

terization to use as a guide, this distribution is �t to two Gaussian terms plus a

constant term,

f(u; v) = (1� n2 � n3)=
q
2��21 exp

�
� v2

2�21

�
+

n2=
q
2��22 exp

�
� v2

2�22

�
+ n3=(2�); (5.12)

where the widths and fractions of the various terms are simple polynomial functions

of u:

�1 = c1 + c2u (5.13)

n2 = c3 + c4u (5.14)

�2 = c5 + c6u (5.15)

n3 = c7(u+ 1) + c8(u+ 1)2: (5.16)

Even though this parameterization is strictly phenomenological, using a simple linear

dependence for the gaussian widths in Equation 5.12, this eight parameter �t does

a good job describing the predicted Monte Carlo resolution functions for the eight

possible hemisphere topologies.

As can be seen in Figure 5-3, the � resolution is quite good for negative values of

x�xother, and degrades quickly as this value increases. The eight parameterizations
used in this analysis are shown in Table 5.2.

5.4 Detection E�ciency

As shown in Equation 5.6, the resolution functions described in this chapter are

normalized to unit probability so that every produced hemisphere has unit proba-
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Figure 5-3: The azimuthal decay angle resolution is shown for identi�ed rho events
with additional missing momentum in the opposing hemisphere. The eight
parameter �t, shown as the solid curve, describes the Monte Carlo data well
in all four ranges of the value x � xother. As expected, the resolution gets
much worse as this value becomes large, although the expected number of
events in this range is small.

bility when integrated over all possible detected values. It is clear, however, that

the probability of a hemisphere being selected and properly identi�ed is not uniform

as a function of the true, produced event parameters. In principle, the e�ciency

of selecting a given hemisphere is a function of both the scaled energy and the az-

imuthal decay angle at production. In practice, the e�ciency dependence on �0 is

uniform and the e�ciency is strictly written as a function of the scaled energy x0.
2

The e�ciency function Ei(x0) is parameterized separately for each identi�ed tau

decay mode i, where the e�ciency includes both the probability of selecting the

given event as well as the probability of properly identifying decay mode of the given

hemisphere. The performance of the particle identi�cation algorithm described in

2 Possible �0 e�ciency e�ects will be discussed in Chapter 6 as a systematic uncertainty.
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Table 5.2: Azimuthal Decay Angle Resolution Parameters

e-no e-miss �-no �-miss �-no �-miss �-no �-miss
c1 .31 .32 .23 .34 .13 .32 .23 .33
c2 .20 .21 .02 .18 -.10 .21 .15 .14
c3 .39 .59 .56 .61 .33 .55 .46 .51
c4 -.10 .18 -.02 .09 -.20 -.06 -.05 .28
c5 .97 1.15 .89 1.14 .73 .93 .79 1.13
c6 1.19 1.47 1.10 1.59 1.03 1.51 .66 1.39
c7 .06 .02 .14 .03 .27 -.07 .14 .14
c8 .19 .11 .07 .10 .14 .16 .09 -.01

�2=dof 1.1 1.3 1.0 1.2 0.8 1.1 1.0 1.1

The azimuthal decay angle resolution function is parameterized separately
for the four identi�ed decay modes and the missing momentum character-
istics of the opposing hemisphere.

Chapter 4 is quite uniform across the barrel part of the SLD detector, but degrades

somewhat for production angles beyond j cos �j > 0:6. This is primarily due to the

loss of useful information from the WIC to perform muon identi�cation, although the

LAC also has some problems in this region due to the overlap between the barrel and

endcap modules. To properly account for this di�erence in the particle identi�cation

performance, the e�ciency function is parameterized separately for tracks found in

the barrel region (j cos �j < 0:6) and the endcap region (0:6 < j cos �j < 0:74).3

Further discussion of the e�ciency function Ei(x0) will be covered in Section 5.6

after the techniques for handling the background contamination have been presented.

5.5 E�ective Decay Matrices

The convolution of the theoretical likelihood function over the resolution probability

functions described by Equation 5.5 is only dependent upon the observed decay

3 This is more properly termed the overlap region, as it is really where the barrel and endcap LAC
modules share the shower information, although the term endcap will be used.
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properties of the identi�ed hemisphere. This convolution can be re-written in terms

of the e�ective decay matrix ~D(x; �) as

~D�0�
i (x; �) =

Z
D�0�
i (x0; �0) Ri(x; x0) Ri(�; �0) Ei(x0) dx0d�0; (5.17)

where the e�ective decay matrix for the �+ and �� hemispheres di�er only by the

theoretical decay matrix Di(x0; �0) used.

This theoretical decay matrix Di(x0; �0) is developed in Appendix A for the

four identi�ed spin-sensitive decays used in this analysis. The great advantage of

factoring the likelihood function in this manner is that these resolution integrals

only need to be performed once as the e�ective decay matrices for each observed

hemisphere are completely independent of the anomalous couplings which are being

iterated over in the likelihood �t. In addition, since only the o�-diagonal elements of

the decay spin density matrix are functions of both �0 and x0, the two dimensional

integral written in Equation 5.17 only needs to be performed once for each identi�ed

hemisphere. The diagonal matrix elements need to be integrated over x0 only.

5.6 Backgrounds

Since the tau selection and hemisphere identi�cation algorithms are not perfect,

there is some background present in the selected event sample. This background can

be classi�ed into three distinct sources which are handled di�erently in calculating

the likelihood for any given identi�ed hemisphere:

� Mis-identi�ed spin-sensitive tau decay modes;

� Other mis-identi�ed tau decay modes;

� Background from non-tau sources.
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Each identi�ed hemisphere has some possible background contamination from each

of these sources. It is important to treat the mis-identi�ed spin-sensitive tau decay

modes separately, as the spin information which they contain will a�ect the likeli-

hood function di�erently than the remaining, spin-insensitive background sources.

All sources of background can be accommodated into the likelihood formalism

by expanding the e�ective decay matrix of Equation 5.17 so that it describes a

weighted sum of the expected components in each identi�ed decay channel. For

each hemisphere identi�ed in channel i, the complete e�ective decay matrix is then

given by

~Di(x; �) =
X
j

wj
~Dij(x; �); (5.18)

where the index j runs over the four identi�ed tau hemisphere types, the background

from the other tau decay modes, as well as the non-tau background sources.

Spin-Sensitive Tau Background

For the mis-identi�ed spin-sensitive tau decay modes, the decay matrix is now writ-

ten in terms of both the identi�ed decay type i and the produced decay type j

as

~Dij(x; �) =

Z
Dj(x0; �0) Rj(x; x0) Rj(�; �0) Eij(x0) dx0d�0; (5.19)

which is identical to Equation 5.17 except that now the e�ciency function is written

in terms of both i and j. This e�ciency function Eij(x0), which is de�ned as the

probability that a hemisphere of type j is reconstructed and identi�ed as a hemi-

sphere of type i, already provides some weighting to account for the mis-id rate,

while the additional weighting factor wj simply provides the branching fraction for

tau events which decay into channel j.
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Figure 5-4: The e�ciency function Eij(x0) is shown as a function of the true scaled
energy x0 for events produced in the barrel region. The e�ciency shown
here is normalized to the total number of tau decays of each type produced
into the �ducial region j cos �j < 0:6.

The e�ciency function is now a four by four matrix of energy dependent identi-

�cation e�ciencies where the diagonal elements (i = j) describe the correct identi-

�cation rate, while the o�-diagonal elements (i 6= j) describe the mis-identi�cation

rate. As mentioned in Section 5.4, these e�ciency functions are parameterized sepa-

rately for the barrel and endcap detector regions. Figure 5-4 shows the e�ciency as

a function of true scaled energy for the barrel region. The diagonal elements are �t

to fourth order polynomial functions, while the o�-diagonal elements are either �t to

simple linear functions or fourth order polynomials depending upon the complexity

of the observed energy dependence.
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Figure 5-5: The e�ciency function for mis-identifying a multi-hadron tau decay mode as
a rho decay Eother� (x) is shown as a function of scaled energy for hemispheres
in the barrel region. This e�ciency function is normalized to the total
number of these background decays produced into the barrel region.

Other Tau Background

For the remaining mis-identi�ed tau decays, the momentum of the observed, mis-

identi�ed single charged track is assumed to be independent of the underlying tau

spin.4 The e�ective decay matrix can then be written as

~D�0�
ij (x; �) = Eother

i (x)��0�; (5.20)

where the weighting factor wj in Equation 5.18 is again the branching fraction for tau

events to this particular decay mode. In this case, wother is the remaining branching

fraction after the (e; �; �; �) modes have been removed.

Since it is assumed that there is no spin information present in these other mis-

identi�ed tau decay modes, there is no need to integrate over the spin density matrix,

and the e�ect of this background is merely to dilute the overall spin dependence of

4 The residual spin dependence in these decay modes can be estimated by considering the longi-
tudinal spin dependence as predicted by KORALZ. There is some small spin dependence seen in
this background from the single prong a1 decays, although the analyzing power is very small.
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the hemisphere by adding in a spin-independent component characterized by the

unit decay matrix. The largest background of this sort is from multi-hadron �nal

states to the identi�ed rho channel. The energy dependent e�ciency function for

this background mode is shown in Figure 5-5, and again a multi-order polynomial

is used to parameterize the observed energy dependence.

Non-Tau Background

The background contribution from non-tau sources, which clearly has no spin de-

pendence, is also treated as a constant dilution of the e�ective spin density matrix.

The energy dependence predicted by the Monte Carlo data samples of non-tau back-

ground is quite at in x, and no attempt has been made to model the energy depen-

dence of this background. As the non-tau background is correlated with the overall

identi�ed event topology, this background dilution is applied on the basis of the

classi�cations made in both event hemispheres. The background from muon pairs,

for instance, is only seen when both hemispheres are identi�ed in the � ! ������

decay mode.

For this background source, the e�ective decay matrix is then nothing more than

the unit matrix,

~D�0�
ij (x; �) = ��0�; (5.21)

while the weighting factor wnon�tau gives the expected number of identi�ed non-tau

background events in that particular decay mode for every generated tau event.

5.7 Likelihood Function Summary

Every hemisphere which is identi�ed in one of the four spin sensitive decay modes is

used in this analysis to provide a likelihood for observing that particular event as a
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function of the anomalous coupling strengths. The e�ects of instrumental resolution

on the observed hemisphere parameters (x; �) and contamination from all known

background sources are incorporated into the e�ective decay matrix ~D(x; �) which is
computed for each identi�ed hemisphere before the likelihood �t is performed. This

e�ective decay matrix is the weighted sum of the individual decay matrices for each

physics process expected to be present in a given identi�ed channel as predicted by

the Monte Carlo data.

Each identi�ed �+ and �� hemisphere then contributes a likelihood given by

L+
i = ~��

0��0�(d� ; ~d� j cos �;Pe) ~D�0�
i (x+; �+) ��0� (5.22)

L�i = ~��
0��0�(d� ; ~d� j cos �;Pe) ~D�0�

i (x�; ��) ��0� (5.23)

such that the total likelihood function given by

F(d� ; ~d� ) � �2
X
i

logLi (5.24)

can be minimized to �nd the most likely value of the anomalous dipole coupling

parameters. The actual �t results and a discussion of the interpretation of the

errors on the �t values will be covered in Chapter 6.



Chapter 6
Results and Conclusions

Every selected and identi�ed tau decay hemisphere is used in this analysis to provide

a likelihood based on the observed charged track momentum as a function of the

additional anomalous dipole couplings. This chapter will present the results of this

likelihood �t, as well as discuss a number of the systematic uncertainties associated

with this sort of analysis. Finally, the results of this analysis are presented along

with a number of other measurements of these dipole couplings performed by other

collaborations around the world.

