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Abstract

In order to meet their luminosity goals, linear colliders operating in the center-of-mass

energy range from 350 to 1,500 GeV will need to deliver beams which are as small

as a few nanometers tall, with x:y aspect ratios as large as 100. The Final Focus

Test Beam (FFTB) is a prototype for the final focus demanded by these colliders: its

purpose is to provide demagnifications equivalent to those in the future linear collider,

which corresponds to a focused spot size in the FFTB of 1.7 microns (horizontal) by

60 nanometers (vertical).

In order to achieve the desired spot sizes, the FFTB beam optics must be tuned

to eliminate aberrations and other errors, and to ensure that the optics conform to

the desired final conditions and the measured initial conditions of the beam. Using a

combination of incoming-beam diagnostics, beam-based local diagnostics, and global

tuning algorithms, the FFTB beam size has been reduced to a stable final size of 1.7

microns by 70 nanometers. In addition, the chromatic properties of the FFTB have

been studied using two techniques and found to be acceptable. Descriptions of the

hardware and techniques used in these studies are presented, along with results and

suggestions for future research.
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This thesis presents the results of a series of accelerator physics experiments performed

Introduction

at the Stanford Linear Accelerator Center between 1993 and 1995. The experiments

were performed at the Final Focus Test Beam, a facility constructed to act as a pro

totype final focus system for a future linear collider. In this capacity, the FFTB’s

design goal was to demonstrate in an existing facility the tremendous demagnifica-

tion expected in such a future facility; more specifically, the FFTB was designed to

demagnify the incoming electron beam from the SLAC linear accelerator by a factor .

of 380, to a final size of 60 nanometers. Prior to the construction of the FFTB, such

a demagnification of a charged- particle beam had never been achieved.

The experiments reported here are a series of measurements of the properties

of the FFTB and the incoming electron beam, and a set of corrections intended to

drive those properties towards their design values. The ultimate goal of the entire

experiment is to demonstrate a set of measurements and corrections which is necessary

and sufficient to achieve the design demagnification, with the expectation that the

same set will be necessary and sufficient to achieve the equivalent demagnification

in the future machine. Because the design goals of the FFTB were unprecedented,

many of the tuning algorithms were similarly unprecedented, while others extended

existing techniques to more demanding limits. The subject of this thesis is the design

and implementation of the tuning algorithms, an analysis of their performance, and

recommendations for future improvements.

Chapter 1 is a general description of linear colliders: their advantages and dis-
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advantages relative to conventional circular colliders, and brief description of their

subsystems. This chapter also details the functions of the final focus system, and

presents the only existing example – the Stanford Linear Collider (SLC) Final Focus.

Chapter 2 provides a detailed description of the Final Focus Test Beam: its optics,

aberrations, and hardware. This sets the scale of the problem to be solved, and gives

some information about the tools available to solve it.

Chapters 3, 4, and 5 essentially present the tuning of the FFTB from upstream

to downstream: measurement and matching of the incoming beam, local diagnostics

which attempt to pinpoint problems and correct them at their source, and global

diagnostics which are used to eliminate aberrations distributed over the beamline

with a small number of correction elements. The FFTB ultimately achieved a 70

nanometer vertical beam size, which is also presented in Chapter 5; this chapter

describes the beam size expected from the measurements listed in Chapters 3, 4, and

5, and discusses the discrepancy between

Chapter 6 examines the performance

overall issues: the time needed to tune

expected and achieved beam sizes.

of the FFTB as a system, considering two

the beam size, and the energy-dependent

aberrations remaining in the system. Finally, Chapter 7 summarizes the results of

the FFTB experiments and offers recommendations towards the design of future linear

colliders.
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Chapter 1

General Considerations of Linear

Colliders

For many years, electron-positron (e+e- ) colliders have been widely recognized as

a valuable tool for understanding fundamental particle interactions. Because of the .

point-like, non-composite nature of electrons and positrons, such colliders are ideal

for high-precision studies which cannot be undertaken in hadronic colliders.

More recently, there have been studies [1] which demonstrated the usefulness of an

extremely high- energy (0.5 – 1.5 TeV CM), high-luminosity (1033 – 1034cm–2sec–1)

e+e-collider. While neither of these requirements, in and of itself, presents an

impossibly daunting design goal, the particular combination of such energies and

e+ e– collisions mandates the choice of a linear collider rather than a conventional

circular one.

1.1 Circular versus Linear Colliders

As the name implies, the purpose of a collider is to collide bunches of accelerated

charged particles which are moving in opposite directions; at the collision point, the

energy of the particles can be transformed into matter, specifically into (hopefully)
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interesting mmsive particles. The probability of such a collision can be enhanced by

creating a particle “traffic jam” at the Interaction Point (IP), cramming the maximum

number of particles into the smallest possible space. The severity of the “traffic jam”

can be expressed quantitatively as the instantaneous luminosity of a collider, which

is given by:

L=
NfN- j

. HD.
4TOZOY

(1.1)

Here the numerator represents the effects of having more particles at the IP: N+

and N– represent the charge per bunch of the colliding beams, ~ represents the

collision frequency, in Hertz. The denominator represents the effects of packing the

particles into a smaller space: a. and Oy represent the horizontal and vertical beam

sizes, usually reported in microns (note that L is usually reported in cm–2sec–1, for

comparison to particle physics cross-sections, reported in cm2) HD is the “disruption

enhancement” factor, which arises from the fact that bunches of oppositely-charged

particles will tend to focus one another at collision, and is dimensionless. The simplest .

mechanism to increase the luminosity of a collider is to increase the bunch charges

and/or the collision frequency. Because a circular collider stores and re-uses the same

bunches for several hours, even a modest number of stored bunches can yield collision

frequencies of several megahertz, and luminosities of over 1032cm-2sec-l have been

achieved at e+e - circular colliders [2].

The difficulty with extending circular collider technology to higher energy e+e-col-

lisions is the dramatic increase in synchrotron radiation losses. It is well known that

the energy losses of an electron beam which is bent in a magnetic field scales as

the fourth power of the electron’s

on an electron storage ring. First,

dramatically with the desired CM

energy. This has two immediate consequences

the energy loss experienced by the beam grows .

energy, requiring ever more robust acceleration

systems to re-accelerate the bunches on every turn.

incident on the accelerator itself grows as the fourth

order to compensate these two effects, the collider’s

Second, the radiation power

power of the CM energy. In

bending radius (and thus its
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total size) must increase. A full optimization including con~ruction and operation

costs yields a canonical scaling law for e+e–colliders: the circumference must increase

as the square of the CM energy [3].

The highest-energy e+e-circular collider in existence is LEP, at CERN. LEP’s cir-

cumference of 27 kilometers is based on a final CM energy, after the LEP II upgrade,

of 200 GeV. Scaling this to a 1 TeV CM energy, and assuming no dramatic improve-

ments in technology, dictates a circumference of 675 kilometers. This is clearly not a

feasible machine to build and operate.

Linear colliders, by contrast, do not attempt to re-use bunches. Each bunch is

collided wit h a single bunch of opposite charge, and both are then discarded. Because

there are no synchrotron losses to negotiate, the total size of the collider is dictated

by the length of linear accelerator (linac) needed to achieve the desired CM energy,

which scales approximately linearly with that energy. This results in a machine which

is smaller, cent sins fewer components, and is easier to upgrade.

While linear colliders are simpler to design in terms of energy, they are genrally

quite a challenge in terms of luminosity. As we shall see below, it is not feasible to

build a linear collider with a bunch charge of more than a few times 1010 particles

(compared to 1.5- 2.1 x 1011 for LEP and CESR [4, 2] ), or a collision frequency of

more than 200 Hz (compared to 90 kHz for LEP [4] and 2.7 MHz for CESR [2]). By

contrast, the only existing linear collider, the Stanford Linear Collider (SLC), typi-

cally collides bunches with 3.5 x 1010 particles with a collision frequency of 120 Hz.

Because of these limitations, linear colliders are forced to boost luminosity through

dramatically reducing the bunch transverse size at the IP. Circular colliders are un-

able to arbitrarily demagnify their beams due to beam-beam focusing effects which

degrade the quality of the beams after many collisions, an effect known as tune-shifi

or dismption. Because linear colliders do not re-use bunches, they are free to operate

in a disrupted regime.

Figure 1.1 shows a schematic diagram of a typical linear collider. In order to
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understand the mechanisms which determine the bunch size -and luminosity of such

a facility, it is instructive to consider briefly each of its susbystems.

Main Linac
Detector

Beam Dump Beam Dump Main Linac

Compressor Compressor
,,..,,

-+
e

+
v

+ e+

Final

Compressor Focus e-

Damping Electron ~~;rcoen P;;~~coen Damping
Ring Source

1-95
Ring 4494A96

Figure 1.1: Schematic diagram of a linear collider.

1.2 Components of a Linear Collider

1.2.1 Electron and Positron Sources

The electron and positron sources for a linear collider can in principle be quite

straight forward. The only demand upon these systems which differs from the sources

for a circular collider is reliability. Because a linear collider is constantly injecting,

the sources need to be available to deliver bunches at the full machine rate (up

200 Hz) at all times. The sources are mentioned here primarily for completeness.

to

1.2.2 Damping Rings

The charged bunches from the electron and positron sources are then injected into

separate storage rings, whose purpose is to reduce the transverse phase space volume,

or “emittance” (see Appendix A) of the two bunches. This reduction is accomplished

through synchrotron damping: particles passing through the bend magnets of the

damping ring will emit synchrotron photons in their direction of travel, which re-

duces their total momenta; RF cavities along the ring straight sections accelerate the
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particles back to their original momenta, resulting in a net reduction in transverse

moment um. Damping rings are characterized by two parameters in each transverse

plane: damping time, which is the characteristic time needed to reduce the emittance,

and equilibrium emittance, the minimum emittance which the ring is able to produce.

The characteristics of the damping ring impact the final luminosity in several

ways. Most obvious is that the equilibrium emittance of the damping ring will be

the minimum emittance achievable at the IP, and hence is one of the limiting factors

in the spot size. Additionally, the finite damping time of the ring limits the overall

collision frequency at the IP, for each bunch must be stored long enough to reduce

its emittance to the desired value. Finally, it is worth noting that damping rings

typically produce beams whose horizontal emittance is 1 to 2 orders of magnitude

larger than the vertical. For this reason, high-luminosity linear collider designs are

generally expected to collide extremely flat beams.

1.2.3 Linear Accelerator

Once extracted from the damping rings, the charged bunches are then accelerated to

collision energies by one or two linear accelerators. The acceleration is in the form of

RF power provided by a series of klystrons, which is then transmitted to the beam as

it passes through a disc-loaded wave guide. Because of the high acceleration gradients

needed to reach the desired energy in a reasonable length of beamline, the klystrons

are typically pulsed, emitting a high-intensity burst of RF power only when the beam

is present. The limitations on the pulse rate attainable in the klystrons is a further

limit on the collision frequency of the linear collider.

In addition to accelerating the bunches, the linear accelerator must also maintain .

the extremely small emittances from the damping rings to the final focus regions.

This is made difficult by transverse wakefield effects in the disc-loaded wave guide,

in which the electric field of the head of an electron bunch reflects off the discs and

causes a transverse deflection of the tail. This effect causes the effective transverse
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x

>95 m09A19

Figure 1.2: Schematic of a four-quadrupole telescopic system. The
solid line through the center of the lenses is the reference trajectory. A
particle which is initially traveling parallel to the reference but with a
unit offset from it follows the cosine-like trajectory (CZ and CY); while
a particle which crosses the reference at the entrance of the system,
with a unit angle, follows the sine-like trajectory (Sz and SV).

emitt ante to increase; because wakefield emittance dilution is a strong function of

bunch intensity, transverse wakefields in the linac limit the per-bunch charge of a -

linear collider.

Once accelerated to the desired energy, each bunch is then reduced in size by the

final focus, and collided with a similar bunch of opposite charge at the interaction

point. It is the final focus which is our main concern.

1.3 Linear Collider Final Focus Systems

The simplest possible formulation of a linear collider final focus system is a set of four

quadruples which demagnifies the beam size and magnifies the beam divergence in

each plane. Such a system has been described by Brown and Servranckx [5], and is

shown diagrammatically in Figure 1.2. Note that the cosine-like rays are parallel to the



reference trajectory at the beginning and the end of the system, and that the sine-

Iike rays intersect the reference trajectory at the beginning and the end. A module

with both such properties is said to have both parallel-to-parallel and point-to-point

imaging. For a system with no aberrations, and given sufficient length and sufficiently

strong quadruples, a four-quad telescope such as this is capable of reducing the beam

size at the IP to any desired value.

The most immediate difficulty of such a system is that quadruples have inher-

ent chromatic aberrations. The inverse focal length of a quadruple, its integrated

focusing strength, is given by:

where B. is the

aperture radius,

K,==
aBp’

magnetic field at the pole-tip of the quad,

and Bp is the familiar “magnetic rigidity)’:

Bp(T . m) = ~(mks) =
E(eV)

c(m/see)’

(1.2)

L is the length, a is the

(1.3)

which is linearly proportional to energy. We see from eq. 1.2 that the focal length

of each quadruple increases linearly with energy. Hence, at lowest order, particles

which are low in energy will be over-focused (focal point upstream of nominal), while

particles high in energy will be under-focused (focal point downstream of nominal).

As a consequence of this phenomenon, if a bunch of electrons contains a finite energy

spread, then the off-energy particles in the bunch will be out of focus at the nominal

Focal Point (FP), leading to an increase in the spot size.

Let us define K(s) - & to represent the instantaneous quad strength at location

s; the quantity Kq is the integral of K(s) over the length of a given quadruple magnet.

We can use the formalism of Roy[6] and define the chromaticity of a beam line:

c.,,=-: J:K(.)Pz,,(.)d.. (1.4)

The precise definition of the betatron functions, ~X,V,in a telescopic transport system

is discussed in Appendix A, along with a general review of adapting storage ring
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notation to final focus optics. Suffice it to say here that the-linear beam size scales

with the square root of the betatron function. The chromaticity is a quantitative

measure of the change in focusing strength of a beam line with the energy of the

particles being focused. It can be shown (in Appendix A) that the focused size of a

beam with finite energy spread, after passing through a chromatic transport line, is:

(1.5)

where O* is the measured beam size at the IP, a; is the linear monoenergetic spot

size given by a; = @, and ~ is the rms energy spread of the beam.

Let us consider a linear collider final focus system modelled on the telescope of

Figure 1.2, in which the Focal Point (FP) is on the left hand side of the figure. In

this system, the offsets of particles which enter on the right are demagnified at the

FP, and the angles of particles which enter on the right are magnified at the FP by

the same factor; no mixing occurs (ie, initial angle is not converted into final offset,

as required by the definition of point-to-point and parallel-to-parallel imaging). In

a linear collider final focus, the FP linear beam size is reduced as much as possible,

which is equivalent to increasing the beam divergence to as large a size as possible.

This means that, on average, the amplitudes of particles at the FP will be small and

their angles large. The offset of a particle at any point in the system is given by:

z(s) = Cz(s)z(o) + S.(s) z’(o), (1.6)

and since the values of x(0) tend to be small and x’(0) tend to be large, the beam

size at the quadruples will be dominated by the product of the sine-like ray and the

FP angular divergence:

0.(s) = O:sz(s). (1.7) -

Let us now replace the sine-like trajectories from the FP to other points, S. and

SV, by their equivalents in the TRANSPORT formalism of Brown [7], R12 and R34,

respectively. We can replace the FP divergence and the quadruple beam size with
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expressions involving the Twiss parameters in Appendix A: -

and equivalently for the vertical plane. Finally, let us assume that the positions and

angles of particles in the bunch are uncorrelated,

planes. In this special case, we may write:

y: = I/p:.

which corresponds to a = O in both

We may then substitute into Equation 1.7 to obtain the following relation

the FP betatron function and the betatron functions at the quadruples:

(1.9)

between

R~2(IP ~ quad)
b,= D* .

We may now introduce this expression for ~~ and rewrite

(1.10)

equation 1.4 as:

Note that the values of K(s) and of Rlz,~l (s) are functions of the optics only,

(1.11)

and not

of the incoming beam; therefore the entire integral becomes an invariant property of

the optics. We can then substitute into equation 1.5 to find:

(1.12)

For a given lattice of pure quadruples, therefore, the chromatic aberrations of the

quads cause the beam size to go through a minimum at some value of P*, and then to

increase again as O* decreases. It is assumed in this computation that P* is varied by

changing the incoming beam with matching quads upstream of Figure 1.2, and not

with the magnets within the figure itself.

Figure 1.3 shows the beam size, including chromatic contribution, as a function

of”P* for a typical linear collider final focus system. It is clear from this figure that

elimination of the chromatic aberration is crucial to the task of minimizing the spot

size and maximizing luminosity.



12

1000

100

*
0’

1

0.1

t

o. -

‘.
o., -

‘o,
‘.

0-..

I 1 t 1111111 1 1 1111111 1 I 11111{1 I 1 1 111111 I 1 1111111 1 1 1 Ilu-.
“10-6 ,0-5 104 ,0-3 ,0-2 ,0-1 10°

P,*(m)

Figure 1.3: IP beam size as a function of ~~ for a linear collider final
focus. Both thelinear anduncorrected chromatic sizes are shown. The
other beam parameters are: Cy= 5 x 10–14 meter-radians, ~ = 0.003.

1.3.1 Chromaticity correction

In order to eliminate lattice chromaticity, it is necessary to introduce beamline mag-

netic elements which will produce energy-dependent focusing, and adjusting this effect

such that it cancels the energy-dependent focusing of the quadruple magnets. It is

for this reason that sextupole magnets are introduced into the final focus lattice.

Whereas pure quadruple magnets have a magnetic field whose first derivative with

respect to transverse coordinates is constant, pure sextupole magnets have a mag-

netic field whose second derivative is constant. The first derivative of the field varies

linearly with transverse position across the sextupole aperture, and therefore the sex-

tupole presents a linewly increasing quadruple effect across its aperture. If the beam ‘“

through the sextupoles can be manipulated such that the energies of the constituent

particles and their transverse positions are also linearly correlated, then it is possible

to globally cancel the energy~dependent focusing of the quadruple magnets. The
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high-energy particles are forced through a region of high gradient in the sextupole

aperture, and the low-energy particles pass through a region of low gradient.

In order to produce a linear correlation between energy and transverse position at

the sextupole magnet, it is necessary to introduce dipole bending magnets upstream

of the sextupoles. Low energy particles are overbent by such magnets, and high

energy particles underbent, resulting in the desired energy-position correlation. The

trajectory of a particle with zero initial offset or angle, but unit energy offset, is called

the dispersive ray, and its value through the beamline given by the dispersion function,

denoted by D.,V(S) or q.)v(s). The dispersive ray must be carefully controlled and

closed between the last sextupole and the FP, as a position-energy correlation at the

FP will add in quadrature with the monochromatic spot and increase its size.

It is also worth noting that a monoenergetic beam which passes through such a

system will also see differential focusing due to the sextupole. This geometric aber-

ration of the sextupole can in practice be an even larger effect than the chromaticity

of the quadruples. This geometric sextupole aberration is eliminated by placing

the sextupole magnets in pairs separated by a –1 transform (a telescope with unity

magnification, which inverts the image). By placing bend magnets upstream of the

first sextupole and within the –1 module, the dispersion function is the same at the

two sextupoles, and the chromatic aberrations add while the geometric aberrations

cancel. By adjusting the dispersion and betatron functions, it is possible to produce

a lattice in which the sextupole chromaticity (f~ = ~ KS@SqS, where KS = ~2~P)&

cancels the quadruple chromaticity. This scheme for chromaticity cancellation is

also described by Brown and Servranckx [5]. This delicate cancellation of both the

sextupole aberrations and the overall chromaticity results in tight tolerances on the

alignment, strength, and field quality which are characteristic of linear collider final

focus systems.

Figure 1.4 shows the beam size as a function of P* for a linear collider final

focus system with and without chromatic correction (essentially, the same system
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Figure 1.4: Beam size as a function of ~~ for a linear collider, show-
ing both chromatically correct ed and uncorrected beam sizes. Beam
parameters are the same as for Figure 1.2.

with sextupoles on and off). Note that even with chromatic correction, the spot size

diverges from the linear monoenergetic size at some threshold. This is due to other

aberrations which are not corrected.

The arrangement of strong quads, strong sextupoles, and bend magnets has been

successfully implemented in one working collider, the Stanford Linear Collider (SLC).

A brief examination of the optics of this system is instructive in understanding the

trade-offs involved in final focus design.

1.4 The SLC Final Focus

The Stanford Linear Collider consists of a single linac in which both positrons and

electrons are co-accelerated; a pair of achromatic arcs which steer the beams into a

more or less head-on approach; and a pair of final focus systems which produce the

small spots desired at the IP [8]. The optical arrangement of the SLC Final Focus is
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Figure 1.5: Optics of the SLC Final Focus. These are the original
optics, which have since been upgraded in several ways; however, the
basic principles of the system are unchanged.

shown schematically in Figure 1.5.

Note that the chromatic correction sextupoles are interleaved within the CCS

section: while the sextupoles for correct ing horizontal and vertical chromaticity are in

pairs separated by a –1 transform, the first horizontal sextupole is placed between the

two vertical sextupoles. This was necessary because of space constraints of the SLAC

site, which limited the tot al length available to the final focus regions. In addition,

the original operation of the SLC utilized equal horizontal and vertical emittances,

in which situation the aberrations caused by the two sextupole pairs interacting with

one another are not significant.

Currently, the SLC operates with unequal emittances in the two planes. In this

configurate ion, the interleaved sextupoles have been identified as one of the aberrations
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Figure 1.6: Beam size as a function of time at the SLC IP. Both hori-
zo~tal size (squares) and vertical size (diamonds) are shown. The beam
transverse area is also indicated (triangles); the dashed line represents
the SLC design value for transverse area. Plot data courtesy of N.
Phinney.

which limits the performance of the SLC Final Focus [9]. Nonetheless, in recent

luminosity runs the SLC Final Focus have produced electron and positron beams

with rms sizes of 2 microns in the horizontal and 400 nanometers in the vertical [10].

The time evolution of the SLC IP spot size is shown in figure 1.6.

In order to produce the desired luminosity, TeV-scale linear colliders will need

to focus beams at the IP to a few hundred nanometers in the horizontal, and no

more than a few nanometers in the vertical. Such beam sizes and aspect ratios will

require final focus systems with the minimum achievable aberration content, and with

specialized diagnostics capable of measuring and correcting errors in such a small, flat

beam. These are the issues for which the Final Focus Test Beam has been constructed.



17

Chapter 2

Description of the Final Focus

Test Beam

As we saw in Chapter 1, the difficulties inherent in making the small spots needed for

high-luminosity linear colliders are formidable. Equation 1.10 shows that reducing .

the spot size at the IP requires enlarging it in the quadruple magnets. This means

that the tolerances on magnet strength, stability, alignment, and aberration content

become arbitrarily tight as the beam size at the FP decreases. This becomes especially

true as the sextupole strength needed for chromatic correction increases, and the

rigid cancellation of sextupole aberrations and first-order aberrations from sextupole

alignment come into play. To make matters worse, the extremely unequal beam sizes

from emittance and beamstrahlung considerations places additional tolerances on all

of these phenomena, as well as on incoming coupling and magnet roll (defined as

rotation about the longitudinal axis).

In other fields of endeavor, when a new and challenging product is being con- -

templated, it is customary (and necessary) to build a prototype which addresses the

new feat ures and challenges of the product and exposes its potential weaknesses, in

order that these weaknesses may be corrected prior to the start of production. This

is such a useful approach that we have gone ahead and applied it to the “industry)’
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Parameter (units) SLC FF Actual FFTB Design NLC FF Proposed

Beam Energy (GeV) 45.6 46.6 250–750

Energy Spread (%) 0.15 0.3 0.3

0: x a; (pm x nm) 2.0 x 400 1.7 X 60 0.25 X 2.5

~; x ~~(mm x pm) 6.7 X 2800 10.0 x 100 10x 100

Demagnification 72 380 380

~c. (meter. radians) 6.0 X 10-5 3.0 x 10-5 5.0 x 10-6
11 1 1

I ~cV(meter. radians) II 6.0 X 10-6 I 3.0 x 10-6 I 5.0 x 10-8 I
Aspect Ratio 5 28 100

Bunch Population 3.5 x 1010 1.0 x 1010 (0.75 – 1.0) x 1010

Repetition Rate (Hz) 120 30 120-180

Table 2.1: Comparison of IP beam parameters for SLC Final Focus, FFTB, and
NLC Final Focus.

of linear collider final focus design. The Final Focus Test Beam (FFTB) is designed

to be a scaled version of a TeV-scale linear collider final focus. The goal of the FFTB

is to produce focused beams of size a: x a; = 1.7 pm x 60 nm, corresponding to

~~ = 10 mm, ~~ = 100 pm. Table 2.1 gives the relevant parameters of the SLC Final

Focus, the FFTB design, and the expected NLC design. Note that the FFTB’s verti-

cal demagnification is identical to that of the NLC Final Focus, and that the betatron

functions are also identical. This was done to ensure that the FFTB’s aberration con-

tent and tolerances will match as closely as possible those of the NLC Final Focus.

The design aspect ratio is an intermediate value between the SLC’s (which was unity

at the time of the FFTB design) and the NLC’s (which is 100). This parameter de-

termines the tolerances on cross-plane effects such as magnet roll, sextupole vertical

alignment, and roll angles in diagnostic devices such as beam position monitors and

wire scanners.
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of the FFTB with respect to the existin~ SLAC

The original design for the FFTB indicated a value of ~~ of 3 mm, which yields a

a: of 1 pm and an aspect ratio of 16. The value of ~~ was changed to 10 mm for two

reasons. First, the expected IP parameters of the NLC, which originally indicated a 3

mm ~~, have evolved towards a larger horizontal spot. Second, as shown in Equation

1.10, smaller IP size requires larger size in the quadruple magnets and consequently

more danger of backgrounds generated by beam particles impacting (“scraping”) on

the magnet apertures. The FFTB’s horizontal apertures were regarded as dangerously

tight at the smaller FP size, and so the horizontal demagnification was relaxed in order

to relieve backgrounds from beam scraping in the final doublet magnets.

Figure 2.1 shows the positioning of the FFTB in the straight-ahead (“C-channel” )

beamline, which is nominally colinear with the linac. The FFTB’s total length exceeds

that available in the original C-channel housing, and thus it was necessary to construct

a shielded enclosure for the remaining beam line. This housing extends for 75 meters

into the SLAC Research Yard (RSY), next to End Station A. The total length of the
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FFTB is 350 meters, and the distance from the first optical element to the FP is 185

meters. The FFTB uses the electron beam as delivered to the SLC IP, with relatively

minor adjust ments. Because of synchrotron radiation losses in the SLC arcs, the linac

energy is 1.0 GeV above the SLC IP energy, and thus the FFTB energy is 46.6 GeV

and not 45.6 GeV.

2.1 Optical Modules

The Final Focus Test Beam can be divided into five optical regions, or modules, with

distinct functions and optics. Each of these modules is described briefly below. The

optics and tolerances of the modules have been examined in detail by Roy[6], and

shall not be overmuch discussed here.

2.1.1 Beam Switch Yard (BSY)

BPM30 BPM50

50Q1 50Q2 50Q3 50B1 A4DY PC90

Figure 2.2: Schematic layout of the Beam Switch Yard. Normal
quadruples are shown as lenses, bend magnets as large wedges, steering
magnets as upright (xcor) or inverted (ycor) small wedges. Pre-existing
BPMs are shown as open circles, FFTB BPMs as closed ones.

The SLAC Beam Switch Yard is not technically an optical module of the FFTB;

however, the BSY contains both FFTB-specific and pre-existing components which -

have an impact on FFTB operations. These are shown in Figure 2.2. The elements of

principal interest are: the quadruple triplet which is common to SLC and FFTB; the

SLC bending magnet 50B1, which must be degaussed at the beginning of FFTB runs;

BPMs 30 and 50, which reconstruct the incoming position and angle of the beam in x
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and y; corrector pairs A3DX/Y and A4DX/Y, which are usedby the launch feedback

to correct the orbit measured by BPMs 30 and 50; and PC-90, a fixed collimator

which pre-dates the FFTB and which defines the de facto line from the BSY into

the FFTB, usually called the FFTB’s “Massimo Criterion” 1. Each of these elements

shall be discussed in greater detail in later sections, and are shown and described here

to orient

2.1.2

the reader.

Beta Match

Beam

QSM1 Q5 Q6 QAd QA1!QSM2QA2

Figure 2.3: Schematic layout of the Beta Match region. Notation is as
before, with the addition of diamonds to represent skew quadruples.
Also shown are the locations of the beam reconstruction wire scanner,
WS1, and the 16 meter muon shielding wall which permits access to
FFTB during SLC running.

The first optical module of the FFTB proper is the beta matching region. The

magnets in this region are used to match the parameters of the incoming beam to

those of the desired beam at the FP, or elsewhere in the FFTB line. As shown

in Figure 2.3, the beta matching region consists of five normal quadruples, and two

quadruples rolled by 45° (“skew quadruples”). While primarily used for adjusting to

changes in the incoming beam’s Twiss parameters, these quads also allow considerable

freedom in changing the overall demagnification of the system: betatron functions

from 1 meter x 1 meter to the design have been produced at the FP. Because of the -

tremendous flexibility of the beta match region, it is possible to use these quads for

all adjustment of the incoming beam needed for tuning. This in turn allows us to

1Named for M. Placidi of CERN, who resolved a problem with a similar aperture
in the SLC Final Focus.
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tune the magnets in the chromatic correction sections to their design values and leave

them fixed, so that changing the beam size at the IP never requires changing these

quads and potentially losing the cancellation of sextupole aberrations. In addition,

the two skew quads allow independent adjustment of two of the coupling degrees

of freedom of the incoming beam. As discussed in Appendix A, there are only two

degrees of freedom which affect the vertical beam size at the FP; since the vertical

size is so much smaller than the horizontal, it is much more susceptible to coupling

dilution. The two coupling terms which affect vertical focused size are therefore the

ones we typically seek to correct.

Finally, in order to match the incoming beam parameters properly it is first nec-

essary to measure them. This is done by measuring the beam size on a wire scanner,

known as WS1, which is located in the beta match. In order to perform the measure-

ment (described in Chapter 3), it is necessary to focus the beam to an RMS size of a

few microns in each plane on WS1. For this measurement, therefore, the beta match

quads are tuned to a special optics, and the beam is stopped before the first CCSX

sextupole.

2.1.3 Horizontal Chromatic Correction Region – CCSX

BO1 BO1

I
QM3 QN3 QN3 QN2 QN1

SF1 I SF1

ST62 1- -1

Figure 2.4: Schematic layout of the CCSX region. Chromatic Correc-
tion sextupoles are indicated by hexagons. Also shown is the movable
stopper, ST62, which is inserted for incoming beam reconstruction.

Figure 2.4 shows the arrangement of magnets in the CCSX region. The first bend

magnet and subsequent quadruple provide the required dispersion at the first sex-
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tupole; the five quadruple magnets between the first and second sextupoles create

the geometric –1 transformation, while the bend magnets on either side of QN1 are

used to set the dispersion equal at the two sextupoles. During normal operations,

the betatron functions in both x and y pass through a minimum in the center of

QN1, and the horizontal betatron functions are at a maximum in the center of the

SF1 sextupoles; aZ = ay = O at both of these locations. In addition, the horizontal

dispersion is at a maximum at the two sextupoles, corresponding to q; = O.

In order to correct primarily the horizontal chromaticity, the optics are adjusted

such that ~z >> ~V at the SF1 ‘s, and the phase advance from the sextupoles to the

FP is ~ in both planes. The phase advance between the center quadruple, QN1,

and the FP is an integer multiple of T. In order to correct the chromaticity without

introducing unwanted sextupole aberrations, the stability tolerances on quadruple

and sextupole strengths in the CCSX are between 5 and 10 parts in 104. These

tolerances, and many others, have been computed in exquisite detail by Roy [6]. A

brief discussion on the meaning of

2.1.4 Beta Exchanger

tolerances is in Section 2.3.3.

TV
~... *

WS2

QT1 QT2
M

QT3 QT4

4 *

n – Module

Figure 2.5: Schematic layout of Beta Exchanger region. Because of
strength limitations, the “QT2” magnet is in fact a pair of quadruples
set at the same strength with a separation of only a few centimeters.
The optics contains a horizontal waist at the WS2 location and a ver-
tical waist at the WS3 location.
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In order to couple the CCSX sextupoles primarily to the horizontal chromaticity,

the betatron functions were adjusted such that ~Z >> PV at the SF1 sextupoles. In

order to correct primarily vertical chromaticity in the subsequent CCSY region, it is

necessary to reverse this relationship. This reversal is the responsibility of the Beta-

Exchanger, a canonical “four-quadrupole telescope” of the type shown in Figure 1.2.

The phase advance from the beginning to the end of the module is m in both x and

y, the horizontal magnification is 0.395, and the vertical magnification is 6.15. These

magnifications are not possible for a strict four-magnet design, given the specifications

of the FFTB standard quadruples (see Section 2.4) and the length available for the

module; consequently, the “QT2” magnet has been implemented as a pair of magnets,

QT2A and QT2B, which are placed a few centimeters apart and run at the same

strength.

The beta

are ~ out of

exchanger is terminated at either

phase with the FP, and the beta

Consequently, there must exist locations in the

end by the CCS sextupoles, which

exchanger itself has @z = ~V = m.

beta exchanger at which the beam

is in phase with the FP, and ~ out of phase with the sextupoles. In the case of

the beta exchanger, the horizontal and vertical FP Images are separated by 2.85

meters longitudinally. As a result, the beam at WS2 is focused in x but large in y,

while the beam at WS3 is large in x but focused in y. During normal running, with

~~ x ~~ = 10 mm x 100 pm, WS2 ~Z = 8.3 cm, while WS3 @y= 2.5 cm. With the

nominal emittances, this yields a beam size at WS2 of o., OV= 5.0 pm, 99 pm, and at

WS3 of a., Ov = 171 pm, 0.87 pm. These are rather extreme aspect ratios to measure,

and we shall see in Section 2.5.2 how such measurements are made. Additionally, the

spot sizes at WS2 and WS3 are potentially dominated by the chromaticity generated

in the CCSX, and WS3 has non-zero horizontal dispersion; consequently, some care

must be taken in using and interpreting the WS2 and WS3 beam size measurements.

Note that WS2, the horizontal waist, is also a point of zero dispersion.
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Figure 2.6: Schematic layout of CCSY region. The CCSY is opti-
cally identical to the CCSX, with the exception that the dipole and
quadruple polarities are reversed from one to the other.

2.1.5 Vertical Chromatic Correction Region – CCSY

After the beam has been adjusted in vertical and horizontal size by the beta exchanger,

it enters the CCSY. Here the large vertical betatron functions ensure that the SD1

sextupoles will primarily affect the vertical chromaticity. This separation of the CCS

sections allows the two chromaticities to be tuned independently by simply adjusting

the strengths of one pair or the other. The CCSY is constructed identically with .

the CCSX, with the exception that all magnet polarities are reversed: horizontally

focusing quads in the CCSX become horizontally defocusing quads in the CCSY,

and vice versa, and the bend magnets bend to the geographic South in the CCSX

and to the geographic North in the CCSY. The quadruple polarity change has an

interesting side effect: although q: = O at the SD 1 magnets, the actual maximum of

q, occurs in the center of the QM1 magnets. Like the CCSX, ax = av = O in the

sextupoles and the center quadruple.

Because the vertical betatron functions are so large in the CCSY sextupoles, the

tolerances here are significantly tighter than in the CCSX. Magnet strength stability

tolerances go as low as 1.7 parts per 104.

2.1.6 Final ~ansformer and Focal Point Region

Once the beam has passed through the last CCS sextupole, all that remains to be

done is to restore the horizontal dispersion to zero and focus the beam down to the
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Figure 2.7: Final Transformer between the CCSY and the Focal Point.
Small hexagons are sextupoles are for correction of residual geometric
sextupole aberrations in the line.

the smallest spot possible. This is all accomplished in the Final Transformer. The

dispersion is cancelled by an additional bend magnet identical to the CCSY bends,

and a soft bend (B03 by name) which introduces a small angle between the beam and

the synchrotron radiation from the preceding hard bend. This small angle ensures

that the synchrotron radiation and the electron beam are spatially separated enough

to mask off the synchrotron radiation before the FP. Three horizontally defocusing

quadruples enlarge the beam in x before it enters the Final Doublet. The Final

Doublet does the main work of reducing the beam size at the FP, and is also the .

primary source of chromatic aberration in the FFTB. Note that the FFTB’s Final

Doublet actually consists of three physical magnets. This is done because of aperture

problems: in order to make the final lens strong enough, its aperture radius is a mere

6.5 millimeters; this is too small to give adequate clearance to the incoming beam,

which has just passed through the QC2 magnet and is quite large in the vertical.

Thus, a short, strong magnet (QX1) with a larger aperture is used to “pre-focus”

the beam to a size which is capable of passing through the aperture of the main

vertically-focusing quadruple, QC 1. The Final Transformer also contains 4 geomet-

ric sextupoles, which may be used to eliminate residual sextupole aberrations; such

aberrations could come from imperfect cancellation of the CCS sextupole aberrations,

or from small imperfections in the construction of the quads. There is also a skew

quadruple to compensate the effects of small roll angles in the Final Doublet.

Figure 2.8 shows the positioning of beam size measuring devices around the FFTB

Focal Point. The design free length from the last quadrupole’s downstream face to
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Figure 2.8: Arrangement ofdiagnostic devices atthe FFTB Focal Point.

the nominal FP (1*) is 40 centimeters, significantly smaller than the 1.5 – 2.5 meters

planned for the NLC. The Laser-Compton Beam Size Monitor (Section 2.5.4) is set -

at this location. Approximate ely 25 centimeters downstream of this location is a wire

scanner with 4pm carbon fibers, capable of measuring horizontal and vertical beam

sizes. Following this after another 26 centimeter is the Gas-Ion Time of Flight Beam

Size Monitor (Section 2.5.4). The optics of the Final Transformer can be adjusted

to put the waist at any of these locations. Finally, there is a conventional wire

scanner (1 fork, 3 wires at 0°, 90°, 45° from horizontal, 34pm wires). This location

is sufficiently downstream of the FP that the beam size here is totally dominated

by the FP angular divergences. Since this region is a drift space, WS6B gives a

model-independent measure of the FP angular divergence.

2.1.7 Extraction Line

Once the beam has been focused and measured, the only remaining difficulty is to

dispose of it safely. This is a potentially daunting problem: because the beam is
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Figure 2.9: FFTB Extraction Line optics. The first three lenses are
actually pairs of identical magnets. The vertical hard bends, B06, are
permanent magnets which bend the beam down onto a water-cooled
dump, providing vertical dispersion for energy measurement and energy
spectrum measurement.

smaller at the FP than at any other point, its angular divergence

any other point. Consequently, the beam size changes quite rapidly

is larger than at

as we move away

from the Focal Point. The Extraction line captures the outgoing beam with an optical

system pictured in Figure 2.9. The first three “lenses” are each made of a pair of

identical quadruple magnets, for reasons similar to the arrangement of the QT2A/B

pair. The optics of the dumpline are designed to accept a beam whose focal point is

at the Laser- Compton BSM (the first BSM in Figure 2.8), and focus this onto a dual .

waist at a vertical only wire scanner near the main dump. Between the last quad and

the dump itself are a series of BPMs and vertical bend magnets: soft bends B04A/B

and B05A/B, and permanent hard bends B06A–F. The vertical bend magnets bend

the beam onto the dump, which is set below the level of the main beamline in order

to back it up with a long strip of iron for muon attenuation. These bend magnets also

provide significant vertical dispersion at the dump’s location. This allows the BPMs

in the dumpline to resolve energy variations of each pulse, and this information is

used by the SLC linac to provide energy feedback. In addition, the wire scanner at

the location of the last BPM is at a geometric waist; consequently, the beam size at

this scanner is dominated by the product of energy spread and dispersion. Thus the -

scanner can be used as an energy spectrum monitor (hence the name ESM).
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Figure 2.10: FFTB beam optical functions. Shownare~~12 (dashes),
~~12 (solid), andqz (dot-dash). Thevertical dispersion function, qV,
has a design value of zero everywhere.

2.2 Opt ical ~nct ions

Figure 2.10 shows the optical functions from the 50B1 magnet in the BSY to the

FFTB FP.

2.3 Aberrations

As mentioned in Chapter 1, the first and most significant aberration encountered in a

linear collider final focus system is chromaticity, which is corrected by the introduction

of sextupoles and dispersion. Once this correction is applied, there are additional

aberrations which come into play. These include tunable corrections due to misaligned
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or mispowered elements in the beam line, and untunable corrections which come from

high-order fabrication errors and other sources.

2.3.1 Chromaticity

As we saw in Figure 1.4, the chromaticity cancellation of a lattice like the FFTB’s can

be characterized by comparing the linear beam size, the uncorrected (chromaticity-

dominated) size, and the corrected size. Figure 2.11 shows such a comparison for the

FFTB, at the design energy spread of ~ = 0.3%.
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Figure 2.11: Chromatically-corrected (dashes) and -uncorrected (solid)
beam sizes in the FFTB as a function of @~. The linear monochromatic

size is shown (dot-dash) for comparison.

Figure 2.11 shows that, at the design ~~ of 100 ~m, the linear spot size and the

achievable spot size have begun to diverge, due to higher-order uncorrected aberra-
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tions. The achievable spot size, approximately 60 nanometers, is approximately 10%

larger than the linear size (54.7 nanometers).

2.3.2 Uncorrected Aberrations

There are several aberrations which are inherent to the FFTB design and cannot

be eliminated through tuning of the existing magnets. These aberrations are: the

long sextupole effect; the chromatic breakdown of the –1 transforms; synchrotron

radiation losses due to the CCS bend magnets; and synchrotron radiation losses in

the quadruple magnets themselves, especially the final lenses ( “Oide Effect” ). These

effects have each been developed in detail by Roy [11], and shall be covered only briefly

here.

Long Sextupole Effect

The presence of strong, non-zero length sextupole magnets gives rise to third- order .

(octupole-like) aberrations. A thin slice of sextupole magnet gives a kick to the elec-

trons which pass through it which is proportional to the square of their distance from

the center of the magnet. This kick will slightly change the position of the electrons

as they enter the subsequent slice of the sextupole, in a non-linear fashion. When

these interactions between slices are summed over the total length of the real magnet,

the resulting transformation to the electron’s position

thin sextupole coupled with a thin octupole magnet.

*2 which corresponds to a 3% increase inincrease ln ‘v >

and angle are equivalent to a

This effect contributes a 6%

the spot size.

Chromatic Breakdown

The cancellation of the geometric sextupole aberration due to the CCS sextupoles

relies on the presence of a —I transform between the sextupoles. For off- energy

particles, however, the –1 transform is no longer rigorous, due to the chromaticity

of the CCS quadruples themselves. While this term is itself small, and does not
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give rise to a large sextupole kick, it damages the rigorous cancellation between the

sextupole and quadruple chromaticities. The result is that the spot at the FP is no

longer chromatically corrected for all moment a. This aberration causes an increase

in the spot size of about the same magnitude as the long sextupole effect.

Synchrotron Radiation in Bend Magnets

The bend magnets which provide the CCS sextupoles with dispersion also cause the

electrons in the beam to emit synchrotron radiation. This results in the electrons los-

ing energy between the entrance of the FFTB and the FP. While this is not crucial in

and of itself, the amount of energy lost by each electron is determined by the stochas-

tic process of synchrotron emission: there is no relationship (other than statistical)

between a particle’s value of 6 at the entrance of the FFTB and its value of 8 at the

FP. As a result, the chromaticity introduced by the CCS sextupoles will not exactly

cancel the chromaticity introduced by the final doublet, and some chromatic growth

will occur. This effect has been estimated to add 670 to o~2, resulting in a further 370

increase in the spot size.

Note that the long sextupole and bend radiation effects must be traded off with

one another to optimize the optics of the FFTB. Decreasing the strength of the bend

magnets will decrease the synchrotron effect, but requires an increase in sextupole

strength to maintain chromatic correction, thus exacerbating the long sextupole aber-

ration. In this case, optimization of these effects within the constraints of the available

site space was performed by Oide [12].

The Oide Effect

In addition to bend magnets, electrons undergo bending when they pass through

strong quadruple magnets. If the quadruple is sufficiently strong and the beam

sufficiently large in the magnet aperture, the bending of individual trajectories from

focusing may be sufficient to measurably change the particle’s energy offset from
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Quad Strength ~’inal Doublet Y
Sext x align strengths

Doublet Al ign Final Doublet v 1
Sext v ali~l I orbit 1“1

.“

CCSY sext upole CCSY s ext upole y
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Quadruple Rolls k“r Skew Quad Y
strengths

CCS Quad Strengths kfrr sextupoles Y

Table 2.2: FFTB aberrations and their primary dynamic sources.

nominal. This results in a spot dilution from the same process as the synchrotron

radiation in the bend magnets, and is known as the Oide Eflect. While not significant

for the FFTB, this effect is likely to be a consideration in the design of future linear

colliders at higher energies.

2.3.3 Corrected Aberrations

In addition to the four uncorrected aberrations listed in the previous section, there

are a total of 11 aberrations which can dilute the FFTB spot size: four which affect

principally the horizontal spot size, and seven which affect principally the vertical

spot size. These aberrations are summarized in Table 2.2, along with their primary

dynamic sources. The dynamic sources of aberration are those which are inclined to

drift over time. This is a different category from static sources, which do not change.

For example, machining errors in quadruples can give rise to geometric sextupole



34

aberrations, but these aberrations are virtually constant with time; consequently,

any correction of this static source of sextupole aberration remains valid for all time.

If, however, the CCS quadruples drift off the settings needed to maintain a –1

transform, this gives rise to an additional sextupole aberration which depends upon

the time-stability properties of the power supplies.

Additionally, the aberrations listed in Table 2.2 include only those aberrations

which arise primarily in the FFTB itself. The actual values of ~~ and ~~, for exam-

ple, could be set incorrectly, and this would result in changes in the FP beam size.

Once this is set, however, the magnets of the FFTB are essentially unable to “drift”

the magnification out of tolerance, because all the FFTB quadruples have tighter

tolerances due to other strength-error aberrations (waist and –1 breakdown) than

they do for total magnification. An additional aberration, xy coupling at the FP, can

only arise from sources outside the FFTB itself.

Note on Tolerances

As shown in Table 2.2, the FFTB has been designed with global correction elements

for each of the leading aberrations. These elements are able to cancel all contribu-

tions to their particular aberration, regardless of source, without introducing other

aberrations in the process. As we shall see in Chapter 5, this orthogonality generally

breaks as the knobs approach their full strengths. In addition, such knobs cannot be

made arbitrarily powerful; as a result, a beamline whose elements are too badly mis-

aligned and mistuned cannot be “beaten into submission” by repetitive application

of the knobs.

For all classes of elements in the FFTB, therefore, we can define capture tolerances:

these are the tolerances within which the elements must be tuned before global knobs

are applied, in order to assure that the knobs will reduce the spot size within a finite

number of iterations. These tolerances are generally a function of the design and

arrangement of the knobs, and of the optics as well. The capture tolerances for the
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Horizontal Alignment of Q and SX 100 ~m

Vertical Alignment of Q and SX 30 ~m

Strength Error of B, Q, and SX 0.1%

Roll Angle Error of B, Q, and SX 0.5 mrad

I Incoming ~mismatch I 100% I

I Incoming a mismatch I 100% I

Table 2.3: Capture Tolerances for FFTB. Tolerances quoted are RMS valuesof
gaussian-distributed errors. Bends (B), quadruples (Q) and CCS sextupoles
(SX) have been included in the simulations.

FFTB have been determined by Oide through a series of simulations [12], and are

summarized in Table 2.3.

Once the beamline has been tuned to the smallest possible spot size, another

set of tolerances becomes operative. These are the stability tolerances, and they

indicate how far a given element may drift from its post-tuneup value before enlarging

the beam size by a given amount. The determination of what constitutes “a given

amount” has a tremendous bearing on the difficulty of the problem posed by stability

tolerances. For the FFTB, the permitted amount of beam size growth through drift

of beamline elements has been set at 270 per aberration, through a process which is

described in Chapter 5. Thus, at any given time after tuning the global knobs, we

expect that the FFTB FP beam size may be as much as 1470 above the design value

in the vertical, and 870 above the design value in the horizontal.

The prescription for translating the “14% solution” [13] above into stability tol-

erances for individual elements, and then into classes of elements, has been a source

of some confusion in the past. This is because, while we speak of growth due to

individual aberrations, the aberrations are caused by drifts in magnet positions and

power supplies, and a given drift may cause several different aberrations (for example,

a CCS quad supply may cause a waist shift and a –1 breakdown) – essentially, the
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aberrations and the magnets which cause them form two different bases which de-

scribe the same configuration space of the accelerator. It is important to remember,

however, that the positions and strengths of the magnets are the elements which we

can control directly, not the aberrations caused by changes in the magnets.

Every magnet in the FFTB has a finite set of parameters which may vary from

the ideal: strength, horizontal and vertical alignment, roll, multipole content. Each

of these aberrations may give rise to spot size growth through one of the aberrations

listed in Table 2.2. It is possible to go through the FFTB optics and determine,

for each magnet, how much of each deviation will result in a 2% spot size growth

from each aberration which is generated, and this has been done for the FFTB [6].

However, since the magnets are assumed to all vary from the ideal in an incoherent

manner, some way of combining the tolerances to form a group tolerance must be

determined.

If we define the tolerance on a group of aberrations (for example, vertical vibra-

tions of the standard quads, or power supply ripple of the standard quads) to be Tg;

and we define the individual tolerances within the group to be tz;then the amount of

spot size growth caused by all of the magnets varying incoherently by ~g is given by:

(2.1)

If I

my

require that the total spot size growth from this source be no more than 270, then

defining equation for T~ is:

&=g$. (2.2)
9 a

At this point we have a set of values, T~, which tells us the RMS tolerance for a class

of objects (in which the objects in the class are assumed to be essentially identical, for

example a set of identical magnets on identical power supplies and identical physical

installations) for a given aberration. If we now have multiple classes which can give

rise to the same aberration (for example, quadruple vibration and bend power supply

ripple), we can assign to each class a fraction of the 2% total allowed aberration, ~g.
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This assignment is based on a judgement of the relative difficulty presented by the

r
various ~g values. At this point, we have a set of tolerances, T9 jg, which, if met,

will guarantee that the “1470 solution” is also met. This is known as the beamline’s

tolerance budget.

2.4 Magnet Specifications

2.4.1 Normal Quadruples

The FFTB standard quadruple is a warm iron magnet, 46.1 cm long with a 1.15

cm aperture radius. These magnets are capable of achieving an integrated gradient,

f G. dl, of 388 kilogauss, which corresponds to a pole-tip field of 9.7 kilogauss. The

maximum current required for this field is 240 amperes. All normal quadruples from

the beginning of the line to QC4 are of this design, as are QPIA and QPIB in the

extraction line.

Because the beam becomes quite large in the final telescope and the extraction line,

it is necessary to have magnets with larger apertures in these locations. A variation

of the standard quadruple, with 46.7 cm length and 1.75 cm aperture radius, was

used for QC3, QP2A, and QP2B. These magnets have a maximum J G . dl of 273

kilogauss at 325 amperes, which corresponds to a pole-tip field of 10.2 kilogauss. A

larger magnet, with 1 m length and 2.7 cm aperture radius, is used for QP3A, QP3B,

QP4, and QP5. This magnet design has a maximum f G . dl of 400 kilogauss at 500

amperes, for a pole-tip field of 10.8 kilogauss.

