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Abstract

A method is presented for determining the stability of a system consisting of several highly

relativistic bunches of charged particles circulating in a storage ring. The particles interact

with magnets designed to guide the beam as well as with electromagnetic fields induced

by the particles themselves. Previous work has considered modes where all bunches in the

ring are executing the same type of internal oscillation. This dissertation considers the

results of allowing those modes to couple to one another. The formalism begins with a self-

consistent distribution, and analyzes small perturbations to that distribution to determine if

they grow exponentially. The formalism allows one to do this computation for an arbitrary

magnetic lattice, as well as an arbitrary distribution of wakefield sources around the ring.

The method also allows for the inclusion of a feedback system which is designed to damp

multibunch oscillations. The PEP-II B-factory with a linear lattice is used as an example to

demonstrate and explain the phenomenology that results from this coupling of multibunch

modes. The effect of adding feedback is also explored.
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Chapter 1

Introduction

The field of accelerator physics address the problem of creating and maintaining a beam of

particles. This beam of particles is to be optimized for some purpose, such as the creation

of certain events for a high-energy physics experiment, or the generation of radiation.

A storage ring is a device which keeps particles circulating near a long, closed curve (the

ideal orbit). The question arises of whether particles which begin near that closed curve

will remain near to it. This can be considered the central problem in accelerator beam

dynamics.

There are two ways in which the stability of a particle beam is addressed. One is

generally referred to as nonlinear dynamics. This asks whether (or over what range of

initial conditions) a single particle will remain near the ideal orbit, when all other particles

are ignored. The second way of addressing beam stability is to ask what effect all the

particles in the beam have on each other—these are known as “collective effects.”

The purpose of this paper is to analyze collective effects by systematically laying out

a method for analyzing the stability of a particle beam. This is done by finding a self-

consistent beam distribution, then determining if perturbations to that distribution grow

exponentially. This type of analysis has been done in the past for a single bunch, as well

as for beams having multiple bunches. However, these analyses have typically been done in

different ways—for a single bunch, oscillation modes of the bunch are generally considered

to be coupled to one another. The modes of multiple bunches with different oscillation

modes are generally taken to be uncoupled, however. In this dissertation, the approaches

are unified so that the multibunch modes are all considered to be coupled to one another.

Chapter 2 will describe the storage ring and the types of beam oscillations studied

1



CHAPTER 1. INTRODUCTION 2

here, and will describe why effects are expected from the coupling of multibunch modes.

Chapter 3 will then mathematically describe the interaction between the particle beam and

its environment. The Vlasov equation is introduced at this point, which is the equation

describing the time evolution of the beam. Chapter 4 will show how the Vlasov equation

can be turned into an eigenvalue-like equation for a eigenfrequency Ω. The imaginary part

of Ω will determine if the system is stable. Finally, chapter 5 will show the phenomena that

result from including coupling of multibunch modes to one another. The PEP-II B factory

will be used as an example for this purpose.

This dissertation demonstrates that under appropriate conditions, multibunch mode

coupling can be a significant effect. Machines are being built which begin to approach

conditions where this could be a problem. In the process, an approach to the study of

collective effects has been developed which is more systematic and complete than has been

done in the past.



Chapter 2

Description of the Physical System

2.1 The Storage Ring

2.1.1 Coordinate System

Begin by considering a closed, planar curve C which does not intersect itself. This curve is

the ideal orbit of a particle in the storage ring. A single particle whose energy is equal to

the “ideal energy” will follow this curve if it is started on the curve with velocity tangential

to the curve. The particle is confined to this curve by a series of magnets as described later.

The coordinates of a point P in relation to the curve C are defined as follows:

• The minimum distance from P to the plane of the curve C will be called y. One may

choose the positive direction for this coordinate arbitrarily, but it is generally taken

to be positive in the “upward” direction.

• Consider the point P1 which is the point in the plane of the curve C which is closest to

P . The minimum distance from P1 to C will be called x. This value will be positive

if it is outside of the curve, negative if it is inside.

• The curve C is parameterized by its arc length. The value of the arc length of the

point on C which is closest to P1 will be called s. The direction of parameterization

of C is chosen such that the unit vectors corresponding to x, s, and y respectively

form a right-handed coordinate system.

It will also be useful to define an arrival time offset τ as follows: define a “synchronous

particle” as one which follows exactly the curve C, and starts its motion at an arbitrary

3



CHAPTER 2. DESCRIPTION OF THE PHYSICAL SYSTEM 4

time. Then the time offset τ at a point s in the ring is the time of arrival of the particle at

the position s minus the time of arrival of the synchronous particle at the same s.

2.1.2 Forces on a Particle

A single particle feels forces due to three different effects. First, there are magnets which are

designed to keep the particles confined near the ideal orbit (the curve C described above).

The fields in these magnets are not time varying. Since the velocity of the particles is

very close to the speed of light, and since the particles remain very close to the ideal orbit,

the magnetic field in the s (“longitudinal”) direction has a negligible effect compared to the

magnetic field in the other perpendicular (“transverse”) directions. Since the magnetic fields

are time independent and the longitudinal magnetic fields are being ignored, the magnetic

field can be described by a magnetic vector potential with no transverse components.

The second source of forces on the charged particle are rf cavities. These cavities are

designed to keep the energy of the particles near the design energy and to keep the particles

in bunches. They do this by using an electric field which is varying sinusoidally in time.

The phase offset of the sinusoidal oscillations is such that a particle which arrives exactly

on time gains exactly the energy it lost on the previous turn due to synchrotron radiation.

The slope of the electric field with respect to time is such that a particle which is in the

tail of the bunch will have its energy changed so as to move it forward in the bunch, and

vice-versa. This electric field can be represented by a longitudinal magnetic vector potential

which has no transverse dependence.

The third source of forces on the charged particles are wakefields. These are electro-

magnetic fields which are generated by particles which are (usually) in front of the particle

in question, and act back on that particle. The existence of such fields is due to the fact

that the particles are moving within a vacuum chamber which in general is not smooth or

perfectly conducting. Currents persist in the vacuum chamber walls for a time after the

source particles pass, and thus can cause fields which act back on later particles.

2.1.3 Feedback

As will be seen later, bunches which are coupled together by wakefields tend to oscillate

unstably if the wakefields are strong enough to make it from one bunch to the next. One

way of controlling such an oscillation is with a feedback system. The principle behind a
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feedback system is to determine the bunch’s position at one point (the “pickup”), and to

apply an impulse at a later point (the “kicker”) so as to cancel the oscillation amplitude

of the beam (or possibly shift the frequency of coherent oscillations). Some assumption

is made about the particle motion between the pickup and kicker so as to determine the

relationship between the signal at the pickup and the impulse to be applied at the kicker.

2.2 Oscillation Modes of the Beam

The beam consists of several bunches of charged particles which are kept in bunches lon-

gitudinally by the rf cavities and transversely by the magnets as described above. If these

were the only forces on the beam, analysis of the nonlinear dynamics of a single particle

due to these forces would be sufficient to determine the stability of the beam.

However, the wake forces described above cause the the motion of one particle to affect

the motion of other particles. Since all the particles are thus coupled to one another, the

entire beam will execute coherent oscillations. Such oscillations may or may not be stable.

The task of this dissertation is to describe a method for determining the stability of these

oscillations under certain circumstances.

2.2.1 Oscillations without Wakefields

Consider a single bunch of particles, in the absence of wakefields. The distribution function

at a given time for a single bunch can be written in terms of the action-angle variables of

the Hamiltonian system described by the magnets and rf cavities (see section 3.2.5) as

Ψ(J ,θ) =
∑
m

Ψm(J)eim·θ. (2.1)

The Vlasov equation (see section 3.3) says that the time evolution of this distribution is

Ψ(J ,θ, t) =
∑
m

Ψm(J)eim·(θ−ωt), (2.2)

where the components of ω are the oscillation frequencies for quasi-periodic motion of

a single particle. The Fourier modes Ψm for m 6= 0 are generally perturbations about

Ψ0(J). Writing the vector m as (my,mτ ) (the components in the vertical and longitudinal

directions), the modes which are driven most strongly by wakefields are usually the modes

where my = 0 and where my = 1. These are known as longitudinal and transverse modes,
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respectively (the horizontal transverse modes have been ignored; they parallel the vertical

ones). mτ will be used to refer to the mode, and will simply be referred to as m. The sign

of mτ will be ignored; m will always be positive. Thus, for instance, the m = 0 transverse

mode oscillates rigidly up and down (or horizontally) (see figure 2.1), while the m = 1

oscillation is one where the head and the tail of the bunch are oscillating oppositely (figure

2.2). Similarly, the m = 1 longitudinal mode oscillates back and forth rigidly (figure 2.3),

while for the m = 2 longitudinal mode, charge switches from being at the center of the

bunch to being at the two ends of the bunch (figure 2.4).

Figure 2.1: Transverse m = 0 (rigid) oscillation, perturbing a Ψ0

Figure 2.2: Transverse m = 1 (head-tail) oscillation, perturbing a Ψ0.

Figure 2.3: Longitudinal m = 1 (rigid) oscillation, perturbing a Ψ0.

Equation (2.2) shows that the oscillation frequency of the m mode is m · ω. If an

observer at a fixed position with respect to the ring observers the frequency spectrum of

the bunch current, they will see the frequencym ·ω plus all multiples of ω0, since the bunch

passes by once every 2π/ω0.

A “multibunch mode” is a mode where every bunch in the ring is executing the same

type of oscillation (basically, the samem for every bunch). The observer at a fixed position

with respect to the ring will see, if there are M identical bunches symmetrically placed

around the ring, a frequency spectrum for a single multibunch mode which contains m · ω
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Figure 2.4: Longitudinal m = 2 oscillation, perturbing a Ψ0.

(corresponding to the motion of the bunches with respect to their unperturbed orbits), an

offset p0ω0, where p0 is an integer, and all multiples of Mω0 offset from that frequency.

The reason for the lines being separated by Mω0 is that once every 2π/Mω0, a bunch will

pass by. The offset p0ω0 is due to the fact that since a given bunch must pass by once

every 2π/ω0, the spectrum must be offset by some integer multiple of ω0. The value of p0

is determined by the phase relation of the single-bunch oscillations with one another.

2.2.2 Single Bunch Mode Coupling

Single bunch mode coupling is an effect where two modes whose oscillations are stable for

low currents become unstable at higher currents. This instability occurs at the point where

the frequencies of the two modes are identical. This instability is essentially a resonant

driving by the modes of each other. Resonant driving requires two things to happen: the

frequencies of the modes must be identical, and there must be some method of coupling the

two modes together so that they can drive each other.

These two effects occur in a single bunch. Consider a single bunch of particles, and for

now ignore the possibility that a wakefield generated by the bunch will affect the bunch

on the next turn. Consider transverse oscillations; longitudinal oscillations follow a similar

argument. The bunch will see an average wakefield due to itself. It turns out that for

sufficiently short bunches, that average wakefield will give a force in the same direction as

the bunch’s displacement [11]. This causes the oscillation frequency of the m = 0 mode to

be reduced from the frequency it had without wakefields. For sufficiently large currents,

the frequency of this mode will decrease to the point where it is equal to that of one of the

m = 1 modes.

Now, consider that m = 0 mode oscillation in more detail. The front of the bunch will

see no wakefield. The tail of the bunch, however, will see the wakefield from all of the

bunch. As can be seen from figure 2.2, this distribution of force will drive an m = 1 mode.

Thus, there is a mechanism for the m = 0 mode to drive an m = 1 mode.
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Therefore, the two pieces necessary to get resonant driving occur in a single bunch,

and give single bunch mode coupling. Single-bunch mode coupling is a well understood

phenomenon, and has been studied by many authors [38,55,57,58,60,63,65].

2.2.3 Multibunch Mode Coupling

Now, consider a ring containing several bunches. Further, assume that there are wakefields

which remain longer than the distance between two bunches. In addition to the effect of a

single bunch on itself, there is now an effect of a bunch on some or all of the other bunches.

If only a single type of multibunch mode is considered (i.e., all bunches with the same

m), then the results are well known, at least in the case of symmetric bunches (identical

bunches evenly spaced around the ring) [40,59,60,67,70].

Oscillation modes in the ring are driven when the frequency spectrum of the oscilla-

tion mode couples to the frequency spectrum of the wakefields. The frequency spectrum

of the wakefields is called the impedance. Single bunch modes essentially average over the

impedance, since their mode spectrum consists of closely spaced lines (as described above).

The only exception is for extremely long-range wakefields, which last for several turns. Such

wakefields cause the Robinson instability [11] and similar instabilities. Multibunch modes,

however, have a frequency spectrum which is widely spaced, as described above. Thus,

they tend to drive and be driven by small parts of the impedance spectrum; each multi-

bunch mode with a different p0 is driven differently. The difference between the driving of

different multibunch modes is relevant only when there are certain frequencies for which

the impedance takes on values significantly different from its value at nearby frequencies.

The impedance will differ significantly from the average behavior around it (“narrow-band

impedance”) only for wakefields which extend from one bunch to the next. Thus, multi-

bunch modes will only differ in behavior from single bunch modes when there are wakefields

extending from one bunch to the next.

The number of multibunch modes corresponding to each single bunch mode is equal

to the number of bunches in the ring. These modes will have frequency shifts which are

both larger and smaller than the frequency shift for the corresponding single bunch mode.

The average of the frequency shifts for all the modes is approximately equal to the single

bunch frequency shift. Thus, for some of the multibunch modes, the current at which the

mode frequencies coincide can potentially be significantly lower than the current at which

the single bunch mode frequencies coincided. Also, the multibunch modes have nonzero
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growth rates, so that the frequencies of the modes are no longer sharp, but acquire a width

corresponding to the imaginary part of the mode frequency. This further lowers the current

at which effects of coupling between multibunch modes is expected.

Consider transverse multibunch oscillations. An m = 0 multibunch oscillation induces a

wakefield which in general has a nonzero slope at each bunch (even if the wakefield a bunch

sees due to itself is ignored). Thus, an m = 0 multibunch mode can potentially drive an

m = 1 multibunch mode even more strongly than if there were only a single bunch.

Thus, it is expected that multibunch modes will have an effect similar to single-bunch

mode coupling, but that it will occur at lower currents and be stronger.



Chapter 3

Mathematical Description of the

System

This chapter mathematically describes the physical system being studied in this dissertation.

It will lay out the equations that need to be solved, as well as the components that go into

those equations. The next chapter discusses the solution of the equations.

This chapter begins by describing the wake forces that one particle has on another, and

showing how such forces are approximated mathematically. The next section shows how

the total force on a given particle is described in terms of a Hamiltonian, including the

effects of wakefields as they are described in the first section. Finally, the Vlasov equation

is introduced, which is the equation which will be used to determine the stability of a

distribution of particles. The Vlasov equation requires the Hamiltonian described in this

chapter to be inserted into it.

3.1 Wake Functions

As described above, a test charge feels a force due to the other particles in the beam. This

force comes about because currents persist in the vacuum chamber walls after a particle

passes. This will be called a wake response. This effect is modelled by assuming that

when a particle passes a given longitudinal position s, it generates fields which only affect

other particles when they pass that same longitudinal position s. This is certainly a good

approximation for devices such as rf cavities where the wakefields are a result of trapped

modes in the cavity.

10
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In reality, the objects in the ring that generate strong wakefields have a finite length. For

such an object, the most straightforward approach is to consider the change in momentum

of a particle that passes through the object. Since electromagnetic fields from the object

should affect a particle only for a finite interval of s, this change in momentum is well

defined. This change in momentum is then averaged over the length of the object in some

appropriate way to fit the behavior into the model described in the previous paragraph.

This section begins by describing, under certain approximations appropriate for high-

energy storage rings, the force that a test charge can feel. Then, the types of fields that

a test charge can generate are described. The next subsection shows how these two facts

can be combined to show the general form for the force that a distribution can cause on a

test charge. Wakefields are formally defined here, and the impedance is defined in terms of

them.

3.1.1 Force on a Test Charge

To determine the response of a test charge to a source distribution, the change in momentum

of a particle passing through an object containing electromagnetic fields must be described.

Begin with Maxwell’s equations and the Lorentz force law

∇ ·E = ρ ∇×E = −
1

c

∂B

∂t
(3.1)

∇ ·B = 0 ∇×B =
1

c

∂E

∂t
+

4π

c
J (3.2)

F = e
(
E +

v

c
×B

)
. (3.3)

Here E is the electric field, B is the magnetic field, ρ is the charge density, J is the current

density, c is the speed of light, and e and v are the charge and velocity of the particle feeling

the force F . Note that here and throughout this dissertation, Gaussian units will be used.

The test charge is in free space; thus ρ = 0 and J = 0. First of all, it is useful to take

the curl of F :

∇× F = −
e

c

[
∂B

∂t
+ (v ·∇)B

]
. (3.4)

If a particle is following a trajectory x = X(x0, t), where X is such that X(x0, 0) = x0 and

(∂/∂t)X(x0, t) = v, then the bracketed piece of equation (3.4) is the total time derivative

of B as seen by a particle following this trajectory. Thus, the time integral along such a
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trajectory of ∇× F is∫ t1

t0

dt(∇× F )x=X(x0,t) = −
e

c

[
B(X

(
x0, t1), t1

)
−B

(
X(x0, t0), t0

)]
(3.5)

Thus, if a particle begins and ends in a region with no magnetic field, this integral is zero.

It is expected that this will be the case, under the assumption that the fields generated at

an object will be confined to the region of the object.

Next, compute the divergence of the component of F transverse to the velocity v:

∇ · F⊥ = −
e

c2

[
∂

∂t
+ (v ·∇)

]
(v ·E) +

e

c2
∂v

∂t
·E −

1

γ2
0

∇ · F ‖ (3.6)

F ‖ =
v · F

v · v
v F⊥ = F − F ‖ γ0 =

1√
1− v · v/c2

. (3.7)

This can also be integrated with respect to time along a particle trajectory which begins

and ends in a field-free region; the result is∫ t1

t0

dt

[
∇ ·

(
F⊥ +

1

γ2
0

F ‖

)
−

e

c2
∂v

∂t
·E

]
x=X(x0,t)

= 0. (3.8)

Next, for the purposes of doing the above integrations, assume that the velocity of a

test charge is constant through the object. As long as the object is relatively short, this

should be a good approximation. In that case, X(x0, t) = x0 + vt. Also, the change in

momentum imparted to the test particle will be

∆p(x0) =

∫ t1

t0

dtF x=X(x0,t). (3.9)

Combining these results with equations (3.5) and (3.8) gives

∇0 ×∆p = 0 ∇0 ·

(
∆p⊥ +

1

γ2
0

∆p‖

)
= 0, (3.10)

where ∇0 takes derivatives with respect to x0, and ∆p⊥ and ∆p‖ are defined from ∆p

analogously to F⊥ and F ‖.

The first of the equations in (3.10) says that ∆p can be written as ∆p(x0) = −e∇f for

some scalar function f . For convenience, define cylindrical coordinates with z being parallel

to v, and write x0 in these coordinates. Then the second of the equations in (3.10) gives

the differential equation

1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2

∂2f

∂φ2
+

1

γ2
0

∂2f

∂z2
= 0. (3.11)
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Assuming the solutions to be bounded for large z gives the solution

f(r, φ, z) =
∑
m

∫ ∞
−∞

Am(k)Im

(
kr

γ0

)
ei(mφ+kz)dk, (3.12)

where Im is a modified Bessel function. Note that [Am(k)]∗ = A−m(−k∗)(−1)m, since f is

real. If Am(k) is significant only for k � γ0/r, then equation (3.12) can be written as

f(r, φ, z) =
∑
m

Âm(z)rmeimφ. (3.13)

Again, Â∗m(z) = Â−m(z) from the reality of f . An index m has been introduced here;

it differs from the m defined in section 2.2.1. The m used here refers to the azimuthal

distribution in real space of charge. The m defined in section 2.2.1 refers to the azimuthal

dependence of the distribution in longitudinal phase space.

The approximation that k � γ0/r is generally excellent; for example, for 2.5 GeV

electrons and a radius of 1 cm, this amounts to ignoring frequencies above 20 THz! Another

way of looking at this approximation is to consider that frequencies that are much larger

than the bunch length will tend to have no average effect on the bunch. Thus, the condition

becomes γ0σ` >> σr, where σr is a typical transverse size of the bunch, and σ` is the bunch

length. Using PEP-II parameters [49], the ratio γ0σ`/σr is at worst about 17500, and thus

k � γ0/r is an excellent approximation. It should be about as good an approximation in

other storage ring designs.

3.1.2 Fields of a Source Distribution

The next step in determining the test charge’s response to a source distribution is to deter-

mine the electromagnetic fields generated by a source distribution. These fields will induce

currents and charges in the vacuum chamber walls, which can persist beyond the time that

the source distribution passes.

Begin with the fields generated by a point charge in free space. These are computed by

giving a Lorentz boost to the fields of a stationary point charge with charge q:

Er =
Bφ

β0
=

γ0qr[
r2 + γ2

0(z − β0ct)2
]3/2 (3.14)

Ez =
γ0q(z − β0ct)[

r2 + γ2
0(z − β0ct)2

]3/2 . (3.15)
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The fields have been written in cylindrical coordinates with the z direction being parallel

to the charge’s velocity, which is β0c.

Now assume that there is an infinitely massive test particle with a velocity of βrcr̂ (it

has no velocity in the z direction) and charge e. This is a fair assumption since the charges

in the vacuum chamber walls are moving slowly relative to the source distribution. The test

particle is at radius r and z = 0 at time t = 0. The source charge imparts a momentum to

it of

∆p =
2qe

rc
√
β2
r + β2

0γ
2
0

[
γ0r̂ + βr

γ2
0β

2
0 + 1

γ0β0
ẑ

]
. (3.16)

In the limit where γ0β0 � 1 (certainly valid for high energy rings), this expression becomes

∆p −→
2qe

rcβ0
(r̂ + βrβ0ẑ). (3.17)

This is the momentum that would be imparted to a test charge by the fields

Er =
Bφ

β0
=

2q

r
δ(z − β0ct) Ez = 0, (3.18)

where δ is the Dirac delta function. These are exactly the fields due to an infinite line

charge, except for the delta function factor.

Using the fields from equation (3.18), the electromagnetic fields from a charge density

ρ(r, φ, z − β0ct) can be computed. The electric field is given by the integral

E(r, φ, z, t) = 2

∫
ρ(r′, φ+ φ′, z − β0ct)

(r − r′ cosφ′)r̂ − r′ sinφ′φ̂

r2 + r′2 − 2rr′ cosφ′
r′dr′dφ′. (3.19)

The magnetic field is B = β0ẑ ×E. ρ can be written as

ρ(r, φ, z) =
∑
m

ρm(r, z)eimφ. (3.20)

Note that ρ−m(r, z) = ρ∗m(r, z). Then the integral (3.19) can be performed:

Er(r, φ, z, t) =
Bφ(r, φ, z, t)

β0
= 4π

[
∞∑
m=0

∫ r

0
<
{
ρm(r′, z − β0ct)e

imφ
}(r′

r

)m+1

dr′

−
∞∑
m=1

∫ ∞
r

<
{
ρm(r′, z − β0ct)e

imφ
}( r

r′

)m−1
dr′

]
(3.21)
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Eφ(r, φ, z, t) = −
Br(r, φ, z, t)

β0
= 4π

∞∑
m=1

[∫ r

0
=
{
ρm(r′, z − β0ct)e

imφ
}(r′

r

)m+1

dr′

+

∫ ∞
r

=
{
ρm(r′, z − β0ct)e

imφ
}( r

r′

)m−1
dr′

]
(3.22)

Consider a source distribution moving inside a vacuum chamber. Since the source

distribution is affecting the vacuum chamber walls, which are outside of the distribution,

only the first integral in equations (3.21) and (3.22) is nonzero in the region of interest.