6.1 Likelihood Fit Results

Each identi�ed �+ or �� hemisphere contributes to the total likelihood function a

factor given by

L+
i = ~��

0��0�(d� ; ~d� j cos �;Pe) ~D�0�
i (x+; �+) ��0� (6.1)

L�i = ~��
0��0�(d� ; ~d� j cos �;Pe) ~D�0�

i (x�; ��) ��0�; (6.2)
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where ~�(d� ; ~d� j cos �;Pe) is the normalized production spin density matrix which

contains all of the physics related to the Z ! �� vertex, and ~D(x; �) is the e�ective
tau decay matrix developed in Chapter 5.

The total likelihood function F is then de�ned as

F(d� ; ~d� ) � �2
X
i

logLi (6.3)

such that the values of (d� ; ~d� ) which minimize F are the most likely values for the

dipole coupling strengths given the observed data. A factor of 2 is included in the

de�nition of F so that this function behaves statistically in the same manner as a

�2 distribution.

The function F is minimized with the MINUIT function minimization utility from

CERN, which is widely used in physics for log-likelihood and �2 �tting.[56] Along

with routines to minimize arbitrary multi-dimensional functions, MINUIT also pro-

vides the processor MINOS to calculate parameter errors taking into account both

correlations and non-linearities in the minimized function. The theory on which the

MINOS error estimation is based can be found in [57].

For a single-parameter �t, the 68% CL (�1�) interval is determined as the range
of the �t parameter over which the minimized function F changes by less than one

unit (�F < 1). For a multi-parameter �t, as performed in this analysis, MINOS

reports the error on a single parameter as the range over which (�F < 1), while

keeping the other parameters minimized. In a two parameter �t, for example, the

errors reported by MINOS de�ne a rectangular region which entirely contain the

one sigma contour found when both parameters are allowed to vary independently.

Because the MINOS processor actually traces the change in F as the �t parameters

are varied from their best �t values, the error intervals are not necessarily symmetric

about the minima.

The results of the MINUIT minimization of the function F for the observed data
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P1

P2

Figure 6-1: The single parameter one sigma errors calculated by MINOS bound the con-
tour in the two parameter plane de�ned by �F = 1. The probability that
both parameters simultaneously lie within this one sigma contour is found
from a �2 table for two degrees of freedom to be 39.3%.

Table 6.1: Anomalous Coupling Fit Results

Parameter Fit Value �lo �hi
<(d� ) 0.3 -3.7 +3.7
=(d� ) -1.9 -2.5 +2.4

<( ~d� ) 1.0 -4.0 +4.2

=( ~d� ) -2.2 -2.5 +2.4

The best �t values for the combined MINUIT minimization of the likelihood
function F(d� ; ~d� ) is shown along with the limits describing the MINOS sin-
gle parameter 68% con�dence interval. All values are in units of 10�17 e cm.
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Table 6.2: Anomalous Coupling Fit Correlation Matrix

<(kv) =(kv) <(ka) =(ka) Global
<(kv) 1.0 -0.04 0.15 0.07 0.171
=(kv) 1.0 -0.02 0.19 0.197
<(ka) 1.0 0.02 0.149
=(ka) 1.0 0.204

The correlation matrix for the MINUIT �t is shown. The actual �t pa-

rameters used are the dimensionless coupling parameters kv =
p
s

gz
d� and

ka = i
p
s

gz
~d� .

are shown in Table 6.1, where the errors quoted are the MINOS single parameter

one sigma limits. Both the real and imaginary parts of both dipole moments are

statistically consistent with zero.

6.2 Error Estimation

Given the assumption that the likelihood function F accurately reects all aspects

of the physical processes being �t, the error estimates for the �t parameters returned

by MINUIT are valid estimators of the uncertainty on those parameters. With the

rather small data sample which is being used in this analysis, the statistical variance

on these MINUIT determined errors is substantial, and a check that the quoted errors

in Table 6.1 are not statistically improbable is desired.

This test is performed by �tting the KORALZ generated Monte Carlo data sample,

which has roughly twenty times the statistics as the actual observed data, with the

same likelihood procedure applied to the data. The Monte Carlo data is evenly

divided into twenty MC data sets each of which is �t independently to provide an

estimate of the variance in the MINOS reported errors. In addition, this test performs

a check that the variance on the actual best �t values are accurately described by
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Table 6.3: Monte Carlo Based Error Estimation

Parameter Fit Variance �d Mean Error �� Uncertainty ���
<(d� ) 3.33 3.90 0.10
=(d� ) 2.46 2.51 0.05

<( ~d� ) 2.92 4.10 0.10

=( ~d� ) 2.46 2.31 0.05

By �tting twenty Monte Carlo data samples with equal statistical size as
the observed data, the accuracy of the MINUIT error estimate can be tested.
The actual variance on the observed �t results �d agree well with the mean
predicted �t error �� for the imaginary parts of the dipole moments, although
the other two terms appear to have a somewhat narrower variance than
predicted by the MINUIT error estimate. The �t errors seen in the data
agree well with the mean �t errors from the MC samples.

the �t errors.1

The results of this test are shown in Table 6.3, and are shown graphically for

the CP conserving WMDM in Figure 6-2. While it is strictly more accurate to

use the MC derived variance to estimate the error on the �t values, the size of the

MC data sample is not large enough to accurately determine probability contours

and correlations between the �t parameters. As the mean errors found by �tting

the Monte Carlo data agree well with the �t errors returned by MINUIT for the

data sample, the errors derived from the data will be assumed to be correct. It is

interesting to note, however, that in these Monte Carlo �ts the variance on the real

parts of both d� and ~d� appear to be 30% narrower than the errors returned directly

by MINUIT.

Since the best �t values of the anomalous dipole couplings agree with zero, the

uncertainty in the �t values are used to place 95% con�dence limits on the allowed

parameter range. For a Gaussian distribution, 95% of the integrated probability

lies within �1:96 � of the mean value. If the likelihood function F(d� ; ~d�) is well

1While KORALZ can not generate the transversely polarized taus which signal the presence of the
anomalous dipole couplings, this MC data sample can still be used to test that the �t returns a
value of zero when no anomalous terms are present.
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Figure 6-2: The Monte Carlo based error estimates are shown for the WEDM. The RMS
variance of the mean �t value is shown along with the mean �t error quoted
by MINUIT. There is good agreement for the imaginary part, although the
variance observed for the real part is nearly 30% narrower than the quoted
�t error.

behaved and linear in the �t parameters, the 95% CL range can be found by simply

multiplying the errors listed in Table 6.1 by 1.96. Alternately, MINOS can be used to

map out the 95% CL bound directly for each parameter. The comparison of these

two techniques is summarized in Table 6.4 for the actual observed data, and exact

agreement is found to three signi�cant digits.

6.3 Systematic Uncertainties

The evaluation of the systematic uncertainties present in any analysis always poses

something of a dilemma. Most sources of systematic error cause problems precisely

because they are unknown at the time that the analysis is being performed. A truly
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Table 6.4: 95% Con�dence Limits

Parameter 1:96 � MINOS interval
<(d� ) 7:23� 10�17 e cm 7:23� 10�17 e cm
=(d� ) 4:77� 10�17 e cm 4:77� 10�17 e cm
<( ~d� ) 7:95� 10�17 e cm 7:95� 10�17 e cm
=( ~d� ) 4:72� 10�17 e cm 4:72� 10�17 e cm

The 95% CL range calculated directly by MINOS agrees well with the 1:96 �
bound for the observed data.

accurate estimate of the size of the various systematic e�ects is probably impossible

in any analysis, but in the case of a statistically dominated result, arguments limiting

these systematic errors to a manageable size are probably easier to come by.

Unknown or improperly handled e�ects can cause systematic errors in this anal-

ysis in two general ways:

� A measurement bias shifting the best �t value for the dipole moments;

� A scale error in the sensitivity to the magnitude of the dipole moments.

Assuming that the true value for the dipole moments are zero, a measurement bias

will shift the likelihood �t result away from zero, while a scale error will cause the

�t uncertainty to be incorrectly estimated.

In general, systematic errors can arise either from unknown phenomena or from

known e�ects which are improperly handled in the analysis. This leads to two broad

categories which must be evaluated separately:

� E�ects properly modeled in the Monte Carlo simulation;

� E�ects improperly modeled or unknown to the Monte Carlo simulation.

With only a few thousand identi�ed tau hemispheres to work with, the precision

of this analysis is severely limited by the available statistics, and a comprehensive
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investigation of all possible sources of systematic uncertainty has not been under-

taken. Rather, a number of possible e�ects which might be signi�cant have been

studied to verify that these sources of systematic uncertainty are small.

Tracking Resolution

The parameterization of the scaled energy resolution described in Section 5.2 is based

on the Monte Carlo simulation of the combined VTX and CDC tracking resolution.

A variety of SLD analyses have found that the observed tracking resolution in the

data appears to be worse than that simulated by the Monte Carlo, and various

attempts have been made to directly measure this e�ect using dimuon or Bhabha

events where the true track momentum is well constrained.

To bound the size of the e�ect, the likelihood �t is performed using both the

Monte Carlo derived parameterization and the parameterization derived from the

measured tracking resolution. The di�erence in the likelihood �t result for both

the observed data and the 20 MC data sets provides a limit on the systematic

uncertainty from this source.

Azimuthal Decay Angle E�ciency

In the formulation of the e�ective decay matrices, the e�ciency for selecting and

identifying a particular tau decay is assumed to be independent of the azimuthal

decay angle �. Since the acceptance of the SLD detector is uniform and symmetric

across the barrel region, there is no reason to expect that the decay angle between

the observed charged track and the unobserved tau will inuence the e�ciency for

selecting any given event.

This is not necessarily true near the end of the de�ned �ducial volume, however.

As shown in Figure 6-3, for a �� hemisphere produced near the forward �ducial

limit of cos � = 0:74 the azimuthal decay angle of � = 0 points into the �ducial



6.3 Systematic Uncertainties 153

e−

e+

τ−

τ+

q-

q+

φ−= 0

φ+= π

θ

Figure 6-3: Azimuthal Decay Angle E�ciency Geometry

region while � = � points out of the �ducial region. At the other end of the barrel

for the �+ hemisphere the opposite situation is true, with the azimuthal decay angle

� = 0 pointing out of the �ducial volume. Near this boundary, then, there could be

a � dependence to the track identi�cation e�ciency as tracks falling outside of the

�ducial region will fail the identi�cation criteria.

The additional event selection requirement that the tau momentum vector must

be reconstructed into the �ducial region is designed to mitigate any possible `edge'

e�ect. Further, this e�ect should be well modeled by the Monte Carlo simulation,

and no � dependence is seen in the selection e�ciency for events produced near

this �ducial boundary. Finally, the cut on the reconstructed tau momentum can be

tightened to j cos �j � 0:7 or below with no apparent change in the �t results beyond

a slight loss of statistics.
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Detector Biases

The e�ciency and resolution functions parameterized in Chapter 5 are all assumed

to be independent of the charge of the track being considered. While this has been

veri�ed with the Monte Carlo data, any sort of charge bias would most likely come

from a source not properly modeled by the detector simulation, anyway. Since the

sensitivity of this analysis relies upon considering the di�erence between the �+ and

�� hemispheres, this sort of charge bias would directly e�ect the outcome of this

analysis.

One particular detector bias which has been studied is the possibility of a sagitta

bias in the CDC momentum measurement.[58] One plausible source of this sort of

e�ect is a relative azimuthal rotation between the CDC endplates. If there is an

uncorrected `twist' in the CDC wire geometry, the error made on the momentum

measurement will have the functional form pmeas = p0(1 + qs cos �), where q is the

charge of the track and here cos � is the production angle of the actual track being

considered, and not the �� production angle. A forward-backward charge asym-

metry of this form will directly fake the signal for the anomalous dipole moment

by distorting the observed momentum spectra di�erently for the �+ and �� hemi-

spheres.