The group tolerance on power supply stability for the quadruples up to QC3 is

~ = 73 x 10–5 [15]. This tolerance is determined by shifts in the waist position forI.

all magnets, as higher-order effects (such as geometric sextupole) do not appear at

this level. The power supplies used for these magnets have achieved stabilities close

to & = 3 x 10-6 [16]. This implies that all quadruples which run at a current
max

greater than 5% of the maximum will achieve their tolerance. In practice, most of the
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Name Length Aperture M B I
(m) Radius (cm) f G . d~(kG) (iHf (am~e~es)

QC 2 2.026 2.60 880 11.3 500
xl 0.310 1.00 456 14.7 250

Qc 1 1.120 0.65 2213 12.8 250

Table 2.4: Parameters of the FFTB Final Doublet magnets.

supplies run above 45% of maximum current, and all run above 770.

upstream of the FP is driven by an independent power supply and

the quads in the extraction line are driven by independent power

some of these share controllers.

Each quadruple

controller. All of

supplies, though

The group tolerance on alignment stability due to steering at the IP is approxi-

mately 750 nanometers in the horizontal and 200 nanometers in the vertical [17], while

the group tolerance due to mis-steering through the CCS sextupoles and final dou-

blet (causing additional quadruple or dispersion, respectively) is approximately 300

nanometers in the horizontal and 200 nanometers in the vertical. The FFTB magnets

are supported on ANOCAST artificial stone monuments coupled to the ground by

concrete grouting, and no vibration measurement has shown an RMS motion greater

than 100 nanometers [18]. The group tolerance on roll angle for all quads up to QC3

is 40 microradians [19].

The three quadruples which comprise the final doublet have such differing re-

quirements that each of the three comprises a unique design [14]. Table 2.4 shows

the specifications of these magnets.

The power supply stability requirements for each of QC2 and QC1 are 2 parts per

105, more stringent than even the group tolerance on all other quadruples, while for

QX1 it is near 7 parts per 105 [15]. Because of the tight regulation capabilities of the

standard 250 ampere supply used for the rest of the FFTB line, the standard supply

was also used to power QX1 and QC 1. As shown above, this supply easily meets

the stability requirements for QC1. The QC2 magnet requires a 500 ampere power



39

supply, which is far beyond the capability of the standard (250 ampere) supply. The

QC2 supply also demonstrates stability at the level of 3 parts per 106[16].

Vibration tolerances for the doublet are determined by the limits on allowed FP

steering. The simplest model – that the three quads act as a single parallel-to-point

lens in each plane – is adequate to determine that motions of the doublet translate to

steering at the FP with a unity ratio; therefore, the vibration tolerance is equal to 1

0 in the plane of interest. The three magnets are mounted on a common, vibration-

isolated table [20], with typical RMS vibrations measured to be between 35 and 70

nanometers [18]. While this is adequate in the horizontal, the vertical vibrations are

not within the allowed tolerances, resulting in steering of the beam at the FP. The

consequences of this are discussed in subsequent sections. The roll tolerance of the

doublet as a system is 33 microradians [19].

The lowest-order multipole field above the quadruple is the sextupole, and there-

fore this aberration is the first critical one for quadruple magnets. The aberration

content for sextupole field is usually quoted as = at 7070 of aperture radius. For all

quadruples from Q5 to QC3, the RMS tolerance for this ratio is 5.6 x 10-4, and for

the doublet magnets it is about 3.7 x 10-5. These tolerances, and the measurements

of magnet sextupole content, are discussed at length in Appendix B. Note, however,

that these tolerances are expected to be essentially static, in that the sextupole con-

tent of the quads is not expected to vary overmuch with time. Moreover, in the initial

design phases, there was no provision for geometric sextupole magnets in the FFTB.

The FFTB has, however, been constructed with such magnets. Consequently, even

significant failure to meet this tolerance can be corrected with the use of the global

sextupole magnets<

2,4.2 Bend Magnets

The six BO1/B02 bend magnets displayed in section 2.1 have been fabricated as 12

distinct magnets, in order to reduce the length of individual units for ease of handling.
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Each magnet has an effective length of 2.62 meters, with a pole-tip field of 2.144

kilogauss and a bend angle of 3.618 milliradians. Thus the six BO1 bend magnets

bend the beam 21.7 milliradians to the South, and the six B02 magnets bend it an

equal amount North. The B03 magnet, also fabricated as a pair of magnets, are

identical except for a slightly larger gap (to accommodate the divergent beam) and

consequently a slightly larger effective length. The B03 pair each have a pole-tip field

of 256 gauss, yielding a total bend angle of 434 microradians.

The current needed to drive the BO1/B02 string at the design value is nearly 330

amperes. In this case, all twelve of BO1/B02 magnets are driven by a single power

supply which is identical to the QC2 supply, as the voltage needed to push 330 amperes

through 12 long bend magnets is considerable. The power supply stability tolerance

is determined by steering errors in the sextupoles, and is just under 1 part in 105[21].

As discussed in the previous section, the QC2 supply meets this tolerance. Note that

the twelve magnets have different excitation curves, and thus a single current will

not drive all of the magnets at the design value. Fortunately, each magnet has a

trim winding which may be used to fine-adjust its delivered field. Each pair of bend

magnets has a single 12-ampere trim winding power supply; these are discussed in

Section 2.4.4. The B03 magnets require only 71 amperes to reach their design value.

Because these magnets are located after the last CCS sextupole, their tolerance for

strength is quite loose; the magnets are powered by a standard 240 ampere power

supply, which has stability far superior to what is required for this purpose.

The rotation tolerance for the bend magnets, again determined by orbit transfor-

mations at the sextupoles, is approximately 13 microradians, which is the tightest

roll tolerance in the FFTB [22].

2,4.3 CCS Sextupoles

The four sextupole magnets used for chromatic correction are each 0.25 m in length,

with a 1.0325 cm bore radius. The sextupoles reach a maximum “sextupole strength”
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(f Sdi, where S = ~) of 35,500 kilogauss/meter at a current of 325 amperes, for a

pole-tip field of 7.6 kilogauss.

The FFTB sextupoles are powered by separate 333 ampere supplies, but each

pair (SF1’s and SD1 ‘s) shares a common controller. Thus while each sextupole is

independently regulated and stabilized, the pairs are always set to the same current.

This implies that the pairs of sextupoles must have quite identical excitation functions

at the operating point(s), and this issue is discussed in Appendix B. The tolerances

on sextupole strengh regulation are quite loose, over 1 part per 103 for each of the

four sextupoles [15]. The sextupole power supplies are a variation of the standard

FFTB supply (supplying 333 amperes with 30 volts, rather than 250 amperes with 40

volts), which provides a stability almost 3 orders of magnitude greater than required

for this application. Because the sextupoles are placed on mounts identical with

the quadruples, and because the primary spot-size effect of the quadruples is mis-

steering in the sextupoles, the CCS sextupole alignment tolerances were included in

the treatment of quadruple alignments [23]. In other words, if the RMS vibration

of all the quadruples and the CCS sextupoles is under 300 nanometers in x and 200

nanometers in y, the spot size growth will be 270.

2.4.4 Other Magnets

The FFTB contains a total of 73 small magnets, which are driven by 12 ampere bipolar

power supplies. These include: three skew quadruples (QSM1 and QSM2 in the Beta

Match, QS3 in the Final Transformer); four sextupoles (normal sextupoles SX1 and

SX2, skew sextupoles SK1 and SK2, all in the Final Transformer); an assortment of

DC steering correctors in x and y; six bend trim winding supplies; the B04 and B05 .

magnets in the extraction line; several sets of quadruple trim windings which are

wired to act as dipole correctors (on QN1, QT3, QM2, and QC5; QPIA/B, QP2A/B,

QP3); and independent trim windings on each pole of each doublet magnet (total of

12). The specifications for these power supplies require that each one be stable at
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the level of 1 part per 104 at full current, which should be sufficient for most of these

applications.

2.5 Instrumentation

Sophisticated diagnostics are an essential component of the tuning of the FFTB, and

these in turn require reliable, flexible instrumentation. The FFTB’s primary beam-

measurement devices are a set of high-resolution beam position monitors (BPMs),

and a cluster of wire scanners and profile montiors for measuring the transverse

distributions of the beam. In addition to these, the FFTB makes use of a new

generation of remote-controlled magnet movers, and two novel beam size monitors

(BSMS)3.

2.5.1 Beam Position Monitors

All of the normal quadruples between Q5 and QC2, and also QPIA, contain stripline

BPMs. In addition, two FFTB-style BPMs and one older model are installed in the

BSY for launch feedback; three FFTB-style units are installed in the Beta Exchanger

for pulse-to-pulse jitter correction of the beam measured at WS2 and WS3; one

FFTB-style unit is installed in the end of the CCSY for a similar purpose (the wire

scanner in question was not installed); and the extraction line contains four BPMs

similar to the standard design (and one low-resolution device salvaged from elsewhere)

for pulse-to-pulse energy reconstruction and feedback. Figure 2.12 shows the cross-

sect ional profile oft he standard BPM. Note the indentations in the vacuum extrusion

necessary to fit the BPM into a quadruple aperture.

The specifications for the BPMs require: pulse-to-pulse resolution of the beam

position of 1 pm at a bunch charge of 1 x 101O; linearity of 1% at a beam offset of

2A possible exception is the trim windings on the bend magnets.
3These should not be confused with beamstrahlung monitors, which are also abbre-

viated BSM.
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Figure 2.12:
radius, R12,

Cross-section of the standard FFTB BPM. The stripline
is 1.15 cm, identical to the quadruple aperture radius.

2 mm [24]; and a scale factor accuracy of O.1%. Bench-test calibrations and beam-

based measurements of compliance to these requirements is presented in Appendix C

and Chapter 4, respectively.

The energy feedback BPMs have a larger aperture and shorter stripline length;

consequently, their resolution is reduced from the standard design. These are required

to resolve 6 pm pulse-to-pulse [36].

2.5.2 Wire Scanners and Profile Monitors

The FFTB Wire scanners are described in detail elsewhere [26], and their physical

designs are summarized in Table 2.5.

The first scanner, WS1, is primarily used in reconstructing the incoming beam,

and for this purpose must measure beam spots which are as small as a few microns.

The scanner uses 3 separate yokes, one for each direction of measurement. The

scanner can measure x, y, and V4, and thus allow the beam’s major and minor axes,

and roll angle, to be reconstructed by geometry considerations.

4the u and v axes are rotated 45° clockwise from, respectively, the x and y axes.
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Name Purpose Wire Size Wire Angle

Wsl Incoming Beam 34 pm and 7 pm 0°,90°,135°
Reconstruction carbon 3 separate yokes

WS2 ~,az 4 pm tungsten 0°, +30,
0°, +6°

WS3 Py?~y 4 flm tungsten 0°, +0.70,
00, +1.4°

WS6A FP tuning (initial) 4 pm carbon 0° x 10,90° x 10 (2 yokes)
WS6B k’P divergences 34 pm carbon 0°,900,45°
ESM Energy Spectrum 75 pm tungsten, 90°

175 pm Be-Cu (24)

Table 2.5: Arrangement of FFTB Wire Scanners. Note that WS3 wire angles
are angles with respect to the horizontal, for measurement of the vertical.

The Beta Exchanger scanners, WS2 and WS3, are required to measure small

spots with large aspect ratios. In this case, the primary problem is signal: the charge

density along the long axis of the beam is so low that a wire stretched to measure in

this direction never intercepts a significant amount of beam, and the signal is quite

low. In order to remedy this situation, the scanners at these locations are equipped

with wires set at shallow angles relative to the short-axis wire. This allows each wire

to produce a readable signal, although as a result the odd-angle wires produce beam

sizes which are comparable to the minimum size. This makes distinguishing the wires

problematic, especially if one breaks or cannot be found. Furthermore, note that

the WS3 angles are on the order of 1°. This requires that the yoke’s rotation angle

(relative to the symmetry planes of the magnets) be known to about O.1O. In the case

of WS3, an additional problem arises: the beam size at WS3 with nominal emittances

is Ov = 800 nm. A wire scanner whose wire is diameter d can reasonably measure a

beam size whose RMS is d/4 before the wire size dominates the measurement [27],

which for WS3 yields 1.0 pm.

The FP tuneup wire, WS6A, uses a pair of stationary forks with 10 wires each,

horizontal or vertical (depending on the fork). These are inserted into the beam

and scanned by stepping an upstream corrector. This has the action of moving

the beam across the wire (as opposed to all other scanners in the FFTB, which
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scan the wire across the beam via a stepping motor). The conversion of corrector

strength in kilogauss-meters into position at the FP in microns is dependent upon

the model loaded into the control system, which is subject to errors. Fortunately,

the wires on a given yoke are known to be 50 pm apart. Thus, as part of any

experiment involving WS6A, the beam is scanned across several wires to cross-check

the calibration constant. Finally, it is worth noting that WS6A wires are at risk

of breakage by the beam. SLC experience indicates that 4 pm carbon wires will

be broken by a beam of 1 x 110 population if OZ x OY z 3 pm2 [28]. During early

FFTB experiments, several WS6A wires were in fact broken (including a sequence

of 6 wires on a yoke broken in a single scan). Since then, however, a technique has

been developed which allows use of WS6A wires for tuning, even when the beam is

capable of breaking wires. This technique is described in Chapter 5.

The FP divergence wire, WS6B, is used to measure beams

by FP angular divergence. They are consequently quite large,

adequate for measurement. The wires are on a single yoke,

ubiquitous use in the SLC linac.

The beam in the dumpline is dominated by vertical dispersion (60 cm at the ESM,

resulting in a beam size of 600 pm per 1 x 10–3 energy spread). The Energy Spectrum

Monitor can therefore use a large wire and step size, which completely eliminates any

danger of wire damage by the beam. In addition to the scanner, a set of 24 foils below

the wire can be inserted into the beam path indefinitely; the signals from these foils

allow continual monitoring of the energy spectrum.

which are dominated

and 34 pm wires are

a design which is in

2.5.3 Magnet Movers

Because alignment of FFTB quads and sextupoles is a critical aspect of tuning and

m-aint aining a small spot, it is necessary to have the magnets inst ailed in a fashion

which permits them to be moved to aligned positions quickly, precisely, and repeat-

edly. Conventional accelerator designs require the magnets to be moved to aligned
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positions by work crews. This in turn requires access to the

deactivation of the magnets, which invites thermal changes

accelerator housing and

to shift the magnet un-

predictably. The alternative to this procedure is to develop remote-controlled magnet

movers which may be used to align the accelerator under run-time conditions.

A first-generation magnet mover was used in the SLC Collider Arcs to position

the combined function arc achromat magnets [29]. These movers were single degree-

of-freedom devices, which depended upon a rotary potentiometer to determine the

magnet position. For the FFTB, however, both x and y positioning are required (roll

is also desired), as well as a position-detection system which couples directly to the

magnet, not to the stepper motors or camshafts.

The FFTB Magnet Mover is described in [30] and [31]. The mover uses 3 stepper

motors, each attached off-center to a camshaft. The magnet is supported by a pair

of V-blocks which ride on the camshafts. When the motors turn the shafts cause

the blocks to rise and fall, and shift left and right. While no single motor drives a

single degree of freedom (x,y,roll), it is possible to combine the stepper-motor actions

to produce pure motions in these coordinates. In addition, the magnet position is

determined by a set of three LVDTS which are in physical contact with the magnet.

The LVDT resolution is approximately 0.3 pm, allowing a position reconstruction

resolution of better than 1 ~m at all times.

When the magnet mover is commanded to move, both the LVDTS and the rotary

potentiometers are read out, to determine the current locations of both the cams and

the magnet. The necessary movement of each cam is then computed and implemented,

and the LVDTS are read again. If the magnet has not reached its target within 1

pm in each of x and y, and 1 prad in roll, the computation and motion is iterated

until convergence. In this way, the mover provides positioning accuracy of better

than 1 ~m over its full range of +2.0 mm (x), +1.5 mm (y), +5.0 mrad (roll). The

testing and calibration of the movers is described in [31]. Each normal quadruple

upstream of the final doublet j each CCS sextupole, and QP 1A in the extraction line
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are mount ed on such movers.

2.5.4 Beam Size Monitors

As indicated in section 2.5.2, beams which are micron-sized in both planes at FFTB

intensities will destroy 4 pm wires through thermo-mechanical stresses. The FFTB’s

FP beam will be on the order of tens of nanometers. Logic indicates that, even if

10 nm wires could be installed on a wire scanner, no such wire could stand up to

the power density of the FFTB beam. Consequently, new technology is required to

measure the focused beam at the end of the FFTB. Two such monitors have been

designed and installed in the FFTB: a Laser-Compton Beam Size Monitor, developed

at KEK, and a Gas-Ion Time-of Flight Beam Size Monitor, developed at LAL Orsay.

Laser-Compton BSM[32]

The Laser-Compton BSM splits a Nd:YAG laser pulse (A = 1.064pm) and recombines .

it at the electron FP with a crossing angle 0. The laser then produces an interference

pattern, with characteristic modulation wavelength d a ~~i~~0,21,as shown in Figure

2.13.

An electron beam which strikes the interference pattern will produce a burst of

photons through Compton scattering, which can be detected downstream of the laser.

The number of photons, N, which are thus scattered by a beam with vertical size aV

is given by Equation 2.3:

No
N = ~ [l+cos2kvY .cosO. exP{–2(kv . av)2}], (2.3)

where kg = ~, No is an overall normalization constant dependent upon the laser and -

electron beam intensities, and g is the vertical distance between the electron beam

and a 0° reference in the interference patt em.

Once the interference pattern described above has been established at the elec-

tron FP, the electron beam is measured by scanning the beam vertically across the
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of the Laser- Compton BSM. A laser
crossed at the FP, producing an in-

ter~rence pattern with a characteristic pitch determined by the laser
wavelength and the crossing angle.

interference pattern, via an upstream corrector magnet. Equation 2.3 shows that N

has a sinusoidal dependence on g, and that the amplitude of the oscillation is given

by cos O . exp { –2 (kV . 0V)2}. By correlating the signal from the downstream photo-

multipliers tube with the electron beam position at the FP, and fitting the resulting

sinusoid, the beam size

shown in Figure 2.14.

The Laser-Compton

can be extracted from the sinusoid’s fit parameters. This is

BSM is equipped to produce three different interference pat-

terns. The mode of primary interest crosses the beams at an angle of 174°, resulting

in a 533 nm fringe spacing. This mode can resolve beam sizes from 40 – 180 nm. The

second mode (“Big Y’) uses a 30° angle to produce a 2.1 pm spacing, for vertical

beam sizes from 160 – 720 nm. The third mode uses a 6° angle transverse to the

first two, producing a 10.2 pm spacing for measuring horizontal beam sizes from 0.76

– 3.4 ~m. Although the attainable electron beam size at the FP is larger than the
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Figure 2.14: By correlating the number of Compton-scattered photons
with the beam position, the beam size can be determined: smaller
beams produce sinusoidal patterns with greater modulation depth than
large beams (left). The Laser-Compton BSM is equipped to produce
three interference patterns, in order to measure both horizontal and
vertical beam sizes (right ).

minimum size measurable by the 4 pm carbon fibers of WS6A, it is still necessary to

measure the horizontal size wit h more exotic technologies, since the horizontal wire

would still be destroyed by the high energy-density of the focused beam. The mod-

ulation depth as a function of crossing angle and beam size is shown in Figure 2.15.

Note that the “Big-Y” mode achieves a maximum modulation of cos 30° = 0.866.

Gas-Ion Time of Flight BSM[33]

The Gas-Ion Time of Flight BSM injects a small amount of Argon or Helium gas into

the path of the electron beam just before it arrives. The high energy electron beam

ionizes the gas, result ing in the presence of positively-charged ions in the vicinity of
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Figure 2.15: Modulation depth as a function of beam size for the three
Laser-Compton BSM operating modes. Modes 1 (solid) and 2 (dashed)
are the vertical measurement modes, while Mode 3 (dot-dash) is the
horizontal measurement mode.

the negatively-charged electron beam.

The effect of the beam on the ions is twofold. For the heavier (Argon) ions, the

ions are accelerated through the electron beam by its transverse electric field. The

amplitude of the acceleration is proportional to the maximum electric field, which is

inversely proportional to the major axis of the electron ellipse (in the xy plane). This -

results in a distribution of ions whose maximum velocity is inversely proportional to

the major axis of the beam. The velocity, in turn, can be measured by measuring

the time of flight of the ions from the FP to an array of Microchannel PMT plates

arranged in a ring around the FP, at a fixed distance, as shown in Figure 2.16. Thus,
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the time of flight of the Argon ions provides a measurement of the larger of the two

beam sizes.

The lighter (Helium) ions become trapped in the potential well of the electron

beam and oscillate within it during the time it takes for the beam to pass through.

Once the beam has exited the BSM, the ions will be emitted in the xy plane, with ve-

locities proportional to their oscillation amplitudes. The larger horizontal amplitudes

result in higher horizontal velocities, and consequently more ions reach the horizontal

sensors than the vertical sensors. The aspect ratio of the beam is thus measured by

the angular distribution of the Helium ions; this number, coupled with the major axis

measured by Argon time-of-flight, gives the two sizes of the beam. In addition, the

precise azimuthal angle of the peak ion detection determines the tilt angle of the beam
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with respect to the BSM (information not available from the- Laser-Compton BSM).

Figure 2.17 shows the expected azimuthal distribution of Helium ions for beams with

0; = 1 pm and different aspect ratios, as computed by a Monte Carlo simulation.

Note that the horizontal axis of Figure 2.17 only covers half the circle; a full-circle

plot is expected to provide two peaks, spaced halfway around the azimuth from one

another, and of equal height.

Note that the Argon measurement is weakly affected by the aspect ratio of the

beam, as the vertical size does influence the maximum electric field. However, the

correction is a small one, and the Argon ions are far too heavy to oscillate in the

potential well of the electron beam – their total movement during the presence of

the beam is quite small. A more significant correction to the Argon measurement

is the separation of singly- charged ions from doubly-charged ones, accomplished

by a deflecting voltage as shown in Figure 2.16. Finally, it is worth noting that

the helium ions can also be used for the time-of-flight measurement; however, the

precision of this measurement is limited, as the minimum time of flight for helium ions

(60 nanoseconds) is only a few times the expected time resolution of the apparatus.
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Measuring and Matching the

Incoming Beam

The Final Focus Test Beam is a magnetostatic system at the end of a 3 km. linear

accelerator. A consequence of this arrangement is that many of the crucial beam -

parameters (emittance, energy, energy spread, etc.) cannot be varied by the FFTB

itself, while others (coupling, Twiss parameters) must be measured and matched

before the beam is introduced into the CCSX section. In this chapter, we examine .

the techniques by which the incoming beam is measured, and its parameters matched

into those required by the FFTB.

3.1 Characteristics of the Incoming Beam

3.1.1 Emittance, Coupling, and Dispersion

The projected emittances (x and y) of the accelerated beam are measured by a series

of multi-wire diagnostic stations in the linac itself one just after the extraction from

the damping ring (Sector 2); one near the center of the linac (Sector 11); and one near

the end of the linac (Sector 28). Of the three stations, the Sector 28 measurement is
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most crucial, as this is the measurement made closest to the -FFTB itself.

The linac emittance stations use an advanced version of the standard linac multi-

wire emitt ante algorithm [34]. Wire scanners are placed at several locations in the

linac, with known transport matrices between them. By measuring the vertical and

horizontal beam sizes at each of these locations, it is possible to extract the projected

emittance and Twiss parameters in each plane. Because the beam has three degrees

of freedom in each plane (c, ~, a), three wire scanner locations are sufficient to re-

construct the beam ellipse; the Sector 28 station contains 4 wire scanners, permitting

an over-constrained solution.

During FFTB experimental runs (with bunch populations N, w 0.7 x 1010), the

measured normalized emittances at the Sector 28 station are typically ~cz = 2.5x 10–5

– 3.5 x 10-5m “rad, and ~cV = 1.5 x 10-6 – 2.5 x 10-6m . rad. While the horizontal

emittance has tended to be slightly larger than the design for FFTB, the vertical is

almost always smaller. This leads us to expect an FP beam size smaller than the

design value of 60 nm.

Note on Emittance Notation

SLAC currently uses two different standards for emittance notation, each of which

is colloquially known as “SLC units.” When nomalized emittances (~e) are quoted,

the customary unit is 10-5m . rad, while laborato~-frame emittances (e) are quoted

in units of 10– l“m. rad. Because normalized emittances are not changed by accelera-

tion, measurements made in the accelerator itself are typically reported as normalized

values. In beam-delivery areas, however, laboratory- frame emitt antes are more com-

mon, since these are the emittances which directly couple to beam size. These are the

conventions which are used in this document as well. Note that the common “back

of the envelope” conversion is to divide the normalized emittance by 105 to obtain

the laboratory-frame values in the FFTB; however, this figure must be increased by

10%, as the relativistic ~ for a 46.6 GeV electron beam is 91,400 and not 100,000.
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Coupling and Dispersion in the Linac -

While it is in general possible to use such a multi-wire system to measure xy coupling,

in the case of the Sector 28 station a good coupling measurement cannot be made.

This is because the phase advance between wire scanners is nearly equal in x and y,

and consequently the different coupling phases cannot be unequivocally determined

[35]. The coupling can be estimated using another device: a set of profile monitors in

the last 100 meters of the linac (Sector 30). These profile monitors are equipped with

fast kickers which “stea~’ pulses every few seconds, and their signals are digitized and

transmitted continually to a set of dedicated monitors in the SLAC Main Control

Center (MCC). The four “Decker screens” 1 provide single-pulse displays of the xy

distributions of the beam at different phases, and this gives qualitative evidence that

the linac beam is not coupled. As we shall see in Sections 3.2.3 and 3.2.4, the FFTB

beam matching wires can fully resolve incoming coupling.

As discussed in Appendix A, there are experimental difficulties inherent in mea- .

suring the residual dispersion of a linear accelerator. This dispersion is estimated by

comparing the projected emittance at the beginning of the linac with the same quan-

tity near the end. As shown in Appendix A, the action of dispersion is to increase the

in-plane beam ellipse terms, leading to a larger projected emittance. During FFTB

running this growth is negligible, leading to the conclusion that all sources of disper-

sion in the linac are small. Of greater concern is dispersion arising from the BSY

quadruples, and by any steering necessary to bring the beam from the linac into

the FFTB. These effects were estimated during a 1992 experiment which brought the

beam from the linac to D2 (a movable dump downstream of Q6) and found to be

acceptably small [36].

lNamed for F.-J. Decker, SLC physicist.
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3.1.2 Posit ion and Angle Jitter

Incoming position and angle jitter are translated through the FFTB optics to FP

jitter. This raises problems for the Laser-Compton BSM, which relies on correlations

between the beam position and the compton-scattered flux (see Section 2.5.4), and

also implies difficulties for a future e+e–linear collider, which attempts to collide

nanometer-sized beams at its IP.

Section 2.1.1 introduced the concept of the FFTB launch feedback. This system

uses a pair of BPMs separated by 86 meters to reconstruct the incoming position and

angle of the beam, and a pair of correctors in each plane to hold the BPM readings to

some reference values. Assuming that the BPM errors are uncorrelated and that the

intrinsic resolution of each BPM is 1 pm, the expected resolution of the position and

angle at the first BPM is 1 pm and 0.016 ~rad. Note that the primary function of the

launch feedback is to correct slow drifts and decouple the FFTB steering from slow

and/or DC effects upstream (such as quad strength changes, corrector failures, etc.). .

True compensation for stochastic variation on a pulse-by-pulse basis is not possible

for a single-pass accelerator.

3.1.3 Energy Jitter, Feedback, and Spectrum

Because of the arrangement of the FFTB, the energy-related properties of the in-

coming beam are most easily measured in the extraction line, in which the vertical

dispersion reaches over 60 cm. A cluster of BPMs and a wire scanner (ESM, see

Section 2.5.2) provide information on the pulse-to-pulse jitter of the beam, and on

the overall energy spectrum.

Because the energy-reconstruction BPMs are separated by drift spaces and/or

vertical bend magnets, the R12,34matrix elements from one to another can be consid-

ered equal to the longitudinal separations between BPMs, and the R11,33 terms are

all unity. Such a system, with no quadruple magnets between the BPMs, provides

the simplest possible reconstruction of the beam energy, with the least possible de-
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pendence on beam optics, but it is not the best.

the start of an optical section for reconstruction

the extraction line, we see that the last BPM has

If we consider the first BPM to be

of the y, y’, and 6 of the beam in

the largest R34 and the largest R36

from the first BPM. This means that this BPM has the best resolution of both the

incoming vertical angle and of the energy, and that the measurement of energy will

be correlated to the vertical angle. In practice, this results in the energy feedback

becoming “confused” when steering in the FP and extraction regions is changed, and

altering the energy as well. This “confusion” can be avoided by halting the energy

feedback program during such steering, or by using the BPMs in the CCSX to restore

the energy after steering to its original value.

The energy jitter is measured by the extraction line BPMs to be on the order of

1.6 x 10-4 on a pulse-by-pulse basis, or approximately 7 MeV. Because the SLAC linac

consists of 240 klystrons, a single klystron “cycling” results in an energy excursion 35

times the RMS quoted above. Such an excursion moves the beam by approximately

3 mm at the last BPM in the extraction line, and even larger excursions are possible

due to various transient linac phenomena. Early experience indicated that such large

excursions cause the last BPM to fail; since the other BPMs do not have a large

dispersion, the energy measurement becomes poor and energy feedback fails to restore

the nominal energy. Such a situation requires manual intervention to recover the

beam and energy feedback. To alleviate this situation, an additional BPM with low

resolution was placed at the midway point between the B06 bends and the last BPM.

This BPM is lightly weighted in the energy fit, and only contributes significantly

when the last BPM fails. Its job is to ‘(rescue” the energy feedback, and bring

the energy back close enough to nominal to allow the last BPM to read properly.

Other adjustments to the feedback options (such as filtering and maximum/minimum

allowed BPM values) have also enhanced the reliability of the energy feedback.

During nominal FFTB running, it was shown that the design configuration of

extraction line quadruples resulted in unacceptable backgrounds on the detectors
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for WS6A/B and the Laser-Compton BSM, due to “scraping” in the quad apertures

themselves. The optics were changed to a lower-noise setting, which also has no

geometric waist at the ESM. The beam size at the ESM is therefore a combination

of the geometric and dispersive sizes, and the quoted “energy spread” is actually an

upper bound. During normal running, the energy spread is found to have an upper

bound of typically ~ w 4 x 10-4, Energy spread measurements are discussed more

fully in Chapter 6.

3.1.4 Collimation

Unlike a recirculating collider (in which electron and positron bunches quickly settle

into an equilibrium distribution), the constant production and extraction of bunches

in a single-pass system means that the beam halo is repopulated on each bunch, and

this requires a vigorous collimation system to eliminate particles at large excursions

from the average in position, angle, and energy.

The FFTB’s primary collimation system is the SLAC linac collimators, which uses

a set of movable jaws in the last 300 meters of the linac to scrape particles at large

excursions [37], and which serve as the primary collimation for the SLC as well. The

first set of collimators (Sectors 28-29) do the primary collimation, and the collimators

cover both betatron phases in both planes. The second set of collimators (Sectors

29-30) are used to remove particles which scatter off the first set of collimators and

other sources of repopulation in the collimation region itself.

The linac collimators do not eliminate large energy oscillations, nor are they ad-

equate for regions with enormous betatron functions such as the FFTB. The FFTB

itself has two movable collimators to address these issues. The first is a momentum

slit (MSLT), which has a pair of horizontal jaws and is placed near the QM3A magnet

upstream of the first sextupole. This collimator is adequate for eliminating particles

for which the geometric and dispersive offsets from the reference orbit, when added

together, are large enough to encounter the collimator jaws; particles for which this is
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not the case (for example, if the geometric and dispersive terms are large but oppo-

sit e, in which case they cancel) pass through. The second collimator (CXY) contains

two movable horizontal jaws and two movable vertical ones, and is placed at a point

with equal dispersion to the MSLT but separated by a geometric —1. Particles whose

large geometric and dispersive offsets canceled at the MSLT will encounter the CXY

horizontal jaws, while the vertical jaws provide a final collimation before the tight

vertical aperture of the CCSY sextupoles.

In general, setting up the FFTB collimation for high-divergence optics is a tedious

and difficult affair involving significant trial and error and small moves of the jaws,

since each jaw will generally have an optimum position between allowing too much

beam to pass through (causing backgrounds), and intercepting too much beam (which

causes off-energy repopulation, and worse backgrounds). Beam-based alignment of

the quadruples and sextupoles can generally ease the rigors of collimation setup, and

also improves the final result.

3.2 Emittance Measurement in the FFTB

Because the FFTB does not exercise full control over the 3 km SLAC linac and

the BSY, it is not guaranteed that the beam parameters (~, a) will be equal to

the FFTB design values at the entrance to the beamline. Furthermore, no reliable

coupling measurement can be made at the Sector 28 wires. Therefore, the FFTB has

its own wire scanners for reconstruct ion of the incoming beam phase space. These

are the x, y, and v yokes of WS 1, in the Beta Match.

Multi-wire beam ellipse measurements, such as those in Sector 28, are ideal for

linear collider work because they are essentially non-invasive: the wires are scanned

through the beam sequentially, requiring no alteration of the colliding- beam condi-

tions. Unfortunately, such measurements cannot easily be carried out in the FFTB.

During high-divergence conditions, the FFTB contains several images of the FP, and
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the rest of the beamline is, to a good approximation,

phase. The beam is only at a betatron phase between

line within a few centimeters of the FP images. As a

exactly ~ away in betatron

the FP’s and the rest of the

result, only one of the three

parameters of phase space is easily accessible in the FFTB itself (~ from the FP),

while the other two are very difficult to measure.

An earlier method for measuring the three parameters of the beam ellipse requires

focusing the beam to a waist on a wire scanner, and measuring the beam size as a

function of the strength of an upstream quadruple [38]. This is the beam recon-

struction technique used in the FFTB. The beam is focused onto a waist at WS 1, via

a special setting of the beta match quads. Because the outgoing beam is no longer

matched to the FFTB, ST62 is inserted to prevent the beam entering the CCSX (see

Figure 2.4). The beam size is then measured by the 7 ~m wires of WS1 to extract

emittances and Twiss parameters.

In addition to the original “Quad Emit” (or “Auto Emit”) technique, two methods

have been developed to permit measurement of the full 4 x 4 beam matrix via quad

scans on WS1. Each of these techniques – Quad Emit, 4D Quad Emit, and Super

Quad Emit - are discussed below.

3.2.1 Uncoupled Quad Emittance Measurements

Consider the situation depicted in Figure 3.1, in which a thin quadruple magnet

(originally at zero strength) is located upstream of a wire scanner; the R matrix from

the quad’s downstream face to the wire is R, the quad matrix is Q, and the product

is S - RQ. The incoming beam matrix a(o), is transported to O(W):

~(~) = so(o) St . (3.1)

Tet us assume the scanner is an xy-only scanner, and therefore can only resolve

a:) and a~), which are the squares of the RMS sizes measured by the wire scanner.

Let us further assume that R is uncoupled and the thin quad is not rolled. We can
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Figure 3.1: Quad Emittance measurement procedure. By changing an
upstream quad strength from zero (as in (a)) to a non-zero value (as in
(b)), it is possible to sample the beam size at different phase advances
relative to the quadruple entrance with a single wire scanner.

therefore express the measures values of Ok) and 0$):

Q can be replaced by the thin-quad matrix2:

()Q= lo,
–Kq 1

(3.2)

(3.3)

where Kq is the integrated quadruple strength, Kq = ~. For ease of notation,

the derivation will now proceed for horizontal only, with the understanding that the

2The description here is done in terms of thin lenses for simplicity, and to show
the lowest-order dependence. In practice, a thick-lens computation is used.
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vertical is identical save for a change in sign of the quadruple strength.

Expressing the values of the S matrix as the product of the (fixed) R values and

the variable quad matrix Q, we see that as we scan the quad strength, the measured

beam size varies as follows:

‘w) = (Rll – KqR12)2 0:) + R;20g) + 2 (Rll – KqR12) R120g).~11 (3.4)

Gathering terms, we find that Equation 3.4 can be expressed as:

Note that Equation 3.5 can easily be rewritten in the form of a parabola

‘w) = A (Kq – B)2 + C, whereall

(3.6)

By identifying the sigma-matrix elements with the projected Twiss parameters and

emittances (i.e., 011 = CXPX7 022 = ~x~x? ~12 = –Ex~x, and similarly for the vertical

terms) we can extract the values of the projected parameters at the entrance of the

scanned quadruple directly from the fitted parameters of the parabola. This is the

computation used by the online “Thin Lens” computation. The online “Thick Lens”

computation explicitly computes the transport matrix for the quadruple at each

setting and uses the scanner data rather than the parabola coefficients to determine

E, p, a.

The FFTB beam measurement procedure uses the first normal quadruple in the

line, Q5, to measure both horizontal and vertical emittances. When QSM1 is set to
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c SLC units ~, m a
x, thin lens 3.18 + 0.25 764 +80 –6.04 + 0.63
x, thick 1ens 3.28 + 0.10 750 +58 –7.25 & 0.57

y, thin lens 0.154 k 0.0011 1060 &20 –8.23 & 0.17
x, thic k lens 0.150 + 0.0035 1070 +33 –9.41 + 0.30

Table 3.1: Twiss parameters at entrance to Q5 computed by thin and thick lens
models. “SLC Units” for emittance are 1 x 10-lom . rad in the laboratory frame
of reference. The data shown is from the September 14, 1994 beam measurement
data.

zero, the matrix from the 50B1 “treaty point” to the Q5 entrance is a drift space,

and therefore the back-propagation of the Twiss parameters is trivially accomplished.

The back-propagated Twiss parameters become useful during the beam matching

and match-verification phases of tuning, due to the internal architecture of the SLC

Control Program’s online model.

During early experiments with the online quad emit package, both Thin Lens and

Thick Lens calculations were performed. In the sigma measurement configuration,

Q5 has an integrated strength of 145 kilogauss, corresponding to a focal length of

10.7 meters. The quad’s physical length is 46.1 centimeters, and thus the thin lens

calculation was expected to be adequate. As Table 3.1 shows, the discrepancy in the

thin and thick calculations is not trivial, particularly for a.

What is the likely effect of such miscalculations on the final spot size? In order

to determine this, note first from Figure 2.10 that there is a preliminary focus in the

BSY, some 120 meters upstream of Q5. This means that, when the FFTB is properly

matched from the preliminary focus to the FP, the entire line has the properties of a

pure demagnification. Let the betatron function at the preliminary waist be denoted

by ~W, and the distance from this to the entrance of Q5 by LW. It can be shown that a

miscalculation of ~Wwill result in an incorrect value of P*, and that a miscalculation

of LWwill result in an incorrect value of L*. Let us denote the error in the preliminary

drift distance and beta function with ALW, A~w, and in the FP drift distance and
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Table 3.2: Betatron
from Q5 entrance, in
14, 1994 is used.

~, m ~, m

x, thin lens 20.4 & 2.1 –123 &20
x, thick 1ens 14.0 +1.1 –101 * 12

y, thin lens 15.4 & 0.3 –127&4
x, thick 1ens 11.9 & 0.4 –l12&5

function at preliminary BSY focus, and distance to same
thin and thick lens calculations. The data from September

beta function with AL*, Am. It can be shown that:

D.+ ~Pw P*

P. = P*+ ~P* ‘ and
ALW AL*— =—
D. P

(3.7)

from the Twiss parameters in Table 3.1, it is possible to compute the values of ~Wand

LW, and these are shown in

the errors on ~ and a have

As we see in Table 3.2,

Table 3.2. It should be noted that for this computation,

been assumed to be uncorrelated.

the most significant error implicit in the thin lens com-

putation (assuming the thick lens values to be essentially accurate) is the betatron

function at the BSY focus, which is miscalculated by as much as 40% in the horizontal

and nearly 3070 in the vertical. The waist shifts are at the level of 1 ~W, which would

produce shifts at the FP of 1 P*. This level is acceptable.

Early FFTB experimental runs found the normalized vertical emittance in Sector

28 to be around 5 x 10-6m. rad, while the same quantity at the entrance to Q5 was

closer to 1 x 10–5m. rad. While even the linac emittance was far larger than the

FFTB design value, the amount of emittance dilution indicated between the end of

the linac and the beginning of the FFTB is considerable. At that time, the damping

rings and linac were using a simple modification of the SLC timing, which damps the

electron emittances for only 8.3 milliseconds. While this number is logical for SLC,

which injects at 120 Hz, the FFTB’s 30 Hz permits 16.7 milliseconds of damping time.

Once the timing was adjusted to increase the “store time” in this fashion, the linac
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Figure 3.2: Projected vertical emittance vs QSM1 strength. The dashed
line indicates the FFTB design. This measurement was performed on
January 3, 1995.

emittances were reduced to values as low as 1.5 x 10–6m . rad, with typical numbers

closer to 2.0 x 10–6m. rad. The large emittance growth was hypothesized to

result of xy coupling. To test this theory, the quad emit scans were repeated

skew quadruple QSM 1 at different strengths.

be a

with

For small values of QSM1 strength, we can estimate its effect as follows: since

QSM1 gives the electrons a change in their y’ values which is proportional to z,

we expect that small values of QSM1 will not change the vertical divergence, but

can change the correlation between y and y’. Recalling the normalized correlation

coefficients, ri~, we can rewrite the projected emitt ante in the following form:

(3.8)
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/
0 I

QSMI = 1.3 kG

Figure 3.3: Reconstructions of the beam’sxy ellipse at WS1 in beam-
measurement configuration, for two different values of QSM1. With
QSM1 set to zero, the beam is rolled 47° relative to the xz plane, and
the RMS size along the minor axis is 14 pm. Setting QSM1 to minimize
the projected emittance unrolls the beam and also reduces the minor
axis RMS to 9.9 pm. Plots shown are from the January 3, 1995 data.

If r34 varies linearly with QSM1 strength, we can expect to see a quadratic dependence

between QSM1 strength and e;.

Figure 3.2 shows the measured values of et as a function of QSM1, with the

expect ed quadratic dependence. Note that the minimum value occurs at QSM1 w

1.2kG, indicating the presence of significant coupling. The actual value of QSM1

which minimized the vertical emitt ante varied from 0.7 to 1.5 kilogauss between

FFTB runs, and minimizing the emittance in this fashion typically resulted in vertical

normalized emittances at or below the Sector 28 value at the time.

Additional evidence for xy coupling of the incoming beam can be seen in the

reconstruction of the full xy ellipse at WS1, which requires measurement of the beam

size by the v-wire (see Section 2.5.2). The beam measured with QSM1 set to zero

typically is rolled by up to 50° relative to the xz plane, and its minor axis is also
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larger than the minor axis with QSM1 set to minimize emittance. Figure 3.3 shows

an example of this measurement.

Note that QSM1 gives only one degree of freedom for adjusting the incoming

coupling. While the effectiveness of QSM 1 in reducing the emit t ante is fortunate,

it does not guarantee that the incoming coupling h= been truly eliminated. It is

therefore necessary to reconstruct the full incoming beam phase space, using a fully-

coupled extension of the quad emit formalism.

3.2.2 Coupled Beam Measurements – General

We saw in the previous Section that a single normal quad scan on a wire scanner with

x and y wires is just sufficient to reconstruct the in-plane terms of the sigma matrix

(all 1222 and 03334 44). This algorithm does not yield any insight into the cross-plane,, ,,

terms of the sigma matrix (~13,14,23,24).In order to determine these, we must measure

the beam size at an angle to the x and y axes, and this is the purpose of wires which .

measure the u or v axes.

Consider the beam matrix, Oij, at the location of a wire scanner, and let the

scanner’s direction of measurement be rotated clockwise by an angle @from the x

axis. We can determine the beam size seen by the wire by applying the matrix for a

passive rotation (i.e., a rotation of the coordinate system) to the beam matrix. The

rotation transforms the x axis into the wire axis, and the transformed all term is

the mean- squared size reported by the wire scanner. This size shall henceforth be

denoted OWW.Formally:

[1DWW= RoRt = R1zR1j~ij.
11

(3.9)
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The R matrix for a passive rotation is given by:

(
Cos o 0 sin O 0

0
R(0)zj =

Cos o 0 sin O

–sin@ O Cos o 0

(0 –sin O O Cos o

and the square of the beam size reported by the wire is therefore:

(3.10)

Oww = 011 COS2 0 + 033 sin2 O+ 2013 sin Ocos 0. (3.11)

The FFTB’s WS1 has a v wire in addition to the x and y wires. The v wire angle

relative to the x axis is 135°, resulting in a beam size given by:

1
0: = ~ (all + 033 – 2013) . (3.12)

Note that, if all three wires (x,y,v) are scanned at each setting of the scanned magnet,

then all and 033 are known from the x and y measurements, and by subtraction we

may determine the value of 013 from the v scan.

Let us consider the value of al~ at the wire scanner under the conditions of a quad

scan, as we considered the in-plane sizes in the previous Section. Using that notation,

(~) = s12s3ja;;)013

= slls330:) + slls340fi) + s12s33~~) + s12s34~~) . (3.13)

Recalling that S - RQ and using the thin-quad approximation allows us to rewrite

Equation 3.13:

‘W) = (Rll – K~R12) (R33 + KqR34) a$) + R12 (R33 + ~qR34) ~E)013

+ R34 (Rll – ~qR12) ~fi) + R12R34~24. (3.14)

Gathering terms by

+

+

powers of KQ yields:

‘~: (R12R34) ~$)

+~q [( R11R34 – ~12R33) OE) + R12R34
(

~g) _ ~fi) )1
RllR33~~) + R12R33~~) + RllR34~fl) + R12R34~~) . (3.15)
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We can see immediately that, from a parabolic fit yielding coefficients A,B, C, we can

derive coefficients az, al, a. such that al~‘W)= Z~=Oai~~, which can be identified with

coefficients in Equation 3.15. We also see that, with three determined coefficients and

four parameters, the system is underdetermined. Three parabolas yield only nine

coefficients, which is insufficient to determine ten parameters of the sigma matrix.

Additional information must be sought to solve the system, and we can gain insight

into the information needed by using a2 and al to eliminate 0$) and 0$) from the

equation for a.:

[

~11~34 – ~~2~33 R11R33 1 R33
ao = a2

R~2R~4 – R12R34
+al —

R3d

+ o!) (R11R34 + R33R12) + ~~) (R12R34) .

For notational simplicity, let us define F(R, az) such that:

F(R, az) - a. – a2
[

R11R34 – R12R33 R11R33 1-R33

R~2R~4 – R12R34 – ‘1 R34 ‘

(3.16)

(3.17)

and therefore state that:

Given a known transport matrix R, and measured coefficients ai from a quad scan,

F(R, ai) is a linear combination of the remaining off-diagonal terms of the beam

3.2.3 4-D Quad Emit Algorithm

The most direct approach to extracting the ten sigma matrix parameters is to perform

the quad scan vs o., Oy, OVas described in the previous Section, and then to perform

an additional quad scan vs OV,but to do the last scan in such a manner that F(R, az)

is independent in the two v-wire scans. We see from Equation 3.18 that the ratio of

(R~~R34 + R33R~2) to (R~~R34) mUSt be changed from one v scan to the next to ensure

this independence. This can be done by performing the first set of x,y,v scans in the
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I Parameter (units) I Fitted Value II \ , I 1

vel fSLC units) 2.50

optics

- ]1 (m) ‘ 845
al -7.18

7E2 (SLC units) 0.167
@2 m 998

a2 -7.95
11 -0.047. .

~12 0.054
~21 -0.084
u.. n ~7Q

Table 3.3: Beam parameters fitted by4-D Quad Emit program, based
on data taken on September 4, 1994 with QSM1 set to 1.3 kilogauss.
The projected vertical emittance of the beam as shown is ~cy = 0.188
in SLC units; this constitutes an emittance dilution due to coupling of
11%.

used for 2-D Quad Emit, changing the beta match optics, and performing a

scan of Q5 vs WS 1 v-wire again. This algorithm is the 4-D Quad Emit procedure 3.

The 4-D Quad Emit procedure uses the coefficients of the fitted parabolas and a

thin-lens approximation to represent Q5. Because four quad scans are used, a total

of 12 parameters are used to fit 10 beam parameters, yielding an overdetermined sys-

tem. The algorithm returns the beam sigma matrix, the normal-mode and projected

emittances and Twiss parameters, and the coupling parameters in Spence notation

(see Appendix A). The algorithm also returns normalized fit residuals to the parabola

coefficients (i.e., the difference between the measured coefficients and those expected

from the fitted beam matrix, divided by the measured values). The beam matrix

parameters are fitted at the entrance to Q5, which is upstream of QSM1; therefore,

4-D Quad Emit can be used to measure the residual coupling after QSM1 has been

set to minimize the projected emittance.

The standard 2-D quad emit optics has R1l = –2.534, R12 = 25.05 m, R33 =

3.732, R3L = 43.14 m; while the optics for the additional v scan has Rll = –2.849,

3The 4-D Quad Emit measurement was developed by W.L. Spence.
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Scan A B c
x 5.29 x 10-2 –1.28 X 10-j –1.01 x 10-2

Y –5.82 X 10-j 1.52 X 10-4 –2.09 x 10-4
VI 3.35 x 10-2 –8.25 X 10-4 –2.77 X 10-3
V2 9.33 x 10-2 2.22 x 10-3 –9.86 X 10-3

Table 3.4: Fractional residuals of parabola coefficients after 4-D Quad
Emit fit.

Rlz = 32.66 m, RSS = 1.448, R~4 = 22.08 m. For the quad emit optics this yields a

ratiO of (R11R34 + R33R12) to (R12R34) of -0.01465, while the optics for the additional

v scan has a ratio of -0.02164, so the necessary condition is satisfied.

Table 3.3 shows the values of the normal-mode Twiss parameters, normal-mode

emittances, and the Spence parameters determined by the 4-D Emit computation

after optimizing the projected emittance with QSM1. Note that the projected and

normal-mode emittances are (in SLC units) 0.188 and 0.167, respectively, which indi-

cates that the remaining dilution of the vertical emittance is only 1 lYo. If no additional

attempts are made to remove the incoming coupling, the expected FP linear beam

size is 45 nm, while a fully decoupled beam would yield a linear beam size of 43

nm. While the algorithm does not return uncertainties as such, Table 3.4 shows the

normalized fit residuals of the 12 coefficients which are used as input by the package.

The worst fractional residual is just under 10%, which argues that the beam sigma

matrix returned by 4-D Quad Emit probably has 107o precision at worst.

In Section 3.2.1, we saw that the use of a purely thin-lens computation led to

not icable discrepancies in the incoming beam reconstruction, when these results were

compared to a thick-lens computation. Presumably such is also the case for this

algorithm, and an understanding of this issue is helpful in verifying the proper func-

tionality of the algorithm. An additional “ground-truth check” would compare the

results of the algorithm for different values of QSM 1, and verify that the expected

transformations in the beam are taking place. Each of these issues is addressed below.
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Thin

Scan A (pm2/kG’) B (kG) C (pm2) I ~2/v
x 57.3 k 3.4 –144.2 & 0.08 204.8 & 39.8 I 2.15
Y 16.0 + 0.75 –147.0 & 0.06 38.27 & 4.6 5.7

VI 28.1 & 1.5 –144.1 & 0.08 148.3 + 2.8 2.1I 1
V2 52.1 + 4.3 ] –122.1 +0.14 I 353 + 0.0 I 2.7 I

Table 3.5: Parabola coefficients for September3, 19944-D Quad Emit
measurement. Measurement “V2’)is made using a different optics, thus
the altered value of “B” relative to all other scans. Parameter “C”
of scan “v2” returned an uncertainty of 0.0, and is not used in the
thin-lens vs thick-lens analysis described in the text.

Lens effects in 4-D Quad Emit

The most direct test of the 4-D Quad Emit algorithm’s vulnerability to thin lens

approximation errors is to propagate the fitted incoming beam from the entrance of

Q5 to WS1, in the appropriate optics, and observe whether the beam predicted at

WS1 conforms to that observed in the measurement. In this case, the fitted parabolas

and the errors on the parabola coefficients are the available data, and it is therefore

convenient to compare the parabola coefficients and not the beam sizes themselves.