3.1.3 Wake Response to the Source

The results of sections 3.1.1 and 3.1.2 can be combined to give the response of a test charge

to a source distribution. Since the source distribution and test charge are both moving with

velocities very close to the speed of light, the z axes of sections 3.1.1 and 3.1.2 can be chosen

to be the same (and, on average at least, parallel to the distributions’ velocities). Consider

a system that is cylindrically symmetric about this z axis.

From equation (3.21), a distribution proportional to cosmφ produces fields Er and Bφ

proportional to cosmφ, and Eφ and Br proportional to sinmφ. Examination of Maxwell’s

equations (3.1) and (3.2) shows that these fields will induce, in the vacuum chamber walls,

a charge density ρ and current densities Jr and Jz proportional to cosmφ, and a current

density Jφ proportional to sinmφ. These will in turn induce back in the chamber fields

Er, Bφ, and Ez proportional to cosmφ, and Eφ, Br, and Bz proportional to sinmφ. From

the discussion in section 3.1.1, it follows that such fields can only result in an f (as defined

at the end of section 3.1.1) which is also proportional to cosmφ. It thus follows from the

linearity of Maxwell’s equations that a Fourier mode ρm(r′, z′) of the charge density will

cause a momentum kick to a subsequent test particle which results from an f which has an

Âm(z) which is a linear combination of

λm(z′) = 2π

∫ ∞
0

ρm(r′, z′)r′
m+1

dr′ (3.23)

for various z′.

As can be seen from the fact that ρ was defined to depend on z−β0ct, the z′ in ρm(r′, z′)

refers to the position in the ring at time t = 0 of a slice of the distribution. Also, as described

in section 3.1.1, the argument z of f refers to the position of a test particle at time t = 0.

If the object causing a wake response is at position s in the ring, then the arrival time
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t of a particle at that object is given by the formula s = z + β0ct, where z is the value

of s at t = 0. The reference particle described in the definition of the time offset τ in

section 2.1.1 arrives at the point s at time tref given by s = zref + β0ctref. Thus, there is a

simple linear relation between the time offset τ and the initial condition z: z = zref − β0cτ .

The number zref depends only on the position of the object whose wake response in being

computed. Thus, the initial condition z and the time offset τ are interchangeable ways

of parameterizing these functions (although one must be careful about taking derivatives).

Thus, define λm(τ) = β0cλm(z) and f(r, φ, τ) = f(r, φ, z), where z and τ are related as

described above.

Finally, since external forces are not being considered here, the system should be time

invariant. Thus, the wake response should only depend on the difference in the arrival times

of the source and test particles at the object whose wake response is being determined.

Equivalently, if the f that gives the momentum kick is parameterized by τ , and the source

distribution is parameterized by τ ′, the proportionality constant will only depend on τ − τ ′.

Thus, the function f can be written in terms of the source distribution as

f(r, φ, τ) =
∑
m

rmeimφ
∫ ∞
−∞

Wm(τ − τ ′)λm(τ ′)dτ ′. (3.24)

Thus, the wake response due to a cylindrically symmetric object can be completely charac-

terized by the set of functions Wm(τ), known as wake functions.

Since the ring consists of several objects at various locations, each of which will have

a different wake function, wake functions for the entire ring Wm(τ, s) can be defined as

follows: for each object with a wake response, determine its wake functions Wm(τ). Define

Wm(τ, s) for that object to be zero for s outside of the range of action of the object, and

integrated over the length of the object such that
∫
Wm(τ, s)ds = β0cWm(τ). Then add

together all the Wm(τ, s) for all the objects in the ring. Note that f(r, φ, τ) thus becomes

f(r, φ, τ, s):

f(r, φ, τ, s) =
∑
m

rmeimφ
∫ ∞
−∞

Wm(τ − τ ′, s)λm(τ ′)dτ ′. (3.25)

The integral of Wm(τ, s) over s around the ring is consistent with the Wm(z) in [11] if

z = −β0cτ .

To simplify notation, W1 is written as W⊥, since the contribution of theW1 wake usually

dominates the transverse wake force.
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3.1.4 Impedance

The impedance is defined to be the Fourier transform of the wake function. The transverse

impedance will be defined as

Z⊥m(ω, s) = i

∫ ∞
−∞

Wm(τ, s)eiωτdτ. (3.26)

The longitudinal impedance is defined to be

Z‖m(ω, s) = −
1

β0c

∫ ∞
−∞

W ′m(τ, s)eiωτdτ. (3.27)

The integral of these quantities over s around the ring are consistent with the Z⊥m and Z
‖
m

in [11]. Note that integrating by parts leads to Z
‖
m(ω, s) = ωZ⊥m(ω, s)/β0c. This is a minor

variation on what is known as the Panofsky-Wentzel theorem [11].

Note that [Z⊥m(−ω∗)]∗ = −Z⊥m(ω), and [Z
‖
m(−ω∗)]∗ = Z

‖
m(ω), since Wm is real.

Z
‖
0 is written as Z‖, since it usually dominates the longitudinal wake force. Similarly,

Z⊥1 is written as Z⊥, since it usually dominates the transverse wake force.

3.2 Hamiltonian for a Single Particle

3.2.1 General Electromagnetic Hamiltonian for a Storage

Ring

The Hamiltonian for a charged particle moving in an external electromagnetic field is [37]

H = c

√(
p−

e

c
A(x, t)

)2
+ (mc)2 + eΦ(x, t) + V (x, t). (3.28)

where x and p are the canonical position and momentum, respectively, V is an external

potential, and Φ and A are the scalar and vector electromagnetic potentials respectively.

m and e are the mass and charge of the particles in question.

As described in section 2.1.2, the forces due to the rf cavities and the magnets that focus

the beam can both be described through a vector potential which only has a component in

the s direction. The discussion in section 3.1.1 shows that the wake force can be described

through the external potential V . The Hamiltonian under these assumptions thus looks like

H = c

√
p2
x + p2

y +

(
ps

1 + h(s)x
−
e

c
As(x, t)

)2

+ (mc)2 + ef, (3.29)
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where 1/h is the local radius of curvature of the ideal orbit C, and f is the function defined

in equation (3.25). The arguments of f have been ignored for now; they will be included

once the Hamiltonian has been simplified somewhat.

The Hamiltonian is next converted to a form where s is the independent variable. This

is made possible by the fact that s is a monotonically increasing function of t. One would

expect that to do this, one would have to take Hamilton’s equations, turn the t derivatives

into s derivatives, and find a Hamiltonian that generates the resulting equations. It turns

out, however, that all one has to do is to take the Hamiltonian (3.29) and solve for −ps

[19,43]:

−ps = −[1 + h(s)x]
e

c
As(x, t)± [1 + h(s)x]

√(
H

c
−
e

c
f

)2

− p2
x − p

2
y − (mc)2. (3.30)

Note that the momentum conjugate to t is −H. The sign in equation (3.30) is determined

by considering a particle which follows the reference orbit C. Hamilton’s equations give the

equation

dt

ds
= ∓

H√
H2 − (mc2)2

(3.31)

along the reference orbit when f = 0. Equation (3.29) shows that H > 0. Thus, if the

particle is moving in the positive s direction, the bottom sign should be chosen. This

convention will be used henceforth.

Finally, it is useful to change variables to

τ = t−
s

β0c
δ = γ0mc

2 −H. (3.32)

Note that τ is the time offset described in section 2.1.1. The term δ/β0c is subtracted from

the Hamiltonian because of this transformation, as described in appendix A.1. Next, the

Hamiltonian and the momenta px, py, and δ are all scaled by p0 ≡ β0γ0mc. The resulting

Hamiltonian is dimensionless, and is given by

− ps = −[1 + h(s)x]
e

p0c
As

(
x, τ +

s

β0c

)
−

δ

β0c

− [1 + h(s)x]

√[
1

β0
−
δ

c
−

e

p0c
f(x, y, τ, s)

]2

− p2
x − p

2
y −

(
mc

p0

)2

. (3.33)

The arguments of f have been included at this point; note that the cylindrical coordinates

(r, φ) have been transformed into the locally Cartesian coordinates (x, y), and z has been

replaced by τ . The vector x is (x, s, y).
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3.2.2 Expansion of the Magnetic Field

Eventually, equation (3.33) will be expanded as a power series in the phase space variables.

This requires an expansion of As for the magnets. Since the magnets are time-independent,

As will not depend on τ . It will depend on s, however, since the magnets are localized at

various points around the ring. The approach used here is essentially that of [42].

As a first approximation, Maxwell’s equations will be solved for As which is independent

of s. This is a good approximation in the center of the magnet; the fields on the edges are

being ignored. Maxwell’s equations are also solved in a region where the radius of curvature

1/h is constant. Thus, Maxwell’s equations become

0 =∇×∇×A = −

(
∂

∂x

{
1

1 + hx

∂

∂x
[(1 + hx)As]

}
+
∂2As
∂y2

)
ŝ. (3.34)

Expand As as a power series in y:

As =
∞∑
n=0

a(n)(x)

n!
yn. (3.35)

Then equation (3.34) gives a recursion relation for the functions a(n):

d

dx

{
1

1 + hx

d

dx

[
(1 + hx)a(n)

]}
= −a(n+2). (3.36)

This series will terminate only if for some a(n), the left hand side is zero. The null space of

the operator

d

dx

1

1 + hx

d

dx
(1 + hx) (3.37)

is spanned by the functions

a0(x) =
1

1 + hx
and a1(x) =

x+ hx2/2

1 + hx
. (3.38)

These two functions have been chosen such that as x −→ 0, a0(x) −→ 1 and a1(x) −→ x.

Beginning with a(n) = a0 or a(n) = a1, the recursion relation (3.36) is solved for the a(k)

for which k < n. The arbitrary constants resulting from the integrations necessary to solve

the recursion relation in this direction can be found by assuming that the behavior of a(k)

as x −→ 0 goes like x2a(k+2). This results in the lowest order behavior of As when both

x and y are considered being that of a homogeneous polynomial where all of the a(k) are

included. Thus, define

an+2 =
1

1 + hx

∫ x

0
dx′(1 + hx′)

∫ x′

0
dx′′an(x′′). (3.39)
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Note that as x −→ 0, an −→ xn/n!. Then a(n−2k) = (−1)ka2k+l, where l is 0 or 1 depending

on where the recursion relation was started. Thus, the solution of (3.34) is given by

A
(n)
s,N =



n/2∑
k=0

(−1)n/2−ka2k+1
1

(n− 2k)!
yn−2k n even

(n+1)/2∑
k=0

(−1)(n+1)/2−ka2k
1

(n− 2k + 1)!
yn−2k+1 n odd.

(3.40)

A
(n)
s,S =



n/2∑
k=0

(−1)n/2−ka2k
1

(n− 2k + 1)!
yn−2k+1 n even

(n−1)/2∑
k=0

(−1)(n−1)/2−ka2k+1
1

(n− 2k)!
yn−2k n odd,

(3.41)

whereA
(n)
s,N andA

(n)
s,S are known as the normal and skew components of the field, respectively.

The overall factor has been chosen such that the leading term in A
(n)
s,N is xn+1/(n+ 1)!, and

in A
(n)
s,S is yxn/n!. Table 3.1 gives an for small values of n.

n an(x)

2
1

2h2

[
−
hx+ (hx)2/2

1 + hx
+ (1 + hx) ln(1 + hx)

]
3

1

4h3

[
1

4
(1 + hx)3 −

1

4

1

1 + hx
− (1 + hx) ln(1 + hx)

]

4

1

8h4

[
1

8

1

1 + hx
+

1

2
(1 + hx)−

5

8
(1 + hx)3

+ (1 + hx) ln(1 + hx) +
1

2
(1 + hx)3 ln(1 + hx)

]

Table 3.1: Lowest order values for an.

The primary magnets in an accelerator are bending magnets, quadrupoles, and sex-

tupoles, corresponding to A
(0)
s,N , A

(1)
s,N , and A

(2)
s,N respectively. The latter two generally

reside in straight sections. The solutions for As for these three types of magnets are thus

B0x
1 + hx/2

1 + hx

K

2

p0c

e
(x2 − y2)

S

6

p0c

e
(x3 − 3xy2), (3.42)

respectively. Note that h = 0 for the quadrupoles and sextupoles.

See [43] for a different treatment of this.
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3.2.3 R.F. Cavity Voltage

There is also a contribution to As from the rf cavities. This comes from the longitudinal

force that a particle feels when passing through the cavity due to the fundamental mode

of the cavity which is being externally driven. This fundamental mode is taken to have no

transverse dependence, to consist only of a longitudinal electric field, and to be the only

mode in the cavity. The change in δ for a test charge with charge e is then given by

∆δ = −
e

p0

∫ ∞
−∞

Ez(s) sinωrf

(
τ +

s

β0c

)
ds, (3.43)

where ωrf is the frequency of the fundamental cavity mode. Note that ωrf should be an

integer multiple of 2πβ0c/L, where L is the length of the reference orbit C. If this were

not the case, the accelerator Hamiltonian would look different from one turn to the next

and, among other things, there would be no fixed point of the one-turn map. The integer

multiple is denoted by hrf; i.e., ωrf = 2πhrfβ0c/L. The integral (3.43) can be written in the

form

∆δ =
eV̂

p0
sin(ωrfτ + φrf), (3.44)

where V̂ is the maximum voltage gain by a particle, and φrf is the phase offset of the rf

voltage.

For simplicity, the rf cavity is taken to be infinitesimally thin. Thus, the As resulting

from the rf cavity is

−V̂
c

ωrf
δL(s− srf) cos(ωrfτ + φrf), (3.45)

where

δL(s) =
∑
k

δ(s− kL), (3.46)

δ is the Dirac delta function, and srf is the position in the ring of the rf cavity.

Note that the voltage is invariant under a translation of τ by any multiple of L/β0chrf.

The ring thus has hrf “buckets” where a bunch of particles can be. The form of the vector

potential has been chosen so that each rf bucket is identical. The coordinate τ can thus be

chosen such that a particle with the ideal energy (i.e., δ = 0), no transverse displacement,

and τ = τ̂n0 = nL/β0chrf, n an integer, should satisfy these same conditions one turn
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later. If there is only one rf cavity, then this will be true if φrf = 0. In general, φrf is non-

zero, however, since in general there are synchrotron radiation losses, and these must be

compensated for by the rf voltage. These synchrotron radiation losses cannot be described

by a Hamiltonian, since they are dissipative. Thus, they are ignored in this treatment, and

therefore φrf is taken to be 0.

3.2.4 Hamiltonian for Small Displacements

Now, assume that the phase space variables are small quantities. This corresponds to

assuming that the particle trajectory is very close to the ideal orbit C and that τ remains

small. The Hamiltonian (3.33) can then be expanded to third order in the phase space

variables (fourth order in τ), using the results of sections 3.2.2 and 3.2.3. It is only expanded

to first order in the wake functions, however, with the coefficient of the wake function

expanded in phase space variables only to a first order correction. The result is:

− ps =
1

2

(
p2
x + p2

y +
δ2

γ2
0β

2
0c

2

)(
1 + h(s)x+

δ

β0c

)
+
h(s)xδ

β0c
+

1

2
[h2(s)−K(s)]x2

+
1

2
K(s)y2 −

S

6
(x3 − 3xy2)−

eV̂ ωrf

2p0
δL(s− srf)τ

2 +
eV̂ ω3

rf

24p0
δL(s− srf)τ

4

+
e

β0p0c

(
1 + h(s)x+

δ

β0cγ
2
0

)
f(x, y, τ, s). (3.47)

Note that the B0 of equation (3.42) has been chosen to be −hp0c/e so as to cancel the term

in the Hamiltonian that is linear in x. This amounts to choosing the bending field of the

magnets to give an on-energy particle a radius of curvature equal to that of the curve C at

any given point.

First, consider the terms in the Hamiltonian (3.47) that are quadratic in the phase space

variables:

1

2
p2
x +

1

2
p2
y +

h(s)xδ

β0c
+

1

2
[h2(s)−K(s)]x2 +

1

2
K(s)y2

+
1

2

δ2

γ2
0β

2
0c

2
−
eV̂ ωrf

2p0
δL(s− srf)τ

2. (3.48)

The first task is to eliminate the term proportional to xδ. This is done by transforming

x −→ x− η(s)
δ

β0c
px −→ px − ξ(s)

δ

β0c
. (3.49)
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This transformation should be symplectic; thus τ must transform as

τ −→ τ −
η(s)

β0c
px +

ξ(s)

β0c
x. (3.50)

The matrix for this transformation can be written as
1 0 0 −η(s)/β0c

ξ(s)/β0c 1 −η(s)/β0c 0

0 0 1 −ξ(s)/β0c

0 0 0 1

 . (3.51)

Using the results of appendix A.2, the quadratic part of the Hamiltonian becomes

1

2
p2
x +

1

2
p2
y +

1

2
[h2(s)−K(s)]x2 +

1

2
K(s)y2

+
pxδ

β0c

[
dη

ds
− ξ(s)

]
+
xδ

β0c

[
h(s)− h2(s)η(s) +K(s)η(s)−

dξ

ds

]
+

1

2

δ2

β2
0c

2

{
ξ2(s) + [h2(s)−K(s)]η2(s) +

1

γ2
0

+

[
dξ

ds
η(s)−

dη

ds
ξ(s)

]
− 2h(s)η(s)

}
−
eV̂ ωrf

2p0
δL(s− srf)

[
τ −

η(s)

β0c
px +

ξ(s)

β0c
x

]2

. (3.52)

There should be no cross terms, such as the xδ and pxδ terms. For now the τ cross terms

are ignored. Thus, ξ and η must satisfy the relations

ξ(s) =
dη

ds

d2η

ds2
+ [h(s)2 −K(s)]η(s) = h(s). (3.53)

The η that solves these equations and is periodic in s with period L is known as the

dispersion function [19, 68]. There are still cross terms proportional to τδ. These cross

terms can be minimized by designing the lattice so that the dispersion function and its

derivative are small at the rf cavities, which is usually done.

The quadratic part of the Hamiltonian thus becomes

1

2
p2
x +

1

2
p2
y +

1

2
[h2(s)−K(s)]x2 +

1

2
K(s)y2

−
1

2

δ2

β2
0c

2

[
h(s)η(s)−

1

γ2
0

]
−
eV̂ ωrf

2p0
δL(s− srf)τ

2, (3.54)

where the dispersion function and its derivative have been taken to be zero at srf. The

accuracy of this approximation can be determined by computing

ξη =

√
εxJη(srf)

σ`
, (3.55)
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where

Jη(s) =

(
dη

ds

)2

βx(s) + 2η(s)
dη

ds
αx(s) + η2(s)

1 + α2
x(s)

βx(s)
, (3.56)

and βx, αx, and εx are the quantities defined in appendix A.3 for the horizontal plane, and

σ` is the rms bunch half-length. As long as ξη is small compared with any growth rates

(in inverse turns) that are computed, neglecting the τ coupling terms at the rf cavities is a

good approximation.

Under the transformations (3.49) and (3.50), the nonlinear Hamiltonian (3.47) becomes

1

2
p2
x +

1

2
p2
y +

1

2
[h2(s)−K(s)]x2 +

1

2
K(s)y2 −

1

2

δ2

β2
0c

2

[
h(s)η(s) −

1

γ2
0

]
−
eV̂ ωrf

2p0
δL(s− srf)τ

2 +
1

2

[(
px −

η′(s)δ

β0c

)2

+ p2
y +

δ2

γ2
0β

2
0c

2

][
h(s)x+

(
1− h(s)η(s)

) δ

β0c

]

−
S(s)

6

[(
x−

η(s)δ

β0c

)3

− 3

(
x−

η(s)δ

β0c

)
y2

]
+
eV̂ ωrf

24p0
δL(s− srf)τ

4

+
e

β0p0c

[
1 + h(s)x+

(
1

γ2
0

− h(s)η(s)

)
δ

β0c

]
f

(
x−

η(s)δ

β0c
, y, τ +

xη′(s)− pxη(s)

β0c
, s

)
.

(3.57)

Note that the dispersion and its derivative are still taken to be zero at srf.

3.2.5 General Nonlinear Hamiltonian with Wakefields

The next task is to take the Hamiltonian due to magnets and rf cavities and convert it to

action-angle variables. While this is in general not possible in the nonlinear case, the so-

called normalization can be done as a perturbation series about the origin of phase space [23,

26,43]. See appendices A.3, A.4, A.5, and A.6 for some possible methods for accomplishing

this. The term in the Hamiltonian due to magnets and rf cavities is then simply H0(J).

Note that the discussion in this section is independent of what the Hamiltonian due to

magnets and rf cavities looks like; it may be the first three lines of equation (3.57), but it

need not be.

The normalization induces a symplectic transformation from action-angle variables to

the previously described phase space coordinates of the ring (before the dispersion transfor-

mation (3.49)). The transformation can be partially described by the functions, x̂(J ,θ, s),

ŷ(J ,θ, s), and τ̂(J ,θ, s) + τ̂r0, along with similar functions for the other phase space vari-

ables. The transformation described is for particles in the rth rf bucket; because all the
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buckets are identical, the function τ̂(J ,θ, s) is independent of the bucket that the transfor-

mation is being done for.

Now the wakefield terms as described in section 3.1.3 can be added to H0(J). When

doing so, one must take into account the fact that when a bunch passes by a position s, it

sees the wakefields it deposited there on all previous turns. There are assumed to be Nr

particles with charge e in the rf bucket that is centered around τ̂r0. Thus, the Hamiltonian

for particles in the rth bucket is

Hr = H0(J) +
r0

β2
0γ0

∑
kn

Nn

{
∫
W0

(
τ̂(θ,J , s)− τ̂(θ′,J ′, s) + τ̂r0 − τ̂n0 + kT0, s

)
Ψ̂n(θ′,J ′, s− kL)d3θ′d3J ′

+ x̂(θ,J , s)

∫
x̂(θ′,J ′, s)W⊥

(
τ̂(θ,J , s)− τ̂(θ′,J ′, s) + τ̂r0 − τ̂n0 + kT0, s

)
Ψ̂n(θ′,J ′, s− kL)d3θ′d3J ′

+ ŷ(θ,J , s)

∫
ŷ(θ′,J ′, s)W⊥

(
τ̂(θ,J , s)− τ̂(θ′,J ′, s) + τ̂r0 − τ̂n0 + kT0, s

)
Ψ̂n(θ′,J ′, s− kL)d3θ′d3J ′

}
, (3.58)

where Ψ̂n is the phase space distribution function for the particles in the nth rf bucket,

r0 is the classical radius of the electron, and T0 = L/β0c. The wakefield terms have been

simplified to include only the two lowest multipoles of the wakefield.

The δ and x terms in the factor multiplying f in equation (3.57) have also been ignored

in equation (3.58). If the δ term had been included, it would have introduced corrections

of order 2πνsσl/L, where νs is the synchrotron tune. This should be an extremely small

quantity for any real ring (for example, it is about 10−6 for the PEP-II low energy ring [49]).

Similarly, if the x term had been included, it would have introduced corrections of order

2π
√
βxεx/L; this also should be a very small correction (about 3× 10−6 for the PEP-II low

energy ring [49]).