By considering the track momenta of selected dimuon events, which should be

equal and opposite, this sagitta bias can be directly measured with the data. The

best �t to the observed bias is given by s = (�0:4 � 1:7) � 10�4 GeV�1 which is

found to be consistent with zero. The extreme value of this possible charge bias has

been applied as a correction to the momentum of the tracks in the data to evaluate

the e�ect of any sort of unconstrained remaining charge bias e�ect in this analysis.

Note that the source of the charge dependent momentum bias has not been assumed,

but rather the allowed size of the e�ect from any source has been measured directly

from the data.

An additional charge independent sagitta bias with a functional form pmeas =
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p0(1 + s cos �) is also constrained by the dimuon data with a best �t value of s =

(1:9� 1:7)� 10�4 GeV�1.

Event Selection and Backgrounds

The composition of the e�ective decay matrices depends upon an accurate Monte

Carlo simulation of the particle identi�cation e�ciencies and background contami-

nation. The tau selection described in Chapter 4 is estimated to be quite pure with

only a 2% contamination from non-tau sources. Since these non-tau backgrounds

simply dilute the apparent spin sensitivity of the identi�ed tau decay modes, dou-

bling the amount of non-tau background in the identi�ed sample will only make a

two percent di�erence to the sensitivity scale of this analysis.

More important is the composition of the identi�ed tau hemispheres in terms

of the spin sensitive tau decay modes. The observed number of selected events in

each identi�ed event topology agrees well with the Monte Carlo prediction for all

decay types except the electrons, where there are around 9% fewer electron hemi-

spheres seen in the data. A possible mis-understanding of the selection e�ciencies

can be simulated by modifying the tau branching fractions, which are used as overall

scale factors in the generation of the e�ective decay matrices. Reducing the elec-

tron branching fraction by up to 10% has very little e�ect on the outcome of the

analysis, as the electron channel is very pure and the relative composition of the

identi�ed electron hemispheres is virtually unchanged. The e�ect of modifying the

hadronic pion and rho branching fraction by up to 5% is also applied as a systematic

uncertainty.2

2 These branching fractions have only been directly measured to a few percent. A variation of 5%
is a conservative guess as to the accuracy of the predicted selection e�ciency.
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Figure 6-4: The tau center of mass decay functions f(x) and g(x) for the electron decay
mode are shown. The points show the KORALZ predicted functions, which
include initial state radiation and other higher order corrections, while the
solid curve shows the tree level prediction used in the e�ective decay matrix
formalism.

Radiative Corrections

The theoretical tau decay spectra used in calculating the e�ective decay matrices

are described in Appendix A. These decay functions are valid only at tree-level, and

do not include the e�ects of initial or �nal state radiation, higher order terms in

the cross section, or the  � Z interference term which will all modify the observed

momentum spectrum for a given tau decay mode. All of these e�ects are accurately

modeled, at least to better than a percent, in the KORALZ Monte Carlo generator.

The di�erence between the KORALZ tau decay spectra and the theoretical functions

can be up to 10% in the case of the electron decay channel, and probably should be

applied as a correction to the tree-level theoretical function. Rather, this di�erence

has been assumed to be an additional source of systematic uncertainty.
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Table 6.5: Fit Bias Systematic Uncertainty Summary

Systematic <(d� ) =(d� ) <( ~d�) =( ~d� )
Uncertainty Bias Bias Bias Bias

Fiducial Region 0.55 0.09 0.37 0.40
Event Selection 0.14 0.03 0.19 0.05
Momentum Bias 0.05 0.09 0.10 0.06

Tracking Resolution 0.11 0.01 0.33 0.10
Radiative Corrections 1.12 0.47 0.08 0.39

Total 1.26 0.49 0.55 0.57

The various sources of systematic uncertainty which contribute to a bias in
the �t result are tabulated along with an estimate of the bias determined
by the studies described in the text. The total systematic uncertainty is
the quadrature sum of the individual components, and all values are given
in units of 10�17 e cm.

6.4 Cross Checks

A number of cross checks have been performed on this analysis, of which the most

important are the likelihood �ts to the Monte Carlo data samples. Even though

the same Monte Carlo which is used to parameterize the resolution and e�ciency

functions is being used in both cases, the KORALZ generated Monte Carlo contains a

nearly complete description of the underlying real physical processes, while a number

of approximations and simpli�cations have been made in formulating the likelihood

function F . With each hemisphere being treated independently, the Monte Carlo

data is then a good testing ground for the assumptions made in this analysis. The

�ts to the Monte Carlo data sets return zero to within statistics, and the variance

of these �t results are reasonable when compared to the quoted �t errors.

The fact that the variance on the real parts of the dipole couplings appear to

be narrower by 30% than the quoted �t errors is some cause for concern. If the

variance had been wider, an additional systematic would certainly have been applied

to cover this discrepancy. While it may well be the case that the error quoted in

this analysis on the real parts of the dipole couplings are considerably larger than
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Table 6.6: Scale Error Systematic Uncertainty Summary

Systematic <(d� ) =(d� ) <( ~d� ) =( ~d�)
Uncertainty Scale Scale Scale Scale

Electron Polarization 0.6% 0.6% 0.6% 0.6%
Fiducial Region 2.9% 2.3%

Tracking Resolution 1.4% 1.3% 2.1% 1.3%
Radiative Corrections 1.2% 4.1% 1.7% 3.4%

Monte Carlo Cross Check 10% 5% 10% 5%
Total 10.6% 6.9% 10.6% 6.4%

The various sources of systematic uncertainty which vary the scale of the
�t errors are tabulated along with an estimate of the scale uncertainty
determined by the studies described in the text.

the true uncertainly as implied by the MC, without a more detailed understanding

of the source of this discrepancy the most conservative limit has been chosen.

Another important test is to verify that the sensitivity scale of this analysis is

properly understood. The ideal way to test this scale is to generate a set of Monte

Carlo data with the additional anomalous coupling terms turned on, and verify

that the �t result of this analysis agrees with the input coupling strengths used.

In recent years, the Monte Carlo generator SCOT which includes these anomalous

coupling terms has become available,[59] although a test with this generator has not

been performed.

A second way of testing the sensitivity scale of this analysis is to use the KORALZ

generated Monte Carlo data directly by re-weighting the generated events according

to the full di�erential cross section given by

d�L=R

d
 dq+a dq
�
b

/ ��
0��0�

L=R (d� ; ~d� j cos �;Pe) D�0�(q+a ) D�0�(q�b ): (6.4)

To calculate the event weights, the generated MC momentum vectors are used before

the detector simulation is performed. These event weights are normalized to produce

a mean weight of one when the anomalous couplings are turned o�, and these weights
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are introduced into the likelihood function by modifying Equation 6.3 to read

F(d� ; ~d� ) � �2
X
i

wi logLi: (6.5)

Anomalous coupling strengths up to 5� 10�17 e cm are tested, and the resulting

�t results agree with the input values to � 10% for the real parts and � 5% for

the imaginary parts. Whether this discrepancy can be attributed to the likelihood

�t or the re-weighting procedure is not immediately clear, and further investigation

here is probably warranted. For the sake of this analysis, the observed discrepancy

is being assumed as a systematic error.

6.5 Final Results

The �nal results are determined by taking the MINUIT �t results from Table 6.1,

performing a quadrature sum with the estimated systematic bias uncertainty from

Table 6.5, and multiplying the �nal one sigma error limits by the scale uncertainty

listed in Table 6.6. The resulting �t values, including the systematic uncertainties,

are then given by

<(d� ) = (0:2� 4:3)� 10�17 e cm

=(d� ) = (�2:0� 2:7)� 10�17 e cm

<( ~d� ) = (1:0� 4:5)� 10�17 e cm

=( ~d� ) = (�2:2� 2:6)� 10�17 e cm;

where the errors indicate the 68% CL.

As was previously discussed in Section 6.1, the con�dence intervals found by

MINOS on a single parameter in a multi-parameter �t represent the change in the

likelihood function due to that parameter while keeping the other parameters min-
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imized. For a 95% CL interval, this is the region where �F < (1:96)2, which has

been shown to be equivalent to multiplying these 1� errors by 1.96.

To construct an upper limit on the absolute value of the four dipole coupling

terms from the �t values listed here, each �t value is considered to describe a gaussian

probability density function with a given width and mean value. The symmetric

region about zero which contains 95% of this probability density function is then

quoted as the 95% CL upper limit for each dipole moment, and these limits are

found to be

j<(d� )j < 8:5� 10�17 e cm (95% CL)

j=(d� )j < 6:3� 10�17 e cm (95% CL)

j<( ~d� )j < 9:1� 10�17 e cm (95% CL)

j=( ~d� )j < 6:6� 10�17 e cm (95% CL);

which contains a complete estimation of both the statistical and systematic uncer-

tainties.

6.6 Comparisons

The CP violating WEDM has received a lot of attention in recent years from the

LEP collaborations. By considering the expectation value of CP odd event observ-

ables similar to

O1 = ẑ � (q+ + q�) (6.6)

O2 = ẑ � (q+ � q�); (6.7)

good sensitivity to both the real and imaginary part of the WEDM ( ~d�) can be

achieved.[6, 60] Results have been published previously from the Aleph and Opal
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Table 6.7: CP Odd Observable Limits on the WEDM

Collaboration Real Limit Imag. Limit
Aleph < 0:54
Opal < 0:50 < 1:3
Delphi < 0:71 < 2:3

Combined < 0:32 < 1:0

The 95% CL limits for the real and imaginary parts of the WEDM ( ~d� )
are shown in units of 10�17 e cm.

collaborations,[61] and now Delphi is also reporting results using these CP odd

observables.

With the nearly 160pb�1 of data collected per experiment at the Z pole during

the course of the LEP I program, the precision of these WEDM measurements

is quite good. Recent updates presented at the Tau 96 conference are listed in

Table 6.7.[62]

To date there have been only one other measurement attempted of the CP

conserving WMDM (d� ) performed by the L3 collaboration. In the L3 analysis, an

asymmetry in the observed azimuthal decay angle is formed separately for �+ and

�� decays produced into the forward and backward hemispheres. By considering the

di�erences in the observed asymmetries, values for jd� j and j ~d� j are extracted. The
same essential information is being used in the L3 analysis as has been presented

here, although with a somewhat lower sensitivity. Limits from this L3 analysis were

reported at the Tau 96 conference to be[63]

jd� j < 8:1� 10�17 e cm (95% CL)

j ~d� j < 8:7� 10�17 e cm (95% CL):

Measurements of the electric and magnetic dipole moments at the  ! �� vertex

have also been made by the L3 and Aleph collaborations. In these analyses, the
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energy spectrum of the extra photon from radiative tau pair decays Z ! �� is

�t to constrain any enhancement which would be expected in the presence of these

anomalous couplings. While this is not strictly the same thing as the WMDM

measured in this analysis, considerations of gauge invariance imply that the ratio

d�=d
Z
� should be of order unity. Limits obtained from the L3 collaboration are found

to be[64]

jd� j < 27� 10�17 e cm (90% CL)

j ~d� j < 27� 10�17 e cm (90% CL):

The two limits are the same, as the analysis actually constrains the total contribution

from both dipole moments.