Table 3.5 contains the fitted parabola coefficients and their associated errors, along

with the X2/v for each parabola. Note that the returned error for the minimum spot

in the second v-scan is identically zero; this term is therefore not used in the analysis

below.

The propagation of the incoming beam to WS1 was accomplished using the SLAC

Final Focus Flight Simulator (FFFS), which uses the standard beam-optics program

TRANSPORT as its mathematical kernel. The FFFS uses the SLC control system’s

online fitting algorithms to fit parabolas to beam scans, and these are therefore per-

formed identically to the fits for real 4-D Quad Emit data. Table 3.6 shows the fitted

coefficients obtained by tracking the input beam in Table 3.3 to WS 1. Using the ex-

perimental errors from Table 3.5, it is also possible to calculate a X2 contribution for

each coefficient, and these are also in Table 3.6. Many of the X2 contributions in Ta-
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Scan A (~m2/kG’) B (kG) C (pm2)
x 54.1 (0.9) -146.7 (952) 176.7 (0.5)

Y 14.8 (3.0) -145.4 (688) 36.2 (0.2)
VI 26.1 (1.8) -146.2 (725) 108.6 (199)
V2 58.4 (2.6) -123.3 (74) 340

Table 3.6: Parabola coefficients from using the 4-D Quad Emit beam
parameters in a thick-lens quad scan simulation. Numbers shown in
parentheses are X2 contributions (square of deviation between simu-
lation value and measured value, divided by square of uncertainty in
measured value).

ble 3.6 are enormous: values of almost 1000 are seen, indicating that the parameters

obtained via simulation and experiment diverge by up to 30 times the experimental

uncertainty.

- Table 3.6 shows that the “~’ and ‘(C)’ parameters generally have acceptable X2

contributions, but that the measured and predicted values for “B’), the Q5 strength

which minimizes the beam size on the wire scanner, disagree unacceptably. It is now

necessary to verify that the noted divergences arise from the thin lens approximation

alone.

One procedure which can correct the lowest-order distortions of the thin lens -

approximation is shown diagrammatically in Figure 3.4. The top half of the figure

shows a beam line in which a thin lens is the first element; the lower half is the same,

except that the thin lens has been replaced by a thick lens. The transport matrix

from the downstream face of the quad to the target wire scanner, R, is the same in

both cases. If the beam matrix at the wire scanner in the first system is identical to

the matrix at the wire scanner in the second system, then the beam matrix at the

exit of the thin lens and that at the exit of the thick lens must be identical to one

another also. Therefore, a beam reconstructed with a thin-lens formalism which is

propagated forward through the thin lens, and then backwards through the thick lens,

should yield a beam matrix which has been corrected for the thin-lens approximation.

This method suffers from one crucial defect in this case: the “v2” scan was performed
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ODS ‘WIRE

Figure 3.4: Thin versus thick lens correction for quad emit results. The
two systems are identical from the downstream face of the scanned quad
to the wire scanner. Identical beam matrices at the scanner (OwI~E)
will therefore yield identical beam matrices at the exit of the scanned
quad (a~~).

with Q5 at a different nominal strength. We therefore anticipate that application of

this correction will yield less improvement in the coefficient for the (’v2’) scan than

for the other three.

Table 3.7 shows the beam parameters measured in the thin-lens case, and those

corrected by the method described above to a thick-lens case. What is most imme-

diately obvious about this correction is that only the values of al and az appear to

change dramatically; the emitt antes, betatron functions, and Spence parameters are

essentially unchanged by this transformation.

Table 3.8 shows the parabola coefficients obtained by using the corrected beam in

Table 3.7 to simulate quad scans from Q5 on WS1. Note that the convergence of ‘(B”

parameters is, in general, improved, but that the ‘(A” and “C” parameters of scan

“v-2” are further from the experiment al value, as expected. This supports the theory

that deviations between 4-D Quad Emit results and simulation arise primarily from

applying the t bin-lens approximation to Q5; furthermore, Table 3.7 shows that, while
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Parameter (units) Thin Lens Value Thick Lens Value

~el (SLC units) 2.50 2.51
,..B, m , 1 1

845 799,-, ,
al -7.18 -8.23

7C2 (SLC units) 0.167 0.166
09 (m) 998 1041,-, ,

a2 -7.95 -9,34

~11 -0.047 -0.049
B12 0.054 0.053
B -0.084 -0.084
B;; 0.078 0.078

Table 3.7: September 4, 1994 4-D Quad Emit results, and the param-
eters aft er correction for thin-lens effects as described in the text.

the uncoupled matching is

are still extracted correctly

affected by the approximation, the coupling parameters

by this algorithm.

Scan A (pm2/kG’) B (kG) C (pm2)
x 51.4 (3.1) -144.0 (9.5) 186.8 (0.5)

Y 15.3 (1.0) -147.0 (0.0) 34.5 (0.7)
VI 25.1 (4.2) -144.0 (2.8) 139.9 (8.9)
V2 40.2 (7.9) -121.6 (13.3) 278

Table 3.8: Parabola coefficients from simulation of a quad scan with
the corrected beam parameters.

Non-Optimal

The September

QSM1 Values

3, 1994 beam reconstruction included a measurement of the full beam

matrix with QSM 1 set to zero. Because the effects of QSM1 are, in principle, easily

simulated, it is possible to use the beam measured with QSM1 optimized (BDES =

1.3 kG), and determine what the beam matrix would be with QSM1 zeroed. Thus,

the two measurements can be compared directly. Table 3.9 shows the 4-D Quad

Emit measurement at QSM1=O. Also shown are two projections, based upon the

measurements made at QSM 1= 1.3 kG, of what the expected beam parameters would
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Parameter (units) QSM1=O Fit Thin QSM1=l.3 kG Thick QSM1=l.3 kG
~el (SLC units) 2.83 2.50 2.51

PI (m) 764 812 768
al -6.50 -6.84 -7.86

YC2(SLC units) 5.1 x 10-4 0.167 0.166

P2 (m) 2.2 x 105 959 1001
a7 –1.6 X 103 -7.61 -8.95
B;l 0.748 -0.047 -0.049
B19 0.0030 0.055 0.054-- 1 I 1
B21 9.93 0.663 0.657
B22 0.0068 0.080 0.079

Table 3.9: Beam parameters fitted by 4-D Quad Emit algorithm on
September 3, 1994, with QSM1=O. For comparison, the beam param-
eters measured at QSM1=l.3 kG are back-propagated to 50B1, and
forward-propagated to Q5 with QSM1=O, which should result in the
same beam matrix.

be at QSM1=O: both the beam parameters from the thin-lens fit, and the parameters

corrected for the lowest-order thick lens effects, are included.

The most striking feature of the QSM1=O fit is that the normal mode emittance

and Twiss functions C2, @2,a2 are drastically different from the parameters expected

by adjusting the skew-optimized beam parameters. This is because the vertical pr~

jetted emittance is dominated by coupling from the horizontal plane. The vertical

projected emittance given by the parameters in the second and third columns of Ta-

ble 3.9 can be computed using the emittance relations in Equation A.78, and the

relations in Section A.3.5: the value thus determined is 0.48 x 10– l“m . rad, while

the normal-mode emittance is 0.17 x 10-lom . rad. In Section 3.2.1, we saw that

the projected emittance is the sum in quadrature of the appropriate normal-mode

emit t ante and the coupling contribution. The coupling contribution in this case is

therefore 0.45 x 10-lom. rad, which is nearly as large as the projected emittance. In

such a case, the uncertainty on the fitted normal-mode emittance becomes large and

the results of 4-D Quad Emit become unreliable [39].
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3.2.4 Super Quad Emit

A significantly different approach to measuring the incoming beam is the online ap-

4. This application is similar to the thick-lens 2-D Quadplication Super Quad Emit

Emit algorithm, and is based upon techniques developed by P. Raimondi for the SLC

Final Focus [40]. As in the other techniques described previously in this Chapter, the

beam is focused onto a dual waist at WS1 (via the 2-D Quad Emit optics); x, y, and

v beam sizes are measured as a function of quadruple strengths. In this procedure,

however, the optics are not changed but instead several quadruples are scanned,

including (potentially) skew quadruple QSM 1.

Once the quadruple scans are complete and all beam sizes have been measured,

the data (quad strengths, beam sizes, errors on beam sizes) are passed to a fitting

engine (OPTFIT), along with the fixed optics of the FFTB line, arrangement of the

scanned quadruples and wire scanners, roll angles of all elements – in short, all

the physical description of the beamline. The fitting engine loads an initial ‘(guess” .

of the normal mode emittances, Twiss, and Irwin parameters, computes a sigma

matrix at the beginning of the FFTB line (specifically, the 50B 1 treaty point), and

propagates this sigma matrix to WS 1 for each value of the scanned quadruples.

By comparing the beam sizes at WS1 to the measured values for all steps of all

magnets, a X2 value is computed. The routine for converting beam parameters to a

sigma matrix, tracking the sigma matrix to the wire scanner, and constructing the X2

is passed to the CERNLIB minimization engine MINUIT. MINUIT then minimizes

the X2 by computing the second derivatives of X2 with respect to the parameters,

inverting the matrix of second derivatives to obtain a covariance matrix, and using

this information to estimate the location of the minimum [41]. Note that the matrix

of second derivatives is computed numerically, via finite- difference techniques, and

that MINUIT therefore only requires a function which will supply the value of X2

when passed a set of values for the parameters to be fitted.

4Super Quad Emit was developed by P. Raimondi, L. Yasukawa, and the author
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Super Quad Emit’s main advantages for reconstruction ‘of the incoming beam

are: it uses a thick-lens model and the wire scanner data and errors; and it runs

on the SLC control system, requiring no off-line computations or changes of optics.

However, Super Quad Emit can only determine the beam parameters at the treaty

point which begins a section of the SLAC accelerator complex (in this case, 50B1).

Therefore, there is no way to use Super Quad Emit to measure the beam parameters

downstream of QSM1, and no way to use it to measure the residual coupling after

QSM1’S correction.

Theoretical Considerations

Let us consider once again a thin-lens approximation of Super Quad Emit, in order

to understand the lowest-order behavior of the algorithm. Let us assume a matrix

from the treaty point to the scanned quadruple, ~(l), and a matrix from the scanned

quadruple to the wire scanner, R(2), and let us require that ~(l) and R(2) be uncou-

pled. The matrix from the treaty point to the wire scanner is given by S, defined

here as follows:

S ~ ~(2)Q~(l) , (3.19)

where Q is the thin-lens quad matrix as defined in Section 3.2.1. Finally, let us define

a matrix, Z:

R = R(2)R(1). (3.20)

As defined above, R represents the matrix from the treaty point to the wire scanner

when the scanned quad is at zero 5. With these definitions, a certain amount of algebra

yields a solution for o~) as a function of a~~) (here o(o) represents the beam matrix

at the treaty point and not at the scanned quad):

5Although Q5’s nominal value for the measurement optics is nonzero, we can think
of “splitting” the nominal Q5 into two halves, one of which is included in the rep-

resentation of ~(l), the other in R(2), and consider Q a “deviation matrix)’ which
represents the difference in Q5 from its nominal value.-
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(2) ~12R:) + Rll 12
+ 2 [R11R12 – ~g~12

( )
R(l) + K;R:)R~) (R:) )2] Og)

+ (R;2 – 2KqR12R$)~(2)12 + ~;(R\)R:))2) ag) . (3.21)

Although the functional dependencies of a!) are more complex, the scan of Q5 versus

WS1 x still provides all information needed to determine the horizontal in-plane beam

matrix terms, Ofi), a~), and o~2).

corresponding vertical terms.

The dependencies of 0$) on

Similarly the scan of Q5 versus WS1 y provides the

~q are quite cumbersome and complex, and not

represented here. However, the principle remains the same as that shown in Section

3.2.2: the three parabola coefficients are coupled to four cross-plane correlation terms,

allowing two of the terms to be eliminated. This provides a single equation in two

unknowns:

F(R, R(l), R(2),az) - fl(R, R(l), R(2))o$) + f2(R, R(l), R(2))afi), (3.22)

and a selection of quadruples must be made for which the ratio of ~1 and j2 is

different for the various quads in order to determine all ten sigma matrix terms.

For Q5, the ratio ~ = 0.0162, and for Q6 the ratio is 0.0425. This should be

adequate for reconstruct ing all 10 parameters unambiguously, given the experience

with 4-D Quad Emit in the previous Section. For additional resolution, however,

Super Quad Emit gives the possibility of using a skew quadruple scan, for which the

matrix Q becomes a skew matrix, Q~:

[)
1000

Q+Q~= 0 1 ‘K* o ,
0010

–Kqool

(3.23)

where we have used the FFTB and SLC damping ring convention that a skew quad

of positive strength is a normal quad of positive strength which has been rotated

clockwise by 45°, as seen from upstream 6. When we explore the effects of propagating

6The SLC FF, by contrast, ‘uses the convention that the rotation is counter- clock-
wise, and different modelling programs use different conventions as well.
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a beam sigma matrix through the total matrix S, as before, we find:

Note that the coefficient of ~~ is simply the in-plane, un-scanned beam size; the

coefficient of ~~ is dependent only on the out-of plane beam matrix terms; and

that the coefficient of ~q contains all the cross-plane beam matrix terms. The QSM1

versus WS1 x scan will generally be dominated by the ~~ term, because the horizontal

emittance is the larger of the two emittances. If we go to the WS 1 y scan, however,

we find that the coefficient of the linear ~q term is:

The power of this term to resolve 0$) from 0$) is given by the ratio of ~33 to ~34,

which for the emittance measurement optics is -0.661. Therefore, including the QSM1 “

versus WS 1 y scan is expected to significantly improve resolution of the coupling terms

of the sigma matrix.

Experimental Usage

The Super Quad Emit algorithm was tested during the January 3-5, 1995 FFTB ex-

periment; 4-D Quad Emit and 2-D Quad Emit were also used during this experiment,

allowing for “side-by-side” comparisons of the results.

Table 3.10 shows the fit results for Super Quad Emit when all measurements

are used. Three quadruples (Q5, Q6, QSM 1) are scanned; each scan yields five

measurements on each of three ,WS1 axes, for a total of 45 measurements. The quoted

errors are normalized by X2/V of the fit; the diagonal elements oft he covariance matrix
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Parameter (units) Fitted Value

Cl (SLC units 4.15 + 0.19
DI (m) 69.7 t 3.2

al 2.40 A 0.13
C2 (SLC units) 0.15+0.11

~2 m 35.1 * 27.5
a2 0.53 * 0.32
a –0.098 + 0.22
b 0.41 + 0.16
c –0.25 + 0.31
d –0.23 + 0.11

Table 3.10: Results of Super Quad Emittance using all data from all
quad scans. Values are quoted at 50B1 treaty point.

are multiplied by X2/v, and the square root of these quantities are the appropriate

error terms.

While the normal-mode parameters associated with the larger emittance (cl, ~1,

al) are well determined, Table 3.10 shows that the small-emittance normal-mode

parameters and the cross-plane coupling are poorly determined, and the fit quality

indicated by the large X2/v does not inspire confidence.

One significant clue to the difficulty can be discerned at once from Figure 3.5, in

which the measured values of a: at WS1 are plotted versus Q5 integrated strength

for the Q5 scan. Note that the error-bars on the outlying points are large, and the

points are systematically low relative to the fitted parabola. At these points, the

beam is so much larger than the wire used in the wire scan (7 pm diameter) that the

wire never intercepts a significant fraction of the beam, resulting in low signal levels

and general degradation of the fit. Super Quad Emit has no built-in mechanisms for

recognizing bad data, and in any event has too little redundancy to safely eliminate

many points. “Bad’ data points must be recognized and eliminated by the user, by

hand. Once these points have been eliminated from the January data set (a total of

6 points, leaving 39 for the fit), the fit results are as shown in Table 3.11. Note that,
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while X2/v is significantly improved, it is still larger than expected. The parabolic fits

of the beam 02 versus quadruple strength, once bad data are eliminated, typically

yield X2/v between 0.9 and 3.5, and we expect Super Quad Emit to converge at least

as well.

In the theoretical discussion of Super Quad Emit, it was argued that the bare

minimum amount of data needed to resolve all 10 parameters of the incoming beam

was the Q5 scan and the Q6 scan, while the QSM1 scan could improve resolution of

the coupling. Table 3.12 shows the fit results for Q5 and Q6 (x,y,v) data, for Q5 and

Q6 (x,y,v) plus QSM1 (y), and for Q5 and QSM1 (x,y,v) data. We see right away

that, while formally converging upon a solution, the Q5+Q6 data is quite poorly

determined, while inclusion of QSM1 y data results in a fit only marginally better

than a fit with all data including clearly bad points.

Why should the fitted values of the normal mode parameters in the small- emit-
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Parameter (units) Fitted Value

c1 (SLC units) 4.16 + 0.17
PI (m) 69.3 + 2.8

al 2.42 + 0.11

Table 3.11: Results of Super Quad Emittance after removing fliers from
fit data. Values are quoted at 50B1 treaty point.

Parameter (units) Q5+Q6 Q5+Q6+QSM1 y Q5+QSM1

El (SLC units) 4.27 + 0.16 4.31 + 0.27 4.29 + 0.17
‘ ‘BI(m) ‘

1 1 1
67.2 + 4.1 73.6 & 4.2 66.3 + 2.8,-, ,

al 2.29 + 0.15 2.50 + 0.15 2.35 + 0.11
co (SLC units) 0.044 + 0.036 0.120 + 0.103 0.176 + 0.043~\--

~2 (m) ‘ 302 + 229 35.1 &31.1 25.4 & 6.7
a2 9.94 k 7.47 1.23 + 0.86 0.77 + 0.36
a –1.13 & 0.46 –0.41 + 0.37 –0.26 + 0.21
b 0.126 + 0.050 0.39 + 0.17 0.485 + 0.063
c –0.59 + 0.27 –0.096 + 0.502 –0.108 + 0.21
d –0.057 + 0.027 –0.27 + 0.14 –0.283 + 0.053

Y2Iv 5.19 5.80 3.18

Table 3.12: Fitted beam parameters from Super Quad
different subsets of the dataset.

Emittance using
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tance mode go haywire when QSM1 is not included? While OPTFIT uses a MINUIT

call which inserts values of the Twiss and Irwin parameters into the beamline, what

is ultimately tracked to WS1 is a beam matrix: the parameters from MINUIT are

converted to a sigma matrix, which is then propagated to the wire scanner for each

value of the quadruples. In the Q5 and Q6 case, the sigma matrix is not determined

sufficient ly well to differentiate between the projected vertical emit t ante which arises

from the normal mode emittance, and the projected vertical emittance which is cou-

pled over from the horizontal. This is similar to the problem of using 4-D Quad Emit

to reconstruct the incoming beam without first eliminating most of the coupling, as

described in Section 3.2.3.

Parameter (units) Q5+QSM1+Q6 x Q5+QS M1+Q6 y Q5+QSM1+Q6 V

C, (SLC units) 4.26 + 0.16 4.29 + 0.15 4.09 * 0.22
- ‘Bl (m) ‘

, I
67.2 + 2.6 66.0 + 2.6 70.6 + 4.2—.,

al 2.35 + 0.10 2.34 + 0.10 2.46 + 0.16
e2 (SLC units) 0.181 + 0.043 0.173 + 0.047 0.187 + 0.055

fip (m) 25.5 & 6.4 25.9 + 7.6 24.9 & 7.9,—. ,
Q2 0.82 + 0.37 0.69 + 0.28 0.79 + 0.51
a –0.28 + 0.21 –0.22 + 0.18 –0.27 + 0.29, 1
b 0.482 + 0.059 0.477 + 0.068 0.486 + 0.075
c –0.10 + 0.21 –0.14 + 0.19 –0.092 + 0.29
d –0.277 + 0.051 –0.277 + 0.054 –0.287 + 0.069

Y2/v 3.66 2.81 6.64

Table 3.13: Super Quad Emit fit results using Q5 and QSM1 data, plus
different subsets of the Q6 data.

Table 3.13 shows the results of Super Quad Emit when Q5 and QSM1 are used,

plus a subset of Q6 data (x, y, or v scan). We see immediately that Q6 v scan

dramatically reduces the quality of the fit, while Q6 y scan marginally improves it;

however, the normalized error values remain the same, and the fitted values change

by amounts small relative to the fitted errors. This leads to two conclusions: first,

that the poor convergence of the fits in Tables 3.11 and 3.12 can be attributed to the

use of Q6 v scan data; second, that the Q6 scan does not materially improve the fit
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Parameter (units) 4-D Quad Emit Super Quad Emit Deviation (a’s)

c1 (SLC units) 3.65 4.29 + 0.15 4.3
~, (m) 77.9 66.0 + 2.6 -4.6

al 2.43 2.34 + 0.10 -0.92
C2 (SLC units) 0.154 0.173 + 0.047 -0.40

~2 (m) 38.7 25.9 + 7.6 -1.7
a2 2.08 0.69 + 0.28 -4.9
a -0.655 –0.22 + 0.18 2.5
b 0.450 0.477 + 0.068 0.40
c 0.199 –0.14 + 0.19 -1.8
d -.260 –0.277 + 0.054 -0.31

Table 3.14: Side-by-side comparison of Super Quad Emit and 4-D Quad
Emit results obtained on same day. Deviation column represents dif-
ference between the two results, divided by error on Super Quad Emit
result.

over the use of Q5 and QSM1 only.

Finally, note from Tables 3.12 and 3.13 that parameters “a” and “c” are not well-

determined relative to parameters “b” and “d’. This indicates that the scans of Q5 .

and QSM 1 are not optimized to determine these parameters. Since the Q6 scan does

not provide useful information, it is possible

some combination of quadruples in the form

in recovering these parameters.

that another quadruple, or perhaps

of a multi-knob, can be used to assist

In order to directly compare the results of Super Quad Emit to 4-D Quad Emit, it

is necessary to adjust the 4-D Quad Emit results to compensate for thin-lens effects,

and back-propagate them to the 50B1 treaty point from which OPTFIT bases all its

computations; in addition, the Spence parameters must be converted into the appro-

priate Irwin parameters (see Appendix A). The results of this conversion are shown

in Table 3.14, along with the Q5+QSM1+Q6 y Super Quad Emit results. As the last

column shows, the agreement bet ween the two methods is poor, with 6 parameters

disagreeing by more than 1 standard deviation. There are several possible causes

to this discrepancy: the errors could be correlated in such a way that the two sets

of parameters, though differing significantly when considered one at a time, actually
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Parabola Data Value AD Q d~ mit Super Quad Emit
Coefficient Bea~aValue Beam Value
x scan A 80.7 + 8.3 69.2 (1.4) 88.2 (-0.90)
x scan B –144.0 + 0.16 -143.7 (-1.9) -144.1 (0.62)
x scan C 318 &48 290 (0.58) 323 (-0.10)
y scan A 26.6 + 0.93 25.6 (1.1) 21.5 (5.48)
v scan B –147.5 * 0.049 -147.4 (-2) -146.3 (-24). 1 1 1

-,—–,

y scan C 29.95 + 0.0 25.6 ‘ 65.3
;l scan A 75.0 + 3.6 67.1 (2.2) 71.8 (0.89)
V1 scan B –145.4 + 0.055 -145.1 (-5.5) -144.9 (-9.1)
V1 scan C 307.2 + 0.0 277.8 303.0
V2 scan A 87.45 + 7.7 73.4 (1.8) 89.2 (-0.23)
V2 scan B –121.0 + 0.10 -120.9 (-1.0) -121.2 (2.0)
V2 scan C 231.1 + 0.0 195.4 116.6

Table 3.15: Parabola coefficients used in 4-D Quad Emit measure-
ment. The first column represents the actual data, with errors scaled by
(X2/V)’12; the second column represents the parabola coefficients from
simulating the original quad scans with the incoming beam from 4-D
Quad Emit fit; the third column is simulation of the original scans with
the incoming beam from Super Quad Emit. Numbers in parentheses
are residuals divided by the errors from the parabola fits.

describe nearly- identical beam matrices when considered as a group; one approach

could be demonstrably incorrect in its computation; each of the two fits could ad-

equately describe the dataset from which it is derived, and the two dat asets could

be divergent; or the methodological differences could give rise to different systematic

errors.

In the first case, we would expect that either solution for the beam parameters

could equally well describe either data set; in the second case, we would expect that

one of the two solutions could describe either data set well, and the other solution

describes both data sets poorly. Neither of these is the case. Using the 4-D Quad

Emit solution, the X2/v for the Super Quad Emit dataset is 23, as opposed to 2.8

fm the Super Quad Emit solution; and, as shown in Table 3.15, the Super Quad

Emit solution does a poor job of reproducing the parabolas from the 4-D Quad Emit

solution, particularly the “y” scan.
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It is possible that theincoming beam changed between the 4-D Quad Emit and

Super Quad Emit measurements; however, this possibility is rendered unlikely by the

exact sequence of measurements on January 3-4, 1995. First, the incoming beam was

reconstructed by the 2-D Quad Emit package, with QSM 1 = O. Then the QSM 1 set-

ting was optimized by scanning QSM1 vs WS1 vertical, yielding an optimum strength

of 1.313 kG, which was applied (note that this procedure does not yield the precise

value of QSM1 which minimizes the projected emittance, as shown in Figure 3.2).

At this point the x and y projected beam parameters were measured by 2-D Quad

Emit, and the two scans of Q5 versus WS1 v were performed; the parabolas from

2-D Quad Emit and the v scans were used by 4-D Quad Emit. QSM1 was then

returned to zero, and the Super Quad Emit data was taken. Finally, the projected

emittance was measured, via 2-D Quad Emit, as a function of QSM 1 strength, with

the final measurement at the optimized value of 1.3 kG. As a result of this sequence of

events, the beam projected emittances were measured at the optimal value of QSM 1

before and after the Super Quad Emit experiment, and were found to be nearly equal

(2.1 x 10-’lm . rad versus 2.3 x 10-llm . rad); the projected emittance of the Super

Quad Emit beam with QSM1=l.3 kG is 3.1 x 10-llm. rad. It seems unlikely that the

incoming beam would change its parameters so dramatically, and then change them

back, during the two hours of emittance measurements.

The remaining likely culprit is differing systematic errors in the two techinques.

The most significant source of such differences is the different usages of QSM1. Prior

to the 4-D Quad Emit measurement, QSM1 is empirically set to a value which min-

imizes the vertical beam size at WS 1; during 4-D Quad Emit, only Q5 is scanned.

Consequently, the 4-D Quad Emit procedure does not depend upon knowing the ab-

solute value of QSM 1 at any point – it only requires that the value be optimized and

cmstant. Super Quad Emit, on the other hand, requires that the value of QSM 1 be

known accurately at several different values. Furthermore, Q5 and Q6 have integrated

strengths of -145.7 and 174.7 kilogauss, respectively, in the beam measurement optics,
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Figure 3.6: Super Quad Emit X2/V as a function of QSM1 strength
scale factor. The minimum of 2.67 occurs at 0.957; the “widtN’ of the
minimum, as defined in the text, is iO.043.

corresponding to pole-tip fields of -3.64 and 4.36 kilogauss; while QSM 1 is scanned

from O kG to 3 kG, which corresponds to a pole-tip field of approximately 170 gauss.

This is an extremely weak field, given that QSM1 was fabricated by cutting an FFTB

Standard Quadruple in half, and therefore QSM1 contains approximately half as

much iron as the standard quads.

One plausible source of systematic error, therefore, is a scale-factor on the strength

of QSM 1. Figure 3.6 shows the X2/v of the Super Quad Emit fit as a function of the

QSM1 scale factor. Note that X2/v is minimized at a QSM1 scale factor of 0.957. The

width of the scale factor measurement (defined by the change in scale factor required

to make X2 increase by the amount of X2/v) is 0.043. Thus, while a scale-factor of
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1.0 is within the width of this measurement, a scale-factor of”O.914 is also possible.

While a scale factor in QSM1 is believable, can such an error explain the divergence

between 4-D Quad Emit and Super Quad Emit? This question can be explored

by defining a “convergence coefficient” for the two datasets: for a set of n beam

parameters, we can define:

(3.26)

where ~z,4D and PZ,SQE is the ith parameter in each of 4-D Quad Emit and Super

Quad Emit, respectively; and ~i,SQE is the measurement error in the ith parameter

from Super Quad Emit. Thus the convergence coefficient functions as a form of X2

test for the two parameter sets.

Because 4-D Quad Emit computes its findings downstream of QSM1, it is nec-

essary to back-propagate the 4-D Quad Emit paramters through the scaled QSM1

for each value of the scaling factor to be considered. Also, for values of the scaling

parameter which are different from the optimal value of 0.957, the errors on the Su- .

per Quad Emit quantities enlarge rapidly, and this can potentially “smear out)’ the

test for convergence. One way to see whether this is happening is to compute the

convergence coefficient with a fied error set; for this study, the error values from the

0.95 scale factor case are used.

Figure 3.7 shows the value of the convergence coefficient for the two methods of

computing it which are described above. Note that the two curves cease to track

one another for values of the scale factor which are outside the acceptable range.

Note also that both curves have a minimum at approximately 0.90, which is slightly

outside the allowed range. Table 3.16 shows the values of the Super Quad Emit fit

parameters and the propagated 4-D Quad Emit parameters at a QSM1 scale factor

of 0.90. With the adjustment to QSM 1, we see that all of the parameters save El

and @l are within 1 standard deviation between the two sets of beam parameters.

In Table 3.17, however, we see that the parabola scans used by 4-D Quad Emit are

still not particularly well reproduced by the Super Quad Emit beam. This situation
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Figure 3.7: Convergence coefficient as a function of QSM1 strength
scale factor. The coefficient computed with fit errors returned from
Super Quad Emit for each value ofQSMl (triangles) and computed
using errors from 0.95 scale factor (circles) are shown.

argues that the uncertainties on the 4-D Quad Emit measurement are smaller than

those on the Super Quad Emit measurement: while the error-bars on the Super

Quad Emit fit allow it to overlap the 4-D Quad Emit fit, nonetheless the actual

beam parameters are sufficiently far from the fitted values to cause poor convergence

with the 4-D Quad Emit data. Because QSM1 corrects the majority of the incoming

coupling upstream of the quadruple scanned by 4-D Quad Emit, the results from

this method will probably always be better than from Super Quad Emit, which must

reconstruct a beam whose vertical projected emittance is dominated by coupling from

the larger normal- mode emittance. The remaining discrepancy, specifically the value

of the horizontal normal-mode emittance and its corresponding betatron function,
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Parameter (units) 4-D Quad Emit Super Quad Emit Deviation (o’s)

cl (SLC units) 3.65 4.47 + 0.16 5.2
- ‘~, (m) ‘ 76.3 65.3 + 2.5 -4.4

al 2.43 2.43 + 0.10 0.0
&q(SLC units) 0.154 0.142 + 0.048 -0.25-\ , I k 1

2 (m) 39.0 33.1 * 9.9 -0.6 i—.,
a2 2.08 1.68 + 1.00 -0.8
a -0.545 –0.589 + 0.30 -0.15
b 0.387 0.404 + 0.062 0.27
c 0.144 0.096 + 0.22 -0.21
d -0.230 –0.240 + 0.035 -0.29

Table 3.16: Side-by-side comparison of Super Quad Emit and 4-D Quad
Emit results obtained on same day, assuming a QSM 1 scale factor of
0.90.

remain unexplained. The 2-D Quad Emit measurement of the horizontal emit t ante

recorded a value of 4.1 + 0.1, in SLC units. No further measurements were made in

the horizontal using 2-D Quad Emit;

level of 10% cannot be ruled out.

consequently, slow variations in the value at the

3.3 Beta Matching and Verification

As discussed in section 3.2.3, the action of QSM1 is sufficient to reduce the projected

vertical emittance below the design value for the FFTB. Therefore, no effort is made

to further reduce the total incoming coupling, and the beam is henceforth treated as

though it were, in fact, totally decoupled. In particular, the five normal quadruples

of the Beta Matching region are set to produce the desired beam conditions at the

FP, based upon the projected emittance and Twiss parameters in each plane. This is

perfectly legitimate, as the projected parameters describe the in-plane terms of the

beam matrix (all, 012, 022, and the corresponding vertical terms). As long as the

transport matrix from the exit of QSM1 to the FP contains no coupling terms, the

cross-plane terms of the sigma matrix will not contribute to the in-plane terms at the

FP. In other words, the transport of the in-plane beam matrix terms is mathematically
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Parabola Data Value 4-D Quad Emit Super Quad Emit
Coefficient Beam Value Beam Value
x scan A 80.7 +8.3 69.2 (1.4) 103.2 (-2.7)
x scan B –144.0 + 0.16 -143.7 (-1.9) -144.1 (-0.62)
x scan C 318 ~ 48 290 (0.58) 298 (0.42)
y scan A 26.6 + 0.93 25.6 [1.1) 21.5 [5.5)
~ scan B –147.5 + 0.049 -147.4 (-2) -147.0’(-10)
y scan C 29.95 + 0.0 25.6 37.9

V1 scan A 75.0 + 3.6 67.1 (2.2) 72.9 (0.58)
V1 scan B –145.4 + 0.055 -145.1 (-5.5) -145.0 (-7.3)
V1 scan C 307.2 + 0.0 277:8 ‘ 309:7 ‘
V2 scan A 87.45 + 7.7 73.4 (1.8) 97.8 (-1.34)
V2 scan B –121.0 * 0.10 -120.9 ‘(-1-.0) :121.; (5:oj
V2 scan C 231.1 + 0.0 195.4 135.4

Table 3.17: Comparison of 4-D Quad Emit parabola coefficients with
coefficients generated in simulated scans with 4-D Quad Emit beam
and Super Quad Emit beam with QSM 1 scale factor= O.90.

identical to the transport of the projected parameters, as long as the transport matrix

is uncoupled.

The computation of quadruple strengths needed to produce the correct beam

parameters at the FP is straightforward, and can in principle be performed by any

of a number of beam-optics programs (SAD, COMFORT, and DIMAD have all been

used successfully for this operation). Once the match is implemented, however, the

dual image of the FP at WS1 disappears, and further downstream images are required

to ensure that the beam sent to the FP is properly matched. For this purpose, WS2

and WS3 are used. Sections 2.5.2 and 2.1.4 describe the design and placement,

respectively, of these wire scanners. By placing the two scanners at the horizontal

and vertical images of the FP, and separating these images by 2.85 meters, it is

possible to verify both the positioning of the two waists, and the betatron functions

at the waists.

In order to verify the positioning of the waists, it is necessary to scan the waist

position and seek a minimum beam size on the wire scanner. This can be done in
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several ways. The simplest is simply to scan a quadruple in the beta matching region.

This approach moves both waists, however, and also has effects on the betatron

functions at the minimum, and is therefore unsuitable. The next simplest technique

is to develop a cluster of multiknobs which move several quads by a fixed amount per

knob turn, and which move only one of the waists (x or y), leaving both ~~z. valued

unchanged. Because the optics of the beta match region are not constant, such a

knob would have to be calculated for

only be strictly linear and orthogonal

calculation; once the knob has moved

each matching exercise, and the knobs would

for small changes from the optics used in the

a large distance, the downstream quadruples

in the beta match region cause the upstream quads to “see” a different R-matrix to

the wire scanner, and change their effects.

Recently the SLC control system has added the capacity for “Irwin Knobs”. These

knobs take advantage of as many quadruples as are available to produce orthogonal

transformations, and produce transformations which are linear and orthogonal over

larger portions of the parameter space. This is done by dynamically recalculating

the coefficients needed for the transformations over the range of the scan. Consider,

for example, a waist scan over a range of +W from the current location. The range

is divided into smaller computational intervals, of length w. Over each of the small

intervals, the correct changes in the scanned quads are computed to produce the pure

waist shift desired, and the computation is repeated for the new values of the quads

and the next interval of w. With a sufficiently small value of w, the computation

approximate es a cent inuous, orthogonal transformation.

The mathematics and concepts required for construction of the Irwin knobs are

described in [42]. The concept, briefly, is this: if the existing transport matrix from

the beginning of a beamline to the target wire scanner is given by Ro, then the action

of.an Irwin knob is to transform that matrix to RkRo, i.e., to transform it to the same

matrix followed by an “effective knob matrix”. The matrix Rk can be one of three
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possible forms. For a waist shift, the form of R~ is a drift matrix:

(3.27)

For a change in ~nin, the form of R~ is a pure magnification:

()mO
Rk =

o+.

A third transformation is a “thin lens)’ transformation:

()10
Rk =

Kql.

(3.28)

(3.29)

Note that, in a given plane of the beamline, these three transformations span the

space of all possible matrices which have unit determinant. In order to freely adjust

the waist and ~nin in each plane, and require that the “thin lens” be constrained, six

normal quadruples are needed.

The FFTB beta matching region contains only five normal quadruples. There- .

fore, a modification of the scheme described above is used. All Irwin knobs targeted

at WS2 or WS3 constrain or scan horizontal and vertical waist, and horizontal and

vertical ~n~n. Knobs targeted at WS2 also constrain the vertical term of the “thin

lens”, and those targeted at WS3 constrain the horizontal term of “thin lens”. Unless

the match has been quite poorly performed, the horizontal waist will be much closer

to WS2 than the vertical waist; consequently, inserting a thin lens at WS2 will have

relatively litt Ie effect in the horizontal, while it will have dramatic effects in the vert i-

ital. Therefore, the optics of the system will generally be more tolerant of a horizontal

thin lens at WS2 and a vertical thin lens at WS3.

The utility of the Irwin knobs also depends upon the optics through the system

being well known; specifically, the optics of the quadruples, and their excitations

as a function of power supply current, must be known with better absolute accuracy

than the incoming beam functions at all settings used during knob scans. Magnet-

mover based lattice diagnostics were performed on the quadruples in the CCSX, BX,
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CCSY, and FT regions, and these demonstrated that properly-standardized FFTB

standard quads are set with an absolute accuracy of 0.170, over a variety of setpoints.

These diagnostics are described in Chapter 4. While the beta matching quads were

never subject to the diagnostic in question, these quadruples are identical to those in

the measured regions, and are therefore expected to be similarly well-behaved. Fur-

thermore, no direct diagnostics of the quadruple strengths have been performed after

repeated scanning (which can potentially remove the quadruple from the measured

hysteresis curve). However, the beta matching quad power supplies are configured

to perform “mini-standardize,” which ensures that the magnets always approach new

set-points from the correct direction. Additional description of the “mini-standardize’)

algorithm, as well as indirect evidence that it maintains the quadruples on their mea-

sured hysteresis curves, is also discussed in Chapter 4, and the measurement of the

curves is described in Appendix B. Consequently, the beta match quads are expected

to have an absolute accuracy of a few parts per thousand, which is considerably bet-

ter than the knowledge of the incoming beam parameters. A mismatch at WS2 and

WS3 is therefore more likely to be due to uncertainty of the incoming beam than

due to uncertainty in the quad strengths, and the “Irwin Knob” scans become an

appropriate e tool to use in approaching convergence.

Figure 3.8 shows a scan, via the Irwin knobs, of the vertical waist position versus

o: on WS3. Two phenomena are noteworthy here. First, the position of the minimum

is 12.4 centimeters downstream of WS3, indicated by the fact that the waist must be

moved 12.4 cm upstream from the initial match to put the minimum spot on WS3.

This is considerable mismatch, since the vertical betatron function is only 2.5 cen-

timeters in the design optics at WS3. However, in this case the match was calculated

using Twiss parameters from the Thin Lens fit, which has been seen to produce waist

errors in Section 3.2.1. The second noteworthy factor is that the minimum spot size is

6.8 microns, while with the measured projected emittance (approximately 0.22 SLC

units), the expected spot size is 740 nanometers.
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Figure 3.8: WS3 measured o; as a function of the vertical waist Irwin
knob. The location of the minimum indicates that the waist was origi-
nally located 12.4 cm downstream of the wire scanner. The beam size
at the minimum is 6.8 microns. This measurement was made during
the January, 1995 FFTB run.

As mentioned in section 2.5.2, by using the full set of wires on the WS3 yoke it is

possible to reconstruct the full xy-plane projection of the beam at the wire scanner

location, inlcuding tilt angle. When this was done, the culprit became clear: the beam

was tilted by 1.33° relative to the wire scanner, with a minor-axis RMS size of 1.5pm.

Figure 3.9 shows WS3 a; as a function of QSM1 strength. Note that, during beta

matching, the projected vertical emittance was roughly minimized by setting QSM1

to 1.3 kilogauss; according to WS3, however, a strength of -0.9 kilogauss minimizes

the WS3 vertical spot. Finally, Figure 3.10 shows a waist scan performed with the

new value of QSM 1. Note that the waist must be shifted an additional 4 cm upstream;
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Figure 3.9: WS3 measured o: as a function of QSM1 inte~erated
strength, from the January 19-95 FFTB run. The ‘minimum-occurs
at -0.9 kilogauss, rather than the 1.3 kilogauss determined by WS1
optimization.

however, the flatness of the parabolas in Figures 3.8 and 3.10, as well as the absence of

one “wing’) of each parabola, makes this shift equivocal. Note also that the minimum

of Figure 3.10 is extremely broad, which is an artifact of the 4pm wire size. The

value of “A” in the two parabolas, which is a measure of the angular divergence,

is quite consistent between the two scans (0.1100 + 0.0030, versus 0.1127 + 0.006).

Since the divergence measurement is dominated by the scans on the wings of the

parabola, where the scanner response is more linear, these values are expected to be

wall-measured by this technique.

The disagreement between WS1 and WS3 on the correct value for QSM1 is present

in all beta-matching episodes between September 1994 and March 1995. While the
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Figure 3.10: WS3 measured o; as a function of the vertical waist Irwin
knob, after setting QSM1 to -0.9 kilogauss. Note that the divergence
is virtually the same, as expected, but the minimum is now closer to 1
micron.

optimal value from WS1 shifts between 0.7 and 1.3 kilogauss, the optimal value from

WS3 is between O and -1.0 kilogauss, with no clear correlation between the two. One

suspect in this dilemma was a WS3 rotation angle: since the roll angle reported by

WS3 is always around +1°, it stands to reason that the scanner may be rotated

in the xy plane by a similar amount. An experiment was performed to test this

hypothesis: using the magnet mover of QT1, a horizontal bump was introduced at

WS3, which was then closed downstream by QT3 and QT4 movers; at each value of

the bump, the BPMs on either side of WS3 were read out for 100 pulses, in order to

ensure that the bump was truly horizontal, and that no inadvert ant vertical motion

was being introduced; and finally, each wire of WS3 was scanned through the beam,

The wire scanner software returns the value of the scanner stepper motor at which
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Figure 3.11: Location of the beam centroid at WS3, as determinedly
fitting an asymmetric gaussian to the beam, as a function of the beam
horizontal position. The unrotated wire # 1 (diamonds) and 1.4° wire
# 6 (triangles) are shown.

the centroid of the beam was found, allowing a correlation to be developed between

the beam vertical centroid location and the amplitude of the horizontal bump. In

this way, all 6 wire angles could be measured. The four odd-angle wires allowed a

further test of the method in that these wires were expected to have non-zero rotation

angles. Since the wire scanner software ret urns two centroid numbers (cent er of an

asymmetric gaussian fit and center of the actual distribution), both sets of numbers

were analyzed in parallel.

Figure 3.11 shows the variation in centroid location as a function of bump ampli-

tude for wire 1 (nominal zero roll) and wire 6 (nominal 1.4° roll). The nominally flat

wire does show a small roll, with the South end of the wire higher than the North
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Figure 3.12: Movements of the beam at WS3 as a function of the QT1
horizontal mover knob. The positions shown are reconstructed using
data from adjacent BPMs.

end by approximate ely 5 milliradians. The 1.4° wire is higher on the North by ap-

proximately 20 milliradians, which is slightly different from the 24 milliradian design .

rotation. However, the pre-installation testing of the scanner revealed that the yoke

was systematically rolled by 3 + 1 milliradians, with South end higher [43]. Table

3.18 shows the expected wire angles with this correction, the angles measured by the -

gaussian center, and those measured by the distribution center. Note that within

errors, the three angles agree for all wires.

Because the two BPMs read out for this exercise are separated by drifts only from

WS3, it is possible to form a linear combination of the readings which represents

the beam position at WS3. This position, in horizontal and vertical, is shown in

Figure 3.12 as a function of knob position. The slope of the horizontal correlation

is 1.152 + 0.004, rather than the expected 1.0; however, the BPMs scale factor is

memured by the mover lattice diagnostic described in Chapter (), and the BPMs are

found to systematically over-report by 12.4%. Furthermore, the BPM scale factors are

found to vary by +5%, bwed upon bench tests [44], and the free-standing BPMs near
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Wire @theor j mrad eg~~ssjmrad emoment~mrad
1 -3 –5.3 * 1.7 –4.1 * 0.9
2 -15 –16.1 + 1.5 –16.8 * 1.2
3 +9 +10.3 + 1.6 +8.9 + 1.1
4 -3 –3.6 + 0.9 –3.1 + 0.4
5 -27 –29.0 + 1.4 –28.3 + 0.6
6 +21 +20.0 * 1.2 +21.6 + 1.0

Table 3.18: WS3wire rotation angles measured bythe QTl horizontal
mover bump technique described in the text. Shown are the expected
wire angles from the bench test (et~eor), the angles measured by fitting
an asymmetric gaussian to the distribution (e~.U.S), and the angles
measured by computing the center of the distribution directly (e~-ent).
Positive angle indicates the North end of the wire is higher from the
ground than the South end.

WS3 were never bench-tested for this factor. It is therefore possible that the WS3

BPMs differ from the ensemble average by an amount to explain the remaining 3%

discrepancy. The vertical position data shows a correlation with the horizontal motion

of – 0.0022+0.0009; this could be due to rolled BPMs or an imperfect horizontal knob;

the correlation is far from convincing. In any event, the WS3 correlations indicate

that the wire scanner has no significant roll at the level expected (1° = 17.5 mrad),

and the BPMs indicate that the bump is performing nearly perfectly. This is a mixed

blessing: while the experiment argues that wire scanners with extremely tight roll

tolerances such as WS3 can be constructed and installed reliably, it also exonerates

the prime suspect in the QSM1 dilemma.

What other errors in the beamline could cause such a discrepancy in coupling

measurements? One possibility is that an upstream quad is rolled or shorted turn-

to-turn. If all other upstream elements were held constant over the FFTB lifetime, a

static quad error would give rise to reproducible QSM 1 settings. However, the optics

from QSM1 to WS3 are changed from run to run because of the different incoming

betatron conditions, and the incoming coupling is also different, indicated by changes

in the optimal value of QSM 1. Consequently, even a static magnet roll could give
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rise to varying values of QSM 1 which optimize the WS3 spot. Magnet rotations are

considered further in Chapter 4.

Returning to Figure 3.10, we see that the vertical beta match verification has a

particular difficulty, specifically that the matched beam is smaller than the wire’s

resolution. Furthermore, the beam at the intermediate waist is potentially diluted by

negative chromaticity from the C CSX sextupoles, or other aberrations. This makes

verification of the betatron function itself, ~min, difficult. It is therefore necessary to

measure the divergence of the beam, and to determine the matched betatron func-

tion from the divergence and the measured emittance, since @W.i~t=
r

— The
Ow:ist.

divergence can be measured in two ways. The most straightforward is the vertical

beam size

xy ellipse.

at WS2 is

on WS2, measured by scanning all six WS2 wires and reconstructing the

Assuming that the vertical minimum is located at WS3, the vertical size

given by:

~$ws2) = ev(WS3)+ L~s2+Ws3 + L$S2+WS3 (wS3) .~y@Y
By

(3.30) -

Because the term due to beam size at WS3 is small compared to the divergence term,

the approximation can be made

“’ws2)”- (3.31)

The second method is to measure the beam size on WS3 as a function of the waist

position. If we replace L~S2+wS3 with the waist knob (which is in essence a variable

drift), we see that the square of the beam size depends quadratically upon the waist

knob setting. Thus, the parabola parameter ‘(N’ represents the square of the diver-

gence in the appropriate units. The units of a; are pm2, while the units of the Irwin

waist knobs are centimeters; therefore, parabola parameter “A” has units of pm2 per

cm2, and 100fi has units of prad.

Figure 3.13 shows the parabola from a WS3 waist scan and the beam ellipse at

WS2 side-by-side, from a measurement made in March of 1995. The fitted value of

“A” is (2.72+ 0.48) x 10-2, which yields a divergence of 16.5+ 1.5prad. The vertical
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Figure 3.13: WS3 divergence measured in two ways: on the left is a
scan of the Irwin waist knob, on the right a measurement of the xy-
projection of the beam ellipse at WS2. These scans were performed
during the March 1995 FFTB run.

size at WS2 is 40.8 + 2.5pm, which yields a divergence of 14.3 + O.9prad,

is acceptable agreement. The measured emittance at the end of the linac

a projection to the FFTB entrance of 3.0 x 10–11 meter-radians, which can

be combined with the divergence measurement to indicate a betatron function at

WS3 of approximately 13 centimeters. At the time, the optics were adjusted to

obtain a ~~ of 1 mm, which would indicate a @~in at WS3 of 25 centimeters. This

result demonstrates the utility of the intermediate-waist divergence measurements in

optimizing the beta match. In principle a single adjustment of the magnification knob

would have been capable of correcting the optics to those desired; however, the FFTB

was operating in a “signal-seeking” mode, and the discrepancy in beam size at the

FP was not crucial.

A similar set of measurements maybe made using WS2’S horizontal size and waist

knob, and WS3’S fitted horizontal size. In this case, however, the beam size on WS2 at
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the waist is expected to be closer to 5 microns, and therefore the measured minimum

size at WS2 is more meaningful in the design optics than the measured minimum

size at WS3. Because the optical conditions are less exacting in the horizontal, beam

mat thing in this plane almost always converges with little more than a waist scan.

The techniques described in this chapter are sufficient to ensure that the incoming

beam is properly matched to the desired conditions at the FP. In principle, the global

tuning described in Chapter 5 can then be applied, using the beam size monitors.

Prior to such an operation, however, it is necessary to verify that the capture condi-

tions outlined in Chapter 2 are met, particularly the quadruple strength and magnet

alignment conditions. In Chapter 4, we shall see how this is accomplished.
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Chapter 4

Local Beam-Based Diagnostics

Chapter 2 argued that an important aspect of tuning the FFTB is ensuring that

the capture tolerances in Table 2.3 are met before attempting to apply global tuning

procedures. In addition, local correction of beamline aberrations and errors is always

preferable to global corrections, since a cascade of local errors can add up to a level -

which is too large to correct with global knobs.

An additional feature of local diagnostics is that they can be designed around the

BPM system, rather than the wire scanners and beam size monitors. The BPMs are

fast, non-invasive, and can be read out synchronously on each pulse. In addition,

the BPMs in use in the FFTB have a dynamic range of about 3 orders of magni-

tude (microns to millimeters), which is larger than either the wire or BSM systems.

This makes the local diagnositcs less dependent on proper matching of the incoming

beam, and eliminates the “bootstrapping’) frequently associated with such devices

(i.e., tuning the system well enough to get a signal in the first place).

The FFTB has four local, BPM-based diagnostics: quadruple alignment, disper-

sion measurement, quadruple strength measurement, and CCS sextupole alignment.

Each of these shall be discussed in turn.
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4.1 Preparation for Local Diagnostics

The first step in preparing the FFTB for local diagnostics is to set a beta-match

optics which reduces the FP divergences significantly. This reduces the beam size in

almost all magnet apertures, which consequently reduces both pulse-to-pulse jitter

and “spray” on the BPMs. Additionally, reduction of the beam size in the mag-

nets increases the range through which a magnet strength may be scanned before

a downstream aperture limit is encountered, which is an advantage for quadruple

alignment. The optics selected for this set of diagnostics gives ~~ x ~~ = 3 cm x 1 cm

with the nominal incoming beam. Note that no attempt is made to actually match

the optics to the incoming beam, as the actual sigma matrix at any given point is of

relatively little importance, so long as it is close enough to the expected value that

the quadruple scan range selected for quad alignment is still acceptable from an

aperture standpoint.