As will be described in section 3.3, there should be a set of distributions Ψr0 which

satisfy the Vlasov equation for the corresponding Hr with Ψ̂n replaced by Ψn0, and are

independent of s. The goal of this analysis is to perturb Ψn0 and determine whether that

perturbation is stable. Thus, it is convenient to write the Hamiltonian in terms of the

perturbation to Ψ̂n.



CHAPTER 3. MATHEMATICAL DESCRIPTION OF THE SYSTEM 26

The first step is to change variables to a second set of action-angle variables. These

are the action-angle variables which make the Hamiltonian (3.58) a function of the action

variables only, when Ψ̂n is replaced by Ψn0. As will become clear in section 2.3, Ψn0 will

only be a function of the action in these variables. Since each bunch has a different number

of particles in general, the resulting transformations will depend on which rf bucket is begin

considered. The transformation functions for particles in the rth bucket are written as

xr(θ,J , s) + xr0(s), yr(θ,J , s) + yr0(s), and τr(θ,J , s) + τr0(s). The offset τr0(s) is chosen

so that τr(θ,0, s) = 0; xr0(s) and yr0(s) are chosen the same way. These offsets may be

absorbed into the functions τr, xr and yr if desired. The functions xr0(s) and yr0(s) describe

how the closed orbit that the particles are trying to follow differs from the center of the

beam pipe. In terms of these action-angle variables, Ψ̂r = Ψr0(J) + Ψr(θ,J , s), where Ψr

is a perturbation to Ψr0. Thus, the Hamiltonian for particles in the rth bucket is thus

Hr = Hr0(J) +
r0

β2
0γ0

∑
kn

Nn

{
∫
W0

(
τr(θ,J , s)− τn(θ′,J ′, s) + τr0(s)− τn0(s) + kT0, s

)
Ψn(θ′,J ′, s− kL)d3θ′d3J ′

+ [xr(θ,J , s) + xr0(s)]

∫
[xn(θ′,J ′, s) + xn0(s)]

W⊥
(
τr(θ,J , s)− τn(θ′,J ′, s) + τr0(s)− τn0(s) + kT0, s

)
Ψn(θ′,J ′, s− kL)d3θ′d3J ′

+ [yr(θ,J , s) + yr0(s)]

∫
[yn(θ′,J ′, s) + yn0(s)]

W⊥
(
τr(θ,J , s)− τn(θ′,J ′, s) + τr0(s)− τn0(s) + kT0, s

)
Ψn(θ′,J ′, s − kL)d3θ′d3J ′

}
.

(3.59)

The combining of the terms due to the unperturbed distribution into Hr0 is referred to as

“potential-well distortion” [11, 46–48], because its effect is as if the potential well keeping

the particles focussed were being changed by an external force. No attempt will be made

here to quantitatively compute this effect. Some commentary will be made later on the

possible effects of potential-well distortion.

3.2.6 Feedback

Feedback (see section 2.1.3) can be added to the system by modifying the Hamiltonian

(3.58). As described in section 2.1.3, feedback will give a force on a particle at a position s
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which is related to the position of the particle at a position s −∆s. From the arguments

in section 3.1, it follows that if only time-independent components (i.e., components which

have no sense of “wall-clock time”) transmit the signal from the pickup to the kicker, then

the force can be described through a wakefield-like term, similar to equation (3.25).

By this argument, the feedback system simply adds terms to the Hamiltonian (3.58) of

r0

β2
0γ0

∑
kn

Nn

{
∫
WFB

0

(
τ̂(θ,J , s)− τ̂(θ′,J ′, s−∆s) + τ̂r0 − τ̂n0 + ∆s/β0c+ kT0, s

)
Ψ̂n(θ′,J ′, s−∆s− kL)d3θ′d3J ′

+ x̂(θ,J , s)

∫
WFB
x

(
τ̂(θ,J , s)− τ̂(θ′,J ′, s−∆s) + τ̂r0 − τ̂n0 + ∆s/β0c+ kT0, s

)
x̂(θ′,J ′, s−∆s)Ψ̂n(θ′,J ′, s−∆s− kL)d3θ′d3J ′

+ ŷ(θ,J , s)

∫
WFB
y

(
τ̂(θ,J , s)− τ̂(θ′,J ′, s−∆s) + τ̂r0 − τ̂n0 + ∆s/β0c+ kT0, s

)
ŷ(θ′,J ′, s−∆s)Ψ̂n(θ′,J ′, s− kL−∆s)d3θ′d3J ′

}
. (3.60)

The arguments of theWFB have been chosen such that the condition for causality is precisely

that WFB(τ) is zero for τ < 0. Several sets of similar terms could be added, all with different

∆s.

Instead of a subscript ⊥, the transverse feedback wakes have a subscript of x or y. This

is because the horizontal and vertical transverse feedback wakes must be different, since the

horizontal and vertical tunes are different (the tune determines the optimal ∆s, actually).

This implies a breaking of the cylindrical symmetry that allowed the wake potential to be

written in the form (3.25) in the first place. If the weaker assumption of horizontal and

vertical reflection symmetry is made, then an m = 1 source distribution (m in this case

refers to the azimuthal charge distribution in real space, not the longitudinal phase space

charge distribution) will not cause any m = 0 forces (or m = 2 forces, etc.). Neither will

vertical oscillations drive horizontal oscillations. Thus, the expansion in equation (3.60)

gives a good approximation even without cylindrical symmetry.

Note that just as the wakefields have a Fourier transform known as the impedance (see
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section 3.1.4), these feedback wakes also have a Fourier transform, which will be defined as

ZFB
x (ω, s) = i

∫ ∞
−∞

WFB
x (τ, s)eiωτdτ (3.61)

ZFB
y (ω, s) = i

∫ ∞
−∞

WFB
y (τ, s)eiωτdτ (3.62)

ZFB
‖ (ω, s) = −

1

β0c

∫ ∞
−∞

(WFB
0 )′(τ, s)eiωτdτ. (3.63)

A similar impedance-like quantity for feedback was defined by Wang [18].

Once potential-well distortion has been taken into account (now including the feedback),

then the Hamiltonian becomes the Hamiltonian (3.59) plus the terms

r0

β2
0γ0

∑
kn

Nn

{
∫
WFB

0

(
τr(θ,J , s)− τn(θ′,J ′, s−∆s) + τr0(s)− τn0(s−∆s) + ∆s/β0c+ kT0, s

)
Ψn(θ′,J ′, s−∆s− kL)d3θ′d3J ′

+ [xr(θ,J , s) + xr0(s)]

∫
[xn(θ′,J ′, s−∆s) + xn0(s−∆s)]Ψn(θ′,J ′, s −∆s− kL)

WFB
x

(
τr(θ,J , s)− τn(θ′,J ′, s−∆s) + τr0(s)− τn0(s−∆s) + ∆s/β0c+ kT0, s

)
d3θ′d3J ′

+ [yr(θ,J , s) + yr0(s)]

∫
[yn(θ′,J ′, s−∆s) + yn0(s−∆s)]Ψn(θ′,J ′, s−∆s− kL)

WFB
y

(
τr(θ,J , s)− τn(θ′,J ′, s−∆s) + τr0(s)− τn0(s−∆s) + ∆s/β0c+ kT0, s

)
d3θ′d3J ′

}
.

(3.64)

3.3 Vlasov Equation

For non-interacting particles whose motion is governed by a Hamiltonian, Liouville’s the-

orem states that the s-evolution of the probability distribution of particles is governed by

the Vlasov equation [11,41,43]

∂Ψ

∂s
+ [Ψ,H] = 0. (3.65)

The [ ] are Poisson brackets [3, 41, 43]. If the particles do interact, as in our system, the

evolution of the distribution function is governed instead by an infinite, coupled series of

equations known as the BBGKY hierarchy [2,20,36]. That hierarchy is generally truncated
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at some point; if it is truncated such that the two-particle distribution function Ψ(z1,z2, t)

is equal to the product of the one-particle distribution functions Ψ(z1, t)Ψ(z2, t), then equa-

tion (3.65) still governs the evolution of the distribution function Ψ. In other words, the

so-called two-particle correlation function is zero–the distribution for two particles is com-

pletely determined by the distribution for a single particle. This is a common approximation

which is beyond the scope of this dissertation to analyze.

The phase space distribution Ψ is written as a sum over the phase space distributions

in each bucket Ψ̂n:

Ψ(z, s) =

hrf−1∑
r=0

NnΨ̂n(z, s)

hrf−1∑
r=0

Nn

. (3.66)

If each bunch distribution Ψ̂n is zero outside of an interval In in τ , and no two of the In

intersect, then the Vlasov equation (3.65) can be written for each bunch distribution:

∂Ψ̂r

∂t
+ [Ψ̂r,Hr] = 0. (3.67)

The Hr here is the Hamiltonian for bunches in the rth bucket given by equation (3.58)

or equation (3.60). This Hamiltonian causes equation (3.67) to really be a coupled set of

partial integro-differential equations which are nonlinear in Ψ̂r: the Ψ̂r are coupled to all

the other Ψ̂n through Hr.

As indicated in section 3.2.5, the first step is to find a s-independent solution of the

coupled equations (3.67). The details of finding such a solution are beyond the scope of this

dissertation; see [11, 46–48]. Note that in the transverse case which is analyzed in chapter

5, this step is unnecessary. This is because any solution which is only a function of the

action variables will have no transverse moment, and thus gives a self-consistent solution

by default. Once a self-consistent solution is found, one determines whether or not a small

perturbation to such a solution is stable. As described in section 3.2.5 or section 3.2.6,

the distribution Ψ̂r is written as Ψr0 + Ψr. Since Ψr0 is independent of time, after the

final change of variables described in section 3.2.5 (after which the Hamiltonian with the

perturbation Ψr = 0 depends only on J), the Vlasov equation (3.67) shows that Ψr0 can

only depend on J . Writing the Hr of equation (3.59) or equation (3.64) as H0r + ∆Hr, the
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Vlasov equation becomes (ignoring second order terms in Ψr)

∂Ψr

∂s
+
ωr(J)

β0c
·
∂Ψr

∂θ
−
∂Ψr0

∂J
·
∂∆Hr

∂θ
= 0, (3.68)

where

ωr(J) = β0c
∂H0r

∂J
. (3.69)



Chapter 4

Eigenvalue System

To determine the stability of the beam, one needs to find all solutions of (3.68), and deter-

mine if any of those solutions are unstable. Solutions will be considered unstable if they

grow exponentially, and stable otherwise. Begin by defining the Fourier transform of Ψr:

Ψr(θ,J ,Ω) =
1

L

∫
Ψr(θ,J , s)e

iΩs/β0cds. (4.1)

Then equation (3.68) becomes an equation for the Ψr(θ,J ,Ω). If there is a solution for

which Ψr(θ,J ,Ω) is nonzero and ={Ω} > 0, the system is unstable, since such a solution

would have exponentially growing parts from equation (4.1). In practice, there are damping

mechanisms which are not taken into account in the theory; in such cases, the condition

for instability changes to ={Ω} > 2π/τd, where τd is the damping time due to these other

damping mechanisms.

Using the definition of Ψr(θ,J ,Ω), as well as the definition of impedance given in

equations (3.26) and (3.27), the Hamiltonian (3.59) becomes

Hr = Hr0(J)−
ir0

2πβ2
0γ0

∑
np

Nn

∫ (
β0c

Z‖(pω0 + Ω′, s)

pω0 + Ω′
+ Z⊥(pω0 + Ω′, s){

[xr(θ,J , s) + xr0(s)][xn(θ′,J ′, s) + xn0(s)] + [yr(θ,J , s) + yr0(s)][yn(θ′,J ′, s) + yn0(s)]}

)
e−i(pω0+Ω′)τr(θ,J ,s)ei(pω0+Ω′)τn(θ′,J ′,s)e−i(pω0+Ω′)τr0(s)ei(pω0+Ω′)τn0(s)

e−iΩ
′s/β0cΨn(θ′,J ′,Ω′)d3θ′d3J ′dΩ′, (4.2)

where ω0 = 2π/T0 is the angular revolution frequency of a particle following the ideal orbit

C. One could write Ψn over a set of basis functions in θ and J , which would turn the

31
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Vlasov equation in to a set of algebraic equations. However, it is simpler to work in terms

of the quantities after they have been integrated in θ and J as in (4.2).

It is first of all useful to define the functions

fαn (θ,J , s) =


1 α = 0

xn(θ,J , s) α = x

yn(θ,J , s) α = y

(4.3)

fαn0(s) =


0 α = 0

xn0(s) α = x

yn0(s) α = y

(4.4)

Zα(ω, s) =

β0c
Z‖(ω, s)

ω
α = 0

Z⊥(ω, s) α = x, y.

(4.5)

Next, define the quantities

Dα
np(Ω, s) =

∫
fαn (θ,J , s)ei(pω0+Ω)τn(θ,J ,s)Ψn(θ,J ,Ω)d3θ d3J . (4.6)

The Dα
np are just the lowest multipole (monopole and two dipole) moments of the pertur-

bation to the distribution, Fourier analyzed. The frequency Ω corresponds to the frequency

of oscillations in the bunch. The bunch passes by a given point in the lab every T0; thus,

in the lab frame, the bunch perturbation should have a frequency spectrum with frequency

components pω0 + Ω for every integer p. Thus, Dα
np(Ω, s) gives the frequency component of

the perturbation to bunch n at the frequency pω0 + Ω in the lab frame. The Hamiltonian

can now be written as

Hr = Hr0(J)−
ir0

2πβ2
0γ0

∑
αnp

Nn

∫
Zα(pω0 + Ω′, s)

[fαr (θ,J , s) + fαr0(s)][Dα
np(Ω

′, s) + fαn0(s)D0
np(Ω

′, s)]

e−i(pω0+Ω′)τr(θ,J ,s)e−i(pω0+Ω′)τr0(s)ei(pω0+Ω′)τn0(s)e−iΩ
′s/β0cdΩ′. (4.7)

The Vlasov equation (3.68) can now be written for Ψr(θ,J ,Ω) using the Hamiltonian
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(4.7):[
−iΩ + ωr(J) ·

∂

∂θ

]
Ψr(θ,J ,Ω) = −

ir0c
2

γ0L2

∑
αknp

Nn
∂Ψr0

∂J
·
∂

∂θ

∫ L

0
ds′e−2πiks′/L

Zα(pω0 + Ω, s′)[fαr (θ,J , s′) + fαr0(s′)][Dα
n,p−k(Ω + kω0, s

′) + fαn0(s′)D0
n,p−k(Ω + kω0, s

′)]

e−i(pω0+Ω)τr(θ,J ,s′)e−i(pω0+Ω)τr0(s′)ei(pω0+Ω)τn0(s′). (4.8)

Define the operator

G(Ω,ω) = −iΩ + ω ·
∂

∂θ
. (4.9)

Applying the inverse of this operator to equation (4.8) produces an equation for Ψr. Equa-

tion (4.6) can then be used to turn Ψr into Dβ
rq, giving the system of equations

Dβ
rq(Ω, s) = −

ir0c
2

γ0L2

∑
αknp

Nn

∫ L

0
ds′e−2πiks′/Le−i(pω0+Ω)[τr0(s′)−τn0(s′)]Zα(pω0 + Ω, s′)

[Rβαqpr(Ω, s, s
′) + fαr0(s′)Rβ0

qpr(Ω, s, s
′)][Dα

n,p−k(Ω + kω0, s
′) + fαn0(s′)D0

n,p−k(Ω + kω0, s
′)],

(4.10)

where

Rβαqpr(Ω, s, s
′) =

∫
fβr (θ,J , s)ei(qω0+Ω)τr(θ,J ,s)

G−1
(
Ω,ωr(J)

){∂Ψr0

∂J
·
∂

∂θ

[
fαr (θ,J , s′)e−i(pω0+Ω)τr(θ,J ,s′)

]}
d3θ d3J . (4.11)

By taking the complex conjugate of (4.10) and redefining the D’s slightly, it is straightfor-

ward to show that if there is a solution of (4.10) with a frequency Ω, there is also a solution

with a frequency −Ω∗. Thus, every solution has a positive and negative frequency solution

which have the same imaginary parts.

Write each of the Rαβ in the form

Rβαqpr(Ω, s, s
′) =

∑
a

Bβα
qra(Ω, s)C

βα
pra(Ω, s

′). (4.12)

At the very least, this can be achieved by taking the Taylor series of (4.12) in (qω0 +Ω) and

(pω0 + Ω), then Fourier analyzing in s or s′. The expansion (4.12) enables a transformation

to the basis functions Dβα
ra (Ω) and Mβα

ra (Ω):

Dβα
ra (Ω) =

∑
knp

Nn

∫ L

0
ds′e−2πiks′/Le−i(pω0+Ω)[τr0(s′)−τn0(s′)]Zα(pω0 + Ω, s′)

Cβαpra(Ω, s
′)
[
Dα
n,p−k(Ω + kω0, s

′) + fαn0(s′)D0
n,p−k(Ω + kω0, s

′)
]

(4.13)
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Mβα
ra (Ω) =

∑
knp

Nn

∫ L

0
ds′fαr0(s′)e−2πiks′/Le−i(pω0+Ω)[τr0(s′)−τn0(s′)]Zα(pω0 + Ω, s′)

Cβ0
pra(Ω, s

′)
[
Dα
n,p−k(Ω + kω0, s

′) + fαn0(s′)D0
n,p−k(Ω + kω0, s

′)
]
. (4.14)

Note that Mβα
ra only exists for α 6= 0. Also, Mβα

ra is identical to Dβ0
ra if fαr0 is a constant

function (including zero). Equation (4.12) and the transformations (4.13) and (4.14) turn

equation (4.10) into

Dγβ
nb (Ω) = −

ir0c
2

γ0L2

∑
αakrq

Nr

∫ L

0
ds e−2πiks/Le−i(qω0+Ω)[τn0(s)−τr0(s)]Zβ(qω0 + Ω, s)

C
γβ
qnb(Ω, s)[B

βα
q−k,r,a(Ω + kω0, s)D

βα
ra (Ω + kω0) +B

β0
q−k,r,a(Ω + kω0, s)M

βα
ra (Ω + kω0)

+ fβr0(s)B0α
q−k,r,a(Ω + kω0, s)D

0α
ra (Ω + kω0) + fβr0(s)B00

q−k,r,a(Ω + kω0, s)M
0α
ra (Ω + kω0)]

(4.15)

Mγβ
nb (Ω) = −

ir0c
2

γ0L2

∑
αakrq

Nr

∫ L

0
ds e−2πiks/Le−i(qω0+Ω)[τn0(s)−τr0(s)]Zβ(Ω + qω0, s)f

β
r0(s)

Cγ0
qnb(Ω, s)[B

βα
q−k,r,a(Ω + kω0, s)D

βα
ra (Ω + kω0) +Bβ0

q−k,r,a(Ω + kω0, s)M
βα
ra (Ω + kω0)

+ fβr0(s)B0α
q−k,r,a(Ω + kω0, s)D

0α
ra (Ω + kω0) + fβr0(s)B00

q−k,r,a(Ω + kω0, s)M
0α
ra (Ω + kω0)].

(4.16)

4.1 Inversion of G

Consider the operator G defined in equation (4.9). The inverse of that operator is deter-

mined by solving the equation G(Ω,ω)Ψ(θ) = f(θ). Both Ψ and f should be periodic

functions of θ, and so this must be taken into account when solving the equation.

There are (at least) two possible ways of doing this: one is to Fourier analyze in all

components of θ; the other is to Fourier analyze in all but one of the components, and then

directly solve the remaining ordinary differential equation.

4.1.1 Fourier Analyze in All Components

This method is very straightforward; if Ψm and fm are the Fourier components of Ψ and

f respectively, then

Ψm =
ifm

Ω−m · ω
, (4.17)
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and thus

Ψ(θ) =
i

(2π)d

∑
m

∫
dθ′

f(θ′)eim·(θ−θ
′)

Ω−m · ω
, (4.18)

where d is the number of dimensions of the vector θ.

4.1.2 Fourier Analyze in All but One Component

A more useful form of the solution is often obtained by Fourier analyzing in all but one of

the components of θ. First of all, split all vectors into two components; one component has

only one element. Without loss of generality, that component can be chosen to be the first.

Thus, θ = (θ0, θ̄) and ω = (ω0, ω̄).

Next, Fourier analyze in θ̄. The resulting equation is

−i(Ω− m̄ · ω̄)Ψm̄(θ0) + ω0
dΨm̄
dθ0

= fm̄(θ0). (4.19)

This ordinary differential equation can be solved assuming the boundary condition that Ψm̄

is 2π-periodic:

Ψm̄(θ0) =
i

2ω0
cscπ

Ω− m̄ · ω̄

ω0

∫ π

−π
fm̄(θ′0 + θ0 + π)e−i(Ω−m̄·ω̄)θ′0/ω0dθ′0. (4.20)

The full solution for Ψ(θ) follows immediately.

4.2 No Potential-Well Distortion

If potential-well distortion effects are ignored, then the functions xr, yr, and τr will be iden-

tical to the functions x̂, ŷ, and τ̂ respectively (see subsection 3.2.5). Thus, these functions

no longer depend on r. Also, τr0 = τ̂r0, while xr0 and yr0 are both zero.

These results vastly simplify the eigenvalue system. It is clear from the definition of

Mβα
ra (Ω) given in equation (4.14) that the Mβα

ra (Ω) are zero. Thus, the eigenvalue system

described by equations (4.15) and (4.16) simplifies to

Dγβ
nb (Ω) = −

ir0c
2

γ0L2

∑
αakrq

Nre
−i(qω0+Ω)(n−r)T0/hrfZγβαqkbanr(Ω)Dβα

ra (Ω + kω0), (4.21)

where

Zγβαqkbanr(Ω) =

∫ L

0
ds e−2πiks/LZβ(qω0 + Ω, s)Cγβqnb(Ω, s)B

βα
q−k,r,a(Ω + kω0, s). (4.22)
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Note that Zγβαqkbanr(Ω) differs from Zβ(Ω); the former is a linear functional of the latter.

In equation (4.21), there are only two terms which contain q. Write q = q0 + hrfq1,

where 0 ≤ q0 < N . Since ω0T0 = 2π, the exponential term only depends on q0. Thus, the q

summation can be turned into a summation over q0 and q1, and the q1 summation can be

performed. Defining the basis functions

D̃γβ
ra (Ω) = eiΩrT0/hrfDγβ

ra (Ω), (4.23)

the eigenvalue equation (4.21) becomes

D̃γβ
nb (Ω) = −

ir0c
2

γ0L2

∑
αakr

Nre
−2πikr/hrf

N−1∑
q0=0

e−2πiq0(n−r)/hrfZ̃γβαq0kbanr
(Ω)D̃βα

ra (Ω + kω0), (4.24)

where

Z̃γβαq0kbanr
(Ω) =

∑
q1

Zγβαq0+q1hrf,kbanr
(Ω). (4.25)

Next, assume that the distribution Ψr0(J) is independent of the bunch number r. This

is a good assumption at low current, where the bunch length is dominated by radiation

excitation and not potential-well distortion [30]. This eliminates the last dependence of the

Rβαqpr(Ω, s, s′) defined in equation (4.11) on r, and thus the Bβα
qra(Ω, s) and the Cβαqra(Ω, s) of

equation (4.12) become independent of r. It then follows that Z̃γβαqkbanr(Ω) is independent of

n and r; call this Ẑγβαqkba(Ω). Define the basis functions

D̂βα
q0a(Ω) =

∑
r

Nre
2πiq0r/hrfD̃βα

ra (Ω); (4.26)

then the eigenvalue equation (4.24) becomes

D̂γβ
p0b

(Ω) = −
ir0c

2

γ0L2

∑
αakq0

(∑
n

Nne
2πi(p0−q0)n/hrf

)
Ẑγβαq0kba

(Ω)D̂βα
q0−k,a

(Ω + kω0). (4.27)

The most interesting case of this is usually the symmetric bunch case, when Nn is indepen-

dent of n. In this case, the sum over n is only nonzero when p0 = q0.