Given that the CP violating WEDM has already been measured by the LEP

collaborations to a much higher precision than achievable in this analysis, it is an

interesting to see what sort of limits the SLD data can set on the CP conserving

WMDM assuming that the CP violating coupling is zero. As the four parameters

in the combined likelihood �t are largely uncorrelated, very little improvement in

the sensitivity is to be expected. Constraining ~d� = 0 results in a �t to the WMDM

alone of

<(d� ) = (�0:3� 3:8)� 10�17 e cm

=(d� ) = (�2:0� 2:4)� 10�17 e cm;

which are virtually identical to the results listed in Table 6.1. The probability

contour for the two free parameters in this �t are shown in Figure 6-5.
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6.7 Final Remarks

While the statistical precision of this analysis is not really competitive with the limits

placed on the CP violating WEDM by the LEP collaborations, it does provide one

of the only measurements of the CP conserving WMDM of the tau lepton currently

available. In addition, this analysis represents a unique method for extracting these

anomalous couplings which has broad applications in other �nal state topologies,

most notably the pair production of top quarks at a future high energy e+e� collider.

The likelihood �t method which has been developed to measure these anomalous

couplings is, in principle, the most e�cient method for extracting this information

from any given data set. Improvements to this analysis which are currently being

explored may come closer to this ultimate statistical sensitivity.

The most signi�cant improvement which could be made to this analysis is to

forego the determination of the underlying tau momentum vector, but rather inte-
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grate over all possible tau momenta in any given event and construct the likelihood

function directly from the observed track four-vectors. This approach would also

avoid the awkward problem of parameterizing the azimuthal decay angle resolution,

and will additionally extract all available information from the three body leptonic

tau decay modes. As the cost of computing power continues to drop, this sort of

inclusive likelihood �t will almost certainly become more common.

To date, there is no conclusive experimental result which can not be accommo-

dated by the Standard Model. Unfortunately, the result presented here has done

nothing to change this fact. The remarkable success of the Standard Model over the

last thirty years has emerged from an ever increasing body of precision experimen-

tal data, and the prospects for moving beyond the Standard Model via precision

measurements alone are starting to look bleak.

To truly make progress, direct evidence of new physics from a higher mass scale,

meaning a higher energy machine, will almost certainly be required. With luck this

evidence may come soon from the LEP II program currently running above the Z

pole at CERN, although nature always has a few surprises in store for those foolish

enough to try and unlock her secrets.



Appendix A
Cross Section Calculation

This appendix describes the calculation of the di�erential cross section for the pro-

cess

e+e� ! �+�� ! a(q+a )
�b(q�b ) +X

for both the Standard Model couplings and additional anomalous couplings de-

scribed by the Lagrangian

Lanom =
i

2
���[���q�(d� � i ~d�

5)]�+Z�: (A.1)

Even though the various components of this calculation can be found in the litera-

ture, it is not a trivial task to reconcile the di�erent conventions used in these calcu-

lations and in this analysis. For completeness, the calculation of the tau production

amplitudes will be presented here along with a check of the tau decay amplitudes

using a consistent set of coordinate and phase conventions.

The squared matrix element jMj2 for the production and decay of � lepton pairs
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at the Z pole can be conveniently written in terms of spin matrices,

jML=Rj2 = ��
0��0�

L=R D�0�(q+a ) D�0�(q�b ) (A.2)

where �L=R is the production spin density matrix for a left or right handed incident

electron, and D(q+a ) is the tau decay matrix to a particular �nal state a with mo-

mentum vector q+a . The Greek superscripts indicate the explicit spin state of the

produced tau leptons. A sum over any repeated index is assumed throughout this

appendix.

The production spin density matrix is simply a compact notation for the pro-

duction amplitudes given by

��
0��0�

L=R =M?(e+e�L=R ! �+�0�
�
�0) M(e+e�L=R ! �+� �

�
� ); (A.3)

while the elements of the tau decay matrix are similarly given by

D�0�(q+a ) =M?(�+�0 ! a(q+a ) +X) M(�+� ! a(q+a ) +X) (A.4)

where �0; � / � 0; � represent the explicit spin states of the intermediate �+ / ��

amplitudes. Since the tau lepton is not a �nal state particle, all possible tau spin

states must be summed over.

A.1 Production Spin Density Matrix

There are a total of 16 terms in � for each incident electron helicity, however these

are the products of only four independent amplitudes which will be calculated here.

Using the shorthand notation

AL=R(�; �) =M(e+e�L=R ! �+� �
�
� ) (A.5)
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these amplitudes can be written in the Feynman algebra as a product of the pro-

duction and decay vertex vectors and the propagator matrix

AL=R(�; �) = ��2 ��� �
�
1(L=R): (A.6)

In the Standard Model, these elements are given by

��1(L=R) = �igz
2

�e+[�(cv � ca
5)]e�L=R (A.7)

��2 = �igz
2

���� [
�(cv � ca

5)]�+� (A.8)

��� =
1

q2 �M2
Z + iMZ�Z

(g�� � q�q�=M
2
Z); (A.9)

where the electron and tau couplings have been assumed to be universal. The addi-

tional anomalous couplings only modify the decay vertex, leading to an additional

term of

��2 = �1

2
���� [�

��q�(d� � i ~d�
5)]�+� : (A.10)

To calculate these amplitudes, the production and decay vectors will be explicitly

calculated for both the Standard Model and anomalous couplings. This calculation

can be found in the literature for the polarized production of top pairs, which aside

from various color factors is identical to the calculation performed here.[7]

A.1.1 Feynman Algebra

To perform this calculation, the Dirac matrix convention of Bjorken and Drell will

be used, where

0 =

0
@ 1 0

0 1

1
A ; i =

0
@ 0 �i

��i 0

1
A ; 5 =

0
@ 0 1

1 0

1
A ; (A.11)
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leading to the two particle eigenspinor solutions of the Dirac equation given by

u1(p) =
p
E

0
BBBBBB@

p
1 + 1=

0

pz=jpj
p
1� 1=

p+=jpj
p
1� 1=

1
CCCCCCA

(A.12)

u2(p) =
p
E

0
BBBBBB@

0p
1 + 1=

p�=jpj
p
1� 1=

�pz=jpj
p
1� 1=

1
CCCCCCA
; (A.13)

where p� = px � ipy, E is the energy of the particle, and  = E=m is the standard

relativistic factor.[65]

The u1 solution represents a particle with spin in the +ẑ direction, while the

anti-particle solution with the same spin orientation can be found by applying the

charge conjugation operation,

v(p) = i2u?(p) (A.14)

v1(p) =
p
E

0
BBBBBB@

p�=jpj
p
1� 1=

�pz=jpj
p
1� 1=

0p
1 + 1=

1
CCCCCCA

(A.15)

v2(p) =
p
E

0
BBBBBB@

�pz=jpj
p
1� 1=

�p+=jpj
p
1� 1=

�p1 + 1=

0

1
CCCCCCA
; (A.16)
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where again the v1 solution represents an anti-particle with spin in the +ẑ direction.

These eigenspinors are normalized by the convention found in Gri�ths such that

uyu = 2E.[66] The adjoint spinors are de�ned in the usual way, such that �u = uy0

and �v = vy0.

A.1.2 Production Vector

This calculation will be performed in the center of mass frame of the e+e� collision,

assuming that the initial state particles are massless fermions.

Using the Dirac eigenspinors listed above, with the electron traveling in the +z

direction:

e�L =
p
E

0
BBBBBB@

0

+1

0

�1

1
CCCCCCA

�e+L =
p
E
�
0 +1 0 �1

�

e�R =
p
E

0
BBBBBB@

+1

0

+1

0

1
CCCCCCA

�e+R =
p
E
�
+1 0 +1 0

�
(A.17)

There are only two non-zero production vectors �1 corresponding to left and right
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handed Z0 bosons:1

��1 = �igz
2

�e+[�(cv � ca
5)]e� (A.18)

��+1 = 0

���1 = �igzE(cv + ca)

0
BBBBBB@

0

�1
+i

0

1
CCCCCCA

�+�
1 = 0

�++
1 = �igzE(cv � ca)

0
BBBBBB@

0

+1

+i

0

1
CCCCCCA
:

(A.19)

The notation ���1 describes an e+(e�) with spin oriented in the direction �(�), where

(+) always refers to a spin aligned in the +ẑ direction. For the electron traveling in

the +ẑ direction this is the same as the helicity convention, where (+) would indicate

a right-handed electron. For the positron, however, the notation is opposite to the

helicity convention, since the positron is traveling in the �ẑ direction. As will be

shown, the reason for this somewhat non-standard notation has to do with the spin

decay matrices which are explicitly written in terms of the tau spin orientation

rather than the tau helicity.

These production vectors can be combined with the propagator matrix to create

a common row vector which will be used to calculate the amplitudes for both the

Standard Model and anomalous decay couplings. For notational simplicity, the

propagator factor from Equation A.9

1

q2 �M2
Z + iMZ�Z

(A.20)

will be assumed to be present in every amplitude, and will be dropped for the

remainder of this calculation. In the center of mass frame, the propagator has a

1 Since there are only two non-zero SM production vectors, the incoming electron spin directly
determines the spin of the produced Z boson.
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particularly simple form since q0 =
p
s and qi = 0:

��� = [g�� � q�q�=M
2
Z] (A.21)

� =

0
BBBBBB@

1� s=M2
Z 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1
CCCCCCA
: (A.22)

Contracting this propagator with the production vector results in the two non-zero

components

����1 = �igzE(cv + ca)
�
0 +1 �i 0

�
(A.23)

��++
1 = �igzE(cv � ca)

�
0 �1 �i 0

�
: (A.24)

This four vector is the weak current describing Z boson production, and at this

point it is useful to rotate this four vector to take into account the tau production

angle.

De�ning the angle theta to lie between the outgoing �� and incoming e�, a

rotation of minus theta needs to be applied to the initial coupling current. This

rotation is performed by the following matrix:

R(�) =

0
BBBBBB@

1 0 0 0

0 cos � 0 � sin �

0 0 1 0

0 sin � 0 cos �

1
CCCCCCA
: (A.25)
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Putting all of this together, the rotated production vector is given by

~�L = R(�) ��+�
1 = �igzE(cv + ca)

�
0 + cos � �i +sin �

�
(A.26)

~�R = R(�) ���+1 = �igzE(cv � ca)
�
0 � cos � �i � sin �

�
; (A.27)

where these are now written explicitly in terms of the incoming electron helicity.

A.1.3 Decay Vector

For the decay vector, the coordinate system is de�ned such that the fermion is

traveling in the +z direction, just as in the case of the production vector. We will

take the tau mass into account, resulting in the following outgoing eigenspinors:

�+L =
p
E

0
BBBBBB@

+
p
1� 1=

0

�p1 + 1=

0

1
CCCCCCA

�+R =
p
E

0
BBBBBB@

0

+
p
1� 1=

0

+
p
1 + 1=

1
CCCCCCA

(A.28)

���L =
p
E
�
0 +

p
1 + 1= 0 +

p
1� 1=

�
���R =

p
E
�
+
p
1 + 1= 0 �p1� 1= 0

�
:

(A.29)

The decay vector (�2) has both a standard model term and an anomalous cou-
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pling term. The standard model term is given by

��2 = �igz
2

���[�(cv � ca
5)]�+ (A.30)

�++
2 = �igzE(cv � c0a)

0
BBBBBB@

0

+1

�i
0

1
CCCCCCA

�+�
2 = �igzE=

0
BBBBBB@

�ca
0

0

�cv

1
CCCCCCA

���2 = �igzE(cv + c0a)

0
BBBBBB@

0

�1
�i
0

1
CCCCCCA

��+2 = �igzE=

0
BBBBBB@

+ca

0

0

�cv

1
CCCCCCA
;

(A.31)

where c0a = �ca, while the anomalous coupling term is given by

��2 = �1

2
���[���q�(d� � i ~d�

5)]�+ (A.32)

�++
2 = �igzE(kv=)

0
BBBBBB@

0

�1
+i

0

1
CCCCCCA

�+�
2 = �igzE(kv � k0a)

0
BBBBBB@

0

0

0

+1

1
CCCCCCA

���2 = �igzE(kv=)

0
BBBBBB@

0

+1

+i

0

1
CCCCCCA

��+2 = �igzE(kv + k0a)

0
BBBBBB@

0

0

0

+1

1
CCCCCCA

(A.33)

where kv =
p
s

gz
d� , ka = i

p
s

gz
~d� , and k

0
a = �ka. Again, the indices of ���2 represent

the spin orientation along the outgoing fermion direction ẑ, rather than the helicity

of the outgoing particle. That is to say, the spin notation for the �+ is given by
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�̂(�+) � ẑ, where ẑ is de�ned by the �� direction. The more common helicity notation

can be recovered by reversing the �+ index �.