After setting the beta-match optics as desired, the FFTB line is ‘(standardized’: -

the magnets are ramped from a low current to maximum current and back down to

the low current 5 times, then ramped from low current to the desired set point. This

ensures that the magnets are on their measured hysteresis curves, and therefore that

they are actually at their desired setpoints.

Finally, a sample of BPM data is taken to ensure that linac collimation is adjusted

properly for elimination of BPM backgrounds. Early experiences with the FFTB

BPM system indicated that poor adjustment of Sector 28-30 collimators resulted in

degradation of BPM precision due to particles impacting the striplines. The resolution

is measured by acquiring data on two or more BPMs which have relatively little phase

advance between them (such as BPMs 50 and 1010, which are separated by 1 meter

in the Beta Match section, or BPMs 1100 and 2020, which are in the quads bordering

SFIA). The data from such BPMs should correlate linearly, with an RMS deviation

equal to W times the BPM intrinsic resolution. Such a correlation is shown in Figure

4.1. The RMS deviation is 1.45 pm, indicating a BPM resolution of 1 pm. The bunch
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Figure 4.1: Correlation of beam vertical positions measured at the
BPMs in QT4 (horizontal axis) and QM3B (vertical axis). These BPMs
border sextupole SDIA, and are expected to track perfectly within the
resolution of the BPMs. The RMS deviation of the data from the fitted
line is 1.45 pm. This correlation is fairly representative of points in the
machine with such BPM pairs.

charge at the time of this measurement was approximately 8 x 109; therefore, at the

design charge of 1 x 1010, the expected resolution is better than the design specification

of 1 pm.

4.2 Quadruple Alignment

The beam-based alignment of quadruples in the FFTB uses the conventional “shunt”

technique familiar to accelerator physicists. Consider a situation as depicted in Figure

4.2, in which the electron beam passes off-axis through a quad. In this case the beam
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Figure 4.2: Schematic of quadruple alignment technique. Changing
the strength of the quad changes the kick seen by the beam centroid,
which in turn changes the position at a downstream BPM location.

centroid sees a kick, whose amplitude is given by:

Xt = —K~x~, (4.1)

where Kq is the integrated quad strength, Ax~ is the offset of the beam centroid from

the quad center, and once again the thin-lens approximation is used for simplicity

of description while a full, thick lens computation is performed by the algorithm.

Changing the quadruple strength in this case will change the kick angle:

Ax’ = –AK~x~, (4.2)

which translates to a change in position at a downstream BPM:

AXBPM = R12q-BpMAx’ = –R~~BpMAKqxq, (4.3)

and thus the initial offset of the incoming beam can be determined from scanning the

quadruple strength, measuring the change in position on a downstream BPM, and

dividing by the known Rlz between the two. Because all quadruples in the FFTB

can be moved via magnet movers from the control system, the magnet can then be

moved into aligned position, and the independent

allow the measurement to be, performed without

windings.

power supplies for each quadruple

any use of shunts, boosts, or trim
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Figure 4.3: Jitter amplitude at all FFTB BPMs, from BPM 30 to the
last extraction BPM, in quad-alignment optics. Both horizontal (light)
and vertical (dark) are shown.

4.2.1 Initial Algorithm Design

While the alignment measurement is conceptually simple, in practice there are several

complications which must be addressed. The first of these is incoming jitter: Figure

4.3 shows the horizontal and vertical RMS jitter at all FFTB BPMs during the March

1995 alignment operation. The jitter amplitude is as large as 40 pm in some locations,

while the BPM resolution is close to 1 pm (see Figure 4.1). This implies that the

incoming position and angle must be computed for each pulse.

The jitter also implies two further difficulties related to reference pulses. The

first is this: the alignment computation in Equation 4.3 assumes that the beam pulse

upstream of the quad being scanned follows the trajectory to which the magnets wish

to be aligned. In other words, given a perfect system with no jitter, scanning the

quadruple in Figure 4.2 and applying Equation 4.3 to the change in a downstream
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BPM will indicate a correction which moves the quad onto- the line of the beam;

however, if the incoming beam is jittering by some amount, then the pulse which

passes through when the quad is at its nominal strength may potentially be a “flier”,

and not a good pulse to align to. The second difficulty is ensuring that the pulse to

which the next quad downstream is aligned to is identical to the one to which the

current quad is aligned to.

All of the difficulties enumerated above were anticipated and addressed in the

initial design of the quadruple alignment algorithm. The reference pulse issue was

addressed by using the BPM system (rather than correlation plots) to acquire the

reference orbit prior to data acquisition proper. The reference orbit thus acquired

was averaged over 100 pulses and saved. The saved orbit was then compared to sub-

sequent pulses for some time to ensure that the saved orbit was fairly representative

of the incoming beam, and not systematically offset or off-energy from the majority

of incoming pulses. Because the FFTB launch and energy feedback systems maintain

a constant orbit (with a time scale short relative to 100 pulses), two such highly-

averaged orbits which are representative of the incoming beam are quite likely to be

ident ital. As a further correction to the reference orbit problem, a single reference or-

bit is used to align between 3 and 6 quadruples: after the reference orbit is acquired,

the Correlation Plots application in the SLC Control Program (SCP) steps the first

quad and acquires all BPMs at each setting of the quad; the first quad is returned

to its original value, and the next quad is stepped, until all desired quads have been

stepped and data acquired for all BPMs at all quad settings. This procedure ensures

that the quads stepped in this way will all be aligned to the same incoming orbit, so

that the alignment of the FFTB will be at least “piecewise-continuous)’.

In summary, the data acquisition algorithm is as follows:

-0

●

Acquire reference orbit, ~avg = 100, compare to subsequent pulses

For each quad in the current sequence (3 to 6):

– Step the quad through 3 strengths, acquire all BPMs at each strength
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– Return thequad to original strength

. Submit quad strengths and BPM readings to fitting engine,

The fitting engine used for FFTB Quad Alignment is OPTFIT, a MINUIT driver

which uses first-order (~-matrix) beam transport to compute X2 values (See section

3.2.4). OPTFIT subtracts the reference orbit from all BPM data, leaving only differ-

ences from the reference orbit. This eliminates all DC phenomena such as the Earth’s

magnetic field, BPM offsets, etc. The engine then calls MINUIT for minimization,

using the misalignments of each quad and the incoming position vector of each pulse,

xl = (Z, x’, y, y’, 6), as parameters to be fitted ( “fitvars,)’ in the language of the con-

trol system), and the BPM readings as the data to be matched. The algorithm of the

MINUIT call is as follows:

●

●

Pass new guess values for quad misalignment and position vectors to math
subroutine

insert position vectors and quad misalignments into appropriate data slots

For each pulse acquired

—

—

Use quad strengths to compute new Rij ‘S for stepped quads

Use initial position vector to track pulse through beam line, compute dif-
ference between tracked ray and da~a at each BPM -

compute X2 as sum of squares of differences between ray tracking and BPM
data

Iterate above with new guess values until accurate error matrix can be com-
puted, locate minimum in parameter space.

4.2.2 Refinements to the Algorithm

Experience with the beam-based measurement process soon dictated several addi-

tional refinements to the original fitting algorithm. These included an improved

approach to solving the incoming trajectory, cleanup of BPM data before the main

fit call, and fitting of initial kick angles in a segment.
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Solving the Incoming ~ajectory

An examination of the fitting algorithm above shows that each pulse acquired in-

creases the number of fitvars by 5, for computation of the incoming trajectory. Be-

cause MINUIT is attempting to compute a square, symmetric error matrix, the ap-

proximate computing time will scale as n(n + 1), where n is the number of fitvars.

This means that using many pulses, which is helpful in beating down statistical er- -

ror, will also dramatically increase computational time. The number of pulses also

quickly becomes limited by MINUIT, which will only accept 50 fitvars (and, it has

been remarked, will only reliably converge for about 8 [45]). Even worse, the cor-

relation between fitvars of interest (i.e., quad misalignments) and fitvars we don’t

actually care about (i.e., initial vectors of pulses) is considerable. MINUIT does not

differentiate between data from upstream of the first stepped device and data down-

stream; thus, even a dataset with no BPMs upstream of the first scanned quadruple

will produce a solution jor the incoming ray in MINUIT. In a case such as FFTB quad

alignment, MINUIT will frequently conclude that all variation in the data is due to

incoming offsets, none of the quads are misaligned, the errors on fitted quantities are

enormous, and the X2/v also enormous.

The incoming-ray problem can be solved by considering the beamline diagram in

Figure 4.4. Upstream of the first stepped quadruple (from Z. to Zl) the transport

matrices are constant; downstream of the last stepped quadruple (from 22 to 24) the
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Figure 4.5: An incoming ray with some uncertainty in x and x’ incident
upon a quad. The lightly shaded region represents the total area in
which the beam may be located, both upstream and downstream of the
quad. The propagation of the incoming ray’s errors must be properly
folded into the OPTFIT calculation of quad alignment.

transport matrices are also constant, and in particular in the dumpline (from 23 to

24) only drifts and vertical bend magnets are present. Therefore, given a reference

orbit and a data orbit, it is possible to compute the energy deviation of the data

orbit from the BPMs in the dumpline, and the geometric deviation of the data orbit

from the BPMs upstream of the first stepped quadruple. The data used to compute

these deviations can be removed from the MINUIT fit, and the deviations themselves

can be used as initial conditions to the fit. This reduces the number of fitvars in the

MINUIT minimization call to just those of true interest to the machine physicists.

The difficulty in removing the initial vector fitting from the MINUIT fit is that a

MINUIT multi-parameter fit explicitly includes all correlations in error computation.

Consider for example the situation in figure 4.5, in which a beam with an imperfectly-

determined initial vector is incident on a quadruple. The beam will pass through the

quad, with an offset from the centerline which is undetermined, and this in turn will

cause the exiting ray to be further undetermined. MINUIT automatically includes
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this effect in its determination of the quadruple alignment-precision; any external

computation of the initial vector must include a mechanism for folding these errors

into the MINUIT calculation.

The method chosen to compute the incoming vectors is a linear least-squares min-

imization of X2, which automatically yields a covariance matrix for each pulse. This

computation is exceedingly fast, as each pulse requires construction of a 5 x 5 cur-

vat ure matrix from known beamline and data constants, a matrix inversion, and a

matrix-vector multiplication. Note that each pulse requires its own curvature ma-

trix because not all BPMs will return data and verify good status on each pulse.

Furthermore, the energy is extracted from a 3-parameter fit (g, g’, 6 at the first en-

ergy feedback BPM) to decouple the fit from any upstream steering when quads are

stepped. For m pulses and q quads being fitted in x and y, the scaling for a combined

fit is (5m + 2q) (5m + 2q + 1),whereas for the separated fit the computational scaling

is (4. 5 + 3. 4)m + 2q(2q + 1). For datasets with a large value of m, the separated fit

wins due to its linear computation scaling; FFTB Quad Alignment datasets typically

have m values between 130 and 150. In addition to the computational advantages,

the separated fit is incapable of getting “lost”: deviations in downstream BPMs due

to changes in quad strengths never get misinterpreted as changes in the initial vector.

The inclusion of initial vector errors into the main fit can be accomplished by

noting that, at each BPM, there will be two sources of deviation between the tracked

ray and the data. The first is the BPM resolution, which is electronic and approx-

imately the same for all data points, which we can define as aBPM. The second is

the propagation of the error in the tracked ray, which we can define as otr... Let

us assume that for a given ray, the initial vector z; and the associated error matrix,

Oo,ij, are known. The propagation law for the vector is given by:

xtra.,i = RijXO,j, (4.4)

where xt~ac is the position after tracking, xl the initial position, and summation over
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j is implicit. The propagation for the error matrix is given by:

Equation 4.5 can be rewritten in a familiar matrix form:

(4.5)

(4.6)

i.e., the transport law for the error matrix is identical to the transport law for the

beam matrix.

Once the error matrix for each pulse is established, the transport matrix for each

pulse, from the beginning of the beamline to each BPM, is computed (note that

this is variable because of the scanning of intermediate quadruples). The transport

matrices are used to transport the pulse’s initial-vector error matrix to each BPM,

where the intrinsic error O~PM is added to the appropriate error matrix term, either .

atrac,ll or atraC,33; the square root of this quantity is the effective uncertainty, Oeff, of

the BPM data point in question. By using oeff to weight the data in the MINUIT

fit, the uncertainty in the fitting of the incoming beam is taken care of.

In principle, the fitting algorithm automatically locates all BPMs between the

beginning of the line and the first stepped quadruple to use for fitting the incoming

geometric ray, and uses the extraction line BPMs to fit the energy. In practice, the

line upstream of the first quadruple frequently includes bend magnets. Therefore

the BPMs used to reconstruct the incoming x and x’ potentially include BPMs with

horizontal dispersion. The order of operations within MINUIT extracts the energy

before the geometric terms of the initial vector, and the dispersive offset at each BPM

is subtracted before the fit of the geometric oscillation. However, the computation

of- the error matrix is not quite clever enough to properly include the X6 and x’6

correlations; in order to avoid this problem, only BPMs upstream of the first bend

are used to fit the incoming oscillation, and all BPMs from the first bend to the first
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stepped quad are dropped from the fit. As we shall see, this does not result in an

unacceptably coarse measurement of the quadruple alignments.

Detecting Fliers in Dataset

Another area of concern is the possibility that individual pulses, individual BPMs, or

individual readings may be dominated by various noise sources, which can drastically

alter the fit of the quad misalignments. In the original algorithm, only the value

of X2/v gives any insight into this possibility; with 150 pulses, 30 BPMs, and x

and y data, this is a daunting problem to solve by hand. Some form of pre-fitting

examination of the data, which is capable of recognizing bad data and eliminating

it from the fit, is required. In order to be fully effective, the mechanism must use

information which does not directly correlate to the fitvars. Using the X2 contribution

of the data after the fit, for example, would not be appropriate, as the fit has by that

time already been tainted and it is possible that bad X2 contributions are due to the -

fit being “pulled” by the real culprit.

As mentioned previously, the region between the last stepped quad and the energy

feedback BPMs is a region of constant transport properties. Using the same least-

squares mathematics used to extract geometric initial vectors for the beam pulse by

pulse, we can compute the geometric initial vector for each pulse starting at location

22 in Figure 4.4. This computation uses the energy for each pulse computed by the

extraction line BPMs to subtract dispersive terms, and the product qaa is added in

quadrature to the intrinsic BPM resolution to de-weight data appropriately (note

that in this case q is the ~lc element from Z2 to the BPM, not from 50B1 to the

BPM). Once these vectors are computed, each BPM’s X2 contribution is determined.

Any BPM with a X2 contribution greater than 64 per data point is dropped from all

further use, and the trajectories at 22 are recomputed. This time, any BPM with

a X2 contribution greater than 16 per data point is dropped. A final computation

of the trajectories at 22 is performed. This time, individual data points with a X2
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contribution greater than 16 are dropped.

The first cut is made because a single BPM which is sufficiently disturbed can

pull an entire fit above the threshold for the second cut. The softer cut is made in

an attempt to eliminate such “monster’) BPMs, such that on the second pass the

remaining BPMs might converge.

The cuts described are not ideal. For one thing, a BPM which is in an optical

location with sufficient lever-arm can still pull the entire fit to one side, resulting in all

BPMs in the region having X2 contributions over 64. In this case, all the BPMs will

be eliminated and no data will remain. This is prevented by only analyzing sequences

of fewer than 11 consecutive BPMs, rather than performing the cuts on the entire

beamline at once. In such a situation, in which a long string of BPMs have been cut

from the fit, determining which ones are the real problem remains a trial-and- error

problem, albeit a smaller one.

A more appropriate schedule of cuts would be as follows:

. Perform the computation of Z, x’, g, g’ as described above, obtain the X2 contri-
bution of every data point

● For every pulse which includes a data point with X2 contribution > 16, do the
following:

– Repeat the fit with each data point supressed and record X2 for each fit

– Drop the point which yields the smallest chiz

– Repeat until no points have X2 contribution greater than 16

The scheme above does not get fooled by BPMs in crucial locations, requires only

one iteration, and looks exclusively at the X2 contributions to a given pulse. The

scheme as implemented looks first at the contributions of the BPMs across all the

pulses, then at the contributions within each pulse. The disadvantage is that the

former scheme is computationally immense in the presence of BPMs which are sys-

tematically misbehaving. With m pulses and n BPMs, a single bad BPM will require

m. n executions of the code to compute geometric trajectory and X2 contributions; a

pair of bad BPMs will require m . (2n – 1) executions. The scheme as implemented
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always requires 3m executions of the code in question. Note ‘also that the algorithm

is a boolean algorithm in that data points are not arithmetically altered, but sim-

ply passed or not passed to the fitter; that the former scheme is almost guaranteed

to remove bad data points, though the risk to “innocent bystander” data points is

much higher; and that execution speed is essential, in that quadruple alignment is

intended to run on-line in the SCP. As a result, the former algorithm is acceptable

for these purposes. Should a faster computer become available to the control system,

reworking the cuts in OPTFIT is probably desirable. Given the highly parallel nature

of the improved algorithm above, a parallel-processing computer would be ideal for

the job.

Finally, it is worthwhile to note that neither algorithm can perform cuts on the

data coming from BPMs inside the stepped quads. In this region there is no way to

decouple the orbit changes in the BPMs from the misalignments of the quadruples.

However, the output from OPTFIT includes a contribution to the normalized X2 from

each BPM in each plane. This can be used to determine whether BPMs within the

quads are misbehaving, and

Fitting Segment Angles

if so they can be deselected and the fit repeated.

Consider a beamline with an alignment situation such as that in Figure 4.6. The

quadruples are perfectly internally aligned, but the incoming beam does not pass

through them; however, the first quad is misaligned in such a way that the outgoing

beam from this quad passes through the line of the remaining quadruples. In this

case, it would be inappropriate to simply move all the quads onto the ray of the

incoming beam, since this would require a monotonically-increasing movement of

subsequent magnets. Even a small angle between the magnet line and the incoming

beam will quickly snowball into an uncorrectable problem. Moreover, if the beam has

actually been steered to the dump before alignment begins, such a situation is likely

to exist somewhere in the line.
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Figure 4.6: A line of quadruples which are perfectly aligned to one
another, but with an angle 0 between the incoming beam and the line
of the magnets.

Existing techniques for beam-based alignment of quadruple systems resolve this

problem by defining the first and last BPMs in the region of interest as the line to .

which the quads will be aligned [46], [47]. In these techniques, only a single execution of

the fitting algorithm is permitted, which extracts the misalignments of all quadruples

at once. Using MINUIT to perform such a fit for the FFTB would be prohibitively

expensive in computer time, but would produce a uniform solution in which all FFTB

quads are fitted to a common line.

A modification of the above solution is illustrated in Figure 4.7. In this situa-

tion, the last quad in the group of stepped magnets is defined to be aligned to the

desired trajectory, a “phantom” xcor and ycor are inserted into the beginning of the

beamline, and their strengths are included as fitvars. These phantom elements are

computational artifacts used to extract the approximate angle of the magnets relative

to the incoming beam: since the last quadruple is defined to have zero misalignment

relative to the incoming beam, but the first quadruple is producing a kick angle

0, the only consistent solution is that the phantom corrector must be producing a

kick angle –0, which is being cancelled by the quadruple kick. In this case, the
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Figure 4.7: Use of “phantom”
kick imparted by the corrector
misaligned elements, such that
definition.

correctors in FFTB alignment. The
is cancelled by the sum of kicks from
the last quad in the line is aligned by

appropriate correction of magnet positions can be naively implemented, but only if a

real corrector exists which can be set to cancel the effects of the “phantom” one (or

in real terms, the steering from the first quad must be transferred to an appropriate

xcor or ycor).

The requirement that each segment begin with a corrector which can be adjusted

in this fashion is a significant aspect of the selection of quadruple segments. A

further consequence of not using a downstream endpoint in the extraction line is the

danger of “walking the magnets into the wall:” specifically, that the incoming ray may

be so poorly chosen that the magnets are driven monotonically away from the center

positions of their movers. This can quickly result in magnets moved to their limits.

As this problem is related to the a priori mechanical alignment of the beamline, and

the aperture limitations in the extreme upstream end of the FFTB, the situation is

considered in detail below.

4.2.3 Mechanical Alignment and the FFTB Launch Crite-

rion

Prior to the September 1994 FFTB run, the magnets from QA1 to the dump were

surveyed using mechanical techniques including laser-trackers and water levels, and

placed with an expected accuracy of 100 pm in the horizontal, and 50 pm in the

vertical [48]. During the May 1994 FFTB run, the incoming beam was steered such

that all obstacles in the BSY, including PC90, were avoided (based on evidence from
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Figure 4.8: Quad Alignment “dog-leg” schematic. The beam is kinked
by two correctors to steer from the line through the BSY and PC90
onto the line of the FFTB proper, and intervening quads are moved
onto the angled line in between.

the loss monitors in the area). Because of the extreme radioactivity of objects in the

BSY, and the fact that the area is uninhabitable during any SLAC operations, the

obstacles were poorly understood and not amenable to mechanical correction. The

readings on BPMs 30 and 50 (free-standing BSY BPMs) which skirted the obstacles

and cleared PC90 adequately became known as the FFTB “Launch Criterion”. Thus,

the beam position and angle could not readily be altered upstream of XCOR and

YCOR 1010 (HID and VID, correctors located between PC90 and QSM1).

Because of the radiation concerns, as well as the 16 meter steel wall, the first three -

quads could not be moved onto the FFTB line. Even if they could have been, there

was no guarantee that this line would coincide with the line diet ated by the launch

criterion.

The problem was solved by “dog-legging” the beam in both x and y as shown in

Figure 4.8. XCOR 1010 and XCOR 1070 (between BOIA and BOIB) in the horizontal

and YCOR 1010 and YCOR 1040 (downstream of QA1 ) in the vertical were used to

match the orbit of the incoming beam to the line of the FFTB. This was accomplished

by first turning off quadruples Q5 through QA2, inserting ST62, and using the BPMs

upstream of 1090 to perform a rough match. The beta match quads were then moved

to roughly zero their BPMs in both planes, and trimmed to their nominal values for

quad alignment. The orbit was corrected, ST62 removed, and further fine adjustments
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Figure 4.9: Vertical positions of FFTB quads relative to incoming beam
in May 1994.

brought the beam into the FFTB and onto the line required by mechanical alignment.

In this way the risk of “walking into a wal~’ was minimized.

4.2.4 Results of Quadruple Alignment

The first attempt to align the FFTB from Q5 to QC1 occurred in May of 1994.

During this operation, an unexpected rise and fall was encountered in the vicinity

of the CCSX. This situation was handled by using the vertical corrector magnets,

and also by using the quadruple movers to produce steering in a few locations. The

pre-alignment positions of the magnets are shown in Figure 4.9. In this case, the

beamline was piecewise-aligned only. The monotonically-deteriorating resolution in

Figure 4.9 was due to two phenomena: first, the snowballing of global errors within

a string of quadruple magnets (see discussion “Defining Quad Alignment (Resolu-
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Figure 4.10: Scan ranges determined by simulation for FFTB standard
quads. For simplicity of display, absolute values are shown. Diamonds
represent nominal values of quads.

below); second, by monotonically-increasing values of X2/v for the successive

alignment segments. The value of X2/v increased from a low of 0.3 (indicating that

the BPM resolution, hard-coded in OPTFIT at 6 pm, was for this operation closer

to 3 pm) to a high of over 20. OPTFIT reports errors normalized by ~X2/V, leading

to significant blow-up of the downstream error-bars. Despite these difficulties, the

background-tuning situation for the beam size monitors and wire scanners improved

dramatically after this pass of alignment, and the quad emit scans were able to go to

a larger range because Q5 was no longer steering as severely.

During the period from May to September of 1994, several improvements were

made. The mechanical alignment of the FFTB was checked, and found to agree

qualitatively with the beam-based measurements; the alignment was then corrected

to the levels noted above. The optics for beam-based alignment were adjusted as
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Figure 4.11: Vertical positions of FFTB quads relative to incoming
beam in September of 1994.

noted in Section 4.1, and optimal scan ranges for each quad were determined in the

new optics. Figure 4.10 shows the quadruple scan ranges selected. Finally, the

scheme for resolving the Launch criterion was devised.

Figure 4.11 shows the results of beam-based alignment in the vertical plane from

September of 1994, including all the improvements made during the period between

runs. Note that the error-bars are much smaller, and the overall amplitude of the

misalignments reduced by a factor of 2 over May. In addition, the vertical misalign-

ments are, as advertised, within about 50 pm of one another, save for a mysterious

“step)’ in the beta exchanger of 400 pm. Furthermore, the alignment of September

1994 resulted in the FFTB operating with all vertical correctors from YCOR 1040 to

the FP at zero strength for the first time.

Figure 4.12 shows the horizontal and vertical resolutions of the quad alignment

procedure, as well as the X2/v for each segment. Note that the beta match segment



I

126

60
1.86 5.38 4.00 2.7{1.74 0.39 1.8

50

40

30

20

10

0
Beta Ccsx Ccsw

Match Beta
Exch

Beta
Exchl
CCSY

Final Dou
Xfrm

let

Figure 4.12: Resolutions for FFTB quad alignment experiment of
September 1994. Horizontal (dark) and vertical (light ) are shown.
Numbers in boldface at top are X2/v for each segment’s fit.

has a somewhat larger X2/v than the subsequent segment, and that once again there

is a general monotonic increase in the value of X2/v.

The former phenomenon is easily understood: during a repair access to the BSY,

BPM 30 was damaged. The connections for BPM 30 were then swapped to BPM 20,

a linac- style BPM just upstream of BPM 30. The relatively poor resolution of BPM

20 causes the incoming beam to be relatively weakly determined, since only BPM 20

and BPM 50 lie upstream of Q5. For all subsequent segments, BPM 20 is deselected

and only the BPMs from BPM 50 to QA2 are used for resolution of the incoming

beam.

One possible cause of the degradation of the fit quality is loss of standardization

as quad alignment progresses. As Figure 4.10 shows, many of the quads are stepped

through a significant portion of their total range. This may cause the upstream
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Figure 4.13: Contribution to X2 for all FFTB BPMs, considering only
pulses in which all quads were at their nominal values. Contributions
are normalized by number of good data points from each BPM. The
data from the upstream half of the CCSX (dark) and from the 3 quads
upstream of the doublet (light) are used in this analysis, showing degra-
dation due to loss of hysteresis.

transport matrices to diverge from the expected model, and this would cause fits of

the incoming beam to fail. One way to examine this possibility is to use two sets of

quad align data, throw away all data except when all the quads are at their nominal

values, and see whether the incoming beam fits can describe the BPM data through

the line, as indicated by BPM X2 contribution values.

Figure 4.13 shows the X2 contribution per data point for each BPM in the FFTB,

for the CCSX1 segment (QM3A through QN2A) and the FTRANS segment (QC5

through QC3). Note that the same BPMs are used to measure the incoming beam in

the two cases, and that all data with quads stepped off their nominal strengths are

deleted. In effect, the two datasets should describe identical beamlines, yet the later
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Figure 4.14: Resolutions for FFTB Quad Alignment experiment of
March 1995. “Mini-Standardize” protocol was used for all quads ex-
cept the doublet. Horizontal (dark) and vertical (light) are shown,

along with X21V for each segment’s fit

set has relatively poor fit convergence. This

standardization is damaging the algorithm.

(boldface). ‘ - ‘

is significant evidence that the loss of

In order to correct this loss, all FFTB quads were configured for “mini-standardize”

before the March 1995 run. In this mode of operation, all increases in absolute quad

strength (i.e.’ increases in operating current) were accomplished in the normal fash-

ion; all decreases in absolute strength were accomplished by first overshooting the

new set point by 570, then rising in current to the set point. In this way7 all FFTB

quadruples were set to new operating points from lower current to higher current.

The resolutions and X2/v of the quad alignment fits from March 1995 are shown in

Figure 4.14. Note that X2/v now achieves a high of 1.6 for the three quadruples pre-

ceding the doublet, and is nearly as large (1.4) for the doublet quadruples. Deeper
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investigation indicates that the X2 contributions which are iarge in these cases are

universally the horizontal, not the vertical. One possible suspect, therefore, is that

the extraction line quads are not well aligned, and the values through which the last 6

quads are stepped result in particles scattering off the quad apertures onto the BPMs

in the horizontal. In addition, the doublet quads were not set to mini-standardize, as

the large excursion this induced changed the optics enough to cause radiation trips.

Defining Quad Alignment “Resolution”

The resolutions shown in Figures 4.12 and 4.14 are the square roots of the diagonal

elements of the error matrix calculated by MINUIT, multiplied by ~X2/V for the

entire fit. Some considerate ion is needed, however, to fully comprehend what this

number represents, or, in other words, what it is we are aligning to with such precision.

The alignment of a single quadruple is unambiguous, as shown in Figure 4.2. The

quadruple is stepped, the beam deflection measured, and the correlation between -

the two can be converted into a distance between the incoming beam centroid and

the magnetic center of the quadruple. The error on this quantity may be interpreted

with similar ease.

Figure 4.15 shows a situation of slightly greater complexity. Here two quads are

shunted in sequence, in an attempt to align both to a common line. Note, however,

that the beam is passing through the center of the second quadruple due to the kick

received from the first. In this case, shunting the second quad will not deflect the

beam, even though the second quad does not lie on the line of the incoming beam. In

order to determine the offset of the second quadruple, it is first necessary to know

the offset of the first quadruple, which then determines the kick given to the beam

by the first quad.

Let us define the offset of the beam from the center of the first quad by Xi,l and

that of the second quad from the beam by XZ,2; Xz,j is simply the offset revealed by

a naive correlation between quad shunt and downstream kick. Let us now define the
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Figure 4.15: “Intrinsic” vs. “Globa~’ resolution. Because the second
quad will not deflect the beam when shunted, its intrinsic misalignment
is zero; however, the first and second quad are both clearly off the line
of the incoming beam, while the first quad deflects the incoming beam
through the center of the second.

global oflset of the quad, x~,j, to be the true deviation of the quad centers from the

incoming beam (or, the distance between the quad centers and an incoming ray of

infinite energy, which is not deflected by the quads). In the t bin- lens approximate ion,

we may say that:
j–l

x9,~ = Xi,j + ~ —Kq,~xi,kLkdj~
k=l

(4.7) ~

where Lk+~ is the distance along the path of the beam from the kth quadruple to

the jth. This is simply a superposition of steering kicks, where the steering strength

is proportional to the offset of the quad from the beam. The summation term in

Equation 4.7 can be thought of as the deviation of the beam incident on the jth

quadruple from the incoming beam’s vector. If the measurement of the intrinsic

resolution, x~,j, is not correlated between quadruples, then we expect that their

uncertainties will add in quadrature:

Because OPTFIT’S X2 engine uses tracking code rather

(4.8)

than a closed-form so-

lution, the results which emerge are explicitly global misalignments and resolutions.

Equation 4.8 is responsible for the monotonic loss of resolution along a given segment.

Figure 4.16 shows the intrinsic resolution of the technique for each quadruple.
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Figure 4.16: Intrinsic resolutions for all auadruDoles, usinE the OPT-
FI~ technique and the data set from Mar~h 19~5. ‘ -

One implication of this global alignment formalism is that the beam emerging

from the last quadruple in a segment has a deviation from the incoming given by

zi=l-~g,k~i,k~k+j> with acorresPonding error zi=l~:,k~i+j~:k. Thisistheerror

on the beam entering the first quadruple of the next segment. It is possible, therefore,

to use the intrinsic resolutions of the procedure, from Figure 4.16 above, to compute

the global resolutions of the entire beamline as though all alignment was performed

in a single fit to a single incoming beam. This represents the true RMS deviation of

the quadruples from a geometrically-perfect straight line (modulo steering magnets

and bends). Figure 4.17 shows the true global errors.

The global errors in Figure 4.17 were determined by first-order tracking: each

quad was displaced from the beam incident on its upstream face; the displacement

of the quad was determined by a gaussian-dist ribut ion random number generator,
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Figure 4.17: ~ue global alignment resolution of beam-based technique
de~cribed in the t~xt. Res~lutions were determined by 10,000 rep~ti-
tions of first- order tracking, and using the previously-shown intrinsic
resolutions.

and the RMS of the distribution determined by the intrinsic resolutions in Figure

4.16. The RMS displacement from the origin of the coordinate system after 10,000

iterations was used to generate Figure 4.17.

Note that, while Figure 4.17 represents the deviation from a straight line, Figure

4.16 represents the RMS distance between the quad centers and the beam in the

quads. As has been noted elsewhere [47], beam-based alignment techniques are not

sensitive to misalignment patterns with a wavelength which is long relative to the be-

t atron wavelength, and this is graphically demonstrated by the differences in Figures

4.16 and 4.17. In the case of linac alignment, this typically results in “bowing”, in

which the global misalignment is largest in the center of the beamline (due to the

endpoints being fixed) [46], [47]. Because the FFTB fixes only one endpoint, the
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end of the beamline is “flapping in the breeze’) relative to the beginning. For optical

purposes, the intrinsic alignment is the crucial one, in that dispersion and higher-

order aberrations are generated by the beam passing through the magnet off-center.

The global resolution is important because sufficiently poor resolution can result in a

solution to beam-based alignment which drives magnets outside of the range of their

movers.

Global Movement Knobs

Because the FFTB line is defined by one endpoint and not two, it is conceivable that

a sufficiently poor selection of initial steering and/or combination of global errors

will result in a beamline which is systematically shifted or tilted, in such a way that

movers at the endpoints are near their limits of travel. It is useful to be able to shift

the beamline systematically to relieve these movers, or to adjust steering into the

extract ion line.

Because every optical element is mounted on a mover, such knobs can easily be

designed by simple geometrical considerations. The knobs must properly adjust the

beta match quads and the correctors used to deal with the Launch Criterion.

The FFTB has such knobs, and they were used experimentally during the FFTB

run in March 1995. Results were generally good. However, steering errors crept

into the system during their use. These errors are thought to be due to imperfect

understanding of the launch correctors: while the beamline motions are correct, the

correctors do not steer by precisely the right amount. This problem can be corrected

with steering knobs which use only the launch correctors to steer position and angle

at some given BPM in the FFTB. Such knobs will be in place for the next FFTB run.

4.2.5 Systematic Errors in Quad Alignment

In addition to the “snowballing” discussed in the previous section, there are several

systematic errors which may appear in the measurement or correction procedures of
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quad alignment.

The most straightforward systematic are scaling factors in quad strengths and/or

BPMs. In Figures 4.12 and 4.14, it was argued that implementation of “Mini-

Standardize” had improved the convergence of the fits; however, this argument only

holds for the quads at their nominal values, not at the scanned values. A quad which

has overstepped or understepped by some fraction will result in an over- or under-

estimate of its misalignment. Similarly, a global error in the scale factors of the BPMs

will lead to a systematic scaling of measured misalignments. Examining Equation 4.7,

we see that such errors, which will scale all intrinsic misalignments uniformly, will

also scale all global misalignments uniformly.

Lattice diagnostics measurements found that the FFTB BPMs systematically

over-report motions by 12.470 (see Section 4.4.3). This leads immediately to a 1270

over-correction of the misalignments. Because the quadruple power supplies ramp

very slowly, and a settle time is used in the cent rol software, quadruple scale-factors

are not expected to be significant.

Measurement of horizontal misalignments is further complicated by dependence

on the extracted energy offset of each pulse. A systematic miscalculation of the energy

will result in BPM readings tracked around bend magnets being improperly fitted.

This may also account for the greater difficulties inherent in fitting the horizontal

orbits, as shown in Figure 4.13. The RMS energy jitter of the beam is approximately

1.6 x 10-4; the maximum dispersion in the CCSX is 9.85 centimeters. Section 4.3.2

argues that the energy measurement is systematically high by roughly 6%; this argues

that the error contribution at the high-q BPMs will be 1 pm RMS. As long as the

jitter is roughly symmetric about the reference energy, however, the contribution from

this term will primarily enlarge the X2, rather than systematically pulling the fit to

one side. This error, though arising from a systematic source, actually is a cause of

random variations.

The pulse-t~pulse jitter of the incoming beam results in possible systematic errors
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in the alignment between segments. Figure 4.3 shows the RMS jitter at each BPM in

the FFTB. At any given BPM, therefore, the deviation between one reference orbit

averaging N pulses, and another, will be given by ~, where Oj is the RMS jitter

amplitude. This contribution should formally be added in quadrature with the values

shown in Figure 4.17; however, for 100 pulses averaging, the resultant contribution is

quite small, and omitted here.

A final systematic error in the correction scheme arises from the mechanical design

of the final doublet. Section 2.4.1 mentions that the three magnets of the doublet are

fixed to a common vibration-isolated table. The table can be moved in six degrees

of freedom: x, y, z, roll, pitch, yaw. This is sufficient to independently move the

end quads (QC2 and QC 1), assuming that the three quads are internally aligned

with arbitrary precision. However, QX1 is found to be 233 pm to the south of the

QC2-QC1 line, with an uncertainty on the order of 10 pm. Fortunately, the vertical

alignment of QX1 to the line of the other two magnets is closer to 24 pm with an

uncertainty of 40 ~m. In the past, the doublet has been aligned by moving QC2 and

QC1 as indicated by their misalignments; the discovery of the misalignment of QX1

implies that this strategy needs to be re-thought.

4.3 Lattice Dispersion Measurement

While beam-based quadruple alignment is a test of specific errors within the FFTB

line, the measurement of lattice dispersion (~1~ and ~~~ from the beginning of the line

to each BPM) is in many ways a more general test of the health and well-being of the

opt its. While the horizontal and vertical dispersion measurements can reveal errors

in, respectively, the strength and roll angles of the CCS bend magnets (which was the

original purpose), the measurement can also reveal errors in the alignment and roll of

the quadruple elements. These effects can be somewhat difficult to decouple, which

causes the measurement to be less specific in its focus than the quad alignment test.
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4.3.1 Measurement Technique and Algorithm

The general approach to dispersion measurement in the FFTB is similar to that used

tomeasure thedispersion entering the SLC Final Focus from the collider arcs [49]:

the beam energy from the linac is increased or decreased, and this produces an orbit

shift at each dispersive BPM. The correlation between the change in orbit and the

change in energy is the dispersion:

d(x, y)

‘X’Y= dd .
(4.9)

The beam energy in the FFTB is maintained by a feedback which uses the BPMs in

the vertical-dispersion region of the extraction line, described in Section 3.1.3. The

beam energy is changed by changing the setpoint of the feedback. The change is

virtually instant aneous: after a change in set point, typically only one pulse passes

through the accelerator at the original energy before the feedback “catches up.”

As with quad alignment, the incoming trajectory and energy must be extracted on .

every pulse, and the resolution of their reconstruction incorporated into the main fit.

Since the computational elements needed for this operation already exist in OPTFIT,

this program was chosen as the basis for the dispersion measurement as well. In the

current implementation, the incoming ray fits are not correlated to the energy fits,

and therefore the incoming dispersion is not determined. Even if the two were to

be correlated, the launch feedback ensures that energy-dependent changes in the

incoming orbit are correct ed, thus eliminating the information needed for incoming

dispersion measurement.

Original Algorithm

The FFTB lattice contains 14 CCS bends (including the soft bend) and 4 weak vertical

correctors for correction of rolled installation of the bends: at the BOIA/B location,

between BOIC/D and BOIE/,F locations (adjacent to QN1); between the B02A/B

and B02C/D locations (adj scent to QM2); and at the B02E/F location. As noted in
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Section 2.4.2, the bend magnets were fabricated and installed in pairs. The dispersive

effects of the magnets of a pair cannot, in general, be decoupled by the BPMs in the

FFTB lattice; in addition, the effect of interest is the total dispersion due to a pair,

rather than the dispersion of each magnet. Also, the soft bend is too close to B02E/F

to be measured separately. OPTFIT is therefore configured to fit the strengths of the

four vertical correctors, and six horizontal bends (BOIA, BOIC, BOIE, B02A, B02C,

B02E), while the remaining 8 bends are constrained in the code to be at their design

strengths. Note that the correctors are being used as “phantom” correctors: the

locations are used as a convenient point-source of dispersion, regardless of the actual

strength of the correctors (typically zero).

OPTFIT was originally written to fit a finite set of beamline optical properties

using BPM and/or wire scanner data. These effects included bend magnet and cor-

rector magnet strength, but no provision existed for directly measuring a dispersive

ray by correlating position and energy data at each BPM. Instead the data w= used

to fit the strength of the bend magnets and vertical correctors, and from these the

resultant ~16 and ~36 matrix elements could be computed from the beginning of the

beamline. Thus the dispersive rays available to OPTFIT depended upon the deter-

mination of source terms; an unexpected source of dispersion (such as a skew quad

term in the beta exchanger, for example) could not be easily fitted by this algorithm.

This defect was recognized early in the development of the code, and a “work-around”

devised. The algorithm was arranged as follows:

●

●

●

●

●

Step energy feedback through several values, at each value acquire 10 pulses on
all BPMs in FFTB

Extract 6 and 06 for each pulse

Extract Z, z’, g, y’, with errror matrix, for each pulse using BPMs 30 and 50
only

Perform data cleanup as described in Section 4.2.2 for BPMs between bend
magnets

Using design values of bend magnets and vertical correctors, propagate error
mat rix onto all BPMs, add propagated error in quadrature to BPM resolution
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Perform MINUIT fit of bend strength and corrector strength

Insert fitted strengths into beamline andcompute~l~ andfi~~ from BPM30
location to each BPM; this constitutes the fitted dispersion rays

At each BPM, correlate the fit residual of each data point with the fitted energy
of the pulse

Addthecorrelation above tothefitted dispersion to obtain the measured dis-
persion, and to the design dispersion to obtain the afler comection dispersion.

Once the magnet strengths have been determined, a correction can be computed.

The bend angle of the fitted bend, dfz~, is added to the bend angle of its tied partner,

O~.~z~n,to obtain the total bend angle of the two magnets, OP.zr. The difference be-

tween OP.i. and 2~destgnis the amount of the correction) ~~. This can be accomplished

via the trim windings on the pair of magnets, but it is necessary to determine how

much to change the trim winding. The scheme for this correction is as follows:

●

●

●

●

Read the bend magnet main winding and the trim winding for the pair to be
corrected

Using the hysteresis polynomial for each bend, determine the theoretical total
bend angle for the pair, OPOIV

Compute the trim winding setting needed to set each of the pair of magnets to
opo~y+ A6/2

Average the settings obtained for each of the pair of bends, this is the setting
for the correction.

The correction scheme depends heavily upon the hysteresis polynomials for the

bend magnets, and also upon the approximate linearity of the correction in the vicinity

of the setpoint. For corrections of several percent, however, even poor agreement

of the polynomial with the real magnet is adequate to converge, particularly since

the dispersion measurement and fitting process takes approximately 60 seconds per

iteration. Furthermore, if the bend polynomial is inaccurate by more than a few

percent overall, the beam will not go through the FFTB in the first place without

major trial-and-error tuning of the bend trims and main supply. Since such has not

been necessary in the FFTB, the inescapable conclusion is that the process should

converge.



Improvements to the Algorithm

Thealgorithm reconstituted above isseriously flawed inseveral particulars. First, the

computation of the measured dispersive ray is inelegant to say the least; furthermore,

the dependence on the fitted bend strengths makes computation of error-bars on

the measured dispersion values quite a bit more difficult than is strictly necessary;

worst of all, use of the design optics to propagate the error matrix from the incoming

ray means that any significant deviation of the dispersive rays from the design will

introduce errors in the propagation of energy uncertainty. At a BPM with dispersion

q~p~, the error contribution from uncertainty in energy measurement is:

(4.10)~energy = ~BpMU6.

Because the design value of qBpM is zero in the vertical plane at all BPMs, this term

does not contribute to vertical error at any BPM, and pulses with badly- determined

incoming energy and pulses with well-determined incoming energy will be weighted .

equally in determining the corrector strengths. This is clearly unacceptable. A more

advanced algorithm was developed which addresses these weaknesses:

●

●

●

●

●

.*

Proceed with data acquisition, energy fitting, launch fitting and data cleanup -
as above

Propagate the errors from computation of Z, z’, y, y’ only to each BPM on each
pulse

Perform tracking of each pulse, using only geometric components of launch
vector (i.e., set energy offset to zero and perform tracking)

At each BPM on each Dulse, compute an n contribution in each plane by dividing
the tracking residual b~ the’6 of the pulse;’ compute a weight for-this contributio~
from the BPM error, the 4-D launch error, and the energy error

The measured dispersion at the BPM is the weighted average of the q contri-
butions

Using the measured q, propagate the energy fitting error onto each BPM for
each pulse

Perform MINUIT fit as above, compute ~16 and ~36 to obtain fitted q rays

Measured q - Fitted q + Design q = After Correction q.
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Note that a correlation exists between the fit of the dispersive rays and the fit

of the magnet strengths: the data at each BPM is used to determine the dispersive

ray, in correlation with the pulse-to-pulse energy variation; the dispersive ray is then

used to adjust the weight of the data points for use in the MINUIT fit of magnet

strengths. In order to avoid this correlation, half the dataset is used only to compute

the dispersive ray and half is used only for the fitting of magnet strengths.

4.3.2 Results of Dispersion Measurements

Dispersion measurements in the FFTB are more subtle than quadruple alignment

measurements in that the horizontal plane contains nonzero design dispersion, and

as a result the horizontal measurement is not a “nulling” measurement. The vertical

plane measurement is a nulling measurement, due to zero design dispersion. Further-

more, any understanding of the horizontal measurement requires an understanding

of the energy measurement process as well. Each of these facets will be considered .

separately.

Energy Measurements

variation is measured via a set of BPMs surrounding a

magnets in the extraction line. The value of qv at the

The pulse-to-pulse energy

string of permanent bend

last BPM is 60 centimeters. A resolution of 6 pm would naively imply an energy

resolution Of of 1 x 10– 5. The resolution is diluted by the fact that the pulse-to-pulse

y and y’ variation must be computed as well, and by the fact that the last BPM also

has the maximum resolution of the incoming angle. When these issues are factored

in, the expected resolution is 6 x 10–5 for a set of BPMs with 6 pm resolution.

Figure 4.18 shows the reconstructed energy for each pulse during the March 18,

1995 alignment of the first half of the CCSX (QM3A to QN2A, 120 pulses total). The

vertical axis shows normalized resolution (6 x 10–5. ~~) for each pulse. The jitter

“envelope” is *300 ppm, with an unweighed RMS of 160 ppm. While the normalized
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Figure 4.18: Measurement of pulse-to-pulse energy jitter made during
a sequence of quadruple alignment on March 18, 1995. Resolution;
have-been normalized-in the Fashion described in the text.

fit resolution is concentrated about 30 ppm (implying an actual BPM resolution of

3 pm in the extraction line), the resolution has a long tail going out to over 200

ppm. The cause of this behavior is not known; however, the extraction line is not

as optically forgiving as the area upstream of the FP. In particular, the apertures

are tighter, the quadruples less well-behaved, and the alignment is poor compared

to the upstream components. The poor resolution is likely linked to BPM hardware

issues, such as intermittent spray impacting the devices.

Figure 4.19 shows the reconstructed energy and normalized resolution from a

dispersion-measurement dataset taken on March 18, 1995. In this case the energy is

stepped out to *5000 ppm in order to measure the lattice dispersion. Note that the

energy error is significantly worse for both the large excursions and the small ones
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Figure 4.19: Energy values from dispersion measurement made on
March 18, 1995.

(*1800 ppm), with a wide spread of resolutions in all cases. An interesting side note

is that the fractional resolution, ~, is centered on 670 for all four clusters. The large

energy excursions were made in order to measure the dispersion with higher precision,

but the larger errors on the energy fits for these pulses eliminates this improvement.

For future measurements, smaller excursions of the energy are more attractive: the

resultant distribution of resolutions is closer to the distribution at zero offset, and the

result ant fractional resolution is as good as that for large excursions.

The normalized resolution for the energy measurement is used in all subsequent

computations, including computation of the measured dispersion and propagation

of launch errors onto BPMs. Normalizing the resolution of a fit in this fashion is

generally an unattractive solution to unknown problems in data acquisition, fitting,

etc., essentially “sweeping under the rug” everything which is unknown about the
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system. Nonetheless it was kept in the fit in this case for one reason: the BPMs

in the extraction line, which are used to perform the fit, are systematically different

from the BPMs in the rest of the FFTB, andconsequently have a resolution which

is different from that in the main FFTB line but is itself unknown. This leads to an

interesting systematic error in fits such as quad alignment. The total error at a BPM

location is given by:

The value of O~PM is a function of the BPM hardware itsel~ the value of 04D is

determined by the fit of the incoming ray and the optics from 50B1 to the BPM

in question, but it is in turn a linear function of the upstream BPMs used to fit

the incoming ray. Thus, a scale-factor discrepancy between the expected and actual

resolutions of the standard BPM will result in a common scale factor to these two

terms, which will simply result in a X2/v for the fit which differs from 1 by the square .

of this selfsame scale factor. The term qa~, however, has already had any resolution

scale factor removed by the X2 scaling described above. The most straightforward

correction to this difficulty is to re- analyze quadruple alignment data in the vertical

plane (in which no energy dependence exists) to determine the best value for the

standard BPM resolution, and set this value in the software.

An additional systematic difficulty is the issue of scaling-factors. Dispersion mea-

surement requires that the BPMs measuring the energy in the extraction line and the

orbit deviations in the FFTB line have the same scaling-factor: a factor of 1 would

be ideal, but any value will do so long as it is the same for both systems. The scale

factor for the standard BPMs was measured with a stretched wire and a pulser, and

found to be 94% of the predicted value. This calibration was included in the database

for each BPM upstream of the FP, and for the unit in QPIA. No such calibration was

performed for the extraction-line devices, and the database values for these are equal

to design. The analysis of the energy in the dumpline therefore assumes a BPM scale
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Figure 4.20: Horizontal dispersion measurement on September 3, 1994
prior to quadruple alignment. Three datasets (solid) and the design
value (dashes) of qx are superimposed. The design and measured can
only be seen separately at the downstream end of the beamline on this
scale.

of 9470 for the extraction-line BPMs.

Horizontal Dispersion

Figure 4.20 shows the measured horizontal q function on September 3, 1994, imme-

diately prior to beam-based quadruple alignment. The measurement was performed

three times, and the figure shows the three measurements and the design dispersive

ray. While the figure resembles the design dispersion well enough to declare that no

gross error exists, no further conclusions can be made because the large value of the

design dispersion dominates the figure. A more useful figure is Figure 4.21, in which

is plotted ~~e~ig~—~meas. Because the third set of data from September 3 did not

converge well, only dat asets 1 and 2 are shown here. Note that convergence between
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Figure 4.21: Horizontal dispersion mismatch, qde,zgn – q~.as, before
beam based alignment on September 3, 1994.

the two is generally good (error-bars at a given point overlap for almost all BPMs).

Agreement in the last 4 BPMs (QC3, QC2, QPIA, and the first extraction-line BPM)

are not as good. While most areas fall within 5 mm of their design, an excursion of

over 1 cm appears at QC2, the first quadruple of the doublet.

Two areas of interest in understanding Figure 4.21 are the process by which error-

bars are computed, and the initial setup procedure for the FFTB’s bend magnets and

alignment. Each of these is discussed below.