Both equations (4.24) and (4.27) are potentially useful; the latter if the bunches are

nearly symmetric, the former when this is not true.

Note that in all the above and subsequent equations, hrf may be replaced by M , the

minimum number of bunch buckets required to have M buckets equally spaced, with none

of the buckets outside of those M buckets containing particles. Note that hrf is therefore

an integer multiple of M .
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4.3 Linear Lattice without Dispersion

Begin by assuming a linear lattice without dispersion (except for the contribution of dis-

persion to the momentum compaction factor described below). Thus, the lattice part of the

Hamiltonian will be given by equation (3.54). Appendices A.3 and A.4 describe the trans-

formation of such a Hamiltonian to action-angle variables. The resulting transformations

give the functions

x̂(θ,J , s) =
√

2Jxβx(s) cos

(
θx + ψx(s)−

ωxs

β0c

)
(4.28)

ŷ(θ,J , s) =
√

2Jyβy(s) cos

(
θy + ψy(s)−

ωys

β0c

)
(4.29)

τ̂(θ,J , s) =
√

2Jτβτ (s) cos

(
θτ + ψτ (s)−

ωτs

β0c

)
(4.30)

The determination of the functions βx,y,τ , ψx,y,τ , and the numbers ωx,y,τ is discussed in

appendices A.3 and A.4. In particular, βτ is given by equation (A.28), with

kp(s) = −
1

β2
0c

2

(
h(s)η(s) −

1

γ2
0

)
(4.31)

K̂p = −
ηCL

β2
0c

2
(4.32)

kq = −
eV̂ ωrf

p0
. (4.33)

ηC is known as the momentum compaction [11,68].

All potential-well distortion effects will be ignored. Thus, all the approximations of

section 4.2 hold.

4.3.1 Computation of R, B, and C

The next step in the analysis of the system for a linear lattice without dispersion is to

compute the functions R, B, and C as defined in equations (4.11) and (4.12).

From the definition of Rβαqpr in equation (4.11), the form of the functions x and y given

by equations (4.28) and (4.29), and the form for the inverse of G given in section 4.1.2,

it follows that Rβαqp is zero unless β = α (notice that the bunch number index has been

dropped as per section 4.2). Using the method of section 4.1.2 to invert G, the remaining

R
βα
qp are

R00
qp(Ω, s, s

′) = −
i

ωτ
QP cscπ

Ω

ωτ

∫ π

−π
d′0(∆) sinϕe−iΩθ

′/ωτdθ′ (4.34)
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Rααqp (Ω, s, s′) =

√
βα(s)βα(s′)

4ωτ

∫ π

−π

{
ei[∆ψα(s′)−∆ψα(s)]e−i(Ω−ωα)θ′/ωτ cscπ

Ω− ωα
ωτ

[ρ(∆)− 2id′α(∆)QP sinϕ]

− e−i[∆ψα(s′)−∆ψα(s)]e−i(Ω+ωα)θ′/ωτ cscπ
Ω + ωα
ωτ

[ρ(∆) + 2id′α(∆)QP sinϕ]

}
dθ′, (4.35)

where

∆ = ∆(Q,P,ϕ) (4.36)

Q =
√
βτ (s)(qω0 + Ω) (4.37)

P =
√
βτ (s′)(pω0 + Ω) (4.38)

ϕ = ∆ψτ (s
′)−∆ψτ (s) + θ′ (4.39)

∆ψα(s) = ψα(s)−
µαs

L
(4.40)

∆(Q,P,ϕ) = Q2 + P 2 + 2QP cosϕ (4.41)

ρ(x) = 8π3

∫
Ψ0(J)J0(

√
2Jτx)d3J (4.42)

d0(x) = 8π3

∫
∂Ψ0

∂Jτ
J0(
√

2Jτx)d3J (4.43)

dα(x) = 8π3

∫
Jα
∂Ψ0

∂Jτ
J0(
√

2Jτx)d3J . (4.44)

The index α is either x or y; throughout the rest of this paper, Greek indices will have

either this meaning or will designate all of 0, x, and y. The meaning will be clear from the

context.

Note that the dα involve the derivative of the distribution with respect to Jτ . If the

distribution is only known once the momenta have been integrated out, for instance, the

distribution as a function of J can be found as described in appendix B.

The B and C defined in equation (4.12) can be computed for theR’s defined in equations

(4.34)–(4.35). The procedure is to perform a Taylor expansion in x of the quantities

f̄α(xQ, xP,ϕ) =
fα(xQ, xP,ϕ)fα(0, 0, ϕ)

fα(xQ, 0, ϕ)fα(0, xP, ϕ)
, (4.45)

where

f0(Q,P,ϕ) = d′0
(
∆(Q,P,ϕ)

)
(4.46)

fα(Q,P,ϕ) = ρ
(
∆(Q,P,ϕ)

)
− 2iQP sinϕd′α

(
∆(Q,P,ϕ)

)
. (4.47)
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The Taylor expansion of f̄α(xQ, xP,ϕ) about x = 0 evaluated at x = 1 can be written in

the form ∑
kln

[
fλklnP

n+2kQn+2l cosn ϕ− igλklnP
n+2kQn+2l cosn−1 ϕ sinϕ

]
. (4.48)

The θ′ integrals in equations (4.34) and (4.35) can now be performed. Since∫ π

−π
e−iλθ cosm(θ + φ)dθ = sinπλ

(−1)m

2m−1

m∑
k=0

(
m

k

)
e−i(m−2k)φ

λ+m− 2k
(4.49)

∫ π

−π
e−iλθ cosm−1(θ + φ) sin(θ + φ)dθ =

i

m
sinπλ

(−1)m

2m−1

m∑
k=0

(
m

k

)
(m− 2k)

e−i(m−2k)φ

λ+m− 2k
,

(4.50)

the resulting expressions for the R’s are

R00
qp(Ω, s, s

′) =
d′0
(
(pω0 + Ω)2βτ (s′)

)
d′0
(
(qω0 + Ω)2βτ (s)

)
d′0(0)∑

klmn

(−1)n
n+ 1− 2m

(n+ 1)2n

(
n+ 1

m

)
f0kln

[√
βτ (s′)(pω0 + Ω)

]n+2k+1 [√
βτ (s)(qω0 + Ω)

]n+2l+1 ei(n+1−2m)[∆ψτ (s′)−∆ψτ (s)]

Ω− (n+ 1− 2m)ωτ
(4.51)

Rααqp (Ω, s, s′) =

√
βα(s)βα(s′)

4

ρ
(
βτ (s)(qω0 + Ω)2

)
ρ
(
βτ (s

′)(pω0 + Ω)2
)

ρ(0)∑
klmn

(−1)n

2n−1

(
n

m

)(
fαkln +

n− 2m

n
gαkln

)[√
βτ (s′)(pω0 + Ω)

]n+2k [√
βτ (s)(qω0 + Ω)

]n+2l

[
ei{∆ψα(s′)−∆ψα(s)−(n−2m)[∆ψτ (s′)−∆ψτ (s)]}

Ω− [ωα − (n− 2m)ωτ ]
−
e−i{∆ψα(s′)−∆ψα(s)−(n−2m)[∆ψτ (s′)−∆ψτ (s)]}

Ω + [ωα − (n− 2m)ωτ ]

]
.

(4.52)

The m sum in (4.51) extends from 0 to n+ 1, while it extends from 0 to n in (4.52).

To separate the R’s into B’s and C’s as described in equation (4.12), the following

factorizations are necessary:

f0kln =
∑
d

c0kndb0lnd (4.53)

fαkln +
n− 2m

n
gαkln =

∑
d

cαknmdbαlnmd. (4.54)
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This factorization is possible in general. One way to do it is to factorize the matrix with

indices k and l using an LU decomposition [29].

Thus, the B’s and C’s that result from equations (4.51) and (4.52) are

B00
q[mnd](Ω, s) =

[√
βτ (s)(qω0 + Ω)

]n+1
b0nd

(
βτ (s)(qω0 + Ω)2

)
e−i(n+1−2m)∆ψτ (s)d′0

(
βτ (s)(qω0 + Ω)2

)
(4.55)

C00
q[mnd](Ω, s) = (−1)n

n+ 1− 2m

(n+ 1)2n

(
n+ 1

m

)[√
βτ (s)(qω0 + Ω)

]n+1
c0nd

(
βτ (s)(qω0 + Ω)2

)
ei(n+1−2m)∆ψτ (s)d

′
0

(
βτ (s)(qω0 + Ω)2

)
d′0(0)

1

Ω− (n+ 1− 2m)ωτ
(4.56)

Bαα
q[knmd±] =

√
βα(s)ρ

(
βτ (s)(qω0 + Ω)2

)
bαnmd

(
βτ (s)(qω0 + Ω)2

)(√
βτ (s)(qω0 + Ω)

)n
e∓i[∆ψα(s)−(n−2m)∆ψτ (s)], (4.57)

Cααq[knmd±] = ±
(−1)n

2n+1

(
n

m

)
1

ρ(0)

√
βα(s)ρ

(
βτ (s)(qω0 + Ω)2

)
cαnmd

(
βτ (s)(qω0 + Ω)2

)
(√

βτ (s)(qω0 + Ω)
)n e±i[∆ψα(s)−(n−2m)∆ψτ (s)]

Ω∓ [ωα − (n− 2m)ωτ ]
(4.58)

where

b0nd(Q) =
∑
k

b0kndQ
k (4.59)

c0nd(Q) =
∑
k

c0kndQ
k (4.60)

bαnmd(Q) =
∑
k

bαknmdQ
k (4.61)

cαnmd(Q) =
∑
k

cαknmdQ
k. (4.62)

These results can now be used to compute the “effective impedance” Ẑαααqkba(Ω) described
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in section 4.2. The results are (dropping indices where appropriate)

Z0
qk[mnd][m′n′d′](Ω) = (−1)n

n+ 1− 2m

(n+ 1)2n

(
n+ 1

m

)
1

Ω− (n+ 1− 2m)ωτ∫ L

0
ds e−2πiks/Lβ0cZ‖(qω0 + Ω, s)

qω0 + Ω

[√
βτ (s)(qω0 + Ω)

]n+n′+2
ei∆ψτ (s)[n−2m−n′+2m′]

c0nd
(
βτ (s)(qω0 + Ω)2

)
b0n′d′

(
βτ (s)(qω0 + Ω)2

)[d′0(βτ (s)(qω0 + Ω)2
)]2

d′0(0)
(4.63)

Zαqk[mnd±][m′n′d′±](Ω) = ±
(−1)n

2n+1

(
n

m

)
1

Ω∓ [ωα − (n− 2m)ωτ ]∫ L

0
ds e−2πiks/Lβα(s)Z⊥(qω0 + Ω, s)

[√
βτ (s)(qω0 + Ω)

]n+n′

e∓i∆ψτ (s)(n−2m−n′+2m′)

cαnmd
(
βτ (s)(qω0 + Ω)2

)
bαn′m′d′

(
βτ (s)(qω0 + Ω)2

)ρ2
(
βτ (s)(qω0 + Ω)2

)
ρ(0)

(4.64)

Zαqk[mnd±][m′n′d′∓](Ω) = ±
(−1)n

2n+1

(
n

m

)
1

Ω∓ [ωα − (n− 2m)ωτ ]

∫ L

0
ds e−2πiks/L

βα(s)Z⊥(qω0 + Ω, s)
[√

βτ (s)(qω0 + Ω)
]n+n′

e±i[2∆ψα(s)−∆ψτ (s)(n−2m+n′−2m′)]

cαnmd
(
βτ (s)(qω0 + Ω)2

)
bαn′m′d′

(
βτ (s)(qω0 + Ω)2

)ρ2
(
βτ (s)(qω0 + Ω)2

)
ρ(0)

. (4.65)

Equations (4.63)–(4.65) demonstrate the assertion made earlier that the single-bunch

growth rates and frequency shifts are the average of the multibunch growth rates and

frequency shifts. The assertion only holds true in the case of symmetric bunches, if coupling

is ignored. The single bunch shift is proportional to the result of summing the Zαq··· over all

integers q. The multibunch shift for the mode q0 is proportional to the result of summing

Zαq··· over all integers q = q0 + q1M , where q1 is an integer and M is the number of bunches.

The proportionality constant for the multibunch case is just the proportionality constant

for the single bunch case times M (see the discussion of symmetric bunches at the end of

section 4.2). Thus, the sum of the multibunch shifts should be M times the single bunch

shift, assuming that a “bunch” in either case contains the same number of particles. Thus,

under these conditions, the single-bunch frequency shift and growth rate gives the average

of the multibunch frequency shifts and growth rates for a given type of mode.
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4.3.2 Gaussian Bunches

Consider the case where the unperturbed distribution is Gaussian in the coordinates. This

is the expected situation for electron machines and some proton machines which have sig-

nificant radiation damping [30]. Then Ψ0(J) takes the form

Ψ0(J) =
1

8π3

1

ΣxΣyΣτ
e−Jx/Σxe−Jy/Σye−Jτ/Στ . (4.66)

Then ρ(x), d0(x), and dα(x) (as defined in equations (4.42), (4.43), and (4.44) respectively)

are

ρ(x) = e−xΣτ/2 (4.67)

d0(x) = −
1

Στ
e−xΣτ/2 (4.68)

dα(x) = −
Σα

Στ
e−xΣτ/2, (4.69)

and thus the f̄α(Q,P,ϕ) are

f̄0(Q,P,ϕ) = e−ΣτQP cosϕ (4.70)

f̄α(Q,P,ϕ) = e−ΣτQP cosϕ (1− iΣαQP sinϕ) . (4.71)

Therefore fαkln and gαkln are given by

fαkln = δk0δl0(−1)n
1

n!
Σn
τ (4.72)

gαkln = ΣαΣn−1
τ δk0δl0(−1)n−1 1

(n− 1)!
, (4.73)

and thus

c0nd(Q) = δd0(−1)n
1

n!
Σn/2
τ (4.74)

b0nd(Q) = δd0Σn/2
τ (4.75)

cαnmd(Q) = δd0(−1)n
1

n!
Σn/2
τ

[
1−

Σα

Στ
(n− 2m)

]
(4.76)

bαnmd(Q) = δd0Σn/2
τ . (4.77)

Therefore, the effective impedances are given by

Z0
qk[mn][m′n′](Ω) =

n+ 1− 2m

(n+ 1)!2n+1Στ

(
n+ 1

m

)
1

Ω− (n+ 1− 2m)ωτ∫ L

0
ds e−2πiks/Lβ0cZ‖(qω0 + Ω, s)

qω0 + Ω
ei∆ψτ (s)(n−2m−n′+2m′)

[στ (s)(qω0 + Ω)]n+n′+2 e−σ
2
τ (s)(qω0+Ω)2 (4.78)
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Zαqk[mn±][m′n′±] = ±
1

2n+1n!

(
n

m

)[
1−

Σα

Στ
(n− 2m)

]
1

Ω∓ [ωα − (n− 2m)ωτ ]∫ L

0
ds e−2πiks/Lβα(s)Z⊥(qω0 + Ω, s)e∓i∆ψτ (s)(n−2m−n′+2m′)

[στ (s)(qω0 + Ω)]n+n′ e−σ
2
τ (s)(qω0+Ω)2 (4.79)

Zαqk[mn±][m′n′∓] = ±
1

2n+1n!

(
n

m

)[
1−

Σα

Στ
(n− 2m)

]
1

Ω∓ [ωα − (n− 2m)ωτ ]∫ L

0
ds e−2πiks/Lβα(s)Z⊥(qω0 + Ω, s)e±i[2∆ψα(s)−∆ψτ (s)(n−2m+n′−2m′)]

[στ (s)(qω0 + Ω)]n+n′ e−σ
2
τ (s)(qω0+Ω)2 , (4.80)

where στ (s) =
√

Στβτ (s) is the r.m.s. bunch half-length as a function of s. Note that the d

indices have been suppressed since they don’t enter. These results are consistent with the

formulas given in [70], if the approximations therein are used.

It is useful to put equations (4.27) and (4.78)–(4.80) in terms of quantities more com-

monly used in accelerator physics. It is also useful to regroup terms in this equations. The

results are[
Ω

ω0
+ (n+ 1− 2m)νs

]
D̂0
p0[mn] = −i

ηC

4π2β2
0

e

E0

L2

σ2
τ (srf)β

2
0c

2
csc 2πνs

(
n+ 1

m

)
n+ 1− 2m

(n+ 1)!2n+1

∑
m′n′kq0

(∑
r

Ire
2πi(p0−q0)r/hrf

)
Z
‖
k[nm][n′m′],eff(q0ω0 + Ω)D̂0

q0−k,[m′n′]
(Ω + kω0)

(4.81)

Z
‖
k[nm][n′m′],eff(ω) =

∑
q1

∫ L

0
ds e−2πiks/LZ‖(hrfq1ω0 + ω, s)

hrfq1 + ω/ω0
ei∆ψτ (s)(n−2m−n′+2m′)

[στ (s)(hrfq1ω0 + ω)]n+n′+2 e−σ
2
τ (s)(hrfq1ω0+ω)2

(4.82)

{
Ω

ω0
∓ [να + (n− 2m)νs]

}
D̂α
p0[mn±] = ∓i

1

2πβ2
0

e

E0

(
n

m

)
1

2n+1n![
1−

εαηCL

σ2
τ (srf)β

2
0c

2
(n− 2m) csc 2πνs

] ∑
m′n′kq0

(∑
r

Ire
2πi(p0−q0)r/hrf

)
[
Zαk[mn±][m′n′±],eff(q0ω0 + Ω)Dα

q0−k,[m′n′±](Ω + kω0)

+ Zαk[mn±][m′n′∓],eff(q0ω0 + Ω)Dα
q0−k[m′n′∓](Ω + kω0)

]
(4.83)
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Zαk[nm±][n′m′±],eff(ω) =
∑
q1

∫ L

0
ds e−2πiks/Lβα(s)Z⊥(hrfq1ω0 + ω, s)

e∓i∆ψτ (s)(n−2m−n′+2m′) [στ (s)(hrfq1ω0 + ω)]n+n′ e−σ
2
τ (s)(hrfq1ω0+ω)2

(4.84)

Zαk[nm±][n′m′∓],eff(ω) =
∑
q1

∫ L

0
ds e−2πiks/Lβα(s)Z⊥(hrfq1ω0 + ω, s)

e±i[2∆ψα(s)−∆ψτ (s)(n−2m+n′−2m′)] [στ (s)(hrfq1ω0 + ω)]n+n′ e−σ
2
τ (s)(hrfq1ω0+ω)2

. (4.85)

Here να is the betatron tune in the appropriate plane, and νs is the synchrotron tune. Note

that above transition [68], ωτ is negative; νs has been chosen to be positive above transition.

Also, εα is the transverse emittance [68], and Ir is the current in bunch r. Note also that

the bunch length at the cavity στ (srf) is the longest bunch length at any point in the ring.

Computations can generally be performed assuming that στ is constant and that ∆ψτ

is zero, since the synchrotron tune is generally very small (see discussion in appendix A.4).

Also, since the interesting effects from this method are seen when the mode shifts are

comparable with the synchrotron tune, it follows that ignoring the cross terms from equation

(4.85) results in relative errors of order νs/να, which is a small quantity for most accelerators.

This can be seen by considering perturbation theory [61]. Assume that the problem without

cross terms has been solved. Then the matrix to find the eigenvalues of takes the form[
D11 U−1

11 A12U22

U−1
22 A21U11 D22

]
, (4.86)

where the D’s are diagonal, and Uii diagonalized Aii in the original matrix. The lowest

order corrections to the eigenvalues in the Dii are then

Ω

ω0
−D11,kk =

∑
l 6=k

(U−1
22 A21U11)lk(U

−1
11 A12U22)kl

D11,kk −D22,ll
(4.87)

Since the Aij are of order νs, and to lowest order |D11,kk−D22,ll| is 2να, this gives corrections

of order ν2
s/να. Since the uncorrected shifts are also comparable to νs, the relative correction

is of order νs/να. Throughout this argument, the variation of (4.84) and (4.85) with Ω has

been ignored; this is an excellent approximation as long as there are no resonances whose

width is comparable to or less than νs (which is usually the case in the transverse plane).
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4.4 Feedback

Now, add feedback to this formalism. While all the equations written down will contain

only one feedback system, an arbitrary number of feedback systems may be added, and

these results will carry through in the obvious way. Beginning with the extra terms in the

Hamiltonian (3.64), the Hamiltonian in terms of the impedance (4.2) gets the additional

terms

−
ir0

2πβ2
0γ0

∑
np

Nne
−2πip∆s/L

∫ (
β0c

ZFB
‖ (pω0 + Ω′, s)

pω0 + Ω′

+ ZFB
⊥ (pω0 + Ω′, s)[xr(θ,J , s) + xr0(s)][xn(θ′,J ′, s−∆s) + xn0(s−∆s)]

+ ZFB
⊥ (pω0 + Ω′, s)[yr(θ,J , s) + yr0(s)][yn(θ′,J ′, s−∆s) + yn0(s−∆s)]

)
e−i(pω0+Ω′)τr(θ,J ,s)ei(pω0+Ω′)τn(θ′,J ′,s−∆s)e−i(pω0+Ω′)τr0(s)ei(pω0+Ω′)τn0(s−∆s)

e−iΩ
′s/β0cΨn(θ′,J ′,Ω′)d3θ′d3J ′dΩ′. (4.88)

Writing this piece in terms of the Dα
np(Ω, s) (equation (4.6) ), the terms

−
ir0

2πβ2
0γ0

∑
αnp

Nne
−2πip∆s/L

∫
ZFB
α (pω0 + Ω′, s)

[fαr (θ,J , s) + fαr0(s)][Dα
np(Ω

′, s−∆s) + fαn0(s)D0
np(Ω

′, s−∆s)]

e−i(pω0+Ω′)τr(θ,J ,s)e−i(pω0+Ω′)τr0(s)ei(pω0+Ω′)τn0(s−∆s)e−iΩ
′s/β0cdΩ′ (4.89)

are added to the Hamiltonian of equation (4.7). The ZFB
α are defined to be

ZFB
α (ω, s) =


β0c

ZFB
‖ (ω, s)

ω
α = 0

ZFB
x (ω, s) α = x

ZFB
y (ω, s) α = y.

(4.90)

Putting the resulting Hamiltonian into the Vlasov equation and writing a self-consistent

equation for the Dβ
rq gives equation (4.10) with the additional terms

−
ir0c

2

γ0L2

∑
αknp

Nne
−2πi(p−k)∆s/L

∫ L

0
ds′e−2πiks′/Le−i(pω0+Ω)[τr0(s′)−τn0(s′−∆s)]

ZFB
α (pω0 + Ω, s′)[Rβαqpr(Ω, s, s

′) + fαr0(s′)Rβ0
qpr(Ω, s, s

′)]

[Dα
n,p−k(Ω + kω0, s

′ −∆s) + fαn0(s′ −∆s)D0
n,p−k(Ω + kω0, s

′ −∆s)] (4.91)
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on the right hand side. The result that a solution with frequency Ω implies a solution with

frequency −Ω∗ still holds.