A.1.4 Production Amplitudes

All of the pieces are now in hand to calculate the amplitudes. Considering the

left and right handed production amplitudes separately, the product of the produc-

tion and decay vectors are listed in Table A.1 and Table A.2. Remember that all

amplitudes must be multiplied by the propagator factor from Equation A.20.

These amplitudes are explicitly calculated using the Z boson propagator, al-

though the amplitudes for the photon propagator can also be found by making the

substitutions

cv ! 2ge=gz

ca ! 0
(A.34)

along with modifying the propagator factor by the substitution

1

q2 �M2
Z + iMZ�Z

! 1

q2
: (A.35)

The complete amplitude, then, is the sum of the Z boson and photon terms. For

completeness, the sixteen terms of � for both left-handed and right-handed incident

electrons are listed in Table A.3 in the relativistic limit of vanishing tau lepton mass

and ignoring the photon propagator amplitudes.

A.2 Decay Matrix

The partial width calculation for various one prong tau decays was performed before

the tau lepton was actually discovered.[12] Working in the tau rest frame, the partial

width for a particular tau decay can be written in terms of a spin independent decay
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Table A.1: Standard Model Amplitudes

Left Handed Right Handed
�g2zE2(cv + ca)� �g2zE2(cv � ca)�

A(++) �(cv � c0a)(1� cos �) �(cv � c0a)(1 + cos �)
A(��) �(cv + c0a)(1 + cos �) �(cv + c0a)(1� cos �)
A(+�) �(cv=) sin � +(cv=) sin �
A(�+) �(cv=) sin � +(cv=) sin �

Production amplitudes are shown separately for left and right handed in-
cident electrons. In the relativistic limit only the A(++) and A(��) am-
plitudes are non-zero.

Table A.2: Anomalous Coupling Amplitudes

Left Handed Right Handed
�g2zE2(cv + ca)� �g2zE2(cv � ca)�

A(++) +(kv=)(1� cos �) +(kv=)(1 + cos �)
A(��) +(kv=)(1 + cos �) +(kv=)(1� cos �)
A(+�) +(kv � k0a) sin � �(kv � k0a) sin �
A(�+) +(kv + k0a) sin � �(kv + k0a) sin �

Production amplitudes are shown separately for left and right handed in-
cident electrons. In the relativistic limit only the A(+�) and A(�+) am-
plitudes are non-zero.
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Table A.3: Relativistic Production Spin Density Matrix Elements

Matrix Left Handed Right Handed
Element g4zE

4(cv + ca)
2� g4zE

4(cv � ca)
2�

�++++ (cv � ca)
2(1� cos �)2 (cv � ca)

2(1 + cos �)2

����� (cv + ca)
2(1 + cos �)2 (cv + ca)

2(1� cos �)2

�++�� jkv � kaj2 sin2 � jkv � kaj2 sin2 �
���++ jkv + kaj2 sin2 � jkv + kaj2 sin2 �
�+++� �(kv � ka)(cv � ca) sin �(1� cos �) (kv � ka)(cv � ca) sin �(1 + cos �)
�++�+ complex conjugate c.c.
����+ �(kv + ka)(cv + ca) sin �(1 + cos �) (kv + ka)(cv + ca) sin �(1� cos �)
���+� c.c. c.c.
�+�++ �(kv + ka)(cv � ca) sin �(1� cos �) (kv + ka)(cv � ca) sin �(1 + cos �)
��+++ c.c. c.c.
��+�� �(kv � ka)(cv + ca) sin �(1 + cos �) (kv � ka)(cv + ca) sin �(1� cos �)
�+��� c.c. c.c.
�+�+� (c2v � c2a)(1� cos2 �) (c2v � c2a)(1� cos2 �)
��+�+ c.c. c.c.
��++� (kv + ka)

?(kv � ka) sin
2 � (kv + ka)

?(kv � ka) sin
2 �

�+��+ c.c. c.c.

The spin density matrix elements are given by ��
0��0� = A?(�0; �0)A(�; �). The �rst four

terms contribute to the total cross section, as well as produce the correlated longitudinal
tau polarization. The second and third set of four terms generate the transverse polar-
ization of the �� and �+ respectively, and will be zero in the absence of the anomalous
couplings. The last four terms, responsible for transverse spin correlations, have both a
SM and anomalous component.
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function f(q?) and a spin dependent decay function g(q?) as

d�
dq?

(�� ! b(q?) +X) / fb(q
?) + gb(q

?) �̂ � q̂?
d�
dq?

(�+ ! a(q?) +X) / fa(q
?)� ga(q

?) �̂ � q̂?
(A.36)

where �̂ is the tau spin vector and q? is the momentum of the tau decay product in

the tau rest frame. In this analysis it is assumed that the only anomalous couplings

enter through the Z ! �+�� vertex, so the tau decays retain their Standard Model

coupling parameters, and the symmetry between the �+ and �� partial widths is

required by CP invariance.

A.2.1 Coordinate System

The coordinate system used for the tau decay matrices is de�ned by the production

spin density matrix, where the +ẑ direction is always taken to be pointing along the

�� momentum vector, while the +x̂ direction lies in the production plane pointing

in the direction of increasing production angle �, and the +ŷ direction is oriented

out of the production plane to complete a right handed coordinate system. For the

�+, this means that a spin of +�̂z is pointing opposite to its direction of motion.

A.2.2 Decay Functions

The tau decay matrix D(q?�) de�ned in Equation A.4 is then equal to the di�erential
decay width written in the Dirac spin space of the tau as

D(q?�) = f(q?)� g(q?) �̂ � q̂?

=

0
@ f(q?)� g(q?) cos �? �g(q?) sin �?e�i�?

�g(q?) sin �?e+i�? f(q?)� g(q?) cos �?

1
A : (A.37)
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Figure A-1: The tau decay matrix coordinate system is shown.

The matrix D(q?) is normalized so that

Z
D(q?a) dq?a =

0
@ 1 0

0 1

1
A ; (A.38)

resulting in the unit matrix when integrated over all momenta q?.

For the two body decay �� ! ���� the decay functions have a particularly

simple form,

f�(q
?) =

1

4�
�(x? � 1) (A.39)

g�(q
?) =

1

4�
�(x? � 1); (A.40)

where x? = 2E�=E� is the scaled energy of the observed pion, which is required

to be one by the kinematics of the two body decay. In this example, the pion is

assumed to be massless.

In the case of the three body semi-leptonic decay �� ! e���e�� there is an extra
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unobserved neutrino which must be integrated over �rst, resulting in decay functions

of the form

fe(q
?) = +

(x?)2

2�
(3� 2x?)

ge(q
?) = �(x?)2

2�
(2x? � 1); (A.41)

where again x? = 2Ee=E� is the scaled energy of the observed charged particle, and

again the �nal state particle is assumed to be massless. The exact decay functions for

the muon and rho decays are somewhat more complicated due to the non-negligible

mass terms. These functional forms will be presented in Sections A.2.7 and A.2.8

respectively.

A.2.3 Boost Algebra

The decay matrices described in the previous section are written in terms of experi-

mentally unavailable parameters (x?; �?; �?) in the tau rest frame. To write these in

terms of the lab frame variables of interest (x; �), a Lorentz boost must be applied

along the tau ight direction, followed by a change of variables. This boost can be

written as

0
BBB@

E

pk

p?

1
CCCA =

0
BBB@

 � 0

�  0

0 0 1

1
CCCA
0
BBB@

E?

p?k

p??

1
CCCA (A.42)

where � = p�=m� and  = E�=m� are the Lorentz parameters describing the boost

of the tau rest frame into the lab frame, while the decay products are assumed to

be massless. Note that � is signed by the individual tau momentum, so that in the

coordinate system where ẑ = q̂��, �
� � +1 and �+ � �1.
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Substituting the relations

E? = E?
0x

?

p?k = E?
0x

? cos �? (A.43)

p?? = E?
0x

? sin �?;

where E?
0 = m�=2 is the maximum allowed decay energy, into Equation A.42 gives

the following relations in the Z center of mass frame,

E = x?E?
0( + � cos �?)

pk = x?E?
0(� +  cos �?) (A.44)

p? = x?E?
0 sin �

?;

which can be explicitly written in terms of the lab frame kinematic variables as

x =
x?

2
(1 + �y?)

y =
� + y?

1 + �y?
(A.45)

� = �?

where x = E=E� , y = cos �, and the transverse azimuthal angle � is invariant by

virtue of being transverse to the boost direction. The opposite boost from the lab

frame to the center of mass frame gives the useful inverse relations

x? = 22x(1� �y)

y? =
y � �

1� �y
(A.46)

�? = �:
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A.2.4 Change of Variables

The di�erential partial width in the lab frame can be written in terms of the di�er-

ential partial width in the tau rest frame as

d2�

dxd�
=

Z
d3�

dx?dy?d�?

����@(x?; y?)@(x; y)

����
����@�?@�

���� dy; (A.47)

where the Jacobian can be found from Equation A.46 to be

����@(x?; y?)@(x; y)

���� =
����@x?@x

@y?

@y
� @x?

@y

@y?

@x

����
=

2

1� �y
: (A.48)

Some care must be taken when considering the limits of integration for y at a �xed

energy x. The lab frame angle y is solely dependent upon the center of mass angle

y?, which is bounded in the center of mass frame by the relation in Equation A.45

y? =
1

�
(2
x

x?
� 1): (A.49)

Any given value of x describes a curve in the x? � y? plane which is bounded at

both ends by the kinematic limits of the center of mass frame variables. At x? = 1,

there is a bound on y? = 1
�
(2x� 1) which is a lower bound for �� decays (� � +1)

and an upper bound for �+ decays (� � �1). Similarly, there is a lower bound on

x? when y? = sign(�). Using Equation A.45, this gives limits of

y�lo = +
1

j�j(1�
1

2x2
) y�hi = +1 (A.50)

y+hi = � 1

j�j(1�
1

2x2
) y+lo = �1 (A.51)

on the integral over the lab frame variable y.

From Equation A.37, there are three separate integrals which need to be per-
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Figure A-2: Limits of integration in the tau center of mass frame for a �xed value of
the lab frame variable x

formed,

A(x) =

Z
f(x?) jJ j dy

B(x) =

Z
g(x?) cos �? jJ j dy (A.52)

C(x) =

Z
g(x?) sin �? jJ j dy

from which we can write the tau decay matrix in terms of lab frame variables as

D�(x; �) =

0
@ A(x)� B(x) �C(x)e�i�

�C(x)e+i� A(x)�B(x)

1
A : (A.53)
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A.2.5 Pion Decay

For the hadronic decay �� ! ���� , described by Equation A.40, x? is restricted to

be equal to one by the kinematics of the two body decay. In this case,

d2�

dxd�
=

d2�

dy?d�?

����@(y?; �?)@(x; �)

����
y? =

1

�
(2x� 1) (A.54)

@(y?; �?)

@(x; �)
=

2

�
;

and the three lab frame functions are given by

A�(x) = f�(x
? = 1)

2

�

=
1

2�j�j (A.55)

B�(x) = g�(x
? = 1)

2

�
y?