At a given BPM, the contribution to the dispersive ray from a given pulse is given

by:
XBpM — X4D

qWntTib =
6’

[4.12)

where x4D is the result of 4-D propagation of the incoming beam to the BPM. The

uncertainty in ~cont~abwill be the sum in quadrature of two terms, one of which carries
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the BPM uncertainty, and one of which carries the energy uncertainty:

‘~= (%)2+((xBpM;x4D)o’)2(4.13)

= (?)2+(”c~t,’b?)2
The value of ~ was shown earlier to be approximately 6% for all energy pulses, and

thus each pulse contains an error-term which is 670 of ~Cmtrib. At the high-dispersion

points this term will tend to dominate; with 20 pulses used to compute qn~a~, the

resolution of the dispersion at these points should go as 670/~, or 1.470. The error-

bars in Figure 4.21 are normalized by the dX2/V value for the given BPM dispersion

fit, and these are typically 1.4% of the dispersion at the highest points (adjacent to

SFIA and SFIB).

Prior to the September 1994 run-time, the quadruples in FFTB were re-surveyed

and moved to new positions determined by the survey. The CCS bend magnet main

and trim supplies were set to values determined by their excitation curves, in order to .

get each magnet as close as possible to its design strength of 5.624 kilogauss-meters.

It is interesting to note that, despite these efforts, a centimeter-sized mismatch of the

CCS dispersion appears in the Final ~ansformer.

During beam-based alignment, the quadruple alignment is assumed to follow the

design line of the FFTB at the half-millimeter scale. Whenever the alignment fit

shows an angle between the beam and the existing quad line, the bend trims are

adjusted to remove this angle, which in theory also will assist in fixing the dispersive

ray. Figure 4.22 shows the post-alignment deviation of the measured dispersion from

the design for two datasets. Note that the overall scale of the figure still spans 2.5

cm, and that the two datasets agree quite poorly. Error-bars are also quite large.

What has happened here? Recall that these measurements were made after

quadruple alignment, and that evidence exists (see Section 4.2.4) that the quad

alignment measurement changes the optics (via loss of standardization), sufficiently

that the incoming ray can no longer be tracked through the FFTB. A further change



147

0.025

0.02

0.015

0.01mko
z
E 0.005
:K

in the

o

-0.005

-0.01

I I I I 1 I 1-0.015
50 100 150 200 250 300 350

Bemline z, meters

Figure 4.22: Horizontal dispersion mismatch after quad alignment,
September 1994.

system is that the beam positions through the extraction line are allowed to

change in an unconstrained manner during alignment, within the limits of beam-

containment. The extraction orbit seen before and after quad alignment changes in

the vertical by over 1 mm; worse, the orbit after alignment has larger values in all 4

BPMs used for energy measurement. This means that both BPM nonlinearities and

possible optical effects in the B06 magnets (quadruple and/or sextupole moments)

are worse for this trajectory than the former.

Based on the September 1994 experience, several improvements were made to

the setup of the beamline and the quad alignment procedure for March 1995. The

quad positions and bend strengths determined during September 1994 were used as

a starting point; however, the dumpline orbit was steered flat in the horizontal and

vertical (all BPM absolute values under 1 mm), and re-st eered to this orbit after every



148

0.008

0.006

0.004

-0.002

-0.004

-0.006
50 100 150 200 250 300 350

Bemline z, meters

Figure 4.23: Horizontal dispersion mismatch prior to beam-based align-
ment on March 18, 1995.

segment of alignment. As mentioned in Section 4.2.4, the quadruples were set to

“mini-standardize.” Figure 4.23 shows the result of this preparation. The overall scale -

of the dispersion mismatch is half that encountered before alignment in September.

Moreover, the mismatch ray through the CCSX and CCSY is qualitatively similar to

the dispersive ray itself, leading to suspicion that the “mismatch” may be dominated

by scaling-factor errors between the FFTB standard BPM and the extraction line

units.

Figure 4.24 shows the horizontal dispersion mismatch after beam-based alignment

in March 1995. The superficial similarity between the mismatch and the design is

even more pronounced, and it is highly likely that some of this is due to a scaling-

factor between the two sets of BPMs. Some of the fine structure maybe due to small

errors in the individual BPM scale-factors. However, it is important not to be too
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Figure 4.24: Horizontal dispersion mismatch after beam-based align-
ment on March 18, 1995.

easily convinced by the gross appearance of Figure 4.24. The BPM providing the first

spike in the CCSY, for example, is the BPM in QT4, a quad next to SDIA. This

BPM should agree with the next BPM, at the QM3B location, which makes up the

first “anti-spike” in the CCSY pattern. The second “spike” in the CCSY is at the

location of the BPM which, in Figure 4.24, is near zero (z = 275 meters). The BPM

which is supposed to be at the location of the first ‘(spike,” the QT3 location, is near

zero on this figure (upstream of QT4).

The generally poor matching of the dispersion within each CCS region can be

explained by the quad alignment procedure. The bend trim windings are set by

forcing the beam onto a line through the downstream quadruples; this will generally

work if the quads downstream of the bend being set have sufficiently long lever arms

to constrain the angle. The quads within the CCSX and CCSY, however, do not have
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such long lever arms. Consequently, the bend angle of bends BOIC/D and B02A/B

are not well constrained by this process, and the dispersion within each CCS may be

poorly matched. The QT3/QT4 discrepancies remain unexplained.

Note further that, while SFIA and SFIB are at equal values of q., within the error

of the measurement, SDIA and SD lB appear to have 0.5 mm difference in their qz

values. Such a mismatch could cause generation of second-order horizontal dispersion

(~1~~); however, the magnitude of this aberration generated by such a small mismatch

in q. is approximately 30% of the FFTB’s inherent ~166, which is a relatively small

contribution.

In conclusion, while progress has been made in using the horizontal dispersion

measurement, the domination of systematic errors and poor resolution of the energy

still prevents this measurement from being of great value in beamline tuning.

Vertical Dispersion

The design value of the vertical dispersion function is identically zero at all points

upstream of the extraction line vertical bends; the vertical dispersion measurement

is therefore a nulling test, as mentioned above, and relatively insensitive to scaling

effects between the energy BPMs and the main FFTB line BPMs. The vertical

plane is also more sensitive to all aberrations. This combination makes the vertical

dispersion measurement both more robust and more relevant to the overall tuning

scheme.

Figure 4.25 shows the vertical dispersion function measured prior to beam-based

alignment on September 3, 1994. The dispersion function is clearly nonzero, with a

peak of +3 mm at QN3B in the CCSY, and an oscillation of ●8 mm between the

CCSY sextupoles, which continues into the final transformer. The figure shows two

measurements superimposed, and the agreement between the two is good.

Could such an oscillation arise solely from quadruple misalignments? Consider

the 8 millimeter dispersion at SDIA (z x 250 meters in Figure 4.25). This point is ~
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Figure 4.25: Vertical dispersion function memured prior to beam-based
quadruple alignment on September 3, 1994. Note that the function
is manifestly nonzero, particularly in the vicinity of the SD lA/B sex-
tupoles.

out of phase with quadruple QN1, at the center of the CCSX, with an ~12 between

the two of -24.4 meters. A vertical dispersion of 8 mm at SDIA could be caused by

a vertical q; of 328 pm at QN1. This in turn can be caused by a misalignment of

QN1 of 1.5 mm in the vertical. While this is large compared to the misalignments

found for individual quads, recall from Figure 4.11 that the peak-to-peak vertical

misalignments of FFTB were over 500 ~m.

Figure 4.26 shows, on the same scale as Figure 4.25, the post-alignment vertical

dispersion from September 1994. The oscillation through the SDIA/B locations has

been reduced by a factor of 2 over the pre-alignment values, and the final transformer

oscillation is also reduced, albeit by a smaller factor. Interestingly, the dispersion at

QM2, in the center of the CCSY, and QN2B are also reduced by a smaller factor
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Figure 4.26: Vertical dispersion function measured after beam-based
quadruple alignment on September 3, 1994.

than the sextupole oscillation. As in other analyses of the September 1994 local

correction data, the convergence of the fits, and the correspondence between fits,

degrades monotonically from upstream to downstream due to magnet excitations

upstream leaving their hysteresis curves.

Figure 4.27 shows the pre-alignment vertical dispersion measured on March 18,

1995; the scale in the top half is identical to the scale for Figures 4.25 and 4.26,

for comparison, while the scale in the bottom half is expanded. While the overall

dispersion pattern remains the same, the amplitudes are reduced still further from

Figure 4.26. This may be from the beneficial effects of recovering standardization

on all FFTB magnets. Figure 4.28 shows the post- alignment dispersion function,

and also a common-axes comparison between the pre- and post-alignment vertical

dispersion rays. The majority of the figure is unchanged: qv reaches peaks of *2.5
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mm at SDIA and B, and a peak of 3 mm at QM2. However, the peaks at QN2B and

QC5 are now larger than before alignment.

What conclusions can be reached from the transformations of the vertical dis-

persive ray from September 1994 through March 1995? For one thing, the vertical

dispersion is measurably reduced by beam-based alignment, assuming that the initial

alignment was sufficiently problematic. Second, the FFTB contains sources of vertical

dispersion which are not improved overmuch by beam-based alignment, which may

even be worsened by the procedure. One such source of vertical dispersion is rolled

bend magnets or quads in the dispersive region.

In order to determine possible rolled magnets and corrective strategies, a least-

squares fit to the measured dispersion of Figure 4.28 was performed. This fit forms

a curvature matrix from the linear beam transport properties, and inverts to obtain

a solution. In the fit, BPMs were considered firmly attached to their quadruples,

such that a quad rolled through an angle 0 cent ained a BPM rolled through the same

angle. Such BPMs give rise to spurious dispersion, since the vertical striplines now

sample the horizontal dispersion.

Magnet Case (i )7 Case Lc 7) Case 66 >7 Case (c 79

BOIB 0.0 –9.2 + 2.7 0.0 –15 k 1.3

QM A3 –4.1 + 1.1 0.0 –7.0 + 0.6 0.0
N3B 0.0 0.0 –3.8 + 0.9 –2.7 + 0.9

Bole 11.3 &2.8 10.0 + 3.4 0.0 0.0
QN3C 8.9 * 1.2 8.5 & 1.2 9.0+ 1.1 8.7&l.l-

QT 4 –10.5 & 2.7 –10.1 & 2.7 –10.8 & 2.7 –10.1 & 2.7

QM ~3 –8.4 + 3.1 –8.9 + 3.1 –7.6 + 3.1 –8.5 + 3.1
MIC –7.4 k 2.2 –7.7 * 2.2 –7.0 + 2.2 –7.6 & 2.2

~~/v 10.8 / 17 12.5 / 17 14.6 / 17 15.5 / 17

Table 4.1: Results of fitting magnet rolls to vertical dispersion data,
for four different cases. Roll angles are reported in milliradians.

Table 4.1 shows the fitted roll angles in four cases. Note that the solutions con-

tain several degeneracies: the fit cannot easily distinguish the effects of quads which

are close together in betatron phase (such as the quads on opposite sides of CCS
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Figure 4.27: Vertical Dispersion measured on March 18, 1995, prior
to beam-based alignment. Dispersion is displayed with same scale as
September 1994 data ftop), and expanded scale (bottom).
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sextupoles, or QT2A/QT2B), and so the total roll of both magnets in such a pair is

represented by a single quad in Table 4.1 (i.e., the “QN3B” roll angle of -3.8 mrad

in case “C” could actually be -1.9 mrad for QN3A and -1.9 mrad for QN3B). The

same is true for neighboring bend magnets. Note also that a rolled BOIB is hardly

distinguishable from a rolled QM3A, and similarly QN3B and BOIC are hard to

distinguish.

While the four cases in Table 4.1 result in dispersive rays which are nearly indis-

tinguishable, Case “C” is of the greatest interest because it arises solely from rolled

quadruples. Because the FFTB magnets are on movers with a roll-angle degree of

freedom, it is conceivable that the rolls in Case “C” could be at least partially cor-

rected during the next FFTB run. In addition, the quad rolls in any of the cases in

Table 4.1 would give rise to the 1° roll measured at WS3 (see Chapter 3). Figure 4.29

shows the measured dispersion, and the expected dispersion from the rolls in Case

‘(C” including the effects of rolled BPMs.

The presence of uncorrected qv in the FFTB lattice has several implications. First,

the ray used in Figure 4.29 has a value of 140 pm at the FP, which would enlarge

the spot size through dispersion. As we shall see in Chapter 5, the total range of the

global q; knobs is more than adequate to eliminate this problem. Second, the presence

of vertical dispersion at the optical elements creates the possibility of higher-order

chromatic aberrations which limit the achievable beam size at full energy spread. This

possibility will be addressed in Chapter 6, on chromatic studies and bandwidth of the

FFTB. Third, the vertical dispersion at the SD1 sextupoles will cause the sextupole

mover knob for the FP (see Chapter 5) to also change the FP dispersion. We can

measure this effect by noting that the FP value of q~ is 1.3 mrad. Therefore, a 1 mm

waist shift will cause 1.3 pm of q;. Since the design value of ~~ is 100 pm, a 1 mm

move of the waist is quite large, and therefore the change in dispersion of 1.3 pm is

the largest which is likely to occur due to this effect.
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Figure 4.29: Measured dispersion ray(points anddashed line) and Case
“C” fit (solid), described in Table 4.1.

4.4 Lattice Diagnostics

The process of lattice diagnostics is in many respects the opposite of quadruple align-

ment: while the former changes the strength of a quadruple in order to determine

its offset from the beam, lattice diagnostics changes the trajectory of the electron

beam through a region in order to determine the transport properties from one point

to another. From this information, the strengths of individual quads can be inferred.

The traditional lattice-diagnostics algorithm, as performed in linacs and storage

rings, is as shown in Figure 4.30 [50]. A vertical or horizontal corrector is stepped

through a range of values, and the displacements at a downstream BPM are measured

at each value of the corrector. By correlating the position with the corrector, the ~12

from the corrector to the BPM can be determined. This is typically done using a
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Figure 4.30: Schematic of conventional lattice diagnostics for a FODO
array. The beam is offset in the magnet, and the kick thus imparted is

measured downstream.

BPM and corrector separated by 90° of betatron phase, such that the angle kick at

the corrector is converted into a position kick at the BPM

Such a scheme is optimal for a matched FODO lattice, such as a storage ring, ~

in which the set of correctors in a ring span the full range of betatron phases. Due

to the unusual phase-advance properties of the FFTB, it is generally

locate a corrector exactly 90° degrees away in betatron phase from a

or BPM. Therefore, an alternative scheme had to be devised.

impossible to

given magnet

4.4.1 Alternative Lattice Diagnostics Algorithms

Figure 4.31 shows the first approach considered for FFTB lattice measurements. Two

correctors are employed in such a way as to produce a pure position or angle oscillation

at the location of the CCS sextupoles. In this way, an oscillation equivalent to a single

corrector at the correct phase is generated. By producing both position bumps and

angle bumps at the sextupole, both betatron phases are probed. The “zeroth-order”

bump test is merely to ensure that the angle bump closes, and that the position bump

is of equal amplitude at both ends of the —1 transform. Modified versions of this
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Figure 4.31: Schematic of proposed FFTB lattice diagnostics. Two
correctors are used to produce oscillations in each phase, including pure
angle bumps (left ) and position bumps (right).

test can be employed to test a magnification module; and the deviations from perfect

behavior can be used to measure individual quads in the CCS regions.

The bump method described above has several drawbacks, which eliminated it

from serious consideration early on. First, creating a pure position or angle bump

from two correctors requires precise knowledge of the corrector strengths as a function

of current. Tests of the FFTB corrector magnets with beam indicated significant scale

factors (in some cases, over 10%[51]). Second, the tests of quad strengths and –1 -

transport properties relied upon the linearity and scale factors of all BPMs in the

system. Like the horizontal dispersion measurement described in Section 4.3.2, this

is not a nulling test. In order to use the corrector method, both the corrector and

the BPM must have scale factors and linearity known at least as well as the desired

resolution of the quad strength, and the ratio of oscillation size to BPM resolution

must be of the same order. In order to diagnose quadruple errors at 0.170, therefore,

the 1 ~m BPMs must be linear to within O.l% out to 1 mm offsets, and have scale

factors known to O.1%.

A method which eliminates some, but not all, of these difficulties is shown in

Figure 4.32. In this case, the magnet mover is used to create the bump, and the quad

strength is determined by the ratio of the amplitude of the kick downstream to the

amplitude of the motion. The magnet mover positions are externally monitored by

the LVDT system, and the mover system as a whole is calibrated to ~m precision and
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Figure 4.32: Schematic of magnet-mover based diagnostic. The quad
to be measured is moved transverse to the beam, and the kick produced
by the change in position is measured downstream.

O.1% accuracy over its full range of motions [31]. In this case, both the quadruple

being moved and any quads between it and the target BPM are being measured.

However, this test still requires high precision and accuracy from

The technique which ultimately was used in FFTB is shown

this algorithm, several quadruples are moved at one time, in a

all BPMs.

in Figure 4.33. In

pattern which will

produce a closed orbit bump – the BPMs downstream of the last quad will see no

motion if the magnets are at their design strengths. This test is a nulling test, in that

no change on the BPMs is expected if the quads are at their design strengths. The

offsets are small compared to the linear range of the system. In addition, the scale-

factor of the BPMs in use in the system no longer couples to the absolute strength

of the quads, but to the strength errors of the quads. In other words, a 107o scale
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Figure 4.33: Schematic of lattice diagnostics method used in FFTB.
Several quads are moved via their movers simultaneously, in patterns
which will produced a closed oscillation if all quads are at design
strengths.

factor error will not result in a 10% miscalculation of the quad strength, but a 10%

miscalculation in the strength error (deviation between design and actual strength).

In this respect the test is similar in its result characteristics to the vertical dispersion

test described in Section 4.3.2.

4.4.2 Detailed Description of the Algorithm[52]

The lattice diagnostics algorithm has been developed in such a way that data acqui-

sition is performed by the SLC Control

(although the magnet configuration and

analysis is performed offline. This is due

Program, primarily using correlation plots

online model facilities are also used), while

to the large size of the data set which is fit:

because a closed bump generally requires 3 or 4 quadruples moving synchronously,

the deviation of the downstream trajectory is a function of several different quadruple

strengths. In order to separate the effects of the different quads, each quadruple is

included in several different bumps, and the full set of 100 bumps is used to fit

30 quadruple strengths. In addition, each bump is repeatedly cycled across its full

range, and many BPM samples are acquired at each step. Fitting such a large dataset

with so many parameters is de facto an offline twk.

Despite this difference, the lattice diagnostics algorithm bears many similarities
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to the quad alignment and lattice dispersion algorithms described above, both in

acquisition and analysis. The acquisition algorithm is ~ follows:

● Acquire reference orbit with no bumps present

. Select next bump to introduce, maximum amplitude, number of steps, and
number of iterations of stepping to use

● For n = 1 to number of iterations of stepping do

– for m = 1 to number of steps for this bump do

* Set the bump to the required amplitude

* Acquire 50-100 pulses of BPM data for all FFTB BPMs

– End do (steps for this iteration of this bump)

● End do (iterations of this bump)

. Select next bump and appropriate iteration parameters, repeat above until all
bumps are exercised.

Typically each bump would be set to 5-10 different amplitudes, the full pattern

of amplitudes would be performed 5-10 times, and 50-100 pulses would be acquired

at each step of each bump. The analysis algorithm is as follows:

●

●

●

For n=l to number of bumps do begin

—

—

—

—

—

Identify all pulses with bump amplitude=O, select first pulse to be “tem-
porary reference orbit”

Subtract “temporary reference orbit” from other amplitude=O orbits, use
BPM data upstream of bump and at high q point (if necessary) to fit
x, x’, g, g’, 6 for each of these pulses

use theoretical (no-error) optics to subtract jitter from each amplitude=O
pulse; if residual for a pulse is large, discard the pulse; average residuals at
each BPM and add to “temporary reference orbit” to form final reference
orbit

Subtract final ref orbit from all others, fit incoming oscillation as described
above; elminate contribution of incoming oscillation at all BPMs; at each
bump setting compute average and RMS of each BPM, eliminate fliers

Fit correlation of BPM values computed above vs. bump amplitude to
straight line, using BPM RMS as weighting factor; eliminate BPM values
which do not fit straight line

end do

Slope and error of straight line fits, along with X2 of straight line fits, become
the input data for MINUIT fit of magnet strengths.
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Figure 4.34: Relative strength errors, (KnO~,l – ~n..~) /K~Od.l, for
FFTB quads from QN3A in CCSX to QC3 in FT. Result for QT2A is
not shown.

4.4.3 Results of Lattice Diagnostics

The earliest set of data taken with quadruple movers utilized single-magnet open

oscillations. This data determined that the BPM system is operating with an overall

scale factor of 13% (i.e., the BPMs are over-reporting deviations by 1370). This factor,

and variations in same between BPM units, was a prime mover in the decision to use

closed bumps for lattice diagnostics. The BPM scale factor is still needed to reduce

the X2 contribution coming from BPMs inside quads which are moved in a given

bump.

Early measurements using small sets of closed-bump oscillations showed persistent

difficulty in reducing the X2 to reasonable values. It was shown that the difficulty was

a mismatch between the actual energy of the incoming beam and the energy of the
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Figure 4.35: Resolution of FFTB lattice diagnostics algorithm for all
quadruple scanned from QN3A to QC3 (QT2A excepted).

lattice. There is adifference between ascaled quadrupole and a scaled energy, which

is that the lattice between BPMs downstream of the stepped quad is also incorrect.

In a large dataset, this manifests itself with a common strength scaling factor for all

quads. The resolution of the lattice diagnostics measurement to incoming energy is

20-30 MeV (recall that the beam energy is 46.6 GeV). Bump-b~ed lattice diagnostics

are now routinely done early in an FFTB run, in order to correctly set the beam

energy. The energy measured at the beginning of the run is typically high by 100-300

MeV relative to the FFTB design.

Figure 4.34 shows the quadruple strength error, (KnO~.l – ~,,al )/K~o~el, from

a simultaneous fit of over 100 bumps. Note that virtually all quads are within 2

standard deviations of the model (a quad at its model strength has a deviation of

zero in Figure 4.34). Figure 4.35 shows the statistical measurement uncertainty of
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the quad strengths. Figures 4.34 and 4.35 include all quads tip to the doublet, save

for QT2A. The relative strength error reported for QT2A is –0.103 + 0.045. The

reason for the large error is that QT2A and QT2B are too close in physical space to

decouple in this measurement. Note, however, that typical resolutions in Figure 4.35

are 2 x 10-3, with a worst-case of 7 x 10–3 for QC3.

The reason for the large QC3 error is that QC3’S measurement is strongly coupled

to the measurements of the strength of the doublet magnets. The doublet strengths

are arguably the most crucial in the FFTB system, and yet ironically their measure-

ment precision is poor, on the order of 170 for each magnet. The first extraction-line

quad, QPIA, has a precision worse than 3%. The doublet magnets are long, pow-

erful devices set close together. Because of their arrangement on the common table,

the freedom of motion for the magnets is minimal. furthermore, the arrangement

of BPMs downstream of the doublet is far from ideal for this measurement. The

most useful location, the FP, does not have a BPM of any kind (largely because the

relevant real estate is crammed with beam size monitors). A doublet strength mea-

surement would be quite useful because the doublet quads are each unique (unlike

the virtually-identical FFTB standard quads), and are too strong to mini-standardize

when scanned (see Section 4.2.4). In addition, the settings of the doublet which set

the waist at each monitor have never reproduced well from run to run (see Section

5.3.2). However, such a measurement is essentially prohibited by the FFTB geometry.

Measuring Quadruple Roll Angles

A feature of the FFTB latttice diagnostic procedure is the ability to diagnose rolled

quadruples. This is done by introducing a horizontal bump and measuring the

vertical kick impart ed, or vice-versa. For a quadruple with a known R21 and R43,

the out-of plane kick element, R41, for a roll angle O is given by:

R4~ = j Sin 2d(R43 – R21), (4.14)
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and R23 is equal to R41 in this case. For an FFTB standard- quad operating at 300

kilogauss integrated gradient in a horizontally-focusing polarity, Rzl = –O. 19015m-1,

and R43 = O.19397m–1. To lowest order, therefore, we expect that the resolution for

sin 20 will be equal to the resolution for the normal quadruple strength. This will

yield a resolution for 6 which is on the order of 1 mrad.

The difficulty with this measurement is the possibility that the mover axis is not

parallel to the magnetic coordinates of the FFTB. For example, consider a magnet

which is not rolled in some coordinate system, and a mover system which transports

this magnet; and postulate that the mover coordinate system has an angle @ relative

to the magnet, such that a move in the “x” coordinate of the mover by an amount

p causes a translation of p cos @ in the horizontal and p sin@ in the vertical. In this

case, the “effective R41, or R41,eff, is:

R41,.f f = R43sin ~. (4.15)

The only difference at this level between a magnet with roll angle 20 and a magnet

mover with a roll angle ~ is that R43 does not exactly equal ~(R43 – R21). If a mag-

net has a mover with rolled coordinate axes, the roll angle determined by introducing

horizontal bumps will therefore be different from the roll angle determined with ver-

tical bumps; this difference permits the rolled mover and the rolled quadruple to be

distinguished. Note, however, that the difference between R43 and ~(R43 – Rzl) is

only 170 of R43 itself. Unless the roll angle can be determined with l% precision, it

is not possible to tell the difference between rolled movers and rolled magnets. Fur-

thermore, at the level of hundreds of prad, the roll angles of the BPMs themselves

become suspect. The problem of defining a coordinate system for a beamline, and

rolling all devices onto that system at the milliradian level, remains for the present

unsolved.
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Systematic Errors

The role of BPM scale factors in systematically altering the correction applied to the

magnets has been discussed above. As mentioned, a global scale factor can result

in a fractional change in the applied correction, but this problem can be eliminated

through repeated applications of the lattice diagnostics algorithm. Another possible

systematic error is the aforementioned rolled mover system. As shown above, a mover

system with a roll angle @ will produce a move which is scaled by cos @ in the plane

of the bump. This in turn will lead to a magnet strength which is also scaled by cos @

from the actual value. Even large values of ~, such as 10 mrad, result in a systematic

error at the 10–4 level, too small to see with this technique and this dataset. An

individual mover scale factor will directly scale the strength of a magnet (as opposed

to BPM scale factors, which scale the correction to the strength of the magnet). Such

a scale factor is only possible in the case of a common scale-factor for all 3 LVDT’S

incorporated into a given mover. Note, furthermore, that a common scale factor for

all mover LVDT’S will result in all magnet motions having a common scale factor,

and this will be interpreted by the fitting process as a contribution to the BPM scale

factor; only the case of 3 LVDT’S with a common scale factor placed on a single mover

will result in that magnet’s strength fit being scaled. The expected amount by which

a given LVDT may be scaled relative to the ensemble is 0.170 [31], and therefore the

amount by which 3 LVDT’S may be collectively scaled relative to the ensemble is

close to 0.0570.

4.5 Sextupole Alignment

Once the linear optics elements of the FFTB line have been measured in strength and

alignment, the CCS sextupoles (SFIA/B and SD lA/B) are excited to magnetic field

levels near their design values (J Sdl = 33,000 kG/m, where design = 32,500 kG/m

for Laser-Compton BSM operation). Because horizontally-misaligned sextupoles pr~
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duce normal quadruple effects (causing waist shifts and horizontal dispersion at the

FP), and vertically-misaligned sextupoles produce skew quadrupole effects (causing

coupling and vertical dispersion at the FP), it is necessary to move the sextupoles onto

the line through the quadruples determined in Section 4.2. This, in turn, requires a

beam-based alignment technique for sextupole magnets.

The technique used at the SLC Final Focus for sextupole alignment is to measure

the waist location, coupling, and dispersion at the IP for two or more levels of sex-

tupole excitation [53]. Such an approach was considered for the FFTB as well. The

method has the advantage of directly sampling the effects which must be cancelled

(quadruple aberrations). The disadvantage of the technique is that it requires the

ability to measure the beam at the FP as a prerequisite, which implies that some

degree of tune-up be performed prior to this alignment (tune-up which becomes to

varying degrees obsolete once the sextupoles are moved into position). The technique

also becomes more sensitive as the FP beam size decreases and the horizontal and

vertical divergences increase. Thus the FP-based technique would benefit from use

of the experimental beam-size monitors, which in turn requires that all BSM-related

overhead and preparation be absorbed prior to sextupole alignment.

The FFTB’s arrangement of sextupoles on movers invites an alternative tech-

nique, which depends only on the BPMs and magnet movers7 can be performed at

low divergences and at any stage of tune-up, is relatively quick to

extremely simple in design and execution.

implement, and

4.5.1 FFTB Sextupole Alignment Method [54]

Consider the vertical magnetic field, Bg (z, y), in a magnet with (potentially) nonzero

dipole, quadruple, and sextupole terms. The field as a function of coordinates

(zn’ yn)’ where x~ and y~ are the coordinates relative to an arbitrary origin (such

as the origin of a magnet-mover system), is given by:

BV(x~, yn) = BOV+ GNX~ – GSy~ + SN(X~ – y:) – 2SSX~y~. (4.16)
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Here GN and G~ refer to the normal and skew components of the quadruple field,

respectively; and SN and SS refer to half the normal and

sextupole field, respectively (see Appendix B for details of

apply a coordinate transformation to a different origin:

Xm=x+xo, Ym=v+vo,

where x and y represent the distance from the new origin

skew components of the

this expansion). We can

(4.17)

to the point of interest,

and X. and go the distance from the mover origin to the new origin. Substituting

Equation 4.17 into Equation 4.16 allows us to expand and collect terms as follows:

~V(X, y) = ~Oy + GNXO – GS~O + SN(X: – y:) – 2SSXOy0 (4.18)

+ GNx – Gsg + 2SN(xx0 – V~O)– 2SS(xg0 + ~xo)

+ SN(x2 – y2) + 2SsXy.

A further collection of terms can be made, in which we replace all constant terms .

with a single term, Blv, and gather terms proportional to x and to y:

~~(x, Y) = ~ly

+ X(GN + 2SNX0 – 2SSYO) – Y(GS + 2SN% + 2SSXO)

(4.19)

+ SN(x2 – y2) + 2SSXy.

We can now require that in the current coordinate system, the coefficient of x and

the coefficient of y are identically zero. In this coordinate system there is no gradient,

and the coordinates (xo, yo) represent the transformation from the origin of the initial

coordinate system to the center of the sextupole, defined as the point at which the

gradient vanishes. After some algebra, we find:

–GNSN – GSSS
Xo =

2(s; + s:) ‘
(4.20)

SSGN – GsSN
y. =

2(s; + s:) .
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We may also derive the values of the original GN and GS in Equation 4.16:

GN = 2SSyo – 2SRX0, Gs = ‘2SNy0 – 2SSX0. (4.21)

We can also rewrite Equation 4.16 in another fashion, that of a parabola in x:

Bv(xm, gm) = sN(xm – ~)2 + C, where (4.22)

~ = 2SSy~ – GN
E xE,

2SN
and

(

2SSy~ – GN 2
~ = Boy – Gsy~ – SNy~ –

)2SN .

Equation 4.22 indicates that if By is measured as a function of Xn, the correlation

between the two will be parabolic, with extremum occurring at x~ = 2ss~;~GN. Let

(XI, YI) be defined as the initial position of the magnet in question, such that the

initial (xn, y~) are given by (zl + X., yl + yo). In this case, the extreme value of the

parabola, xE, can be shown to be given by:

Ss
‘E=xo+ylK. (4.23) ~

The measurement of By can be practically accomplished by moving the sextupole

across the incoming beam via its mover. This produces a horizontal kick which

translates to horizontal offset in position downstream. By plotting the beam position

which minimizes or maximizes the horizontal BPM signal is xE

Note that in the case of SS -0, scanning the magnet horizontal

give XE

at a downstream BPM versus the mover position, a parabolic correlation can be seen.

The mover position

from Equation 4.23.

position will always

is no more than 107o of the

1 mm, we find that xE may

Let us now assume that

and rename this point X2. In analogy with Equation 4.22, we can write an equation

for By as a function of yn:

= Xo. If we assume a skew sextupole contribution which

normal sextupole, and a magnitude of yl no larger than

deviate by 100 pm from X.

the magnet is moved to position xE from Equation 4.23,

BV(Zm,Ym) = ‘sN(ym – B)2 + c, where (4.24)
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–2Ssx~ – GS
B=

2s~ = YE, and “

C = BOY+ GNXm+ SNX~ –
(

–2SsX~ – GN 2

)2SN .

Some manipulation reveals a relationship between yE, the value of y~ at which the

extreme value of BV occurs, and go:

(-)s:
‘E=yo+yls; ‘

(4.25)

The error contribution in this case is reduced by a factor of SS/SN, as we have

assumed that the magnet was moved to within yl ~ of Z. in the horizontal. It is

evident that repeated iterations of this procedure will suffice to converge (XE, yE) to

within any desired precision of (x., yo).

During FFTB sextupole alignment, the CCS sextupoles are stepped from -1.4

mm to +1.4 mm in the mover coordinate system, in steps of 400 pm. At each mover

position, the downstream BPMs and the BPMs adjacent to the sextupole are read out .

for 9 pulses. This allows sufficient redundancy to discard individual bad pulses, and

does not significantly increase the time needed to perform sextupole alignment (as the

time needed to reposition the magnet is the rate-determining step). The procedure

calls for only one iteration of horizontal and one iteration of vertical alignment per

magnet. Equations 4.23 and 4.25

systematic misalignments, in the

is considered below.

show that such an algorithm creates the potential for

presence of nonzero skew sextupole. This possibility

Expected Resolutions and Systematic Errors

In order to determine the expected resolution of the parabolic fit to a sextupole mover

scan, it is necessary first to consider a quadratic fit:

xBP~ = ao + alx~ + a2x~, (4.26)
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where XBpM is the beam position at the BPM and x~ is the sextupole mover position.

We can construct a curvature matrix for the polynomial fit:

[

E .;;M x& E&

1

as= E* E& E& ~ (4.27)

E& z& E&

Because the pattern of x. steps is symmetric about zero, all odd-powered sums in

Equation 4.27 are identically zero. Substituting the step pattern described above for

XS and assuming 1 pm for the resolution aBPM allows us to invert as into an error

matrix, es. For the sake of brevity, only the relevant terms of c. are reproduced here:

c~(al, al) = 1.49 x 10-7- o;, ~S(a2, a2) = 2.33

Recalling the conversion from ai to parabola

find that B = –&, and therefore

1/.

x 10–13pm (‘2 e o;, &s al, a2 )=0.

(4.28)

coefficients y = A(x – B)2 + C, we

(4.29)

Given the values of al and Oz in Equation 4.28, the error term proportional to B con-

tributes when \B[x lmm, and represents the familiar difficulty of fitting a parabola

center when one wing of the parabola dominates. For this analysis the “one-wing”

term will largely be ignored.

All that remains in determining the value of B is to determine the value of A, the

parabola curvature parameter. “R’ represents the response of the beam measurement

at the BPM to the movement of the sextupole, and can be approximated by A x

K~R~t+BpM, where K. = ~, the integrated sextupole strength divided by the

m-agnetic rigidity. For FFTB sextupoles at integrated second derivative ( “BDES” )

of 33,000 kG/m, K, = 10.61 m–2. Given the choice of downstream BPMs (based

largely on experience, observing which BPM gives the best resolution for a given
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sextupole), the values for A are: 2.23x 10–4pm-l for SF IA, 9.86 x 10–5pm–l for SFIB,

4.24 x 10-5pm-1 for SD IA, and 6.00x 10-5pm-l for SDIB. When we substitute these

values for A into Equation 4.29, we obtain the

alignment procedure:

following resolutions for the sextupole

asFIA = 1.7pm, osFIB = 3.9pm, asDIA = 9.lpm, asDIB = 6.5pm. (4.30)

The resolutions quoted above are only appropriate for BPM resolution of 1 pm;

however, no attempt has been made to fit out incoming jitter from the BPM values,

and 9 BPM values are read in at each mover position. The effect of this is to worsen

the resolution by a factor of 0jit/3j where Ojit is as shown in Figure 4.3. Including

this factor, the expected statistical resolution falls to:

osFIA = 3.8pm, asFIB = 3.9pm, asDIA = 12.lpm, osDIB = 34.7pm. (4.31)

that, while the sextupole alignment resolution with jitter and 9 pulses per moverNote

value remains wit hin the global tolerances quoted in Table 2.3, significant improve-

ment is possible for SDIB with reconstruction of incoming trajectories.

In Equations 4.23 and 4.25, the systematic error arising from the initial position

of the magnet is noted. The maximal systematic error is estimated with a skew

sextupole content of 107o relative to the normal sextupole content. In Appendix B,

the technique for sextupole field measurements with a stretched wire is described. The

measurement includes a determination of the roll angle of the sextupole field relative

to the split planes (i.e., the roll angle needed when the magnet is installed, “upright”

relative to its mechanical coordinates, to make the skew sextupole field vanish). The

maximum value found for this angle is 2.5 mrad. Assuming an installation error

of 2.5 mrad as well, the maximum roll angle of the sextupole field with respect to

the external coordinate system is 5 mrad. This gives a skew component equal to

SN sin(30), or 1.5%. For a 1 mm initial offset of the magnet, this translates to 15 pm

systematic error in the initial determination of Z.. With a second pass of horizontal

alignment following the vertical, this error can be reduced below 1 pm.
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source of systematic error is a magnet mover which moves

relative to the ‘ ‘.
1., . ...1.

case a sextupole magnet with no skew

relative to the magnetic center:

bearnhne coordinate system. Uonslder in this

component, sitting at some position, (rl, gl ),

Bv = SN(Z:– y;) + B~. (4.32)

Now assume the magnet mover horizontal axis is set at an angle O relative to the

magnet ic field axis. When the magnet is translated by an amount p along this axis,

the translation in x is p cos 0, the translation in

magnetic field is given by:

By = B~ + s~ [(Z1+pcoso)2 –

y is psin 0. At this location the

(g, + psin0)2] . (4.33)

A certain amount of manipulation gives a magnetic field equation in terms of p:

BV = B. + SN(p – po)2, where p. = yl sin~ – xl COSO. (4.34) ~

If the magnet mover is now positioned at the location p. along its direction of travel,

the resultant coordinates in the magnetic coordinate system are:

x = X1(I –COS20) +ylsin Ocos O, y = VI(1 +sin20) – xlsin~cos~. (4.35)

For any reasonable roll angle, the COS20 contribution to the x position can be ignored.

The significant contribution is that the new x position is different from the magnetic

center position by ~ sin 20. For an initial offset of 1 mm, and a mover roll angle of 10

mrad, the accepted value of x differs from the center position by 10 pm. Based upon

lattice diagnostics, a 10 mrad angle for this quantity is large, but not implausible.

Note that, as in the case of skew sextupole content, this error depends upon the initial

offset of the non-scan plane from the center, and can easily be eliminated by iterating

the tuning procedure.
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Figure 4.36: Horizontal BPM reading from QM2 BPM as a function of
SDIA vertical mover position.

4.5.2 Results of Sextupole Alignment

Figure 4.36 shows arepresentative BPMposition versus sextupole mover scan. The

characteristic parabolic dependence is clearly visible, along with the pulse- to-pulse

jitter discussed above. The scan in Figure 4.36 has a fitted center resolution of 8 pm.

Note that the concavity of the parabola is a function of sextupole polarity and

transport properties from the sextupole to the BPM. In the FFTB, all sextupoles

have the same polarity; therefore, for BPMs separated by m or less in betatron phase

from the sextupole being scanned, the expected concavity is “up” for vertical mover

scans and “down” for horizontal. During the first FFTB sextupole alignment tests

in April of 1994, the first CCSY sextupole (SD 1A) was found to have the opposite

concavity pattern. Gaussmeter tests subsequently confirmed that the sextupole had
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Figure 4.37: Resolution of sextupole alignment procedure from March
1995, for both horizontal (dark) and vertical (light) measurements.

been miswired.

Figure 4.37 shows the horizontal and vertical sextupole alignment resolutions from

March of 1995. While most results were within a factor of 2 of the expected resolution,

the horizontal resolution for SDIA was considerably worse than expected. This is

because the horizontal distance between the center of the mover system and the

position which centered the magnet on the beam was almost 1 mm, and the second

term in Equation 4.29 became significant.

Once all local diagnostics have been performed, and corrections applied, the FFTB

opt ics can be adjusted for large FP angular divergences, using the incoming beam

matrix measured in Chapter 3 to compute settings for the beta matching quadruples.

The match is verified on WS2 and WS3, and the final tuning is then performed using

the FP beam size monitors. This tuning is the subject of Chapter 5.
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Chapter 5

Global Beam-Based Diagnostics

Once the local tuning procedures of Chapter 4 have been performed, and the incoming

beam has been measured and matched via the techniques described in Chapter 3, the

only remaining diagnostic is the beam size at the focal point. The design spot size at

the focal point of a linear collider is the smallest of the entire machine, and the only

one which sees the entire beamline up to the collision; it is therefore de facto the only

point relevant for final tuning 1.

Tuning the FP spot size implies several pre-requisites:

monitors which may be used to memure the beam; a finite

are to be tuned by minimizing the measured spot; and orthogonal knobs for changing

one or more beam size

list of aberrations which

the strength of each of these aberrations.

Section 2.5.4 described the two exotic spot-size measurement devices present at

the FFTB focal point, and Section 2.5.2 described WS6A and WS6B, the more con-

ventional solid-wire measurement devices. All of these play a role in the tuning of

the final spot, and their uses are described more fully in Section 5.2 below.

Table 2.2 lists the principal aberrations which are expected at the FFTB, and the

k~obs which are expected to cancel same. Note that Table 2.2 includes only those

1It is conceivable that a final focus system could be designed with a tuning image
downstream of the IP [55], which would see the entire beamline; only the IP, however,
will be sensitive to the smallest aberrations.
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aberrations which are inherent to the FFTB, i.e., those which

the strength, alignment, or construction of the magnets in the

arise from errors in

FFTB itself. Three

additional errors are possible in the FFTB. The horizontal and vertical P* can be mis-

set, and this arises primarily from errors in the measurement of the incoming beam

and/or errors in matching verification. An additional error is coupling between x and

y at the FP, which can come from the incoming beam or from a roll angle in the beam

size monitors, but not from errors in the FFTB itself. As discussed in Sections 5.2.2

and 5.2.3, the Laser-Compton BSM is potentially subject to errors in roll installation,

while the Gas-Ion BSM is immune to same. WS6A is, of course, also subject to these

errors, but since WS6A cannot be used to measure the minimum spot size this is

not a critical limitation. Corrections for each of these three additional errors are

possible within the limits of FFTB optics. The betatron error can be corrected

with a magnification “Irwin Knob” of the type discussed in Section 3.3. The xy

coupling or monitor roll is more difficult. The FFTB contains 3 skew quadruples,

such that the incoming coupling can be tuned to eliminate xy and x’y coupling at the

FP (corresponding to Irwin notation elements b* and d*, see Appendix A), and the

third skew quad can be used to eliminate the effects of rolled quads in the FFTB. In

practice, the location of QSM2 (see Section 2.1.2) is nearly degenerate with QSM1 for

all reasonable strengths of Q5 through QA1. A knob for tuning the xy coupling at the

Laser-Compton monitor has been devised which uses QSM2 in the beta match and

QS3 in the final transformer; essentially, the two skew quads fight one another, and

the QSM2 also gives a very small amount of b*. This knob is sufficient to diagnose a

roll angle in the monitor, and to correct approximate ely 0.5°, according to simulation.

For larger roll angles, the knob begins to break down: as the determinant of the

out-of-plane ~ sub-matrix diverges from zero, the determinant of the in-plane sub-

matrices diverge from 1, and the in-plane beam begins to change. One way to think

of this is that the first skew quad produces coupling between the xx’ and yy’ phase

planes; the second skew quad also produces such coupling, but the two phase planes
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are already coupled by the first skew quad. Thus the combined effect of the two skew

quads is to cause a net change in the downstream xx’ phase plane which depends

upon the upstream xx’ phase plane.

5.1 Generation of Global Knobs

Horizontal and Vertical Waist: The FFTB waist knobs

magnet strengths. The range available is considerable: in

use the QC2 and QC1

1993 operations, these

knobs were used to move the waists onto WS6B, 75 cm downstream of the Laser-

Compton monitor. These knobs are specific to particular FT and final doublet con-

figurations; in particular, different QC2 and QC1 coefficients are needed to move

the waists for each of the three possible FP’s (Laser-Compton, WS6A, Gas-Ion).

While the knobs are designed to be orthogonal and linear around zero, they are

non-orthogonal and not icably nonlinear outside of *5 cm motions.

Horizontal and Vertical Dispersion: Horizontal and vertical dispersion knobs

use correctors H5D and V5D (in the final transformer) to displace the beam in the final

doublet. The strong chromaticity of the doublet generates q* in the appropriate plane.

Knobs are orthogonal and linear up to the corrector strength limits (corresponding

to q: = *4.9 mm, q; = +691 pm).

Coupling: The x’y coupling term

aberration in nearly pure form (due to

2 — 2 + R~a~2. In this, the R2 knob functionscalibrated in units of R2 [56], where Og — O.

is controlled by QS3, which produces this

its proximity to the doublet). The knob is

similarly to an “out-of-plane waist” knob [57]. The knob range is up to R2 = *33 mm,

which would enlarge the vertical spot by almost 6 pm.

Sextupole: The four sextupole aberration knobs are determined by first-principle

calculations of the optics. A normal sextupole will produce a horizontal kick given

by:

Ax’ = K.(X2 – g2), Ay’ = –2K~xy, (5.1)
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where KS = ~. This kick will then propagate
8

to the FP: -

Ax* = RIZK,(X2 – y2), Ay* = –2R34K.XY, (5.2)

where the x and y on the RHS of both equations is the position of the test particle

at the sextupole. We can convert this into the angle of the test particle at the FP

by noting that the transport from almost any point in the beamline to the FP is

parallel-to-point, therefore:

x~ezt =

where R12,34 are the terms in

–R12X’*, ysext = –R34Y’*, (5.3)

the transport matrix from the sextupole to the FP.

Combining this expression with Equation 5.2 yields:

Ax* = –KS(R~2X’*2 – R12R~4y’*2), Ay* = +2 K. R12R~4x’*y’*. (5.4)

We see that a normal sextupole produces two aberrations: one aberration propor- .

tional to R~2, which enlarges only the horizontal beam size; and one proportional to

R12R~4, which enlarges horizontal and vertial sizes. A suitable combination of two

such sextupoles can be used to produce the two aberrations independently. Similarly,

the effects of a skew sextupole on a test particle are given by:

Ax” = +2KsR:2R34X’*Y’*, Ay* = ‘K~(Rf2R34x’*2 – R:4y’*2) . (5.5)

Thus the skew sextupole gives rise to two vertical aberrations, one of which has the

same dependencies as a single horizontal aberration. Two skew sextupole magnets can

therefore be adjusted in combinations which excite only one of the two aberrations,

and hold the other fixed.

The approximation of linearity and orthogonality for these knobs is good over

their entire range. The range of adjustability (starting with all sextupoles at zero)

is: NSX~ (normal sextupole, x and y aberration), *1.3 units; NSX_YX, *2.7 units;

SSX_YX, +1.8 units; SSX_Y, *1.7 units. The knob scales are adjusted such that
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1 “unit” of any knob will enlarge the beam size by 41% of u~e~z~n;in other words,

turning the knob by 1 unit will add 1.0 o~e~i~~in quadrature with the design spot.

With the exception of NSX~, the knobs are scaled based on their effects on the

vertical beam size.

Chromaticity: Because the FFTB sextupoles are not interleaved, the horizontal

chromaticity may be adjusted by changing the SF1 strengths only, while the vertical

may be adjusted by changing the SD 1 strengths. As shown in Figure 2.11, the uncor-

rected chromaticity of the FFTB line is enormous; therefore, the range of correction

is similarly enormous.

The global tuning knobs described above have several operational difficulties. The

waist knobs are difficult to scan reproducibly because of magnetic hysteresis effects,

and because the required step sizes are quite small. The dispersion knobs produce

steering in the FT sextupoles, introducing additional normal and skew quad effects,

and also produce orbit changes in the extraction line. For these reasons, the FFTB

also makes use of a set of sextupole mover knobs 2. These knobs make use of the normal

and skew quad effects generated when a beam passes through a normal sextupole off-

center. Because the FFTB CCS sextupoles are all in phase with one another, the

linearity and orthogonality of these knobs holds for larger ranges – in effect, the

sextupoles do not “see” the effects of upstream sextupole translations. In addition,

the sextupole movers operate without hysteresis, and with micron precision, which

enhances the nettability and reproducibility of the knobs.

The knob coefficients can be calculated by simulating the effect of a thin quadruple

at each of the sextupole locations. The quadruple will produce waist shifts, coupling

and dispersion at the FP, and a linear correlation between quad strength and aberra-

tion derived from linear optics. The thin quad strength is then converted to sextupole

offset to determine the transformation from sextupole motion to aberrations at the

FP. This relationship is inverted to obtain the transformation from desired aberration

‘The sextupole mover knobs were proposed by K. Oide.
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to

of

sextupole motions, M.

There are four CCS sextupoles, each of which may be moved in x or y, for a total

8 possible knobs. In practice, five knobs are used routinely (x and y waist, x and

y dispersion, x’y coupling), while a sixth quantity (second-order dispersion, T166) is

held fixed. While therange ofeachknob is quite considerable, thestrengths of the

sextupoles ultimately may need to be varied to minimize the chromaticity. Therefore,

some understanding of the interaction of sextupole strength with the mover knobs is

required before use.

Consider the horizontal motions of the sextupoles, and the normal-quadrupole

aberrations arising therefrom (waists, qr, T166). The relationship between these quan-

tities can be written as a matrix equation:

SFIAX

SFIBX
\ =

[JSDIAX

SDIBX

2.515

2.857

\

–1.028

0.903

~ = Mi.

The first column of M shows the

second, one mm of vertical waist,

5.055 93.69 –8.425

2.695 –93.69 8.425

–15.79 –357.1 –41.62

–28.57 357.1 41.62

> or (5.6)

moves needed for 1 mm of horizontal waist; the

etc. The knob units are all mm, and the mover

units are all pm. We can invert this relationship:

~ = M-13. (5.7)

Increasing the strength of the SF1 sextupoles by fraction ~is equivalent to multiplying

the first two columns of M-l by a constant l+~; similarly, increasing the SD1 strength

by fraction d will increase the third and fourth columns of M-l by (1+ d). Let W be

defined as the matrix which is formed by these transformations to M-l. When the

mover knobs are incremented, the driving software will use M to move the magnets,

but the matrix W converts these moves into real changes in the beamline:
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The product WM contains all information about the scaling and crosstalk of the

hard- wired knobs due to sextupole strength changes:

WM =

l+f

+o.oo4(f – d)

–2.83 X 10-3

X(f–d)

–1.09(f – d)

–1.3 x 10-2

X(f–d)

1.448(f – d)

l+f

-o.oo4(f – d)

7.52 X 10-3

X(f–d)

–8.6 x 10-2

X(f–d)

o

0

l+f –5.3 x 10-2

–o.403(f – d) X(f–d)

l+f
–4.48(~ – d)

–o.597(f – d)

(5. 9) .
Equation 5.9 shows only three cross-talk terms which are non-trivial: (WM) 12,

(WM)31, and (WM)A3; these terms relate the crosstalk from the y-waist to the x-

waist, from the x-waist to q:, and from q: to T~GG,respectively. The (WM) 12 is not

significant because typical vertical waist motions are hundreds of microns, while ~~ =

10 mm. Similarly, while (WM)43 could potentially increase the T~G6by millimeters,

this still only amounts to a horizontal beam size increase of nanometers at the full en-

ergy spread. The only mixing term of concern, therefore, is (WM)31, which increases

the horizontal dispersion if the horizontal waist is not set to zero. Note further that

if f = d, corresponding to changing both sextupole pairs by the same fraction during

chromaticity scans, then Equation 5.9 reduces to scaling all the knobs to 1 + ~ of

their set values.