The basis functions Dβα
ra (Ω) and M

βα
ra (Ω) are now redefined to be

Dβα
ra (Ω) =

∑
knp

Nn

∫ L

0
ds′e−2πiks′/Le−i(pω0+Ω)τr0(s′)Cβαpra(Ω, s

′)

{
ei(pω0+Ω)τn0(s′)Zα(pω0 + Ω, s′)

[
Dα
n,p−k(Ω + kω0, s

′) + fαn0(s′)D0
n,p−k(Ω + kω0, s

′)
]

+ ei(pω0+Ω)τn0(s′−∆s)e−2πi(p−k)∆s/LZFB
α (pω0 + Ω, s′)[

Dα
n,p−k(Ω + kω0, s

′ −∆s) + fαn0(s′ −∆s)D0
n,p−k(Ω + kω0, s

′ −∆s)
]}

(4.92)

Mβα
ra (Ω) =

∑
knp

Nn

∫ L

0
ds′e−2πiks′/Lfαr0(s′)e−i(pω0+Ω)τr0(s′)Cβ0

pra(Ω, s
′)

{
ei(pω0+Ω)τn0(s′)Zα(pω0 + Ω, s′)

[
Dα
n,p−k(Ω + kω0, s

′) + fαn0(s′)D0
n,p−k(Ω + kω0, s

′)
]

+ ei(pω0+Ω)τn0(s′−∆s)e−2πi(p−k)∆s/LZFB
α (pω0 + Ω, s′)[

Dα
n,p−k(Ω + kω0, s

′ −∆s) + fαn0(s′ −∆s)D0
n,p−k(Ω + kω0, s

′ −∆s)
]}
. (4.93)

The self-consistency equations for Dβα
ra (Ω) and Mβα

ra (Ω) then become

Dγβ
nb (Ω) = −

ir0c
2

γ0L2

∑
αakrq

Nr

∫ L

0
ds e−2πiks/Le−i(qω0+Ω)τn0(s)Cγβqnb(Ω, s)

{
ei(qω0+Ω)τr0(s)Zβ(qω0 + Ω, s)

[
Bβα
q−k,r,a(Ω + kω0, s)D

βα
ra (Ω + kω0) +Bβ0

q−k,r,a(Ω + kω0, s)M
βα
ra (Ω + kω0)

+ f
β
r0(s)B0α

q−k,r,a(Ω + kω0, s)D
0α
ra (Ω + kω0) + f

β
r0(s)B00

q−k,r,a(Ω + kω0, s)M
0α
ra (Ω + kω0)

]
+ ei(qω0+Ω)τr0(s−∆s)e−2πi(q−k)∆s/LZFB

β (qω0 + Ω, s)
[

Bβα
q−k,r,a(Ω + kω0, s −∆s)Dβα

ra (Ω + kω0) +Bβ0
q−k,r,a(Ω + kω0, s−∆s)Mβα

ra (Ω + kω0)

+ f
β
r0(s−∆s)B0α

q−k,r,a(Ω + kω0, s −∆s)D0α
ra (Ω + kω0)

+ fβr0(s−∆s)B00
q−k,r,a(Ω + kω0, s−∆s)M0α

ra (Ω + kω0)
]}

(4.94)
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Mγβ
nb (Ω) = −

ir0c
2

γ0L2

∑
αakrq

Nr

∫ L

0
ds e−2πiks/Le−i(qω0+Ω)τn0(s)fβr0(s)Cγ0

qnb(Ω, s)
{

ei(qω0+Ω)τr0(s)Zβ(qω0 + Ω, s)
[

Bβα
q−k,r,a(Ω + kω0, s)D

βα
ra (Ω + kω0) +Bβ0

q−k,r,a(Ω + kω0, s)M
βα
ra (Ω + kω0)

+ fβr0(s)B0α
q−k,r,a(Ω + kω0, s)D

0α
ra (Ω + kω0) + fβr0(s)B00

q−k,r,a(Ω + kω0, s)M
0α
ra (Ω + kω0)

]
+ ei(qω0+Ω)τr0(s−∆s)e−2πi(q−k)∆s/LZFB

β (qω0 + Ω, s)
[

Bβα
q−k,r,a(Ω + kω0, s −∆s)Dβα

ra (Ω + kω0) +Bβ0
q−k,r,a(Ω + kω0, s−∆s)Mβα

ra (Ω + kω0)

+ fβr0(s−∆s)B0α
q−k,r,a(Ω + kω0, s −∆s)D0α

ra (Ω + kω0)

+ fβr0(s−∆s)B00
q−k,r,a(Ω + kω0, s−∆s)M0α

ra (Ω + kω0)
]}
. (4.95)

4.4.1 No Potential-Well Distortion

If there is no potential-well distortion, the approximations of section 4.2 carry over easily

to the case with feedback. The only modification is to change Zγβαqkbanr to

Zγβαqkbanr(Ω) =

∫ L

0
ds e−2πiks/LCγβqnb(Ω, s)

[
Zβ(qω0 + Ω, s)Bβα

q−k,r,a(Ω + kω0, s)

+ e−2πi(p−k)∆s/LZFB
β (qω0 + Ω, s)Bβα

q−k,r,a(Ω + kω0, s−∆s)
]
. (4.96)

4.4.2 Linear Lattice, No Dispersion, Gaussian Bunches

All the computations of R, B, C, b and c in sections 4.3.1 and 4.3.2 hold in the presence of

feedback. The only changes are therefore in the Zα···. Thus, the formulas (4.81) and (4.83)

continue to hold, but with

Z
‖
kq0[nm][n′m′],eff(ω) =

∑
q1

∫ L

0
ds e−2πiks/L

[
Z‖(hrfq1ω0 + ω, s)

hrfq1 + ω/ω0
ei∆ψτ (s)(n−2m−n′+2m′) [στ (s)(hrfq1ω0 + ω)]n+n′+2 e−σ

2
τ (s)(hrfq1ω0+ω)2

+ e−2πi(q0+q1hrf−k)∆s/L
ZFB
‖ (hrfq1ω0 + ω, s)

hrfq1 + ω/ω0

ei[∆ψτ (s)(n−2m)−∆ψτ (s−∆s)(n′−2m′)] [στ (s)(hrfq1ω0 + ω)]n+1

[στ (s−∆s)(hrfq1ω0 + ω)]n
′+1 e−[σ2

τ (s)+σ2
τ (s−∆s)](hrfq1ω0+ω)2/2

]
(4.97)
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Zαkq0[nm±][n′m′±],eff(ω) =
∑
q1

∫ L

0
ds e−2πiks/L

[
βα(s)Z⊥(hrfq1ω0 + ω, s)

e∓i∆ψτ (s)(n−2m−n′+2m′) [στ (s)(hrfq1ω0 + ω)]n+n′ e−σ
2
τ (s)(hrfq1ω0+ω)2

+
√
βα(s)βα(s−∆s)e−2πi(q0+q1hrf−k)∆s/LZFB

α (hrfq1ω0 + ω, s)

e∓i[∆ψα(s−∆s)−∆ψα(s)+∆ψτ (s)(n−2m)−∆ψτ (s−∆s)(n′−2m′)]

[στ (s)(hrfq1ω0 + ω)]n [στ (s−∆s)(hrfq1ω0 + ω)]n
′
e−[σ2

τ (s)+σ2
τ (s−∆s)](hrfq1ω0+ω)2/2

]
(4.98)

Zαkq0[nm±][n′m′∓],eff(ω) =
∑
q1

∫ L

0
ds e−2πiks/L

[
βα(s)Z⊥(hrfq1ω0 + ω, s)

e±i[2∆ψα(s)−∆ψτ (s)(n−2m+n′−2m′)] [στ (s)(hrfq1ω0 + ω)]n+n′ e−σ
2
τ (s)(hrfq1ω0+ω)2

+
√
βα(s)βα(s−∆s)e−2πi(q0+q1hrf−k)∆s/LZFB

α (hrfq1ω0 + ω, s)

e±i[∆ψα(s)+∆ψα(s−∆s)−∆ψτ (s)(n−2m)−∆ψτ (s−∆s)(n′−2m′)]

[στ (s)(hrfq1ω0 + ω)]n [στ (s−∆s)(hrfq1ω0 + ω)]n
′
e−[σ2

τ (s)+σ2
τ (s−∆s)](hrfq1ω0+ω)2/2

]
. (4.99)

Note that the Zα have an additional index q0, since that is needed for the feedback terms.



Chapter 5

Example and Analysis

As an example, consider transverse vertical modes in the PEP-II B Factory low energy

ring [49]. The relevant parameters are summarized in table 5.1.

5.1 Approximations Made

The method presented in this dissertation can handle and arbitrary magnetic lattice and

an arbitrary distribution of bunches. However, as more effects are included, the complexity

of the computation increases rapidly. Thus, for this example, several approximations have

been made to simplify the calculation.

The magnetic lattice is assumed to be linear only. Thus, the system is described by

equations (4.83)–(4.85). Potential Landau damping effects due to tune shift with amplitude

[15, 16, 34, 66, 70] are thus ignored, as well as potential damping effects from chromaticity

[11,38,40,57–59,63,66,67,70].

The effect of Landau damping can be estimated: oscillations will be damped if the

absolute value of their frequency shift is less than the frequency spread due to nonlinearity

in the bulk of the bunch distribution [66]. For PEP-II, the vertical tune shift at Jx = εx is

−4.4× 10−6, and at Jy = εy it is −1.4× 10−6 [10]. Both of these figures are well below the

radiation damping rate of about 2× 10−5, and so no Landau damping is expected from the

betatron tune shift with amplitude.

The synchrotron tune shift with amplitude can also give Landau damping of the multi-

bunch modes (at least those with m 6= 0). The synchrotron tune shift at the longitudinal

emittance can be computed from equation (A.63); it is −4.4× 10−5. This is larger than the

49
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betatron tune νy 36.64
synchrotron tune νs 0.03362246

bunch length σ` 1 cm
circumference L 2199.318 m

average β-function 〈βy〉 18.3647 m
average β-function at cavities 〈βy〉cav 16.8506 m
average β-function at BPM’s 〈βy〉bpm 16.6291 m

average β-function in straights 〈βy〉str 22.1851 m
length of straights Lstr 770.11 m

average β-function in arcs 〈βy〉arc 16.3061 m
length of arcs Larc 1429.208 m

energy E 2.5 GeV
operating current I 3 A
number of cavities Ncav 8

rf frequency frf 476 MHz
rf harmonic number hrf 3492

Buckets in symmetric fill M 1746
number of bunches kB 1658

momentum compaction ηC 1.23204608115 × 10−3

horizontal emittance εx 64.43 nm-rad
vertical emittance εy 2.57 nm-rad

vertical damping time τy 0.0576 s
Energy loss per turn ∆E 0.789988 MeV

Maximum rf voltage V̂ 5.1 MV

Table 5.1: Parameters for the PEP-II low energy ring [10, 49]. Note that the energy,
current, and number of cavities are worst-case values. The average β-functions at BPM’s and
cavities are obtained by averaging the β-functions at the BPM’s and cavities respectively.
The average β-function in the arcs and straights was obtained by using a trapezoid rule
integration for the values of the β-function at the exit face of each element of the respective
regions. The arcs are taken to extend from the end of the element prior to the first arc
bend in each arc section to the end of the last arc bend in each arc section.

radiation damping rate, and so one would expect some Landau damping. It turns out that

there probably is none; this will be discussed in more detail at the end of this chapter.

The effects of chromaticity can be computed from the formalism presented in this dis-

sertation. It is a complex computation, and has not been completed. However, a good

estimate of its effect can be obtained by doing what most authors have done [11,38,40,57–

59,63,66,67,70], which is to perform the computations by shifting the form factors in (4.84)

by ωξ = ξω0/ηC , the chromatic frequency. Here ξ is the chromaticity [68]. This will be
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discussed in more detail at the end of this chapter.

Potential-well distortion can also give effects similar to a nonlinear lattice. In addition

to that, however, it can also give purely linear effects. It can cause the tunes and the bunch

length to change as the current is increased. These effects can both be taken into account

simply by making the linear tune νs and the bunch length σ` in formulas (4.83)–(4.85)

functions of current. This is not done here, since the potential-well distortion effects are

unknown.

Little potential-well distortion is expected from the vertical transverse wake. The reason

is that the lattice typically has “midplane symmetry.” This means that the lattice Hamil-

tonian is purely a function of y2 and p2
y. Thus, the unperturbed distribution will be an even

function of y, and therefore the wake force due to the unperturbed distribution will be zero

(see equations (3.57) and (3.58) ).

All of the bunches are assumed to be identical and equally spaced. This ignores the cross

terms between different p0 and q0 from equation (4.83). A simple extension of Kohaupt’s [39]

work demonstrates that if the current in symmetrically placed bunches is set equal to the

current of the highest-current bunch in the real system, then the growth rate for all the

modes with the same zero-current frequency in the real system will be bounded by the

largest growth rate for the symmetric system. The proof is as follows: from the discussion

at the end of section 4.2, it is clear that equation (4.83) can take the form

λDnb = Nn

∑
r

Anb,raDra, (5.1)

after a simple change of basis. The Ω dependence in A has been ignored for the purpose of

this argument; this is an excellent approximation as long as there are no resonances whose

width is comparable to or less than νs (which is usually the case in the transverse plane).

This matrix equation can be formulated as λD = NAD. Then assuming that A can be

diagonalized, it immediately follows that |λ| ≤ maxrNr maxn |λn|, where λn are the eigen-

values of A. The eigenvalues of A give the growth rates for the symmetric system. Thus, the

symmetric case bounds the multibunch growth rates. Also, the threshold for single-bunch

mode coupling depends only on the single-bunch current. Thus, one would expect that for

multibunch mode coupling, where single-bunch mode coupling and multibunch modes are in

some sense combined, the worst-case results would be obtained by symmetrically filling the

bunch buckets with currents which are equal to the current of the highest-current bunch.
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When the bunches are non-symmetric, the tunes of different bunches will often be dif-

ferent, since they see different wakefields and thus have a different potential-well distor-

tion [11, 14, 46–48]. Thus, for example, one can get Landau damping due to the bunch-to-

bunch tune spread [14]. The bulk of the bunches have very similar synchrotron frequencies;

the variation is about 0.4%. A few bunches at the head and the tail of the bunch train

have significantly larger variations (as large as 2%) [33]. Since this is only a few bunches,

the 0.4% will probably dominate the Landau damping. This gives a tune spread of about

1.3 × 10−4. While this is significantly larger than radiation damping, it will probably not

result in any Landau damping, for the reasons discussed later in this chapter.

The multibunch longitudinal potential well distortion will shift the synchrotron fre-

quency as well. The effect gives approximately a 2% error in the average synchrotron

frequency [33].

The terms coupling modes near ωy to modes near −ωy (i.e., equation (4.85) ) are ignored,

introducing errors of order νs/νy, as described at the end of section 4.3.2. These errors are

of order 0.09% for this example.

Only the k = 0 terms in the effective impedance (4.84) are considered. This approxima-

tion amounts to ignoring “synchro-betatron modes”; these are discussed in greater detail

in [9,12,55,64]. Suzuki’s work [64] seems to indicate that this should be a minimal problem

with realistic impedances.

∆ψτ (s) is taken to be zero. This could introduce relative errors of order 2πνs, or about

20%. The errors will probably be significantly smaller than that, since ψτ (s) should be (very

nearly) monotonically increasing to µτ . ψτ (s) only increases in the arc sections, however.

Thus, if most of the phase advance takes place in the arc sections (it only takes place

there—see equations (4.31) and (A.19) ), of which there are Narc = 6, and the dispersion

and magnetic field are the same for every bend (a good assumption for this lattice), then

the largest ∆ψτ (s) will be around πνsLstr/NarcL, or about 0.62%. Due to non-uniformity

of the phase advance, the real error will be larger. It turns out to be, at most, about 1.9%

for this case, as shown in figure 5.1. Note that this number will get multiplied by the m

for the mode (thus, the m = 2 modes have an error more like 3.8%). One can assume that

the effect will be even smaller, due to cancelling of oscillations. The average of the data in

figure 5.1 is about 0.007, giving a reduction of about a factor of 3. However, if significant

parts of the impedance are at a particularly bad point, the worst case value may be more

appropriate. Note that this error does not enter for m = 0 modes (including radial modes).
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Figure 5.1: ∆ψτ (s), plotted versus position in the ring. Data from Yunhai Cai [10].

στ (s) is taken to be constant. From equation (A.29), this leads to an error of approxi-

mately 1%.

Altogether, these errors indicate that this computation will be good to a few percent. In

reality, the error is probably not dominated by these errors, but by how well the impedance

is known.

All growth rates can be compared to the damping rate due to synchrotron radiation [62].

The beam will be considered stable if all growth rates are smaller than this radiation

damping rate.

5.2 Impedance Model

There are several sources of transverse impedance included in this calculation. Each will be

described in detail below.
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Because of the approximations described in section 5.1, to compute the effective im-

pedance (4.84), the only lattice parameters one needs to find for each impedance are the

average β-functions over the region where the impedance is in the ring.

5.2.1 Resistive Wall

The resistive wall impedance is given by the formula

ZRW
⊥ (ω) = −i

√
2

RRW√
−iω/ω0

, (5.2)

where RRW is given by

RRW = F
Z0Lp

2πb3p

√
2c

ω0σZ0
= F

Z0Lp

2πb3p

√
c2

2πω0σ
. (5.3)

Here bp is the smallest half-dimension (vertical or horizontal) of the vacuum chamber, Lp

is the length of the vacuum chamber, σ is the vacuum chamber wall conductivity, Z0 is the

impedance of free space (≈ 377Ω), and F is a form factor which depends only on the shape

of the vacuum chamber [28].

The arc sections of the vacuum chamber are elliptical with a major axis of 3.740 inches

and a minor axis of 2.170 inches [50]. This geometry makes F 0.8263 [28]. The vacuum

chamber is made of 6063 T5 aluminum alloy [50], which has a resistivity of 1/σ = 32 Ω-

nm [4]. Thus, RRW for the arc sections is 825 kΩ/m.

The straight sections of the vacuum chamber are round with a diameter of 3.5 in. [51].

F is 1 for this geometry [28]. The vacuum chamber is made of 304 stainless steel [35], giving

an resistivity of 1/σ = 720 Ω-nm [4]. Thus, RRW for the straight sections is 608 kΩ/m.

5.2.2 Inductive

Many devices, such as bellows, BPM’s, and slots, give an impedance that is primarily

inductive. The inductive part of the transverse impedance is obtained by scaling the lon-

gitudinal inductive impedance of 83.3 nH [31] by 2c/ωb2p [11], where bp is a characteristic

dimension of the beam pipe. Worst-case values are obtained by performing this scaling with

bp = 2.7559 cm, the vertical size of the arc section chamber [50].

The impedance will not be constant for all frequencies; it is expected to begin to roll

off at high frequencies. Since the average behavior at high frequencies is expected to be



CHAPTER 5. EXAMPLE AND ANALYSIS 55

similar to that of a cavity, a high-frequency roll-off of ω−3/2 is assumed [33]. The form for

the transverse impedance is thus

ZInd
⊥ (ω) =

−iRInd

(1− iω/ωC)3/2
, (5.4)

where RInd is the transverse impedance associated with the inductance. To determine the

cutoff frequency ωC , the loss factor from ZInd
⊥ is computed as a function of ωC , and compared

to the total loss factor from inductive components of 3.4 V/pC [31]. The total loss factor is

−i
L

2π

∫ ∞
−∞

e−ω
2σ2
τ

ω dω

(1− iω/ωC)−3/2
, (5.5)

where L is the inductance (a Gaussian bunch has been assumed). Using the bunch length of

1 cm, this formula gives the right loss factor whenωC ≈ 19.8 GHz. Note that RInd = 2cL/b2p.

5.2.3 Cavity Tails

It is well known that the longitudinal impedance of a single cavity rolls off at high frequency

as ω−1/2 [32]. A simple model with the appropriate high-frequency roll-off is

ZTail
‖ (ω) = iRTail

[(
1 +

ω

ωC + iα

)−1/2

−

(
1−

ω

ωC − iα

)−1/2
]
. (5.6)

This model is fit to a model of the cavity run through ABCI form = 1 [13,31] with the known

higher order modes removed. The parameters are found to be RTail = 45.1344 kΩ/m2,

ωC = 2.4 GHz, and α = 1.34722 GHz [5]. This impedance must of course be multiplied by

the number of cavities.

The longitudinal impedance (5.6) is scaled by β0c/ω to obtain the transverse impedance

(see section 3.1.4).

5.2.4 Cavity Higher Order Modes

A preliminary list of the cavity higher order modes is given in table 5.2. Each mode is

considered to be a single resonator of the form [11]

Zres
⊥ (xωR) =

Rres

x+ iQ(1− x2)
. (5.7)

These impedances must of course be multiplied by the number of cavities.
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Frequency ωR Q Rres

GHz kΩ/m

0.796 115 34.916
1.068 27 16.911
1.127 54 0.162
1.212 871 10.135
1.333 611 58.328
1.413 1138 160.689
1.542 92 2.508
1.603 145 7.777
1.668 783 153.796
1.738 446 0.177
1.766 1317 2.414

Table 5.2: Vertical cavity higher order modes for PEP-II high power test cavity [53]. These
are preliminary values. The frequencies used are the calculated, not the measured, frequen-
cies.

5.2.5 BPM Resonance

The beam position monitors (BPM’s) also have a resonance at 6.2 GHz, with a Q of about

200, and a total Rres for all the BPM’s of 120 kΩ/m.

5.2.6 Total Impedance

The total impedance from all these sources, multiplied by the average β-function at each

source, is plotted in figures 5.2 and 5.3. As can be seen from equation (4.84), these

β-function weighted impedances are multiplied by the form factors

(στω)n+n′e−σ
2
τω

2
, (5.8)

which are plotted in figures 5.4 and 5.5. The form factors show that different modes tend

to sample different parts of the impedance, and in fact that modes with larger m tend to

sample impedances at higher frequency. But note that the peak of the form factor (5.8)

occurs at ωστ =
√

(n+ n′)/2. Thus, the peaks move out fairly slowly as m is increased; if

the impedance has strong high-frequency components, it may require a very large number

of modes to determine the behavior of the system.
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Figure 5.2: Absolute value of the total impedance defined in section 5.2, multiplied by the
appropriate β-functions from table 5.1. The real part is always positive, while the imaginary
part changes signs several times, mainly at narrow resonances. The vertical spikes which
go down to low values generally indicate such a sign change.

5.3 Frequencies and Growth Rates

5.3.1 Single Bunch

Begin by considering a single bunch. As can be seen from figures 5.6 and 5.8, the growth

rates are zero until the some of the mode frequencies coincide. At that point, the growth

rates increase sharply.

The phenomenology can be understood from analysis of a two mode example. The

two-by-two eigenvalue system to be solved involves solving the equation

det

[
Ω− IZ11 −IZ12

−IZ21 Ω− kωs − IZ22

]
= 0, (5.9)
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Figure 5.3: Low frequency part of the total impedance plotted in figure 5.2. This shows the
cavity higher order modes in more detail.

where I is the total current, and kωs is the separation between the mode frequencies at zero

current. The Z’s can usually be taken to be sufficiently slowly varying functions of Ω that

they can be regarded as constants.