= � 1

2��2
(2x� 1) (A.56)

C�(x) = g�(x
? = 1)

2

�

p
1� (y?)2

=
1

2��2
2
p
x(1� x) + (�2 � 1)=4: (A.57)

The subsequent decay matrix, in the limit that � ! 1, is given by

D�(x; �) =
1

2�

0
@ 2x �2px(1� x)e�i�

�2px(1� x)e+i� 2(1� x)

1
A ; (A.58)

which is both properly normalized under integration over all momenta, and shows

that left handed �� decays have the same energy spectrum as right handed �+

decays.
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A.2.6 Electron Decay

For the leptonic decay �� ! e���e�� , described by Equation A.41, x? is no longer

restricted to be equal to one, and the integrals in Equation A.52 must be performed.

Starting with the �rst integral

A�(x) =
1

2�

Z
(3(x?)2 � 2(x?)3)

2

1� �y
dy; (A.59)

it is easier to work with the variable u = (1� �y), where x? = (22x)u, giving

A�(x) = � 1

2��

Z
(6(22x)2u� 4(22x)3u2) du: (A.60)

Changing the integration limits from y to u gives f 1
2�2

; (1� j�j)g where these are
the flo,hig limits for a �� decay and the fhi,log limits for a �+ decay. Flipping the

limits of integration will cancel the sign of the factor of 1
�
in equation A.60 giving

A�(x) = � 1

2�j�j
�
3x2(22)u2 � 4

3
x3(22)3u3

�1�j�j
1=(2x2)
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2
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3

�

=
1

2�

�
5

3
� 3x2 +

4

3
x3
�
as (j�j ! 1): (A.61)

The second integral can be evaluated in a similar way with

B�(x) = � 1

2�

Z
(2(x?)3 � (x?)2)

2

1� �y
y? dy

=
1

2��2

Z
(4(22x)3u� 2(22x)2)(

1

2
� u) du:

In this integral, the cos �? has produced an extra factor of 1=� in front of the integral

so that reversing the limits of integration will pick up a factor of �1 not canceled
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by the factor of 1=�2.

B�(x) = � 1

2��2

Z 1�j�j

1=(2x2)

�
4(22x)3(

1

2
u� u2)� 2(22x)2(

1
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3
� 4x2(

2

1 + j�j) + (x2 + 4x3)(
2

1 + j�j)
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3
x3(
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1 + j�j)
3
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= � 1
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�
1

3
� 3x2 +

8

3
x3
�
as (j�j ! 1) (A.62)

The third integral is given by

C�(x) = � 1

2�

Z
(2(x?)3 � (x?)2)

2

1� �y

p
1� (y?)2 dy; (A.63)

which does not have a straight forward analytic solution. To handle this integra-

tion, as well as the more complicated muon and rho decays, a numerical Monte

Carlo integration technique is employed. Decay events are generated with uniform

probability in the tau rest frame variables (x?; y?), and each event is assigned a

weight equal to the matrix element of interest from Equation A.37. These weights

are then accumulated into a histogram as a function of the lab frame variable x.

After normalizing by the total number of events generated, the population of each

bin is equal to the mean value of the lab frame function over that range of x.

Combining the two analytic integrals gives the decay matrix for a massless lep-

tonic decay in the limit as � ! 1

D�(x; �) =
1

2�

0
@ (2� 6x2 + 4x3) �

� (4
3
� 4

3
x3)

1
A ; (A.64)

where these diagonal elements agree with the well known Michel spectrum for the

two longitudinal tau spin states. The numeric solution for the o�-diagonal element

is shown in Figure A-3, along with the numerically integrated diagonal elements,

which agree well with the analytic functions listed above.
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Figure A-3: The electron decay functionsA(x)+B(x), A(x)�B(x), and C(x) are shown
after a change of variables into the lab frame by the numerical integration
technique described in the text.

A.2.7 Muon Decay

For the leptonic decay �� ! ������� , the mass of the �nal state particle can no

longer be ignored. From Tsai, the decay functions are given by

f�(q
?) =

1

2�

�
(x?)2 � 4

m2
�

m2
�

� �
3� 2x? +

m2
�

m2
�

�
3� 4

1

x?

��
(A.65)

g�(q
?) =

1

2�

�
(x?)2 � 4

m2
�

m2
�

� �
1� 2x? + 3

m2
�

m2
�

�
p?

E?
(A.66)

which reduces to the electron result as (m�=m� ) ! 0. The factor p?=E? can be

written in terms of x? as

p?

E?
=

s
1�

�
2

x?

�2 m2
�

m2
�

: (A.67)
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Figure A-4: The muon decay functions A(x)+B(x), A(x)�B(x), and C(x) are shown
after a change of variables into the lab frame.

The possible values of x? are bounded by

x?lo =2
m�

m�
x?hi = 1 +

m2
�

m2
�

; (A.68)

and the numerically integrated matrix functions are shown in Figure A-4.

A.2.8 Rho Decay

The hadronic decay mode �� ! ���0�� is dominated by the rather broad rho

resonance. The decay functions listed in Tsai are computed in the narrow width

approximation and are given by2

f�(q
?) =

1

2�

(�
x? � 1

2

�
1 +

m2
�

m2
�

��2
+

m2
�

4m2
�

�
1� 4

m2
�

m2
�

� �
1� m2

�

m2
�

�)
(A.69)

2 The function printed in the original Tsai article was incorrect, and was revised in the erratum.
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(A.70)

where x? is the scaled energy of the ��, not the ��. Again, the factor p?=E? can be

written in terms of x? as

p?

E?
=

s
1�

�
2

x?

�2
m2

�

m2
�

: (A.71)

To incorporate the width of the rho resonance, the Q2 of the rho decay process

is distributed according to a Breit-Wigner by smearing the value of m� used in

the equations above. This gives satisfactory, although not exact, agreement with

the predicted left and right handed decay distributions predicted by the Tau decay

package TAUOLA.3 This di�erence contributes to the systematic uncertainty assigned

to the rho decay modeling.

3
TAUOLA is a package for simulating tau lepton decays used in the KORALZMonte Carlo generator.
Unfortunately, the current version of KORALZ does not allow for transverse polarizations, or
hemisphere spin correlations. The decay distributions generated for purely longitudinal tau
polarizations are, however, quite accurate. Details can be found in
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Figure A-5: The rho decay functions are shown in the lab frame. The curves show the
result of the numerical integration technique including the width of the rho
resonance.



Appendix B
Compton Cherenkov Detector Simulation

This appendix describes the Monte Carlo simulation of the Compton Cherenkov De-

tector (CKV). Based on the EGS4 electromagnetic shower package, this simulation

has been greatly expanded in detail and scope for the 1994-95 run in an attempt

to improve the accuracy of the detector calibration. A detailed computer model of

the detector response is needed to correctly account for a small but non-negligible

smearing of the acceptance in each detector channel. This smearing, which con-

tributes roughly a one percent correction to the calculated analyzing powers, is due

primarily to a lead pre-radiator placed in front of the detector to improve the signal

to noise ratio.

In general, an attempt has been made to simulate every aspect of the detec-

tion process from the original electron bunch through to the transmission of the

Cherenkov photons in the detector. As with any Monte Carlo simulation a decision

has to be made as to when a detail is too �ne to warrant inclusion, and in some

cases there is simply not enough knowledge to construct an accurate model. In

many cases, the actual e�ect of adding some new detail was not known beforehand,

and only in retrospect does it turn out to be unimportant.

Section B.1 describes the basic theory behind the analyzing power calculations
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and the framework of the simulation. Sections B.2 and B.3 describe the modeling of

the electrons themselves from the SLD interaction point where they are generated,

through the e� scattering process, and into the spectrometer elements of the po-

larimeter system. Section B.4 covers the geometry of the detector as described to

the EGS shower package which simulates the interactions of these electrons in the

detector and surrounding material. Simulation of the actual Cherenkov process and

the transmission of the light to the Photomultiplier tubes is covered in Section B.5,

while some of the actual results are detailed in Section B.6. A �nal note on the code

itself will be found in Section B.7.

B.1 Compton Scattering Theory

The cross section for Compton scattering, more fully developed in Chapter 3, can

be written in terms of an unpolarized cross section d�0 and an asymmetry function

A as

d�(x) = d�0(x) [1 + PA(x)] (B.1)

where the kinematic variable x = K 0=K 0
max is the fractional energy of the scattered

Compton photon in the lab frame, and P is the longitudinal polarization product.

In the Compton polarimeter system, a spectrometer is used to momentum analyze

the scattered electrons, and the spatial variation of the cross section is measured in

the multi-channel CKV detector. The analyzing power for a particular channel ai

can be written as

ai =

R
A(x)Ri(x)d�0

dx
dxR

Ri(x)d�0
dx
dx

(B.2)

where Ri(x) is the detector response function function for that channel. Equa-

tion B.2 shows that knowledge of the absolute response of each of the channels is
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not necessary since Ri appears in both the numerator and the denominator.

The integrals in Equation B.2 can be carried out over either position or energy,

although in this case the response is more naturally thought of as a function of

position. In writing the asymmetry function A(x) in terms of position, it is as-

sumed that the transformation function representing the e�ect of the spectrometer

is known. This same transformation function also enters into the Jacobian needed to

convert the d�0
dx

term. Because the incoming electron beam has �nite spatial width

and angular divergence, as well as non-zero energy divergence, this transformation

is in principle not a simple one-to-one mapping of energy to position, but depends

upon the exact trajectory of each individual electron. In fact, the center of mass

energy of the collision is smeared by the beam energy divergence, and should be

convoluted into Equation B.2 as well.

One way to tackle this problem is to use the simulation itself to do the en-

tire calculation, tabulating not only the response, but the exact cross section and

asymmetry of each electron generated, thereby allowing an exact calculation of the

analyzing powers for each channel. For most cases, the cost in computational time

makes this sort of approach prohibitive, especially when the results are to be used

in a �tting procedure. A second method is to use the full simulation to produce a

response function with all smearing taken in to account, and then integrate these

response functions against the analytic expressions for the cross section and asym-

metry. The same spectrometer model is used in both techniques, the only approx-

imation being made is that the complicated energy to position relationship can be

approximated without bias by an analytic function representing the trajectory of

the beam centroid. This turns out to be a good approximation, and further results

will be deferred until Section B.6.
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B.2 Electron Simulation

Photons from the Compton Laser collide with the outgoing electron beam in the

South Final Focus immediately before the �rst dipole bend magnet of the South

Arc. In order to accurately simulate the spatial and angular divergence of the tar-

get electrons at the collision point, a �rst order beam transport matrix is used to

estimate the electron beam transport from the SLD Interaction Point to the Comp-

ton Interaction Point (CIP). The matrix is derived from a Transport simulation of

the SFF beam elements.[67] In general, the transport matrix T operates on a vector

of beam parameters

~x =

0
BBBBBBBBB@

x

x0

y

y0

E

1
CCCCCCCCCA

where x0 is the angular deection and x is the spatial displacement from the central

or design trajectory. This vector can either represent an individual electron or a

beam envelope describing an entire ensemble, however in this simulation ~x always

represents a single electron. In the SFF between the SLD and the CIP, all of the

beam control elements are orthogonal to �rst order leading to a decoupling of the x

and y coordinates. The beam transport matrix can then be parameterized as

0
@ x

x0

1
A

CIP

=

0
@ Txx Txx0
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1
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0
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x0
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; (B.4)
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Table B.1: Beam Transport Matrix Elements

Parameter Value
Txx -4.2240
Tx0x0 -0.2685
Txx0 1.7692 �m/�Rad
Tx0x 0.0757 �Rad/�m
Tyy -5.7817
Ty0y0 -0.1148
Tyy0 0.9752 �m/�Rad
Ty0y -0.3450 �Rad/�m

where these values are listed in Table B.1. The beam parameters at the CIP are

entirely dominated by the beam divergence at the SLD IP. The small micron-level

spot sizes can be accurately approximated as zero, further reducing the matrix T

to only four signi�cant parameters. The electrons are generated with an elliptical

gaussian distribution of divergence angles at the SLD IP and `transported' to the

CIP by means of the transport matrix T . This distribution has a projective half

width of 300 �Rad in x and 200 �Rad in y, and is assumed to be uncorrelated

between the two axes at the SLD IP.