- How far may the sextupole mover knobs be moved from their zero (aligned) po-

sit ions? In order to answer this question, it is necessary to determine the maximum

value of f needed to constrain’ the chromaticity. Simulation studies have shown that,
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Knob rl’ot al Range Maximum RMS value from—
Set Value sext. alignment

x waist *400 mm k32 mm 2.28 mm
y waist k35 mm *435 pm 640 pm

7: A2.8 mm *3.2 mm 38 pm
n: 41.6 mm ●104 Mm 17 pm

fl; +46 mm *1.9 mm 490’pm
*
1cc &24 mm 4629 mm 372 urn

Table 5.1: Range considerations forsextupole mover knobs. The total
range is determined by allowing the sextupoles to be scanned up to 1
mm from their aligned positions; maximum set value is derived from
the “scan with impunity” criterion in the text; the RMS value is the
quantity of each aberration caused by the finite sextupole alignment
resolutions in Figure 4.38.

at the design energy spread of 0.370, a scan of *670 of the sextupole strength is suffi-

cient to determine the sextupole strength which nulls the chromaticity to within the

tolerance, assuming a BSM with 107o resolution. Similarly, a scan range of *4.670 is

required to null the vertical chromaticity to within the tolerance. Any knob which

is not set to zero, therefore, will become 670 stronger at one extreme of a horizontal

chromaticity scan, and 670 weaker at the other; and similarly the vertical chromaticity

scan will change the strength of the knobs by +4.670 and -4.6Y0.

The limits on the sextupole mover knobs can be determined by applying a “scan

with impunity” tolerance: over the total range of the sextupole scan, changes in the

strengths of the mover knobs do not change the FP spot size by more than 270, and

therefore the chromaticity scans can be considered unambiguous. With the expected

beam conditions, this means that the horizontal waist can shift by up to 2 mm, the

vertical waist can shift by up to 20 pm, and q$ can shift by up to 113 pm. Therefore,

2 mm represents 6% of the maximum setting of the horizontal waist knob, 20 pm

represents 4.670 of the maximum setting of the vertical waist knob, etc. The full

ranges of the sextupole mover knobs are shown in Table 5.1.

One other factor in the use of sextupole mover knobs is that the sextupole align-
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ment procedure in Chapter 4 has a finite resolution, shown in Figure 4.37. Therefore,

the residual incoherent misalignments of the sextupoles after beam-based alignment

will give rise to waist shifts, dispersion, etc. The expected RMS values of these aber-

rations from residual misalignments are the last column of Table 5.1. For most of

the knobs, the RMS aberration from this source is small compared to the maximum

value of the knob which is allowed. This is not true for the vertical waist knob: the

RMS waist shift from misalignments is 50% larger than the “scan with impunity”

maximum value. This introduces ambiguity into the sextupole scans. Because of

this, the chromaticity is measured via a different procedure, described in Chapter 6.

During the initial tuning of the FP spot, the value of a given sextupole mover

knob which minimizes the spot size is frequently out of the allowed range shown in

column 2 of Table 5.1. In this case, the desired value of the mover knob is converted

to an equivalent magnet knob, which is then set to minimize the spot. Thus, while

the mover knobs are always used for FP scans, only small increments of the knobs

are applied.

5.2 ~ning on the Beam Size Monitors

Once a complete set of multiknobs is defined for each set of beam size monitors, the

global tuning procedure can begin. This tuning takes

each monitor, corresponding to their various designs.

somewhat different forms on

5.2.1 ~ning on WS6A

In order to prevent breakage of the 4 pm carbon wires which make up WS6A, it is

necessary to maintain beam sizes such that O%ay

leads to a conundrum: how can one guarantee that the beam sizes are a priori large

z 3pm2 (see Section 2.5.2). This

enough to measure with the wires without first making such a measurement?

In early FFTB runs, no systematic attempt was made to answer this question,
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Figure 5.1: Use of WS6A to tune aberrations. In this scan, the vertical
waist has been moved off the wire such that the minimum spot seen by
the wire is 1.2 pm, while the focused spot is close to 300 nm.

and as a result several wires were in fact broken. During this time it was noticed

that the strength of QS3 needed to optimize the beam size on any monitor never

exceeded t 1 kilogauss. For later runs, a technique was developed which allows the

beam to be tuned on WS6A without breaking any wires, by first setting QS3 to 10

kilogauss to ensure that the vertical beam size is large enough to prevent breakage.

The aberrations (waist, dispersion, coupling) can then be tuned, so long as at least

one aberration remains large enough to maintain the beam size. For example, after

setting QS3 to 10 kilogauss, the value of QS3 is slowly reduced until the beam size

at WS6Ay reaches 2 pm. At this time the waist knob is moved until the beam size

reaches 4 pm, and the coupling is scanned. Figure 5.1 shows such a scan. The

technique works because the location of the minimum of the parabola depends upon

the measurements in the wings of the parabola, and not the measurement of the
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minimum.

What is the advantage of tuning the beam size on WS6A? Sections 5,2.2 and 5.2.3,

below, note among other things the difficulty of acquiring a signal on the more exotic

beam size monitors. The Laser-Compton monitor, in particular, has a very small

dynamic range - the “Small-y)’ mode can measure reliably only between 45 and 200

nanometers. The process of obtaining a 200 nanometer spot becomes a potentially

painful exercise in bootstrapping, unless the total aberration content at the waist can

be reduced before looking for a signal at the BSM. The waist can be moved to WS6A,

at which point the dispersion and coupling can be minimized. The optics needed to

focus the waist at WS6A and either of the two beam size monitors are sufficiently

similar that this technique allows reduction of the two aforementioned aberrations,

and increases the likelihood of capturing a signal in the Laser-Compton or Gas-Ion

BSMS with only waist scans. While this technique has been developed too recently to

be fully exploited, future FFTB runs will certainly utilize it for increased efficiency.

One difficulty encountered in using the WS6A wires is that the wires are fixed in

position; WS6A tuning is always preceded by several wide scans used to find the wire

clusters. This is especially problematic in the vertical, where the corrector magnet

which scans the beam across the Laser- Compton BSM’s interference pattern is used

to scan the beam across the wires. The total range of motion is quite small, and

frequently either the horizontal or vertical wires have not been located at all due to

installation alignment difficulties. This problem is being addressed by a redesign of

the wire scanner forks: the vertical yoke will retain 50 pm wire spacing but will be

strung with 20 or 30 wires, while the horizontal yoke spacing will be increased to 100

pm [58].

5,2.2 Laser-Compton Beam Size Monitor

In order to tune the electron beam on the Laser-Compton Beam Size Monitor, it is

first necessary to tune the monitor itself, most particularly the many laser pathways,
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Figure 5.2: Scan of a single laser pathway with the electron beam, for
transverse alignment of the laser pathway. Note that the size of the
resultant Gaussian is simply the RMS size of the laser.

the Nd:YAG laser itself, and the signal-to-noise performance of the system. Each of

these is discussed below.

~ning the Laser Pathways:

In order to form the interference pattern shown in Figure 2.13, it is essential to

cross the two laser pathways at a point in space; and furthermore, to ensure that the

point is also a point along the path of the electron beam. This involves a transverse

alignment, and also a longitudinal alignment. Each laser pathway includes at least one

mirror which may be rotated in two degrees of freedom to accomplish this alignment.

The total system also includes mirrors used for the alignment of the incoming laser,

mirrors for feedback on the laser position, etc. These additional mirrors and their

functions are beyond the scope of this discussion.

Transverse alignment of the laser pathways is done explicitly with the electron
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beam.

Figure 5.3: Loss of transverse alignment of
relative to the electron beam (oval) results

the Laser-Compton BSM
in both reduced modula-

tion depth and reduced average intensity, since one laser pathway now
contributes relatively few photons in the path of the electron beam.

The shutters inside the BSM are adjusted such that only one laser pathway is

available (thus no interference pattern is formed); the electron beam is scanned across

the laser path, and the photomultipliers tube downstream is read out. The resulting

pattern of the detected photon intensity vs. electron beam position is a Gaussian

distribution, with RMS width given by the width of the laser beam at the FP, and

offset given by

by the fit, and

Note that the

the misalignment. The laser path is moved by the amount indicated

the scan is repeated until convergence. Figure 5.2 shows such a scan.

RMS width of the laser is only 25 pm. Earlier operations with the

BSM used a larger laser “target”. The smaller laser size at the FP results in higher

photon intensities at the FP and lower intensities at the lenses in the BSM, but also

makes the alignment more critical.

- All of the laser pathways may be aligned in turn. This alignment needs to be

repeat ed periodically during the course of a day. As Figure 5.3 shows, the diagnostic

signal that triggers transverse ‘alignment is weakening of the average Compton signal
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Figure 5.4: Longitudinal alignment of the Laser-Compton BSM. A slit
is inserted into the path of the lasers, which prevents the laser from
passing through if it is more than 50 pm from the slit center (case
(b)), but permits it to pass through and strike a photodiode otherwise
(case (a)). This constrains all laser pathways to meet at a common z
location

the PMT.

Longitudinal alignment of the laser pathways is done initially without the electron

beam. A slit is introduced into the center of the FP chamber (Figure 5.4); the laser

longitudinal motors are stepped, and the laser intensity in a photodiode across the

cavity from the mirror is read out. The slit width is 100 pm, and the photodiode

intensity is nearly constant as long as the laser beam is within the aperture; the

center of the flat-top distribution is determined manually. Each of the laser pathways

is aligned in turn in this fashion, and the slit is removed.

Note that the longitudinal alignment described above does not guarantee that the



beams are longitudinally aligned at the location of the electra beam. A second pass

of longitudinal alignment is required, in which one of the laser pathways is moved,

and the beam size measured as a function of the waist knob. The minimum spot

size from this procedure occurs when the longitudinal overlap of the laser pathways

is maximized.

One important factor in the longitudinal alignment is that poor longitudinal over-

lap does not reduce the average signal seen by the PMT; rather, the sinusoidal modu-

lation is reduced because the interference pattern is weak or missing. Therefore, such

a misalignment will result in systematically enlarged spot size measurements.

Wning the Nd:YAG Laser:

The primary features of the laser oscillator itself which require tuning are the

power output, timing, and spatial and temporal coherence. These are primarily

tuned in the laser shack itself, with the exception of the timing of the laser pulse

with respect to the electron beam. The relative timing is done by scanning the laser

trigger time and maximizing the PMT signal from the electron beam-laser interaction.

While reduced laser power output results in poor signal strength, spatial and temporal

coherence of the laser result in systematic errors which are discussed in Section 5.2.2.

~ning the Backgrounds:

The strong dependence of the Laser-Compton BSM upon the maximum and min-

imum heights of a sinusoid implies that backgrounds, which will tend to “fill in” the

minimum, are to be avoided at all costs. This is done by adjusting the collimators

and the extraction orbit of the beam to minimize the signal seen on the PMT GADC

(Gated Analog-to-Digital Converter) when the laser is absent. In the May 1994 FFTB

run, a major improvement was made by designing a “low-noise” extraction optics, in

which vertically-focusing QP1 and QP2 quads were run at full strength to reduce the

size of the electron beam in the other extraction quads. In practice, it is possible to

reduce the background to as few as 20 counts, alt bough 35 is more common. The

average Compton signal seen during the September 1994 FFTB run, with all systems
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Figure 5.5: Laser-Compton beam size measurements with (left) and
without (right) pulse-to-pulse background subtraction. Note that the
pattern on the right is systematically higher.

up and a near-maimal electron population in each bunch, was in the vicinity

of 100 counts, with 200 counts possible and expected during later runs. Clearly, a

background of 35 is far too large without some correction scheme.

Currently the Laser-Compton BSM operates with a background subtraction algo-

rithm. While the electron beam operates at 30 Hz, the laser only fires at 10 Hz. Each

pulse with laser present is preceded and followed by a pulse with laser absent. The

average oft he preceding and following GADC values is subtracted from the with-laser

GADC value; 6 repetitions of this pattern (6 pulses with laser and 12 without) are av-

eraged to comprise one point in the BSM scan. Figure 5.5 shows one Laser-Compton

BSM scan, both with and without this background subtraction. The error-bars on

individual points are given by the RMS of the 6 pulse-patterns averaged to form the

data point, divided by fi. The unsubtracted scan has a fitted size of 88 nm, while
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Figure 5.6: Laser-Compton beam size measurement performed in May
of 1994. The measured size is 77+7 nanometers.

the background-subtracted scan has a fitted size of 75 nm.

It is worth noting that while the same PMT is used for both signal and background

detection, the two inputs reach the computer through different GADC’S. A systematic

difference between the two is possible.

Result of Laser-Compton BSM ~ning

Figure 5.6 shows a 77 nm beam spot measured in the KEK BSM in May of 1994.

Figure 5.7 shows a histogram of the size measurements made over the course of several

hours during that run. The average measurement is 77 nm, with an RMS width of

7 nm. For the laser intensity available at the time, the 10% width is consistent with

the measurement uncertainty of the individual measurements.

The 77 nm beam size is known to be enlarged by 10% over the actual beam size
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Figure 5.7: Histogram of measurements made during the last 3 hours
of the May, 1994 FFTB run. Average size measured was 77 nm, with
an RMS of 7 nm.

by a systematic error related to the longitudinal size of the laser pattern. The RMS

size of the laser beam at the FP was known to be 50-60 pm from scans similar to

Figure 5.2. Because the electron beam has a ~~ of 100 pm, the laser interference
.

pattern is long enough in space to sample the beam at locations where the beam is

not in focus. These tend to systematically enlarge the measured size, and the 60 pm

laser measurement was found to correspond to a 10% enlargement. The beam size

in May of 1994 is therefore believed to have been reduced to 70 nm. This systematic

was another motivating factor in retuning the laser to a smaller cross-section at the

FP, since the current 25 pm pattern causes an enlargement of less than 1%.

The 70 nm vertical size was reacquired in September of 1994; however, at no time

did any measurement show any sign that the beam had been reduced to a significantly

smaller size. At the time, the emittance was averaging approximately 2 x 10–llm . rad,

and the RMS energy spread was 5 x 10– 4; the linear beam size ~ expected for
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p; = 100pm was45 nanometers. Contributions from uncanceled aberrations have

not been estimated for these parameters; however, the below-design emittance and

energy spread

for the design

been possible.

optics andlor

both imply that the total blow-up will be less than the 10% predicted

parameters; therefore, a beam size under 50 nanometers should have

The most likely explanations of this discrepancy are errors in the beam

tuning, and systematic errors in the measurement process. Possible

contributions to each of these are discussed below. Note that, with the exception of

the background subtraction GADC issue mentioned above, all systematic errors lead

to an overestimate of the beam size.

Possible ~ning Errors in the Beamline

~~ ~ning Errors:

The most straightforward tuning error imaginable is simply mis-setting the verti-

cal betatron function at the FP. When Cyis as small as 2 x 10–11 m . rad, the vertical

beam size is too small to measure on WS3; and while WS2 can measure the WS3

divergence, this measurement requires several wires and is quite time-consuming, and

thus is not often done. It is thus not inconceivable that the linear beam size is set

incorrectly at the FP. Furthermore, larger values of 8* correspond to smaller FP

angular divergences, which in turn correspond to smaller beam sizes in the FFTB

apertures. Therefore, background tuning will tend to “favor” larger D* values, creat-

ing an operational tendency to raise D*, or at least to not reduce it, when backgrounds

are intractable.

The FP divergence monitor, WS6B, is generally capable of yielding an aberration-

free measurement of the value of ~~, presuming that the vertical emittance measured

at WS 1 andlor Sector 28 of the linac is to be trusted:

(5.10)

where Equation 5.10 assumes that the distance from the waist to the beam size

monitor is small compared to the distance from the monitor to WS6B (which in



this case is 75 cm), and that the

a; R33(FP ~ WS6B) is negligible.
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beam size at the monitor is small enough that

The Laser- Compton BSM W* well-tuned and measuring reproducible 70 nm spot

sizes during a period from September 14 through September 16, 1994. In this same

period the Sector 28 vertical emittance ~ey was oscillating about an average value

of 2 x 10–6 m . rad. Seven measurements of OY(WS6B) made during this period

give a weighted average of 362 prad, with an RMS of 32 prad. Assuming that the

projected emittance at the FFTB FP is given approximately by scaling the Sector

28 normalized emittance by the appropriate relativistic factor, the divergence of 362

Mrad corresponds to a ~~ of 167 pm. Such a large ~~ would result in a linear beam

size of 60 nm. The WS6B measurement is also affected by systematic, principally a

possible reduction of the measured beam size due to limited acceptance of the photon

extraction line downstream of the FFTB; the FFTB’s measured value of ~Vis typically

smaller than the Sector 28 number would indicate, by up to 15Y0. Thus the 167pm ~~

represents an upper bound, but one which is not likely to be wrong by more than

25%.

Additional software tools have been added to the SLC control system to allow

faster and more efficient evaluation of the angular divergence measurements at WS2

and WS6B. These should reduce the risk of inadvertent mis-tuning of the betatron

function.

Geometric Sextupole Errors:

Section 2.4.1 mentions that the tolerances on the allowed sextupole content of

the final doublet quads are quite tight, while the tolerances on the remaining FFTB

quads are also strenuous. In bench measurements, the FFTB standard quads were

found to contain an RMS sextupole content approximately twice the allowed value

(see Appendix B). The doublet quads were not machined to meet this tolerance [14],

but were instead machined to meet the looser tolerance on octupole content; the

sextupole content was then measured and eliminated using a set of trim windings
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on each magnet. The measured sextupole contents of the doublet magnets are large

enough to increase the FP beam size from 46 nm to almost 70 nm when the emittances

and betatron functions are set as they were in September of 1994. Because the doublet

sextupole measurements were equivocal [59], the decision was made to include the

FT sextupoles and eliminate sextupole content globally by scanning the sextupole

aberration knobs, rat her than using the doublet trim winding scheme.

The FT sextupole magnets made a measurable improvement in the beam size

measured at the Laser-Compton BSM in May of 1994; their effect was more equiv-

ocal in September of 1994. Shortly after this it was determined that the alignment

tolerances of the FT sextupole magnets are quite tight: while the SK2/SX2 magnets

have tolerances of 200 ~m in x and in y (defined by the misalignments which will

cause 2% spot dilution due to waist or coupling at the full sextupole strength), the

SX1 horizontal and SKI vertical tolerances are 25 pm.

An experiment in January of 1995 (see Section 5.3.1) determined that the sex-

tupoles were misaligned, by up to 1 mm in some cases. While the gross errors were

then corrected by mechanical realignment, it is not practical to attempt to align

the sextupoles down to their tolerances because these magnets are not supported on

remotely-controlled movers. In addition, the sextupole content of the beamline is

expected to be quasi-static, and therefore the sextupoles will not need to be quickly

and efficiently scanned repeatedly. In future runs a ‘(2.5-dimensional” scan will be

used: the current sextupole knob will be set to a value, and each of the waist and

coupling will be optimized; this will be repeated at each setting of the knob, and the

best value determined from this set of scans. Once set, the knob is unlikely to require

scanning again.

Possible Systematic Errors

Spatial and Temporal Coherence of the Laser:

The phase coherence of the Nd:YAG laser source in both position and time is
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Fringes with hooks

e- beam

~~

Figure 5.8: Poor spatial coherence of the Nd:YAG laser results in non-
planar interference fringes, as shown. The electron beam can no longer
pass through a well-defined “nul~’, resulting in an enlarged beam size
measurement.

critical to constructing and maintaining stable interference patterns. Temporal inco-

herence would result in the interference pattern “jittering” in the path of the electron .

beam. Spatial incoherence would result in fringes which are not planar: the incoming

laser beam is no longer a pure plane wave, but rather a set of plane waves with phase

differences across the area of the wavefront. A minor case of spatial incoherence pro-

duces fringes with “hooks” as shown in Figure 5.8. This effect fills in the minima in

the fringe pattern, again resulting in larger measured spot sizes.

The spatial and temporal coherence of the laser oscillator were measured in the

September 1994 FFTB run. The temporal coherence was found to be quite good,

while the spatial coherence was poor

in instant reduction in the measured

measured prior to FFTB operations.

Longitudinal Size of the Laser

[60]. This

spot size.

spot:

situation was corrected,

Laser coherence is now

result ing

rout inely

- As mentioned above, the longitudinal extent of the interference pattern can sys-

tematically enlarge the measured spot. This is because, with a ~~ of 100 pm, a large

interference pattern will produce Compton scattering at locations where the beam is
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Figure 5.9: Beam envelope and interference pattern when ~~ <0, of

the laser. Scattering at points distant from the FP will systematically
enlarge the measured beam size.

larger than the focused size, as shown in Figure 5.9. Furthermore, the length of the

laser pulse (in time) is enormous compared to the length of the electron beam (in

time). Therefore the probability of scattering off the wings of the laser beam, where -

the electron beam is large, is equal to the probability of scattering off the core of the

laser beam, where the electron beam is small.

During the May 1994 FFTB run, the size of the interference pattern was approxi-

mately 60 ~m, resulting in a 10% increase in the measured size of the electron beam.

During the September 1994 run, the pattern size was reduced to 25 ~m, which re-

duced this effect to a 1% correction. Note that there is a trade-off between a large

laser spot (which produces a systematic dilution of the measurement), and a small

laser spot (which requires more frequent alignment).

Longitudinal Overlap of Laser Pathways:

The effect of longitudinal misalignment of the laser pathways was mentioned previ-

ously in this section. Because the electron beam is still intercepting the same number
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of photons as in the fully-overlapped case, the average Compton signal is not reduced;

however, the nulling of the photon intensity at the troughs of the interference pattern

is weakened. A worst-case of this situation is one in which the l~er pathways do not

overlap longitudinally at all at the location of the electron beam, resulting in a total

absence of the sinusoidal interference pattern. This loss of alignment results in an

increase in the measured beam size.

In practice, this source of systematic error has been quite significant, especially in

measurements made during September of 1994, when changes in ambient temperature

drove diurnal variations in the laser transport line from the source to the Laser-

Compton BSM housing in the tunnel. The reduced transverse size of the laser at the

FP served to exacerbate this problem. While it is possible to correct this problem

during tuning by frequently optimizing the longitudinal overlap, it is crucial that this

additional tuning item be executed faithfully.

Rotations of the BSM housing:

Two significant rotations of the housing of the Laser-Compton BSM are possible:

a ToIZ, resulting in xy mixing; and a pitch, resulting in the electron beam path leaving

the plane of the fringes.

The case of a roll results in a straightforward enlargement of the measured beam

size by a; sin 6, where O is the relative rotation angle. The horizontal beam size of 1.7

-2.0 ~m, and a vertical size of 70 nm where 45 nm was the best possible, results in

an upper bound of 32 mrad for 0. Experience with the tight rotation tolerance of the

WS3 yoke (Section 3.3) suggests that installation tolerances which area fraction of 32

mrad can be met; therefore, this seems like an unlikely candidate. A multiknob which

uses QSM2 and QS3 to roll the FP spot has been prepared, and will be used in future

runs to measure this effect. A more reasonable estimate of 3 mrad inst allat ion error

for roll results in a contribution of 5 nm added in quadrature, which is negligible.

Figure 5.10 illustrates the effect of pitching the beam relative to the plane of

the interference pattern. In this case, scanning a perfectly flat electron beam across
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Figure 5.10: When the electron beam trajectory does not lie in the plane
of the interference fringes, a beam which nominally passes through
the null of the pattern intersects the higher-intensity regions at the
longitudinal extremes of the laser. This results in higher scattering
rates at the “nulls” and lower rates at the “peaks”, and increases the
measured spot size.

the pattern will no longer produce a full-modulation ComptonSignature,and the .

measured beam size of such a beam will no longer be identically zero as a result. The

measured beam size in this case is related to the actual vertical size by:

(5.11)

where @ represents the relative angle between the beam trajectory and the plane of

the fringes. For Oreal = 40 nm and az,la~er = 25 ~m, a pitch angle of 500 ~rad results

in a 570 correction to the beam size. Such a relative angle is not inconceivable.

Typically, the beam size seen by the BSM is measured as a function of FP angle

during the course of FFTB operations. No meaningful correlations have been seen

during these scans, indicating that the beam and the fringes were probably coplanar

at the level of 500 ~rad.

- Beam Jitter and Magnet Vibration

Pulse-to-pulse jitter in the incoming beam will result in consecutive pulses not

passing through the interference pattern at the same location. This in turn will
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result in a variation of the signal at the PMT. While jitter at the midpoint between a

peak and a trough of the interference pattern will average out to the jitter-free signal

level, jitter at the peak will reduce the measured peak intensity (which is obtained

by averaging 6 pulses), and will increase the measured trough intensity by a similar

amount. This will increase the beam size at the FP. The increase in the beam size

can be determined by adding the pulse-t~pulse jitter amplitude in quadrature with

the actual spot size.

K. Oide has pointed out [61] that while the FP spot size averages over jitter in

this fashion, the incoming emittance is also measured over a large number of pulses;

since the measured size on a wire scanner is increased by jitter in a mathematically-

identical fashion to the Laser-Compton BSM, the emittance measurement should

already include the effect of the beam jitter. While the wire scanner software is

capable of eliminating incoming jitter pulse-by-pulse, the software is not sufficiently

sophisticated to do so correctly during a Quad Emit scan, when the optics through

the FFTB are changing due to quad scans. At this time it is impossible to eliminate

jitter from the Laser- Compton BSM’S measurement, as there are no BPMs with

sufficient resolution at the correct phase. Therefore the emittance me~urements

made at WS1 should also be configured to leave residual jitter in the measurement

for a more accurate comparison.

While the incoming beam jitter contributes to both the WS1 measured emittance

and the BSM measured spot size, only the BSM sees the effects of jitter introduced by

vibrations of the FFTB magnets. Therefore, any jitter coming from the FFTB’s own

vibrational properties will cause a spot size increase which is not consistent with the

WS1 emittance value. The Laser-Compton BSM is attached securely to the doublet

table, in the expectation that the monitor and the doublet quads will oscillate coher-

ently and the effects of vibration will cancel out. While the expectation is certainly

correct at the level of microns, the nanometer level is less certain. Measurements of

the vibrational properties of the doublet/table/BSM system are ongoing; in addition,
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a high-resolution RF BPM has been installed in the

an effort to directly measure the relative vibration

the BSM.

5.2.3 Gas-Ion Beam Size Monitor

Laser-Compton BSM housing, in

between the incoming beam and

In order to measure the beam size via the Gas-Ion Beam Size Monitor, several aspects

of the monitor must be properly tuned first. These aspects are: the Microchannel

plate (MCP) high volt age; the injected gas pressure; the longitudinal slit which defines

the device’s longitudinal acceptance; and the beam-induced backgrounds.

MCP High Voltage:

The relative sensitivity of the MCP ion detectors is a nonlinear function of the

applied voltage. Therefore, increasing the voltage increases the percentage of ions

detected, which in turn improves the statistical precision of all measurements. How-

ever, the MCPs also detect particulate backgrounds which are created by the beam;

the signals from such particles scale identically to the ion signals. As the high volt-

age increases, these backgrounds become amplified, and the danger that a transient

“spike’) in the backgrounds can damage the MCP amplifiers also increases.

In general practice, the tuning of the backgrounds (see below) and the tuning of the

high voltages is performed as a cycle: the voltages are increased until the backgrounds

induce a certain number of counts in the MCPs; at that time the backgrounds are

reduced until the number of background events is too small to accurately measure,

and the high voltage is then increased again until the background counts reach the

maximum tolerance. Once the high voltage is set above 1900 volts, measurements

can generally be performed.

Injected Gas Pressure:

- The appropriate quantity of gas to be injected for each pulse of beam is a function

of the beam size, particularly the vertical size. A relatively high pressure of gas

increases the number of ions, and therefore the counting rate improves. For measuring
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the size of flat beams, however, the relative ion counting rates around the azimuth

of the device must be measured with minimal systematic skewing between horizontal

and vertical MCPs. During flat beam measurements, it was observed that the beam

size was dependent upon the pressure of injected gas, with lower pressures reducing

the measured vertical beam size.

The pressure-dependent beam size phenomenon was explained by ion “pile-up:”

the number of ions incident upon the horizontally-mounted MCPs exceeds their max-

imum counting rate, and therefore the number of ions in these MCPs is reduced,

while no such reduction occurs in other MCPs which have fewer ions incident upon

them. This reduces the measured ratio between the number of horizontally-kicked

ions and the number of vertically-kicked ions, resulting in a larger measured beam

size. Note that reducing the gas pressure reduces the number of counts on each elec-

tron beam crossing, which increases the number of electron beam pulses needed to

make a measurement with the desired ( 107o) precision.

Longitudinal Acceptance:

The ionization and acceleration effects measured by the Gas-Ion BSM occur at

all points at which the electron beam and injected gas interact; in particular, the

beam ionizes and accelerates helium atoms both at the focus and at short distances

away from the focus. The ions from the focal point, where the beam size is at its

smallest, are therefore counted along with ions produced where the beam has diverged

and is no longer as small. These latter ions tend to dilute the measurement of the

small spot. This problem is exactly analogous with the difficulty encountered in the

Laser-Compton BSM when the laser longitudinal size is large compared to the vertical

betatron function (see previous Section).

In the Gas-Ion BSM, the problem is resolved by placing a narrow slit between

the beam-gas interaction point and the MCPs. The slit aperture can be remotely

enlarged or contracted, in particular it can be reduced down to a total size of 200

~m. The vertical betatron function is on the order of 100 ~m. For the very smallest
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beams, therefore, some residual systematic dilution can be expected, due to the large

acceptance of the slit.

Early tests revealed an installation defect with the longitudinal slit: the slit was

installed with an angle relative to the beam trajectory. This resulted in unequal

longitudinal acceptance on the North and South sides of the BSM. In particular, at a

setting of 200 ~m, the ions on one side of the device were almost completely excluded.

This defect was corrected mechanically, and tested by measuring the intensity of a

fluorescent light mounted inside the BSM as a function of azimuth angle, for slit

apertures down to the minimum.

Backgrounds:

Because the Gas-Ion BSM does not require detectors which are, essentially, di-

rectly in the path of the electron beam, background tuning for this device is less

difficult than for the Laser-Compton BSM and WS6A. The large scattering-angle re-

quired for a beam particle to enter the MCPs directly generally indicates that only

electrons and secondaries far from the beam core will be relevant, and backgrounds

incurred in the extraction line can be ignored. In addition, the upstream face of the

BSM is shielded locally with approximately 1 inch of lead. Nonetheless, the back-

ground counting rates of the Gas-Ion BSM (rates measured with no gas injection) are

like other backgrounds around the FFTB in that a ‘(happy medium” of collimator

settings is required: far enough in to eliminate long beam tails while not so far into

the beam pipe that the core begins to scrape on the collimators and repopulate the

tails.

Result of Gas-Ion BSM tuning

Figure 5.11 shows the azimuthal distribution of ions obtained during a beam size

measurement made in the September 1994 FFTB experiments. Coupled with the

time of flight measurement (not shown), the estimated beam size is 1.6 ~m in the

horizontal and 80 nm in the vertical. The estimated total error (systematic and
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Figure 5.11: Azimuthal distribution of detected ions at Gas-Ion BSM.
The amplitude of the ‘(twin-peak” anisotropy coupled with the time-
of-flight measurement (not shown) yield a beam size of 1.6 ~m by 80
nm.

statistical) on the measurement is 0.1 pm (x) and 25 nm (y). The error on the

horizontal beam size is dominated by statistical error, while the error in the vertical

is dominated by uncertainties in the correction for ion “pile-up.” In future runs, the

gas pressure will be reduced to relieve this source of systematic error.

Note that the measured beam size above is larger than the best vertical beam size

measured at the Laser-Compton BSM, by about 107o. However, in order to move the

vertical waist downstream by 52 centimeters, it proved necessary to reduce the overall

demagnification of the Final Transformer by that same factor, such that the expected
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value of ~~ is now 120 flm. When this fact is considered, the beam size measured

by the Gas-Ion BSM is completely consistent with that measured with the Laser-

Compton BSM. While this improves confidence that the various systematic errors of

the two devices are under control and not arbitrarily enlarging the measured beam

size, it also strengthens the case for a beam-optics explanation of the unexpectedly

large beam size.

Two advantages of the Gas-Ion BSM are worth mentioning here. The first is

that the device can measure a relatively large beam size (up to 40 ~m has been

achieved) wit h fairly simple adjustment of its parameters. In particular, the time

window of the acquisition system is stepped until ions appear: while a large beam

will produce only very slow ions, these can nonetheless be detected by forcing the

acquisition electronics to delay measurement. The second advantage is that the Gas-

Ion BSM has full azimuthal detection of the azimuthal ions, and therefore is able to

unambiguously measure the roll angle of a focused beam. In particular, the azimuthal

angles of the centers of the ‘(horizonta~’ peaks in Figure 5.11 determine such a roll

angle. On one measurement performed in September of 1994, a roll angle in excess of

4° was seen [62]. Another measurement, made in March of 1995, found that the roll

angle was varied when the vertical dispersion was scanned, and that the roll angle

was zero when the minor axis of the beam ellipse was minimized. The conclusion

drawn at the time was that the horizontal dispersion was not optimized, and that

introducing vertical dispersion caused a spurious horizontal-vertical correlation. This

is assumed to be the culprit in the September 1994 measurement as well.

Since the beamline tuning errors do not differ between the two BSMS, it is more

fruitful to consider at this time the possible systematic errors in the Gas-Ion BSM

measurement.

Possible Systematic Errors

Acceptance Anisotropy
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Figure 5.12: Gas-Ion BSM measured time-of-flight versus vertical waist
position. In the linear regions of the curve the o; > a: and thus the

TOF measures primarily a;; in the flat section 0:> o; and the constant

value of o; dominates the TOF measurement.

The possible effects of an anisotropy in the acceptance of ions was discussed pre-

viously in this section. The principal effect is to reduce the number of horizontally-

accelerated ions relative to the number of vertically-accelerated ones, increasing the

measured spot size. This effect was measured and corrected down to a few percent

prior to the September 1994 FFTB run.

Unequal Detector Responses

Unequal calibrations of the MCP and amplifier gains around the azimuth of the

BSM would result in distortions in the azimuthal distribution of the ions, and could

either increase or decrease the measured beam size. In order to eliminate this source of

error, a radioactive source (specifically, Americium) was used to calibrate the system:
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a source placed in the center should generate equal numbers of counts in all MCP

readouts. (An exception is the horizontal MCP units: in these, the width of the

individual readout strips is reduced by half, and the number doubled, to improve

resolution of the beam roll angle [63]. In this case, the number of counts should be

reduced by exactly 5070. ) An additional calibration was made by setting a round

beam in the center of the BSM. Because the time of flight corresponds to the size of

the beam’s major axis, a vertical waist scan against the time of flight will produce

a constant time of flight when au < ax, and the time of flight will increase linearly

when OV > OZ. At the turnover between constant TOF and linearly-increasing TOF,

the beam sizes in x and y are equal. This situation is shown in Figure 5.12.

Bunch Length and Intensity

Because the Gas-Ion BSM measurement couples to the beam size through the

electric field of the bunch, knowledge of the intensity and bunch length are essential

in correctly measuring the absolute beam size. A sufficiently low charge density will

eliminate the ion trapping which produces the two-peak anisotropy in Figure 5.11,

and will increase the time of flight as well, resulting in increases in both measured

numbers relative to the actual beam size.

The bunch intensity is measured by a series of toroids in the linac, with an expected

accuracy of 270 at FFTB currents. The bunch length is measured by activating

the SLC main bend, 50B1, bending the beam into the SLC arcs, and reflecting the

result ant synchrotron light into a streak camera. Such a measurement cannot be made

during FFTB running; it is necessary to tune up FFTB beam conditions, make the

bunch length measurement, and assume that the conditions do not change overmuch

during the FFTB run. Such a measurement was made in March of 1995, and showed

an RMS bunch length of 600 ~m, with precision of approximately 1570. It is therefore

expected that charge-density effects could result in = much as 170 systematic error

in the horizontal measurement.

Non-Gaussian Beams



210

e

Direction of travel

Figure 5.13: Head-tail effect in Gas-Ion BSM. The positive ions pr~
duced by the head and core of the beam are attracted to the negative
charge in the offset tail; this results in a change in the azimuthal dis-
tribution of ions at the MCPs.

By far the most significant measurement difficulty observed with the Gas-Ion

BSM is non-Gaussian distributions in the beam. In particular, a head-tail effect of

the type shown in Figure 5.13, in which the tail has some transverse deflection relative

to the head, can produce a serious error in measurement. This is because the tail

tends to attract ions which form when the head passes through the injected helium. A

vertically-deflect ed tail will therefore pull all the ions in the vertical direction, causing -

the horizontal peaks of Figure 5.11 to appear with a separation different from 180°;

while a horizontal tail will enhance one oft he peaks and reduce the other. Simulation

studies show that the sum of the two peak amplitudes is also reduced; therefore, such

tails introduce an increase in the measured spot size which cannot easily be corrected

to yield the correct value [64].

In actual operation, it is often possible to correct the head-tail effect by steering

the beam in the linac. Offsetting the electron beam in the disc-loaded wave guide

can produce a head-tail effect which cancels the effect seen at the BSM. Another

tuning technique which has some effect in this case is changing the relative phase

of the bunch and the linac RF, the “phase-ramp”. Changing the setting of “phase-

ramp” works to introduce a head-tail energy correlation; this can cause the tail to be

overbent and/or over-focused relative to the head, which can then have the effect of

straightening out the bunch (BNS damping works in a similar fashion). Neither of

these techniques is guaranteed to work, however. In particular, the stability of the
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linac is a key to their success or failure, and the probability of-success for tuning such

head-tail effects isknown tobe higher during the night than during the day (due,

presumably, to thermal changes in the linac itself

5.3 Other FP fining Issues

In addition to the phenomena described in the preceding sections, a handful of other

issues relating to global spot-size tuning have been observed and/or measured. These

include the alignment of the FT sextupole magnets, and the doublet settings required

to set the waist at each of the BSMS.

5.3.1 FT Sextupole Alignment

The sextupoles in the FT are only 3% as strong as the CCS sextupoles, and do

not have magnet movers. Therefore, the technique described in Chapter 4 for ccs .

sextupole alignment is not applicable. Instead, a variation of the SLC technique [53]

is used, in which the sextupole strength is changed and the movement of the waists

and change in coupling at the FP are measured by scanning the appropriate knob.

In this case, each of the sextupoles is powered independently, which is an advantage

over the SLC FF technique.

The sextupole alignments were measured during January of 1995, using the WS6A

wires. In order to perform the measurement, it was therefore necessary to maintain

a large amount of x’y coupling in order to prevent wire breakage. When the x’y cou-

pling knob was scanned, a step size was selected which would reduce the likelihood

of breaking a wire. In any event, no wire was broken. The waist and coupling mea-

surements were performed at 5 values of the sextupole strength. In order to estimate

the amount of natural drift of the waists and coupling, the waists and coupling were

scanned before the sextupole was first stepped, and then again after it was set back

to zero strength. The RMS drift of each knob, over the four hours of the experiment,
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Figure 5.14: Optimal value of the x’y coupling knob versus SX2
strength. The linear correlation indicates a vertical misalignment of
the sextupole, of approximately 1 mm.

was added in quadrature to the statistical uncertainty of the optimal knob setting.

Knob scans were performed using the sextupole mover knobs.

Both the horizontal and vertical waist scans coupled to horizontal misalignment of

the normal sextupoles and vertical misalignment of the skew sextupoles (i.e., normal

quadruple aberration). While the two measurements agreed within their errors, the

vertical measurement was generally of too low a precision to use. Misalignments were

therefore determined by horizontal waist measurements using the horizontal wire, and

coupling measurements using the vertical wire.

Figure 5.14 shows the optimal knob setting versus sextupole strength for the best

correlation observed in this procedure, specifically SX2 strength versus coupling. The
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slope of

error of

the line indicates a vertical misalignment of over 1 -mm, with a statistical

approximately 50 ~m. Several misalignments between 500 ~m and 1 mm

were observed, and statistical errors ranged from 50 to 150 ~m. The misalignments

over 500 ~m were corrected mechanically. It is, however, expected that the operation

of beam-based alignment will cause systematic shifts in the beamline larger than

the alignment tolerances of the small

Therefore, the multi-dimensional scan

future.

sextupoles (tolerances are as low as 25 ~m).

described in Section 5.2.2 will be used in the

5.3.2 Reproducibility of Final Doublet Optics

The excitation of the final doublet magnets is the most crucial factor in positioning

the horizontal and vertical waists. It has been our unfortunate experience that the

exact excitations which provide the desired positioning do not reproduce at all well.

The design value for QC1’S integrated gradient for Laser-Compton BSM operation .

is 1,848 kilogauss; during FFTB runs, the actual value used has varied from 1,700

to 1,950 kilogauss. This range of values corresponds to over 10 cm of waist motion

(as the doublet waist knob uses approximately 20 kG to move the waist 1 cm). Such

large shifts in the required doublet strength cannot be explained by mismatch of the

incoming beam, or by CCS sextupole positioning. At this time, the only explanation

for the strange variability of the doublet is that these magnets are extremely sensitive

to hysteresis effects; because the precise history of scans and optics changes is not

the same from run to run, the doublet value needed changes from run to run. This

is a problem which causes some annoyance; however, simulation studies reveal that

scale-factor errors in the doublet quads cause principally waist shifts, which can be

corrected easily. It is worth noting, however, that magnets with such sensitivity to

excitation history may also experience higher multipole aberrations due to differential

sensitivities in the different pole-pieces.
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Chapter 6

System Performance and

Chromatic Considerations

One of the crucial design issues for a linear collider final focus is its tunability. Specif-

ically, the final focus system must converge upon an optics suitable for delivering lu-

minosity in a length of time which is small compared to the length of the luminosity

run, and also small compared to the length of time needed for the various drifts in

the system (magnet strength and placement, etc. ) to drive the system away from

its high-luminosity opt its. If either of these conditions are not met, the collider in

question will spend most of its operational lifetime struggling to achieve luminosity

and almost none will be delivered to the experiment. This is true for any collider;

the extremely tight tolerances on emittance and aberrations in a linear collider, and

the absence of equilibrium states which are present in storage rings, imply that the

linear collider will have a more complex tuning sequence which must be repeated, in

part or in full, more often. Therefore, the tunability requirements on linear collider

subsystems are significantly more demanding than those on a storage ring.

- Another significant design issue for a linear collider final focus is the overall chro-

matic behavior of the system. As shown in Chapter 2, the leading aberration which

works to prevent arbitrarily small beam sizes is the chromaticity, and the correc-
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tion of this aberration

Chromatic aberrations

essentially drives the entire design process for such systems.

are of greater concern than geometric aberrations for several

reasons. First, final-focus correction of chromatic aberrations requires placement of

high-order correction magnets in the dispersive regions of the system, and this is a

much more difficult endeavor than correction of geometric aberrations with magnets

in non-dispersive regions. Second, the longitudinal emittance of the beam emerging

from the linac is generally quite difficult to reduce: while all linear collider designs

call for transverse emittances which are one or two orders of magnitude smaller than

those in the SLC, the IP energy spread is expected to be larger by a factor of two

than for the existing SLC. Finally, the chromatic properties of a final focus system

are also connected to the luminosity delivered when the energy centroid is marginally

off the expected. When one considers the thousands of klystrons expected to provide

the energy in most linear collider designs, the need for good performance if a few fail

to fire, or the beam is fractionally off in timing, becomes clear.

In the case of the FFTB, measurement of the chromatic properties serves an addi-

tional purpose. Chapter 5 showed that the minimum spot size achieved was not the

expected spot size. One possible reason for this failure is improper tuning of chr~

matic aberrations, or presence of unexpected chromatic aberrations. Measurement of

the chromatic properties of the FFTB would shed some light on this possibility.

In this chapter, therefore, both the overall tunability and the chromatic properties

of the FFTB are considered as indicators of the overall merit of the FFTB design

approach.

6.1 ~nability and Convergence Speed

The Final Focus Test Beam has never run for a continual period in excess of 19 days.

It is therefore imperative that the total tune-up time from the “cold iron’) state to

small-spot running be as short as possible. In particular, the days which precede each
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run must be maximally utilized for pre-beam checks, and the early run-time must be

as thoroughly packed with principal and “parasitic” programs as possible.

The run sequence for pre-operation and the first four days of the September, 1994

run is summarized below. This was the longest FFTB run.

●

●

●

●

Verify operational status of all hardware (movers, power supplies, rack electron-
ics, lasers, gas inject ors, computers, etc. ) to the extent possible without beam
(3-7 days). Select/generate configurations for initial operation.

Establish beam to main dump in low-divergence optics. Use ST62 to establish
coarse energy match, steer to dump, establish semi-fine energy match; beam
checkout of BPMs, safety devices; establish launch and energy feedback (4
Hours).

Verify wire scanner functionality, tune linac emittances (4 hours).

Measure incoming beam matrix (14 hours).

Local Diagnostics (23 hours).

Match incoming beam and verify on Beta Exchanger wire scanners; tune back-
grounds for Laser-Compton BSM (17 hours).

Tune horizontal beam size on Laser-Compton BSM (2 hours).

Tune vertical beam size on Laser-Compton BSM (8.5 hours).

Commission Gas-Ion BSM and tune beam sizes (16 hours).

The list of activities above comprises approximately 4 days of beam time, at the

end of which global tuning has been performed on each of the BSMS. In addition,

many of the activities listed above would be further optimized as the procedures

were debugged and the FFTB optics more fully understood in an operational sense.

Measuring the incoming beam, for example, was performed on 3 occasions during the

September 1994 experiments. The first time, shown above, required 14 hours; the

second required 5 hours; the third required 1.5 hours. Matching the incoming beam

required 17 hours when first attepmted, and later in the run was accomplished in

2 hours. In addition, many activities are not repeated during the FFTB run. For

example, beam based alignment and lattice diagnostics are performed only at the

beginning of the FFTB run. Experience with recovering small spots after various

outtages (described below) indicates that this is sufficient.
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An additional test of the tunability of the FFTB is the remvery speed from other

programs in the FFTB area, or from long outtages of the accelerator complex due

to other systems. For example, during the 13th and 14th of September, the FFTB

was used to perform other experiments and also entered for adjustment of the Laser-

Compton BSM. Recovery from tunnel access to tuned horizontal and vertical spot

sizes at the Laser-Compton BSM on this occasion required a total of 16 hours.

It must be noted that the initial tune-up of the FFTB is performed with an energy

spread ~ below 5 x 10–4, as measured by the ESM in the extraction line. This is an

aid in tuning the FFTB which is not likely to be available to future linear colliders.

However, the short startup period of 4 days, coupled with the outtage recovery time

of 16 hours, indicates that the FFTB can be tuned and retuned in adequately short

periods of time.

6.2 Chromatic Studies

In the FFTB, the only chromatic aberrations which maybe tuned directly are disper-

sion and chromaticity in each plane, and horizontal second-order dispersion. These

are tuned by steering the beam at the final doublet to introduce dispersion, changing
.

the sextupole strengths to change the chromaticity of the beamline, or moving the

CCS sextupoles to introduce first- or second-order dispersion. The first-order disper-

sion corrections are routinely applied during FP global tuning, while second- order

dispersion has not been tuned.

Because the sextupole alignment tolerances for scanning the sextupole strength are

tighter than the procedure in Chapter 4 can achieve, scans of the sextupole strengths

are not generally performed. Instead, two techniques for more globally measuring

the chromatic properties of the FFTB are utilized. The first is a monochromatic

technique, in which the energy centroid is moved; the second requires increasing the

energy spread of the incoming beam and retuning the FP spot. Each technique is
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Figure 6.1: Design curve for waist shift with changing centroid energy,
for a monochromatic beam with properly-set sextupoles.

described below.

6.2.1 Energy Centroid Scans [64]

Figure 6.1 shows the expected waist position as a function of energy centroid offset

for a nearly-monochromatic beam. The waist clearly shifts by an appreciable amount

over a small range of energy change: at -170 the vertical waist shift is over 200 pm,

twice the betatron function in that plane. It should therefore be possible to measure

the vertical waist shift as a function of the energy offset and verify the predicted

behavior of Figure 6.1.

Figure 6.2 shows the results of the first such scan in September 1994. The mea-

sured data, given by the squares, do not agree with the design curve. A previous
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Figure 6.2: Measured waist position as a function of beam centroid en-
ergy (boxes). The solid curve is the design prediction; dashed line shows
the prediction when the energy centroid error of +0.73% is included.

measurement of the beam energy via the lattice-diagnostics technique described in

Chapter 4 had indicated an energy error of +0.73%, which had not yet been cor-

rected. Including the energy offset, but making the assumption that the waist had

been adjusted to the FP via the final doublet at the higher energy, yielded the dashed

curve. The agreement between the dashed curve and the data was taken as verifica-

tion of the lattice measurement of energy matching, and the energy was subsequently

lowered by 300 MeV.

Once the new energy centroid had been tuned, a second set of data was taken by

moving the energy centroid and measuring the waist shift. This data is indicated by

crosses in Figure 6.3, along with the first set of data. While the crosses fall closer to

the design curve, some discrepancy remains. At this time, it was noted that the SD1
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Figure 6.3: Measured waist position as a function of beam centroid
after correcting the energy match between the beam and the magnets
(crosses); the dot-dash line represents a fit which includes a 3% error
in SD1 settings, as described in the text. Previous scan data and fit
are also shown for comparison.

sextupoles had been set to a value 370 above design due to an early misinterpretation

of the data from Figure 6.2. The dot-dash curve in Figure 6.3 represents the model

prediction of such a situation, and this curve fits the data well. Based upon Figure

6.3, the chromatic properties of the FFTB, in the vertical plane, are felt to be well-

matched to the expected. Further studies of the chromatic waist shift, with energy

and sextupoles properly matched, are a priority for future runs.
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Figure 6.4: Changing the energy spread via phase-ramp. The bunch
riding the crest of the RF will have relatively little energy spread be-
cause the bunch length Oz is small relative to the RF wavelength; a
bunch which is off crest by AO will have a head-tail energy difference
due to different gradients at the head and tail.

6.2.2 Increased Energy Spectrum Measurements

A further test of the chromatic properties of the FFTB is to directly increase the

energy spread of the beam, and measure the FP spot size. This is a more direct test

oft he properties as they affect the main parameter of interest, namely the beam size.

In order to tune the energy spread, the extraction-line optics are first retuned to

provide a vertical waist at the ESM; once the beam size is measured with these optics,

the ‘(low-noise)’ optics is restored, and the ESM beam size is measured again. This

allows the geometric and dispersive contributions to the “low-noise” beam size to be

determined; this in turn allows the geometric beam size to be subtracted in quadrature

from the ESM measurements, and permits the energy spread to be estimated directly.

The ‘(low-noise” optics produced a beam at the ESM with an RMS of 635 ~m, while

the waist optics yielded a beam with an RMS of 298 ~m. This indicates that the

narrow energy spread was 5 x 10–4 (RMS), while the monochromatic contribution to

the beam size in the “low-noise” optics was 561 ~m.

Once the various contributions to the ESM beam size are determined, the energy
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spread is increased by changing the relative timing between the linac RF and the beam

in the waveguides, via the “phase-ramp” knob. Figure 6.4 shows two bunches in the

linac. The bunch riding the crest of the RF will have a center-head and center-tail

energy difference due to the head and tail recieving slightly less acceleration than the

core; however, the RMS bunch length is 600 ~m, while the wavelength of the SLAC

linac (v = 2856 MHz) is 10.5 cm. The energy difference over 600 ~m is therefore

expected to be only cos(600~m/ 10.5cm), or 99.99870. The bunch which is off-crest,

however, will have a centroid energy which is proportional to cos Ad. The centroid-

tail energy difference can be estimated, in the limit where ARFAO >> a., as the energy

derivative with respect to longitudinal position multiplied by the bunch length:

To increase the centroid-tail energy spread by the FFTB design value of 3 x 10-3,

therefore, will require a phase-ramp change of 83.7 mrad, or 4.8°. Note that increasing

the energy-spread via phase-ramp is likely to produce transverse head-tail offsets; such

offsets increase the complexity of memuring the beam size via the Gas-Ion BSM, which

in turn means that this measurement is best made with the Laser-Compton BSM.