For a single bunch, the computation of the Zij can be done most simply by taking

hrf = 1 (ωrf, of course, should keep its physical value). Thus, as long as Z is relatively

slowly varying, the summations over q1 in (4.84) are very close to being symmetric. Thus,

the real part of Z⊥k[mn±][m′n′±] dominates the imaginary part when n+ n′ is even, while the

the imaginary part dominates when n+ n′ is odd. Therefore, take Z11 and Z22 to be real,

and Z12 and Z21 to be imaginary when k is odd. For k even, Z12 and Z21 become real.

Also note that Z12 and Z21 will always have the same sign (one is simply a multiple of the

other).
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Figure 5.4: Form factors from equation (5.8), normalized to all have the same peak value.
The descriptions for each line indicate the mode or coupling terms over which they probably
have the strongest influence.

Equation (5.9) leads to the polynomial equation

Ω2 − (IZ11 + IZ22 + kωs)Ω + I2(Z11Z22 − Z21Z12) + IZ11kωs = 0. (5.10)

This has the solutions

Ω =
1

2

[
IT + kωs ±

√
(ID + kωs)2 + I2P

]
(5.11)

T = Z22 + Z11 (5.12)

D = Z22 − Z11 (5.13)

P = 4Z21Z12. (5.14)

Note that P is negative when k is odd, and P is positive when k is even. Thus, for low

currents, the modes are clearly pure real. If k is even, the argument of the square root in
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Figure 5.5: Form factors of figure 5.4 over frequency range matching figure 5.3.

(5.11) will remain positive. Thus, there will be no instability due to mode coupling between

such modes. Such an “avoided crossing” is shown in figure 5.9.

If k is odd, however, the situation becomes more interesting, since P is negative. If D

and k have opposite signs, or if −P > D2, then eventually the argument of the square root

in (5.11) will become zero. At that point, the mode frequencies coincide. As the current is

increased from that point, the square root becomes negative, and thus Ω gets an imaginary

part. Since one of the imaginary parts must be positive, the beam is unstable. If −P > D2,

Ω will have an imaginary part for all higher currents. The growth rate will asymptotically

be I
√
−P −D2.

However, if −P < D2, then eventually, the current will increase to the point where the

argument of the square root again becomes zero. At this point, both mode frequencies will

be real again. Thus, in a plot of the growth rates versus current, there will be a “bubble”
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Figure 5.6: Single-bunch mode frequencies, plotted versus total beam current for 1746
bunches. Frequencies shift with increasing current until two frequencies coincide. The
frequencies continue to coincide for higher currents. Note that the line style and shade of
grey for each mode in this figure will be used for the corresponding modes in future figures.
Line types are identified in figure 5.7.

for the range of currents where the square root was negative, and the growth rate will be

zero for currents above and below this bubble. A small bubble indicates that there was very

little coupling between the two modes in question. This can be seen in figure 5.8: there is

very weak coupling between the m = 0 mode and the m = 1 radial mode; thus, there is

only a nonzero growth rate over a small range of currents. However, when the m = 0 mode

couples to the main m = 1 mode, there is much stronger coupling, and the growth rates

continue to increase for very high currents. Note, however, that the growth rates due to

the small bubble are nontrivial. Thus, the threshold of instability is really the beginning of

the small bubble.
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Figure 5.7: Legend describing line types used in mode plots.

As can be seen from figure 5.6, one can obtain a good estimate of the instability threshold

current due to mode coupling by assuming that the m = 0 mode frequency shift increases

linearly with current, and that the instability occurs once it has shifted by −ωs. This

condition, combined with equations (4.83) and (4.84), gives an estimate of the single-bunch

mode coupling threshold current of

4πβ2
0

E0

e

∣∣∣∣ στω0νs∫
ds dxβy(s)={Z⊥(x/στ , s)}e−x

2

∣∣∣∣ . (5.15)

If the primary contribution to the broadband impedance is assumed to come from a pure

inductance −iRInd plus the resistive wall, then the denominator in (5.15) is just

−〈βy〉RInd

√
π +

√
σω0

2
Γ(1/4)

∑
k

〈βy〉k RRW,k. (5.16)

Putting in the inductive and resistive wall values calculated above, the threshold current

comes out to be 21.9 A. Comparing to figure 5.6, this is somewhat higher than the ac-

tual threshold. This is because the estimate of the threshold current doesn’t include all

contributions, and the fact that the model assumed isn’t quite accurate. It does, how-

ever, give a reasonable first estimate. Similar computations have been suggested by other

authors [57,63,71].

5.3.2 Multibunch Mode Frequencies

Now, consider what happens to the mode frequencies from figure 5.6 when there are multiple

bunches. If coupling between the multibunch modes is ignored, the frequencies behave as
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Figure 5.8: Single-bunch growth rates, plotted versus total beam current for 1746 bunches.
Growth rates are zero until the frequencies of two modes coincide (see figure 5.6). The
growth rates then have a nonzero value for higher currents.

shown in figure 5.10. The mode frequencies are a linear function of current, as can be seen

from equation (4.83) (ignoring the dependence of Z⊥k[nm±][n′m′±],eff on ω, at least over the

range of frequency shifts). Note that, at least for low currents, the average behavior of the

multibunch modes is just that of the single bunch modes. Also, notice that the frequencies

of the multibunch modes coincide at significantly lower currents (about 10 A) than the

single-bunch modes did (about 17 A—see figure 5.6). Thus, for some of the multibunch

modes, one expects to see increased growth rates due to mode coupling beginning at around

10 A.

The frequency shifts seem to change minimally when coupling is introduced, as shown

in figure 5.11. The frequencies at which the modes coincide do not seem to have changed

much. Many of the multibunch mode “fans” have broadened slightly, particularly them = 1
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Figure 5.9: Frequencies due to single bunch mode coupling as in figure 5.6, but taken at
higher currents. Note the avoided crossing between the m = 0 mode and the m = 2 mode.

ones. Most of the interesting effects will be seen upon examining the growth rates.

An estimate of the threshold for mode coupling effects can be made analogously to that

for single-bunch mode coupling. Since narrow-band impedances contribute to the deviation

of the impedance from the broadband average, one simply divides the denominator of (5.15)

by the number of bunches, then adds to the resulting denominator a term for the largest

narrow-band impedance, which would be

ω0στ={Z
peak
⊥ }βye

−σ2
τω

2
peak . (5.17)

So, begin by computing what the denominator of (5.15) would be given that the threshold

current is 17 A for 1746 bunches (see figures 5.6 and 5.8); the result is 1775 Ω. Examining

figure 5.2, the resistive wall peak near zero frequency gives the largest peak. That peak is
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Figure 5.10: Multibunch mode frequencies, without coupling, plotted versus total beam
current. Each fan consists of 1746 lines, which correspond to the 1746 multibunch modes.

at

−
RRW√
dνye − νy

(5.18)

for the imaginary part, which gives a contribution of 1283 Ω for this system. Adding this

to the contribution from the broadband, the threshold current becomes 9.9 A, which is an

excellent guess, as can be seen from figure 5.11.

5.3.3 m = 0 Growth Rates

The growth rates for the m = 0 modes without coupling are shown in figure 5.12. Note

that the largest growth rates are large compared to the growth rates due to single-bunch

mode coupling, as shown in figure 5.8. However, many of the modes (those which don’t
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Figure 5.11: Multibunch mode frequencies with coupling, plotted versus total beam current.

overlap with any narrow-band impedances) have negligible growth rates; once coupling is

introduced, one might expect those modes to behave similarly to the modes for a single

bunch.

Once coupling between the multibunch modes is introduced, the growth rates are those

shown in figure 5.13. The modes which had the largest growth rates in figure 5.12 are

only slightly affected when mode coupling is introduced. This is probably because the

growth rates from single-bunch mode coupling are small (see figure 5.8) compared to the

multibunch growth rates, and therefore the multibunch growth rates aren’t changed much.

Thus, multibunch mode coupling is not expected to have a significantly adverse effect on

the m = 0 modes.

However, the modes with small growth rates in figure 5.12 essentially mirror the single-

bunch behavior of figure 5.8, as can be seen in figure 5.13. This is because those multibunch
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Figure 5.12: m = 0 mode growth rates, without coupling between multibunch modes. The
1746 m = 0 multibunch modes are each plotted versus current.

modes are driven by wakefields that couple one bunch to the next only very weakly; thus,

the effects that are seen are essentially single bunch effects.

5.3.4 m = 1 Growth Rates

The growth rates for the m = 1 multibunch modes when coupling is ignored is shown in

figure 5.14. Note that the growth rates increase linearly with current. Also, note that

the largest growth rates are significantly smaller than the growth rates due to single-bunch

mode coupling shown in figure 5.8. Thus, multibunch mode coupling is expected to strongly

affect these modes.

The growth rates for the m = 1 multibunch modes with coupling are shown in figures

5.15 and 5.16. Comparing figure 5.15 to the single-bunch mode coupling growth rates
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Figure 5.13: m = 0 mode growth rates, with coupling between multibunch modes.

shown in figure 5.8, it is clear that many of the modes approximately mirror the behavior

of single-bunch mode coupling. However, it is also clear from figure 5.15 and especially

figure 5.16 that many of the modes have behavior similar to a single-bunch mode coupling

threshold, but at currents much lower than the actual single-bunch threshold current. In

fact, figure 5.16 shows that the lowest current at which some mode seems to get a sharply

increased growth rate is slightly below 10 A, which is the current where the multibunch mode

frequencies coincided in figure 5.11. Thus, the m = 1 modes are very strongly effected by

multibunch mode coupling.

Comparing figure 5.16 to figure 5.14, the group of m = 1 modes with frequencies near

ωy +ωs (see figure 5.11) are nearly unaffected by mode coupling; this is expected, since the

m = 0 mode frequencies do not approach this group of modes.

Finally, look at the m = 1 modes at low currents in more detail, as shown in figure
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Figure 5.14: m = 1 multibunch mode growth rates, without coupling.

5.17. Note that even for currents well below the point where the mode frequencies coincide

(compare figure 5.11), the growth rates are changing very nonlinearly with current. Since the

multibunch modes have nonzero growth rates, their frequency is not sharp, but broadened

by the nonzero imaginary part. This causes mode coupling to have an effect even at low

currents, as demonstrated in figure 5.17. Thus, mode coupling effects need to be considered

even at currents well below the current where the mode frequencies coincide.

5.3.5 m = 2 Growth Rates

The growth rates of the m = 2 modes (those with frequencies ωy ± 2ωs) without coupling

between the multibunch modes is shown in figure 5.18. As usual, the growth rates increase

linearly with current.

Note that these growth rates are even smaller than the m = 1 growth rates. As m
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Figure 5.15: m = 1 multibunch mode growth rates, with coupling.

increases, this is expected to be the trend. The impedance will be multiplied by the form

factor

1

2mm!
(ωστ )

2me−ω
2σ2
τ (5.19)

and integrated over ω. Note that this form factor peaks at ωστ =
√
m, at a value which

approaches e2−m/
√

2π(m+ 1) for large m. Asymptotically, the half-width of the peaks

approaches 0.5 in units of ωστ . Thus, the form factor (5.19) picks out higher and higher

frequency components as m increases, multiplied by a factor which decreases exponentially

with m. Since the impedance is not expected to increase exponentially with m, and since

the width of the peaks is asymptotically constant, the growth rates should decrease rapidly

with increasing m.

The growth rates of the m = 2 modes with coupling are shown in figures 5.19 and

5.20. Note that the effects of mode coupling are strong at less than 10 A (see figure 5.20;
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Figure 5.16: m = 1 multibunch mode growth rates, with coupling. Vertical scale is blown
up from figure 5.15

compare figure 5.18), a current which is far below the currents where the the m = 0 modes

are intersecting the m = 2 modes (about 19 A for one mode, around 25 A for most others).

Also, the growth rates due to coupling are well over an order of magnitude larger than their

values when coupling is ignored (see figure 5.19; compare figure 5.18).

5.3.6 m = 0 Radial Mode Growth Rates

Now, consider the m = 0 radial modes. These are the modes which have a low-current

frequency of ωy, but which have a form factor from equation (5.19) like the m = 2 modes.

They are called radial modes because if the longitudinal phase space density is observed for

them, it has no azimuthal variation, but the density oscillates radially in the phase space.

Figure 5.21 shows the growth rates of these modes as a function of current. Since they use
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Figure 5.17: m = 1 multibunch mode growth rates, with coupling. Vertical scale is blown
up from figure 5.16

the same form factor as the m = 2 modes, their growth rates only differ from those for the

m = 2 modes by a constant factor (about 2; see equation (4.83) ).

Figure 5.22 shows the growth rates of the m = 0 radial modes when coupling is included.

Note that the growth rates have increased nontrivially. However, the effect of mode coupling

on these growth rates is qualitatively different from the effect seen previously (compare

figures 5.15–5.17, 5.19, and 5.20): the growth rates still seem to increase linearly with

current.

The reason for this can be seen by examining the 2 dimensional model for the eigenvalue

system (5.9). Consider the coupling between the m = 0 mode and the m = 0 (first) radial

mode. In that case, k in equation (5.9) is zero. Thus, the mode frequency Ω is given by
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Figure 5.18: m = 2 multibunch mode growth rates, without coupling.

(see equation (5.11) )

Ω =
I

2

(
T ±

√
D2 + P

)
. (5.20)

Notice that this is proportional to I. If Z22 is the matrix element associated with the

m = 0 radial mode growth rate, and Z11 is taken to be much larger than the other matrix

elements (an excellent assumption as can be seen from the figures in this section), then the

eigenfrequency of the m = 0 radial mode with coupling is approximately

I

(
Z22 −

Z21Z12

Z11

)
. (5.21)

5.3.7 m = 3 Growth Rates

The growth rates of the m = 3 multibunch modes without coupling are shown in figure

5.23, and with coupling in figure 5.24. Qualitatively, the behavior is very similar to that of
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Figure 5.19: m = 2 multibunch mode growth rates, with coupling.

the m = 2 modes. Again, note the substantial increase in growth rate at currents where

the real mode frequencies are still far apart (see figure 5.11).

5.3.8 m = 1 Radial Mode Growth Rates

The growth rates for the m = 1 radial modes without coupling are plotted in figure 5.25.

The behavior is as expected; these growth rates mirror the m = 3 mode growth rates, but

are about 3 times higher, as can be seen from equation (4.83).

The growth rates when coupling is included are shown in figures 5.26 and 5.27. The

bumps beginning at around 17 A in figure 5.26 are the multibunch version of the “bubble”

which appeared in the single bunch case due to coupling between the m = 0 mode and the

m = 1 radial mode (see figure 5.8). These bumps occur in modes with small growth rates

in both the m = 0 mode and the m = 1 radial modes; in other words, modes which look
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Figure 5.20: m = 2 multibunch mode growth rates, with coupling. Vertical scale blown up
from figure 5.19.

somewhat like single-bunch modes. The varying position of the bumps is due to the varying

frequency shift of the multibunch modes, and thus the varying position where different

multibunch modes intersect (see figure 5.11).

From figure 5.27, it can be seen that there are two effects of mode coupling simultane-

ously occurring in these modes. One is the effect seen in the m = 0 radial modes above: a

linear increase in growth rate with current, but at a significantly higher rate, due to coupling

in this case between the m = 1 modes and the m = 1 radial modes. This is the only effect

that the modes at frequency ωy+ωs see, since they don’t intersect (or approach intersection

with) other modes. The modes at ωy − ωs, however, additionally see the nonlinear increase

in growth rate due to intersection with the m = 0 modes. The significant increase occurs

around 10 A, the point where the mode frequencies intersect (see figure 5.11), but is not

nearly so strong as it was for the m = 1 modes; this is because the coupling terms are much
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Figure 5.21: m = 0 radial multibunch mode growth rates, without coupling.

smaller between the m = 0 modes and the m = 1 radial modes than they were with the

m = 1 (non-radial) modes (see equations (4.83) and (4.84) ).

5.3.9 Growth Rates for Fixed Current

The worst-case operating current for the PEP-II B-factory will be 3 A [49]. As discussed in

section 5.1, worst-case growth rates should be obtained by taking the current in the highest-

current bunch, and assuming that the ring is symmetrically filled with bunches with that

current. Assuming that the 1658 bunches in the ring all have the same current, this means

that the total current of 3 A should be multiplied by 1746/1658, giving an effective total

current of 3.159 A.

In figure 5.28, the absolute values of the growth rates for the multibunch modes without

coupling are plotted. The peaks in the figure reflect the peaks in the impedance (mainly due
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Figure 5.22: m = 0 radial multibunch mode growth rates, with coupling.

to cavity modes and the resistive wall peak at ω ≈ 0). The summation over q1 in equation

(4.84) causes the modes to be interleaved in figure 5.28 from where they were in figure 5.2.

Note that several of the m = 1 modes are well above radiation damping, even when mode

coupling is ignored. These unstable modes are caused by cavity higher order modes and

the BPM resonance.

The results of introducing mode coupling are shown in figure 5.29. The m = 0 growth

rates, as expected, are almost unchanged. The pairs of modes which were degenerate in

the uncoupled case (see figure 5.28) now have different growth rates. For some modes, the

growth rates have increased significantly. The behavior of some of the modes has become

dominated by coupling: in particular, the m = 0 and m = 1 radial modes; this is evident

from the fact that the modes vary with mode number rather differently than they did in

the uncoupled case. Note that some of the m = 1 modes have, due to coupling, risen above



CHAPTER 5. EXAMPLE AND ANALYSIS 78

Figure 5.23: m = 3 multibunch mode growth rates, without coupling.

the radiation damping rate. These are the modes driven by the BPM resonance, which is

at very high frequency and thus generates a large coupling term.

The real concern in this case are the modes which have growth rates above the radiation

damping rate. The m = 0 modes are generally straightforward to fix with a feedback

system. However, the other modes (the m = 1 modes and the m = 0 radial modes here) are

difficult to damp with feedback, since coupling to those modes requires kicker operating at

fairly high frequency (see equation 4.98).

5.4 Feedback

Next, consider the results of adding a feedback system, as described in section 4.4.

The transverse feedback system of PEP-II receives signals in a 250 MHz band about

1.428 GHz, mixes the signals down to zero frequency, and kicks the beam in a band about
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Figure 5.24: m = 3 multibunch mode growth rates, with coupling.

zero frequency [49]. Such a system cannot be modelled using the formalism of section 4.4.

Instead, the system is modelled as a system which picks up and kicks in a 250 MHz band

about zero frequency.

The transfer function of the feedback system is modelled as a second order Butterworth

filter:

ZFB
y (xωFB) =

iRFBe
−i
√

2x

1− i
√

2x− x2
ei∆sωFBx/β0c, (5.22)

where ωFB is the half-bandwidth (125 MHz).

Note that the effect of ignoring the s dependence can have significant consequences when

it comes to feedback. Since such a substantial kick is coming from the feedback, and the

feedback kick is extremely localized, the arguments in [64] indicate that synchro-betatron

resonances can potentially be significant when feedback is added. Synchro-betatron reso-

nances may in fact have caused some problems with the LEP feedback system [44].
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Figure 5.25: m = 1 radial multibunch mode growth rates, without coupling.

5.4.1 Resistive Feedback

Examining figure 5.29, it is clear that the modes with the largest growth rates are them = 0

modes. The feedback system is designed to damp these modes. It is not expected to have

much effect on other modes, since it kicks at such a low frequency (see equations (4.98) and

(4.99) ).

Thus, choose the parameters in (5.22) so as to provide just enough feedback to damp

the m = 0 modes to zero growth rate at 3.159 A. First of all, ∆s should be chosen correctly.

Thinking about the physical system, one measures the offset of the beam to determine how

much to kick it. A kick, however, changes the momentum of the bunch, not the offset. Thus,

the kick should occur π/2 in phase later in the oscillation, so that the measured offset is

transformed into momentum.

This can be proven more rigorously. Consider a simple harmonic oscillator. The map
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Figure 5.26: m = 1 radial multibunch mode growth rates, with coupling. Growth rates
which go off scale would probably be more accurately described as m = 1 (non-radial)
modes. The two modes can at times be difficult to distinguish computationally.

for such a system advancing by a phase ∆µ is[
q

p

]
=

[
cos ∆µ sin ∆µ

− sin ∆µ cos ∆µ

][
q0

p0

]
(5.23)

Consider a system which advances from (q0, p0) by a phase ∆µ, receives a kick with ∆p =

Aq0, then advances by a phase µ−∆µ. The transfer matrix of such a system is[
cosµ+A sin(µ−∆µ) sinµ

− sinµ+A cos(µ−∆µ) cosµ

]
. (5.24)

If this is the one-turn matrix for an accelerator, then the eigenvalues of this matrix deter-

mine the long-term behavior of the system. As long as the eigenvalues are complex, it is

straightforward to show that the square root of the determinant of the matrix gives the
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Figure 5.27: m = 1 radial multibunch mode growth rates, with coupling. Vertical scale
blown up from figure 5.26.

absolute value of the eigenvalues. The determinant of (5.24) is 1− A sin ∆µ. Thus, the

damping rate is clearly maximized when ∆µ = π/2. It can be seen that this result holds

for the general linear one-dimensional as described in appendix A.3 by simply replacing q

and p with q/
√
β and

√
βp+ αq/

√
β.

Another way to see that such a phase shift will produce damping is by examining the

equations for the eigenvalues. First, note that the ZFB
y given by equation (5.22) is mostly

imaginary (see figure 5.30). Next, the combinations of the exponentials in (5.22) and (4.98)

effectively give a factor of ei[ψy(s)−ψy(s−∆s)] (ignoring corrections of order ψτ (s)−ψτ (s−∆s)

). If the phase advance from pickup to kicker is π/2, this gives another factor of i. From

equation (4.83), there is another factor of −i. The net result is (approximately) that the

feedback will add a negative imaginary part to Ω, giving damping, as long as ∆s is chosen

so as to give a π/2 phase advance from pickup to kicker.
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Figure 5.28: Multibunch mode growth rates, without coupling, at 3.159 A. There are 1746
modes shown, with a line connecting them (modes with negative growth rates are off-scale).
In some cases, pairs of modes (e.g., the two m = 1 modes) overlap. The horizontal dashed
line gives the radiation damping rate.

Next, one must choose the amplitude RFB. For this example, it was chosen by making

a run for 3.159 A with feedback and no impedance, and taking the ratio of the minimum

damping rate of all the modes to the maximum damping rate of all the modes for the case

with all the impedance and no feedback.

Figure 5.31 shows the multibunch mode frequencies when feedback is included. There

are very few changes in this diagram from figure 5.11. The frequencies have shifted slightly

(partly because (5.22) is not purely imaginary, partly due to mode coupling), and one mode

is displaying behavior similar to a “bubble” from single-bunch mode coupling. This will be

discussed momentarily.

Figure 5.32 demonstrates that the feedback system has accomplished its task of damping
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Figure 5.29: Multibunch mode growth rates, with coupling, at 3.159 A.

the m = 0 modes. One of the modes, however, has just barely been damped enough (in fact,

it still has a small positive growth rate). Since the imaginary part of its mode frequency is

nearly zero, the behavior of its growth rate is very similar to what is seen in single-bunch

mode coupling (compare figures 5.6, 5.8, and 5.9). This gives a “bubble” in the growth rate

at the point where the mode frequencies coincide. This could be avoided by increasing the

feedback gain, giving the mode a large negative imaginary part. At the operating current

of 3 A, however, it is unnecessary.