The resulting one sigma beam parameters at the Compton IP are shown in

Table B.2. The incident laser spot is estimated to be at least a few times larger

than the electron bunch, and no additional spatial convolution is made to simulate

the e�  collision. To �rst order the SFF is achromatic between the SLD and the

CIP, and thus there is no energy dependence to the spatial distributions at the CIP.

The Compton scattering angle in the lab frame is on the order of 10 microradians,

which is small compared to the natural divergence of the beam at the CIP. For this

reason, no attempt has been made to add any additional energy dependent angular

divergence to simulate the scattering process. It will be shown in Section B.6 that

the simulated analyzing powers are actually quite insensitive to the details of the

electron spot.
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Table B.2: Compton IP Electron Beam Parameters

Parameter Value
�x 530 �m
�y 195 �m
�x0 80 �Rad
�y0 23 �Rad

Beam spot size and divergence angles are shown at the CIP assuming a
300 �Rad by 200 �Rad spot size at the SLD IP. The position and angle
for each coordinate are completely correlated, although there is assumed
to be no correlation between the two axes.

In order to give each channel of the CKV adequate statistics, the scattered

electron energy is selected to produce a roughly at distribution of particles across

the face of the detector. The unpolarized cross section and asymmetry function

are calculated for each electron to be accumulated along with the eventual detector

response, so no Monte Carlo simulation of the absolute cross section is necessary.

B.3 Spectrometer

After interacting with the Compton Laser, the scattered electrons are swept out of

the main electron beam by a series of magnets shown schematically in Figure B-1.

The equations of motion for an electron of known energy through these magnets

is calculated analytically in the Turtle ray tracing package,[68] and is used in this

simulation to determine the exact trajectory of each electron into the detector. Ta-

ble B.3 shows the default parameters used to characterize this e�ective spectrometer

for a 50 GeV design energy electron. The actual magnet strengths used in the sim-

ulation are scaled down from these values by the actual beam energy which is �xed

to be 45.6 GeV.

This spectrometer model is exact up to higher order �eld components such as

fringing �elds at the dipole faces, which have been neglected. In general, any small
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Figure B-1: The block diagram of spectrometer elements is shown with deection angles
for the on-energy beam.

Table B.3: Spectrometer Parameters

Element Length Field Half Aperture
SB 4.00272 m 0.41667 kGauss
Drift 0.26649 m
Q6.5 1.27033 m 12.0 kGauss 5.0 cm
Drift 0.99127 m
HB 2.30418 m 12.5 kGauss

Magnet strengths listed are for the 50 GeV design momentum. The
quadrupole is defocusing in the horizontal plane.

error made in the absolute scale of the dipole �eld simulated by the model will be

corrected for by the complete calibration procedure. The addition of the quadrupole

Q6.5 for the 1994-95 SLD run has made the spectrometer model a much more

complex analytic function, and has added a few more parameters to the model

itself, but in principle it has not changed the overall function of the spectrometer in

the simulation.

Up to this point in the simulation, the electrons have been described in the co-

ordinates of the Transport equations which are deviations from a design or central

energy ray particle. The last step in the electron beam simulation is to make a co-

ordinate transformation into the system used to describe the detector geometry to

the EGS4 shower simulation package. This transformation is straightforward pro-

vided one knows where the on energy electron beam is in relation to the Cherenkov
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Figure B-2: The orientation of the CKV detector is de�ned with respect to the neutral
beamline. The front face of channel 5 along the detector centerline is used
as the reference point.

detector itself. Since this can vary with di�erent beam energies and magnet set-

tings, the location of the Cherenkov detector is de�ned with respect to the neutral

or undeected beamline, and the spectrometer model itself is used to calculate the

location of the nominal energy electron beam.

There are three angles and three distances which completely describe the position

of the Cherenkov detector with respect to the neutral beamline. Of these, the

vertical displacement and pitch, along with the roll of the detector are all assumed

to be zero, and are constrained to be nearly so by survey data taken during detector

installation and removal. The remaining three parameters, shown in Figure B-2, are

the longitudinal distance along the neutral beamline, the transverse distance away

from the neutral beamline, and the yaw of the detector centerline. The front face of

channel 5 along the detector centerline is used as the detector orientation reference

point. The transverse orientation of the detector is essentially what the calibration

process determines, while the other two parameters are �xed in the simulation to

their surveyed values. The calibrated analyzing powers are actually quite insensitive

to variations in these two �nal parameters.

With this transformation the incident electron simulation is complete and the

EGS shower simulation package is called to do the real computational work of the
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Table B.4: CKV Detector Survey Values

Parameter Survey Value
Pitch -1.2 mRad
Roll -0.2 mRad
Yaw 44.5 mRad
�x 16.140 cm
�y 0.149 cm
�z 211.915 cm

�x is determined by the calibration procedure; this represents a typical
value. Survey data was taken March 14, 1994.

simulation.

B.4 Detector Geometry

The EGS4 code package is used to simulate the interactions of the high energy

electrons with the CKV detector and surrounding material.[44] The CKV detector

is described to the EGS package by a planar geometry consisting of approximately

100 planes and over 200 distinct regions. The detail of this geometry can be seen in

Figure B-4. Along with a full description of the detector itself, the model includes

the lead preradiator and beampipe ange in front of the detector, as well as the

beampipe itself and an assortment of material on the other side of the beampipe

where the backscattered Compton photon will interact.

The head of the detector has a fairly complicated geometry reecting the pro-

jective nature of the detector channels. To facilitate detector assembly, the thin

walls of each channel are sandwiched between aluminum spacer plates which de�ne

the oor and ceiling of the channel volume. Each plate has an identical angular

extent, and is staggered longitudinally in the detector by a �xed amount from its

neighbor. This entire assembly is kept in place by a pair of press bars providing com-

pression from either side. Since the dimensions of the spacer plates are well known
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Figure B-3: The channel wall geometry as de�ned by the spacer bars is schematically
shown. Every spacer bar subtends an equal angle, has equal length along
its centerline, and is o�set by an equal amount in the longitudinal direction.
These three parameters along with the channel wall thickness completely
determine the channel wall geometry.

from fabrication drawings, the simulation code uses this information to construct

the detector geometry at run time in much the same way the detector is physically

assembled. As shown in Figure B-3, the planes de�ning the walls of each channel

are computed by stacking the spacer plates sequentially outward from the central

channel. This technique has greatly simpli�ed the parameterization of the detector

head geometry, while allowing for the study of things like machining tolerances on

the calculated analyzing powers.

The smearing of the response functions is primarily due to the presence of ma-

terial upstream from the detector. Two removable lead sheets which are used as a

pre-radiator provide 6.86 mm (1:22X0) of material during normal operating condi-

tions. There is also 2.78 mm (0:03X0) of aluminum from the front of the vacuum

can which contains the CKV detector gas volume. The electrons exit the SLD vac-
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uum through a thin stainless steel window which is assumed to have no signi�cant

e�ect, and is not modeled. As a result of problems seen during the 1993 run, an

attempt has been made to accurately simulate all material near the beampipe which

might scatter electrons into the detector volume. As seen in Figure B-4, this ma-

terial includes the beampipe itself, the ange holding the SLC exit window, and

the aluminum side wall of the CKV vacuum can. In Section B.6, it will be shown

that while this extra beampipe material can make a substantial di�erence to the

asymmetry observed in the inner channels, the e�ect of this material is negligible

in Channel 7. Other material included in the simulation include the stainless steel

blocks used as 45 degree mirrors, the aluminum press bars and spacer plates which

de�ne the oor and ceiling of the channel volume, and a chunk of lead immediately

behind the detector which simulates the PTD detector. None of this extra material

has an observable e�ect on the simulated analyzing powers or detector response. No

attempt has been made to simulate showering in the actual detector gas itself. A

vacuum is assumed in all regions which are not �lled with solid material.

B.5 Cherenkov Photon Production

The production and transport of the Cherenkov light in the CKV detector is modeled

for the nine regions representing the channels in the detector head, as well as in nine

additional regions representing the transverse light guides. In principle, Cherenkov

light is produced everywhere inside the detector, but small aluminum covers at the

front of each channel keeps this stray light from reaching the Photomultiplier tubes.

The simulation of the Cherenkov process was originally developed by Rob Elia for the

1992 run, and has survived mostly unchanged since then. The Cherenkov production

threshold for propane at 1 atmosphere is roughly 10 MeV. The exact value used

directly e�ects the width of the simulated response function, and a number of cross

checks on the shape of the response function constrain this quantity to be good to
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Figure B-4: An EGS4 simulation of a single electron showering in the CKV detector is
shown.

roughly �2 MeV. Every charged particle transported through one of the sixteen

active detector regions radiates Cherenkov photons in this simulation. The number

of Cherenkov photons produced per unit length is given by

n(E) = n0 sin
2 �

= 2215:1=cm� sin2 �max
E2 � E2

min

E2 �m2
e

(B.5)
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where

sin2 �max = m2
e=E

2
min (B.6)

and the normalization factor n0 corresponds to a production energy range from 2 -

8 eV. Given the assumption that Emin = 10 MeV, the maximum production angle

�max = 51 mRad and the Cherenkov production per unit length n(E) � 5:8=cm as

� ! 1.

The produced photons are generated randomly along the length of the track and

with a uniform distribution in azimuth about the charged track. The opening angle �

between the photon and charged track depends on the energy of the charged track as

shown in Equation B.5. To save processing time, the transmission of the Cherenkov

light is not simulated, but rather a probability function P (z?; �?; �?) is calculated

beforehand and used as a lookup table. The three coordinates z?; �?; and �? are the

longitudinal distance from the start of the channel, the azimuthal direction of the

photon, and the polar angle of the photon from the individual channel center line.

There is only one function P used for all nine channels.

The function P is generated by simulating the reections of the Cherenkov pho-

tons down the mirrored aluminum light guides, and o� the two 45 degree mirrors.

Photons are generated over the full useful range of the z?,�?, and �? parameters, and

the reectivity of the photons o� the aluminum surfaces is calculated for each ray as

a function of the incident angle and photon energy using the Fresnel equations. The

calculated reectivity is then normalized separately for both the 45 degree blocks

and the grazing incidence from the channel walls to agree more closely with direct

measurements made with a mercury lamp. Each photon orientation is simulated

multiple times with a at distribution in energy from 2 - 8 eV, and the transmission

is combined with the expected quantum e�ciency of the photocathode shown in

Figure B-5 to provide the net probability of a photoelectron being produced. The
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Figure B-5: The Quantum E�ciency as a function of incident photon energy as used in
the detector simulation is shown for the Hammamatsu R1398 photomulti-
plier tube.

actual value returned by the function P is therefore integrated over a at photon

energy spectrum with the energy dependence of the photocathode and the reec-

tivity taken into account. No attempt has been made to simulate the absorption of

photons in the gas, nor has the polarization of the Cherenkov light been taken into

account.

It is known that there must be some scintillation of charged particles below the

10 MeV Cherenkov threshold in the detector gas, and scintillation may account for

much of the beam related background seen by the CKV detector during normal

operations. Some measurements of the scintillation properties of propane have been

made by LBL, and the expected rate of photoelectrons produced from scintillation is

expected to be insigni�cant compared to the rate from direct Cherenkov production.