Figure 6.5 shows the measured beam spot at the ESM with phase-ramp tuned off

its optimum by 5°. The RMS bunch size is 2.26 mm, corresponding to an RMS energy

spread of 3.6 x 10–3 once the geometric contribution is subtracted in quadrature and

the 60 cm vertical dispersion is divided out. Note that the resultant energy spread

is quite non-Gaussian; in fact, it is the twin-horned distribution which is expected to

be seen at future linear colliders 1.

Prior to enlarging the energy spread, the weighted average of 11 beam size mea-

surements was 82.3 + 1.4 nm, with a X2/v of 1.27. At this time, the Sector 28 vertical

emittance was measured to be ~ey = 2.2 x 10–6 meter-radians. After the enlargement,

beam size was tuned with the standard set of knobs (waist, dispersion, coupling).

lSometimes known as the “Steining Distribution,” after R. Steining, or the “Bat-
man Distribution,” for obvious reasons.
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Figure 6.5: Vertical beam profile at the ESM after moving phase-ramp
off its optimal setting by 5°.

The weighted average of 7 beam size measurements performed after this tuning was

96.0 + 2.7 nm, with a X2/v of 1.16. The measured Sector 28 vertical emittance at

this time was yeg = 1.8 x 10-6 meter-radians. Assuming that these measurements

are valid, we can estimate the maximum possible chromatic contribution to the beam

size at the lower energy spread. Consider an aberration which scales as a:, where n

is a positive integer:

ACh,o~ = Aoo~. (6.2)

The ratio of the aberration content at the lower energy spread to the content at the

higher energy spread is therefore just the ratio of the energy spreads raised to the

power n:

(6.3)

The worst case dilution of the beam size at the low energy spread occurs when the

RHS of Equation 6.3 is maximized for ajma~t < op. This occurs when n = 1. AS a
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(6.4)

worst-case for the low-energy-spread case, we can therefore state that:

Subtracting the two measured beam sizes in quadrature yields an expression for AO:

(96.0nm)2 - (82.3nm)2 = A; [(a~)2 - (o~~a’’)2] . (6.5)

this gives a value of A. ofTherefore, A; [(3.6 x 10-3)2 – (5 x 10-4)2] = 2400nm2;

1.37 x 104 nanometers. The chromatic beam size growth at the smaller energy spread

is therefore 6.9 nanometers added in quadrature with the geometric spot size, which

is negligible. Note that this is an upper bound on the chromatic contribution. The

Ghromatic contribution could be smaller if the measured contribution at large energy

spread scales with a higher power than the first power, especially since the bunch

charge appears to be concentrated in the wings of the distribution, as shown in Figure

6.5. It is possible that the Sector 28 emittance measurements are not valid at the

required level of precision, since such small emittances frequently result in beam sizes

which are comparable to the default step size of the wire scanner stepper motors. The

larger energy spread could also cause a head-tail effect in the beam which enlarged

the measured RMS; it is not inconceivable that such an effect would be too small to

affect the linac emit t ante measurement but large enough to dilute the Laser- Compt on

beam size measurement. Finally, the size with the larger energy spread could be a

systematic effect of a non-Gaussian distribution affecting the Laser-Compton BSM

[66].

While the result above absolves the chromatic aberrations from the diluted beam

size at low energy spread, the total contribution at the large energy spread is 49

nanometers added in quadrature to the geometric spot size. This is much larger than

the largest expected uncorrected aberration of the FFTB beamline (See Chapter 2).

For the design vertical beam parameters (cy = 3.0x 10-11 m. rad, p; = 100 pm), the
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linear monochromatic beam size is 55 nm; an aberration of 49 nm added in quadrature

would enlarge this to 74 nm.

Assuming for the moment that the beam size increase is due to chromatic aberra-

tion, what could possibly cause such an effect? In Chapter 4, evidence was presented

for a persistent vertical dispersion, up to several millimeters in amplitude, through

the CCSY and FT sections. Such a vertical dispersion would cause both high-order

chromatic aberrations, such as T366, and high-order chrom~ geometric aberrations,

such as T316 and T326. In simulation studies, a beam with a Gaussian energy distri-

bution with RMS of 5 x 10-4 and the typical FFTB emittances can still be tuned

to 45 nanometers; however, a beam with a flat energy distribution with RMS of

3.6 x 10-3 and the typical FFTB emittances can only be tuned to a minimum spot

size of 78 nanometers. The difference in quadrature between these two beam sizes is

65 nanometers, quite close to the observed 49 nanometer aberration. Such a result is

another strong argument for attempting to null the observed qu through the FFTB

during the next run; nonetheless, the overall

be considered well under control, since the

Figure 2.11) is enormous.

With chromatic aberrations of the FFTB

chromatic properties of the FFTB must

uncorrected chromaticity (as shown in

eliminated as suspects in the dilution of

the beam size, it is necessary to turn to geometric aberrations, and systematic errors

in the beam size measurement processes. In an attempt to measure the collective

geometric aberrations, the beam size was measured as a function of the vertical emit-

tance. Vertical emittance was varied by introducing dispersion in the damping ring

extraction line, which filamented into additional emittance at the end of the linac;

emitt ante was measured by the Sector 28 multi-wire station. The measurement was

inconclusive: a line through the data points with no monitor offset and a line with

a 40 nanometer offset fit the data equally well [65]. Such measurements are difficult

because at the default scan ranges and step sizes for the Sector 28 wires change as a

function of emittance, as do the linac and FFTB collimation settings required to elim-
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inate backgrounds on the Laser-Compton BSM. A more carefil set of memurements

of this type is planned for the future FFTB experiments,



227

Chapter 7

Conclusions and

Recommendations for NLC

The Final Focus Test Beam has achieved and measured a vertical beam size of 70

nanometers at the Focal Point while operating with a vertical emittance of 2 x 10–11

mrad, and an RMS energy spread of 5 x 10–4. This beam size has been achieved

repeatedly, recovered after interruptions in FFTB running of up to four months,

and measured by two extremely different beam size monitors. Me~urements over

time have indicated that the spot size is stable over many hours, to the extent that

scans of the waists, dispersions, and coupling serve to restore the measured beam

size. A direct test of the chromaticity of the beamline indicates that the chromatic

correction is behaving as predicted; a global test of the chromatic aberrations indicates

a maximum chromatic contribution to the beam size of 49 nanometers at an energy

spread of 3.7 x 10–3, which is added in quadrature to the monochromatic beam size.

What is the significance of such a result for the Next Linear Collider design effort?

The optics and tolerances of the FFTB were mapped out in advance of construction

through an array of theoretical studies and simulations; these tolerances and other

requirements were engineered into the systems a priori, and factored into the lo-

cal and global tuning strategies; and the result ant system very quickly converged
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upon a final state near to its design goals. The indication is that the physics of large

demagnifications, and small P* values, is understood at the level which permits calcu-

lation of optics and tolerances – we can be confident that we know enough to specify

many of the tolerances of NLC Final Focus systems. Furthermore, the FFTB has

demonstrated the feasibility of a new generation of precision correction and diagnostic

elements which have immediate application in the NLC design process. Micron-

resolution BPMs, laser-compton and gas-ion beam size monitors, 3 DOF magnet

movers with submicron step size and placement accuracy, part-per-million high- cur-

rent power supplies – such devices are no longer conjectural or theoretical in nature.

Already BPMs with FFTB-level performance are being included in tuning simula-

tions of the NLC [67], and several different variations of beam size measurement by

Compton scattering are expected to be used in such a collider. The experience of the

FFTB leads to the expectation that such devices can be made to work because they,

already have.

7.1 Future Issues for the FFTB

The Final Focus Test Beam cannot be counted as a completed endeavor. Many areas

remain to be explored, or explained. The most obvious of these is the fact that the

FFTB has never achieved the beam size anticipated when the vertical emittance is

considered. At the reduced vertical emittance and low energy spread quoted above,

beam sizes under 50 nanometers should have been achieved. Furthermore, spot size

dilution observed when the energy spread is increased is not consistent with the FFTB

design. These difficulties represent a modest increase in the FFTB beam size, but

would completely dominate the NLC colliding beam size. It is therefore imperative

that these phenomena be understood.

At the lower energy spread, Chapter 6 argues that the sum of all chromatic aber-

rations is far too small to account for the discrepancy between the expected beam
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size and the achieved. The remaining suspects are: geometric aberrations; wake-

fields; vibration-induced beam jitter; and unexplained measurement errors. Chapter

5 discussed the difficulties in using the Final Transformer geometric sextupoles to

eliminate

sextupole

derstood,

manufacturing defects in the quadruples and imperfections in the CCS

system (strength imbalances and rolls). These difficult ies have been un-

and will be addressed procedurally in future runs via a multi- dimensional

scan. In addition, a careful measurement of the focused beam size as a function of

incoming emittances will give more general information on the presence or absence of

higher-order aberrations. Using the beta match steering magnets to introduce posi-

tion and angle changes at the FP has also been suggested [68] as a means of probing

the aberrations of the FFTB. Wakefields seem an unlikely source of spot size dilution

in this case, because the bunch charge in the FFTB is small and the FFTB itself is

relatively free of tight vertical apertures. One probe of this possibility would be to

reduce the incoming intensity and measure the beam size again. This is a touchy

measurement, because so many other parameters typically couple to bunch charge

(extraction emittance from the damping ring, for example). Decoupling any beam

size change from the intensity alteration from other effects would be difficult, but in

principle such a measurement is possible. Finally, the arena of unmeasured measure-

ment syst ematics is one which is dominated by the imagination oft he experiment ers.

Such measurement errors which have already been considered are routinely measured

and found minimal. This remains an area of ongoing concern. One recommendation

which has been made is the inclusion of a 6° vertical measurement mode in future

versions of the Laser-Compton BSM. Such a mode would measure the vertical beam

size from 750 nm to 3.4 pm. The advantage of such a mode is that beam sizes of

350 nm, which are routinely and easily achieved in the FFTB, would appear in such

a vertical mode as 1007o modulation. Thus, measuring a 100-300 nm beam in a 6°

mode would ensure that no error in the laser or the mirror system was causing the

nulls in the interference pattern to fill in.



230

While the chromatic aberrations appear to pose no problem at the lower energy

spread, understanding their source and determining a correction scheme are imper-

at ive for the NLC, which will not have the option of operating in such a condition.

The vertical dispersion noted in Chapter 4 begs the question: is the vertical disper-

sion measured by varying the centroid energy related to the FP chromatic aberration

observed at large energy spread? Such an aberration could occur via the interaction

of vertical dispersion with the chromaticity of the quadruples and the sextupole field

of the sextupoles, resulting in additional second-order effects. The measured vertical

dispersion ray could result from rolled bend magnets or rolled quadruples. In either

case, the first-order effects (dispersion and coupling at the FP) can be corrected by

magnets in the FFTB, but no scheme for tuning the second-order “feed-down)’ effects

exists, save to eliminate the incoming dispersion directly. Should the dispersive ray

in Chapter 4 prove to be a result of rolled quadruple magnets, it is also conceivable

that the coupling observed at WS3 in Chapter 3 arises from the same source. The

possibility that all of these phenomena are generated by simple uncorrected rolls in

the bends and/or quads of the FFTB highlights the utility of maximal local correction

of beamline errors: much time has been spent understanding the rolled spot at WS3,

and any situation which invites untunable feed-down errors is to be discouraged.

In addition to the correction of aberrations already observed, the FFTB remains

the best possible test-bed for prototyping NLC Final Focus technology and alg~

rithms. As noted above, scanning the global aberration knobs is a standard means to

reduce the spot size, and this is periodically necessary to retain good beam conditions.

A significant improvement in the overall final focus system would be elimination of

this requirement. A major driving force in the slow dilution of the beam size is be-

lieved to be the CCS central quadruples, QN1 and QM2. Misalignment of these

magnets causes steering errors between the SF1 or SD 1 sextupoles, resulting in waist,

dispersion, or coupling at the FP. The alignment tolerances for these elements is on

the order of 0.3 pm [69]. Two approaches which address this difficulty are the use
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of feedback loops which use the BPM readings from quadruple BPMs on either side

of each sextupole to correct for any such steering effect, and a stretched-wire system

which monitors the relative position of each magnet in the FFTB [70]. Tests of both

systems are in the works, and a feedback similar to the CCS feedback described above

has been proposed for NLC [67].

While the FFTB BPMs are capable of 1 pm resolution at the design intensity,

measurement of far smaller variations in beam position is expected to be a necessity

at any collider with beam sizes in the nanometer range. The FFTB currently contains

a BPM which uses C-band (5712 MHz) trapped modes to measure beam position [71],

and this device has achieved an approximate resolution of 100 nm. Future runs will

include several such devices, with a goal of demonstrating a resolution in the vicinity

of 1 nanometer. Such high-resolution BPMs will allow pulse-to-pulse jitter correction

at the Laser- Compton BSM, and tests of a feedback which maint sins collisions at the

nanometer level (in this case, the BPM functions as a “target,)’ substituting for the

other beam). In addition, the small beam sizes at FFTB, coupled with such BPMs,

will allow the contribution to beam jitter from magnet vibration to be measured

directly, and compared to theoretical predictions. This is vital, as a well-developed

theory of ground-motion effects is essential to the NLC Final Focus. Ultimately,

a ‘(feed-forward” based upon geophone memurements of magnet vibration may be

possible.

7.2 Recommendations for NLC

The experiences of the Final Focus Test Beam, both positive and negative, make

possible several specific recommendations for the design of the NLC Final Focus.

These recommendations are summarized below.

Clean living pays off In general, the more vigorously any particular toler-

ance could be attacked, the less beam-time was required by it. Magnet strengths,
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for example, were determined and fixed

dent power supplies which regulate with

magnet hysteresis curves were carefully

very carefully: magnets were given indepen-

significantly greater precision than required;

measured, and the standardization cycle in-

cluded in the control system; power supplies were equipped with dual readbacks to

reject common-mode failures of the transductor. Because of the effort invested in all

the systems which connect the magnet strength in the control system with the real

magnet strength, relatively little beam time has been lost to quad strength errors,

drifting power supplies, etc. On the other hand, planarizing the FFTB (ensuring that

magnets, movers, and BPMs all conform to the same x-y coordinate system) received

somewhat less attention, and this remains a possible problem with implications for

tuning and chromatic aberration; and FT sextupole alignment was not considered

a priority, and many hours of beam-time were used to determine that the magnets

could not be scanned with impunity.

More specifically, pre-beam tests to ensure the planarity of the final focus at the

sub-milliradian level are clearly in order for the NLC. Independent power supplies

for each magnet, with independent controllers, are highly recommended. A recurring

problem in the SLC, and many other accelerators, is turn-to-turn magnet shorts,

which are invisible to constant-current power supplies. A system which monitors the

resistance of the magnets (via the power supply voltage) and flags

are significantly different from some reference value, would reduce

this problem.

any units which

the incidence of

Magnet Movers: The ability to align FFTB magnets remotely with high preci-

sion has been tremendously helpful. In addition, unexpected benefits of the system

have included the sextupole mover knobs, mover-based lattice diagnostics, and steer-

ing knobs whose absolute accuracy is coupled to the accuracy of quadruple strengths

and mover LVDT readbacks. The final focus is likely to be the area of the NLC which

demands the greatest flexibility in tuning and diagnostics, and movers for every final

focus magnet will likely be required.
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Specific

Chapter 4.

improvements to the beam-based alignment algorithm are discussed in

A system which uses the more sophisticated cuts described in Chapter 4

would be useful if sufficient computer time were available. In addition, a system which

aligns the entire beamline to a common line is conceivable. Such a system might use a

more optimized algorithm for quadruple alignment, and possibly a “soft constraint”

on amplitude of magnet motion [47]. Adaptation of the sextupole alignment algorithm

to the NLC appears feasible, especially since the beam jitter at the IP phase will be

quite small, and therefore a relatively simple jitter-correction algorithm will enhance

this procedure.

Coupling Correction and Beta Matching: Both the FFTB and SLC Final

Focus are constructed with beta-matching normal quadruples, skew quadruples,

and emittance measurement wires interleaved in one region. This arrangement is

vulnerable to many difficulties, including ‘(dead zones” in the parameter space where

correction is not possible. Furthermore, both final focus systems have been con-

structed such that only two out of four coupling terms may be corrected. This leads

to difficulties interpreting beam size measurements and beam matching. For example,

the angular divergence measurement will be coupled by (x’g’)*, leading to a rolled

beam on the divergence wire. This begs the question: is the roll angle equal to what

the emittance measurement predicts?

Because of these difficulties, the NLC Final Focus is envisioned to fully separate

coupling cancellation, emittance measurement, and beta matching [72]: a set of four

skew quads, set in betatron phase to cancel all four coupling terms, are followed by

a set of beam size me~urement devices which are phased to perform a full 4D beam

reconstruction; these are then followed by the normal quads which match the beam. In

this way the emittance wires can make a measurement of the residual, post-correction

coupling, eliminating the difficulty of measuring emittance when the projected vertical

emittance is dominated by coupling. Furthermore, the final focus beamline is then

uncoupled from the last correction skew quad to the IP, with the possible exception
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of a single QS3-style doublet skew quad, and can be easily understood and tuned.

All final focus wires should produce an unrolled image. Finally, the use of multi-wire

emittance eliminates the invasive quad emit measurements.

Some consideration of the beta matching quads is required to determine whether

the system is sufficiently flexible. The FFTB beta matching region includes one

quad with a reversible power supply (QAO), which has been essential in operating in

conditions other than the design (such as low-divergence). The use of such quads for

“Irwin Knobs” (see Chapter 3) should be anticipated.

A beta matching program which is more fully optimized to the optics of the final

focus is conceivable. Specifically, such a program should use the fully- correlated error

matrix from beam measurement to predict the uncertainty in the beam parameters at

the tune-up points. Even more useful would be a system which predicts uncertainty

in beam sizes and waist positions rather than in ~ and a.

Beam Size Measurements: The inclusion of an IP image point in a final focus

system is a topic of considerable debate. In the FFTB, the wire scanners at the image

points (WS2 and WS3) have been used to verify the match of the incoming beam.

Because WS2 and WS3 are easier to use and less exotic than the BSMS, these gave

the fastest and most reliable information about changes in incoming beam conditions.

While inclusion of an image point is therefore recommended, it is further suggested

that an image point with an aspect ratio greater than 50:1 be avoided if possible, due

to the unreasonable constraints on beam size monitor installation thus engendered.

In practice, it is not always possible to design an aberration-free final focus system

which contains an image point upstream of the IP. Chapter 5 mentions the possibility

of a tune-up image point downstream of the IP. Such an arrangement has some

advantages: it relieves a constraint on the design of the body of the final focus,

places the image downstream of both sextupole families so that horizontal and vertical

chromaticities can be simultaneously cancelled at the image, and couples the beam

size at the image to all the magnets upstream of the IP. The main disadvantage is
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that the extraction line must also accept beamstrahlung photons, e+e-pairs from the

IP, and the disrupted outgoing beam; to add an IP image to the design is a potentially

serious complication. This is nonetheless an idea which deserves some consideration.

Because of the extreme power density of the NLC beam, it is unlikely that any 4

pm or 7 pm wires can be used at all. More exotic devices such as the laser-Compton

BSM or a simpler laser-wire [73] will be necessary for the smaller beam sizes, while

divergence monitors can probably make do with larger and less vulnerable wires. A

laser-wire device is currently in development for SLC; in all likelihood, both types of

measurement devices will be well-understood by the time NLC is built.

At the present time, no technology seems likely to permit direct single-beam mea-

surements of the NLC’s focused spot in the vertical. The presence of a particle physics

detector complicates the design of any such device in any case; while a beam size mon-

itor can be envisioned which allows tuning of the various knobs (via finding the center

of a parabola), only beam-beam scans seem usable for measuring and tuning the final

spot. The advisability of installing a tuning beam size monitor for “capture” tuning

depends upon the anticipated difficulty of measuring beam sizes via beam-beam de-

flection scans when both beams are large and poorly tuned. This situation makes the

desirability of IP image beam size monitors even greater for NLC than for FFTB.

Global Knobs: The FFTB uses two sets of global knobs: a magnet set for

implementing relatively large changes, and a sextupole mover set for scanning and

implement ing small changes. This is an approach which has worked well, and is

recommended for NLC. One difficulty is that NLC Final Focus designs have extremely

strong sextupoles and large R12,34 matrix elements from the sextupole to the IP, such

that the necessary motions of the CCS sextupoles are sometimes as small as tens

of nanometers. One sensible workaround is to fashion the CCS sextupoles as a pair

of magnets: One large, powerful magnet which supplies almost all of the chromatic

correction, and a set of trim sextupoles at the same locations, which are short and

have large apertures and supply perhaps 1% of the chromatic correction. Such an
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arrangement also allows the two main sextupoles in each CCS (x and y) to be powered

or controlled together even if they are poorly matched: if the desired strength of each

sextupole is K., then the sextupoles can be set to K, + dK9 and K. – dK~, while the

trim sextupoles are set to –dK~ and +dK~, respectively. Finally, this arrangement

decouples the chromatic correction from the sextupole mover knobs, by allowing the

main sextupoles in a pair to be scanned in strength (assuming they are sufficiently well

aligned). Such a scheme – using small sextupoles on movers for scanning – must be

well-integrated into the overall scheme of the final focus. Specifically, the time needed

for the movers to converge on a new position must be short, preferably comparable

to a single wire scan (a few tens of seconds).

Alternatively, a set of weak quadruples at

used for scanning. This would require two quads

the CCS sextupole locations can be

at each sextupole (normal and skew),

and introduce some concern about thermal effects and hysteresis of the magnets.

The inclusion of geometric sextupole correctors is recommended, in that the tol-

erances on magnet construction errors may be loosened significantly. Geometric oc-

tupoles seem unnecessary at this time.

Feedbacks: The FFTB operates with two principal feedback loops (in addition

to all the loops which operate in the injector, the damping ring, and the linac): launch

and energy. The launch feedback utilizes only 2 BPMs upstream of the FFTB, while

the energy loop utilizes 5 BPMs in the extraction line. In general a system with

more BPMs is advisable, in the event that one or more fail. The launch feedback,

for example, could use every BPM in the emittance section of the NLC Final Focus,

which would redundantly span the entirety of (x,x’) and (y,y’) space.

Placing critical feedbacks in the downstream end of the NLC Final Focus is not

recommended. For one thing, the post-collision beam in NLC will have an enormous

emittance due to disruption; this will weaken confidence in any sensitive electronic

systems (such as low-noise stripline BPM readout electronics), and also dilute the

correlation bet ween post-collision and pre-collision beam conditions. Furthermore,
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the FFTB energy feedback cannot operate when the tune-up stopper ST62 is inserted;

ideally, the energy feedback should be upstream of any major tune-up stopper or

single-beam dumper. Finally, the BPMs which have the largest dispersion (and the

largest coupling to the energy) should have the smallest coupling to geometric beam

jitter which can be arranged. An ideal location for the energy feedback sensors in

NLC is in the upstream half of the bend region which bends the beam from the

linac into the final focus, as shown in Figure 1.1. This is similar to the SLC energy

feedback, which uses BPMs in the upstream portion of the arcs [74].

Extraction Line: One of the most difficult experiences in the FFTB has been

learning anything about the final doublet, or the magnets which immediately precede

it in the Final Transformer. It is essential to remember that the extraction line will

include all diagnostics which look at these critical magnets, and detectors for any IP

beam size monitors which are installed. It is therefore crucial that the extraction

line optics be arranged to allow such devices to do their job. Because the extraction

line must also accommodate the disrupted outgoing beam and the e+e-pairs created at

collision, adequate design of the extraction line may be one of the most challenging

aspects of NLC.

Because the final doublet strength determines the location of the focused beam in

z, it is recommended that the doublet be tunable to some degree, rather than using

permanent magnets for the entire doublet.
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Appendix A

Machine and Beam Parameters in

a Telescopic System

The familiar machine and beam parameters of accelerator physics were derived to

describe the properties of closed, periodic storage rings and the beams which were .

recirculating therein. These derivations do not apply directly to the Final Focus

Test Beam, nor to any other beam line constructed primarily of modules with pure-

telescopic behavior. Nonetheless, the familiar ~, a, etc., are used throughout the

FFTB design and operation. The purpose of this Appendix is to provide an under-

standing of how such parameters may be adapted to the unfamiliar environment of

telescopic, single-pass lattices.

A.1 Twiss Parameters: ~, a, 7, c

The most commonly-used parameters in accelerator physics (other than energy, lumi-

nosity, and cost) are the Twiss parameters: ~, a, ~; and the emittance, e. In order to

fully understand the issues of these parameters, it is necessary to consider briefly the

single-particle dynamics of a beam transport line. The following derivation is heavily

influenced by several sources, ‘most notably Wiedemann [75], Brown and Servranckx
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[5], and Carey /76].

A.1.l Derivation of the Twiss Parameters

Let us consider for this derivation a beam transport system with no cross-plane cou-

pling and no dispersion. In such a transport line, we may write the equation of motion

for a charged particle as:

u“(s) + K(s)u(s) = 0, (Al)

where u is taken to be a generalized position coordinate (x or y), prime designates

differentiation along the longitudinal axis of the beam line, and ~(s) is the focusing

field strength at the location s, w defined in chapter 1. For a constant ~(s), of

course, Eq. A. 1 is a simple harmonic oscillator. Let us therefore assume a solution of

the form

u(s) = Jwcos(@(s) – @o), (A.2)

in which the oscillator’s amplitude ~ and phase @ are functions ofs, and W and @o are

constants of integration. We may test the validity of this solution by differentiating

twice and substituting back into Eq. A. 1. For notational simplicity, the variables

u, ~, and ~ are all understood to be functions ofs.

(A.3)

(A.4)

When we substitute this expression back into Eq. A. 1, and require that the solution

hold for all values of@, we find that we get two conditions, one from the sine terms

and one from the cosine. ~om the sine terms, the relevant condition is:

‘m[@@”+~] =0, (A.5)
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while the condition from the cosine terms is:

(A.6)

Note that Equation A.5 can be used to derive a relationship between the amplitude

and phase angle in Eq. A.2. We can multiply through by ~, obtaining:

p+” + p’+’= o, (A.7)

and, recognizing that (@@’)’ = ~+” + @@’, we write

(p@’)’ = o. (A.8)

We can therefore assert that ~@’ is a constant. If we define this constant to be 1,

then

+=~s;. (A.9)

The parameter @,when defined as in Equation A.9, is known as the phase advance ~

between the initial point and point s.

Equation A.6 can now be used to determine the evolution of ~ from one point

of the beamline to another. Defining the addtional Twiss parameters, a and ~ as

we can solve Eq. A.6:

In addition, let us explicitly write u’ in this notation:

We may now solve for W using our epxressions for u (Eq.

find:

+U2 + 2QUU’ + pu’2 = w.

(A.1O)

(All)

- 40)] ~ (A.12)

A.2) and u’ (Eq. A.12) to

(A.13)
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Figure A.1: Ellipse defined byparameters ~,a, ~,witharearW, in the
UU’ plane.

The significance of Equation A. 13 shall be discussed shortly. For the time being,

it is worthwhile to note that Equation A. 13 is the functional form of an ellipse the

UU’ plane. The arrangement of this ellipse in the UU’ plane is shown in Figure A. 1.

Any particle at longitudinal location s in this beamline, whose motions are described

by a given set of parameters W, ~, a, will have position and angle relative to the

reference line of the system which satisfies Equation A. 13. The parameters ~, a, ~ are

collectively known as the Twiss parameters
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A.1.2 Twiss Parameters and the R Matrix

Let us now perform two transformations to the particle trajectory determined by A.2

and A. 12. First, let us eliminate the arbitrary phase angle @o and instead write both

position and angle in terms of a component proportional to sin@ and a component

proportional to cos v:

u = a@cos$+b@sin$,

(– ~sin$)+ b($sin$+$cos$).
“=a GCos$-fl

Second, let us define an arbitrary starting point, s = O, at which we define:

u(o)= Uo, u’(o) = u~, p(o) = PO, a(o) = ao, ~(o) = o.

(A.14)

(A.15)

(A.16)

Once this is done, we can define a and b in terms of the initial position and angle of

the particle in question:

(A.17) .

We can now use A. 17 to eliminate a and b in Equations A. 14 and A. 15. This gives us

u(s) and u’(s) as a function of uo and u!. Note that this is simply the definition of

the R matrix between the initial point and the point s. Thus we can write the 2 x 2

R matrix as a function of the Twiss parameters at the beginning of the line, the end

of the line, and the phase advance between the two:

(A.18)

Once this is done, we can invert this relationship, writing a matrix for Twiss param-

eters at the point s as a function of the Twiss parameters at the starting point and

the R matrix between the two:

Po

ao

70

(A.19)
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A.1.3 Matched Twiss Parameters

Let us return to Equation A. 18, which relates the uncoupled R matrix to the Twiss

parameters at the endpoints of the segment of interest and the phase advance from

one to another. Let us now consider the R matrix which represents a single turn

around a storage ring, from a selected point S to itself, which we shall denote by M.

Does there exist a set of Twiss parameters which is transported by M back to itself?

We can rewrite Equation A. 18 for such a special case:

(cosp+asinp ~ sin p
M=

–~ sin p cosp–asinp )

(A.20)

where we have used p to indicate the ph~e advance due to one turn around the ring.

What is the significance of Equation A.20? For one thing, for the special c~e of the

Twiss parameters which are transported back to themselves, these Twiss parameters

are a function of the R matrix alone, and not of any other conditions. While the

derivation of the betatron function, etc., was done in complete generality, we see here ~

that there is a special relationship between this set of Twiss parameters and the R

matrix of the storage ring.

In addition, consider Equation A. 13, in which the Twiss parameters define an

ellipse in the UU’ phase plane. We see that the ellipse whose Twiss parameters are

given by Equation A.20 is also transported into itself by a single turn around the

storage ring. This ellipse is called the machine ellipse at point S, and its significance

is that particles which lie on the machine ellipse at one time will remain on the ellipse

in subsequent turns. Note that the position of an individual patiicle in the phase

plane is not stationary; rather, a particle whose position and angle lie on the ellipse

at one time will, after one turn, have a position and angle which is a different point

on the same ellipse.

Now let us consider a large ensemble of particles which are all described by the

machine ellipse at S. On subsequent turns around the storage ring the particles will

exchange their positions on the phase plane with one another, but no particle will
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migrate to a point off the ellipse. Because the particles are not distinguishable from

one another, an observer measuring the phase space distribution of such particles

would note that the distribution at S remains the same after each turn. Such a

stationary distribution is called the matched beam at S; as we have seen, the Twiss

parameters of such a distribution can be obtained solely from the R matrix around

the storage ring from S back to itself.

There remains one free parameter in Equation A. 13. This is the parameter W,

which carries the information about the tot al area of the machine ellipse. Particles

described by the parameters of the machine ellipse, but with different values of W,

will lie on concentric similar ellipses. It is possible to choose a characteristic value

of W which will describe the overall properties of the beam, and the total phase

volume it inhabits. For example, we see from Figure A. 1 that the ellipse is bounded

in spatial extent by +~. Let us define e to be that value of W such that the RMS

distance of the particles in a bunch from the reference line is given by ~. This is

the definition of a beam’s emittance in use at SLAC. We can also see from Figure

A. 1 that the RMS angular divergence of the beam is given by fi. Note that the

definition of ~ is arbitrary up to an overall scaling factor. Fermi National Accelerator

Laboratory, for example, defines the area of the machine ellipse to be c, and not TC,

and defines the ellipse such that ~+ = 20. [78].

A matched beam injected into a storage ring at a given point will remain matched

(ie, described by the machine Twiss parameters) for all time. What happens if a

mismatched beam is injected instead? Such a situation is shown diagrammatically

in Figure A,2. Note that while the phase volume of the beam is not similar to the

machine ellipse, is still possible to draw a machine ellipse, oj arbitrary area, which

encloses the beam in phase space. In this situation, the beam’s phase volume is less

than the volume of the machine ellipse needed to enclose it – the machine ellipse is

not full. The ratio between the machine ellipse which is needed and the actual phase

volume of the beam is a parameter known as BMA G in SLC notation. BMAG is a
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initially the same phase space coverage but at different centroid energies. As these

bunches circulate around the ring, the leading effect of chromatic aberrations of

storage ring will be to cause the bunches at different energies to precess about

phase plane at differentiates. Thiswill result inanequilibrium situation inwhich

the

the

the

maximal machine ellipse has been completely filled. This process, known as emittance

filamentaton, essentially guarantees that any bunch injected into a properly tuned

storage ring will conform to the matched beam parameters in short order. The only

parameter which is purely a function of the beam and not set by the machine is the

emittance. Because of this phenomenon, when the Twiss parameters are referred

to by accelerator physicists, it is generally understood that the matched machine

parameters are meant.

Let us return our attention to Equation A.20. While we have defined the matched

Twiss for a circular, closed beam line, Equation A.20 places no such requirements

upon us. Any beamline with a known R matrix can be decomposed as shown, and

yield a “matched beam” which is the same at the exit as at the entrance. For a

sufficiently long system (such as the SLC linac), the mechanism of emittance filamen-

tation will even guarantee that the beam is matched at the end of the system, albeit

with a potentially enormous emittance. The principal limitation is that R matrix be

amenable to the decomposition of Equation A. 20. Note, for example, that the trace

of the matrix will yield the phase advance as follows:

TT(R) = 2 Cos p. (A.21)

Consequently, only a beamline whose R matrix has a trace between -2 and 2 can be

decomposed in this fashion. One type of beamline for which this is not the case is a

pure magnification, which has trace M + ~. In this case, some simple algebra shows

that ITT(R) I = 2 for the case of M = +1 and is larger for all other values of M, which

agrees with our commonsensical notion that a magnification should not be capable of

lIn fact, in electron storage rings, even the emittance is a function of the machine
lattice, as synchrotron damping forces the beam to the ring’s equilibrium emittance.



245

u’

Area = ~&x BMAG

+ b

Area = X&

u

Figure A.2: Injection ofamismatched beam into a storage ring. The
“maximal machine ellipse” needed to enclose the beam ellipse is shown.
The particles within the beam ellipse will, on repeated turns, trace out
the ellipses concentric to the maximal machine ellipse.

“mismatch parameter,)’ such that a BMAG of 1.0 means a perfectly matched beam,

and a BMAG greater than unity represents some severity of mismatch.

Note that, for any particle in the real beam, it is possible to draw an ellipse similar

and concentric to the “maximal machine ellipse)’ which passes through that particle’s

position in phase space. We can regard that particle as lying on the machine-like

ellipse, in which case it will be transported on subsequent turns to other points on

that machine-like ellipse. This exercise can be carried out for each particle in the

mismatched beam. In the case of perfectly linear transport, this will result in the

ellipse cent aining the real beam processing around within the maximal machine ellipse

without distortion.

The real world is seldom as simple as purely linear beam transport, however. For

one thing, the beam in a real storage ring will generally have a finite energy spread.

At injection, we can think of this as injecting several bunches, each of which has
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transporting any phase space distribution into itself 2. While a –1 transform has a

trace of -2, this requires a matched phase advance of m. According to Equation A.20,

therefore, R12 = O for all values of the betatron function. This, again, agrees with

our expectation that the –1 transform will transport any phase space distribution

without distortion.

If our formalism indicates that pure magnification modules of any kind do not

have a betatron function as we have come to understand the term, then this begs the

question: what do we mean by “the betatron function” in such a context? In order

to answer this question, it is necessary to define the sigma matrix of a beam.

A.1.4 The Sigma Matrix and the Beam Ellipse

In contrast to the Twiss parameters, the sigma matrix of a beam can be quite simply

defined. Consider a set of n particles distributed about some centroid (mean posi-

tion), and let the distance of the particle from the centroid be given by coordinates .

(Zz)l-.. We shall let i vary from 1 to 6, and use the standard beam physics notation:

coordinate 1 is horizontal position (in meters or microns); coordinate 2 is horizontal

angle (~), in radians or microradians; coordinates 3 and 4 are the vertical position

and angle; coordinate 5 is longitudinal dist ante from the centroid, in meters or mi-

crons; and coordinate 6 is the fractional energy deviation, which is dimensionless.

The sigma matrix

defined as follows:

is the set of second moments of the beam in this coordinate set,

= ~ ~(xi)q(xi)q - * S(xZ)q~(xi)q (A.22)
q– q=l q=l

There is another notation used to refer to the beam second moments, which I define

here for completeness. This is the comelation matrix notation, which defines a vector

2This is not to imply that a magnifying module does not have any phase advance,
but only that the inconsistent requirements that it magnify and yet leave the phase
space distribution unchanged leads to a nonsensical result.
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of beam sizes:

o~ = &, (A.23)

and a matrix of normalized correlation coefficients, denoted by r:

(A.24)

Returning our attention to the sigma matrix, we can easily determine the rules

by which a sigma matrix is propagated by a linear transport system. This is done

by considering the transport rules for the coordinates of the constituent particles,

namely ZZ(2) = R~f-2x~ (1), in which summation over repeated indicies is implicit.

We can apply this rule to the particle coordinates in Equation A.22 to obtain:

—— R:k+2R;L+2 ~kl(l), (A.25)

where the positions xi, etc., are understood to be the positions of the qth particle.

This propagation rule can be rewritten as a matrix equation by the non-intuitive step

of replacing Rjl with (Rt)lj:

aij(2) = RzkOkz(l)(Rt)~j (A.26)

Let us consider, again, a

quadruples, solenoids, etc.),

0(2) = RO(l)Rt. (A.27)

beamline which contains no coupling elements (skew

and also an initial sigma matrix which cent sins no

cross-plane correlations. In this case we can reduce the both the sigma matrix and

the R matrix to block-diagonal forms, three 2 x 2 matrices along the diagonal of the

6 x 6 matrix. In such a system, it has been shown [77] that the determinant of each
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of the uncoupled sub-matrices is always unity. Combining this fact with Equation

A.27, we see that the determinant of the uncoupled sub-matrices of the sigma matrix

is unchanged by linear, uncoupled transport3.

Let us consider now only one of the sub-matrices of the sigma matrix, which shall

be arbitrarily denoted m the xx’ submatrix, using coordinates xl and Xz. Since the

determinant is constant under the beam transport considered here, the matrix can

be factored into its determinant, given here by &2, and a matrix of parameters with

determinant 1. Note that Equation A.22 requires the sigma matrix to be symmetric,

so that:

(:::: )=&(::) =&T

(A.28)

where T is defined as the matrix of parameters whose determinant is unity. from

Equation A.28 and the definition of the sigma matrix, we can see that the mean-

squared distance of particles in the bunch is given by &b, and the mean-squared angle

by &c. The determinant & can now be eliminated from the rule for sigma matrix ~

transport and Equation A.27 rewritten in terms of the T matrix:

T(2) = RT(l)Rt. (A.29)

Because the T matrix is symmetric, it contains only 3 distinct parameters 4. It is

therefore desirable to write a transport equation for the parameters of the T matrix

which takes this into account. This yields a matrix equation for the parameters:

[1[
b(2) R~l 2R11R12 R~z

1[ 1

b(1)

a(2) = R11R21 1 + R12R21 R12R22 a(1) . (A.30)

C(2) R;l 2R21R22 R;2 c(l)

31n fact, even in the case of a coupled sigma matrix, it can be shown that the
2 x 2 block-diagonal matrices have constant determinants when transported through
an uncoupled linear beam line.

4Because T is symmetric and has unit determinant, it only cent sins 2 free param-
eters; the third “distinct” parameter is necessarily a linear combination of the other
two.
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The equation for transporting the T matrix parameters is hauntingly familiar. If, for

example, we replace b with ~, a with –a, and c with ~, we see that Equation A.30 is

identical to A. 19.

What is the significance of all this? Remember that the Twiss parameters, and

their transport laws, were originally derived without any assumptions about the type

of transport system in use, other than that it be linear and uncoupled. The decom-

position of Equation A.28 reduces the beam sigma matrix to an invariant component

and three parameters; these three parameters correspond to the beam size, its an-

gular divergence, and the correlation between position and angle within the bunch,

in the same fashion as the Twiss parameters. In other words, for an arbitrary beam

with a known distribution function, it is possible to decompose the sigma matrix into

a set oj parameters which are mathematically identical to the emittance and Twiss

parameters. Thus, we can adapt the machine parameters ~, a, ~ into beam parame-

ters in an environment in which the matched Twiss parameters are not defined. The

advantage of this decomposition, and this notation, is that it automatically separates

the portion of the beam matrix which cannot be manipulated by the linear transport

system (emittance) from the parameters which can be so manipulated. This is helpful

in that it implicitly prevents us from trying to independently adjust the beam size

and angular divergence at the waist. It is also helpful because it allows us to adapt

other concepts from storage rings, such as chromaticity, which are derived in terms

of the betatron function. In sum, the machine ellipse is a special case of the sigma

matrix decomposition shown here, with the caveat that a periodic system will force

the beam sigma matrix to conform to the machine ellipse.

A.2 Twiss Parameters: Alternate Approach

In recent years, Irwin [79] has developed an alternate approach to the development of

matched Twiss parameters. His approach bypasses the equations of motion entirely,
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and relies only upon the linear transport matrix around one turn of the storage ring.

In addition, the Irwin formalism is more easily extended to the case of a storage ring

with x-y coupling in its lattice. In order to lay the groundwork for deriving the Irwin

Parameters, which specify the intensity and phase of such coupling, his approach is

summarized here.

As in Section A. 1.3, M(s) is defined to represent the linear transport matrix

around one turn of the storage ring, beginning and ending at point s, and we require

(for the time being) that M be uncoupled and have zero dispersion (Mi, = O for all

i # 6). In this case, as before, we can consider M to be a 2 x 2 matrix around the

storage ring. Consider now the eigenvalues and eigenvect ors of M. Because M is a

real symplectic matrix, if A is an eigenvalues then A* and ~ are also eigenvalues (where

in this context A* means complex conjugate of A, not the value of A at the IP). We

can express all the values of ~, in the most general case, as:

where p is a real, positive value. Because we want to limit our consideration to stable

storage rings, we reject the real eigenvalues (which would cause the beam to explode

out of the ring after some number of turns) and turn to the complex eigenvalues. The

complex eigenvalues corresponds to a complex eigenvector,” which we shall denote v:

Prom this equation and the requirement that M be real, we can find the eigenvalues of

e–i~ to be v*. Using these relations and general relations between complex conjugates,

we can write the following:

M (v + v*) = ei~v + e-iP v* = (v +v*)cosp +i(v — v*)sinp, (A.33)

iM(v – v*) = i(eiPv – e–iPv*) = –(v +v*)sinp + i(v – v*) COSP. (A.34)

Let us, for notational convenience, make the following definition:

UEV+V*, v = –2(V – v*), (A.35)
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where both U and V are explicitly real vectors. We can now rewrite Equations A.33

and A.34 as the following:

M1lU1 + M12~2

M21~1 + M22~2

–M1lV1 – M12V2

–M21V1 – M22V2

Let us now define a transformation

AO G

and a rotation matrix, R(p):

= UI cos p – VI sinp,

= U2cosp – V2sinp,

—— –U1 sin p – V1cos p,

—— –U2 sin p – V2cos p. (A.36)

matrix, A., based upon the vectors U and V:

\
—sin p

With these definitions, we find that Equation

equation:

sin p

Cos p )

A.36 is equivalent

MAO = AOR(P).

(A.37)

(A.38)

to a simple matrix

(A.39)

We can now go one step further, and define M in terms of R and Ao:

M = Aon(p)A~l. (A.40)

It is worthwhile to note at this point that the matrix R(p) represents a rotation

in a single plane, and can therefore be rewritten:

R(H) = R(o)n(p)n(o)-’.

This allows us to rewrite Equation A.40 as:

M = AO~(d)R(p)R(@)-lA:l = A(0) R(p) A(@)-l,

in which we have defined A(O) = AOR(0).

(A.41)

(A.42)
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Because M has a unit determinant, there are three independent parameters in

Equation A.42. One is the rotation angle p, which completely determines ~(p). This

means that A(O) can have only two parameters which are determined by the value

of M, out of a total of four entries. This implies that there are two parameters

in A(O) which may be altered without changing the value of M. One of these is

the determinant: because [A(O) I = (lA(0)-l 1)-1, the value of IA(O)I cancels out in

Equation A.42. Therefore we can, without loss of generality, require IA(O)I = 1. The

remaining degree of freedom is 0, which is set below.

When we multiply out Equation A.42, we find:

M=

(

cos p – sin~(A11A21 + A12A22) sin p(A~l + A~2)

)

. (A.43)
– sin p(A~l + A~z) cos~ + sin~(A11A21 + A12A22)

We can now use our degree of freedom, 8, to adjust A(O) such that A(0) 12=0. When

this is done, Equation A.43 becomes:

M=
cos p – sin p(AllA21) sinp(A~l)

[
– sin p(A~l + A~2) cos p + sin p(AllA21)

(A.44)

At this point, we can use Equation A.20 and obtain the values of A(O) by inspection:

(A.45)

\-33)
In sum: from a consideration of the mechanics of eigenvalues for a one-turn matrix

for a storage ring, we can decompose the matrix into a component which carries the

information about the phase advance, R, and a component which carries the Twiss

parameter information, A(O). We can perform one additional decomposition to A(O),

specifically into a component which relates the correlation between position and angle

in the beam (a), and a component which carries beam size information (~):

(A.46)
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Now let us consider the sigma matrix. from our previous experience, we have

seen that the matched sigma matrix can be characterized by an emitt ante, c, and the

Twiss parameters, ~, a, ~, without any consideration of phase advance. Consequently,

we see that, in this notation, the sigma matrix must be a function of the emittance

and A(O) only. If we begin with the sigma matrix:

then we can, almost by inspection, decompose this into:

where we have defined & to represent the ‘femitt ante matrix:)’

(A.47)

(A.48)

(A.49)

A.3 Irwin Parameters: a, b, c, d

The approach taken in Section A.2 can be extended in a straightforward fashion to

the case of a fully-coupled one-turn matrix around a storage ring. Consider the 4 x 4

transport matrix M. In this case we have two degrees of freedom, conventionally x

and y. We therefore expect to have two sets of eigenvalues which satisfy the same

constraints set forth for the tw~dimensional case. We can define the eigenvalues thus:

Al = e*iwl, A2= e*2p2, (A.50)

where 1 and 2 (rather than x and y) represent the degrees of freedom to avoid pre-

judging the situation. We can define the eigenvectors of these eigenvalues as v(l) and

V(2) and their complex conjugates. This then leads us to define the linear combina->

tions of the eigenvectors:

~(l) ~ ~(1) + V(l)*, ~(l) ~ _2(v(l) _ V(l)*),

U(2) ~ V(2) + ~(2)*, V(2) ~ –2(V(2) – ~(2)*). (A.51)
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a transformation matrix A.:

[1

(2) yf2)~Jl) ~;l) ~1

(2) ~;2)~jl) ~~1) ~2
A. E

(1) ~:1) ~3(2) ~42) ?
us

(2) ~~2)~jl) yjl) ~4

and a rotation matrix for two degrees of freedom, R(z):

(A.52)

where ~ = (pl, p2) and R(p) is

We can write

,

[
R(p2) ) ‘

\
o

,

the 2 x 2 rotation matrix as defined in Section A.2.

M = AoR(~)A~l (A.54)

and, defining A(O) in analogy with Section A.2, we can write:

M = A(~) R(~) A(@)-’. (A.55) ~

In this notation, the full rotation matrix ~(~) represents the phase advance of the

storage ring in each of the normal-mode degrees of freedom, and A(3) includes the

usual scaling and rotation of the normal-mode phase planes and the transformation

between the normal modes and the coordinate system used in defining the real beamline.

This transformation between the normal modes and the coordinates in which M is

represented is the coupling of the M matrix.

A.3.I Factorization of A(a)

The state of affairs is now similar to that for the single degree of freedom case, in

that we have a matrix, A(F), which contains within it the beam transport properties

of the single-turn matrix M; and this matrix has two degrees of freedom, represented

by d= (01, 02). In addition, let us assert that the matrix A(F) is symplectic [79] , ie:

A(~) ’JA(@) = J, (A.56)
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where J is defined:

0100

–1000

0001

00–10

(A.57)

Let us consider the properties of a generic 4 x 4 symplectic matrix, m. If m is

known to be symplectic, then we can decompose it into four 2 x 2 submatrices:

ml m2

( m3 m4
> (A.58)

where ]ml [ = lm4 \ ~ g2 and lm21 = lm3[. I can now define a pair of matrices with

unit determinant based upon ml and m4:

N1 G ~, N2 E ~,
9

and install these as the block-diagonal components of a 4 x 4 matrix N:

()N1 O
N=

0N2.

It is not difficult to show that I can now write m in a fascinating new form:

m= N(N-lm) =

= NS,

(A.59)

(A.60)

N1 O )( gI N~~m2

O N2 N~~m3 gI )
(A.61)

where N represents all the “in-plane)’ phenomena of the two normal modes, and S

represents all the “skew,” or “cross-plane” effects between the normal modes and the

coordinate system.

Now that we have isolated the “in-plane” effects of the two degrees of freedom, we

are free to define A(O) such that N1 and N2 have zeroes for their (1,2) elements, as does

the A(O) matrix in Section A:2. The properties of N1,2 – namely, unit determinant
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and a (1,2) element which is zero – permit us to factor them into betatron and alpha

sub-matrices as we did before:

NI,2 =

= BI,2AI,2.

We can therefore write:

As a final note,

the left of the skew

(BI o
N=

o B2

= BA.

10

—al.2 1

(A.62)

(A.63)

while we have chosen here to factor the normal component to

component, it is easy to demonstrate that factoring the normal

component to the right will result in a different skew matrix, but leaves the normal .

matrix unchanged.

A.3.2 The Structure of the S-Matrix

We are now left with the problem of determining the most general possible coupling

matrix of the form in Equation A.61 above. In order to determine this transformation,

we can simplify matters by using the Lie Transformation

problems used by Irwin [80] and Roy [6]. In this approach,

generator of the most arbitrary coupling in the x-y basis 5:

S = –axy – bxy’ – cx’y – dx’y’,

approach to accelerator

we begin by writing the

(A.64)

where a, b, c, d can arbitrarily vary from –m + m. The transformation given by the

generator S can be determined by allowing the related Lie Transfom to operate on

5There are several variants of the Irwin coupling not at ion, which vary in their
assignment of the terms a, b, c; d and the overall sign. Here I define the terms as they
have been defined in the SLC control system.
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an arbitrary 4-vector, Z

x; = e:s:x~, (A.65)

where the definition of: S : is as given in [80]. While the effects of a Lie transform can

in general be quite messy, in this case we find that the expansion of e:s: xi converges

upon a simple form. This allows us to write the Lie transform e:s: as a matrix.

Let us define D as:

D~bc–ad,

and define g and h in two alternate forms:

g=cosh@, h=
sinh @

~ , D>O,

r sin
g=cos IDI, h=

~[Dl

m

, D<O.
D

We can now write the matrix S given by the generator S:

s=

gI

.( bd

() d
he

—a –b

gI

(A.66)

(A.67)

(A.68)

A.3.3 The filly-Coupled 4 x 4 Sigma Matrix

We can now complete our examination of the matrix A(Q). Using the form of S

determined in Equation A.67, we can now fully express A(;) as the product of three

matrices:

A(i) = B~S. (A.69)

In analogy with section A.2, we can define the nomal-mode emittances, c1 and C2.