The feedback system has no beneficial effect on the m = 1 modes, however, as can

be seen from examining figures 5.33 and 5.34. This is the expected behavior, since the

feedback impedance has no substantial high-frequency components. Actually, the feedback

system seems to have actually increased some of the growth rates, as can be seen from more

careful examination of figures 5.33 and 5.34. This is a result of multibunch mode coupling
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Figure 5.30: Scaled feedback impedance from equation (5.22).

combined with the feedback; figure 5.35 demonstrates that the growth rates are symmetric

about zero when coupling is ignored. Finally, it appears that some of the modes also have

smaller growth rates in the presence of feedback, despite the fact that feedback should not

directly affect the m = 1 modes. This is because the frequencies of many of the m = 0

modes have developed such a large imaginary part that the coupling to the m = 1 modes

has weakened for them. Overall, however, the m = 1 modes are still increasing sharply at

about the same point, and they are increasing by pretty much the same amount, at least

for currents close to the “threshold” (around 10 A).

The m = 0 radial modes are also well damped by the feedback system, as shown in figure



CHAPTER 5. EXAMPLE AND ANALYSIS 86

Figure 5.31: Multibunch mode frequencies, with feedback.

5.36. This is a direct effect of multibunch mode coupling combined with the feedback’s effect

on the m = 0 modes. The effect can be fairly well understood from equation (5.21); when

the imaginary part of Z11 becomes negative, Z11 in the denominator combined with the

minus sign gives an additional damping to the radial modes.

The growth rates for the various modes are shown in figure 5.37. Although not neces-

sarily obvious from this figure, the m = 0 and m = 0 radial modes are damped, while some

of the m = 1 modes are still well above radiation damping. The feedback system was of

little help to these m = 1 modes.

5.4.2 Reactive Feedback

To avoid the effects of transverse mode coupling, one can create a feedback system which

compensates the shift in frequency of the m = 0 mode so as to increase the threshold where
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Figure 5.32: m = 0 multibunch growth rates, with feedback.

the m = 0 mode frequency coincides with the frequency of the m = 1 (radial) modes. This

is known as a reactive feedback system, and has been suggested before as a cure for the

transverse mode coupling instability [44,52,56].

The improvement to be expected from reactive feedback is significant, but not nearly as

large as would be expected from a single-bunch analysis. The reason can be seen by com-

paring the single-bunch mode frequencies of figure 5.6 to the multibunch mode frequencies

in figure 5.11. If there is only a single bunch, there is only one frequency associated with

the m = 0 mode, and so that frequency can be shifted to guide the m = 0 mode between

the m = 1 modes, at least up to a point. However, in the multibunch case, there is a “fan”

of modes, which has a finite divergence. A reactive feedback will more or less shift every

mode by the same amount. Thus, there is a limit to how high the current can get before

the m = 0 lines will be forced to cross one of the m = 1 lines, no matter what amount of
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Figure 5.33: m = 1 multibunch growth rates, with feedback.

reactive feedback is used.

The discussion above indicates that if the (betatron) phase shift from pickup to kicker

is chosen to be a multiple of π, then there will be no damping or anti-damping from the

feedback system. There will be a frequency shift, however. The one-turn tune µ′ can be

determined from the eigenvalues of (5.24) to be given by cosµ′ = (1±A/2) cos µ when ∆µ

is a multiple of π.

The analysis of the effect of reactive feedback is performed by adding reactive feedback

to the system above with resistive feedback. The amplitude of the feedback is determined

by finding the frequency shift of the m = 0 mode at 3 A for the single bunch case shown in

figure 5.6, finding the frequency shift due to feedback alone, and multiplying the amplitude

by the ratio of the frequency shifts.

The mode frequencies that result are shown in figure 5.38. Note that the m = 0 mode
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Figure 5.34: m = 1 multibunch growth rates, with feedback. Vertical scale blown up from
figure 5.33.

frequencies have been shifted up, and that now the lowest current at which the modes

coincide is around 17 A. The frequencies could clearly have been shifted even more, raising

that threshold further. However, there is clearly a limit of around 25 A where the modes

would be forced to intersect, either with the m = 1 modes at ωy + ωs, or the m = 1 modes

at ωy − ωs.

The m = 0 radial modes have acquired an increased frequency spread due to this,

since whereas the m = 0 (non-radial) modes originally drifted away from the m = 0 radial

modes, they now follow them fairly closely, increasing the coupling effect. The spread in the

imaginary part of the frequencies also has increased significantly, as can be seen in figure

5.39. Luckily, the feedback damping of the m = 0 modes still damps the m = 0 radial

modes through coupling.

Reactive feedback has succeeded in its desired effect of reducing the effect of multibunch
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Figure 5.35: m = 1 multibunch growth rates, with feedback but no coupling.

mode coupling on the m = 1 modes, as can be seen from figure 5.40. The growth rates are

increased slightly from the uncoupled case (see figure 5.14), but the effect is insignificant

compared to the increase without the reactive feedback (see figure 5.16). As can be seen

from figure 5.38, the bulk of the m = 0 modes haven’t even intersected the m = 1 modes

yet at 25 A, and so the increases in growth rates are not yet very sharp at the currents

shown in figure 5.40. A similar improvement is seen in the m = 1 radial modes, as shown

in figure 5.41 (compare figure 5.27).

Finally, the nonlinear increase in growth rates at low currents due to mode coupling

doesn’t seem to have improved much. This can be seen by examining figure 5.42. Note that

there has been little improvement in the m = 1 growth rates that were enhanced by mode

coupling (compare figures 5.28 and 5.29).
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Figure 5.36: m = 0 radial multibunch growth rates, with feedback.

5.5 Landau Damping

As pointed out above, the synchrotron tune shift at the longitudinal emittance is−4.4×10−5,

which is somewhat above radiation damping. Thus, one would hope for some Landau

damping of the modes. However, this does not turn out to be the case.

Consider the analysis of Landau damping due to synchrotron tune shift in [70]. If the

absolute value of the tune shift is less than 6.8 × 10−5, then the modes should be Landau

damped. Figure 5.43 shows the absolute values of the multibunch modes with coupling.

As can be seen, the absolute values are much larger than 6.8 × 10−5. The reason is that

there is a large tune shift due to the broadband impedance, whereas the growth rates are

due only to narrow band impedances (the broadband contribution to the grow rate cancels

approximately due to the anti-symmetry of the real part of the transverse impedance—see

equation (4.84) ).
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Figure 5.37: Multibunch mode growth rates at 3.159 A, with feedback.

While one can rely more carefully on the stability diagram instead of just the absolute

value (see [70]), it is fairly clear from the stability diagram that the stability limit from

Landau damping at the large tune shift here is smaller than the radiation damping rate [70].

Thus, no improvement from Landau damping due to synchrotron tune spread is expected

for the PEP-II low energy ring. The same reasoning should apply to the bunch-to-bunch

tune variation.

5.6 Chromaticity

As described above, the effect of chromaticity can be estimated by shifting the frequencies

of the form factors in (4.84). Every occurrence of ω in (4.84) is replaced by ω − ωξ, with

the exception of the ω appearing in Z⊥. This has been the approach of most every other

author [11, 38, 40, 57–59, 63, 66, 67, 70]. It may in fact be the correct thing to do in the
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Figure 5.38: Multibunch mode frequencies with both resistive and reactive feedback.

formalism presented here; however, the computation has not been completed at this point.

Adding a small amount of chromaticity (ξ = 2 in the example here) has only a minor

effect on single-bunch mode coupling in this system, as can be seen in figures 5.44 and 5.45

(compare figure 5.6 and 5.8). Figure 5.45 does show that the modes have nonzero growth

rates at currents below the point where the modes intersect. This is even more prominent

when the scales are blown up, as shown in figure 5.46. The “bubble” due to the coupling

between the m = 0 mode and the m = 1 radial mode has been reduced significantly due to

the introduction of chromaticity (see figure 5.45; compare figure 5.8). The reason is that the

growth rates due to chromaticity are comparable to the growth rates due to mode coupling

at that current. The spread in frequency that is associated with the finite growth rates

effectively reduces the oscillation amplitude that one mode sees due to another, and thus

reduces the resonant driving.
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Figure 5.39: m = 0 radial mode mode growth/damping rates with resistive and reactive
feedback. Note that the vertical scale is larger than in figure 5.36.

Note that for low currents, all the modes are damped. The chromaticity has broken the

symmetry that gave near-zero growth rates. A positive chromaticity gives damping because

the form factors (see figures 5.4 and 5.5) are shifted to the positive ω side, where the real

part of the transverse impedance is positive (see figure 5.2, and recall that Z⊥(−ω) =

−Z⊥(ω) for ω real). A positive real impedance leads to damping, as can be seen from

equations (4.83) and (4.84). Thus, since a greater part of the form factor is in a region with

positive impedance when the chromaticity is positive, there is a damping of the modes.

This mechanism could in principle be defeated if, for instance, the positive ω peak of the

n+n′ = 2 form factor were shifted so that it no longer overlapped the bulk of the impedance

on the positive side, whereas the negative ω peak overlapped the bulk of the impedance on

the negative side. This damping mechanism is also defeated if the impedance is decreasing

in the region where the form factor is nonzero; then the shift to the right causes the form
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Figure 5.40: m = 1 multibunch mode growth/damping rates with resistive and reactive
feedback.

factor to overlap a larger impedance on the negative ω side than it does on the positive ω

side.

One would expect that the effect of chromaticity on mode coupling would be very

significant if the growth rates due to chromaticity were comparable to the growth rates due

to mode coupling; this certainly seemed to be true for the m = 1 radial modes as described

above.

From the single-bunch results, one expects the features of multibunch mode coupling to

be more or less unchanged, modulo a small amount of damping. Figures 5.47 and 5.48 show

that the main features of multibunch mode coupling remain the same (compare figures 5.13

and 5.16). Again, this is true mainly because the damping rates from chromaticity are

small compared to the growth rates due to mode coupling.

However, if the growth rates at the current of 3.159 A are examined (see figure 5.49),
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Figure 5.41: m = 1 radial multibunch mode growth/damping rates with resistive and
reactive feedback.

one finds that while most of the multibunch modes indeed have lower growth rates, some of

the multibunch modes in fact have increased growth rates, in particular the m = 1 modes

(compare figure 5.29).

Many of the multibunch modes are in a region of slowly varying impedance, so they

emulate the broadband behavior fairly well. It can be computed that for a single bunch,

the broadband damping is about 10−4 for the m = 0 modes, and about 10−5 for the m = 1

modes when ξ = 2 (see figure 5.46). This damping should affect all of the multibunch modes

approximately equally. However, this would clearly require a chromaticity of around ξ = 90

to fix all the m = 0 growth rates, and around ξ = 20 to fix all the m = 1 growth rates.

These are unreasonable chromaticities to run the machine at.

To make matters worse, some of the m = 1 modes with ξ = 2 in figure 5.49 appear to

have slightly increased growth rates from the situation without chromaticity in figure 5.29.
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Figure 5.42: Multibunch growth rates at 3.159 A, with resistive and reactive feedback.

The reason for this can be seen from figures 5.2 and 5.4. The peaks whose growth rates are

increasing when chromaticity is increased are peaks which correspond to the cavity higher

order modes. These modes are overlapping the form factor for the m = 1 modes at the

point where it is increasing. Thus, as the form factor moves to the right with increasing

chromaticity, the positive ω contribution to the effective impedance decreases. Thus, these

modes become more unstable.

The opposite effect occurs with the BPM resonance, which is at a very high frequency.

It lies at a location where the form factor has a negative slope. Thus, as the form factors

shift to the right with increasing ξ, the positive ω contribution increases, thus making these

modes more stable.
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Figure 5.43: Absolute value of multibunch mode shifts at 3.159 A.
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Figure 5.44: Mode frequencies for a single bunch with ξ = 2.
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Figure 5.45: Growth rates for a single bunch with ξ = 2.
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Figure 5.46: Growth rates for a single bunch with ξ = 2. Scale blown up from figure 5.45.
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Figure 5.47: m = 0 mode growth rates, with ξ = 2.
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Figure 5.48: m = 1 mode growth rates, with ξ = 2.
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Figure 5.49: Multibunch growth rates at 3.159 A, with ξ = 2.



Chapter 6

Conclusion

This dissertation has presented a method for determining the stability of a particle beam

consisting of multiple bunches circulating in a storage ring. The method begins by describ-

ing the system with a Hamiltonian. The Hamiltonian is then substituted into the Vlasov

equation, which determines the time evolution of a distribution of particles. Perturba-

tions to a time-independent solution are then Fourier analyzed to determine whether they

grow exponentially. If they grow faster than known damping mechanisms can account for

(generally radiation damping), the system is regarded as unstable.

6.1 Uniqueness of this Approach

There are several new aspects to this approach. It should first be pointed out that this

method follows what is generally known as the “Wang formalism,” after J. M. Wang who

developed it originally [57,58,67,70]. It has the advantage of not requiring one to guess basis

functions to expand with (which is what the “Sacherer formalism” requires [40,59,60,70]):

the expansion follows implicitly from the method.

This is the only approach which handles the s dependence in the linear case in full detail.

The factors containing ∆Ψτ and ∆Ψy in (4.82), (4.84) and (4.85) have never appeared

anywhere that I know of, and this is also the only proof that I know of for the fact that the

transverse impedance should be weighted by the β-function. This is a generally accepted

fact; see [12,63,64,69]. The correct behavior of coherent synchro-betatron resonances [12,64]

falls naturally out of this approach by taking s Fourier modes of the weighted impedance.

The Wang formalism has only been applied to Gaussian bunches in the past. This
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dissertation shows how to apply the formalism to an arbitrary bunch distribution.

The formalism described in this dissertation outlines how to compute multibunch mode

frequencies with an arbitrary Hamiltonian (possibly containing potential well distortion).

It simply requires the computation of an approximate normalizing transformation, followed

by integrals involving those transformations. In practice, this is of course difficult to do for

an arbitrary Hamiltonian. In this dissertation, only the linear case without dispersion has

been worked out in detail. Future work will work out other more complex cases. See [46–48]

for another way this can be done, at least in one dimension.

This work is the first to demonstrate the effects of multibunch mode coupling. The

foundations for computing this effect were laid out by Sacherer, at least in the longitudinal

direction with identical, symmetrically placed bunches [60]. This dissertation has worked

out the details for both longitudinal and transverse, as well as with non-symmetric bunches.

The formalism also includes radial modes, which Sacherer did not consider.

This dissertation has presented an extensive analysis of the results of multibunch mode

coupling, which has not been done prior to this, other than in my own work (along with

R. Ruth) [6–8].

6.2 Summary of Results

This dissertation has demonstrated that it is important under certain conditions to include

the effects of coupling between multibunch modes when computing instability growth rates.

It has been demonstrated that multibunch mode coupling gives a strong instability at about

the current where the multibunch mode frequencies coincide. This current is often much

lower than the single-bunch mode coupling threshold current.

However, even well below that current, the effects of mode coupling can be seen, although

often less strongly. One place where it has a very significant effect is when coupling is

considered between modes whose zero-current frequencies are identical. Such modes appear

to grow linearly with current, but have growth rates that are significantly larger than

they would be without coupling. Mode coupling also causes a nonlinear change in growth

rates with current (when considering modes which have different zero-current frequencies),

which can enhance some instabilities, even well below the point where the multibunch mode

frequencies coincide.

A feedback system designed to damp rigid motion of the bunches will not be able to
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prevent multibunch mode coupling. However, such a feedback system can be used to shift

the multibunch mode frequencies to make the mode coupling occur at higher currents.

However, the spread in the multibunch mode frequencies limits how high a current this

mode coupling threshold can be shifted to.

The low-energy ring of the PEP-II B-factory only sees minor effects from multibunch

mode coupling, mainly in an enhancement of the growth rates due to the high-frequency

resonance from the BPM’s. If the impedance is increased by as little as a factor of 2 or 3,

however, there could be serious problems with multibunch mode coupling. The proposed

feedback system can take care of the m = 0 and m = 0 radial mode growth rates, but the

growth rates due to m = 1 modes are problematic. It appears that a reasonable amount

of chromaticity can be used to fix the growth rates due to the resonance from the BPM’s,

but the instabilities from resonances due to cavity higher order modes cannot be fixed in

this way (in fact, they are slightly enhanced by increasing the chromaticity). Thus, these

higher order modes in the cavities need to be reduced somehow.

It has been demonstrated here that multibunch mode coupling will be important for

many types of machines. It is especially important for machines running with high currents

and a large number of bunches. The large luminosities required for high-energy physics

experiments and light sources are beginning to require such conditions. Even when a sepa-

rate analysis of single-bunch mode coupling and multibunch growth rates without coupling

indicates that a machine is far from a dangerous regime, the addition of coupling to the

multibunch calculation will often demonstrate an instability.



Appendix A

Symplectic Transformations

This appendix contains several results for the nonlinear dynamics underlying the description

of the accelerator before collective effects are considered. Lie algebraic methods are used

to perform the calculations when appropriate. For more information on these methods,

see [21,22,24,25,27,43].

A.1 Shifts by Pure Time-Dependent Functions

Consider the transformation

z −→ z + f(s), (A.1)

where z is a 6-dimensional vector of phase space variables. This transformation will induce

a transformation in the Hamiltonian −ps. To determine that transformation, make the

non-autonomous Hamiltonian autonomous by going to 8 variables; if −ps = H(z, s), then

the new Hamiltonian is H ′ = H(z, s) + ps. The transformation (A.1) is clearly symplectic.

It can be written as z −→ e:A:z, where A = zTJf , and J is the symplectic matrix[
0 I

−I 0

]
. (A.2)

Thus, ps transforms to

ps −→ e:A:z = ps + zTJ
df

ds
. (A.3)

The new Hamiltonian in the 6-dimensional phase space is therefore

−p′s = H(z + f(s), s) + zTJ
df

ds
. (A.4)
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A.2 Linear Time-Dependent Transformations

Consider the transformation

z −→ A(s)z. (A.5)

Here A is a symplectic matrix for every s: ATJA = J , where J is the symplectic matrix

(A.2). As in section A.1, equation A.5 results in a change in the Hamiltonian; this change

in the Hamiltonian can be computed by changing the system to an autonomous one as in

section A.1. The derivative of the transformation for the autonomous system is
A(s) (dA/ds)z 0

0T 1 0

bT (s) 0 1

 . (A.6)

Applying the symplectic condition to this matrix gives the result that

b = ATJ
dA

ds
z (A.7)

Thus, if the original Hamiltonian is H(z, s), the transformed Hamiltonian is

H(A(s)z, s) +
1

2
zTATJ

dA

ds
z. (A.8)

A.3 Action-Angle Variables for One-Dimensional Linear

Time-Dependent Hamiltonian

Consider the Hamiltonian

1

2
kp(s)p

2 +
1

2
kq(s)q

2, (A.9)

where kp and kq are periodic with period L. First, convert this to a two-dimensional

autonomous Hamiltonian:

H =
1

2
kp(s)p

2 +
1

2
kq(s)q

2 + ps. (A.10)

Next, find two integrals of the motion for this Hamiltonian. One is H itself. Another

can be found by solving for the trajectory of a particle; Hamilton’s equations lead to the

second order differential equation

d

ds

(
1

kp(s)

dq

ds

)
+ kq(s)q = 0. (A.11)
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The solution to such a linear second order ordinary differential equation can always be

written in the form

q = C0w(s) cos[ψ(s) + C1], (A.12)

whereC0 andC1 are arbitrary constants. Plugging this solution into the differential equation

(A.11) gives equations for the functions w and ψ:

dψ

ds
=
C2kp(s)

w2(s)

d

ds

(
1

kp(s)

dw

ds

)
+ kq(s)w −

C2
2kp(s)

w3
= 0, (A.13)

where C2 is an arbitrary constant. The function w is chosen to be the periodic solution

with period L of the second equation in (A.13), assuming that kq and kp had the same

periodicity. C2 may be chosen to be 1, since changing it amounts to a rescaling of w. The

constant C0 can now be written in terms of the phase space variables:

C2
0 =

(
q

w(s)

)2

+

(
pw(s)−

dw

ds

q

kp(s)

)2

. (A.14)

Clearly C2
0 is an integral of the motion.

Now that there are two constants of integration, the action variables can be computed

in terms of these constants of integration. Action variables are computed by integrating

p dq+psds around a closed curve on a surface where the integrals of the motion are constant

[3]. The first action variable, which will be called Jq, is computed by integrating around

a curve of constant s. The result is that Jq = C2
0/2. The second action variable, Js, is

computed by integrating around a curve where q = 0. The curve encompasses one period

in s. The result is that Js = HL/2π − Jqµ/2π, where

µ =

∫ L

0

kp(s)

w2(s)
ds. (A.15)

Thus, the Hamiltonian can be written in terms of the action-angle variables as

H =
2πJs
L

+
µJq

L
. (A.16)

The angle variables corresponding to Jq and Js can be computed by finding a mixed-

variable generating function for the symplectic transformation to action-angle variables.

The generating function is of the form F (q, s, Jq, Js), and the transformation is defined by

the relations

p =
∂F

∂q
ps =

∂F

∂s
θq =

∂F

∂Jq
θs =

∂F

∂Js
. (A.17)
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Integrating the first two relations gives the generating function F ; the last two relations

then define θq and θs. These turn out to be defined through

q =
√

2Jqw(s) cos
[
θq + ψ(s)−

µs

L

]
θs =

2πs

L
, (A.18)

where

ψ(s) =

∫ s

0

kp(s)

w2(s)
ds. (A.19)

Now change variables to s = θsL/2π and ps = 2πJs/L. The resulting Hamiltonian can now

be converted back into a one-dimensional Hamiltonian with s as the independent variable:

H = µJq/L.

Finally, p can be obtained by taking the s derivative of q; the result is

p =

√
2Jq

kp

dw

ds
cos
[
θq + ψ(s)−

µs

L

]
−

√
2Jq

w(s)
sin
[
θq + ψ(s)−

µs

L

]
. (A.20)

The matrix describing a one-period symplectic transformation (assuming the map is

stable) for this system can be written as [19,21]cosµ+ α sinµ β sinµ

−
1 + α2

β
sinµ cosµ− α sinµ

 . (A.21)

Computing the one-period map from equations (A.18) and (A.20), the functions β(s) and

α(s) can be identified as

β(s) = w2(s) α(s) = −
w(s)

kp(s)

dw

ds
. (A.22)

It is useful to define the beam emittance εq of a beam distribution as the average of Jq

over the distribution [10,68].

A.4 Map for a One-Dimensional Single-Kick

Hamiltonian

Consider a Hamiltonian of the form

H =
1

2
kp(s)p

2 +
1

2
kqδL(s− sq)q

2, (A.23)
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where kp is periodic with period L. While the method of section A.3 could be applied to

this Hamiltonian, it is more convenient to start with the one-period map in this case. The

one-period map starting from a point s and returning to that same point is described by

the matrix [
1− kq[K̂p −Kp(s)] K̂p − kqKp(s)[K̂p −Kp(s)]

−kq 1− kqKp(s)

]
, (A.24)

where

Kp(s) =

∫ s

sq

kp(s
′)ds′, sq ≤ s ≤ sq + L Kp(s+ L) = Kp(s). (A.25)

Define K̂p ≡ Kp(sq + L).