A direct simulation, however, has never been attempted. Under the assumption

that scintillation from signal electrons will be isotropic throughout the volume of
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Figure B-6: The transmission probability of a Cherenkov photon at a �xed position z?

and �xed azimuthal angle �? is shown as a function of the polar angle �?

with respect to the channel centerline. The step changes in the probability
arise from the discrete change in the number of reections required to reach
the PMT. The QE of the photocathode has been folded into this curve.

the detector, the result will be a uniform increase in the response of each channel.

This increase will only be signi�cant in the far tails of the response functions, and

this sort of contamination has been explicitly constrained by cross checks performed

during the calibration procedure.

During the 1995 running period, a lead preradiator for the BSM counter was

stuck in the neutral beamline across from the CKV detector. Data was taken in

this con�guration for approximately 10 days, and a statistically signi�cant dilution

of the compton asymmetry was seen as a result in Channel 8. An attempt was

made to expand the CKV detector model to simulate this e�ect by tracking the

backscattered photons from the Compton scattering process as well as the elec-

trons. It is expected that any showering from this material would be unable to
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make it into the detector head, but rather might �nd itself into the long transverse

transport lines which reect the Cherenkov light back to the photomultiplier tubes.

For this reason, the simulation of the Cherenkov light production was expanded to

include these transverse detector regions. A fairly accurate simulation of the mate-

rial present on the neutral beamline was undertaken from recent drawings made of

this region, however no signi�cant amount of signal was seen in the CKV detector

from these sources. There are a number of possible reasons to explain this apparent

discrepancy between the data and EGS simulation. First, it is possible that the EGS

modeling of wide angle and second order scattering is simply not correct. Second, it

is possible that the simulation of the neutral beamline material is missing something

important. Third, it is possible that the neutral beamline signal is coming mostly

from scintillation which is not modeled, rather than direct Cherenkov production.

Fourth, it is possible that the e�ect seen in the data is actually a linearity problem

resulting from signi�cantly higher backgrounds during the BSM era, and not an

actual change in the asymmetry at all. At the present time, there are no concrete

reasons to rule out any of the above possibilities, and the correction applied to the

analyzing powers during the BSM period carry a 100% systematic error.

B.6 Results

For every incident electron generated, the total number of photoelectrons produced

in each of the nine CKV channels is determined by the EGS shower simulation.

These nine responses, along with the unpolarized cross section and the asymmetry

function, are histogrammed as a function of the incident electron trajectory where it

would have crossed the plane perpendicular to the neutral beamline intersecting the

front of Channel 5 if the detector were not present. The bin size used is adjustable,

although a bin size of 100 �m was used for most of the Monte Carlo generated. This

data is written out bin by bin to an external �le so that the information can be
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Figure B-7: The EGS generated response function for Channel 7 is shown both with and
without the � 3=10 inch lead pre-radiator. The ampli�cation in the signal
size can be clearly seen, as well as the long tails resulting from showering
in the pre-radiator.

easily accessed and manipulated at a later date. An example of a response function

for Channel 7 is shown in Figure B-7.

During the course of a Monte Carlo run, both the response sums and sums-

squared are accumulated allowing an estimate of the statistical error in the calcu-

lated analyzing power to be made. The statistical error in one bin is derived from

the variance of the mean response in that bin, and is taken to be uncorrelated with

all other bins. This is probably only a good approximation in the heart of a de-

tector channel where the number of photoelectrons produced is high, however this
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region dominates the determination of the analyzing power. Since this error does

not actually enter into the calculation of the analyzing power, but rather is used as

a rough guide to the statistical signi�cance of any observed result, it does not have

to be exactly correct. As a check a set of ten runs were generated with di�erent

initial random number seeds, and it was veri�ed that the distribution of the calcu-

lated analyzing powers followed a gaussian distribution with a width equal to that

predicted by the computed error. A further discussion of the handling of random

numbers will be deferred until Section B.7.

The detector simulation is set up so that a single run can generate one set of

response functions, or some sort of scan can be made to calculate a series of response

functions while a model parameter is changed. This has proved most useful in

simulating the response and analyzing power changes during the course of a table

scan, which is the primary tool used in the calibration procedure. Other checks

have been made by changing the relative position of the beam in the spectrometer

quadrupole �eld, simulating a mis-alignment of this beam element or relative beam

motion in the SFF.

The remainder of this section will be devoted to a number of studies of the

EGS simulation itself. These studies compare the analyzing powers generated with

di�erent input parameter sets. It should be noted that the EGS Monte Carlo alone

does not determine the �nal analyzing powers used in the polarization measurement,

but rather must be combined with the calibration procedure and a time dependent

tracking of the analyzing powers between calibration points. Di�erent parameter

sets have been compared here with a default con�guration based on the average table

position found during with the detector calibration procedure. These analyzing

powers are `typical' for the run, and agree with the actual calibrated analyzing

powers for Channel 7 to within � 0:2%, but do not directly correspond to the

calibrated analyzing powers used in the polarization measurement. In general, the

e�ect of any parameter which changes the position of the edge with respect to the
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detector will largely be taken out by the calibration procedure. The obvious example

is the transverse detector position, but even things like the width of the detector

channels and the displacement of the electron beam through the spectrometer will

produce a smaller change in the calibrated analyzing powers than the raw change

indicated by the simulation. For this reason, all comparisons shown here should be

taken as an upper limit on the possible size of any e�ect seen; the true e�ect can

only be determined by completing the full calibration procedure.

As was mentioned in Section B.1, there could be a di�erence in the analyzing

power calculation between integrating the response function against the analytic

cross sections, and using the full blown binned calculation with all beam smearing

e�ects explicitly taken into account. Table B.5 shows the e�ect of the beam size

on the analyzing powers is insigni�cant, and in practice the results from the two

di�erent calculations are observed to vary by no more than � 2 10�5.

While the lead preradiator has a signi�cant e�ect on the signal seen in a given

CKV channel, the e�ect on the analyzing power is actually fairly small. Table B.6

shows the change in analyzing powers for the three commonly used lead con�gura-

tions used for cross checks during the 1994-95 run. A change of � 1% can be seen

in the Channel 7 analyzing power when the lead preradiator is completely removed.

Electron showering in the material beside the CKV detector has always been

something of a problem. Since the electrons which hit this material have a lower

asymmetry than the electrons directly incident on a channel, any signal picked up by

the photomultiplier tubes from these sources amounts to a dilution of the observed

asymmetry. Table B.7 shows the di�erence in the analyzing powers seen when the

beampipe, exit window ange, and CKV vacuum can side wall are turned o� in the

simulation. Since the accuracy of the EGS simulation of high angle scattering could

possibly be questioned, it is comforting to see that the e�ect of this extra material

is con�ned to the inner three channels.
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Table B.5: Analyzing Power Dependence on Electron Spot Size

Channel Default No Divergence
Number AP � AP

1 -0.04905(12) -0.00004(17)
2 0.11092(14) -0.00020(19)
3 0.27261(13) +0.00018(18)
4 0.41919(11) -0.00013(16)
5 0.54146(9) +0.00004(13)
6 0.63937(7) -0.00004(10)
7 0.70962(5) +0.00003(8)
8 0.70816(29) +0.00002(36)
9 0.69253(68) +0.00068(84)

The change in analyzing powers is shown when the simulation of the beam
width and energy divergence is turned o�. No signi�cant e�ect is seen.

Table B.6: Analyzing Power Dependence on Preradiator Thickness

Channel 0.27 inch 0.18 inch 0.09 inch 0.00 inch
Number AP � AP � AP � AP

1 -0.04905(12) -0.00120(18) -0.00316(19) -0.00337(17)
2 0.11092(14) +0.00061(20) +0.00074(21) +0.00101(19)
3 0.27261(13) +0.00150(19) +0.00269(20) +0.00328(18)
4 0.41919(11) +0.00159(17) +0.00324(17) +0.00395(15)
5 0.54146(9) +0.00137(13) +0.00336(14) +0.00418(12)
6 0.63937(7) +0.00177(11) +0.00343(11) +0.00470(10)
7 0.70962(5) +0.00240(8) +0.00484(8) +0.00665(7)
8 0.70816(29) +0.00232(40) +0.00106(114) -0.14477(3029)

Analyzing powers are shown for the default 0.27 inch preradiator con�g-
uration. The di�erences in analyzing powers for smaller preradiators are
also shown.
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Table B.7: Analyzing Power Dependence on Beamline Material

Channel Default No Material
Number AP � AP

1 -0.04905(12) +0.00695(17)
2 0.11092(14) +0.00264(19)
3 0.27261(13) +0.00106(19)
4 0.41919(11) +0.00010(16)
5 0.54146(9) +0.00008(13)
6 0.63937(7) -0.00014(10)
7 0.70962(5) -0.00002(8)
8 0.70816(29) +0.00031(36)
9 0.69253(68) +0.00182(80)

The change in analyzing powers is shown due to turning o� the simulation
of the beampipe, exit window ange, and CKV vacuum can side wall. A
clear e�ect is visible in the inner three CKV channels.

Table B.8: Analyzing Power Dependence on Detector Material

Channel Al Walls No Walls Pb Walls
Number AP � AP � AP

1 -0.04905(12) -0.00083(17) +0.00474(19)
2 0.11092(14) -0.00078(19) +0.00308(21)
3 0.27261(13) -0.00013(19) +0.00287(20)
4 0.41919(11) -0.00058(16) +0.00157(17)
5 0.54146(9) -0.00015(13) +0.00163(14)
6 0.63937(7) -0.00021(10) +0.00150(11)
7 0.70962(5) +0.00011(8) +0.00100(8)
8 0.70816(29) +0.00362(35) +0.00399(43)
9 0.69253(68) +0.00085(129) -0.00297(155)

The di�erence in analyzing powers is shown when the channel wall material
is changed from the nominal aluminum. Di�erences for both no material
and lead are signi�cant, but even a gross misunderstanding of the wall
material has a small e�ect on the analyzing power.
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B.7 Code Notes

The Compton Cherenkov detector simulation is written in a combination of Mortran

and vanilla Fortran compiled and run mostly on an Alpha 3000 at MIT. With the

recent acquisition of SLACAX, it is not more e�cient to run this code at SLAC,

and the entire package has been copied from MIT to the directory

DISK$SLD AXP FAC : [EGS]

on the SLACVX cluster.

The simulation code consists of a number of components. The complete EGS4

distribution is stored in the [EGS.EGS4] directory with minor modi�cations from

the distribution release to �x some oating point precision problems present on

the Alpha platform. The user code is found in the [EGS.COMPTON] directory and

consists of separate routines to simulate the spectrometer (TRANSPORT.FOR) and

the Cherenkov light production (LOOKUPEFF.FOR), as well as the main simulation

code itself (COMPTON95D.MOR). The parameters used in the detector simulation are

de�ned for each job in an input �le. This �le is read in by the simulation at the

beginning of a run, and allows the same executable code to be used for a wide variety

of cross checks and tests. An added bene�t is that the exact parameter set used

to generate a particular response function is readily available, and results can be

reliably reproduced after weeks or even months.

Every Monte Carlo run of the detector simulation is generated with a unique

random number seed. The EGS package consumes random numbers at a fairly

voracious rate, and some problems were encountered �nding a random number gen-

erator with a long enough period to prevent repetition. To generate the standard

set of analyzing powers to the precision shown above required a simulation of 1 mil-

lion incident electrons. This job, which took 10.5 hours of CPU time on SLACAX,

generated over 19 billion random numbers. Very few commonly available random
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number generators can produce this sort of series without repeating at least once.

The actual routine used is RANMAR from the CERNLIB package. This routine, writ-

ten by G. Marsaglia and A. Zaman, was chosen for its long (1043) period and ease

of use in setting and extracting the seed values. The period of this generator was

veri�ed to be greater than 1012 by a direct test.
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