These are the invariant emittances obtained when the beam is considered in the

normal-mode coordinate system. We can now write the sigma matrix in terms of
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A(;) acting on the emittance matrix:

In analogy with the uncoupled case, we can write:

(A.70)

o = A(;) EA(~)t

= BAsfstAtBt. (A.71)

Without further ado, the fully-expressed elements of the sigma matrix in terms of the

normal-mode emittances, Twiss and Irwin parameters are:

033 =

044 =

034 =

023 =

024 =

P1[92EI+ h2(c2 + d2)E2]

: {g2(l + ~~)el + h2[(a + aIC)2 + (b + aId)2]C2}
@l
–g2a~c~ – h2[c(a + a~c) + d(b + a~d)]e2 (A.72)

P2[92C2+ h2(b2 + d2)E,]

~ {g2(l +~~)~2 + h2[(a+@2~)2 + (C+~2d)2]C1}

–g2a2c2 – h2[b(a + a2b) + d(c + a2d)]61 (A.73)

@gh(b&~ +cc2)

r

P1
~gh[–(a + a2b)cl + (d – Q2C)E2]

[

P2
~ghl–(a + alc)e2 + (d – alb)~l]

&gh[(aal - ‘a2+ba1a2- ‘)’1
+ (aa2 – dal + cala2 – b)~2]. (A.74)
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The preceding derivation was done for a closed storage ring, using the one-turn

transport matrix M. However, we have already seen that the betatron and alpha

functions may be adapted from machine parameters to beam parameters, and thus

~ and ~ can be written for an arbitrary beam in any environment; and that the

emittance matrix & is explicitly a function of the beam alone. Finally, the matrix S

is the most general coupling matrix; consequently, we expect that the decomposition

of coupling it represents does not require a closed storage ring to be valid (ie, a zero-

Iength coordinate rotation between x and y can be represented by an S matrix). We

can therefore state that any beam matrix can be decomposed into two emittances,

two betatron functions, two alpha functions, and four Irwin paramters; and that the

relationship between the parameters and the sigma matrix is as given in Equations

A.72 - A.74.

A.3.4 Properties of the Irwin Parameterization

There are several useful properties of the Irwin parameters, and of the sigma matrix

decomposition shown in Equations A.72–A.74. We have already encountered D, which

is the negative of the determinant of the upper-right submatrix of the S matrix. We

can also define r:

r2~a2+b2+c2+d2. (A.75)

It is possible to show that both r and D are invariant under uncoupled beam transport.

If we define the projected emittances via the determinants of the upper-left and lower-

right submatrices of the sigma matrix:

(A.76)

(A.77)
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then we find the following relation holds between the projected and normal-mode

emittances:

From Equation A.78, it can be shown that the projected emittance can never be

smaller than the smallest of the two normal-mode emittances. The converse is not

true: the projected emittances can be made arbitrarily large, and can be larger than

the sum of the normal-mode emittances. Consider the case of emittances given in

Equation A.78, in which the values of g and h are given by their hyperbolic forms. In

this case all three terms contributing to each projected emittance are positive-definite,

and g4 z 1.

Finally, let us consider the significance of the betatron and alpha functions de-

termined in the decomposition of A(i). It was mentioned in Section A.3. 1 that the

normal component of A(;) could be factored to the right of the skew component,

and this would result in a different skew matrix (with the same functional form) and

an identical normal matrix. Let us call this skew matrix ~. In this case, the sigma

matrix decomposition of Equation A.71 becomes:

In Equation A.79, an uncoupled beam sigma matrix is

matrix product, B~~~tBt, and the coupling applied

(A.79)

constructed by the innermost

to this matrix after the fact.

The innermost matrix product therefore represents the normal-mode beam matrix,

with normal-mode emittances and normal- mode Twiss parameters, and the S ma-

trix represents the requisite coordinate transformation between this and the external

coordinate system. Because the ~ and ~ matrices are identical to those extracted

in Equation A. 71, we can conclude that the Irwin recipe for decomposing the sigma

6These relations were originally worked out by P. Raimondi.
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matrix extracts the normal-mode Twiss parameters, as well as-the normal mode emit-

tances.

A.3.5 Alternate Parameterization: The Spence Parame-

ters

Another parameterization of the coupling in common use at SLAC was developed by

W. Spence. The approach is similar, but the matrix S defined in Equation A.68 in

the following way:

(Bll B12
bSPenceI

s= -(:2 f:) ‘en:

(A.80)

The upper-right 2 x 2 matrix is known as the “B-matrix”. By comparing the Spence .

and Irwin parameters, we arrive at the following relations:

IBI = -sinh2@, D >0 (IBI < O),

m= sin2 D , D <0 (IB[ > O),

bspence = ~1 - [B]= ~. (A.81)

A general purpose conversion between the Spence and Irwin parameters can easily be

deduced from these relations.

Each of the two parameterization has its advantages. For example, in the Spence

approach, \B I s 1, which puts implicit constraints on the values of Bzj. A large,

negative value of B21 coupled with a small positive value of B12 will result in a

IBI value greater than 1. Consequently, an arbitrarily-selected set of Bij values will

not necessarily correspond to a physically realizable transformation, whereas any

combination of Irwin parameters will yield a real S matrix. On the other hand, it is

possible to select multiple sets of Irwin parameters which yield the same S matrix.
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Consider the case of c = –b = ~. In this case, D = –@2, g = cos(~), h = w, and

we can write the S matrix:

If we now let c = –b = @ + 2m, we find the S matrix changes as follows:

(A.82)

cos(# + 2n) o sin(@ + 2T) o
)

o cos(@ + 2T) o sin(@ + 2T)
, (A.83)

– sin(~ + 2T) o cos(# + 2T) o

0 – sin(~ + 2T) o cos(@ + 2n) )

which equals S4 by inspection. In sum, it is easier to go from Irwin parameters to a

proper S matrix, but less ambiguous to go from an S matrix to Spence parameters. .

A.4 Dispersion Parameters: D and q

So far we have considered only a linear system with no energy-dependent transport

properties. Let us now consider the effect of lowest-order energy dependence. In a

bending field which produces a radius of curvature p(s), the off-energy particles will be

over- or under-bent relative to the on-energy particles. If we define the reference orbit

to be the closed orbit of the particles at the design trajectory, then this differential

bending will result in the off-energy particles deviating from the reference orbit. We

can quantify this effect, which leads to a modification to the equation of motion,

Equation A. 1:
6

u“ + K(s)u = —
p(s) ‘

(A.84)
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where 6 = ~, and p(s) is the instantaneous radius of curvature at S7. The complete

solution to Equation A.84 is given by [81]:

u(s) = U(o)c(s) + U’(o)s(s) + 6D(S),

u’(s) = U(o)c’(s) + U’(o)s’(s) + aD’(s), (A.85)

where C(s) and S(s) are the conventional sinelike and cosinelike rays from the initial

point to point s, and D can be determined by the method of Green’s functions

from C, S, and p between the initial and final points. C and S are, of course, the

familiar Rll and R12 elements; C’ and S’ are the Rzl and Rzz. If we identify 8 as the

sixth coordinate of the particle (the fifth is longitudinal position from the centroid,

which is not a crucial parameter in final focus systems), then the characteristic rays

~z , D:, Dy , D~ translate to the ~16, ~26, ~36 , R46.

Let us consider only the xx’ plane, which is the usual bend plane, with the un-

derstanding that all discoveries there can be equally well applied to the yy’ plane if .

necessary. Let us now consider the 3 x 3 matrix R:

[1
R1l R12 R16

R = R21 R22 R26 . (A.86) -

001

Furthermore, let us define M(s) to be the one-turn value of R from s back to itself

[)
Mll M12 M16

M = M21 M22 M26 . (A.87)

001

For a particle with coordinates (x, x’, 6) = (O,O,O), we can see trivially that the

particle will return to the same position after one turn, and this defines the reference

orbit. A particle with an energy offset only will begin at (O,O,6) and return to

71n reality, the inhomogeneous term in Equation A.84 should indlude ~ - ~, and
not 6. The use of 6 is traditional, and a good enough approximation for most cases.
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(M166, MQ66, 6). This begs the question: for a given value of 6, does there exist a

combination of position and angle at s which is transformed into itself? If so, this

would constitute the closed orbit for off-energy particles, or (putting it another way)

would show how the reference orbit is deformed for particles of different energies.

Let us define this position to be (q6, q’b, 6) for the case of linear transport. We can

determine the values of q and q’ by expressing the stability condition:

Rom Equation A.88, we see that in general the characteristic functions q(s) and q’(s)

depend upon all the elements of the matrix M.

- One special case of Equation A.88 is the case in which, for some location SO,both

M 16 and M26 are zero. In this case, q(so) and q’(so) are both required to be zero as

well, and the reference orbit for on-energy and for off-energy particles will coincide .

at point so. Let us now define R~-s and R~-S tO be the R16 and R26 frOm the

aforementioned so to some other location s. A particle with coordinates (O,O,6) at

‘0+s6, 6) at point s. Since the actions of thepoint so will be transported to (R~+S6, R26

storage ring must transport this particle back to its starting position, it follows that

the path of the particle around the ring constitutes the closed orbit for particles at

its energy. Therefore, The condition described above requires that, at any point in

the machine,

q(s) = R~+s,

q’(s) = R~+S. (A.89)

~.4.l Dispersion Matrix Decomposition

Before considering the application of the dispersion formalism to linear collider final

focus systems, it is worthwhile to note a property of the dispersive transport matrices
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in the previous section. Specifically, any of the matrices shown can be factored

trivially into a geometric matrix and a chromatic matrix:

(A.90)

A.4.2 Dispersion and the Beam Matrix

We saw in Section A. 1.4 that it is possible to define a beam matrix which carries all

the information pertaining to the second moments of the beam’s distribution. We

can extend this technology trivially to the case of systems with energy-dependent

beam transport, using the same propagation law, Equation A.27. For simplicity, let

us consider here only storage rings which have a point at which the on-energy and

off-energy closed orbits coincide, as described above.

At the point of coincidence, we can see by inspection that the stationary beam dis-

tribution is given by the monochromatic Twiss parameters, which can be determined

by application of Equation A.20. To obtain the matched beam at an arbitrary location

downstream, we can apply the transport rule, Equation A.27, and the decomposition

shown in the previous section:

It is worthwhile to note that fialfit is the beam transport for a non-dispersive

system. Furthermore, it can be shown easily that 016 = a26 = O at the point of coin-

cidence. Therefore, if we define a(~) to be the full beam matrix including dispersion,

and a(~) to be the monochromatic matrix determined by use of fi, then we find:
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(M) ~ tialfit intoFurthermore, if we take the step of directly substituting 02

Equation A.91, we find:

(~) = ~a\M)~t.
02 (A.93)

We can now use the sigma matrix decomposition of Equation A.71 to substitute for

‘M) to find:02 ,

ojDJ = DBAs&stAtBtDt, (A.94)

where we have extended the definition of the emittance matrix thus:

Elooooo

OEIOOOO

0062000
000 C200
00000;0 1
ooooo(y)2)

(A.95)

A.4.3 Dispersion in Linear Collider Final Focus Systems

Now let us consider a linear collider such as that depicted in the schematic of Figure

1.1, and let us assume that the design is such that, at the nominal entry to the final

focus, R16 and R26 from the exit of the damping ring are both zero. We can define this

“\
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entry location to be a “treaty point” at which q and q’ are also zero. While no” closed

orbit” exists for a linear, single-pass system, we conventionally define the functions

q(s) and q’(s) for this region as though the treaty point was a dispersion-free point

in a storage ring, ie, as in Equation A.89. This is known as the iattice dispersion of

the beamline.

We saw in the previous section that, at points where the on-energy and off-energy

reference orbits coincide, the energy-position correlation terms (~~6, i # 6), are identi-

cally zero. While we have defined the dispersion functions at the entrance of the final

focus to be zero, this does not affect the incoming beam, which may have nonzero

energy-posit ion correlations. This arises from imperfections in the real lattice. At

this location, however, orbit deviations with changes in the centroid energy are not

reliable measures of dispersion. For one thing, the presence of steering feedbacks will

tend to eliminate the effects of such deviations. For another, the beam energy is

generally changed by changing the accelerating properties of the linac at a given 1~

cation; this location may be upstream or downstream from the source(s) of unwanted

dispersion. Instead, we can examine the beam matrix itself, and use Equation A.92

to extract the residual dispersion:

(A.96)

These values can be used to determine a ~ matrix, as in Equation A.94.
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A.5 Chromaticity

The quantity known in closed storage rings as chromaticity is usually defined as the

change in the tune around the ring with energy:

(A.97)

It is also legitimate, therefore, to define < as the change in phase advance of a section

of beamline with energy. Using this definition, it can be shown [82] that:

(A.98)

where K(s) is here understood to be positive for focusing in the plane of interest

(in other words, for computing vertical chromaticity, horizontally-focusing quads are

considered to have negative K(s), vertically-focusing positive).

Let us consider the beam shape and phase advance at the IP or another waist

point of the final focus system. At this point, a = O and consequently 7* = ~. ~

Using the Twiss-transport shown in Equation A. 19, we can write an equation for the

betatron function a distance s from the IP:

S2
p(s) = P*+ ~. (A.99)

The expression for ~(s) can then be substituted into the defining equation for phase

advance, Equation A.9, to yield a relation between the drift dist ante from the IP and

the phase advance:

A+ = tan-l ~, or s = ~%tan A+. (A.1OO)

The value of A@ can be replaced as shown in Equation A.97

A simple reading of

odic function of the

s = B* tan(2~~A6). (A.101)

Equation A. 101 would indicate that the waist shift is a peri-

energy offset of a given particle, and therefore that the waist
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should be restored to its nominal position for particles with- 6 = &/2. In practice,

however, the waist shift is a monotonic function of energy offset. The reason for this

is that as the energy of the beam changes, the betatron function in the quadruples

changes. As Equation A.98 shows, this results in a value of ~ which is a function of

energy. In practice, therefore, the energy-dependent waist shift can be approximated

by Equation A. 101 about the 6 = O point:

Note that Equation A.99 can also be used to obtain an expression for the linear

beam size off the waist by a distance s:

.

(A.103)

We can now combine Equations A. 102 and A. 103, and determine the beam size at

the IP location due to changes in the focal point from chromaticity:

02(6) = ep* [1 + (2ng8)2]. (A.104)

If we convolve 02(6) with a Gaussian energy distribution of RMS width ~, we obtain .

an expression for the beam size at the nominal IP as a function of the emittance,

betatron function, and energy width:

02 = Ep* + 4n2f2(~)2. (A.105)

Equation A. 105 is identical to Equation 1.5, with on exception: the definition of &used

by Roy is greater than the definition of& used here by a factor of 2T. Consequently,

a factor of 4T2 appears in Equation A. 105 which is not present in Equation 1.5.
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Appendix B

Measurements of FFTB Magnets

A considerable insight into the properties of accelerator electromagnets and their ap-

plications can be extracted from the two-dimensional multipole expansion of the mag-

netic field. In this Appendix, the expansion is presented in both polar and Cartesian

coordinate systems. A description of the two techniques used to measure the mul- .

tipole characteristics of the FFTB standard quadruple and sextupole follows, with

a discussion of the results of the techniques. The author is indebted to J.K. Cobb

of SLAC for many fine papers on the theory and practice of magnetic measurements

[83], [84], and also for his description of the rotating- coil technique [85].

B. 1 Expansion of the Magnetic Field

A beamline magnet of the type used in the FFTB can be approximated as follows:

between 1 = O and 1 = l., ~ = ~(r, 0), while outside of these bounds ~ s O;

and BZ = O at all points. Within the z-axis bounds of the magnet, therefore, an

appropriate coordinate system to use is planar polar coordinates. If we postulate

that the magnetic field inside the aperture is constant in time at all points, and that

the aperture contains no currents, then we are justified in defining a magnetic scalar
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potential, 0. This leads to the familiar equations for the magnetic field 1:

The equation for @

variables technique;

system, we find:

The magnetic field

application of 6:

can be solved in a

reject ing solutions

@

vector at

F(r, 0)

m

straightforward fashion by

which diverge at the origin

= ~ ~.r” sin(n~ - a.).
n=l

any point inside the magnet

(B.1)

the separation of

of the coordinate

(B.2)

can then be found by

—— ? ~ Knnrn–l sin(n~ — an), (B.3)

+ O~ Kn~rn-lCOS(~O – an).

The relative strengths of the ~n, and the values of a., are determined by the .

boundary conditions. In order to understand these, it is instructive to rewrite sin(nO–

an) as a separate sine and cosine term, and to rewrite the first three terms of @ in

cartesian coordinates:

@ = ~ Kn,Nrn sin nd + ~ Kn,srn cos no (B.4)

= K1,Ng + K1,sx

+ 2Kz,Nxy + Kz,s(x2 – y2)

+ K~,N(3x2y – y3) + K3,s(~3 – 3Y2X)+ ...

The components of @ can be controlled by forcing the magnet to have an equipo-

tential surface whose geometry corresponds to the desired term in Equation B.4. For

example, a magnet which contains a nonzero K1,N, and no other components, must

have an equipotential surface at y = +yo, where y. is some constant. Similarly, a

lThis treatment defines @ opposite in sign to the usual convention.
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Figure B. 1: Shaping of iron pole-pieces required to generate pure dipole,
quadruple, or sextupole magnetic fields.

magnet which contains only K2,N must have an equipotential surface at xy = +q~,

where q is a constant. The equipotential surface in a warm-iron magnet is formed

by shaping the iron pole- pieces, since to good approximation @ = O at the surface

of the iron. Thus a magnet with hyperbolic pole-pieces will be a pure n = 2 pole, .

or a quadruple magnet. Figure B. 1 shows the pole-face shaping required to obtain a

pure dipole, quadruple, or sextupole magnet. All the magnets shown in Figure B. 1

are s~called “normal’) magnets, in which Kn,s = O for all n. To form a magnet with

non-zero Kn,s terms, a “skew” magnet, it is necessary to roll a normal magnet by an

angle r/n, as Equation B.4 shows.

Let us now apply the ~ operator in cartesian

@ in Equation B.4, to obtain the magnetic field:

coordinates to the first 3 terms of

E(z, y) = j [KI,N + 2K2,Nx – 2K2,NY + 3K3,N(X2 – V2) – 6K3,SZY + . ..] (B.5)

+ ~ [KI,s + 2K2,NY + 2K2,sx + 6K3,NXY + 3K3,s(x2 – y2) + . ..] .

Equation B.5 demonstrates immediately the essential properties of accelerator mag-

nets. The K1,NIS terms constitute a constant kick in the horizontal and vertical,

respectively; the K2,N terms provide the focusing effect of quadruple magnets (in

which the kick received by the particle is proportional to its dist ante from the origin),
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and also contain the polarity of the focusing (in which a horizontallly-focusing magnet

is vertically defocusing, and vice versa); the ~2,S terms constitute a skew focusing, in

which the horizontal kick is proportional to the vertical offset and vice versa. Finally,

it can be shown from Equation B.5 that a beam offset horizontally in a sextupole

will receive additional normal quadruple kicks, while a beam offset vertically in a

sextupole will receive additional skew quadruple kicks.

B.1.l Additional Definitions

Real magnets in accelerators act on the beam over a finite length. For this reason

the integrated Je/d, J ~dl, is usually used to characterize such magnets. We can take

advantage of the longitudinal symmetry postulated above and rewrite Equation B.5:

/~(~)Y)dz= ti[~o,,~+GN~-GsY+ sN(~2-Y2)-2ss~Y] (B6)

+ i [Bo,.L + GNY + GSZ + 2SNXY + SS(Z2 – y2)],

where the length of the magnet is L. The coefficients nLKn,N\S in Equation B. 5 have

been replaced in Equation B.6 with a series of integrated quantities: the integrated

gradient, GN/S, and the integrated sextupole, SN/s. The integrated sextupole is defined

here such that, at a radius ro, the f Bdl from the sextupole field is given by SNr~.

The integrated second derivative of the magnet is twice the value of SN/s, and this

quantity is also frequently used to specify the strength of a sextupole magnet, or the

sextupole content of a multipole magnet.

The choice of coordinate system also provides three degrees of freedom: the co

ordinate system in which the magnetic field expansion is performed may be selected

by moving the origin and rotating about the longitudinal axis, yielding x, y, and O

degrees of freedom. For magnets which are intended to function as quadruples, the x

and y coordinates are typically chosen such that the dipole field component vanishes,

and the roll is chosen such that the value of GS vanishes:

/~(x,Y),uad~l = ~[GNz+sN(x2‘Y2)-2SSXY] (B.7)
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Figure B.2: A rotating coil in an arbitrary magnetic field.

+ ~ [GNg + 2SNxY + SS(X2– y2)] .

For sextupole magnets the x and y coordinates are chosen such that the GN and Gs

vanish, while the roll is chosen such

l~(x,Y)SeXtdZ

With these definitions in hand,

measure the FFTB magnets.

that SS vanishes:

= ~ [~o,vL + SN(x2 – y2)] (B.8) -

+ ~ [~O,xL + 2SNx~] .

we may now examine the two methods used to

B.2 Rotating Coil Measurements

Consider a situation as depicted in Figure B.2: A rotating coil of length 11 and radius

rl. is inserted into the aperture of a magnet of length L, and rotated asymmetrically

(i.e., one end of the coil moves while the other is stationary) with frequency w. If we

define the stationary leg of the coil to be at the (~, y) origin of coordinates, and leave
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the O = O rotation arbitrary, then the total magnetic flux through the coil when it

sits at angle 01 can be computed from Equation B.3:

l=L
@B(o = @l) = ~=o dl~;:rl dr~e(r, 61) (B.9)

= L ~ Knr~ COS(~6~– an).

Because the coil is rotating with frequency w, we can replace 01 with Wtl. Furthermore,

the rotating coil gives rise to an induced EMF:

v=-% = L ~ nKnr~w sin(nwt – a.). (B.1O)

Equation B.1O shows that the induced EMF is a function of time, and that the the

2n-pole moment of the magnet generates an EMF which oscillates with a frequency of

nw. The relative contributions of the different multipole moments can be deduced by

separating the different frequency components of the EMF signal as the coil rotates

in the magnet aperture.

The extraction technique for the coefficients used for the FFTB magnets has been ~

in regular use at SLAC for many years [84]. The loop is rotated at a frequency which

is carefully maintained at a constant value, and the potential difference around the

loop is measured at M intervals equally spaced around the full circle of its rotation.

Because the rotation speed is constant, the M equally-spaced measurements of V

constitute a series of samples equally separated in time. By performing a fast Fourier

transform (FFT) of the voltages measured at the M intervals, therefore, the multipole

components up to n = M/2 can be computed.

In an ideal situation, the M/2 Fourier coefficients can be extracted from the

rotating-coil measurement without any interference between coefficients. In a real-

world situation, however, precision becomes limited by the precision with which V

can be measured. In particular, a very large signal from a low- frequency component

can force the use of a coarse voltmeter setting, which in turn results in poor signal-

to-noise performance for the smaller signals of high-frequency components. This is

especially a problem if the coil center does not precisely match the desired center



Figure B.3: A tw~coil
magnetic fields; such a
quadruple field.

svstem used to null EMF from odd-harmonic
c;il gives higher precision measurement of the

of the magnet (null-bend point for quads or null-gradient point for sextupoles). If

a particular harmonic is to be measured with high precision, an appropriate coil

design can improve the signal- t~noise behavior. For example, precision quadruple

measurements can be made by constructing two coils with a common axis, as shown

in Figure B.3. In this case, the sum of the two coil voltages is measured. In this case,

the voltage measured will be:

V = L ~ nK.r~w [sin(nwt – a.) + sin(n(wt + n) – a.)] . (B.11)

For even harmonics, such an arrangement doubles the signal, while for odd harmon-

ics the sum of the two sinusoidal terms cancels. For measuring the quad term, this

arrangement rejects the misalignment background and any

rotation frequency (such as motor-induced backgrounds),

tupole, decapole, and other odd harmonic multipole terms.

other backgrounds at the

but also rejects the sex-

This is the arrangement

used to memure the quadruple excitations (GN versus current) for the FFTB quads.

Figure B.4 shows a typical result for the measurd GN for an FFTB quadruple,

as a function of the excitation current leZ. A coil of radius 8.66 mm was used for
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Figure B.4: Magnetic field hysteresis curve for a typical FFTB stan-
dard quadruple. The lower curve represents the rising-current mea-
surement.

the measurement. The expected statistical error on the measurement of each value

of GN is 0.0270 of the value itself, and comes from the resolution of the voltmeter,

the precision of the rotating coil frequency, and the stability of the quadruple power

supply; while the systematic error is expected to be 0.0470 of the value of GN, arising

primarily from possible calibration errors in the coil and the power supply transductor

[85]. Figure B.5 shows the RMS distribution of GN values at each current used for

measurement.

Let us consider the first two terms in the harmonic expression of Equation B. 10,

which in the case of the two-coil system are quadruple and octupole:

V = L [2Kzr~w sin(2wt – a~) + 4~Lr~w sin(tit – a4)] + .. . (B.12)

We can rewrite this with GN and the integrated octupole, O, and define the coordinate
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5: RMS deviations of the quadruple field measurements for
all currents. Deviations are shown as fraction of average strength at the
given current. Both rising-leg (dark) and falling-leg (light) are shown.

system such that a2 = O:

V = G~r~w sin 2wt + Or: sin(4wt – a4) + ... (B.13)

The magnitude of the integrated quadruple field at r = rl is given by GNrl, and that

3. Let us assume that the resolutionof the integrated octupole field is given by Orl

of 2 x 10–4 given for GN corresponds to a 2 x 10–4 resolution of the integrated

quadruple field at rl. Furthermore, let us assume that this limitation implies the

overall statistical limitation of the measurement of the integrated magnetic field at

rl. It therefore follows that the magnetic field due to octupole moment at r = rl can

be measured to 0.02% of the magnetic field due to quadruple moment at r = rl.

The tolerance on higher-order multipole fields for the standard quads is O.1% of the

quadruple field at 7070 of the aperture. The coil is capable of measuring a higher-

order even multipole field equal to 0.0270 of the quadruple field, and its radius is
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75% of the aperture. Because the multipole fields are expressed as a ratio between

two fields, the systematic errors cancel out in this case. Out of 174 multipole content

measurements on the FFTB standard quads (6 multiples on each of 29 quads), only

3 were found to be at the tolerance stated above, with all others significantly lower.

The primary purpose of the rotating-coil measurements was to determine the

quadruple strength as a function of power supply current, in order to derive a polyn~

mial for use in the control system. Secondarily, the measurement was to measure the

even-harmonic multipole moments, especially the ‘(allowed’ harmonics. “Allowed”

multipole moments are those which arise from construction phenomena which tiect

all poles symmetrically. For example, the pole-faces in the FFTB quadruples are

not infinite in the vertical or horizontal. The truncation of those pole-faces leads to

12-pole, 20-pole, and 28-pole moments. As described above, the “allowed” multipole

cent ents were found to be quite small relative to the construction tolerances. The

sextupole component not an allowed harmonic, and is therefore expected to be small.

However, the sextupole field is proportional to r2, which is the lowest power or r after

the quadruple. Therefore, relatively small construction errors at the pole-face will

translate to larger sextupole errors near the center of the magnet, where the beam is

present.

After the rotating-coil measurements described above, each FFTB standard quad

was disassembled in order to insert its BPM, then reassembled. The reassembled quad

was then placed on a test-stand which was used to simultaneously calibrate the BPM,

measure the quadruple field to ensure that the magnet had reassembled properly,

measure the magnetic center relative to the mechanical center of the magnet, and

measure the sextupole component. This set of measurements is described below, save

for the BPM calibration which is described in Appendix C.
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Figure B.6: Schematic of the stretched-wire measurement apparatus,
including Stage Controller (SC), Integrating Digital Voltmeter (IDVM),
Spectrum Analyzer (SA), ~equency Generator (FG) and horizon-
tal/vertical driver Switch Box (SB). The mounting table and Coor-
dinate Measuring Machine (CMM) are not shown.

B.3 Stretched-Wire Measurements

Figure B.6 shows a schematic diagram of the apparatus used for the stretched-wire

measurement. A gold-plated tungsten wire 35 pm in diameter is strung through the

magnet aperture, and attached to a 150 gram mass; the resulting wire tension is near

the breaking tension. The resulting wire sag over the full 1.8 meter length of the

wire is 12 pm; however, the wire position is measured at stations at either end of

the magnet, and the sag between the end of the magnet and its center is close to 1

pm. The wire is made parallel to the magnet at the 0.05 mrad level via a Coordinate

Measuring Machine (CMM), not shown in Figure B.6.

Once the wire is installed; the oscillation drivers are activated, and driven by a
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frequency-generatorat the wire resonant frequency of83 Hz: With thequadrupole

magnet excited by 165 amperes, the vibration results in an EMF across the wire.

Like the rotating-coil method described above, the EMF at the driving frequency

is due to the dipole term in the multipole field, and the second harmonic (166 Hz)

is due to the quadruple term. The EMF is monitored by at t aching the wire to a

spectrum analyzer (SA). By exciting the vertical driver and moving the wire in the

horizontal until the 83 Hz component of the signal is nulled, the horizontal center of

the quadruple can be located. Similarly the horizontal driver allows determination of

the vertical center. A modest extension of this technique [86] allows determination of

the magnetic center in x, y, and z. The coordinate system of the computer-controlled

motion stages is then set to the point determined by this procedure.

In order to measure the magnetic field and sextupole content, the stretched wire

is moved (via the stages) by a known vertical or horizontal distance about a central

point (z, y). The wire is in this case connected to an integrating digital voltmeter

(IDVM). Given a magnetic field described by Equation B.7, the integrated voltage

can be written as a function of the sweep center (z, y), the total sweep distance 6Z in

the horizontal and 6V in the vertical, and the field components:

I [
SN6:

Vdt = 8. GNX + SN(X2 – Y2) – 2SsXY + ~
1

[
SS62

1
– 6VGNy + 2SNXY + SS(X2 – Y2) + $ .

(B.14)

The grid of measurements used is shown in Figure B. 7. A grid of 25 center points,

from -4 mm to +4 mm in x and y, with a horizontal sweep of 2 mm and a vertical sweep

of 2 mm, gives a total of 50 measurements, with the wires never more than 5 mm from

the center of the magnet in x or y. The total grid of 50 measurements was repeated 10

times in order to determine the repeatability of individual measurements and to allow

sufficient redundancy to perform cuts. Once cuts to the data had been applied and

appropriate error-bars for each data point established, the map of (x, Y, ~~, 6V, ~ Volt)

data was fitted to Equation B. 14 via a MINUIT-mediated X2 minimization. In the
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the 50 stretched-wire sweep measurements

fit, horizontal and vertical offsets, and roll angles, are included as fit parameters.

In order to determine some possible sources of noise in the system, several test

measurements were performed. These tests are described below.

B.3.1 Test of the Stretched-Wire System

The first test of the stretched-wire system was a null-field test: the system was

installed as shown in Figure B .6, the vibrating-wire operation was performed to locate

the center of the magnet, and the magnet was then turned off. After a suitable period

of time, the measurement sequence described above was initiated. This would allow

determination of the background noise in the system with no magnetic field present.

For each of the 50 points in the (z, g, 8., 6V) grid, the average ~ Vdt over 10 mea-

surements and the RMS were. determined. These are plotted in Figure B.8. Because
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Figure B.8: Distribution ofaverage integrated voltage and RMSdevi-
ation from same over the grid of null-field measurements described in
the text.

all the values are clustered about an RMS width of 0.080 HV. see, it follows that

the background noise in the system, with the magnet power supply deactivated, is

approximately 0.080 pV . sec.

A second, complementary test of the system was also performed. In this test the

magnet power supply was activated, the magnet excitation current was set to 165

amperes, and the wire moved to the center of each sweep on the grid, but no actual

sweep was performed. Instead the IDVM integrated while the wire was nominally

stationary, and the 250 resulting f Vdt measurements were expected to be consistent

with zero, with some RMS.

When the stationary-wire test was performed, it wm determined that the average

of the measurements was indeed close to zero, but the RMS in this case was 0.38

pV . see, significantly larger than in the zero-field c~e. Why this should be the case

is not known. One possibility is that the supposedly-stationary wire is in fact moving
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in small increments as the feedback loop for the wire stages operates, but in this

case the signal strength at each point should correlate with its position, which was

not seen. A second stationary-wire test, with the magnet power off, revealed similar

results but a smaller, 0.26 pV . sec RMS value for ~ Volt.

An additional feature of the powered stationary-wire test was a series of “noise”

events, in which the value of a measurement at a given location was several pV” sec

different from the average at that location. This feature was not seen with the magnet

power supply off, and was believed to be caused by other electrical devices in the

vicinity briefly drawing power away from the magnet power supply. The noise events

were found to appear with a simple periodicity in the measurement process. When

the length of time required for a measurement was increased, the

noise events was observed to decrease, indicating that the events

time and not in measurement number.

frequency of the

were periodic in

B.3.2 Results of the Stretched-Wire measurement

The FFTB standard quads were measured in the stretched-wire technique at an ex-

citation of 165 amperes, to be consistent with one of

rotating coil. At each point in the grid, 10 x-sweep

measurements were taken, for a total of 500 points.

the data points taken with the

measurements and 10 y-sweep

The 10 x-sweep measurements

were then combined to form an

such as those described above.

and 50 RMS values.

average and an RMS, after filtration of noise events

This reduced the total dataset to 50 measurements

A MINUIT fitting engine was then employed to fit the parameters in Equation

B, 14 to the 50 data points, using the RMS values divided by @ as uncertainties,

where m is the number of readings averaged to give a single data point. Because of the

filtration of noise events, m is not constant for all data points. It is interesting to note

that the RMS values observed at each data point were in general consistent with the

0.08 pV . sec observed for the zero-field swept-wire measurement described previously,
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and not with the larger values observed for the stationary-wire measurements.

Early results with the fit as described were not encouraging. A search for sys-

tematic errors determined that the GN value obtained using only horizontal sweep

data was different from the value when only vertical sweep data was used. The fit

was expanded to include a seventh parameter, a global scale factor by which horizon-

tal position data was multiplied to make it consistent with the vertical data. This

value was found to oscillate about 0.997, and the convergence was improved with its

inclusion, but the value of X2/v was still too high,

An additional source of error was speculated to be the stages and/or their con-

troller. It was presumed that the stages might have some overall positioning accuracy

over millimeters of motion which was larger than the micron-sized precision of the

system: over the 10 measurements of a given (z, y, 6X,6V) sweep, the stages were re-

producibly returning the stages to the same location, but that location was not the

location expected by the measurement program or reported by the stage controller.

An ad hoc assumption of a 3 pm positioning error in each plane was found to fit

the data relatively well, and also to fit the data obtained in the CCS sextupole mea-

surements (see below). This overall accuracy number is a systematic error in that it

cannot be reduced through additional measurements of the same data; consequently

it forms the main source of error in the measurement. It is worth noting that magnets

which were measured under cool-west her conditions reached X2/v values much lower

than 1, indicating that the temperature in

source of systematic error.

Standard Quadruple Measurements

In addition to the systematic errors listed

the equipment room was a factor in this

above, six of the FFTB standard quads

measured by this procedure had extremely anomalous results: while nothing quali-

tatively wrong appeared in the data, these magnets reported a very large sextupole

component, a scale-factor quite different from 1, and a poor X2/v value (1000-2000
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Figure B.9: Comparison of the stretched-wire GN measurements (dia-
mond) with the rotating-coil values (square).

per 43 degrees of freedom). The cause of this difficulty was never isolated, and there

was some concern that the cause was an actual problem with the magnets, especially

since five of the six magnets were consecutive in serial number (specifically magnets 2,

4, 5, 6, and 7; magnet number 3 was never measured). However, magnet number 23

was originally found to be anomalous, but was remeasured and found to be normal.

This lends weight to the possibility of an undetermined measurement error. Magnet

29 was also anomalous, but no remeasurement was made. Since 25 magnets were

measured, a total of 19 yielded non-anomalous results.

Figure B.9 shows the measured GN values for the FFTB standard quads with 165

amperes excitation current, from both the stretched-wire (diamond) and rotating-coil

(square) measurements. The rotating-coil measurements have been scaled from

precise current at which they were performed to the precise current at which

stretched-wire measurements ‘were made for direct comparison. In several cases,

the

the

the
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Figure B.1O: Fractional deviation between the rotating-coil and
stretched-wire measurements OfGN for FFTB standard quads.

stretched-wire currents were not properly recorded, and the average stretched-wire

current of 165.845+0.185 amperes was used; this uncertainty in the current results

in the large uncertainties on several of the scaled rotating-coil measurements. The

resolution of the stretched-wire system is 0.007 T/m, or 0.02570.

Figure B. 10 shows the relative difference in the two measurements: [GN (wire) -

GN(COil)]/GN(COil). Overall, a scale factor of 0.2% is indicated, with the rotating coil

report ing the larger strength number. Some fliers exist, indicating that the systematic

discrepancy is not quite so simple. In addition to the 0.370 systematic error from

the scale factor, other possible sources of error include: the transductor used to

measure the magnet current; an overall scale factor to the wire-mover stages; and

hysteresis-related errors in scaling the rotating-coil measurements to the stretched-

wire currents. Nonetheless, the +0.270 agreement indicated in Figure B. 10 indicates

that no unacceptable damage occurred to the quads during BPM installation, and
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Figure B.11: Measured quadruple roll angles, in milliradians. The
distribution is more indicative of the precision with which the magnet
can be placed on the test stand than of any characteristics of the magnet
itself.

that the stretched-wire technique used here is an adequate one, with potential for

improvement through vigorous elimination of systematic errors.

Figure B. 11 shows the fitted quadruple roll angles relative to the coordinate sys-

tem of the wire stages. The resolution of this measurement is close to 80 prad. It was

initially hoped that the fitted roll angles could yield some insight into the orientation

of the quadruple field with respect to the mechanical split-planes of the magnet;

however, the few magnets which were repeatedly measured did not yield repeatable

angle measurements. The roll angle is therefore primarily a measure of the accuracy

with which the magnets can be installed on the test stand. The extremely high res-

olution of this technique, however, makes it a potentially useful one in developing a

planarized NLC final focus at the milliradian level, as discussed in Chapter 7.

Finally, Figure B. 12 shows the overall sextupole content of each of the 19 magnets
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Figure B.12: Total sextupole content of theFFTB standard quads, as
measured by the stretched-wire technique. Dashed line represents the
construction tolerance described in the text.

with good convergence: STOT = ~S~ +S~. The resolution of each of the normal

and skew components was approximately 1.0 T/m, for a resolution of STOT of 1.4

T/m. The dotted line represents the tolerance value, 3.5 T/m, corresponding to

a magnetic field from sextupole component equal to 0.170 of the field from quad

component at a radius which is 7070 of the aperture. All but 1 of the magnets lie

at or below the tolerance, to within the measurement error. Note, however, that

the construction tolerance is approximately twice the optical tolerance established in

Chapter 2. Because the optical tolerance ww set for a 2% increase in spot size, the

logic of quadrature arithmetic indicates that the spot size increase from sextupole

aberrations at the construction tolerance is close to 870. It is worthwhile to note that

the normal and skew sextupole components did reproduce on magnets which were

removed from the test stand and later reinstalled.
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Figure B. 13: Measurements of the CCS sextupole magnet SN values
from stretched-wire technique (diamonds) and from rotating-coil tech-
nique (squares). The discrepancies are larger than the discrepancies for
the quads; however, in the absence of precise excitation current data
for the stretched- wire measurements, the discrepancy is equivocal.

CCS Sextupole Measurements

The four CCS sextupoles were measured using the stretched-wire technique, with a

sextupole excitation current of 215 amperes. The actual currents were not recorded,

and therefore no direct comparison with the rotating-coil are possible. However,

figure B. 13 shows the stretched-wire measurements (diamonds) and the rotating-coil

measurements scaled to 215.0 amperes (squares). The agreement is good at the

level of 0.5%. The resolution of the sextupole component is about 1.2 T/m; at the

excitation level of 1630 T/m, this corresponds to a resolution of 0.0770. The value of

X2/v fell between 0.8 and 1.2 for the four measurements with 3 pm positioning errors

assumed. The roll angles were all wit hin 2.5 milliradians of zero.

The symmetries of a sextupole magnet do not require that the dipole field and

quadruple field vanish at the same point in the magnet. In the fit of the sextupole
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magnets, the fit was configured to adjust the origin of coordinates such that the

quadruple terms were nulled, and to fit horizontal and vertical dipole kicks at the

origin. The largest such field observed was 6.7 x 10–4T . m, corresponding to a kick

to the 46.6 GeV electron beam of 4.3 prad. The resolution of the dipole field fit was

1.0 x 10–4T . m.
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Appendix C

Beam Position Monitor

Calibration

The FFTB Beam Position Monitor (BPM) system is a crucial element of numerous

tuning and stabilization algorithms, including the launch and energy feedbacks, beam- .

based alignment, dispersion, lattice diagnostics, wire scanner jitter correction, and

CCS stabilization feedbacks. In future linear colliders the BPMs are expected to

be even more important, as they can monitor the behavior of every pulse without

impacting the luminosity.

Because of its importance to the FFTB and the future linear collider, a procedure

for bench-testing the FFTB BPMs was developed and implemented as part of the

overall magnet fiducialization described in Appendix B. In order to understand the

bench-testing, it is also necessary to summarize the theory and practice of stripline

beam position monitors.
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+y

Figure C. 1: Infinite line charge in a metal pipe of radius a. The induced
surface charge at locations (a, 0) around the pipe is a function of the
charge q and its position (r, o).

C.1 Principle of Operation of Stripline Beam Po-

sition Monitors

Consider the situation depicted in Figure Cl: an infinite line charge passes through

a metal pipe of radius a; its position in the pipe’s coordinate system given by (r, @).

The surface charge-density ~Q at all points (a, O) on the pipe can be derived in a

straightforward manner from Poisson’s equation [87]:

q a2 —r2
~Q(a) 8) = 2m

~a2 + r2 – 2arcos(0 – ~)’
(Cl)

where q is the charge per unit length of the source term. Equation C. 1 can be rewritten

as an expansion in powers of ~ by performing a Fourier cosine transform:

(C.2)
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Equation C.2 can be further transformed by noting that, in the coordinate system in

use in Figure C. 1, x = r cos @,y = r sin@, where x and g are the cartesian coordinates

of the line charge in the pipe:

(C.3)

[

22

+2 x ~2y COS20 + 2~sin20

1

[
X3 – 3xy2 Cos 36 + 3yx2 – y3

+2
1}

sin30 + ... .~3 ~3

Let us now consider only the charge density induced at four points around the

pipe wall, specifically those points which are the furthest North, South, up and down

(denoted henceforth by N, S, T, B). These directions correspond to 8 = O, m, ~, ~,

respectively. Table C. 1 shows the contributions to the charge density at each of these

points from various orders of the expansion in Equation C.3, normalized to ~. Table

C. 1 is instructive in that it indicates how knowledge of the surface charge distribution

can allow estimation of the location of the source charge in the pipe. The first-order

expressions for the beam horizontal and vertical positions are given by:

a(N – S)

‘1=2(N+ S)’

Furthermore, the sum N+ S+T+B gives an

all x and y dependence cancels out of this

a(T – B)

Y1=2(T+ B).

excellent estimate

summation.

(C.4)

for the charge q, in that

Let us examine the approximations in Equation C.4 more carefully. The expression

for xl yields:

1 +-+...
xl =x (C.5)

l+2y +...

[

X2+ y2
=xl —

1a2 + ... .

A similar expression holds true for yl:

[ 1
Yl=y 1–X2; Y2 +... . (C.6)
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Order North I South I Top I Bottom I
Iolllllll 11

1 :x 2X—- :Y :Y——

2 2(X2 - Y2)~2 5(X2: y2) -3(X2 - y2) -5(X2 - y2)

3 3X(X2 – 3y2) –5X(X2 – 3y2) 5y(3x2 – y2) –5y(3x2 – y2)

Table Cl: Contributions to charge density at North, South, Top, Bot-
tom locations in units of &.

At a given location (x, y), therefore, the approximation of the source-charge location

in Equation C.4 is good up to an overall scale factor; and the scale factor is identical for

the two cartesian axes. The error induced by this method of position determination,

therefore, is in its radial distance from the center of the pipe; the angle within the

pipe is determined correctly. Furthermore, a second approximation of the form:

‘2=X’(l+X’:Y’)‘2=Y1(1+X’:Y’)(C.7)

()
4

will result in an overall radius error which is on the order of ~ . Note that while

the sum N+ S+T+B contains no dependence on the location of the charge, using this

sum in the denominator of Equation C.4 would result in a more complicated form for

the nonlinearity correction, including an error in the angle determination.

While the computation of position estimates from surface charge densities is of

academic interest, surface-charge meters are not a standard component of a scientist’s

toolbox. In order to construct an actual BPM, it is necessary to take advantage of

the pulsed nature of the beam. When the beam is not present in the pipe in Figure

C. 1, the surface charge density on the pipe is isotropic; when beam is present, the

charge is redistributed as shown in Equation C. 1. Therefore, the arrival of the beam

must cause the charge to flow between the two distribution states, and this flow of

charge can itself be monitored.
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Figure C.2: Schematic diagram of a stripline BPM. A strip of length L
is inserted into a metal pipe a distance a from the centerline. The gap
between the strip and the wall, da is determined to give an impedance
20 equal to Ro. For simplicity only one strip is shown.

Consider a situation as shown in Figure C.2: a stripline is inserted into the beam

pipe a distance a from the center of the pipe; the distance between the stripline and

the pipe wall, da, is adjusted to give an overall impedance 20 to the stripline-pipe

system. The strip is terminated at either end with resistances R. = 2..

In the absence of the beam, the stripline is free of surface charge, When the

beam arrives, a surface charge is attracted onto the stripline and the pipe in order

to maintain overall electrical neutrality; in the case of the stripline, the charge is

transported through the resistor. The current flowing through the resistor causes a

volt age to appear across the resistor, which can be monitored by a voltage-measuring

device. The time-structure of the voltage surge is close to a delta function, and will

be so treated in the subsequent formalism. In

stripline must be at a voltage below ground to

surge is negative in polarity.

the case of an electron

attract positive charge,

bunch, the

and so the
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Figure C.3: The voltage detected at the upstream end of a BPM
stripline consists of a delta-function pulse of amplitude V., followed
by a pulse of amplitude –V. a time 2~/c later.

The beam propagates down the pipe at the speed of light, and the surface charge

on the stripline (ideally) does so as well. At the downstream end, the surface charge is

returned to the ground through the downstream termination, causing a voltage delta

function which is equal and opposite to the initial pulse. This voltage propagates back

up the stripline to the upstream resistor. As a result, the voltage-measuring device

detects a negative voltage pulse and a positive voltage pulse, separated in time by ~,

as shown in Figure C.3. The relative amplitude of the surges as a function of stripline

position and beam position are as shown in Equation C. 1. While this description

of a BPM stripline has assumed a matched termination at the downstream end, it

can be shown that the upstream signal is the same regardless of the resistance of the

downstream termination [88].

The processing electronics which is used to detect the voltage surge shown in
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Figure C.4: l~(w) 1,normalized to the maximum voltage of /VOlfi/fi.

Figure C.3 has a finite bandwidth, while the surge itself has components up to infinite .

frequency. A voltage V(t) = VO[d(t) – d(t – 2L/c)] can be Fourier-transformed:

v(u) = ~ J)mV(t eiutdt
G -m

—— ~ [1- exp(2iuL/c)] .

(C.8)

The absolute magnitude of the voltage surge in the frequency domain, ]~(ti) [, is given

by:

(C.9)

The value of \~(w) I is plotted in Figure C.4. Note that the magnitude of the signal

achieves a maximum at a frequency v = fi, and zeroes at v = %.

The FFTB standard BPM has a stripline length of 457 mm [89], corresponding

to a maximum voltage at v = 164 MHz. The bandwidth of the electronics used for
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processing is on the order of 30 MHz [88]. In this low-frequency limit, IV(U) I x

w I~ I; thus the signal strength increases approximately linearly with the stripline

length. The frequency response of the cable used to transport the signal from the

BPM to the electronics will also tend to attenuate higher frequencies more than

lower frequencies, leading to enhanced low-frequency components. The processing

electronics must amplify the signal from the BPM striplines, detect the peak, and

memure the peak pulse height. This pulse height is digitized and the resulting digital

words from the four striplines are used to compute the beam position and charge.

C.2 Calibration of Stripline Beam Position Mon-

itors

In the previous section, we saw that the signal at the digitizer output is a function

of the BPM stripline unit, the processing electronics, and the cables between the .

striplines and the electronics. The system can be subject to offset-type errors which

result in offsets in the measured positions relative to the actual beam position, and

to gain-type errors which result in scaling factors and nonlinearities in the BPM

response. Each segment of the system is therefore subject to vigorous calibration in

an effort to eliminate these errors.

The cables used to carry the four stripline signals out of the tunnel are matched

to within 100 picosecond, or roughly 1 part in 1000, to optimally match the signal

attenuations within a given BPM [90]. Electronics calibration is accomplished by

introducing the signal from an external pulser to the two channels (N/S or T/B),

and comparing the digital words which are generated [91]. While the cable matching

is done at installation only, the pulsers are a component of the BPM processing

hardware and can be used to calibrate the electronics at any time.

The BPM calibration was accomplished on the same test stand used to measure

magnetic fields and magnetic centers, described in Appendix B. In this case, the
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1

Figure C.5: Wire grid positions used for BPM calibration.

stretched-wire was connected to a pulse generator which emits 20 nanosecond pulses;

these pulses excited the striplines in the same way that the electron beam would. A

single channel of BPM electronics was then used to read out each of the four strip

signals in turn, and these numbers were combined to reconstruct a BPM position

measurement, (zI, yl), as in Equation C.4.

As in the magnetic measurements, the stretched wire was positioned at different

locations about the BPM aperture via the moving stages; the BPM striplines were

read out at each location. In this way a map of (zl, gl ) as a function of (z, y) can

be constructed. Finally, the map between estimated BPM positions and known wire

positions was fitted, with an overall scale factor and horizontal and vertical offsets

parameters to be determined. In this way, the contribution to scale factor and offset

which is purely a function of BPM geometry and installation can be determined.
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C.2.1 Details of the Procedure

The grid of wire positions used is shown schematically in Figure C.5. The furthest

position from the BPM center is (+3 mm, +3 mm), with a total distance from the

origin of 4.2 mm. This distance is approximately 3570 of the total radius of the BPM,

which results in a 1270 discrepancy between the lowest-order position estimate and

the actual position. Consequently, the fitting algorithm includes the (~) 2 correction

term in Equation C.5.

While the electronics used with actual beam is capable of measuring with a res-

olut ion of 1 pm, the electronics used for this application is somewhat more coarse

in its resolution. Furthermore, the pulse used on the wire is much longer and much

lower in amplitude than the beam, resulting in extremely weak signals. As an ad hoc
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Figure C.7: Results of bench-test measurements of distance between
B~M electrical centers and quadruple magnetic centers.

assumption, the total wire-positioning resolution was assumed to be 20 pm in x and

20 pm in y. This error includes the possible scale factors and positioning errors in

the wire, as well as the electronics readback resolution. A more detailed study of the

repeat ability of measurements was not performed.

C.2.2 Results of the Procedure

From purely geometric considerations, scale factor between (N-S) /(N+S) and the

beam horizontal position was expected to be in the neighborhood of 5.75 mm, while

POISSON simulation reported a scale factor closer to 5.6 [88]. As shown in Figure

C.6, the actual measured scale factor averages 5.28 mm, with an RMS fluctuation

over the ensemble of approximately 470. The expected resolution of the fitted value
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is approximately 20 pm, or 0.4Y0. The fitted scale factor dimgrees with the simple

geometric calculation by 8.2%, and with the POISSON calculation by 5.9%. Beam-

based measurements described in Chapter 4 indicate that the 5.28 mm value may still

be 12% too high. The cause for this discrepancy is not known.

The location of the electrical centers of the BPMs with respect to the magnetic

centers (determined via vibrating the wire, see Appendix B) of their respective quads

is shown in Figure C.7. With the exception of a one flier in x and one in y, the

horizontal separation averages to -3 pm with an RMS of 64 pm, and the vertical

separation averages to 34 pm with an RMS of 62 pm. The expected fit resolution

from the bench-test procedure is approximately 40 pm in each plane.
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