Comparing the matrix (A.24) to the matrix (A.21), the quantities µ, α(s), and β(s) can

be read off:

µ = 2 sign kq sin−1

√
kqK̂p

2
(A.26)

α(s) =
sign kq

2

√
kqK̂p

1− kqK̂p/4

K̂p − 2Kp(s)

K̂p

(A.27)

β(s) =
K̂p

sinµ

[
1− kqK̂p

Kp(s)[K̂p −Kp(s)]

K̂2
p

]

=

√
K̂p

kq

1√
1− kqK̂p/4

[
1− kqK̂p

Kp(s)[K̂p −Kp(s)]

K̂2
p

]
.

(A.28)

α and β satisfy the inequalities

|α(s)| ≤ sin
µ

2
tan

µ

2

β(0)− β(s)

β(0)
≤ sin2 µ

2
. (A.29)

Note that β(0) is the maximum value of β, assuming that Kp(s) is monotonically increasing

with s. Thus, if µ is small, then α is nearly zero, and β is nearly constant. Combining

equations (A.19) and (A.22) with equation (A.28), ψ(s) can also be determined:

ψ(s) = tan−1

[√
kqK̂p

1− kqK̂p/4

(
Kp(s)

K̂p

−
1

2

)]
+ tan−1

[
1

2

√
kqK̂p

1− kqK̂p/4

]
(A.30)
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Thus, q and p can be written in terms of the action Jq and angle θq using equations

(A.18), (A.20), and (A.22):

q =
√

2Jqβ(s) cos
(
θq + ψ(s)−

µs

L

)
(A.31)

p = −

√
2Jq
β(s)

[
sin
(
θq + ψ(s)−

µs

L

)
+ α(s) cos

(
θq + ψ(s)−

µs

L

)]
. (A.32)

A.5 Nonlinear Normalization

Begin with a Hamiltonian of the form

H = H0 +H1 + ps, (A.33)

where H0 is already in normal form. The exact definition of “normal form” varies with the

problem. The goal of the normalization process is to make a change of variables so that at

least the lowest order parts of H1, when combined with H0, are in normal form.

Take H1 to be a perturbation to H0. Then the goal is to choose an A such that

∂A

∂s
+ [A, Ĥ0] + Ĥ1 = ∆H0, (A.34)

where H0 + ∆H0 is in normal form. Ĥ0 and Ĥ1 are lower order parts of H0 and H1

respectively. Exactly how much of H0 and H1 they contain determines the behavior of the

perturbation theory. Since this dissertation deals with rings, A should be periodic in s with

period L. This A defines a Lie transformation e:A: which defines a change of variables to

“more normal” coordinates. The Hamiltonian in the new variables will be H0 + ∆H0 plus

terms which are higher order than H1.

A.5.1 Action-Angle Lowest Order Transformation

Say that H0 = H0(J), and the desired normal form also takes on this form. Then, defining

ω(J) = ∂H0/∂J , equation (A.34) becomes

∂A

∂s
+ ω(J) ·

∂A

∂θ
+H1(θ,J , s) = ∆H0(J). (A.35)

Begin by Fourier analyzing H1 and A in θ:

A(θ,J , s) =
∑
m

am(J , s)eim·θ (A.36)

H1(θ,J , s) =
∑
m

hm(J , s)eim·θ. (A.37)
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Then equation (A.35) becomes

∂am
∂s

+ im · ω(J)am(J , s) + hm(J , s) = δm0∆H0(J). (A.38)

There are two cases for the solution of equation (A.38). First, consider m = 0. This

case gives

∂a0

∂s
+ h0(J , s) = ∆H0(J). (A.39)

Clearly

∆H0(J) =
1

L

∫ L

0
h0(J , s)ds, (A.40)

since the periodicity of a0 will give the derivative of a0 an average over s of zero. It is easy

to verify that the resulting a0 is

a0(J , s) = −
1

L

∫ s+L

s

(
s′ − s−

L

2

)
h0(J , s′)ds′ = −

1

L

∫ L/2

−L/2
s′h0(J , s′ + s+ L/2)ds′.

(A.41)

Next, consider the case where m 6= 0. Then equation (A.38) becomes

∂am
∂s

+ im · ω(J)am(J , s) = −hm(J , s). (A.42)

This has the periodic solution

am(J , s) =
1

1− eim·ω(J)L

∫ s+L

s

hm(J , s′)eim·ω(J)(s′−s)ds′ (A.43)

= −
i

2
csc

m · ω(J)L

2

∫ s+L

s

hm(J , s′)eim·ω(J)(s′−s−L/2)ds′ (A.44)

= −
i

2
csc

m · ω(J)L

2

∫ L/2

−L/2
hm(J , s′ + s+ L/2)eim·ω(J)s′ds′. (A.45)

All this suffices to specify A and ∆H0(J).

A.6 Synchrotron Tune Shift with Amplitude

Begin with the Hamiltonian for the synchrotron motion of

−
1

2

[
h(s)η(s) −

1

γ2
0

]
+

eV̂

p0ωrf
δL(s− srf) cos(ωrfτ + φrf), (A.46)
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as described in sections 3.2.3 and 3.2.4.

The effect of energy loss can be added to this model, although it cannot be described

by a Hamiltonian. If a particle following the ideal τ = 0 trajectory receives an energy loss

of ∆E per turn, then the phase of the rf is adjusted so as to compensate this loss. Thus,

eV̂ sinφrf = −∆E. The energy loss is taken to be independent of the particle trajectory,

which allows the computation to be formulated in terms of a symplectic map. To simplify

the calculation, the energy loss is considered to occur immediately before the rf cavity.

As seen above in section A.4, it is simpler to work with the Hamiltonian as a map.

Writing the map in terms of Lie operators, the one-turn map just after the rf cavity is

M = exp

(
LηC

2β2
0c

2
δ2

)
exp

(
eV̂ ωrf

2p0
cosφrf τ

2

)

exp

(
eV̂

p0ωrf

[
cosφrf − ωrfτ sinφrf −

1

2
ω2

rfτ
2 cosφrf − cos(ωrfτ + φrf)

])
. (A.47)

The linear part of M can be normalized using the transformations described in section

A.4, with the definitions of equations (4.31)–(4.33). The transformation to normalized

coordinates can be written as the matrix

A =

[ √
βτ (srf) 0

−ατ (srf)/
√
βτ (srf) 1/

√
βτ (srf)

]
. (A.48)

Thus,

M = A exp
(
−
µτ
2

(τ2 + δ2)
)

exp

(
eV̂

p0ωrf

[
cosφrf − ωrf

√
βτ (srf)τ sinφrf

−
1

2
ω2

rfβτ (srf)τ
2 cosφrf − cos(ωrf

√
βτ (srf)τ + φrf)

])
A−1. (A.49)

Note that βτ (srf) = −ηCL/β2
0c

2 sinµτ , using equations (4.32) and (A.28).

Expanding the second exponential in (A.49) to fourth order gives

M = ARef3+f4A−1, (A.50)
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where

R = exp
(
−
µτ
2

(τ2 + δ2)
)

(A.51)

f3 = −
1

6
sinφrf

eV̂

ωrfp0

(
ωrf

β0c

)3

(ηCL cscµτ )
3/2τ3 =

1

3
tanφrf

ωrf

β0c

√
−ηCL cscµτ tan

µτ
2
τ3

(A.52)

f4 = −
1

24
cosφrf

eV̂

ωrfp0

(
ωrf

β0c

)4

(ηCL cscµτ )
2τ4 = −

1

24

(
ωrf

β0c

)2

ηCL sec2 µτ
2
τ4. (A.53)

The normalization process amounts to writing

Ref3+f4 = ea3+a4Reh4e−a3−a4 , (A.54)

where a3 and a4 are third and fourth order homogeneous polynomials respectively, and h4

has a fourth order term which commutes with R plus higher order terms. Thus, equating

terms of equal order, equation (A.54) becomes equivalent to

a3 = (R−1 − 1)−1f3 (A.55)

h4 = P4(f4 + [R−1a3, a3]/2) (A.56)

a4 = (R−1 − 1)−1(f4 + [R−1a3, a3]/2 − h4), (A.57)

where P4 is the operator that projects out the component of f4 which commutes with R.

The higher order terms in h4 have been ignored. In equations (A.55)–(A.57), R and P4 are

treated as operators operating on the polynomials.

Define the action-angle coordinates J and θ to be τ =
√

2J cos θ and δ = −
√

2J sin θ.

Then R = e−µτJ , and the eigenfunctions of R are clearly f(J)eikθ, where f is an arbitrary

function of J . The projection operator P4 simply picks out the term with k = 0 in the

Fourier series in θ for a fourth order homogeneous polynomial in τ and δ.

With the change of variables to J and θ, a3 is

1

24
tan

µτ
2

tanφrf
ωrf

β0c

√
−ηCL cscµτ (2J)3/2(

e3iθ

e−3iµτ − 1
+

3eiθ

e−iµτ − 1
+

3e−iθ

eiµτ − 1
+

e−3iθ

e3iµτ − 1

)
. (A.58)

This can be then used to compute the θ-independent component of [R−1a3, a3]/2:

−
1

128
tan2 φrf sec2 µτ

2
cscµτ

(
ωrf

β0c

)2

ηCL(2J)2

(
3 +

tanµτ/2

tan 3µτ/2

)
. (A.59)
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The θ-independent component of f4 is

−
1

64
sec2 µτ

2

(
ωrf

β0c

)2

ηCL(2J)2. (A.60)

Combining these two, h4 is

−
1

128
sec2 µτ

2

(
ωrf

β0c

)2

ηCL(2J)2

[
2 + tan2 φrf

(
3 +

tanµτ/2

tan 3µτ/2

)]
. (A.61)

Thus, the tune, to first order in J , is

ν = ντ +
1

32π
sec2 µτ

2

(
ωrf

β0c

)2

ηCL

[
2 + tan2 φrf

(
3 +

tanµτ/2

tan 3µτ/2

)]
J. (A.62)

Note that since ντ is generally negative, the absolute value of the tune is decreasing with

increasing J . The emittance can be written as −σ2
` sinµτ/ηCL, and thus the tune shift at

this emittance is

∆ντ = −
1

16π
tan

µτ
2

(
σ`ωrf

β0c

)2 [
2 + tan2 φrf

(
3 +

tanµτ/2

tan 3µτ/2

)]
. (A.63)
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Action-Dependent Distribution

Function

Assume that the action is given as a function of q and p as

J =
1

2

1 + α2

β
q2 + αqp+

1

2
βp2, (B.1)

as described in appendix A.3. Next, consider a distribution function Ψ which is only a

function of J . Assume that the distribution function ρ in q is known; i.e.,

ρ(q) =

∫ ∞
−∞

Ψ

(
1

2

1 + α2

β
q2 + αqp+

1

2
βp2

)
dp. (B.2)

This appendix describes how to determine Ψ from ρ.

The first step is to Fourier transform both sides of equation (B.2) over q:∫ ∞
−∞

dq ρ(q)eiωq = 2π

∫ ∞
0

dJ Ψ(J)J0(ω
√

2Jβ), (B.3)

where J0 is a Bessel function [1]. The right hand side is just the Hankel transform of Ψ;

the Hankel transform is easily inverted to give

Ψ(J) =
β

2π

∫ ∞
0

dω

∫ ∞
−∞

dq ω J0(ω
√

2Jβ)ρ(q)eiωq. (B.4)

First, integrate the q integral by parts:

Ψ(J) =
iβ

2π

∫ ∞
0

dω

∫ ∞
−∞

dq J0(ω
√

2Jβ)ρ′(q)eiωq , (B.5)
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Γ

0 Γ −

+

Figure B.1: Contours of integration for equation (B.7).

where ρ′ denotes the derivative of ρ. The Bessel function can be expressed as an integral,

so that

Ψ(J) =
iβ

π2

∫ ∞
0

dω

∫ ∞
−∞

dq

∫ ∞
0

dt sin(ω
√

2Jβ cosh t)ρ′(q)eiωq.

=
β

2π2

∫ ∞
0

dω

∫ ∞
−∞

dq

∫ ∞
0

dt
(
eiω
√

2Jβ cosh t − e−iω
√

2Jβ cosh t
)
ρ′(q)eiωq. (B.6)

To be able to switch the order of integration and perform the ω integral, the Fubini theo-

rem [54] requires that one of the iterated integrals be absolutely integrable, and then the

remaining integrals give a finite result. To satisfy this condition, distort the contour for the

t integral up or down in the complex plane depending on which of the exponential terms

are being dealt with. The exponential in question will then go to zero for large ω, meeting

the criteria of absolute integrability. The resulting integral can be written as

Ψ(J) =
β

2π2

∫ ∞
0

dω

∫ ∞
−∞

dq

[∫
Γ+

dt eiω
√

2Jβ cosh t −

∫
Γ−

dt e−iω
√

2Jβ cosh t

]
ρ′(q)eiωq, (B.7)

where Γ+ and Γ− are shown in figure B.1. The ω integral may now be performed. Taking

advantage of the fact that ρ(q) must be even in q, the order of q integration for the first

term can be changed. The result is

Ψ(J) =
iβ

2π2

∫
Γ−−Γ+

dt

∫ ∞
−∞

dq
ρ′(q)

√
2Jβ cosh t− q

. (B.8)

Since the integrand decreases extremely rapidly to zero as t −→ ∞, the t integral can be

closed near infinity. Thus, the residue theorem can be applied to evaluate this integral,

giving

Ψ(J) = −
β

π

∫ ∞
√

2Jβ
dq

ρ′(q)√
q2 − 2Jβ

= −
β

π

∫ ∞
0

dt ρ′(
√

2Jβ cosh t). (B.9)
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Index of Symbols

Symbol Description Page defined

α Parameter of 1-D linear map 111

α Imaginary part of branch in cavity tail impedance 55

αx Horizontal α 24

β Parameter of 1-D linear map 111

βx Horizontal β 24

β0 Velocity divided by c 13

〈βy〉 Average β-function 50

〈βy〉arc Average β-function in arcs 50

〈βy〉bpm Average β-function at BPM’s 50

〈βy〉cav Average β-function at cavities 50

〈βy〉str Average β-function in straights 50

∆ Argument in Fourier transforms of distribution 38

δ Dirac delta function 14

δL Dirac delta function with period L 21

εq Beam emittance 111

εx Horizontal beam emittance 24

εy Vertical beam emittance 50

η Dispersion function 22

ηC Momentum compaction factor 37

Φ Electromagnetic scalar potential 17
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Symbol Description Page defined

φ Transverse cylindrical coordinate 12

φrf Phase offset of rf voltage 21

γ0 Ratio of particle energy to rest mass 12

Γ± Integration contours 119

λm Line density of m-th moment of charge distribution 15

µ Phase advance in 1-d system 110

µ′ Phase advance with feedback 88

∆µ Phase advance from pickup to kicker 81

ρ Charge density 11

ρ Fourier transform of distribution 38

ρm Fourier coefficient of ρ 14

Ψ Phase space distribution function 28

Ψn Perturbation to Ψn0 25

Ψn0 Time-independent Ψ̂n that solves Vlasov equation 25

Ψ̂n Phase space distribution of particles in bucket n 25

ψ Phase in solution of 1-d system 110

Σα R.m.s. emittance in Gaussian bunch 42

σr Transverse bunch size 13

σ` Bunch half-length 24

στ Bunch half-length 43

σ Vacuum chamber wall conductivity 54

τ Arrival time offset from synchronous particle 3

τd Damping time 31

τy Vertical damping time 50

τ̂ Coordinate transform from θ,J to τ 25

τ̂n0 Center of the nth rf bucket 21

τn0 Value of τ in nth bucket when J = 0 25

θq Angle variable conjugate to Jq 110

θs Angle variable conjugate to Js 110

θ Vector of angles 24

ω Single particle oscillation frequencies 5

ω0 Angular revolution frequency around ring 31
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Symbol Description Page defined

ωξ Chromatic frequency 49

ωrf Angular frequency of fundamental rf cavity mode 21

ωr Frequency of linear motion in bunch r 30

ωC Impedance roll-off frequency 55

ωR Resonant frequency for resonator impedance 55

ωFB Half-bandwidth of feedback 79

ν Synchrotron tune 117

∆ν Synchrotron tune shift 117

ντ Linear synchrotron tune 117

να Betatron tune 44

νs Synchrotron tune 25

ξ Derivative of the dispersion function 22

ξ Chromaticity 49

ξη Relative horizontal-longitudinal coupling at cavities 23

A Magnetic vector potential 17

A Lie generator for transformation 108

Am Fourier coefficient of solution for momentum kick 13

A Matrix for linear transformation 109

A Matrix that normalizes linear transform 115

Âm Azimuthal Fourier coefficient of f 13

A Amplitude of feedback kick 81

A
(n)
s,N Normal nth multipole component of As 20

A
(n)
s,S Skew nth multipole component of As 20

a3, a4 Generators for nonlinear normalization 116

ak Coefficient of yn in expansion of As 19

a(n) Coefficient of yn in expansion of As 19

B Magnetic field 11

B0 Magnetic bending fields 20

Bβα
qra Term in sum for Rβαqpr 33

b Derivative of ps transformation 109

b0knd Term in sum of products expansion for g0kln 39

b0nd Function whose Taylor coefficients are b0knd 40
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Symbol Description Page defined

bαknmd Term in sum of products expansion for fαkln + · · · 39

bαnmd Function whose Taylor coefficients are bαknmd 40

bp Vacuum chamber half-height 54

C Curve which is the ideal particle orbit 3

C0 Constant of integration 110

C1 Constant of integration 110

C2 Constant of integration 110

Cβαpra Term in sum for Rβαqpr 33

c The speed of light 11

c0knd Term in sum of products expansion for g0kln 39

c0nd Function whose Taylor coefficients are c0knd 40

cαknmd Term in sum of products expansion for fαkln + · · · 39

cαnmd Function whose Taylor coefficients are cαknmd 40

D Z22 − Z11 59

Dα
np Fourier transformed moment of Ψn 32

Dβα
ra Basis function 33

D̃βα
ra Basis function for bunch 36

D̂βα
q0a Basis function for multibunch mode 36

dα Fourier transform of distribution-related function 38

E Beam energy 50

∆E Energy loss per turn 114

E Electric field 11

e The charge of a particle 11

F Mixed variable generating function 110

F Form factor for resistive wall impedance 54

F Force on a test particle 11

F ‖ Force parallel to v 12

F⊥ Force perpendicular to v 12

f Scalar function 12

f3, f4 Nonlinear terms in map 116

f Function that phase space is shifted by 108

fαn Generalization of xn 32
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Symbol Description Page defined

fαn0 Generalization of xn0 32

fα Distribution to be expanded 38

fλkln Expansion coefficient for fλ 39

frf R.F. frequency 50

G Operator in Vlasov equation 33

H Time-dependent Hamiltonian 17

H ′ Hamiltonian in 8 phase space variables 108

H0 Hamiltonian without wakefield 24

Hr Hamiltonian for bunch r 25

∆Hr Hr −Hr0 30

Hr0 Hamiltonian for bunch r with potential-well distortion 26

h Reciprocal of the local radius of curvature 17

h4 Nonlinear map remainder after normalization 116

hrf Harmonic number of rf cavity 21

I Total beam current 50

Im Modified Bessel function 13

In s interval in which each bunch resides 29

Ir Current in bunch r 44

J The symplectic matrix 108

Jη Characteristic action of dispersion 24

Jq Action variable corresponding to q 110

Js Action variable corresponding to s 110

J0 Zeroth order Bessel function 118

J Current density 11

J Vector of actions 24

K Coefficient of quadrupole field 20

Kp Integral of kp 112

K̂p Kp(sq + L) 112

k Wave number in z direction 13

kp Coefficient of p2 in 1-d Hamiltonian 109

kq Coefficient of q2 in 1-d Hamiltonian 109

kB Number of bunches 50
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Symbol Description Page defined

L Circumference of the ring 21

L Inductance 55

Larc Total length of arc sections 50

Lstr Total length of straight sections 50

Lp Vacuum chamber length 54

m The mass of a particle 17

M Number of symmetric bunches 5

M Longitudinal full-turn map 115

Mβα
ra Basis function 34

Nr Number of particles in bunch r 25

Ncav Number of cavities 50

P , P1 Points for describing storage ring coordinate system 3

P Z21Z12 59

p Arbitrary momentum for 1-d Hamiltonian 109

p0 Reference momentum 18

p Canonical momentum vector 17

p′s Negative of the transformed s-dependent Hamiltonian 108

∆p Momentum gained by test particle 12

∆p⊥ ∆p perpendicular to v 12

∆p‖ ∆p parallel to v 12

Q Parameter in resonator impedance 55

q The charge of a particle 13

q Arbitrary coordinate for 1-d Hamiltonian 109

R Normalized linear part of map 116

Rβαqpr Matrix element 33

RFB Coefficient for feedback impedance 79

RInd Coefficient for inductive impedance 55

Rres Coefficient for resonator impedance 55

RRW Coefficient for resistive wall impedance 54

RTail Coefficient for cavity tail impedance 55

r Transverse cylindrical coordinate 12

S Coefficient of sextupole field 20



APPENDIX C. INDEX OF SYMBOLS 126

Symbol Description Page defined

s Longitudinal position along the curve C 3

sq Location of δ-function kick 111

srf s for rf cavity 21

∆s Offset of feedback kicker from picker 26

t Time 11

tref Arrival time of reference particle 15

T Z22 + Z11 59

T0 Revolution period 25

V External potential 17

V̂ Maximum rf voltage 21

v Velocity of a test particle 11

Wm Wake function 16

W⊥ W1 16

WFB
0 Longitudinal wake associated with feedback 27

WFB
x Horizontal wake associated with feedback 27

WFB
y Vertical wake associated with feedback 27

w Amplitude in solution of 1-d system 110

X Trajectory of test particle 11

x Transverse coordinate in the plane of C 3

x̂ Coordinate transform from θ,J to x 25

xn0 Value of x in nth bucket when J = 0 25

x Canonical coordinate vector 17

x0 Initial condition for trajectory of test particle 11

y Transverse coordinate perpendicular to the plane of C 3

ŷ Coordinate transform from θ,J to y 25

yn0 Value of y in nth bucket when J = 0 25

Z0 Impedance of free space 54

Zij Matrix elements for eigenvalue system 57

Z⊥m Transverse impedance 17

Z
‖
m Longitudinal impedance 17

ZFB
x Horizontal feedback impedance 28

ZFB
y Vertical feedback impedance 28
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Symbol Description Page defined

Z⊥ Z⊥1 17

ZInd
⊥ Inductive transverse impedance 55

Zres
⊥ Resonator transverse impedance 55

ZRW
⊥ Resistive wall transverse impedance 54

ZTail
‖ Cavity tail longitudinal impedance 55

Z‖ Z
‖
0 17

ZFB
‖ Longitudinal feedback impedance 28

Zα Generalized impedance 32

ZFB
α Generalized feedback impedance 45

Zγβαqkbanr Impedance integrated over s times r pieces 35

Z̃γβαq0kbanr
Impedance associated with multibunch mode q0 36

Ẑγβαq0kba
Z̃γβαq0kbanr

when bunches have same distribution 36

z Cylindrical coordinate parallel to v 12

z Phase space coordinate vector 108

zref Initial condition for reference particle 15

< Real part

= Imaginary part

z∗ Complex conjugate of z

zT Transpose of the vector z

〈 〉 Average over the beam distribution

[ ] Poisson brackets 28

dze Smallest integer ≥ z
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